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1.0 INTRODUCTION
The aim of this course is two-fold

0] To give the students a good expositism of neefpace topology
(i)  To develop fundamental notions of topologisphces

In Topological spaces motion of open sets is furetgal. Although this
course is metric space topology, however, it isebdb start this course
on a more general note, so that we could partigsddhese notions in a
metric spaces.

We shall topological spaces in a general setting. 8Nall also give
examples of topological spaces.

We shall consider the real Value Concepts, norng state useful
theorems on those concepts.
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20 OBJECTIVES

At the end of this study you should be able to:

. define topological spaces
. give examples of topological
. solve some questions on topological spaces.

3.0 MAINCONTENT

3.1 Topological Spaces

3.1.1 Definition

A topological space (X) is a non-empty set X of points together with a
family T of subsets. (which we shall call open) possesiagollowing

properties:

0] XET, et
(i)  Aret, AgeTimply AsnAcee

(i) Given Aaert, then%AasT.

The familyt is called a topology for the bet X.

Remark: The properties in this definition as we shall seenit 2
are all satisfied by open sets in a metric spacaljXvhere d is a metric
of X. In fact we can associate a topological spd&egs) wheret is the
family of open sets in (X, d). A topological spagbich is associated in
this manner to some metric space is called metlecatd the metric d is
to be a metric for the topological space.

Examples

()  LetXbeanyset. Lat={X,4 thentis a topology on X.
T is called indiscrete topology.

(i)  Let X be any set Define = {P(X) = 2°} = collection of all subset
of X. Tis a topology on X called the discrete topologyd &X,
1) is the discrete topological space.
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(i) Let O - set of real numbers. A set G [T is open if the each
X eG 1 r >0 such that B(x,r) fy/ly-01<r} CG

Let T be set of all such open sets (ih. T is a topology onC
called the usual topology dn.

Exercise

Show that the examples i, ii, and iii are topoladjispaces by verifying
properties. (i), (ii) and (iii) in definition (3.1).

3.1.2 Real Number System

A system (O,+,%) is an ordered field if the following axioms are
satisfied.

l. Axiom of Addition.
Given, X, y and# 1]

0] X +y =y + x (commutative law)
(i) R+ (y+2z2)=(x+y+2z) (associative law atldition)
(i) 1 0e0 such that

Xx+0=x
(iv) Oxed O- x such that
x+(-x)=0

I. Axiom of Multiplication

()  xy=yx

(i)  x.(y.2)=(xy).z

@iy O1eO such that x.1 = 1.x =X

(iv) O x #00x"such that
xxt=1

(V) X.(y+z) =xy+Xx.z

1l Order Axiom

0] Ifx<y andy<sz=x<z

(i) If x<syandysx= x=y

@) Ifx,yed, them eitherx<y or y<x
= xe only one of the following holds
x>0, x =0, O0<0.

(iv) ifx <y then
X+z< y+z
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(v) x=0, y=0then
X y=0.

3.1.3 Absolute Value Concept

Let xeO then the absolute value of x is demotdyand defined as:
X X20
|X|:J-—>< x<0

This can be written as

x 1If x<0
0 if x=0
-x if x<0.

If X, ye 0O, the distance between them is demoted by
[x=y]

The following property is satisfied.

If X, ye O then

[x#y|<[x+y]

We call this property the triangular inequality

3.1.4 0" Dimensional Euclidean Space

Definition: The Euclidean spacé&" consist of n-topples of real
numbers i.e

|:|n = {(le Xoyeriiiiinnnnn Xn)}
Such that

xied, 1<i<n

0" is the cartesian product of.
Such that
O"=0X0X.ueevnnnn.n. X O (n times)

Therefore, x 0" can be represented as
X= (X1, Xy X3y vevvennenennennens Xn)-

We shall canx a point or a vector im".

Example: Let xeO" then
X= (X11 XZ)

For any x, ¥ O" where
X = (Xgy X0yeeeeneeneenenX2)y V(M Yerroeoennnn, Vi)
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We define addition as

Xty = (X +Y1, Xo+ Yo, Xg+Ya+ooiii, X + Vi)
We can also define sealar multiplication as follows

Let a eK whereK is sealar field.

Then forxe 0", ax =a (X, X;.coven... X,)

The following statements are obvious.
0] ((0",+,) is a vector space of dimension n.

(i)  We can enumerate the basis vector as

,=(1,00 ......... )
(/,=(010...ccccueuee.

en=(0O 0 0 ..... 1)
Therefore for 0", X =(X, Xy..vn... X, |
And X:Zn:xigi

i1
Definition: The length or norm of a vectoreX" is defined as the
number:||x||:(zn:x%f
For example Ile_f[ n=2

Then
= 0t oxpy®

Other ways of defining norm are
Ix], = max{|x1|3|x2| e |xn|}

With the above definition of norms, we define ths&t@ahce as follows:

Let x, yeO", then the distance between x and y is defined as

n %
x-si={ 30 -7
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This is the metric define by

dix, ) = (X% -v)?)"
Hence
d(x,y)=[x-y]

We can view|| as a function such that
[:0" - [0ve]..

