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INTRODUCTION 

ECO718: ADVANCED MATHEMATICAL ECONOMICS (2 Units) 

 

ECO718: Advanced Mathematical Economics is a two-credit and one-semester postgraduate 

course for Economics students. The course is made up of twelve units spread across sixteen 

lectures weeks. This course, Advanced Mathematical Economics, develops the students with the 

essential tools, skills and knowledge base necessary to operate as a practicing macroeconomist. 

In reality, the course also exposes the students to practical use of mathematical models in 

analyzing economic problems.  

 

COURSE CONTENTS 

The contents of ECO718: Advanced Mathematical Economics are such that it provides the 

concepts of calculus to the analysis of functions of several variables. Then it covers convex 

multivariate optimization. This is followed by analysis of constrained optimization and 

unconstrained optimization, as applied to problems of firm and consumer behavior. The course 

extends to matrix algebra in solving problems of production and allocation in mutually 

dependent economies. It also provides essential elements of dynamic optimization in discrete 

time. Other relevant topics covered in the course include Economic Models, Components of a 

Mathematical Model, Types of Functions, Functions of Two or More Independent Variables, 

Equilibrium Analysis in Economics, Constant Elasticity of Substitution Function, Integrals and 

Some Economic Applications, Differential Equations, Linear Programming, Input-Output 

Analysis and Linear Programming, Non-Linear Programming, and Game Theory. 

 

COURSE AIMS 

The aim of the course is to give the student comprehensive knowledge of the Mathematical 

economics with reference to: 

 

1. Concept of Mathematical Economics, 

2. Economic Models, Components of a Mathematical Model, 

3. Types of Functions, Functions of Two or More Independent Variables  

4. Equilibrium Analysis in Economics, 

5.  Matrix-Algebra,  

6.  Optimization: Constrained Optimization: Lagrange-Multiplier Method 

7.  Constant Elasticity of Substitution Function  

8.  Cobb Douglas Function as a Special Case of the CES Function 

9.   Differential Calculus/Derivatives and Some Economic Applications 

10. Integrals Calculus and Some Economic Applications  

11. Differential Equations 

12. Simultaneous Equations Dynamic Models 

13.  Linear Programming: Simplex Method 
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14.  Input-Output Analysis and Linear Programming 

15.  Non-Linear Programming, 

16.  Game Theory 

 

COURSE OBJECTIVES 

To achieve the aims of the course, there are general objectives which the course seeks to 

accomplish. These general objectives serve as a guide to the specific unit objectives and hence 

the course objectives are study guide for every student. The students at the completion of this 

course should be able to:  

 

1. Explain the Concept of Mathematical Economics  

2. Explain meaning of Economic Models, Components of a Mathematical Model 

3. Discuss the Types of Functions, Functions of Two or More Independent Variables 

4. Evaluate Matrix Algebra  

5. Find the inverse of Matrix 

6. Use the Cramer’s Rule in solving simultaneous equations 

7. Solve some simultaneous equations using matrix algebra 

8. Solve mathematical problems on Constant Elasticity of Substitution Function. 

9. Solve Optimization problems including Constrained Optimization using the Lagrange-

Multiplier Method. 

10. Solve Integral calculus 

11. Solve Integration by Substitution 

12. Solve Integration by Parts 

13. Carry out Applications of Integral 

14.  Solve some first order Differential Equations 

15. Solve some  Simultaneous Equations Dynamic Models 

16. Solve problems of Linear Programming  

17. Use Matrix Algebra to evaluate input Output Models  

18. Solve problems of Non-Linear Programming using substitution method  

19. Non-Linear Programming, 

20. Explain Game Theories and also evaluate games problems. 

 

WORKING THROUGH THIS COURSE/SUCCESS GUIDE  

This course consists of sixteen (16) units with study exercises called Student Assessment 

Exercises (SAE). Students would as a matter of necessity be required to submit home/class 

assignments for assessment drives. At the end of the course there is a final examination. This 

course is designed to be taught for a minimum of 16 weeks before examining students. 

 

COURSE MATERIAL  
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The major component of the course, what you have to do and how you should allocate your time 

to each unit in order to complete the course successfully on time are listed follows: 

1. Course guide  

2. Study unit 

3. Textbook 

4. Assignment file 

5. Presentation schedule  

 

STUDY UNIT 

This course consists of sixteen (16) units as earlier mentioned and these units are structured into 

four (4) modules as shown below:  

 

MODULE ONE:   OVERVIEW OF MATHEMATICAL ECONOMICS,  

                                MODELS, FUNCTIONS AND ECONOMIC  

                                EQUILIBRIUM ANALYSIS  

UNIT 1 Overview of Mathematical Economics 

UNIT 2 Economic Models, Components of a Mathematical Model 

UNIT 3 Function, Types of Functions, Functions of Two or More Independent Variables  

UNIT 4 Equilibrium Analysis in Economics 

 

MODULE TWO: MATRIX ALGEBRA, SYSTEM OF LINEAR EQUATIONS AND 

MATRIX APPLICATION TO ECONOMICS: INPUT-OUTPUT 

ANALYSIS  

UNIT 1       Matrix-Algebra  

UNIT 2       System of Linear Equations and Cramer’s Rule 

UNIT 3       System of Linear Equations and Matrix Inversion  

UNIT 4:      Matrix Application to Economics: Input-Output Analysis  

 

MODULE THREE: DIFFRENTIATIONS, INTEGRATION AND OPTIMIZATION  

  TECHNIQUES 

UNIT 1       Differential Calculus and Some Economic Applications 

UNIT 2       Integral Calculus and Some Economic Applications  

UNIT 3       Optimization Techniques 

UNIT 4       Differential Equations 

 

MODULE FOUR: LINEAR/NON-LINEAR PROGRAMMING, AND GAME THEORY  

UNIT 1    Linear Programming: Simplex Method 

UNIT 2    Non-Linear Programming, 

UNIT 3Game Theory 
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Each study unit will take at least two hours, and it includes the introduction, objective, main 

content, self-assessment exercise, conclusion, summary and reference. Other areas border on the 

Tutor-Marked Assessment (TMA) questions. Some of the self-assessment exercise will 

necessitate discussion, brainstorming and argument with some of your colleges. You are advised 

to do so in order to understand and get acquainted with historical economic events as well as 

notable periods. 

 

There are also textbooks under the reference and other (on-line and off-line) resources for further 

reading. They are meant to give you additional information if only you can lay your hands on 

any of them. You are required to study the materials; practice the self-assessment exercise and 

tutor-marked assignment (TMA) questions for greater and in-depth understanding of the course. 

By doing so, the stated learning objectives of the course would have been achieved. 

 

TEXTBOOK AND REFERENCES RECOMMENDED 

For further reading and more detailed information about the course, the students are advised to 

consult the following materials: 

 

Adler, Ilan; Christos, Papadimitriou; & Rubinstein, Aviad (2014), "On Simplex Pivoting Rules 

and Complexity Theory", International Conference on Integer Programming and 

Combinatorial Optimization, Lecture Notes in Computer Science 17: 13 - 24,  

Akira Takayama, (1985). Mathematical Economics (2nded.). Cambridge 

Alpha C. Chiang and Kevin Wainwright (2005). Fundamental Methods of Mathematical 

Economics, McGraw-Hill Irwin. 

Anton, H. (1995). Calculus with Analytic Geometry (5th ed.), John Wiley & Sons, Inc. 

Aumann R. J. (2008). "Game Theory" The New Palgrave Dictionary of Economics, (2nded.).  

Begg, D., Fischer, S., &Dornbusch, R. (2000). Economics (6th ed.), McGraw-Hill. 

Bertsekas, Dimitri P. (1999). Nonlinear Programming (2nd ed.). Cambridge, Massachusetts: 

Athena Scientific. 

Brown, Murray (2017). "Cobb - Douglas Functions". The New Palgrave Dictionary of 

Economics. Palgrave Macmillan UK. pp. 1- 4.  

Camerer, Colin (2003). "Introduction", Behavioral Game Theory: Experiments in Strategic 

Interaction, Russell Sage Foundation, pp. 1- 25. 

Chastain, E. (2014). "Algorithms, games, and evolution". Proceedings of the National Academy 

of Sciences, 111 (29): 10620 - 10623 

Chiang, Alpha C. (1992). Elements of Dynamic Optimization, Waveland. TOC & Amazon.com  

link 
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Chiang, Alpha C.; Kevin Wainwright (2005). Fundamental Methods of Mathematical 

Economics. McGraw-Hill Irwin. pp. 3 - 4.  

Cobb, C. W.; Douglas, P. H. (1928). "A Theory of Production" (PDF). American Economic 

Review, pp. 139 - 165.  

Conn, A. R.; Scheinberg, K.; & Vicente, L. N. (2009). Introduction to Derivative-Free 

Optimization. MPS-SIAM Book Series on Optimization. Philadelphia: SIAM. 

Cornelis Roos, Tamás Terlaky, & Jean-Philippe Vial (2006). Interior Point Methods for Linear 

Optimization. (2nd ed.), Springer-Verlag.  

Cramer, H. Mathematical Methods of Statistics. Princeton: Princeton University Press, 1946 

Craven, B. D. (1988). Fractional programming. Sigma Series in Applied Mathematics. 4. Berlin: 

Heldermann Verlag.  

Dantzig, George B. (2008). "Linear programming” (2nd ed.).  

David M. Kreps (1990). Game Theory and Economic Modelling. 

Davidson, Russell; & MacKinnon, James G. (1993). Estimation and Inference in Econometrics. 

 Oxford University Press.  

Debreu, Gérard (2008). "Mathematical Economics" (2nded). Econometrica, 54(6), pp. 1259-

1270. 

Disser, Yann; & Skutella, Martin (2018). "The Simplex Algorithm is NP-Mighty". ACM Trans. 

Algorithms 15 (1): 5:1 - 5:19.  

Dixit, A. K. (1990). Optimization in Economic Theory, (2nded.) Oxford, Dmitris Alevras& 

Manfred W. Padberg (2001). Linear Optimization and Extensions: Problems and Solutions.  

Universitext, Springer-Verlag. 

Dmitris Alevras and Manfred W. Padberg (2001). Linear Optimization and Extensions: 

Problems  

and Extensions, Universitext, Springer-Verlag. 

Dorfman, Robert, Paul A. Samuelson, & Robert M. Solow (1990). Linear Programming and  

Economic Analysis. McGraw - Hill (3rded) the General Case.” The American Statistician 

49(1995): 59 - 61. 

Douglas, Paul H. (1976). "The Cobb-Douglas Production Function Once Again: Its History, Its  

Testing, and Some New Empirical Values". Journal of Political Economy. 84 (5): 903 - 

916. 

Dowling, E.T., (2001) Schaum's Outline of Introduction to Mathematical Economics, (3rded.),  

McGraw Hill 



9 | P a g e  
 

Drew Fudenberg (2006). "Advancing Beyond Advances in Behavioral Economics," Journal of 

Economic Literature, 44(3), pp. 694 - 711 

Driscoll, M.F. and B. Krasnicka. “An Accessible proof of Craig’s Theorem in  

Dutta, Prajit K. (1999). Strategies and Games: Theory and Practice. MIT Press. 

Eaton, B. Curtis; Eaton, Diane F.; & Allen, Douglas W. (2009). "Competitive General 

Equilibrium". Microeconomics: Theory with Applications (7thed.). Toronto: Pearson 

Prentice Hall.  

Eric Rasmusen (2007). Games and Information, (4th ed.), Description. 

Evar D. Nering and Albert W. Tucker (1993). Linear Programs and Related Problems, 

Academic Press.  

Fearnly, John; & Savani, Rahul (2015), "The Complexity of the Simplex Method", Proceedings 

of the Forty-seventh Annual ACM Symposium on Theory of Computing: 201 - 208,  

Filipe, Jesus; Adams, F. Gerard (2005). "The Estimation of the Cobb-Douglas Function: A 

Retrospective View". Eastern Economic Journal. 31 (3): 427 -445. 

Gärtner, Bernd; &Matoušek, Jiří (2006). Understanding and Using Linear Programming. Berlin: 

Springer.  

Geanakoplos, John (1987). "Arrow-Debreu Model of General Equilibrium". The New Palgrave: 

A Dictionary of Economics. 1. pp. 116 - 124. 

George B. Dantzig & Mukund N. Thapa. (2003). Linear Programming 2: Theory and Extensions. 

Springer-Verlag.  

Gerard Sierksma; & Yori Zwols (2015). Linear and Integer Optimization: Theory and Practice. 

CRC Press. 

Giancarlo Gandolfo, (2009). Economic Dynamics, (4th ed.), Springer.  

Gintis, Herbert (2000). Game Theory Evolving: A Problem-Centered Introduction to Modelling 

Strategic Behavior, Princeton University Press. 

Glaister, Stephen (1984). Mathematical Methods for Economists, 3rd ed., Blackwell.  

Hansen, Thomas; &Zwick, Uri (2015). "An Improved Version of the Random-Facet Pivoting 

Rule for the Simplex Algorithm". Proceedings of the Forty-seventh Annual ACM 

Symposium on Theory of Computing: 209 - 218. 

Hayashi, Fumio (2000). "Multiple-Equation GMM". Econometrics. Princeton University Press. 

pp. 276 - 279. 

Hoy, M., Livernois, J., McKenna, C., Rees, R., & Stengos, T. (2001) Mathematics for Economics  

(2nded) MIT Press. 
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Illés, Tibor; Szirmai, Ákos; &Terlaky, Tamás (1999). "The finite criss-cross method for 

hyperbolic programming". European Journal of Operational Research. 114 (1): 198 -

214.  

Intriligator, Michael D. (2008). "Nonlinear Programming" (2nded.). TOC. 

Isaacs, Rufus (1999). Differential Games: A Mathematical Theory with Applications to Warfare 

and Pursuit, Control and Optimization. New York: 

Jain, T.R. (July 2006). Microeconomics and Basic Mathematics. New Delhi: VK Publications. p. 

28. 

Jean-Pascal Bénassy (1990). "Non-Walrasian Equilibria, Money, and Macroeconomics," 

Handbook of Monetary Economics, v. 1, ch. 4, pp. 103-169.  

Jean Tirole (1988). The Theory of Industrial Organization. MIT Press. " 

John Stachurski, (2009). Economic Dynamics: Theory and Computation. MIT Press. 

Jörg Bewersdorff (2005). Luck, Logic, and White Lies: The Mathematics of Games. A K Peters, 

Ltd., pp. ix - xii. 

Jorgensen, Dale W. (2000). Econometric Modelling of Producer Behavior. Cambridge, MA: 

MIT Press.  

Joseph Y. Halpern (2008). "Computer Science and Game Theory". The New Palgrave Dictionary 

of Economics. (2nded). 

Karl-Heinz Borgwardt (1987). The Simplex Algorithm: A Probabilistic Analysis, Algorithms and 

Combinatorics, Volume 1, Springer-Verlag, 1987.  

Klump, R; McAdam, P; &Willman, A. (2007). "Factor Substitution and Factor Augmenting 

Technical Progress in the US: A Normalized Supply-Side System Approach". Review of 

Economics and Statistics 89 (1): 183 - 192. 

Kubler, Felix (2008). "Computation of General Equilibria: New developments". The New  

Palgrave Dictionary of Economics (2nded.). 

Kyle Bagwell and Asher Wolinsky (2002). "Game theory and Industrial Organization," 

Handbook of Game Theory with Economic Applications, v. 3, pp. 1851- 1895. 

Larson, Ron; Edwards, Bruce H. (2009). Calculus (9thed.). Brooks/Cole.  

Lasdon, Leon S. (2002). Optimization Theory for Large Systems. Mineola, New York: 

Leader, Jeffery J. (2004). Numerical Analysis and Scientific Computation. Addison Wesley. 

Leonard, Robert (2010). Von Neumann, Morgenstern, and the Creation of Game Theory. New 

York: Cambridge University Press. 

Maddala, G. S. (2001). "Simultaneous Equations Models". Introduction to Econometrics (3rded.). 

New York: Wiley. pp. 343 - 390.  

Mandal, Ram Krishna (2007). Microeconomic Theory. Atlantic Publishers & Dist.  
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Mankiw, N. G. (2001). Principles of Economics, (2nd ed.), Harcourt College Publishers. 

Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf (2000). 

Computational Geometry (2nded.). Springer-Verlag.  

Maros, István (2003). Computational Techniques of the Simplex Method. International Series in  

Operations Research & Management Science. 61. Boston, MA: Kluwer Academic 

Publishers.  

Michael Carter (2001). Foundations of Mathematical Economics, MIT Press.  

Michael J. Todd (February 2002). "The Many Facets of Linear Programming". Mathematical 

 Programming 91 (3): 417 - 436.  

Miller, James H. (2003). Game Theory at Work: How to Use Game Theory to Outthink and 

 Outmanoeuvre Your Competition. New York: McGraw-Hill. 

Mirowski, Philip (1992). "What Were von Neumann and Morgenstern Trying to Accomplish?” 

 In Weintraub, E. Roy (ed.). Toward a History of Game Theory. Durham: Duke University 

 Press. 

Mitra-Kahn, Benjamin H. (2008). "Debunking the Myths of Computable General Equilibrium

 Models" (PDF). Schwarz Center for Economic Policy Analysis Working Paper 01-2008. 

Murty, Katta G. (1983). Linear Programming. New York: John Wiley & Sons, Inc. pp. xix 

Murty, Katta G. (2000). Linear programming. John Wiley & Sons, Inc.  

Newton, Jonathan (2018). "Evolutionary Game Theory: A Renaissance". Games. 9 (2): 31.  

Nicola, PierCarlo (2000). Mainstream Mathematical Economics in the 20th Century. Springer.  

Nisan, Noam; Ronen, Amir (2001), "Algorithmic Mechanism Design". Games and Economic 

 Behavior, 35 (1 - 2): 166 - 196. 

Noam Nisan et al., ed. (2007). Algorithmic Game Theory. Cambridge University Press. Osborne, 

Martin J. (2004). An Introduction to Game Theory. Oxford University Press. 

Osborne, Martin J.; & Rubinstein, Ariel (1994). A Course in Game Theory. MIT Press.  

Owen, Guillermo (1995). Game Theory. (3rded.). Bingley: Emerald Group Publishing.  

Piraveenan, Mahendra (2019). "Applications of Game Theory in Project Management: A

 Structured Review and Analysis". Mathematics. 7 (9): 858.  

Prosser, Mike (1993). "Constrained Optimization by Substitution". Basic Mathematics for 

 Economists New York: Routledge. pp. 338 - 346 

Published in Europe as Gibbons, Robert (2001). A Primer in Game Theory. London: Harvester 

 Wheatsheaf. 

Rao, C.R. Linear Statistical Inference and its Application (2nded.). New -York: Wiley, 1973. 
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Renshaw, Geoff (2005). Maths for Economics. New York: Oxford University Press. pp. 516 –

 526. 

Richard W. Cottle, (2003). The Basic George B. Dantzig. Stanford Business Books, Stanford 

 University Press, Stanford, California. 

Robert A. Hearn; Erik D. Demaine (2009). Games, Puzzles, and Computation. A K Peters, Ltd.,  

Robert J. Vanderbei (2008). Linear Programming: Foundations and Extensions (3rd ed.), 

 International Series in Operations Research & Management Science, Vol. 114, Springer 

 Verlag. 

Robert W. Clower (2008). "Non-clearing markets in general equilibrium," in The New Palgrave  

Dictionary of Economics, (2nded.). 

Scarf, Herbert E. (2008). "Computation of General Equilibria". The New Palgrave Dictionary of  

Economics (2nded.). 

Schmedders, Karl (2008). "Numerical Optimization Methods in Economics". The New Palgrave  

Dictionary of Economics, (2nded.) 

Shoham, Yoav (2008) "Computer Science and Game Theory". Communications of the ACM, 51 

(8): 75 - 79. 

Shubik, Martin (2002). "Game Theory and Experimental Gaming", in R. Aumann and S. Hart, 

 ed., Handbook of Game Theory with Economic Applications, Elsevier, v. 3, pp. 2327 - 

 2351. 

Silberberg E. et al. (2001). The Structure of Economics: A Mathematical Analysis. 

Silberberg, Eugene; Suen, Wing (2001). "Elasticity of Substitution". The Structure of Economics: 

 A Mathematical Analysis (Third Ed.). Boston: Irwin McGraw-Hill. pp. 238 - 250. 

Spielman, Daniel; Teng, & Shang-Hua (2001). "Smoothed Analysis of Algorithms: Why the 

 Simplex Algorithm Usually Takes Polynomial Time". Proceedings of the Thirty-Third 

 Annual ACM Symposium on Theory of Computing. ACM. pp. 296 – 305. 

Stewart, James (2008). Calculus: Early Transcendentals (6thed.). Brooks/Cole. 

Stone, Richard E.; Tovey, Craig A. (1991). "The simplex and projective scaling algorithms as 

iteratively reweighted least squares methods". SIAM Review 33 (2): 220 - 237.  

Stone, Richard E.; Tovey, Craig A. (1991). "Erratum: The Simplex and Projective Scaling 

Algorithms as Iteratively Reweighted Least Squares Methods". SIAM Review 33 (3): 461. 

Suranovic, Steve (2004). International Trade Theory and Policy. 

Sydsaeter, K. and Hammond, P. J. (2008) Essential Mathematics for Economic Analysis, 3rd 

 Edition, FT Prentice Hall. 
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Webb, James N. (2007) Game Theory: Decisions, Interaction and Evolution, Undergraduate 

Mathematics, Springer. 
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HOME WORK/ASSIGNMENT FILES 

Assignment files and marking scheme will be made available to you. This file presents you with 

details of the work you must submit to your instructor for marking. The marks you obtain from 

these assignments shall form part of your final mark for this course. Additional information on 

assignments will be found in the assignment file and later in this Course Guide in the section on 

assessment. 

 

There are four assignments in this course. The four course assignments will cover: 

Assignment 1 – All TMAs’ Questions in Units 1 – 4 (Module 1) 

Assignment 2 – All TMAs’ Questions in Units 5 – 8 (Module 2) 

Assignment 3 – All TMAs’ Questions in Units 9 – 12 (Module 3) 

Assignment 4 – All TMAs’ Questions in Units 13 – 16 (Module 4) 

 

PRESENTATION SCHEDULE 
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The presentation schedule included in the course materials gives important dates in the year for 

the completion of tutor-marking assignments and attending tutorials. Remember, every student is 

required to submit all your assignments by due date. You should guide against failure to meet up 

with the deadline. 

 

ASSESSMENT 

The assessment for this course is a combination of continuous assessment and final 

examinations. The continuous assessment is 30% of the final grade and it is made up of all home 

works/assignments given in the course of lectures as contained in the units of the four modules. 

The home works and/or assignments must be submitted to your instructor for formal Assessment 

in compliance with the deadlines. Classroom tests will also be given to facilitate learning of the 

more challenging areas of the course. A final examination will be written at the end of the course 

and this will cover 70%.  

 

TUTOR-MARKED ASSIGNMENTS (TMA) 

There are four homework/assignments to be done by each student this course. Students are 

required to submit all the assignments as the TMAs constitute 30% of the total score.Assignment 

questions for the units in this course are contained in the Home Work/Assignment File. Students 

are advised to eagerly demonstrate that researched knowledge outside the course material. When 

you have completed each assignment, send it, together with a TMA form, to your instructor. 

Make sure that each assignment reaches your instructor on or before the deadline given in the 

Presentation File. If for any reason, you cannot complete your work on time, contact your 

instructor before the assignment is due to discuss the possibility of an extension. Extensions will 

not be granted after the due date unless there are exceptional circumstances. 

 

FINAL EXAMINATION AND GRADING 

The final examination will be of three hours' duration and have a maximum score of 70% of the 

total course grade. The examination will consist of questions which reflect the types of 

study/practice exercises and tutor-marked problems students have previously encountered. All 

topics of the course will be assessed. 

 

Revise the entire course material using the time between finishing the last unit in the module and 

that of sitting for the final examination. You might find it useful to review your self-assessment 

exercises, tutor-marked assignments and comments on them before the examination. The final 

examination covers information from all parts of the course. 

 

COURSE MARKING SCHEME 

In this course, the total marks of 100% is to be earned by students. The allocation of total score 

would include the best three assignments out of four that are marked 10% each making a total of 
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30% while the final Examination would be graded over 70%. This is explained in the table 

below:  

 

Table 1: Scores Allocation 

Assignment Marks 

Assignments (Best three assignments out of four that is 

marked) 

30% 

Final Examination 70% 

Total 100% 

 

 

COURSE OVERVIEW 

The Table presented below indicates the units, number of weeks and assignments to be taken by 

the students in order to successfully complete the course. 

 

Table 2: Course Overview  

Units Title of Work                          Week’s 

Activities 

Assessment 

(end of unit) 

 Course Guide   

MODULE 1:  OVERVIEW OF MATHEMATICAL ECONOMICS, 

MODELS, FUNCTIONS AND ECONOMIC 

EQUILIBRIUM ANALYSIS 

1 Overview of Mathematical 

Economics 

Week 1 Assignment 1 

2 Economic Models, Components of a 

Mathematical Economic Models  

Week 2 Assignment 2 

3 Functions/Ordered Pairs, Types of 

Functions, and Continuity of 

Functions 

Week 3 Assignment 3 

4 Equilibrium Analysis in Economics Week 4 Assignment 4 

MODULE 2: MATRIX ALGEBRA, SYSTEM OF LINEAR 

EQUATIONS AND MATRIX APPLICATION TO 

ECONOMICS: INPUT-OUTPUT ANALYSIS  

1 Matrix-Algebra Week 5 Assignment 1 

2 System of Linear Equations and 

Cramer’s Rule 

Week 6 Assignment 2 

3 System of Linear Equations and Week 7 Assignment 3 
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Matrix Inversion 

4 Matrix Application to Economics: 

Input-Output Analysis 

Week 8 Assignment 4 

MODULE 3:DIFFRENTIATIONS, INTEGRATION AND 

OPTIMIZATION TECHNIQUES 

1 Derivatives and Some Economic 

Applications 

Week 9 Assignment 1 

2 Integrals and Some Economic 

Applications 

Week 10 Assignment 2 

3 Optimization Techniques Week 11 Assignment 3 

4 Differential Equations Week 12 Assignment 4 

MODULE 4: LINEAR/NON-LINEAR PROGRAMMING, AND GAME 

                    THEORY 

1 Linear Programming Week 13 Assignment 1 

2 Non-Linear Programming Week 14 Assignment 2 

3 Game Theory Week 15 & 

16 

Assignment 3 

 Examination Week 17, 

18 & 19 

 

 

HOW TO GET THE MOST FROM THIS COURSE 

In distance learning the study units replace the university lecturer. This is one of the great 

advantages of distance learning; you can read and work through specially designed study 

materials at your own pace and at a time and place that suit you best. Think of it as reading the 

lecture instead of listening to a lecturer. In the same way that a lecturer might set you some 

reading to do, the study units tell you when to read your books or other material, and when to 

embark on discussion with your colleagues. Just as a lecturer might give you an in-class exercise, 

your study units provide exercises for you to do at appropriate points. 

 

Each of the study units follows a common format. The first item is an introduction to the subject 

matter of the unit and how a particular unit is integrated with the other units and the course as a 

whole. Next is a set of learning objectives. These objectives let you know what you should be 

able to do by the time you have completed the unit. 

 

You should use these objectives to guide your study. When you have finished the unit, you must 

go back and check whether you have achieved the objectives. If you make a habit of doing this 

you will significantly improve your chances of passing the course and getting the best grade. 
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The main body of the unit guides you through the required reading from other sources. This will 

usually be either from your set books or from a readings section. Some units require you to 

undertake practical overview of historical events. You will be directed when you need to embark 

on discussion and guided through the tasks you must do. 

 

The purpose of the practical overview of some certain historical economic issues are in twofold. 

First, it will enhance your understanding of the material in the unit. Second, it will give you 

practical experience and skills to evaluate economic arguments, and understand the roles of 

history in guiding current economic policies and debates outside your studies. In any event, most 

of the critical thinking skills you will develop during studying are applicable in normal working 

practice, so it is important that you encounter them during your studies. 

 

Self-assessments are interspersed throughout the units, and answers are given at the ends of the 

units. Working through these tests will help you to achieve the objectives of the units and 

prepare you for the assignments and the examination. You should do each self-assessment 

exercises as you come to it in the study unit. Also, ensure to master some major historical dates 

and events during the course of studying the material. 

The following is a practical strategy for working through the course. If you run into any trouble, 

consult your tutor. Remember that your tutor's job is to help you. When you need help, don't 

hesitate to call and ask your tutor to provide it. 

 

1. Read this Course Guide thoroughly. 

2. Organize a study schedule. Refer to the `Course overview' for more details. Note the time 

you are expected to spend on each unit and how the assignments relate to the units. 

Important information, e.g. details of your tutorials, and the date of the first day of the 

semester is available from study centre. You need to gather together all this information 

in one place, such as your dairy or a wall calendar. Whatever method you choose to use, 

you should decide on and write in your own dates for working breach unit. 

3. Once you have created your own study schedule, do everything you can to stick to it. The 

major reason that students fail is that they get behind with their course work. If you get 

into difficulties with your schedule, please let your tutor know before it is too late for 

help. 

4. Turn to Unit 1 and read the introduction and the objectives for the unit. 

5. Assemble the study materials. Information about what you need for a unit is given in the 

`Overview' at the beginning of each unit. You will also need both the study unit you are 

working on and one of your set books on your desk at the same time. 

6. Work through the unit. The content of the unit itself has been arranged to provide a 

sequence for you to follow. As you work through the unit you will be instructed to read 

sections from your set books or other articles. Use the unit to guide your reading. 

7. Up-to-date course information will be continuously delivered to you at the study centre. 
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8. Work before the relevant due date (about 4 weeks before due dates), get the Assignment 

File for the next required assignment. Keep in mind that you will learn a lot by doing the 

assignments carefully. They have been designed to help you meet the objectives of the 

course and, therefore, will help you pass the exam. Submit all assignments no later than 

the due date. 

9. Review the objectives for each study unit to confirm that you have achieved them. If you 

feel unsure about any of the objectives, review the study material or consult your tutor. 

10. When you are confident that you have achieved a unit's objectives, you can then start on 

the next unit. Proceed unit by unit through the course and try to pace your study so that 

you keep yourself on schedule. 

11. When you have submitted an assignment to your tutor for marking do not wait for its 

return `before starting on the next units. Keep to your schedule. When the assignment is 

returned, pay particular attention to your tutor's comments, both on the tutor-marked 

assignment form and also written on the assignment. Consult your tutor as soon as 

possible if you have any questions or problems. 

12. After completing the last unit, review the course and prepare yourself for the final 

examination. Check that you have achieved the unit objectives (listed at the beginning of 

each unit) and the course objectives (listed in this Course Guide). 

 

TUTORS AND TUTORIALS 

There are some hours of tutorials (2-hours sessions) provided in support of this course. You will 

be notified of the dates, times and location of these tutorials together with the name and phone 

number of your tutor, as soon as you are allocated a tutorial group. 

 

Your tutor will mark and comment on your assignments, keep a close watch on your progress 

and on any difficulties you might encounter, and provide assistance to you during the course. 

You must mail your tutor-marked assignments to your tutor well before the due date (at least two 

working days are required). They will be marked by your tutor and returned to you as soon as 

possible. 

