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| ntroduction

General Topology, MTH402 is a 3-credit unit. Theurse is a core
course in second semester of 400L. It will take yd weeks to
complete the course. You are to spend 45 hourtudiygor a period of
13 weeks while the first week is for orientatiordéhe last week is for
end of semester examination. You will receive therse material which
you can read online or download and read off-liflee online course
material is integrated in the Learning Managemeystedn (LMS). All
activities in this course will be held in the LM&l you need to know in
this course is presented in the following sub-hegsli

Course Competencies

By the end of this course, you will gain competeimcihe:
. basics of topology and how to apply them.
Course Objectives

The course objectives are to:

o Recognise and understand the basic concepts dbtppo
o Be able to use these results to analyze concrera@es.
. Apply the concepts of topology to other fields ohtilematics.

Working through this Course

The course is divided into modules and units. Thoeluhes are derived
from the course competencies and objectives. Tmepetencies will
guide you on the skills you will gain at the endlok course. So, as you
work through the course, reflect on the competentdesnsure mastery.
The units are components of the modules. Eachisisiib-divided into
introduction, intended learning outcome(s), mainntent, self —
assessment exercise(s), conclusion, summary, atitefueadings. The
introduction introduces you to the unit topic. Thdended learning
outcome(s) is the central point which help to measwur achievement
or success in the course. Therefore, study thendei® learning
outcome(s) before going to the main content anithetend of the unit,
revisit the intended learning outcome(s) to chdckou have achieved
the learning outcomes. Work through the unit agéigou have not
attained the stated learning outcomes. The maitenbis the body of
knowledge in the unit. Self-assessment exercisesearbedded in the
content which helps you to evaluate your masterthefcompetencies.
The conclusion gives you the takeaway while thersany is a brief of
the knowledge presented in the unit. The final partthe further
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readings. This takes you to where you can read morghe topic
presented in the unit. The modules and units asemted as follows:

Module 1

Unitl Concepts ofTopological Sgces
Unit 2 Separation Axioms

Module 2

Unit 1 Category and Separability

Unit 2 Compact Sets and Spaces

Unit Connectedness

References and Further Readings

1. Sidney A. Morris(2007), Topology Without Tears,
https://www.topologywithouttears.net/topbook.pdf

2. Munkres,J. R. (1999), Topology, second editicagrBon.

3. Freiwald, R. C. (2014), An Introduction to Set Theand
Topology, Washington University, St. Louis Saint uig
Missouri.

4. Bourbaki, N. (1996), General topology, Part I, Astth Wesley,
Reading, Mass.

5. Englking, R.(1989), Outline of general topology, sterdam.

6. Willard, S. (1970), General topology, Addison WgdRublishing
Company, Inc, USA.

7. Michael, S. (1972), Elementary Topology, Second ti@ul
Gemidnami.

Presentation Schedule
The activities for each week are as presented ipleT& while the
required hours of study and the activities aregare=d in Table 2. Spend

time to complete each unit hence module.

Tablel: Weekly Activities

Week Activity

1 Course Orientation and Guide
2 Module 1 Unit 1

3 Module 1 Unit 1

4 Module 1 Unit 2

5 Module 1 Unit 2
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6 Module 1 Unit 2
7 Module 2 Unit 1
8 Module 2 Unit 1
9 Module 2 unit 2
10 Module 2 Unit 2
11 Module 2 Unit 3
12 Module 2 Unit 3
13 Revision

The activities in Table | include facilitation haur

Assessment

Table2: Assessment

SN M ethod of Assessment Score(%)
1 Tutor Marked Assgnment 30
2 Final Examination 70

Total 100
Assignment

This is tutor marked assignment you will be askedd for assessment.
Examination
Finally, the examination will help to test the cdiy® domain. The test

items will be mostly application, and evaluatiosttiéems that will lead
to creation of new knowledge/idea.

How to get the Most from the Course

To get the most in this course, you:

. need a personal laptop. The use of mobile phong mialy not
give you the desirable environment to work.
. must have regular and stable internet.

. have to install the recommended software.

vi
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o to work through the course step by step startingh whe
programme orientation.

. must do all the assessments following given insivas.

. must create time daily to attend to your study.

Online Facilitation

There will be two forms of facilitation — synchramoand asynchronous.

The synchronous will be held through video confenmeg according to

weekly schedule. During the synchronous facilitatio

o] There will be one hour of online real time contper week
making a total of 13 hours for thirteen weeks afisttime.

o] At the end of each video conferencing, the videlb e uploaded
for view at your pace.

0 You are to read the course material and do oth&graments as

may be given before video conferencing time.

The facilitator will concentrate on main themes.

o] The facilitator will take you through the coursedgiin the first
lecture at the start date of facilitation.

(@)

For the asynchronous facilitation, your facilitataitl:

Present the theme for the week.

Direct and summarise forum discussions.

Coordinate activities in the platform.

Score and grade activities when need be.

Support you to learn. In this regard personal nmady be sent.
Send you videos and audio lectures, and podcasézd be.

Read all the comments and notes of your facilitagpecially on your
assignments, participate in forum discussions. Thkil give you
opportunity to socialise with others in the couasel build your skill for
teamwork. You can raise any challenge encounteuethg your study.
To gain the maximum benefit from course facilitatiprepare a list of
guestions before the synchronous session. You lgalin a lot from
participating actively in the discussions.

vii
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Course Blub: This course presents the@oismf topology,
which include separability, compactness and
connectedness. Various results were proved with
sufficient examples to guide learners.

Semester: Second

Course Duration: 13 Weeks

Required Hours for Study: 65Hours

Ice Breaker:  Topology is the mathematical study of those praeert
of geometric forms that remain invariant under aiertransformations,
as bending or stretching.Topological spaces aréenadtical structures
that allow the formal definition of concepts such eonvergence,
connectedness, and continuity. They appear inallstevery branch of
modern mathematics, which is an indication of tingpartance of
studying this course.

viii
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MODULE1 TOPOLOGICAL SPACES

The background needed for this study is explainedhis module.
Topology studies spaces by asking questions frongualitative
perspective. For example, some topological questiociude: Is a space
connected? Is a space simply connected? This quoegptiovides a
technique for distinguishing between a sphere amtarws. For on the
torus, there exist closed curves which cannot brifk’ to a point. Is a
space oriented? For example, the regular cylingl@riented (as it has
two sides), while the Mobius space is not (it hasy@ne side). Note
that there are easier ways to distinguish thesemamely by examining
their boundaries. A topological space is an abstia®f metric spaces.
In short, a topological space is a set equippet tié additional data
necessary to make sense of what it means for pioiriis ‘close’ to each
other. This will allow us to develop notions of lisiand continuity.

Unitl Concepts ofTopological Sgces
Unit 2 Separation Axioms

UNIT 1 CONCEPTS OF TOPOLOGICAL SPACES
Unit structure

1.1 Introduction
1.2 Intended Learning Outcomes (ILOS)
1.3 Main Content
1.3.1 Definitions and Examples of Basic Concepts
1.3.2 Basis for Topology
1.3.3 The Subspace Topology
1.2.4 Closed Sets and Limit Points
1.4 Self-Assessment Exercise(s)
1.5 Conclusion
1.6 Summary
1.7 References/Further Reading

@1.1 Introduction

In your study of metric spaces, you defined sevenplortant concepts,
like limit point, closure of a set, etc. In eaclseghe definition is based on
the idea of a neighborhood—or, to put it anothey,veen the idea of an
open set. The concepts of neighborhood and opewvesetthen defined by
using the metric (or distance) in the specifiedcepdlowever, you can
approach things differently by defining a systenopén sets in a given set
X with sufficient properties, as opposed to addimgedric to the specified
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setX. This idea leads to the introduction of the notadra topological
space. Metric spaces are a special type of topmbgipace that is
particularly significant.

‘@Il.z Intended Learning Outcomes (ILOS)

At the end of this unit, you shall be:

o able to define a topological space
o familiar with some important topological notions

=11.3 Main Content

1.3.1 Definitions and Examples of Basic Concepts

Definition 1.2.1.1: Suppos€X is a set. A topology oA is a collectionr
of subsets ok such that the following properties are satisfied:

i. 3@ € t (The seXit self and theemptysetareint)

. X € 1 (ThesetX isinT)

iii. Ifuer andv et thatis iy; € 7 for all i € I therU,¢; u; € 7,
ieu; €t = U;j=1y; € T,Ni=1 k; €T (Arbitrary unions and
finite intersections of elements ohre int).

In theory, a topology on X is a set of subsets that can be closed by
arbitrary union and finite intersection. The conmpént of an open set is
a closed set.

Definition1.2.1.2: By a topological space, is meant a [&irr)
consisting of a s&tand atopologyr definedon X.

A topological space is a pair made up of aXeind a topology defined
on X, much like a metric space is a pair made up @t nd a metric
defined onX. Therefore, you need to specify a ¥eand a topology on
X in order to specify a topological space. One &edstme set can have
various topologies attached to it, defining varialistinct topological
spaces. If there is no confusion, you may arrand refer to merely as

a topological space in the follow-up.
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Definition1.2.1.3: The elements of théopologyronXare called open
sets

Examplel.2.1.4 (The discrete topology)if X is a set, take, to be
the P(X), power set o .z, is clearly a topology o, called the
discrete topology. In the discrete topology, albsets ofX are
open. It is the largest topology dn

Examplel.2.1.5 (The indiscrete topology)Let X be any non-empty
set. The indiscrete topology dhis the family{0, X}.It is the smallest
topology onX and (X, ;) is called the topological space of coalesced
points. This is mainly of academic interest.

Examplel.2.1.6  (Sierpinski  topologyketX = {a,b,c}. Many
topologies onX can be defined. For example, you can define

1, = {@,{b},{a, b}, {b, c}}
Thert,is a topology orX called the Sierpinski topology.

Example 1.2.1.7 (Sierpinski spaceJhe Sierpinski spaSeconsists of
two points{0, 1} with the topology{®, {1 },{0, 1} }. The topology of the
Sierpinski space is finer than the indiscrete toggk®, {0, 1}} on{0, 1}
but coarser than the discrete topol¢@y{0},{1}, {0, 1}} on {0, 1}.

Definition 1.2.1.8: Given two topologies; andt, on the same set, we
say thatr, is coarser tham, if 7; C 7,.
Accordingto definition(3.4)you can observe thatifis any topology on
X, then

T, CTCTy
where  andz,.areas defined in examp(&sl)and3.2).

Examplel.2.1.9(Finite complement topology)

‘LetXbeaset,and letbe the collection of all subsétsfXsuch thatX\U
is finite orU = @,i.e., 7sis the collection of the form
7, = {U € X: X\UisfiniteorX\U = X}

Therisis a topology afcalled thefinite complementopology (sometimes
called the coffinite topology).

Examplel.2.1.10Let Xbeaset, and laf.be the collection of subsétef
Xsuch thaX\U is either countable or Xsi.e., 7.is a collection of the
form

1. = {U € X: X\UisatmostcountableorX\U = X}
Thent,_is a topology orX.
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Theorem 1.2.1.11:The intersectiorr = NgeaT, Of topologies{t, } e
on X is itself a topology irX (whereA is some indexing set).

Proof: You are required to verify the three (3)axiomsajdlogy on a

seXfor
T= ﬂ Ty

a€A
Given that{t,}.ea is family of topologies oK.

Therefore, we proceed as follows:

1. Since Tt,s a topology oH,for eachx €A, there
exispandXineach,, sothat

?,X € ﬂ‘ra =7

a€eA
2. Let{U,},c;bea collection of elements mitherdis some index

ingset.Let
U == U Ui
i€l
You have to show thdt € .

But you already have that for eack I, U; € t implies thatU; € t, for
fixed a € A. Sincer,, is

a topology onX, U = U U; €1, for a € A. Therefore, by taking
intersections ovex € A, we have

UZUUiEﬂTaZ:T

. i€l a€EA
ie.U €.

3. To verify axiom (3), it is enough to do it for tveetsU; andU,in
7. The results follow by induction om. Therefore, take two sets
U, andU,in 7 and let

U = Ul N U2
You have to show thdf € t. Butl,,U, € timplies thatU;, U, € t, for
each a € A. Thus

U =1U,nU, €, since eact,, « € Ais a topology orX. Hence,

U=UanZEﬂ‘ra =:T
a€EA
i.e,U € t. Therefore, the proof is ovar.
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1.2.2 Basis for Topology

For each example in the preceding section, you able to specify the
topology by describing the entire collectianof open sets. This is
usually difficult in general. In most cases, youllwieed to specify
instead a smaller collection of subsets{cdnd then define the topology
in terms of this collection.

Definition 1.2.2.1 (Basis)Let X be a set. A basis for a topology ®ns
a collectionB of subsets ok (called basis elements) such that

1. For eachx € X, there exist8 € B such thatc € B, or equivalently
X = UpepB.

2. If x e X andB;, B, € B such thatx € B; N B,, there existB; € B
such thatc € B; € B; N B,.

Definition 1.2.2.2(Topology generated by a Basis)f B satisfies the
above two conditions, then we define the topologyenerated by as
follows:

A subsetU of X is int (i.e.U is open) if for eaclx € U, there exists a
basis elemenB € B such that € B c U. That is to say that is a
collection of the form
t:={U€ X: U =0@orif x € U, there exists B € B such thatx
€ B c U}
You can easily verify that is a topology onX. Note that each basis
element is open.

Example 1.2.2.3.LetB = {(a,b):a,b € R,a < b}. ThenB is a basis
for a topology ofR called the standard or Euclidean topologyRon

Example 1.2.2.4LetB° = {[a,b):a,b € R,a < b}. Then B® is a
basis for a topology oR called the lower limit topology oR.

Example 1.2.2.5:Let B = {{x}: x € X}. ThenB is a basis for the
discrete topology oX.

Proposition 1.1.2.6:Let X be a set, and Iét be a basis for a topology
on X. Thent equals the collection of all unions of element® of

Proof: Let {B;};¢;be a collection of elements 8f Then for eache I,
B; € t (because ead; is open). Since is a topology,
Bi ET
i€l
Conversely, letU € 7, and letx € U. Bis a basis forr implies there
existB, € B such thaik € B, c U. This implies that
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U=U{x}CUBxCU

) x€U ) x€U
Thus,U,ey By, SO thatJ is a union of elements &f.m

Example 1.2.2.7: Let X ={a,b,cdef} and
10 := {X,0,{a},{c,d},{a,c,d},{b,c,d, e, f}} Then
B = {{a},{c,d},{b,c,d,e, f}}is a basis forr® a3 c ° and every
element ofr® can be expressed as a union of elemenss of

Note that’itself is also a basis fat’.

So far, you have seen that when you are given ig,basi can define a
topology. But the following example tells you thatu have to be very
careful when you have an arbitrary collection disets of a seX.

Example 1.2.2.8Let X = {a,b,c} and B = {{a},{c},{a, b},{b, c}}.
ThenB is not a basis for any topology &n To see this, suppose that
is a basis for some topology Thent consists of all unions of sets i

That is,
7 = {X,0,{a} {c},{a, b}, {a c},{b,c}}

However,t is not a topology sincéa, b} n{b,c} = {b}, b€ . SOT
does not have property (3) of Definition 3.1. Tisi® contradiction, and
SO your supposition is false. ThASs not a basis for any topology &n

In view of the above example, the question of edémow is; under
what condition is a collectioG of subsets ok a basis for a topology on
X? The answer to this question is provided by the& peposition.

Proposition 1.2.2.9:Let X be a topological space. Suppose thas a
collection of open subsets &fsuch that for each open détof X and
eachx € U, there exist€ € C such that

xeCcU
Thenc is a basis for a topology &f.
When topologies are given by basis, it is usefuh&ve a criterion in
terms of the bases for determining whether onelégyas finer than the
other. One such criterion is the following propiosit

Proposition 1.2.2.10 Let B andB° 0 be basis for the topologiesand
7%, respectively oiX. Then the following are equivalent:

1.7% is finer thatr.

2. For eachx € X and each basis elemeBte B containingx, there
exists a basis elemeB? such thak € B® c B.

Proof:(1) = (2). Letx € X andx € X such thatx €. You know that
B € 7 by definition and that c t° by condition(1). ThereforeB € t°.
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Sincet? is generated bg?, then there exists an elemdift € B® such
thatx € B® c B.

(2) = (1). Given an element € 7. Our goal is to show thdf € 7°.
So letx € U. SinceB generates there is an elemert € B such that
x € B c U. By condition (2) there exis®® € B° such thak € B® c B.
Thenx € B® c U. SoU € 1°, by definition.

Definition 1.2.2.11  The Metric Topology

One of the most important and frequently used wafysmposing a

topology on a set is to define the topology in temha metric on a set.
Topologies given in this way lie at the heart ofdam analysis, for
example. In this section, you shall be introduceih whe metric

topology and some of its examples.

Definition 1.2.2.12:A metric space is an ordered p@¥, d) whereX is
a set and! is a metric orX. i.e., a function

d:XxX - R
Such that for any y, z € X, the following holds:
i. dix,y) =0 VxyeX (Positivity)
. d(x,y) =0ifand only ifx =y (By definiteness)

iii. d(x,y) =d(y,x) Vx,y€ X (Symmetry)
iv. d(x,y) <d(x,z) +d(z,y) Vx,y,z € X(Triangular inequality)

Given a metricd on a setX, (X,d) is a metric space and the number
d(x,y) is called the distance betweemndy in the metricd.

Example 1.2.2.13:The most important example is the &etof real
numbers with the metrid(x,y) := | x — y|. Recall the absolute value
of a real number
X, ifx>0
x| :{—x, ifx<O0
Observe that
x < |x| and—x < |x| for x € R.(%)

It is easy to see thdtsatisfies the first two conditions of the metiitie
triangle inequality follows form the triangle inegity of the absolute
value:

lx +y| < |x| + |y| for allx, y € R(x%)

Let us quickly review a proof assuming the ordéaitren onRR:

Case lillet|x+y|=x+y. Thenlx + y| =x +y < |x| + |y| by (%).
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Case 2:Let |[x +y|=—(x+7y). We havelx + y| = —x —y < |x| +
lyl by ().

We have completed the proof of the triangle inedyal«*) for the

absolute value. Also, note that the equality ocauis+) if x and y are
both nonnegative or both non-positive. Assume thatequality occurs
in the triangle inequality. Let us further assumattCase 2 occurs.

Thenx + y| = —x —y = |x| + |y| holds so thaf(|x| + x) + (|x| +
y) = 0. The terms on the left side of this equation aenegative so
we conclude th@t| = —x and |y| = —y. Hence bothx and y are
nonpositive. Similar analysis of Case 1 yields thath x andy are
nonnegative. It is now an easy matter to deriveriagle inequality for
d:
d(x,z) = |x — z|
=|x—y)+ @ —2)

< |x — y| + |y — z| (by triangle inequality fof |)

=d(x,y) +d(y,2)
We refer tod as the absolute value metric.