We can also define the inner product Gix0" and denotey as (°°)
by (x, y>=i XY,

Now B

(x,x>=iZ:xi2 = x|

3.1.4 Some Theorems

Theorems 1. For a vectoexl"

0] |x|=0

(i) |¥=0iffx=0

(i) |ax|=|al|d|. aeD.

(iv)  [|x+y|<|x|+|y| (D - inequality)

Theorems 2: For a vectored1"

0] d(x,y) =0

@) dx,y)=>iffx=y.

@) d(x,y) =d(y, x) (symmetric property)

(iv) d(x,y)< d(x,z)+d(z,y)dx,y, zeO" (D - inequality)

Theorems 3: For xO".

(1) (x,x) 20

(i)  (x,x)=0 iffx=0

(i) (% y)=(y.%

(V) (Y +Y) =YD (XY,

V)  xayy=axy).

(vi) [ y[<[X||y] (Cauchy and wartz inequality)

10
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40 CONCLUSION

The materials developed so far as well as the ttiveerems stated are
sufficient background to allow us go into the detaf our course. We
shall be making use of them as we go on in thisssou

50 SUMMARY

In this unit we have been introduced to concept$afological spaces,
the real numbers system the absolute value coticepgt” dimensional
Euclidean space and some theorems1dn The real spacél and the

product spacel” are good examples of Metric spaces and these space
carry the usual topological structure.

6.0 TUTOR-MARKED ASSIGNMENT

7.0 REFERENCESFURTHER READINGS

11
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INTRODUCTION

The real number system has two types of properiesnely the
algebraic property which deals with addition, nplitation, etc.

The property which deals with the notion of dise@noetween two
numbers and with the concepts of a limited.

The second property is called topological propénty paces in which
the notion of distance is defined. You will recéflat in unit 1 we
defined concept of topology in general and distdooetion ond".

Theorem 2 in unit 1 is particularly very instruiin this regard.

2.0

OBJECTIVES

As the end of this unit, you will be able to:

12

define and give examples of metric space
distinguish between a metric and pseudometric
answer questions at the end of the unit.
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3.0 MAIN CONTENT
3.1 Metric Spaces

You will recall in unit 1 that given x, ¥["we can define the distance
between the two vectors as follows:

n %
||x—y||=(Z(xi—yi)2j RO £t

If  Letwe|x-y|=d(x,y) then
A0, Y) = (D06 = ¥1)?) oo 2)

From theorem (2) it is very important to note that

() dxy)=0
(i) d(x,y)=0i
(i) d(x,y)=d(y,x)

(iv) dx,y)=<d(x,2) +(z,y)

The above properties can be verified to be truedefation (2) on the
bans of the above. We have the following defingion

3.1.1 De€finition

A metric space(x,d) is a non-empty sit x of elements together with a
real-valued function d defined on X x X such thatdll x, y —z¢ X.

() dx,y)=0

@) d(x,y)=0 ifandonlyifx=y

@ii)  d(x, y) =d(y, x) (symmetric property)
(iv) d(x,y) < d(x,z) +d(z,y) D-inequality

The function d is called a metric.
3.1.2 Examples

(1) The first examples that is very obvious is thetric space of] -
set of real number with

D(x, y) =[x~y

13
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(2) Let O" be n-dimensional Euclidean space whose pointsnare

tuples.
X = (X1, X0eueereanaannns X,) of real numbe[s and
d(X, ¥) = [0-Y)? +eeeeennn, + (%-yn)]”

Remark: We need to emphasis that a metric space is eadhX of
its points. It is the pair (X, d), consists of thet of its point together
with metric d.

For example we can define another metri(xd y) = Ix*yil +........ +
|, —y,| which is another metric on".

If we have two metric spacex,dy and (y,d”). We can form a new
metric space called the Cartesian product X x Ysehset points is the
set X x Y ={(x,y):xe X,yeY} and whose metritis given by

T (X1,Y1), (X2, ¥2) = [d(Xy, X2)2 + d(y, )’2)2]1/2

SELF ASSESSMENT EXERCISE 1

Verify thatT ((x,,Y,), (X,,y,)) =[ d (x,,x,f +d (yl,yz]yz is a metric defined
on O*x0O°%.

3.1.3 Pseudometics

A pair (X, d) is called a pseudometric space if atisies all the
conditions of a metric except that d (x, y) = Ocheet imply x = y.

SELF ASSESSMENT EXERCISE 2
Show that d (X, y) = 0 is an equivalence relatiand if under this a

relation, then d (x, y) depends only on the eq@neé classes of x and y
and defines a metric on X

40 CONCLUSION

In this unit we have studied metric spaces andidensome examples
of metric spaces. The structure of metric spacekemnit easier to
construct space set on the space [Of, this we shall see in the
subsequent unit.

14
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5.0 SUMMARY

Recalled that a metric space is a set X together avdistant function d
defined as X such that (X, d) form a pair and &atisthe following
properties.

