NATIONAL OPEN UNIVERSITY OF NIGERA

SCHOOL OF SCIENCE AND TECHNOLOGY

COURSE CODE: PHY 111

COURSE TITLE: Elementary Mechanics




PHY 111 ELEMENTARY MECHANICS

Course Code PHY 111
Course Title Elementary Mechanics
Course Team: Mr. Bankole Abiola, NOUN

Dr. (Mrs.) C. Okonkwo, NOUN

Dr. (Mrs.) R. U. Osuji, NOUN

Dr. M. Oki, NOUN

Dr. H. M. Olaitan, Department of Physics,
Lagos State University, Lagos

Course Editing Team: Dr. M. Oki
Dr. (Mrs.) C. Okonkwo
Dr. H. M. Olaitan Depart of Physics, Lagos
State University, Lagos

NATIONAL OPEN UNIVERSITY OF NIGERIA



PHY 111

National Open University of Nigeria
Headquarters

14/16 Ahmadu Bello Way

Victoria Island

Lagos

Abuja Annex

245 Samuel Adesujo Ademulegun Street
Central Business District

Opposite Arewa Suites

Abuja

e-mail: centralinfo@nou.edu.ng
URL: www.nou.edu.ng

National Open University of Nigeria 2006
First Printed 2006

ISBN: 078-058-674-1

All Rights Reserved

Printed by .................

For
National Open University of Nigeria

ELEMENTARY MECHANICS



PHY 111

ELEMENTARY MECHANICS

Table of Content Page
Module 1

Unit 1: Space and TIMe..........uiiiiiiiiiiieceeemeie e 1-8

Unit 2: Units and DIMeNSIions...............vveeemeeeeeeeeenns 9-17
Unit 3: LY 1 (0] £ T 18-34
Unit 4: Vectors in Three Dimensions..........cccc........ 35-51
Unit 5: Linear MotioN.......ccooeeeivvviiiiiimcme e 52-67
Module 2

Unit 1: Motion in More Than One Dimension.......... 68-83
Unit 2: FOICE.. i 84-104
Unit 3: The Projectile Motion...............commmmeeeeeennne 105-114
Unit 4: Impulse and Linear Momentum................. 115-128
Unit 5: Linear Collision ...........cccoeviiiiiceeeei e, 129-147
Module 3

Unit 1: Gravitational Motion.................eveevvnnnnnn. 148-162
Unit 2: Orbital Motion Under Gravity..................... 163-178
Unit 3: Gravitation and Extended Bodies Objects....179-193
Unit 4: o 111 0] o 1 194-204
Unit 5: Work and Energy...........ccccceeevevommmmevvvneeeeen. 205-218
Module 4

Unit 1: Simple Harmonic Motion I .............cceeeeee.. 219-232
Unit 2: Simple Harmonic Motion Il.............ccccee..... 233-248
Unit 3: Simple Harmonic Motion Ill...................... 249-260
Unit 4: Rigid Body Dynamics l.............ccccvneeeenn.. 261-278
Unit 5: Rigid Body Dynamics Il.............ccvveeeernnn. 279-294



PHY 111 ELEMENTARY MECHANICS

Module 1

Unit 1: Space and Time

Unit 2: Units and Dimensions

Unit 3: Vectors

Unit 4: Vectors in Three Dimensions
Unit 5: Linear Motion

UNIT 1 SPACE AND TIME
CONTENTS

1.0 Introduction
2.0  Objectives
3.0 Main Body
3.1 Frame of Reference
3.1.1 Rest and Motion
3.1.2 All Motion is Relative
3.1.3 Specifying Frame of Reference
3.1.4 Inertial and Non-Inertial Frame of Reference
3.2  Concept of Space
3.2.1 Cartesian Coordinates
3.2.2 Polar Coordinates
3.3 Concept of Time
3.3.1 Setting the Standard of Time
4.0 Conclusion
5.0 Summary
6.0 Tutor Marked Assignments (TMAS)
7.0 References and further Reading

1.0 INTRODUCTION

Have you had the chance of reading through theseoguide yet? If
yes, it means you have an idea of what we shallibeussing in this
unit. This unit is very important because it setwe tstage for
understanding that branch of Physics that deals mibtion, which we

call mechanics. Everything in the universe is imstant motion

including the tree or the rock which you probabiink is not moving.

The topics we shall cover in this unit which inadgdrame of reference,
space and time will help you to understand thatradtion is relative.

This means that objects in the universe move wedt one another.
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2.0 OBJECTIVES
By the end of this unit, you will be able to:

explain the terms relative motion and absolutéion.

define a frame of reference

explain the concept of time

draw and specify the position of a point in a tdimensional
space with reference to a fixed origin, O

list the two polar coordinates of point, P atatise r from the
origin of a fixed frame of reference.

ProONPE

o

3.0 MAIN BODY

3.1 Frame of Reference

Under the frame of reference, we shall discussaegdtmotion, relative
motion, inertial and non-inertial frame of refererand related issues.

3.1.1 Rest and motion

To help us to understand the concept of frame fefreace we need to
note certain observations that have been made Bsiqisis about this
physical world we are living in. One of such obsdions is that a body
Is said to be at rest when it does not changeos#ipn with time. It is
said to be in motion when it changes its positioth wme. But to know
if the position of an object changes with time ot,we require a point
absolutely fixed in space to be known. Such adfige stationary point
IS not known to exist in the universe. This is hesaphysicists have
observed that everything in the universe is in tamsmotion including
this earth we are living in. The earth revolvesn the sun and at the
same time rotates round its polar axis. The swaifitegether with the
planets bound to it is in constant whirling moti@among the galaxy of
stars. The planets are also in motion with resfgeetaich other. We now
see that even if a wrist watch you place on thésarof the earth seems
to be at rest it is actually in motion becausedagh in which it rests is
in motion. We say that the wrist watch is in motielative to the earth.
This means that there is nothing like absolute pesition for any
object. It will interest you to know that thistisie, about you, whether
you are now sitting or standing. Everything in them where you are
only seems to be at rest. They are not actualhesitbecause they are
actually moving relative to the earth. We can tbenclude that absolute
rest has no meaning in reality. When we say thatwrist watch you
placed on the ground is at rest we mean that it o€ change position
with respect to the earth. Rest here means relagst. It is always
important for you to remember that a body is atreé rest with respect
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to another when it does not change its positioatirad to the latter. To
help you appreciate this concept of relative restte, think of
passengers seated in a luxury bus moving alongptte The passenger
is at relative rest with respect to other passengpethe same luxury bus
while he or she is actually moving with respecthe objects along the
road side.

3.1.2 All motion is relative

Now, let us go back to our discussion on relativaiom. Since change
in position is involved for motion to take placdéen to be able to
measure the distance travelled, we need a fixeat pa@ can refer to as
the reference point. From this fixed point, tharmde in position (i.e.
motion) can be known or measured. But as explagatier, no such
fixed point is realistic in nature because everyeobis in constant
motion in the universe. This means that every ngwaibject is changing
position with respect to some known object. Alldles in our earth
move with respect to the earth. Hence we sayathatotion is relative.

3.1.3 Specifying Frame of Reference

Since we now know that every object is at resnanotion relative to another
object, it means that the position or motion of tigect can be designated
with reference to a fixed point in a rigid frame nwo This so called fixed
point is called the ORIGIN, O. At this point, whigs the origin, we draw
three mutually perpendicular axes to represent XheY and Z axes
respectively. So the initial position of the oltjec the final position of the
object can be designed with reference to this fiftache work X, Y and Z
axes at the origin. This applies to all types bjeots be it a particle, or a
system of particles or a rigid body. We therefdedfine the FRAME of
REFERENCE as the rigid or fixed frame work, relatti@ which the position
and movements of a particle, or of a system ofigast or of a rigid body
may be measured. If coordinates of the object nerfieed despite the elapse
of time, we say that the object is at rest. Buat dhange occurs in one, or two,
or all three coordinates with time, then the objs&aid to be in motion.

Figure 3.1 The reference frame.
3.1.4 Inertial and Non-inertial Frame of Reference
Figure 3.1 as drawn will help you conceptualize twla are saying. In

this figure, let P be the position of a particletwreference to a
rectangular coordinate system. Here, O is theironf the system and
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X, Y, Z are its coordinates. A new system of refer with g as the
origin is drawn as shown where, for convenienéés Gaken along the X
axis of the first system. Let'®, 0'Y*! and GZ' be the corresponding
axes of the new system.*Yd and GZ* are evidently parallel to 0Y and
0Z. The point, P has coordinates in the new systelinated as %" and
z' where y = yand z = Zbut x coordinate only undergoes a change. So,
P is a fixed point in both systems. But if X, yglrmnge with time and P
is moving, then % y*, z* will also change with time and P will also
posses a similar motion with respect to the sesystem. That is, both
systems are within the same frame of referencegtihdloe origins of the
different coordinate systems may be different drair taxes may also be
inclined to one another. But if, there is any tiga motion between
these two systems, their frames of reference wldiiferent.The co-
ordinate system in which the motion of any object epends only on
the interactions of the constituent particles amongthemselves is
called an inertial frame of reference.

In such frames, Newton’s laws of motion holds godd.a non-inertial
frame, the motion of the objects is partly due nteiactions among
constituents particles and partly due to the moveroéthe frame with
respect to an inertial frame.

At this point, | would like to call your attentido the fact that in nature
inertial frames do not exist. This is becauseprionged observation
all motions, including the motions of the earthar@ts and even the
stars, are found to be non-inertial. But for nafsihe ordinary purposes
any system of coordinates situated on the eartbiface may be

regarded as an inertial system.

Also note that any co-ordinate system which moveth wonstant
velocity with respect to an inertial frame

is also inertial. Any one of them may be W P&y
considered to be at rest because the

motions are relative. This is known as a
moving frame of reference.

X o x > X

Self Assessment Exercise 1.1

Explain the statement that, in reality,
there is no absolute position of rest.

Y&

Self Assessment Exercise 1.2

What do you understand by the statement that teedspf a car is
100km per hour? This means that the car is chantgnmpsition relative
to the earth and covers a distance of 100km inhooe.
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3.2 Concept of Space
This concept deals with the Cartesian coordinatdspalar coordinates.
3.2.1 Cartesian Coordinates

There are various ways you can specify a poinpacs. In one of the
ways to specify a point in space, we need to krtewaordinates along
two or three mutually intersecting straight linee@ at some rigid point
called the origin. These intersecting straigh¢dirare called the axes of
reference. The distances from the point in spadbé axes are found
by drawing parallel lines from it to the axes. Wbe axes of reference
are mutually perpen-dicular to each other for exdampn a two
dimensional plane, they are called rectangular .axéghen they are
inclined to each other at an angle, other thanght rangle, they are
called oblique axes. The rectangular axes are monemonly used
because they are more convenient to draw. Thedowies referred to
either rectangular or oblique axes are called Geeco-ordinates. Let
us now give a diagrammatic example of a point iacepin a two
dimensional rectangular co-ordinate system. T&ishown in Figure
3.2.

The horizontal and vertical lines X¥Xand YY! in Y
Figure 3.2 represent the rectangular axes fixe |
origin, 0. The coordinates of any point in spame “] l
example P referred to the axes X#nd YY' are = i
respectively given by x and y. The former is @& .| !
the abscissa and the latter, the ordinate. !
distance r = OP of the point from the origin can !
evaluated in terms of the coordinates X and Yt
follows.

XV

Fig. 4

OP =r =,/x2 + y?2 3.1

This follows from our knowledge of the propertiek a right angled
triangle which you did at the senior secondary sthevel.

3.2.2 Polar Coordinates

We see that just as the position of any point ayivan plane can be
found when its coordinates with reference to tweegiaxes in the plane
are given, the position can also be traced if ib&adce r from the point
of the origin and the angle by which the line joining the point with the
origin is inclined to either of the given axes efarence are known. In
this case, r and are known as polar coordinates.
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Here rsin0=y 3.2
And rcos 0= x 3.3

So, we get the same relation
o= P(sif0+co$0) 3.4
+

or that
r = ,")(2 + y2 36

These two methods of specifying a point in a regiitar plane are used
in our daily life. Furthermore, to find the posiiof a point in space, its
coordinates referred to three mutually perpendical®es meeting at a
common fixed origin must be known. Thus to locatpomt in space

requires a three-dimensional rectangular co-ordisgstem having three
axes x, y, and z.

Self Assessment Exercise 1. 3

Draw a diagram showing the Cartesian co-ordinates moint P(2,4) in
a plane surface.

The Cartesian coordinates of a point P (2,4) ishesvn in the diagram
Fig 3.3 .It means that with reference to some fixedjin O , the
location of the point is 2 units along X-axis frdhe origin ,O and 4
units from O along the y-axis.

3.3 Concept of Time

3.3.1 Setting the standard of time

You remember that from our knowledge of Geograpteydarth rotates
round its polar axis. It completes one rotationwhat we call a
complete day. This complete day consists of the tdae and night
time segments of the earth’s rotation. This isalise during the day
time segment we see the sunlight but during thatriigne segment the
sunlight is obscured from us and we see just daskn&he sun appears
to us to move across the sky because of this divotetion of the earth
about its polar axis. The meridian at a placensmaaginary vertical
plane through it. The sun is said to be in theidn@n when it reaches
the highest position in the course of its appaj@mniney in the sky. The
interval of time between two successive transitiohghe centre of the
sun’s disc across the meridian at any place i®dall solar day. The



PHY 111 ELEMENTARY MECHANICS

length of this solar day varies from day to dayswse of many reasons
but the same cycle of variations repeats after lar sgear which is
365%days, approximately. The mean of the actual stays averaged
over a full year is called the mean solar day. léck, watch or
chronometer keeps the mean solar time. Theseegtdated against
standard clocks and chronometers controlled unglecifsc conditions.
So, this periodic appearances of the sun overleataged over a year
and called the mean solar day had helped us tareafgte concept of
time. The time interval between successful appess gives the
standard of time. This was the situation before6019 With
developments in science, the standard of time wanged to the
periodic time of the radiation corresponding to themsition between
the two energy levels of the fundamental statdefatom caesium-133.
The mean solar day is divided into 24 hours. Aarhs divided into 60
minutes and a minute is divided into 60 seconds.

Therefore,
The mean solar day = 24hrs x 60min x 60secs = 86y€an solar
Seconds 3.7

This means that a mean solar second is 88,4@@t of the mean solar
day. This gives the unit of time known as the selco

Using the standard of time as the periodic timeo@ased with a
transition between two energy levels of cesium-a@an,

1second = 9, 192,631,170 cesium periods. ... 3.8

What has helped us to understand the concept ef?tikmy thing that
happens periodically. For example, the periodigeapance of the sun
over a particular location on the earth.

4.0 CONCLUSION
In this unit you have learnt that every objectpace is in motion.

» that a body is at relative rest with respect totlag so there is
nothing like absolute rest.

» that the Cartesian co-ordinates and the polar comes are used to
locate a point in space with reference to a fixegiw.

» that the periodic appearance of the sun at a péatidocation on
earth or any other periodic happening has helpedndgrstand the
concept of time.
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5.0 SUMMARY

What you have learnt in this unit

» concerns frame of reference which helps us loaagepaint or object
in space.

* you have learnt that rest and motion are all n&dati

* you have learnt how time is determined.

6.0 TUTOR MARKED ASSIGNMENTS

1. Explain the terms ‘absolute motion’ and relatetion. Which
one of them is more important to man, and why?

2. Explain what is meant by frame of reference. Wiz the

significance of coordinates of a point in a thraeeahsional
Cartesian system.

7.0 REFERENCES AND FURTHER READINGS

Das Sarma J.M An Introduction to Higher Seconddrysits. Modern
Book Agency Private Ltd., India.



PHY 111 ELEMEARY MECHANICS

Fishbane, P. M, Gasiorowicz, S., and Thronton,.8.9B6), Physics for
Scientists and Engineers®Edition Vol. 1. Prentice Hall Upper
Saddle River New Jersey.

Sears, F. W., Zemansky, M. W. and Young, H. D. B)%Jollege
Physics # Edition Addison-Wesley Pub. Co. Inc., Reading, U.
K.

UNIT 2 UNITS AND DIMENSIONS
CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Body
3.1  Units of Measurement
3.1.1 Definition of the Standards of Length, Tiraed
Mass
3.2  Fundamental and Derived Units
3.2.1 What is a Fundamental Unit?
3.2.2 What is a Derive Unit?
3.2.3 Some Units of Length, Mass and Time in Commo
Use in Science
3.3 Dimensional Analysis
3.3.1 What is Dimension?
3.3.2 What is a Dimensional Equation?
4.0 Conclusion
5.0 Summary
6.0 Tutor Marked Assignments (TMAS)
7.0 References and Further Reading



PHY 111 ELEMEARY MECHANICS

1.0 INTRODUCTION

Today, we shall learn about units and measurem@uisminds will go

readily to traders in the market who sells graikes fice, garri or others
who sell clothing materials. These traders do fone of measurement
or the other, depending on what they are selliRgt example, the garri
seller measures the garri with a specific type simd of measuring cup.
The particular type and size of cup has been aedepy the grarri

traders union as the unit of measurement. Inwig they set their own
standard of measurements. Another example iswthah you measure
the height of a man, you are comparing him to aemstick. Science
takes note of what is around us and tries to emxplaiTherefore, we say
that science speculates, observes and analyseslb&whole basis of
science is rooted in measurement. This is whyuhisof our course is
very important.

There are always two aspects to measurement. Wbensgy that a
person’s height is 1.4m, you notice that in theregpion of the height
of the person, you have a number (that is, 1.4)aandit (that is, m for

metres). You immediately see that the measurerérd physical
guantity consists of a pure number and a unit.

2.0 OBJECTIVES

At the end of this unit, you will be able to:

» Explain what is meant by a unit of measurement

» State the different systems of measurement in paysi

e List the Fundamental Units

» Distinguish between a fundamental unit and a ddrivat

* Determine the units of a physical quaintly givee thmensions

3.0 MAIN BODY

3.1 Units of Measurement

Fundamental and derived units are discussed an@ sommon units
are discussed. And some common units of measuresmant
enumerated.

3.1.1 Definition of the Standards for Length, Timeand Mass

Important because it makes for uniformity in expemts in physics no

10
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matter where it is carried out in the world as & $n the introduction
to this section of the course.

A very long time ago, people used what was avalas standards for
measurement. Measurement of length using the™fhe into use in
this manner. Here, the foot is defined as:

The average length of the feet of 20 Gerrman men.

Now, just as the union of garri traders acceptegexific type and size
of measuring cup as their standard for the sakendgbrmity, in 1791
French scientists established the forerunner ofirtte¥national system
of measurements. They defined the meter, the semmhdhe kilogram.

« The metre was defined as one ten-millionth”j16f the distance

along Earth’ssurface between the equator and ththdole.
* The second was defined as 1/86,400 of a meandayar
» The kilogram was defined as the mass of a certazamiity of water.

In 1889, an International organization called then&dal conference on
weights and measures was formed. Their missiontwaeeriodically
meet and refine these units of measurement. Tdrerein 1960, this
organisation named the system of unit s based emibtre, kilogram
and second the International System abbreviatdeh8aning in French
-Systeme International). This system is also knag/the metric system
or mks system (after metre, kilogram and secon@jher systems of
measurement exist. This include the cgs systenarfing-centimeter-
gram-second). The F.P.S. system (British system)eafimg
foot(ft),pound (Ib) and second(s)]

The metre, the second and the kilogram are thes umg use in

measuring length, time and mass. Hence we ddimentit as

- The convenient quantity used as the standardeaftsorement of
a physical quantity.

To explain this further | can say that the numeérinaasure of a given
guantity is the number of times the unit for it gentained in the
guantity.

Toillustrate this,

Get a long stick and measure it with a metre rul&ssuming you
measured out five lengths of the metre. It meaas the length of the
stick you brought is 5 times the length of the metile which is 1metre.
Hence the value of the length of the stick is Sese{written 5m). Can
you try this?

11
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| would like to draw your attention to the fact thavery physical
guantity requires a separate unit for its measunémgor example, the
unit of area is the square metre’{m

3.2 Fundamental and Derived Units

Fundamental and derived units are discussed and sommon units of
measurements are en ted.

3.2.1 Whatis a funﬁ

These physical quantities, length, time and masskaown as the
fundamental quantities. What this means is thagtle time or mass
can not be derived from any other quantity in pbysand are
independent of each other. So these three quemiitie called the
fundamental units. Recall that the unit of measwmts of length is the

metre, m. The unit of measurement of time is #@Brd and the unit of
measurement of mass is the kilogram.

tal unit?

3.2.2 What is a derived unit?

Definition: The units of all physical quantities wwh are based on the
three fundamental units are termed derived uniteés Ts how to get
derived unit from fundamental unit. The unit okaris the area of a
square each side of which is of one unit length.

Fig 3.1 shows the area of a square-the shadedoportiFrom our
knowledge of mathematics, we know that area = lexgwidth. The
sides of a unit area have lengths 1m each. There¢he value of the
unit area is one square metre. The mathematigaéssion for it is

Im
Im

Fig. 3.1
Area=1mx 1m =1
This shows that the unit area is the square metitgn nf).
Also the unit volume is the volume of a cube, esicle of which is of
unit length. We see that the unit of area or dfahe volume is derived
from the unit of length which is a fundamental uMelocity is another
example of a physical quantity with a derived unA. body has unit

velocity when it moves over a distance of unit kg unit time in a

12
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constant direction or straight line. Thereforeg tnit of velocity is
derived from the units of length and time.

Mathematically, we write

Velocity = distance (metres, m)
time (in seconds,s): ... 3.1

.. The unit of velocity is metres per second \eritas ms (or m/s).
Self Assessment Exercise 3.1

Can you now determine or derive the unit of for&ecall the definition
of force. This will help you derive the unit ofrée.

We conclude that area, volume, velocity etc aredatived units. All

the mechanical units, and units of all non-mechanguantities like

magnetism, electric, thermal, optical, etc canhwite help of some
additional notions be derived from the three fundatal units of length,
time and mass. This shows the true fundamentakeatf these three
units.

3.2.3 Some Units of Length, Mass and Time in Commduse.

Some units of length in common use in science are:

1 angstrom unit =A = 10*° m (used by spectroscopists)................... 3.2
1 nanometer = 1nm = Pén(used by optical designers)................ 3.3..

1 micrometer = 18m (used commonly in Biology)............c..veeeee 3.4

1 millimeter = 2mmM = 18M and ........ccooveeevieieieeee e 3.5

1 centimeter = 1cm = 1%n (used MOst Often)............cceeveveerrveeee 3.6

1 kilometer = 1km = 1%n (a common unit of distance).................. 7.3

The device used to subdivide the standard of niasskilogram, into
equal Submasses is called the equal arm balanbe. fréquently used
units of mass are:

1 microgram =10g =1bkg 3.8

1miligram =10g=16kg 3.9

1gram =1g =Tfkg 3.10

1pound mass =1lb m =0.45359237 kg 3.11

Units of length for very large distances:

13
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Some objects are very far apart from each othée Astronomical unit

is the unit used in measuring such very large desa.

- 1Astronomical unit = 1.495 x 18@m = 9.289 x 10miles .......... 3.12

- 1 Astronomical unit, abbreviated 1 Au is takerpe the mean
distance from earth to sun.

Other units for measuring long distances are:

- 1 Parsec = 3.083 x Tkkm = 1.916 x 18 miles 3.13
- Light-year = Distance traveled by light in oyear = 0.31 parsec = 5.94 x
1 miles 3.14

The unit of time as we discussed in unit 1 of tmsdule is the mean
solar second. This applies to both the C.G.S afdSFsystems of
measurement. It is based on the mean solar déneagandard of time.
If you recall from our discussions in unit 1, theas day is divided into
24 hours, an hour into 60 minutes, and a minutesgf seconds.
Therefore, recall that,

The mean solar day = 24hrs x 60 minutes x 60 secor@b,400 mean
solar seconds . 3.15

That is the mean solar second is 86,"4part of the mean solar day.
The mean solar second is taken to be the uniba i.e 15).
3.3 Dimensional Analysis

This section takes us through the definition of elnsional analysis and
dimensional equations.

3.3.1 What is dimension?

Three basic ways to describe a physical quantity the space it
occupies, the matter it contains and how long itsiges. All

descriptions of matter, relationships and events @mbinations of
these three basic characteristics. We have alsmdfothat all

measurements ultimately reduce to the measurenéength, time and
mass. From our discussion on derived units abaxesaw that any
physical quantity, no matter how complex, can bgressed as an
algebraic combination of these three basic quastiti

For example we saw that velocity is length per time

The relation of the unit of any physical quantiwythe fundamental units
(length, mass and time) is indicated by what isvkmas the dimensions

14
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of the unit concerned.

Example [Area] = [L x L]. Length, time and mass specify three primary
dimensions. We use the abbreviations [L], [T] gl for these
primary dimensions.

Definition: The dimension of a physical quantity is the algebr
combination of [L], [T] and [M] from which the quéty is formed.

Let us explain this further using the example dbwte. The numerical
value of volume, the unit volume is indicated by].[VThe dimensions
of volume will therefore be given by {IM°.T° or simply [L%]]. For a
unit volume it is [unit length x unit width x uniiteight] that is [L x L X

L] or just [L]]. Thus, we say that volume has three dimensions i
respect of length. Volume is not dependent of uha&s of mass and
time.

Another example to determine the dimensions of gsighl quantity,
velocity is as follows:

Velocity = Displacement= L 3.16
Time T

.. The dimensions of velocity is given by
[L] or [LT™.

3.3.2 What is a dimensional equation?

The equation such as [V] = {LtM° T° or [v] = [LT?] is called
dimensional equation. These dimensional equatielhsis the relation
between the derived units(Volume, Velocity, etcil dhe fundamental
units, length, mass and time of any system of nreasent.

The general expression for the dimension of anysigly quantity is of
the form [l T" M7 of the primary dimensions. The superscripts,q, r
and s refer to the order (or power) of the dimemskor example, the
dimension of area is fLT° M°]. It simply reduces to [f]. So, if all the
exponents q, r, and s are zero the combination lidimensionless.
Note that the exponents g, r and s can be posititegers, negative
integers, or even fractional powers.

The study of the dimensions of an equation is daliemensional
analysis. Any equation that relates physical gtiaat must have
consistent dimensions i.e, the dimensions on ode sf an equation
must be the same as those on the other side. S€mefudimensional
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analysis is that it provides a valuable check foy aalculations. The
second use is that dimensional analysis helps ogecbthe units of a
physical quantity from one absolute system to agragibsolute system.
Self Assessment Exercise

Using dimensional analysis, determine the unitsagkleration.

Further examples:

[Acceleration] = [Velocity =  [distancEe

[Time] [Time x time] 3.17
:J;_N =[LT? 3.18
[

Your answer shows that the units of accelerationg$

Self Assessment Exercise

[Coefficient of Linear Expansion]

= [Changeinlength] ... 3.19
[Original Length x Change of Teenature]
Y
[L] x [degrees] = [degféde ... 3.20

4.0 CONCLUSION

In this Unit you have learnt that in making a meament of any
physical quantity, some definite and convenientngjtya of the same
kind is taken as the standard in terms of whichalrentity as a whole is
expressed. You have learnt also that this conneggantity used as the
standard of measurement is called a unit. You kaont that some
physical quantities are known as fundamental qtiesti These are
length, time and mass and their units of measurearenthe metre, the
second and the kilogram respectively. You alsonkethat there are
different systems of measurement. You learnt that fundamental
guantities are used to derive the units of all ofiteysical quantities by
using dimensional analysis.