Definition 1.2.2.14:Let (X, d) be a metric space. Lete Xandr > 0.
The subsets

Bi(x,r):= {y€X: d(x,y) <r} andBy[x,r]:= y € X:d(x,y) <

r

are respectively called the open and closed baigeced atx with
radiusr with respect to the metrit. We use this notation only when we
want to emphasize that the metric under consiaegrad. Otherwise,
we denoteB,;(x,7) by B(x,r) when there is no source for confusion.
Similarly B, [x,r] will denoteB|x, r].

Example 1.2.2.15:Let R be with the standard metric. Then we claim
thatB(x,r) = (x — r,x + r). For, ify € B(x,r) iff d(x,y) <r iff
Ix —y|<riffye (x—r,x + r).

Definition 1.2.2.16: If d is a metric onX then the collection of all
€ — ballsB;(x,¢) forx € X ande > 0 is a basis for a topology on,
called the metric topology induced Gy

Lemma 1.2.2.17:Let B;(x, €) be as — ball in a topological space with
the metric topology and metric d. Lete B,;(x, €). Then there i > 0
such thaB;(x, 8) € By(x, €).

Proof: Define § = ¢ — d(x,y). Then forz € B,(y,§) we have
d(y,z) < § = ¢ — d(x,y)and so, by the Triangle Inequality,
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d(x,z) < d(x,y) + d(y,z) < €. SOy € By(x,&) and B;(y,8) c
B, (x, ).

Remark 1.2.2.18: We must verify that the collection of sets in the
previous definition really satisfies the definitiohbasis of a topology.

I. Firstly, every element € X is in a basis element, s&(x, 1).

il. Secondly, letB; andB, be two basis elements and je€ B, N
B,. Then from Lemma 3.1, there arg > Oand 6, > 0 with
B(y,8;) € B; and B(y,8,) © B,. With § = min{é,,6,} we then
have B(y,8) € B; N B,. SinceB(y,d) is a basis element then the
second part of the definition of basis is satisfied

Example 1.2.2.19Given a nonempty set X, define metric
_(Lifx#y

The topology reduces the discrete topology on Xs(in fact a metric).
Note: It is easy to check that is a metric orX. The topology induced
by this metric is the discrete topology; the badmment for example
consists of the points alone.

Example 1.2.2.20The standard metric on the real numbRris defined
byd(x,y) = |x —y]|. Itis easy to check thdtis a metric.

Definition 1.2.2.21 Product Topology

The product topology will be covered briefly hebeit a more in-depth
examination of this type of topology will be domelater units. Assume
thatX and Y are topological spaces. A topology on thiéesaan product
X xY can be defined in a standard way. We now considertopology

and investigate some of its properties.

Lemma 1.2.2.22 Let X andY be two topological spaces. LBtbe the
collection of all sets of the forii x V, whereU is an open subset &f
andV is an open subset &t i.e.,

B:={UxV:UisopeninX andV is openinY}

Then B is basis for a topology ah x Y.

Proof: The first condition is trivial, sinc& X Y is itself a basis element.
The second condition is almost easy, since thesettion of any two
basis element/; X V; andU, X V, is another basis element. For

U; x vp)HnU, xV,) = (U nUy) x (V; nV,), and the later set is a
basis element becausen U, and (V; nV,) are open inX andY,
respectivelym
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Definition 1.2.2.23: Let X andY be topological spaces. The product
topology on sek X Y is the topology having as basis the collectoaf

all sets of the fornt/ x VV, whereU is an open subset af andV is an
open subset df.

It is easy to check that B is not a topology iteslX x Y.
You may now ask, what if the topologies ¥randY are given by basis?
The answer to this question is in what follows.

Theorem 1.2.2.241f B is a basis for the topology ot andC is the
basis for the topology or, then the collection

D ={BXxC: BeEBand(C €}
is a basis for the topology oh x Y.

Proof: You can use proposition 3.2. Given an operigaif X X Y and

a point(x,y) € X x Y of W, by definition of the product topology, there
exists a basis elemebtx V such that(x,y) e U x V c W. SinceB
and C are bases forX and Y, respectively, you can choose an
elementB € Bsuch thatx € Bc U and an elemen€ € C such that
yeCcV.So(x,y)EB x CcU xV cW. Thus the collectiorD
meets the criterion of proposition 3.2.3a0s a basisok X Y. m

Example 1.2.2.25 You have the standard topology Rf The product
topology of this topology with itself is called tiroduct topology on

R x R = R2. It has as basis the collection of all productspén sets of
R, but the theorem we just proved tells us that timech smaller
collection of all productga, b) x (c,d) of open intervals ifR will also
serve as a basis for the topologyR¥t. Each such set can be pictured as
the interior of a rectangle iR?. It is sometimes useful to express the
product topology in terms of subasis. To do this, just define certain
functions called projections.

Let m;: X XY - X be defined (pointwise) by the equation
m((x,y)) =x. Let m,: X XY - Y be defined by the

equatiom,((x,y)) = y. The mapsr, and m, are the projections of

X X Y onto its first and second factors, respectively.

The wordonto is used because they are surjective (unless ortleeof
spacesX or Y happens to be empty, in which cdsex Y is empty and
your whole discussion is empty as well).

If U is an open subset of, thenn;1(U) is precisely the sdfl x Y,
which is open in¥ x Y. Similarly, if V is open inY, thenm; (V) = X X

V, which is also open iX X Y. The intersection of these two sets in the
setU x V. This fact leads to the following theorem.

10
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Theorem 1.2.2.26The set
S = {n{Y(V):Uisopenin X} U {m;1(V): Vis openinY }
is a subbasis for the product topologyXorx Y.

Proof: Let t denote the product topology on x Y, let 7, be the
topology generated by§. SinceS c t then arbitrary unions of finite
intersections of elements Sfstay int. Thust, c 7. On the other hand,
every basis elemerit x V for the topologyr is a finite intersection of
elements of, since

UxV = n'(U)n n;2(V)
ThereforelU X V € 1y, sot c 1, as wellm

1.2.3 The Subspace Topology

Definition 1.2.3.1: Let X be a topological space with topologylf Y is
a subset ok, the collection

ty ={YnU:Uert}
is a topology orY, called the subspace topology. With this topoldgy.
is called a subspace &f, it's open sets consists of all intersection of
open sets of withY.

Lemma 1.2.3.2 If B is a basis for the topology df the collection
By ={BNY:B € B}
is a basis for the subspace topolog¥in

Proof: LetU be an open set &f andy € U nY. By definition of basis,
there existsB € Bsuch thaty e Bc U. ThenyeBnYcUnY. It
follows from proposition 3.2 thatyis a basis for the subspace topology
onY.m

When dealing with a spacé and a subspacgé of X, you need to be
careful when you use the term open set. The quesido you mean an
element of the topology df or an element of the topology &? The
following definition is useful. I is a subspace df, the setU is open
in Y (or open relative td’) if it belongs to the topology of: this
implies in particular it is a subspacelaf There is a special situation in
which every open set Ii is also open iX.

Lemma 1.2.3.3 LetY be a subspace d&f. If U is open inY andY is
open inX thenU is open inX.

Proof: SinceU is open inY, U =V nY for someV open inX. SinceY
andV are both open i, soisVNY. m

11
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Proposition 3.3.4 Let A be a subspace df and B a subspace of.
Then the product topology ofi x B is the same as the topologyx B
inherits as a subspaceXix Y.

1.2.4 Closed Sets and Limit Points

Now that you have a few examples at hand, you caceed to see some
of the basic concepts associated with topologipats. In this section,
you shall be introduced to the notion of closed,seterior, closure and
limit point of a set.

Definition 1.2.4.1 (Closed Sets)A subsetd of a topological spaceis
said to be closed K\A, the complement of in X is open.

Example 1.2.4.2 The subset[a,b] of R is closed because its
complementR\[a, b] = (—o0, a) U (b, )is open. Similarlyja, +) is
closed.

Example 1.2.4.3 Consider the following subset of the real line:
Y =1[0,1] U (2, 3), in the subspace topology. In this space, th¢(sé{

is open, since it is the intersection of the opeh—s%,% of R with Y.
Similarly, (2,3) is open as subset daf. Since[0,1] and (2,3) are
complement ir¥’ of each other, you can conclude that both areedles
subset of.

The collection of closed subsets of a sp&cleas properties similar to
those satisfied by the collection of open subskfs o

Theorem 1.2.4.4 Let X be a topological space. Then the following
conditions hold:

1. @andX are closed.
2. Arbitrary intersection of closed sets is closed.
3. Finite unions of closed sets are closed.

Proof: Applying De Morgan'’s laws:

| 4o =)o

a€l a€l

[ )4e = Jenvaw

a€l a€l
|
When dealing with subspaces, you need to be vesfidan using the
term open set. The following theorem is very impott

12
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Theorem 1.2.4.5LetY be a subspace &f Then a sed is closed inY
if and only if it equals the intersection of a @dsset ofX with Y.

Proof: Assume thah = C nY, whereC is closed inX, thenX\C is
open inX, so that(X\C) NnY is open inY, by definition of the subspace
topology. But(X\C) nY = Y\A. HenceY\A is open inY, so that4 is
closed inY. Conversely, assume thatis closed inY. The setX\U is
closed inX, andA =Y n (X\U ), so thatd equals the intersection of a
closed set ok andY, as desired.

Remark 1.2.4.6: A set that is closed in the subspdtemay not be
closed inX. So the question now is, when is a closed setsmbapac
closed in the spac&? The next theorem provides an answer to this
guestion.

Theorem 1.2.4.71letY be a subspace &t If 4 is closed irY, andY is
closed inX, thenA is closed inX.

Definition 1.2.4.8 (Closure and Interior of a Set):SupposeX is a

topological space addc X. The interior of A is the set given by
intA=U{U € X:U c Aand U is open}

That is, thent(A) is the union of all open sets containediin

The closure off denoted byl (A) or A is defined as the intersection of
closed sets containingy Clearly, the interior oAl is an open set and the
closure ofA is a closed set; furthermore,

AACACA
If A is open, thed = A°; on the other hand, # is closed, thed = A.

Proposition 1.2.4.9 LetY be a subspace df. Let A be a subset of.

Let A denote the clusure dfin X. Then the closure of inY isAN'Y.
Another useful way of describing the closure ofed is given in the
following theorem.

Theorem 1.2.4.10LetA be a subset of the topological space
a. Therr € A if and only if every open sét containingx intersectA.

b. Supposing the topology ¢f is given by a basis, thene 4 if and
only if every basis elemeiBt containingx intersectsA.

Proof: Consider the statemefit). It is a statement of the forflh< Q.
Transforming each statement to is contrapositiwesgyou the logical

equivalencgnot P) < (not Q). Explicitly, x € 4 if and only if there
exists an open sét containingx that does not intersedt

13
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In terms of this assertion, the theorem is eagyréwe. Ifx is not in4,

the setX'\A is open and contains and does not intersedt as desired.
Conversely, if there exists an open Hetontainingx which does not
intersectd, thenX\A is a closed set containing By definition of the

closured, the se\U must contaim; thereforex € 4.
Part(b) follows from the definition of basim.

Definition 1.2.4.11:Let X be a topological space. Lete X andV be a
subset ofX containingx. V is said to be a neighbourhoodxofif there
exist an open sell of X such thatx € X c V. The collection of all
neighbourhoods of is denoted bw (x).

Proposition 1.2.4.12:L et X be a topological space amdcE X. Then

1. N(x) is nonempty;

2.1fV € N andV c A thend € N(x);

3. Afinite intersection of neighbourhoodsxofs a neighbourhood of.

Proposition 1.2.4.13 Let X be a topological space. LBtbe a subset of
X. ThenU is open if and only iV € N(x) for everyx € U.

Lemma 1.2.4.141f A is a subset of a topological spatethenx € 4 if
and only if every neighbourhood ofintersects. i.e.,x € A if and only
ifforal Ve N(x),VNnA = 0.

Proof:(=) Letx € 4, and letV € N(x). SinceV € N(x), there exisU
open such that € U c V. It is enough for you to show thdtn A = @.
Supposd) N A = @, it implies thatd ¢ U¢ andU¢ is closed sinc# is

open, thus4 c U¢, which implies thak € U¢, which is a contradiction.
HenceU NA = Q.

(<) Assume that for every neighbourho@dof x, VN A = @. You
have to show that € A. Supposex € 4, this implies thak € A which
is open (becausd is closed) and sd € N(x), and by hypothesis,
A NnA= @. This is a contradiction, hengec A. m

Example 1.2.4.15 Let X be the real lineR. If A = (0,1], then
A=1[01]B = {:nx1} thenB = BU{0LIfC = {0}U (1,2)
thenC = {0}U[1,2],Q0 = R.

Example 1.2.4.16Consider the subspade= (0, 1] of the real lineR.
The setd = (0, %) is a subset of Y. Its closure in R is the [ggtl] and

its closure i is the sedd = [0,%] nY = (0, %].

14
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Definition 1.2.4.17(Limit Points). Let A be subset of a topological set
X and letx € X. x is said to be a limitpoint (or cluster point orinpoof
accumulation) of A if every neighbourhood ofintersects4 in some
point other than that itself.

x € X is a limit point ofA if forall V e N(x),Vn(Ar{x}) =0 orx
is a limit point of A ifx belongs to the closure df\{x}. The pointx
may lie in4 or not.

Theorem 1.2.4.18Let A be a subset of the topological spAce.et A
be the set of all limit points of.
Then

A=AUA.
Proof: Clearly,A U A" c A. To prove the reverse inclusion, i€ 4. If
x happens to be id, it is trivial thatx € AU A’. Suppose that € A.
Sincex € A°, this implies that every neighbourhobdof x intersectsA.
Becausex € A, the setl intersectsA in a point different fronx. Then
€ A°, so thatx € A U A° as desiredm

Corollary 1.2.4.19 A subset of a topological space is closed if anly
if it contains all its limit points.

Proof: The set4 is closed if and only il = 4, and the later holds if
and only ifA° c A.m

u::1.3 Self — Assessment Exercise(s)

1.In the following, answer true or false.

(a) The collection
To = {U : X\UisinfiniteoremptyorallX}
Is a topology inX.

(b) The unionU t, of a family{z,} of topology on X is a topology on
X.

(c) The countable collectioB = {(a,b): a < b,a,b € Q}is a basis
for a topology orR.

(d) If A is a subset of a topological spateand suppose that for each

x € A, there exists an open déisuch thaik € U c A, thenA is an open
set inX.

15
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2. LetR be with the standard topology and4et R. ThenA is open in
R if there exist an intervdl such thaf c A. Fora, b € R, which of the
following forms is the interval

(@)1= (a,b)
(b)I = (a,b]
()1 =[a,b)
(d)I = [a,b]

3. If t is a topology on a sét, which of the following is not true about
T?

(a) Finite union of elements ofis int.

(b) Finite intersection of elementsofre int.
(c) The empty sab and the whole séf are int.
(d) Arbitrary intersection of elements ofire int.

4. Answer true or false. The collection
B={UxV:UisopeninX andV is openinY }is
(a) a topology on the product spate Y.
(b) a basis for a topology on the product spécey.

5. Letm; : X XY - X andm,: X X Y — Y be the projection maps
m(x,y) = x andm,(x,y) = y. The collection
S = {n;*(V):Uisopenin X} U {m;1(V):VisopeninY}

Is for the product tapodnX X Y.
(a) a collection of open sets

(b) a basis

(c) a sub — basis

(d) a topology

6. Let R be endowed with the standard topology. Consider g6t
Y = [-1,1] as a subspace &. Which of the following sets are open

>
I
-
| =
A
=

<

A
)
I

C=x:
D=x:
(8) A4, B and C only
(b) A only

(c) B and C only
(d) D only.

IA
=
_R R |

<
<

N[RN RN RPN

A
=
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7. With the standard topology dR. Which of the sets in questidh
above are open iR?

(8) A4, B and C only

(b) A only

(c) B,C and D only

(d) D only.

8. Let R be endowed with the standard topology. Consider g6t
Y = [-1,1] as a subspace & Which of the following sets are closed

A:x:%<|ﬂ

B=x:=-< [x]
C=x:-<|x|
D=x: %S [x|
(@) A,B,Cand D
(b) B and C only

(c) B,C and D only
(d) D only.

[SYNE IS

N
_ R R |

N A CINA

9. With the standard topology @&. Which of the sets in questidh
above are closed R?

(8) A4, B and C only

(b) B, C and D only

(c) B and C only

(d) D only.

10. ForA c X, a topological space, and a boundary afenoted byA,
defined by:

0A = ANX\A.

The following are true;

1. A° anddA are disjoint, andl = A° U 0A.

2.0A = Aif and only ifA is both open and closed.

3.U is open if and only iU = U\U.

Justify.

11. Hence or otherwise compute the boundary amdiantof each of the
following subsets oR?

@A={(xy):y=0}

(B)B ={(x,y): x>0andy = 0}

(c)C=AUB

(d)D = {(x,x) : xisrational}

17
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12. If R, the real line is endowed with the indiscrete togy. Let
A = [0,1). What isA?

(@)[0,1]

(b) R

() [0,1)

(d)o

13. If R, the real line is endowed with the usual metrpotogy, and let
A =(0,1). What is0A?

@R

(b) [0, 1]

(c){0,1}

(d) (0,1]

s

.

The definition, examples, and basic concepts obltagical spaces, such
as the basis for a topology, closed sets, open thetsnterior, closure,
neighborhood, and limit point of a set, have aéitbeovered in this unit.
You have seen some examples and proved some results

Having gone through this unit, you now know that;

1.4 Conclusion

1.5 Summary

(1) a topology defined on a s&tis a collectiont of subsets ok
satisfying

(&) Thesekitselfandthemptysepareint

(b) TheseXisint

(c) Arbitrary unions and finite intersections of elerteeaft are int

(i)  a topological space is a pdik,t) consisting of a seX and a
topologyz defined on it.

(i)  the elements of a topology dhare called open sets.

(iv) if 7; andt, are topologies defined aX, thent; is said to be
finer thatr, if 7, € 7. In other words, we say thaj is coarser
thant;.

(iv) an arbitrary intersection of topologies is alsooiogy.

(v) a basis for a topology on X is a collectionB of subsets ok
(i.e., basis elements) such that

(@) for eachx e X, there existsB € B such thatx €B, or
equivalentlyX = UpgegB.

18
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(b) if xeX and By,B, € B such thatx € B; N B,, there exists
B; € B such thak € B; € B, N B,.
(vii) the topology generated by a basis B is gilsgn
t:={U€ X: U =0@orif x €U,there exists B €
B such thatx € B c U}
(viii) The collection
B:={UxV:UisopeninX andV is openinY}
Then B is basis for a topology ah x Y.