() dxy)=0

@) dx,y)=0iffx=y

(i) d(x, y) =d(y, x)

(iv) d(x,y) < d(x, z) +d(z, y) — D — inequality

A metric becomes a pseudometrics if in properlydi(x, y) = 0 need
not imply x =y.

The exercises in this units are designed to revemé properties of the
metric spaces.
6.0 TUTOR-MARKED ASSIGNMENT

7.0 REFERENCESFURTHER READINGS

15
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1.0 INTRODUCTION

The simplest types of set encountered on the irezd kre intervals. It is
sometimes important to distinguish between intervahich include
their endpoints and intervals which do not.

Supposea < b, the open intervab( b) is defined to be the set.

(a, b) = {x/ a < x < b}.

The closed intervald, b] is the setd, b] = {x/ a < b}. Half open
interval @, b) and €, b) are similarly defined, using the inequalities,

0] a<x<band
(i) o < x<b, respectively.

Infinite intervals are defined as follows:
(i)  (a, + o) = {XJa<x}

(iv) (a,+ «)={x|asx}

(V)  (o,0) = {X|x<a}

(Vi)  (-o,0) ={X|x <a}

The real line is sometimes refer to as open int€rea,a).
A single point is also considered‘degemerate” closed interval.

16
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In this unit we shall find thatt number of the properties of the set of
real numbers apply immediately to set in a metpacgs. Throughout
the present unit are sets mentioned are subsetgyofen metric space
(X, d).

20 OBJECTIVES

At the end of the unit, you should be able to:

. open set, closed interior and exterior point, aitlippints and
closure of a set

. characterised them by their properties

. answer questions on the above concepts.

3.0 MAIN CONTENT
3.1 Open Set and Closed Set

Definition (1): Let xeO be a fixed point, and >0, then
B (x, &) = {ysD”:d(x, y)<£} is called an open ball of- disk or ¢-
neighbourhood.

For example ind, for x €00,
X-&<y<x+¢ is defined as {y x-y|<¢}.

In open set we can wri (x, £) ={yel =|x-y|<¢}.
We now have the following definition

Definition (2): (Open set): A set AC' is said to be open if about
each point x A, 00 €0, such that B (x, 0) CA.

Examples

1. Consider the interval (0,1),
(0,1) is open inJ . To set this let
x&(0,1), choose
(x-£,x+¢£)C (0,1).
(0,1) C? but not open inl ?since there does not exist set (0,1)
such that B (xg) C (0,1) there (0,1) is not an open setlih

2. The interval [0,1] is not open in since B(0,%) and B (1,%)
are balls not entirely in [0, 1].

17
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Theorems (3,1): Letx1 ", then the set B(xg), is open.

Pr oof: Let ye B(X, £), we need to finds, such that B(y,s) C
B(X, &).

Since y& B(x,¢) then

d(x, y) <e.

= £-d(x,y)>0. Takeg, such that, =e-d(x,y),
Letz - B(y,g) =
d(z,y) <g

d(x, z) < d(x, y) + d(y, 2) <
dix, y) +¢&
<d(x,y)te-d(x,y) =¢.
Therefore

Z — B(xé&).

Remarks (1): In0", the empty set and" are open set. Prove!
Theorem (3.1):

0] In 0", the union of arbitrary collection of open sebpen.
(i)  The finite intersection of collection of opeaet is open.

Proof: Let{G}iel be arbitrary collection of open set.

LetG:_U Gi
&€l

Let x<G = x& Gig for some

(). since Gi is open for every
0 &>0,[B(x,)CGi

C UiGi=G
k

(i) LetG'= N G
i=1

If x G then x¢Gi Oiel.
OForeachid €i>00

B (x, £) C Gi

Define e= num {¢,)
<1'<K

Then B (x,6) CB (X, &)

Oce (1, 2,.0cvieininnnnn. K)

18
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And so
B (X, &) €Gi.

Remark 2: Arbitrary intersection of open set is not operove!
Definitions (3) Closed Set

A set is closed if its compliment is open.

For example

B°={0"-B},

{x} = 0" is closed in1" since it contains compliment which is open in
D 1

The set defined as
(1)  {(x,y)|¥*+y =1}is aclosed setin?. Itis illustrated as

AY

2
=7

Fig. (1)

(2) Theset[0, 1k 0" is aclosed set.

(3) The setw]" are both open and closed

Theorem (3.3): Let F=Q1 F be arbitrary intersection of closed set,
£

then

0] F is closed
k

(i) UF

1€l

SELF ASSESSMENT EXERCISE

(1) Prove Remark 1 and 2
(2) Prove Theorem (3.3).

19
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3.2 Interior, Frontier, Exterior Closure and Limit Point

Definition (3101): For any set AG" XA, is an interior point of A if]
an open set) such thatx UCA

Fig. 2

The implication of the above is that given a sedAd a point x, X is an
interior point of A if we can fince >0, such that

B(x, €) CA.

We shall denote interior point of A as Int A.