5.0 SUMMARY

What you have learnt in this unit concerns the
$ meaning of a fundamental quantity
$ meaning of the unit of a fundamental quantity

16
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$ different systems of measurement.

This unit has helped you to be able to derive thiéswf any physical
guantity in nature using dimensional analysis.

You have also learnt some units of measuremerdanmuon use.

The knowledge you have acquired in this unit walghyou to do correct
calculations and measurements in the whole of yoluysics and
mathematics courses. In short, the whole of sciehoges on
measurement. So, you can see how important thisi¢Jni

6.0 TUTOR MARKED ASSIGNMENTS

Newton’s law of universal gravitation gives the derbetween two
objects of mass, mand m separated by a distance r, as

F=G (mmy)
r

Use dimensional analysis to find the units of thavdational constant,
G.
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1.0 INTRODUCTION

When you read the topic of this unit which is ‘“Mast, | know that in

your mind you may be wondering why you have to gtwectors.

Questions like, of what use are they in physicsfateo crop up in your
mind. You may perhaps know the answers to thesstquns from your
secondary school physics courses. It is interggtrknow that vectors
are used extensively in almost all branches of ighys In order to
understand physics, you must know how to work weiletors, how to
add, subtract and multiply vectors.

You are, already familiar with some physical quiaexdi such as velocity,
acceleration and force. These are all vector giesitWhat you have
learnt in Units 1 and 2 will definitely aid your igk understanding of
this Unit.

In this Unit, we shall look afresh at vectors andld upon what you
knew before now. We shall begin by defining vectorsa precise
manner. You will learn how vectors are denoted @mtesented in the
literature. You will also learn how to add and tsabt vectors because,
these will be applied in our study of motion, f@ausing motion etc.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

0] define a vector

(i)  express a vector in terms of its componentswn dimensional
coordinate denote system

(i)  Add and subtract vectors

(iv)  define the NULL vector

(v)  multiply a vector by a scalar quantity

(vi) express a vector in terms of unit vectors plane.

3.0 MAIN BODY
3.1 Definition and Examples of Vector Quantities

3.1.1 Definition
19
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In the secondary school science courses, you nav& ktudied scalar
and vector quantities. You have learnt about maysguantities like
mass, length, time, area, frequency, volume angbé¢eature etc. You
recall that a scalar quantity is completely spedifby a single number
(with a suitable choice of units). Many more exaesplof scalar
guantities in physics exist. For example, the ghaof an electron,
resistance of a resistor, specific heat capacity sfibstance, etc are all
scalars.

You also learnt about physical quantities like thspment, velocity,
acceleration, momentum, force etc. As you knoweséhare all vector
guantities. Thelefinitions of a vectois as follows.

Any physical quantity which requires both magnitudeand direction for it
to be completely specified is called a vector.

Before we proceed to learn how vectors are reptedetet us refresh
our minds about vector notation.

A, A, A orA, A

3.1.2 Vector notation

A When you read different books on vectors you wiltice that
writers denote vectors differently. Generally, togs are denoted
by a letter in bold face typ&\[ B, C, etc] or by putting an arrow mark
or a curly or straight line above the letter, ocualy or straight line
below the letter, thus, . The magnitude of a verd@imply denoted by
the letter without an arrow mark as In this counse, shall use the

notation to denote a vector.

3.1.3 Representation of a vector

In Figure 3.1 below, vector is represented by the Byt if the

direction of another vector be opposite but has #aene
magnitude as vector then it will be representedextor shown

~

A

>

in Figure 3.1.

P Now draw a vector P along a horizontal axis gonugrf left to right

from point P to point Q. Draw another vector eqoavector P and
opposite in direction.

20
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[- A] You see that the vector language is not a jargqopoSing
vectors are always represented by a minus sigrédfe letter
denoting the vector .

Take note also that if a vector has the same directf another
vector, say, AB its magnitude is 0.5 AB, then itlwie written
as 0.5 AB

05 AB

B C

>

You noticed that when_you
drawing from somewhgre
that there are three thihg
These are: o

() a starting point alé

called the point of applicatiti*

(i)  adirection

(i) a magnitude A e
Now that we have reached this,

point, let us proceed to study **
the composition of vectors.

doirig the exerclsava, you started
ended at another pldtes shows you
ou must/consider whipeesenting a vector.

A

3.2 Composition of Vectors

It is possible to have different_vectors representihe same physical
quantity (e.g. three forces). When these thredoveact at the same
point, a resultant vector can be oBtdined by th@pmsition of these
different vectors. Vector composition is done hg tmethod of vector
addition. Let us now look at one of the laws thatde us in vector
composition.

3.2.1 Parallelogram law of vector composition
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OAand OB3 In Figure 3.3 above, let us assume that two vectmts

at point O. Now, represent these two vectors
respectively. Using these two straight lines agmaaht sides draw a

parallelogram OACB. The resultant of these twot@escacting at point
O is given by which is the diagonal of the paralgghm through O. If
we choose to represent the resultant vector byttarI€, then it is
written as.

___ This method of gomposition of vectors is known fas t
C = A+ B parallelogram law. "T&is law is normally stated as:

0] If two vectors acting at a point are represdnig two adjacent
sides of a parallelogram drawn from the point, ttien resultant
vector will be represented both in magnitude ameation by the
diagonal of the parallelogram passing through plot.

Once you have this law always at the back of yound you will
be able to do addition and subtraction of vectofsother rule
that will aid your composition capabilities is this

mtcare represenhtin
two sides of a gian (5(:
taken in order, thet esultant vector will be
represented in direction and magnitude by the thideé
taken in the reverse ordgr®, _,

AB +BC=AC

The diagram in Figure 3 . 4 wiIIFIi‘i'éFp you undersikdme rule better.

(i) If two vectors &
magnitude and direx

22



PHY 111 ELEMEARY MECHANICS

In Figure 3.4, represents the vector and O and
AOAC

A are its starting and end points respectively.
At A, the starting point of the vector Q is

S placed and it is drawn in proper magnitude and
direction as , C being the terminal point. This is

OC completed. Then the side taken in the
" =50N reverse order i.e. represents the resulta
vector. >
Fig. 3.6

3.3 Addition and Subtraction of Vectors

AC and BC 3.3.1 Addition of vectors

We have seen that the resultant of two vectorsvis gy
the sum of the two vectors. Let us look at furteeamples. If | tell you
that the sum of two vectors is defined as thelsimg equivalent or

resultant vector, what it means is that when | dthw vectors as a
chain, starting the second where the first ends, shm is got by

drawing a straight line from the starting pointtbé first vector to the
end point of the second vector as shown belowgnréi 3.5.

Self Assessment Exercise 1.2

9=\t a force of 40N, acting in the direction due Eastl a force of

30N, acting in the direction due North. Then, thagmtude of the
resultant or sum of these two forces will be

= 50N. This is because applying our knowledgBythagoras theorem

F? =P 2 4% 31.
=1600+ 900
r?2 =+/2500 = BN . 3.2 When
there are
more

than two vectors acting, the resultant can alstobed. Here are some
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illustrations c E

Let us sum 4p the vectprs

Then 5 + a = PF 3.3
(i) and PR+r =PS 3.4
and  PS+s=PT 35

Firstly, we draw the vectors as a chaip (Fig. $.7)

0, g TS We see that the sum of the vectors is given bysthgle

vector joining the starting point of the vectorttee end
point of the last vector.
Self Assessment Exercise 1. 3

AB + BC + CD + DE Now, find the sum in Fig. 3.8
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m,n,o, p q
diagram to find the sum of say ,and discover thista

closed figure, what does that man? It tells ustt@sum or resultant of
those vectors is zero.

That is, for example

Right. What about this one?
- CB = BCCD - ED

5 >~

— ED

a @)
O AB —CB+CD—-—ED=AB+BC+CD+ DE

= AE
Find the sum of you notice that some vector tehe® are negative.

This means there can be negatiy
direction to other vectors

vectors or facksg in opposite
membett tke. the same

magnitude and direction
Also,

t in the opposite seqse.

. . - Bt
AB + BC - DC- AD
(a) Commutative law

Now, do this one immediately

Find the vector sum

Are you finished? If so, did you get, the answem2e Then you are
correct, BRAVO!

| also want to draw your attention to the fact thagctor addition is not
an algebraic sum. For example:

c=a+b

25
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- ~ As you recall, two vectors can be added graphicadiyng
¢ andb . : .
either the triangular law or the parallelogram laiWow, in
Figure 3.10b you may assume the forces are acting

simultaneously at a point O, then the vector regmtes] by the diagonal

of the parallelogram through the point of actiorttué two forces is the
sum of the vectors We cannot add the magnitudesto get the

magnitude of .

b + a From the dddniti ?Eb’ ector addition it followkdt
= (This we yefef to a€Ttbmmutative law for addi}i8.9

(This we refer to as the assaciative law of addjtio
[zt il

Thus, the order in which you add vectors does nattan as shown in
figure 3.11.

Fig 3.11: A group of vectors can be added in andgin

3.3.1.1 Multiplication of a vector by a scalar
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aaormla if 1 _asked you the
question, ‘What is the
B~ vector’. From the
methods of vector addition you can
see that it is a vector three times as
long as ’&Q R < vector and is in the same
direction R as vector giving. So, we
(b) Associative law . .
can generalise by saying that
the product of vector, say by a

positive scalar quantity m is. The product is exter in the same
direction as vector but its magnitude is netimes the magnitude of

vector (Fig. 3.12).

Note that if m is less than zero, is acting in dpposite direction to

vector but its magnitude is . So, for m = -1, tiesv vector is and it is

equal and opposite in direction (meaning antipabalio. We readily

find a practical example of this in physics wheteisi depicted in
Newton’s second law, F = ma. Here, force is exg@dsas product of
mass (which is a scalar) and acceleration (vector).

Fig. 3.12 Multiplication of a vector by a scalar
Self Assessment Exercise 1.4

Can you think of more examples?
Other laws which follow the above discussion are.
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m(na) = (mna 311
(m+n) a= ma+ na 312
m(a + B) = ma+ mb 313

Where m and n are numbers.
3.3.2 Subtraction of vectors

(-b)to a This is. similar to what we did during addition odactors. .
The difference is that here we shall only be adding
negative values to positive quantities. So, schitva of a
vector from vector i.e. can be seen as addingdietor . Thus we can

write
a-b=a+(-b) 3.14
we touched on this earlier
vector addition. So, to
graphically (see Fig. 3.13

a You should recall that
on when we discussec
subtract from

Fig.3.14

(=hoa e multiply vector by -1 and add the new vectsmg

either the triangular law or the parallelogram law.
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3.3.2.1 The Null Vector ° . c X
N . Fig.3.16
= L EN_E _E ow, we are going to
For(=F)=F -F look at another scenario.
This is the case where two equal and opposite
forces are applied to a point (Fig. 3.14). Whatyda think is their
resultant? From our knowledge of vector additiwa,simply add. This

gives a vector of zero magnitude. Secondly, we thae we can not
define a direction for it. Such a vector is caleetiULL VECTOR or a
ZERO VECTOR.

So, to define a null vector we say that,
A Null vector is a vector, whose magnitude is zerand whose
direction is not defined.

It is normally denoted by O. We also get a nulltee®r zero vector
when we multiply a vector by the scalar zero.

3.3.2.2 Unit Vector

We want to explain what we mean by a unit vectéau will now see

how simple this section is. You already known whait means. It
simply means unit value. That is 1 or one uklhit vector then means
a vector whose magnitude is simply one unit.(i.e.1)

Now consider the product of vector with a scalafou can see

a that the magnitude of the vector is 1. This imgplieat a vector of

length or magnitude 1 is called a unit vector. dAlsince is a positive

number, it follows that the direction of vectors along vector. Hence,

29



PHY 111 ELEMEARY MECHANICS

a Is the unit vector in the direction of. Note thia¢ unit vector could

be denoted by the symbol (Fig. 3.15)
Thus we can write

O - 3.15
a=a.a

A unit vector is used to denote direction in spaco it serves as a
handy tool to represent a vector. This meansahaictor in any
direction can be represented as the product ohagnitude and
the unit vector in that direction. By conventiamjt vectors are
taken to be dimensionless. Let us now go on tonedefectors
in terms of their components. 4

3.4 Components of a Vector

[\CY S N ——

3.4.1 Components of a vector in terms of unit vectors

oP The vector is defined by its magnitude, r and itsalion, Fig-3.17

1. It could also be defined by its two componentshie
OX and QY directions. What we are saying herehat is a vector

acting along a plane and could be resolved int@atmponents.
b Thus:
is equivalent to a vector in the OX direction péusector in the

QY direction. i.e.

(along OX axis) (along OY axis) 3.16

If we take to be unit vector in the OX directidreh

QO
1

sb)

—.D

3.17

Similarly, if we defing to be a unit vector in the OY direction, then

— [

b=bj 318
OP

r =al +bj 319

30
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Then the vector can be written as

where T and | are the unit vectors in the 0X and 0Y directions
respectively. The sign (called cappa) denotesitavector.

Note: Conventionally, i and j are taken to be the wttors along the x
and y axis in the cartesian coordinate system.

L Since we have defined the unit vectors, we shafiractice omit

the sign (cappa) above, i and j, but always remerttizd they are
vectors.

Salf Assessment Exercise 1.5

Let

a=2i+4jandb =5 + 2j

~ To find draw the two vectors in a chain as showetow,

a+ b,
Figure 3.18
a+bh=0P 3.20
=(2+5)i+(4+ 2]
=7i +6] 321

l.e. we addup the vector components along OX and add up tletorve
components, along OY.

| would like you to know that we can do this with@udiagram like this:

If

P=3i+2jandQ=4i+ 3]
Then
And in the same way, if we are subtracting i.e.
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Q- P=4i+3j-(3 +2j) 324
=i+ 3.25
Similarly if

P =5i—2jandQ = 3 + 3
andR = 4i— | Then,

Self Assessment Exercise 1.6

P-Q-R=uioioeoern. (ii)

Complete the working above.
Your answers should be ;
0] 12i
@iy -2i-4j R

Fig. 3.19

Compare your solution with these

(i) P+Q+R=5i-2j+3+3j+4-if 326
=(5+3+4)i+(3-2-17]
=12 327

(i) P-Q-R=(Gi-2))-(3i+3))-(4-1) 328
=(5-3-4)i +(-2- 3- )]
==2i - 4] 329

3.4.2 Component of a Vector in Terms of Polar Coordinates

op= [n Polar coordinates the vectas shown in Figure 3.1.9 is

resolved along the OX and OY axes thus:
0 From the end point of vector draw a perpendicBl@rand PD on
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X and Y-axes respectively. Then, OC and OD repttetien resolved
parts of the vector in magnitude and direction.n¢¢ewe have

OC=0PCos2 =rCos?2 ....3.30
OD=OP Sin2=rSin2 ...3.31
and OC+0D? = OP= r?(Co<2 + Sirf2) = 3,32

OP =t Cog9andOD =r Sin6 Now, are the components of vector in

polar coordinates.
4.0 CONCLUSION

What you have learnt in this unit concerns

. Definition and representation of vectors

. How vectors are denoted

. Composition of vectors

. How to resolve vectors into their components in tirmensional
space

. How to express vectors in terms of their unit vexto

5.0 SUMMARY

In this unit you have learnt that:-

. Quantities which are completely specified by a nandre called
scalars with a suitable choice of units.

. Vectors are quantities which are specified by aitpes real
number called magnitude or modulus and have a tdireen
space.

. Vectors combine according to the following rules

m(a + B) = ma+ mb
. Any vector can be expressed as
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a =ada
a . Where is a unit vector in the direction of
. Vectors can be expressed in terms of unit vectlonsgathe X and Y

axes of a plane Cartesian coordinate system.

e

Thus the unit vectors i, j point along the X andaxes respectively.
Then for a vector.

V =V, i+V,

v The quantities Y, V, are the components of. The magnitude of V is

V=V V)

. The NULL vector is the vector of zero magnitude amtspecified
direction

6.0 TUTOR MARKED ASSIGNMENTS

1. Let V be the wind velocity of 50kmi‘hfrom north-east. Write
down the vector representing a wind velocity of
() 75 kmh' from north-east
(i) 100km h' from south-west in terms of V.

Answers; to question 1 are:

3
[ -V
(R
(i) -2V
2. Let i and j denote unit vectors in the directiai east and north,

respectively. Specify the following vectors inrtex of i and |

0] The displacement of persons going from pointoApoint
B (about 2300km due south) and from point A to p&n
(1700km due east).

Answers to question 2 are:
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1. -2300j
2, 1700i
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1.0 INTRODUCTION

The importance of vectors in physics cannot be evephasised. This
is because most physical quantities we come agrqdsysics are vector
guantities. These include electric flows, magnttix, forces, velocities,

etc. Also, we recall that in unit 2 we discovetkdt every object in the
universe is in constant motion. Since it is ornedkof force or the other
that keeps these objects in motion, and motiondcbel in one, two or
three dimensions and force is a vector. It is irtgpd to study vectors in
all these dimensions. By so doing we get an umaledsng of why

certain occurrences in nature behave as they do.

In this Unit, therefore, we shall dwell on vectarspace, resolution of
vectors | three dimensions. You will also learoathvector product.

2.0 OBJECTIVES

By the end of this Unit you should be able to:

* Write the general equation that gives the magnitoida vector in
space

* Resolve a vector in space along three mutuallygretigular axes

* Resolve a vector in terms of its Unit vectors aldhgee mutually
perpendicular axes.

» Calculate the Scalar product of two vectors meeding point

* Calculate the vector product of two vectors acthg point.
3.0 MAIN BODY
3.1 Vectors in Space

3.1.1 Magnitude of a Vector in Space

z

Fig. 3.1

The axes of reference are defined by the right-taled Ox, OY and
OZ form a right-handed set of rotation from OX t& @akes a right-
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handed corkscrew action along the positive divacof OZ (Figure
3.1)

Self Assessment Exercise 3.1

Where will be the positive direction for a rightraged cork screw action
while rotating from OY to OZ?..........ccceeveceeee.

The Answer is OX z
S 7
/// s
I____ ______ -IrP :
| c | :
| |
| I '
' b | L v
| ——
I a/0 >~ s
| ~. 7
Vo ___ N
X Fig. 3.2 L
In Figure 3.2,
OFP is defined by its component
a along OX direction
b along OY direction
¢ along OZ direction
Leti = Unit vector in OX direction

] Unit vector in OY direction

Kk Unit vector in OZ direction

ThenOP= ai bj+ ck 31
also

O =a’+ b 32
and

OP? = O+ C° 3.3
ie. OP=a++ ¢ 34
Sq if r= ai+ bj+ ck 35
Then

r=4/@ +b’+cd 36
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The value of r here gives the magnitude of theareGF in Figure 3.2.

This is also an easy way of finding the magnitutia gector when it is
expressed in terms of its Unit vectors.

Self Assessment Exercise 3.2

Now you can do this one
If PQ=4i+3j + X,then/ PQ= 2
Theansweris PG [(29) = 5385
This is how to solve it. We are given that
|PQE 4i+ 3j+ % 37

0|PQ=+/ @2+ F+ 2° 38
=J16+ 9+ 4 = (29 39

= 5385Answer

3.1.2 Resolution of Vectors in the three mutually
perpendicular axes

Here we want to resolve a vector in space intgotaponents in a three

dimensional rectangular coordinate system. Let \thetor OP be
situated in a 3-dimensional rectangular coordinsystem with its
starting point O at the origin shown in Figure 3.3

Let OX, OY and OZ represent the axes. Let thedioates of

OP be (X, Y, 2). z
N c
VAN
A S PAKY,Z)
\\
7
Y // \\
7 \
B9 D X
70"~ L
v \\\
M Fig. 3.3 B
Y

Then, draw the projections of OP and OX, OY andad4d let these be
represented by OL, OM and ON respectively.
If and r are the angles of inclination of
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OP with OX, OY and OZ axes respectively,

then,

OPCos A=x 3.10
OPCos =y 3.11
And

OP Cosr=z 3.12
OP1? (Cog + Cog + Codr) = ¥+ y + 2 3.13

But we know that
OF = OL®+ OM?+ ONP = ¥ + Y + 2 3.14
Cof +Cos+Cosr=F +nmf+rf =1 3.15

where |, m, n are called the direction cosines.
2 2 2

y°  z X y z
Alsoor 5+ op* op 0P op Y  op? 316
= Cosr x+ Cog y Cosrz 317
= Ix+ my+ nz 318

Thus the vector OP can be complete resolved in el by the
coordinate of its starting point (O, O, O) and g@uiht (X, Y, Z) and in
direction by the three direction cosines (I, m, n).

Now considering the case when the vector lies jptaae, say the XOY
plane, then Z = 0 and we get that

OP = Ix + my 3.19

it follows also that for a vector lying in the XQadane, then y = 0 and
for a vector lying in the YOZ plane, x =0

3.1.3 Resolution of Vectors in Three Mutually perpedicular
axes in terms of the Unit Vectors

The vectors we have considered thus far are twesmonal and Unit
vectors in three dimensions. Now, let us genexdig any vector in
three dimensional system. This is same as comsglarvector in space.

A vector in three dimensions can be specified Widritesian set of axes
X, y and z as we discussed earlier in this Unihe Drientation of the
axes is best described using the right -hand rule.
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i X
k
Z

Fig. 3.4

In Figure 3.4 visualize the z axes as pointing @uthe plane of the
paper and perpendicular to both the x and y axdse right-hand rule
says that if you curt your fingers from the x-axesthe y-axes, your
thumb will be pointing towards the positive z-axiBhis right hand rule
iIs a well established convention and you will coaseoss it in many
areas of physics like in your course in magnetism.

>
//
/
/
/
/
/
/
>

AZ| A A + A+ A >

Figure 3.5 shows how we resolve a vector into @sygonents in the
Cartesian coordinate system along the three axesQO® and OZ. The
three Unit vectors for the three axes are denoyel pand k as shown
in Figure 3.4. The Unit vector K points in the Kedtion.

In Figure 3.5 vectoA with its origin at O is known as the displacement
vector for its coordinates at A (X, Y, 2).
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Therefore,
The component of vectoopA along x axis = A

The component of vectoopA along y-axis = A&y and

The component of vectoopA along z axis = &

This is the same thing as saying that the projaoﬂa along x, y and z

axes are A A, and Az respectively. They are then multipliedtbg
Unit vectors in the direction of each axis to det vectors 4, A,j and

A k. The sums of these components give the vasrornd we write

OA= Ai+ A j+ Ak 320

By Pythagoras’s theories, we recall that the lemgtimagnitude of
- IS

OA

OA= A+ A’+ A? 321

Self Assessment Exercise 3.3

Draw a vectory that points in the northwesterly direction, makimg

angle with the northwesterly direction as showirigure3.6. If north is
chosen as the + y - direction, what is the x corepbof

N
y
: -
Vv
v
I o
| A
W | 90 = XE
X component = v cd&s
Fig 3.6

X component of
V =-V Cos (90 -) =-V sin
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3.2 Vector Product

3.2.1 Scalar (or Dot) Product

Multiplication of vectors is the same thing as sgyproduct of vectors.
There are two kinds of products of vectors.

(1) The Scalar Product

(2) The Vector Product

The Scalar Product
The scalar product of two no-zero vectgrgng g (written as A.B) is a

scalar defined as
A B= ABCod 322
Where A, B are absolute values or magnitudes efwéctors

A and B and 2 is the angle betwegryng g When they are drawn with

a common tail. Figure 3.7 shows what we mean.

The scalar product denoted by B is (sometimes called the ‘dot
product’).

B
6 >
Fig 3.7
0 A B as given above= AB Cos
This meansa B = A x projection of B on A 3.23
Or A B = B x projection of A on B 3.24

we note that
In either case, the result is a scalar quantity.

Self Assessment Exercise 3.4
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o

>

What is OA.OB in Figure 3.8 not that the dot sign means muttgtlon
sign. Try it, before checking on the answer below.
The answer is

OA.OB = 35/2
2
This is becauseOA.OB = OAOB COS9
= 5x7cos45’
1
=35x——
NA
= 35@
2

Fig 3.9

Self Assessment Exercise 3.5

Now, what is the dot product of the vectors showthe diagram below
l.e. The scalar product of

The scalar product of N 9

v

Fig 3.10
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aandb= a b= 0 326
This is so because

a.b= abCo90 327

but
Cos98=0

The scalar product of any two vectors at right asagb each other is
always zero.

What happens if the two vectors are in the
(i) Same direction
(i) opposite direction. For example

-

a 3
b b
In Figure 3.10 /2 _:ors (b)
Fig 3.10
- - are in the = 0same unecuur,.
aandb
Thena.b = ab Cos b= a.b.1 = ab 3.28

In Fig 3.10b vectors and b = 180 are in opposite directiofl, Then

a.b= abcosl8F = a.b.¢ 1)=- ab
Self Assessment Exercise 3.6

When the vectors are expressed in terms their\éaitors in component
form of we have,

A= aji+ b j+ ok
B=ayi+ b, j+ c,k
Then
Aé:(qi+ bj+ ck.(ait b jt ¢,k 329
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zaa iitab,ij+taci.k+ba,jit
bb,j.j+bc,j.k+ ca,k it cbhkit gk k 330
Just be careful when expending such brackets abokes will simplify
soon, so no need to worry.
Take note that
ii=1.1.CosB=1 3.31
Similarly j.j = 1 and k.k = 1 always remember this.

Now i.j =1 Cos 98=0 3.32

We see that the following terms will also varnigh i
j.k =0 and k. i = 0 applying these in one exprass$or

. . we have

A.B

AB=aa+ hh+ ¢g 333
Since AB agl+ afpr aMr @

bbl+ ¢a0+ cho gl 334

hence we dropped the terms in zero to assure arsuver above

Properties of dot Product

1. a.bis a scalar

2. a.b= b.ai.e. the dot product is commutative 3.35

3. - - - - - -~ |e.the dot product is associative over addition
a.(b.c)= abt ac
3.36

4. (ma).b= ma = a mp 337

5. If a.b=0andaand b are not zero, vectors then, a is

perpendicular to b 3.38

6 l=Va=vaa 339

7. - - For any non zero vector
a.a>0

8. Aa=0 onlyifa=0 3.40
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3.2.2 The Vector (or Cross) Product

The vector of two vectors is also known as thecmm®duct of the two
vectors. This is written as.B for the cross product of vectors

A and BThe result of the cross product is another vect®hus, we
define the cross product as

A X B= ( ABsin)c C 341
where is the angle between

A and Bin Figure 3.11

A
(AxB)=C
A > B
(BxA) | A
Fig 3.11
The expressionAxBis pronounced as cross B. The

magnitude ofA is1, where(] is A sin, i.ellthe angle smaller than or
equal to

0<6<n. Here ¢ is a Unit vector perpendicular tdandB the sense or
direction of ¢ is given by the right-hand rule: Rotate the firggef your
right hand so that finger tips point along the di@n of rotation of

AintoBthroughg (< 7) .the thumb gives the direction of
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/s

7

)

Defined in this way,A,B andCare said to form a right-handed triple or
a right-handed triad. Now, think of how you unscrethe cork of a
bottle. Unscrewing means turning the cork anticklase. The
unscrewing motion is like the right hand rule aralynotice that the
cork moves upward perpendicular to the directiorum$écrewing wise
motion of the car. Also, unscrewing means anttkoise motion while
screwing means clockwise which will make the cor&renvertically
downwards in opposite direction to thtdase.

