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Introduction  
 
General Topology, MTH402 is a 3-credit unit. The course is a core 
course in second semester of 400L. It will take you 15 weeks to 
complete the course. You are to spend 45 hours of study for a period of 
13 weeks while the first week is for orientation and the last week is for 
end of semester examination. You will receive the course material which 
you can read online or download and read off-line. The online course 
material is integrated in the Learning Management System (LMS). All 
activities in this course will be held in the LMS. All you need to know in 
this course is presented in the following sub-headings. 
 
Course Competencies 
 
By the end of this course, you will gain competency in the:  
 
•  basics of topology and how to apply them. 
 
Course Objectives 
 
The course objectives are to: 
 
 Recognise and understand the basic concepts of topology. 
 Be able to use these results to analyze concrete examples. 
 Apply the concepts of topology to other fields of Mathematics.  
 
Working through this Course  
 
The course is divided into modules and units. The modules are derived 
from the course competencies and objectives. The competencies will 
guide you on the skills you will gain at the end of this course. So, as you 
work through the course, reflect on the competencies to ensure mastery. 
The units are components of the modules. Each unit is sub-divided into 
introduction, intended learning outcome(s), main content, self –
assessment exercise(s), conclusion, summary, and further readings. The 
introduction introduces you to the unit topic. The intended learning 
outcome(s) is the central point which help to measure your achievement 
or success in the course. Therefore, study the intended learning 
outcome(s) before going to the main content and at the end of the unit, 
revisit the intended learning outcome(s) to check if you have achieved 
the learning outcomes. Work through the unit again if you have not 
attained the stated learning outcomes. The main content is the body of 
knowledge in the unit. Self-assessment exercises are embedded in the 
content which helps you to evaluate your mastery of the competencies. 
The conclusion gives you the takeaway while the summary is a brief of 
the knowledge presented in the unit. The final part is the further 
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readings. This takes you to where you can read more on the topic 
presented in the unit. The modules and units are presented as follows: 
 
Module 1 
 
Unit1  C o n c e p t s  o f  Topological Spaces 
Unit 2   Separation Axioms 
 
Module 2 
 
Unit 1   Category and Separability 
Unit 2  Compact Sets and Spaces 
Unit    Connectedness 

References and Further Readings 
1. Sidney A. Morris(2007), Topology Without Tears, 

https://www.topologywithouttears.net/topbook.pdf 
2. Munkres,J. R. (1999),   Topology, second edition, Pearson.  
3. Freiwald, R. C. (2014), An Introduction to Set Theory and 

Topology, Washington University, St. Louis Saint Louis, 
Missouri. 

4. Bourbaki, N. (1996), General topology, Part I, Addison Wesley, 
Reading, Mass. 

5. Englking, R.(1989), Outline of general topology, Amsterdam.  
6. Willard, S. (1970), General topology, Addison Wesley Publishing 

Company, Inc, USA. 
7. Michael, S. (1972), Elementary Topology, Second edition, 

Gemidnami. 
 
Presentation Schedule  
 
The activities for each week are as presented in Table 1 while the 
required hours of study and the activities are presented in Table 2. Spend 
time to complete each unit hence module. 
 
Table 1: Weekly Activities 
Week Activity 

1 Course Orientation and Guide 

2 Module 1 Unit 1 

3 Module 1 Unit 1 

4 Module 1 Unit 2 

5 Module 1 Unit 2 
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6 Module 1 Unit 2 

7 Module 2 Unit 1 

8 Module 2 Unit 1 

9 Module 2 unit 2 

10 Module 2 Unit 2 

11 Module 2 Unit 3 

12 Module 2 Unit 3 

13 Revision 

 
The activities in Table I include facilitation hours. 

Assessment 
 

Table 2:   Assessment  
S/N Method of Assessment Score(%) 

1 Tutor Marked Assignment 30 

2 Final Examination 70 

 Total 100 

 
Assignment 
 
This is tutor marked assignment you will be asked to do for assessment. 
 
Examination  
 
Finally, the examination will help to test the cognitive domain. The test 
items will be mostly application, and evaluation test items that will lead 
to creation of new knowledge/idea. 

How to get the Most from the Course 
 

To get the most in this course, you: 
 
 need a personal laptop. The use of mobile phone only may not 

give you the desirable environment to work.  
 must have regular and stable internet.  
 have to install the recommended software.  
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 to work through the course step by step starting with the 
programme orientation. 

 must do all the assessments following given instructions. 
 must create time daily to attend to your study. 

Online Facilitation 
 
There will be two forms of facilitation – synchronous and asynchronous. 
The synchronous will be held through video conferencing according to 
weekly schedule. During the synchronous facilitation:  
o There will be one hour of online real time contact per week 

making a total of 13 hours for thirteen weeks of study time.  
o At the end of each video conferencing, the video will be uploaded 

for view at your pace.  
o You are to read the course material and do other assignments as 

may be given before video conferencing time. 
o The facilitator will concentrate on main themes. 
o The facilitator will take you through the course guide in the first 

lecture at the start date of facilitation. 
 
For the asynchronous facilitation, your facilitator will:  
 
 Present the theme for the week.  
 Direct and summarise forum discussions.  
 Coordinate activities in the platform. 
 Score and grade activities when need be. 
 Support you to learn. In this regard personal mails may be sent. 
 Send you videos and audio lectures, and podcasts if need be. 
 
 Read all the comments and notes of your facilitator especially on your 
assignments, participate in forum discussions. This will give you 
opportunity to socialise with others in the course and build your skill for 
teamwork. You can raise any challenge encountered during your study. 
To gain the maximum benefit from course facilitation, prepare a list of 
questions before the synchronous session. You will learn a lot from 
participating actively in the discussions. 
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Course Blub:          This course presents the concepts of topology,  
   which include separability, compactness and  
   connectedness. Various results were proved with 
   sufficient examples to guide learners.     
Semester: Second 
Course Duration:            13 Weeks  
Required Hours for Study:             65Hours 
 
 
Ice Breaker:     Topology is the mathematical study of those properties 
of geometric forms that remain invariant under certain transformations, 
as bending or stretching.Topological spaces are mathematical structures 
that allow the formal definition of concepts such as convergence, 
connectedness, and continuity. They appear in virtually every branch of 
modern mathematics, which is an indication of the importance of 
studying this course. 
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MODULE 1      TOPOLOGICAL SPACES 
 
The background needed for this study is explained in this module. 
Topology studies spaces by asking questions from a qualitative 
perspective. For example, some topological questions include: Is a space 
connected? Is a space simply connected? This question provides a 
technique for distinguishing between a sphere and a torus. For on the 
torus, there exist closed curves which cannot be ‘shrunk’ to a point. Is a 
space oriented? For example, the regular cylinder is oriented (as it has 
two sides), while the Möbius space is not (it has only one side). Note 
that there are easier ways to distinguish these two, namely by examining 
their boundaries. A topological space is an abstraction of metric spaces. 
In short, a topological space is a set equipped with the additional data 
necessary to make sense of what it means for points to be ‘close’ to each 
other. This will allow us to develop notions of limits and continuity. 
 
Unit1   C o n c e p t s  o f  Topological Spaces 
Unit 2   Separation Axioms 
 
UNIT 1 CONCEPTS OF TOPOLOGICAL SPACES 
 
Unit structure 
 
1.1 Introduction 
1.2 Intended Learning Outcomes (ILOs)  
1.3 Main Content  
 1.3.1 Definitions and Examples of Basic Concepts 
 1.3.2 Basis for Topology 
 1.3.3 The Subspace Topology 
 1.2.4 Closed Sets and Limit Points 
1.4     Self-Assessment Exercise(s)  
1.5     Conclusion  
1.6     Summary   
1.7     References/Further Reading 
 

1.1 Introduction 
 
In your study of metric spaces, you defined several important concepts, 
like limit point, closure of a set, etc. In each case, the definition is based on 
the idea of a neighborhood—or, to put it another way, on the idea of an 
open set. The concepts of neighborhood and open set were then defined by 
using the metric (or distance) in the specified space. However, you can 
approach things differently by defining a system of open sets in a given set � with sufficient properties, as opposed to adding a metric to the specified 
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set �. This idea leads to the introduction of the notion of a topological 
space. Metric spaces are a special type of topological space that is 
particularly significant. 
 

1.2  Intended Learning Outcomes (ILOs) 
 
At the end of this unit, you shall be: 
 
 able to define a topological space 
 familiar with some important topological notions  
 

1.3 Main Content 
 
1.3.1 Definitions and Examples of Basic Concepts 
 
Definition 1.2.1.1: Suppose � is a set. A topology on � is a collection � 
of subsets of � such that the following properties are satisfied: 
 
i. ∃∅ ∈ � (The set�it self and the empty set∅arein �) 
ii.  � ∈  � (The set � is in �) 
iii.  If  � ∈ � and � ∈ �  that is if�� ∈ � for all 	 ∈ 
 then⋃ �� ∈ ��∈� , 
 i.e.,�� ∈ � ⟹ ⋃ � ∈ ���� , ⋂ �� ∈ ����  (Arbitrary unions and 
 finite intersections of elements of � are in �). 
 
In theory, a topology � on � is a set of subsets that can be closed by 
arbitrary union and finite intersection. The complement of an open set is 
a closed set. 
 
Definition1.2.1.2:  By a topological space, is meant a pair ��, �� 
consisting of a set� and a topology�  defined on �. 
 
A topological space is a pair made up of a set � and a topology defined 
on �, much like a metric space is a pair made up of a set � and a metric 
defined on �. Therefore, you need to specify a set � and a topology on � in order to specify a topological space. One and the same set can have 
various topologies attached to it, defining various distinct topological 
spaces. If there is no confusion, you may omit � and refer to merely � as 
a topological space in the follow-up. 
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Definition1.2.1.3: The elements of the topology�on�are called open 
sets 
. 
Example1.2.1.4 (The discrete topology): If � is a set, take �� to be 
the �(�), power set of �.��  is clearly a topology on �, called the 
discrete topology. In the discrete topology, all subsets of � are 
open. It is the largest topology on �. 
 
Example1.2.1.5 (The indiscrete topology): Let � be any non-empty 
set. The indiscrete topology on � is the family {0, �}.It is the smallest 
topology on � and (�, ��) is called the topological space of coalesced 
points. This is mainly of academic interest. 
 
Example1.2.1.6 (Sierpinski topology):Let� = ��, �, ��. Many 
topologies on � can be defined. For example, you can define �� = �∅, ���, ��, ��, ��, ��	 
 
Then�� is a topology on � called the Sierpinski topology. 
 
Example 1.2.1.7 (Sierpinski space) The Sierpinski space
 consists of 
two points {0, 1} with the topology {∅, {1 }, {0, 1} }. The topology of the 
Sierpinski space is finer than the indiscrete topology {∅, {0, 1}} on {0, 1} 
but coarser than the discrete topology {∅, {0}, {1}, {0, 1}} �� {0, 1}. 
 
Definition 1.2.1.8: Given two topologies �� and �� on the same set, we 
say that �� is coarser than �� if �� ⊆ ��. 
According to definition(3.4)you can observe that if � is any topology on 
 �, then �� ⊂ � ⊂ ��  
where��and ��areas defined in examples(3.1)and(3.2). 
 
Example1.2.1.9(Finite complement topology) 
 
:Let�beaset,and let��be the collection of all subsetsof�such that �\ 
is finite or  = ∅,i.e., ��is the collection of the form �� = � ⊆ �: �\�����������\ = �� 
 
Then�� is a topology of�called the finite complement topology (sometimes 
called the coffinite topology).  
 
Example1.2.1.10:Let �beaset, and let ��be the collection of subsetsof �such that�\ is either countable or is�,i.e., �� is a collection of the 
form �� = � ⊆ �: �\��������������������\ = �� 
Then �� is a topology on �. 
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Theorem 1.2.1.11: The intersection � = ⋂ ���∈∆  of topologies �����∈∆ 
on � is itself a topology in � (where ∆ is some indexing set). 
 
Proof: You are required to verify the three (3)axioms of topology on a 
set�for � = ���

�∈∆

 

Given that �����∈∆ is family of topologies on �. 
 
Therefore, we proceed as follows: 
 
1. Since ��is a topology on�,for each � ∈ ∆, there 
 exist∅and �ineach��, sothat 
 

∅, � ∈ ���
�∈∆

=∶ � 

2. Let�	�	∈
bea collection of elements of�,where�is some index 
 ingset.Let  = �	

	∈

 

 
You have to show that  ∈ �. 
 
But you already have that for each � ∈ �, 	 ∈ � implies that 	 ∈ �� for 
fixed � ∈ ∆. Since �� is  
 
a topology on �,  = ⋃ 	 ∈	∈
 �� for � ∈ ∆. Therefore, by taking 
intersections over � ∈ ∆, we have  = �	

	∈

∈ ���

�∈∆

=∶ � 

ie., ∈ �. 
 
3. To verify axiom (3), it is enough to do it for two sets � and �in 
 �. The results follow by induction on �. Therefore, take two sets 
             � and �in � and let  = � ∩ � 
You have to show that  ∈ �. But�,� ∈ �implies that �, � ∈ �� for 
each � ∈ ∆. Thus  = � ∩ � ∈ �� since each�� , � ∈ ∆is a topology on �. Hence,  = � ∩ � ∈ ���

�∈∆

=∶ � 

i.e,  ∈ �. Therefore, the proof is over.∎ 
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1.2.2 Basis for Topology  
 
For each example in the preceding section, you were able to specify the 
topology by describing the entire collection � of open sets. This is 
usually difficult in general. In most cases, you will need to specify 
instead a smaller collection of subsets of � and then define the topology 
in terms of this collection.  
 
Definition 1.2.2.1 (Basis): Let � be a set. A basis for a topology on � is 
a collection � of subsets of � (called basis elements) such that  
1. For each � ∈ �, there exists � ∈ ℬ such that � ∈ �, or equivalently � =  ⋃ ��∈ℬ . 
2. If � ∈ � and ��, �� ∈ ℬ such that � ∈ �� ∩ ��, there exists �� ∈ ℬ 
such that � ∈ �� ⊂ �� ∩ ��. 
 
Definition 1.2.2.2(Topology generated by a Basis): If � satisfies the 
above two conditions, then we define the topology � generated by � as 
follows:  
 
A subset  of � is in � (i.e., is open) if for each � ∈ , there exists a 
basis element � ∈ � such that� ∈ � ⊂ . That is to say that � is a 
collection of the form � ∶=  � ∈  � ∶   = ∅ �� �� � ∈ , there exists � ∈ ℬ such that �

∈ � ⊂ � 
You can easily verify that � is a topology on �. Note that each basis 
element is open. 
 
Example 1.2.2.3: Let � =  ���, � : �, � ∈ ℝ, � <  ��. Then � is a basis 
for a topology onℝ called the standard or Euclidean topology on ℝ.  
 
Example 1.2.2.4:Let�  =  �[�, �): �, � ∈ ℝ, � <  ��. Then � is a 
basis for a topology on ℝ called the lower limit topology on ℝ.  
 
Example 1.2.2.5: Let � =  {{�}: � ∈ �}. Then � is a basis for the 
discrete topology on �.  
 
Proposition 1.1.2.6: Let � be a set, and let � be a basis for a topology � 
on �. Then � equals the collection of all unions of elements of �. 
 
Proof: Let {�	}	∈
be a collection of elements of �. Then for each� ∈ �, �	 ∈ � (because each �	 is open). Since � is a topology,  ��	 ∈ �

	∈

 

Conversely, let  ∈ �, and let � ∈ . � is a basis for � implies there 
exist �� ∈ � such that � ∈ �� ⊂ . This implies that 
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 = �{�} ⊂
�∈�

��� ⊂ 
�∈�

 

Thus, ⋃ ���∈� , so that  is a union of elements of �.∎ 
 
Example 1.2.2.7: Let � =  {�, �, �, !, �, �} and � ∶=  {�, ∅, {�}, {�, !}, {�, �, !}, {�, �, !, �, �}}. Then � =  {{�}, {�, !}, {�, � , !, �, �}} is a basis for � as� ⊂ � and every 
element of � can be expressed as a union of elements of �.  
Note that�itself is also a basis for �. 
 
So far, you have seen that when you are given a basis, you can define a 
topology. But the following example tells you that you have to be very 
careful when you have an arbitrary collection of subsets of a set �. 
 
Example 1.2.2.8 Let � =  {�, �, �} and � =  {{�}, {�}, {�, �}, {�, �}}. 
Then � is not a basis for any topology on �. To see this, suppose that � 
is a basis for some topology �. Then � consists of all unions of sets in �. 
That is,  � =  {�, ∅ , {�}, {�}, {�, �}, {�, �}, {�, �}} 
 
However, � is not a topology since {�, �} ∩ {�, �}  =  {�}, � ∈ �. So � 
does not have property (3) of Definition 3.1. This is a contradiction, and 
so your supposition is false. Thus � is not a basis for any topology on �. 
In view of the above example, the question of interest now is; under 
what condition is a collection " of subsets of � a basis for a topology on �? The answer to this question is provided by the next proposition.  
 
Proposition 1.2.2.9: Let � be a topological space. Suppose that # is a 
collection of open subsets of � such that for each open set  of � and 
each � ∈ , there exists " ∈ # such that  � ∈ " ⊂  
Then # is a basis for a topology of �.  
When topologies are given by basis, it is useful to have a criterion in 
terms of the bases for determining whether one topology is finer than the 
other. One such criterion is the following proposition. 
 
Proposition 1.2.2.10: Let � and � 0 be basis for the topologies � and �, respectively on �. Then the following are equivalent:  
1. � is finer that �.  
2. For each � ∈ � and each basis element � ∈ � containing �, there 
exists a basis element � such that � ∈ � ⊂ �.  
 
Proof:(1) ⟹ (2). Let � ∈ � and � ∈ � such that � ∈. You know that � ∈ � by definition and that � ⊂ � by condition (1). Therefore, � ∈ �. 
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Since � is generated by �, then there exists an element � ∈ � such 
that � ∈ � ⊂ �.  
 
(2) ⟹ (1). Given an element  ∈ �. Our goal is to show that  ∈ �. 
So let � ∈ . Since � generates�, there is an element � ∈ � such that � ∈ � ⊂ . By condition (2) there exists � ∈ � such that � ∈ � ⊂ �. 
Then � ∈ � ⊂ . So  ∈ �, by definition. 
 
Definition 1.2.2.11      The Metric Topology  
 
One of the most important and frequently used ways of imposing a 
topology on a set is to define the topology in terms of a metric on a set. 
Topologies given in this way lie at the heart of modern analysis, for 
example. In this section, you shall be introduced with the metric 
topology and some of its examples. 
 
Definition 1.2.2.12: A metric space is an ordered pair (�, !) where � is 
a set and ! is a metric on �. i.e., a function !: � x � →  ℝ 
Such that for any�, $, % ∈ �, the following holds: 
i. !��, $ ≥ 0       Ɐ x, y ∈ X   (Positivity)  
ii.  !��, $ = 0 if and only if � = $  (By definiteness)  
iii.  !(�, $) = !($, �)      Ɐ �, $ ∈ � (Symmetry) 
iv. !(�, $) ≤ !(�, %) + !�%, $     ∀�, $, % ∈ �(Triangular inequality) 
 
Given a metric ! on a set �, (�, !) is a metric space and the number !(�, $) is called the distance between � and $ in the metric !. 
 
Example 1.2.2.13: The most important example is the set ℝ of real 
numbers with the metric !(� , $) ∶= & � —  $&. Recall the absolute value 
of a real number |�| = ( �, ��� > 0

−�, ��� < 0 

Observe that  � ≤ |�| and −� ≤ |�| for � ∈ ℝ.(∗) 
 
It is easy to see that ! satisfies the first two conditions of the metric. The 
triangle inequality follows form the triangle inequality of the absolute 
value:  
 |� + $| ≤ |�| + |$| for all �, $ ∈ ℝ(∗∗) 
 
Let us quickly review a proof assuming the order relation on ℝ: 
 
Case 1: Let |� + $| = � + $. Then |� + $| = � + $ ≤ |�| + |$| by (∗). 
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Case 2: Let |� + $| = −(� + $). We have |� + $| = −� − $ ≤ |�| +|$| by (∗). 
 
We have completed the proof of the triangle inequality (∗∗) for the 
absolute value. Also, note that the equality occurs in (∗∗) if � and y are 
both nonnegative or both non-positive. Assume that the equality occurs 
in the triangle inequality. Let us further assume that Case 2 occurs.  
 
Then|� + $| = −� − $ = |�| + |$| holds so that (|�|  +  �)  +  (|�| +
 $)  =  0. The terms on the left side of this equation are nonnegative so 
we conclude that|�| = −� and |$| = −$. Hence both � and $ are 
nonpositive. Similar analysis of Case 1 yields that both � and $ are 
nonnegative. It is now an easy matter to derive the triangle inequality for !: !��, % = |� − %| 

= |�� − $ + ($ − %)| 
≤ |� − $| + |$ − %| (by triangle inequality for | |) 

= !��, $ + !($, %) 
We refer to ! as the absolute value metric. 
 
Definition 1.2.2.14: Let (�, !) be a metric space. Let � ∈ �and � >  0. 
The subsets  ��(�, �) ∶=  { $ ∈ � ∶  !(� , $)  < �} and ��[�, �] ∶=  $ ∈ �: !(�, $)  ≤� 
are respectively called the open and closed balls centered at � with 
radius � with respect to the metric !. We use this notation only when we 
want to emphasize that the metric under consideration is !. Otherwise, 
we denote ��(�, �) by �(�, �) when there is no source for confusion. 
Similarly ��[�, �] will denote �[�, �]. 
 
Example 1.2.2.15: Let ℝ be with the standard metric. Then we claim 
that �(� , �)  =  (� —  �, � +  �). For, if $ ∈ �(�, �) iff !(�, $) < � iff |� − $| < � iff $ ∈ (� —  �, � +  �). 
 
Definition 1.2.2.16: If ! is a metric on � then the collection of all ) − �������(�, ε) for � ∈  � and ) >  0 is a basis for a topology on �, 
called the metric topology induced by !. 
 
Lemma 1.2.2.17: Let ��(�, ε) be a ) − ���� in a topological space with 
the metric topology and metric d. Let $ ∈ ��(�, ε). Then there is * >  0 
such that ��(�, δ) ⊂ ��(�, ε). 
 