 

Do not hesitate to contact your tutor by telephone, e-mail, or discussion board if you need help. 

The following might be circumstances in which you would find help necessary. Contact your 

tutor if. 

• You do not understand any part of the study units or the assigned readings 

• You have difficulty with the self-assessment exercises 

• You have a question or problem with an assignment, with your tutor's comments on an 

assignment or with the grading of an assignment. 

• You should try your best to attend the tutorials. This is the only chance to have face to 

face contact with your tutor and to ask questions which are answered instantly. You can 

raise any problem encountered in the course of your study. To gain the maximum benefit 



19 | P a g e  
 

from course tutorials, prepare a question list before attending them. You will learn a lot 

from participating in discussions actively. 

 

CONCLUSION/SUMMARY 

The course, gives the student comprehensive knowledge of the mathematical economics with 

reference to: economic/mathematical model, types of functions, functions of two or more 

independent variables, equilibrium analysis in economics, matrix-algebra, theory optimization 

including free and constrained simultaneous equations dynamic models, linear programming: 

simplex method, input-output analysis and linear programming and non-linear programming. 

 

This course also gives you an insight into differential calculus/derivatives and some economic 

applications as well as integrals calculus and some economic applications. Finally, Game theory 

is also examined to enhance the student techniques of logical reasoning. After the successful 

study of this course, the student would have developed acute mathematical skills with the 

techniques required for analytical execution of economic problems with high levels of accuracy 

within an economic setting. We wish you success with the course and hope that you will find it 

fascinating and handy. 

 

MODULE 1: OVERVIEW OF MATHEMATICAL ECONOMICS, MODELS, 

FUNCTIONS AND ECONOMIC EQUILIBRIUM ANALYSIS  

UNIT 1 Overview of Mathematical Economics 

UNIT 2 Economic Models, Components of a Mathematical Model 

UNIT 3 Types of Functions, Functions of Two or More Independent Variables  

UNIT 4 Equilibrium Analysis in Economics 

 

 

UNIT 1: OVERVIEW OF MATHEMATICAL ECONOMICS 

 

CONTENTS 

1.0  Introduction 

2.0  Objectives 

3.0  Main Content 

3.1 Concept of Mathematical Economics  

 3.2 Why Study Mathematical Economics? 

 3.3 Economic Applications of Mathematics 

  

4.0 Conclusion 

4.0 Summary 

6.0 Tutor-Marked Assignment 

7.0 References/Further Readings 
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1.0 INTRODUCTION 

This unit focuses on concept of mathematical economics, rationale for studying mathematical 

economics and the various areas where mathematics can be applied in economics. 

 

2.0 OBJECTIVES 

After a successful study of this unit, students would be able to do the following: 

• Describe what mathematical economics is all about 

• Discuss the rationale for mathematical economics  

• Formulate economic problems in mathematical expressions  

 

3.0 MAIN CONTENT 

3.1 Concept of Mathematical Economics 

Mathematical economics is an aspect of economics that utilizes mathematical methods to resolve 

economic problems in order to arrive at results. Such mathematical methods refer to differential 

and integral calculus, differential equation, matrix algebra, mathematical programming etc. By 

convention, the subject thus relies on numerical observations to predict economic behavior.  

 

SELF ASSESSMENT EXERCISE 

Describe in your own words what you understand as Mathematics for Economists 

 

3.2 Why Study Mathematical Economics? 

1. Mathematical economicsaids mathematical formulation/economic modelling of 

theoretical and economic interactions.  

2. Mathematics aid economists in carrying out quantifiable assessmentsin order 

toforecasttrend/forthcoming economic activity.  

3. Mathematics aid economists in the act of making positive claims about historical 

economic arguments.  

4. It is particularly useful in solving optimization problems where a policymaker, for 

example, is considering the best policy option out of a given menu of economic policies. 

 

SELF ASSESSMENT EXERCISE 

Explain major advantages for studying mathematical economics  

 

3.3 Economic Applications of Mathematics 

The economic applications include: 

• Policy maker, household or firm optimization  

• Input-output modeling & analysis 

• Equilibrium analysis application in which economic unit such as a household or firm or 

economic system such as a market or overall economy is modeled as not changing 
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• Comparative statics application in which a variation from one equilibrium to another 

equilibrium is induced by a variation in one or more factors 

• Dynamic analysis application which entails tracing changes in an economic system over 

time, for example from the growth rate of national income. 

 

SELF ASSESSMENT EXERCISE 

Describe the various areas where mathematics can be applied to economics 

 

4.0 CONCLUSION 

Advanced mathematical economics is an important aspect of economic analysis as it provides the 

skills for application of mathematical knowledge to economic problems and also to analyze and 

simulate real economic situations. Its fundamentals embrace understanding of the one variable 

calculus as well as models of simultaneous equations.  

 

5.0 SUMMARY 

In this unit, we have been able to articulate the concept of mathematical economics, rationale for 

mathematical economics and also the various areas of economics where mathematics can be 

applied for purpose of decision making.  

 

6.0 TUTORED MARKED ASSIGNMENTS 

1. Briefly give an overview definition of mathematical economics. 

2. In what ways can it be deduced that the study of mathematical economics is justifiable? 

3. Describe the various areas where mathematics can be applied to economics 

 

7.0 REFERENCES/FURTHER READINGS 

Chiang, Alpha C.; & Kevin Wainwright (2005). Fundamental Methods of Mathematical  

Economics. McGraw-Hill Irwin. pp. 3 - 4.  

Cramer, H. (1946). Mathematical Methods of Statistics. Princeton: Princeton University Press. 

Debreu, Gérard (2008). "Mathematical Economics" (2nded.). Econometrica, 54(6), pp. 1259-

1270. 

Dowling, E.T. (2001) Schaum's Outline of Introduction to Mathematical Economics,(3rded.),  

McGraw Hill. 

Driscoll, M.F. &Krasnicka B. (1995). “An Accessible proof of Craig’s Theorem in the General  

Case.” The American Statistician 49:59-61. 

Glaister, Stephen (1984). Mathematical Methods for Economists, (3rd ed.), Blackwell.  

Hocking, R. R. Methods and Applications of Linear Models. New York: Wiley, 1996. 

Hoy, M., Livernois, J., McKenna, C., Rees, R., Stengos, T. (2001) Mathematics for Economics  

(2nded) MIT Press. 

Rao, C.R. (1973). Linear Statistical Inference and its Application (2nded.). New York: Wiley. 

Sydsaeter, K. and Hammond, P. J. (2008). Essential Mathematics for Economic Analysis, (3rd 



22 | P a g e  
 

ed.), FT Prentice Hall. 

Silberberg E. et al. (2001). The Structure of Economics: A Mathematical Analysis. McGraw 

 Hill Universities of Washington & Hong Kong 

Takayama, Akira (1985). Mathematical Economics, 2nd ed. Cambridge.  

 

 

 

 

UNIT 2: ECONOMIC MODELS, COMPONENTS AND TYPES OF  

MATHEMATICAL/ECONOMIC MODEL 

 

CONTENTS 

1.0. Introduction 

2.0. Objectives 

3.0. Main Content 

3.1 Meaning of Economic Model  

 3.2 Components of a Mathematical Economic Model 

 3.3 What Makes Good Mathematical Economic Models? 

 3.4 Types of Models 

3.4.1 Linear Models 

  3.4.2 Polynomial Models 

3.4.3 Reciprocal Models 

3.4.4 Exponential Models 

3.4.5 Nonlinear Models: Cobb-Douglass Function 

3.4.6 Models of Constant Elasticity: CES Function 

3.4.7 Translog Indirect Utility Models 

3.4.8 Dynamic vs. Static Models 

 

4.0      Conclusion 

5.0      Summary 

6.0.     Tutor-Marked Assignment 

7.0  References/Further Readings 

 

1.0 INTRODUCTION 

This unit discusses the meaning of economic model, components of a mathematical economic 

model, what makes good mathematical economic models and the various types of models. Also, 

our focus of discussion is on meaning of Cobb-Douglass Function and constant elasticity of 

substitution function (CES), properties of Cobb-Douglass Function and CES function while also 

providing solutions to some numerical problems on Cobb-Douglass Function and CES. 
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2.0 OBJECTIVES 

After a successful study of this unit, students should be able to do the following: 

• Define an economic model  

• Discuss the various components of a mathematical model   

• Explain what makes good mathematical models 

• Discuss types of models 

• Explain what the Cobb-Douglass function (CES) is all about 

• Solving numerical problems on Cobb-Douglass function 

• Explain what the constant elasticity of substitution function (CES) is all about 

• Solving numerical problems on constant elasticity of substitution function (CES) 

 

 

3.0 MAIN CONTENT 

3.1. Meaning of Economic Model 

An economic model is a depiction of a system using mathematical concepts. In effect, an 

economic model is a formal exemplification of an economic theory based on a set of 

mathematical equations. The process of developing an economic model is called mathematical 

modeling. An economic model is used to study the effects of different components, and to make 

predictions about economic behaviour.  

 

3.2 Components of Mathematical Economic Model  

Mathematical Component: This entails a discussion of the number of equations, linear or non-

linear form of these equations and the type of equation in addition to the type of variables say 

endogenous, or exogenous variables.  

 

Stochastic Component: Every economic model consists of a stochastic disturbance often known 

as the error term. The error term is a random variable that measures all the factors affecting the 

endogenous variable under study but not integrated in the model hence the incompleteness 

property of a model. 

 

SELF ASSESSMENT EXERCISE 

Describe the various components of economic mathematical model 

 

3.3 What Makes Good Mathematical Economic Models? 

• Variable Representation Property: In mathematical models, parameters are most 

often represented by variables and once there is a change in the values of any 

variable, it mathematically brings a change upon the model. 

• Simplification: Every mathematical model simplifies essential structure of the 

economy being described. 
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• Incompleteness Property: Mathematical models are necessarily incomplete in 

specification.  The reason being that a mathematical model is a representation of 

real life situation and there is therefore no mathematical model that can include 

every aspect of real life.  

 

SELF ASSESSMENT EXERCISE 

Describe the qualities of Mathematical Models 

 

3.4 Types of Models 

3.4.1 Linear Model: This is a model that has its variable raised to the power of one. Examples 

are demand and supply models given mathematically as; q a bp= −  and q d cp= − + respectively. 

For example: 

xy 5.028−=  (1) 

xy += 500  (2) 

From the above example, we can see that the equations have a power of one (1) and this is the 

reason why they are linear models. In addition, these models are linear because they can be 

plotted on a graph as a straight lines with the equationwhere -0.5 and 1 are the slope 

coefficientsof the respective linesor equations (1) and (2) and 28 and 500 are the intercept on 

axisy − for equations (1) and (2) respectively. 

 

3.4.2 Polynomial Models: A polynomial is an equation of the following form 

2 3

0 1 2 3

n

ny d d x d x d x d x= + + + + +  

where y  is the dependent variable, x  is the independent variable, 0d  is a constant and ( )nixi ,2,1=  

are the underlying parameters of the equation. The specified equation is a polynomial of degree n because 

n is the highest power of x . Other relevant eexamples of polynomial models include the following:  

i. Polynomial of degree one, 1y a d x= + . This is a linear function and it is of degree 

one because 1 is the highest power of x in the equation.  

ii. Polynomial of degree two, 
2

1 2y a d x d x= + + . This is a quadratic equation and it is of 

degree two because 2 is the highest power of x in the equation.  

 

iii. Polynomial of degree three, 
2 3

1 2 3y a d x d x d x= + + + . This a cubic equation and it is 

of degree three because 3 is the highest power of x in the equation. Economically 

speaking, an example of a polynomial equation of degree three is the total cost function. 
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3.4.3 Reciprocal Model:(Please, define the model before giving example) Examples of reciprocal 

models include the following:  
1Q a bZ −= +
 

Where Q is dependent variable,  

Z is explanatory variable,  

a is intercept coefficient,  

b is slope coefficient. 

 

3.4.4 Translog Indirect Utility Model: The translog equation is given by: 

1 1 1

[ / ] [ / ][ / ]
P P P

e p e p pl e p l

p p l

Log Q d Log w M Log w Z w Z 
= = =

− = + +   

Where Q  is indirect utility, 

P is price level for the kth commodity,  

Z is income level [see Christensen, Jorgenson & Lau (1975)]  

 

3.4.5. Dynamic Model vs. Static Model: A dynamic model is a model that accounts for 

dependent changes in the state of the system, thus, dynamic models are constructed to determine 

the time-path of variables such as GDP, employment, consumption, investment, price, sale, 

income etc. Example of dynamic model are shown below:   

           Y = 2000 + 4Zt-1 + 60Z2 

          P = - 0.8 - 90Qt-1 

As shown above, the “t” indicates time trend and this makes the mathematical model dynamic 

model.  Dynamic models are useful in the following regards: 

i. deciding the speed of adjustment,  

ii. deciding whether or not there is going to be an adjustment to equilibrium in event of disequilibrium.  

 

The static mathematical model is often referred to as the Steady state model because it is a 

mathematical model that is time invariant as it analyzes the system in equilibrium. In effect, static 

models simply reflect changes from one point in time to another without respect to speed of arriving at the 

new position. Below are some examples of static model.  

Y = 1000 + 6Z + 40Z2  

P = - 0.8 - 90Q 

As seen above, there is no time which is denoted by letter “t” in the equation. Dynamic models are 

of two types; namely: difference and differential equations. 

 

 

TABLE 1: DIFFERENCE BETWEEN STATIC AND DYNAMIC MODELS 

Dynamic Models Static Models 

Dynamic models keep changing with reference 

to time 

Static models are at equilibrium of in a 

steady state 
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Dynamic modeling comprises of series of 

operations, state changes, activities and 

interface  

Static modeling comprises class and object 

diagrams used in depicting static elements 

Dynamic model is a behavioral representation 

of static components of the system 

Static model is structural representation of 

the system  

Dynamic modeling is highly elastic as it varies 

with time, that is, time dependent observation 

of the system. 

Static modeling is rigid as it is time 

independent observation of a system 

 

 

SELF-ASSESSMENT EXERCISE  

1. What is the relationship between static and dynamic models? 

2. What is the relationship between Static and Dynamic models? 

 

 

3.4.6. Non-linear Models: Cobb-Douglass Model: These models can be classified into two (2) 

types and these include mathematical models that are nonlinear in the variables but still linear in 

terms of the unknown parameter. This class of non-linear models includes model which are made 

linear in the parameters through transformation. Example is the Cobb Douglas function that 

relates output (Y) to labour (L) and capital (K) as shown below:   

Y = (aLqKg) 

This function is nonlinear in the variable while it is linear in the parameters a, q and g.  There is 

also the nonlinearity in parameters. These category of models cannot be made linear following 

transformation.  The CD function is a functional form of the production function transmits the 

technological relationship between two inputs and output.  

 

The Mathematical Formulation of Cobb-Douglas Function with two factors is as follows: 

(1 )q qY WK L −=  

where Y = total output 

L = units of labour input (number of person-hours) 

K = units of capital input (machinery, equipment, and buildings etc.) 

W = total factor productivity  

,1q q− are the coefficients of output elasticity of capital and labor, separately.  

 

The CD function can be mathematically formulated in a general multi-factors case as a linear 

relation thus: 

0ln( ) ln( )i iY b b I= +  
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where   Y = total output 

 I = units of input  

ib = input coefficients  

In the two-factor case the CD function form can be mathematically formulated as a linear 

relation as follows: 

 

  ln( )ln( ) ln( ) (1 ) ln( )WY q K q L= + + −  

    

The Cobb-Douglas Function can be specified as a Special Case of CES Functionas:  

    ( (1 ) ]Y W qL q K


  
−

= + −  (1)     

     

Taking the log of the CES function in equation (1), we have equation (2) as follows: 

    ln( ) [ ]ln( ) ln (1 )W qLY q K 


= − + −    (2) 

By applying l'Hôpital's rule, such that 0 = we derive a limiting case that corresponds to CD 

function as follows: As can be seen in equation 2, if 0→o
0


,and hence ( )oo KqqL

o
)1(ln −+


 

will tend to ). 

 

The features of Cobb-Douglas Function are as follows: 

a. The CD function is characterized by constant returns to scale such that 

(1 ) 1q q+ − = , 

b. The CD function is characterized by decreasing returns to scale such that 

[ (1 )] 1q q+ −   

c. The CD function is characterized by increasing returns to scale such that 

[ (1 )] 1q q+ −   

d. The constant returns to scaleassumption holds under a perfect competition  

 
SELF ASSESSEMENT QUESTION 

Discuss the properties of CD function 

Discuss the meaning and properties of CD function 

Mathematically formulate CD function 

 

Numerical Example 1: Consider the following Cobb-Douglas function which is to be optimized 

1 3

4 481

. . 3 6 90

Q z y

s t z y

=

+ =
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(a) Optimize the CD function 

(b) Determine the optimal value of the function at z = 124 & y = 54 respectively 

(c) Use the results to explain fully the concept of MRTS between the factor inputs z & y. 

(d) State and derive with regards to CD function, Euler’s theorem  

 

Solution to Numerical Example 1: Form the Langragian function as follows: 

1 3

4 4

3 3

4 4

1 1

4 4

81 [90 3 6 ]

20.25 3 0 (1)

60.75 6 0 (2)

90 3 6 0 (3)

z

y

L z y z y

L
L z y

z

L
L z y

y

L
L z y









−

−

= + − −


= = − =



= = − =



= = − − =


 

 

    Diving equation (1) by equation (2), we have:  
3 3

4 4

1 1

4 4

20.25 3

6
60.75

20.25 3

60.75 6

121.5 182.25

182.25

121.5

1.5

z y

z y

y

z

y z

z
y

y z





−

−

=

=

=

=

=

 

Substituting for y in equation (3), we have that: 

90 3 6(1.5 ) 0

90 3 9 0

12 90

90

12

7.5

1.5(7.5)

11.25

z z

z z

z

z

z

y

− − =

− − =

=

=

=

=

=  
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For the S. O. C. shows that 0

zz zy

yz yy

L L

L L  , therefore the solution set is a maximum 

 

 

3.4.7. Models of Constant Elasticity:  

Models of constant elasticity are most often given as: just as the name suggest, it is a model with 

a constant value of elasticity.
The Constant Elasticity of Substitution Function (CES) function is a 

neoclassical function that displays constant elasticity of substitution. In other words, it is a 

technological function that has a constant percentage change in factor proportions due to a 

percentage change in marginal rate of technical substitution.   

It can be given in its non-logarithmic form.  

( )   
k

KLAQ
−−− −+= 1  

The logarithmic representation of the model is given as: 
 

( / ) [ (1 ) ]a a

e e eLn Q Ln d c a Ln bL b K− −
= − + −

 
Where Q is the output of production,  

L is labour man-hours,  

K is capital stock [units], 

d is production intercept,  

b is constant labour share,   

(1-b) is constant capital share,  

e is natural logarithmic base. 

 

 

The mathematical formulation of CES function is given as follows: 

( (1 ) ]Y W qL q K


  
−− − −= + −  

Where, Y = quantity of output 

•  W = factor productivity  

• q  = share parameter 

• L  = units of  labour inputs 

• K = units if capital inputs 

• 
1




−
=   is substitution parameter 

•  = 
1

1



=

−
 is elasticity of substitution  
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•   = homogeneity degree.  

• Where   = 1 (constant return to scale), 

•    < 1 (decreasing return to scale),   

•  > 1 (increasing return to scale). 

 

The CES function exhibits constant elasticity of substitution between factors. Leontief and Cobb 

Douglas (CD) functions are special cases of the CES function. That is, 

1. Suppose that substitution coefficient is equal to 1, that is,  goes to 1, we have a linear or 

perfect substitutes function; 

2. Suppose that the substitution coefficient is equal to zero, that is,  goes to0 in the limit, 

we get the CD function; and 

3.  Suppose that the substitution coefficient approaches negative infinity we get 

the Leontief or perfect complements function. 

4. The CES is homogenous of degree 1. 

 

SELF ASSESSMENT EXERCISE 

Explain what you understand by elasticity of substitution  

 

Numerical Example 2: For the following CES function,  

( 0.5)

1
( 0.5) ( 0.5)20 0.5 0.5Q z y

−
−

− − − − = +  ,   

Cost constraint,150 5 2z y= +  

(a) Optimize the CES Production Technology subject to the constraint.  

(b) Estimate the elasticity of substitution 

(c) Interpret the results economically. 

Solution to Numerical Example 1: Form the Langrangian function as follows: 

( )

( )

( 0.5)

1
( 0.5) ( 0.5)

0.5 0.5 0.5

0.5 0.5 0.5

0.5 0.5 0.5

0.5 0.5 0.5

20 0.5 0.5 [150 5 2 ]

40 0.5 0.5 0.25 5 0

10 0.5 0.5 5 0 (1)

40 0.5 0.5 0.25 2 0

10 0.5 0.5

z

y

L z y z y

L
L z y z

z

z z y

L
L z y y

y

y z y









−
−

− − − −

−

−

−

−

 = + + − − 


 = = + − = 

 = + − = 


 = = + − = 

 = +  2 0 (2)

150 5 2 0 (3)
L

L z y





− =


= = − − =

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Diving equation (1) by equation (2), we have as follows: 

0.5 0.5 0.5

0.5 0.5 0.5

0.5

0.5

10 0.5 0.5 5

210 0.5 0.5

2.5

z z y

y z y

z

y





−

−

−

−

 + − 
=
− + 

=

 

0.5

0.5

0.5 0.5

2

2.5

2.5

2.5

6.25

y

z

y z

y z

y z

=

=

=

=

 

Substituting for y in equation (3), we have that: 

(3),

150 5 2(6.25 )

150 17.5

150

17.5

8.57

6.25(8.57)

53.57

Substituting for y in equation we have

z z

z

z

z

y

= +

=

=

=

=

=

 

For the S. O. C. show that 0







LLL

LLL

LLL

yz

yyyyz

zzyzz

 

b. For elasticity of substitution, evaluate 
( )
( )

( )
( ) yz

ff

ffd

yzd

ffd

yzd zy

zyzy /

/

/

/

/ln

/ln
==  

or simply compute, 
1

1



=

−
 

 

1 1
2

1 1 0.5
= =

+ −
 

c. Given that 1,   substitution among factor inputs is said to be elastic. Suppose that the 

substitution coefficient is equal to zero, that is,  goes to0 in the limit, we get the CD function; 

and suppose that the substitution coefficient approaches negative infinity we get the Leontief or 

perfect complements function. 

 

 

SELF ASSESSMENT EXERCISE 
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Describe the properties of CES function 

Explain the concept of elasticity of substitution 

 

4.0 CONCLUSION 

A mathematical model is an applied or empirical representation of the economic reality. 

Mathematical Models are therefore used for the sole purpose of testing economic theories. 

Economists use economic theories and models as primary tools of economic analysis. The 

treatment of the Cobb-Douglass function under this unit was carried out focussing on the Cobb-

Douglas production technology and not the Cobb-Douglass utility function.  

 

5.0 SUMMARY 

In this unit, we have discussed economic model, components of a mathematical model, qualities 

of good mathematical models and types of models. Also, in this unit, we have discussed the 

meaning of CD function, mathematically formulated CD function, mathematically derived the 

relationship between CD function and CES function and also solved some numerical problems of 

CD function. The CES arises as a specific type of aggregator function which combines two 

types of factor inputs into an aggregate magnitude. This aggregator function exhibits constant 

elasticity of substitution. 

 

 

6.0 TUTOR-MARKED ASSIGNMENT 

1. Discuss the various components of a mathematical economic model. 

2. What are the differences between static and dynamic models 

3. Distinguish between an economic model and a mathematical model 

4. Briefly discuss 6 different types of mathematical economic models.  

5. How would you define models in economics?  

6. When do we need to apply models in economic analysis?  

7. How would you define a Cobb-Douglas function? 

8. Given the CD equation:  

1 , [0 1]Z WL K  −=    

(a) Prove that LK KLMP MP=  

(b) Prove that L KZ L Z K Z+ =  

(c) Prove that the elasticity of substitution 1 =  

 

9. Consider a firm annual production function is of the form given below:  

( ) 0.25 0.75, 4G z y z y=  
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Estimate the minimum cost of the firm producing 200 units of output given that the unit 

annual costs for z and y are given as N13 and N15 respectively.  

10. Given the CD equation:  

1 , [0 1]Z L K  −=    

Suppose L and K both grow at constant, though different rates, that is,  

0 0,nt mtL L e K K e= = ,  

(a) Find 

dz

dt  

(i) Using direct substitution 

(ii) Using chain rule (t is “time” factor) 

(b) Prove that the degree of homogeneity is 1 

11. Consider that a firm’s annual production function is of the form given below:  

( ) 0.4 0.6, 30D z y z y=  

Estimate the maximum output (D) of the firm if it supplies total output of 460 while the 

unit price of input z is N24 and that of y is N60.   

12. Given the CES function 

 ( (1 ) ]Y W qL q K


  
−− − −= + −  

(a) Prove that the CES function is homogeneous of degree 1 

(b) What is the economic interpretation of linear homogeneity 

13. Given the CES function 

 ( (1 ) ]Y W qL q K


  
−− − −= + −  

(a) Derive the elasticity of substitution for the CES function 

(b) Define the elasticity of substitution. What is the economic implication of  

it? 

14. For the following CES function,  

1
0.4 0.4 0.4550 0.6 0.4Q z y

−
− − = +  ,   

Cost constraint,300 10 4K L= +  

(a) Estimate the elasticity of substitution 

(b) Interpret the results economically.  

 (c) Optimize the CES function subject to the constraint.  
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(d)  Use the optimal capital-labour ratio to examine the optimization solution.  

 

7.0. REFRENCES/FURTHER READING 

Baltas, George (2001). "Utility-Consistent Brand Demand Systems with Endogenous Category 

Consumption: Principles and Marketing Applications". Decision Sciences 32 (3): 399 – 

421. 

Berndt, Ernst R.; Christensen, & Laurits R. (1973). "The Translog Function and the Substitution 

of Equipment, Structures, and Labor in U.S. Manufacturing 1929 - 68". Journal of 

Econometrics 1 (1): 81 - 113.  

Brown, Murray (2017). "Cobb-Douglas Functions". The New Palgrave Dictionary of 

Economics. Palgrave Macmillan UK. 

Cobb, C. W.; & Douglas, P. H. (1928). "A Theory of Production" (PDF). American Economic 

Review, 139 - 165.  

de La Grandville, Olivier (2016). Economic Growth: A Unified Approach. Cambridge University 

Press.  

Douglas, Paul H. (1976). "The Cobb-Douglas Production Function Once Again: Its History, Its 

Testing, and Some New Empirical Values". Journal of Political Economy 84 (5): 903 - 

916. 

 Filipe, Jesus; & Adams, F. Gerard (2005). "The Estimation of the Cobb-Douglas Function: A 

Retrospective View". Eastern Economic Journal, 31 (3): 427-445. 

 Gechet, S.; Havranek, T.; Irsova, Z.; & Kolcunova, D. (2019). "Death to the Cobb-Douglas 

Production Function? A Quantitative Survey of the Capital-Labor Substitution 

Elasticity". EconStor Preprints. 

Green, Jerry R.; Mas-Colell, Andreu; & Whinston, Michael D. (1995). Microeconomic Theory. 

Oxford University Press. 

Houthakker, H.S. (1955), "The Pareto Distribution and the Cobb-Douglas Production Function in 

Activity Analysis", Review of Economic Studies, 23 (1): 27 - 31. 

Jorgensen, Dale W. (2000). Econometric Modelling of Producer Behavior. Cambridge, MA: 

MIT Press. 

Klump, R; McAdam, P; & Willman, A. (2007). "Factor Substitution and Factor Augmenting 

Technical Progress in the US: A Normalized Supply-Side System Approach". Review of 

Economics and Statistics 89 (1): 183 - 192.  

Renshaw, Geoff (2005). Maths for Economics. New York: Oxford University Press. pp. 516 - 

526. 

Silberberg, Eugene; & Suen, Wing (2001). "Elasticity of Substitution". The Structure of 

Economics: A Mathematical Analysis (Third Ed.). Boston: Irwin McGraw-Hill. pp. 238 - 

250. 

Uzawa, H (1962). "Production Functions with Constant Elasticities of Substitution". Review of 

Economic Studies. 29 (4): 291 - 299.  

 



35 | P a g e  
 

UNIT 3: FUNCTIONS, TYPES OF FUNCTIONS AND CONTINUITY OF FUNCTIONS 

 

CONTENTS 

1.0. Introduction 

2.0. Objectives 

3.0. Main Content 

3.1 Function and Ordered Pair 

3.2. Relationship between Function and Ordered Pairs 

3.3 Types of Functions  

  3.3.1. Explicit Function 

  3.3.2. Implicit Function 

  3.3.3. Constant Function 

  3.3.4. Signum Function 

  3.3.5. Quadratic Function 

  3.3.6. Cubic Function 

  3.3.7. Rational Function 

  3.3.8. Modulus Function 

3.3.9. Exponential Functions 

3.3.10. Logarithmic Functions 

3.3.11. Trigonometric or Sinusoidal function 

 3.4 Continuity of Functions 

  3.4.1 Solving Numerical Problems on Continuity of Functions 

 

4.0      Conclusion 

5.0      Summary 

6.0.     Tutor-Marked Assignment 

7.0  References/Further Readings 

 

1.0 INTRODUCTION 

This unit provides both theoretical and mathematical discussion of the concept of functions, 

types of functions and continuity of functions. 

 

2.0 OBJECTIVES 

After a successful study of this unit, students would be able to do the following: 

• Explain the meaning of a function   

• Discuss the various types of functions   

• Explain the difference between functions and ordered pairs as well as functions of two or 

more independent variables 

 

3.0 MAIN CONTENT 
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3.1. Function and Ordered Pair 

Function:A function is a distinct relation which charts each entry of set G with a parallel entry 

of set H on the condition that both the sets G and H are non-empty. Having total regard to the 

previous definition, it can be said mathematically that a function is a binary relation over two 

arrays or circles of values that links to each entry or element of the first set to just one element of 

the second set. Typical examples are functions from integers to integers or from the real numbers 

to real numbers.Accordingly, f: G → H is a function such that for g∈G there is a unique entry h∈ 

H whereby (g, h) ∈ f. In effect, a function relates each element of a set with accurately one 

element of another set which are most often the same set. This can be demonstrated as follows:  

 

 
Figure 1: Graph of a Function 

 Source: Mathematics-Wikipedia 

 

Ordered Pair: An ordered pair is a pair of elements a, b having the property that (g, h) = (s, m) 

if and only if g = s, and h = m. The relation is such that each value from the set of the first 

components of the ordered pairs is associated with exactly one value from the set of second 

components of the ordered pair. 

 

Consider the following relation,[( 4,0) (1,6) ( 3,2) (2,9)]− −  

From these ordered pairs, we can generate the sets of first components and second components 

as follows: 

[( 4,0) (1, 6) ( 3,2) (2,9)]

1 [ 4,1, 3,2]

2 [0, 6,2,9]

st components

nd components

− − −

− −

−

 

Ltaking 1 from the set of first components, it can be seen that there is exactly one ordered pair 

with 1 as a first component, (1, 6)− . Therefore, the list of of values from the set of second 

components associated with 1 is exactly one number, -6. In effect, there should not more than 

one ordered pair with 1 as a first component. The relation is a function. 