(Fig. 3.29

Note that in the definition of the cross produbg brder ofA and B is
very important. ThuB x A is not the same @ B (Fig.). In fact, you

can use the right hand rule to show that

AXB:-ﬁBxﬁA 342

We conclude that the vector product is not comnueat

Some properties of the vector product are:

1. AxB is a vector

—

2. AxB=-BxA 3.43

3. If AandBare non-zero vectors, anxB=0 thenA is parallel

toB  3.44
4. AxA=0, forany vectorA 3.45
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The properties (3) and (4) follow directly from thes

zero!l ldefinition because in both cases

AX(B+C) = (AxB) + (AxC) 346

5. (A+B)XC = (AxC) + (BxC) 347

That is, the vector product is distributive ovediéidn. Notice that

the order in which these vectors appear remainsahe.

6. (MA)XB=M(AxB)= Ax(mB) 348

Self Assessment Exercise 3.7

If 2=, what isAxB = 90]and if’, what isAx B

Solution
If AandBare given in terms of the Unit vector,

then AxB:(ak bj ¢k xat b ¢k
=a,a,i xi+ abix j+ a,cixk
+ba, jxi+ bb,ix j+ bc, jxk
+cakxi+ bb kx j ¢ kxk 349

Butixi=1.1sin2=1.1sir’&0 3.50

We see that
2ixi=jxj=kxk=0

Also i xj= 1.1 sin 981 in direction 0z
e ixj=k ixj=kjxk=i kxiz]

Also, remember that

IXj=-(xi
jxk=-(kx]j)} since the sense of rotationresersed
kxi=-(ixKk)

48
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Now applying the result of 3.51 and 3.52 and thpressions, you can
simplify the expression fokx B. We see that what is left is

AxB - (G- ba)i+(ag- ac) #(ab- ah k 354

This last expression may remind you of the patirrexpression of
determinant.

So we now have that
If

Aai+bj+ckand B= g b j bk 354
I j K
then in determinant form, it is written gg, g- a, b ¢
a, b ¢

This is the easiest way to write out the vectodpmt of two vectors.

Note: (i) the top raw consists of the Unit vectors rder i, |, k
(i)  the second row consists of the coefficierftsto
(i) the third row consist of the coefficientéB

Self Assessment Exercise 3.8
P=2+4j+ &kand @ lit 5j-
what is P xQ
Solution: First, write down the determinant that represémtsvector
PxQ
k
3

GENNE

i
ﬁxb:Z
1

Expand the determinant to get
5 o8 3 |2 3 kz
XQ=M5 2711 3Ky
=i(-8-19-j(-4- 3+k (10 &
=-23+7j+ & 355
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Finally, note that the result of the cross prodotttwo vectors is a
vector quantity. You should always remember thigpprty of vector
product.

4.0 CONCLUSION

What you have learnt in this Unit concerns

* the determination of the magnitude of a vectompiace.

* how to resolve a vector into its components in éhreutually
perpendicular axes.

» the determination of the direction cosines of amec

» the resolution of vectors in terms of their Unitiggs

* the determination of the scalar (dot) product
* the determination of the vector (cross) produdinaf vectors

5.0 SUMMARY

In this Unit, you have learnt that

- For vectors Aand Btheir magnitude and direction can be

expressed in terms of their components and Unitovean three-
dimensional Cartesian coordinate system as

A= aji+a, |+ ak
R e o 477 = 2

B=hi+ b, j+ bk
Bl= B= B2+ b+ I’

The direction cosines (I, m, n) fgy, say, is

by

U - R
| = cos= 5 ,Mm= cog = Band
- cog=
Nn=cosr= B
Here, aand b are the components f 3ng B- And i, j, k are the Unit
vectors along the positive X, y and z axes. Hése, angle, makes
with x-axis. A and B are the anglesAnd g makes with the x, y and

Z-axes respectively.
*  The scalar product of two vectors are defined as
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A.B= ABcod
where 2 in the angle betwegng g such thas< d< n

In component form, for

A=ai+bj+ckandB a# b i gk

A.B=aa+ hh+ Gg
*  The vector product of two vectosgng B is defined as

A x B= ( ABsing) c= c
Where 2 is the angle between

A and B such that
0<6<n. The direction of is obtained by the right hand rule.

In component form,
AxB=(hc- b9 k(ag a9 f(ab ab k

& —
o o =

i
=&
&

*  Rule of thumb for taking cross product of two vestorou would
have observed a cyclic pattern in the cross preduct

IX]; Xk kxi
i

k

Going clockwise direction round the circle all vactproducts are
positive i.e. i x j = k and so on.
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For anticlockwise direction, the vector products aegative i.e. j X i = -
k and so on

6.0 TUTOR MARKED ASSIGNMENTS

1. Find a Unit vector in the yz plane such thas iperpendicular to
the vectora={+ j+k
2. Find the direction cosines [l, m, n] of the \@ct
r=3-2j+ &
3. If P=2i+4j+3k and Q=1 +5j-2kwhatis PxQ
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UNIT 5 LINEAR MOTION
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1.0 INTRODUCTION

The topic of this Unit is what we do everyday ofr ¢éives and that is
motion. A living thing that does not undergo onenf of motion or the
other is assumed to be dead. So, nothing chaisegeour daily lives
more than motion itself. Understanding motion ne @f the key goals
of physical laws. That is why we always begin shedy of physics and
the physical world with mechanics which is the sce& of motion and
it's causes.

No doubt, you have studied motion at the secondelnpol level years
ago. That could be termed as just scratching tibgest. In this Unit

and the subsequence one’s, we shall go into mdeelsien the topic.

This Unit will treat rectilinear motion, that is,ation in one dimension
(straight line motion) in more details. The toptowered in Units 1 to 4
will help you to understand this unit better-sodaxe The stage has
already been set for you. | wish you happy readiigthe back of your
mind, as you read, just remember what happens @agryaeroplanes
fly, cars move, pedestrians walk, athletes run etc.

2.0 OBJECTIVES

By the end of this unit, you will be able to

» Define in scientific terms what motion is.

* Define the velocity and acceleration of a particledergoing
rectilinear motion.

» Distinguish between average and instantaneous itxelot a
particle undergoing

rectilinear motion
» State the laws of motion
» solve problems concerning rectilinear motion ofealg using the

laws of motion
3.0 MAIN BODY
3.1 Definition of Motion

Let us begin the study of this Unit by asking theestion “what is
motion™?. Maybe you are wondering why this questwinen it is so
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obvious to everybody as something we do everydagsides in unit 1,
we learnt that everything in the universe is iniomtcontinuously. So
what is motion? We say that an object is movingt ithanges its
location at different times. This means that oudgtof motion will deal
mainly with questions like where and when?

Definition: Motion may be defined as a continuotmrge of position
with time.

During motion, we notice that different points inbady move along

different paths. Let for simplicity we shall coder motion of a very

small body which we shall refer to as a particl&eTposition of a

particle is specified by its projections onto theee areas of a Cartesian
coordinate system. As the particle moves along @t in space, its

projections move in straight lines along the theeees. The actual

motion can be reconstructed from the motions aé¢htree projections.

But firstly, we shall discuss one dimensional motialso known as

rectilinear motion and later extend it to two ardee dimensional

motions.

3.2 Motion in a Straight Line and Parameters for descrbing
Motion

This section describes motion in a straight lind #me parameters for
describing motion. These are displacement, vel@ity acceleration.

3.2.1 Displacement
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satellite
(@
(b)
Fig. 3.1

If you run on a winding path from point A to poiBt(Figure 3.1a) and
travel a distance of 240m in 20 seconds, then gwarage speed is

—_ -1
20secs 12m5 31

Speed=

Similarly, a car that takes 2 hours to travel frookoja to Abuja along a
winding road, a distance of 200km is said to hameaserage speed
given by

distance  20Ckm
Speed= —; = 3.2
time 2hrs

= 10kmh™

An object changes its position at a uniform ratéhait reference to its
direction. In other words, speed is what we caltalar quantity. Also if
a satellite (Fig. 3.1) revolves round the earthecing a circular path
60,000km in 24 hours its average speed is

60,00Gm
24h
250Gmh ™

Averagespeed

But if the satellite moves through equal distaneeequal times, no
matter how small the time intervals the satelkteaid to have a constant
or uniform speed.

In going from one point to another irrespectivetloé path taken to do
the journey the motion is said to be over a distaf to B. For example
the cases cited in Fig.3.1 such a journey undemtake&ing a time
interval possess speed. Distance does not havepamwyfied direction,
hence it is a scalar quantity.

3.2.2 Velocity
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A particle or car travelling between two locaticersd limited to make
the journey in a specified direction, say’3fue North in some time
interval is said to posses velocity, because

displacemat

- 33
Time

velocity =

Consider a particle moving along the x-axis as igufe 3.2a above.
The curve in Figure 3.2b shows the graph of itpldsement with time.

At time t, the particle is at point P in Figure 8 ®here its coordinate is
X1. At a later time 4 whose coordinate ist has moved to point

The corresponding points on Figure 3.2b are labgdland g.
[ The displacement of this particle is then given thg x with
magnitude Xvector, - x; along a specified direction the x-axis
which is a straight line. The average velocity the particle is defined

by

o= & 34
© At '

[t whereAx = X, - X, is the displacement arfit is the time interval
between when the particle is at point P and whes &t point Q.
Note that average velocity here is a vector quattécause is a

vector quantity since is a scalar quantity. Thedation of is the same as

the direction of the displacement vector. The nitage of the average
velocity is

— X, =X, AX
H=o= Lot At 322

In figure 3.2b, the average velocity is represerigdhe slope of the
chord pq given by the ratio of

X, — X, orAx to t,—t, or At
i.e.
X, =X _ AX

=0 3.50
t,-t, At

Slope =

This is exactly the same as we got from figure Rewriting equation
3.5a we get that
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X, =X =0(t, - 1) 3.6

If we take the time the particle starts its jourmn@ye time t = 0, then the
corresponding position is taken as(ke. initial position). After a later
time t, the particle is taken to be at positiomert equation 3.6 becomes

X=X =0t 3.7

Now, if the particle is at the origin when t = @ieh % = 0 and equation
3.7 reduces to

X =0 t 38

Instantaneous velocity

At The velocity of a particle at some one instantrokt or at some one

point of its path, is called its instantaneous o We have seen
that average velocity is associated with the emtisplacement and the
entire time interval. When the point Q, taken &dboser and closer to

point p, the average velocity could be computedviery small time
intervals- until a limiting time interval is reaaheThis limiting time
interval we refer to as an instant of time. Heweedefine instantaneous
velocity as

_ _lm o Ax
At 0 At

39

Ax Instantaneous velocity is also a vector quantitypsehdirection is
the limiting direction of the displacement vectd8y convention, a

positive velocity indicates that it is towards tight along the x-axis of
the coordinate system.

Note that as point Q approaches point p in Figur2a,3point g
approaches point p in Figure 3.2b, in the limitcage the slope of the
chord pq equals the slope of the tangent to theecat point p. (Take
note that the diagrams have not been drawn to)scale

The instantaneous velocity at any point of a
coordinate-time graph therefore equals the slopthef
tangent to the graph at that point.
As a rule of thumb, if the tangent slopes upwaadghe right , its slope
Is positive, the velocity is positive, and the roatis to the right. But if
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the tangent slopes downwards to the right, thecitglass negative. At a

point where the tangent is horizontal, its slopees and its velocity is
zero. If distance is given in meters and time icosels, velocity is

expressed in meters per second {t DOther common units of velocity
are:

Feet per second (ff'$ centimeters per second(cif))s
miles per hour (mi ) and knot (1 knot = 1 nautical
mile per hour).

Self Assessment Exercise 3.1

Suppose the motion of the particle in Figure 3.2léscribed as the

equation x = a + Btwhere a = 20cm and b = 4cfy s

(@) Find the displacement of the particle in tmeetiinterval between
t, = 2s and.t= 5s

(b)  Find the average velocity in this time interval

(©) Find the instantaneous velocity at time 2s.

Solution
For (a) at timet= 2s the position is
X, = 20cm + (4cm3 (2s)
= 36cm

at time } = 5s;
X, = 20cm + (4cm3(5s) = 120cm

The displacement is therefore
Xp - X1, = (120 - 36)cm
= 84cm

For (b): The average velocity in this time interigal

-~ X, =X, _ 84cm 4
O = = 28ms
t, -t 3s

At X =20cm + (4cm? (2s + ¥

At =36cm+ (16cmY + (4cm &) ()°

At The displacement during the interval is
At? =36cm + (16cm™ (4cm &) - 36cm
At2 =(16cm ) + (4cm §)

At The average velocity during is
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0=—=16m s +(4cm s) At

At For the instantaneous velocity at t = 2s, we Ippraach zero in the
expression for

]
O0=16em s™
This corresponds to the slope of the tangent att fbin Figure 3.2b.

3.2.3 Acceleration: Average and instantaneous aceeation

When a body accelerates in motion, it means tlsavetocity changes
continuously as the motion proceeds.

Figure 3.3 shows a patrticle, P moving along theig-aThe vector vis
its instantaneous velocity at point P and the wegtorepresents its
instantaneous velocity at point Q. Its instantaiseeelocities between
points P and Q are plotted against time in FiguB® &s shown above.
Points p and q corresponds to points P and Q ih (jpaw Thus, the
average acceleration of the particle is given asr#itio of change in
velocity to the elapsed time i.e

v, =V, _ Av
t,-t, At

a = 310

v — v where {, and  are the times corresponding to the velocities.
2 1 2
Note that since are vectors, the quantity is atorec

difference and must be found by the method of vestibtraction you
learnt in units 3 and 4. But in rectilinear motibath vectors lie in the
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same straight line. So in this case, the magnitddiee vector difference
equals the difference in the magnitudes of theorsct In Figure 3.3b
the magnitude of the average acceleration is repted by the slope of
the chord pq.

At The instantaneous acceleration, of a body i.eadseleration at
some one instant of time or at some one pointsopéth is defined
in the same way as for instantaneous velocity. clenis defined as the
limiting value of the average acceleration when gbeond position of
the particle is taken much closer to the first posias tends to zero.

le.
R i Av
a=»At-o0 (—) 311

Note that the direction of the instantaneous acagta is the limiting
direction of the vector change in velocity. Instar@ous acceleration
plays an important role in physics and is more dedly used than
average acceleration. Subsequently, the term exetiein will be used
to mean instantaneous acceleration. Acceleratibopurse, is a vector
guality and the definition just given above applesvhether the path of
motion of the particle is straight or curved. Ingliie 3.3b the
instantaneous acceleration is equal to the sloptheftangent to the
curve at any point say, p of a velocity-time graph.velocity is
expressed in metres per second, then acceleratiexpressed in metres
per square second (rif)s Other common units of acceleration are feet
per square pound (ff$and centimeters per square second (&n s

Note that when a body is slowing down its motiong way it is
decelerating.

Self Assessment Exercise 3.2

Given that the velocity of a particle is V = m # mthere m = 10cm’s

and n=2cm’$

(@) find the change in velocity of the particle time time internal
between4= 2s andt=5s

(b)  find the average acceleration in this timennal.

(c) find the instantaneous acceleration at tiime 2s

Solution:
Givenv =m + rft
for (a) : Attime { = 2s (m = 10cm%, n = 2cm
v; = 10cm & + (2cm &)(2sY
= 18cm¥
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Attime t, = 5s
V, =10cm & + (2cm &) (5sf
=60cm 3

The average velocity is therefore
Vo - vy = (60 - 18)cm'S
=42cm§

for (b)

0, -0 _ 42ms™
t,-t,  3s

= 14cm s

a =

This corresponds to the slope of the chord pqgguie 3.3b

For (c) attime t = 2s At
v =10cm & + (2cm &)(2s +At)?
=18cm 8 + (8cm &) At (2cm $)At?

t isLThe change in velocity during

-18cm &
= (8cm &t[1) + (2cm &) 1)

tisL/Hence, the average acceleration during
v=18cm ™ + (8cm &t +1) (2cm §t)0)(

= AD = 8cms? At+ (2cm &) (At)?
0 attimet=2as is

A

of the ta’ngent gpoire p in Figure 3.3b

This correspori

Fig. 3.4
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3.2.4 Rectilinear motion with constant acceleration
Rectilinear motion with constant acceleration metwas the velocity of

the particle changes at the same rate througheuntition. The velocity
time graph is then a straight line.

Fig. 3.4: Velocity time graph for readilinear natiwith constant acceleration

Since the slope of the chord between any two paintthe line are the
same, the average velocity is the same as thentasious acceleration
in this case. Hence eg 3.10 can be replaced by

- = 312

Now let t = 0 and { = any arbitrary time. Let v be the velocity and t
= 0 and v the velocity at time t.

Then eqn. 3.12 becomes,

o= L-0,
Ct-0
or simply,
L=[,+at 313

Hence, we say that acceleration is the constamtofathange of velocity
or the change in velocity per unit time.

Note that for motion with constant acceleration, &ve that average
velocity between time t =0
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and time, tis
- +
:[0 = 314
2
When the acceleration is not constant the veldaiye graph is curved

as in Figure 3.3.
Recall that by definition

i - X, =X
tz_tl

for time t = 0 and a later time t
Let X, be the position at t = O (initial position) and ebe the position at
time t (final position). Then, the proceeding etquabecomes

X-x = Ut 315 .
substituting the expression for v in equation Jjil4s
C,+C
X=X, = ( 5 )t 316

Then using equation 3.13 and 3.16 to eliminated/ taand substituting
for v in equation 3.13. We get

C,+C, +at
X=X, = (————— 20
or
X=X, = 0, t+ %at 317

Now solving egn. 3.13 for t and putting the resukqgn. 3.16 we have

0, +0 0-0, 0 -0%

7%= 2 a )=( 2a )
or
0? =0% +2a(x—x,) 318

Note that the following equations 3.13, 3.16, 3ahd 3.18 are called the
equations of motion with constant acceleration. u¥ase required to
know these equations of motion by root so that gano easily apply
them in solving problems in physics.

Self Assessment Exercise
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A boy rolls a ball along a flat straight platfornT.he ball possesses an
initial velocity of 2m5" when the boy release it and it shown down with
constant negative acceleration of -0 2f GHow far does the ball roll
before stopping, and how long does it take to stop?

Solution
Choose a coordinate system with x = at the poirgrevlthe ball leaves
the boy’'s hand, and start the stop watch (clock)=at0 when the ball
leaves his hand. The aim is along the directiothefballs motion. The
initial conditions are then

Xo = 0m

to = 0s

Vo = 2m5*
The acceliaration Is negative along t x-directiod has constanted value

=-2m5

Now, we know the initial and final velocities (zg¢ras well as the
acceleration. We do not know the final positidrthee ball or the time
elapsed. So, how world you solve this problem? M&k at the

equations of motion and find out by process of glation which are to
apply here to help us arrive at the answer. Wetlsgewe need egns.
(3.18) and 3.13

Hence,

VARVA

X=X, + o
2a Substituting our values we get

(Om) +(0m/ 92 -(2m5™)?

2(-0.2m57)
—10m Answer Also for the second part

(m5™) —(2m5™)
-0.2m 57
=10s Answer

l.e. t=

Now, having concluded this section, let us moveémthe discussion of
motion in more than one dimension for which youlwihd your
knowledge of resolution of vectors treated in uBiend 4 very.

4.0 CONCLUSION
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. In the unit you have learnt that

. Motion involves change in the position of an objih time.

. The language used to describe motion is distang@atiement,
velocity and acceleration.

. To define velocity and acceleration of a movingtigle

. You have also learnt how to compute the displacénmahocity
and acceleration of a

. body in motion alone dimensional axis-the x-axis.

. To state the laws of motion

. To solve problem concerning rectilinear motion aftles using

the laws of motion.

5.0 SUMMARY

What you have learnt in this unit are:
In discussing distance and speed a body changésopaast a uniform
rate without reference to its direction i.e. taice = speed

time taken

Speed is a scalar quantity

In discussion displacement and velocity a body gkanposition at a
uniform rate with reference to a specified directey. Motion due east
or 45 west of North.

velogit=- = displacemat A~
O™ timetaken A

Velocity is vector quantity

That instantaneous velocity is the velocity of aipke at any one instant
of time. It is also the limiting value as the tinméerval two positions
(initial + final positions) of a particle tendszero i.e.

- lm Ax
0 At- 0 At

That when the velocity of a particle changes withet it results in the
acceleration or deceleration of the particle depenar whether the
motion is increasing in speed or decreasing i.e.
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—

L g--80 Ay

a t, - t, At

A=
_ __ 0
a At-0 At

- lim

That instantaneous acceleration is the accelerafi@aparticle at some
one instant of time i.e. . It is also given by #hepe of the tangent to the

curve at any point of a velocity-time graph.

That constant acceleration results from when thecity of the particle
changes at the same rate through out it motion.
That the equations of motion are given by

1 [C=C,+at
0, +0
t
2 )
X—X, =0, t+7 at
4 [ =0, +2a(x—X,)

2. X=X, = (

[, where x is the displacement of the particle, hes\telocity at time t

= 0i.e. b Vis the velocity at a later time t ; a is the @lecation of
the particle.

6.0 TUTOR MARKED ASSIGNMENT (TMA)

1. A runner bursts out of the starting blocks Oafter the gum
signals the start of a race. She runs at consizrgleration for
the next 1.9s % the race. If she has gone 8.0en 2f0s, what
are her acceleration and velocity at this time?

2. Table 1 Times for 100m Race

Distance (m) Time(s)
0 0
5 1.50
10 2.00
15 2.50
20 3.10
25 3.60
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30 4.10
35 4.60
40 5.00
45 5.50
50 6.00
55 6.50
60 7.00
65 7.50
70 7.70
75 8.20
80 8.70
85 9.10
90 9.60
95 10.00
100 10.50

For table 1 above, using graphical techniques dwter the velocity at
times t = 2s.

3. Suppose that a runner on a straight track coaedsstance of
1mile in exactly 4 minutes. What was his averagieaity in (a)
mi h*? (b)ft 5 ? (c) cm 5?2
The Answers are
(@) 1.5m i ; (b) 22 ft 5'; (c) 672 cm5.

4. A body starts from zero and attains a velocftg@m 5 in 10s.
It continues with this velocity for the next 20stiurt is brought
to rest after another 10s. Sketch the -Time gfaplthe motion
and find the acceleration and the distance covegthg the

motion.

Ans: acceleration = 2m%
Retardation = -2m%5
distance covered = 600m
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Module 2

Unit 1: Motion in More Than One Dimension
Unit 2: Force

Unit 3: The Projectile Motion

Unit 4: Impulse and Linear Momentum

Unit 5: Linear Collision

UNIT 1 MOTION IN MORE THAN ONE DIMENSION
CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Body
3.1  Velocity and Acceleration
3.2 Uniform Circular Motion
3.3 Relative Motion

4.0 Conclusion

5.0 Summary

6.0  Tutor Marked Assignment (TMAS)

7.0 References and Further Reading

1.0 INTRODUCTION

In treating the topic, motion, we have so far dssad only motion along
a straight line or rectilinear motion. In this ckap we shall consider
motion in more than one dimension. This is the sHnmg as discussing
motion in a plane and in three dimensions. You haadised, from your
studies of unit 1 to 4 that our physical world msthree dimensional
space. So, as a particle moves, its co-ordinatéls wference to a
specified frame changes in two or three dimensampending on where
the motion is taking place. Having realised fromitud that the

parameters for describing motion which include kdispment/distance,
velocity and acceleration are vector quantities, skall draw on our
knowledge of vectors from units 3 and 4 to undetdnis Unit better.

We shall also study circular motion which will givs an insight into
satellite motion, and then conclude the Unit withdgses of Relative
Motion. Other types of motion and causes of motigihbe developed

in the subsequent Units.
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2.0 OBJECTIVES

By the end of this unit, you will be able to:

0] determine the displacement, velocity and aced¢ien of a
particle in two or three dimensions in any givemanfie of
reference.

(i)  distinguish between average and instantaneeelscity, and
average and instantaneous acceleration in two aeeth
dimensions.

(i)  determine relative velocity and acceleratiohone particle with
respect to another particle

(iv)  solve problems concerning relative motion amiform circular
motion.

3.0 MAIN BODY

3.1 Displacement, Velocity and Acceleration

Let us consider the motion of a particle in spdag 8.1)

Fig. 3.1

If the particle is at position A at some instanttiofe t
and at position B at another instant of timet+Recall
that the position of a particle in a particulamfi@ of reference is given
by a position vector drawn from the origin of th@ocdinate system in
that frame to the position of the particle. In almgram (Fig. 3.1), let
the position vectors of A and B with respect toed kespectively. The

displacement of the particle in the time interval equal to in the

direction AB. Thus, the average velocity of thetjgée during the time
At is given by

A rqnd rq+Arﬁ

O _Ar 31
av — At

Ar The direction is the same as that of siftes a scalar quantity.

—av
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- We note that is the velocity at which the partigleuld have

* travelled the distance AB in uniform and rectilineaotion during
the time intervalit.

Self Assessment Exercise 3.1

If the displacement versus time equation of a garfalling freely from
rest is given by

x=(4.9m s°) ¥

Where x is in metres, t is in seconds. Calculateaterage velocity of
the particle between time, £ 1s and 4= 2s and also betweeft 3s
and f, = 4s.

When you solved exercises 3.1, you noticed thatvdiees of average
velocities during the two time intervals are nat game.

Such a motion is described as non-uniform motiArpractical example
of non uniform motion is the motion of a bus leayione bus stop and
travelling up to the next bus stop. The velocifyttee bus at a given
instant of time can be found.

; We remark that the velocity of a particle may clenag a result of
change in magnitude, direction or both. In Fig8r&b above, the
average velocity during the time intervat is directed along the chord
AB but the motion has taken place along the arc)(ABhe average
velocities during the intervalst'(i.e A to BY) andAt™ (i.e. A to B) are
different both in magnitude and direction. The dinmterval At** is
smaller thanAt!, which is in turn smaller thant. Note that as we
decrease the interval of time, the point B appreach, i.e. the chord
approximates the actual motion of the particle @vetThese points
finally merge and the direction of coincides wilie tangent to the curve

at the point of merger.

—

A—rasAt 0
At s

EF As At decreases, the ratio approaches a limit. Théwelsaving

At the magnitude equal to the limit of the ratios eallthe
instantaneous velocity of the particle at time heTinstantaneous

velocity is the direction of the tangent to thewvauat the given moment
of motion.
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0= At - 0 = 31

; In other words, the instantaneous velocity is thevative of with

~ respect to time.
dr 3.2a

TS
; It follows from equation 3.2a that if has compaisen vy, z then

differentiating the RHS we get

since i, j, k are independent of time

- dr _d,
D—E—E(XI+yj+Zk)

di . dx dj .dy ﬂ(+kd_z

ST et Yae Tar far Ko

d d d
= +—yj r =2k
dt dt dt

=L, i+, j+LC, k where
x5 _dy 5 _dz
- Cdt’ 7 dt

[m]
|
=

32

Note that if we were using coordinates alone tdemte equations for
velocity, we would have to write three equationsirm&quation 3.2b.
The advantage of the use of vectors is that it lesals to write a single
equation as in equation 3.2a.