Proof: Define * =  ) −  !(�, $). Then for % ∈  ��($, *) we have !($, %)  <  * =  ) −  !(�, $) and so, by the Triangle Inequality, 
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!(�, %)  ≤  !(�, $)  +  !($, %)  <  ). So $ ∈  ��(�, )) and ��($, *)  ⊂
 ��(�, )). 
 
Remark 1.2.2.18: We must verify that the collection of sets in the 
previous definition really satisfies the definition of basis of a topology. 
  
i. Firstly, every element � ∈  � is in a basis element, say �(�, 1).  
ii.  Secondly, let �� and �� be two basis elements and let $ ∈ �� ∩��. Then from Lemma 3.1, there are *� >  0 and *� >  0 with �($, *�)  ⊂  �� and �($, *�)  ⊂  ��. With * =  ���{*�, *�} we then 
have �($, *)  ⊂  �� ∩ ��. Since �($, *) is a basis element then the 
second part of the definition of basis is satisfied. 
 
Example 1.2.2.19. Given a nonempty set X, define metric !(�, $) = (1  �� � ≠ $

0  �� � = $ 

 
The topology reduces the discrete topology on X (It is in fact a metric). 
Note: It is easy to check that ! is a metric on �. The topology induced 
by this metric is the discrete topology; the basis element for example 
consists of the points � alone.  
 
Example 1.2.2.20: The standard metric on the real numbers ℝ is defined 
by !(�, $)  =  |� − $|. It is easy to check that ! is a metric. 
 
Definition 1.2.2.21   Product Topology 
 
The product topology will be covered briefly here, but a more in-depth 
examination of this type of topology will be done in later units. Assume 
that � and Y are topological spaces. A topology on the cartesian product � x + can be defined in a standard way. We now consider this topology 
and investigate some of its properties. 
 
Lemma 1.2.2.22: Let � and + be two topological spaces. Let � be the 
collection of all sets of the form  ×  ,, where  is an open subset of � 
and , is an open subset of +. i.e.,  � ∶=  { × , ∶  �� �-�� �� � ��! , �� �-�� �� +} 
 
Then B is basis for a topology on � ×  +.  
 
Proof: The first condition is trivial, since � × + is itself a basis element. 
The second condition is almost easy, since the intersection of any two 
basis element � ×  ,� and �  ×  ,� is another basis element. For  
(� ×  ,�) ∩ (�  ×  ,�)  =  (� ∩ �) ×  (,� ∩ ,�), and the later set is a 
basis element because� ∩ � and (,� ∩ ,�) are open in � and +, 
respectively.∎ 
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Definition 1.2.2.23: Let � and + be topological spaces. The product 
topology on set � × + is the topology having as basis the collection � of 
all sets of the form  × ,, where  is an open subset of � and , is an 
open subset of +. 
 
It is easy to check that B is not a topology itself on � ×  +.  
You may now ask, what if the topologies on � and + are given by basis? 
The answer to this question is in what follows.  
 
Theorem 1.2.2.24: If ℬ is a basis for the topology on � and # is the 
basis for the topology on +, then the collection  . =  {� ×  " ∶  � ∈ ℬ ��! " ∈ #} 
is a basis for the topology on � ×  +. 
 
Proof: You can use proposition 3.2. Given an open set / of � × + and 
a point (�, $) ∈ � × + of /, by definition of the product topology, there 
exists a basis element  × , such that (�, $) ∈  ×  , ⊂ /. Since ℬ 
and # are bases for � and +, respectively, you can choose an 
element � ∈ ℬsuch that � ∈ � ⊂  and an element " ∈ # such that $ ∈ " ⊂ ,. So (�, $) ∈ � ×  " ⊂  ×  , ⊂ /. Thus the collection . 
meets the criterion of proposition 3.2. so . is a basis of � ×  +. ∎ 
 
Example 1.2.2.25: You have the standard topology of ℝ. The product 
topology of this topology with itself is called the Product topology on 
ℝ × ℝ = ℝ�. It has as basis the collection of all products of open sets of 
ℝ, but the theorem we just proved tells us that the much smaller 
collection of all products (�, �)  ×  (�, !) of open intervals in ℝ will also 
serve as a basis for the topology of ℝ�. Each such set can be pictured as 
the interior of a rectangle in ℝ�. It is sometimes useful to express the 
product topology in terms of subasis. To do this, we just define certain 
functions called projections. 
 
Let 0� ∶  � × + →  � be defined (pointwise) by the equation 0�((�, $)) =  �. Let 0� ∶  � ×  + →  + be defined by the 
equation0�((�, $)) = $. The maps 0� and 0� are the projections of � ×  + onto its first and second factors, respectively. 
 
The word ���� is used because they are surjective (unless one of the 
spaces � �� + happens to be empty, in which case � ×  + is empty and 
your whole discussion is empty as well).  
 
If  is an open subset of �, then 0���() is precisely the set  × +, 
which is open in � × +. Similarly, if , is open in +, then 0���(,) =  X ×
V, which is also open in � × +. The intersection of these two sets in the 
set  ×  ,. This fact leads to the following theorem. 
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Theorem 1.2.2.26: The set  1 =  {0���(,):  �� �-�� �� �}  ∪  {0���(,): , �� �-�� �� + } 
is a subbasis for the product topology on � ×  +. 
 
Proof: Let � denote the product topology on � ×  +, let � be the 
topology generated by 1. Since 1 ⊂ � then arbitrary unions of finite 
intersections of elements of 1 stay in �. Thus � ⊂ �. On the other hand, 
every basis element  × , for the topology � is a finite intersection of 
elements of 1, since   × , =  0���( ) ∩ 0���(, ) 
Therefore  × , ∈ �, so � ⊂ � as well.∎ 
 
1.2.3 The Subspace Topology  
 
Definition 1.2.3.1: Let � be a topological space with topology �. If + is 
a subset of �, the collection  ��  =  {+ ∩  ∶   ∈ � } 
is a topology on +, called the subspace topology. With this topology. + 
is called a subspace of �; it’s open sets consists of all intersection of 
open sets of � with +. 
 
Lemma 1.2.3.2: If ℬ is a basis for the topology on �, the collection  

ℬ� = {� ∩ +: � ∈ ℬ} 
is a basis for the subspace topology in +.  
 
Proof: Let  be an open set of � and $ ∈  ∩ +. By definition of basis, 
there exists � ∈ ℬ such that $ ∈ � ⊂ . Then $ ∈ � ∩ + ⊂  ∩ +. It 
follows from proposition 3.2 that ��is a basis for the subspace topology 
on +.∎ 
 
When dealing with a space � and a subspace + of �, you need to be 
careful when you use the term open set. The question is do you mean an 
element of the topology of + or an element of the topology on �? The 
following definition is useful. If + is a subspace of �, the set  is open 
in + (or open relative to +) if it belongs to the topology of +: this 
implies in particular it is a subspace of +. There is a special situation in 
which every open set in + is also open in �. 
 
Lemma 1.2.3.3: Let + be a subspace of �. If  is open in + and + is 
open in � then  is open in �.  
 
Proof: Since  is open in +,  = , ∩ + for some , open in �. Since + 
and , are both open in �, so is , ∩ +. ∎ 
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Proposition 3.3.4: Let 2 be a subspace of � and � a subspace of +. 
Then the product topology on 2 × � is the same as the topology 2 × � 
inherits as a subspace of � × +. 
 
1.2.4 Closed Sets and Limit Points  
 
Now that you have a few examples at hand, you can proceed to see some 
of the basic concepts associated with topological space. In this section, 
you shall be introduced to the notion of closed sets, interior, closure and 
limit point of a set. 
 
Definition 1.2.4.1 (Closed Sets): A subset 2 of a topological space� is 
said to be closed if �\2, the complement of 2 in � is open.  
 
Example 1.2.4.2: The subset [�, �] of ℝ is closed because its 
complement 3\[�, �] = (−∞, �) ∪ (�, ∞)is open. Similarly [�, +∞) is 
closed. 
 
Example 1.2.4.3: Consider the following subset of the real line: + = [0,1] ∪ (2, 3), in the subspace topology. In this space, the set [0, 1] 
is open, since it is the intersection of the open set − �

� , �� of ℝ with +. 

Similarly, (2, 3) is open as subset of +. Since [0, 1] and (2, 3) are 
complement in + of each other, you can conclude that both are closed as 
subset of +.  
 
The collection of closed subsets of a space � has properties similar to 
those satisfied by the collection of open subsets of �.  
 
Theorem 1.2.4.4: Let � be a topological space. Then the following 
conditions hold:  
 
1. ∅and � are closed.  
2. Arbitrary intersection of closed sets is closed.  
3. Finite unions of closed sets are closed. 
 
Proof: Applying De Morgan’s laws: �\ �2�

�∈

= �(�\2�)

�∈

 �\ �2� = �(�\2�

�∈

)

�∈

 

∎ 
When dealing with subspaces, you need to be very careful in using the 
term open set. The following theorem is very important.  
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Theorem 1.2.4.5: Let + be a subspace of �. Then a set 2 is closed in + 
if and only if it equals the intersection of a closed set of � with +. 
 
Proof: Assume that 2 = " ∩ +, where " is closed in �, then �\" is 
open in �, so that (�\") ∩ + is open in +, by definition of the subspace 
topology. But (�\" ) ∩ + = +\2. Hence +\2 is open in +, so that 2 is 
closed in +. Conversely, assume that 2 is closed in +. The set �\ is 
closed in �, and 2 = + ∩ (�\ ), so that 2 equals the intersection of a 
closed set of � and +, as desired.  
 
Remark 1.2.4.6: A set that is closed in the subspace + may not be 
closed in �. So the question now is, when is a closed set in a subspace + 
closed in the space �? The next theorem provides an answer to this 
question.  
 
Theorem  1.2.4.7: Let + be a subspace of �. If 2 is closed in +, and + is 
closed in �, then 2 is closed in �. 
 
Definition 1.2.4.8 (Closure and Interior of a Set): Suppose � is a 
topological space and2 ⊂ �. The interior of A is the set given by  ���2 =∪ { ∈ �:  ⊂ 2 ��!  �� �-��} 
That is, the ���(2) is the union of all open sets contained in 2. 
 
The closure of 2 denoted by ��(2) or 2 is defined as the intersection of 
closed sets containing 2. Clearly, the interior of 2 is an open set and the 
closure of 2 is a closed set; furthermore,  2˚ ⊂ 2 ⊂ 2 
If 2 is open, then 2 = 2˚; on the other hand, if 2 is closed, then 2 =  2.  
 
Proposition 1.2.4.9: Let + be a subspace of �. Let 2 be a subset of +. 
Let 2 denote the clusure of 2 in �. Then the closure of 2 in + is 2 ∩ +.  
Another useful way of describing the closure of a set is given in the 
following theorem. 
 
Theorem 1.2.4.10: Let 2 be a subset of the topological space �.  
a. Then� ∈ 2 if and only if every open set  containing � intersects 2.  
b. Supposing the topology of � is given by a basis, then � ∈ 2 if and 
only if every basis element � containing � intersects 2.  
 
Proof: Consider the statement (�). It is a statement of the form 4 ⟺ 5. 
Transforming each statement to is contrapositive, gives you the logical 
equivalence (��� 4) ⟺ (��� 5). Explicitly, � ∈ 2 if and only if there 
exists an open set  containing � that does not intersect 2.  
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In terms of this assertion, the theorem is easy to prove. If � is not in 2, 
the set �\2 is open and contains � and does not intersect 2 as desired. 
Conversely, if there exists an open set  containing � which does not 
intersect 2, then �\2 is a closed set containing 2. By definition of the 
closure 2, the set �\ must contain 2; therefore � ∈ 2.  
Part (�) follows from the definition of basis.∎ 
 
Definition 1.2.4.11: Let � be a topological space. Let � ∈ � and , be a 
subset of � containing �. , is said to be a neighbourhood of � if there 
exist an open set  of � such that � ∈ � ⊂ ,. The collection of all 
neighbourhoods of � is denoted by 6(�).  
 
Proposition 1.2.4.12: Let � be a topological space and � ∈ �. Then  
1. 6(�) is nonempty;  
2. If , ∈ 6 and , ⊂ 2 then 2 ∈ 6(�);  
3. A finite intersection of neighbourhoods of � is a neighbourhood of �.  
 
Proposition 1.2.4.13: Let � be a topological space. Let  be a subset of �. Then  is open if and only in  ∈ 6(�) for every � ∈ .  
 
Lemma 1.2.4.14: If 2 is a subset of a topological space �, then � ∈ 2 if 
and only if every neighbourhood of � intersects 2. i.e., � ∈ 2 if and only 
if for all , ∈ 6(�), , ∩ 2 = ∅. 
 
Proof:(⟹) Let � ∈ 2, and let , ∈ 6(�). Since , ∈ 6(�), there exist  
open such that � ∈  ⊂ ,. It is enough for you to show that  ∩ 2 = ∅. 
Suppose  ∩ 2 = ∅, it implies that 2 ⊂ � and � is closed since  is 
open, thus, 2 ⊂ �, which implies that � ∈ �, which is a contradiction. 
Hence,  ∩ 2 = ∅.  
 
(⟸) Assume that for every neighbourhood , of �, , ∩ 2 = ∅. You 
have to show that � ∈ 2. Suppose � ∈ 2, this implies that � ∈ 2 which 

is open (because 2 is closed) and so 2� ∈ 6(�), and by hypothesis, 2� ∩ 2 = ∅. This is a contradiction, hence � ∈ 2. ∎ 
 
Example 1.2.4.15: Let � be the real line ℝ. If 2 =  (0, 1], then 2  =  [0, 1],�  =  {�� ∶  � ≥ 1} then �  =  � ∪ {0}. �� " =  {0} ∪ (1, 2) 

then "  =  {0} ∪ [1, 2], 5  =  ℝ.  
 
Example 1.2.4.16 Consider the subspace + = (0, 1] of the real line ℝ. 

The set 2 = (0, ��) is a subset of Y. Its closure in R is the set [0, 1] and 

its closure in + is the set 2  =  [0, �� ] ∩ + = (0, ��].  
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Definition 1.2.4.17(Limit Points): Let � be subset of a topological set � and let � ∈ �. � is said to be a limitpoint (or cluster point or point of 
accumulation) of A if every neighbourhood of � intersects � in some 
point other than that � itself. 
 � ∈ � is a limit point of � if for all � ∈ ����, � ∩ �� � ���� � ∅  or � 
is a limit point of A if � belongs to the closure of �\���. The point � 
may lie in � or not. 
 
Theorem 1.2.4.18: Let � be a subset of the topological space �. Let �° 
be the set of all limit points of �. 
Then �  �  � ∪ �°. 
Proof: Clearly, � ∪ �° ⊂ �. To prove the reverse inclusion, let � ∈ �. If � happens to be in �, it is trivial that � ∈ � ∪ �°. Suppose that � ∈ �. 
Since � ∈ �∘, this implies that every neighbourhood   of � intersects �. 
Because � ∈ �, the set   intersects � in a point different from �. Then ∈ �∘ , so that � ∈ � ∪ �∘ as desired. ∎ 
 
Corollary 1.2.4.19: A subset of a topological space is closed if and only 
if it contains all its limit points.  
 
Proof: The set � is closed if and only if � �  �, and the later holds if 
and only if �∘ ⊂ �.∎ 
 

1.3   Self – Assessment Exercise(s) 
 
1.In the following, answer true or false.  
 
(a) The collection  �� � � ∶  �\ 	#	$%	$	&'(�')*&(�+,,�� 
Is a topology in �. 
 
(b) The union ⋃�	 of a family ��	� of topology on X is a topology on 
X.  
 
(c) The countable collection - � ��+, .� ∶  + /  ., +, . ∈ ℚ� is a basis 
for a topology on ℝ.  
 
(d) If � is a subset of a topological space �, and suppose that for each � ∈ �, there exists an open set   such that � ∈  ⊂ �, then � is an open 
set in �.  
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2. Let ℝ be with the standard topology and let 2 ⊂ ℝ. Then 2 is open in 
ℝ if there exist an interval � such that � ⊂ 2. For �, � ∈ ℝ, which of the 
following forms is the interval � 
 
(a) � = (�, �) 
(b) � = (�, �] 
(c) � = [�, �) 
(d) � = [�, �] 
 
3. If � is a topology on a set �, which of the following is not true about �?  
 
(a) Finite union of elements of � is in �.  
(b) Finite intersection of elements of � are in �.  
(c) The empty set ∅ and the whole set � are in �.  
(d) Arbitrary intersection of elements of � are in �.  
 
4. Answer true or false. The collection  � = { × , ∶  �� �-�� �� � ��! , �� �-�� �� + } is  
(a) a topology on the product space � × +.  
(b) a basis for a topology on the product space � × +.  
 
5. Let 0� ∶  � × + →  � and 0� ∶  � ×  + →  + be the projection maps 0�(� , $) =  � and 0�(�, $) = $. The collection  1 =  {0���(,):  �� �-�� �� �}  ∪  {0���(,): , �� �-�� �� + } 
 
Is___________________________ for the product topology on � × +.  
(a) a collection of open sets  
(b) a basis  
(c) a sub – basis  
(d) a topology  
 
6. Let ℝ be endowed with the standard topology. Consider the set + =  [−1, 1] as a subspace of ℝ. Which of the following sets are open 
in +?  

A = � ∶  �� <  |�|  <  1 

B = � ∶  �� <  |�|  ≤  1 

C = � ∶  �� ≤  |�|  <  1 

D = � ∶  �� ≤  |�|  ≤  1 

(a) 2, � and " only 
(b) 2 only 
(c) � and " only 
(d) . only.  
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7. With the standard topology on ℝ. Which of the sets in question 6 
above are open in ℝ?  
(a) 2, � and " only 
(b) 2 only 
(c) �, " and . only 
(d) . only.  
 
8. Let ℝ be endowed with the standard topology. Consider the set + =  [−1, 1] as a subspace of ℝ. Which of the following sets are closed 
in +?  

A = � ∶  �� <  |�|  <  1 

B = � ∶  �� <  |�|  ≤  1 

C = � ∶  �� ≤  |�|  <  1 

D = � ∶  �� ≤  |�|  ≤  1 

(a) 2, �, " and . 
(b) � and " only 
(c) �, " and . only 
(d) . only. 
 
9. With the standard topology of ℝ. Which of the sets in question 8 
above are closed in ℝ?  
(a) 2, � and " only 
(b) �, " and . only 
(c) � and " only 
(d) . only.  
 
10. For 2 ⊂ �, a topological space, and a boundary of 2 denoted by 72, 
defined by:  72 =  2 ∩ �\2. 
The following are true;  
1. 2˚ and 72 are disjoint, and 2 =  2˚ ∪ 72.  
2. 72 = 2 if and only if 2 is both open and closed.  
3.  is open if and only if 7 = \.  
Justify.  
 
11. Hence or otherwise compute the boundary and interior of each of the 
following subsets of ℝ� 
(a) 2 = {(�, $) ∶ $ = 0} 
(b) � = {(�, $) ∶  � > 0 and $ =  0} 
(c) " = 2 ∪ � 
(d) . = {(�, �) ∶  � is rational} 
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12. If ℝ, the real line is endowed with the indiscrete topology. Let � �  20, 1�. What is �?  
(a) 20, 15 
(b) ℝ 
(c) 20, 1� 
(d) ∅ 
 
13. If ℝ, the real line is endowed with the usual metric topology, and let � � �0, 1�. What is 6�?  
(a) ℝ 
(b) 20, 15 
(c) � 0 , 1� 
(d) �0, 15 
 

1.4 Conclusion    
 
The definition, examples, and basic concepts of topological spaces, such 
as the basis for a topology, closed sets, open sets, the interior, closure, 
neighborhood, and limit point of a set, have all been covered in this unit. 
You have seen some examples and proved some results. 
 

1.5   Summary 
 
Having gone through this unit, you now know that;  
 
(i) a topology defined on a set � is a collection � of subsets of � 

satisfying  
(a) Theset�itselfandtheemptyset∅arein � 
(b) The set � is in � 
(c) Arbitrary unions and finite intersections of elements of � are in � 
(ii)  a topological space is a pair ��, �� consisting of a set � and a 

topology � defined on it.  
(iii)  the elements of a topology on � are called open sets.  
(iv)  if �� and �
 are topologies defined on �, then �� is said to be 

finer that �
 if �
 ⊂ ��. In other words, we say that �
 is coarser 
than ��.  

(iv) an arbitrary intersection of topologies is also a topology.  
(v) a basis for a topology � on � is a collection - of subsets of � 

(i.e., basis elements) such that  
(a) for each � ∈ �, there exists - ∈ ℬ such that � ∈ -, or 

equivalently � �  ⋃ -�∈ℬ . 
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(b)  if � ∈ � and ��, �� ∈ ℬ such that � ∈ �� ∩ ��, there exists �� ∈ ℬ such that � ∈ �� ⊂ �� ∩ ��. 
(vii)  the topology generated by a basis B is given by 
 � ∶=  � ∈  � ∶   = ∅ �� �� � ∈ , there exists � ∈
            ℬ such that � ∈ � ⊂ � 
(viii) The collection � ∶=  { × , ∶  �� �-�� �� � ��! , �� �-�� �� +} 
Then B is basis for a topology on � ×  +. 
 
(ix)  The collection  

    1 =  {0���(,):  �� �-�� �� �}  ∪ {0���(,): , �� �-�� �� + } 
 is a subbasis for the product topology on � ×  +, where0� ∶  � ×
            + →  � and 0� ∶  � ×  + →  + are the projection maps defined 
 (pointwise) on � ×  + by0�((�, $)) =  � and 0�((�, $)) = $.  
(x) if Y is a subset of a topological space (�, �), the collection  ��  =  {+ ∩  ∶   ∈ � } 
is a topology on +, called the subspace topology. + is called a subspace 
of �; it’s open sets consisting of all intersection of open sets of � with +. 
 