 

Consider the following relation,  [(5,0) (2,6) (7, 3) (5,4)]−  

From these ordered pairs, it can be seen that there are two ordered pairs with 5 as a first 

component, (5,0) & (5,4)  . Therefore, the list of of values from the set of second components 
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associated with 5 are two, namely 0 and 4. This negates the principle of ordered pair as there are 

more than one ordered pair with 5 as a first component. Thus, the relation is not a funtion. 

 

3.2. Relationship between Function and Ordered Pairs: The relationship between a function 

and an ordered pair is intuitive in the sense that, a function is a process or a sequence that 

associates to each element of a set Z a single element of a set Y. 

 

Mathematically therefore, a function f from a set Z to a set Y is defined by a set F of ordered 

pairs (z, y) such that z∈ Z, y ∈ Y, and every element of Z is the first component of correctly one 

ordered pair in F.By implication, it so follows that for every z in Z, there is just one element y 

such that the ordered pair (z, y) belongs to the set of pairs outlining the function f. The set F is 

called the graph of the function as shown in figure 1 above. 

 

Relatively, a relationship may not serve as a function because of the following: 

i.  A given value in set A has no relation in set B 

ii. A given value in set A is related to more than one value in set B 

 

The common notation of a “function” is f(z) ( )(xf )called f of z or g(z) called g of z. Some 

Examples of functions include the following: 

(1) "f of z equals z squared", that is, F(z) = z2     

(2) "f of z equals x cubed plus one", that is,  F(z) = z3+1  

(3) f(z) = 2 + z + z3       

Function 3 can as well be written as: 

• f(s) = 2 +  s + s3 

• g(z) = 2 + z + z3 

• h(w) = 2 + w + w3 

The variable (s, z, x) all take the same position as x. So also are g and h taking same position as 

f. Consequently,  

f(4) = 2 + 4 + 64 = 70 

 

SELF ASSESSMENT EXERCISE 

Explain the meaning of a function.  

Explain the conditions that makes a “relation” to serve as a function. 

What is a linear equation? 

 

3.3Types of Functions  

3.3.1. Explicit Function: Explicit function is the classicy = f(x) type of function which shows 

how to go directly from x to y. this is specified as follows: 

y = x8 + 6x +10 

In this case, once x is known, y can be evaluated. 
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3.3.2. Implicit Function: Implicit function is the function that is not given directly. This can be 

demonstrated as follows: 

x5 – 5xy + y2 = 0 

Consequently, even when x is known, it requires an indirect approach to find y. 

 

3.3.3. Constant Function: This is the function f: R→R whereby f(x) = h = k, for z ∈ R and k is a 

constant in R. The domain of the function f is R and its range is a constant, k. 

 

3.3.4. Signum Function: This is the sign function whereby f: R→R defined by f(x) = {1, if x> 0; 

0, if x = 0; -1, if x< 0.  

 

3.3.5. Quadratic Function: This is the degree two polynomial function given as f(x) = dx2 + ax 

+ k, where d ≠ 0 and d, a, k are constant and x is a variable & R is both domain and range of the 

function. 

 

3.3.6. Cubic Function: This a degree three polynomial function given as f(x) = dx3 + ax2 + kx 

+g, where d ≠ 0 and d, a, k, and g are constant &x is a variable & R is both domain and range of 

the function. 

 

3.3.7. Rational Function: This is a rational polynomial function where f: R→R is defined as = 

f(x)/g(y) in which g(y) ≠ 0.  

 

3.3.8. Modulus Function: This is an absolute value function denoted | | such that f: R→ R is 

defined by f(x) = |x| and for every non-negative value of x, f(x) = z and for every negative value 

of x, f(x) = -x. accordingly therefore,  f(x)= {x, if x ≥ 0; – x, if x< 0. 

 

3.3.9. Exponential Functions 

Exponential models are growth equations which when transformed becomes semi-logarithmic. 

1d Z
Q de=  

On transformation Zd
d

Q
1ln =








 

Transformed 1lnLnQ d d Z= +  

Where Q is dependent variable,  

Z is explanatory variable,  

d is intercept coefficient,  

1d is slope coefficient.  
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3.3.10. Logarithmic Functions: Logarithmic function is the inverse of an exponential function. 

That means the logarithm of a given number x is the exponent to which the base b, must be 

raised, to have that number z.The logarithm of z to base b is denoted as log ( )b z . Unambiguously, 

the defining relation between exponentiation and logarithm is: 

log ( )

, 0, 0, 1, ( 2,718)

b

y

z y

where b z z b b b e

=

=    = =
 

For purpose of pedagogy, it can be shown that the logarithm base 2 of 256 is 8, or log2(256) = 8. 

That is, 

 

2

8

log ( ) log (256) 8

2 256

b z y

as

= =

=
 

Therefore, the logarithmic of 256 to base 2 is 8. The inverse of the exponential function

z yy b is z b= = . So, the logarithmic function log ( )b z is equivalent to the exponential equation

yz b= . 

 

3.3.11. Trigonometric or Sinusoidal function: Trigonometric functions are real functions 

which transmit an angle of a right-angled triangle to ratios of two side lengths. For example, 

given an acute angle A = θ of a right-angled triangle, the hypotenuse h is the side that connects 

the two acute angles. This is shown in figure 1 below: 

 
Figure 1: Right-Angled Triangle 

Source: Wikipedia 

 

If the angle θ is given, the ratio of any two side lengths is determined on the basis of θ. These 

ratios define different trigonometric functions of θ, which includesine, cosine, tangent, 

cotangent, secant and cosecant. These are shown in the table below: 
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                 Table 1: Relationships between Trigonometric Functions 

Function Radians Measurement 

sin
opp

hyp
 =  

1
sin

csc



=  

cos
adj

hyp
 =  

1
cos

sec



=  

tan
opp

adj
 =  

1
tan

cot



=  

csc
hyp

opp
 =  

1
csc

sin



=  

sec
hyp

adj
 =  

1
sec

cos



=  

cot
adj

opp
 =  

1
cot

tan



=  

 

Trigonometric functions can be evaluated as coordinate values of points on the Euclidean plane 

that are related to the unit circleradius one centered at the origin of the coordinate system. Thus, 

whereas, the right-angled triangle explanationscertifies the classification of the trigonometric 

functions for angles between 0 and 90°, the unit circle classificationsprovides an extension of the 

domain of the trigonometric functions to all positive and negative real numbers. 

 

In figure 2 below, the six trigonometric functions of angle θ are represented as Cartesian 

coordinates of points in relation to the unit circle. The ordinates of A = sin θ, B = tan θ and D = 

csc respectively, while the abscissas of A = cos θ , C = cotθ and E = sec θ correspondingly. 
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Figure 2: Unit Circle and Cartesian coordinates 

Source: Wikipedia 

 

Circling a ray from the direction of the positive half of the x-axis by an angle θ for >0, and for 

<0yields intersection with the unit circle at point A  . Also, by extending the ray to the line x=1, 

we have a coordinate values of B and to the line of y=1, we have another coordinate points of 

C . 

 

The tangent line to the unit circle at point A, intersects the xand y-axis at point E and D 

respectively. The coordinate values of these points give all the existing values of the 

trigonometric functions for real values of θ as the x- and y-coordinate values of point A such 

thatfulfills the Pythagorean identity in which: 2 2sin cos 1 + =  

 

Therefore, with the application of the Pythagorean identity, we have that: 

sin cos 1 1
tan ,cot ,sec ,csc

cos sin cos sin

 
   

   
= = = =  

 

SELF ASSESSMENT EXERCISE 

Explain the meaning of a trigonometry function.  

Explain the relationship between logarithmic and exponential functions 

 

3.3 Continuity of Functions 

A function g(x) is continuous at a point z = b, in its domain if the following three conditions are 

satisfied: 

3. f(b) exists. In other words, the value of f(b) is finite 

4. limx→b f(x) exists and it is finite 
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5. limx→b f(x) = f(b) 

In effect, the function f(x) is continuous in the interval I = [x1,x2] if the conditions above  are 

satisfied for each point in the interval I. 

 

Examples of typical continuous functions include, trigonometric functions, polynomial functions 

and exponential functions as well as logarithmic functions in their domain. 

 

SELF ASSESSMENT EXERCISE 

Explain the different types of functions. Define a relation? 

Under what conditions would a “relation” not served as a function? 

 

3.3.1 Solving Numerical Problems on Continuity of Functions 

Numerical Example 1:  

Consider the function 

81

9
)(

2 −

−
=

x

x
xg  

Determine whether or not the function is continuous (a) @ x =9, (b) @ x = 8. 

Solution:  

Applying the above conditions for continuity, we have as follows: 

(a) @ x = 9,  

 

0

0

819

99
)9(

2
=

−

−
=g  . Thus, g(x) does not exist.  










−

−

→ 81

9
29 x

x
im

x
  










−+

−
=

→ )9)(9(

9

9 xx

x
im

x
  










+

−
=

→ 9

9

9 x

x
im

x
  

18

1

99

1
=

+
=  

29

9
( )@ 9

81

1
. . 0

18

x

x
g x x im

x

i e

→

− 
=   

− 



 

 

In sum, g(x) does not exist, and limx→b g(x) = g(9) 

Thus, the function is not continuous at x= 9. 
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(b)  @ x = 8 

17

1

818

98
)8(

2
=

−

−
=g . This indicates that )(xg exists @x=8 

17

1

818

98

81

9
228

=
−

−
=









−

−
=

→ x

x
im

x
  










−

−
===

→ 81

9
8@)(

2
8 x

x
imxxg

x
  

Accordingly, the function is continuous at x= 8. 

 

SELF ASSESSMENT EXERCISE 

Describe the relationship between an explicit and an implicit function. 

 

4.0 CONCLUSION 

Operationally, a function is characterized in such a way that an input produces a corresponding 

output. This brings into focus the concept of ordered pair. The intuition is that a function is a rule 

that defines a relationship between dependent and independent variables. By swapping the 

dependent and independent variables in a given function, one obtains an inverse function and this 

in turn changes the roles of the variables in question.Functions are ever-present in mathematical 

analysis because they are essential for formulatinginteractions in the social and physical 

sciences.Non-algebraic functions, such as exponential and trigonometric functions, are 

transcendental functions. 

 

5.0 SUMMARY 

In this unit, we have discussed meaning of function, types of functions as well as continuity of 

functions and also we solved some numerical problems on continuity of functions. 

 

 

6.0 TUTOR-MARKED ASSIGNMENT 

1. Discuss with relevant equations, the relationship between function and ordered pairs  

2. What are the differences between functions of two or more independent variables? 

3. Using a pictographic analogy, distinguish between a relationship and a function  

4. Is the following function continuous at the indicated points 

2 18 2
( ) @ 2,6

14

d d
f d d

d

+ +
= =

−
 

5. Are the following functions continuous at the indicated point? 
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2

2

( ) 28 10 9 @ 9

8
( ) @ 0

64

g d d d d

d
g d d

d

= − + =

−
= =

−

 

6. Are the following functions continuous at the indicated point 

2

2

2 24
( ) @ 4

6

6 12
( ) @ 8

6

d d
g d d

d

d d
g d d

d

− −
= =

−

+ +
= =

−
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1.0 INTRODUCTION 

This unit focuses on concept of equilibrium in economics, partial equilibrium analysis, general 

equilibrium analysis and importance of equilibrium in economic analysis. 

 

2.0 OBJECTIVES 

After successful study of this unit, students should be able to do the following: 

• Explain the meaning of equilibrium in economics 

• Discuss the types of equilibrium in economics  

• Explain why equilibrium is important in economic analysis   

 

3.0 MAIN CONTENT 

3.1 Concept of Equilibrium in Economics  

Economic equilibrium is a state in which economic forces are balanced such that economic 

variables remain unchanged from their stability values in the absence of external stimuli. 

Economic equilibrium is also known as market equilibrium. The point of equilibrium represents 

a theoretical state of stability where all economic transactions that ought to take place with 

respect to the initial state of all relevant economic variables have taken place. 

 

3.2 Types of Equilibrium in Economics 

3.2.1 Partial Equilibrium/Marshallian Analysis: This is the type of equilibrium analysis that 

determinesthe price of one good with the assumption that prices of all other goods remain 

constant. A good example of Partial Equilibrium is Marshallian theory of demand and supply.  
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3.2.3 General Equilibrium/Walrasian equilibrium Analysis: This is Walrasian (Léon Walras, 

1874) type of equilibrium analysiswhere determination of price of a good is considered within 

the context of several interacting markets. In effect, general equilibrium analyzes numerous 

markets in the quest of ascertaining interaction of demand and supply in an all-inclusive 

equilibrium. 

 

For an economy to be in general equilibriumevery consumers, every firm, every industry and 

every factor-service are in equilibrium simultaneously and they are interlinked through 

commodity and factor prices. Therefore, general equilibrium exists when all prices are stable; 

every consumer spends income in a manner that yields the maximum utility; every firms in every 

industry is in equilibrium at all prices and output while demand and supply for productive 

resources are synchronized. 

 

Table 1: Difference between Partial and General Equilibrium 

General Equilibrium Partial Equilibrium 

General equilibrium theory analyzes many 

markets. 

Partial equilibrium theory only analyzes 

single markets. 

Analyzes more than one variable Analyzes single variable 

All markets are cleared at a given price level 

in both product and factor markets 

Only one market is cleared at a given price 

level. 

There is an effect on other sectors due to 

change in one sector. 

Other sectors of economy are not affected due 

to change in one sector. 

Different sectors of the economy are jointly 

interdependent. 

Based on assumption of Ceteris Paribus. 

 

Prices of goods are determined 

simultaneously and mutually. 

With Ceteris Paribus assumption, price of a 

good is determined. 

 

 Stable Equilibrium and Unstable equilibrium should be considered as well 

 

SELF ASSESSMENT EXERCISE 

Differentiate between partial and general equilibrium analysis 

 

3.3 Importance of Equilibrium Analysis in Economic Analysis 

(a)  Useful in explaining functions of price system in the economy 

(b)  Useful in providing basis for the input-output analysis 

(c)  Useful for analyzing problems of the market together with the working of the economic 

system 

(d)  It provides basis for evaluating determinants of the patterns of the economy 
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SELF ASSESSMENT EXERCISE 

Describe in your own words role of equilibrium in economic analysis 

 

4.0 CONCLUSION 

Economic equilibrium is a fundamentally theoretical construct that may never actually occur in 

an economy because the conditions underlying demand and supply are often dynamic and 

uncertain. Consequently, given that the state of all relevant economic variables changes 

constantly, it would be difficult for any economy to actually reach economic equilibrium in 

practice. 

 

5.0 SUMMARY 

In this unit, we have been able to discuss the concept of equilibrium in economics, types of 

equilibrium in economics as well as the importance of equilibrium in economic analysis.  

 

6.0 TUTORED MARKED ASSIGNMENTS 

1. Briefly give an overview equilibrium analysis in economics. 

2. In what ways is partial equilibrium analysis different from general equilibrium analysis? 

3. Describe the rationale for equilibrium analysis in economics 
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UNIT 1:   MATRIX-ALGEBRA 

 

CONTENTS 

1.0. Introduction 
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3.1 The Meaning of Matrix and Size of Matrix 

3.2  Matrix Representation of System of Linear Equations  
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1.0  INTRODUCTION 

In this unit, we shall be discussing the meaning of matrix as well as the size of matrix, matrix 

representation of system of linear equations, minor, cofactors and the adjoint of a matrix as well 

as thebasic operations with matrix. 

 

2.0 OBJECTIVES 

After a successful study of this unit, students would be able to do the following: 

• Understand the meaning of a matrix 

• Demonstrate an understanding of what the size of a matrix is all about 

• Represent a system of linear equations in matrix format 

• Obtain the minors of a matrix and be able to calculate the cofactors and adjoint of a 

matrix 

• Carry out basic operations with matrix. 

 

3.0 MAIN CONTENT 
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3.1 Meaning of Matrix and Size of Matrix:A matrix is a quadrangular collection of numbers, 

parametersor constants for which mathematical summations and multiplications are performed. 

In particular therefore, a matrix is a set of figures arranged in rows and columns so as to form a 

rectangular array. The numbers are called the elements, or entries, of the matrix. In an (h × g) 

matrix, the h rows are horizontal and the g columns are vertical. Each element of a matrix is 

often symbolized by a variable with two subscripts. For example, z2,1 represents the element at 

the second row and first column of the matrix. 

 

The matrix size is determined by the number of rows and columns therein. A matrix with m rows 

and n columns is called an (m × n) which reads, “m-by-n” matrix, with m and n called 

dimensions of the matrix.  

 

SELF ASSESSMENT EXERCISE 

Define a matrix. What do you understand as the size of a matrix? 

 

3.2 Matrix Representation of System of Linear Equations: A system of linear n-equations can 

be symbolized in matrix form using a coefficient matrix, a variable matrix, and a constant matrix. 

The standard matrix representation of a system of linear equations is given thus: 

Az B=  

Where A is the coefficient matrix, 

z is the column vector of unknown variables, 

B is the column vector of constant, 

Consider the system of two equations in two variables, 

635

32126

−=−

=+

yw

yw
 

The simultaneous system can be represented in matrix format as follows: 










−
=

















− 6

32

315

126

y

w

 









−
=

315

126
A , 








=

y

w
z , 









−
=

6

32
B  

In a similar way, for a system of three equations in three variables, 

2118159

1215126

15963

=++

=++

=++

xyw

xyw

xyw

 

Now, the simultaneous system can be represented in matrix format as follows: 
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















=
































21

12

15

18159

15126

963

x

y

w

 

















=

18159

15126

963

A , 
















=

x

y

w

z , 
















=

21

12

15

B  

 

Types of Matrices:  There are different types of matrices. The common types include the  

Row and Column Vectors: A row matrix is a matrix with one row and it is a (1 by n) matrix. 

This is given below: 

 7 4 5  

A column vector is a matrix with one column and it is denoted by (n by 1) matrix. Thi is given 

below: 

2

6

9

 
 
 
  

 

Square matrix: A square matrix is a matrix with the similar number of rows and columns. 

Hence, it is popularly referred to as an n by n matrix of order n. Any two square matrices of the 

matching order can be added and multiplied. 

11 12 13

21 22 23

31 32 33

  

  

  

 

Diagonal Matrix: The diagonal matrix is the type of matrix in which all entries outside the main 

diagonal are zero. An example is given below:  

0 0

0 0

0 0

a

d

b

 

Upper Diagonal Matrix: The Upper diagonal matrix is the type in whichall entries of the matrix 

below the main diagonal are zero. An example is given below: 

0

0 0

a c f

d h

b

 

Lower Diagonal Matrix: The lower diagonal matrix is the type in which all entries of the matrix 

above the main diagonal are zero. An example is given below: 
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0 0

0

a

c d

f e b

 

Identity Matrix: The identity matrix is the n by n matrix in which all the elements along the 

principal diagonal are equal to 1 and all other elements are equal to 0. This is an example:  

1 0 0

0 1 0

0 0 1

 

3.3. Minors of a Matrix: The minor of a matrix A is the determinant of some minor square 

matrix, taken out from the original matrix by removing one or more of its rows and columns. 

Minors obtained by removing just one row and one column from square matrices (first minors) 

are required for calculating matrix cofactors, which in turn are useful for computing both the 

determinant and inverse of square matrices. 

Let the matrix A be given by: 

 

    

a d e

A b c f

g w h

=  

The Matrix of Minors is generated thus: For each element of the matrix, ignore the values on the 

current row and column, calculate the determinant of the remaining values and obtain the 

"Matrix of Minors". 

   

   

c f b f b c

w h g h g w

d e a e a d
Matrix of Minors

w h g h g w

d e a e a d

c f b f b c

 
 
 
 
 =
 
 
 
  

 

 

3.4. Cofactors of a Matrix 

A cofactor is the number obtained following the remove of the column and row of a chosen 

element in a matrix.The cofactors feature prominently in Laplace's formula for the expansion of 

determinants, which is a method of computing higher determinants in terms of lesser 

determinants. 
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In effect therefore, the cofactor matrix of A is the n × n matrix C whose (i, j) entry is the (i, j) 

cofactor of A, which is the (i, j)-minor times a sign factor as shown below: 

 

   Sign Matrix

+ − + 
 
− + −
 
 + − + 

 

    

      

( )

( )

( )

11 12 13

21 22 23

31 32 33

( ) ( )

( ) ( )

( ) ( )

T

ij

C C C

C C C C

C C C

+ − + 
 

 − + − 
 

+ − + 

 

 

Algebraically, accepting the definition that ( 1)i j

i j ijC S+= − it thus implies that both the cofactor 

expansion along the j thand the ithcolumns respectively are given by:  

   
1 1 2 2 3 3 4 4

1 1

...

( 1)

j j j j j j j j

n n i j

nj nj ij ij ij ijj j

A C C C C

C C S

   

   +

= =

= + + + +

+ = = − 
 

   
1 1 2 2 3 3 4 4

1 1

...

( 1)

i i i i i i i i

n n i j

in in ij ij ij ijj j

A C C C C

C C S

   

   +

= =

= + + + +

+ = = − 
 

Given an n × n matrix ( )ijA = , then A  equals the sum of the cofactors of any row or column of 

the matrix multiplied by the entries that generated them.  

 

The Matrix of Minors is turned into the Matrix of cofactors by applying the checker sign matrix 

of minuses/pluses to the "Matrix of Minors". In other words, we need to change the sign of every 

element of the Matrix of Minor by multiplying the Matrix of Minors by each minus and plus 

element in the sign matrix below: 

   Sign Matrix

+ − + 
 
− + −
 
 + − + 
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( )

( )

( )

( ) ( )

( ) ( )

( ) ( )

c f b f b c

w h g h g w

d e a e a d
Matrix of Cofactors

w h g h g w

d e a e a d

c f b f b c

 
+ − + 

 
 
 = − + −
 
 
 + − +
  

 

 

3.5 Adjoint of a Matrix: The adjoint also called the adjugate, is the transpose of its cofactor 

matrix. In effect, the "adjoint" of a matrix denotes the equivalent adjoint operator, which is its 

conjugate transpose. Thus, for the matrix A, the adjoint is given by:  

   

  

( )

( )

( )

11 12 13

21 22 23

31 32 33

(1 , )

( ) ( )

( ) ( ) ( )

( ) ( )

( ) [( 1) ]

T

T i j

ij i j n

C C C

Adj A C C C

C C C

Adj A C S+

 

+ − + 
 

= − + − 
 
+ − + 

= = −

 

Where C  is the cofactor matrix of A, that is, (1 , )[( 1) ]i j

ij i j nC S+

 = −  

ijS is the (i,j) minor of matrix A, and it is the determinant of the (n − 1) × (n − 1) matrix 

that results from deleting row i and column j of A. 

 

Consequently, defining the adjoint of matrix A such that the product of A with its adjugate yields 

a diagonal matrix whose diagonal entries are the determinant det(A), we then have: 

 ( ) ( )Aadj A adj A A A I=   

where I is the n×n identity matrix.  

 

Given that matrix A is invertible provided the determinant of A is invertible, it then implies that:   
1( )adj A A A−=  

 

3.2. Basic Operations with Matrix 

The basic operations that can be carried out with matrices include matrix addition, scalar 

multiplication, transposition, matrix multiplication, and sub-matrix.  

 

Matrix Addition: The sum A+B of two m-by-n matrices A and B is calculated entry wise: 



55 | P a g e  
 

1 6 9 0 7 9

4 2 8 , 3 1 2

3 5 7 5 4 6

1 0 6 7 9 9 1 13 18

4 3 2 1 8 2 7 3 10

3 5 5 4 7 6 8 9 13

A B

A B

   
   

= =
   
      

+ + +   
   

+ = + + + =
   
   + + +   

 

 

Scalar Multiplication:Scalar multiplication of kA where k is a constant and A is an (n by n ) 

matrix is calculate by multiplying every entry of A by k.Thus, (kA)i,j = k · Ai,j. This is shown 

below: 

 

3 4 8

4 10 7 ,

5 9 2

12 16 32

4 16 40 21

20 36 8

A

A

− 
 

=
 
 − 

− 
 

=
 
  

 

 

Multiplication of two matrices is defined if and only if the number of columns of the left matrix 

is the same as the number of rows of the right matrix. If A is an m-by-n matrix and B is an n-by- 

g matrix, then their matrix product AB is the m-by-g matrix whose entries are given by product 

of the corresponding row of A and the corresponding column of B: 

 

3 4 5 1 0 2

1 0 6 , 0 3 5

5 1 2 2 4 0

3(1) 4(0) 5(2) 3(0) 4(3) 5( 4) 3(2) 4(5) 5(0)

1(1) 0(0) 6(2) 1(0) 0(3) 6( 4) 1(2) 0(5) 6(0)

5(1) 1(0) 2(2) 5(0) 1(3) 2( 4) 5(2) 1(5) 2(0)

13 3 15

13 24 2

9

A B

AB

   
   

= =
   
   −   

+ + + + − + + 
 

= + + + + − + +
 
 + + + + − + + 

= −

−5 15

 
 
 
  
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Matrix Transposition: The transpose of a matrix is the carried out by turning columns into rows 

and rows into columns. For an m-by-n matrix A, the transposition is simply the n-by-m matrix 

symbolized by AT. 

6 10 7
,

5 4 2

6 5

10 4

7 2

T

A

A

 
=  

− 

 
 

= −
 
  

 

 

 

Submatrix Operation: The submatrix operation of a matrix is obtained by cancelling any 

collection of rows and columns. For example, from the subsequent 3-by-4 matrix, we can 

construct a 2-by-3 submatrix by removing row 3 and column 2: 

0 4 8 1

4 5 7 4 ,

2 9 2 6

4 5 7

2 9 2

0 8 1

4 7 4

0 4 8

4 5 7

A

 
 

= −
 
 − 

− 
  

− 

 
  
 

 
  

− 

 

 

SELF ASSESSMENT EXERCISE 

Describe the following: matrix addition, scalar multiplication, transposition, matrix 

multiplication, and sub-matrix. 

 

4.0 CONCLUSION 

Matrices have wide ranging applications in economics. We have different types of matrix, and 

these matrices all play significant roles in matrix application.The different types of row 

operations which include addition, subtraction and the interchange of two rows of a matrix all 

jointly play significant roles including finding solutions to linear equations and evaluating matrix 

inverses. 
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5.0 SUMMARY 

In this unit, we have discussedconcept of matrix and size of matrix, evaluated basic operations 

with matrices. 

 

7.0 TUTOR-MARKED ASSIGNMENT 

 

1. Add up the following matrices 

9 6 8 0 7 4
,

3 5 7 3 1 2

2 6 9 6 7 9

4 7 8 , 3 1 2

3 5 7 5 4 6

A B

C D

−   
= =   
   

   
   

= =
   
      

 

2 Form 3 sub matrices of order 2 by 3 from the following 3 by 4 matrix 

12 16 8 11

14 5 27 24 ,

2 39 0 15

A

 
 

= −
 
  

 

 

3. Multiply the following matrices: 

19 60 2 0 7 4

3 37 20 , 3 1 2

1 0 13 4 5 9

2 6 0 6 8 9

4 7 3 , 3 0 2

3 0 7 4 1 6

A B

C D

−   
   

= =
   
      

   
   

= =
   
      
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2.0  INTRODUCTION 

In this unit, we shall be discussing the meaning of Cramer’s rule, determinants and the features 

of determinants, sign rule, Cramer’s rule technique and also solved some linear equations with 

Cramer’s rule.   

 

2.0 OBJECTIVES 

After a successful study of this unit, students would be able to do the following: 

• Understand what Cramer’s rule is all about 

• Demonstrate the application of Cramer’s rule   

• Solve simultaneous equation problems with Cramer’s rule     
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3.0 MAIN CONTENT 

3.1 Meaning of Cramer’s Rule:  The Cramer’s rule due to Gabriel Cramer (1704–1752). 

Cramer's rule is a mathematical formulae for the finding solution of a system of linear equations 

by means of determinants. It expresses the solution in terms of the determinants of the (square) 

coefficient matrix and of matrices obtained from it by replacing one column by the column 

vector of right-hand-sides of the equations.  

 

Cramer's rule is computationally effectual for finding the solution of a system of two or three 

linear equations. In the case of n equations in n unknowns, it requires computation of n + 1 

determinants. 

 

SELF ASSESSMENT EXERCISE 

What do you understand by Cramer’s rule?  

 

3.2 Determinants and the Features of Determinants: Thedeterminant is a scalar value that can 

be computed from the elements of a square matrix and translates properties of the linear 

transformation described by the matrix. The determinant of a matrix W is denoted det(W), or 

|W|. Mathematically, it is the volume scaling factor of the linear transformation defined by the 

matrix such that we obtained a positive determinant or a negative determinant depending on 

whether or not the linear mapping preserves or reverses the orientation of n-space. 

 

The features of determinants are hereby summarized as follows: 

1.  Determinant of a matrix in upper triangular arrangement is equal to the product of entries 

along the main diagonal. 

2.  The interchange of two rows leaves the matrix determinant to change sign. 

3.  Determinant would be equal to zero when two rows are the same or two columns are the 

same. 

4.  Determinant of a matrix whose row or column has zero values is equal to zero. 

5.  The determinant of an inverse matrix 1A− is the reciprocal of the determinant of the 

matrix, A. 

6.  Multiplying a column or a row of a matrix by a constant increases the determinant by 

same constant. 

 

Considering a 2 × 2 matrix, the determinant may be computed as:  
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30 0

12 3

30 0
30( 3) 0(12) 90

12 3

A

A

 
=  

− 

= = − − = −
−

 

 

Correspondingly, for a 3 × 3 matrix A, the determinant is calculated thus: 

3 0 4

6 3 7

5 2 1

3 0 4
3 7 6 7 6 3

3 0 46 3 7
2 1 5 1 5 2

5 2 1

3[ 3(1) 2(7)] 0 4[2(6) 5( 3)]

51 108

57

A

A

 
 

= −
 
 
 

− −
= = − +−

= − − − − + − −

= − +

=

 

In the above evaluation of determinant, we have the Laplace formula given by: 

 

3 0 4
3 7 6 7 6 3

3 0 46 3 7
2 1 5 1 5 2

5 2 1

A
− −

= = − +−  

 

Likewise manner, we have the Leibniz formula for the determinant given by: 

 

3 0 4

3[ 3(1) 2(7)] 0 4[2(6) 5( 3)]6 3 7

5 2 1

A = = − − − − + − −−  

Higher determinants are evaluated following a stepwise procedure, expanding them into sums of 

terms, each the product of a coefficient and a smaller determinant. Any row or column of the 

matrix is selected, each of its elements arc is multiplied by the factor (−1)r + c and by the smaller 

determinant formed by deleting the ith row and jth column from the original array. Each of these 

products is expanded in the same way until the small determinants can be evaluated by checkup. 

At each stage, the process is facilitated by choosing the row or column containing the most zeros. 

 

3.4  Cramer’s Rule: Cramer’s rule was invented by Gabriel Cramer (1704 – 1752). In linear 

algebra, Cramer's rule is an explicit formula for obtaining a unique solution of a system of linear 

equations by expressing the solution in terms of the determinants of the coefficient matrix and of 

matrices obtained from it by replacing one column by the column vector of right-hand-sides of 
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the equations. Given the system of n linear equations for n unknowns, represented in matrix form 

as follows: 

Az B=  
A is  (n × n) coefficient matrix with a non-zero determinant, z is the vector of variables and B is 

the column vector of the variables. The Cramer’s rule is thus given by: 

det( )

det( )
i

i

A

A
z =  

1,2,3,...,where i n= , iA  is the matrix formed by replacing the ith column of coefficient matrix A 

by the column vector B. 