Representing the instantaneous velocities of thicfgwhen it passes
through points A and B of its path as shown in Feg8.2,
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Fig. 3.2

We see that the velocity at B is different fromtthBA. This means that
the velocity is changing in magnitude and directiobhus the particle
experiences an acceleration. Definition of averageeleration is given
thus:

gav' O+ AQ If the velocity of the particle changes from withine

time interval from t to t + [f, then the average
acceleration during this interval of time is givien

_AC

=— 3.3
av At

a

Av/ At The direction of is along . Remember thadtis a scalar quantity.

A

Now, as the interval of timgt decreases, the ratio approaches a
limit. Hence we define the instantaneous acceteratf a particle at
any particular instant of motion as

-am 8080 342
A dt |
~ _d0O, - _d0 d 1,
T Tat T Tar ' T T ar 3.4b

So, from our knowledge of calculus, acceleratiorthis derivative of
velocity with respect to time, i.e. and in componhform, we have

Self Assessment Exercise 3.2

Given a wire helix of radius R oriented verticadippng the z-axis. If a
frictionless bead slides down along the wire (E§).3and its position
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[ (t) = (Rcobt)i + (Rsinbt) j-icpk Vectorvaries with time as

-~ where b and c are constants, find and , where aatk the
velocity and acceleration expressed as functiorts of

Solution:

From the expression for given. We know that fa three axes,

r(t)
X, Y, Z.
x=Rcoshty=Rsinbt, z=1 ct

Recall that

O 0O(t) = (-2tb Rsinbt)i + (2t bRcobt) | —(chk

-~ . The acceleration is given by

a(t)

|

d

a(t) = — = (4t%?Rcobt - 2RIsin b)i
t

+(-4t?RESinbt + 2Rbcodbt) j - ck

3

Self Assessment Exercise 3.3 .y

A particle moves along the curve y = Asuch that x =

Bt, A and B are constants.
(@) Express the position vector of the particle

Fig. 3.3
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F(t) the form =Xi, + Y],
drﬂ (b)  calculate the speed of the particle along gath at

&

Solution:

any instant t.

i

(@)  r(t) = Bt + ABt?]j

sd [ e o
(b) 0= dt{r(t)}—BHZAB ij
O Speed= |[] = O=,/B? +4A’t*B*

=B 1+4A*t*B°

3.2 Uniform Circular Motion

We shall now use the concepts we have developethrsto study

uniform circular motion and you will see how simjgievill all become.

Uniform circular motion plays an important role physics. Uniform
circular motion approximates many diverse phenomsmeh as rotation
of artificial satellites in circular orbits, desigg of roads, motion of
electrons in a magnetic field etc.

y

Fig.3.4 Uniform circular motion

In Figure 3.4, let us assume that a particle Peigsopming a circular
motion along the circle, part of which has beerrespnted by the curve
with broken lines. This particle, therefore, mains a constant distance
r from the centre of the circle, O. Let us alsouass it turns through a
constant angle 2 in a fixed time. Let A be the posiof the particle
along x axis at time t = 0. Now, t seconds lalieis at point P after
describing an angle 2 (= < AOP). Through 0 we drgaxis
perpendicular to x-axis. Let the coordinates oivith respect to the
mutually perpendicular axes x and y be (x, y). nkm@ur knowledge of
trigonometry and our course on resolution of vectorunit, 2 and 3 we
have that:
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x=rCos 2
y=rSin 2 3.5a

Now, if the angle described per second by the gartbe a constant
equal to 2 (pronounced ‘omega’) radians, then 2t=and eqgn. 3.5 can
be written as

X =r Cos 2t
y =rSin 2t 3.5b
— = Xi+ Vij 3.6

—— =Fr CcOScdi +r sin witj,

T is also known as the angular speed of the partidle note that the
position vector of the particle at P is given by

= -r2sin Tti + r 2cos 2tj .73

= Wl + V,j
where \{ =-rTsin Tt, \{, = rT cos Tt 3.8

The magnitude of velocity is therefore,

- _d+
0 dt

=AW =mw 39

-~ What is the direction of this velocity? To find pldt us calculate

|

!
!

= (- rT Sin Tti + rT Cos Ttj).(Cos Tti + r Sin )
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=- T Sin Tt cos Tt +7Cos Tt Sin Tt=0

0 r =o We see that

5 Since V. r =0 is always perpendicular to. Tihmpiies that V is
R

always along the tangent to the circular path. Emreveals that
has a constant magnitude. We have found thatifoular motion, the
particles velocity constantly changes directionause it (the velocity)
is always along the tangent at any point. So, weclude that the
velocity vector is not constant, i.e., the partictes an acceleration. Let
us denote the particle acceleration by and thed fire appropriate

expression for it .

- Recall that acceleration

v
=d
a;: rw 2 coswti—mw 2 sin wij 3.10
R
= —w? (coswti+r sin wt)j
Oa, =-&3 1 311

We, therefore, have from Eqn (3.8) that
Since v = Tr from Eqn 3.9, we get

=l-p=—y=— 312
r r

— The negative sign in the expression for the acatter Eqn (3.11)
r Indicates that the acceleration is opposite totawards the centre

of the circle. | would then like you to remembleatta particle moving
with uniform angular speed in a circle, experienegs acceleration
directed towards the centre. This is known asrigetial acceleration.

Example
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Let us calculate the period of revolution of a Bis¢emoving around the

earth in a circular equatorial orbit,
(Fig. 3.5). e TN o
Let the velocity/ Y of the satellite in the
\h ‘ ’ ///
Fig.3.5

c orbit be, and the radius of the orbit be r. Likeg &ree object near the

earth’s surface, the satellite has an acceleratimards the centre of
the earth (= g, say), which is the centripetal bre#ion. It is this
acceleration that causes it to follow the circydath. Hence from Eqn
(3.12), we have

or’ =g'r

If the angular speed of the satellite is T, wefgah Eqgn (3.9) that

ari=g'

or

Again the time period T is given by

27T r
T=—7=27|—7
w g
or
R+h
T=2m|—7
g

Where R = the radius of the earth and h = the heiflthe satellite
above the surface of the earth.
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The orbit of the first artificial satellite Sputnilwas almost circular at a
mean height of 1.7 x 26 above the surface of the earth, where the
value of acceleration due to gravity is 9.26f s

Thus the time taken for the satellite to complete oevolution round
the earth was

T= (6.37x 1¢ +017x 1Cf)m
B (9.26)m s72
Self Assessment Exercise
3.3
=5.28x 10 s=1hr.28min
A flat horizontal road is
being designed for 60kritspeed limit. If the maximum acceleration of
a car travelling on the road is to be 1.5 frasthe above speed limit,
what must be the minimum radius of curvature faowes inrthe road?

Solution

i g
—>a or—>r
r a

[ [
or I8y, =

Since O=60km h7, a =15m3
O, =18x10°m

Let us recapitulate what you have learnt so fau Yiow know that the
language for describing motions is displacementjoory and
acceleration. You have also learnt about thesetjiegrusing vectors.

We have also pointed out that the position, veyoaitd acceleration of a
particle can only be defined with respect to soeference frame. The
friends travelling in the same car are at rest wi$pect to each other,
while they are in relative motion with respect tpeason standing on the
roadside. The velocity of their car as measuredhleyperson standing
on the roadside will be different from that measulyy an “Okada”
cyclist moving along the same road. Hence, sathatja car moves at
say, 60kmft means that it moves at 60kthrelative to the earth. But
the earth itself is moving at 30knT helative to the sun. Thus the speed
of the car relative to the sun is much, greaten B@km K. By these
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examples we are only trying to show that all mot®melative. This is
interesting, isn’t it? Often in practical situatjowe need to determine
the relative position, velocity and acceleratioragbarticle or an object
with respect to another one. In the next sectienswall find out how
this is done.

3.5 Relative Motion

In this section, we shall discuss relative motiodour knowledge of
units 1, 3 and 4 will be applied here.

¢ and r. Let be the position vectors of particles P ande&3pectively,
p Q

at any instant of time, with respect to a fixedgoriO. This
has been drawn in Figure 3.6 above.

Or Io, =T, =T, 316

- Thus, the relative velocity. of P with respect @is got by

fq

p
differentiating with respect to time.

Thus,
d - dr. dr.
DQ :—rQ = P — Q
P dt ®P dt dt
or
Vop=Up — Vg 317

- Relative acceleration of P with respect to Q usgily,

dqp
- od - 1 dO
— (O b _ Q
Aop dt( <) dt dt
or
Aop=ap — 3, 318
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4 =0 If is constant then and we conclude that

Agp= Ap

This means that the relative acceleration of P wa$pect to Q is the
same as the acceleration of P with respect to Oviged Q has a
constant velocity with respect to O.

Let us consider the practical problem of Navigatiand avoiding
collisions at sea. Imagine that two shipsaBd $ moving with constant

X velocities
are at the » /N ‘ positions
A and B ) . shown in
Figure WA 37 at
some N : instant of
time. XN ' The
vectors %”% V, and
V, \ represent
their { velocities
with . @ ® respect to
the sea. The paths

of the ships extended along their directions ofiomofrom the initial
points A and B intersect at point P.

Fig 3.7 (a) Path of two ships moving at constailbaity along courses
that intersect;
(b) Path of Srelative to $showing that they do not collide even
though their paths cross.

- -~ - Will the ships collide, or will they pass one armtlat a
U =0, -0, distance?

The relative velocity of ship,Svith respect to ship;Ss given from Egn
3.17 as

- is shown in Figure 3.7b.
V12
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-~ Now, with respect to ship;Sship S follows the straight line . It

? will miss S by the distance AN. If you have travelled in a@psh
and experienced an event of this sort, on an opamgh land marks in
sight, you will know that it is a curious experienc The observed
motion of the other ship seem to be unrelated eadifection in which it
is going.

-~ We can now generalize our observations using emuail7 and
L 318 concerning relative motion. Let an object meowth velocity
relative to a frame of reference S, if another &ashreference ‘Smoves
with velocity V relative to S (Fig. 3.8), then thelocityV" of the object
with respect to the frame' & given by

Mt =0-Vv 210
‘S A
S A\
- If ais — > — constant, then
—_—— —
R -~
at /
Fig. 3.8

Thus the acceleration of an object is the samdl iinaanes of reference
moving at constant velocity with respect to onethen The discussion
has but tested our earlier conclusion in Unit 1t gidasolute motion is
trivial (i.e. unrealistic). We need always to stuthe motion of one
object with respect to another.

4.0 CONCLUSION

In this unit you learnt that

0] Motion involves change in the position of arjext with time.

(i)  The language used to describe motion are dcsghent, velocity
and acceleration.

(i) You have also learnt how to determine velgaind acceleration
both along a straight line or on a circular motion.
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(iv)  You have also learnt about relative motion ahdw it is
determined.

5.0 SUMMARY

What you have learnt in this unit are

0] A body is said to be in motion if it changessgmn with time

(i) A frame of reference is required to determimay kind of
variation of position with time.

(i)  That the instantaneous velocity and instaetars acceleration dhe

particle are:
. odr
D_E_ L, | +Dyl +0,k
dx d dz
wherel], =—, [ = 0,=

dtt Y dtt ¢ dt

anda—d—a—sz—ai+a j+a.k
Tdt de A TadTa
- dv, d’x - dVHy d’y
wherea =" =ge ' & " at _ df

T dt dt

(iv) For a particle performing uniform circular n, the
instantaneous velocity is always directed alongté#mgent and.
Has magnitude v = T where r is the radius of theleiandl is
the angular speed if the particle.

dv, d?z

a

(v)  That the instantaneous acceleration is diretdecrds the centre,
and has magnitude

(vi)  That motion is relative
(vii) That the relative position and velocity oparticle P with respect
to a particle, Q are given as
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— — —

. = r,—r

Qp 0 o and

Oor = O, — O
where p and g are the position vectors of P and Q in a givemé&aof
reference. ¥ and \; are the velocities of P and Q in this frame.

6.0 TUTOR MARKED ASSIGNMENTS (TMAS)

1. Why is the statement “I am moving ” meaningless?

2. An automobile A, traveling relative to the easth65km H on a
straight level road, is ahead of an Okada cyahgitor cyclist) B
traveling in the same direction at 80kmMWhat is the velocity of
B relative to A?

3. A small body of mass 0.2 kg moves uniformly iiecle on a
horizontal frictionless surface, attached by a d@@2m long to a
pin set in the surface. If the body makes two cateptevolutions
per second, find the force P exerted on it by tre.c
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1.0 INTRODUCTION

In the last two Units we explored the parametead tfescribe motion
such as velocity and acceleration. Such a desmnipis called
Kinematics. Kinematics alone cannot predict thesgme motion of an
object. In this Unit, we shall look at other thénthat cause changes in
motion of an object. The studies of the causes ofian are called
Dynamics. A scientist called Sir Isaac Newton désd the laws that
govern motion in 1687. These are based on carefdl extensive
observations of motion and its changes. It mayr@steyou to know that
these laws actually provide an accurate descriptibmotion of all
objects, whether they are small or big, whethery thee simple or
complicated, though with minute exceptions. Theseeptions include
motions within the atoms and motions near the speédlight
(300,000km 3¥). | would like you to note that Newton’s laws repent
tremendous achievement in their simplicity and ttlesof what they
cover. We use Newton’s law to calculate the motba body given the
force acting on it.
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2.0 OBJECTIVES
By the end of this Unit you should be able to:
. Define a force

. State the conditions for equilibrium of a rigid lyoakcted upon by
a system of forces.

. State the three Newton’s laws of motion for a géatin linear
motion
. Solve problems using conditions for equilibrium fofces and

Newton'’s laws of motion.
3.0 MAIN BODY

3.1 Definition of Force

What makes things move? | invite you to keep tjuisstion at the back
of your mind as you study this Unit. In this Unié shall, in answer to
the question above, look a bit to the history ofgpts. Way back in the
fourth Century B.C., Aristotle proffered an answer the question
above. And for nearly 2000 years following his Wwanost scientists
believed in his answer that a force-which may bgush or a pull-on
something was needed to keep the thing moving. ribgon ceased
when the force was removed. This stands to rehscause from our
experience we know that when we pull or push a Witeaoves. But
when we stop pushing or pulling the wheelbarroweihains at relative
rest. Therefore, when we push or pull on a bodyane said to exert a
force on the body. Non- living things can also réXerce on other
things. For example, a relaxed spring exerts forcéghe body to which
its ends are attached when compressed and released.

Fig 3.1

In Figure 3.1 we show a mass, m attached to theoéna released
spring. The end of the spring is then pushed @ddft and released. It
Is seen to exert a force on the mass and pusheghe right. Also, in
our daily life, we experience what we call gravdaal force. For
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example, stop reading and throw any object arouad vyertically
upwards. What do you observe? You see that thecbfpt to a certain
height and started coming down. What happens ecef$ that the earth
exerts a force of gravity on it to attract it tedlf (the earth). This type of
force we call weight. The earth exerts this pullemery physical body.
Gravitational, electrical and magnetic forces cam through empty
space without contact. Other forces can be termmutact forces.
Contact forces are forces resulting from directtaonof two or more
objects. Contact forces are said to be mainlyr@salt of attraction and
repulsion of the electrons and nuclei making upatioen of materials.
To describe a force, we need to describe the @reah which it acts
and also the magnitude of the force. This showthaisforce is a vector
guantity.

3.1.1 Graphical Representation of Force

Since forces are vectors, forces are representtlgiike vectors. So,
everything we studied in Units 3 and 4 about vectpply to forces
including vector representation, addition, subtoactetc. So, | would
like you, at this juncture to go back and read §i@tand 4 again to
refresh your memory. But for the sake of conciggisvhat you have
learnt, let us give one example of how forces am@asented. If you
slide a box along the floor by pulling it with aisg or by pushing it
with a stick, the box moves (Fig 3.2)

hand (push)

hand
(pull)
strin )
tick
/Box /Box
figor” ~ o b
Fig. 3.2

Note that it is not the objects (hand, stick, oing) that make the box to
move but the force exerted by these objects. If imagine the
magnitude of the pull or push to be “10N”. Themijtiwg just 10N on
the diagram would not completely describe the fdreeause it does not
indicate the direction in which the force acts. @might write “10N, 36
above horizontal to the right” or “10N, 45elow the horizontal to the
right”. But all the above could be more briefly eeyed by representing
the force by a line with an arrow head. The lergftthe arrow to some
chosen scale gives the magnitude of the force hadlirection of the
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arrow indicates the direction of the force. Anmyéde is given below in
Fig. 3.3

0 5 10N
| 1 111 | 1111 | 10N
scal¢ 10N

3¢’ 480
figor” & b

This is the force diagram con 9 33

forces acting on the box.

Ig to Figu& 3NVe neglect other

3.1.2 Equilibrium

We have seen that one effect of a force is to olahg motion of the
object on which it acts. Force also can alterdingensions of an object.
The motion of an object is made up of both traimst@ motion and
rotational motion of the object where applicable.some cases a single
force can produce a change in both translationélrarational motion of
a body at once. But when several forces act oady Bimultaneously,
the effect can cancel each other resulting in nangk either in
translational or rotational motion. When this hapg the body is said
to be in equilibrium. This means that
0] the body as a whole either remains at rest or moveasstraight
line with constant speed and
(i)  the body is not rotating at all or is rotating atcastant rate.

Now, let us look at an example to explain what weam

88



PHY 111 ELEMEARY MECHANICS

The forces acting on a body under different coodgiare as indicated
in Figure 3.4. |If force|31 only is applied as is in Figure 3.4a, the body

originally at rest will move and also rotate clock So it no longer
remains in equilibrium. But if an equal force ispaed to it in the
opposite direction (Fig. 3.4b) and it has the séineeof action, then the
resultant force is zero and equilibrium will be ntained. Otherwise
translational but not rotational motion will set(fig. 3.4c). The force
in this case, will form what we call a couple. §hiill be discussed
later.

Mathematically if

F,=-F 31
then the Resultar® is

R=F+F=F-F=0 32

Let us adopt the convention that when we say thatforces are “equal
and opposite” we mean that their magnitudes araleapd that one is
the negative of the other. This meaning is whabisveyed throughout
this course when three nonparallel coplanar forces

F,,F,,F, act on a rigid body, for equilibrium to be maimed, the
resultant of the forces must be zero. Let us ktdkigure 3.5

F3

F
(a) 2

Fig 3.5

A force applied to a rigid body is taken to be rgtanywhere along its
line of action. Therefore, we can transfer the tiooces k and b

Figure 3.5a to the point of intersection of the@wek of action. We then
obtain their resultant, R as indicated in Figurgb3. By so doing, we
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have reduced the force to just two iRand ;. For equilibrium to be

maintained, these two forcRaind F, must.

0] be equal in magnitude

(i)  be opposite in direction

(i)  have the same line of action.
It then follows from the first two conditions th#te resultant of the
three forces

F.,F.and K is zero. Note that the third condition can ongyflfilled
if the line of action of passes through the intersection of the lines of

forces off,and F, as shown in Figure 3.5b. Another important paint t

note is that when the lines of action of severatde pass through a
point, the forces are said to be concurrent. Tddybn Figure 3.5b can
be in equilibrium only when the three forces areaorent.

Stable, Unstable and Neutral Equilibrium
On displacing a body in equilibrium slightly, theagnitudes, directions
and lines of action of the forces acting on it médyhange.

Stable equilibrium
This happens when the forces in the displacediposaict such that they
return the body in its original position Fig. 3.6a.

Unstable equilibrium
If the forces act to increase the displacemeritfatiher, the equilibrium
Is unstable. Fig. (3.6b).

Neutral equilibrium
If the body after being displaced is still in edarilum, the equilibrium is
neutral. (Fig.3.6¢)

B i .Y
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.\
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,f"'_"\
\ ;_,/’)
¥ (<)
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=

=" )
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(a) Stable, (b) unstable, and (c) neutral equilibrium.

Moments

When the door of a room is opened, the appliedefigcsaid to exert a
moment, or turning effect about the hinges attadbetie back edge of
the door and the wall. The magnitude of the monoéiat force P about
a point 0 is defined as the product of the forcang the perpendicular
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distance OA from O to the line of action of P. She Figure 3.7a
below:

¢ 7

(a)

Thus, moment about point 0 = P x AO. The magnitidiie moment is
expressed in Newton metre (Nm) when P is in Newtamd AO is in
metres. By convention, we shall take an anticlaskwmoment as
positive in sign and a clockwise moment as negaiisegn.

Parallel Forces

If a rod carries loads of 10, 20, 30, 15 and 25ait O, A, B, C, D
respectively, the resultant, R of the weights wraoh parallel forces for
all the forces in Figure (3.7b) is

resultant, R = (10 + 20+ 30 + 15+ 25) N
= 100N

From experimental results and theory it was seantlie moment of the
resultant of a number of forces about any poirgsal to the algebraic
sum of the moments of the individual forces abbetsame point. This
result helps us to locate where the resultant atts.

Taking moments about O for all forces in Figure/3.we have (20 x

0.6) + (30 x 0.9)+ (15x 1.3) + (25 x 2.1) because distances between
the forces are 0.6m, 0.3m, 0.4m, 0.8m, as showmmlis the distance

of the line of action of R from 0, then, the momehnR about 0 = R x X

=100 x X

1 100x = (20 x 0.6) + (30 x 0.9) + (15 x 1.3) + (22.1)

I.e.
X=1.1m

Equilibrium of Parallel Forces

The resultant of a number of forces in equilibritsmzero. Recall that
we saw this in Unit 7. It therefore follows thaktalgebraic sum of the
moments of all the forces about any point is zenovided the forces are
in equilibrium. What does this mean? It means the total clockwise
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moment of the forces about any point = the totalckotkwise moment
of the remaining force about the same point.

Self Assessment Exercise 3.1 S

2m 3m | 1Im 4m

10 2C 40

Suppose a light beam XY rests on two g~*~*~ " ~rahB has loads of
10, 20, and 4N at points,>0, Y respecti Fig 3.8 1 for equilibrium in
the vertical direction to hold

R+S=(10+ 20+ 4)N
= 34N

Then, to find R, we take moments about a suitabietsuch as B. Note
that at point B, the moment of S in zero.

Then for the other forces we have

10x6+20x1-Rx4-4x4=0

hence, we see that

R =16N
So, from the value for S + R above, it follows tBat 34 - 16 = 18N
Self Assessment Exercise 3.2
Suppose that a 12m ladder of 20kg is placed amnateaf 6@ to the

horizontal, with one end B leaning against a smowth and the other
end A on the ground.

6m
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The forceR at B on the ladder is called the reaction of tkadl vand if
the latter is smooth,

R acts perpendicularly to the wall. Let us asstima¢ the weight of the

ladder, w acts from the mid point of the ladGer the forcesRandG

meet at 0 as shown above. Consequently, theofmiatiforce F at A
passes through 0. Use the triangle of forcesni tihe unknown forces

R,F

Solution
Since DA is parallel to R, AO is parallel to F, a@® is parallel to W,
the triangle of forces is represented by AOD. Bgams of a scale
drawing R and F can be found, since

w20 F R

OD ~ AC DA

A quicker method is to take moments about A fortlal forces. The
algebraic sum of the moments is zero about anyt goice the object is
in equilibrium and hence,

Rxa-wxAD=0

where a is the perpendicular distance from A to(Rhas zero moment
about A)

But a = 12 sin 60, and AD = 6 cos 60
1 R x 12 sin 60- 20 x 6 cos 60=0
TR=10cos 60 =5.8N

Sin 66

Supposed is the angle F makes with the vertical, resolviogces
vertically, F cos'| = w = 20N. Resolving horizontally, F sin = R =
5.8N

0 F?cog @ +F? sif@=F=20%+ 58

0F=+20+58&

= 208N
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We have used graphical method to provide satisfacsolution of
problems in equilibrium. But it is much easer teeurectangular
components of the forces to sum up forces acting body. We refer to
this as analytical method. Recall from your knowledf resolution of
vectors into its Cartesian coordinates, that tisultant, R or a set of
coplanar forces (i.e. forces acting in one plame)R =) f, i.e. sum of

all x - components of the forces

Ryzz f,i.e. sum of all y - components of the forces. Henghen a

body is in equilibrium, the resultant of all thedes acting on it is zero.
This means that all the Cartesian components oélogors must sum
up to be zero.

R=0or) f,=0,) f, =0 33

These set of equations are called the first camditif equilibrium. The
second condition is that the forces must have ndeecy to rotate the
body.

Note that the first condition of equilibrium enssirthat a body be in
translational equilibrium while the second conditensures that it be in
rotational equilibrium. These two conditions ane basis for Newton’s
first law.

Consider the body in Figure (3.8) below part (apding at rest from
the ceiling by a vertical cord.

A

X

OO\

(a)
(h)

Fia 3.1( |

Part (b) of the Figure is the free-body diagramtha body. The forces
acting on it are its weight yand the upward forcge exerted on it by the
cord. Resolve the forces along the x and y-axedsfiad the conditions
of equilibrium.

Solution
Let the x axis be along the horizontal and theig e along the vertical
axis. There are no x components of the forces
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0y f,=0

The y -component of the forces arq Whd T,. For equilibrium to hold,

Y f,=0. This means that

T1_ leozz fy
0T, - w(firstlaw)

Now for their line of actions to be the same, tkatee of gravity must
lie vertically below the point where the cord isaahed.
Self Assessment Exercise 3.2

In the Figure below a block of weight w hangs frantord which is
knotted at O to two other cords fastened to thingei Find the tensions
in these three cords. The weight of the cordgaken to be negligible.

Solution

If we have to apply the conditions of equilibrium find an unknown
force, then we must consider a body in equilibriuim.our problem, the
hanging box is in equilibrium as shown in the dagr(Fig 3.11)

YA LS L/ /

A N\ O 6> B A \T3| T2'/ °

(a)
0- 0>

_|
(V]

42}

d
<

)
-
A=

Fia 3.1¢

The tension in the vertical cord supporting thecklas equal to the

weight of the block. Note that the inclined codisnot exert forces on
the block, but they do act on the knot at 0. S®cansider the knot as a
particle in equilibrium with negligible weight.

In the free-body diagrams for the knot and the lblsisown above, T

T, and T represent the forces extended on the knot byhitee tcords.
T4, T, and T are the reactions to these forces.
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Now, because the hanging block is in equilibrium
T,' = w (first law)
Since T and T;! form an action-reaction pair,
T, = Ty (Third law)
Hence T =w

Now, to find the forces Jand T3 resolve them into their Cartesian
components (see the Figure (3.12) above)

0 Z f.=T,cosd,- T, cog,= 0
Y, f,=T,sing,+ T, sind,- T,= 0
Since T, and w are known, then these two equations canobed

simultaneously to find Jand . Putting in numerical values, we have if
w =50N, =3, T; = 60

Then,
T, =50 N and the two preceding equations become
V3 1
L(5)-L(5)=0
and

7,1, - 50

Solving simultaneously the results are

T,=25N, T,= 433N

3.2 Newton’s Laws of Motion

Newton’sfirst law of motion describes what happens to atoms)gas,

and any other objects moving or at rest when theylett alone. It is
natural to think that a moving object will eventyatome to rest when
left alone. The ancient Greeks believed so, bignsific observations
have proved them wrong. From Galileo’s experimemghe motion of
objects on smooth planes, continuity of motion watablished. This
happened in the first part of the seventeenth cgntuater, Isaac
Newton extended Galileo’s work and with greaighs and power of
abstraction (Fishbane et al.), correctly and sinspdyed what happens:
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when an object is left alone,
it maintains a constant velocity.