(ix)  The collection
S = {n;*(V):Uisopenin X} U {n;1(V):VisopeninY}
is a subbasis for the product topology)orx Y, wherer; : X X
Y - X andm,: X X Y — Y are the projection maps defined
(pointwise) onX X Y by, ((x,y)) = x andm,((x,y)) = y.
(x) if Y is a subset of a topological spacg t), the collection
y ={YnU:Ue€rt}
is a topology or¥, called the subspace topolodyis called a subspace
of X; it's open sets consisting of all intersectionopen sets ok with
Y.

(xi) A subsetd of a topological spac¥ is said to be closed i if
X\A (the complement oA in ) is open.

(xii) if X is a topological space, then

€) @ andX are closed.

(b)  an arbitrary intersection of closed sets @setl.

(c) afinite union of closed sets is closed.

(xiii) if Y is a subspace df, then a sed is closed inY if and only if it
equals the intersection of a closed séX inith Y.

(xiv) if A is a subset of a topological spatethen the interior of,
denoted by’ is the union of all open sets containeddinwhile
the closure ofl denoted by is the intersection of all closed sets
contained iQ.

(xv) if V is a subset of a topological spatendx € Xsuch thatx €
V, thenV is called a neighbourhood afif there exists an open
setU of X such that oK such thak € X c V.

(xvi) N(x) denotes the collection of all neighbourhoods.of

(xvii) if A is a subset of a topological spatean elemenik of X is
called a limit point ofA if for all
VENX),VNn(Ar{x}) = 0.

(xviii) a subset of a topological space is clogeanid only if it contains
all its limit point.
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¥
Discussion Forum

Discuss the topologies on a set X that contaireetietements.
Feedback

There are 29 topologies on a set X that contaireetlelements. These
topologies shall be discussed in class.
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UNIT 2 SEPARATION AXIOMS
Unit structure

2.1 Introduction

2.2 Intended Learning Outcomes (ILOS)

2.3  Axioms of Separation
2.3.1 The First Separation Axiofn, — space)
2.3.2 The zeroth Separation Axiqm, — space)
2.3.3 Third Separation Axiom; — space
2.3.4 Regular Space
2.3.5 Fourth Separation Axiqm, — space)
2.3.6 Continuous Functions
2.3.7 Homeomorphism
2.3.8 More on Separation Axioms

2.3  Self-Assessment Exercise(s)

2.4  Conclusion

2.5 Summary

2.6  References/Further Reading

@2.1 Introduction

Your understanding of the notions of closed andnogpets as well as
limit points in the real line or arbitrary metripace can be misleading
when you carry such understanding to topologicalcep For example,
in the spac& andR?, each one-point set is closed. But this fact is no
true for an arbitrary topological space. For if yoonsider the three-
points setX = {a,b,c}, endowed with the sierpinski topology =
{0,X,{b},{a,b},{b,c}}. In this space, the point sgi} is not closed,
because its complemeft, c} is not open. Similarly, the understanding
we have about convergence of a sequence in thelinmlcan be
misleading when you consider an arbitrary topolalgispace. For
example, on the real line, the limit of a sequeifigeexists is unique,
but this is not true in an arbitrary topologicalep. In this unit, you
shall be introduced to the separation axioms, arahtestriction on the
topological structure making the structure closethat of a metric space
(i.e., closer to being metrizable). A lot of sep@m@ axioms are known.
Here you shall study five most important of therhey are numerated,
and denoted by,, 74, 75, T3andz,, respectively.
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@2.1 Intended Learning Outcomes (ILOS)

At the end of this unit, you should be able to;

. define a Hausdorff space and state some of itseptieg.

o prove that in a Hausdorff space, every point sekised.

o define a convergent sequence and show that in adgaifi space,
the limit is unique.

. prove that every metric topology is Hausdorff.

o know five separation axioms and their properties.

Axioms of Separation
Definition 2.2.1.1 Hausdorff Spacdt, — space)

The most celebrated of all the axioms of separaidhe second axiom
of separationt, . It was suggested by the mathematician Felix
Hausdorff, and so mathematicians have come toitcély his name.
Therefore, Topological spaces that satisfy the rsg®paration axiom
will be calledHausdorff space.

A topological space is called lausdorff space if for eachx,y of
distinct points ofX, there exist neighbourhoods andU, of x andy
respectively, that are disjoint. More formallyis Hausdorff ifvV x,y €
X withx = y, there exisU, € N(x), U, e Ny):U, n U, = @.

U Vv

Figure 3.1.1 Hausdorff Space
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As earlier remarked, Hausdorff space areFor example, consider the
real lineR, with the standard topology, that is the topolagispaces
whose open sets are of the fo(m b), a,b € R with a < b (the open

intervals). Take for instance the poén,tise R, the open intervale%,i)
5 7 . 1 1 . 11

and (E’E) are neighbourhoods q}hnd > respectively anc(g,g) N

(5 7) = @. In fact, you know that the standard topologiRisfinduced

12”12

by the metrial defined by

d(x,y) = |x =
for all x,y € R. And for eachX € R, the open — ball centered afx
with radiusr > 0 is given by

Bx,r)={yeRidx,y)=|x—y| <71} =(x—1,x +1)
Thus for eachx,y € R, with x = y, just choosex = i,d(x,y) >0
thenxe (x—r,x +r)=B(x,r) andye (y—r,y +r) =B(y,r)
andB(x,r) N B(y,r) = 0.

The above exercise can be done in an arbitraryespaétty the metric
topology. and this gives you the first example atuddorff spaces.

Example 2.2.1.2:Every metric topology is Hausdorff.

Example 2.2.1.3Every discrete space is Hausdorff.

To see this, LeX be a discrete topological space, andx/at € X with
x = y. TakeU, = {x}, andU, = {y}, thenU, andU,, are open sets in
the discrete topology, arid, N U, = .

Exercise 2.2.1.41 et Q be the set of rational numbers with the standard
topology of R, and letQ°® denote the set of all irrational numbers also
with the standard topology &. Is Q andQ° Hausdorff?
The following are some spaces that are not Haulsdorf

Example 2.2.1.5:The real lineR with the finite complement topology
is not Hausdorff.

To see this, recall first that the finite complermt&pology is defined by
77 = {U c X : X\Uis either finite or the whole setX}

Now supposeR with the finite complement topology is Hausdotffen
for everyx,y € R there exists open neighbourhotdsU, of x andy
such that

(R\U, ) U (R\U,) =R
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Which means thaR is finite as a union of two finite sets, otherwitee
sets U, and U, would be empty sets and thus are no longer
neighbourhoods of andy respectively, this is a contradiction. HerRe
with the finite complement topology is not Hausdorf

Example 2.2.1.6LetX = {a, b, c} endowed with the topology
T, = {0, X,{b},{b, c},{b,a}}

This is easy to see, becausend c are distinct points iX and there are
no neighbourhoods @f and ¢ with empty intersection.
The following important results makes Hausdorffapateresting.

Theorem 2.2.1.7:Let X be a Hausdorff space, then for alE X, the
singleton sefx}is closed.

Proof: Let x € X be arbitrary and sed = {x}. It is enough to show
thatA = A. You know thatd c 4, so it is left for you to show that
A c A. You can do this by contraposition (i.e., you knihat if A c B,
then for everyy € A,y € B; the contraposition is that ¥ € B then
y & A). Now, suppose that € A, i.e.,y = x, sinceX is Hausdorff,
there exist/, € N(x), U, € N(y) such that/, n U, = @. This implies

thatUynA= 0, ie.,y ¢ A. Hence A c A. Therefore, both inclusions
A c A andA c Agives you thatl = A i.e.,A = {x}is closedm

2.3.1 Sequences

In your course of elementary analysis, you canlirébat a sequence
{x,} of elements oR is said to converge to € R if given anye > 0,
there existV := N(e)N such that for ath > N,

|xn - xOl < 6(1)

The inequality(1) is equivalent to say that for all> N, x, € (x —
€, x, + €). Also you know that ifX is a metric space, with a metug
then a sequende;,,} in X converges ta, € X if given anye > 0, there
existsN: = N(e) such that for ath > N,

d(xp,x9) <€(2)

That is to say that for every> N, x,, € B;(x, €).

Suppose, now that you sét= (xo—¢€,x9+€), or U= B;(x,€)
accordingly, as you refer to the real liReor the metric spac#, you
will have thatU is a neighbourhood of, and depends oan> 0. Since

e > 0 is arbitrary, therU is also arbitrary. This is now of great help to
us to define convergent sequence in an arbitraggltgical space since
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absolute value or distance does not make sensenirarbitrary
topological space, but the concept of neighbourhigotheaningful in
any topological space. Thus in an arbitrary topmialgspace you have
the following definition.

Definition 2.2.2.1 (Convergent sequence)tet X be a topological
space, lef{x,} be a sequence of elementsXof Then{x,} is said to
converge tax € X if for all neighbourhood#/of x, there existsV € N
such that for ath > N, x,, € U. That isx,, — x € X asn — oo if for all
U € N(x), there exist&/ € N such that for ath > N, x,, € U.

Recall that in the study of real linR, and in a metric spack, we
proved that the limit of a convergent sequefxgg is unique. This is not
true in an arbitrary topological space as showthéfollowing example.

Example 2.2.2.2: Let R the reals be endowed with the finite
complement topology, and I€k,} be a sequence of elements Rf

defined byx, = % forn > 1. If this sequence converges, every element
of R is a limit of this sequence.

To see this, Let € R, and suppose,, — x, then by definition, let/ be
a neighbourhood of, there exist& € N such that for ath > N, % eU

otherwise% eUcforalln=N (i.e.,{%} does not converge tg). This

would mean that infinitely many points of the seggeeare contained in

a finite set (sincé/ belongs to the finite complement topology means
thatU°¢ is a finite set while it is assumed tli&t is not the wholeR itself
which would mean thdi = @and thus would not be a neighbourhood of

x). This is impossible, thus must be the limit of the sequen{% and
sincex is arbitrary,{%} converges to every elementRf But you know

vividly well that in the real lindR, the limit of the sequendglis 0. So

you see that convergence of a sequence actualgndspn the type of
topology imposed on the space.

The next result tells us more about a sequenceHauwsdorff space. It
says that in a Hausdorff space, the limit of a ®gent sequence is
unique. that is why you have terms like uniquergddsnits on the real
line with the standard topology and in an arbitnagtric space, because
they are Hausdorff.

Theorem 2.2.2.3:.Let X be a Hausdorff space, then a sequence of points

of X converges to at most one pointXof(i.e., if a sequencx, } in X, a
Hausdorff space, converges, the limit is unique.)
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Proof: Let X be a Hausdorff space, and let,} be a convergent
sequence of elements &f Assume thak, converges toc andy, you
have to prove that = y. Suppose fox = y, sinceX is Hausdorff,
there exidll, € N(x), andU, € N(y)such that/, n U, = @.U, € N(x)
and x, — ximplies that there exist®y; € N such that, € U, for
alln > N;. Also U, € N(y) and x, »y implies that there exists
N, € N such that, € U, for alln = N,. Now, choos&V: = max{N;,
N,} thenxy € U, N U, = @(a contradiction). Hence = y. m

Having proven some of the basic results of Hau$dgphces (i.e.,
T, — space), you will now be introduced to all the other axie of
separation.

2.3.2 The First Separation Axiom(t,; — space)

Definition 1.2.3.1(t; — space): A topological spac& satisfies the first
separation axiomr; if each one of any two points of has a
neighborhood that does not contain the other pdintisX is called a
T, — space. That isX is 7, if for all x,y € X with x = y, there exist
U, € N(x) such thaty € U, . Another name for a,; — space is a
Fréchet space.

Figure 3.2.1: (t; — axiom)

Theorem 2.2.3.2:A topological space& satisfies the first separation
axiom

(1) if and only if all one-point set if is closed.
(i)  ifand only if every finite set iX is closed.

Proof:(i) (=) Suppose& ist; , and letx € X. By ther; axiom, for all

y€X,x =y, iey€ X\{x}, there exist an open s#{, € N(y) such
thatx ¢ U,. This implies thadl, c X\{x}. X\{x} contains an open set
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Uy, that tells us that it is open, and so its compier(X\{x})c =
{x}must be closed.

(=)SupposeX is a topological space in which all singletons @osed
and letx,y € X such thak = y, thenX\{x}is open and containsand
x & (X\{x}). This implies thaX is .

(i) (=) Suppos« is 14, then every singletofi}is closed. So also is a
finite set, because it is a finite union of singtet which are closed sets.
(i) (&) Suppose thak is such that finite sets are closed, and let
x,y€X,x =y then {x} is a finite set, (X\{x}) is an open
neighbourhood of and does not contain Hence X ist;.

Example 2.2.3.3:Every Hausdorff space ig. But the converse is not
true.

Clearly, If you consider a seXt =R, the real line with the finite
complement topology, thek is at; — space. Since ifx,y € X,U, =
X\{y}is an open set containingthat does not contaip, also,U, =
X\{x}is an open set containingthat does not contain You have also
seen in example 3.3 thi& with this topology is not Hausdorff. Hence,
we have given an example ot a— space that is not Hausdorff.

2.3.3 The zeroth Separation Axiom(ty — space)

The zeroth separation axiom appears as a weakerstdsépatation
axiom. It states as follows:

Definition 2.2.4.1(ty — space): A topological spaceX satisfies the
Kolmogorov axiom or the zeroth separation axigymf at least one of
any two distinct points of X has a neighborhood: #h@es not contain
the other point.

Spaces that satisfy the zeroth separation axiontherKolmogorov
axiomr, are regarded ag — space. That is;X ist, if for all x,y € X
with x = y, there exist an open sétsuch that either € U andy & U
ory €U andx ¢ U. In other words, a topological spakeis called a
7o — space if and only if for any two distinct points, y of X (V x, yeX)
there is an open subsetslbivhich contains one but not the other.

Example 2.2.4.2:Everyt, space ig, SO also is every, space. But the
converse is not true in each caBgample 2.2.4.3:Let X = {a, b} be
endowed with the topology= {X, @, {a}}. Then X ist, but notz,.

Proposition 2.2.4.4:Let X be a topological space. The following
properties o are equivalent:
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(@)X isty;
(b) any two different points of has different closures.

2.3.4 Third Separation Axiom.t3 — space

Definition 2.2.5.1(t3 — spaces): A topological spac& satisfies the
third separation axiom if every closed setXinand every point of its
complement have disjoint neighborhoods. spaces are topological
spaces that satisfy the third separation axiomt Bh¥ ist; if for every
closed sef c X and every € X such thatc ¢ F there exists open sets
Up, U, c X With F c Ug,x € U, such that/z N U, = @.

F is closed in X

o)

Figure 2.2.5.113 — axiom

2.3.5 Regular Space

Definition 2.2.6.1 (Regular space)A topological spac# is said to be
a regular space if for any closed getf X and any poink € X\F, there
exists open setd;, U, c X such thak € U,, F c Ur andU, N Uy = 0.
If a topological spac& is regular and is & space, theX is at; space.
On the other hand, if X is@ space and g space, the’ is regular.
Example 2.2.6.2Any metric space is regular.

Example 2.2.6.3Examples of regular spaces &¢7Z, Q, Q¢ andR?2.
Example 2.2.6.4:Every regular; spaceX ist, (Hausdorff).

2.2.7 Fourth Separation Axion(z, — space)

Definition 2.2.7.1(t4 — space): A topological spaceX satisfies the
fourth separation axiom if any two disjoint closszts inX have disjoint

neighborhoods. Topological spaces that satisfy ftheth separation
axiom are called, spaces. ThuX is ar, if for any two closed setg,
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F c X with ENnF = @there exists open setd;, Ur € X such that
E c UE,F c UF andUEﬂUF = Q)

Figure 3.7.1:1, — axiom

Example 2.2.7.2 Any indiscrete topological space satisfies thertio
separation axiom. This is also an example of space that is nat,.

Definition 2.2.7.3(Normal Space)A topological spac¥ is normal if it
satisfies the first and the fourth separation asiom

Example 2.2.7.4:Every metric space is normal.
2.3.7 Continuous Functions
Definition 2.2.8.1 (Continuous Function):Let X andY be topological

spaces. A functiorf: X — Y is said to be continuous if for each open
subsetJ, of Y, the seff ~1(Uy) is an open subset &f where

fHUy) = {(x €X: f (x) € Uy}

Continuity of a function depends not only on thedtion alone, but also
on the topologies specified for its domain and eang

Theorem 2.2.8.2 If the topology on the rangé is given by a basi8,
then f is continuous if and only if any basis eleménhe B, the set
f~1(B) is open inX.

Proof:(=) Let the topology be given by basi®, and suppose thit

is continous, then for aB € B, f~(B) is open inX since eactB € B
is open.
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(&) Suppose that eadh € B, f~1(B) is open in X, you have to show
thatf is continuous. So take an open8et Y, then you can writ& as
a union of basis elements, i.e.,
V = U Bi

iel

Therefore,
o= e

iel
So thatf ~1(V) is open as a union of the s¢ts!(B;), i € I, which are
open by assumptiom

Example 2.2.8.3:Any constant function is continuous.

Example 2.2.8.4:Consider a real valued function of real variable
f:R — R. In analysis one defines continuity wa- § definition. As
you would see, the — § definition and your their equivalent.

Theorem 2.2.8.5:Let X andY be topological spaces, I¢gtX — Y.
Then the following are equivalent:

(1) fis continuous.

(2)  For every subset of X, one hag (4) c f(A).

(3) For every closed sBtof Y, the seff "1(B) is closed inX.

(4) For eachx € X and each neighbourho®dof f(x), there exists a
neighbourhood of x such thayf(U) c V.

If the condition in(4) holds for the poink, we say thaf is continuous
atx.

Proof: We show thafl) = (2) = (3) = (1) and thai(1l) = (4) =
.

(1) = (2).Assume thaif is continuous. Le#d be a subset of. We

show that ifx € 4, thenf(x) € f(A). Letx € 4 and letVbe an open
neighbourhood of (x). Thenf~1(V) is an open subsét containingx.

So f~1 (V) N A = @becausex € A. Let y € f~1(V) N 4, then f(y) €
V N A, thusf(x) € f(A), as desired.

(2) = (3). LetB be a closed subset BfandA = f~1(B). We wish to
show thatd is closed inX. We show tha#l = A. By elementary set
theory, we havg(4) = f(f “%(B)) c B. Therefore, ifc € A, then

f)EfAcf(A)cB=8
so thatf (x) € B, thusx € f~'(B) = A, as desired.
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(3) = (1). Let V be an open subset df. Set B =Y\V. Then
f~Y(B) = X\f (V). Now B is closed set of, thenf~1(B) is closed
in X by hypothesis, so th#t"1(V) is open inX, as desired.

(1) = (4). Letx € X and letV be an open neighbourhood ffx).
Then the set/ = f~1(V) is an open neighbourhood af such that
f(Uu)cV.

(4) = (1). LetV be an open set &f. Letx € f~1(V). Thenf(x) € V,
so that by hypothesis there is an open neighborfigodf x such that
f(U,) c V. ThenU, c f~1(V). It follows thatf ~1(V) can be written as
the union of the open sdifg, so that it is operm

2.3.8 Homeomorphism
You are familiar with the following definitions abbfunctions.

Definition 2.2.9.1: Let X and Y be sets, the mag: X — Y is a
surjective map or just a surjection if every elein@hnt is the image of
at least one element &f That is,f is a surjection if for alj € Y, there
existsx € X such thaf (x) = y.