 

3.3.1. Cramer’s Rule for Two Variable Matrix: Given a systems of Linear Equations with 

Two Variables as shown below: 

 

    
x y b

x y d

 

 

+ =

+ =
 

 
x b

y d

 

 

    
=    

    
 

 

Thus, we obtain the coefficient, x and y matrices as follows: 

 

,coefficient matrix A
 

 

 
=  
 

 

, xx matrix D
b

d





 
=   
 

 

, yy matrix D =
b

d





 
  
 

 

 

 

Finding the solution for variable x, we have it as follows: 

 

x

b

dD
x

A





 

 

 
  
 

 
 
 

= =  

Finding the solution for variable y, we have it as follows: 
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y

b

D d
y

A





 

 

 
  
 

 
 
 

= =  

Observe that both denominators in finding the solutions of x and y are the same. They emanates 

from the columns of x and y respectively. 

 

3.3.2. Cramer’s Rule for Three Variable Matrix: Given a systems of Linear Equations with 

three Variables as shown below: 

 

    

x y z b

x y z d

x y z c

  

  

  

+ + =

+ + =

+ + =

 

In matrix notation, we have it as:  

 

x b

y d

z c

  

  

  

    
    

=    
    
    

 

 

Thus, we obtain the coefficient, x and y matrices as follows: 

 

,coefficient matrix A

  

  

  

 
 

=  
 
 

 

, xx matrix D

b

d

c

 

 

 

 
 

=  
 
 

 

, yy matrix D =

b

d

c

 

 

 

 
 
 
 
 

 

 

, zz matrix D

b

d

c

 

 

 

 
 

=  
 
 

 

Finding the solution for variable x, we have it as follows: 
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x

b

d

cD
x

A

 

 

 

  

  

  

 
 
 
 
 

 
 
 
 
 

= =  

Finding the solution for variable y, we have it as follows: 

 

y y

b

d

cD D
y y

A A

 

 

 

  

  

  

 
 
 
 
 

 
 
 
 
 

= = = =  

Finding the solution for variable z, we have it as follows: 

 

z z

b

d

cD D
z z

A A

 

 

 

  

  

  

 
 
 
 
 

 
 
 
 
 

= = = =  

From the above procedures, observe the following: 

i. Both denominators in finding the solutions of x, yand z are the same. They 

emanates from the columns of x, yand z respectively. 

 

ii. The numerator in finding the solution for x is such that the coefficients of x-

column are replaced by the constant column 

iii. Also, the numerator in finding the solution for y is such that the coefficients of 

y-column are replaced by the constant column 

 

 

3.5. Solving Linear Equations with Cramer’s Rule: Consider our system of two equations in 

two variables above, 
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








−
=

















− 6

32

315

126

y

w

 

The column vector of unknown, w and y can be calculated using Cramer's rule as: 

 

32 12 6 32

6 3 15 6
,

6 12 6 12

15 3 15 3

w y
− − −

− −

= =

 
Evaluating the determinants for w and y respectively, we have it as follows:  

 

32 12

6 3 32( 3) 12( 6) 24
0.12

6 12 6( 3) 12(15) 198

15 3

6 32

15 6 6( 6) 32(15) 516
2.6

6 12 6( 3) 12(15) 198

15 3

w

y

− − − − − −
= = =

− − −

−

− − − −
= = =

− − −

−

=

=

 

Consider our system of three equations in three variables above, 

















=
































21

12

15

18159

15126

963

x

y

w

 

The column vector of unknown, w, y and e can be calculated using Cramer's rule as: 

18159

15126

963

181521

151212

9615

=w , 

18159

15126

963

18219

15126

9153

=y , 

18159

15126

963

21159

12126

1563

=x  

 

Numerical Example 3: Solve the system of equations using Cramer’s Rule. 

36 9 45

6 9 39

w y

w y

+ =

− =
 

Solution to Numerical Example 3: Representing the simultaneous system in matrix format, we 

have as follows: 
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36 9 45

6 9 39

w

y

    
    

        

=
−

 

36 9
324 54

6 9

378

= − −
−

= −

 

45 9

39 9

36 9

6 9

405 351

756

756

378

2

w

w
−

−

= − −

= −

−
=
−

=

=

 

 

36 45

6 39

36 9

6 9

1404 270

1134

1134

378

3

y

y

−

= −

=

=
−

= −

=

 

Numerical Example 4: Find the solution to the following system of equations using Cramer’s 

Rule. 

 

6

3 3 3 18

9 6 3 15

3 9 42

w y a

w y a

w y a

+ − =

− + = −

+ − =

 

Solution to Numerical Example 4: Representing the simultaneous system in matrix format, we 

have as follows: 
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3 3 3 18

9 6 3 15

3 9 6 42

w

y

a

    
    
    
    

    

−

− = −

−

 

3 3 3
6 3 9 3 9 6

9 6 3 3 3 3
9 6 3 6 3 9

3 9 6

3(9) 3( 63) 3(99)

27 189 297

81

−
− −

− = − −
− −

−

= − − −

= + −

= −

 

18 3 3
6 3 15 3 15 6

15 6 3 18 3 3
9 6 42 6 42 9

42 9 6

18(9) 3( 36) 3(117)

162 108 351

81

wD

−
− − − −

= − − = − −
− −

−

= − − −

= + −

= −

 

 

18 3 3

15 6 3

42 9 6

3 3 3

9 6 3

3 9 6

81

81

1

w

w

−
=
−

=

=

 

3 18 3
15 3 9 3 9 15

9 15 3 3 18 3
42 6 3 6 3 42

3 42 6

3( 36) 18( 63) 3(423)

108 1134 1269

243

yD

−
− −

= − = − −
− −

−

= − − − −

= − + −

= −
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3 18 3

9 15 3

3 42 6

3 3 3

9 6 3

3 9 6

243

81

3

y

y

−

−

−

−

−

−

−
=

−

=

=

 

 

3 3 18
6 15 9 15 9 6

9 6 15 3 3 18
9 42 3 42 3 9

3 9 42

3( 117) 3(423) 18(99)

351 1269 1782

162

aD
− − − −

= − − = − +

= − − +

= − − +

=

 

  

3 3 18

9 6 15

3 9 42

3 3 3

9 6 3

3 9 6

162

81

2

a

a

− −

=
−

= −

=

 

SELF ASSESSMENT EXERCISE 

Describe the relationship between Cramer’s rule and matrix inversion. 

 

4.0 CONCLUSION 

Determinants can be used to solve system of linear equations, however, there are other methods 

for finding solution of linear equations. In linear algebra, a singular matrix is not invertible 

because determinant is zero. In that case, determinants can be used to typify the polynomial of a 

matrix, whose roots are the eigenvalues.  
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5.0 SUMMARY 

In this unit, we have discussed concept of Cramer’s rule, determinants and the features of 

determinants, sign rule, Cramer’s rule technique and also solved some linear equations with 

Cramer’s rule. 

 

6.0 TUTOR-MARKED ASSIGNMENT 

1. Solve algebraically the following system of equations 

64 4 4 48 0

4 96 4 32 0

168 4 4 64 0

x y z

x y z

x y z

− − + =

− + − + =

− − − =  
(a) Using Cramer’s rule 

 

2. Solve algebraically the following system of equations 

24 36 48 144 0

48 12 12 84 0

36 12 12 0

s f z

s f z

s f z

− + + =

− + − + =

− − + =

 

(a) Using Cramer’s rule 

 

     3. Solve the following sets of simultaneous equations  

1 2

1 2

1 2

1 2

135z  +27 z  = 324

81z  + 54z  = 135

75z  +90 z  = -50

30z  + 120z  = 200

 

 

(a) Using Cramer’s rule 

 

 

4. Consider the data below on inflation (X1), money demand (X2) and Income (Y). 

 

Z 10 14 2 2 5 3 8 

D1 12 12 16 5 1 2 5 

D2 24 22 25 6 8 5 7 

 

(a) Formulate the basic model for money demand in matrix format.  

(b) Calculate the solution using matrix cramer’s rule.  
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3.0  INTRODUCTION 

In this unit, we shall be discussing the meaning of matrix as well as the size of matrix, matrix 

representation of system of linear equations, system of linear equations and matrix inversion, 

system of linear equations and Cramer’s rule and also we shall solve some numerical problems 

on matrix algebra. 

 

2.0 OBJECTIVES 

After a successful study of this unit, students would be able to do the following: 

• Understand what matrix inversion is all about 

• Carry out matrix inversion  

• Solve simultaneous equation problems with matrix inversion    

 

3.0 MAIN CONTENT 

3.1 Meaning of Matrix Inversion:   

Matrix inversion is the process of finding a unique solution to a system of linear equations with 

unknown variables. Thus, the inverse of a matrix is the transpose of the cofactor matrix 

multiplied by the reciprocal of the determinant of the matrix. A square matrix that is not 

invertible is called singular or degenerate matrix. A square matrix is singular once its 

determinant is zero. 

 

3.2. Invertible Matrix Theorem 
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Let A be a square n by n matrix over a field R of real numbers, it thus holds that:  

i. A is invertible. This implies that A has an inverse, it is nonsingular and as such it is 

non-degenerate. 

ii. The columns of A are linearly independent.  

iii. The columns of A span Kn, thus, Col A = Kn.  

iv. The transpose AT is an invertible matrix (hence rows of A are linearly independent, 

span Kn, and form a basis of Kn).  

v. The number 0 is not an eigenvalue of A.  

vi. The matrix A is mathematically describable as a finite product of elementary 

matrices.  

vii. The columns of A form a basis of Kn.  

viii. The linear transformation mapping z to Az is a bijection from Kn to Kn.  

ix. There is an n-by-n matrix B such that AB = In = BA.  

x. A is row-equivalent to the n-by-n identity matrix In. 

xi. A is column-equivalent to the n-by-n identity matrix In. 

xii. A has n pivot positions. 

xiii. Determinant of A ≠ 0. In general, a square matrix over a commutative ring is 

invertible if and only if its determinant is a unit in that ring. 

xiv. A has full rank. 

xv. The equation Az = 0 has only the trivial solution z = 0. 

xvi. The kernel of A is trivial, that is, it contains only the null vector as an element, ker(A) 

= {0}. 

xvii. The equation Az = d has exactly one solution for each d in Kn. 

xviii. The matrix A exhibit a left inverse for which there exists a B such that BA = I.  

xix. The matrix A exhibit a right inverse for which there exists a C such that AC = I.  

xx. Both left and right inverses exist and B = C = A−1. 

(Source: Wikipedia) 

 

SELF ASSESSMENT EXERCISE 

How would you describe the invertible theorem of matrix? 

 

3.3. Properties of Invertible Matrix: Furthermore, the following properties hold for an 

invertible matrix A: 

Given the matrix, 

a d e

A b c f

g w h

=  

i. 1 1( )A A− − =  

ii. 1 1( ) ( )T TA A− −=  

iii. 
11A A
−− =  
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iv. For nonzero scalar k; 1 1 1( )kA k A− − −=  

v. For any invertible n-by-n matrices A and B, 1 1 1( )AB A B− − −=  

vi. If  A is an (n by n) invertible matrix, then 
1 1

( ) ( )A Adj A
A

− =  

vii. Following the associativity of matrix multiplication for finite square matrices, A and 

B, then, AB I BA I= =  

viii. If A has orthonormal columns, where + denotes Moore-Penrose inverse and z is a 

vector; then, 1( )Az z A+ + −=  

ix. The rows of the inverse matrix B of a matrix A are orthonormal to the columns of A 

and vice versa interchanging rows for columns. 

 

SELF ASSESSMENT EXERCISE 

Describe 3 properties of an invertible matrix   

 

3.4 Matrix Inversion Technique: A system of linear n-equations can be symbolized in matrix 

form using a coefficient matrix, a variable matrix, and a constant matrix. The standard matrix 

representation of a system of linear equations is given thus: 

Az B=   (1) 

Where A is the coefficient matrix, 

z is the column vector of unknown variables, 

B is the column vector of constant, 

 

Considering the existence of the inverse of A, we multiply both sides of equation (1) by it to 

obtain: 

( ) ( )

( )

( )

( )

( )

1 1

1

1

1

1

, ,

,

whereas I

Iz

Iz z

Thus

z

Adjoint

A Az A B

A A

A B

A B B

A
A

A

− −

−

−

−

−

=

=

=

=

=

=

 

 

3.4.1. Matrix Inversion Technique for Two Variable Matrix: The two variable matrix is 

given by: 
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a d

b c
 

The Inverse of a two variable Matrix can be calculated as follows: 

Step 1: Generate the Matrix of Minors: This step is to create a "Matrix of Minors". For each 

element of the matrix, ignore the values on the current row and column, calculate the 

determinant of the remaining values and obtain the "Matrix of Minors". 

 

Step 2: Generate the Matrix of Cofactors: The Matrix of Minors is turned into the Matrix of 

cofactors by applying the checker sign matrix of minuses/pluses to the "Matrix of Minors". In 

other words, we need to change the sign of every element of the Matrix of Minor by multiplying 

the Matrix of Minors by each minus and plus element in the sign matrix below: 

   Sign Matrix
+ − 
 
− + 

 

   
( ) ( )

( ) ( )

T
a d c b

Matrix of Cofactors A
b c d a

+ −
= =

− +
 

Step 3: Calculate the Adjoint: This entails a transpose all elements of the matrix of cofactors, that 

is, swapping theposition of each of the element in the Matrix of cofactors over the diagonal while 

the diagonal remains unchanged. 

   T
a d a b

A A
b c d c

= =  

Step 4: Calculate the Determinant of the Coefficient Matrix:  This involves a computation of the 

determinant of the original matrix.  

( ) ( )
a d

A a c b d
b c

= = −  

 

Step 5: Divide the Adjoint Matrixby Determinant: This entails a division of the adjoint matrix by 

the determinant of the original coefficient matrix to obtain the inverse of the matric. In other 

words, we multiply the adjoint matrix by the reciprocal of the determinant of the coefficient 

matrix to obtain the inverse of the matrix.  

 

 

3.4.2. Matrix Inversion Technique for Three Variable Matrix:The three variable matrix is 

given by: 

 

    

a d e

b c f

g w h

 

The Inverse of a three variable Matrix can be calculated as follows: 
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Step 1: Generate the Matrix of Minors: This step is to create a "Matrix of Minors". For each 

element of the matrix, ignore the values on the current row and column, calculate the 

determinant of the remaining values and obtain the "Matrix of Minors". 

 

Step 2: Generate the Matrix of Cofactors: The Matrix of Minors is turned into the Matrix of 

cofactors by applying the checker sign matrix of minuses/pluses to the "Matrix of Minors". In 

other words, we need to change the sign of every element of the Matrix of Minor by multiplying 

the Matrix of Minors by each minus and plus element in the sign matrix below: 

   Sign Matrix

+ − + 
 
− + −
 
 + − + 

 

   

( )

( )

( )

11 12 13

21 22 23

31 32 33

( ) ( )

( ) ( )

( ) ( )

C C C

Matrix of Cofactors C C C

C C C

+ − + 
 

= − + − 
 
+ − + 

 

Step 3: Calculate the Adjoint: This entails a transpose all elements of the matrix of cofactors, that 

is, swapping the position of each of the element in the Matrix of cofactors s over the diagonal 

while the diagonal remains unchanged. 

   T

a d e a b g

A Ab c f d c w

g w h e f h

= =  

Step 4: Calculate the Determinant of the Coefficient Matrix:  This involves a computation of the 

determinant of the original matrix.  

 

  

a d e
c f b f b c

A a d eb c f
w h g h g w

g w h

= = − +  

Step 5: Divide the Adjoint Matrix by Determinant: This entails a division of the adjoint matrix 

by the determinant of the original coefficient matrix to obtain the inverse of the matric. In other 

words, we multiply the adjoint matrix by the reciprocal of the determinant of the coefficient 

matrix to obtain the inverse of the matrix.  
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( )

( )

( )

11 12 13

1

21 22 23

31 32 33

( ) ( )
1

( ) ( )

( ) ( )

1

T

T

C C C

A C C C
A

C C C

C
A

−

+ − + 
 

= − + − 
 
+ − + 

=

 

3.5Solving Linear Equations with Matrix Inversion   

Solving system of simultaneous equations in matrix specification necessitates finding the inverse 

of the matrix as explained above.  

 

Numerical Example 1: Solve the simultaneous equations 

10 20 40

30 50 10

z y

z y

+ =

+ =
 

Solution to Numerical Example 1: Representing the simultaneous system in matrix format, we 

have as follows:  

10 20 40

30 50 10

z

y

    
=    

    
 

10 20 40
, ,

30 50 10

w
A z B

y

    
    

    
= = =  

( )1

10 20

30 50

10(50) 20(30)

500 600

100

Adj

where

A
A

A

A

− =

=

= −

= −

= −

 

Sign Matrix

+ − + 
 
− + −
 
 + − + 

 

50 30

20 10
ACofactor MatrixC

− 
=  

− 
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50 30 50 20

20 10 30 10

T

T

A A
Adj C

   
   

− −   
=    

− −   
= =  

   
( )1

50 20

30 10

1

100

Adj A
A

A
−

− 
=  

− 
=
−

 

 

  

( )1
50 20

30 10

0.5 0.2 40

0.3 0.1 10

1

100

Adj A
A

A

w
z

y

−
− 

=  
− 

     
     

    

−
=

−

=
−

=

 

 

18

7

18,

7

z

y

− 
=  
 

= −

=
 

 

Numerical Example 2: Solve the following sets of simultaneous equations using matrix 

inversion. 

4 2 14 24

6 4 2 16

2 2 8 32

y z x

y z x

y z x

+ + =

+ + =

+ + =

 

Solution to Numerical Example 2: Representing the simultaneous system in matrix format, we 

have as follows: 

24

16

32

4 2 14

6 4 2

2 2 8

y

z

x

    
    

=    
        

 

 

24

, 16

32

4 2 14

6 4 2

2 2 8

Z B

y

A z

x

    
    

= =    
        

=
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( )1

4 2 6 2 6 4
4 2 14

2 8 2 8 2 2

4(32 4) 2(48 4) 14(12 8)

112 88 56

80

Adj

where

A
A

A

A

− =

= − +

= − − − + −

= − +

=

 

( )

( )

( )

4 2 6 2 6 4
( ) ( )

2 8 2 8 2 2

2 14 4 14 4 2
( ) ( )

2 8 2 8 2 2

2 14 4 14 4 2
( ) ( )

4 2 6 2 6 4

Cofactors

 
+ − + 

 
 
 = − + −
 
 
 + − +
  

 

28 44 4

12 4 4

52 76 4

ACofactor MatrixC

− 
 

= −
 
 − 

 

28 44 4

12 4 4

52 76 4

28 12 52

44 4 76

4 4 4

T

T

A A
Adj C

   
   

− 
 

−
 
 − 

 
 
 
 
 

= =

−

= −

−

 

 

 
( )1

28 12 52
1

44 4 76
80

4 4 4

Adj A
A

A
−

 
 

=  
 
 

−

= −

−
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( )1

24

16

32

0.35 0.15 0.65

0.55 0.05 0.95

0.05 0.05 0.05

Adj
y

A
z z A

A
x

−

     
     

= =     
        

=

−

−

−

=  

 

10

18

2

10,

18,

2

y

z

x

− 
 

=
 
  

= −

=

=
 

4.0 CONCLUSION 

Matrix inversion plays a significant role in physical simulation exercises, multiple-input-output 

technologies,as well as in computer graphics, especially in the areas of screen-to-world ray 

casting, world-to-subspace-to-world object transformations. 

 

5.0 SUMMARY 

In this unit, we have discussed concept Meaning of Matrix Inversion, treated the concepts of 

Cofactors of a Matrix, Minors of a Matrix, Matrix Inversion Technique, and solved some linear 

equation problems with matrix inversion. 

 

6.0 TUTOR-MARKED ASSIGNMENT 

1. Solve algebraically the following system of equations 

32 2 2 0

2 48 2 0

84 2 2 0

w d z

w d z

w d

− − =

− + − =

− − =  
(b) Using Matrix inversion 

 

2. Solve algebraically the following system of equations 

12 18 24 72 0

24 6 6 42 0

18 6 6 0

w f z

w f z

w f z

− + + =

− + − + =

− − + =

 

(b) Using Matrix inversion 

     3. Solve the following sets of simultaneous equations  
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1 2

1 2

1 2

1 2

45z  +9 z  = 108

27z  + 18z  = 45

15z  +18 z  = -10

6z  + 24z  = 40

 

 

(a) Using Matrix inversion 

 

4. Consider the system of two equations in two variables, 

635

32126

−=−

=+

yw

yw
 

The simultaneous system can be represented in matrix format as follows: 










−
=

















− 6

32

315

126

y

w

 









−
=

315

126
A , 








=

y

w
z , 









−
=

6

32
B  

Find the solution values for the z column vector. 

 

 

5. Consider the system of three equations in three variables, 

2118159

1215126

15963

=++

=++

=++

xyw

xyw

xyw

 

Now, the simultaneous system can be represented in matrix format as follows: 

















=
































21

12

15

18159

15126

963

x

y

w

 

















=

18159

15126

963

A

, 
















=

x

y

w

z

, 
















=

21

12

15

B

 

Find the solution values for the z column vector. 

 

6. Consider the data below on inflation (X1), money demand (X2) and National Income (Y). 

 

Z 145 146 40 20 52 53 58 
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D1 110 112 13 15 18 22 25 

D2 114 22 20 36 48 56 87 

 

(a) Formulate the basic model for national income in matrix format.  

(b) Calculate the solution using matrix inversion.  
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UNIT 4:  MATRIX APPLICATION TO ECONOMICS: INPUT-OUTPUT ANALYSIS  
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3.1 Meaning of Input-Output Analysis 

3.2  The Input-Output Matrix/Table 
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3.4 Usefulness of the Input-Output Table  

3.5 Solving Numerical Problems of Input-Output Model 
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5.0      Summary 

6.0.     Tutor-Marked Assignment 

7.0.  References/Further Readings 

 

1. 0. INTRODUCTION 

In this unit, we shall be discussing the meaning of input-output analysis, input-output 

matrix/table, deriving Leontief matrix/model, explaining some of the usefulness of the input-

output table and solving numerical problems of input-output model. 

 

2.0 OBJECTIVES 

After a successful study of this unit, students should be able to do the following: 

• Discuss the meaning of input-output Analysis  

• Explain the usefulness of input-output matrix/table 

• Solving numerical problems of input-output model base on the Leontief matrix 

 

3.0 MAIN CONTENT 

3.1 Meaning of Input Output Analysis: An input-output (I-O) model is a numerical economic 

model that exemplifies the interrelationships that drives diverse sectors of an economy or diverse 

regional economies. This analysis was developed by Wassily Leontief (1906 -1999).An I-O 

model is a quantifiable economic model that denotes the interdependencies between different 

sectors of country or different regional economies. There is a closed I-O system in which the 

output is observedfor purpose of making feedback to the system of production should the case 

the output produced is not within specification. For the open model, factor inputs are not 

changed to guarantee the level of output each of the industries in an economy produce for there 

to be  sufficiency to meet total demand for the product. 
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3.2. The Input-Output Matrix/Table: The I-O table is an inter-industry matrix in which 

column entries typically represent inputs to an industrial sector, while row entries represent 

outputs from a given industrial sector. Considerably therefore, each sector is dependent on every 

other sector, both as a customer of outputs from other sectors and as a supplier of inputs.  

 

The basic assumptions entail consideration of the fact that we have an economy with:  

1. n sectors, 

2. Each sector produces z units of a single homogeneous good,  

3. jth sector uses aij units from sector i to produce 1 unit,  

4. Each sector sells some of its output to other sectors as intermediate output, 

5. Each sector sells some of its output to consumers as final demand, di.  

 

In line with the above axioms, we may consider dividing the overall economy into 3 sectors, 

namely, services,manufacturing, and power. The analysis is that the three sectors each use inputs 

from two sources: Locally made commodities from the three industries as well as other inputs, 

such as imports, labour, and capital.  

 

The outputs of the industries serve as intermediate inputs to production of the three industries 

and also as final demand measured in terms of consumption, investment, government 

expenditure, exports. These are so summarized in the I-O table below. 

 

        Table 1: Input-Output Table 

Economic 

activities 

Output Final Demand Total Outputs 

 

 

 

 

Inputs 

 2 3 . . z 

1        

2        

3        

.        

.        

z        

Value 

Added 

        

 

Considering a Leontief closed economy with two industries, namely agriculture and services. 

Each industry would directly needs the use of labour in its manufacturing process, and each 

needs in its productive process inputs which are output of the other industry. 

 

This is tabulated in Table 2 below where agriculture and services are the first two entries, and is 

given to the primary factor, labour, of which the economy has surplus labor units of 6000 
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(labourers). These 600 units of labour in the country are allocated as inputs to agriculture and 

services industries in amounts 400 and 200 respectively.  

 

 

        Table 2: Input-Output Table 

Industries Amount of 

inputs 

donated to 

Agriculture 

Amount of 

inputs 

donated to 

Power 

Final 

Demand 

Total Outputs 

Agriculture 180 300 720 1200 

Power 158 88 314 560 

Labour 

man-hours 

provided 

400 200 0 600 

 

As shown in table 2, agricultural output totals 1200 units per annum. Out of which, 720 units is 

directly devoted to final consumption, that is demand by households, firms and government 

agencies. The outstanding 480 units of agricultural output used as inputs to make readily 

available both power supply and agricultural produce in the country. Thus, 300 units of 

agricultural output is required as material inputs in order to make possible power supply as 

shown in the table while 180 units is used by agriculture itself.  

 

Similarly, row 2 shows the allocation of the total output of power sector, 560 units of megawatts 

annually among final consumption/demand and intermediate inputs needed in the two industries, 

namely; 158 units allocated to agriculture, 88 units allocated to power and 314 allocated to final 

demand respectively. 

 

 

The column designatesthat the 1200 units of agricultural output was produced with the use of 

180 units of agricultural materials, 158 units of power supply, and 400 units of labour man-

hours. 

 

Likewise, the second column details the input structure of the power industry in the sense that 

the 560 megawatts of power supplied was generated with the use of 300 units agricultural inputs, 

88 units of power factor and 200 man-hours of labour provided. The ‘final demand’ column 

displays the commodity analysis of what is available for consumption and demand by 

households, firms and government while labour services are not directly consumed. 

 

The economic analysis thus signifies that the sales of the two agricultural and power industries to 

themselves and to each other constitutes the non-Gross National Product items. The ‘final 
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demand’ column constitutes the output item of GNP, and labour forms the factor-cost element of 

the Gross National Product. What this further implies in effect is that the overall economy is 

such that uses up labour and has 600 units of labour man-hours at the close of the year at its 

disposal while simultaneously produces final consumption. With its 600 units of labour, the 

country produces an annual flow of 720 units of agricultural commodities and 314 units of 

power. 

 

SELF ASSESSEMENT EXERCISE 

i. What are the basic assumptions of the I-O Matrix?  

ii. What do you understand about input output analysis? 

 

3.3 Leontief Model/Matrix: The Leontief model is a mathematical model that can accordingly 

be deduced as in equation (1): 

1 1 2 2 3 3 ...i i i i in n iZ a Z a Z a Z a Z D= + + + + +  (1) 

( )

( ) ( )

Z AZ D

Z AZ D

I A Z D Leontoef matrix

= +

− =

− =

 

Where, A be the matrix of technical coefficients,  

 (aij) technical coefficients  of the ith firm in the jth industry 

 Z be the vector of total output,  

 D be the vector of final demand 

 

According to equation (1), total output of the economy equals intermediate output plus final 

output. Since the Leontief matrix is invertible, it becomes a linear system of equations with a 

unique solution, and so given some final demand vector the required output can be calculated 

mathematically. 

 

The Usefulness of the Input-Output Table:  

 i.  I-O models are useful for studying the economic impact of inter-regional trade, as 

well as public investments programs 

 ii.  I-O models aid in the calculation of national income/output.  

 iii.  I-O models are useful tools for national and regional economic planning of 

resource allocation.  

  

SELF-ASSESSMENT EXERCISE 

1. What is Leontief Matrix?  

2. What do you understand about input output analysis? 

3. How would you describe the input-output table?  

 

3.5 Solving Numerical Problems of Input-Output Model 
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Numerical Example 1: Consider a developing economy that has 3 sectors namely, power, 

transport and services as shown in the table below. Calculate the output vector of this economy if 

final demand varies from 122 to 200 for the power sector, from 184 to 260 for the transport 

sector and from 58 to 160 for the services sector. 

Producing 

sector 

Using sectors Final 

Demand 

Total Output 

Power Transport Services   

Power 90 20 48 122 280 

Transport 40 36 40 184 300 

Services 30 52 60 58 200 

 

Solution to Numerical Example 1: Recall that, 

1

( ) ( )

( )

I A Z D Leontoef matrix

where Z I A D−

− =

= −
 

Where, A be the matrix of technical coefficients,  

 (aij) technical coefficients  of the ith firm in the jth industry 

 Z be the vector of total output,  

 D be the vector of final demand 

(aij) technical coefficients  of the ith firm in the jth industry are calculated as shown below:  

 

90 / 280 20 / 300 48 / 200 0.32 0.07 0.24

40 / 280 36 / 300 40 / 200 0.14 0.12 0.20

30 / 280 52 / 300 60 / 200 0.11 0.17 0.30

1 0 0 0.32 0.07 0.24 0.68 0.07 0.24

[ ] 0 1 0 0.14 0.12 0.20

0 0 1 0.11 0.17 0.30

A

I A

   
   

= =
   
      

− −   
   

− = − =
   
      

0.14 0.88 0.20

0.11 0.17 0.70

 
 
− −
 
 − − 

 

 

[ ]1 [ ]
[ ]

0.88 0.2 0.14 0.2 0.14 0.88
0.68 0.07 0.24

0.17 0.7 0.11 0.7 0.11 0.317

0.3957 0.0084 0.03339

0.437

T

I ACAdj I A
I A

I A I A

I A

−− −
− = =

− −

− − − −
− = − −

− − − −

= + +

=
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0.88 0.2 0.14 0.2 0.14 0.88

0.17 0.7 0.11 0.7 0.11 0.317

0.07 0.24 0.68 0.24 0.68 0.07
[ ]

0.17 0.70 0.11 0.70 0.11 0.17

0.07 0.24 0.68 0.24 0.68 0.07

0.88 0.20 0.14 0.20 0.14 0.88

Cofactor matrix I A

 − − − −
+ − +
− − − −

 − − − −
− = − + −

− − − −

− − − −
+ − +

− − − −







 
 
 
 



 

0.582 0.12 0.14

[ ] 0.089 0.4496 0.1233

0.225 0.1696 0.5886

Cofactor matrix I A

 
 

− =
 
  

 

 

1

0.582 0.089 0.225
1

[ ] 0.12 0.4496 0.1696
0.437

0.14 0.1233 0.5886

1.33 0.20 0.51

0.27 1.029 0.39

0.32 0.28 1.35

I A −

 
 

− =
 
  

 
 

=
 
  

 

 

Given that 

200

260

160

D

 
 

=
 
  

 

1[ ]

1.33 0.20 0.51 200

0.27 1.029 0.39 260

0.32 0.28 1.35 160

399.6

384.2

352.8

X I A D−= −

   
   

=
   
      

 
 

=
 
  

 



87 | P a g e  
 

266 52 81.6

399.6

54 267.8 62.4

384.2

64 72.8 216

352.8

= + +

=

= + +

=

= + +

=

 

The analysis is that output production of 399.6 units of power, 384.2 units of transportation and 

352.8 units of services is required to meet the final demands of 200, 260 and 160 respectively.  