Examples

0] Let A = {x} then
Interior A =¢.

(i) LetA=x*+y <1be adiskin?

Then the Int A is defined as

IntA={(x,y):x'+y<1}.

Remark: We note that

Int A = {collection of all interior point of A}.

On the basis of the above remark, we have theviollp definition:

Definition (3.1.2): The interior of set A in" is defined as the union
of all open subset of A.

Remark:

0] From the above definition Ant A is open

(i)  Int Ais the largest open subset of A

(i) A set which does not contain an open setdragmpty interior.

Theorem: Aisop miff AntA=A
Prove: Trivial

20
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FRONTIER OR BOUNDARY POINT

Definition (3.1.3) Let (X, d) be a metric spacd, ¥be a subset of X,
a point of X is called a boundary point If every open set containing
this point also contains a point of S and a poiot in S (see fig 3

below).

Fig. 3

Definition (3.1.4): by a closure of a subset S ¢fwe mean the union
of S and all its boundary point.

The closure of S is denoted Isy

Definition (3.1.5): S is closed and is equal to the intersection of all
closed set containing S.

In particular
S=S.
SELF ASSESSMENT EXERCISE

Show that for the subsets
S, T of X then

() SUT =sUT
(i) SNT CSNT

Definition (3.1.6): A point x0" is an accumulative point or a limit

point of SCI1 " if every open set) containing x interest with A at point
other than x.

This implies
{U-{%) NAtp.

Examples: Let (0, 1¥0 let £)0, then (0 -£, 0 + ¢) ¢ 0 is a point
of accumulation, but Q1(0,1).

21
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Definition (3.1.7): A set SC" close iff S contains all its accumulation
points.

We may characterized the closure of S as follows.

Definition (3.1.7): Let SC", and Q are closed set, such that
N

SCQ Oi. Then —
i€l

Q =S (closure of S).

Theorem: AsetS Q" is closed iff S=S.

Theorem: Let S C", then S consist of the union of S and its
accumulation points.

Remark: We normally denote the frontier of Sdsy.
Theorem: 0S is a closed set.
40 CONCLUSION

In this section we have defined open set, closédlesure, limit point
and closure of a set.

We have also characterized them, with the propedfeeach. You are

required to master those properties very well. Wttough all the
grades exercises and prove all the theorems lefouerd.

50 SUMMARY
Recall that:

. Openballis B (xg) ={y €0" : d(x,y) <&}
. Set A C Xis open if B(xg) <A.

. Finite intersection of open set is open

. Arbitrary union of open set is open

. A set S, is closed if its compliment is open

. Arbitrary intersection of closed set is closed

. Finite union of closed set is closed

. Interior of A is the union of all open subsets of A

. A set SCI" is closed if S contain all its accumulation points

. A set S is closed iB=S.

6.0 TUTOR-MARKED ASSIGNMENT

22
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7.0 REFERENCESFURTHER READINGS
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1.0 INTRODUCTION

This unit relied heavily on the concept of closetssand properties of
closure studied in unit 3.

You are to master unit 3 properly before venturirg this unit.
2.0 OBJECTIVES

At the end of this study, you should be able to:

. define correctly what is meant by dense set
. explain what is separability of sets

. proof theorem relating to separability

. understand the Baire — category theorem

. solve — problems on this unit correctly.

3.0 MAINCONTENT

3.1 Separable Set

Before explaining the concept of separability wedeo define some
concepts.

Definition (3.1.1): Countable Set: A set A is said to be countable

if it is equivalent to the set of all positive igers or to some (finite or
infinite) subset of the positive integers.

24
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Example

0] The set of rational number denotedibys countable.
(i)  The set of real number is not countable

Definition (3.1.2): Dense Subset: Let X be a non-empty set,

suppose DCX, we say D is dense in XDif= X. i.e. the closure of D is
the closure of X.

Example:
The set of rational numbers are dense in .

Definition 3.1.3:  (Separability): a metric space (X, d) is said to
be separable, if it has a countable dense subset.

Example:

Let 0 berealleti CO suchthatl ={xe&0 : xis a rational number}
Now Q=0 , and since] is countable the is separable.

Theorem: [" is separable.

Proof: Take" ={xe0", X = (X....X)} with x;, is national.
We know that1 " is countable and denselirf
Thereforel] " is separable.

Theorem: In 0", every family of disjoint non-empty open set is
countable.

Proof: Let {x,} be countable dense subset. Let{Be a family
of non-empty disjoint open sets.8{Bi}, I 0 N, %¢Bi.

@{Bi} - Ni such thatp(Bi) = smallest n, to which,% Bi
Then ¢ mass {Bi} into a subset of N hence it is countable

3.2 BaireCategory

In this section, we shall go deeply, by examiniagan aspect of metric
spaces.

We first consider the following definition.

Definition (3.2.1): A setE is said to be nowhere deri:%e(D)_° is dense.

25
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The definition above is equivalent to saying thatontain no spheroid.