A map f: X — Y is an injective map, injection or one-to-one map i
every element of is the image of at most one elemenkofThat isf is
an injection if for ally € Y, there exists a unique € X such that

fx)=y.

A map is a bijective map, bijection or invertibleam if it is both
surjective and injective.

Definition 2.2.9.2: Let X andY be topological spaces; LEtX — Y be
a bijection. If bothf and its invers¢ ~1:Y — X are continuous, thefi
is called a homeomorphism.

Definition 2.2.9.3 (Equivalence Relation)Let X be a set an® be a
relation onX. ThenR is called an equivalence relatioriRfis

(a) SymmetricxRx for allx € X
(b) Reflective: IfxRy thenyRx for all x, y € X.
(c) Transitive: IfxRy andyRz thenxRz for all x, y, z € X.

Definition 2.2.9.4 Two topological space®¥ andY are homeomorphic
if there exists a homeomorphigimX — Y between the spaces.

Theorem 2.2.9.5:Being homeomorphic is an equivalence relation.

Suppose thaf: X — Y is an injective continuous map, whefeandY
are topological spaces, L&t be the image sef(X ), considered as a
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subspace of; then the functiory®: X — Z obtained by restricting the
range off is bijective.

Definition 2.2.9.6:1f f°: X — Z is an homeomorphism, we say that the
map f: X — Yis a topological imbedding or simply an imbeddirfgko
inY.

Example 2.2.9.7:The functionf: R — R given byf(x) =3x+1is a
homeomorphism.

Example 2.2.9.8:The functionF: (—1,1) — R given by
F(x) =

- - 1 - xz
is @ homeomorphism.

Example 2.2.9.9: The identity mapg: R; — R is bijective and
continuous, but it is not a homeomorphidexample 2.2.9.10 Let S?
denote the unit circle,

St={(xy): x*+y*=13
considered as a subspace of the pRAgand letF: [0,1] — St be a
map defined by (t) = (cos 2nt,sin 2mt). The mapF is bijective and
continuous, buf~! is not continuous.

Theorem 2.2.9.11:Let X,Y and Z be topological spaces. f: X — Y
andg:Y — Z are continuous, then the mgp f: X — Zis continuous.

Proof: LetW be an open set if),

(e HTTW) = frogTtW) =f1 (g7 (W)
Since f and g are continuousg~'(W) is open inY implies that
f~Y (g t(W)) are open itX. Thus,g o f is continuous owX.

Theorem 2.2.9.12 (Restricting the domain) If f:X —Y s
continuous, and ifA is a subspace of, then the restricted function
fla: A — Y is continuous.

Proof: You have to show thaf|A"1(W)is open in the subspace
topologyz, onA induced by the topology on X for any open sét/ in
Y. So letW be an open set n. By the continuity off onX, f~1(W) is
open inX and
Fla7tW) = {x € A: f|4(x) € W}
={x €A f(x) e W}
=An{x eX:f(x) e W}
=Anft(w)
which implies thaf|,~* (W)open in the subspace topology
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Theorem 2.2.9.13 (Restricting or expanding the rarg): Let f: X —
Y be continuous.

1. If Z is a subspace df containing the image s¢{(X), then the map
g: X — Z obtained by restricting the rangefofs continuous.

2. If Z is a space having as a subspace, then the functionX — Z
obtained by expanding the rangefaf continuous.

Proof: 1. You know that sinc& is a subspace of, the subspace
topology ont; induced orZ by the topology onY is given by

o, ={VNZ:V et}

Now, letV be open it (meaning thaZ NV is open in ), you have to
show thatg~1(Z n V) is open inX. You can compute as follows:
glZnV)={xeXigx)=fX)EZNV}={xeX:f(x)EV}
=f7'(V)

2. Using similar argument on the subspace topoésgin (1) above, let
W be open irZ, thenY n W is open inY (becausé’ is a subspace df)
and
h=1(W) = {x € X:h(x) € W}
={x €X:f(x) e W}
={xeX:f(x) eYNnW}
= Iy nw)
is open inX becausef is continuous ang~'(Y n W) is open inX.
Henceh is continuouss

Theorem 2.2.9.14 (The pasting lemma)et X = AU B, whered and
B are closed inX. Let f:A—Y and g:B — Y be continuous. If
f(x) = g(x) for everyx € An B, then the functiorh: A — Y defined

by
f(x), if x€eA
h(x) = {g(x), if X €E€B
is continuous.
Proof: Let f be a closed set In.
h™Y(F) = {x € X: h(x) € f}
={x€eA:f(x)eEF}U{xeB:g(x)EF}

=fT'(F)Vg™'(F)

f~1(F)is closed inX because it is closed ihandA is closed inX, also
g 1(F) is closed inX since it is closed i® andB is closed inX. Hence
h~1(F) is closed inX as a finite union of closed setsXn Hence,h is
continuous.
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Example 2.2.9.151 eth: R — R be defined by

X
h(x) =12’ if x=0
x, if x<0

thenh is continuous.

To see this, lefl = [0,+) andf: 4 — R, defined byf(x) = g also

let B = (—,0] andg: — R, defined byg(x) = x. Observe thatt and

B are closed sets iR andR = AU B.f andg continuous functions,
AUB ={0} and f(0) = g(0) = 0. Hence by pasting lemmd is

continuous.

Theorem 2.2.9.16 (Maps in products)Let f:Z — X x Y be given by
f(2) = (f1(2), ()

Thenf is continuous if and only if the functions

fi:Z = Xandf,:Z —>Y

are continuous.

The mapg; andf, are called coordinate functions faf

Proof: Letm;: X XY — X andr,: X X Y — Y be projections maps.

These maps are continuous.
Note that for each € Z,
i@ =m(@)andf() = 1(f(2) |
If f is continuous therf; and f, are continuous as composites of
continuous functions.

Conversely, suppose thgtandf, are continuous. Ldf X V be a basis
element of for the product topology ¥x Y. A pointz is in f~1(U x
V) if and only if f(z) € U x V, that is, if and only iff;(z) € U and
f2(z) € V. Therefore

fAUxV) =) n 1)
Since both of the setg,*(U) and f, (V) are open, so is their
intersection.

2.3.7 More on Separation Axioms

Theorem 2.2.10.1:Let X be a topological space antda Hausdorff
space. Lef: X — Y be a map. If is continuous, then the Graph fof
Graph(f ) = {(x, f(x) : x € X}.

is a closed subset &fx Y.
Proof: Suppos¢g is continuous, you have to show that the grapfi isf

closed. It is enough for you to show that the campnt of the graph of
f is open inX x Y. So letU = (Graph(t))°, and let(x,,y,) € U. This
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implies thaty, = f(x,). SinceYis Hausdorff, there exist open sé¥s
andW;,in Y containingy, andf (x,) respectively such that

M/yo n I/Vf(xo) =0

Since f is continuous atr, (becausef is continuous) andr, and
Wr(x) € N(f(X0)), there existd/, € N(x) such thaif (Uy,) € Wy(x,)-
Take

B= U, X W,

B is a basis element for the product topologyXor Y and for(x,y) €

B, you have thatx € U,, and y € W, . Also x € U, implies that
f (x) € Wy yand soy = f(x), thus(x,y) & Graph(f), which implies
that (x,y) € U. ThusB c U, and soU is open. Hencé&raph(f) is

closed.

Theorem 2.2.10.2 (Urysohn’s Lemma)lLet A and B be two disjoint
closed subsets of a normal spate Then there exists a continuous
functionf: X — I such thayf (4) = 0 andf(B) = 1.

u=:2.4 Self-Assessment Exercise(s)

1. Which of the following spaces is Hausdorff?

(a) The discrete space.

(b) The indiscrete space.

(c) R with the finite complement topology.

(d) X = {a, b} endowed with the topology= {9, X, {a}}.

2. Which of the following spaces is not Hausdorff?
(a) R with the standard topology.

(b) R with the lower limit topology.

(c) R with the metric topology.

(d) R with the finite complement topology.

3. If {x,} be a sequence iR endowed with the finite complement
topology. If{x,,} converges iR then

(a) the limit is unique.

(b) {x,} converges to only two points.

(c) {x,,} converges to one point in R and one point out&de

(d) {x,,} converges to every element®Rf
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4. In the finite complement topology B, let the sequencgx,} be
defined byx,, = n, forn € N. If the limit of the sequence is,
thenx must be

(a) oo

(b) 0

(c) a unique constant

(d) arbitrary inR

5. Which of the following spaces is not metrizable?
(a) Any discrete space

(b) X with the countable complement topology.

(c) R with the standard topology.

(d) R? with the standard topology.

6. Which of the following is not true about spaces?
(a) Every singleton is closed

(b) Every finite set is closed

(c) Every Hausdorff space 3.

(d) Everyr; space is Hausdorff.

7. Let X be a topological space that satisfies the Kolmogaxiom
(70)- Which of the following is not true abok®

(a) Any two different points oX has different closures.

(b) X contains no indiscrete subspace consisting ofpwinots.

(c) X contains no indiscrete subspace consisting of riin@ie one point.
(d) X has an indiscrete subspace consisting of two poinly.

8. LetX be a topological space. Th&ns regular if
(a) X is botht; andt,.

(b) X ist; only

(c) X is bothz, andz;

(d) X ist, only.

9. Which of the following spaces is not regular?
@R

(b) @

(c)z

(d) Every Hausdorff space

(WhereR, Z andQ are with the standard topology &n)

10. In what follows, answer true of false. (Jusyibur claims).
(a) Letf: R — R be defined by
_(x—2, for x<0
f(x)_{x+2, for x=0
thenf is continuous.
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(b) The identity map
id: (X, Ql) — (X, Qz)
if and only ifQ; c Q,, whereQ); and(), are topological structures &n

(c) The functionf:R; — R defined byf(x) = x is continuous,
where R; denotes the lower limit topology oR and R is
endowed with the standard topology.

(d) Letf:R— R; be as defined in (c) above, wiy andR are as
in (c). Then fis continuous.

(e) IfXist,, then it mustbe,.

® Every normal space is both regular and Hau$dor

() Every open and bounded intervéh,b) of R, a<b is
homeomorphic tdR.

(h)  The closed and bounded interi@lb] of R, is homeomorphic to
[0,1]

() X is Hausdorff if and only if the diagond = {(x,x):x € X} is
closed inX x X.

11. Letf: R — R be given by
_(x ifx<1
f(x)_{x+2, if x>1
Is f continuous?
12.Consider the mafx [0, 2] — [0, 2]
(% if x€[0,1)
fG) = {3 —x, if x €[1,2]
Is it continuous (with respect to the topology indd from the real
line)?
13. Let X be the subspace @® given byX =[0,1] U [2,4]. Define
f:X — Rby
(1, if x €[0,1]
fo) = {2, if x € [2,4]

prove that f is continuous.

19

2.5 Conclusion

You learned about Hausdorff, regular, and normatep as well as the
five separation axioms in this unit. The ideas a@ntmuity and
homeomorphism were also studied. You also provedesonportant
results which you have often used in your coursesalysis.
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In this unit you now know that

2.6 Summary

(1) If X is a topological space, th&nis

7o: If for all x,y € X with x = y, there exist an open sHtsuch that
eitherx € U andy € Uory € U andx ¢ U.

7, If for all x,y € X with x =y, there existU, € N(x) such that
y & U,. Or there exist§,, € N(y) such thak & U,,.

7, If for all x,y € X with x =y, there existU, € N(x), U, € N(y)
such that/,, n U,, = @. T,spaces are called Hausdorff spaces.

75: If for every closed sdatf c X and every € X such thaix & F there
exists open set8;, U, c X with F c Ug, x € U, such that/, n Uy =
1}

7, If for any two closed sets, F c X with E n F = @,there exists open
setsUy, Ur € X such thaf c Ug, F c Ur andUg N Up = Q.

(i) X is aregular space if it is both andz;.

(i) X is a normal space if it is both andz,. Also X is normal if and
only if it is both Hausdorffz,) andz,.

(iv) A function f:X — Y between topological spacés andY is
continuous if for every open siétof Y, the preimage

frV)={xex:f(x) eV}

is open inX.

(v) f:X—Y is a homeomorphism if is bijective andf and
f~1:Y — X are continuous.

(vi) Topological spacex andY are homeomorphic if there exist a
homeomorphisnf: X — Y between them.

(vii) A sequencdx,} in a topological space is convergentxte X if
given any neighbourhood of x, we can find an integeg¥ € N
such that for ath > N, x,, € V.

(viii) In a Hausdorff space, every singleton is closed.

(ix) In a Hausdorff space, the limit of a convergesequence is
unique.

(ix) Urysohn's lemma: 4 andB be two disjoint closed subsets of a
normal spac&. Then there exists a continuous functfarX —
I such thay'(4) = 0 andf(B) = 1.
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(x) A topological spac& is metrizable if its topological structure is
generated by a certain metric.
(xi)  Every metrizable space is Hausdorff.

[

|
e ———d
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MODULE 2 SEPARABILITY, COMPACTNESS AND
CONNECTEDNESS

Module Introduction

Separability is one of the requirements in topolégyimit the size of
the object that is under consideration. The actedinition is quite
simple: a topological space X is separable if € Bame subset Y which
is both dense and countable. The concepts of dapigres explained in
this module A space is compact if every open c@idhe space has a
finite subcover. Aropen cover is a collection of open sets that covers a
space. An example would be the set of all operrvats, which covers
the real number line. The collection of all opeteimals in the number
line contains a lot of intervals. Compactness atkisere is a way to
reduce that collection to a finite number of intdsvand still cover the
entire number line. That is, could we find a finikember of open
intervals so that every point on the number linenisat least one of
them? This question will be addressed in this medul

Connectedness is a topological property and isveegfal tool in proofs
of well-known results. A connected topological sp& one that is “in
one piece”. The way we will define this is by gigim very concrete
notion of what it means for a space to be “in twarmre pieces”, and
then say a space is connected when this is notake. A topological
spaceis said to |lmnnectedif it is not the union of
two disjoint nonempty open sets. A set is opent itantains no point
lying on its boundary; thus, the fact that a speae be partitioned into
disjoint open sets suggests that the boundary leetiree two sets is not
part of the space, and thus splits it into two s&jgapieces.

Unit 1 Category and Separability

Unit 2 Compact Sets and Spaces

Unit 3 Connectedness

UNIT 1 CATEGORY AND SEPARABILITY

Unit structure

1.1 Introduction
1.2 Intended Learning Outcomes (ILOSs)
1.3 Dense Sets
1.1.1 Baire Spaces
1.1.2 The Axioms of Countability
1.1.3 Second Countability axiom
1.1.4 Separability and Separable Spaces
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1.1.5 Sequence Lemma
1.1.6 Neighbourhood Basis
1.1.7 First Countability Axiom
1.1.8 Sequence Lemma Revisited
1.4 Self-Assessment Exercise(s)
1.5 Conclusion
1.6 Summary
1.7 References/Further Reading

@ 1.1 Introduction

In this unit, you shall be introduced to the notioh category,
separability and axioms of countability. You shiadl introduced with
dense sets, and see some sets of the first anddseategories.

@I 1.2 Intended Learning Outcomes (ILOS)

At the end of this unit, you should be able to:

identify dense sets and nowhere dense sets.

identify sets of first and second categories.

identify separable spaces.

state the first and second countability axioms.

identify first and second countable space.

state and prove the sequence lemma and its converse

P
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=11.3 Dense Sets

Definition 1.2.1.1 (Dense Sets)-et X be a topological space and ket
andB be two subsets of. 4 is dense irB if B € A. A is dense X or
everywhere dense K if A = X.

Example 1.2.1.21Q the set of rational numbers is a dense subs& of
becaus® = R.

Proof: Suppos& = R. Then there exists ane R\Q. As R\Q is open

in R, there exista, b with a < b such thatx € (a,b) € R\Q. But in
every interval(a,b) there is a rational number; that is; € (a,b).

Sog € R\Q which impliesg € R\Q. This is a contradiction, as€ Q.
HenceQ = R. m
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Example 1.2.1.3: Let X ={a,b,cd,e} and
Tt = {X, 0,{a},{c,d},{a,c,d},{b,cd,e}}. It is easy to see that
(b} = {b,e}, {a,c} = X, and{b,d} = {b,c,d,e}. Thus the sefa,c}
is dense irX.

Example 1.2.1.4:Let (X, t) be a discrete space. Then every subs&t of
is closed (since its complement is open). Thereftiie only dense
subset o is X itself, since each subsetX®fs its own closure.

Theorem 1.2.1.5: Let (X,7) be a topological space, and lktbe a
subset o. A is dense iX if and only if every nonempty open subget
of X,AnU = 0.

Proof: Assume that for all open s&t®f X, UNn A = @. If A = X, then
clearlyA is dense irX. If A = X, letx € X\A. If U € T andx € U then
UNA=@. Sox is a limit point ofi. As x is an arbitrary point ikX\A4,
every point ofX\4 is a limit point ofA. SoX\4 c A°, and then by

theorem 3.8 of unit 14 = A°UA = X thatis A is dense irX.

Conversely, assumé is dense inX. Let U be a nonempty open subset
of X. Suppose&J NA =@. Then ifx e U, x ¢ A andx is not a limit
point of A, sinceU is an open set containingwhich does not contains
any element ofl. That is a contradiction since, Ass dense irX, every
element ofX\A4 is a limit point ofA. So the supposition is false and
UNA = @, as requiredm

Definition 1.2.1.6: A set is nowhere dense if the séthas empty
interior.

Definition 1.2.1.7:Let A be a subset of a topological spd&et). Let
p € X. The pointp is an isolated point of the satif p € A and there
existU, € N(p) such thatA\{p}) n U, = 9.

1.3.1 Baire Spaces

Definition 1.2.2.1:LetY be a subset of a topological sp&&er). If Y
is a union of a countable number of nowhere denbseis ofX, thenY
is said to be a set of the first category or meatfel'is not first
category, it is said to be a set of the secondyoaye

Definition 1.2.2.2: A topological spacgX,7) is said to be &Baire
Sace if for every sequencéX,;} of open dense subsets Xf the set
{X,}n=4iS also dense iX.

Example 1.2.2.3: Every complete metric space i8aire space.
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1.3.2 The Axioms of Countability

In this section, you shall be introduced to threstniction on the
topological structure. These are first and secanthtability axioms and
the separability. Before proceeding to state tteesems, you have the
following important definition and results.

Definition 1.2.3.1 (Equal Cardinality): Two setsA andB have equal
cardinality if there exists a bijection betweennthe

Definition 1.2.3.2 (Countable Sets)A setA is said to be a countable
set if it has the same cardinality as a subsetefsetN of positive
integers. Whiled is said to be at most countable if it has the same
cardinality as the sé of positive integers.