(xi)  A subset 2 of a topological space � is said to be closed in � if 
 �\2 (the complement of 2 in  ) is open.  
(xii) if X is a topological space, then  
(a)  ∅ and � are closed.  
(b)  an arbitrary intersection of closed sets is closed.  
(c)  a finite union of closed sets is closed.  
(xiii)  if + is a subspace of �, then a set 2 is closed in + if and only if it 
 equals the intersection of a closed set in � with +.  
(xiv)  if 2 is a subset of a topological space �, then the interior of 2, 
 denoted by 2° is the union of all open sets contained in 2, while 
 the closure of 2 denoted by 2 is the intersection of all closed sets 
 contained in 2.  
(xv) if , is a subset of a topological space � and � ∈ �such that � ∈,, then , is called a neighbourhood of � if there exists an open 

set  of X such that of � such that � ∈ � ⊂ ,.  
(xvi) 6(�) denotes the collection of all neighbourhoods of �.  
(xvii) if 2 is a subset of a topological space �, an element � of � is 

called a limit point of 2 if for all  
 , ∈ 6(�), , ∩ (2 � {�}) = ∅. 
(xviii) a subset of a topological space is closed if and only if it contains 

all its limit point. 
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Discuss the topologies on a set X that contains three elements. 
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topologies shall be discussed in class. 
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UNIT 2     SEPARATION AXIOMS 
 
Unit structure  
 
2.1 Introduction 
2.2    Intended Learning Outcomes (ILOs)  
2.3 Axioms of Separation 
 2.3.1  The First Separation Axiom ��� 8 #*+9'� 
 2.3.2  The zeroth Separation Axiom �� 8 #*+9'� 
 2.3.3 Third Separation Axiom. �� 8 #*+9' 
 2.3.4  Regular Space 
           2.3.5  Fourth Separation Axiom ��� 8  #*+9'� 
 2.3.6  Continuous Functions 
 2.3.7  Homeomorphism 
 2.3.8 More on Separation Axioms 
2.3 Self-Assessment Exercise(s)  
2.4  Conclusion  
2.5  Summary   
2.6  References/Further Reading 
 

2.1  Introduction 
 
Your understanding of the notions of closed and open sets as well as 
limit points in the real line or arbitrary metric space can be misleading 
when you carry such understanding to topological space. For example, 
in the space ℝ and ℝ
, each one-point set is closed. But this fact is not 
true for an arbitrary topological space. For if you consider the three-
points set � � �+, ., 9�, endowed with the sierpinski topology �� � �∅ , �, �.�, �+, .�, �., 9��. In this space, the point set �.� is not closed, 
because its complement �+, 9� is not open. Similarly, the understanding 
we have about convergence of a sequence in the real line can be 
misleading when you consider an arbitrary topological space. For 
example, on the real line, the limit of a sequence if it exists is unique, 
but this is not true in an arbitrary topological space. In this unit, you 
shall be introduced to the separation axioms, a natural restriction on the 
topological structure making the structure closer to that of a metric space 
(i.e., closer to being metrizable). A lot of separation axioms are known. 
Here you shall study five most important of them. They are numerated, 
and denoted by � , ��, �
, ��and��, respectively. 
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2.1  Intended Learning Outcomes (ILOs) 
 
At the end of this unit, you should be able to;  
 
 define a Hausdorff space and state some of its properties.  
 prove that in a Hausdorff space, every point set is closed.  
 define a convergent sequence and show that in a Hausdorff space, 

the limit is unique.  
 prove that every metric topology is Hausdorff.  
 know five separation axioms and their properties.  
 

2.3 Axioms of Separation 
 
Definition 2.2.1.1 Hausdorff Space �=� 8 >?@AB� 
 
The most celebrated of all the axioms of separation is the second axiom 
of separation �
 . It was suggested by the mathematician Felix 
Hausdorff, and so mathematicians have come to call it by his name. 
Therefore, Topological spaces that satisfy the second separation axiom 
will be called Hausdorff space.  
 
A topological space is called a Hausdorff space, if for each �,  of 
distinct points of �, there exist neighbourhoods  � and  � of � and  
respectively, that are disjoint. More formally � is Hausdorff if ∀ �,  ∈� with � �  , there exist  � ∈ ����,  � ∈ ���:  � ∩  � � ∅. 
 
U                                                                                 V 

 
Figure 3.1.1            Hausdorff Space 
 

 

 

  x 

 

 

 

              y 
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As earlier remarked, Hausdorff space are ��. For example, consider the 
real line ℝ, with the standard topology, that is the topological spaces 
whose open sets are of the form (�, �), �, � ∈ ℝ with � < � (the open 

intervals). Take for instance the points
�
� , �� ∈ ℝ, the open intervals (�� , ��) 

and ( ��� , ���) are neighbourhoods of 
�
�and 

�
� respectively and 8�� , ��9 ∩8 �

�� , ���9 = ∅. In fact, you know that the standard topology ofℝis induced 

by the metric ! defined by  
 !(�, $)  =  |� − $| 
for all �, $ ∈ ℝ. And for each � ∈ ℝ, the �-�� − ���� centered at � 
with radius � >  0 is given by  
 �(�, �) = {$ ∈ ℝ: !(�, $) = |� − $|  <  �}  =  (� − �, � + � ) 
Thus for each �, $ ∈ ℝ, with � =  $, just choose � =  ��,!(�, $) > 0 

then � ∈ (� − �, � + � ) = �(�, �) and $ ∈ ($ − �, $ + � ) = �($, �) 
and �(�, �) ∩ �($, �) = ∅.  
 
The above exercise can be done in an arbitrary space with the metric 
topology. and this gives you the first example of Hausdorff spaces.  
 
Example 2.2.1.2: Every metric topology is Hausdorff.  
 
Example 2.2.1.3: Every discrete space is Hausdorff.  
To see this, Let � be a discrete topological space, and let �, $ ∈ � with � =  $. Take � =  {�}, and � = {$}, then � and � are open sets in 
the discrete topology, and � ∩ � = ∅.  
 
Exercise 2.2.1.4: Let ℚ be the set of rational numbers with the standard 
topology of ℝ, and let ℚ denote the set of all irrational numbers also 
with the standard topology of ℝ. Is ℚ and ℚ Hausdorff?  
The following are some spaces that are not Hausdorff.  
 
Example 2.2.1.5: The real line ℝ with the finite complement topology 
is not Hausdorff.  
 
To see this, recall first that the finite complement topology is defined by  �� =  { ⊂ � ∶  �\is either finite or the whole set�} 
 
Now suppose ℝ with the finite complement topology is Hausdorff, then 
for every �, $ ∈ ℝ there exists open neighbourhoods�, � of � and $ 
such that  

(ℝ\� ) ∪ (ℝ\�)  = ℝ 
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Which means that ℝ is finite as a union of two finite sets, otherwise, the 
sets � and � would be empty sets and thus are no longer 
neighbourhoods of � and $ respectively, this is a contradiction. Hence ℝ 
with the finite complement topology is not Hausdorff. 
 
Example 2.2.1.6: Let � = {�, �, �} endowed with the topology  �� = {∅, �, {�}, {�, �}, {�, �}} 
 
This is easy to see, because � and � are distinct points in � and there are 
no neighbourhoods of � and � with empty intersection.  
The following important results makes Hausdorff space interesting.  
 
Theorem 2.2.1.7: Let � be a Hausdorff space, then for all � ∈ �, the 
singleton set {�}is closed.  
 
Proof: Let � ∈ � be arbitrary and set 2 =  {�}. It is enough to show 
that 2 =  2. You know that 2 ⊂ 2, so it is left for you to show that 2 ⊂ 2. You can do this by contraposition (i.e., you know that if 2 ⊂ �, 
then for every $ ∈ 2, $ ∈ �; the contraposition is that if $ ∉ � then $ ∉ 2). Now, suppose that $ ∉ 2, i.e., $ =  �, since � is Hausdorff, 
there exist � ∈ 6(�), � ∈ 6�$  such that � ∩ � = ∅. This implies 

that � ∩ 2 =  ∅, i.e., $ ∉ 2. Hence, 2 ⊂ 2. Therefore, both inclusions 2 ⊂ 2 and 2 ⊂ 2gives you that 2 = 2 i.e., 2 =  {�}is closed. ∎ 
 
2.3.1 Sequences  
 
In your course of elementary analysis, you can recall that a sequence 
{��} of elements of ℝ is said to converge to � ∈ 3 if given any : > 0, 
there exist 6 ∶= 6(:)N such that for all � ≥ 6,  |�� − �| < :(1) 
 
The inequality (1) is equivalent to say that for all � ≥ 6,   �� ∈ (� −:, � + :). Also you know that if � is a metric space, with a metric !, 
then a sequence {��} in � converges to � ∈ � if given any : > 0, there 
exists 6: = 6(:) such that for all � ≥ 6, 
 !(�� , � )  < : (2)  
 
That is to say that for every � ≥ 6, �� ∈ ��(�, :).  
 
Suppose, now that you set  = (� − :, � + :), or  = ��(�, :) 
accordingly, as you refer to the real line ℝ or the metric space �, you 
will have that  is a neighbourhood of � and depends on : > 0. Since : > 0 is arbitrary, then  is also arbitrary. This is now of great help to 
us to define convergent sequence in an arbitrary topological space since 
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absolute value or distance does not make sense in an arbitrary 
topological space, but the concept of neighbourhood is meaningful in 
any topological space. Thus in an arbitrary topological space you have 
the following definition. 
  
Definition 2.2.2.1 (Convergent sequence): Let � be a topological 
space, let {��} be a sequence of elements of �. Then {��} is said to 
converge to � ∈ � if for all neighbourhoods of �, there exists 6 ∈ 6 
such that for all � ≥ 6, �� ∈ . That is �� ⟶ � ∈ � as � → ∞ if for all  ∈ 6(�), there exists 6 ∈ 6 such that for all � ≥ 6, �� ∈ . 
 
Recall that in the study of real line ℝ, and in a metric space �, we 
proved that the limit of a convergent sequence {��} is unique. This is not 
true in an arbitrary topological space as shown in the following example. 
  
Example 2.2.2.2: Let ℝ the reals be endowed with the finite 
complement topology, and let {��} be a sequence of elements of ℝ 

defined by, �� = �
�, for � ≥ 1. If this sequence converges, every element 

of ℝ is a limit of this sequence.  
 
To see this, Let � ∈ ℝ, and suppose � � → �, then by definition, let  be 
a neighbourhood of �, there exists 6 ∈ 6 such that for all � ≥ 6, 

�
� ∈  

otherwise, 
�
� ∈ � for all � ≥ 6 (i.e., ;��< does not converge to �). This 

would mean that infinitely many points of the sequence are contained in 
a finite set (since  belongs to the finite complement topology means 
that � is a finite set while it is assumed that � is not the whole ℝ itself 
which would mean that  = ∅and thus would not be a neighbourhood of �). This is impossible, thus � must be the limit of the sequence ;��< and 

since � is arbitrary, ;��< converges to every element of ℝ. But you know 

vividly well that in the real line ℝ, the limit of the sequence ;��<is 0. So 

you see that convergence of a sequence actually depends on the type of 
topology imposed on the space.  
 
The next result tells us more about a sequence in a Hausdorff space. It 
says that in a Hausdorff space, the limit of a convergent sequence is 
unique. that is why you have terms like uniqueness of limits on the real 
line with the standard topology and in an arbitrary metric space, because 
they are Hausdorff.  
 
Theorem 2.2.2.3: Let � be a Hausdorff space, then a sequence of points 
of � converges to at most one point of �. (i.e., if a sequence ���� in �, a 
Hausdorff space, converges, the limit is unique.)  
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Proof: Let � be a Hausdorff space, and let ���� be a convergent 
sequence of elements of �. Assume that �� converges to � and $, you 
have to prove that � =  $. Suppose for � =  $, since � is Hausdorff, 
there exist� ∈ 6(�), and � ∈ 6�$ such that � ∩ � = ∅.� ∈ 6(�) 
and �� → �implies that there exists 6� ∈  6 such that�� ∈ � for 
all� ≥  6�. Also � ∈ 6�$  and �� → $ implies that there exists 6� ∈  6 such that �� ∈ � for all � ≥  6�. Now, choose 6: =  ���{6� ,6�} then �� ∈ � ∩ � = ∅(a contradiction). Hence � =  $. ∎ 
 
Having proven some of the basic results of Hausdorff spaces (i.e., �� − �-���), you will now be introduced to all the other axioms of 
separation.  
 
2.3.2 The First Separation Axiom (=� − >?@AB) 
 
Definition 1.2.3.1(�� − �-���): A topological space � satisfies the first 
separation axiom �� if each one of any two points of � has a 
neighborhood that does not contain the other point. Thus � is called a �� − �-���. That is � is �� if for all �, $ ∈ � with � =  $, there exist � ∈ 6(�) such that $ ∉ � . Another name for a �� − �-��� is a 
Fréchet space. 
                                                                         X 
    �  � 
   x  y 
 
 
 
 
 
 
 
 
 
Figure 3.2.1:  (=� − @CDEF) 
 
Theorem 2.2.3.2: A topological space � satisfies the first separation 
axiom  
 
(i) if and only if all one-point set in � is closed.  
(ii)  if and only if every finite set in � is closed.  
 
Proof:(i) (⟹) Suppose � is �� , and let � ∈ �. By the �� axiom, for all $ ∈ �, � = $, i.e. $ ∈  �\{�}, there exist an open set � ∈ 6�$  such 
that � ∉ �. This implies that� ⊂ �\{�}. �\{�} contains an open set 
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�, that tells us that it is open, and so its complement (�\{�})� =
 {x}must be closed.  
(⟹)Suppose � is a topological space in which all singletons are closed 
and let � , $ ∈  � such that � =  $, then �\{�}is open and contains $ and � ∉ (�\{�}). This implies that � is ��.  
 
(ii) (⟹) Suppose � is ��, then every singleton {�}is closed. So also is a 
finite set, because it is a finite union of singletons which are closed sets.  
(iii)  (⟸) Suppose that � is such that finite sets are closed, and let �, $ ∈ �, � =  $ then {�} is a finite set, (�\{�}) is an open 
neighbourhood of $ and does not contain �. Hence, � is ��. 
 
Example 2.2.3.3: Every Hausdorff space is ��. But the converse is not 
true.  
 
Clearly, If you consider a set � = ℝ, the real line with the finite 
complement topology, then � is a �� − �-���. Since if �, $ ∈ �, �  =
 �\{$}is an open set containing � that does not contain $, also, � =�\{�}is an open set containing $ that does not contain �. You have also 
seen in example 3.3 that ℝ with this topology is not Hausdorff. Hence, 
we have given an example of a �� − �-��� that is not Hausdorff.  
 
2.3.3 The zeroth Separation Axiom (=� − >?@AB) 
 
The zeroth separation axiom appears as a weakened first sepatation 
axiom. It states as follows:  
 
Definition 2.2.4.1(=� − >?@AB): A topological space � satisfies the 
Kolmogorov axiom or the zeroth separation axiom � if at least one of 
any two distinct points of X has a neighborhood that does not contain 
the other point. 
 
Spaces that satisfy the zeroth separation axiom or the Kolmogorov 
axiom � are regarded as � − �-���. That is; � is � if for all �, $ ∈ � 
with � =  $, there exist an open set  such that either � ∈  and $ ∉  
or $ ∈  and � ∉ . In other words, a topological space � is called a � − �-��� if and only if for any two distinct points �, $ of � (Ɐ �, $:�) 
there is an open subsets of  which contains one but not the other. 
 
Example 2.2.4.2: Every �� space is � so also is every �� space. But the 
converse is not true in each case. Example 2.2.4.3: Let � = {�, �} be 
endowed with the topology � = {�, ∅, {�}}. Then X is � but not ��.  
 
Proposition  2.2.4.4: Let � be a topological space. The following 
properties of � are equivalent:  
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(a) � is �;  
(b) any two different points of � has different closures. 
 
2.3.4 Third Separation Axiom. =� − >?@AB 
 
Definition 2.2.5.1(=� −  >?@AB>): A topological space � satisfies the 
third separation axiom if every closed set in � and every point of its 
complement have disjoint neighborhoods. �� spaces are topological 
spaces that satisfy the third separation axiom. That is, � is�� if for every 
closed set G ⊂ � and every � ∈ � such that � ∉ G there exists open sets � , � ⊂ � with G ⊂ � , � ∈  � such that � ∩ � = ∅. 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.2.5.1:=� − @CDEF 
 
2.3.5   Regular Space 
 
Definition 2.2.6.1 (Regular space): A topological space � is said to be 
a regular space if for any closed set G of � and any point � ∈ �\G, there 
exists open sets �, � ⊂ � such that � ∈ �, G ⊂ � and � ∩ � = ∅.  
If a topological space � is regular and is a ��space, then � is a �� space. 
On the other hand, if X is a �� space and a ��space, then � is regular. 
 
Example 2.2.6.2:Any metric space is regular. 
 
Example 2.2.6.3:Examples of regular spaces are ℝ, ℤ, ℚ, ℚ� and ℝ�. 
 
Example 2.2.6.4: Every regular �� space � is �� (Hausdorff).  
 
2.2.7 Fourth Separation Axiom(�� −  >?@AB)  
 
Definition 2.2.7.1(=� − >?@AB): A topological space � satisfies the 
fourth separation axiom if any two disjoint closed sets in � have disjoint 
neighborhoods. Topological spaces that satisfy the fourth separation 
axiom are called �� spaces. Thus � is a �� if for any two closed sets H, 

F is closed in X  

x 
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G ⊂ � with H ∩ G = ∅there exists open sets � , � ⊂ � such that H ⊂ �, G ⊂ � and � ∩ � = ∅. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.7.1: =� − @CDEF 
 
Example 2.2.7.2: Any indiscrete topological space satisfies the fourth 
separation axiom. This is also an example of a �� space that is not ��.  
 
Definition 2.2.7.3(Normal Space): A topological space � is normal if it 
satisfies the first and the fourth separation axioms.  
 
Example 2.2.7.4: Every metric space is normal.  
 
2.3.7 Continuous Functions 
 
Definition 2.2.8.1 (Continuous Function): Let � and + be topological 
spaces. A function �: � ⟶ + is said to be continuous if for each open 
subset � of +, the set ���(�) is an open subset of �, where  
 ���(�) =  {� ∈ �: � (�) ∈ �  } 
 
Continuity of a function depends not only on the function alone, but also 
on the topologies specified for its domain and range. 
 
Theorem 2.2.8.2: If the topology on the range + is given by a basis ℬ, 
then � is continuous if and only if any basis element � ∈ ℬ, the set ���(�) is open in �.  
 
Proof:(⟹) Let the topology + be given by basis ℬ, and suppose that � 
is continous, then for all � ∈ ℬ, ���(�) is open in � since each � ∈ ℬ 
is open.  
 

E F 
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(⟸) Suppose that each � ∈ ℬ, ���(�) is open in X, you have to show 
that � is continuous. So take an open set , ∈ +, then you can write , as 
a union of basis elements, i.e.,  , = ��	

	∈

 

Therefore,  ����, = ����(�	)
	∈


 

So that ���(,) is open as a union of the sets ���(�	), � ∈ �, which are 
open by assumption. ∎ 
 
Example 2.2.8.3: Any constant function is continuous.  
 
Example 2.2.8.4: Consider a real valued function of real variable �: ℝ ⟶ ℝ. In analysis one defines continuity via : − * definition. As 
you would see, the : − * definition and your their equivalent.  
 
Theorem 2.2.8.5: Let � and + be topological spaces, let �: � ⟶ +. 
Then the following are equivalent:  
 
(1) � is continuous. 
(2)  For every subset 2 of �, one has �(2) ⊂ �(2).  
(3)  For every closed set � of +, the set ���(�) is closed in �.  
(4)  For each � ∈ � and each neighbourhood , of �(�), there exists a 
 neighbourhood  of � such that �( ) ⊂ ,.  
 
If the condition in (4) holds for the point �, we say that � is continuous 
at �.  
 
Proof: We show that (1) ⟹ (2) ⟹ (3) ⟹ (1) and that (1) ⟹ (4) ⟹
(1). 
(1) ⟹ (2).Assume that � is continuous. Let 2 be a subset of �. We 
show that if � ∈ 2, then �(�) ∈ �(2). Let � ∈ 2 and let ,be an open 
neighbourhood of �(�). Then ���(,) is an open subset � containing �. 
So ����, ∩ 2 = ∅because � ∈ 2. Let $ ∈ ����, ∩ 2, then ��$ ∈, ∩ 2, thus �(�) ∈ �(2), as desired.  
 
(2) ⟹ (3). Let � be a closed subset of + and 2 = ����� . We wish to 
show that 2 is closed in �. We show that 2 = 2. By elementary set 
theory, we have �(2) = �(���(�)) ⊂ �. Therefore, if � ∈ 2, then  � (�) ∈ � (2) ⊂ �(2) ⊂ � = � 
so that �(�) ∈ �, thus � ∈ ����� = 2, as desired.  
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(3) ⟹ (1). Let , be an open subset of +. Set � = +\,. Then ����� = �\����, . Now � is closed set of +, then �����  is closed 
in � by hypothesis, so that ����,  is open in �, as desired.  
(1) ⟹ (4). Let � ∈ � and let , be an open neighbourhood of �(�). 
Then the set  = ����,  is an open neighbourhood of � such that �( ) ⊂ ,.  
(4) ⟹ (1). Let , be an open set of +. Let � ∈ ����, . Then �(�) ∈ ,, 
so that by hypothesis there is an open neighborhood � of � such that �(�) ⊂ ,. Then � ⊂ ����, . It follows that ����,  can be written as 
the union of the open sets �, so that it is open. ∎ 
 
2.3.8 Homeomorphism  
 
You are familiar with the following definitions about functions. 
 
Definition 2.2.9.1: Let � and + be sets, the map �: � ⟶ + is a 
surjective map or just a surjection if every element of + is the image of 
at least one element of �. That is, � is a surjection if for all $ ∈ +, there 
exists � ∈ � such that �(�) = $.  
 
A map �: � ⟶ + is an injective map, injection or one-to-one map if 
every element of + is the image of at most one element of �. That is � is 
an injection if for all $ ∈ +, there exists a unique � ∈ � such that �(�) = $.  
 
A map is a bijective map, bijection or invertible map if it is both 
surjective and injective.  
 
Definition 2.2.9.2: Let � and + be topological spaces; Let �: � ⟶ + be 
a bijection. If both � and its inverse ���:+ ⟶ � are continuous, then � 
is called a homeomorphism. 
 
Definition 2.2.9.3 (Equivalence Relation): Let � be a set and ℛ be a 
relation on �. Then ℛ is called an equivalence relation if ℛ is  
 
(a) Symmetric: �ℛ� for all � ∈ � 
(b) Reflective: If �ℛ$ then $ℛ� for all �, $ ∈ �.  
(c) Transitive: If �ℛ$ and $ℛ% then �ℛ% for all �, $, % ∈ �.  
 