Example: Let [ be the set of real numbers and lletbe the set of
integers ther(U)° is dense inJ =0 is nowhere dense in .

Definition (3.2.2): First category: A set is said to be of first
category (or meager), if it is the union of countable cotien of
nowhere dense sets.

Definition (3.2.3): A set which is not of first category is said to dfe
second category.

Definition (3.2.4): (complete metric spafd et (X, d) be a metric
space (X, d), we shall say that (X, d) is a congtaetric space if all the
Cauchy sequence {xconverges to points in the metric space.

(Refer to unit 6).

Our intention is to show that a complete metriccgp#a of second
category.

We begin with the following theorem

Theorem: Let X be a complete metric space and,{@ countable
collection of dense open subset of X, théd) is not empty.

Proof: Let x be a point of pand $ a spheroid of radiusg which
is countered atxand contained in;0Since Q is dense, there must be a
point x in 0, nS. Since @ is open, there is a spheroid ®untered at

X1, and contained in,0and we may take the radiysof S, to be smaller
than ¥ rand smaller than - 9 (x4, ;). ThenS,CS,

Proceeding inductively, we obtain a sequenc¢®) of spheroid such
that§ C S.1and SnCg, and whose radir,) tend to zero.

Let (x,) be the sequence of centres of these sphere. Dnen =N .

we have Xg Sy and dense S Henced (xn, xm) < dr, and {x} is a
Cauchy sequence, sincg £ 0. By the completeness of X there is a
point such that x_, x since x €S,,, for n>N, we have X¥Sva C Sy C

On. Hence »x N0,

Corollary (Biare Category Theorem). A complete meetpace is not the
union of a countable collection of nowhere desse
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An application of Baire category.

Theorem, we established the following theorem, Wwhie known as
uniform boundedness principle.

We will state that theorem without prove!

Theorem:  Lett be family of real-valued continuous functions on a
complete metric space X and suppose that for eachXxthere is a
number M such that if cxV<M O fe 1, there is a non-empty open set
OCX and a constant M such tHa(x)| < M for all fet and all x¢ O.

40 CONCLUSION

Baire category had been used extensively in estaby some powerful
proves of some mathematical theorem in Degrel Theblthough this
Is advance mathematics, but nonetheless it is g useful tools in
analysiss.

50 SUMMARY
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3.0 INTRODUCTION
In our previous lessons on real analysis, we méeenpt to a point. In
this section we shall consider functions definechomhole set and open

sets.

40 OBJECTIVES

At the end of this study, the students should be b

. define correctly functions of several variables

. explain concept of continuity in a metric spaces
. explain concept pf moreomorphsim

. solve related exercise correctly.

3.0 MAINCONTENT

3.1 Functionsfromo™ too"
Definition (1): Let X and Y be arbitrary non-empsgt. A function

T from X into Y is a singled-valued relation suclth
DOMfCX and range fC Y.
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Definition (2): Two functions f and g are identida
0] Domf = Domg
(i) f(x)=9g(x) O xe Domf.

Definition (3): Function with the Range fC are called real-
valued functions, while those with Rang fC are called vector-valued
function.

IfX=0", y=0" there
fC o"x oM™ (i) (FEoON-0oM).

Definition (4): If in definition 3 above

m- T, then we have

f: 0N - 0%, fis called a function of several variables.
N =1 implies

f:0 - 0Mand f@) e0 ™

f is called a vector valued functiond t &0

f(t)e0 ™ can be expressed as)fe {f (1), f2(1),........ fa(D}

Definition (5): Letf:0" 0OV

Dom f 0", and Range 4™ with let % be an accumulative point of
Dom (f). then we say f(x} b 0" as x - X if £>0, T £>0,1
J(£)>0, such thaf| f (x) —b]|< eOxe Dom f such thajx - x| < d.

We write this as
lim f(x) = b
X > X

Remark (1): lim f(x) = b=
X— X,

f(x) £ B[b,&] - xeB[ X, J]

[x=x| <o

The implication of this is that given a neighbouwtld) of B in1™ 1 a
neighbourhood V of xwith Un Dom f +¢ such that ¥ Un Dom (f)
= f(x)eU.

Theorem (1): Let f be a function with domainf€, and Range fC" .
If f(n) - b as x- x, and f(x) - b, as x- Xo.
Then k = b,.

Theorem (2): Let f and g be real-valued functionithwomain (f) =
Range (g) =DC".
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Let X be a point of accumulation on D, if the
lim f(x) = ¢ and limit g(x) = n
n — X X» XO

0] fora,Bel, then
Lim (a f +89g)(x) = a/+pm.
n=>Xx

(i) limt (fg) (x) = /m
n-~R

(i) ifg(x) £ Ofor xeD and mt0
Lim (/5)0) = s =X~ %,
lim
f(x)
X=X
lim
9(x)
XO

—

Example

i) f0%2-0
fx,y)=xX+y +1
(X0, Yo) = (1, 3)

Solution

imf(x,y) =1+9+1=11
(Xo, yv) - (1’ 3)

(i) f. 0% -0 suchthat
2X
f(x,y) =

x> +y*+1
as (R,y) =(1,3)

. e 2X

lim f(x, y) = lim x2+—y2+1
(X0, Yo) - (1,3) (%, ¥,) - (L3)
= (%)

I X leyy2=
(iii) fcx,y—{x2+y2}x +y?=0

{0 (xy)=¢6
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Show that the limit fcx, y)

X, ¥3 (0,0)
Does not exist.