This law is Newton'’s first law or the law of inextiNotice that an object
Is at rest is a special, case of an object withstaont velocity. This first
law of motion stated in Newton’s words is as follow

“Every body continues in its state or rest or
of uniform motion in straight line unless it is
compelled to change that state by forces
impressed on it”

With the help of this law, we can define force asaternal cause which
changes or tends to change the state of rest onitdrm motion of a
body.

Have you noticed that the first law does not telli yanything about the
observer? But we know from our discussions ontikganotion in Unit

1 and 6 , that the description of motion depends vaeuch on the
observer. So, it would be worthwhile to know: fathat kind of

observer does Newton'’s first law of motion hold?almswer to this, let
us look at this scenario.

P
(@) O
(b) O 0, -
Fig 3.13

Suppose that an observer P is at rest with respeant observer O who
is also at rest Fig (3.13a). Let another observeb®accelerating with
respect to O. P will appear to'@ be accelerating in a direction
opposite to the acceleration of ®ig (3.13). According to Newton’s
first law, the cause of the acceleration is someeoSo, ® will infer
that P is being acted upon by a force. But O kntves no force is
acting on P. It only appears to be acceleratéd'téience, the first law
does not hold good for'O It rather holds good for O.

An observer like O is at rest or is moving with @nstant velocity is
called an inertial observer and the one likei©called a non-inertial
observer.

But, how do we know whether an observer is inediahot? For this,
we need to measure the observer's velocity withpeets to some
standard. It is a common practice to considereidueh as a standard.
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This we also saw in our Unit 1 of this course. Ntwe place where one
is performing one’s experiment have an acceleraiovards the polar
axis due to the daily rotation of the earth. Agtie centre of the earth
has an acceleration towards the sun owing to islyenotion around

the sun. The sun also has an acceleration towhelsentre of the

Galaxy, and so on. Hence the search for an alesolettial frame is

unending.

So, we modify the definition of the inertial observ We say that:
two observers are inertial with each either if thee
either at rest or in uniform motion with respectdoe
another. If an observer has an acceleration wegpect to
another, then, they are non-inertial with respectohe
another.

Thus a car moving with a constant velocity and anratanding on a
road are inertial with respect to one another waitar in the process of
gathering speed, and the man standing are nortiainesth respect to
each other.

The first law tells you how to detect the preseocabsence of force on
a body. In a sense, it tells you what a force dbgwoduces

acceleration (either positive or negative ) in ayoo But the first law

does not give quantitative, measurable definitibfoace. This is what

the second law does. It gives quantitative, medwerdefinition of

force.

Newton’s Second Law of Motion

If you are struck by a very fast moving hockey lyall get injured, but
if you are hit by a flower moving with the same o@ty as that of the
ball, you do not feel perturbed at all. Howevéryou are struck by a
slower ball, the injury is less serious. This oades that any kind of
impact made by an object depends on two things viz.

0] its mass and

(i) its velocity

Hence, Newton felt the necessity of defining thedpict of mass and
velocity which later came to be known as linear reatum.
Mathematically speaking, linear momentum is givgn b

P=m0 34
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Thus P is a vector quantity in the direction ofoegtly. The introduction
of the above quantity paved the way for statingstaeond law, which in
Newton’s words are as follows:

“The change of motion of an object is

proportional to the force impressed; and is

made in the direction of the straight line in

which the force is impressed ”

By “change of motion,” Newton meant the rate ofruj of momentum
with time. So mathematically we have

- _d(P)
FO=,

or

E= 9P 35
dt

whereF is the impressed force ark k is a constant of @rtogmality.
The differential operator

% indicates the rate of change with time. Nowh# mass of the body

remains constant (i.e. neither the body is gaimngass like a conveyor
belt nor it is disintergrating like a rocket ), the

dbzdezmdQ:ma

dt dt dt
where
as O;—tmz the acceleration of the body.

Thus from Eqgn. 3.5 we get

F= kmaand 36a

-

F|= kma 3.6b

We saw earlier that the need for a second law wed#sid other to
provide a quantitative definition of force. Somathmust be done with
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the constant k. We have realised that the taskfofce'é acting on a

body of mass m is to produce in it an acceleratimnsHence, anything

appearing in the expression for force other thaanala must be a pure

number, i.e. k is a pure number. So we can aftonthake a choice for
its numerical value.

We define unit of force as one which produces aniteleration in its
direction when it acts on a unit mass. So we oldtaim Eqn. (3.6b) that
1=k.1.1ork=1.Thus, Egn. (3.5), and (3&Ketthe form
F= ap and 37a
dt

for constant mass F=ma 3.7b

Now, we know from Unit 6 that if the position vectaf a particle is at

a time tthen its velocit@ and acceleratiom are given by equations.

- -

AO d

- dr - 0
=g andas Im(=0) =g

Substituting for

aand0in Egn. 3.7 we get

- dl d dr
F=m——=m—_

at - Mg (ot

38

Egn. 3.8 is a second order differential equatiop inlf we know the

forceF acting on a body of mass m, we can integrate Egd) to
determine r as a function of t. The functigr) would give us the path

of the patrticle. Since Eqn. (3.8) is of seconceorave shall come across
two constants of integration. So we require twitiah conditions to
work out a solution of this equation. Conversédlyye know the path or
trajectory of an accelerating particle, we canEge. (3.8) to determine
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the force acting on the body. Egn. (3.8) also eembis to determine
unknown masses from measured forces and accelesatidon’t you
see that calculations in this area have been madasy by the second
law of Newton?

So far, we have considered only one force actintherbody. But often
several forces act on the same body . For exarti@eforce of gravity,
the force of air on the wings and body of the plamel the force
associated with engine thrust act on a flying(jéig 3.13)

Fig. 3.13 Forces on a Jet; the thrust of the engine, F
the force of the air provides both lift and dragttte force of gravity.

In such cases, we add the individual forces vedtgrito find thenet
force acting on the object. The object's mass and ecatbn are
related to this net force by Newton’s second la¥au may now like to
apply Newton’s second law to a simple situation.

Units of Force
In Unit 2 we discussed the dimensions and unitsnas, length and
time. Because acceleration has dimensions ofJlahd units m$ in

S.I units, force has dimensions of [M.EJfand in S. I, units of kg nfs
or Newtons (N):

AN = 1kg ms® 39
In other words, a 1 N force exerted upon an ohjattt a mass of 1kg
will produce an acceleration of 1 s

Self Assessment Exercise 3.1

A force of 200N pulls a box of mass 50kg and overes a constant
frictional force of 40N. What is the acceleratmiithe sledge?

Solution 3.1
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The Resultant force, F = 200N - 40N = 160N

from
F=ma=50xa
50kg
= 32ms?
or a=32N

Self Assessment Exercisg.2

An object of mass 2.0kg is attached to the hook spring balance, and
the latter is suspended vertically from the roofaofift. What is the
reading on the spring balance when the lift isa@cending with an
acceleration of 20cm?(ii) descending with an acceleration of 10&ms

Solution 3.2

0] The object is acted upon by two forces
(@) The tension TN in the spring-balance, whacts upwards
(b) Its weight 20N which acts downwards.

Since the object moves upwards , T is greater @M. Hence the
resultant or net force, F acting on the object is
(T - 20) N approximately
Now F = ma
where a is the acceleration

() T (T-20)N=2kgx0.2ms
0T=20.4N Answer

(i)  When the lift descends with an acceleration of h0sé or 0.1ms
2 the weight, 20 N is now greater than N the tension in the
spring balance.

(iii)

2 Resultant force = (20 -)N = 20 -T,
2 F=(20-T)N =ma = 2kg x 0.1ffis
2T=20-0.2
=19.8N
Answer

Newton’s Third Law of Motion
So far we have been trying to understand how ang avkingle body
moves. We have identified force as the cause afigh in the motion of

a body. But how does one exert a force on his Bddgvitably, there is
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an agent that makes this possible. Very oftenr pands or feet are the
agents. In football, your feet bring the ball imtwmtion. Thus, forces
arise from interactions between systems. This iaahade clear in
Newton'’s third law of motion. To put it in his owvords:
“ To every action there is an equal and opposite
reaction.”

Here the words ‘action’ and ‘reaction’ means foressdefined by the
first and second laws. If a body A exerts a fof§g, on a body B, then
the body B in turn exerts a forcgfon A, such that

Fag = -Fea
So, we have fg + Fga =0

Notice that Newton'’s third law deals with two fosgeeach acting on a
different body. You may now like to work out an esise based on the
third law.

Self Assessment Exercise 3.3

(@) When a footballer kicks the ball, the ball and than experience
forces of the same magnitude but in opposite doestaccording
to the third law. The ball moves but the man does move.
Why?

(b)  The earth attracts an apple with a force of magdeitd. What is
the magnitude of the force with which the appleaats the
earth? The apple moves towards the earth. Whyg doe the
reverse happen?

Solution

(3a) The reaction force acts on the man. Due te Hkrge
mass(inertia) of the man the force is not able axerhim move.

(b)  Apple also attracts the earth with a force @fgmtude F. The
acceleration of the apple and the earth are, réspbc F/m, and
F/m, where g and mare the masses of the apple and the earth,
respectively. Since-mpm, F/m<< F/m,. Hence the earth does
not move appreciably.

Newton’s laws of motion provide a means of undewditay most

aspects of motion. In the next Unit, we shall gtuchpulse and
momentum.

4.0 CONCLUSION
In this unit, you have learnt that
. Objects are kept in motion as a result of exteynatiplied forces

on them.
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. Even inanimate objects can exert forces

. A body can only be in static or dynamic equilibriufmall the
forces acting on it cancel each other.

. The three Newton’s laws of motion are applied ifvieg
problems relating to motion and forces that keepeab in
motion

5.0 SUMMARY

What you have learnt in this unit are:

. that the study of the parametres that describeadimeotion is
called kinematics

. that the studies of the causes of motion is callgthmics

. that force is a push or a pull exerted on a bodgrinther body.

. that there are gravitational forces and contacder

. that forces can be represented graphically justugctors

. that the conditions for equilibrium when a systefrforces are

acting on a rigid body are:
0] the resultant of all the forces sum up to zero
le.

R=YF+LF+LFE =0

(i)  The forces must have no tendency to rotagelibdy.
The three Newton’s laws express the dynamics ofiandiow
forces acting between objects determine the sules¢quootion of
those objects. The first law states what happenantmbject-
moving or at rest when it is left alone. The settaw is
F=ma
The third law is
Fea = - Fag

l.e. As regards forces between objects that if & Brinteract and forces
are acting between them, then by this third lawftlhee an object A due
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to object B is kg and is equal and opposite to the force an objedud3
to object A which is Ea .

6.0
(1)

2)

3)

7.0

that in S. |, force is measured in Newtons ablated N where N
= 1kg m&

Newton’s laws help us to determine the motion obbject if we
know the nature of the forces that act on it.

Conversely, the laws enable us to measure forcisgaon an
object by measuring the objects motion.

that observers in reference frames moving with gesspo one
another observe the motion of a given object difidy.

TUTOR MARKED ASSIGNMENTS (TMA)

Astronauts on the Skylab mission of the 194 their masses
by using a chair on which a known force was exebpyed spring.
With an astronaut strapped in the chair, the 15li@rainderwent
an acceleration of 2.04 xIms® when the spring force was
2.07N. What was the astronaut’s mass?

Three children each tug at the same plank.tidl forces are in
the horizontal plane. The three forces on the plhake the
vectorial decomposition = -5k units, i = 5i units and k= (-
5+ 5Kk) units in terms of their unit vectors. Whsaithe force on
the box? What can you say about its consequenbnibdtgnore
the force of gravity.

A particle of mass m is hung by two lightssgs. The ends A
and B are held by hands. The strings OA and OBenaalgles 2
with the vertical.

Find the values of T and'Tn terms of m and T. T is tension in
hand A and Tis tension in hand B.
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CONTENT

1.0 Introduction
2.0 Objectives
3.0 Main Body
3.1  Definition of Projectile Motion
3.2  The Trajectory
3.3 Determining the Parameters of a Projectitid.
4.0 Conclusion
5.0 Summary
6.0 Teacher Marked Assignment (T.M.A)
7.0 References and Further Reading.

1.0 INTRODUCTION

In the preceding unit we discussed the conceptsfoofe and
acceleration. We have applied Newton's first lavwsolving problems
in equilibrium. In this unit we shall apply Newtsrsecond law to study
projectile motion which is a type of motion in aapl under the
influence of the earth’s gravitational field .TB~dence explorers how a
body behaves with the resultant force on it is meto. The chief
parameters we shall learn to celebrate here anchtigee, the maximum
height and the time of flight of a particle unddargpprojectile motion.

2.0 OBJECTIVES
By the end of this unit, you should be able to:

define a projectile motion and a projectile.

state the condition in which a projectile motiompassible
Represent projectile motion graphically.

compute the time of flight, highest point reachadaximum
range attained by a projectile given initial corudis.
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. Find the angle of projection of a projectile giviie necessary
parametres.

3.0 MAIN BODY
3.1 Definition of projectile motion

To appreciate what you will learn in this unit,dian open space in your
neighborhood where you can conveniently throw gmall stone at an
angle to the horizontal. Then throw the stone dxated above. Return
to your room and try to sketch the path tracedheystone.

Is your sketch similar to Figure (3.1) below?

The stone or object thrown into space is calledogeptile. The shape
of the path traced by the projectile is called eapala. The maximum;
horizontal distance traveled is the range, R.

VA
Vo

A
v

R
Fig 3.1

Self Assessment Exercise 3.1

Give more examples of projectile motion.

Projectile motion is a good example of motion idithensions. The
initial velocity of projection at an angle as shown in Figure 3.1 is
always resolved into two components there is thidoat component by
which it attains some height at any instant of timéhe y-axis and some
horizontal component by which it covers some rarigen the x-axis.
Hence, the motion can be described as a combinationorizontal
motion with constant velocity and vertical motionittw constant
acceleration.

Self Assessment Exercise 3.2

Close your book and with a sheet of paper drawnaile path traced by
the stone you threw outside. Is your representatity better now?
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The Trajectory

We can find the trajectory of a ball undergoingjgctiles motion by
plotting its height y versus its x-position. Weokn both x and y as
functions of time, and we can eliminate the timpatelence by using
appropriate equations of motion.

Therefore from

1
x= 0+ (Docoseo)t+§ () & 1
x=0, cosg,t 2
Ot=— 3
" 0,cosb,

Now using the equation for y

1
y=0+ (vosineo)t—ggt2 4

1
= (v, Sing, )t - > gt® 5

y becomes after substituting for t

_ - X 1 X 2
y=0+ (DOSInHO)DOCOSGO Zg(Docoseo) °
i.e.
y=(tang, )x (- 9 ) X 7
0 20,7 cog g,

We see that the coefficients of x antl are both constants, so this
equation have the form

Y = GX - G X 8
This is the general equation of a parabola. Hemeeonclude that the
trajectory of all objects moving with a constant@eration is parabolic.

So, plotting different values of x, with their cesponding values of y
will trace the trajectory of a projectile. Fig.(3.2
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itial velocity vy
i the horizontal

Is there any other thing you think could affect thetion of a projectile
besides gravity?

Yes there is. You know that our atmosphere isasnedcuum. The air in
the atmosphere do resist the motion of the prdgectBut because the
effect is so small we generally neglect its regsstiforce on the
projectile. Note that this could be a source obemm our experiments.

Self Assessment Exercise

A ball is projected horizontally with velocity,wf magnitude 8mik
Find its position and velocity after %4 s

Solution
yA

Fig 3.3 Trajectory of a body projected horizontally

The trajectory of the ball is represented in thegdam above Fig (3.3).
We notice that the angle of projection is zeroisTheans that the initial
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vertical component of velocity is zero. Thus, boizontal component
of velocity is equal to the initial velocity and wecall that it is constant.

The x and y coordinates when %s and g = 10m$are

1
x=[0, t= (8ms‘1)(z 3=2m

and

—_E 2—_£ <2 E 2_
y= th- 2(10ms)(4$;-0.32m

The components of velocity are
0,=0,=8ms*

I
0,=-gt=(- 10msz)(z 3
=25ms*

The Flight Time

Let T be the total time of flight of a ball. Thalbreaches its maximum
height, H exactly half way through its motion, Fay4

YA

Vo

>AV

A
v

Fig 3.4

At this point its motion is horizontal; i.e. the rtieal component of
velocity is zero. This occurs at time t = T/2. Name can find T/2 by
putting V, = 0 in the following Eqn.

0,=0,sing,- gt

becomes,
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0=Vysin 2 - gt
so far t = T/2 we have

.
0= Dosineo—%

Range

We defined the range R of a projectile launchedhftbe ground y = 0,
to be the horizontal distance that the projectédedls over level ground.
Fig (3.2). The quantity R is the value of x where tprojectile has
returned to the ground. That is, when y again isqearo. Therefore
from equations we have

0=R(G-xR) 9
The value R = 0 satisfies the condition y = 0 his equation. Note that
this is the starting point of the projectile motio®ince it is launched
from the ground, its x position is zero at launiohet
Also if the factor (¢ - ;; R) = 0 in equation 8 :. R =/c, . This case
corresponds to the projectile having landed backhenground after its
flight.

Substituting the values of and ¢ from equation 7 we get

_ ¢ _tang, R0, codd, )

= 10
G g
_ 207 sing,
"y (—CO Seo)co§ 8, 11
Simplifying, we get
R= S ﬁZsinH coy 12
¢ 9

from trignometry  sin@26,)= 2sing, co#,

Then using it, we find that
V, Sin264,
R= T 13
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The range varies with the initial angle, 2 of thejgctile as seen in
equation 13. We see that for 2 = 0, then R = 2.4f90 again R = 0 ie
when a projectile is launched straight up, it cornask straight down.
As 2 increases from 0 to 4&nd then to ) sin(D) first increases from
0 to 1 then decreases back to O respectively. mieigns that there are
two initial angles to launch the projectile in orde get the same range
for a given initial speed.

Note that the range reaches a maximum value whe22g reaches a

maximum value of 1 with reference to Egn. 13. Tddsurs for 22 =
90, or 2 = 48 in which case

R, Do 14
ax g

If the projectile is shot at an angle higher or éowhan 48, the range is
shorter.

Maximum Height

The maximum height,ys = h is reached at time T/2
71 from Egn. 4 we find that the height at this tirae i

h=(0,sing,)

20, ., 1 20, .
29 sing, Zg%smﬂ 15
sin’ g,

-gQ
_07sin’ g,
T

v
, SIN° G,
2

=0, (

16

Self Assessment Exercise

A group of engineering students constructs a nodelace that lobs
water balloons at a target. The device is constduso that the
launching speed is 12ms The target is 14m away at the same elevation
on the other side of the fence. How can they aptism this
mission?(Hint use g = 9.8Mk

Solution

Analysing the problem, we see that the range eguudtir ground level
Is relevant. The range varies with the initial l@ngo the students need
to find a value of T that will give a range of 14nWe apply Egn. 13
which is

112



PHY 111 ELEMEARY MECHANICS

R 0, sin26,
g
to get
(12ms*)*sin(26,)

R=14
™ 9ams?

0 sin26 = 0.95

This equation has two solutions-that isj;2= 72 and 27, = 108
Hencell, = 36 and 5%

These are the two possible initial angles thatstiuelents will use that
result in the given range. For a given velocitypadjection there are in
general two angles of inclination that will achigte same range for a
projectile. If one of these is, the other is what?

Self Assessment Exercise

A mass is projected horizontally from the top dfli&f with velocity V.
Three seconds later, the direction of the velogitihe mass is #50 the
horizonntal.

Take the acceleration of free fall g to be 18mdind the value of the
projection velocity, V.

Solution
If the mass falls at 430 the vertical, then, the horizontal and vertical
components of velocity must be equal. The vertiahponent can be
calculated using the equation of motion,

V=u+at
for a =10m¥ , u = initial velocity, t = 3s

H=0
1 V=0+10x3

= 30m3

4.0 CONCLUSION

In this unit, you have learnt

. that projectile motion is a type of motion with ctant
acceleration.

. that projectile motion is an example of motionwotdimensions
in the Earth’s gravitational field.

. that we apply the laws of motion in solving probterthat
describe projectile motion.

. how to represent projectile motion graphically.

. that the concept of projectile motion can be emgtby warfare.

5.0 SUMMARY
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What you have learnt in this unit are:

. that an object given an initial velocity and whistbsequently
follows a path determined by the gravitational &mBxting on it
and by the frictional resistance of the atmosphisrecalled

projectile.

. that the path followed by the projectile is calkettajectory

. that projectile motion is an application of Newtsisecond law of
motion from which we have that a = F/m.

. that the forward component of velocity does not eanto play in
the projectile flight.

. that projectile motion can be described as a coation of

horizontal motion with constant velocity and veationotion with
constant acceleration.

. that projectile motion is a form of parabolic matio

. that the parameters are

0, =0,,= 0 cosb,

0,=0,-gt=0,sing,- gt
O

tang = —~
O

X

The x - coordinate is

x=0, t=(0,cos6, X

the y-coordinate is

1 1
y=0,, t—Eth: (Dosineo)t—z gt

The resultant velocity

0=,0,2+0,2

The range, R is

20,sing
R= 0, t=0,cosfd, x——

6.0 TUTOR MARKED ASSIGNMENT (TMA)\

1. A wayward ball rolls off the edge of a verticalftibver-looking
the Niger River. The ball has a horizontal compuare velocity
of 10ms' and no vertical component when it leaves the .cliff
Describe the subsequent motion.

114



PHY 111 ELEMEARY MECHANICS

2. A boy would rather shoot mangoes down from a them tclimb
the tree or wait for the mango to drop on its owrhe boy aims
his catapult at a mango on the tree, but just whestone leaves
the catapult, the mango falls from the tree. Shioat the rock
will hit the mango.

For constant acceleration we apply equations
1
X=X+ O, t+§axt2 and
O, =0p tat
We must specify the balls initial position and ey by using the given

information in the question.
We then determine the velocity component

4. What was the maximum height attained by a ballqutejd off the
cliff with an elevation angle 360 the horizontal and how long
was the ball in flight?

The other relevant information is
height of cliff =52m
initial velocity = 48m3
Total horizontal distance travelled =281m

5. A projectile is shot at an angle of 3#% the horizontal with an

initial speed of 225m% What is the speed at the maximum
height of the trajectory ?
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1.0 INTRODUCTION

In Unit 7 we dealt with Force and Newton’s lawswdtion. In this Unit
we shall treat impulse and momentum as a consequribe action of
force. Pulse is a force acting for a very smalklort duration of time
as in a sudden impact of an object on another ihkéhe impact of
batting a tennis ball or an upsurge of current ekldomentum of an
object plays an important role in Newton’s secoaw.l A force
produces a change in momentum. When a system wélpars isolated,
the total momentum is constant. This principlepwn as the principle
of conservation of momentum is particularly useful understanding
the behaviour of colliding objects. We shall leabyout this principle in
this unit of the cours. But first of all, we shaltroduce the concept of
impulse and momentum and how they are applied itlomaof rockets.
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2.0 OBJECTIVES

By the end of this unit, you should be able to;

. define impulse and linear momentum.

. write the mathematical definition of impulse andnefar
momentum

. solve problems in linear momentum

. describe the motion of rockets using the linear maotum
principle

. state the conditions for the conservation of lireamentum

. apply the principles of conservation of linear mowoen

3.0 MAIN BODY

3.1 Definition of Impulse and Momentum

Imagine that a particle of mass m is moving alorggraight line, Let us
assume that the force acting on the particle issteort and directed
along the line of motion of the particle. If tharpicle’s velocity at some
initial time t = 0 is \4, then its velocity at a later time, t, is given By
Vo + at

| know you recognise this expression as one ofetiigations of motion
we treated in units 5 and 6. Here, the constaracokleration, a, is
given by F/m from Newton’s second law. Making thdstitution for a
we get.

Ft =mv- my 31

you will notice that the left hand side of equat®Ad is the product of

the force and the time during which the force adthis expression, (Ft)

is called the impulse of the force. Generally, €anstant force, F acts
for a short interval,tto time § , the impulse of the force is defined
mathematically as

Impulse = F @ t;) = flit

where A=t -t Is very small interval. We notice that in Eqn.({3the

right hand side of it contains the product of masd velocity of the
particle at two different times. The product, masha special name
called momentum. This is very easy to remembedre dxperience you
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get when someone suddenly bumps into you unsusgécat a bend in
the street is an impact of momentum. Momentum dugifinear motion
is also called linear momentum. We often use yimeb®I| P to represent
momentum.

Momentum =P =mv

So, for the time intervalg aind $ with corresponding particle velocities
of V1 and \4, the impulse is given by,

F(t,-t)=mv,- my 3.2

We note that this relation between impulse andgasahe same as that
between work and kinetic energy change which wé distuss later.

The differences between them | would like you spalote are that:

0] impulse is a product of force and time but workaiproduct of
force and distance and depends on the angle betiwess and
the displacement.

(i)  force and velocity are vector quantities and , ilpuand
momentum are vector quantities but work and enargyscalars.
In linear motion the force and velocity may be heed, as we
found earlier in this course, into their componeaisng the x-
axis and could have either positive or negativees

Self Assessment Exercise 3.1

A particle of mass 2kg moves along the x-axis athinitial velocity of

3 mst. Aforce F =-6N (i.e. the force is moving inetnegative x-

direction) is applied for a period of 3s. Find thiéial velocity.

Solution

We apply the following eqn,

F(t,-t)=mO,-mQ,

thus
(-6N)(39=(2k9 U, - (2kg (3ms)
or  [0,=-6ms*

The final velocity of the particle is in the negatix - direction that is
why we have a negative sign in the value for v&joci
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The unit of impulse is the same as the unit ofgheduct of force and
time in whatever system the calculation is madeusTin the S.I system,
the unit is one Newton second (1 Ns) in cgs systesrone dyne second
(1 dyne s) and in the engineering system it ismmend second (1 Ib s).

The unit of momentum in the S.I system is 1 kilagnaetre per second
(1 kg msh).

Since

lkgms'=(1kgmg) s1 Ns

this implies that momentum and impulse have theesamits in a
particular system.

Generally, impulse are forces that vary with tink@r sufficiently small
time intervals, t, the force acting could be taken to be const&at, the
impulse during a timelt is FIt. This is shown graphically in Figure
3.1.

Area =

t1 A to

Fig 3.1

w

Graphically, Flt is represented by the area of the strip of widthas
shown under the curse of F versus t. The totallsgis given by the
areas under the curve between the initial timand final time of action
of the force £ Momentum increases algebraically with increase i
positive impulse but decreases with negative inguls

Note that if the impulse is zero, there is no cleaimgmomentum.