Definition 2.2.9.4: Two topological spaces � and + are homeomorphic 
if there exists a homeomorphism �:� ⟶ + between the spaces.  
 
Theorem 2.2.9.5: Being homeomorphic is an equivalence relation.  
Suppose that �: � ⟶ + is an injective continuous map, where � and + 
are topological spaces, Let I be the image set �(� ), considered as a 
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subspace of +; then the function �:� ⟶ I obtained by restricting the 
range of � is bijective.  
Definition 2.2.9.6: If �:� ⟶ I is an homeomorphism, we say that the 
map �:� ⟶ +is a topological imbedding or simply an imbedding of � 
in +.  
 
Example 2.2.9.7: The function �: ℝ ⟶ ℝ given by �(�) = 3� + 1 is a 
homeomorphism.  
 
Example 2.2.9.8: The function G: (−1, 1) ⟶ ℝ given by  G�� = �

1 − �� 
is a homeomorphism. 
 
Example 2.2.9.9: The identity map J: ℝ� ⟶ ℝ is bijective and 
continuous, but it is not a homeomorphism. Example 2.2.9.10: Let 1� 
denote the unit circle,  1� = {(�, $) ∶  �� + $� = 1} 
considered as a subspace of the plane ℝ�, and let G: [0, 1] ⟶ 1� be a 
map defined by �(�)  =  (��� 20�, ��� 20�). The map G is bijective and 
continuous, but G�� is not continuous.  
 
Theorem 2.2.9.11: Let �, + and I be topological spaces. If �: � ⟶ + 
and J: + ⟶ I are continuous, then the map J ∘ �: � ⟶ Iis continuous.  
 
Proof: Let / be an open set in I,  �J ∘ � ���/ =  ��� ∘ J���/ = ���(J��(/)) 
Since � and J are continuous, J��(/) is open in + implies that ���(J��(/)) are open in �. Thus, J ∘ � is continuous on �. 
 
Theorem 2.2.9.12 (Restricting the domain): If �:� ⟶ + is 
continuous, and if 2 is a subspace of �, then the restricted function �|�: 2 ⟶ + is continuous.  
 
Proof: You have to show that �|���(/)is open in the subspace 
topology �� on 2 induced by the topology � on � for any open set / in +. So let / be an open set in +. By the continuity of � on �, ���(/) is 
open in � and  �|����/ = {� ∈ 2:�|�(�) ∈ /} 

= {� ∈ 2: �(�) ∈ /} 
= 2 ∩ {� ∈ �:�(�) ∈ /} 

= 2 ∩ ���(/) 
which implies that�|����/ open in the subspace topology ��. 
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Theorem 2.2.9.13 (Restricting or expanding the range): Let �:� ⟶+ be continuous.  
 
1. If I is a subspace of + containing the image set �(�), then the map J: � ⟶ I obtained by restricting the range of � is continuous.  
2. If I is a space having + as a subspace, then the function ℎ ∶ � ⟶ I 
obtained by expanding the range of � is continuous.  
 
Proof: 1. You know that since I is a subspace of +, the subspace 
topology on �  induced on I by the topology � on + is given by 
 � = {, ∩ I:, ∈ �} 
 
Now, let , be open in + (meaning that I ∩ , is open in  ), you have to 
show that J��(I ∩ ,) is open in �. You can compute as follows: J��(I ∩ ,) = {� ∈ �:J(�) = �(�) ∈ I ∩ , } = {� ∈ �: �(�) ∈ , }

= ���(, ) 
 
2. Using similar argument on the subspace topology as in (1) above, let / be open in I, then + ∩ / is open in + (because + is a subspace of I ) 
and  

ℎ��(/) = {� ∈ �: ℎ(�) ∈ /} 
= {� ∈ �: �(�) ∈ /} 

= {� ∈ �: �(�) ∈ + ∩ /} 
=  ���(+ ∩ /) 

is open in � because � is continuous and ���(+ ∩ /) is open in �. 
Hence ℎ is continuous.∎ 
 
Theorem 2.2.9.14 (The pasting lemma): Let � =  2 ∪ �, where 2 and � are closed in �. Let �: 2 ⟶ + and J: � ⟶ + be continuous. If �(�) = J(�) for every � ∈ 2 ∩ �, then the function ℎ: 2 ⟶ + defined 
by 

ℎ�� = ( �(�),         ��     � ∈ 2J(�),        ��         � ∈ � 

 is continuous.  
Proof: Let � be a closed set in +.  

ℎ��(G) = {� ∈ �: ℎ(�) ∈ �} 
=  {� ∈ 2 ∶ �(�) ∈ G } ∪ {� ∈ � ∶ J(�) ∈ G } 

= ���(G ) ∪ J��(G ) 
 ���(G )is closed in � because it is closed in 2 and 2 is closed in �, also J��(G ) is closed in � since it is closed in � and � is closed in �. Hence 
ℎ��(G) is closed in � as a finite union of closed sets in �. Hence, ℎ is 
continuous.  
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Example 2.2.9.15: Let ℎ: ℝ ⟶ ℝ be defined by 

ℎ�� = K�2 ,            ��    � ≥ 0�,    ��             � ≤ 0
 

then ℎ is continuous.  
 
To see this, let 2 = [0, +∞) and �: 2 ⟶ ℝ, defined by �(�) = �

�, also 

let � = (−∞ , 0] and J: ⟶ ℝ, defined by J(�) = �. Observe that 2 and � are closed sets in ℝ and ℝ = 2 ∪ �.� and J continuous functions, 2 ∪ � = {0} and �(0) = J(0) = 0. Hence by pasting lemma, ℎ is 
continuous.  
 
Theorem 2.2.9.16 (Maps in products): Let �:I ⟶ � × + be given by  �(%) = (��(�), ��($)) 
Then � is continuous if and only if the functions  ��: I ⟶ � and ��: I ⟶ + 
are continuous.  
The maps �� and �� are called coordinate functions of �.  
 
Proof: Let 0�: � × + ⟶ � and0�: � × + ⟶ + be projections maps.  
 
These maps are continuous.  
Note that for each % ∈ I, ��(%) = 0�(�(%)) and��(%) = 0�(�(%)) 
If � is continuous then �� and �� are continuous as composites of 
continuous functions.  
 
Conversely, suppose that �� and �� are continuous. Let  × , be a basis 
element of for the product topology in � × +. A point % is in ���( ×,) if and only if �(%) ∈  × ,, that is, if and only if ��(%) ∈  and ��(%) ∈ ,. Therefore ���� × , = ����() ∩ ����(,) 
Since both of the sets ����() and ����(,) are open, so is their 
intersection. 
 
2.3.7  More on Separation Axioms 
 
Theorem 2.2.10.1: Let � be a topological space and + a Hausdorff 
space. Let �: � ⟶ + be a map. If � is continuous, then the Graph of �, L��-ℎ(� ) = {(�, �(�) ∶ � ∈ �}. 
is a closed subset of � × +. 
 
Proof: Suppose � is continuous, you have to show that the graph of � is 
closed. It is enough for you to show that the complement of the graph of � is open in � × +. So let  = (L��-ℎ(�))�, and let (�, $) ∈ . This 
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implies that  � %���. Since Eis Hausdorff, there exist open sets F�� 
and F�����in E containing  and %��� respectively such that  
 F�� ∩F����� � ∅ 
 
Since % is continuous at � (because % is continuous) and � and F����� ∈ N�%�x��, there exists  �� ∈ ���� such that %� ��� ⊂ F�����. 
Take - �   �� I F�� 

 - is a basis element for the product topology on � I E and for ��, � ∈-, you have that � ∈  �� and  ∈ F��. Also � ∈  �� implies that % ��� ∈ F�����and so  � %���, thus ��, � ∉ K�+*ℎ�%�, which implies 
that ��, � ∉  . Thus - ⊂  , and so   is open. Hence K�+*ℎ�%� is 
closed.  
 
Theorem 2.2.10.2 (Urysohn’s Lemma): Let � and - be two disjoint 
closed subsets of a normal space �. Then there exists a continuous 
function %: � ⟶ 
 such that %��� � 0 and %�-� � 1.  
 

2.4  Self-Assessment Exercise(s) 
 
1. Which of the following spaces is Hausdorff?  

 
(a) The discrete space.  
(b) The indiscrete space.  
(c) ℝ with the finite complement topology.  
(d) � � �+, .� endowed with the topology � � �∅, �, �+��. 
 
2. Which of the following spaces is not Hausdorff?  
(a) ℝ with the standard topology.  
(b) ℝ with the lower limit topology.  
(c) ℝ with the metric topology.  
(d) ℝ with the finite complement topology.  
 
3. If ���� be a sequence in ℝ endowed with the finite complement 

topology. If ���� converges in ℝ then  
(a) the limit is unique.  
(b) ���� converges to only two points.  
(c) ���� converges to one point in R and one point outside ℝ.  
(d) ���� converges to every element of ℝ. 
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4.  In the finite complement topology of ℝ, let the sequence {��} be 
defined by �� = �, for � ∈ 6. If the limit of the sequence is �, 
then � must be  

(a) ∞ 
(b) 0  
(c) a unique constant  
(d) arbitrary in ℝ 
 
5. Which of the following spaces is not metrizable?  
(a) Any discrete space  
(b) � with the countable complement topology.  
(c) ℝ with the standard topology.  
(d) ℝ� with the standard topology.  
 
6. Which of the following is not true about �� spaces?  
(a) Every singleton is closed  
(b) Every finite set is closed  
(c) Every Hausdorff space is ��. 
(d) Every �� space is Hausdorff.  
 
7. Let � be a topological space that satisfies the Kolmogorov axiom 
(�). Which of the following is not true about �?  
(a) Any two different points of � has different closures.  
(b) � contains no indiscrete subspace consisting of two points.  
(c) � contains no indiscrete subspace consisting of more than one point.  
(d) � has an indiscrete subspace consisting of two points only.  
 
8. Let � be a topological space. Then � is regular if  
(a) � is both �� and ��.  
(b) � is �� only  
(c) � is both �� and �� 
(d) � is �� only.  
 
9. Which of the following spaces is not regular?  
(a) ℝ 
(b) ℚ 
(c) ℤ 
(d) Every Hausdorff space � 
(Where ℝ, ℤ and ℚ are with the standard topology on ℝ.)  
 
10. In what follows, answer true of false. (Justify your claims).  
(a) Let �: ℝ ⟶ ℝ be defined by  ��� = (� − 2,        ���   � ≤ 0� + 2,       ���     � ≥ 0 

then � is continuous.  
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(b) The identity map  	N: ��, Ω�� ⟶ ��, Ω
� 
if and only if Ω� ⊂ Ω
, where Ω� and Ω
 are topological structures on X.  
 
(c)  The function %: ℝ� ⟶ℝ defined by %��� � � is continuous, 
 where ℝ� denotes the lower limit topology on ℝ and ℝ is 
 endowed with the standard topology.  
(d)  Let %: ℝ ⟶ ℝ� be as defined in (c) above, with ℝ� and ℝ are as 
 in (c). Then f is continuous.  
(e)  If � is ��, then it must be �
. 
(f)  Every normal space is both regular and Hausdorff.  
(g)  Every open and bounded interval �+, .� of ℝ, + / . is 
 homeomorphic to ℝ.  
(h)  The closed and bounded interval 2+, .5 of ℝ, is homeomorphic to 
 20, 15 
(i) � is Hausdorff if and only if the diagonal ∆ �  ���, ��: � ∈ �� is 
 closed in � I �. 
 
11. Let %: ℝ ⟶ ℝ be given by  %��� � R�,            	% � S 1� T 2,    	% � V 1 

Is % continuous?  
12.Consider the map %: 20, 25 ⟶ 20, 25 %��� � R�,            	% � ∈ 20,1�3 8 �,    	% � ∈ 21,25 
Is it continuous (with respect to the topology induced from the real 
line)?  
13. Let � be the subspace of ℝ given by � � 20, 15 ∪ 22, 45. Define %: � ⟶ ℝ by  %��� � R1,            	% � ∈ 20,152,            	% � ∈ 22,45 
 prove that f is continuous.  
 

2.5  Conclusion 
 
You learned about Hausdorff, regular, and normal spaces as well as the 
five separation axioms in this unit. The ideas of continuity and 
homeomorphism were also studied. You also proved some important 
results which you have often used in your courses in analysis. 
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2.6  Summary 
 
In this unit you now know that  
 
(i) If � is a topological space, then � is  
 �: If for all �,  ∈ � with � � , there exist an open set   such that 
either � ∈   and  ∉  or  ∈   and � ∉  . 
 ��: If for all �,  ∈ � with � � , there exist  � ∈  ���� such that  ∉  �. Or there exists  � ∈  ��� such that � ∉  �. 
 �
: If for all �,  ∈ � with � � , there exist  � ∈  ����,  � ∈  ��� 
such that  � ∩  � � ∅. �
spaces are called Hausdorff spaces.  
 ��: If for every closed set Y ⊂ � and every � ∈ � such that � ∉ Y there 
exists open sets  �,  � ⊂ � with Y ⊂  �, � ∈  � such that  � ∩  � �∅.  
 ��: If for any two closed sets Z, Y ⊂ � with Z ∩ Y � ∅,there exists open 
sets  �,  � ⊂ � such that Z ⊂  �, Y ⊂  � and  � ∩  � � ∅.  
 
(ii)  � is a regular space if it is both �� and ��.  
(iii)  � is a normal space if it is both �� and ��. Also � is normal if and 
 only if it is both Hausdorff ��
� and ��.  
(iv) A function %:� ⟶ E between topological spaces � and E is 
 continuous if for every open set � of E, the preimage  %���� � � �� ∈ �: % ��� ∈ � � 
is open in �.  
(v) %: � ⟶ E is a homeomorphism if % is bijective and % and              %��: E ⟶ � are continuous.  
(vi) Topological spaces � and E are homeomorphic if there exist a 
 homeomorphism %: � ⟶ E between them.  
(vii)  A sequence ���� in a topological space is convergent to � ∈ � if 
 given any neighbourhood � of �, we can find an integer � ∈ � 
 such that for all $ [ �, �� ∈ �.  
(viii)  In a Hausdorff space, every singleton is closed.  
(ix)  In a Hausdorff space, the limit of a convergent sequence is 
 unique. 
(ix) Urysohn’s lemma: If � and - be two disjoint closed subsets of a 
 normal space �. Then there exists a continuous function %:� ⟶            
 such that %��� � 0 and %�-� � 1.  
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(x) A topological space � is metrizable if its topological structure is 
 generated by a certain metric.  
(xi) Every metrizable space is Hausdorff. 
 

2.7  References/Further Reading 
 
Sidney A. Morris (2007), Topology Without Tears, 

https://www.topologywithouttears.net/topbook.pdf 
 
Munkres, J. R. (1999), Topology, second edition, Pearson.  
 
Freiwald, R. C. (2014), An Introduction to Set Theory and Topology, 

Washington University, St. Louis Saint Louis, Missouri. 
 
Bourbaki, N. (1996), General topology, Part I, Addison Wesley, 

Reading, Mass. 
 
Englking, R.(1989), Outline of general topology, Amsterdam.  
 
Willard, S. (1970), General topology, Addison Wesley Publishing 

Company, Inc, USA.  
 
Michael, S. (1972), Elementary Topology, Second edition, Gemidnami. 
 
 



MTH 402                GENERAL TOPOLOGY II   
 
 

40 

MODULE 2   SEPARABILITY, COMPACTNESS AND  
   CONNECTEDNESS 
 
Module Introduction 
 
Separability is one of the requirements in topology to limit the size of 
the object that is under consideration. The actual definition is quite 
simple: a topological space X is separable if it has some subset Y which 
is both dense and countable. The concepts of separability is explained in 
this module A space is compact if every open cover of the space has a 
finite subcover. An open cover is a collection of open sets that covers a 
space. An example would be the set of all open intervals, which covers 
the real number line. The collection of all open intervals in the number 
line contains a lot of intervals. Compactness asks if there is a way to 
reduce that collection to a finite number of intervals and still cover the 
entire number line. That is, could we find a finite number of open 
intervals so that every point on the number line is in at least one of 
them? This question will be addressed in this module. 
 
Connectedness is a topological property and is a powerful tool in proofs 
of well-known results. A connected topological space is one that is “in 
one piece”. The way we will define this is by giving a very concrete 
notion of what it means for a space to be “in two or more pieces”, and 
then say a space is connected when this is not the case. A topological 
space is said to be connected if it is not the union of 
two disjoint nonempty open sets. A set is open if it contains no point 
lying on its boundary; thus, the fact that a space can be partitioned into 
disjoint open sets suggests that the boundary between the two sets is not 
part of the space, and thus splits it into two separate pieces. 
 
Unit 1  Category and Separability 
Unit 2  Compact Sets and Spaces 
Unit 3  Connectedness 
 
 
UNIT 1   CATEGORY AND SEPARABILITY 
 
Unit structure 
 
1.1  Introduction 
1.2  Intended Learning Outcomes (ILOs)  
1.3 Dense Sets 

1.1.1  Baire Spaces  
1.1.2 The Axioms of Countability  
1.1.3  Second Countability axiom 

1.1.4 Separability and Separable Spaces 
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1.1.5 Sequence Lemma 
1.1.6 Neighbourhood Basis 
1.1.7  First Countability Axiom 
1.1.8  Sequence Lemma Revisited 

1.4     Self-Assessment Exercise(s)  
1.5     Conclusion  
1.6     Summary   
1.7     References/Further Reading 
 

  1.1 Introduction 
 
In this unit, you shall be introduced to the notion of category, 
separability and axioms of countability. You shall be introduced with 
dense sets, and see some sets of the first and second categories. 
 

  1.2  Intended Learning Outcomes (ILOs) 
 
At the end of this unit, you should be able to:  
 
 identify dense sets and nowhere dense sets.  
 identify sets of first and second categories.  
 identify separable spaces.  
 state the first and second countability axioms.  
 identify first and second countable space.  
 state and prove the sequence lemma and its converse.  
 

1.3  Dense Sets  
 
Definition 1.2.1.1 (Dense Sets): Let � be a topological space and let � 
and � be two subsets of �. � is dense in � if � ∈ �. A is dense in � or 
everywhere dense in � if � � �.  
 
Example 1.2.1.2:ℚ the set of rational numbers is a dense subset of ℝ 
because ℚ � ℝ.  
 
Proof: Suppose ℚ � ℝ. Then there exists an � ∈ ℝ\ℚ. As ℝ\ℚ is open 
in ℝ, there exist 
, � with 
  � such that � ∈ �
, �� ⊂ ℝ\ℚ. But in 
every interval �
, �� there is a rational number �; that is� ∈ �
, ��. 
So,� ∈ ℝ\ℚ which implies � ∈ ℝ\ℚ. This is a contradiction, as � ∈ ℚ.  
Hence ℚ � ℝ. ∎ 
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Example 1.2.1.3: Let � = {�, �, �, �, �} and � =  {�, ∅ , {�}, {�, �}, {�, �, �}, {�, �, �, �}}. It is easy to see that 
{�}  =  {�, �}, {�, �}  =  �, and {�, �}  =  {�, �, �, �}. Thus the set {�, �} 
is dense in �.  
 
Example 1.2.1.4: Let (�, �) be a discrete space. Then every subset of � 
is closed (since its complement is open). Therefore, the only dense 
subset of � is � itself, since each subset of � is its own closure.  
 
Theorem 1.2.1.5: Let (�, �) be a topological space, and let � be a 
subset of �. � is dense in � if and only if every nonempty open subset 	 
of �, � ∩ 	 = ∅.  
 
Proof: Assume that for all open sets	 of �, 	 ∩ � = ∅. If � = �, then 
clearly � is dense in �. If A = X, let 
 ∈ �\�. If 	 ∈ � and 
 ∈ 	 then 	 ∩ � = ∅. So 
 is a limit point of�. As 
 is an arbitrary point in �\�, 
every point of �\� is a limit point of �. So �\� ⊂ ��, and then by 
theorem 3.8 of unit 1, � =  �� ∪ � =  �; that is, � is dense in �.  
 
Conversely, assume � is dense in �. Let 	 be a nonempty open subset 
of �. Suppose 	 ∩ � = ∅. Then if 
 ∈ 	, 
 ∉ � and 
 is not a limit 
point of �, since 	 is an open set containing 
 which does not contains 
any element of �. That is a contradiction since, as � is dense in �, every 
element of �\� is a limit point of �. So the supposition is false and 	 ∩ � = ∅, as required. ∎ 
 
Definition 1.2.1.6: A set is nowhere dense if the set � has empty 
interior.  
 
Definition 1.2.1.7: Let � be a subset of a topological space (�, �). Let � ∈ �. The point � is an isolated point of the set � if � ∈ � and there 
exist 	� ∈ �(�) such that (�\{�}) ∩ 	� = ∅.  
 
1.3.1  Baire Spaces  
 
Definition 1.2.2.1: Let  be a subset of a topological space (�, �). If  
is a union of a countable number of nowhere dense subsets of �, then  
is said to be a set of the first category or meager. If is not first 
category, it is said to be a set of the second category.  
 
Definition 1.2.2.2: A topological space (�, �) is said to be a Baire 
Space if for every sequence {��} of open dense subsets of �, the set 
{��}���� is also dense in �.  
Example 1.2.2.3: Every complete metric space is a Baire space.  
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1.3.2 The Axioms of Countability 
 
In this section, you shall be introduced to three restriction on the 
topological structure. These are first and second countability axioms and 
the separability. Before proceeding to state these axioms, you have the 
following important definition and results.  
 
Definition 1.2.3.1 (Equal Cardinality): Two sets � and � have equal 
cardinality if there exists a bijection between them.  
 
Definition 1.2.3.2 (Countable Sets): A set � is said to be a countable 
set if it has the same cardinality as a subset of the set ℕ of positive 
integers. While � is said to be at most countable if it has the same 
cardinality as the set ℕ of positive integers.  
 
Results: The following results will be stated without proof, because that 
is not the major interest here. You can find the proves in any good 
textbook on topology or analysis.  
 