 

 

Numerical Example 2: Let us suppose an advanced economy has 3 sectors namely, power, 

transport and services such that the generation of one unit of power requires 0.6 units of transport 

and 0.2 units of services. The production of one unit of transportation requires 0.5 units of power 

and 0.5 units of service sector. Lastly, the production of one unit of services requires 0.8 units of 

the power sector and 0.8 units of the transport sector.  

 

(1) Formulate the input output matrix of the economy. 

(2) If the economy supplies 80 units of power, 50 units of transport and 60 units of 

services, determine how much of each sector is used up in the production process of the 

economy. 

(3) Calculate the amount of each sector that is not used up in the production process of 

the economy 

(4) Suppose the demand for power supply increases to 25 units, 3000 units for transport 

and 60 for services, what would be the production output for each sector?  

 

Solution to Numerical Example 2: I-O Table 

 Industry/sector consuming Output 

 Power Transport services 

 

Industry/sector 

supply Input 

Power 0 0.5 0.8 

Transport 0.6 0 0.8 

Services 0.2 0.5 0 
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0 0.5 0.8

0.6 0 0.8

0.2 0.5 0

80

50

60

0 0.5 0.8 80 73

0.6 0 0.8 50 96

0.2 0.5 0 60 41

A

X

A

 
 

=
 
  

 
 

=
 
  

     
     

= =
     
          

 

 

Power supply The amount of power supply used up by the transport sector is 0.5 50 25 =  

The amount of power supply used up by the services sector is 0.8 60 48 =  

Thus, 73 units of power is used up in the production process of the economy 

Transport 

supply 

The units of transport used up by the power sector is 0.6 80 48 =  

The amount of transport used up by the services sector is 0.8 60 48 =  

Thus, 96 units of transport is used up in the production process of the 

economy 

 

Services 

supply 

The amount of services used up by the power sector is 0.2 80 16 =  

The amount of services used up by the transport sector is 0.5 50 25 =  

Thus, 41 units of services sector is used up in the production process of the 

economy 

 

80 73

50 96

60 41

7

46

19

D Z AZ= −

   
   

= −
   
      

 
 

= −
 
  

 

The interpretation of the demand vector is that 80 units of power was supplied, 73 units was 

consumed, that is used up in the nation’s production process while 7 units is not used up in the 

production process of the economy. Similarly, 60 units of services were rendered, 41 units was 

consumed in the nation’s production process while 19 units is not used up in the production 
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process of the economy. However, the 50 units of transport produced could not serve the 

economy as 96 units of transportation was used up in the nation’s production.  

 

Suppose the demand for power supply increases to 400 units, 300 units for transport and 220 for 

services, the final demand vector would be given by: 

400

300

250

D

 
 

=
 
  

 

4.0 CONCLUSION 

Each column of the input-output matrix shows the monetary value of inputs to each sector and 

each row represents the value of each sector's outputs.There has been research on disaggregation 

to clustered inter-industry flows, and on the study of constellations of industries. A great deal of 

empirical work has been done to identify coefficients, and data has been published for the 

national economy as well as for regions. The I-O model can be extended to a model of Walrasian 

equilibrium analysis; whereby monetary value of inputs are contained in column while sectorial 

output are contained in the rows. 

 

5.0 SUMMARY 

In this unit, we have discussed the meaning of input-output analysis, the input-output table, 

usefulness of the input-output table and solved numerical problems of input-output model.  

 

6.0 TUTOR-MARKED ASSIGNMENT 

1. Consider that an economy has 3 sectors namely, power, transport and services such that the 

generation of one unit of power requires 0.3 units of transport and 0.7 units of services. The 

production of one unit of transportation requires 0.8 units of power and 0.8 units of service 

sector. Lastly, the production of one unit of services requires 0.2 units of the power sector and 

0.4 units of the transport sector.  

 

(i) Formulate the input output matrix of the economy. 

(ii) If the economy supplies 300 units of power, 400 units of transport and 500 units of services, 

determine how much of each sector is used up in the production process of the economy. 

(iii) Calculate the amount of each sector that is not used up in the production process of the 

economy 

(iv) Suppose the demand for power supply increases to 600 units, 400 units for transport and 900 

for services, what would be the production output for each sector?  

 

2. If an advanced economy has 3 sectors namely, power, transport and services such that one unit 

of power requires 0.5 units of transport and 0.5 units of services. The production of one unit of 
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transportation requires 0.9 units of power and 0.9 units of service sector. Lastly, the production 

of one unit of services requires 0.3 units of the power sector and 0.3 units of the transport sector.  

(i) Formulate the input output matrix of the economy. 

(ii) If the economy supplies 270 units of power, 350 units of transport and 360 units of services, 

determine how much of each sector is used up in the production process of the economy. 

(iii) Calculate the amount of each sector that is not used up in the production process of the 

economy 

(iv) Suppose the demand for power supply increases to 490 units, 350 units for transport and 250 

for services, what would be the production output for each sector?  

 

3. Consider that an economy has 3 sectors namely, power, transport and services such that the 

generation of one unit of power requires 0.25 units of transport and 0.75 units of services. The 

production of one unit of transportation requires 0.36 units of power and 0.85 units of service 

sector. Lastly, the production of one unit of services requires 0.25 units of the power sector and 

0.45 units of the transport sector.  

(i) Formulate the input output matrix of the economy. 

(ii) If the economy supplies 880 units of power, 850 units of transport and 860 units of services, 

determine how much of each sector is used up in the production process of the economy. 

(iii) Calculate the amount of each sector that is not used up in the production process of the 

economy 

(iv) Suppose the demand for power supply falls to 90 units, 100 units for transport and 150 for 

services, what would be the production output for each sector?  

 

4. Consider a developing country that has 3 sectors as shown in the table below. Calculate the 

output vector of this economy if final demand increases to 190 for the services sector, to 400 for 

the transport sector and to 250 for the power sector. 

Producing 

sector 

Using sectors Final 

Demand 

Total Output 

Services Transport Power   

Services 290 220 250 170 930 

Transport 240 236 240 180 896 

Power  230 252 260 200 942 

 

3. Consider a developing economy that has 3 sectors as shown in the table below. Calculate the 

output vector of this economy if final demand varies from 80 to 200 for the services sector, 

from 40 to 220 for the transport sector and from 70 to 300 for the power sector. 

Producing 

sector 

Using sectors Final 

Demand 

Total Output 

Services Transport Power   

Services 100 120 140 80 440 
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Transport 140 130 190 40 500 

Power  130 150 160 70 510 

 

4. Consider a developing economy that has 3 sectors as shown in the table below. Calculate the 

output vector of this economy if final demand changes to 700 for the service sector, 680 for 

transport and 800 for the power sector. 

Producing 

sector 

Using sectors Final 

Demand 

Total Output 

Services Transport Power   

Services 500 250 380 665 1300 

Transport 500 350 400 500 1750 

Power  600 200 200 600 1600 
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UNIT 1: DIFFERENTIAL CALCULUS AND SOME ECONOMIC APPLICATIONS 

 CONTENTS 

1.0. Introduction 

2.0. Objectives 

3.0. Main Content 

3.1 Meaning of Differential Calculus 

3.2  Derivative of a Function 

3.3 Rules of Differentiation  

3.4 Solving Numerical Problems on Differential Calculus 

3.5  Application of Differentiation to Economic Problems 
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3.5.2.  Applications II: Calculating Price Elasticity of Demand 

 

4.0      Conclusion 

5.0      Summary 

6.0.     Tutor-Marked Assignment 

7.0      References/Further Readings 

 

1. 0. INTRODUCTION 

This unit provides discussion on meaning of differential calculus, derivative of a function, 

derivative of implicit functions, economic applications of derivatives and solving numerical 

problems on differential calculus. 

   

4.0 OBJECTIVES 

After a successful study of this unit, students should be able to do the following: 

• Find the derivative of explicit and an implicit functions  

• Solving Numerical Problems on Differential Calculus 

• Carry some applications of differential calculus  

 

3.0. MAIN CONTENT 

3.1. Meaning of Differential Calculus 
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Differential calculus studies the rates at which quantities change. The entities involved in the 

study of differential calculus are the derivative of a function, or differentiation, and the 

associated applications.  

 

3.2 Derivative of a Function: The derivative of a function defines the rate of change of the 

function at given value. It is a sequence of differentiation. The geometrical explanation of 

derivative hinges on the slope of the line tangential to the graph of the function at the point of 

tangent.  

 

Suppose that x and z are real numbers and that z is a function of x, that is, for every value of x, 

there is a corresponding value of y (which - y or z?). This mathematical link can be written as:  

z = f(x)=  c+bx 

Thus, the slope of the function is obtained by obtaining the derivative of the function w.r.t. z. 

This is shown below: 

    

change in z
b

change in x

z
b

x

=


=


 

Where the symbol Δ symbolizes "change in". It follows that Δz = bΔx. The geometry of the 

derivative of f at the point z = b is the slope of the tangent line to the function f at the point b. 

This is shown in the figure below and is denoted using either Langrange or Leibniz's notation as 

shown below: 

 

                Source: Wikipedia 

 

f ′(x)  (Langrange notation) 

x d

dy

dx =

 (Leibniz's notation) 
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3.3. Rules of Differentiation: These are rule for finding the derivative of a function. They 

include the constant rule, power rule, product rule, quotient rule, exponential rule, logarithmic 

rule, trigonometry rule etc. Nevertheless, the derivative 
dx

dy
is

x

y
im





 0→
 if the limit exists 

 

i. Constant Rule of Differentiation: For any constant k, such that 

( )

'( ) 0 ( ) 0

f x k

d
f x k

dx

=

=  =
 

ii. Power Rule of Differentiation: The derivative of ),(xf from the first principles is as 

follows: 

1

4

1 3

5

1 2

6

1 5

( ) , '( )

( )

'( ) 4

( ) 3

'( ) 15

( ) 2

'( ) 12

n n

n

n

n

dy
f x x f x nx

dx

f x x

dy
f x nx x

dx

f x x

dy
f x nx x

dx

f x x

dy
f x nx x

dx

−

−

−

−

=  =

=

 = =

=

 = =

=

 = =

 

For example, if f(x) = x6, then the derivative function f ′(x) would be given as: 

5'( ) 6
y

f x x
x


= =
  

56)(' x
dx

dy
xf =  

iii. The derivatives of exponential and logarithmic functions obeys the following rules 
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( )

( ) ( ) 1 ( )

1
log , 0, 1

ln

1
(ln ) , 0

1
(ln ) , 0

( ) (1 ln ), 0

[ ( ) ] ( ) ( ) ( ) ln[ ( )] ( ) 0

ax ax

e

x x

h x h x h x

d
e ae

dx

d
x where k k

dx x k

d
x where x

dx x

d
x where x

dx x

d
x x x where x

dx

d df dh
f x h x f x f x f x provided f x

dx dx dx

−

=

=  

= 

= 

= + 

= + 

 

 

iv. The derivatives of trigonometric functions obeys the following rules of engagement: 

2 2

2

(sin ) ' cos

(cos ) ' sin

(tan ) ' sec 1 tan

(sec ) ' sec tan

(cot ) ' (1 cot )

x x

x x

x x x

x x x

x x

=

= −

=  +

=

= − +

 

 

v. The derivatives of hyperbolic functions obeys the following rules of engagement: 

 

2

2

(sinh ) ' cosh
2

(cosh ) ' sinh
2

(tanh ) ' sec

(sec ) ' tanh sec

(coth ) ' csc

x x

x x

e e
x x

e e
x x

x h

hx x hx

x h x

−

−

+
= 

−
= 

=

= −

= −

 

vi. The derivative of implicit functions: The derivative of an implicit function is a derivative of 

both sides of the function w.r.t. one of the variables while holding the other variables relatively 

constant. Examples of implicit function is: 
3 7( , ) 2g z y z y= + + , then the circle is the set of all 

pairs (x, y) such that g(z, y) = 0. So,  
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( , ) 0

0z y

z y

z

y

g z y

g dz g dy

g dz g dy

gdy

dz g

=

+ =

= −

= −

 

vii. The product rule: Given that a function )(uvg where u and v are two separate functions 

of the same variable z , the derivative of )(uvg is given as 
dz

du
v

dz

dv
uuvg +=)('  

 

viii. Given that u and v are two separate functions of the same variable z , the derivative of 

the function 
v

u
zg =)(  

2
)('

v

dz

dv
u

dz

du
v

zg

−

=  

 

SELF ASSESSMENT EXERCISE 

Explain the meaning of an implicit function 

How would you differentiate between Langrange notation and Leibniz’s notation?  

Differentiate between an exponential and a logarithmic functions 

 

3.4Solving Numerical Problems on Differential Calculus 

Numerical Example 1: Find the derivative of the given function. 
3( ) ( ) 5 4 2i g z z z= − +  

Solution to Numerical Example 1: Taking the derivative, we have that: 

2'( ) 15 4
g

g z z
z


= = −


 

 

Numerical Example 2: Find the derivative of the given function. 
2( ) ( ) (5 2)(9 )i g z z z z= − +  

Solution to Numerical Example 2: Taking the derivative, we have that: 
2

2

2 2

( ) (5 2)(9 )

(5 2), (9 )

, ,

'( ) (5 2) (9 ) (9 ) (5 2)

g z z z z

let u z v z z

Utilizing the product riule we have

dv du
uv u v

dz dz

g d d
g z z z z z z z

z dv dv

= − +

= − = +

= +

  
= = − + + + −   
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2(5 2)(9 2 ) (9 )5z z z z= − + + +  

 22 5454101845 zzzzz ++−+−=  

 188615 2 −+= zz  

Numerical Example 2 
5

5

5 5

5 5

5

( )

'( )

,

, ,

( ) ( ) ( ) ( )

(5 ) ( )(1)

(5 1)

z

z

z z

z z

z

g z ze

dv du
g z u v

dz dz

let u z v e

Utilizing the product riule we have

dv du
uv u v

dz dz

g d d
g z z e e z

z dv dv

ze e

e z

=

= +

= =

= +

  
= = +   

= +

= +

 

 

Numerical Example 3: Find the derivative of the given functions. 
2

3

6 3

3

5
( ) ( )

6

5 10 2
( ) ( )

2
( ) ( )

z
i g z

z

z z
ii g z

z

z z z
iii g z

z

=
+

− +
=

− +
=

 

Solution to Numerical Example 3:  
2

2

5
( )

6

5 , 6

, ,

z
g z

z

let u z v z

Utilizing the quotient riule we have

=
+

= = +  
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2

2 2

2

2

2

2 2

2

2

2

( 6) (5 ) (5 ) ( 6)

( )
( 6)

( 6)10 (5 )

( 6)

10 60 5

( 6)

5 60

( 6)

du dv
v u

g dz dz

z v

d d
z z z z

g dv dvg z
z z

z z z

z

z z z

z

z z

z

−


=


 
+ − + 

= =  
 + 

 

+ −
=

+

+ −
=

+

+
=

+

 

 

3

3

2

3 3

2

5 10 2
( )

(5 10 2),

, ,

(5 10 2) (5 10 2) ( )

( )

z z
g z

z

let u z z v z

Utilizing the quotient riule we have

du dv
v u

g dz dz

z v

d d
z z z z z z

g dv dvg z
z z

− +
=

= − + =

−


=


 
− + − − + 

= =  
  

 

 

2 3

2

3 3

2

3

2

2

(15 10) (5 10 2)

15 10 5 10 2

10 2

10 2

z z z z

z

z z z z

z

z

z

z z−

− − − +
=

− − + −
=

−
=

= −  
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6 3

3

6 3 3

2

2
( )

(2 ),

, ,

z z z
g z

z

let u z z z v z

Utilizing the quotient riule we have

du dv
v u

g dz dz

z v

− +
=

= − + =

−


=


 

 

3 6 3 6 3 3

3 3

(2 ) (2 ) ( )

( )
( ).( )

d d
z z z z z z z z

g dv dvg z
z z z

 
− + − − + 

= =  
  

 

 

3 5 2 2 6 3

6

(12 3 1) 3 (2 )z z z z z z z

z

− + − − +
=  

  
6

358358 336312

z

zzzzzz −+−+−
=  

  
6

38 26

z

zz −
=  

  32 26 −−= zz  

Alternatively, we can divide the numerator of ( )g z by the denominator of each function 

respectively and apply the power function rule as follows: 

 

12
3

2105
2105 −+−=

+−
zz

z

zz
 

( ) 212 2102105 −− −=+− zzzz
dz

d
 

 

 

23

3

36

22
22 −+−=

+−
zz

z

zzz

 

( ) 3223 2622 −− −=+− zzzz
dz

d
 

 

Numerical Example 4: Consider the following function 
2 332 8 29 0z y− + =  

Solution to Numerical Example 4: Carrying out an implicit differentiation of the function, we 

have as follows: 
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2 3

2 3

2 3

2

2

2

32 8 29 0

(32 8 29) (0)

(32 ) (8 ) (29) 0

64 24 0

64 24

64

24

z y

d d
z y

dz dz

d d d
z y

dz dz dz

dy
z y

dz

dy
z y

dz

dy z

dz y

− + =

− + =

− + =

− =

=

= −

 

Alternatively,  

2

( , ) 0

64

24

z

y

f z y

fdy

dz f

dy z

dz y

=

= −

= −

 

Numerical Example 5: Find the derivative of the following functions: 

i. exp( ) xy x e=  

 

ii. 7 lny x x=  

 

iii. 2ln(4 5 6)y x x= − +  

 

 

Solutions: Given that exp( ) xy x e=  

2.71828...

' exp( ) x

where e

dy
y x e

dx

=

= =
 

Given that 7 lny x x=  
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7

7 6

6 6

6

ln

, :

1
ln .7

7 ln

(1 7 ln )

let u x

v x

Applying the product rule we have as follows

dy dv du
u v

dx dx dx

x x x
x

x x x

x x

=

=

= +

= +

= +

= +

 

 

 

 

Given that 2ln(4 5 6)y x x= − +  

2

2

2

(4 5 6)

ln

, :

1
.(8 5)

4 5 6

8 5

4 5 6

let u x x

y u

Applying the chain rule we have as follows

dy dy du

dx du dx

x
x x

x

x x

= − +

=

= 

= −
− +

−
=

− +

 

 

SELF ASSESSMENT EXERCISE 

Describe the relationship between an explicit and an implicit derivative. Give examples 

 

 

3.5. Application of Differentiation to Economic Problems: Recall that the slope of the graph  

of a function is called the derivative of the function such that: 

 

0

( )

'( ) lim
x

y f z z

dy y
f z

dz z →

= =


= =



 

 

3.4.1 Application I: Calculating Marginal Functions (Revenue, Costs and Profit) 

Given a total revenue function as: TR PQ=  

( )d TR
MR

dQ
=  
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So, if a firm faces thedemand curve 8 2P Q= − , the TR and the corresponding MR functions of 

the firm becomes: 

2

8 2

(8 2 )

8 2

( )
8 4

P Q

TR PQ Q Q

Q Q

d TR
MR Q

dQ

= −

= = −

= −

= = −

 

The firm optimizing quantity and price levels are obtained as follows: 

2

2

( )
8 4 . .

0,

8 4 0

8 / 4

2

8 2(2)

4

. .

( )
4 0

d TR
MR Q F O C

dQ

Setting MR

Q

Q

P

N

Evaluating S O C

d TR

dQ

= = −

=

− =

=

=

= −

=

= − 

 

The firm optimizing price and quantity levels are N4 and 2 respectively. 

 

Given a total cost function as: TC PQ=  

( )d TC
MC

dQ
=  

A firms total cost curve is given by 

TC=2Q3- 8Q2+24Q 

(i) Obtain the AC function  

(ii) Obtain the MC function  

(iii) When does the slope of AC = 0? 

(iv) What does the relationship of graphs of MC and AC curves?  
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3 2

3 2
2

2

2 8 24

2 8 24
(i) A 2 8 24

( ) 6 16 24

( )
( ) 0 0

( )
4 8 0

2

0 2

TC Q Q Q

TC Q Q Q
C Q Q

Q Q

dTC
ii MC Q Q

dQ

d AC
iii AC when

dQ

d AC
Q

dQ

Q

The slope of AC when units of output

= − +

− +
=  − +

= = − +

= =

= − =

=

= =

 

(iv) The economic significance points to a minimum at the point whereby MC curve intersect 

AC curve. 

 

3.5.2. Applications II: Calculating Price Elasticity of Demand: Recall that by definition, price 

elasticity of demand refers to the proportionate change in demand with respect to proportionate 

change in price level. Mathematically,  

 

Thus, if  <1, we have inelastic demand 

if  =1, we have  demand

if  >1, we have elastic demand

d

d

d

d

Q P dQ P
e

P Q dP Q

e

e unit elasticity of

e


=  


 

 

Supposing the (inverse) Demand equation is P = 100 – 10ln(Q+1), calculate the price elasticity 

of demandwhen Q = 42 
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10
=-  

Q+1

Applying the inverse rule, we have that:

Q+1
=-

10

When 42,

100 - 10ln(43)

=62.4

43 62.4
Thus, =-

10 42

6.387

d

d

d

dQ P
e

dP Q

dP

dQ

dQ

dP

Q

P

dQ P
e

dP Q

e

Demand is elastic

= 

=

=

=  

= −

 

 

4.0 CONCLUSION 

The fundamental theorem of calculus guides the mathematical processes involved in 

differentiation and integration. The driving principle in study of differential calculus is derivative 

of a function whose procedure is referred to as differentiation. Differentiation has wide ranging 

economic applications. 

 

5.0 SUMMARY 

In this unit, we have discussedthe meaning of differential calculus, appraised derivative of a 

function (both explicit and implicit functions). Also, we studied applications of derivatives to 

economic problems haven solved some numerical problems on differential calculus. 

  

6.0 TUTOR-MARKED ASSIGNMENT 

1. Find the derivative of the given function. 
5 2

2 3

( ) ( ) 52 9 4

( ) ( ) (26 6)(18 )

i g z z z

ii g z z z z

= + +

= − +
 

2. Find the derivative of the given functions. 
3

2

3

6 3

6

(5 1)
( ) ( )

9

13 2
( ) ( )

7 4 3

6 1
( ) ( )

w
i g w

w

w
ii g w

w z z

w wz
iii g w

w

+
=

+

+
=

− +

− +
=
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3. Consider the following functions 
6 3

6 3

2 3

6 3

3 1 0

23

10 cos(3 ) 34

3 5 40 4

z zy

z y

z z y

z zy zy y

− + =

+ =

− = +

− + =  
 

Find the implicit derivative of the function 
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UNIT 2: INTEGRAL CALCULUS AND SOME ECONOMIC APPLICATIONS 
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3.4 Solving Numerical Problems on Integral Calculus 

   

4.0      Conclusion 

5.0      Summary 

6.0.     Tutor-Marked Assignment 

7.0  References/Further Readings 

 

1. 0. INTRODUCTION 

This unit provides a discussion on the meaning of integral calculus, integration techniques, such 

as integration by part and integration by substitution as well as economic applications of integral 

calculus together with some solved numerical examples on integral calculus.  

   

2.0 OBJECTIVES 

After a successful study of this unit, students should be able to do the following: 

• Find the integral of a function 

• Find the integral of a function by using substitution method 

• Find the integral of a function using integration by part technique  

• Carry some economic applications of integral calculus  

 

3.0. MAIN CONTENT 

3.1 Meaning of Integral Calculus: Integration is the process of reversing differentiation. It is 

means of finding a primitive function from a derivative. Hence, it is also called anti-derivative. 

An integral of a function describes area or, volume. Given a function f of a real variable x and an 

interval [a, b] of the real line, the definite integral becomes: 

2

1

( )
t

t
f x dx  

As it is, integration defines the area of the region in the xy-plane that is bounded by the graph of 

f, the x-axis and the vertical lines x = t1 and x = t2. in effect, the region above the x-axis increases 
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total area and the region below the x-axis decreases the total area. Integral may also refer to 

antiderivative, a function F whose derivative is the given function f and the indefinite integral is 

written thus: 

2

1

( ) ( )
t

t
F x f x dx=   

The definition of the definite integral begins with a function f( x), which is continuous on a 

closed interval [ a, b]. The given interval is partitioned into “n” subintervals that can be taken to 

be of equal lengths (Δ x). Similar to differentiation, a significant relationship exists between 

continuity and integration such that if a function f(x) is continuous on a closed interval [ a, b], 

then the definite integral of f(x) on [ a, b] exists and f is said to be integrable on [a, b]. In other 

words, continuity guarantees that the definite integral exists, but the converse is not the case. 

 

If f is a continuous real-valued function defined on a closed interval [t1, t2], then, once an anti-

derivative F of f is identified, the definite integral of f over that interval is given by: 

2
2

1
1

2 1

[ ( )]

( ) ( )

( ) t

t

t

t
F x

F t F t

f x dx =

−

  

 

 

  Figure 3: Area of Integration 

                        Source: mathnotes.org, en.wikipedia.org 

 

 

 

3.3. Fundamental Theorem of Calculus: The fundamental theorem of calculus inaugurates the 

link between indefinite and definite integrals such that if f(x) is continuous on the interval [ a, b], 

and F( x) is any anti-derivative of f( x) on [ a, b], it thus implies: 
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( )

( ) ( )

( )

tan int  

( )

d

b

d

b
F x k

F d F b

F x

where k is the cons t of egration

f x dx = +

= −




 

 is the integral sign  

  

This goes to show that the value of the definite integral of a function on [ a, b] is the difference 

of any antiderivative of the function evaluated at the upper limit of integration minus the same 

antiderivative evaluated at the lower limit of integration. 

 

Basic rules of integration:  These are rules solving definite integral problems. They include: the 

power function rule, sum-difference rule, integration of exponential and logarithmic functions 

etc. 

Power Function Rule: 

 

  
[ ] tan

( ) ( )

( ) ( )

d b

b d

d

b

d d

b b

k d b where k is a cons t

k

f x dx f x dx

kdx

kf x dx f x dx

= −

= −

=

 



 

 

Sum Rule:
[ ( ) ( )] ( ) ( )

d b b

b d d
f x g x dx f x dx g x dx= ++    

Difference Rule:
[ ( ) ( )] ( ) ( )

d b b

b d d
f x g x dx f x dx g x dx= −−    

3.2  Integration Techniques  

3.2.1 Integration by Part: Integration by parts technique finds the integral of a product of 

functions in terms of integral of product of their derivative and anti-derivative. The technique of 

integration by part is the equivalence of product rule of differentiation.The theorem of 

integration by parts states that if the following conditions hold:  

( )

'( )

( )

'( )

u u z

du u z dz

w w z

dw w z dz

=

=

=

=
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[ ( ) '( )]( ) '( ) '( ) ( )d

b

d d

b b
u x w xu x w x dx u x w x dx

udw uw wdu

= −

= −

 

 
 

 

3.2.2 Integration by Substitution: Integration by substitution as a method for solving integrals 

is the u-substitution technique. Using the fundamental theorem of calculus, it necessitates finding 

an antiderivative. Accordingly, integration by substitution is the equivalence of chain rule for 

differentiation.  

 

For substitution for a single variable, consider that I ⊆ R be an interval and : [b,d] → I be a 

continuous and differentiable function with integrable derivative, it thus follows that: 

  
( ) ( )

( ) ( )
( ) ( ( )) '( )

d d

b b
f u du f x x dx

 

 
 =   

In Leibniz notation, the substitution ( )u x= yields 

  
'( )

'( )

u
x

x

x x






=





 

The formula is used to transform one integral into another integral and by so doing, it simplifies 

a given integral.  

 

3.3 Solving Numerical Problems on Integral Calculus 

Numerical Example 1: Find the integral of the following functions 

2 7

2

3

4

9

(2 13)

(5 13)

192

3 2

z
dz

z

z dz

z
dz

z

−

−

+







 

Solution to Numerical Example 1:Using the substitution method 
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2 7

2

2 7 7

7

7

6

6

9

(2 13)

(2 13)

4

4

1

4

inf & , ,

9 9 1

(2 13) 4

9 1

4

9

4

9

4 6

9

24(2 13)

z
dz

z

let u z

du
z

dz

zdz du

dz du
z

Substitut for u dz we have

z z
dz du

z u z

du
u

u du

u

z

−

−

−

= −

=

=

=

=
−

=

=

=
−

= −
−



 





 

132 2 −= zu  

 

2(5 13)

(5 13)

5

5

1

5

z dz

let u z

du

dz

dz du

dz du

−

= −

=

=

=



 

2 2

3

inf , ,

1
(5 13)

5

1

15

Substitut for u dz we have

z dz u du

u k

− =

= +

   

( ) cz +−=
2

132
15

1
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3

4

4

3

3

3

3 3

4 3

4

192

3 2

(3 2)

12

12

1

12

inf & , ,

192 192 1

3 2 12

1
16

16 ln

16ln(3 2)

z
dz

z

let u z

du
z

dz

z dz du

dz du
z

Substitut for u dz we have

z z
dz du

z u z

du
u

u k

z k

+

= +

=

=

=

 
=  

+  

=

= +

= + +



 




 

 

Numerical Example 2: Find the integral of the following functions 
3

4 ln

zz e dz

z zdz




 

Solution to Numerical Example 2: Using the method of integration by parts  

3. zi z e dz  

3

2

3 3 2

2 2

3 3 2

2 2

'

' 3

3( )

3( ) 3[ 2 ]

2 .1

, 3 2( )

2

z

z

z z z

z z z

z z z

z z

z z z z z

z z z

let u z

w dw e

u du z

w e

z e dz z e z e dz

where z e dz z e ze

where ze ze e dz

ze e k

Thus z e dz z e z e ze e k

z e dz z e ze k

=

= =

= =

=

= −

= −

= −

= − +

= − − − +

= − +

 

 

 




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ii. 
4 lnz zdz  

4

4

5

5 5
4

5 4

5 5

ln

ln

'

1
'

5

1
ln ln

5 5

ln
5 5

ln
5 25

z zdz

let u z

w dw z

u du
z

z
w

z z
z zdz z dz

z

z z
z dz

z z
z k

=

= =

= =

=

 
= −  

 

= −

= − +



 



 

 

3.4. Application of Integration in Economics:  

Integral calculus can be applied to solve economic problems, business and commerce related 

problems. For example, integration helps us to find out the total cost function and total revenue 

function from the marginal cost and also obtain consumer’s surplus and producer’s surplus from 

the demand function and supply function respectively.  

 

3.4.1. Cost and Revenue Functions: Here, total cost functions can be derived from marginal 

cost functions while total revenue functions can be obtained from Marginal revenue functions 

with the aid of integration. 