Results: The following results will be stated without probkecause that
is not the major interest here. You can find thevps in any good
textbook on topology or analysis.

1. A set X is countable if and only if there exists an injgct
¢ : X — N (or, more generally, an injection &f into another
countable set).

Any subset of a countable set is countable.

The image of a countable set under any map is ablet

N is countable.

The selN? = {(k,n) : k,n € N} is countable.

The union of a countable family of countable setsauntable.

Q is countable.

R is not countable.

©®NOUAWN

1.3.3 Second Countability Axiom

First of all, you shall be introduced to the secandntability axiom and
separability.

Definition 1.2.4.1 (Second Countability axiom)A topological space
X satisfies the second axiom of countability oras@d countable X
has a countable basis.

Example 1.2.4.2 R endowed with the standard topology is second
countable. The basis

B ={(a,b),a < b,a,b e Q}=QxQ.
Hence is countable. Also

1 1
B={r——,r+—,r€(@,n21}
n n
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is a countable basis &.

Example 1.2.4.3 R endowed with the lower limit topology is not
second countable.

Example 1.2.4.4 :The discrete topology of any uncountable set ts no
second countable.

Example 1.2.4.5 :Not all metric spaces are second countable. For
instanceR with the discrete metric. i.e.,
1 ifx=y
po(x,y) = {0 ifx £y
is not second countable.

1.3.4 Separability and Separable Spaces

Definition 1.2.5.1 (Separability):A topological spac& is separable if
it contains a countable dense subset.

Example 1.2.5.2R endowed with the standard topology is separable
becausd) is a countable dense subseRof

Example 1.2.5.3: Any infinite set X endowed with the finite
complement topology is separable since any infisdteis dense i

Example 1.2.5.4: The set of all pointx = (x;, x,, x5...,x,) with
rational coordinates is a countable dense subdéieimetric spac®&™.
HenceR" is separable.

Example 1.2.5.5: The set of all points = (x;, x,, x3..., %, ...) With
only finitely many nonzero rational coordinates,c@auntably dense in
the space

(o]
£, =1{x = (xl,xz,x3...,xk,...):leklz < 00}
k=1

Hence/, is separable.

Example 1.2.5.6: The set of all polynomials with rational coeffinis is
countably dense in the spaCp, b] of continuous real valued function.
HenceC|[a, b] is separable.

Theorem 1.2.5.7: Any second countable topological spa&e is
separable.

Proof: Suppos« is second countable, th&ncontains a countable basis
B = {B,,n € N}. For eachn € N choosed,, € B, and defineD =
{d,,n = 1} thenD is dense iiX. m
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Remark 1.2.5.8: The converse of this theorem is not true in gdnera
Notwithstanding in a metric space, second couritglahd separability
are equivalent.

Theorem 1.2.5.9: Let (X,d) be a separable metric space thens
second countable.

Proof: Since X is separableD = {d,,n € N} is a countable dense
subset of(. TakeB = {B(dn,%),n > 1,m > 1}. ThenB is a countable
basis for(X, d)

1.3.5 Sequence Lemma

Definition 1.2.6.1: A topological spacgX,t) is metrizable if there
exists a metrial on the seX such that the topology on X is induced
byd.

Theorem 1.2.6.2 (Sequence Lemma):

1. LetX be a topological space, addbe a subset of. If there
exists a sequencfx,} of elements ofA converging tox € X,

thenx € A. The converse holds Xf is metrizable.

2. LetX andY be topological spaces, afid X — Y be a function.
If the functionf is continuous, then for every sequefieg} is in
X such that{x,} converges tax € X, The sequencéf(x,)}
converges tg(x) in Y. The converse is true X is metrizable.

Proof: 1. Letx € X. Suppose that there exists a sequgrggin A such
thatx, — x. You have to show that € 4. Let U be a neighbourhood
of x, x, — o0 asn — oo implies that there exigt{ € N such that for all
n=>N, x, € U. In particularxy € U. Butxy € A implies thatU N A =

@. which implies thak € 4.

Conversely, suppose thiitis metrizable and € A. Letd be a metric
for the topology o¥. For eacm > 1, the neighbourhood

B (x, %) NnNA = 0.

Choosex, € B (x, %) N A forn > 1. Then,{x,} is a sequence of points
of A and

0 < d(x,,n) <%—>Oasn—>oo

which implies thatk,, — x asn — oo.
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2. Assume thaf is continuous. Lefx,} be a sequence X such that
X, — x asn — o. You have to show th#t(x,) — f(x). LetV be a
neighbourhood of (x). Thenf~1(V) is a neighbourhood of, and so
there existsN > 1 such thatx, € f~1(V) for n > N. Then f(x,) €
Vn = N, which implies thaf (x,,) — f(x) asn — oo as desired.

Conversely, assume that the convergence condgisatisfied. Le#l be
a subset ok. You have to show thégtis continuous, it suffices to show
thatf(4) c f(A). If x,, € 4, there exists a sequenfog,} of points ofA
converging to x (by segence lemma). By assumptlion sequence
{f(x,)} converges tg(x). Sincef(x,) € f(4), the sequence lemma

implies thatf (x) € f(A4), as desiredm
1.3.6 Neighbourhood Basis

Definition 1.2.7.1 (Neighbourhood basis)Let (X, 1) be a topological
space and let € X. The collectionl/ is called a neighbourhood basis
of the pointx if the following conditions are satisfied;

() W is a subcollection of neighbourhoodsx{fW c N(x)). i.e.,
forallW e W, W € N(x).
(i) (i) For allV € N(x), there exisW € W such that¥ c V.

Example 1.2.7.2:Let R be endowed with the standard topology. Then
for all x € R,

W={(x—rx+r), r> 0}
is a neighbourhood basis of

Proof:

() Let xeX. Clearly, for all r>0, (x—r,x+7r) is a
neighbourhood at and sd¥/ < N(x).
(i)  LetV € N(x) then there exist an open $kesuch thakk € U c V.

This implies that there exists> 0 such thatx —r,x +r)c U c V.

Example 1.2.7.3:Let (X, d) be a metric space, lete X, then
W= {B;(x,r),r > 0}
is a neighbourhood basis in the metric topology.

Example 1.2.7.4:Let R, denote the real line endowed with the lower
limit topology. Letx € X, then

W= {[x,x +7),r> 0}
is a neighbourhood basis for the lower limit togpl@n the real line.
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Example 1.2.7.5: Let (X,7) be a discrete topololgical space. Then for
allx € X,

W = {{x},x € X}
is a neighbourhood basisoin the discrete topology.

1.3.7 First Countability Axiom
Definition 1.2.8.1(First Countability Axiom): A topological spac&
satisfies the first countability axiom or is saidite first countable if any

pointx € X has a countable neighbourhood basis.

Example 1.2.8.2 :Let R be endowed with the standard topology. For all
x € R define
1 1
W = {(x——,x+—>:n2 1}
n n

W={(x—-rx+r)r>0reqQ}
In each cas&W is a countable neighbourhood basisxoThusR is first
countable.

Or

Example 1.2.8.3:Let R be endowed with the lower limit topology. For
all x € R, define

W={n=x,x+1):n=>1}
ThenW is a countable neighbourhood basis forHence,R with the
lower limit topology is first countable.

Example 1.2.8.4:Let (X, d) be a metric space. For ever¥ X, define
1
W=B(x,—>:n2 1
n
Or
W = {B(x,r):r > 0,r € Q}

Then in each case, W is a countable neighbourhests mfx. Thus,
every metric space is first countable.

Theorem 1.2.8.5: Let (X,7) be a topological space. K is second
countable, thel is first countable.

Proof: Assume thak is second countable, théhhas a countable basis
B = {b,,n € N}. Letx € X, and define

W = {B,x €B,}
thenW c B, so thatW is countable.

1. For allB, € W, B, € N(x).

2. LetV € N(x), this implies that there exists an open @etuch that
x € U c V. This implies that there exist, € W such thatc € B, C
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UcV, so thatB, cV. ThusW is a countable neighbourhood »of
HenceX is first countable.

|
1.3.8 Sequence Lemma Revisited

Recall that in the sequence lemma which we probede It says that if
A is subset of a topological spakeand there exists a sequepgg of
points of A such thatr, — x in X asn — oo, thenx € A. And we
proved the converse in a metrizable space. This e that the
implication

(=) if {x,} is a sequence iA such thatr, — x in X, thenx € 4 is
true in any topological space. But the conversex & A then there
exists a sequencgx,} of A such thatx, — x is only true ifX is a
metrizable space.

Similarly, for the continuous functiofi: X — Y, sequential continuity
holds for topological spaceésandY, i.e.f is continuous, implies for all
sequencéx, } of X such thak,, — xinX, f(x,) — f(x) inY.

The converse, i.e., for a sequereg} of X such tha ifx,, — x implies
that f(x,) — f(x) then f is continuous; holds if and only X is
metrizable.

In what follows, you shall discover thatXfis a first countable space the
X also recorvers the converse of the sequence lemenathe converse
of the sequential closure and the sequential coityin Before you
proceed, the following lemma will be useful.

Lemma 1.2.9.1: Let X be a topological space and ie€ X. Suppos&
is first countable, then there exist a countablsidbaf x, say, W =
{W,,,n > 1} such thaW/,,,., c W, .

Proof: Letx € X. SinceX is first countable then there exists a countable
neighbourhood baslé = {I},,n = 1} of x. Define for eaclm > 1,
n

w, = [\
n=1

and letW = {W,,n > 1}. Then

(1) W is countable.

(i) W, eN(x), for eachn=>1, because finite intersection of
neighbourhoods of a pointis also a neighbourhood of

(i) LetV € N(x), there exist&V € N such that’y, € V andx € V, c

V. But
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N
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n=1
Thus, for every € N(x) there exisiV such that¥y € W andWy c V.

(V) Wpyr = NPTV = Voya N NRo1 Vi € Njoy Vi = Wh That is
Wpi1 € W,. Thus W is a countable neighbourhood basis xofthat
satisifiesW,,,, cW,,n=>1. m

Theorem 1.2.9.2:Let X be a first countable topological space @nlde
a subset oK. Then ifx € A, there exists a sequenfg,} of A such that
X, — X asn — oo,

Proof: Since X is first countable, from lemma 3.1, there exists a
countable neighbourhodd = {W,,n = 1} such thaW/,,,, € W,. Now
let x € A. This implies that for ath > 1, W, N A = @. Letx, € W, n

A. Then{x,} is a sequence of points 4f

Claim:x,, — x asn — oo

Proof of Claim: Let V € N(x). Then there exist® € N such that
X, € Wy c V and for alln > N,
X, EW,, cWyccV

This implies that for alh > N, x,, € V. Hencex,, — x asn — o and
the proof is complete.

Theorem 1.2.9.3: Let X and Y be two topological spaces and let
f:X — Y be a function. Supposkg is first countable. If for every
sequencgx,} of X such thatx, — x in X asn — oo, one has that
f(x,) — f(x) inY thenf is continuous.

Proof: It suffices to prove that iF is closed subset of, then the
preimagef ~1(F) is closed in X, i.e.f~1(F) = f~}(F). But you have
already thatf~(F) c f~1(F), so it is left for you to show that
f~Y(F) c f~1(F). So letx € f~1(F), SinceX is first countable, you
have by segeunce lemma that there exist a seqepg®f points of

f~1(F) such thatx, — x asn — o. This implies thatf(x,) is a
sequence of elements Bf and by assumptiotf(x,,) — f(x) inY.

SinceF is closedF = F and sof (x) € F, that isx,, € f~'(F). Thus

f~1(F) c f~1(F) as required. Therefor¢g,"1(F) is closed inX. Hence
f is continuousType equation here.
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u::lA Self — Assessment Exercise(s)

1.

50

Given X ={ab,cd, e} and
t={X,0,{a},{c,d},{a,c,d},{b,c,de}}. Let A={a,c}. Then
the set® of limit points ofA is given by

(@)A° = {b,c, e}

(b)A° = {b,d, e}

(c)A° = {b, e}

(d)A° = X.

LetR the real line be endowed with the discrete topal&dghich
of the following subsets &R is dense iIR?

(@)Q

(b) R itself

(c) Q°.

(d) All singletons.

LetA = (0,1] U {2} be a subset dk. Then the isolated points of
AinR are

(@)0and 1

(b) 0 and 2

(c)1and?2

(d) 2 only 4.

For the sefl in question 3, Which of the following are the ltmi
points ofA?

(@)0and 1

(b) 1and 2

(c) 0 only

(d) 2 only

In R with the standard topology, which of the followisgts is
nowhere dense?

(a)Q°

(c)(0,1)

(d) [0,1)

The minimal neighbourhood basis of a pointn the discrete
topology contains

(a) the whole set and the empty setonly.

(b) Only the singletons.

(c) All open sets ok only.

(d) The whole sex only.

The minimal neighbourhood of a point in the indiscrete
topology contains

(a) the whole set and the empty s&t only.

(b) Only the singletons.
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(c) The empty set only.

(d) The whole sex only.

Which of the following spaces is second couletab
(a) R with the finite complement topology.

(b) R with the countable complement topology.
(c) R with the lower limit topology.

(d) N with the discrete topology.

Which of the following spaces is not first ctatsle?
(a) R endowed with the lower limit topology.

(b) R endowed with the finite complement topology.
(c) R endowed with the discrete topology.

(d) Q endowed with the indiscrete topology.

15 Conclusion

In this unit, you were introduced to dense setts eéfirst and second
category, and Baire spaces. You also studied tloemaxof countability

and separability and saw some examples of spaeesdktisfy some of
the axioms. You are able to prove that a first ¢albie space satisfies
the converse of the sequence lemma.

i

1.6 Summary

Having gone through this unit, you now know that;

(i)

(ii)

(iif)
(iv)

(V)

(vi)
(vii)

A subsetA of a topologicalX is dense iBB c X if Bc A. A is
everywhere dense Kiif A = X, while 4 is nowhere dense ii

if int(4) = 0.

A subsetr’ of a topological spack is of the first category ¥ is
a countable union of sets of nowhere dense subsetX.
OtherwiseY is of the second category.

A set is countable if it has the same cardinaliithvat least a
subset of a countable set.

A point p € X is called an isolated point of a subgktof a
topological space if there exists a neighbourhoa@d of p such
that(A\{p}) N U = 0.

W is a neighbourhood basis of a poing X if

(a) for allw e W, W € N(x).

(b) V € N(x) then there existd/ € W such thaiv c V.

A topological space is first countable ifdontains a countable
neighbourhood basis.

A topological space is second countable dantains a countable
basis.
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(viii) A topological space is separable if it cams a countable dense
subset.
(ix) Every second countable space is first couetab
(x)  Every second countable space if separablec®hgerse is true if
the space is metrizable.
(ix) A topological spac& is metrizable if its topological structures
can be generated by a metric.
(x)  Sequence Lemma
(@) If there exists a sequer{og } of elements of a subsétof
a topological spack, such thak,, — x € X, thenx € A.
(b) If f:X — Y is continuous, then for all sequenfg,} of
elements ok, such thak,, — x € X thenf(x,)) — f(x)
in Y. The converse of the sequence lemma is trug ig
either first countable or metrizable.

n
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UNIT 2 COMPACT SETS AND SPACES
Unit structure

2.1 Introduction
2.2 Intended Learning Outcomes (ILOS)
2.3  Main Content
2.3.1 Definitions and Examples
2.3.2 Compactness in Product Spaces
2.3.3 Heine-Borel Theorem
2.3.4 Finite Intersection Property (FIP)
2.3.5 Compactness and Continuous function
2.3.6 The Extremum Value Theorem
2.4  Limit Point and Sequential Compactness
2.4.1 Limit Point Compactness
2.4.2 Sequential Compactness
2.4.3 Locally Compactness and One-poinh@actification
2.4.4 Local Compactness
2.4.3 One-point Compactification
2.4  Self-Assessment Exercise(s)
2.5 Conclusion
2.6 Summary
2.7 References/Further Reading

@ 2.1 Introduction

In this unit, you shall be introduced to a topotagiproperty playing a
very special and important role in topology andapplication. It is a
sort of topological counterpart for the property bding finite in the
context of set theory.

@ 2.2 Intended Learning Outcomes (ILOSs)

At the end of this unit, you should be able to;

Give the definition of Covers and subcorvers.

Define compact sets, subsets and compact spaces.
Give the sequential characterization of compactness
Identify sequentially, countably and locally compsets.
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2.3 Definition and Examples

Definition 2.2.1.1 (Covering and Open Cover):A collection A of
subsets oX is said to be a covering &f if the union of the elements of

AisX. i.e.,
X == UOL

i€l
whereU; € A for alli € I, (I is an index set).
A is called open covering if its elements are opdrssts of.

Definition 2.2.1.2 (Subcover)if A is a covering ok and0O c A is also
a covering of, thenO is a subcover or subcoveringAf

Definition 2.2.1.3 (Compact Set)A topological spac& is compact if
every open covering of is reducible to a finite subcovering. That is, a
topological spac& is compact if for every open coverifi@; };¢;, there
exists a finite subfamilg; , 0,0y, ..., 0;, such that such that

n

X == U Oik
k=1
Definition 2.2.1.4:Let A be a subset of a topological spacerhenA is
said to be compact if for every family of open géts},; such that
Ac U 0;
i€l
there exists a finite subfamity; ,0;,, 0y, -, 0y, such that

n
Ac U 0y,
k=1

Example 2.2.1.5:.Let X be endowed with the indiscrete topology. Then
X is compact.

Proof: In the indiscrete topology, the only open coverrid is the®
andX itself. HenceX is compacm

Example 2.2.1.6:The real lineR endowed with the standard topology is
not compact.

Proof: It suffices to produce an open coveringRfwhich cannot be
reducible to a finite subcovering. Now

R = 0(—n, n)
n=1
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If there exist a finite open subcover, then theasten,, n,, ns,...,n,
such that

R=| J(=n;n) = (=N,N)

WhereN = max,<j<,, 1 which is impossible. HendR is not compact.
|

Example 2.2.1.7:LetA = (0,1]. ThenA is not compact ifR.
Proof: In (0,1] we have the trace topology (i.e., su24bspace ogpd!
(i ,2),n € Nis an open covering of

[}

on-J)

n=1
Suppose that0, 1] is compact, then there exisig, n,, ns,...,n,, such
that

[}

o= )=

WhereN = max,<;<;, n;, Which is a contradiction. Hend®,1] is not
compact.

Example 2.2.1.8R} = (0, +) is not compact.

Proof: Suppose thatR} is compact, {(i,n),neN}is an open
covering ofR} such that

[}

w-(J

n=1

So there existy, ny, ns,...,n, such that
m

=)&) = ()

i=1
WhereN = max;;<,, ;- This is impossiblaa

Example 2.2.1.9:Let (X,7) be a topological space and fet,} be a
sequence of points &f such that,, — x € X in X, then{x,,,n > 1} U
{x} is compact.