1. A set � is countable if and only if there exists an injection 
 � ∶ � ⟶ ℕ (or, more generally, an injection of � into another 
 countable set). 
2. Any subset of a countable set is countable. 
3. The image of a countable set under any map is countable.  
4. ℕ is countable.  
5. The set ℕ� = {(�, �) ∶  �, � ∈ ℕ} is countable.  
6. The union of a countable family of countable sets is countable.  
7. ℚ is countable.  
8. ℝ is not countable.  
 
1.3.3 Second Countability Axiom 
 
First of all, you shall be introduced to the second countability axiom and 
separability.  
 
Definition 1.2.4.1  (Second Countability axiom): A topological space � satisfies the second axiom of countability or is second countable if � 
has a countable basis.  
 
Example 1.2.4.2  :ℝ endowed with the standard topology is second 
countable. The basis  � = �(�, �), � <  �, �, � ∈ ℚ� = ℚ × ℚ. 
Hence is countable. Also  � = �� − 1� , � + 1� , � ∈ ℚ, � ≥ 1� 
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is a countable basis of ℝ.  
 
Example 1.2.4.3  :ℝ endowed with the lower limit topology is not 
second countable.  
 
Example 1.2.4.4  : The discrete topology of any uncountable set is not 
second countable.  
 
Example 1.2.4.5  : Not all metric spaces are second countable. For 
instance,ℝ with the discrete metric. i.e., ���
, �� = �1         ��
 = �

0          ��
 ≠ � 

is not second countable. 
 
1.3.4  Separability and Separable Spaces 
 
Definition 1.2.5.1   (Separability): A topological space � is separable if 
it contains a countable dense subset.  
 
Example 1.2.5.2:ℝ endowed with the standard topology is separable 
because ℚ is a countable dense subset of ℝ.  
 
Example 1.2.5.3: Any infinite set � endowed with the finite 
complement topology is separable since any infinite set is dense in �.  
 
Example 1.2.5.4: The set of all points 
 =  (
�, 
�, 
�. . . , 
�) with 
rational coordinates is a countable dense subset in the metric space ℝ�. 
Hence ℝ� is separable.  
 
Example 1.2.5.5: The set of all points 
 =  (
�, 
�, 
�. . . , 
	 , … ) with 
only finitely many nonzero rational coordinates, is countably dense in 
the space 

ℓ� = �
 =  �
�, 
� , 
�. . . , 
	, … �: �|
	|� < ∞
�

	��
  

Hence, ℓ� is separable. 
 
Example 1.2.5.6: The set of all polynomials with rational coefficients is 
countably dense in the space ![�, �] of continuous real valued function. 
Hence ![�, �] is separable.  
 
Theorem 1.2.5.7: Any second countable topological space � is 
separable.  
Proof: Suppose � is second countable, then � contains a countable basis 
ℬ =  {�� , � ∈ ℕ}. For each � ∈ ℕ choose �� ∈ ��  and define " =
 {�� , � ≥ 1} then " is dense in �. ∎ 
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Remark 1.2.5.8: The converse of this theorem is not true in general. 
Notwithstanding in a metric space, second countability and separability 
are equivalent.  
 
Theorem 1.2.5.9: Let (�, �) be a separable metric space then � is 
second countable.  
 
Proof: Since � is separable, " =  {�� , � ∈ ℕ} is a countable dense 

subset of �. Take ℬ =  {�(�� , �� ), � ≥ 1, # ≥ 1}. Then ℬ is a countable 

basis for (�, �) 
 
1.3.5 Sequence Lemma 
 
Definition 1.2.6.1: A topological space (�, �) is metrizable if there 
exists a metric � on the set � such that the topology � on � is induced 
by �.  
 
Theorem 1.2.6.2 (Sequence Lemma): 
 
1.  Let � be a topological space, and � be a subset of �. If there 

exists a sequence {
�} of elements of � converging to 
 ∈ �, 
then 
 ∈ �. The converse holds if � is metrizable.  

2.  Let � and  be topological spaces, and � ∶ � ⟶  be a function. 
If the function � is continuous, then for every sequence {
�} is in � such that {
�} converges to 
 ∈ �, The sequence {�(
�)} 
converges to �(
) in . The converse is true if � is metrizable.  

 
Proof: 1. Let 
 ∈ �. Suppose that there exists a sequence {
�} in � such 
that 
� ⟶ 
. You have to show that 
 ∈ �. Let 	 be a neighbourhood 
of 
, 
� ⟶ ∞ as � ⟶ ∞ implies that there exist � ∈ � such that for all � ≥ �, 
� ∈ 	. In particular, 

 ∈ 	. But 

 ∈ � implies that 	 ∩ � =
∅. which implies that 
 ∈ �.  
 
Conversely, suppose that � is metrizable and 
 ∈ �. Let � be a metric 
for the topology of �. For each � ≥ 1, the neighbourhood  
 � $
, ��% ∩ � = ∅. 

Choose 
� ∈ � $
, ��% ∩ � for � ≥ 1. Then, {
�} is a sequence of points 

of � and  

0 ≤ ��
� , �� < �
� ⟶ 0 as � ⟶ ∞ 

which implies that 
� ⟶ 
 as � ⟶ ∞.  
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2. Assume that � is continuous. Let {
�} be a sequence in � such that 
� ⟶ 
 as � ⟶ ∞. You have to show that �(
�) ⟶ �(
). Let & be a 
neighbourhood of �(
). Then ���(&) is a neighbourhood of 
, and so 
there exists � ≥ 1 such that 
� ∈ ���(&) for � ≥ �. Then �(
�) ∈&� ≥ �, which implies that �(
�) ⟶ �(
) as � ⟶ ∞ as desired.  
 
Conversely, assume that the convergence condition is satisfied. Let � be 
a subset of �. You have to show that � is continuous, it suffices to show 
that �(�) ⊂ �(�). If 
� ∈ �, there exists a sequence {
�} of points of � 
converging to x (by seqence lemma). By assumption the sequence 
{�(
�)} converges to �(
). Since �(
�) ∈ �(�), the sequence lemma 
implies that �(
) ∈ �(�), as desired. ∎ 
 
1.3.6 Neighbourhood Basis  
 
Definition 1.2.7.1 (Neighbourhood basis): Let (�, �) be a topological 
space and let 
 ∈ �. The collection ' is called a neighbourhood basis 
of the point 
 if the following conditions are satisfied;  
 
(i) ( is a subcollection of neighbourhoods of 
)( ⊂ ��
�*. i.e., 
 for all ' ∈ (, ' ∈ �(
).  
(ii)  (ii) For all & ∈ �(
), there exist ' ∈ ( such that ' ⊂ &. 
 
Example 1.2.7.2: Let ℝ be endowed with the standard topology. Then 
for all 
 ∈ ℝ,  ( = {�
 − �, 
 + ��, � >  0} 
is a neighbourhood basis of 
.  
 
Proof: 
 
(i) Let 
 ∈ �. Clearly, for all � >  0, �
 − �, 
 + �� is a 

neighbourhood of 
 and so ' ⊂ �(
). 
(ii)  Let & ∈ �(
) then there exist an open set 	 such that 
 ∈ 	 ⊂ &. 

 
This implies that there exists � > 0 such that (
 − �, 
 + � ) ⊂ 	 ⊂ &.  
 
Example 1.2.7.3: Let (�, �) be a metric space, let 
 ∈ �, then  ( =  {��(
, �), � >  0} 
is a neighbourhood basis in the metric topology.  
 
Example 1.2.7.4: Let ℝ� denote the real line endowed with the lower 
limit topology. Let 
 ∈ �, then  ( = {[
, 
 + �), � >  0} 
is a neighbourhood basis for the lower limit topology on the real line.  
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Example 1.2.7.5: Let (�, �) be a discrete topololgical space. Then for 
all 
 ∈ �,  ( = {{
}, 
 ∈ �} 
is a neighbourhood basis of 
 in the discrete topology.  
 
1.3.7 First Countability Axiom  
 
Definition 1.2.8.1(First Countability Axiom):  A topological space � 
satisfies the first countability axiom or is said to be first countable if any 
point 
 ∈ � has a countable neighbourhood basis.  
 
Example 1.2.8.2 : Let ℝ be endowed with the standard topology. For all 
 ∈ ℝ define  ( = �+
 − 1� , 
 + 1�, : � ≥ 1� 
Or ( = ��
 − �, 
 + ��: � > 0, � ∈ ℚ� 
In each case, ( is a countable neighbourhood basis of 
. Thus ℝ is first 
countable.  
 
Example 1.2.8.3: Let ℝ be endowed with the lower limit topology. For 
all 
 ∈ ℝ, define ( = ��� = 
, 
 + 1�: � ≥ 1� 
Then ( is a countable neighbourhood basis for 
. Hence, ℝ with the 
lower limit topology is first countable.  
 
Example 1.2.8.4: Let (�, �) be a metric space. For every 
 ∈ �, define  ' = � +
, 1�, : � ≥ 1  
Or ' =  {��
, ��: � >  0, � ∈ ℚ} 
Then in each case, W is a countable neighbourhood basis of 
. Thus, 
every metric space is first countable.  
 
Theorem 1.2.8.5: Let (�, �) be a topological space. If � is second 
countable, then � is first countable.  
 
Proof: Assume that � is second countable, then � has a countable basis 
ℬ =  {��, � ∈ �}. Let 
 ∈ �, and define  ( =  {� , 
 ∈ ��} 
then ' ⊂ ℬ, so that ( is countable.  
 
1. For all �� ∈ (, �� ∈ �(
). 
2. Let & ∈ �(
), this implies that there exists an open set 	 such that 
 ∈ 	 ⊂ &. This implies that there exists ��� ∈ ( such that 
 ∈ ��� ⊂
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	 ⊂ &, so that ��� ⊂ &. Thus ( is a countable neighbourhood of 
. 
Hence � is first countable.         
                                                              ∎ 
1.3.8 Sequence Lemma Revisited 
 
Recall that in the sequence lemma which we proved above, It says that if � is subset of a topological space � and there exists a sequence{
�} of 
points of � such that 
� ⟶ 
 in � as � ⟶ ∞, then 
 ∈ �. And we 
proved the converse in a metrizable space. This tells us that the 
implication  
 
(⟹) if {
�} is a sequence in � such that 
� ⟶ 
 in �, then 
 ∈ � is 
true in any topological space. But the converse, if 
 ∈ � then there 
exists a sequence {
�} of � such that 
� ⟶ 
 is only true if � is a 
metrizable space.  
 
Similarly, for the continuous function �: � ⟶ , sequential continuity 
holds for topological spaces � and , i.e.,� is continuous, implies for all 
sequence {
�} of � such that 
� ⟶ 
 in �, �(
�) ⟶ �(
) in .  
 
The converse, i.e., for a sequence {
�} of � such tha if 
� ⟶ 
 implies 
that �(
�) ⟶ �(
) then � is continuous; holds if and only if � is 
metrizable.  
 
In what follows, you shall discover that if � is a first countable space the � also recorvers the converse of the sequence lemma. i.e., the converse 
of the sequential closure and the sequential continuity. Before you 
proceed, the following lemma will be useful.  
 
Lemma 1.2.9.1: Let � be a topological space and let 
 ∈ �. Suppose � 
is first countable, then there exist a countable basis of 
, say, ( =
{'� , � ≥ 1} such that '��� ⊂ '� .  
 
Proof: Let 
 ∈ �. Since � is first countable then there exists a countable 
neighbourhood basis & = {&� , � ≥ 1} of 
. Define for each � ≥ 1,  '� = -&��

���
 

 and let ( = {'� , � ≥ 1}. Then  
(i) ( is countable.  
(ii)  '� ∈ �(
), for each � ≥ 1, because finite intersection of 
 neighbourhoods of a point 
 is also a neighbourhood of 
.  
(iii)  Let & ∈ �(
), there exists � ∈ � such that &
 ∈ & and 
 ∈ &
 ⊂&. But  
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'
 = -&�


���
⊂ &
 ⊂ & 

Thus, for every & ∈ �(
) there exist � such that '
 ∈ ( and '
 ⊂ &. 
 
(iv) '��� = ⋂ &������� = &��� ∩ ⋂ &����� ⊂ ⋂ &����� = '� .That is '��� ⊂ '�.Thus ( is a countable neighbourhood basis of 
 that 
satisifies '��� ⊂ '�, � ≥ 1. ∎ 
 
Theorem 1.2.9.2: Let � be a first countable topological space and � be 
a subset of �. Then if 
 ∈ �, there exists a sequence {
�} of � such that 
� ⟶ 
 as � ⟶ ∞.  
 
Proof: Since � is first countable, from lemma 3.1, there exists a 
countable neighbourhood ( = {'� , � ≥ 1} such that '��� ⊂ '�. Now 
let 
 ∈ �. This implies that for all � ≥ 1, '� ∩ � = ∅. Let 
� ∈ '� ∩�. Then {
�} is a sequence of points of �.  
 
Claim: 
� ⟶ 
 as � ⟶ ∞ 
 
Proof of Claim: Let & ∈ �(
). Then there exists � ∈ � such that 
� ∈ '
 ⊂ & and for all � ≥ �,  
� ∈ '� ⊂ '
 ⊂ & 
 
This implies that for all � ≥ �, 
� ∈ &. Hence 
� ⟶ 
 as � ⟶ ∞ and 
the proof is complete.  
 
Theorem 1.2.9.3: Let � and  be two topological spaces and let �: � ⟶   be a function. Suppose � is first countable. If for every 
sequence {
�} of � such that 
� ⟶ 
 in � as � ⟶ ∞, one has that �(
�) ⟶ �(
) in  then � is continuous.  
 
Proof: It suffices to prove that if / is closed subset of , then the 

preimage ���(/) is closed in X, i.e., ���(/) = ���(/). But you have 

already that ���(/) ⊂ ���(/), so it is left for you to show that ���(/) ⊂ ���(/). So let 
 ∈ ���(/), Since � is first countable, you 
have by seqeunce lemma that there exist a sequence {
�} of points of ���(/) such that 
� ⟶ 
 as � ⟶ ∞. This implies that �(
�) is a 
sequence of elements of /, and by assumption, �(
�) ⟶ �(
) in . 
 
Since / is closed, / = / and so �(
) ∈ /, that is 
� ∈ ���(/). Thus ���(/) ⊂ ���(/) as required. Therefore, ���(/) is closed in �. Hence � is continuous. Type equation here. 
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1.4   Self – Assessment Exercise(s) 
 
1. Given � � �
, �, �, �, �� and 
 � � ��, ∅, �
�, ��, ��, �
, �, ��, ��, �, �, ���. Let � � �
, ��. Then 
 the set �� of limit points of � is given by  
 (a) �� � ��, �, �� 
 (b) �� � ��, �, �� 
 (c) �� � ��, �� 
 (d) �� �  �.  
2.  Let ℝ the real line be endowed with the discrete topology. Which 
 of the following subsets of ℝ is dense in ℝ?  
  (a) ℚ 
 (b) ℝ itself  
 (c) ℚ�.  
 (d) All singletons.  
3.  Let � � �0, 1� ∪ �2� be a subset of ℝ. Then the isolated points of 
 � in ℝ are  
 (a) 0 and 1 
 (b) 0 and 2 
 (c) 1 and 2 
 (d) 2 only 4.  
4.  For the set � in question 3, Which of the following are the limit 
 points of �?  
 (a) 0 and 1 
 (b) 1 and 2 
 (c) 0 only 
 (d) 2 only 
5.  In ℝ with the standard topology, which of the following sets is 
 nowhere dense?  
 (a) ℚ� 
 (b) ��

�
, �
�
, . . . , �

�
, . . . � 

 (c) �0, 1� 
 (d) (0, 1� 
6.  The minimal neighbourhood basis of a point � in the discrete 
 topology contains  
 (a) the whole set � and the empty set ∅only.  
 (b) Only the singletons.  
 (c) All open sets of � only.  
 (d) The whole set � only.  
7.  The minimal neighbourhood of a point � in the indiscrete 
 topology contains  
 (a) the whole set � and the empty set ∅ only.  
 (b) Only the singletons.  
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 (c) The empty set only.  
 (d) The whole set � only.  
8.  Which of the following spaces is second countable?  
 (a) ℝ with the finite complement topology.  
 (b) ℝ with the countable complement topology.  
 (c) ℝ with the lower limit topology.  
 (d) ℕ with the discrete topology.  
9.  Which of the following spaces is not first countable?  
 (a) ℝ endowed with the lower limit topology.  
 (b) ℝ endowed with the finite complement topology.  
 (c) ℝ endowed with the discrete topology.  
 (d) ℚ endowed with the indiscrete topology. 
 

  1.5        Conclusion 
 
In this unit, you were introduced to dense sets, sets of first and second 
category, and Baire spaces. You also studied the axioms of countability 
and separability and saw some examples of spaces that satisfy some of 
the axioms. You are able to prove that a first countable space satisfies 
the converse of the sequence lemma.  

   1.6  Summary 
 
Having gone through this unit, you now know that;  
 
(i) A subset � of a topological � is dense in � ⊂ � if � ⊂ �. � is 

everywhere dense in � if �  �  �, while � is nowhere dense in � 
if *+,��� � ∅.  

(ii)  A subset - of a topological space � is of the first category if - is 
a countable union of sets of nowhere dense subsets of �. 
Otherwise - is of the second category.  

(iii)  A set is countable if it has the same cardinality with at least a 
subset of a countable set.  

(iv) A point . ∈ � is called an isolated point of a subset � of a 
topological space � if there exists a neighbourhood / of . such 
that ��\�.�� ∩ / � ∅.  

(v) 1 is a neighbourhood basis of a point � ∈ � if  
 (a) for all 2 ∈ 1, 2 ∈ 3���.  
 (b) 4 ∈ 3��� then there exists 2 ∈ 1 such that 2 ⊂ 4.  
(vi)  A topological space is first countable if it contains a countable 

neighbourhood basis. 
(vii)  A topological space is second countable if it contains a countable 

basis. 
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(viii)  A topological space is separable if it contains a countable dense 
subset. 

(ix)  Every second countable space is first countable.  
(x)  Every second countable space if separable. The converse is true if 

the space is metrizable.  
(ix)  A topological space � is metrizable if its topological structures 

can be generated by a metric.  
(x)  Sequence Lemma  
 (a)  If there exists a sequence ���� of elements of a subset � of 

 a topological space �, such that �� ⟶ � ∈ �, then � ∈ �.  
 (b)  If 6:� ⟶ - is continuous, then for all sequence ���� of 

 elements of �, such that �� ⟶ � ∈ � then 6���� ⟶ 6��� 
 in -. The converse of the sequence lemma is true if � is 
 either first countable or metrizable.  
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UNIT 2   COMPACT SETS AND SPACES 
 
Unit structure 
 
2.1  Introduction 
2.2  Intended Learning Outcomes (ILOs)  
2.3  Main Content  
  2.3.1 Definitions and Examples 
 2.3.2 Compactness in Product Spaces  
 2.3.3 Heine-Borel Theorem 
       2.3.4 Finite Intersection Property (FIP)  
        2.3.5 Compactness and Continuous function 
        2.3.6 The Extremum Value Theorem 
2.4  Limit Point and Sequential Compactness 
         2.4.1 Limit Point Compactness 
         2.4.2 Sequential Compactness  
         2.4.3 Locally Compactness and One-point Compactification 
         2.4.4 Local Compactness 
          2.4.3 One-point Compactification 
2.4     Self-Assessment Exercise(s)  
2.5     Conclusion  
2.6     Summary   
2.7     References/Further Reading 
 

  2.1 Introduction 
 
In this unit, you shall be introduced to a topological property playing a 
very special and important role in topology and its application. It is a 
sort of topological counterpart for the property of being finite in the 
context of set theory. 
 

  2.2  Intended Learning Outcomes (ILOs) 
 
At the end of this unit, you should be able to;  
 
 Give the definition of Covers and subcorvers.  
 Define compact sets, subsets and compact spaces.  
 Give the sequential characterization of compactness.  
 Identify sequentially, countably and locally compact sets.  
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  2.3 Definition and Examples  
 
Definition 2.2.1.1 (Covering and Open Cover): A collection � of 
subsets of � is said to be a covering of �, if the union of the elements of � is �. i.e.,  � � 89�

�∈	

 

where /� ∈ � for all * ∈ :, (: is an index set).  
 � is called open covering if its elements are open subsets of �.  
 
Definition 2.2.1.2 (Subcover): If � is a covering of � and 9 ⊂ � is also 
a covering of �, then 9 is a subcover or subcovering of �.  
 
Definition 2.2.1.3 (Compact Set): A topological space � is compact if 
every open covering of � is reducible to a finite subcovering. That is, a 
topological space � is compact if for every open covering �9� ��∈	, there 
exists a finite subfamily 9�� , 9�� , 9��, … , 9�� such that such that  

� � 89��

�


��
 

Definition 2.2.1.4: Let � be a subset of a topological space �. Then � is 
said to be compact if for every family of open sets �9� ��∈	 such that  � ⊆ 89�

�∈	

 

there exists a finite subfamily 9�� , 9�� , 9��, … , 9�� such that  

� ⊆ 89��

�


��

 

 
Example 2.2.1.5: Let � be endowed with the indiscrete topology. Then � is compact.  
 
Proof: In the indiscrete topology, the only open covering of � is the ∅ 
and � itself. Hence, � is compact.∎ 
 
Example 2.2.1.6: The real line ℝ endowed with the standard topology is 
not compact.  
 
Proof: It suffices to produce an open covering of ℝ which cannot be 
reducible to a finite subcovering. Now  

ℝ � 8�=+, +��

���
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If there exist a finite open subcover, then there exists ��, ��, ��, . . . , �� 
such that  

ℝ = 0(−��, ��)�

���
= (−�, �) 

Where � = max����� �� which is impossible. Hence ℝ is not compact. 
∎ 
 
Example 2.2.1.7: Let � = (0, 1]. Then � is not compact in ℝ.  
Proof: In (0, 1] we have the trace topology (i.e., su24bspace topology) $��  , 2% , � ∈ �is an open covering of 

(0, 1] = 0+1� , 2,�

���
 

 Suppose that (0, 1] is compact, then there exists ��, ��, ��, . . . , �� such 
that 
 �0, 11 = 0+ 1�� , 2,�

���
= +1� , 2, 

Where � = max����� ��, which is a contradiction. Hence (0,1] is not 
compact.  
 
Example 2.2.1.8:ℝ�∗ = (0, +∞) is not compact.  
 