 

Considering that C is the cost of producing an output of Q commodity, then marginal cost 

function MC is derived as follows: 

dC
MC

dQ
=  

Using integration, as the reverse process of differentiation, we obtain the total cost function as 

follows: 

   ( )TC MC dQ k= +  

Where k is the constant of integration which is to be evaluated, 

 

Relatively, the Average cost function, AC is derivable as follows: 

, 0
C

AC Q
Q

=    
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Example 1: Supposing the marginal cost function of producing Q eye shade is 12 + 20Q–12Q2 . 

The cost of producing a duo of shades is N48. Find the total and average cost function. 

 
2

2

2 3

2 3

12 20 12

( )

(12 20 12 )

20 12
12

2 3

12 10 4

MC Q Q

TC MC dQ k

TC Q Q dQ k

Q Q
Q k

TC Q Q Q k

= + −

= +

= + − +

= + − +

= + − +



  

Since the cost of producing a duo of shades is N48, we have the TC as follows: 

 

2 3

2 3

2 3

2

4, 48

12 10 4

48 48 160 256

96

,

12 10 4 96

,

12 10 4 96

96
12 10 4

When Q k

TC Q Q Q k

k

k

Thus

TC Q Q Q

C
AC

Q

Q Q Q
AC

Q

AC Q Q
Q

= =

= + − +

= + − +

=

= + − +

=

+ − +
=

= + − +
 

Example 2: A Nigerian firm has a marginal cost function given by MC = 375 + 30Q − Q2/3. If 

the fixed cost of production is N750, determine the cost of producing 45 units. 

2

2

1
375 30

3

( )

1
(375 30 )

3

MC Q Q

TC MC dQ k

TC Q Q dQ k

= + −

= +

= + − +




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2 3

2 3

1
375 15

9

cos , 750

1
375 15 750

9

Q Q Q k

Fixed t of production k

TC Q Q Q

= + − +

=

= + − +

 

2 3

45,

1
375(45) 15(45) (45) 750

9

37,875

When Q

TC

=

= + − +

=

 

Example 3: The saving cost of an electronic firm is given by the function, ( ) 30f t t=  .Supposing 

the price of an electric fan is 280,000. Determine the number of days necessary to recover the 

cost of the function. 

 

Cost saving function =

0 0

2

2

2

( ) 30

( ) 30

15

Re 15 270,000

18,000

18,000

134

t t

S t t

S t dt tdt

t

coupin entails t

t

t

t

=





=

=

=



 

 

The price can be recovered after 134 days. 

 

Example 4: The marginal cost function of an oil producing firm in Nigeria is 18 45 xMC e= +  

(i) Calculate the value of TC supposing TC (0) = 900  

(j) (ii) Generate the average cost function AC. 

 

18 45 xMC e= +  

0

( )

(18 45 )

18 45

0 60

60 18(0) 45

60 45

15

18 45 15

Q

Q

Q

TC MC dQ k

TC e dQ k

TC Q e k

Q TC

e k

k

k

TC Q e

= +

= + +

= + +

=  =

= + +

= +

=

= + +




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1

, 0

18 45 15

45
18 15

Q

Q

C
AC Q

Q

Q e
AC

Q

e
AC Q

Q

−

=  

+ +
=

= + +

 

 

Example 5: The rate of change of profits of an automobile advertisement is epitomized as, 
0.4( ) 5200 tf t e−= where t signifies the number of days after the advertisement.  

i. Calculate the total cumulative sales after 10 days  

ii. Calculate the total sales during the 12thdays 

iii. Calculate the total sales owing to the advertisement. 

 

i. Calculate the total cumulative profits after 10  days 

Re :call that the total profits after t days would be given by−  

0

10

0.4

0

10
0.4

0

4 0

( ) ( ) , ( ) ( )

,

(10) (5200 )

5200
( 0.4)

13000[ ]

13000[0.0183 1]

12761.9

t

t

t

d
F t f t dt where profit rate f t F t

dt

So

F e dt

e

e e

N

−

−

−

= =

=

 
=  

− 

= − −

= − −

=





 

 

ii. Calculate the total profits during the 12thdays 
12

0.4

10

12
0.4

10

4.8 4

(5200 )

5200
( 0.4)

13000[ ]

13000[ 0.01]

131.1

t

t

e dt

e

e e

N

−

−

− −

=

 
=  

− 

= − −

= − −

=


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iii. Calculate the total profits owing to the advertisement 

0.4

0

0.4

0

4.8 4

(5200 )

5200

0.4

13000[ ]

13000[0 1]

13,000

t

t

e dt

e

e e

N



−


−

− −

=

 =  −

= − −

= − −

=



 

Example 6: The supply rate of a newly manufactured commodity is given by 
2( ) 900 15700 Qf Q e−= − where Q is the number of days the item is brought to the market.  

Calculate total sale during the first 20 days of being made readily available in the market. 

 
20

2

0

20
2

0

40 0

20 , (900 15700 )

900 7,850

[(18,000 7850 ) (7850 )]

18000 7850

10,150

Q

Q

Total sales for first days in the market TS e dQ

TS Q e

e e

TS N

−

−

− −

= −

 = + 

= + −

= −

=



 

 

3.4.2.Consumer and Producer Surpluses: Consumer surplus defines the difference between 

market price at consumer’s willingness and the actual market price. . In the analysis of 

consumers' surplus, sales are established on basis of supply such that price-quantity is situated on 

supply curve.Producer surplus defines the difference between the acceptable lowest market price 

and actual market price received by the producer for a commodity.Correspondingly, in analysis 

of producers' surplus, price is fixed by demand while price-quantity is situated on demand curve. 

Hence, with numerous individuals acting independently, price-quantity jointly becomes 

equilibrium point and selling at that point maximizes total social gain. While a lower price 

implies greater quantity sold, and greater consumer surplus, a higher price implies greater 

quantity sold, and greater producer surplus. 

 

Consumer’s Surplus is the difference between the amount a consumer is willing to pay and the 

amount he actually pays for a basket of commodity. Considering the graph below, consumer’s 

surplus is calculated as the area under the demand curve from the origin to the equilibrium price 

minus price multiplied by quantity. Algebraically, we have  

    
0

( )
EQ

D E Ef Q P Q− .  

Consumer’s surplus is the area shaded pink while producer’s surplus is the shaded light blue 

area. 
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Producer’s (or Supplier’s) surplus is the difference between the amount a producer (or a supplier) 

is willing to earn and the amount he actually earns from a basket of commodity. As shown in 

figure 4, producer’s surplus is calculated as equilibrium price multiplied by equilibrium quantity 

minus area under the supply curve from the origin to the equilibrium quantity.  

Mathematically,  

    
0

( )
EQ

E E SP Q f Q−   

Producer’s surplus is the area shaded yellow ( ). 

 

Thus, while the amount that the consumer is willing to pay has to be greater, the amount that the 

producer receives should be greater (Mike May, S.J., & Anneke Bart; Suranovic Steve, 2004). 

 

Largely, the lowest price producers are willing to accept is equal to their marginal cost of 

production. So, while the demand curve in a competitive free market represents the price 

consumers are willing to pay, supply curve represents the minimum price producers are willing 

to accept for different quantities produced. The sum of the consumer and producer surpluses is 

the total social gain or economic surplus. The consumer and producer surpluses are graphically 

represented in the figure below: 

 
 Figure 4: Consumer and Producer’s surpluses 

                           Sources:www.economicshelp.org,Economic-surpluses.svg 

 

 

Numerical Example 3: Consider the following demand and supply functions 

1530

270

D

S

q q

q q

= −

= +
 

Calculate the following at given market equilibrium, 

a. Consumer surplus,  

b. Producer surplus, and  

c. Total collective gain. 

http://www.economicshelp.org/
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Solution to Numerical Example 3: Proceed as follows: 

0

0

( ) ( )

( ) ( )

e

e

q
D e e

q
e e S

Consumer surplus q dq D q q

Producer surplus S q q q dq

= −

= −




 

( ) 1530

( ) 270

,

1530 270

1260 2

630

( ) 1530 630

900

D

S

D S

e

q q

q q

Equating q q

q q

q

q

D q

= −

= +

=

− = +

=

=

= −

=

 

0

630

0

630

2

0

2

( ) ( )

(1530 ) 630(900)

1
1530 567000

2

[1530(630) (315) ] 567000

[963900 198450] 567000

198450

eq
e eConsumer surplus D q dq D q q

q dq

q q

= −

= − −

  
= − −  

  

= − −

= − −

=




 

0

630

0

630
2

0

2

( ) ( )

567000 (270 )

567000 270
2

(630)
567000 [270(630) ]

2

567000 [170100 198450]

198450

eq
e eProducer surplus S q q S q dq

q dq

q
q

= −

= − +

 
= − + 

 

= − +

= − +

=



  

396900

Total Collective Gains Consumer surplus Producer surplus= +

=
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947600

Total Collective Gains Consumer surplus Producer surplus= +

=

 

SELF-ASSESSEMENT EXERCISE 

Describe the relationship between consumer surplus and producer surplus. 

 

4.0 CONCLUSION 

The rudimentary idea of integral calculus is calculating the area under a curve. This can be 

calculated by dividing the area into boundless rectangles of considerably small width and sum 

their areas. In effect, integral assigns numbers to functions in order to define shift, area, and 

volume. Integration is one of the two main operations of calculus. 

 

5.0 SUMMARY 

In this unit, we have discussed the meaning of integral calculus, integration techniques which 

include, integration by part and integration by substitution as well as economic applications of 

integral calculus while also solving numerical problems on integral calculus. 

  

6.0 TUTOR-MARKED ASSIGNMENT 

1. Consider these demand/supply equations in a free market equilibrium.  

120 0.5

175 0.2

s

d

Q q

Q q

= +

= −
 

iv. Calculate consumer surplus,  

v. Calculate producer surplus, and  

vi. Calculate total collective gain. 
2. Find the following integral, using integration by part  

3

2 5

2 10 5

108 ( 18)

(30 )x

z z dz

x e dx+

+


 

2. Find the following integral, using the technique of substitution 

2

160

16

z
dz

z

 
 

− 
  

6

4

378 2

25 25

z
dz

z z

 −
 

+ 
  

3. Consider the following demand/supply equations in a free market equilibrium.  

180 4

245 5

s

d

Q q

Q q

= +

= −
 

(a) Calculate consumer surplus,  
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(b) Calculate producer surplus, and  
(c) Calculate total social gain 

5. Consider these demand/supply equations in a free market equilibrium.  

ln(2 20)

200 2

s

d

Q q

Q q

= +

= −
 

i.   Calculate consumer surplus,  
ii. Calculate producer surplus, and  
iii. Calculate total collective gain. 

 

Consider the following demand and supply functions 

1
( ) 64

24

1
( ) 6

48

1
( ) 100

50

( ) 30 10

D q q

S q q q

D q p

S q q

= −

= +

= −

= +

 

i. Calculate the following at the given market equilibrium, 

a. Consumer surplus,  

b. Producer surplus, and  

c. Total collective gain. 

ii. If the producers can form a cartel and restrict the available quantity to 140, selling at 

the supply price for 70, what are the consumer surplus, producer surplus, and total 

social gain?  
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1.0. INTRODUCTION 

In this unit, we shall be focusing on the meaning of optimization, types of optimization, 

optimization techniques (substitution method and Lagrange multiplier) as well as the conditions 

for optimization. 

 

2.0 OBJECTIVES 

After a successful study of this unit, students should be able to do the following: 

• Explain the meaning of optimization   

• Solve free optimization problems   

• Solve constrained optimization problems using both the substitution and the Lagrange 

Multiplier methods and be able to solveapplication problems to utility maximization 
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subject to budget constraint, output maximization in relation to cost constraint, cost 

minimization in relation to a fixed output target deadweight loss of taxation. 

• Explain the different conditions for Optimization 

 

3.0 MAIN CONTENT 

3.1 Meaning of Optimization  

Optimization in economics can be defined as the mathematical process of evaluating the 

maximum profits, revenue, output etc. or minimum losses, costs etc. Optimization in economic 

thus describes the best behavior of an individual economic agents. For example, consumers seek 

to maximize utility does that as by choosing consumption bundles which yield the highest level 

of utility. Similarly firms seek to maximize profit given production functions, prices of output 

and inputs by choosing input or factor levels which generate the highest level of profits. 

 

SELF-ASSESSMENT EXERCISE 

1. What is optimization in economic analysis? 

 

3.2 Types of Optimization  

3.1.1Free Optimization: Free optimization is an unconstrained optimization whereby the 

selectable variable assumes any value without restrictions. Example include, selecting optimal 

output level in order to maximize profits without being subjected to price constraint or cost level.  

Similarly, an economic agent, say the government, could be selecting quantities of ethanol and 

gas without paying attention to neither available income nor market prices. In the above 

circumstances, the selected output and quantities are optimal. Accordingly, the mathematical 

unconstrained problem to be solved is to numerically optimize an objective function without 

being subjected any constraints. 

 

 

3.1.2 Constrained Optimization: Constrained optimization is optimization of an objective 

function given relevant constraints on choice variables. Accordingly, choice variables cannot 

take on any value without boundaries. The objective function could be a 

profit/revenue/output/utility function, which is to be maximized or a price/cost function, which is 

to be minimized. Constraints are mostly established conditions for the variables that are required 

to be optimized. 

 

SELF-ASSESSMENT EXERCISE 

What is the difference between free and constrained optimization?  

 

3.3 Optimization Techniques 
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3.3.1 Substitution Method: The substitution method entails substituting the constraint into the 

objective function in order to create a composite function that integrates the effect of the 

constraint.  

 

3.3.2 Lagrange Multiplier: The Lagrange multiplier technique occasions a formulation of a 

composite function that integrates both the objective function and the constraints. The 

Lagrangian multiplier technique is mathematically demonstrated as follows: 

 

( , ) [ ( , )]L g z y d h z y= + −  

Where ( , )g z y  is the objective function 

( , )d h z y−  

 (lamda), the Lagragian multiplier  

 

Single Variable Functions: This is the optimization of a function with respect to one argument 

of the function.  

( )y f z=  

Where y is the dependent variable, z is the argument of the function. The domain of the function 

is the set of all possible values of z while the range of the function is the set of all possible values 

of y at z.Accordingly, economic optimization problems for single function entails finding 

maximum and/or minimum values of the function ( )y f z= at a point   for which  

     '( ) 0f  =  

In effect, the critical point could be a localminimum, maximum point of inflection. Nevertheless, 

in the scenario whereby second derivative exists: 

   

''( ) 0, min

''( ) 0, max

''( ) 0, int ( )

f is a local imum

f is a local imum

f is a saddle po inconclusion

 

 

 





=

 

 

Multivariable Functions: This is the optimization of a function with respect to more than one 

variable. Thus, economic optimization problems for multivariable functions entails finding 

maximum and/or minimum values of functions of several variables, as in the equation below 

over prescribed domains. 

     ( , )y f z x=  

Where y is the dependent variable, z and x are the argument of the function.  

 

3.4 Conditions for Optimization 

3.4.1 First Order Condition (F.O.C)/Necessary Condition: The First Order Condition (F.O.C) 

which is the necessary condition states that if g is a differentiable function on ℝ, the derivative of 

g at z is zero. The points where g'(z) = 0 are called critical points or stationary points and the 
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value of g at z is called a critical value. The F.O.C necessary conditions for optimization are thus 

obtained as follows: 

( ) 0

( ) 0

( , ) 0

z z

y z

L
L g h z

z

L
L g h y

y

L
L d h z y








= = − =



= = − =



= = − =
  

 

3.4.2 Second Order Condition (S.O.C)/Sufficient Condition: If g is twice differentiable, then 

conversely, a critical point z of g can be analyzed by considering the second derivative of g at z : 

1. Suppose the 2nd derivative is positive, z is a local minimum; 

2. Suppose the 2nd derivative is negative, z is a local maximum; 

3. Suppose the 2nd derivative is zero, then z could be a local minimum, a local maximum, or 

neither.  

Overall, by the extreme value theorem, a continuous function on a closed interval must attain its 

minimum or maximum values at least once at critical points. 

The S.O.C sufficient conditions for optimization are thus obtained as follows: 

( ) 0

( ) 0 ( )

( ) 0 ( )

( ) 0

( ) 0( )

( ) 0( )

( ) 0

( ) 0 (

z z

zz

zz

y y

yy

yy

z z

zz

L
L g h z

z

i L relative maximum point

ii L relative minimum point

L
L g h y

y

i L relative minimum point

ii L relative maximum point

L
L g h z

z

i L inflection point








= = − =







= = − =







= = − =


= )

( ) 0

( ) 0 ( )

y z

yy

L
L g h y

y

ii L inflection point




= = − =


=

 

Hessian matrix: Hessian matrix is a square matrix of second-order partial derivatives of a 

scalar-valued objective function f(x,y) without constraints. It describes the local curvature of a 

function of many variables in relation to free optimization. These conditions are epitomized with 

the following table. 
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2( ) 0

zz zy

yz yy

zz yy zy

g g
H

g g

g g g

=

= − 

 

 

Table 1: Hessian Conditions for Optimality 

 

 

 

Bordered Hessian:Bordered Hessian is a second-order derivative test whose matrix is a square 

matrix of second-order partial derivatives of a scalar-valued objective function f(x,y) in a 

constrained optimizationwith the constraint function given by g(x) = k. these conditions are 

explained in the following table. 

 

Table 2: Bordered Hessian Conditions for Optimality 

For a relatively maximum 

stationary value 

For a relatively minimum 

stationary value 

Saddle point 

1

2

3

0

0

0

H

H

H







 

1

2

3

0

0

0

H

H

H







 

If the Hessian has both 

positive and negative 

eigenvalues, then z is a 

saddle point for f. 

Hessian is negative definite Hessian is positive definite At a local minimum the 

Hessian is positive definite, 

and at a local maximum the 

Hessian is negative-definite. 

If the Hessian is negative-

definite at z, then f reaches an 

quarantined local maximum at 

z 

If the Hessian is positive-

definite at z, then f reaches 

an quarantined local 

minimum at z. 

Test is inconclusive 

 

For a relatively maximum 

stationary value 

For a relatively minimum 

stationary value 

Saddle point 

0H   0H   If the Bordered Hessian has 

both positive and negative 

eigenvalues, then z is a 

saddle point for f. 

Bordered Hessian is positive Bordered Hessian is negative  At a local minimum the 

Bordered Hessian is positive 

definite, and at a local 

maximum the Bordered 

Hessian is negative-definite. 
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3.5 Solving Numerical Problems on Optimization 

Numerical Example 1: Using the substitution method, maximize the objective function subject to 

the constraint.  

( , ) 2

: 32

Maximize q z y zy

subject to z y

=

+ =
 

Solution to Numerical Example 1: The solution is such that the constraints can be solved to 

arrive at: 32y z= − . By substitution, the objective function becomes as follows: 

2

( ) 2 (32 )

64 2

q z z z

z z

= −

= −
 

. . 64 4

0

q
F O C z

z

q
Equating

z


 = −




=



 

64

4

16

, 32 32 16 16

, ( , ) (16,16)

z

z

Consequently y z y

Thus z y

=

=

= −  = − =



 

2

2

2

2

. . 4

0

q
S O C

z

q

z


 = −








 

Given that the S. O. C <0, it thus implies that the values are for maximum and the maximum 

value is 512. 

 

Numerical Example 2: Find the critical points at which the following function may be optimized. 
2 26 2 4 8 14 24q z zy y z y= − + − − +  

Establish if at those points the function q is maximized, minimized, an inflection point, or a 

saddle point. 

 

Solution to Numerical Example 2: Find the first Order Condition as follows: 

If the Hessian is negative-

definite at z, then f reaches an 

quarantined local maximum at 

z 

If the Hessian is positive-

definite at z, then f reaches 

an quarantined local 

minimum at z. 

Test is inconclusive 
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2 26 2 4 8 14 24

. . 12 2 8

2 8 14

0

12 2 8

12 48 84

46 92

2

12 2(2) 8

12 12

1

z

q z zy y z y

q
F O C q z y

z

q
z y

y

q q
Setting

z y

z y

z y

y

y

z

z

z

= − + − − +


= = = − −




= − + −



 
= =

 

− =

− + =

=

=

− =

=

=

 

The critical points are 
* *( , ) (1,2)z y =  

. .S OC  

2

2

2

2

2

2

12 0

8 0

2

2

q

z

q

y

q

z y

q

y z


= 




= 




= −

 


= −

 

 

2 2 2 2

2 2

12(8) 2(2)

96 4

q q q q

z y z y y z

      
   

        



  

Therefore, with the critical points
* *( , ) (1,2)z y = , the function q is at a minimum having 

successfully implemented the S.O.C for a minimum. 

 

Numerical Example 3: Given the following function, optimize the following revenue function: 

1 2 1

1 2

2 4

. . 6 8 80

R z z z

s t z z

= +

+ =
 

i. Optimize the function using the Lagrangian function 
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ii. State the nature of the critical values using the S.O.C 

Solution to Numerical Example 3: Find the first Order Condition as follows: 

1

2

1 2 1 1 2

2

1

1

2

1 2

(2 4 ) [80 6 8 ]

2 4 6 0

2 8 0

80 6 8 0

z

z

L z z z z z

L
L z

z

L
L z

z

L
L z z









= + + − −


= = + − =



= = − =



= = − − =


 

Putting the equations in matrix format, we have as follows: 

1

2

0 2 6 4

2 0 8 0

6 8 0 80

z

z



− −    
    

− =
    
        

 

The solution set can be obtained as * * *

1 2( , , ) (8,6,12)z z    

Revise please and note that 2,4,8 21 === zz  

For the S. O. C. shows that 

1 2 1 2

2 1 1 2
0

z z z z

z z z z

L L

L L  , therefore the solution set is a maximum 

i. How about examples in economics Utility maximization subject to budget constraint, cost 

minimization subject to output constraint, output maximization subject to cost constraint …? 

 

3.6. Economic Applications: Three different economic applications are carried out here. These 

include, applications to utility maximization subject to budget constraint, output maximization in 

relation to cost constraint, cost minimization in relation to a fixed output target deadweight loss 

of taxation. 

 

3.6.1. Application 1: Consumer Problem/Utility Maximization: Recall the consumer’s 

choice of utility maximization is stated thus: 
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( , )

. .

mod

mod

' ( deg )

mod &

( , ) (

z y

z

y

z z y

Max U z y

s t P z P y I

where P is the price of com ity z

P is the price of com ity y

I is the consumer s income level bu et

U is theutiltity to be derived from the

consumsption of two com ities namely z y

L U z y I P z P

+ 

= + − + )y

 

0 1

0 2

0 3

Re ,

4 ,

4

mod

z z z

y y y

z y

yz z z

y y z y

L
L U P

z

L
L U P

y

L
L I P z P y

arranging

UU P U
such that

U P P P

Equation sympolizes the equality

between psychic trade off and

monetary trade off between both com ities












= = − =



= = − =



= = − − =


= = =

−

−

 

The value of indicates that at the point of utility-maximization, 

an additional naiar spent on each commodity bundle yields the same marginal utility.



 

In effect,  equals the “shadow price” of the budget constraint which defines the quantity of utils 

that could be obtained with additional naira income of the budget. 

 

Numerical Example: Consider that the function 0.4 0.6( , ) 2U z y z y=  

The price of z is 32N and the price of y is 16N  

The individual agent has income of 160. 

(a) Find the optimal consumption choice of this individual agent. 

(b) Prove that at the optimum, the marginal rate of substitution equals the price ratio. 

Solution: 
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0.4 0.6

0.6 0.6

0.4 0.4

0.6 0.6

0.4 0.4

( , ) 2 [160 32 16 ]

0.8 32 0 1

1.2 16 0 2

160 32 16 0 3

((1) (2), :

0.8
2

1.2

0.8
2

1.2

2.4 0.8

3

z

y

L z y z y z y

L
L z y

z

L
L z y

y

L
L z y

Dividing eqns by we have that

z y

z y

y

z

z y

y z











−

−

−

−

= + − −


= = − =



= = − =



= = − − =


=

=

=

=

 

2

2

2

2

(3), :

160 32 16(3 ) 0

160 32 48 0

2

6

( , ) (2,6)

0

0

, (2,6) max

Substituting for y in eqn we have that

z z

z z

z

y

z y

checking for exterma values

L

z

L

y

Thus are relative imum values

 

− − =

− − =

=

=

=











 
 

 
0.6 0.6

0.4 0.4

0.8 0.8 0.8(6)
2

1.2 1.2 1.2(2)

32
2

16

z

y

z

y

MU z y y
MRS

MU z y z

P

P

−

−
= = = = =

= =

 

 

Consequently, at the optimum, the marginal rate of substitution equals the price ratio. This is so 

because The MRS shows the maximum amount of z that could be traded for one unit of y, 

without losingutility. Accordingly, if it is lower than the relative price of y, the consumer would 
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be better off consuming less of y and moreof z. on the other hand, supposing the price of z is 

higher than the relative price of y, the rational consumer would be better off consuming more of 

y and less of z. also, supposing MUz = MUy = 1 and the price of z is twice that of y, the 

consumer could give up one unit of y and get two units of z. relatively, should the price of y be 

twice the price of z, the consumer would be giving up one unit of y  in order to get two units of z. 

 

Numerical Example: A firm’s utility function is given by ( , ) 2 4lnU z y z y= +  

Kezia’s budget is given by: z yI P z P y= +  

Where z  is quantity of cakes, y  is quantity of biscuits, zP is the price of one unit of 

cake, yP  is the price of one unit of biscuit and I is Kezia’s total income/budget 

(a) Derive Kezia’s demand equations for cake and biscuits 

(b) Would Kezia rather decide to spend every additionalnaira income on cakes? 

 

Solution to Numerical Example: Recall that: 

1 2 1 2

,

( , ) 2 4ln

z z z z

y y y y

MU P U P

MU P U P

where

U z z z z

= =

= +

 

 

,

( , ) 12 4ln

( , )
12

( , ) 4

z z z z

y y y y

z

y

z z

y y

MU P U P

MU P U P

where

U z y z y

U z y
MU

z

U z y
MU

y y

MU P
Optimality is defined at

MU P

= =

= +


 =


 =

=
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,

12
3

4

3

3

3

3

3

z z

y y

z y

z

y

y

z

y

z

y

y

z

z

z z

z

Thus

P P
y

P P

y

I P z P y

P
Since y

P

P
y

P

I P y
z

P

P
I P

P

P

I
z

P P

I
z

P

= =

= +

=

=

−
=

 
−  

 
=

= −

−
=

 

 

Kezia’s demand equations for cake and biscuits are
33

,
y

z z

PI
z y

P P

−
= =  respectively. 

Kezia would of course rather spend everyadditional naira income on cakes provided her total 

budget exceeds the price of cake in the market. 

 

Numerical Example: Kezia’s utility function is given by ( , ) 2 lnU z y z y= +  

Kezia’s budget is given by: 24 4 2z y= +  

Where z  is quantity of cakes, y  is quantity of biscuits, N4 is the price of one unit of 

cake, N2 is the price of one unit of biscuit and N24 is Kezia’s total income/budget 

(a) What is Kezia’s demand for cake and biscuits? 

(b) Is it true that Kezia would spend every naira in additional income on cakes? 
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,

( , ) 2 ln

( , )
1

( , ) 2

int, 24 4 2

z z z z

y y y y

z

y

z z

y y

MU P U P

MU P U P

where

U z y z y

U z y
MU

z

U z y
MU

y y

MU P
Optimality is defined at

MU P

Given the budget constra z y

= =

= +


 =


 =

=

= +

 

 

1 4

2 2 2
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4
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2

4

5

( , ) (5, 4)

z

y

y

z

P y

P

y

y

y

I P y
z

P

z

z y 

= =

=

=

−
=

 
−  

 
=

=

=

 

 

2

2

2

2 2

. . :

( , )
0 ( ) int

( , ) 2

2
4, 0, max int

16

zz

yy

yy

S O C

U z y
MU inconclusive saddle po

z

U z y
MU

y y

At y MU local imum po


 =




 =



= = − 

 

Thus, Kezia would be demanding and consuming 5 units of cakes and 4 units of biscuit. 

It is true that Kezia would spend every additional naira income on cakes because her total 

income is greater than the price of cake (N4). In fact, she won’t buy any more biscuit which is 

less expensive compare to the price of cake once her total income/budget increases. 
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3.6.2. Application 2: Output-Maximization for a Given Cost and Cost Minimization for a 

Given Output: The firm also maximizes its profits by maximizing its output, given its cost 

outlay and the prices of the two factors. The firm can reach the optimal factor combination level 

of maximum output by moving along the isocost line. 

 

In the theory of production, the profit maximization firm is in equilibrium when, given the cost- 

price function, it maximizes its profits on the basis of the least cost combination of factors. For 

this, it will choose that combination which minimizes its cost of production for a given output. 

This will be the optimal combination for it. 

 

 

This analysis is based on the following assumptions: There are two factors, labour and capita; All 

units of labour and capital are homogeneous; prices of units of labour (w) and that of capital (r) 

are given and constant; cost outlay is given; firm produces a single product; price of the product 

is given and constant; firm aims at profit maximization and there is perfect competition in the 

factor market. 

 

Given these assumptions, the position of least-cost combination of factors for a given level of 

output is where the isoquant curve is tangent to an isocost line. At optimal equilibrium,  

 

 

L

K

MP r

MP w
=  

 

,

L K

L K

L
L K

MP MP

w r

w r

MP MP

MP
where MRTS

w

=

=



 

 

The economic interpretation holds that if the firm is to maximize output subject to a cost 

constraint, the marginal product of money spent on each factor input should be equal, and the 

firm should distribute its money on purchasing the factors inputs accordingly. In effect, the firm 

hires one unit of labour provided it spends w amount more of money on labour and this in turn 

generates more additional output of MPL. 

 

Numerical Example:  Consider that a firm has the following production function 
2 20.1 0.2Q LK K L= − −  

The prices per unit of L and K are N40 and N50 respectively. If the firm decided to maximize 

output in relation to a budget constraint of N1000. 
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i. Calculate the optimal values for K and L. 

ii. Consider that the firm’s budget was increased by 20%, calculate the increase in 

output given the new budget. 

 

 

Solution to Numerical Example: 
2 20.1 0.2 [1000 40 50 ]

0.4 40

0.2 50

1000 40 50

. . 0, :

0 0.4 40 0 1

LK K L L K

K L
L

L K
K

L K

SettingF O C we have that

K L
L











 = − − + − −


= − −




= − −




= − −



=


= − − =



 

0 0.2 50 0 2

0 1000 40 50 0 3

(1) & (2), :

0.025 0.01

0.02 0.004

L K
K

L K

Solving for in we have that

K L

L K












= − − =




= − − =



= −

= −

 

,

0.025 0.01 0.02 0.004

0.029 0.03

1.034

int int, :

1000 40 50[1.034 ] 0

1000 91.7

10.9

11.3

Equating to

K L L K

K L

K L

Substitutingthe value of K ooutputconstra we have as follows

L L

L

L

K

 

− = −

=

=

− − =

=

=

=

 

Considering that the firm’s budget was increased by 20%, the increase in output given the new 

budget would be calculated as follows: 
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0.025(11.3) 0.01(10.9)

0.173

20% 200.