Example 2.2.1.10Any finite set of a topological s€kX, ) is compact.

Proof: Let A c X be a finite set, the elements 4fcan be listed, i.e.,
A = {x1,%5,%3,...,x,}. Let{0,;};; be an open covering fd, i.e.,
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AQUOi

i€l
Then for eacly; € A, choose an open ey, such that; € 0;;. Thus

n
A C UOij |
j=1

Remark 2.2.1.11:So you see from Example 3.1.6 that every finite se
(in a topological space) is compact. Indeed, abeeanentioned in the
beginning of this unit, “compactness” can be thduah a topological
generalization of “finiteness”.

Example 2.2.1.12:A subset4 of a discrete space is compact if and only
if it is finite.

Proof: If A is finite then Example 3.1.6 shows that it is cactp
Conversely, led be compact. Then the family of singleton sets
0, = {x}, x € A is such that eadf, is open and

AQUOx

XEA
SinceA is compact, there exist, x,, x5, ..., x, such that
n

AC UOxi;
_ i=1

That is A S {xy,x5,%3,...,%X,}.
|

Theorem 2.2.1.13Any closed and bounded intervallihis compact.
Proof: Let [a,b], a < b be a closed and bounded interval Rif Let
{0;};¢; a family of open sets A& such that

mmqu

i€l

Step 1:Supposer < x < b. Then there existg > x such thafx, y]

can be covered by at most t@§s. For this end, ifc has an immediate
successoy, then the intervdlx, y] has only two elements. So it can be
covered by at most twi®s. If x does not have an immediate successor,
find U; containingx. Pick z > x such thaflx,z) c U;; this is possible
becausd/; is open. Since does not have an immediate successor, there
isysuch thatr < y < z. Then[x,y] c U;.m

Step 2:Now
letA = {y € (a, b]: [a,y] can be covered by finitely many U;}
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By step 1, there exists an elemert a such tha{a, y] can be covered
at most by twal?s. Therefored is nonempty and bounded above. Let
¢ = supA.

Step 3:Claim:c € A. Let i such thate U;. SinceU; is open and > a,
there exists an intervgld, c] € U;. Sinced cannot be an upper bound
for A, there is an element df larger thad. Letz such thatd < z < c.
Then [a,c°] can be covered by finitely many?s and [c?, c] c U;.
Thereforga, c] = [a,c®] U [c? c] can be covered by finitely marifs.
Hencec € A.

Step 4:Claim:c = b. Suppose < b. By step 1, there exist > ¢ such
that[c,y] can be covered by at most tW8s. Sincec € 4, [a, c] can be
covered by finitely many?s. So[a, y] = [a,c] U [c, y] can be covered
by finitely manyU?s and thereforgs € A. This contradicts the fact that
¢ = sup. Hencec = b.m

Theorem 2.2.1.14:A closed subset of a compact topological space
(X, 1) is compact.

Proof: Let{0;};; be a family of open subsetsXfsuch that

AQUOi

i€l
Now

X=AUA" = UOXUAC
) X€EA
SinceX is compact, there existg i,, is, ..., i,, such that
m

X = LJ 0;, U A
j=1

m
Ac Joi.
J

j=1

This implies that

Hence, A is compact.

Theorem 2.2.1.15:If A is a compact subset of a Hausdorff topological
spaceX, 1), thenA is closed.

Proof: Supposé is a compact subset &fand letx € A¢. Then for all
y €A, x =y. SinceX is Hausdorff, there exist/, open inX and

containsx, V, open inX and containg such that/, NV, = @. So

AQUVy

YEA
Since A is compact, there exists y,, vs, ..., Vi Such that
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Wi
YEA
Let
m
~
U= Uy,
i=1
and
m
ac| v,
YEA

ThenU is open and contains V is open and containg, andU NV =
@. This implies thall N A = @, that isU c A°. ThusA® is open. Hence
Ais closedm

In the course of the proof of theorem 3.3, youvprb the
following result.

Theorem 2.2.1.16:Let A be a compact subset of a Hausdorff
topological spac& and letx € X. Then there exists open sétsandV
with AcV andx € U such thatV nU = @. This result is the third
separation axiona.

Theorem 2.2.1.17:Let A and A be compact subsets of a Hausdorff
topological spac& such thatd N B = @. Then there exists open séts
andV with A c U andB c V such tha NV = @.

2.3.1 Compactness in Product Spaces
Theorem 2.2.2.1 (Tube Lemma)let X X Y be the product topology.
Suppose that is compact. Ifi is an open subset &f X Y containing

{x} xY for somex € X, then it contains some tubé xY around
{x} x Y. WhereU is an open set containing
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Figure 2.2.2.2: Tube Lemma

Proof: Observe thafx} xY =Y, and sinceY is compact{x} XY is
compact. Now for eachy e Y, you have (x,y) e {x} xY cW.
Therefore, there exists open s#ts containing, V, containingy such
that (x,y) € U, XV, c W. Thus{U, X V,,y € Y } is an open cover of
{x} x Y. Since{x} XY is compact, there existg;,y,,¥s,..., ¥, Such
that

m
{x} xY c UinxVyi
i=1

U:ﬂin

n
i=1

Take

Then U is open, it containst and {x} XY cUXxY c W. For if
(z,y) e U xY, you have that € U andy € Y. y € Y implies that there
exists i, such thaty € Wiy This implies thatz € inoand (z,y) €

ino X Vyio cWw.

Theorem 2.2.2.3 A finite product
n

[ [x
i=1

of compact spacg¥;}i-, is compact.

This theorem is called thEychonoff product theorem. The converse of
the Tychonoff product theorem is also true.

Proof: You can prove this for a produktx Y of two compact spaces
and Y. The generalization follows by induction. So {&;},c; be a
family of open sets of the product topology, sutd t
XxyYc U w;
i€l
Letx € X be fixed. You have that
{x}ngXngUWi
iel
{x}xY is compact since¥ is also compact, and so there exists
iy,13,103,..., 1y Such that

m
{x}XYQUWijzwx
j=1

By tube lemma, there exists an openlgetontainingx such thatx} x
YCU, XY CW,
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And so

XgUUx

XEX
SinceX is compact, there exists, x,, x5, ..., x, such that

m
Xc U Uy,
i=1
Therefore,

n n m
XngU(UxixY)gUWxigUUWij
i=1 i=1 [

n
=1 j=1
Hence X x Y is compacm

2.3.2 Heine-Borel Theorem

Theorem 2.2.3.1 A subsetd of R" is compact if and only if it is closed
and bounded.

Proof:(=) Let R" be endowed with the Euclidean metric

n

1
d(xy) = ) [ -yl
i=1
AssumeA is compact thes is closed sinceR™ is Hausdorff. Also
{B(0,n),n € N}is a family of open sets @™ and

Ac UB(O, n)
n=1

WhereB(0,n) = {y € R": d(y, (_)) < n}is the open ball with centér
and radiusn. By the compactness df, there exists,n,, ng,...,ng
such that

k
Ac U B(0,n;) € B(0,N)
i=1

whereN = max, ;< ;. Henced is bounded.

(=)Supposél is closed and bounded R*, and show thad is
compact. It suffices to show thatis a subset of a compact set. But
bounded implies that there exist> 0 such that

A € B(O,n,) l_[[—IR, R]
i=1

each[—R, R] is compact ifR and so
n

[ [-rom

i=1
is compact as a finite product of compact sets. Aadl is a closed
subset of a compact set, therefotes compact.
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Remark 1.2.3.1:Note that the above theorem was prove® In an
arbitrary metric space, what you have is that aosngact space is
closed and bounded but the converse is not true.

2.3.3 Finite Intersection Property (FIP)

Definition 2.2.4.1 (Finite intersection Property (HP): Let X be a
topological space. A collectio of subsets oX satisfies the Finite
Intersection Property (FIP) if any intersectionadinite subcollection of
C is nonempty.

C ={A;,i € I} satisfy FIP if for any € P¢(I),

=

i€J
WhereP(I) (finite part of ) denotes a the set of all finielexes of .
Theorem 2.2.4.2 A topological spaceX is compact if and only if
collectionC = {C;,i € I} of closed sets having the FIP, one has that

ei-o
i€l
Proof:(=) Let X be a compact set aidd= {C;,i € I} be a collection of
closed sets oX having the finite intersection property, i.e., fall
J € P¢(I) such that

~
Ci == Q)
i€J
You have to show that
~
Ci = Q)
i€l
Suppose
~
Ci == Q)
i€l
Then
x = Jenve

Each X\C; is open since; is closed Thus{X\(C;,i € I} is an open
covering forX and sinceX is compact, there exisfse P¢(I) such that

x={Jone
e-s

i€]
contradicting the assumption thatsatisfies FIP. Hence our supposition
was wrong. Therefore

This implies that
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ﬂCi:Q) |

Corollary 2.2.4.3: Let X be a compact space and {€},,n > 1} be a
collection of nonempty closed sets such that; < C,. Then

ﬂ Ci == Q)
n=1 )
Proof: Let ny,ny,ns,...,n, €N, since €4y € C,, and eachC, is

nonempty, then
p
ﬂ Cni == CN == Q)
i=1

WhereN = max,;<, n;. This implies tha{C,, n = 1} satisfies the FIP.
So by the last theorem,

ﬂCn=(b [

n=1

Theorem 2.2.4.41f X is a compact Hausdorff space having no isolated
points, therX is uncountable.

Proof:

Step 1:First show that given any nonempty open sef ahd any point
x of X, there exists a nonempty $etontained in U such that¢ V.

Choose a poing € U different fromx, this is possible i in U
becausex is not an isolated point df and it is also possible if in not
U simply becaus# is nonempty. Now choose disjoint neighbourhood
W, andWW, of x andy respectively. Then také= U n W,.

Step 2:Letf: N — X. Then show thaf is not injective.

Let x, = f(n). Apply step 1 to the nonempty open Bet Xto choose

a nonempty open séf;such thatx € V;. In general, giverv,_;, a
nonempty open set, choogg to be a nonempty open set such that
V, cV,_, andc, ¢ V,. Consider the nested sequefizgl of nonempty
closed sets oX. SinceX is compact, there exists a poin€ V;,. Now if

f is surjective, then there exists such thatf(n) = x,, = x, which
implies thatx,, € 1},. Contradictionm

Corollary 2.2.4.5: Every closed and bounded interval & is
uncountable.
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2.3.4 Compactness and Continuous function

Theorem 2.2.5.1:Let X andY be topological spaces, and fetX — Y
be a function. IfX is compact andf is continuous, therf(X) is
compact.

Proof: Let{V;};,c; be a family of open sets @fsuch that

fooe| v

o i€l
This implies that

xerrgene| Jrrm
i€l
By the continuity off, {f ~1(V))}ic/is a family of open sets of, and
sinceX is compact, there existg i, i, ..., i, such that
m

X< LJf_1 (Vif)
j=1
which implies that

o) Ur () - U

That is,

Hencef(X) is compactm

This theorem says that the continuous image of mpect set is
compact.

Theorem 2.2.5.2:Let f: X — Y be a continuous bijective function . Xf
is compact and is Hausdorff, therf is a homeomorphism.

Proof: Let F be a closed subset &f SinceX is compact, you have by
theorem 3.3.1 thafF is compact. Also by the continuity of, and
theorem 3.3.1, you have thA{F) is compact. Sinc& is Hausdorff,
theorem 3.2.4gives you thgt(F) is closed inY. And sincef is a
bijection, f~1 exists and is continuoum.

2.3.5 The Extremum Value Theorem

Theorem 2.2.6.1 (The Extremum Value Theorem)Let f: X — Y be
continuous, wher& is an ordered set in the order topologyKlfis a
compact subset df, then there exists poinésandc in K such that

f(c) = minf (x) and f () = max f (x)
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Proof: Sincef is continuous, an& is compact, the set = f(K) is
compact. So you can show thahas a largest elemeMt and a smallest
elementm. Then sincen and M belongs tod, you have to show that
m = f(c) andM = f (c) for some pointsandc in K.

By contradiction, assume that has no largest element, then the
collection

{(—o0,a):a € A}
forms an open cover KA. SinceA is compact, some finite subcover
(=,a,), (—,ay), ...,(—=,a,) coversA. If g; is the largest of the
elementsa,, a,, ..., a, thena; belongs to none of these sets, contrary
to the fact that they coved (becausea;, € A). A similar argument
shows tha# has a smallest element.

Definition 2.2.6.2: (Lebesgue Number)Let A be an open cover df.
§ is alLebesgue number on A if for all subsetsA of X such that the
diameter ofA is less thad, there exist®&/ € A such thatd € U.

Theorem 2.2.6.3:Let (X,d) be a metric space. L&t = {U;,i € I} be
an open cover oX. If X is compact, then there exisis> 0 such that
any subset ok, having diameter less thanis contained in one of the
Uls.

Proof: LetA = {U;,i € I} be an open cover d&f such that

X:UUL

i€l
If X € A, then any positive number is a lebesgue numbédr. o you
can assume thét c X.
TakeC; = X\U; and definef: X — R by

n

fG)= ) dnlx,C)
i=1

Now for anyx € X, there existi, € I such thatx € U; . SinceU; is
open, then there exists> 0 such thatB(x,e) € U; . If y € C;  then
ye¢U;,, ie., y¢&B(x,e) which implies thatd(x,y) > eand so

lo?

d(x, Cy,) = 6, thusf (x) = -

Sincef is continuous oX (which is compact), thefi has a minumum
valued > 0. You now have to show thétis the Lebesgue number. For
this, letA be a subset ok of diameter less that. Choosex, € B, then
A c B(xy,6). Now

§ < f(x0) < d(x0,Cpn)
whered(x,, Cy,) is the largest of the numbé(x,, C;). ThenB(x,, §) C
Un,, as desiredn
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2.2.6.4: Let (X,dy) and (Y,dy) be metric spaces. A function

f:(X,dx) — (Y,dy) is said to be uniformly continuous if given any

e > 0 there exists & > 0 such that for every pair of points , x, of X,
dy(x1,%x3) <6

implies that

dy(f(x1), f(x2)) <€

Theorem 2.2.6.5:Let (X,dy) and (Y,dy) be metric spaces and let
f:X —Y Dbe continuous. IfX is compact thenf is uniformly
continuous.

Proof: Lete > 0 be given{By(y, g),y € Y} is an open covering df.

So that{f(By (y, g)),y €Y} is an open covering of, and has a

Lebegue numbeé sinceX is compact. Lek; ,x, be points ofX such
that d(x;,x,) < 6. This implies that diametef{x, ,x,}) < . Thus

(x,,%,} € f (B (y, g)) and sof (xy), f (x;) € B(y,5). Therefore,

d(f (x1), f (x) < d(f (x1),y0) + d(f (x3),¥,) < % +§
i.e.,d(f (xq), f (x3)) as desiredm

2.4 Limit Point and Sequential Compactness
2.4.1 Limit Point Compactness

Definition 2.2.7.1.1:A spaceX is said to be limit point compact if every
infinite subset oX has a limit point.

Theorem 2.2.7.1.2:Any compact space is limit point compact, but not
conversely.

Proof: Let X be a compact space. Given a subfsef X, the goal is to
prove that ifA is infinite, thend has a limit point. The proof is done by
contraposition. That is, 4 has no limit point thed must be finite.

Suppose that has no limit point. Thed is closed. Sinc& is compact.
Furthermore, for each € A, you can choose an open neighbourhtigd
of a such that/, intersectsA in the pointa alone. The subspackis
covered by the open covdlU,:a € A}; being compact, it can be
covered by finitely many of these sets. Eéfghcontains only one point
of A, the sed must be finite.

The next is to show that for metrizable spacesseh®o versions of
compactness coincides. That(l§ p) is compact if and only ifX, p) is
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limit point compact. To this end, you shall be aauced to another
version of compactness called sequential compaxmes

2.4.2 Sequential Compactness

Definition 2.2.8.1: A topological spaceX is said to be sequentially
compact if every sequence of points &f has a convergence
subsequence.

Theorem 2.2.8.2:Let X be a metrizable space. Then the following are
equivalent.

1.X is compact.
2. X is limit point compact.
3. X is sequentially compact.

Proof: You have already shown thét) = (2) in theorem 3.14. To
prove that(2) = (3), assume thaX is limit point compact. Given a
sequencéx,) of points ofX, consider the set = {x,:n > 1}. If the
set A is finite, then there is a point such thatx, = x for infinitely
many values ofi. In this case, the sequen@s,) has a subsequence that
is constant, and therefore converges. On the dthed, ifA is infinite,
thenA has a limit poink. Define a subsequence @f,) converging toc

as follows. First choose, so that

Xn, € B(x,1)
Then suppose the positive integer,is given. Because the bﬂl(x, %)
intersectsA in infinitely many points, you can choose an indgx>
n;_, such thatc, € B (x, %) Then the subsequen(e,, ) converges to

X.

Finally, you have to show th&8) = (1). This is the hardest part of the
proof. First, show that ik is sequentially compact, then the Lebesgue
number holds foX (This would form compactness, and compactness is
what you want to prove.) Led be an open cover of. Assume that
there exist na > 0 such that each set of diameter less th&ias an
element of4 containing it. Your assumption implies in partaukhat

for each positive integer, there exists a set of diameter less tiqalmat

is not contained in any element4f LetC,, be such set. Choose a point
x, € C, for eachn. By hypothesis, some subsequerieg, } of the

sequencéx,, } converges, say to a poiat Now a is in some elemerif
of the open coveA. BecausdJ is open, you may chooge> 0 such
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that B(a,e) c U. Let k be sufficiently large such theﬁ—<§ and
k

d(xp, @) < g then there exist§,, < B(a, €). Contradiction.

Secondly, you have to show thakifis sequentially compact, then given
€, there exists a finite cover dfe — balls. Once again, proceed by
contradiction. Assume that there existsean 0 such thatX cannot be
covered by finitely many — balls. Construct a sequence of poirisas
follows: First, choosex; to be any point ofX. Noting that the ball
B(xq,€) = X (otherwiseX could be covered by a singke— balls)
choosex, to be a point ofX not in B(xy,€). In general, given
X1, X3, ..., Xn, ChOOSEX, ;1 t0 be a point ok not in the union

B(xy,€) UB(x,,€),U - UB(x,,€)
using the fact that these ball do not coXerBy constructiond (x,, +
1,x;) = efor i =1,...,n. Therefore, the sequence,) can have no
convergent subsequence. In fact, any ball of raZeIh:em contain,, for

at most one value of.

Finally, show that ifX is sequentially compact, thek is
compact. LetA be an open cover of. BecauseX is sequentially

compact, then the open covwérhas a Lebesgue numbérLet e = g;
using sequentially compact &fto find a finite cover oX by e — balls.
Each of these balls has diameter at r%aesw it lies in an element df.

Choosing one such element4ffor each of these — balls, you obtain
a finite subcollection ofl that covers(. m

2.4.3 Locally Compactness and One-point Compacitiation
2.4.4 Local Compactness

Definition 2.2.9.1.1: A topological spac& is locally compact if each
point of X has a neighbourhood with compact closure.