The total impulse could also be found by integafinit as( it tends to
zero or as;tapproaches thus,

lim Fat= [ Fat 33

-t -0
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This value also gives the change in linear momentdiran object in
which such a force acts.

t, d
[} G dt= P(L)- R(=8p 34

We have now seen that impulse of a force is chamgdinear
momentum. If a force acts during a time intervabut is variable, then
to calculate impulse we would need to know the fiancF (t) explicitly.
However, this is usually not known. A way outasdefine the average

for F by the equation
_ 1 t,
Fave—EJ‘tl F(t)dt 35

wherellt = t,- t;
so from Egns. 3.4 and 3.5 we get

Total Impulse = el lt=1Ip 3.6

There are many examples which illustrate the @iatip between the
average force, its duration and change of lineamemum. A tennis
player hits the ball while serving with a greatd®rto impart linear
momentum to the ball. To impart maximum possiblemmantum, the
player follows through with the serve. This actgolongs the time of
contact between the ball and the racket. Theret@rBring about the
maximum possible change in the linear momentumskauld apply a
large force as possible over a long time interngpassible. You may
now like to apply these ideas to solve a problem

Self Assessment Exercise 3.2

(1) A ball of mass 0.25kg moving horizontally wihvelocity 20m3s
is struck by a bat. The duration of contact i§ $0After leaving
the bat, the speed of the ball is 40’nis a direction opposite to
its original direction of motion. Calculate the sage force
exerted by the bat.

(2) Give an example in which a weak force acts@dong time to
generate a substantial impulse

Solution:
Let J = impulse
0] Impulse , J =1p
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= (0.25kg) x {40-(-20)}mis

= 15kgms
(t=10%
" Faverage= __J =1500N
Ot

(2) The gravitational force of attraction between and earth is very
weak but it has been acting since their formatiod 80 it can
generate a substantial impulse.

Motion with Variable Mass

If the mass of a system varies with time, we capr&ss Newton’s
second law of motion as

_dp_d(my_ dv  dm
Tt dt MaVat
Under the special case when v is constant, Eqn) E@comes

37

F=ydm 38
~ U dt

Let us study an example of this special type

Example

Sand falls on to a conveyer belt B (Fig. 3.2) & tlonstant rate of
0.2kgs'. Find the force required to maintain a constagipeity of
10m/s of the belt. Here, we shall apply Eqn. (&8)velocity remains
constant. Since the mass is increasingdtis positive. The direction
of F, therefore, is same as that of v, i.e. threation of motion of the
conveyer belt. Thus, using Eq. 3.8 we get

F = (10m8%) x (0.2 kg m&) = 2kg m& = 2N.

H| EEN| E|] H|] BN BN ®H] ®m]| R

Q
Fig 3.2

10ms!
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Another example of a varying mass system is th&etoc In a rocket
(Fig. 3.3) a stream of gas produced at a very heghperature and
pressure escapes at a very high velocity througlexdraust nozzle.
Thus, the rocket losses mass and

cclj—r:] IS negative. So the main body of the rocket eepees a huge
force in a direction opposite to that of the exhasising it to move.
This is a very simplified way of dealing with theotion of a rocket. We
shall next analyse the motion of a rocket witht@elimore rigour using
the idea of impulse.

3.2 Motion of a Rocket

Let us assume that the rocket has a total mass &/tiate t. It moves
with a velocity V and ejects a mas# during a time intervalt. The
situation is explained schematically in Fig. (3.8dA3.4a and b)

At time t the total initial momentum of the systenMv (Fig.3.4a). At
time t + [t the total final momentum of the system = (M(M)
(v + 0v) + (OM)u (Fig. 3.4b).

Notice that we have used the positive sign for cabee the total final
momentum of the system in Fig 3.4b is a vector samd not the
difference of the momenta of M and (M(*M). Let us now apply
Eq.3.6. If we take the vertically upward directi@s positive the
impulse is - Mg 1t and is equal to the change in linear momentum.

So, -MgAt=(M-[IM) (v+lv)+ ((IM)u- Mv
=M (V) + M (U -v-0lv)

\/ A

V+Av Z S

(b)

Fig 3.4 z{;\y
()

Fig 3.3

to simplify the above relation: recall thagly= Vp - Vg
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0 - g:%+ ﬁ%urelwhere u, = u-(v+ v) is the relative velocity

of the exhaust with respect to the rocket.

Now, in the limit
At - 0, we have

—g:a—ﬁaum, 39

The negative sign on the right-hand side of Eqdappears as

At"f OM: _dd_“t/l’ because M decreases with t.

At
so, when we apply Eq. 3.9 in numerical problemgusereplace

dd_l\t/l by its magnitude. On integrating Eq. 3.9 withpexs to t, we get

1 M
dv dM
Jgrot=- ot |

where M is the initial mass of the rocket and M is its mas$ time t.
Now, if vq is the initial velocity, then we get

M
V= V= Uy IW_ gt 310
0

We shall illustrate Eq. 3.10 with the help of ameple.
Example

The stages of a two-stage rocket separately hagsesnd 00kg and 10kg
and contain 800 kg and 90 kg of fuel, respectiveWhat is the final
velocity that can be achieved with exhaust velooftiL.5 kms' relative
to the rocket ? (Neglect any effect of gravity)inc® we are neglecting
gravity Eq. 3.10 reduces to

M
V- V= Uy In— 311
MO

Now, let the unit vector along the vertically upaalrection be
n. So, Eq. 3.11 can be written as

vi- e - (Y, D InMﬁ’ where y, =- 1, n as the relative velocity of
0

the exhaust points vertically downward.
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M
V- V= Uy Inﬁ 311

0
For our problem,
Ure| = 1.5 kmsl

For the first stage,o\= 0

Mo = (800 + 90 + 100 + 10) kg = 1000kg

M = (90 + 10 + 100)kg = 200kg, as the 800 kg fustkdournt in the first
stage.

Hence, from Eq.3.11 a, we get

200
- _ <1
v=- (15kms )( 1 ﬁﬁ

= (-15kms™") (1n2- 1n10
= 15x 16kms*
= 2.4kms?

Note that the above will be the initial velocity fihe second stage. Also
note that at the beginning of the second stage thecurs another drop
in mass to the extent of the mass

of the first stage (i.e. 100kg). For the secondesta

0,= 2.4kms*
M, =(90+ 10kg= 10kg M= 1kg
] 10
0= (24~ 15D Jkms
= (2.4+ 15x 23kms'= 585kms= 58kms
The final result of this Example has to be round&do two significant
digits. Here we have a special case as the digpetdiscarded is 5. By

convention , we have rounded off to the nearest euenber.
Let us now follow up this example with an exercise

Self Assessment Exercise 3.3
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Find the final velocity of the rocket in the Exam@bove taking it to be
single-stage, i.e. its mass is 100kg and it ca@i&3kg of fuel. Hence
comment whether the two-stage rocket has an adyartser single
stage or not.

Solution

Had it been a single stage rocket, thgr 0
Mo = (890 + 100)kg = 990kg

M = 100kg

V = (- 1.5km $)[In 100]

990
= (- 1.5km &)(In 10- In99)
=3.4kms which is 41% less than the value of velocity (5r8K)
attained in a double-stage rocket. Hence doublgeshas an advantage
over the single-stage.

3.3 Linear Momentum

Let us first study a system of two interacting jdes’1l' and ‘2' having
masses mand m (Fig.3.5). Let p and p be their linear momenta. The
total linear momentum p of this system is simplg tkector sum of the
linear momenta of theses two particles.

P=p+ P 3.12
From Newton’s second law, the rate to change, @ phe vector sum of

all the forces acting on 1, i.e. the total exterfuate K, on it and the
internal force §; due to 2:

F o+ f,= C:j—'ct’l 313
Similarly, for particle 2:
F,+f,= Z—% 31%
el
1
f21 1
2 e2
Fig 3.5
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From Newton’s third law, we know that,= -f,;. Therefore, on adding
Equation .3.13 a and 3.13b, we get

F,+Fe,= C:j—?u dd_% which may be written as

Fe:%(p1+ p,), Where E is the net external force on the system.

Therefore, from Eq. 3.12
F,=P 314
° dt”

Thus, in a system of interacting particles, it he et external force
which produces acceleration and not the internae® Now, we shall
see how Equation. 3.14 leads to the principle ofseovation of linear
momentum.

3.4 Conservation of Linear Momentum

In the special case when the net external fords Eero, Equation 3.14
gives

dp
at 0} 315
so that p = p+ p, = a constant vector.
This is the principle of conservation of linear nemum for a two-
particle system. It is equally valid for a systerhany number of
particles. Its formal proof for a many-particlessgm will be given later.
It states that:

“if the net external force acting on a system isoze¢hen

its total linear momentum is conserved”.

Let us now apply this principle.
Example

A vessel at rest explodes, breaking into threegsiecl'wo pieces having
equal mass fly off perpendicular to one anothehlie some speed of
30 ms'. Show that immediately after the explosion thedthpiece
moves in the plane of the other two pieces. Iftthed piece has three
times the mass of either of the other piece, whdhe magnitude of its
velocity immediately after the explosion?
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The process is explained in the schematic diagrgn{36). The vessel
was at rest prior to the explosion. So its lineammantum was zero.
Since no net external force acts on the systenyti linear momentum
Is conserved. Therefore, the final linear momenisiaiso zero, i.e.

pp+tp+p;=0 3.16a
or Pt =R 3.16b

(p1 + ) lies in the plane contained byapd p. So in accordance with
Eq.3.16b, -p must also lie in that plane. Henceg, les in the same
plane as pand p. Now, from Eq.3.16

(P* R)-(R* B)=( R R, 316¢
o PRt AR P
But p.p=0( pisperpendiculartoy. 316 d
So  g= g+ h

or  (3my’=(my*+(mir,

or o V2 = 2nt W, orv:% u

According to the problem
u=30ms’0 w 10/ 2ms 316b

I
I
I
|
|
Fig 3.6

There is another method of finding the magnitudehef velocity. We
can express Equation 3.16b in terms of the compertm,p, and g in
two mutually perpendicular directions of x and yeaxLet p be along
x-axes, p along y-axis and letspmake an anglée! with x-axis. Then
Equation 3.16b gives:
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R O
p.d+ p,]= - (p,cosd + p,sing j). 317

This equation is satisfied iff (see Eq. 1.6)

-p;,cosf = p, - pSing= p, 318
or p5 = p®+ p* Which is Egn. 3.16c

Self Assessment Exercise 3.4

Find the direction of v in the example above.

From the above example and the way we obtainedptineiple of
conservation of momentum, it may appear that thecyme is limited in
its application. This is because we have assuinadrnio net external
force acts on the system of particles. Howeviee, $cope of the
principle is much broader.

There are many cases in which an external forah as gravity, is very
weak compared to the internal forces. The expiosioa rocket in mid
air is an example. Since the explosion lasts foery brief time, the
external force can be neglected in this case. xamgples of this type,
linear momentum is conserved to a very good appration.

Again, if a force is applied to a system by an edé agent, then the
system exerts an equal and opposite force on teatagNow if we
consider the agent and the system to be a partnefva larger system,
then the momentum of this new system is conseng&idce there is no
larger system containing the universe, its totakdr momentum is
conserved.

We have seen that whenever we have a system alpardn which no
net external force acts, we can apply the law afseovation of linear
momentum to analyse their motion. In fact, theasdage is that this
law enables us to describe their motion withoutwking the details of
the forces involved.

4.0 CONCLUSION

In this unit, you have learnt

. that impulse is a force of very short duration
. that linear momentum is given by the product of ke and
velocity.
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5.0

that force is as a result of change of momentuin drticle

that the principle of momentum change is appliedrocket
propulsion

that when two objects collide, their momentum muos
conserved.

SUMMARY

What you have learnt in this unit are:

Note

that impulse = Ft where(t = t,- t; is a very short time interval
F, &t and { have their usual meanings.

that momentum, p = mv where m = mass of particld an=
velocity of particle

that force = my - mvyy = [mv = p or force

_dp_d(my_ dv_dm
Tat at Ma Va

that the sum of the linear momentum p for a systéntwo
particle p having mass;mand m and linear momenta, and g is
P=R+PR

that linear momentum is always conserved ie%?:o, then

momentum IS conserved.

If the external force acting on a system is zehentits total linear
momentum is conserved.

6.0 TUTOR MARKED ASSIGNMENTS (TMA)

)

(2)

7.0

A ball of mass 0.4 kg is thrown against a bne&ll. When it
strikes the wall it is moving horizontally to theft at 3 mg, and
it rebounds horizontally to the right at 20t sFind the impulse
of the force exerted on the ball by the wall.

A ball moves with a velocity of 1.2m/sthre positive y-direction
on a table and strikes an identical ball that viaest. The rolling
ball is deflected so that its velocity has a congsrof 0.80 mis
in the +ve y- direction and a component of 0.56hirsthe + x-
direction. What are the final velocity and fingleed of the
struck ball?
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1.0 INTRODUCTION

Attempts to understand collisions were carried loptGalileo and his
contemporaries. The laws that describe collisionsne dimension were
formulated by John Wallis, Christopher Wren andi§ttan Huygens is
1668. In this Unit you will learn about collisiohgtween two objects
moving along a straight line. You will find out whhappens when
objects collide. The interesting phenomena ofrtbkange in velocity,
momentum and possibly change in kinetic energy bal discussed.
This will lead us to the understanding of the phmeanon of explosions
that is popularly applied in war fares. Relax amdl fout as you read
how simple observations lead to important scientiscoveries.

2.0 OBJECTIVES
By the end of this Unit, you should be able to:
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0] define collision

(i)  classify collisions

(i)  apply the principles of conservation of engrgnd momentum in
order to determine the energy lost by collidingtigées.

(iv)  use collision principle in explaining rocketgpulsion

(v) explain what is meant by elastic, inelastic qedfectly inelastic
collisions

(vi)  solve problems in collisions.

3.0 MAIN BODY

3.1 Classification of Collisions

In Unit 9 you learnt about impulse and momentumuMearnt that

impulse is a force which acts for only a very shautation of time.

This means that impulsive forces are the typesafels we experience
during collisions. Have you ever collided with sslmdy or with some
object unsuspectingly? Can you recall some actitreg depict

collisions? An example is the collision of two lsalolling on a table.

Another is the popular pin-pong game popularly ezhltable tennis.
You can imagine the very short time of impact bemwé¢he tennis ball
and the bat used by the player.

Collision is the sudden impact felt between twoeck§. You may ask
what happens during collisions? During collisibere could be transfer
of energy from one object to the other or energyldde transformed
from one form to another. For example, some ofkihetic energy of

the tennis ball is converted to sound energy ofingitthe bat of the

player while playing table tennis. Also during eogibns, potential

energy is converted to kinetic energy and soundggne From the

principle of conservation of momentum you studiedinit 9, you learnt

that momentum of colliding particles must be eqgbafore and after
collision. This knowledge will be applied in thisit to determine the
velocity of objects after collisions.

There are two types of collisions veastic and inelastic collisions.

Elastic collision is a collision between two or raarbjects during which
no energy is lost. That is, the total kinetic gyeof the objects before
collision is equal to the total kinetic energy bétobjects after collision.
In other words, kinetic energy is conserved. Bule kinetic energy is
not conserved in a collision the collision is cdllmelastic collision.

This implies that during inelastic collision, somikethe kinetic energy is
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converted to heat or sound.

There is also a situation in which two bodies callide and coalesce
(i.e stick together). This kind of collision is esfed to as perfectly
inelastic collision because it corresponds to @sibn where maximum
kinetic energy is lost during collision.

3.2 Perfectly Inelastic Collision

We shall now discuss perfectly inelastic collision one dimension

because it is the simplest of the three types dlismn we have

identified. In this type of collision, the objeatealesce at impact. The
collisions are
described by the

MVZ m1V1+ m2 V2 31 equation.

M =m +m, Where thatis the sum of the masses of the twadauj

particles, V is the velocity of M after coalescing,and
Vv, are the velocities of particles;mnd m respectively before collision.

Vv _MyuTmYy 32
m, +m,

Hence the velocity, V of the coalesced object is
Let us look at special cases:

Case 1. One of the objects is stationary and the otheeaibjuns into it.
In this case ¥= 0 so equation (3.2) becomes

SRNLLL A SR 11

Equation (3.3) shows that if ;7> m, the coalesced object will move
with a velocity nearly equal to,v

132



PHY 111 ELEMEARY MECHANICS

goalkeeper catches a ball, the keeper will ready avith a

(ny) Conversely if m<<m, as is the case when a stationary
v
m 1

low velocity. This will be equivalent to just tiaction of

the velocity of the ball i.e. .

Case 2: There is heed-on collision between two objects ingptowards
each other and having equal velocities.

Vi

Vv = (—ml — ”‘Zj 34
m, +m,

Here v = -vy, therefore equation (3.1) becomes

If m; = mp, then their momenta are ymm and mv; which means that
their momenta are equal and opposite because tiingtiwve have

MV + MRV, = MyVy +MyV, =my(Vy +v;) =0 3.5
If this is so, the final momentum must be zero dorad V = 0.
Hence the objects collide and stay there.

3.2.1 Energy lost in perfectly inelastic collisions

The case under consideration here is to find tlamgé in energy when
two objects coalesce at impact.

M =m +m, LetE be the sum of the kinetic energy K. E of the
objects before collision. And let Be the final energy
l.e. K.E. of the coalesced object (composite objett
mass

Hence the energy changeas given by

E=E-E 3.6
To find
1 1 1 this, we
AE  ==MV —(—m1v§ +=m, \é) 3.7 apply
2 2 2 equatio
_1(m+m)(my+my)° n3.2.
2 (m, +m,)*
1 [miveemmyyt i p( miv gl
2 m, +m,
Cafmm)-v - 2y y)] -
2 m, +m,
MM )
AE = 2(mlerz)(vl vz) 3.8
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Since kinetic Energy is Yzriywe have

Note that the expression in the right hand sides@fiation (3.8) is
always negative. This is because energy is lostuah a collision. This
means that the collision is inelastic.

This composite object is at rest in only one frasheeference. In this
frame there is no final kinetic energy so the e is known as
perfectly inelastic collision. In this frame of feeence, the total
momentum is zero. The total kinetic energy of #ystem before
collision goes into the coalesion of the objects.

Self Assessment Exercise3.1

A dog running at a speed of 32kt fjumps into a stationary canoe on
the river Niger at Lokoja. The dog’'s mass is 14kg that of the canoe
plus the rower is 160kg. Let us assume that théemwsurface is
frictionless,

0] what is the speed of the canoe after the gotlis

(i)  what is the ratio of the energy loss to theiah energy

(i)  where did the energy go?

Solution:

The initial momentum is the momentum of the dogyoiihis is because
the canoe is at rest. Given mass of dog as mratial velocity of the
dog (i.e. its velocity as it enters the canoe) ghien

Initial momentum P= my,
the final momentum= Mv

where v is the unknown speed, and M is the sunh@fmasses of the
canoe, rower and dog = 174kg.

Since

0] Initial Momentum = final momentum, therefore
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(i)  The initial energy is the K.E. of the dog, théore

. e
MM
_my _ (14kg)(3%mH*)
M 174kg
=2.6kmh?
1 =0.72m&
K; :Em\?

(i)  The final energy is all in form
of K.E. Therefore

1

K, :Em\%
() =3 ()
Ki=aM ) =2\wmv
ﬂK
M i
Hence, the loss in energy is
AE =K -K, =K -—K,

The ratio of the energy loss to the initial eneiggiven by

AE m

_— =1-—

K, M

This means thaE/K; is of value less than unity. The energy has
decreased in value.

Substituting our values for m and M we get

AE . l4kg

K T T7ag
=092
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Energy is lost as the rower ‘gives’ in order tonlgrihe dog in.
Self Assessment Exercise 3.2

Suppose the collision in the Figure below is congheinelastic and
that the masses and velocities have the valuesrsh&md the velocity
after the collision. Find the K.E. of A and B bedahe collision (iii)
The K.E after collision

Let Vo, and Vg, be the velocities of blocks A and B respectiveigr
collision

Then
- - - - 1 2

(i) K.E.ofmass\ beforecollisionis S MaVay =10J
K.E.ofmas® beforecollisionis
1 2 —
EmBVBl =6J

My Vy, T 1LV,
i) v, =—ATM_g5me
m, +mg

Sincey, is positive thesystemgoeso therightaftercollision

The total K.E. before collision is 16J

Note that the kinetic eneggy of bod)(/ B |5299§tma its velocity \4;

and its momentum M ar th negat\
B
Therefore the ki o e mllmnn is
/ 7 39) 3 /77
M= 5kg M = 3kg

%(mA+mB)v22 =11
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What has happened to the rest of the K.E. theybké&ate collision?
For the same conditions above when

m, 5kg, my; = 3kg

2ms, vy, = -2ms

v .
A The masses A and B travelling towards

each other and under goes perfect elastic
collision (i) what are the velocities of massesnl 8 after collision (ii)
the kinetic energy before collision (iii) the total E. after collision.

Solution:

From the principle of conservation of momentum,

(i) (5kg)(2mM3) +(3kg)(-2MS)
=(5kg)V,, +(3kg)V g,

O5v,, +3v,, = 4m3
Since the collision is perfectly
L elastic. \éz - V/_\2 = - (VBl - VA]_)
=4ms.

Solving these equations simultaneously we obtain

V,, =-1mS; vy, =3ms

This implies that both bodies reverse their digatdi of motion. A now
travels to the left at 1rifsand B goes to the right at 3ths

(i)  The total K.E. after collision is
1 e 1 \2
E(Skg)(— 1m§) +§(3kg)(— 1m§) = 16J

We see that this is equal to the total K.E. befoodlision which
confirms that the collision is perfectly elastic.

3.2.2 Explosions

Let us consider a case where two objects appraadh @her and merge
in a frame of reference where the total momentumel®. We also
assume that these objects remain at rest afterimgergWhen the
opposite of this action occurs, that is, when ajeabat rest in such a
frame of reference breaks up into two or more dbjegth an attendant
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m andm, + m, sound, it becomes an explosion. The initial objefct
mass at rest breaks up into two objects, and th@yem

with velocities such that the momentum is zeroatTit their
my+my =0 3.9

From the law of energy conservation, once an oltjastinitial potential
energy U, then explosion is possible.

1,01
Ou =M+ v 310

Explosives used during wars have potential enetged in molecules.
When the explosives are detonated, there is treoumndelease of
energy. Let us now use an example to explaincitmeept.

Self Assessment Exercise 3.3

Let us consider what happens during fission oflament. That is, the
case in which an unstable atomic nucleus disintegralLet’'s use
element Polonium, for example. It's symbol*f8Pb which has mass
3.49 x 10° kg. This element can decay into an alpha partateually a
Helium nucleus) of mass 6.64 x ¥@g and a type of lead nucleus
(symbol?°Pb) of mass 3.42 x Hkg.

' That is

210PO . D+ 206Pb

The products of the decay have K.E. of 8.65 X*10above any K.E.
possessed by the polonium nucleus itself. Fordbeay of such a
polonium nucleus at rest, Find the speeds of gaaticle and the lead
nucleus?

Solution:

Let Q = the K.E. of the products of decay

Then by conservation of momentum law and

M EIVEI: M prpb
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Q = ZMd+s MY

) pb "pb

where v is the speed of the respective particlesndicated by the
subscripts. We solve these two equations for @n@ables of interest
and find that

vV, = 2Q
DM+ my/ M)
and

vV, = 2Q
pb M o(1+ M /m.)

Given that Q = 8.65 x 18), then computing the above gives
v = 1.60x10ms’

and
Voo = 3.10 x 1Oms’

We observe that the speed of the heavier of thepteducts of decay is
much less than that of the lighter one. This ressiltseen in the
conservation of momentum equation.

3.3 Elastic and Inelastic Collisions

In an elastic collision in one dimension, theraastransfer of mass from
one object to another. This implies that the t&taktic energy of the
objects before collision is equal to the total kinenergy of the objects

after collision. If the final velocities of the twobjects 1 and 2 arg v
and v, then additionally

My, +MY,= My+ my 311

By the conservation of energy, it follows that

1 1 1 1
SMyvitomy = omy+omy 312

We can find the final velocities of the collidingpjects if we know the
initial velocities. Rewriting equation (3.11) wevea

m (v, = Vv3) = = my( v, — ) 313
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Now, applying our knowledge of mathematical algelra use.

V12 —Vf :(Vl - V3)(V1+ V3)

and

V22 —Vf :(Vz - V4)(V2 + V4)

to rewrite equation(12) in the form

1 1
Eml(vl = Va)(Vy + V) = _E( v~ V)(\,ty) 314

We now divide both sides of equation (3.14) by t® sides of
equation (3.13) to get

VitV =V, Y, 315

Let u be the relative velocity of the two collidipgrticles (objects)
then,

U; = V7Y,
and
u = V-,

subsituting thesen eqn (315 weget
u =-u 316

We conclude from Egn. (3.16) that in an elastidisioh, the relative
velocity of the colliding objects change sign buted not change in
magnitude.

As a rule of thumb always think of a perfectly @lasubber ball hitting
a brick well. Relative velocity behaves like thdoggty of this rubber.

We now solve Eqn.(3.15) for one of the unknownatales like y
Thus

v, =V, =V, +V, 3.17

Substituting this in the momentum conservation &qng3.11) we get
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mv,+m, v, = my+ m( y— v+
regrouping termswaeget
(m1+m2)V3=(n1_ ”&)\{'*2@\5

m, —m, 2m,
Vy, = | ——— | Y| ——— |V, 318
m, + m, m, + m,
Similarly wecan, solvefor v, to get
2m m, —
v, = (—1 jvl + (—2 mljvz 319
ml + m2 ml + m2

As an exercise, show the derivation of equatioh9BEquations (3.18)

and (3.19) seem complicated. Let us now simplifgn by applying
them to practical situations (3.19).

1. A Scenario where object 2 is initially at rest.
Here \, = O so that equations (3.18) and (3.19) reduce to

- m-m
V, = 3.20
m, +m,
and
[ 2m, j
v, = — |V,
m, +m,

m =m, la. Ifthe two objects have equal masses i.e.

v, =0andv, =v, Here. This means that the moving object after

collision stays at rest while the object formerly a
rest now moves with the initial velocity of thesfirobject. This effect
can be seen vividly in hard billiard shots aloriqe.
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m, 1b. If mass >> mass

v, = v,and v, = 2v, Inthis case eqns (3.2013) yield

It means that the velocity of the moving
object decrease a little, while the object iniyiadt rest picks up almost
twice the velocity of the incoming object.

m, >>mass, asin thefig below 1c.  If mass

For these conditions Egn. (3.20a and

v, =—v,andv, = (2m1/ mz) v, b) give

We see that the moving object very nearly reveitseselocity, while
the object initially at rest recoils (i.e. movesckpwith a very small
velocity.

m, In the limit that approaches infinity, we neglebetvelocity of

recoil and the final velocity of the first objec$ iequal and
opposite to its incident velocity. A practical exale is what happens
when a tennis ball bounces off a wall.

Can you suggest more practical phenomena that dagratethis case?
Before After

2. Scenario & thenitial maq# tyn jozer
>

B
The two objects underv@icussion, approach eachr el velocities
such that the initial and total fidmentum is zero.