Proof: Suppose that ℝ�∗  is compact, 2$��  , �% , � ∈ �3is an open 

covering of ℝ�∗  such that  

ℝ�∗ = 0+1� , �,�

���
 

So there exist ��, ��, ��, . . . , �� such that  

ℝ�∗ = 0+ 1�� , ��,�

���
= +1� , �, 

Where � = max����� ��. This is impossible.∎ 
 
Example 2.2.1.9: Let (�, �) be a topological space and let �
�� be a 
sequence of points of � such that 
� ⟶ 
 ∈ � in �, then {
� , � ≥ 1} ∪
{
} is compact.  
 
Example 2.2.1.10: Any finite set of a topological set (�, �) is compact. 
 
Proof: Let � ⊂ � be a finite set, the elements of � can be listed, i.e., � =  {
�, 
� , 
�, . . . , 
�}. Let {4�}�∈� be an open covering for �, i.e.,  
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� ⊆ 04�
�∈�

 

Then for each 
� ∈ �, choose an open set 4�� such that 
� ∈ 4��. Thus � ⊆ 04��

�

���
∎ 

Remark 2.2.1.11: So you see from Example 3.1.6 that every finite set 
(in a topological space) is compact. Indeed, as earlier mentioned in the 
beginning of this unit, “compactness” can be thought as a topological 
generalization of “finiteness”.  
 
Example 2.2.1.12: A subset � of a discrete space is compact if and only 
if it is finite.  
 
Proof: If � is finite then Example 3.1.6 shows that it is compact.  
 Conversely, let � be compact. Then the family of singleton sets 4 = {
}, 
 ∈ � is such that each 4 is open and  
 � ⊆ 04

∈�
 

Since � is compact, there exist 
�, 
� , 
�, . . . , 
� such that  � ⊆ 04�

�

���
; 

That is � ⊆ �
�, 
�, 
� , . . . , 
��.                                                                                                                   
∎ 
Theorem 2.2.1.13: Any closed and bounded interval in ℝ is compact.  
Proof: Let 5�, �1, � < � be a closed and bounded interval of ℝ. Let 
{4�}�∈� a family of open sets of ℝ such that  5�, �1 ⊆ 04�

�∈�
 

 
Step 1: Suppose � ≤ 
 <  �. Then there exists � >  
 such that [
, �] 
can be covered by at most two 4�6. For this end, if 
 has an immediate 
successor �, then the interval [
, �] has only two elements. So it can be 
covered by at most two 	�6. If 
 does not have an immediate successor, 
find 	� containing 
. Pick 7 > 
 such that [
, 7) ⊂ 	�; this is possible 
because 	� is open. Since 
 does not have an immediate successor, there 
is �such that 
 < � < 7. Then [
, �] ⊂ 	�.∎ 
 
Step 2: Now  
let� = {� ∈ (�, �]: [�, �] can be covered by finitely many 	�} 
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By step 1, there exists an element � > � such that [�, �] can be covered 
at most by two 	��6. Therefore,� is nonempty and bounded above. Let � = sup�.  
Step 3: Claim: � ∈ �. Let i such that c∈ 	�. Since 	� is open and � > �, 
there exists an interval (�, �] ∈ 	�. Since � cannot be an upper bound 
for �, there is an element of � larger than�. Let 7 such that � < 7 < �. 
Then [�, ��] can be covered by finitely many 	��6 and [��, �] ⊂ 	�. 
Therefore [�, �] = [�, ��] ∪ [��, �] can be covered by finitely many 	��6. 
Hence � ∈ �.  
 
Step 4: Claim: � = �. Suppose � < �. By step 1, there exist � > � such 
that [�, �] can be covered by at most two 	��6. Since � ∈ �, [�, �] can be 
covered by finitely many 	��6. So [�, �] = [�, �] ∪ [�, �] can be covered 
by finitely many 	��6 and therefore � ∈ �. This contradicts the fact that � = sup. Hence � = �.∎ 
 
Theorem 2.2.1.14: A closed subset � of a compact topological space 
(�, �) is compact.  
 
Proof: Let {4�}�∈� be a family of open subsets of � such that  � ⊆ 04�

�∈�
 

Now  � = � ∪ �� = 04
∈�

∪ �� 

Since � is compact, there exists ��, ��, ��, . . . , �� such that  � = 04��

�

���
∪ �� 

This implies that � ⊆ 04��

�

���
 

Hence, A is compact. 
 
Theorem 2.2.1.15: If � is a compact subset of a Hausdorff topological 
space (�, �), then � is closed.  
 
Proof: Suppose � is a compact subset of � and let 
 ∈ ��. Then for all � ∈ �, 
 = �. Since � is Hausdorff, there exist 	� open in � and 
contains 
, &� open in � and contains � such that 	� ∩ &� = ∅. So � ⊆ 0&�

�∈�
 

Since A is compact, there exists ��, ��, ��, . . . , �� such that  
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� ⊆ 0&���

�∈�
 

Let  	 = -	��

�

���
 

and � ⊆ 0&���

�∈�
 

 
Then 	 is open and contains 
, & is open and contains �, and 	 ∩ & =
∅. This implies that 	 ∩ � = ∅, that is 	 ⊂ ��. Thus �� is open. Hence � is closed. ∎ 
 In the course of the proof of theorem 3.3, you proved the 
following result.  
 
Theorem 2.2.1.16: Let � be a compact subset of a Hausdorff 
topological space � and let 
 ∈ �. Then there exists open sets 	 and & 
with � ⊂ & and 
 ∈ 	 such that & ∩ 	 = ∅. This result is the third 
separation axiom ��.  
 
Theorem 2.2.1.17: Let � and � be compact subsets of a Hausdorff 
topological space � such that � ∩ � = ∅. Then there exists open sets 	 
and & with � ⊂ 	 and � ⊂ & such that 	 ∩ & = ∅.  
 
 
2.3.1  Compactness in Product Spaces 
 
Theorem 2.2.2.1 (Tube Lemma): Let � ×  be the product topology. 
Suppose that  is compact. If ' is an open subset of � ×  containing 
{
} ×  for some 
 ∈ �, then it contains some tube 	 ×  around 
{
} × . Where 	 is an open set containing 
. 
 
 
 
Y                       N                 x 
 
 
 
                X 
                                               W 
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Figure 2.2.2.2: Tube Lemma 
Proof: Observe that {
} ×  = , and since  is compact, {
} ×  is 
compact. Now for each � ∈ , you have (
, �) ∈ {
} ×  ⊂ '. 
Therefore, there exists open sets 	� containing
, &� containing � such 
that (
, �) ∈ 	� × &� ⊂ '. Thus {	� × &�, � ∈  } is an open cover of 
{
} × . Since {
} ×  is compact, there exists ��, ��, ��, . . . , �� such 
that 

{
} ×  ⊂ 0	�� × &���

���
 

Take 	 = -	��

�

���
 

 
Then 	 is open, it contains 
 and {
} ×  ⊂ 	 ×  ⊂ '. For if 
(7, �) ∈ 	 × , you have that 7 ∈ 	 and � ∈ . � ∈  implies that there 
exists �� such that � ∈ &��� . This implies that 7 ∈ 	���and (7, �) ∈	��� × &��� ⊂ '.  

 
Theorem 2.2.2.3: A finite product  8��

�

���
 

of compact spaces {��}����  is compact.  
 
This theorem is called the Tychonoff product theorem. The converse of 
the Tychonoff product theorem is also true.  
 
Proof: You can prove this for a product � ×  of two compact spaces � 
and . The generalization follows by induction. So let �'���∈� be a 
family of open sets of the product topology, such that  � ×  ⊆ 0'�

�∈�
 

Let 
 ∈ � be fixed. You have that �
� ×  ⊆ � ×  ⊆ 0'�
�∈�

 �
� ×  is compact since  is also compact, and so there exists ��, ��, ��, . . . , �� such that  �
� ×  ⊆ 0'�� = '

�

���
 

By tube lemma, there exists an open set 	 containing 
 such that�
� × ⊆ 	 ×  ⊆ ' 
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And so  � ⊆ 0	
∈�

 

Since � is compact, there exists 
�, 
�, 
�, . . . , 
� such that  � ⊆ 0	�

�

���
 

Therefore,  � ×  ⊆ 0(	� × ) ⊆ 0'�

�

���

�

���
⊆ 00'��

�

���

�

���
 

Hence, � ×  is compact.∎ 
 
2.3.2 Heine-Borel Theorem  
 
Theorem 2.2.3.1: A subset � of ℝ� is compact if and only if it is closed 
and bounded.  
 
Proof:(⟹) Let ℝ� be endowed with the Euclidean metric  �(
, �) = �5�
� − ����1���

���
 

Assume � is compact then� is closed since ℝ� is Hausdorff. Also 
{�(0, �), � ∈ �}is a family of open sets of ℝ� and  � ⊆ 0�(0, �)

�

���
 

Where �(0, �) = {� ∈ ℝ� ∶  �(�, 0) < �}is the open ball with center 0 
and radius �. By the compactness of �, there exists ��, ��, ��, . . . , �	 
such that  � ⊆ 0�(0, ��)	

���
⊆ �(0, �) 

where � = max����	 ��. Hence � is bounded.  
 �⟹�Suppose � is closed and bounded in ℝ�, and show that � is 
compact. It suffices to show that � is a subset of a compact set. But � is 
bounded implies that there exist 9 > 0 such that  � ⊆ �(0, ��) 8[−ℝ, ℝ]

�

���
 

each [−ℝ, ℝ] is compact in ℝ and so 8[−ℝ, ℝ]
�

���
 

is compact as a finite product of compact sets. And so � is a closed 
subset of a compact set, therefore, � is compact.  
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Remark 1.2.3.1: Note that the above theorem was proved in ℝ�. In an 
arbitrary metric space, what you have is that any compact space is 
closed and bounded but the converse is not true.  
 
2.3.3 Finite Intersection Property (FIP) 
 
Definition 2.2.4.1 (Finite intersection Property (FIP):  Let � be a 
topological space. A collection ! of subsets of � satisfies the Finite 
Intersection Property (FIP) if any intersection of a finite subcollection of ! is nonempty.  
 
 ! = {��, � ∈ :} satisfy FIP if for any ; ∈ <�(:), -�� = ∅

�∈�
 

Where <�(:) (finite part of  ) denotes a the set of all finite indexes of :. 
Theorem 2.2.4.2: A topological space � is compact if and only if 
collection ! = {!�, � ∈ :} of closed sets having the FIP, one has that  -!� = ∅

�∈�
 

Proof:(⟹) Let � be a compact set and ! = {!�, � ∈ :} be a collection of 
closed sets of � having the finite intersection property, i.e., for all ; ∈ <�(:) such that  -!� = ∅

�∈�
 

You have to show that -!� = ∅
�∈�

 

Suppose -!� = ∅
�∈�

 

 Then � = 0(�\!�)
�∈�

 

Each �\!� is open since !� is closed Thus, {�\!�, � ∈ :} is an open 
covering for � and since � is compact, there exists ; ∈ <�(:) such that  � = 0(�\!�)

�∈�
 

This implies that  -!� = ∅
�∈�

 

contradicting the assumption that ! satisfies FIP. Hence our supposition 
was wrong. Therefore 
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-!� = ∅
�∈�

                      ∎ 

Corollary 2.2.4.3: Let � be a compact space and let {!� , � ≥ 1} be a 
collection of nonempty closed sets such that !��� ⊂ !�. Then  -!� = ∅.

���
 

Proof: Let ��, ��, ��, . . . , �� ∈ �, since !��� ⊂ !�, and each !� is 
nonempty, then -!���

���
= !
 = ∅ 

Where � = max����� ��. This implies that {!�, � ≥ 1} satisfies the FIP. 
So by the last theorem,  -!� = ∅                            ∎

���
 

 
Theorem 2.2.4.4: If � is a compact Hausdorff space having no isolated 
points, then � is uncountable.  
 
Proof: 
 
Step 1: First show that given any nonempty open set of � and any point 
 of �, there exists a nonempty set & contained in U such that 
 ∉ &.  
 
 Choose a point � ∈ 	 different from 
, this is possible if 
 in 	 
because 
 is not an isolated point of � and it is also possible if 
 in not 	 simply because 	 is nonempty. Now choose disjoint neighbourhood '� and '� of 
 and � respectively. Then take & = 	 ∩ '�.  
 
Step 2: Let �: � ⟶ �. Then show that � is not injective.  
 
Let 
� = �(�). Apply step 1 to the nonempty open set 	 = �to choose 
a nonempty open set &�such that 
 ∈ &�. In general, given &���, a 
nonempty open set, choose &� to be a nonempty open set such that &� ⊂ &��� and �� ∉ &�. Consider the nested sequence {&�} of nonempty 
closed sets of �. Since � is compact, there exists a point 
 ∈ &�. Now if � is surjective, then there exists � such that �(�) = 
� = 
, which 
implies that 
� ∈ &�. Contradiction. ∎ 
 
Corollary 2.2.4.5: Every closed and bounded interval of ℝ is 
uncountable.  
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2.3.4 Compactness and Continuous function 
 
Theorem 2.2.5.1: Let � and  be topological spaces, and let �: � ⟶  
be a function. If � is compact and � is continuous, then �(�) is 
compact.  
 
Proof: Let {&�}�∈� be a family of open sets of  such that  �(�) ⊆ 0&�

�∈�
 

This implies that  � ⊂ ���(����) ⊆ 0����&��
�∈�

 

By the continuity of �, {���(&�)}�∈�is a family of open sets of �, and 
since � is compact, there exists ��, ��, ��, . . . , �� such that � ⊆ 0��� $&��%�

���
 

which implies that  �(�) ⊆ 0��� $&��%�

���
⊆ 0�+��� $&��%,�

���
= 0&���

���
 

That is,  �(�) ⊆ 0&��

���
 

Hence, �(�) is compact. ∎ 
 
This theorem says that the continuous image of a compact set is 
compact. 
 
Theorem 2.2.5.2: Let �: � ⟶  be a continuous bijective function. If � 
is compact and  is Hausdorff, then � is a homeomorphism.  
 
Proof: Let / be a closed subset of �. Since � is compact, you have by 
theorem 3.3.1 that / is compact. Also by the continuity of �, and 
theorem 3.3.1, you have that �(/) is compact. Since  is Hausdorff, 
theorem 3.2.4gives you that �(/) is closed in . And since � is a 
bijection, ��� exists and is continuous. ∎ 
 
2.3.5 The Extremum Value Theorem  
 
Theorem 2.2.6.1 (The Extremum Value Theorem): Let �: � ⟶  be 
continuous, where  is an ordered set in the order topology. If = is a 
compact subset of �, then there exists points � and � in = such that  �)�* = #����
� ��� �(�) = max∈� �(
) 
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Proof: Since � is continuous, and = is compact, the set � = �(=) is 
compact. So you can show that � has a largest element > and a smallest 
element #. Then since # and > belongs to �, you have to show that # = �(�) and > =  � (�) for some points� and � in =.  
 
By contradiction, assume that � has no largest element, then the 
collection  ��−∞, ��: � ∈ �� 
forms an open cover of �. Since � is compact, some finite subcover �−∞, ���, �−∞, ���, . . . , (−∞, ��) covers �. If ��� is the largest of the 
elements, ��, ��, . . . , �� then ��� belongs to none of these sets, contrary 
to the fact that they cover � (because ��� ∈ �). A similar argument 
shows that � has a smallest element.∎ 
 
Definition 2.2.6.2: (Lebesgue Number): Let ? be an open cover of �. @ is a Lebesgue number on ? if for all subsets � of � such that the 
diameter of � is less than @, there exists 	 ∈ ? such that � ⊆ 	.  
 
Theorem 2.2.6.3: Let (�, �) be a metric space. Let ? = {	�, � ∈ :} be 
an open cover of �. If � is compact, then there exists @ > 0 such that 
any subset of �, having diameter less than @ is contained in one of the 	��6.  
 
Proof: Let ? = {	�, � ∈ :} be an open cover of � such that  � = 0	�

�∈�
 

If � ∈ ?, then any positive number is a lebesgue number of ?. So you 
can assume that 	� ⊂ �. 
Take !� =  �\	� and define �: � ⟶ ℝ by  � (
) = ����
, !���

���
 

Now for any 
 ∈ �, there exist �� ∈ : such that 
 ∈ 	��. Since 	�� is 
open, then there exists A > 0 such that �(
, A) ⊆  	��. If � ∈ !�� then � ∉ 	��, i.e., � ∉ �(
, A) which implies that �(
, �) ≥ Aand so �(
, !��) ≥ @, thus �(
) ≥ �

�.  
 
Since � is continuous on � (which is compact), then � has a minumum 
value @ > 0. You now have to show that @ is the Lebesgue number. For 
this, let � be a subset on � of diameter less than @. Choose 
� ∈ �, then � ⊂ �(
�, @). Now  @ ≤ �(
�) ≤ �(
�, !�) 
where �(
� , !�) is the largest of the number �(
�, !�). Then �(
� , @) ⊂	�, as desired. ∎ 
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2.2.6.4: Let (�, ��) and (, ��) be metric spaces. A function �: (�, ��) ⟶ (, ��) is said to be uniformly continuous if given any A >  0 there exists a @ > 0 such that for every pair of points 
� , 
� of �,  ��(
�, 
�) < @ 
implies that  ��(�(
�), �(
�)) < A 
 
Theorem 2.2.6.5: Let (�, ��) and (, ��) be metric spaces and let �: � ⟶  be continuous. If � is compact then � is uniformly 
continuous.  
 
Proof: Let A > 0 be given. {��(�, �

�), � ∈ } is an open covering of . 

So that {���(�� $�, �
�%), � ∈  } is an open covering of �, and has a 

Lebegue number @ since � is compact. Let 
� , 
� be points of � such 
that �(
� , 
�) < @. This implies that diameter ({
� , 
�}) < @. Thus 

{
� , 
�} ⊆ ���(� $�, �
�%) and so � (
�), � (
�) ∈ �(��, ��). Therefore,  �(� �
��, � �
�� ≤ ��� �
��, ��� + �(� �
��, ��) < A

2 + A
2 

i.e., �(� �
��, � �
��) as desired. ∎ 
 
2.4  Limit Point and Sequential Compactness  
 
2.4.1 Limit Point Compactness  
 
Definition 2.2.7.1.1: A space � is said to be limit point compact if every 
infinite subset of � has a limit point. 
 
Theorem 2.2.7.1.2: Any compact space is limit point compact, but not 
conversely.  
 
Proof: Let � be a compact space. Given a subset � of �, the goal is to 
prove that if � is infinite, then � has a limit point. The proof is done by 
contraposition. That is, if � has no limit point then � must be finite. 
 
Suppose that � has no limit point. Then � is closed. Since � is compact. 
Furthermore, for each � ∈ �, you can choose an open neighbourhood 	� 
of a such that 	� intersects � in the point � alone. The subspace � is 
covered by the open cover {	� : � ∈ �}; being compact, it can be 
covered by finitely many of these sets. Each 	� contains only one point 
of �, the set � must be finite. 
  
The next is to show that for metrizable spaces, these two versions of 
compactness coincides. That is (�, �) is compact if and only if (�, �) is 
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limit point compact. To this end, you shall be introduced to another 
version of compactness called sequential compactness.∎ 
 
2.4.2 Sequential Compactness  
 
Definition 2.2.8.1: A topological space � is said to be sequentially 
compact if every sequence of points of � has a convergence 
subsequence.  
 
Theorem 2.2.8.2: Let � be a metrizable space. Then the following are 
equivalent.  
 
1. � is compact.  
2. � is limit point compact.   
3. � is sequentially compact.  
 
Proof: You have already shown that (1) ⟹ (2) in theorem 3.14. To 
prove that (2) ⟹ (3), assume that � is limit point compact. Given a 
sequence (
�) of points of �, consider the set � =  {
�: � ≥ 1}. If the 
set � is finite, then there is a point 
 such that 
� = 
 for infinitely 
many values of �. In this case, the sequence (
�) has a subsequence that 
is constant, and therefore converges. On the other hand, if � is infinite, 
then � has a limit point 
. Define a subsequence of (
�) converging to 
 
as follows. First choose �� so that  
 
�� ∈ �(
, 1) 

Then suppose the positive integer ����is given. Because the ball � $
, ��% 

intersects � in infinitely many points, you can choose an index �� >���� such that 
�� ∈ � $
, ��%. Then the subsequence )
��* converges to 
.  
 
Finally, you have to show that �3� ⟹ �1�. This is the hardest part of the 
proof. First, show that if � is sequentially compact, then the Lebesgue 
number holds for � (This would form compactness, and compactness is 
what you want to prove.) Let � be an open cover of �. Assume that 
there exist no @ > 0 such that each set of diameter less that @ has an 
element of � containing it. Your assumption implies in particular that 
for each positive integer �, there exists a set of diameter less than 

�
� that 

is not contained in any element of �. Let !� be such set. Choose a point 
� ∈ !� for each �. By hypothesis, some subsequence {
��} of the 
sequence {
�} converges, say to a point �. Now � is in some element 	 
of the open cover �. Because 	 is open, you may choose A > 0 such 
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that �(�, A) ⊂ 	. Let � be sufficiently large such that 
�
��

< �
� and �(
�� , �)  < �

�, then there exists !�� ⊂ �(�, A). Contradiction.  

 
Secondly, you have to show that if � is sequentially compact, then given A, there exists a finite cover of �A − balls. Once again, proceed by 
contradiction. Assume that there exists an A > 0 such that � cannot be 
covered by finitely many A − balls. Construct a sequence of points 
� as 
follows: First, choose 
� to be any point of �. Noting that the ball �(
�, A) = � (otherwise � could be covered by a single A − balls) 
choose 
� to be a point of � not in �(
�, A). In general, given 
�, 
�, . . . , 
�, choose 
��� to be a point of � not in the union ��
�, A� ∪ ��
� , A�,∪ ··· ∪ �(
� , A) 
using the fact that these ball do not cover �. By construction �(
� +
1, 
�) ≥ Afor � = 1, . . . , �. Therefore, the sequence (
�) can have no 
convergent subsequence. In fact, any ball of radius 

�
� can contain 
� for 

at most one value of �.  
 
 Finally, show that if � is sequentially compact, then � is 
compact. Let � be an open cover of �. Because � is sequentially 

compact, then the open cover � has a Lebesgue number @. Let A =  ��; 
using sequentially compact of � to find a finite cover of � by A − balls. 

Each of these balls has diameter at most 
��
� , so it lies in an element of �. 