Example 2.2.9.1.2R the real line endowed with the standard topology
is locally compact because for akeR,(x—1,x+1) is a
neighbourhood ofc whose closure is the closed and bounded interval
[x —1,x + 1] of R, which is compact by theorem 2.1.

Example 2.2.9.1.3The setZ, andN are locally compact sets iR but
are not compact.

Example 2.2.9.1.4:In R, Q the set of rational numbers is not locally
compact.
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Theorem 2.2.9.1.5Every compact space is locally compact.

Proof: Let x € X and U be a neighbourhood af. SupposeX is
compact, therl/ is a closed subset of a compact space, and hence i
compact.m

2.4.5 One-Point Compactification

Let (X, Q) be a Hausdorff topological space. L&t be the set obtained
by adding a point, to X (of coursex, does not belong t&). LetQ" be
the collection of subsets &f consisting of

I. sets open iX and
. sets of the fornk*\C, whereC c X is a compact set. i.e.,
Q" = QU {X*\C: C\Xis a compact set}.

Then

1. Q" is a topological structure ot

2 (X", Q") is compact.

3. The inclusion X, Q) — (X*, Q") is a topological embedding.
4 If X is locally compact, then the spa@g’, Q") is Hausdorff.

Definition 2.2.10.1: A topological embedding of a spacg into a
compact spack is a compactification of if the image oX is dense in
Y. In this situationY is also called a compactification Xf

If X is a locally compact Hausdorff space, &g a compactification of
X with one-pointY\X, then there exists a homeomorphi§m— X*
which is the identity oiX.

Definition 2.2.10.2: Any spaceY that satisfy the above condition is
called a one-point compactification or Alexandrampactification of
X.

u:: 2.5 Self-Assessment Exercise(s)

1. Which of the following spaces is not compact?

(a) Every discrete space.

(b) Every indiscrete space.

(c) Any finite space.

(d) A finite discrete space.

2. Which of the following statements is false?

(a) Any closed subset of a compact space is compact
(b) Any compact subset of a Hausdorff space is @np
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(c) Any finite set is compact.
(d) Any closed and bounded set of a metric spacerngpact.

3. Which of the following sets is compactik?
(@[0,1]nQ
n Q¢

4. Letf:[a,b] — R be a continuous function. The¢ii[a, b]) is
(a) closed but not bounded.

(b) bounded but not closed.

(c) neither closed nor bounded.

(d) closed and bounded.

5. Which of the following sets is not compact?

(@)St={(x,y) € R? : x2 + y2 = 1}

(b) S™={(x1, X2+ Xy Xpp1) E R"™L e x2 + x2 4 o + x2 + x2,, =
1}

C)RE = {(x1,%2,...,xp) ER™x; =0,...,x, = 0}

(A ={x = (x1,%3,..,%,): x,=0, i=1,2,...,n}

6. LetX = [0,1) U[2,3] be a subspace of the standard topologjRon
The subseft = [0,1) of X is

(a) closed, bounded and compackin

(b) closed, bounded and not compacXin

(c) closed and compact in

(d) bounded and compactih

7. In an arbitray metric spa¢&, p)

(a) every closed and bounded set is compact.
(b) every compact set is closed and bounded.
(c) every bounded set is compact.

(d) every closed set is compact.

8. Let4, be the closed and bounded interi@l1] in R. Let A4, be the
set obtained fromd, by deleting its middle thiré,%. Let A, be the set

obtained fromA, by deleting its middle thirdis,g, andg,g. In general,
defineA,, by the equation

~ 0(1+3k 2+3k>

The intersection
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K:ﬂAn

nenN
is called the Cantor set. It is a subseflf]. Which of the following is

not true abouk'?

(a) K is compact.

(b) K has no isolated points.
(c) K is countable.

(d) K is uncountable.

9. Which of the following sets is not locally congpa
(@R

(b)Q

(c) R™

(d) a discrete space.

19

In this unit you have studied compactness; coversipact sets and
subsets of compact spaces and proved some impoetarits as regards
to compactness, some of them you have always usis $pecial case
in your studies in Analysis and calculus. You walso introduced to

the notions of limit point, sequentially and logatlompactness and one-
point compactification.

Having gone through this unit, you now know that;

2.6 Conclusion

2.7 Summary

(1) A collection A = {U;,i € I} of open subsets of a topological
space X is an open coveringXofif

X:UUI

i€l
(i)  Atopological spacg is compact if every open coveringXfcan
be reducible to a finite subcovering.
(i)  Every finite set is compact.
(iv)  The real line R is not compact.
(v)  Anyclosed and bounded intervallRfis compact.
(vi)  Any closed subset of a compact space is compact.
(vii)  Any compact subset of a Hausdorff space is closed.
(viii) A finite product of compact spaces is compact.
(ix) Any compact set of a metric space is closed anddbead.
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(x)  In the metric spac®™ compactness and closed and bounded are
equivalent. This is the Heine Borel theorem.

(xi) A collection C of subsets of a topological spakesatisfies the
Finite Intersectiion Property (FIP) if any interSen of a finite
subcollection of’ is nonempty.

(xii) A topological space& is compact if and only if any collection
of closed sets o satisfying the FIP, one has that the arbitrary
intersection is nonempty.

(xiii) The continuous image of a compact set is compact.

(xiv) If K is a compact subset of a topological sp&cand f is a
continuous function fronX to an ordered spadéthenf attains
its maximum and minimum orK. This result is called the
Extreme Value Theorem.

(xv) ¢ is aLebesgue number on A if for all subsetsA of X such that
the diameter ofA is less thar, there existdJ € A such that
ACU.

(xvi) A continuous functionf from a compact metric spacé to
another metric spadéis uniformly continuous.

(xvii) A spaceX is called limit point compact if every infinite Isset of
X has a limit point.

(xviii) A topological space is sequentially compact if gv@quence of
points ofX has a convergent subsequence.

(xix) A topological spacd is locally compact if each point af has a
neighbourhood with compact closure.

(xx) A topological embedding of a space into a spacel is a
compactification ofX if the image ofX is dense irY. In such
situation,Y is also called a compactification Xf

(xxi) A spaceY is called one-point compactification af if X is a
locally compact Hausdorff space, arids a compactification of
X with one-pointY\ X, such that there exists a homeomorphism
Y — X which is identity onX.
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UNIT 3 CONNECTEDNESS
Unit structure

3.1 Introduction
3.2 Intended Learning Outcomes (ILOS)
3.3 Separated and Connected Sets
3.3.1 Definitions and Examples
3.4.2 Connected Sets
3.3.3 Connected Subspaces of the Real Line
3.2.4 Path Connectedness
3.2.5 Components and Local Connectedness
3.2.6.1 Connected Components
3.2.6.2 Locally Connectedness
3.4 Self-Assessment Exercise(s)
3.5 Conclusion
3.6 Summary
3.7 References/Further Reading

@3.1 Introduction

In your study of calculus, you must have come actbs all important
results called the intermediate value theorem whsthtes that if
f:1 — R is continuous, and is a real number betwegifa) andf(b)
then there exists € I such thaf (c) = r, wherel denotes an interval of
R. Although this theorem refers to continuous fuorcs,
notwithstanding it also depends on the topologigadperty of the
interval I. In fact we can restate the intermediate valueréma as
follows; The continuous image of an intervabf R is also an interval.
This topological notion property of the intervédl on which the
intermediate value theorem depends is called caedeess.

In this unit, you will be introduced to a generatibn of the
intermediate theorem, and some other related theovehich you have
proved in particular cases of the real line.

@ 3.2 Intended Learning Outcomes (ILOS)
At the end of this unit, you should be able to;

Differentiate between connected sets and sepasptetks.
Define connected spaces.

Understand the connectedness to the real line.
Identify the connected components of a given space.
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o Identify locally connected spaces.
o Know and use of the concept of path connectedness.

3.3 Separated and Connected Sets
3.3.1 Definitions and Examples

Definition 3.2.2.1: Let X be a topological spacd. Separation oX is a
pair U,V of disjoint open sets df, whose uninon i¥.

Definition 3.2.2.2: A topological spaceX is connected if it has no
separation.

Example 3.2.2.3:In R, Let X =[-1,0) U (0,1].[—1, 0)and (0, 1] are
open inX. They are nonempty and disjoint. And so is a sspar of X.
ThereforeX is not connected.

Example 3.2.2.4:Let X = {a,b}. If X is endowed with the indiscrete
topology, the has no separation and thus is connected.

Another way of formulating the definition of coratedness is the
following:

Theorem 3.2.2.5:A spaceX is connected if and only if the only subsets
of X that are both open and closedXimre the empty set additself.

Proof: If A is a nonempty proper subset ¥fthat is both open and
closed inX, then the setd = A andlV/ = X\A constitute a separation of
X, for they are open, disjoint and nonempty, and thr@on isX.
Conversely, ifU and V form a separation oX, then U is
nonempty and different frotk and it is both open and closedXirm

Example 3.2.2.61f X is any discrete space with more than one element,
thenX is not connected as each singleton set is both apé closed.

Example 3.2.2.71f X is any indiscrete space, then it is connecteth@s t
only sets that are both closed and operXaaed®.

3.3.2 Connected Sets

If you refer to a set’ as connected, you mean thatlies in some
topological space (which should be clear from thentext) and,
equipped with the subspace topology, thereby making connected
space. S is connected in a topological spadf Y is connected in
the subspace topology induced by the topolog¥ on
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Theorem 3.2.3.1:Let Y be a subspace of a topological spaceA
separation ot is a pair4, B of nonempty disjoints sets whose union is
Y and neither of which contains a limit point of iider (i.e.A N B° =

@ andB N A° = @).

Proof: Suppose first that andB form a separation df. ThenA is both
open and closed iff. The closure ofd in Y is the setd nY, which
implies thatd N Y = @. SinceA is the union ofd and its limit pointsp

contains no limit points afl. A similar argument shows thdtcontains
no limit points ofA.

Conversely, Suppose thdt and B are disjoint nonempty sets whose
union isY, neither of which contains a limit point of thehet. Then

ANB = @andA N B = @. Therefore, we conclude thAat=ANnY and

B=BnY. ThusA andB are closed ir¥, and sinced = Y\B, and
B = Y\A, they are open iff, as desiredm

Example 3.2.3.2:Let X =[0,1]U (1,2] = AU B. Them,B is not a
separation df sincel € B°n A = @.

Example 3.2.3.3Q the set of all rational numbers is not a connesttd
Indeed, the only connected subspac® afre the one point sets.!fis a
subspace ofQ containing two pointg and g, one can choose an
irrational number lying betweerp andg.

Having seen some examples of sets that are noecteu) what follows
are result that will help you determine how to dang connected sets
from existing ones.

Lemma 3.2.3.4:If the setsd andB forms a separation df, andY is a
connected subspace Xf then eithel’ lies entirely in eithed or B.

Proof: SinceA andB are both open iX, the setdnY andB NnY are
open inY, andY = (AnY)u (BNY). If both of them are nonempty,
then they constitute a separation,YofBut sinceY is connected, either
ANY =@orBNnY =@. So thatr either lies ind or B as requiredm

Theorem 3.2.3.5:The Union of a collection of connected subspades o
X that have one point in common is connected.

Proof: Let {C;}i¢; be a collection of connected spacesXoret p be a
point of N;¢ C;. You have to prove that the spa¥e= U; C; is
connected. Suppose thiat= A U B is a separation df. The pointp is
in one of the setd or B; supposep € A. Since(; is connected, it must
lie entirely in eithe or B, and it cannot lie iB because it contains the
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point p of A. Hence,C; c A for everyi, so U;¢; C; € A, contradiction
the fact thaB is nonemptym

Theorem 3.2.3.6:Let A be a connected subspaceXoflf Ac Bc A
thenB is connected and in particular

Proof: LetA4 be a connected subspaceXoénd letA c B c A. Suppose
B=CUD is a separation oB, then by lemma 3.1, the sdt lies
entirely inC or inD. Supposel c C, thend c C; sinceC c D = @, B
cannot intersedp, this contradicts the fact thAtis a nonempty subset
ofB. m

Theorem 3.2.3.7:The image of a connected space under a continuous
function is connected.

Proof: Let f:X — Y be a continuous map, lét be connected. You
have to show that the spaZe= f(X) is connected. Since the map
obtained from f by restricting its range to the spaée is also
continuous, it suffices to consider the case obatiouous surjective
map

g:X—Z
Suppose = A U B is a separation df into the disjoint nonempty open
sets. Thery~1(4) andg~1(B) form a separation of, contradicting the
assumption thaX is connectedm

Theorem 3.2.3.8:A finite Cartesian product of connected spaces is
connected.

Proof: You can prove this theorem for the product of teamnected
spacest andY. Choose a poinfa, b) in X x Y. Note that the horizontal
slice X x {b}is connected, being homeomorphic wi#y and each
vertical slice{x} XY is connected being homeomorphic whh As a

result eacli’ — shaped space

T = (XX {bh U ({x} xY)

is connected, being the union of two connected espdlcat the point
{x, b}is common. Now form the uniol,cx T, of all thisT — shaped
spaces. The union is connected because it is tiom wh collection of
connected spaces that have the p@nb) in common. Since this union
equalsX x Y, the spac& X Y is connecteds

The proof for any finite product of connected sadellows by
induction.

76



MTH 402 MODULE 2

3.3.3 Connected Subspaces of the Real Line

Here you shall show that the real line is connect®d also is the
intervals of R or the rays, i.e., sets of the forfa, ). You are also
going to prove a generalization of the intermediaéue theorem of
calculus.

Definition 3.2.4.1: A simply ordered set. having more than one
element is called linear continuum if the followihgld:

1. L has the least upper bound property.
2. if x < y, there existg such thak < z < y.

Theorem 3.2.4.2:If L is a linear continuum in the order topology, then
L is connected, and so are the intervals and raks in

Proof: Recall that a subspadéof L is said to be convex if for each
pointsa, b of Y with a < b, one has the intervdl, b] lies inY. You
have to prove that if is a convex subspace bfthenY is connected.

Suppose that = AU B is a separation df. Choosez € A andb € B,
suppose that < b. The intervala, b] of points ofL is the union of the
disjoint sets

Ay =AnN|[a,b]andBy, = B N|a,b]

each is open ifja, b] in the subspace topology, which is the same as the
order topology. The set4, and B, are nonempty becausee 4, and

b € B,. ThusA, andB, constitute a separation pf, b]. Let= sup 4, .

You have to show that belongs ta4, or toB,, which would contradict
the fact thafa, b] is the union o#4, andB,.

Case 1 Suppose that € B,. Thenc = a, so eithelc = bora<c <
b. In either case, it follows from the fact thg¢ is open in[a, b] that
there exist some interval of the forfd, c] contained inB,. If ¢ = b,
you have a contradiction at once, tbis a smaller upper bound iy,
thanc. If ¢ < b, observe thafc, b] does not intersect,, (because is
an upper bound oA,). Then

(d,b] = (d,c] U (c, b]

does not intersect,. Again,d is a smaller upper bound ah thanc,
contrary to construction.

Case 2:Suppose that € A, thenc = b, so eithelc =a ora < c < b.

Becaused, is open in[a, b], there must be some interval of the form
[c,e) contained in4,. Because of the order propdidy of the linear
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continuumL, you can choose a poiate L such thatt <z <e. Then
z € Ay, contrary to the fact thatis an upper bound fof, . m

Corollary 3.2.4.3: The real lineR is connected and so are intervals and
rays inR. As an application, the intermediate value theoodéroalculus
is suitably generalized.

Theorem 3.2.4.4 (Intermediate Value Theorem)Let f: X — Y be a
continuous map, whetg is a connected space ands an ordered set in
the order topology. I andb are two points ok and ifr is a point oft’
lying betweenf (a) andf(b), then there exists a poiatin X such that

f(c) =r.
Proof: Assume by hypothesis of the theorem that the sets

A=fX)Nn(—o,r)and B = f(X) N (r,+o0)
are disjoint, nonempty because one contfie and the other contains
f(b). Each is open iff (X). If there is no point € X such thaif(c) =
r, theA andB form a separation of(X)which is connected. This is a
contradictionm

3.3.4 Path Connectedness

Definition 3.2.5.1: Given pointsx andy of the topological spack, a
path inX from x to y is a continuous mafy: [a, b] — X of some closed
interval in the interval in the real line to theaspX, such thaf (a) = x

andf(b) = y.

Definition 3.2.5.2 (Path Connectednessh topological spacd is said
to be path connected if every pair of pointXoan be joined by a path
in X.

Theorem 3.2.5.3:If X is a path connected space tiXeis connected.
Proof: Suppos&X = A U B is a separation of. Letx € A andy € B.

Choose a patfi: [a, b] — X joining x andy. The subspacg([a, b]) of
X is connected as a continuous image of a connegi&ce. Therefore, it
lies entirely in eithed or B which contradicts the fact thdtandB are
disjoint. m

Example 3.2.5.4:Define the unit balB"in R" by
B={xeR™kxk<1}
where

1
kxk=x%+x2+ +x2)2

78



MTH 402 MODULE 2

The unit ballB™ is path connected, given any two pointy in B", the
straight line pattf: [0, 1] — R™ defined by

fO=10-t)x+ty
lies inB™.

3.3.5 Components and Local Connectedness
3.3.6 Connected Components

Definition 3.2.6.1.1(Connected Components)Given a topological
spaceX, define anequivalence relation by x~y if and only if there
exists a connected subspace&afontainingx andy.

Claim: ~is an equivalence relation.

1. x~x becauséx}is connected (seis reflexive).

2. ~is symmetric by definition.

3. ~is transitive, because~y and y~z implies that there exists
connected subspacé&y and C, of X such thatx,y € ¢; and

v,z € C,. Let C = C; U C,, thenC is connected sincg € C; N C, and

x,z € C. Hencex~y.

A connected component or a component is all eqaincd classes for
this equivalence relation.

Theorem 3.2.6.1.2:The connected components &f are connected
disjoint subspaces aof whose union isX, such that each nonempty
connected subspace Xfintersects only one of them.

Proof: Being equivalence classes, the componenfs afe disjoint and
their union isX. Each connected subspat®f X intersects only one of
them. For ifA intersects the componenfs and C, of X, say in the
points x; and x, respectively, then;~x, by definition, this cannot
happen unlesg; = C,. To show that the componeat is connected,
choose a point, of C. For each poink of C, we know thatc,~x, SO
there is a connected subspagecontainingx, andx. By the result just
proved,A, c C. Therefore
C= U A,

X€EC
since the subspacds are connected and have the painpin common,

their union is connecten.
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3.3.6.1 Locally Connectedness

Definition 3.2.6.2.1: A topological spac€X,t) is said to be locally
connected if it has a basBsconsisting of connected open sets.

Example 3.2.6.2.2Z the set of integers is a locally connected space
which is not connected.

Example 3.2.6.2.3R" is locally connected for all > 1.