. NG
Solution: f(x,y) :m =Y
Asx=y
Let (%, y) - 0 along the x-axis,
= f(x,y) =(x, 0) =0.
This show that the limit does not exist since 0 = 2

Self assessment exercise 1

x?sin ¥,+y? siny,

Let f(x, y) = x+0, yx0
0 x=0y=0

Find lim f(x, y)

(x,y) - (0,0).

3.2 Continuity of Functions

Definition 3.2.1: Let A, B be metric spaces, withetric ¢, ds
respectively. Let f /A . B be a map.

(@) fis continuous atpxA if, given ¢-0, there existd >0 such that
da (X1 Xg) <0 implies @ )fcx), f(cx,) <e

(b)  fis continuous if it is continuous ag for every point 3¢ A

Remark(2): the definition that we have proposed dontinuity of
maps between the choice of the particular metric.

The closer study of continuity and its independeinam specific choice
of metric leads naturally to the idea of a topology

We will re-cast the definition of continuity giverbove.

Definition (3.2.2): Let S be a metric space withtnoed defined on S.
given any xS, let B,(x) denote set of all points in S, whose distance

from x is less thamr , i.e B, (x) {xeSd(xx) <a}
We call B, (x) opena =ball around x
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A map f: A~ B (metric spaces) is said to be continuousjat given
£>0, there exist) >0.

Such that

f( (BA(x,))C BECY,)

We can write as

Bj (%o) cf (B, (o))

Theorem: f: A~ B between metric spaces is continuous if and orfly if
(V) is an open set in A whenever V is open set.in B

Remark (3): The above theorem does not say thaisfopen in A then
f(U) is open in B.

For example f: R. R defined by f(x) = & let U = R, then f(U) = R
which is not open in R.

Proof of the theorem: Assume f is continuous. Ldtévan open set
in B. We need to show that {V) is open in A. choose any x iff(V)
then f(x) eV and so since V is open then we can find sosme0,

with B, (f(x)) CV. Now the continuity of f guarantee theisence of
some BJ(x)C F (V). This argument applies to each &{\f) and then
shows thatf(v) is open.

Conversely, assume the property about open setshod that f is
continuous. To see this, leeA. for anys >0 thene—ball Be(f(x)) is

and an open set in B and by hypothests(Bs(f (x)) is open in A. this
means that since of' (Be(f(x)) there is some d>0, with
BA(x) cf ™(Be(f (x)) or in other wordsf (BJ(x)) C Be(f(x)).

This applies for eacla >0 and so proves the continuity of f at x. Since x
was an arbitrary point of A, we have shown that¢aontinuous.

Remark (4): In view of the above theorem is a ctbat in the study of
continuity of maps between metric spaces, it isféamaily of open set in
each space which is important, rather than theahatetric.

More precisely, if two different metrics give rise the same family of
open sets then any map which is continuous usirgy rmetric will
automatically be continuous using the other.

The family of open sets of a metric space is calbpdlogy.
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1.0 INTRODUCTION

In a previous course in Real analysis students feeen made to be
familiar with the notion of convergence of sequenteeal numbers. It
is defined as follows. The sequenge......... Xeeroenn of real numbers

Is said to be converge to the real number x if gige- 0 there exists a
number g such that for all en,, |x,-x < €.

From this, it is obvious that we can extend thirigon from the set of

real number] with the Euclidean metric to any metric space.

20 OBJECTIVES

At the end of this study, you should be able to:

. defined the convergence of metric spaces

. be able to differentiate between convergence ofiesece of real
numbers and metric spaces

. solve some questions on the convergence of mgiaices.
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3.0 MAINCONTENT

3.1 Convergenceof Metric Spaces

Definition: Let (x, d) be a metric space and x.......... Xn..o. @
sequence of points in X. then the sequence istsaidnverge to x X if
given ane>0 there exists an integer no such that for aimg, d(x, x,)

< g£. This is denoted byx- n.

The sequence y,y......y, Of points in (X, d) is said to be convergent if
there exists a point y X suchthaty_, y.

Remark

Let Xg, Xo, vvvvvnnnnns X, be a sequence of point in a metric space (X, d).
Furthermore if x and y are points in (X, d) sucatth, — x and % - v,
thenn=y.

The implication of this is that the point of congence of sequence of
points in metric space in always unique.

Proposition (4.1) = Let (X, d) be a metric spacesubset A of X is
closed in (X, d) if and only if every convergentigence of points in A
converges to a point in A. (In order words, A issdgd in (X, d) if and
only if a, — x where XX and @ is a sequence of points in An

implies that x A) .