Choosing one such element of � for each of these A − balls, you obtain 
a finite subcollection of � that covers �. ∎ 
 
2.4.3  Locally Compactness and One-point Compactification  
 
2.4.4 Local Compactness  
 
Definition 2.2.9.1.1: A topological space � is locally compact if each 
point of � has a neighbourhood with compact closure.  
 
Example 2.2.9.1.2:ℝ the real line endowed with the standard topology 
is locally compact because for all 
 ∈ ℝ, (
 − 1, 
 + 1) is a 
neighbourhood of 
 whose closure is the closed and bounded interval 
[
 − 1, 
 + 1] of ℝ, which is compact by theorem 2.1.  
 
Example 2.2.9.1.3: The sets ℤ, and ℕ are locally compact sets in ℝ but 
are not compact.  
 
Example 2.2.9.1.4: In ℝ, ℚ the set of rational numbers is not locally 
compact.  
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Theorem 2.2.9.1.5: Every compact space is locally compact.  
 
Proof: Let � ∈ � and / be a neighbourhood of �. Suppose � is 
compact, then / is a closed subset of a compact space, and hence is 
compact. ∎ 
 
2.4.5 One-Point Compactification 
 
Let ��, Ω� be a Hausdorff topological space. Let �∗ be the set obtained 
by adding a point �∗ to � (of course, �∗ does not belong to �). Let Ω∗ be 
the collection of subsets of �∗ consisting of  
 
i. sets open in � and  
ii.  sets of the form �∗\?, where ? ⊂ � is a compact set. i.e.,  Ω∗ �  Ω ∪ ��∗\?: ?\�is a compact set�. 
 
Then  
1. Ω∗ is a topological structure on �∗.  
2. ��∗, Ω∗� is compact. 
3. The inclusion (�, Ω� ⟶ ��∗, Ω∗� is a topological embedding.  
4. If � is locally compact, then the space ��∗, Ω∗� is Hausdorff.  
 
Definition 2.2.10.1: A topological embedding of a space � into a 
compact space - is a compactification of � if the image of � is dense in -. In this situation, - is also called a compactification of �.  
 
If � is a locally compact Hausdorff space, and - is a compactification of � with one-point -\�, then there exists a homeomorphism - ⟶ �∗ 
which is the identity on �.  
 
Definition 2.2.10.2: Any space - that satisfy the above condition is 
called a one-point compactification or Alexandrov compactification of �.  
 

  2.5 Self-Assessment Exercise(s) 
 
1. Which of the following spaces is not compact?  
(a) Every discrete space.  
(b) Every indiscrete space.  
(c) Any finite space.  
(d) A finite discrete space. 
2. Which of the following statements is false?  
(a) Any closed subset of a compact space is compact.  
(b) Any compact subset of a Hausdorff space is compact.  
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(c) Any finite set is compact.  
(d) Any closed and bounded set of a metric space is compact. 
 
3. Which of the following sets is compact in ℝ?  
(a) [0, 1] ∩ ℚ 
(b) [0, 1] ∩ ℚ� 
(c) [0, 1) 
(d) [0, 1] 
 
4. Let �: [�, �] ⟶ ℝ be a continuous function. Then �([�, �]) is  
(a) closed but not bounded.  
(b) bounded but not closed.  
(c) neither closed nor bounded.  
(d) closed and bounded.  
 
5. Which of the following sets is not compact?  
(a) B� = {(
, �) ∈ ℝ� ∶ 
� + �� = 1} 
(b) B� = {(
�, 
�, . . . , 
�, 
���) ∈ ℝ��� ∶ 
�� + 
�� + ··· + 
�� + 
���� =
         1} 
(c) ℝ�� =  {(
� , 
�, . . . , 
�) ∈ ℝ�: 
� ≥ 0, . . . , 
� ≥ 0} 
(d) � =  {
 =  (
�, 
�, . . . , 
�) ∶  
� = 0, � = 1, 2, . . . , �} 
 
6. Let � =  [0, 1) ∪ [2, 3] be a subspace of the standard topology on ℝ. 
The subset � = [0, 1) of � is  
(a) closed, bounded and compact in �.  
(b) closed, bounded and not compact in �.  
(c) closed and compact in �.  
(d) bounded and compact in �.  
 
7. In an arbitray metric space (�, �) 
(a) every closed and bounded set is compact.  
(b) every compact set is closed and bounded.  
(c) every bounded set is compact.  
(d) every closed set is compact.  
 
8. Let �� be the closed and bounded interval [0, 1] in ℝ. Let �� be the 

set obtained from �� by deleting its middle third 
�
� , ��. Let �� be the set 

obtained from �� by deleting its middle thirds 
�
 , � , and 

!
 , " . In general, 

define �� by the equation  
 �� = ����\ 0+1 + 3�

3� , 2 + 3�
3� ,�

	��
 

The intersection 
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G � H��
�∈�

 

is called the Cantor set. It is a subset of (0, 1�. Which of the following is 
not true about G? 
(a) G is compact.  
(b) G has no isolated points.  
(c) G is countable.  
(d) G is uncountable.  
 
 
9. Which of the following sets is not locally compact?  
(a) ℝ 
(b) ℚ 
(c) ℝ� 
(d) a discrete space. 
 

  2.6 Conclusion 
 
In this unit you have studied compactness; covers, compact sets and 
subsets of compact spaces and proved some important results as regards 
to compactness, some of them you have always used in its special case 
in your studies in Analysis and calculus. You were also introduced to 
the notions of limit point, sequentially and locally compactness and one-
point compactification.  
 

   2.7  Summary 
 
Having gone through this unit, you now know that;  
 
(i) A collection � �  �/�, * ∈ :� of open subsets of a topological 
space X is an open covering of � if  � � 8U�

�∈�

 

(ii)  A topological space � is compact if every open covering of � can 
 be reducible to a finite subcovering.  
(iii)  Every finite set is compact.  
(iv) The real line R is not compact.  
(v) Any closed and bounded interval of ℝ is compact.  
(vi) Any closed subset of a compact space is compact.  
(vii)  Any compact subset of a Hausdorff space is closed.  
(viii)  A finite product of compact spaces is compact.  
(ix) Any compact set of a metric space is closed and bounded.  
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(x) In the metric space ℝ� compactness and closed and bounded are 
equivalent. This is the Heine Borel theorem. 

(xi) A collection ? of subsets of a topological space � satisfies the 
Finite Intersectiion Property (FIP) if any intersection of a finite 
subcollection of ? is nonempty.  

(xii)  A topological space � is compact if and only if any collection � 
of closed sets of � satisfying the FIP, one has that the arbitrary 
intersection is nonempty.  

(xiii)  The continuous image of a compact set is compact.  
(xiv) If G is a compact subset of a topological space � and 6 is a 

continuous function from � to an ordered space - then 6 attains 
its maximum and minimum on G. This result is called the 
Extreme Value Theorem.  

(xv) J is a Lebesgue number on K if for all subsets � of � such that 
the diameter of � is less than J, there exists / ∈ K such that � ⊆ /. 

(xvi) A continuous function 6 from a compact metric space � to 
another metric space - is uniformly continuous.  

(xvii)  A space � is called limit point compact if every infinite subset of � has a limit point.  
(xviii)  A topological space is sequentially compact if every sequence of 

points of � has a convergent subsequence.  
(xix) A topological space � is locally compact if each point of � has a 

neighbourhood with compact closure.  
(xx) A topological embedding of a space � into a space - is a 

compactification of � if the image of � is dense in -. In such 
situation, - is also called a compactification of �. 

(xxi) A space - is called one-point compactification of � if � is a 
locally compact Hausdorff space, and - is a compactification of � with one-point -\�, such that there exists a homeomorphism - ⟶ �∗ which is identity on �. 
 

2.8  References/Further Reading 
 
Sidney A. Morris (2007), Topology Without Tears, 

https://www.topologywithouttears.net/topbook.pdf 
 
Munkres, J. R. (1999), Topology, second edition, Pearson.  
 
Freiwald, R. C. (2014), An Introduction to Set Theory and Topology, 

Washington University, St. Louis Saint Louis, Missouri. 
 
Bourbaki, N. (1996), General topology, Part I, Addison Wesley, 

Reading, Mass. 



MTH 402                GENERAL TOPOLOGY II   
 
 

72 

Englking, R. (1989), Outline of general topology, Amsterdam.  
 
Willard, S. (1970), General topology, Addison Wesley Publishing 

Company, Inc, USA.  
 
Michael, S. (1972), Elementary Topology, Second edition, Gemidnami. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



MTH 402           MODULE 2 

 

73 

UNIT 3  CONNECTEDNESS 
 
Unit structure 
 
3.1  Introduction 
3.2 Intended Learning Outcomes (ILOs)  
3.3  Separated and Connected Sets 
 3.3.1  Definitions and Examples 
 3.4.2  Connected Sets 
 3.3.3  Connected Subspaces of  the Real Line 
           3.2.4 Path Connectedness 
 3.2.5  Components and Local Connectedness  
  3.2.6.1 Connected Components 
  3.2.6.2 Locally Connectedness 
3.4    Self-Assessment Exercise(s)  
3.5     Conclusion  
3.6     Summary   
3.7     References/Further Reading 
 

3.1 Introduction 
 
In your study of calculus, you must have come across this all important 
results called the intermediate value theorem which states that if 6: : ⟶ ℝ is continuous, and L is a real number between 6�
� and 6��� 
then there exists � ∈ : such that 6��� � L, where : denotes an interval of ℝ. Although this theorem refers to continuous functions, 
notwithstanding it also depends on the topological property of the 
interval :. In fact we can restate the intermediate value theorem as 
follows; The continuous image of an interval : of ℝ is also an interval. 
This topological notion property of the interval : on which the 
intermediate value theorem depends is called connectedness. 
 
In this unit, you will be introduced to a generalization of the 
intermediate theorem, and some other related theorems which you have 
proved in particular cases of the real line.  

 3.2  Intended Learning Outcomes (ILOs) 
 
At the end of this unit, you should be able to; 
 
 Differentiate between connected sets and separated spaces.  
 Define connected spaces.  
 Understand the connectedness to the real line.  
 Identify the connected components of a given space.  
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 Identify locally connected spaces.  
 Know and use of the concept of path connectedness.  

 

   3.3 Separated and Connected Sets  
 
3.3.1 Definitions and Examples  
 
Definition 3.2.2.1: Let � be a topological space. � Separation of � is a 
pair /, 4 of disjoint open sets of �, whose uninon is �.  
 
Definition 3.2.2.2: A topological space � is connected if it has no 
separation.  
 
Example 3.2.2.3: In ℝ, Let � � (=1, 0� ∪ �0, 1�. (=1, 0�and �0, 1� are 
open in �. They are nonempty and disjoint. And so is a separation of �. 
Therefore,� is not connected.  
 
Example 3.2.2.4: Let � � �
, ��. If � is endowed with the indiscrete 
topology, then� has no separation and thus is connected.  
 Another way of formulating the definition of connectedness is the 
following:  
 
Theorem 3.2.2.5: A space � is connected if and only if the only subsets 
of � that are both open and closed in � are the empty set and � itself.  
 
Proof: If � is a nonempty proper subset of � that is both open and 
closed in �, then the sets / � � and 4 � �\� constitute a separation of �, for they are open, disjoint and nonempty, and their union is �. 
 Conversely, if / and 4 form a separation of �, then / is 
nonempty and different from � and it is both open and closed in �.∎ 
 
Example 3.2.2.6: If � is any discrete space with more than one element, 
then � is not connected as each singleton set is both open and closed.  
 
Example 3.2.2.7: If � is any indiscrete space, then it is connected as the 
only sets that are both closed and open are � and ∅.  
 
3.3.2 Connected Sets 
 
If you refer to a set - as connected, you mean that - lies in some 
topological space (which should be clear from the context) and, 
equipped with the subspace topology, thereby making - a connected 
space. So - is connected in a topological space � if - is connected in 
the subspace topology induced by the topology on �.  



MTH 402           MODULE 2 

 

75 

Theorem 3.2.3.1: Let  be a subspace of a topological space �. A 
separation of  is a pair �, � of nonempty disjoints sets whose union is  and neither of which contains a limit point of the other (i.e., � ∩ �� =
∅ and � ∩ �� = ∅).  
 
Proof: Suppose first that � and � form a separation of . Then � is both 
open and closed in . The closure of � in  is the set � ∩ , which 
implies that � ∩  = ∅. Since � is the union of � and its limit points, � 
contains no limit points of �. A similar argument shows that � contains 
no limit points of �.  
 
Conversely, Suppose that � and � are disjoint nonempty sets whose 
union is , neither of which contains a limit point of the other. Then � ∩ � = ∅and � ∩ � = ∅. Therefore, we conclude that � = � ∩  and � = � ∩ . Thus � and � are closed in , and since � = \�, and � = \�, they are open in , as desired. ∎ 
 
Example 3.2.3.2: Let � = [0, 1] ∪ (1, 2] = � ∪ �. Then�, � is not a 
separation of� since 1 ∈ �� ∩ � = ∅.  
 
Example 3.2.3.3:ℚ the set of all rational numbers is not a connected set. 
Indeed, the only connected subspace of ℚ are the one point sets. If  is a 
subspace of ℚ containing two points � and C, one can choose an 
irrational number � lying between � and C. 
 
Having seen some examples of sets that are not connected, what follows 
are result that will help you determine how to construct connected sets 
from existing ones.  
 
Lemma 3.2.3.4: If the sets � and � forms a separation of �, and  is a 
connected subspace of �, then either  lies entirely in either � or �.  
 
Proof: Since � and � are both open in �, the set � ∩  and � ∩  are 
open in , and  = (� ∩ ) ∪ (� ∩ ). If both of them are nonempty, 
then they constitute a separation, of . But since  is connected, either � ∩  = ∅or � ∩  = ∅. So that  either lies in � or � as required. ∎ 
 
Theorem 3.2.3.5: The Union of a collection of connected subspaces of � that have one point in common is connected. 
 
Proof: Let {!�}�∈� be a collection of connected spaces on �; let � be a 
point of ⋂ !��∈� . You have to prove that the space  = ⋃ !��∈�  is 
connected. Suppose that  = � ∪ � is a separation of . The point � is 
in one of the sets � or �; suppose � ∈ �. Since !� is connected, it must 
lie entirely in either � or �, and it cannot lie in � because it contains the 
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point � of �. Hence, !� ⊂ � for every �, so ⋃ !��∈� ⊂ �, contradiction 
the fact that � is nonempty. ∎ 
 
Theorem 3.2.3.6: Let � be a connected subspace of �. If � ⊂ � ⊂ � 
then � is connected and in particular �. 
 
Proof: Let � be a connected subspace of � and let � ⊂ � ⊂ �. Suppose � = ! ∪ " is a separation of �, then by lemma 3.1, the set � lies 
entirely in ! or in ". Suppose � ⊂ !, then � ⊂ !; since ! ⊂ " = ∅, � 
cannot intersect ", this contradicts the fact that " is a nonempty subset 
of �. ∎ 
 
Theorem 3.2.3.7: The image of a connected space under a continuous 
function is connected.  
 
Proof: Let �: � ⟶  be a continuous map, let � be connected. You 
have to show that the space E =  �(�) is connected. Since the map 
obtained from � by restricting its range to the space E is also 
continuous, it suffices to consider the case of a continuous surjective 
map  F: � ⟶ E 
Suppose E = � ∪ � is a separation of E into the disjoint nonempty open 
sets. Then F��(�) and F��(�) form a separation of �, contradicting the 
assumption that � is connected. ∎ 
 
Theorem 3.2.3.8: A finite Cartesian product of connected spaces is 
connected.  
 
Proof: You can prove this theorem for the product of two connected 
spaces � and . Choose a point (�, �) in � × . Note that the horizontal 
slice � × {�}is connected, being homeomorphic with �, and each 
vertical slice {
} ×  is connected being homeomorphic with . As a 
result each G − 6ℎ���� space  
 G = (� × {�}) ∪ ({
} × ) 
 
is connected, being the union of two connected spaces that the point 
{
, �}is common. Now form the union ⋃ G∈�  of all this G − 6ℎ���� 
spaces. The union is connected because it is the union of collection of 
connected spaces that have the point (�, �) in common. Since this union 
equals � × , the space � ×  is connected.∎ 
 
The proof for any finite product of connected spaces follows by 
induction.  
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3.3.3 Connected Subspaces of the Real Line 
 
Here you shall show that the real line is connected. So also is the 
intervals of ℝ or the rays, i.e., sets of the form (�, ∞). You are also 
going to prove a generalization of the intermediate value theorem of 
calculus.  
 
Definition 3.2.4.1: A simply ordered set H having more than one 
element is called linear continuum if the following hold: 
 
1. H has the least upper bound property.  
2. if 
 <  �, there exists 7 such that 
 < 7 < �.  
 
Theorem 3.2.4.2: If H is a linear continuum in the order topology, then H is connected, and so are the intervals and rays in H.  
 
Proof: Recall that a subspace  of H is said to be convex if for each 
points �, � of  with � < �, one has the interval [�, �] lies in . You 
have to prove that if  is a convex subspace of H, then  is connected. 
 
Suppose that  = � ∪ � is a separation of . Choose � ∈ � and � ∈ �, 
suppose that � <  �. The interval [�, �] of points of H is the union of the 
disjoint sets  �� = � ∩ [�, �] and�� =  � ∩ [�, �] 
 
each is open in [�, �] in the subspace topology, which is the same as the 
order topology. The sets �� and �� are nonempty because � ∈ �� and � ∈ ��. Thus �� and �� constitute a separation of [�, �]. Let = sup �� . 
You have to show that � belongs to �� or to ��, which would contradict 
the fact that [�, �] is the union of �� and ��.  
 
Case 1: Suppose that � ∈ ��. Then � = �, so either � =  � or � < � <�. In either case, it follows from the fact that �� is open in [�, �] that 
there exist some interval of the form (�, �] contained in ��. If � = �, 
you have a contradiction at once, for � is a smaller upper bound in �� 
than �. If � < �, observe that (� , �] does not intersect �� (because � is 
an upper bound on ��). Then  
 

(�, �] = (�, �] ∪ (�, �] 
 
does not intersect ��. Again, � is a smaller upper bound on �� than �, 
contrary to construction.  
 
Case 2: Suppose that � ∈ �� then � = �, so either � = � or � < � < �. 
Because �� is open in [�, �], there must be some interval of the form 
[�, �) contained in ��. Because of the order property(2) of the linear 
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continuum H, you can choose a point 7 ∈ H such that � < 7 < �. Then 7 ∈ ��, contrary to the fact that � is an upper bound for �� . ∎ 
 
Corollary 3.2.4.3: The real line ℝ is connected and so are intervals and 
rays in ℝ. As an application, the intermediate value theorem of calculus 
is suitably generalized.  
 
Theorem 3.2.4.4 (Intermediate Value Theorem): Let �: � ⟶  be a 
continuous map, where � is a connected space and  is an ordered set in 
the order topology. If � and � are two points of � and if � is a point of  
lying between �(�) and �(�), then there exists a point � in � such that �(�) = �.  
 
Proof: Assume by hypothesis of the theorem that the sets  
 � = �(�) ∩ (−∞ , �) and � =  �(�) ∩ (�, +∞) 
are disjoint, nonempty because one contains �(�) and the other contains �(�). Each is open in �(�). If there is no point � ∈ � such that �(�) =�, the � and � form a separation of �(�)which is connected. This is a 
contradiction.∎ 
 
3.3.4 Path Connectedness  
 
Definition 3.2.5.1: Given points 
 and � of the topological space �, a 
path in � from 
 to � is a continuous map �: [�, �] ⟶ � of some closed 
interval in the interval in the real line to the space �, such that �(�) = 
 
and �(�) = �.  
 
Definition 3.2.5.2 (Path Connectedness): A topological space � is said 
to be path connected if every pair of points of � can be joined by a path 
in �.  
 
Theorem 3.2.5.3: If � is a path connected space then � is connected.  
 
Proof: Suppose � = � ∪ � is a separation of �. Let 
 ∈ � and � ∈ �.  
 
Choose a path �: [�, �] ⟶ � joining 
 and �. The subspace �([�, �]) of � is connected as a continuous image of a connected space. Therefore, it 
lies entirely in either � or � which contradicts the fact that � and � are 
disjoint. ∎ 
 
Example 3.2.5.4: Define the unit ball ℬ�in ℝ� by  

ℬ = {
 ∈ ℝ�: � × � ≤ 1} 
where  � × � = (
�� + 
�� + ···  + 
��)�� 
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The unit ball ℬ� is path connected, given any two points 
, � in ℬ�, the 
straight line path �: [0, 1] ⟶ ℝ� defined by  �(I) = (1 − I)
 + I� 
lies in ℬ�. 
 
3.3.5  Components and Local Connectedness  
 
3.3.6 Connected Components 
 
Definition 3.2.6.1.1(Connected Components): Given a topological 
space �, define anequivalence relation ~ by 
~� if and only if there 
exists a connected subspace of � containing 
 and �.  
 
Claim:~is an equivalence relation.  
 
1. 
~
 because {
}is connected (so ~is reflexive). 
2. ~is symmetric by definition.  
3. ~is transitive, because 
~� and �~7 implies that there exists 
 connected subspaces !� and !� of � such that 
 , � ∈ !� and �, 7 ∈ !�. Let ! = !� ∪ !�, then ! is connected since � ∈ !� ∩ !� and 
, 7 ∈ !. Hence 
~�.  
 
A connected component or a component is all equivalence classes for 
this equivalence relation. 
 
Theorem 3.2.6.1.2: The connected components of � are connected 
disjoint subspaces of � whose union is �, such that each nonempty 
connected subspace of � intersects only one of them.  
 
Proof: Being equivalence classes, the components of � are disjoint and 
their union is �. Each connected subspace � of � intersects only one of 
them. For if � intersects the components !� and !� of �, say in the 
points 
� and 
� respectively, then 
�~
� by definition, this cannot 
happen unless !� = !�. To show that the component ! is connected, 
choose a point 
� of !. For each point 
 of !, we know that 
�~
, so 
there is a connected subspace � containing 
� and 
. By the result just 
proved, � ⊂ !. Therefore  ! = 0�

∈#
 

since the subspaces � are connected and have the point 
� in common, 
their union is connected.∎ 
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3.3.6.1  Locally Connectedness 
 
Definition 3.2.6.2.1: A topological space ��, �� is said to be locally 
connected if it has a basis ℬ consisting of connected open sets.  
 