That is,

myv, + myv, =0 321

_ | my
Thusv, = o v,

2
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Putting this value foryin Eqgn. (3.18) we find
m, — m 2m m

N ey e
ml + m2 ml + m2 mZ

= -v, 322

To solve for, we apply the conditions set out irsth
(m1v3 t+ sz4) _ ppy
scenario that the initial total momentum was zero.
Therefore, by the conservation of liner momentum,

the final total momentum must also be zero and

m m
v, = [m—lj v, = [m—lj v, = -V, 323
2 2

We conclude that for the case where total momenisiraero, the
velocities of each of the objects are unchangethagnitude but they
change in sign. We conclude that in each of thesex each of the
objects behave as if it hit an infinite massivecbrwall. We now do
some examples

Self Assessment Exercise 3.4

A bullet is fired in the + x-direction into a staiary block of wood that
has a mass of 5kg. The speed of the bullet befioiry into the block is
Vo = 500m&. What is the speed of the block just after thdeblias

become embedded? What distance will the blocle slida surface with
coefficient of friction equal to 0.50?

Solution:
Let m = mass of the bullet
Vo = bullet’'s velocity before it enters the blockwedod.
M = combined mass of bullet and wood.
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The initial momentum P= Mvg
if v = velocity of bullet

combined with wood after
the bullet has entered the
wood then by conservation of
momentum

my =

Ov = (ﬂjv - (5oorn§) 1 mis

M/ 5010g
i ———

Note that if we ignore the
mass  of the bullet
compared to the mass of the
wood, we shall  still get
almost the — same value for
velocity.

Given that the frictional force acting is
‘N = -Mg

(here, the R.H.S. is minus because friction poiatshe left opposing
motion of the block). The frictional force has stant magnitude and
leads to a constant acceleration, a, of the blotkerefore, applying
Newton’s second law we have
-:Mg = Ma
a = -:g

The negative sign implies that the block slows dotrewvelling a
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distance d before it stops.
Since acceleration is uniform, we use the relation

vZ —v? = 2ad (from the factthatv-v, =aj.

Now with v = 0 (that's when the block stops moving) we have

(ImS)?

1
~ 2(05)(9.8m&)

_ 1v?
g oW 1w
2 14

Self Assessment Exercise 3.5

An empty freight car of mass 10,000kg rolls at 2rakng a level track

and collides with a loaded car of mass 20,000kapdihg at rest with

brakes released. If the cars couple together,

1. find their speed after the collision.

2. find the decrease in kenetic energy as a restitie collision

3. with what speed should the loaded car be roliavgard the empty
car in other that both shall be brought to resthycollision?

Solution: Recall that,
(@) The momentum before collision = momentum aftailision
le.

Mv

ml
[ v = Vvl

_ 1000Gg _
= 30004g X 2MS
v = 0.67ms* (b) Now, K.E. before
collision -

mlvl + rnZ V2

K.E. after collision = loss K.E.

1 1 1
Sy o m s — S mv
1 1
05-10°°,000X 2* - —=301%*,000(.67°
1 1
i.e. 20000 - 6666 65 = 13333
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(c) Answer is 1ms

4.0 CONCLUSION

In this unit, you have learnt
. that collision is the sudden impact felt betweero tabjects
that there are two types of collisions viz: elasénd
inelastic collisions

. how to determine the energy lost in perfectly isitacollisions

. how to distinguish between elastic and inelastlistons

. how to apply the principles of the conservationeokrgy and
momentum in the solution of collision problems.

. how to apply the collision principle in the study oocket
propulsion.

5.0 SUMMARY

What you have learnt in this unit are
. that collision is the sudden impact felt betweean thjects.
» that collisions can be classified into elastic isadhs
- inelastic collisions
- erfectly inelastic collisions
. that during elastic collision no energy is losattls,
- that the total K.E. of the colliding particlesfoee and
after collision are equal

. that during inelastic collision kinetic energy istitonserved.

. that when bodies collide and coalesce, the phenomen
constitutes perfectly inelastic collision.

. that collisions are described by the equation

mlvl + nlz\/Z = M\‘

where the symbols have their usual meaning

. that for perfectly inelastic collision when the etfs coalesce on
impact that before collision one of the objects whasest and the
other runs into it, then,

I”an1 m
m, + m, M

m, >>m,, that if the coalesced object will move with a vetpc
nearly equal to ¥
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m,<<m,, that if then, will move with velocity

mj

v

(mz toe that for head-on collision of two objects moving
towards each other with equal velocities

velocitiesv, = - v,

hence
m —
v = (—1 mzjvz
m +m
. that the energy change is given by
DE = Ei-E
—_ __mm v V
PE = ey iV

. that the negative sign in the R.H.S. of the equadibove shows
that energy is lost in such a collision.

. that the ratio of the energy loss to the initiadegy is given by

BE o om
K. = M
. thatE/K; is of value less than unity.
. that when a stationary object disintegrates witeratant sound,

it becomes, an explosion. Here, after explosi@mtigles move
but their momentum is conserved, hence,

mlvl+ rnZVZ :0

. 1, 1
also, Potentiaknergy U = oMo m v
that for elastic collision
myv, + m\, = my+ my
and
1 1

1 1
—m1Vf+§sz§ En%\iJfng/

2
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6.0 TUTOR MARKED ASSIGNMENT (TMA)

1. An object of mass 2kg is movigth a velocity of 3ms and
collides head on with an object B of mass 1kg mgvim the
opposite direction with a velocity of 4fhs
0] After collision both objects coalesce, so tlhia¢y move

with a common velocity, v. Calculate v.

2. A 14,000kg truck and a 2000kg car have a headstdimsion.
Despite attempts to stop, the truck has a speédbahs' in the +
x-direction when they collide and the car has adpef 8.8m3
in the - x-direction. If 10% of the initial tot&inetic energy is
dissipated through damage to the vehicle, what thee final
velocities of the truck and the car after the s@ih? Assume
that all motions take place in one dimension.

3. Two spheres with masses of 1.0kg and 1.5kg laamgst at the
ends of strings that are both 1.5 long. These $wimgs are
attached to the same point on the ceiling. Thietdigsphere is
pulled aside so that its string makes an angle @=wéth the
vertical. The lighter sphere is then released taedwo spheres
collide elastically. When they rebound, what is thrgest angle
with respect to the vertical, that the string hotdithe lighter
sphere makes?
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1.0 INTRODUCTION

In units 6 to 8 you studied linear, circular andjpctile motion as well
as forces. We restricted our study to motiontgécts on the earth and
we touched slightly on acceleration due to graasya pull the earth
exerted on objects. In this and the subsequentutits, you will study
gravitation in more details.

We shall begin here by developing the concept avigation, introduce
Kepler's laws and see how Newton used kepler's tawtest his
universal law of gravitation. We shall also disstise concept of mass
and weight and solve problems partaining to gravity

In the next two Units we shall apply the concefitsiechanics
developed here to orbital motion under gravity amdravitation and
extended or heavenly bodies.

2.0 OBJECTIVES

By the end of this Unit, you should be able to:
» define Newton’s law of universal gravitation
» describe the experiment used in the determinationthe
magnitude of the gravitational
* constant, G.
» apply the law of gravitation
» state keplers laws
» differentiate between weight and mass
» determine the mass, volume and density of the earth
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» differentiate between inertial and gravitationalssa
3.0 MAIN BODY

3.1 Law of Universal Gravitation

Sir Isaac Newton deduced the law of universal ¢gasioin in 1686 from
speculations concerning the fall of an apple towtdre earth. His
proposalthe principia (mathematical principles of natural knowledge)
was, that the gravitational attraction of the son the planets is the
source of the centripetal force which maintaires arbital motion of the
planets round the sun. Newton also affirms thist Was similar to the
attraction of the earth for the applé@hus, gravity-the attraction the
earth hasfor an object - which you are already familiar with, was a
particular case of gravitation. According to Newtalso, there is a
gravitational force between all objects in the ense. It is this
universal gravitational force that is responsilde the orbital motion of
the heavenly bodies.

So, what is this universal law of gravitation? TiNewton's law of
universal gravitation, may be stated thus:

Every particle of matter in the universe attractdher
particles with a force which is directly proportiainto the
product of their masses and inversely proporticisathe
square of their distances apart.

What do you say to this. This means there is taawnal attraction
between you and any object in the room where yeu ar

The gravitational attraction, F between two bodiesiasses Mand M
which are a distance r apart is given by

31

3.2
where G is a constant called the universal gragitat constant. It is
assumed to have the same value every where foradiér.

Newton believed that the force was directly projpoil to the mass of
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each particle because the force in a falling badproportional to its

mass (F = ma = mg = m x constant, thereforenf; that is, the mass of
the attracted body. From the stand point of hilttaw, Newton also

argued that a falling body exerts an equal and sigpdorce that is

proportional to the mass of the earth. Then i wancluded that the
gravitational force between the bodies must als@roportional to the

mass of the attracting body. The moon test toifmudsed later justified
the use of an inverse square law relation betwesre fand distance.

Newton law of gravitation refers to the force betwdwo particles. It
can also be shown that the force of attraction tegeon or by a
homogeneous sphere is the same as if the masseofpiere were
concentrated at its centre. The prof of this wal treated in a latter
course. We shall simply state here the fact thatgravitational force
exerted on a body by a homogeneous sphere is the as if the entire
mass of the sphere were concentrated in a poitd entre. Thus if the
earth were a homogeneous sphere of masdhd force exerted by it on
a small body of massmat a distance r from its centre, would be

mM
2

Fy = Gr

A force of the same magnitude would be exertedhendarth by the
body.

The magnitude of the gravitational constant G cam found
experimentally by measuring force of gravitatioa#tiraction between
two bodies of known masses m andl,nat a known separation. For

bodies of moderate sizes, the force is extremelgllsraut it can be
measured

Figure 3.1

with an instrument invented by the Rev. John Michal first used for
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this by Sir Henry

Cavendish in1798. the same type of instrument wae ased by
Coulomb for studying forces of electrical magneéattraction and
repulsion which you will study later.

The Cavendish balance, Fig. 3.1 consists of a lmgptd T-shaped
member, supported by a fine vertical fibre sucla agiartz thread or a
thin metallic ribbon. Two small spheres of massame mounted at the
ends of the horizontal portion of the T, and a $mm&ror M, fastened to
the vertical portion, reflects a bean of light ostcscale. To use the
balance, two large spheres of madsare brought up to the positions
shown. The forces of gravitational attraction kesw the large and
small spheres result in a couple which twists gstesn through a small
angle, thereby moving the reflected light bean @lthre scale. By using
the extremely fine fibre, the deflection of the mir may be made
sufficiently large so that the gravitational forcen be measured quite
accurately. The gravitational constant, measurdtis way, is found to
be

G = 6.670x 10" Nm'kg™ "
[Searetal 1975

Example

The mass m of one of the small spheres of a Caskndalance is
0.001kg, the mass hof one of the large spheres is0.5kg, and the eentr
to-centre distance between the spheres is 0.05md the gravitational
force on each sphere?

Solution:
We apply the law of universal gravitation whichtethmathematically
IS
—_ ml
F, = G 2
_, (0.001kg)(0.5kg)
F = 6.67x L0 NnPkg™ (
: 9 T 005m)?
= 1.33x 10N

Self Assessment Exercise 3.1

Two spherical objects of masses 0.001kg and 0.5&gokaced 0.05m
from each other in space far removed from all obwelies. What is the
acceleration of each relative to an interial systgmhere = 1.33 x
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10*N]

Solution:
Applying Newton’s third law of motion F=ma, the aberation, a of the
smaller sphere is

. _ F, _133x10™N
- m  10x 10°kg

133x10°mg

a! The acceleration a for the larger sphere is

F, 133x10™N
m ~  0.5kg
= 267x 10" m&

We see that the accelerations are not constang shrec gravitational
force increases as the spheres approach, each other

3.2 Kepler's Laws of Planetary Motion

Planetary motion excited the interest of earliesergists, Babylonian
and Greek astronomers. They attempted to predectnibvements of
planets to some degree of accuracy. Before Nisolzapernicus, it was
considered that the earth was the centre of theetse but about 1543
Copernicus introduced a heliocentric frame, with $in at the centre of
the solar system. He suggested that the planeddvesl round the sun
in circular motion with the construction of mordined instruments no
telescopes still existed. Tycho Brahe, towardsehe of the sixteenth
century improved on the knowledge of planetarytsrtm an accuracy of
less than half a minute of arc.

Brahe died in 1601 and his assistant Johannes Keplatinued his
work. Kepler inherited Brahe’s accumulated datd sgpent over twenty
years analyzing them. He finally came up with ithea of elliptical
orbits for planetary motion. This was a cruciadk through in the data
analysis and the idea of circular orbits was dedr Kepler thus
enunciated three laws known by his name These dtats:

. During equal time intervals, the radius vector frima sun to the
planet sweeps out equal areas (Fig. 3.2b)
. If T is the time that it takes for a planet to rea@ne full

revolution round the sun, and if R is half the maais of the
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ellipse ( R reduces to the radius of the planatsta that orbit is
circular), then

TZ
F:C 3.4

Where C is a constant whose value is the saméllfpfamets. Kepler’s
second law follow from the conservation of angutewmentum which
we shall treat in Unit 19. It is also consequenttba fact that the
gravitational force between the sun and the plamet central force.
This means that the force acts along the line nginhe sun and the
planet. In fact, kepler's second law can be takerewddence that the
gravitational law is central. Conservation of amgumomentum also
means that the path of the planets must lie in anelthat is
perpendicular to the direction of the fixed anguteamentum vector.

Newton was led to the discovery of his law of graton by considering
the motion of a planet moving in circular orbit nouthe sun S (Fig
3.3a). Let the force acting on the planet of mddse mrT, where r is
the radius of the circle and T is the angular viéyoaf the motion. But T
= 2BL/T, where T is the period of the motion, then,

The force on the planet

= 35

This being equal to the force of attraction of sa@ on the planet. If we
assume an inverse square law where K is a cong@ntforce on planet

km
:I’_2 3.6
Therefore,
km _47/mr
2T 31
471
0 T2 :Trg 3.8
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Hence

T?ar?®

Since k, 2 are constants Kepler having announcaidthie square of the
periods of revolution of the planets are propowiao the cubes of their
mean distances from the sun (as stated in his d&wse), Newton used
this law to test the inverse square law by applyirtg the case of the
moon’s motion round the earth referenced above @&Db).

The period of revolution, T of the moon above tlaetle is 27.3days.
The force on the moon is niF%, where R is taken to be the radius of the
moon'’s orbit and m, its mass

2 47tmR
[ force=mR _5: 17 3.9

If the planet were at the earth’s surface, thedatattraction in it due
to the earth would be mg, where mg is the acceteratue to gravity
(Fig. 3.3b). If we assume that the force of attoec varies as the
inverse square of the distance between the eadtthanmoon, then

m .
12 M&F R
AR r?
T2y R 310
47R®
0g=—7r2 311

where r is the radius of the earth
Substituting the known values of R, r and T, theulefor g was very

close to 9.8m'& Thus the inverse square law was justified.
Self Assessment Exercise 3

State Kepler’'s laws of planetary motion

3.3 Mass and Weight

The weight of a body can be defined more genermdlythe resultant
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gravitational force exerted on the body by all othmdies in the

universe. The earths attractive force on an olgadts surface is much
greater than all other gravitational forces ondbgect so we neglect all
these other gravitational forces. The weight & dfject for practical
purposes then results solely from the earth’s ¢ggnal attraction on
it. Similarly if the object is on the surface dfet moon or of another
planet, its weight will result solely from the gitational attraction of

the moon or the planet on it. Thus, assuming theheto be

homogeneous sphere of radius R and mass ©ftihé weight w of a
small object of mass M in its surface would be

_p MM
W=F =6—; 312

Note that the weight of a given body or object @arby a few tenths of
percent from location to location on the earthdasi@. Do you know

why this is so? It is partly because there coulddoal deposits of ore,
oil or other substances, with differing densitigspartly because the
earth is not a perfect sphere but flattened gbatss. It is known that
the distance from the poles to the centre of tithas shorter than that
from the equator to the earth’s centre, so, thelacation due to gravity
varies at these locations. Also the weight of wegibody decreases
inversely with the square of the distance from ¢laeth’s centre. For
example, at a radial distance of two earth ratle, weight of a given

object has decreased to one quarter of its valubeakarth’'s surface.
This means that if you are taken far away into gpace, your weight
will be far much less than it is here. At a certdistance you might
even become weightless. We shall discuss this gzhenon later in

Unit 2 of this course.

The rotation of the earth about its axis is alsd p& what causes the
apparent weight of a body to differ slightly in nmétggde and direction

from the earth’s gravitational force of attractioRor practical purposes
we ignore this slight difference and assume thatehrth is an inertial
reference system. Then, when a body is allowddlkdreely, the force

accelerating it is its weight, w and the acceleratproduced by this
force is that due to gravity, g. The general retat

F=ma

therefore becomes, for the special case of frediyng body,
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w =mg 313
now,
Gm
W =mg= an
R
it followsthat
G
g= Rn} 314

M. This shows that the acceleration due to gravithéssame for all
bodies or objects (because m cancelled out ) &iso very
nearly constant ( because G and are constants asuliés only

slightly from point to point on the earth)

The weight of a body is a force and its unit is Newton, N in mks

system. In cgs system, it is the dyne and in tlggneering system it is
the pound (Ib). So Egn. (3.3) gives the relatiobween the mass and
weight of a body in any consistent set of units.Example, the weight
of the object of mass 1kg at a point where g=9.8tims

w = mg- 1kg x 9.80m<
= 9.80N

at another place where g = 9.78ms
its weight is w = 9.78N

Thus, we see that weight varies from one pointriotlzer. Mass does
not.

You can now answer the question,

What is your weight? Will your weight be the sanmetloe surface of the
earth as on the surface of the moon?

The 1kg mass placed on the surface of the moonueilyh,

w=mg = 1kg x 1.67m’s
=1.67 N

This is so, because g = 1.67M sn the moon. This will help you

determine what your own weight would be if you wetaced at the
surface of the moon.
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3.3.1 Mass of the Earth

Applying Newton’s law of gravitation we have that

mm
RZ

w=mg-G

This gives the mass of the earth as

G 3.15

where R is the earth’s radius . Since all the qtiaston the R.H.S of
the Egn. (3.15) are known, we can calculate thesroathe earth.

Hence,
for R = 6370km, G = 6.37x10m and g = 9.80 nfs
‘Mg = 5.98x10%kg

The volume ¢ of the earth is
4 3 1
Oe :EﬂR =109x1G* v

Thus the average density of the earth is
Thus the average density of the earth is

M
A= = =550tkgm

E
or

— =3
=5.5¢Cm (The density of water is 1g ¢ire
1.000kgnT). The density of most
rock near the earth’s surface, such as granitegaaises, is about 3g
cm® = 3000kg rit. We see that the interior of the earth have highe

density than the surface.
Self Assessment Exercise 3.3
In an experiment using Cavendish balance to medbkergravitational
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constant G, it is found that sphere of mass 0.8kgas another sphere
of mass 0.004kg with a force 13 x fN when the distance between the
centres of the spheres is 0.04m. The acceleratiogravity at the
earth’s surface is 9.80 fisand the radius of the earth is 6400km,
compute the mass of the earth from these data.

Solution

The gravitational force between the objects of nmasand m is

_~ M
F=G 2

where r is the distance between the centres oflspineres as given .
Substituting other given values we have

_13x10™ N x(0.04)% n?
~ 0.8kgx 0004kg
= 65x10™* Nntkg™

mass of the earth will be given by

. R*g (6.40x10)°m* x9.8m§&
E7 G 65x10™ Nntkg™
61755X% 16°kg

6.2x10™kg

Self Assessment Exercise 3.4

The mass of the moon is about one eighty-first,iemhdius one fourth,
that of the earth. What is the acceleration dugr&vity on the surface
of the moon?

Solution

_1 4
M, =g1X 6.2 x10°* kg

We are given that mass of moon is, radius of mass
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1
' =7 X 6.4x10° m

But

_ 15X6.2x107 kg x6.67 x 107 Nm*kg ™
- (4 x6.4 x10° m)®

=1.98m&

| would want you to note that the mass m in F =amag is known as
the inertial mass of the body. It is a measurehef opposition or
resistance of the body to change of motion. Thatts inertia. When
considering the law of gravitation, the mass of g@me body is
regarded as gravitational mass. From experiméméstwo masses are
seen to be equal for a given body and so, we gaesent each by m (be
it inertial or gravitational mass).

4.0 CONCLUSION
In this unit, you have learnt

. that the universal law of gravitation was stated 3y Isaac
Newton as the force of attraction every object he universe
exerts on each other which is proportional to tredpct of their
masses and inversely proportional to the squarthefdistance
between them.

. how to describe the experiment to determine thenmade of the
gravitational constant, G .

. how to apply the law of universal gravitation.

. the three Kepler’'s laws of planet motion

. the general definition of the weight of a body

. how g and G are related.

. how to determine the mass volume and the densitlyeoéarth
. what inertial and gravitational masses mean.

5.0 SUMMARY
What you have learnt in this unit are:
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that every particle in the universe attracts evettyer particle
with a force which is directly proportional to tpeoduct of their
masses and inversely proportional to the squatkedf distances
apart. Hence

that in the expression for gravitational force aiyowhat G is the
universal gravitational constant and is the sansgyavhere

that the Cavendish balance is wused to determine
experimentally.

that G has value 6.67 x 1b Nm? kg™

that acceleration due to gravity is not constamicesi the
gravitational force increases as

the spherical bodies approach each other.

that astronomical observations led Kepler to thtews of

planetary motion.

Planets move in planar elliptical paths whk sum at one focus
of the ellipse.

During equal time intervals, the radius vectorsifitie sun to the
planet sweeps out equal areas.

If T is the time it takes for a planet to make duak revolution
around the sun, and if R is half the major axethefellipse, (R
reduces to the radius of the orbit of the planethdt orbit is
circular) then.

TZ
R C

where C is a constant whose value is the samdlfplaaets.
Newton showed that these Keplers laws are a corseguof a
law of universal gravitation.

that the masses that exert gravitational forces natealways
point like. We can have an object with spherical ssna
distribution like the earth or sun. In this cadee gravitational
force is the same as if all the mass of the exidrolgect were
concentrated at centre of the spherical distrauti

that the Newtonian theory of gravity is a limitiocgse of a more
accurate and

fundamental theory of gravity.

that the weight of a body can be defined more gdlyelas the
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resultant gravitational force exerted on the bog\al other bodies in
the universe.

ie.
__ _GmM,
w=F = R?
It follows that,

GM.
g = R2
where the symbols have their usually meaning.
. that weight varies from location to location
. that the mass of the earth is given by

R2

mg = J

G  where R = radius of the earth, G = the universalstant
and g is the acceleration due to gravity.

6.0 TUTOR MARKED ASSIGNMENT

1. State Newton’s law of Gravitation. If the a@sakion due to
gravity, g, at the surface of the moon is 1.70ad its radius
is 1.74 x 16m, calculate the mass of the moon.

2. Calculate the mass of the sun, assuming thér'Eantbit around
the Sun is circular, with radius r = 1.5 »x2kén.

3. Explain what is meant by the gravitation constard describe an
accurate laboratory method of measuring it. Giveoatiine of
the theory of your method.

0] The weight of a body on the surface of the le@ast900N.
What will be its weight on the surface of mars wdhaozass
Is 1/9 and radius %2 that of the earth

(i)  Mass of the moon Mis given by
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1.0 INTRODUCTION

In this Unit, we shall continue our discussion omawation,
commenced in unit 11. Particularly shall we foaums orbital motion
under gravity beginning with motion in a verticalcte. We shall then
discuss motion of a satellite and identify posstiégectories a satellite
can have. You will learn to determine the velomfya satellite in its
orbit as well as its period of revolution by applyithe knowledge of
gravitational force on the satellite. We shall enth the introduction of
concept of parking orbit and weightlessness. Thiswill let you have
a feel of what astronauts experience when theypmjected into space.
The next Unit will enlighten you as to the velocaty object or a satellite
can have before it could be able to escape fronstinece of the earth.
You will see that Science stimulates one to talemigsteps and do giant
things to move the world forward. Positioning t&mmunication
satellite in space is an example of how sciencduragd this vast world
into a global village whereby communication has rbegiccessfully
trivialised.

2.0 OBJECTIVES

By the end of this unit, you should be able to

. determine normal radial and tangential acceleratamma body in
vertical circular motion

. describe the motion of a satellite in an orbit @nts of the
velocity and period.

. state at least one application of a parking orbit.

. explain the concept of weightlessness

. calculate the magnitude and direction of an impulseded to

launch a satellite in space given all necessanyiregpents
3.0 MAIN BODY

3.1 Motion in a Vertical Circle

Figure 3.1 represents a small body attached toré @blength R and
whirling in a vertical circle about a fixed pointt@ which the other end
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of the cord is attached. The motion, though cincuganot uniform
because the speed increases on the way down arehdges on the way
up. The forces on the body at any point are itigtev=mg and

Fig 3.1 Wcos
the tension T in the cord. Resolving the weighttteg body into its
components we have magnitude of normal componentce$
Magnitude of tangential component = w 8in
The resultant tangential and normal forces are:
F,, =wSindandF, =T —w cosd

From Newtons second law then, we get the tangemtiz@leration @

Fu_ gsig 31

a11=m

This is the same as that of a body sliding downi@idnal inclined
plane of slope angle

2
The normal radial accelerationa, = VE IS

a,=—"2= ——— " — =—, 32

V2
T= m(E +g Cosﬁj 33

at the lowest point of the path,= O, USIn® = 0 and co% = 1.
Therefore at this point;-= 0 and @ = 0 and the acceleration is purely
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radial (upward). The magnitude of the tension,mfr&qgn.., (3.3)
: v?
IST=m| —+

s

At the highest point) = 180° 0 Sin6 = O and Co9 = - 1, and the
acceleration once more is purely radial (downward@he tension for
this case is

2
T= m(v— - gj. 34
R

For this kind of motion, there is a certain critispeed ¢ at the highest
point below which the cord slacks and the path witl longer be
circular. To find this critical speed, we set Din Equation (3.4) i.e.

A
L :O
UVe =4/Rg

Example

N
N\

(a Fig 3.2

(b)

In Fig. 3.2 above, a small body of mass m = 0.1€kmgs in a vertical

circle at the end of a cord of length R = 1.0mthH speed V = 2.0rils

when the cord makes an angle 30° with the vertical. Find

(a) the radial and tangential components of itselecation at this
instant.

(b) the magnitude and direction of the resultaateteration and (c) the
tension T in the cord.

Solution:
The radial component of acceleration is
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_V?E (20ms*f
" R 10m
=40ms*

The tangential component of acceleration due tdahgential force mg
Sing, is

a,, = g'Sind = 98ms*x050
= 49ms*?

The magnitude of the resultant acceleration as shaowig. 3.2 above
IS

a=.a’+a’ = 63ms”’

The angled is
p=tant =510
a;
The tension in the cord is given by

2
F, =Ma,: T -mgCo%= mv

2
aT = n{%ﬂ;Cosﬁj

= 13N

Note that the magnitude of the tangential accateras not constant. It
Is proportional to the sine of the angbe So, we cannot use the
equations of motion to find the speed at other fsoirLater on, we shall
show how we determine the speeds at other poinitsg usnergy
considerations.