, ' 0.173(200) 34.6

increasein budget of the firm is

Therefore the increase in the fim s output is

 = −

=

=

 

 

Consider the following short run production function: 
2 3108 7.2Q L L= −  

i. Calculate the value of L that maximizes output 

ii. Calculate the value of L that maximizes average product  

iii. Calculate the value of L that maximizes marginal product 

 
2 3

2

2

108 7.2

216 21.6

0,

216 21.6 0

(216 21.6 ) 0

216

21.6

10

Q L L

dQ
L L

dL

dQ
Setting

dL

L L

L L

L

= −

= −

=

− =

− =

=

=

 

 

2

2

2

2

max int

216 43.2 0

10, 216 0

, 10 max int

Checking for reltave imum po

d Q
L

dL

d Q
At L

dL

Therefore L is a reletive imum po

= − 

= = − 

=

 

 

The value of L that maximizes average product  

 

2 3

2

108 7.2

108 7.2

Q
AP

L

L L
AP

L

AP L L

=

−
=

= −
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108 14.4

0,

108 14.4 0

108

14.4

7.5

dAP
L

dL

dAP
Setting

dL

L

L

= −

=

− =

=

=

 

The value of L that maximizes marginal product 

 
2 3

2

2

2

108 7.2

216 21.6

216 43.2

0

216 43.2 0

216

43.2

5

Q L L

dQ
MP L L

dL

dMP d Q
Setting L

dL dL

dMP
Setting

dL

L

L

= −

= = −

= = −

=

− =

=

=

 

 

2

2

max int

43.2 0

Checking for reltave imum po

d MP

dL
= − 

 

, 5 max intTherefore L is a reletive imum po=  

 

3.6.3. Application 3: Deadweight Loss of Taxation: The deadweight loss of taxation is the 

damage caused to economic efficiency and production by a tax. In other words, the deadweight 

loss of taxation is a measurement of how far taxes reduce the standard of living among the tax 

payers in the society. It is indeed, an excess burden pass on to the consumer, as the socially 

optimal quantity of a good or a service is not produced due to monopoly pricing in the case of 

fake scarcity, a positive or negative externality, a tax or subsidy, or a binding price ceiling or 

price floor such as a minimum wage. 

 

Taxation has the opposite effect of a subsidy. Taxation dissuades consumers from a purchase 

while a subsidy induces consumers to purchase a product that would otherwise be too expensive 

for them in light of their marginal benefit. This excess burden of taxation therefore epitomizes 

the lost utility for the consumer. A common example of this is the tax levied against goods 
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harmful to society and individuals. For example, taxes levied against tobacco. The indirect tax 

(VAT), weighs on the consumer affects the utility of the rational consumer. 

 

When a tax is levied on consumers, the demand curve shifts downward in relation to the tax size. 

Similarly, when tax is levied on producer/sellers, the supply curve shifts upward by the tax size. 

When the tax is imposed, the goods’ price rise and the consumer is made to pay more, and the 

price received by seller falls. Consequently, consumers and sellers share the burden of the tax, 

notwithstandingthe way and manner of imposition. Since price is the determining factor in the 

market, the quantity sold is reduced below what it could have been supposing there was no 

taxation. In effect, taxation drops the market size for that given commodity. Accordingly,the 

general market size declines below the optimum equilibrium. 

 

 
Figure 1: Deadweight Loss of Taxation 

Source: Wikipedia 

 

Shown in the figure above, is the deadweight loss of taxation whereby the tax increases the price 

paid by consumers to Pc and decreases price received by sellers to Pp and the quantity sold 

reduces from Qe to Qt. 

 

SELF ASSESSMENT EXERCISE 

Define the deadweight loss of taxation 

 

The demand curve is ( ) 200 10Q D p= −  and the supply curve is ( ) 10Q S p=  

a. A quantity tax of N4 per unit is retained on the good. Calculate the dead-weight loss of the tax. 

b. A value (ad valorem) tax of 20% is retained on the good. Calculate the dead-weight loss of the 

tax. 



140 | P a g e  
 

, ( ) ( )

:

200 10 10

10

100

At equilibrium Q D Q S

without taxation

p p

p

Q

=

− =

=

=

 

, ( ) ( )

:

200 10 10

( )
4

10

10 ( ) 40

( ) 10 40

, 200 10 10 40

12

80

S

S

At equilibrium Q D Q S

with taxation

p p

Q S
p

P Q S

Q S p

At equilibrium p p

p

Q

=

− =

= +

= +

= −

− = −

=

=

 

Deadweight loss = Quantity without taxes – Quantity with taxes 

100 80

20Deadweighloss

= −

=
 

 

4 20Deadweight loss tothe consumer due to tax imposition of N per unit of consumption = . 

The selling price was N10 without taxes but rose to N12 after the imposition of taxes. 

 

( )

10

80

10

8

S Q S
p =

=

=

 

 

It can be observed that the price increase (N2) is not equal to the tax (N4). 

 

4.0 CONCLUSION 

In the theory of economic optimization, maximizing or minimizing some functions is relative to 

some range of choices available in a certain circumstances. The function allows comparison of 

the different selection available for the single-mindedness of determining which selection is the 

best. The major economic applications is in cost/losses minimization and profit/revenue 

maximization.  
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5.0 SUMMARY 

In this unit, we have discussed meaning of economic optimization, types of optimization, free 

optimization, constrained optimization as well as optimization techniques. Also, we solved some 

problems of unconstrained and constrained optimization including applications to utility 

maximization subject to budget constraint, output maximization in relation to cost constraint, 

cost minimization in relation to a fixed output target deadweight loss of taxation. 

 

6.0 TUTOR-MARKED ASSIGNMENT 

Kezia’s utility function is given by 2( , ) 6 4lnU z y z y= +  

Kezia’s budget is given by: 48 8 4z y= +  

Where z  is quantity of cakes, y  is quantity of biscuits, N8 is the price of one unit of cake, N4 is 

the price of one unit of biscuit and N48 is Kezia’s total income/budget 

(a) What is Kezia’s demand for cake and biscuits? 

(b) Is it true that Kezia would spend every naira in additional income on cakes? 

(c) What happens to Keiza’s consumption or demand when Kezia’s income changes 

(d) What happens to Kezia’s consumption demand when the prices of both goods 

increase? 

 

Considering the present economic hardship as induced by the corona virus pandemic, Miss 

Winifred is confronted with hard times. Winifred’s income per day is N200, she spends N100 on 

food stuffs and N100 on local transportation despite the lockdown. Though, she is been given a 

social allowance in the form of 10 food tickets per day. The tickets can be exchanged for N10 

worth of food, and she only has to pay N5 for such tickets. Show the budget line with and 

without the food ticket. Assuming Winifred exhibits homothetic consumption preferences, how 

much more food will she bargain for once she receives the food tickets? 

 

A firm spends total of N3000 every year in the production of plastic tables and chairs. A unit of 

plastic chair costs N75 and a plastic table costs N125. 

(a) Write the equation for firm cost constraint and draw it in a diagram. 

(b) Consider that the firm never produces plastic chair without the production of plastic 

table and never produces a plastic table without the production of a plastic chair, 

calculate the units of each products the firm produces. How much of each will she 

consume?  

 

Consider that the function 0.2 0.8( , ) 4U z y z y=  

The price of z is 64N and the price of y is 16N  

The individual agent has income of 264. 

(a) Find the optimal consumption choice of this individual agent. 

(b) Verify that at the optimum, the marginal rate of substitution equals the price ratio. 

Discuss briefly the economics of this equality. 
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(c) Assume that the price of z falls to8 , find the optimal consumption choice of this 

individual agent. 

 

A University student plans to supplement the monthly allowances of N1000 given to him by his 

parent. The student then choose to take up a part time teaching job at the home of a certain rich 

man. The part time teaching wage is N200 every month. His utility function is: 

 

( , )U c l cl=  

where Q is units of consumption and l is leisure measured in hours.  

The amount ofleisure time that he has left after allowing for necessary activities is 50 hours a 

week. 

i. Determine the monetary value of the student's endowment? 

ii. Set up the maximization problem and decide optimal consumption and leisure. 

iii.Derive the demand equation for consumption. 

iv. Calculate the number of hours the student would be engaged in a work activity if the 

student did not receive any study allowance? 

 

The inverse demand curve (the demand curve but with p instead of q on the left hand side) is 

given by ( ) 1000 100Q Q p= − The consumer consumes ten units of the good (Q). 

(a) Determine the amount of money needed to compensate the consumer reducing her 

consumption to zero?  

(b) Suppose now that the consumer is buying the goods at a price of 300 per unit. Now, it 

is expected of the consumer to reduce purchases to zero, how much does the consumer 

needs to getcompensated?  

 

Bridget has a demand function 20 4Q p= −  

a. Calculate Bridget’s price elasticity of demand when the price is 6? 

b. At what price is the elasticity of demand equal to -1? 

c. Suppose Bridget’s demand function takes the general form Q P = − . Derive Bridget’s 

algebraicexpression for elasticity of demand at an arbitrary price p. 

 

 

Consider the demand function of a firm is ( ) (4 4) 8Q P p= + −  

a. Calculate the price elasticity of demand? 

b. At what price is the price elasticity of demand equal to minus one? 

 

Suppose we have the following demand and supply equations 

( ) 460 2D p p= −  

( ) 300 2S p p= +  

i. Calculate the equilibrium price and quantity? 
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ii. The government decides to restrict the industry to selling only 160 units by imposing a 

maximumprice and rationing the good. What maximum price should the government 

impose? 

iii. The government choose that the firms in the industry need not receive more than the 

minimum pricethat it would take to have them supply 180 units of the good. In line with 

this, the government issued 180allocationslips. If the allocationslips were freely bought 

and sold on the open market, what would be theequilibrium price of these slips? 

iv Calculate the dead-weight loss from restricting the supply of the goods. Will the dead-

weightloss rise or fall if the government choose not allow the slips to be sold on the 

openmarket? 

 

Given the function, 
2 2

1 1 1 2 2 2130 15 25 30 60R w w w w w w= − + − +  

1 2. . 15 5 850s t w w+ =  

(a) Optimize the function 

(b) State the nature of the critical values using the S.O.C 

Consider an entrepreneur’s short-run total cost function is 3 21
5 8.5 33

2
C Q Q Q= − + +  Determine 

the output level at which the entrepreneur maximizes profit if p = 10. Determine output elasticity 

of cost at maximum output level.  

Consider that a firm has two production functions for two different goods, namely Q1 & Q2. 

Supposing Q1 has a higher elasticity of substitution and a lower value for the parameter 𝜶 than 

Q2. Decide the input price ratio at which the input use ratio would be the equal for both goods. 

Decide the good would have the higher input ratio if the input price ratio were lower? Decide the 

good that would have the higher use ratio if the price ratio were higher? 

 

The long-run cost functions for every firm that supplies Q is 3 2(1/ ) 2 4C Q Q Q= − + . Businesses 

will move into the industry if profits are positive and move out of the industry if profits are 

negative. Describe the industry’s long-run supply function. If the demand function is 

1000 10Q P= − . Determine equilibrium price, aggregate quantity, and number of firms. 
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1. 0. INTRODUCTION 

In this unit, we focused on the concept of differential equations, order and degree of differential 

equations, general and particular solutions of differential equations, solving differential 

equations. 

 

2.0. OBJECTIVES 

After a successful study of this unit, students would be able to do the following: 

• Evaluate integral of differential equations 

• Evaluate order and degree of differential equations 

• Evaluate general and particular solutions of differential equations 

• Solve differential equations 

• Apply differential equations to economic problems 

 

3  MAIN CONTENT 
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3.1 Definition of Differential Equation 

A differential equation (DE) is an equation of functions and their derivatives. In other words, 

such equations have derivatives contained in them. Examples of Differential Equations are these 

two: 

9

9

6

( 6)

dy
z

dz

dy z dz

= −

= −

 

 

A standard first order linear difference equation is of the form.  

1t ty by c+ + =  

On the other hand a standard first order linear differential equation is of the form  

dy
by d

dt
+ = .  

Only /dy dx can enter a 1st order differential equation and it takes various powers to enter

( ) ( ) ( ) ( )
2 3 4 5

/ , / , / , / , /dy dx dy dx dy dx dy dx dy dx etc . Examples of linear differential equations 

are the following: 
3

3
7 2 0

d y dy
y

dx dx

 
− + = 

 
 

5 2
3 2

5 2
2 xd y d y dy

x x xe
dx dx dx

   
+ − =   

  
 

 

A simple dynamic market model for the (discrete case) will appear as  

   , 0D

t tQ b dp b d= −   

   1 , 0S

t tQ c fp c f−= − +   

The demand equation simply states that quantity demanded at the current time t is a function of 

price at the current time t. The supply equation states indicates that quantity supplied at the 

current time t is a function of the price in the previous time t-1. This is in contrast to the static 
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model where the issue of time is not taken into thought. Equating and rearranging will yield the 

standard first order linear difference equation. 

 

   , 0D

tQ b dp b d= −   

   , 0S

tQ c fp c f= − +   

A differential equation will consider the speed of adjustment to equilibrium in a situation of 

excess demand 

( )D S

t t

dp
Q Q

dt
= − where is the speed of adjustment .  

Substituting the demand and supply functions into the differential equation yields  

 ( )
dp

b dp cfp
dt

= − − −  

Opening the brackets on the right hand side gives 

( )
dp

b dp c fp
dt

= − + −  

Re-arranging, it gives  

( ) ( )
dp

d f p b c
dt

 = + = +  

This is a market first order linear differential equation.There are two common types of 

differential equation, namely, ordinary and partial DE.  

3.1.1. Ordinary  Differential  Equation: An ordinary differential equation relates functions of 

one variable to the derivatives of the variable. Thus, OED is  the type of DE that  differential  

equation  involving total derivatives  of  dependent  variables  with  respect  to  only one 

independent variable.  An example of  a linear ordinary differential equation of order n is given 

by: 

 
1 2

0 1 2 11 2
( ) ( ) ( ) ... ( ) ( ) ( )

n n n

n nn n n

d y d y d y dy
x x x x x y f x

dx dx dx dx
    

− −

−− −
+ + + + + =  

 

3.1.2. Partial  Differential  Equation:A partial differential equation relates functions of more 

than one variable to the partial derivatives of the variables.Accordingly, it is  the  differential  

equation  involving  total derivatives of  dependent variables with  respect to  more  than one 

independent variables.   

 

3.1.3. Homogenous Linear Differentil Equations: An homogenous differential equation is an 

equation with constant coefficients such that n are independent of x. this is given below: 
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1 2

0 1 2 11 2
... 0

n n n

n nn n n

d y d y d y dy
y

dx dx dx dx
    

− −

−− −
+ + + + + =  

 

 

3.2 Order and Degree of Differential Equations: The order of a differential equation is the 

highest derivative in the equation. In other words, it is the order  of  the  highest differential 

coefficient that it holds.  The degree of differential equations is the highest power of the highest 

derivative in the differential equation.In effect, it is the  highest  power  of  the highest  order 

differential coefficient that the equation holds. So, there are first order, second order differential 

equations. First order Differential Equations contains only first derivatives while the Second 

order Differential Equations contains second derivatives and also first derivatives. 

 

Consider the following examples: 
63

3
4 6 90

d y dy
z y

z z

 
+ + − = 

  
(1) 

9

5 6cos( ) cos( )
dy

z z y
z

 
+ = − 

 
(2) 

3 2( ''') 18( ') 10 5y y y− + = (3) 

 

i. The first differential equation has order 3 (the highest derivative appearing is the second 

derivative) and degree 1 (the power of the highest derivative is 1.) 

 

ii. The second differential equation has order 1 (the highest derivative appearing is the first 

derivative) and degree 9 (the power of the highest derivative is 9.). 

 

iii. The third differential equation has order 3 (the highest derivative appearing is the third 

derivative) and degree 3 (the power of the highest derivative is 3.) 

 

3.3 General and Particular Solutions: When solving differential equations, we obtain the 

general solution first, before proceeding to obtain the particular solution. The general solution 

encompasses a constant, k while the particular solution is obtained by substituting known values 

called the initial value conditions of the variables say, z and y into the general solution in order 

to evaluate the value of the constant of integration.  

 

In effect, the general solution is the sum of the complementary function and a particular integral 

and this can be mathematically expressed as: 

( ) (0)ax ax

c py x y y Ae y e− −= + = +  

Where, 
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( ) (1)

(0) (0) ( ) (2)

ax

c

ax

y Ae complementary function

y y e particular solution

−

−

=

=
 

The complementary function (yc) is the solution of the homogenous ODE. By equivalence, what 

this means is that whenever any particular value is substituted for A, the solution becomes a 

particular solution and it is such that y(0) is the only value that can make the solution fulfill the 

initial condition. In effect, the result of definitizing the arbitrary constant is christened the 

particluar/definite solution.  

 

3.4 Solving Differential Equations 

It is worthy of note to mention that the solution to a differential equation is not numerical, it is a 

function y(x) and this very solution is free to exhibits any derivative or differential notations.The 

solution to a DE will always involve integration at some point. 

 

Numerical Example 1: Consider the differential equation below: 

12 0dy zdz− =  

Obtain both general and particular solutions given that (0) 6y = . 

Solution to Numerical Example 1: General solution for the differential equation is obtained by 

integration as follows: 

 

2

2

12 0

12

12

12

2

6

dy zdz

dy zdz

dy zdz

z
y k

y z k

− =

=

=

= +

= +

   

Particular solution for the differential equation is obtained by substituting y(0) = 6 to the general 

solution. Thus, at z = 0, y = 6 such that: 
2

2

6

6 6(0)

6

y z k

k

k

= +

= +

=

 

Numerical Example 2: Find the particular solution of 

    ' 10y =  

Given that when z = 0, y = 5. 

 

Solution to Numerical Example 1: 
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' 10

10

10

10

0, 5

5

y

dy dz

dy dz

y z k

At z y

k

=

=

=

= +

= =

=

   

 

Numerical Example 3:Solve the initial value problem 

2 ( 1) 2 0

0, 2

x y dx ydy

where x y

+ − =

= = −
 

Solution to Example 3:  

2 4

2 ( 1)

xydx xdx ydy

dy x y

dx y

+ =

+
=

 

2

2

2

2 ( 1)

1
1 2

1

ln 1

We now use the initial conditions y(0) = - 4.

(0) 4 ln 3

,

ln 1 5

ydy x y dx

dy xdx
y

x y y k

k

Thus

x y y

= +

  
− =  

+  

= − + +

= − − − +

= − + +



 

 

SELF-ASSESSMENT EXERCISE 

Describe the relationship between a difference equation and a differential equation. 

 

3.5. Application of Differential Equations to Economics:The mathematical theory of 

differential equations developed with the sciences where the equations had originated together 

with the results founding application.In economics, differential equations are used to model 

equilibria, the time path analysis, economic growth etc. 

 

3.5.1. Application I (Economic Equilibria Analysis):Equilibrium is a state of a system which 

does not change. If the dynamics of a system is described by a system of differential equations, 

then equilibria can be estimated by setting all derivatives equl to zero. An equilibrium is 

asymptotically stable if the system always returns to it after small disturbances. If the system 

moves away from the equilibrium after small disturbances, then the equilibrium is unstable.  
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In mathematical economics, stability theory addresses the stability of solutions of differential 

equations and of trajectories of dynamical systems with respect to any slight perturbations of 

initial conditions. The economic example is the price equilibrium points. For a given price 

trajectory it can be ascertained if a small change in the initial condition will lead to comparable 

behavior. Therefore, stability theory addresses the question   of will a tracjectory converge to the 

given trajectory. For example,  will the general price level converge to the equilibrium price 

level?  

 

An equilibrium solution to an autonomous system of first order ordinary differential equations is 

stable iff: for every (small) 0  , there exists an  0   such that every solution having initial 

conditions within the distance 0( ) ef t f −  of the equilibrium stays within the distance

0( ) ef t f t t−    . It is asymptotically stable if it is stable and there exists 0 0  such that 

whenever 0 0( ) (0) , ( ) ef t f then f t f as t−   → . In effect, stability requires that the 

trajectories do not change significantly under slight perturbations. 

 

Mathematically, let the autonomuous differential equation be given by the following equation, 

( )
dx

f x
dt

=  

 

The stability theorem holds that if *( )x t x= is an equilibrium such that *( ) 0f x = , then, 

 

i. Then, the equilibrium *( )x t x=  is stable ! *( ) 0f x   

ii. the equilibrium *( )x t x=  is unstable ! *( ) 0f x   

Stable equilibria are described by a negative slope  whereas unstable equilibria are described by 

a positive slope.  

 

3.5.2. Application 2 (Time Path Analysis): Consider the following dynamic model of demand 

and supply, 

 

( , 0)

( , 0)

D

S

Q P

Q P

   

   

= − 

= − + 
 

The equilibrium price if obtained by equating demand to supply such that: 

 

EP
 

 

+
=

+
 

We can determine the time path of the price level ( )P t  if the initial conditions are such that  
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(0)EP P . Given that the rate of change of price level is proportional to excess demand, we 

have that: 

( ) ( 0)D SdP
Q Q

dt
 = −   

Where  is the adjustment coefficient of the market model. By substitution for both demand and 

supply, we have: 

 

[ ( ) ( )]

( ) ( )

( ) ( )

dP
P P

dt

dP
P

dt

dP
P

dt

    

     

     

= − − − +

= + − +

+ + = +

 

 

( )

( )( ) (0)

, ( ) (0)

( )

t

E kt E

P t P e

Thus P t P P e P

where k

     

   

  

− +

−

 + +
= − + 

+ + 

= − +

= +

 

Accordingly, while the complementary function is given by ( (0) )E ktP P e−− , the particular 

solution is given by EP . Thus, ( )( ) (0) E kt EP t P P e P−= − + (general Solution). The intertemporal 

equilibrium price level is denoted by EP and the deviation from equilibrium is ( (0) )E ktP P e−− . 

 

The dynamic stability of the equilibrium of the model can be deduced on the ground that if k > 0, 

the  time path of price level leads to equilibrium price level, that is, P(t) leads to PE and the 

model becomes dynamically stable. 

 

3.5.3. Application 3 (Modelling Economic Growth): Recall the rudimentary tenets of the 

Solow growth model which says that the key to short-run growth is increased investments, while 

technology and efficiency improve long-run growth. Accordingly, the Solow’s growth equation 

is given by: 
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1

1

( )

'( )

Re ,

(1 )

dk
g k sAk k

dt

dk
sAk k

dt

g k sA k

call y Ak

dy dk
Ak

dt dt















 



−

−

−

= = −

= −

= −

=

= −

 

Re , :

1

1

writing the equation we have that

dk k dy

dt A dt





 
=  

−  

 

int ' , :

1

1

substituting o the Solow s growth model we have

k dy
sAk k

A dt


 



 
= − 

−  

 

Dividing both sides by k and multiplying by A yields : 

 

2 1

2 1

2

1
[ ]

1

1

1

(1 )

(1 )

dy A
sAk k

dt k

dy
sA k

dt

dy
sA k

dt

dy
sA y

dt















 

 

−

−

 
= −  

−  

= −
−

= − −

= − −

 

 

By separating variables, we have that: 

 

2

2

(1 )

(1 )

dy
sA y

dt

dy
dt

sA y

 




= − −

= −
−

 

Integrating both sides of the equation with respect to t, we have that: 
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2

2

2

2 (1 )

2
(1 )

(1 )

1
ln( ) (1 )

ln( ) (1 )

t

t

dy
dt

sA y

sA y t K

sA y t K

sA y Ke

sA
y Ke

 

 




 


  





− −

− −

= −
−

− − = − +

− = − − +

− =

= +

 

 

whereK is an arbitrary constant of integration. Indeed, differential equations can be applied to 

analyze the Solow’s economic growth model. 

   

4.0 CONCLUSION 

A differential equation  contains differentials whose solution necessitates integration at some 

point in time.The theory of differential equations and dynamical systems deal with asymptotic 

properties of solutions and the trajectories. 

 

5.0 SUMMARY 

In this unit, we have discussed the meaning of differential equations, order and degree of 

differential equations, general and particular solutions of differential equations, and also gave 

some numerical examples on how differential equations are solved.  

6.0 TUTOR-MARKED ASSIGNMENT 

1. Determine which of the following equations are ordinary  differential equations and which are 

partial differential equations: 
5

5 3

22

2

2

2

3
9 2 sin

[ ] 0

[28 ] 4 0

d z d z
z t

dt dt

d y dy
yz

dz dz

d y dy
y

dz dz

   
+ + =   

  

   
+ =   

  

   
+ + =   

  

 

2. What are the orders of the following differential equations: 
4

6

6 5
5

6 5

2 2 2

2 2

'

( ') sin

2[ ]

[5 ] cos

z

z zy z

z z

y y
y e

z z

w w w
zy

z z y y

+ =

=

    
+ + =   

    

       
+ + =     

        

 

3. Differentiate between linear and non-linear ordinary differential equations. 
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4. What is homogeneity all about in the discussion of differential equation? 

5. Give 6 examples of a non-linear differential equation. 

6. Give 6 examples of a non-linear differential equation that can be approximated by a linear 

differential equation. 

7. Define a system of differential equations 

7. Explain the dissimilarity between the complementary function and the particular integral of a 

differential equation? 

8. Why is the solution to a differential equation the complementary function plus the particular 

integral? 

9. Expalin the rationale behiod using a complementary function to evaluate the solution of 

linear differential equations? 

10. Solve the following differential equation, if the initial conditions are given use to definitize 

the arbitrary constants:  
24 20 , (0) 12t y t y= =  

11. Consider the following market and supply functions, 

 

1

1

80 20

4 18

90 15

60 3

D

t

S

t

D

t

S

t

Q P

Q P

Q P

Q P

−

−

= −

= +

= −

= +

 

Determine equilibrium price and quantity for each market. Supposing there was an initial price 

30% below the equilibrium price for each market, determine the number of periods necessary for 

each price to adjust to within 3 percent of equilibrium.  
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6.0.    Tutor-Marked Assignment 

7.0.    References/Further Readings 

 

1. 0. INTRODUCTION 

Under this unit one, we shall be discussing the meaning of linear programming, carry out a 

mathematical representation of linear programming problems, evaluate some linear programming 

techniques and also solve specific numerical problems of linear programming. 

 

2.0 OBJECTIVES 

After a successful study of this unit, students should be able to do the following: 

• Provide mathematical expression of linear programming problems 

• Solve linear programming problems via simplex algorithm/graphical method 

• Discuss linear programming models/techniques 

 

3.0 MAIN CONTENT 

3.1 Meaning of Linear Programming 

Linear programming (LP) is a mathematical programming technique for the optimization of a 

linear objective function, subject to both linear equality and inequality constraints. The objective 

function of an LP is a real-valued function such that a linear programming algorithm situates a 

point on the graph of the function where the function has the minimum or maximum values.  

 

3.2. Fundamental Theorem of Linear Programming 

Given that a bounded LPP has optimal solutions, then at least one of the solutions must occurs at 

a corner point of the feasible region. Also, if a feasible region is bounded, then there exits both a 

maximum value and a minimum value for the objective function. Relatively, if the feasible 

region is unbounded, only a minimum value exists for the objective function. In the absence of a 

feasible region, there is neither a maximum nor a minimum for the objective function. 

Consequently, while some corner points are established on either the x-axis or the y-axis, other 

corner points are found at the point of intersection of binding constraints. The origin (0, 0) is not 

a corner point for a minimization problem but a corner point for the maximization problem.  To 

find the exact coordinates of a corner point at the intersection of two or more binding constraints, 

we ought to solve a system of linear equations. 

 

For example, consider that an automobile company manufactures four different brands of cars, 

Toyota (T), Nissan (N), and Mercedes (M) and the selling price per unit of car manufactured in 

dollar are given as 10, 14, and 13, respectively. The company having employed 10 trained hands, 

20 untrained hands and work 2 hours per day desires to maximize sales. The time to manufacture 

one unit of each brand of car when utilizing both the trained and untrained workers is given 

below  
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Product Toyota 

(T) 

Nissan 

(N) 

Mercedes 

(M) 

Trained hours 2 4 6 

Untrained hours   6 4 2 

 

In standard form, the LP can be represented as follows: 

 

Let the unit of Toyota (T) be Z1 while the selling price per Z1 is 50 

Let the unit of Nissan (N) be Z2 while the selling price per Z2 is 20 

Let the unit of Mercedes (M) be Z3 while the selling price per Z3 is 30 

 

Therefore, the objective function is to maximize and it is written as: 

Π =50Z1+ 20Z2 + 30Z3 

The total hours for trained personnel is 10 x 2 = 20 

The total hours for unskilled personnel is 20 x 2 = 40 

 

The 20 hours and 40 hours are to be shared among the various brands of cars (T, N, & M) as 

follows: 

 2 Z1 + 4 Z2 + 6 Z3≤ 20 (limit/constraint on trained hands) 

 6Z1 + 4Z2 +2 Z3 ≤ 40 (limit/constraint on untrained hands) 

Canonically, we have it as: 

  

1 2 3

1 2 3

1 2 3

: 50Z  + 20Z  + 30Z  

Subject to:

2Z  + 4Z  + 6Z   20 

6Z  + 4Z  + 2Z   40 

Maximize





 

In matrix form this becomes, we have: 

   

1

2

3

1

2

3

: [T N M]

Subject to:

2T1 + 4N2 + 6M3 
  

6T1 + 4N2 + 2M3

Z

Maximize Z

Z

Z T

Z N

MZ

 
 
 
  

   
     

     
       

 

In effect, Z1, Z2, &Z3 are the decision variables of the linear programming problem. 

 

3.3  Linear Programming Techniques 

3.3.1. Graphical Method of Linear Programming: The graphical method solves LP problems 

by constructing a feasible solution at a vertex of the polygon and then walking along a path on 
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the edges of the polygon to vertices with non-decreasing values of the objective function until an 

optimum is attained. In which case, the LPP must embraces two decision variables such as X1 

and X2. The graphical method necessitates the determination of the solution space that defines 

the feasible solution as well as the optimal solution from the feasible region as shown in the 

figure below.  

 

Solving a LLP requires the following steps: 

1. Listing the objective function 

2. Listing the problem constraints 

3. Listing the non-negative constraints. 

4. Graph the constraints as equations, by ignoring the inequality sign in order to  

find the feasible region 

5. Identify all the corner points of the feasible region  

6. Substitute the corner points back into the objective function. 

 

 

Geometrically, the linear constraints define the convex feasible region, of possible values for the 

variables being described. The figure below presents the two-variable case feasible region.  

 

 
Figure 1: Feasible Region of LPP 

Source: Wikipedia 

 

3.3.2. Simplex Algorithm of Linear Programming: The simplex algorithm necessitates 

performing successive pivot operations which yields enhanced feasible solution. Consequently, 

the choice of pivot entry at each step is basically ascertained on the basis of the fact that the pivot 

advances the solution.  In effect, there is the procedure of entering and leaving variable selection 

respectively. 
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Given that entering variable increases from zero to a positive number, the value of the objective 

function decreases because the derivative of the objective function with respect to this variable is 

negative and also the pivot column is selected in such a manner that guarantee the equivalent 

entry in the objective row of the tableau to be positive. Therefore, changing choice of entering 

variable in such a way that selects a column where the entry in the objective row is negative, the 

algorithm finds the maximum of the objective function 

 

Conversely, with a pivot column selected, the choice of pivot row becomes ascertained on the 

requirement that the resulting solution be feasible. Hence, only positive entries in the pivot 

column are considered as it guarantees value of the entering variable to be nonnegative. Given 

that the entering variable can assume nonnegative values in the absence of no positive entries in 

the pivot column, the pivot row is then selected such that other basic variables remain positive. 

This guarantees that the value of the entering variable is at a minimum.  