Example 3.2.6.2.2:N the set of integers is a locally connected space 
which is not connected.  
 
Example 3.2.6.2.3:ℝ� is locally connected for all + O 1. 
 
Example 3.2.6.2.4: Let (X, τ) be the subspace of ℝ� consisting of the 
points in the line segments joining �0, 1� to �0, 0� and to all the points � �
�
, 0�, + �  1, 2, 3, . ... Then the space ��, �� is connected but not 

locally connected.  
 
Proposition 3.4.7: Every open subset of a locally connected space is 
locally connected.  
 
Proposition 3.4.8: A finite product of locally connected spaces is 
locally connected.  
 

  3.4 Self-Assessment Exercise(s) 
 
1  Let � be a discrete topological space. If � is connected, then  
(a) � is infinite  
(b) � is countable 
(c) � is finite with more than one element. 
(d) � is a singleton.  
2.  Let � � �
, �, �, �, ��. Suppose � is connected when endowed 
 with the topology �, which of the following could be �?  

      (a) � � Q���, the power set of �.  
      (b) � � ��, ∅, �
�, ��, ��, �
, �, ��� 
      (c) � � ��, ∅, �
�, ��, ��, �
, �, ��, ��, �, �, ��� 
      (d) � � ��, ∅, �
�, ��, ��, �
, �, ��, ��, ��, �
, �, ����, �, �, ��� 

3.  Let � � �
, ��. Which of the following topologies will make � 
 disconnected?  
       (a) � � ��, ∅, �
�, ���� 
      (b) � � ��, ∅, �
�� 
      (c) � � ��, ∅, ���� 
      (d) � � ��, ∅� 
4.  In which of the following spaces is the subset �0, 1� of real 
 numbers connected? 
     (a) ℝ with the standard topology  
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     (b) ℝ with the finite complement topology  
    (c) ℝ = [0, ∞) with the topology Ω = {∅, �, (�, +∞)} 
    (d) ℝ with the discrete topology  
5.  If ℝ is endowed with the finite complement topology, then the 
 following sets are connected except  

   (a)  the empty set  
   (b)  singleton sets  
   (c)  infinite sets  
   (d)    ℕ 

6. Every connected space is path connected. (TRUE/FALSE)  
 
7. Every connected space is locally connected. (TRUE/FALSE)  
 
8. Every locally connected space is connected. (TRUE/FALSE)  
 
9. Let � be a subset of a space �. Then the pair 	, & is a separation such 
that � = 	 ∪ � if and only if  
 
(a) 	� ⊂ & or&� ⊂ 	 
(b) &� ∩ 	 = ∅ and	� ∩ & = ∅ 
(c) 	 ∩ & = ∅ and 	 ∩ & = ∅ 
(d) & &� ∩ 	 = ∅ and	� ∩ & = ∅or&� ∩ 	 = ∅ and	� ∩ & = ∅ 
 
10. If !� and !� are connected components and � is a connected set, 
then  
 
(a)  either !� ∩ !� = ∅ or!� =  !�, and � intersects both !� and !� 
(b)  !� ∩ !� = ∅ and!� =  !�, and � intersects both !� and !� 
(c)  either !� ∩ !� = ∅ and!� =  !�, and � intersects either!� or!� 
(d)  !� ∩ !� = ∅ and!� =  !�, and � intersects either!� or!�.  
 
11.  A topological space is totally separated if all its components are 
 singletons. Which of the following spaces is not totally 
 separated?  
      (a)  Any discrete space 
 (b)  The space ℚ endowed the topology induced from standard 
  topology of ℝ 
 (c)  The cantor set = 
 (d)        ℝ with the standard topology. 
12.  If � is a connected space and �: � ⟶ ℝ is a continuous function.  
 
Then �(�) is an interval : of ℝ. Which of the following is not correct 
about this assertion?  
 
(a)    �(�) is connected 
(b)    The interval of ℝ is connected 
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(c)      ℝ is connected 
(d)  The interval : is a continuous image of the connected space �. 
 

    3.5      Conclusion 
 
In this unit, you were introduced to a topological property called 
connectedness. You studied connected and separated spaces with 
examples and the connectedness of the real line. You also studied the 
connected components of a given space, locally connected spaces and 
path connectedness. You also proved some important results such as the 
intermediate value theorem.  
 

      3.6       Summary 
 
Having gone through this unit, you now know that; 
 
(i) A separation of a topological space � is a pair /,4 of disjoint 

open sets of �, whose union is �.  
(ii)  A topological space � is connected if it has no separation. Or � is 

connected if and only if the only closed and open sets in � is ∅ 
and � itself.  

(iii)  A set is connected if it is connected in the subspace topology 
induced by the topology in the topological space.  

(iv) A union of a collection of connected subspaces of � that have 
one point in common is connected.  

(v) The continuous image of a connected space is connected.  
(vi) A finite Cartesian product of connected spaces is connected.  
(vii)  The real line is connected. So also is the intervals and rays.  
(viii)  A simply ordered set R having more than one element is called 

linear continuum if R has the least upper bound property and if �  S, then there exists T such that �  T  S. ( 
(ix) A linear continuum in the order topology is connected.  
(x) If 6: � ⟶ - is a continuous map from the connected space � to 

the ordered space - in the order topology, 
 and � are two points 
of � and if L is a point of - lying between 6�
� and 6���, then 
there exists a point � in � such that 6��� � L. This is the 
intermediate value theorem  

(xi) A path from a point � to S in the topological space � is a 
continuous map 6: (
, �� ⟶ � of some closed interval in the real 
line to the space �, such that 6�
� � � and 6��� � S. � is called 
path connected if every pair of points of � can be joined by a 
path in �. If � is a path connected space then � is connected. 
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(xii)  A connected component is an equivalence class for the 
equivalence relation;�~S if and only if there exists a connected 
subspace � containing � and S. The connected components of � 
are connected disjoint subspaces of � whose union is �, such that 
each nonempty connected subspace of � intersects only one of 
them.  

(xiii)  A topological space � is said to be locally connected if it has a 
 basis ℬ consisting of connected open sets.  
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MODULE 3  HOMOTOPY RELATIONS 
 
Module Introduction 
 
Two continuous functions from one topological space to another are 
called homotopic if one can be “continuously deformed” into the other, 
and such a deformation is called a homotopy between the two functions. 
Homotopy compares spaces by shape rather than topological structures. 
While homeomorphism preserves the lattice of open sets, homotopy 
equivalence preserves the shape of space, that is, characteristics of the 
space that is preserved up to deformation. Two topological spaces X and 
Y are homotopy equivalent if they can be transformed into one another 
or made homeomorphic by bending, shrinking and expanding 
operations.A connected open set � ⊂ ℂ is simply connected if every 
closed path in E is homotopic to a point (can be any point in E).In this 
module, concepts of homotopy are discussed. 
 
Unit 1  Homotopy of Paths 
Unit  2 Simple Connected Spaces 
 
Unit  1  Homotopy of paths  
 
Unit structure 
 
1.1 Introduction 
1.2 Intended Learning Outcomes (ILOs) 
1.3 Homotopy of Paths and Equivalence Relations 
 1.3.1 Fundamental Group and Changing Base Point 
1.1 Self-Assessment Exercise(s) 
1.5 Conclusion 
1.6   Summary 
1.7 References/Further Readings 
 

  1.1  Introduction 
 
Paths and loops are central subjects of study in the branch of algebraic 
topology called homotopy theory. A homotopy of paths makes precise 
the notion of continuously deforming a path while keeping its endpoints 
fixed. 
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  1.2 Intended Learning Outcomes (ILOs) 
 
At the end of this unit, readers should be able to: 
 
 Understand the concepts of homotopic paths. 
 distinguish between paths and loops. 
 

  1.3 Homotopy of paths and Equivalence Relations 
 
Definition 1.2.1.1 (Homotopic). Let X and Y be topological spaces. Let 
f, g : X ⟶ Y be continuous. We say f is homotopic to g, denoted by f ⋍ 
g, if there exists a continuous function F : � � [0, 1] ⟶ � such that F(x, 
0) = f(x) and F(x, 1) = g(x) for all 	 ∈ �. In other words, we can 
continuously move the image f(x) to the image g(x). i.e., �t(x) = F(x, t): 
� ⟶ � for 0  �  1 is a family of continuous functions, continuously 
deforming from f(x) to g(x). Now let’s consider the special case where f 
and g are paths in �. Recall if � : [0, 1] ⟶ � is continuous, �(0) = 	� 
and �(1) = 	�, then � is called a path in � from 	� to 	�.  
 
Definition 1.2.1.2 (Path homotopic). Two paths � and �′ in � from 	� to 
	� are path homotopic, denoted by� ⋍� �′ , if there exists a continuous 
function F : [0, 1]�[0, 1] ⟶ X such that F(s, 0) = �(s) and F(s, 1) = 
�’(s) (so homotopic) and F(0, t) = 	� and F(1, t) = 	� for all 0  � 
1(so at every t it is still a path from	� to 	�.  
 
Lemma 1.2.1.3. The homotopy relation ⋍ and the path homotopy 
relation ⋍� are equivalence relations on  
 
� =  {�: � ⟶ � continuous} 
and 
 A(	�, 	�� � ��: �0, 1� ⟶ � continuous, ��0� � 	�, ��1� � 	�� 
respectively.  
 
Remark 1.2.1.4. If � is a path, we denote its path homotopy equivalence 
class by [�].  
 
Proof: We will show ⋍ is an equivalence relation; path homotopy is 
very similar. Reflexivity is obvious: f ⋍ f by F(x, t) = f(x) for all x ∈ X 
and all t ∈ [0, 1]. For symmetry, suppose f ⋍g, say by a continuous F(x, 
t) such that F(x, 0) = f(x) and F(x, 1) = g(x). Take G(x, t) = F(x, 1 − t). 
Then G(x, 0) = F(x, 1) = g(x) and G(x, 1) = F(x, 0) = f(x). Hence g ⋍ f. 
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Finally, transitivity: Suppose f ⋍ g and g ⋍ h, say the first one by F(x, t) 
and the second by G(x, t). Take  
 

H(x, t) = � ���, 2��,     �� 0 ≤ � ≤ �
� ,	��, 2� − 1�, �� �

� ≤ � ≤ 1. 
 
 Then H(x, 0) = F(x, 0) = f(x) and H(x, 1) = G(x, 1) = h(x). Moreover, H 
is continuous (only t = 

�
� needs to be checked); it is made up of two 

continuous functions which agree on a closed set. ∎ 
 
Example 1.2.1.5. Let 
� and 
� be two paths from�� to �� in ℝ�. 
Then
� ⋍� 
�. For instance, by taking the convex combination of the 
two paths,  
 
F(s, t) = (1 − t)
�(s) + t
�(s). 
This argument works in slightly more generally. 
 
Remark 1.2.1.6. Let 
�, 
� be two paths from �� to �� in a convex 
space X. Then 
� ⋍� 
�.(Since in a convex space the line segment 
connecting the two at a fixed time is still in the space because of 
convexity.)  
 
1.3.1 Fundamental group and Changing Base Point 
 
Let 
� be a path in X from �� to �� and let 
� be a path in X from�� to ��. Define
� ∗ 
� to be the path from�� to �� given by  
�∗
�(s) =� 
��2s�, if 0 ≤ s ≤ �

� ,
��2s − 1�, if �� ≤ � ≤ 1. 
 
This induces an operation on the path homotopy classes: [
�] ∗ [
�]:= 
[
� ∗  
�].  
 
Proposition 1.2.2.1. 
 
(i) The operation ∗ is associative. In other words, let 
�be a path 

from �� to ��, 
� be a path from�� to ��, and
� a path from�� to ��. Then ([
�] ∗ [
�]) ∗ [
�] = [
�] ∗ ([
�] ∗ [
�]).  
(ii)  The operation ∗ has identities. Given � ∈ �, �: [0, 1] ⟶ �, �(�) = x be the constant path. Let 
 be a path from�� to ��. 

Then [��] ∗ �
� =  �
� = �
� ∗ [��].  
(iii)  The operation ∗ has inverses. Let 
 be a path from�� to ��. 

Let
̅��� ≔ 
(1 − �).  
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Then �
� * [ 
̅] =��and [
̅] ∗�
� = ����. 
 
Remark  1.2.2.2. This means ∗ is a groupoid operation, but not a group 
operation, since the left and right identities are not necessarily equal.  
On the other hand, this means:  
 
Remark  1.2.2.3. If we consider A(��, ��) = 
 : [0, 1] → �  continuous, 
(0) = 
(1) = �� then ∗ is a group operation on the path homotopy 
classes.  
 
Definition 1.2.2.4. (i) Let � be a space and let �� ∈ �. A path in � that 
begins and ends at �� is called a loop at ��. (ii) The set of pathhomotopy 
classes of loops based at�� with the operation∗ is called the fundamental 
group of X relative to the base point ��, denoted by��(�, ��). 
 
Example 1.2.2.5. For any �� ∈ ℝ�, ��(ℝ�, ��) = {e} = 0, the trivial 
group, since all paths inℝ� are path homotopic by Example 3.1.5. In 
general, if X is convex, then ��(X, ��) = 0 for all �� ∈ X. In particular, ��(ℝ� , ��) = 0.  
 
Remark 1.2.2.6  Let�� ∈ � be a fixed base point. We refer to the pair 
(�, ��) as a based space.  
 
Definition 1.2.2.7. A path in � from �� to �� is called a loop in � based 
at ��, or a loop in (�, ��). Let ����, ��� = �[�]|� �� � ���� �� (�, ��)� 
be the set of path homotopy classes of loops in � based at ��. ����, ���is the same set as����, �� ,���. Note that the composition� ∗ � 
of two loops in (�, ��) is again a loop in (�, ��).  
 
Lemma 1.2.2.8. The composition of path homotopy classes specializes 
to a pairing ��(�, ��) × ��(�,��) → ��(�,��)����, ���� → ��� ∗ ��� =
[� ∗ �] where f and g are loops in � based at ��.  
 
Theorem 1.2.2.9. The set��(�, ��)with the composition operation∗ is a 
group, with neutral element = [���] and group inverse[�]�� = [�]�  for 
each loop � in (�, ��).  
 
Proof. The composition operation defines a group structure if it is (1) 
associative, (2) has a left and right unit, and (3) each element has a left 
and right inverse. All three conditions follow by specializing the 
previous theorem to the case where all paths are loops in � based at ��. 
∎ 
 
Definition 1.2.2.10. ��(�, ��), with this group structure, is called the 
fundamental group of X based at ��.  
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Example  1.2.2.11. If � ⊂ ℝ� is convex, and  	 ∈ �, then ����, 	�� ���� is the trivial group.  
 
Theorem 1.2.2.12. If � is path connected and 	�, 	� ∈ � 
then����, 	��~ � ����, 	��. 
 
Remark 1.2.2.13(Changing base point) 
 
Let 	�, 	� ∈ �and let" be a path from	� to 	�. Then " induces a group 
homomorphism"#:��(X, 	�)⟶ ��(�, 	�) given by "#����� = ["$� ∗ ��� ∗
�"� = ["$ ∗ � ∗ "�. (Recall "$�&� � "�1 ' &�) is " in reverse.)  
 
Theorem 1.2.2.14."# is a group isomorphism.  
 
Proof. Let (�&� �  "$�&�. This is a path from	� to 	�. Then():��(�, 	�) 
→ ��(�, 	�) is a group homomorphism, and "# and () are each other’s 
inverse.∎ 
 

  1.4 Self-Assessment Exercise(s) 
 
1. Check that ∗ on the path homotopy classes is well-defined (i.e., 
 does not depend on the choice of representatives �� and ��). 
2. Prove Proposition 3.2.1. 
3. Verify that "$ is a group homomorphism. 
 

  1.5 Conclusion 
  
Homotopy groups are used in algebraic topology to classify topological 
spaces. The first and simplest homotopy group is the fundamental group, 
denoted ��(��. 
 

   1.6  Summary 
 
In this unit, you have learnt the principle of path homotopy, its 
equivalence relations and fundamental groups. 
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UNIT  2           COVERING SPACES 
 
Unit structure 
 
2.1 Introduction 
2.2 Intended Learning Outcomes (ILOs) 
2.3 Simply Connected Space 
 2.3.1 Covering Map and Covering Space 
2.3  Self-Assessment Exercise(s) 
2.5 Conclusion 
2.6 Summary 
2.7       References/Further Reading 
 

  2.1  Introduction 
 

  2.2  Intended Learning Outcomes (ILOs) 
 
At the end of this unit, readers should be able to: 
 
 understand when a topological space is simply connected 
 distinguish between a covering map and a covering space 
 

  2.3 Simply connected space  
 
Definition 2.2.1.1 A path connected space � is said to be simply 
connected if����, 	�� is the trivial group for some, hence any, base 
point	� ∈ �. A path connected space X is simply connected if and only 
if any two paths � and �� in � from	� to 	� are path homotopic. 
 
Corollary 2.2.1.2 If � is path connected, then for any 	�, 	� ∈ �, we 
have����, 	��~ � ����, 	�� 
 
Remark 2.2.1.3 This isomorphism depends on the path" from	� to 	�. 
Two different paths may induce different isomorphisms.  
 
Definition 2.2.1.4 (Simply connected). A space � is simply connected if 
� is path connected and����, 	�� � 0. Note that since the space is path 
connected, the fundamental group����, 	�� does not depend on the 
choice of 	� ∈ �in the first place. 
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Definition 2.2.1.5 (Induced homomorphism) Let ℎ:� → �be a 
continuous map such that ℎ(��) =  �. Write ℎ: (�, ��) → (�,  �). 
Thenℎ induces a homomorphismℎ ∗:����, ��� → ����,  �� given 
byℎ ∗ ��
�� = [ℎ ∘ 
].  
 
Theorem 2.2.1.6  Letℎ: (�, ��) → (�,  �)and !: (�,  �) → (", #�) be 
continuous.  
Then (! ∘ ℎ) ∗ = ! ∗ ∘ ℎ ∗.  
 
Corollary 2.2.1.7 If ℎ: (�, ��) → (�,  �) is a homeomorphism, then 
ℎ ∗:��(�,��) → ��(�,  �) is an isomorphism. Hence the fundamental 
group �� is a topological invariant.  
 
2.3.1   Covering Map and Covering Space  
 
Definition 2.2.2 1 (Covering space). (i) Let �:$ → � be a continuous 
surjective map. An open set% ⊂ � is evenly covered by � if ���(%) is a 
union of disjoint open subsets&	 ⊂ $ such that \&	 : &	 → % is a 
homeomorphism for all α. (ii) Let�: $ → �be a continuous surjective 
map. If each � ∈ � has a neighbourhood % that is evenly covered by �, 
then � is called a covering map, and $ is called a covering space of �.  
 
Example 2.2.2.2 Consider �: ℝ → '�defined by���� = �
��. This � is a 
covering map.  
 
Definition 2.2.2.3 (Fibre). Let�: $ → � be a covering map. Let� ∈ �. 
Then���(�) is called the fibre over �.  
 
Remark 2.2.2.4 The fibre���(�)has the discrete topology, and for 
each� ∈ �there is an open neighbourhood % such that���(%) is 
homeomorphic to���(�) × %.  
 
Definition 2.2.2.5 Let �:$ → �be a covering map. Let �:� → �be a 
continuous map. A continuous map�:� → $ is callled a lift of� if � ∘ � = �. In other words, a lift is a map making the diagram 
E �� 
Yf        X 
Commute. 
 
 
Definition 2.2.2.6  (Homotopy type). Let X and Y be topological 
spaces. (i) A map�: � → � is a homotopy equivalence if there exists a 
map�: � → � such that� ∘ � ≃ () and � ∘ � ≃ ()�. The map � is 
called a homotopy inverse of �. (ii) The spaces � and � are homotopy 
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equivalent (or have the same homotopy type) if there is a homotopy 
equivalence between � and  .  
 
Theorem 2.2.2.7 Let �: ��, 	�� → ��, ,�� be a homotopy equivalence. 
Then the induced map � ∗: ����, 	�� → ����, ,��is an isomorphism.  
 
Proof. Let- be a homotopy inverse of �, and 	� � -�,��, 
i.e.-: ��, ,�� → ��, 	��.  
 
So, 
��, 	��        f            ��, ,��            g          ��, 	�� 
 

- ∘ � ≃ 01� 
 
Then�- ∘ �� ∗�  - ∗ ∘ � ∗: ����, 	�� → ����, ,�� → ����, 	��,  
but�01�� ∗ � 01����, 	��. 
 
Since- ∗ ∘ � ∗ = 01� so � ∗ is one-to-one and- ∗ is onto. Similarly, 
consider� ∘ -, saying � ∗ is onto and - ∗ is one-to-one.  
 
Remark 2.2.2.8 If � and � are homeomorphic, then � and � have the 
same homotopy type. The converse is not true: for instance, a single 
point	� is homotopy equivalent to ℝ, but they are certainly not 
homeomorphic.  
 
Definition 2.2.2.9 (Contractible). A space � is contractible if � is 
homotopy equivalent to a single-point space � =  ,� .  
 
Corollary 2.2.2.6. A contractible space is simply connected.  
 

  2.4 Self-Assessment Exercise(s) 
 
1. Verify that ℎ ∗ is a group homomorphism 
2. Let � be a simply connected topological space. Let 	�, 	� ∈ �. 

Show that any two paths from	� to	� are homotopic. 
3. Prove Theorem 3.1.6. 
4. Let � be a path-connected space and let 	� , 	� ∈ �. Show 

that����, 	�� is abelian if and only if for any paths", ( from	� 
to	�, we have "# � () . 

5. Let � be a topological space and let	� ∈ �. Suppose that there is 
a continuous map3: � � �0, 1� → � such that 3�	, 0� � 	�, 	 ∈�,3�	, 1� � 	,  F(x, 1) = x,	 ∈ �,3�	�, �� � 	�, 0  �  1. (a) 
Show that X is path connected. (b) Show that X is simply 
connected.  
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6. A subset * of ℝ� is called star convex with respect to �� ∈ * if 
all the line segments joining �� to any other points of * lie in *. 
(a) Find a star convex set that is not convex. (b) Show that a star 
convex set is simply connected.  

7. Prove that if � is contractible and � is path connected, then any 
two maps from � to � are homotopic.  

 
 