Example 3.2.6.2.4:Let (X, 1) be the subspace &? consisting of the
points in the line segments joinir{@, 1) to (0,0) and to all the points

(%,0),n = 1,2,3,.... Then the spacé€X,t) is connected but not
locally connected.

Proposition 3.4.7: Every open subset of a locally connected space is
locally connected.

Proposition 3.4.8: A finite product of locally connected spaces is
locally connected.

u:: 3.4 Self-Assessment Exercise(s)

1 LetX be a discrete topological spaceXlfis connected, then
(@) X isinfinite
(b) X is countable
(c) X is finite with more than one element.
(d) X is a singleton.
2. Let X = {a,b,c,d,e}. SupposeX is connected when endowed
with the topologyt, which of the following could be?
(@)t = P(X), the power set of.
(b)r = {X,®,{a}.{c,d},{a,c,d}}
()t ={X,90,{a},{c,d},{a,c,d},{b,cd,e}}
(d)r ={X,0,{a},{c,d},{a,c,d},{b,e}, {a,b,eHb,c,d, e}}
3. LetX = {a, b}. Which of the following topologies will mak®
disconnected?
(@)t = {X,9,{a},{b}}
(b)r = {X, 0,{a}}
()t = {X,0,{b}}
(d)r = {X, ¢}
4. In which of the following spaces is the sub§&tl} of real
numbers connected?
(a)R with the standard topology
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(b)R with the finite complement topology
()R = [0, ) with the topology) = {0, X, (a, +)}
(d)R with the discrete topology
5. If R is endowed with the finite complement topologyertithe
following sets are connected except
(@) the empty set
(b) singleton sets
(c) infinite sets
(d N
6. Every connected space is path connected. (TRALESE)

7. Every connected space is locally connected. ERBLSE)
8. Every locally connected space is connected. HRBWLSE)

9. LetA be a subset of a spakeThen the pait/,V is a separation such
thatA = U U B if and only if

@UuUlcvorV®cu

OVoNU=0andU°nV =0

@QUNV=@andUNV =0

AVVNU=0andU°NV =@orV°NnU=@andU’°nV =@

10. If ¢; andC, are connected components afids a connected set,
then

(@) eitherC; N C, = @ orC; = C;, andA intersects botld; andcC,
(b) C; N C, = @andC; = C;, and4 intersects botld; andC,
(c) eitherC; nC, = @ andC; = C;, andA intersects eithé&y orC,
(d) C; N C, = @ andC; = C,, andA intersects eithéy orC,.

11. A topological space is totally separated lifital components are
singletons. Which of the following spaces is naitally
separated?

(@) Any discrete space
(b)  The spac® endowed the topology induced from standard
topology ofR
(c)  The cantor séf
(d) R with the standard topology.
12. If X is a connected space gfitd{ — R is a continuous function.

Then f(X) is an intervall of R. Which of the following is not correct
about this assertion?

(@) f(X) is connected
(b) The interval oR is connected
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(c) Ris connected
(d)  The interval is a continuous image of the connected spgiace

19

In this unit, you were introduced to a topologiqadoperty called
connectedness. You studied connected and sepaspades with
examples and the connectedness of the real lina.afep studied the
connected components of a given space, locally ected spaces and
path connectedness. You also proved some impadaatts such as the
intermediate value theorem.

an

Having gone through this unit, you now know that;

3.5 Conclusion

3.6 Summary

(1) A separation of a topological spa&eis a pairU,V of disjoint
open sets o, whose union iX.

(i)  Atopological spacg is connected if it has no separation.XOs
connected if and only if the only closed and opets n X is @
andX itself.

(i) A set is connected if it is connected in the subsptpology
induced by the topology in the topological space.

(iv) A union of a collection of connected subspaces( dhat have
one point in common is connected.

(v)  The continuous image of a connected space is ctethec

(vi) A finite Cartesian product of connected spacesimected.

(vii) The real line is connected. So also is the interaad rays.

(viii) A simply ordered set having more than one element is called
linear continuum ifL has the least upper bound property and if
x <y, then there existssuch thatt < z < y. (

(ix)  Alinear continuum in the order topology is conmeict

(x) If f:X — Y is a continuous map from the connected spate
the ordered spadéin the order topologyy andb are two points
of X and ifr is a point ofY lying betweenf (a) andf(b), then
there exists a point in X such thatf(c) =r. This is the
intermediate value theorem

(xi) A path from a pointx to y in the topological spac¥ is a
continuous mayf: [a, b] — X of some closed interval in the real
line to the spac&, such thaf (a) = x andf(b) = y. X is called
path connected if every pair of points Xfcan be joined by a
path inX. If X is a path connected space tiXeis connected.
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(xif) A connected component is an equivalence class F& t
equivalence relatiom~y if and only if there exists a connected
subspace& containingx andy. The connected componentsof
are connected disjoint subspaceX afhose union ig, such that
each nonempty connected subspac& ahtersects only one of
them.

(xiii) A topological spac& is said to be locally connected if it has a
basisB consisting of connected open sets.

[
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MODULE 3 HOMOTOPY RELATIONS
M odule Introduction

Two continuous functions from one topological spaseanother are
called homotopic if one can be “continuously defedhinto the other,
and such a deformation is called a homotopy betweernwo functions.
Homotopy compares spaces by shape rather thamotgipal structures.
While homeomorphism preserves the lattice of opets, shomotopy
equivalence preserves the shape of space, thethasacteristics of the
space that is preserved up to deformation. Twoltgpeal spaces X and
Y are homotopy equivalent if they can be transfatrm#o one another
or made homeomorphic by bending, shrinking and roipa
operations.A connected open gt C is simply connected if every
closed path in E is homotopic to a point (can bg @mint in E).In this
module, concepts of homotopy are discussed.

Unit 1 Homotopy of Paths
Unit 2 Simple Connected Spaces
Unit 1 Homotopy of paths

Unit structure

1.1 Introduction
1.2 Intended Learning Outcomes (ILOs)
1.3 Homotopy of Paths and Equivalence Relations
1.3.1 Fundamental Group and Changing Base Point
1.1 Self-Assessment Exercise(s)
1.5 Conclusion
1.6 Summary
1.7 References/Further Readings

@ 1.1 Introduction

Paths and loops are central subjects of studyeanbtianch of algebraic
topology called homotopy theory. A homotopy of Eathakes precise
the notion of continuously deforming a path whikeging its endpoints
fixed.
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@ 1.2 Intended L earning Outcomes (ILOs)

At the end of this unit, readers should be able to:

. Understand the concepts of homotopic paths.
. distinguish between paths and loops.

1.3 Homotopy of pathsand Equivalence Relations

Definition 1.2.1.1 (Homotopic). Let X and Y be topological spacest Le
f, g : X— Y be continuous. We say f is homotopic to g, deddiy f=

g, if there exists a continuous function ¥ x [0, 1] — Y such that F(x,
0) = f(x) and F(x, 1) = g(x) for alk € X. In other words, we can
continuously move the image f(x) to the image gie., yt(x) = F(x, t):

X —Yfor0<t<1isafamily of continuous functions, continuously
deforming from f(x) to g(x). Now let’s consider tspecial case where f
and g are paths K. Recall ify : [0, 1] — X is continuousy(0) = x,
andy(1) =x,, theny is called a path i¥ from x, to x;.

Definition 1.2.1.2 (Path homotopic). Two pathsandy’ in X from x, to
x; are path homotopic, denotedyby,, y' , if there exists a continuous
function F : [0, 1k[0, 1] — X such that F(s, 0) #(s) and F(s, 1) =
¥'(s) (so homotopic) and F(O, t) & and F(1,t) =x; forall 0 <t <
1(so at every t it is still a path from to x;.

Lemma 1.2.1.3. The homotopy relation= and the path homotopy
relation=,, are equivalence relations on

A= {f: X — Y continuous}

and

A(xq, x1) = {y:[0,1] — X continuousy(0) = x,, y(1) = x,}
respectively.

Remark 1.2.1.4. If y is a path, we denote its path homotopy equivalence
class by7].

Proof: We will show=is an equivalence relation; path homotopy is
very similar. Reflexivity is obvious: £ f by F(x, t) = f(x) for all xe X
and all te [0, 1]. For symmetry, suppose=fj, say by a continuous F(x,
t) such that F(x, 0) = f(x) and F(x, 1) = g(x). Ba&(x, t) = F(x, 1 - t).
Then G(x, 0) = F(x, 1) = g(x) and G(x, 1) = F(x,#9j(x). Hence g= f.
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Finally, transitivity: Suppose=# g and g= h, say the first one by F(x, t)
and the second by G(x, t). Take

F(x,2t), if0<t< %

H(x, t) = 1
G, 2t = 1),if <t <1,

Then H(x, 0) = F(x, 0) = f(x) and H(x, 1) = G(¥) % h(x). Moreover, H

is continuous (only t :% needs to be checked); it is made up of two

continuous functions which agree on a closedsset.

Example 1.2.1.5. Let y; andy, be two paths from, to x; in R2.
Thery, =, y,. For instance, by taking the convex combinationthef
two paths,

F(s, 1) = (1 — 91(S) + ¥2(S).

This argument works in slightly more generally.

Remark 1.2.1.6. Let y,, ¥, be two paths fronx, to x; in a convex
space X. Therny; =, y,.(Since in a convex space the line segment
connecting the two at a fixed time is still in tlspace because of
convexity.)

1.3.1 Fundamental group and Changing Base Point

Lety, be a path in X fromx, to x; and lety; be a path in X from, to
x,. Defingy, * ¥, to be the path fromy to x, given by

Vo(25), if0<s < %
Yo*Y1(S) =
o y1(2s — 1),if§s s<1.

This induces an operation on the path homotopyselsy,] * [y1]:=
[Vo * val-

Proposition 1.2.2.1.

(1) The operationx is associative. In other words, lgjbe a path
from x, to x;, y; be a path from, to x,, and,, a path from, to

x3. Then (ko] * [y4]) * [v2] = [vol * (vl * [v2))

(i)  The operation* has identities. Giverx € X, e,:[0,1] — X,
ex(s) = x be the constant path. Lgtbe a path from, to x;.
Then ey 1 * [y] = [v] = [¥] * [ex,]-

(i)  The operation+ has inverses. Let be a path from, to x;.
Lety(s) =y(1 —s).
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Then[y] * [7] =ey,and ] *[y] = ey, |.

Remark 1.2.2.2. This means is a groupoid operation, but not a group
operation, since the left and right identities r@oé necessarily equal.
On the other hand, this means:

Remark 1.2.2.3. If we consider Aty x,) =y : [0, 1]—= X continuous,
y(0) = y(1) = x, then* is a group operation on the path homotopy
classes.

Definition 1.2.2.4. (i) Let X be a space and lej € X. A path inX that
begins and ends af is called a loop at,. (i) The set of pathhomotopy
classes of loops basedgivith the operationis called the fundamental
group of X relative to the base poiyt, denoted by, (X, x,).

Example 1.2.2.5. For anyx, € R?, m,(R?, x,) = {e} = 0, the trivial
group, since all paths R? are path homotopic by Example 3.1.5. In
general, if X is convex, them, (X, x,) = 0 for allx, € X. In particular,
m(R™, xo) = 0.

Remark 1.2.2.6 Letx, € X be a fixed base point. We refer to the pair
(X, x,) as a based space.

Definition 1.2.2.7. A path inX from x, to x, is called a loop iX based
at x,, or a loop in X, x,). Letm, (X, xo) = {[f]lf is a loop in (X,x,)}
be the set of path homotopy classes of loopsXirbased atx,.
m, (X, x)is the same setagX, x,, x,). Note that the compositign: g
of two loops in X, x,) is again a loop inX x;).

Lemma 1.2.2.8. The composition of path homotopy classes speegliz

to a pairingmy (X, xo) X 71 (X, %) = 71 (X, x0) ([f], [9]) = [f]*[g] =
[f * g] where f and g are loops ;hbased at,.

Theorem 1.2.2.9. The set, (X, x,)with the composition operatiens a
group, with neutral element= [cx,] and group invergg¢]~* = [f] for
each loopf in (X, x,).

Proof. The composition operation defines a group strectbiit is (1)
associative, (2) has a left and right unit, andg&gh element has a left
and right inverse. All three conditions follow byesializing the
previous theorem to the case where all paths apslonX based ak,.

|

Definition 1.2.2.10. m, (X, x,), with this group structure, is called the
fundamental group of X basedxgt
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Example 1.2.2.11. If X ¢ R" is convex, andx € X, thenm; (X, x,) =
{e} is the trivial group.

Theorem 1.2212. If X is path connected andr,, x; €X
theml(X, x0)~ = 7T1(X, xO).

Remark 1.2.2.13(Changing base point)

Let x,, x,; € Xand letr be a path from, to x,. Thena induces a group
homomorphisri:r; (X, xo)— 7 (X, x1) given bya&([y]) = [a] * [y] *
[a] = [@ *y * a]. (Recalla(s) = a(1 — s)) isa in reverse.)

Theorem 1.2.2.14.@¢ is a group isomorphism.

Proof. Let B(s) = @(s). This is a path from, to x,. Ther:m, (X, x;)
— w1 (X, x,) is a group homomorphism, addandf are each other’s
inversem

P

1. Check that on the path homotopy classes is well-defined, (i.e.
does not depend on the choice of representatiyyaady; ).

2. Prove Proposition 3.2.1.

3. Verify thata is a group homomorphism.

19

15 Conclusion

1.4 Self-Assessment Exercise(s)

Homotopy groups are used in algebraic topologyl&ssify topological
spaces. The first and simplest homotopy groupaduhdamental group,
denotedr, (X).

In this unit, you have learnt the principle of patlomotopy, its
equivalence relations and fundamental groups.

1.6 Summary
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2.7 References/Further Reading

g 2.1 Introduction

2.2 Intended Learning Outcomes (ILOs)

@

At the end of this unit, readers should be able to:

o understand when a topological space is simply cctiede
o distinguish between a covering map and a coveprges

2.3 Simply connected space

Definition 2.2.1.1 A path connected spack is said to be simply
connected it,(X,x,) is the trivial group for some, hence any, base
pointx, € X. A path connected space X is simply connecteadf anly

if any two pathg andf, in X fromx, to x; are path homotopic.

Corollary 2.2.1.2 If X is path connected, then for amy, x; € X, we
haVG'[l(X, x0)~ == T[l(X, xl)

Remark 2.2.1.3 This isomorphism depends on the pafromx, to x;.
Two different paths may induce different isomorpss

Definition 2.2.1.4 (Simply connected). A spacdeis simply connected if
X is path connected ang(X, x,) = 0. Note that since the space is path
connected, the fundamental grayfX,x,) does not depend on the
choice ofx, € Xin the first place.
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Definition 2.2.1.5 (Induced homomorphism) Leth:X — Ybe a
continuous map such thai(x,) =y,. Write h:(X,x,) = (Y, o).
Therh induces a homomorphigm: (X, x,) - m,(Y,y,) given
byh x ([yD) = [hey].

Theorem 22.1.6 Leth: (X,x) = (Y,yo)and k: (Y,y,y) = (Z,2z5) be
continuous.
Then o h) * =k * o h *.

Corollary 2.2.1.7 If h:(X,x,) = (Y,y,) is a homeomorphism, then
h*:my(X,x9) = m1(Y,y,) is an isomorphism. Hence the fundamental
groupm, is a topological invariant.

2.3.1 Covering Map and Covering Space

Definition 2.2.2 1 (Covering space). (i) Lep: E - X be a continuous
surjective map. An open $&& X is evenly covered by if p~1(U) is a
union of disjoint open subséisc E such that\V, : , - U is a
homeomorphism for alk. (ii) Letp: E - Xbe a continuous surjective
map. If eachx € X has a neighbourhodd that is evenly covered Iy,
thenp is called a covering map, afds called a covering space Xf

Example 2.2.2.2 Considem: R — S'defined by(t) = e?™. Thisp is a
covering map.

Definition 2.2.2.3 (Fibre). Lep: E — X be a covering map. LeE X.
Therp~1(x) is called the fibre over.

Remark 2.2.2.4 The fibree~1(x)has the discrete topology, and for
each € Xthere is an open neighbourhoddl such thagt=!(U) is
homeomorphic to~1(x) x U.

Definition 2.2.25 Let p: E - Xbe a covering map. Lef:Y — Xbe a
continuous map. A continuous mpapy — E is callled a lift of if
pe° g = f. In other words, a lift is a map making the diagra
E

gp
Yf X
Commute.

Definition 2.2.2.6 (Homotopy type). Let X and Y be topological
spaces. (i) A mgh X — Y is a homotopy equivalence if there exists a
mapg:Y = X such thgfeg ~Idy, and go f ~Idy. The mapg is
called a homotopy inverse ¢t (ii) The spaceX andY are homotopy
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equivalent (or have the same homotopy type) ifehiera homotopy
equivalence betweenand .

Theorem 2.2.2.7 Let f: (X,x,) = (Y,y,) be a homotopy equivalence.
Then the induced magp*: ;1 (X, xo) = 7, (Y, yo)is an isomorphism.

Proof. Letg be a homotopy inverse off, and x; = g(yo),
i.eg: (Y, y0) = (X, x9).

So,

K, x))—F—=> C,yp— (X, x1)
L_JéldX

Ther(g o f) x= g o f *x:m(X,%0) = m1(Y,y0) = m1 (X, x1),
but(]dx) * = Idﬂ.'l(X! xo).

Sincgg *o f x = Idy SO f * iS one-to-one arg* is onto. Similarly,
considef o g, sayingf * is onto angy * is one-to-one.

Remark 2.2.2.8 If X andY are homeomorphic, thexi andY have the
same homotopy type. The converse is not true: ristance, a single
pointt, is homotopy equivalent tdR, but they are certainly not
homeomorphic.

Definition 2.2.2.9 (Contractible). A spac& is contractible ifX is
homotopy equivalent to a single-point spéce y, .

Corollary 2.2.2.6. A contractible space is simpiyoected.

m 2.4 Self-Assessment Exercise(s)

Verify thath * is a group homomorphism

2. Let X be a simply connected topological space. xgt; € X.
Show that any two paths frogtox; are homotopic.

Prove Theorem 3.1.6.

Let X be a path-connected space and Agtx; € X. Show
thatr, (X, x,) is abelian if and only if for any patlss fromx,
tox,, we havet = f.

5. Let X be a topological space anddgE X. Suppose that there is
a continuous map X x [0,1] - X such thatF(x,0) = xo,x €
X, F(x,1) =x, F(x, 1) = xx € X,F(xq,t) = x5, 0<t < 1. (9
Show that X is path connected. (b) Show that X impsy
connected.

=

Hw
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6. A subsetd of R" is called star convex with respectdg € A if
all the line segments joining, to any other points o lie in A.
(a) Find a star convex set that is not convexSfiyw that a star
convex set is simply connected.

7. Prove that ifX is contractible and’ is path connected, then any
two maps from¥ to Y are homotopic.
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