Proof: We assume that A is closed in (X, d) and Jet-an, where a

€ A for all positive integers n. Suppose that XX- A). Then, as X-A is
open set containing X, there exists an open Balx) such that x
£ B.(x)<(X —A). Nothing that eachn,as A implies that d(x, @>¢ for
each n. thence the sequengeag ......... F- N does not converge to x.
This is a contradiction hences@A as required.

Conversely, we assume that every convergent sequanpoints in A
converges to a point of A. Suppose that X-A is apén. Then there
exist a point ye x — A such that for eack >0 B, (y)n A+ ®. For each

positive integer n, Letxbe any point inB, (y) n A. Then we claim that

Xn — Y. To see this lek be any positive real number, angamy integer
greater that, . Then for each an,.

anB}/ﬂ(y) 0 B/vm v O Bg(y)
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So %, . y and by our assumptionsy(X-A). This is also a contradiction
and so (X — A) is open and thus A is closed ingba&ce (X, d).

Proposition 4.2

Let (X, d) and (Y, d,) be metric spaces and fa nrappf X into Y. Let
T andt, be the topologies determined by d andespectively. Then f(x,
1) - (Y, T,) is continuous if and only if X, x _, f(x,) - f(x): that is if
X1y X2yeueennn ) AR is a sequence of points in (X, d) convergiogxi
then the sequence of points HF(X2),.......ccvvv.... f(X)yeneenen in (Y, d)
Convergence to x.

Pr oof: Assume thatx, - x= f(x,) - f(x). To show that f is

continuous if suffices to prove that the inversagm of every closed set
in (Y, 1y is closed in (X,1). So let A be closed in (Yt,). Let X,
Xy e Xnyeenvene be a sequence of points in(A) convergent to a point
X eX.As x, - X, f(x, - f(x).

But since eachf (x,) € A and A is closed proposition 4. L then implies
that f(x)eA Thusxef™(A). Hence we have shown that every
convergent sequence of points from*(A) converges to a point of
f *(A). Thus A is closed and hence f is continuous.

Conversely, let f be continuous and- x. Let £ be any positive real
number. Then the open ba| (f(x)) as an open set in (Y;). Therefore
f (B, f(x)) in an open set in (X5) and it contains x. Therefore there

exists ad > 0 such that
xeB,(x)0 f (B, (f(x)).

As x. - X, there exists a positive integer, rsuch that for all
n=n,,x, €B;(x). Therefore

f(x,)ef (Bs(x)) OB, (f(x)), for all n=n,

Thus f(x,) - f(x,)

Corollary 4.1

Let (X, d) and (Y, d,) be metric spaces, f is magpof X into Y andt
and 1, the topologies determined by d and d, respectivEhen f: (x,
1) - (Y, 19) is continuous if and only for eackeX and £>0 there

exists ad >0 such that xX and d(x, ¥) <d - 0d,(f (x),f (x))<&

36



MTH 301 METRIC SPACBPOLOGY

SELF ASSESSMENT EXERCISE

4.0

5.0

6.0

1.

CONCLUSION

SUMMARY

TUTOR-MARKED ASSIGNMENT

Let CJO, 1] denote the set of continuous fuwtdi from [0, 1]
into 0. Define a metric on this set byd(f,g)=

D 1f (x)~g(x)|dx

Where g and f are are i0[1,(].
Define a sequence of functions, ff,..........5......... In

(0[0,11,d) by £ (=) 115 xe(01

Prove thatf - f, where f (x) =00x&[0,1]

Let (X, d) be a metric space ang x,............. y Xyeernens a
sequence such that - n if and x, - y. Prove thatx =y .

0] Let (X, d) be a metric space, and anthe induced
topologyon X and % Xo , ........... A a sequence of points in
X. Prove thatx, — n if only if for every open setJt x, there

exists a positive integepn x,eU for all n=n,.

(i) Let x be a set and d and d, be equivalentrimein X.
deduce from (i) that ik, - x in (X, d) thenx, - x in (X, d,).

Let (X, 1) be a topological space and Igfx,,....... X oo be a
sequence of points in X. we say that- x if for each open set
Utx there exists a positive integeg such thatx U for all
n=n,. Find an example of a topological space and aesen
such thatx, - x andx, - y be xzty.

Let A and B be non-empty set in a metric spated). Define

P(A, B) =in f{d(a,b):asAand beB} .
(a(A,B) is the distance between two sets A and B)
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I If S is non-empty subset of (X, d), prove that =
{x:x5Xanda({x},S}:0

. If S is any non-empty subset of (X, d), ther ttunction
f(X, d) -0 defined by f(x)=ax},S),xeX. is

continuous.

7.0 REFERENCESFURTHER READINGS
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1.0 INTRODUCTION

Neighbourhoods.

20 OBJECTIVES

3.0 MAINCONTENT

31

Definition (1): Let X a metric space and N a subset of X and P a

point in X. Then N is said to be a neighbourhoodhaf point P if there
exist open set) such thatt UON

Examples1

The closed interval inl is a neighbourhood of the point %2. Since %
&(Ya, %) 0[0,1].