 

3.3 . Applications of Linear Programming 

1. Many practical problems in operations research can be expressed as linear programming 

problems.  

2. It is currently utilized in company management, such as planning, production, 

transportation, technology and other issues.  

3. Industries that use linear programming models include transportation, energy, 

telecommunications, and manufacturing.  

 4. LP is worthwhile in modeling economic planning and assignment problems. 

 

SELF-ASSESSMENT QUESTION 

Linear programming is a widely used field of optimization for several reasons. Why? 

 

Solving Numerical Problems of Linear Programming 

Solving linear programming problems requires solving system of linear inequalities with two 

variables along with linear optimization. 

 

Numerical Example 1: A restaurant offers two types of dishes, namely, A & B. For sake of 

making profits, the restaurant must sell a minimum of 80 dishes of type A and a minimum of 50 

dishes of type B. Sales record available show that the restaurant makes a profit of N450 for each 

dish A and N400 for each dish B. At best, the restaurant accommodates a total of 300 customers. 

Determine the number of dish A & B that must be sold in order to maximize profits? 

 

Solution 1: Let x = no of dish A, and y = no of dish B, minimum of 50 dish A implies 50 or more 

dishes A should be sold such that is, y ≥ 50; minimum of 80 dish B implies 80 or more dishes B 

should be sold. That is, x ≥ 80; the sum of dishes A & B should be 300 or fewer, that is, x + y ≤ 

300. 
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Thus, the objective function along with the three mathematical constraints is: 

(Pr ) 450 400ofit x y = +  

:, 80

50

300

Constraints x

y

x y





+ 

 

Plotting each of the inequalities as equations, we ignore the inequality sign in order to find the 

corner solutions required to obtain the feasible region.  

80, 50

(80,50)

x y= =


 

80,

80 300

220

(80,220)

when x

y

y

=

+ =

=



 

 

50,

50 300

250

(250,50)

when y

x

x

=

+ =

=



 

 

 

Boundary Intercepts Test (0,0) Corners Revenue 

80x =  (80,50)  0 96, false  (0,0)  
(Pr ) 0ofit =  

50y =  (80,220)  0 50, false  (80,50)  
(Pr ) : 450(80) 400(50) 56,000ofit + =  

300x y+ =  (250,50)   (80,220)  
(Pr ) : 450(80) 400(220) 124,000ofit + =  

The maximum profit is N132,00 and it occurs at 

the corner where x =250 and y = 50 

respectively. 

(250,50)  
(Pr ) : 450(250) 400(50) 132,000ofit + =  
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The corner, (125, 25) maximizes profit. Therefore, we conclude that the airline should sell 125 

coach tickets and 25 first-class tickets in order to maximize profits. 

 

Numerical Example 2: A bakery firm decides to use 80mg of flower and 100mg yeast to produce 

soft bread and hard bread. Flower cost N5 and yeast cost N4. The bakery decides to bake bread 

that would have at least the recommended daily flower intake of about 2200mg, but would like 

to maintain a double of the daily intake. In order to minimize cost, how many kg of flower and 

yeast should be used in the production of soft bread and hard bread?  

 

Solution 2: Let x = no of kg of flower and y = no of kg of yeast so that the cost for x flower 

would be 5x and the cost for y yeast would be 3y. 

 

Bread must contain at least 2200mg of flower and not more than 2200 × 2 = 4400mg of yeast 

respectively.  

 

Mathematically, we have 80x mg of potassium in x servings of apricots and 100y mg of 

potassium in y servings of dates, that is,  

80 100 2200x y+   

The same sum should be less than or equal to 4400 mg of potassium, that is,  

80 100 4400x y+  . 

Thus, the objective function along with the mathematical constraints are given by: 

(cos ) 5 3tC x y= +  

: 80 100 2200

80 100 4400

0

0

Constraints x y

x y

x

y

+ 

+ 




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Graphing the constraints as equations, we ignore the inequality sign in order to solve for the 

corner solutions from bottom-to-top and left-to-right that could be used to form the feasible 

region:  

0, 0

0,

80 100 2200

100 2200

22

(0, 22)

x y

when x

x y

y

y

= =

=

+ =

=

=



 

0,

80 2200

27.5

(27.5,0)

when y

x

x

=

=

=



 

 

0, 0

0,

80 100 4400

100 4400

44

(0, 44)

x y

when x

x y

y

y

= =

=

+ =

=

=



 

0

80 4400

55

(55,0)

when y

x

x

=

=

=



 

 

 

Boundary Intercepts Test (0,0) Corners Cost 

80 100 2200x y+ =  (0, 22) ,

(27.5,0)  

0 2200, false  (0, 22)  
(cos ) :5(0) 3(22) 66tC N+ =  

80 100 4400x y+ =  (0, 44) , 

(55,0)  

0 4400, true  (27.5,0)  
(cos ) :5(27.5) 3(0) 137.5tC N+ =  

 

The minimum cost is N66 and it occurs at the 

corner where x =0 and y = 22 respectively. 

(0, 44)  
(cos ) :5(0) 3(44) 132tC N+ =  

(55,0)  
(cos ) :5(55) 3(0) 275tC N+ =  
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The point, (0, 22) minimizes cost. Therefore, we conclude that the company create bars that 

contain no dried apricots and 22 servings of dried dates in order to minimize costs. 

 

Numerical Example 5: ShaibuIyora limited produces three brands of cars, namely Toyota, Nissan 

and Mercedes. The production generates profit of 20, 60, and 30 respectively. Each unit of car 

uses 2, 4 and 6 hours of trained personnel and 6, 4 and 2 hours of untrained personnel 

respectively. There are 20 hours of trained and 40 hours of untrained personnel that are available. 

Find the production plan that maximizes Shaibu’s profits using the Simplex Algorithm.  

Solution 5: Proceed in the following steps. 

 

Step 1: Let unit of Toyota be Z1, unit of Nissan be Z2, unit of Mercedes be Z3, profit per Z1 is 50, 

profit per Z2 is 20 & profit per Z3 is 30.  

Step 2:  Sate Shaibu’s objective function and constraints knowing fully well that 20hrs of 

machine capacity and 40hrs of labour are to be shared among the products as follows:  

 Products Toyota Nissan Mercedes Constraints 

Trained hours 2 4 6 20 

Untrained hours 6 4 2 40 

 

1 2 3

1 2 3

1 2 3

50 20 30

: 2 4 6 20

6 4 2 40

Maximize Z Z Z

subject to Z Z Z

Z Z Z

 + +

+ + 

+ + 

=
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Step 3: Set up the initial table by arranging the objective function and equalized constraints from 

Step 4 as follows: (How do the slacks come in and what do they stand for?) 

Table 1: Simplex tableau 

Solution 

variable 

Products Slack 

Variables 

Solution  

Z1 Z2 Z3 S1 S2 

S1 2 4 6 1 0 20 

S2 6 4 2 0 1 40 

  20 60 30 0 0 0 

 

Step 4: What is the highest profit amount? 60 and what product or column has the highest 

amount? Z2. Divide the solution column by the values of the column with the highest amount.  

20/4 5 

40/4 10 

Step 5: Select the row with the lowest value (S1 row) and obtain the entry which appear in both 

the identified column (Z2) and row (S1) = 4. This is the pivot element 

Step 6: Divide all entries in the identified row S1 by the value of the pivot element 4 and change 

the solution variable to the heading of the identified column, Z2. 

Solution 

Variable 

Products Slack Variables Solution  

Z1 Z2 Z3 S1 S2 

New Row 1 

(Z2) 

2/4 1 6/4 1/4 0 5 

Old Row 2 

(S2) 

6 4 2 0 1 40 

Old Row 3 
  

20 60 30 0 0 0 

 

Step7: We commence row by row operation using newly identified row 1 by making all entries 

in the pivot element column to become zero.   

Step 8:  To change row 2, multiply the new row 1 (Z2) by 4 and subtract it from row 2 (S2) as 

follows:  
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Solution 

Variable 

Products Slack Variables Solution  

Z1 Z2 Z3 S1 S2 

Old Row 2 

(S2) 

6 4 2 0 1 40 

4 x New Row 

1 (Z2) 

2/4 x 4 =  

2 

1 x 4 =  

4 

6/4 x 4 = 6 1/4 x 4 = 4 0 x 4 = 

 0 

5 x 4 = 20 

New Row 2 = 

S2- 4(Z2) 

4 0 -4 -1 1 20 

 

Step 9: To change row 3, multiply New Row 1(Z2) by 60 and subtract it from row 3  

Solution 

Variable 

Products Slack Variables Solution  

Z1 Z2 Z3 S1 S2 

Old Row 3 (Z) 20 60 30 0 0 0 

60 x New Row 

1 (Z2) 

2/4 x 60 = 

30 

1x 60 = 

60 

6/4 x 60 = 

90 

¼ x 60 = 

15 

0 x 60 = 0 5 x 60 = 

300 

New Row 3 = 

 - 60(Z2) 

-10 0 -60 -15 0 -300 

 

Step10: Put together all new rows i.e. New Row 1, New Row 2 and New Row 3 to check for 

optimality  

Solution 

Variable 

Products Slack Variables Solution  

Z1 Z2 Z3 S1 S2 
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New Row 1 

(Z2) 

2/4 1 6/4 1/4 0 5 

New Row 2 

(S2) 

4 0 -4 -4 1 20 

New Row 3  

  

-10 0 -60 -15 0 -300 

 

Step 11: Check for optimality. To test for optimality in maximization case, all entries in the 

profit row must either be zero or negative. In this case, the profit is at optimum.  

i. How is the table interpreted? What is the profit? What are the optimal values of the 

variables? What determines when not to continue with the process? Is there any excess 

capacity etc?  

ii. How is the case of minimization treated? 

4.0 CONCLUSION 

The signficance of linear programming techniques derived from it optimization principle as well 

as it foundation of microeconomics.Revise please 

 

5.0 SUMMARY 

In this unit, we have discussed the meaning of linear programming, provided a mathematical 

representation of linear programming problems, graphical solution to a LLP as well as the 

simplex algorithm of linear programming and solved some numerical questions on linear 

programming.  

 

TUTOR-MARKED ASSIGNMENT 

1. Consider the following LPP, 

1 2 3

1 2 3

1 2 3

1 2 3

100 40 60

: 4 8 12 40

12 8 4 80

, , 0

Maximize Z Z Z

subject to Z Z Z

Z Z Z

Z Z Z

+ +

+ + 

+ + 


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1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

25 10 15

: 2 3 10

3 2 20

, , 0

12 18 24

: 18 12 6 60

12 30 18 90

, , 0

Minimize Z Z Z

subject to Z Z Z

Z Z Z

Z Z Z

Maximize Z Z Z

subject to Z Z Z

Z Z Z

Z Z Z

+ +

+ + 

+ + 



− − −

+ + 

+ + 



 

(a) Solve the LPP using the simplex algorithm 

(b) Solve the LPP using the graphical method 

 

2. An automobile manufactures two types of vehicles, Toyota (T) and Benz (B). At the end of 

every month a minimum of 6 of each brand of car are manufactured. It takes 9 hours to 

manufacture Toyota brand and 8 hours to manufacture Benz in a 1000 working hours of the 

month. A minimum of 4 workers are required to manufacture Toyota while 2 workers are 

required to manufacture Benz. The profit on Toyota is N2000 and on Benz is N2900 

(a) Represent the above information as a system of inequalities. 

(b) Prepare the relevant graph of the system and indicate the feasible region. 

(c) Determine the number of each type that must be produced each week to make a 

maximum profit. Determine the maximum profit. 

 

3. A farmer cultivates Maize and Yam. To cultivate maize requires 5 hours of cutting and 6 

hours of stitching. To cultivate yam requires 4 hours of cutting and 3 hours of stitching. The 

profit on a maize is N300 and on a tuber of yam is N200. The farmer works for a maximum of 10 

hours a day. How many maize and yams should be cultivated in order to maximize profit and 

what is the maximum profit. 

 

4. A gardener has 20 hectares of his smallholding available for planting type A and type B of a 

flower. He must farm at least 2 hectares of type A maize, 5 hectares of type B in order to satisfy 

final demands. The gardener wishes to cultivate more of type A than type B but the labour 

available only allows the cultivation of a maximum of 7 times the quantity of type A compared 

to type B. 

(a) Present the information as a system of inequalities. 

(b) Outline the graph of these inequalities. 

(c) If the profit on type A of the flower is N5000 and on type B is N6000, determine the 

combination of the two types of flower that can guarantee a maximum profit. Calculate 

the profit at this level. 
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1. 0. INTRODUCTION 

Unit 2 of module 4 discusses the meaning of nonlinear programming, two-dimensional nonlinear 

programming,  three-dimensional nonlinear programming, solving numerical problems of 

nonlinear programming using the substitution method of solution. 

 

2.0 OBJECTIVES 

After a successful study of this unit, students should be able to do the following: 

• Discuss the meaning of nonlinear programming 

• Mathematically define  both the two-dimensional and three-dimensional nonlinear 

programming 

• Solving numerical problems of nonlinear programming using thesubstitution method of 

solution 

 

3.0 MAIN CONTENT 

3.1. Meaning of Nonlinear Programming 

Nonlinear programming (NLP) is a mathematical optimization problem in which either the 

objective function or the constraints are nonlinear.  

 

3.2. Two-dimensional Nonlinear Programming: The Two-dimensional nonlinear 

programming problem can be defined as follows:  

  
1 2

1 2

( )

( , )

Maximize f z z z

where z z z

= +

=
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2

2

2 2

1

2 2

1

1 2

3

5

( 0, 0)

z z

z z

where z z

+ 

+ 

 

 

 

3.3 Three-dimensional Nonlinear Programming: The three-dimensional nonlinear 

programming problem can be defined as follows:  

  
1 2 2 3

1 2 3

( )

( , , )

Maximize f z z z z z

where z z z z

= +

=
 

   

2

2

2 2 2

1 3

2 2 2

1 3

1 2 3

7 6 4

6 2

( 0, ,0 0)

z z z

z z z

where z z z

+ − 

− + 

  

 

  

SELF-ASSESSMENT EXERCISE  

How will you differentiate between a two dimensional and a three dimensional non-linear 

programming problems? 

 

3.4. Solving Numerical Problems of Nonlinear Programming 

In this section, we used the substitution and the Langrangian multiplier methods to solve some 

numerical nonlinear programming problems. 

 

Numerical Example 1: Consider that a manufacturing firm incurs an annual fixed cost of N96, 

000 and variable cost per unit of output N50. The profit function and the demand constraint of 

the firm are given by: 

    
96,000 50

: 1600 49

Maximize qp q

Subject to q p

 = − −

= −
 

Solution to Numerical Example 1: Calculate the optimal price level of the firm using the method 

of substitution. 
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2

2

int int ,

(1600 49 ) 96,000 50(1600 49 )

1600 49 96,000 80,000 2450

4050 176,000 49

4050 98

0,

98 4050

41.3

Substituting the constra o the profit function

p p p

p p p

p p

p
p

Setting
p

p

p











= − − − −

= − − − +

= − −


= −




=



=

=

 

 

Numerical Example 2: Consider the following nonlinear programming problem 

   
2 2

1 1 2 2

1 2

8 0.3 4 0.2

: 2 4 60

Maximize R z z z z

Subject to z z

= − + −

+ =
 

Determine the optimum solution to the nonlinear programming problem using the 

(a) Method of substitution. 

(b) Langrangian multiplier method 

 

Solution to Numerical Example 2: Using the substitution method, we solve as follows, 

  

 

Substituting the value of z1 into the objective function, we have as follows: 

  

2 2

2 2 2 2

2 2

2 2 2 2 2

2 2

2 2 2 2 2

2

2 2

8(30 2 ) 0.3(30 2 ) 4 0.2

240 16 0.3(900 120 4 ) 4 0.2

240 16 270 36 1.2 4 0.2

30 24 1.4

R z z z z

R z z z z z

R z z z z z

R z z

= − − − + −

= − − − + + −

= − − + − + −

= − + −

 

 

2 2

1 1 2 2

1 2

2
1

1 2

8 0.3 4 0.2

: 2 4 60

60 4

2

30 2

Maximize R z z z z

Subject to z z

From theconstraint

z
z

z z

= − + −

+ =

−
=

= −
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2

2 2

2

2

2

2

2

2

30 24 1.4

24 2.8

0,

2.8 24

24

2.8

8.6

R z z

R
z

z

R
Setting

z

z

z

z

= − + −


= −




=



=

=

=

 

 

Substituting the value of z2 into the constraint equation, we have that: 

 

   

1 2

1

1

1

2 4 60

2 4(8.6) 60

60 34.4

2

12.8

z z

z

z

z

+ =

+ =

−
=

=

 

Therefore, Total Revenue becomes: 

   

2 2

1 1 2 2

2 2

8 0.3 4 0.2

8(12.8) 0.3(12.8) 4(8.6) 0.2(8.6)

85.9

R z z z z

N

= − + −

= − + −

=

 

Numerical Example 3: A shopping mall developed the following nonlinear programming model 

for the purpose of ascertaining the optimal number of shirts (z1) and trousers (z2) that are sold 

every day of sales 

   
2 2

1 1 2 2

1 2

5 0.2 10 0.3

: 6 25 200

Maximize S z z z z

Subject to z z

= − + −

+ =
 

Calculate the optimal number of shirts (z1) and trousers (z2) in order to maximize sale (S) using 

the 

(a) Method of substitution. 

(b) Langrangian multiplier method 

 

Solution to Numerical Example 3:Using the substitution method, we solve as follows: 

  

 2 2

1 1 2 2

1 2

2
1

1 2

9 0.2 10 0.3

: 6 24 300

300 24

6

50 4

Maximize S z z z z

Subject to z z

From theconstraint

z
z

z z

= − + −

+ =

−
=

= −
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Substituting the value of z1 into the objective function, we have as follows: 

  

2 2

2 2 2 2

2 2

2 2 2 2 2

2 2

2 2 2 2 2

2

2 2

9(50 4 ) 0.2(50 4 ) 10 0.3

450 36 0.2(2500 400 16 10 0.3

450 36 500 80 3.2 10 0.3

50 54 3.5

S z z z z

S z z z z z

S z z z z z

S z z

= − − − + −

= − − − + + −

= − − + − + −

= − + −

 

 

   

2

2 2

2

2

2

2

2

2

50 54 3.5

54 7

0,

7 54

54

7

7.7

S z z

S
z

z

S
Setting

z

z

z

z

= − + −


= −




=



=

=

=

 

 

Substituting the value of z2 into the constraint equation, we have that: 

 

   

1 2

1

1

50 4

50 4(7.7)

19.2

z z

z

z

= −

= −

=

 

Therefore, Total Revenue becomes: 

   

2 2

1 1 2 2

2 2

9 0.2 10 0.3

9(19.2) 0.2(19.2) 10(7.7) 0.3(7.7)

158.3

S z z z z

N

= − + −

= − + −

=

 

Using the Langrangian multiplier method, we solve as follows, 

  

 2 2

1 1 2 2 1 2

1

1

2

2

1 2

1 2

9 0.2 10 0.3 (300 6 24 )

9 0.4 6

10 0.6 24

300 6 24

0, 0, 0

L z z z z z z

L
z

z

L
z

z

L
z z

L L L
Setting

z z











= − + − + − −


= − −




= − −




= − −



  
= = =

  
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1

2

1 2

9 0.4 6 0

10 0.6 24 0

300 6 24 0

z

z

z z





− − =

− − =

− − =

 

We eliminate in order to solve simultaneously as follows 

   
1

1

9 0.4 6 0 ( 4)

36 1.6 24 0

z

z





− − =  −

− + + =
 

Combining with 
2

L

z




equation we have as follows: 

   

1

2

1 2

36 1.6 24 0

10 0.6 24 0

26 1.6 0.6 0

z

z

z z





− + + =

− − =

 − + − =

 

Combining with 
L






equation, we have as follows:       

  

1 2

1 2

1 2

1 2

1 2

1

1

1

26 1.6 0.6 0

300 6 24 0

26 1.6 0.6 0 ( 40)

1040 64 24 0

300 6 24 0

1340 70 0

1340

70

19

z z

z z

z z

z z

z z

z

z

z

− + − =

− − =

− + − = −

− + =

− − =

− =

=

=

 

 

   

1 2

2

2

2

300 6 24 0

300 6(19) 24 0

186

24

7.7

z z

z

z

z

− − =

− − =

=

=

 

Therefore, total sales becomes: 

   

2 2

1 1 2 2

2 2

9 0.2 10 0.3

9(19.2) 0.2(19.2) 10(7.7) 0.3(7.7)

158.3

S z z z z

N

= − + −

= − + −

=

 

 

SELF ASSESSMENT EXERCISE 

Describe the relationship between a linear and a non-linear programming problem  
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4.0 CONCLUSION 

Nonlinear programming problems are similar to linear programming problems except that the 

NLP… incomplete sentence 

 

5.0 SUMMARY 

In this unit, we have discussed the meaning of nonlinear programming, two-dimensional 

nonlinear programming, two-dimensional nonlinear programming, estimation of non-linear least 

squares and solved numerical problems of nonlinear programming using the substitution method 

of solution and verified with the langragean method. 

 

6.0 TUTOR-MARKED ASSIGNMENT 

Consider that a manufacturing firm incurs an annual fixed cost of N36,000 and variable cost per 

unit of output N45. The profit function and the demand constraint of the firm are given by: 

    
3 36,000 51

: 2400 45

Maximize qp q

Subject to q p

 = − −

= −
 

Find the optimal solution of the firm using the method of substitution. 

 

Suppose the initial investment for machineriesand related technologies of a growing business 

wasN100,000 while labour and materials costed N60. Given the following demand function of 

the business,  

12,000 140q p= −  

i. Formulate the non-linear profit function of the business 

ii. Find the optimal price of the growing business 

iii. Find the optimal price of the growing business 

iv. Find the optimal profit of the growing business 

 

A motorbike company has the following non-linear programming model 
2 2

1 1 2 2

1 2

20 0.05 13 0.05

: 1.4 3.5 50

Maximize R z z z z

Subject to z z

= − + −

+ =
 

1 2. , .where z is no of yamaha bikes z is no of suzuki bikes  

Calculate the optimal combination of bikes (z1) and (z2) to be manufactured by the company 

using the: 

(a) Method of substitution. 

(b) Langrangian multiplier method 

 

A Poultry farm is characterized by the following model of nonlinear programming model for the 

purpose of ascertain the optimal number of shirt (z1) and trousers (z2) that are sold very day of 

sales 
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2 2

1 1 2 2

1 2

40 0.1 26 0.4

: 4 7 80

Maximize S z z z z

Subject to z z

= − + −

+ =
 

1 2. , .where z is no of old layers z is no of boilers  

Calculate the optimal number of old layers (z1) and boilers (z2) to be farmed to maximize sale (S) 

using the: 

(c) Method of substitution. 

(d) Langrangian multiplier method 
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1. 0. INTRODUCTION 

Under this unit, we shall be discussing the concept of game vs. game theory, types of games and 

various forms of game representation. Also, we shall be solving numerical problem on game 

theory. 

 

2.0 OBJECTIVES 

After a successful study of this unit, students would be able to do the following: 

• Discuss the meaning of game vs. game theory 

• Explain the different types of games  

• Carry out and extensive form of game representation 

• Carry out a strategic form of game representation  

• Solving numerical problems on game theory 

 

3.0 MAIN CONTENT 

3.1 Concept of Game vs. Game Theory 

A game is a process of making decisions in circumstances where both conflict and cooperation 

exits. It thus implies a competitive circumstance where individuals, firms, institutions, 

governments, nations etc., as the case may be, pursue their own interest and no one party can 

command the outcome of another.  

 

3.2  Types of Games 

3. 2.1 Cooperative vs. Non-Cooperative Games: A game is cooperative if the players enters 

into some binding obligations externally enforced through contract law. A game is non-

cooperative if players cannot form agreements. 

 

Table 1: Difference between Cooperative vs. Non-Cooperative Game 

Cooperative Game Non-cooperative Game 

All agreements need to be executed on basis All agreements need to be self-enforcing by 
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of binding commitment by all players  individual players  

Describes the strategies, and payoffs of 

alliances 

Determines impact of bargaining on payoffs 

within each alliance 

Can be analyzed through the approach of non-

cooperative game theory 

Cannot be analyzed through the approach of 

non-cooperative game theory 

Allows analysis of the game without having 

to make any assumption about strategic 

bargaining powers. 

Do not allow analysis of the game without 

having to make any assumption about 

strategic bargaining powers 

 

 

3. 2.2 Symmetric vs. Asymmetric Games: A symmetric game is a game where the payoffs 

depends on strategies and not on players. That is, the identities of the players can be changed 

without changing the payoff to the strategies. Examples of symmetric games include chicken, the 

prisoner's dilemma etc. 

 

3. 2.3 Zero-sum vs. Non-Zero-Sum Games: Zero-sum games are games whereby the total 

benefit to all players in the game, for every combination of strategies, always adds to zero. In 

other words, a player benefits only at the equal expense of others. 

 

Zero-sum Game 

 Player C Player D 

Player C -2, 2 3,-3 

Player D 0,0 -1, 1 

Suppose that player C takes evens and player D takes odds. Then, each player simultaneously 

shows either ODD number or EVEN number. If the number shown is even, player C wins the 

game while if the number shown is odd, player D wins the game. Each player has two possible 

strategies: show an even or an odd number.  

3. 2.4 Simultaneous vs. Sequential Games: Simultaneous games are games where both 

players decide on the move to make at the same time or one player is uninformed of actions of 

the other. Sequential games are dynamic games where one player is partly informed about the 

other player’s actions/move to take. 

 

Table 2: Difference between Simultaneous and Sequential Games 

Simultaneous Games Sequential Games 

Games are represented with normal form of 

representation is used to represent 

Games are represented with extensive form of 

representation 

Games are strategy types of game Games are mainly extensive-form game 

Games are symbolized by Payoff matrices Games are symbolized by Decision trees 

Games do not provide for time. Games provide for timing 

Players of simultaneous games do not have Players of sequential games take into 
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prior knowledge of opponent's move cognizance prior knowledge of opponent's 

move 

 

3. 2.5 Perfect Information vs. Imperfect InformationGames: In perfect information game, 

all players are fully informed of actions earlier taken by all other players. Conversely, the 

imperfect information game is game in which players do not have complete information set 

about the moves previously made by some other players. 

 

3.3 Representation of Games 

3.3.1 Extensive form of Game Representation: The extensive form can be used to formalize 

games with a time sequencing of moves whereby the node denotes a player’s choice. The player 

is specified by a number listed by vertex with promising move of a player symbolized by line out 

of the vertex.  

 

3.3.2 Strategic form of Game Representation: The strategic form is the matrix form of game 

representation which shows players, strategies, and payoffs as shown in matrix below. As shown 

in table 2, 16 is the payoff received by the row player (player C) while 12 is the payoff for the 

column player (Player D).  

 

   Table 2: Payoff Matrix of 2-Player, 2-Strategy Game 

 Player D Player D 

Player C 16, 12 -3,-3 

Player C 0,0 -12, -16 

  

SELF ASSESSEMENT EXERCISE 

Discuss the different types of games, discuss their similarities and dissimilarities 

 

3.4 Applications of Game Theory:  

 i.  Game theory is a major method used in mathematical economics and business for 

modeling competing behaviors of interacting agents.  

 ii.  Game theoretic analysis aid bargaining, oligopolies and mergers & acquisitions  

  pricing, fair division, duopolies,   

 iii.  Game theoretic analysis aid information economics and industrial organization, 

and political economy. 

 

SELF ASSESSEMENT EXERCISE 

Discuss the various areas of applications of game theory 

 

3.4. Solving Numerical Problems of Game Theory 

Numerical Example 1: Consider a market whose inverse demand function is given by: 
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   Qp 260 −=  60 2Q−  

There are two firms in the market facing the Cournot type of competition. The cost functions of 

the firms are given by:  

1 1

2

2 2

C 30

C 2

q

q

=

=
 

(a) Find the firm whose marginal cost is relatively constant and the firm whose marginal cost is  

relatively rising 

(b) Derive the reaction functions of both firms. 

(c) What are the Cournot equilibrium quantities and price? 

  

Solution to Numerical Example 1: Obtain the marginal cost function of both firms as follows: 

Firm 1 marginal cost is relatively constant because, 

1

1

dC
30

dq
=  

Firm 2 marginal cost is relatively rising in q2 because, 

 

1
2

2

4
dC

q
dq

=  

 

The reaction functions are derived as follows: 
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the reaction functions of both firms are thus given by: 2
1

30 2

4

q
q

−
= & 1

2

60 2

6

q
q

−
=  respectively. 

 

Substituting the RF q1 into RF q2, we have: 

 

1 2

1 2

1 2

1 2

2

2

30 4 2 0

60 2 6 0 ( )

30 4 2 0

120 4 12 0

90 10 0

9

q q
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q q
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q
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    1 2

1

1

* * *

*

30 2(9)

4

3

( ) 12

60 2
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q

q

Q q q

P Q
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−
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The Cournot equilibrium quantities and price are, 1 3q = , 2 9q = & 36P =  

 

SELF ASSESSMENT EXERCISE 

Describe the relationship between an explicit and an implicit function. 
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4.0 CONCLUSION 

Game theory is a theory of tactical relations among rational decision-makers. The application of 

game theory is all encompassing in social sciences. When a game is presented in normal form, it 

is presumed that each player acts simultaneously, that is, without knowing the move/actions of 

the other player. On the other hand, extensive form representation shows players have prior 

knowledge about each other’s strategy.  

 

5.0 SUMMARY 

In this unit, we have discussed the game vs. game theory, explain the different types of games, 

provided extensive form of game representation, strategic form of game representation.  

 

6.0 TUTOR-MARKED ASSIGNMENT 

1. Consider the following pay-off matrix: 

Player I Player II 

A B C 

A 12 20 32 

B 12 4 56 

C 4 12 -3 

Determine the strategy that each of the two players should play.  

 

2. Consider the following pay-off matrix of a new contract for academic staff whereby university 

management and ASU entered into negotiation that resulted in ASU making 3 different 

proposals and management making 3 different proposals. 

 

ASU 

Proposals 

Management Proposals 

G Q W 

V 19 24 14 

S 14 15.6 12.5 

U 12 17 18 

 

(a) Determine if there is an agreement between ASU and Management. Hint, find the point 

of equilibrium if there is  

(b) Calculate the mixed strategies for management and ASU  

(c) What is the optimum strategy for ASU?  

(d) What is the optimum strategy for management? 

 

3. Consider a game between propsective university students namely, Yinka (Y) and her father 

Momodu (M) such that Yinka A has to choose whether to seek admission into a univefrsity that 

cost N2,000 per semester  or not. Momodu has to decide whether to pay get Yinka educated with 

a fee of N20,000 or both Yinka and her father share the family income equally. Yinka’s 
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education and family income sharing has some impact on family’s productivity. With no 

education and sharing of family’s income, the productivity of the family would be N30,000, 

while if either education or family income is shared the family’s productivity would rise and 

become N40,000. If both education and family income is shared, the producitity of the family 

would be N48,000. 

 

(a) Construct the pay-off matrix for the game 

(b) Is there any equilibrium in dominant strategies? 

(c) Can you find the solution of the game with Iterated Elimination of Dominated  

      Strategies? 

(d) Is there any Nash equilibrium? 
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