Examples 2

The interval [0, 1] inT is a neighbourhood of the point ¥2 ass¥0, ¥2)
[0(0,1]. But (0, 1] is not a neighbourhood of point 1.

Examples 3

If X is a metric space angd is a subspace of X then from definition 1
above it follows thatU is a neighbourhood of every pointB for
example every open interval (a, b)lin is a neighbourhood of every
point that it contains.

Definition 1. Let X be a topological space. X is said to be embed if
the only open and closed subsets of X are X@nd
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Example 1
The topological space is connected.
Example 2

If X is a discrete space into more than one elem@m@n X is not
connected as each singleton set is open.

Remark:

From definition 1 above it follows that a topologlicspace X is not
connected if and only if there are non-empty opeta A and B such that
ANB=¢ and AUB=X.

Compactness

Definition

Let (X, d) be a metric space and let SCX. An opewec for S is a
collection U, if open subsets of X such that $:Uey} .

Definition:

A subset K of a metric space (X, d) is called coctpffor each open
cover U of K there exist U, ...............U, €0 such that K C U,
... Lu

Definition can be restated as “A set is compaetnidl only if each open
cover has a finite subcover”.

Examples:

1. Let (X, d) be a metric space and let S C X bende that is, S =
X1, Xoeerrnnnn. Xn}- let U be an open cover of X. Then for each
x;€U;. If follows that SC UO........ OU, hence, S is compact.

2. Let (X, d) be a compact metric space andptekcx be compact.
Fix ny k. Since {B (xg) : r > 0 } is an open cover of K, there are
[y oy eeneenens r,> Csuch thatKk CB, (x,)0....... OB, &)

With R : = max {,,r,,......... r, ,» we observed that K C8(Xg) so
that the diameter of K claim (kk2R<w. This means, for
example that any unbounded subisét(or more generally of any
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normal space) cannot be compact. Infact the ontynabspace
that is compact is {0}.

3. Let X = (0, 1) be equipped with the usual metFor re(0,1) let
u,:(r,1). then{u, :r£(0,1} is an open cover for (0, 1) which has
no finite subcover.

Proposition
Let X be a metric space and let Y be a subspa&etiodn

0] If X is compact and Y is closed in X, then Ydesmpact
(i)  IfY is compact, then it is closed in X.

Proof: For (i): Let U be an open cover for Y. Since Y lIssed in X,
then family ud{ X/Y} is an open cover for X. since X is
compact, it has a finite subcover i.e. there are,,.......... b, €U

such thatX =u, Ou,,......... u, OX/Y.

By intersecting this into Y it is observed that

For (ii): Let xeX /Y. For each ye Y there aree¢,,d,,>0
such thaB, (x) n B,, (y)=¢. Since{B,, (y):yeY} is an open cover

for Y, there are y y, € Y such that
Y 0By (y)U....UB, ¢,)

Letting &= min  {g,....&, we  obtain  that
Bg(x)ﬂYCB‘g(x)ﬂ(B(jyl(yl)D....DB(,y (y) =¢. And thusB,(x)OX/Y.

Since xe X /Y is arbitrary this implies that X/Y is open henceisf
closed in X.

Proposition: Let (k, @ be a compact metric space. Let (Y) be any
metric space and let f: K'Y be continuous. Then f(k) in compact.

Proof. Let U be an open cover for f(k). Th{alfl'l (V) :veU } is an

open cover for k. hence there arg.......... U, €u with
K=f'W): ueu with K=, 0.....Uf*,). and thus f(k) Q,
Luy O...0 U

This proves the claim.

Lemma: Let (k, d) be a compact metric space. Tivenyesequence in k
has a convergent subsequence.
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Proof: Let {x,}°  be a sequence in k. Assume tHa}’, has no
convergent subsequence. This means that for eack XIt cannot be
the limit of any subsequences{of}’_) there is ¢, >0 such thatB, (x)

contain infinitely many terms dfx,}°_; that is there is el such that
x, 0B, (x) for n=zn, Since{B, (x):xek} is an open cover for k there

For n> max{nni,....,nnl} this means that
anBgr%(xj)D....D B., (x,)=k. This is contradiction hence every

sequence in k has a convergent sequence.
Definition: Let (x, d) be a metric space. Then:
(@) Xis called totally bounded if for eaeh>0 there are p n,,...... ,

Xn & X with X = B.(x)0....0B, (x,)

(b). X is called sequentially compact if every seage is X has a
convergent subsequence.

Theorem: The following properties are equivalent for a neespace
(X, d)

0] X'is compact
(i)  Xis complete and totally bounded
(i) X is sequentially compact.

Proof: Left as exercise

Corollary: Let (X,d) be a totally bounded metric space. Thign
completion is compact.

Corollary: (Hence — Bored theorem)

Let K O0". Then K is compact if and only if it is boundedlariosed in
gEL F ASSESSMENT EXERCISE
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