3.2 Motion of a Satellite

In our discussion of the trajectory of a projectiieUnit 8 we assumed
that the gravitational force on the projectile (itsight w) had the same
direction and magnitude at all points of its trégeg. These conditions
are satisfied to a certain degree provided theeptitg remains near the
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surface of the earth as compared to the earthisgadNVe saw that for
these conditions, the trajectory is a parabola.

Note that in reality the gravitational force isatited toward the centre
of the earth and it is inversely proportional te sguare of the distance
from the center of the earth, which means that inot constant in

magnitude and direction. Under an inverse squareefdirected to a

fixed point, it can be shown that the trajectorgntuout to be a conic
section (ellipse, circle, parabola or hyperbola).

Let us assume that a tall tower could be constduatein Fig. 3.3 below
and that a projectile were launched from point Ahat top of the tower
in the “horizontal” direction AB.

S - 6-18 Trajectorie
\l S e ey direction AB witt

Fig. 3.3 Trajectories of a body projected fronmpé in
direction AB with different initial velocities

The trajectory of the projectile will be like thaumbered (1) in the
diagram if the initial velocity is not too gredtVe see that this trajectory
is an ellipse with the centre of the earth at mwus$. If the trajectory is
short so that we can neglect changes in magnitndedaection ofw
then, the ellipse approximates a parabola.

The trajectories resulting from increasing the iaitvelocity of the

projectile are shown as numbers (2) to (7). Nbt the effect of the
earth’s atmosphere has been neglected. Traje2png also a portion
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of an ellipse. Trajectory (3) just misses the learit is a complete
ellipse, so the projectile has become satellit®lkeng round the earth.
Its velocity on returning to point A is same as ithiéal velocity. It can
repeat this motion indefinitely if there are noaréling forces acting on
it. Due to the rotation of the earth about itssaxine tower would have
moved to a different point by the time the satellieéturns to point A.
This earth’s rotation does not affect the orbitajéctory (4) is a special
case in which the orbit is a circle. Trajectdsy s an ellipse while (6)
is a parabola and (7) is a hyperbola. We remaaktthjectories (6) and
(7) are not closed orbits.

All artificial satellites have trajectories like)(and (5) though some are
very nearly circles. We shall, for the sake of @imty, consider only
circular orbits. Let us now calculate the veloaigguired for such an
orbit and the time taken for one complete revohutido help us to
achieve our objective, let us recall that the dpatal acceleration of the
satellite in its circular orbit is produced by theavitational force on the
satellite. This force is equal to the product bé tmass and the
centripetal (radial) acceleration (i.e. F = MaWe may compute the
acceleration from the velocity of the satellite dhd radius of the orbit
thus:

2
W:Fg:GMMEzM(V—j 35

36

We deduce from equation.. (3.6) that the largemr#ingus r, the smaller
the orbital velocity.

We can also express the speed of the satelligrmstof the acceleration
due to gravity g at the surface of the earth whilgiven by g =
GMg/R% Combing this with equation (3.6) we get

Since GM: = gR

fonie _ [oR
r r

= R\/§
r
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The acceleration given by & V%r can also be expressed in terms of g
thus

r.2

ap = = g 3.8

Equation (3.8) gives the acceleration of gravityaalius r. The satellite,
like any projectile is a freely falling body. Tlaeceleration is less than
g at the surface of the earth in the ratio of tngase of the radii.

The period T or the time required for one completelution is Equal
to the circumference of the orbit divided by théoeday, V:

T=27:r 27r :27Tr

v R/g/r RJg

We see that the longer the radius of the orbitidhger the period. R is
the radius of the earth here.

N w

39

Example

An earth satellite revolves in a circular orbiaateight 300km above the
earth’s surface (a) What is the velocity of theelis, assuming the

earth’s radius to be 6400km and g to be 9.8FMgb) What is the

period T? (c) What is the radial accelerationhaf $atellite?

(@)  Solution: Recall that

v=R/%
r
1
2 )2
= (640x10°m)| - 22MS
670x10°m
= 7740ms™

(b)  The period, T is given by

T =2 ~ 906min.
\Y
(c)  The radial acceleration of the satellite is

2
ag = V- g9ams?
r
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This is equal to the free fall acceleration at glieof 300km above the
earth.

Self Assessment Exercise 3.1

An earth satellite rotates in a circular orbit aedius 6600km (about
600km above the earth’s surface) with an orbitakspof 425km mih

(@) Find the time of revolution

(b)  Find the acceleration of gravity at the orbit

Solution
(@) Recall that period T is given by

2 _ 21n660km
V  425kmmin~
OT = 976min

2
()  Recall thaia =
(425kmm‘1)2
L=
= 2736kmm™
_ 2736x1000m
~ 60x60

= 76mS?

leag =

3.3 Parking Orbit

Consider a satellite of mass m revolving rounddhgh in the plane of
the equator in an orbit 2 concentric with the eahrepresented in the
Figure 3.4 below

Satellite
Earth

Orbit

Fig 3.4

Let us suppose the direction of rotation is theesas the earth and the
orbit is at a distance R from the centre of theheaAssume V to be the
velocity of the satellite in orbit, then

Centripetal force =
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2
o MV . GMm 310
R R
but GM = gf, where r is the radius of the earth.
2 2
mv*® _ mgzr 311
R R
This reduces to
2
vz=9" 312
R
Now, if T is the period of the Satellite in its drlihenV = .
2 2
QTR _gr 313
T R
Yielding
T2 TR 314
gr '

Note that if the period of the satellite in its bris exactly equal to the
period of the earth as it turns about its axisf th&24 hours, then the
satellite will stay over the same place on the heavhile the earth
rotates. When this is the situation, the orbitaBed a parking orbit .

One application of a parking orbit is that relayeises can be located
there to aid transmission of television programmestinuously from
one part of the world to another. It has also @id¢her forms of
communications. Have you experienced any of them?

Now, since the period T of the satellite is 24 Isodhe radius R can be
found from Equation 3.14.

. T?gr?
leR=3—— 315
e

Giveng=9.8m3, r=6.4 x 16m

Then
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n e 3\/ (24x3600° x 9.8x (64 x10°)°
42
= 4240km

Self Assessment Exercise 3.2

At what distance (or height) is the parking orlmtdted above the
surface of the earth?

Let h be the height above the earth’s surface wtterearking orbit is
located

Oh=R-r =
where R is radius of satellite and r is radiushef ¢arth

0 h = (42400-6400km
=36000km

Self Assessment Exercise 3.3

What is the velocity of the satellite in the paxkiorbit?
The velocity of the satellite here is

V= 2IR _ 2nx4240km
T 24x3600s

= 3.1kms*

3.4 Weightlessness

To fire a rocket in order to launch a space craft an astronaut into
orbit round the earth we require that initial aecation be very high.
This is because large initial upwards thrust is unegl. This

acceleration, a is of the order fifteen times tloeeteration due to
gravity g at the earths surface (i.e. 159).

Suppose S is the reaction of the couch to whichaitenaut is initially
strapped as represented in Figure 3.5a. Then, NMemton’s law of
motion, we have
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F=ma, S—mg=,ma=m.15q,

Where m is the mass of the astronaut. Thus S =gl16hhis means that
the reaction force S is 16 times the weight ofdegonaut so he or she
experiences a large force on take off.

Once they are in orbit the sceriario (changeskreHthe acceleration of
the space craft and the astronaut becomérs gqagnitude where'gs
the acceleration due to gravity at the particularght of the orbit
outside the space craft. Now, if @presents the reaction of the surface
of the space craft in contact with the astrondng,dircular motion gives

F=mg -S'=ma=mg
0s' =0

Hence the astronaut becomes “weightless’ becauee $tee experiences
no reaction at the floor when he walks about. h&t$urface of the earth,
we are conscious of our weight because we experigme reaction at
the ground where we are standing or on the cha@revive are sitting.
Do you feel your weight as you are reading thist®nirhink of it and
you become conscious of it. 'When you jump up,tiilagpens?

What do you feel when you are inside a lift (oredevator} that takes
people up and down a many storey building?). # lift descends
freely, the acceleration of objects inside it i® same as that outside.
So the reaction on them is zero. The people insitteen experience a
sensation of "weightlessness”. In orbit as shawhigure 3.5 b, objects
inside a space craft are also in “free fall’. Tiki®ecause they have the
same acceleration g° as the space craft so théytHeesensation of
‘weightlessness’.

Do you now understand what brings about the phemom of
‘weightlessness’? Read this section again, thdigugell. Aim to take
a trip to a building with an elevator and get @nd it. "Weightlessness’
is an experience worth feeling. "Good luck’!

Example

A satellite is to be put into orbit 500km above #sth’'s surface. If its
vertical velocity after launching is 2000that this height, calculate the
magnitude and direction of the impulse requiredptd the satellite
directly into orbit, if its mass is 50kg. Assume=glOm&’, radius of
earth, R = 6400km.

Solution

Suppose u is the velocity required for an orbityadius r. Then with
our usual notation,
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mu _ GmM _ gRm __ GM
= — = >, as——=¢
r r r R

DUZ :@
r

Given that R = 6400km, r = 6900km, g = 10ms

, _10x(6400x10%)?
u- =
6900x10°
U = 7700ms*

At this height, vertical momentum is
U, =mV =50x2000

= 100000kgms™

vC
x

Horizontal momentum required, s
Uy = mu = 50 x 7700 = 385000 kg'm

Therefore impulse needed, = /U7 +U?

= 10006 +385000
= 40x10°kgms*

Direction: The angl® made by the total impulse with the horizontal or
orbit tangent is given by

U
tan @ =—L = 10000
U, 385000
tand = 0260

@ = tan' 0260=146°
40 CONCLUSION

In this unit, you have learnt
. about motion in a vertical circle,
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- that it is not a uniform motion
- that here, speed increases on the way down lmeases
on the way up for a particle undergoing such aanot

. that the resultant tangential and normal forcesFax® Sinb and
F = T-o cod where T is the tension in the string holding the
particle

. that satellites revolve round the sun in orbigttturn out to be
conic sections (ellipse, circle, parabola or hyp&)

. that the centripetal acceleration of the sateilités circular orbit
is produced by the gravitational force on the $itdel

. that this force is Equal to the mass times theataatceleration
F =ma,

2
lew=F, = GmleE :n{v—j
r r

V2
wherea, = —
;

. that the velocity of the orbiting satellite
: GM r
isV? :1/—E and a, = — .
r R R2 g
. that the period of revolution is
3
_om _on
V.  RJg
. that a parking orbit is the orbit of a satellite agl period of

revolution is approximately Equal to the periodrafation of the
earth about its axis which is 24 hours

. that satellites in parking orbit are used as rsiatgllites for TV
and other forms of communications.

. that great acceleration is needed to fire a rocketder to launch
a satellite or space craft with astronauts.

. that when there is no reaction force to an objewaiésght, the

object feels weightless.
5.0 SUMMARY

What you have learnt in this unit are:

. that in a vertical motion, the tangential forcd-is = w SirH and
the radial force is £ = w co®9. Where T is the tension in the
string and w = mg is the weights of the objectincular motion.
The resultant tangential and normal forces are

F,, =wSindandF, =T —wcosf
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. that the path described by a satellite round theisua conical
section (ellipse, circle, parabola or hyperbol@hat the normal
radial acceleration is

At the lowest point of the path, = 0 Therefore Sifi = 0 and Co$ =
1 and the acceleration is purely radial (upwardd)e magnitude of the

tension is then
V2
T=m—+

At the highest point & = 187, Sin® = 0 and Co® = -1, and the
acceleration is once more purely radial (downwards)

o

For this kind of motion, there is a critical poin¢low which the cord
slacks and the path will no longer be circular.isThappened at T =0

V2
m—-g (=0
o)
O V. =/Rg

. that the gravitational force on a satellite produtiee centripetal
(radial) acceleration that keeps the satelliterit

. that the velocity of the orbiting satellite is givby V = CMe

Where M: is mass of the earth, G is the gravitational cmsénd r is
the radius of the satellite.

. . . V2 r.2
. that its acceleration ia = — or a, =g ¢
r
. that the period of revolution of a satellite is
3
_2ir _2mr?

vV  RJg
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. that if a satellite is in its parking orbit roundet earth, it will
remain at the same place while the earth rotagesuse in its
parking orbit its period of revolution is same @ period of
revolution of the earth. That is why it is callétde parking

orbit for the satellite

. the radius of the satellite in its parking orbigisen by
R = 3 ngrz
47T

where r is the radius of the earth, T = 24h

. the velocity of the satellite in its parking orkstv :Z_IF—R

. the height of the parking orbit above the surfat¢he earth is
h=R-r

. that when the reaction force to the force of gsavst zero, the
object feels weightless.

6.0 TUTOR MARKED ASSIGNMENTS

1. A satellite is to be sent to the position betwdéege moon and
Earth where there is no net gravitational forceanrobject due to
those two bodies. Locate that point.

2. What is the period of revolution of a manmadelBte of mass
m which is orbiting the earth in a circular path m@dius
8000km? (mass of earth = 5.98 x**k@)
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1.0 INTRODUCTION

In this unit, our study of the universal gravitatiwill be concluded with
a look at gravitation and extended bodies. You Ve&rn how to

determine gravitational potential energy and escgeed or velocity of
a satellite to be projected into space, we shaltudis the variation of
gravitational force with height, depth and latitude

Finally we shall visualise the gravitational forae a fundamental force
in nature. This will bring us to what opposes motof an object in the
next Unit titled Friction.

2.0 OBJECTIVES
By the end of this Unit, you should be able to:

« compute the gravitational potential.

» derive expression for escape speed

» solve problems related to the variation of accélenadue to
gravity with the height, depth and latitude of aqad

« distinguish between the fundamental forces in matur

3.0 MAIN BODY

3.1 Gravitational Potential Energy

We have seen in Unit 12 that gravitational force isentral force and
depends only on the distance of the influenced abdff@m the force
center. Since it is a conservative force it camdéaved from a potential
energy function. We shall show here that the pgakmrnergy of a
system of two point masses interacting with eadmemthrough the
gravitational force ig9(r) = - (GmM)r.

Let the potential energy at infinity be zero. Nqgwotential energy is
defined as
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U(r)=U ()= j " E(F)dr 31

Where we have chosen one point to be at infinltge force points from
the location of mass m to the origin (location of, Mnd we also chose
the path to go directly along a radial directionteat the magnitude
F.dr'=dr.

Thus we obtain from

F=—1—dr 32
r
that
U -U)=-] -SM g
« r
GmM
===
But U(w) =0

GmM
r

O u(r) =- 34

Self Assessment Exercise 3.1

A particle of mass m moves in a circular orbit aflius r under the
influence of the gravitational force due to a pabject of mass M>>m.
Calculate the total energy of the particle as aftion of r.

/ M N
/ \\
/ \
/
mC f ‘
) /
\ F
/
\ ;
N s
N

\Y

v
The sketch above will help you to understand tlubiem,

Solution:
The total Energy E is given by

E = KE + Pot Energy, U
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KE + U = %m\h[— GmMj
r

We see it’s a function of both V and r. We waneliminate the speed.
We achieve this by applying F = ma. For a circutabit, the

2

acceleration is centripetal and is of the foere Ve and directed
r

towards the centre. The force has the magnit&dmgM and is also
r

directed to the centre. Newton’s second law tloeechas the form

GmM _mv

r? r

orv2=SM
r

We use this expression fof to eliminate the speed in the expression for
total energy to get

GmMzimG_M_GmM
r 2 r r
_1GmM
2 T

E=Zm¢-
2

This means that the total energy is just one-lnfgotential energy for
a circular orbit. The value is negative. Thisppropriate because the
orbit is closed.

3.2 Escape Speed

What happens when you throw a ball vertically umar Does it
continue going up forever? We notice that theefast ball is thrown
upwards, the higher it rises before falling bacldgar It falls backwards
due to the pull of gravity on it. This conceptuystudied in Units 11
and 12. In this unit, we shall find out the vatfean initial velocity an
object can have in order to be able to escape ttemsurface of the
earth into space. That is the velocity or speedrefer to as escape
speed or escape velocity.

To project an object (satellite) and land it saytlee moon, it could first
be projected to land on an orbit whose period gblgion is same as
time taken for the earth to rotate about its axds24 hours (this orbit is
referred to as parking orbit for the satellite)wit speed of 8krifsand
then subsequently firing the rocket again to reastape speed in the
appropriate direction to land on the moon.
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To obtain the escape speed we use the followintysisa We know

that a certain amount of energy is required to@sdam the earth. The
escape speed will be determined considering thietliat the potential
energy gained by the satellite will be equal to kimetic energy lost if

we neglect air resistance.

Let m be the mass of the escaping body and M th&s ro&the earth.
The force F exerted on the body by the earth when distance
separating them is x from the earth’s center iemgivy

Mm

X2

F=G 35

Work done 6W by gravity when the body moves a distance dx ugwa
IS

Mm

X2

MW =—Fdx=-G dx. 36

The negative sign shows that the force acts inofyosite direction to
displacement therefore,.

Total work done while body escapes =
J' ® - GM—de 37

' X
wherer = radius of the earth

O TotalWorkdone=- GMm[—%]:" :GMmF}
X r

_ GMm 38
r

If the body leaves the earth with speed v and @sstapes from its
gravitational field then, KE = Potential Energy.

e imv2=GNIrn 39
2 r
O V= 2GM 310a
V' r

But g = GM
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Substituting, we get
vV =,/20r 310b

Egn. (3.10) gives the expression for the velocftesrape. Substituting
the values of g = 9.8mx;%sand r = 6.4 x 10 m the escape speed is
calculated to be

V=1kms™

We conclude that with an initial velocity of abdiitkm s, a rocket will
completely escape from the gravitational attractwbrhe earth. It can
be directed to land on the moon so that it evehtwall be under the
influence of the moons gravity. At present "sddiidings on the moon
have been achieved by firing retarding retro rogket

Possible paths for a body projected at differeresls from the earth
have already been given in Fig 3.3 of Unit 12.

Summarising we note that with a velocity of abokim8s’, a satellite

can describe a circular orbit close to the surfafcéhe earth. When the
velocity is greater than 8kmisbut less than 11km™s a satellite

describes an ecliptical orbit round the earth. Mite that its maximum
and minimum height in the orbit depends on itsipaldr velocity.

Air molecules at standard temperature and pregsosses an average
speed of about 0.5kms This is much less than the escape speed so the
earth’s gravitational field is able to maintain @mosphere of air round
the earth. On the other hand, hydrogen molecukesagse in the earth’s
atmosphere because their average speed is thres ftinat of air
molecules. The moon has no atmosphere.

0] Can you suggest why it is s0?

(i)  Why does the earth retain its atmosphere?

Self Assessment Exercise 3.2
Find the velocity or speed of escape on the suidatee moon?

Solution
The speed of escape on the moqp i€

V.

_ /ZGMm
em rm
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If M,, = 765x10%kgandr,=16x10°m
G = 667x10™"Nm’kg™
_|2x667x10™x 765x10%
= ms
16 x10°
= 253x10°ms™

V

em

3.3 Variation of g With Height and Depth

Let us assume that g is the acceleration due tatgrat a distance a
from the centre of the earth where a >r. r isrddius of the earth.
Then from our studies on weight in Unit 11 we haak t

GM
g = rzE
Henceg' = CMe 311

a2

where Mt is the mass of the earth and G is the universaliigtion
constant.

' 2
Dividing g-I 312
g a
Or
r.2
g' =¥g 313

From Egn 3.9, we conclude that, above the earthidase, the
acceleration due to gravity’ yaries inversely as the square of the
distance, a between the object and the centereoédinth. Note that in
the same equation r and g are constantshug decreases with height as
shown in Fig 3.1 below.
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/""““ — g at surface of earth
/
/. _
Jég‘?t'ﬁe Outside earth

T
Density assumed

uniforrr}
r a
{Radius of (Distance from
earth) centre of earth)

At height h above the earth’s surface,a=r+h
r? 1
g'= ;9= > 9 314
(ren) 1+7]

r

-2
g = (1+?j g. 315

We see that if h is very small compared to r (where 6400km) we
neglect the powers oﬁ higher than the first
r

Hence
g'= [1—2—hjg 316
r
g — g = reduction in acceleration due due to gravity
g'= 2—hg 317
r
/ P
b

earth

Fig.3.2 Variation of g with Depth.
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At a point say p below the earth’s surface it canshown that if the
shaded spherical sheet in Fig 3.2 is of uniformsdgnit produces no
gravitational field inside itself. The gravitat@macceleration g, at point
p is then due to the sphere of radius b. If waimssthis sphere to be of
uniform density, then from our knowledge of theat&n between g and
G we have
_GM, _GM
0, ==+ andg=—"
where M is the mass of the sphere of radius b. The miaasuaiform
sphere is proportional to its radius cubed, hence

318

3
u, 17 19
;
But
M, r?
S -=""1
g M b
o G9.b 320
g r
or
gﬁgg 321

Thus, assuming the earth has uniform density, toelaration due to
gravity g is directly proportional to the distanzcérom the center. That
is, it decreases linearly with depth, Fig. (3.1t depth h below the
earth’s surface, b=r—nh

0 g1=[ifhjg=(1—?jg 322

But because the density of the earth is not cohggamactually increases
for all depths now obtainable as shown by parthef dotted curve in
Fig. 3.1

Self Assessment Exercise 3.3
If r is the radius of the earth and g is the agedien at its surface, what

is the expression for the acceleration 6fofj a satellite at an orbit a
distance R from the Centre of the earth. R>>r

188



PHY 111 ELEMEARY MECHANICS

Solution
g
g R
r2
O 91=§g

Self Assessment Exercise 3.4

Suppose that a tunnel is drilled through our plaalehg a diameter.
Assume the earth’s mass density is uniform andvisngbyp. Describe
the force on a point mass m dropped into the hsla &unction of the
distance of the mass from the centre.

Solution

The gravitational force on the point mass m is daoly to the mass of
the material contained within a radius r, whers thie distance from the
point mass in to the center of earth. The forcatigctive, towards
Earth’s centre and it is given by

_ GmMm*
r

F

where the mass Mhat attracts the point mass as the total masseins
radius r (see diagram below). i given by (volume) x (densify)

M= (4nr¥/3)p
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Thus substituting for M

F:(m—rnojr
3

We see that F is proportional to r. This resutiveh that, inside Earth,
the point mass acts as if it were moving underiiflaence of a spring
with spring constanK =47Gmp /3. This motion is oscillatory and the

point mass moves from one end of the tunnel t@ther and back.
3.4 Variation of g with Latitude

The acceleration due to gravity has been obsexvedry from location

to location. This is as a result of the following:

0] the equatorial radius of the earth exceedisgpolar radius by
about 21km hence making g greater at the poles #iathe
equator because, a body is far from the centdreoéarth here.

(i)  the effect of the earth’s rotation.

Let us look at how the earth’s rotation affects edexation due to
gravity. Recall that a body of mass m at any pomthe surface of the
earth (except the poles) must have centripetakfaating on it. Part of
this centripetal force is due to the force of grawn the body. If the
earth were stationary, the pull of gravity on m vdobe mg where g is
the acceleration due to gravity. But due to thehéa rotation the
observed gravitational pull is less than this andqual to mgwhere g
is the observed acceleration due to gravity. Hence,

Centripetd forceonbody= mg - mg,. 323

At the equator, the body moves in a circle of radiwhere r is the
radius of the earth and it has the same angularciglas the earth.
Here, the centripetal force is rfiwso we have

mg-mg, = Mw’r 324
0 g-0,=w’r 325

When we substitute the values r = 6.4 0
w =1revolution in 24hours =r2(24 x 3600) rad Swe get

g-g, = 64x10°mx Lrad st|?
24x3600

= 34x10°ms™2
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Assuming the earth is perfectly spherical, the Itesbove is also the
difference between the polar and equatorial vatdies Note that at the
polesm = 0 and so g =g The observed difference is 5.2 X°iifs?, of
which 1.8 x 10ms? arises from the fact that the earth is not a perfe
sphere.

At altitude 6 if we assume a spherical earth, the body descebzrcle
of radius r co9, Fig.3.3.

rcos) mw?rcod)

(b)

(@)

The magnitude of the required centripetal forcetras latitude is
mo?’rco® which is smaller than that at the equator sindeas the same
value. Its direction is along PQ in the diagram img acts along PO
towards the center of the earth. The observedtgtenal pull mg is
therefore less than mg by a factowfrtod along PQ and is in a
different direction from mg. We remark that theedtion and value of
go Must be such that its resultant witwfrco® along PQ will give mg
in a parallelogram law diagram as shown in Fig@t8l{). The direction
of g, as shown by a falling body or plumb line is noaetky towards the
center of the earth except at the equator and poles

Fig 3.3

3.5 Fundamental Forces in Nature

So far we have dealt with the phenomenon of graeitaand some of its
applications. Newton’s law of gravitation was tleeehead of all the
discussion. But now we raise the question — whalldhere is a force of
attraction between any two material bodies? Doesthn’'s law
provide an answer? It can not because the greitdtforce between
two bodies exists naturally. Such a force is calle Fundamental force
of Nature’. There are three different kinds of damental forces in
nature. We shall discuss them briefly now.

Fundamental or basic forces are those for whichcamenot find an
underlying force from which they are derived. Hemn stands to reason
that those forces resulting from the operation ome underlying
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fundamental force are known as derived forces.s Thncept is similar
to the concept of fundamental and derived unitmmefisurement which
we discussed in Unit 2 of this course.

There are three kinds of fundamental forces. Thesdi)gravitational

(ii) electroweakand (iii) strong. You have read in detail in Units 11, 12
and this present one about gravitational forcectviicts on all matter as
you have seen so far. You recall that it varieiisely as the square of
the distance but its range is infinite. This foireeesponsible for holding
together the planets and stars and in fact, inadiverganization of solar
system and galaxies.

The electro weak force includedectro-magnetismand the so called
weak nuclear force. Electromagnetic forces incltite force between
two charged particles at relative rest (electrastnor in relative motion
(electro-dynamics). The electrostatic between twarges obeys the
inverse square law like gravitational force betw&éen masses. [You
will learn more about that in your electro magnatisourse in the
second semester]. The dissimilarity here is thatges are of two kinds
— positive and negative. If the charges are of spedind the force
between them is attractive but if they are of thme kind, the force is
repulsive. It can be shown that the gravitationaicé between an
electron and a portion in a hydrogen atom i¥ fines weaker than the
electrostatic force between them. Thus we genapapative estimate of
the strengths of gravitational and electrostaticéo

In the case of moving charges, we know that chargesotion give rise
to electric current. You also learnt in the se@gdchool that a current
carrying conductor is equivalent to a magnet. Tighe meeting point
of electricity and magnetism and hence the wordctebmagnetic’ got
associated with this field of force. The force tlbae comes across in
daily life, like friction, tension etc. can be eapied from the standpoint
of the electromagnetic force field. An estimatetlad relative strengths
of the repulsive electrostatic and the attractivavigational force
between two protons in a nucleus shows that thedoiis 16° times
larger than the latter. So, how is it that thet@ng in an atomic nucleus,
stay together instead of flying away? The answesr ih the third kind
of fundamental force known as tls&rong (nuclear) force that exists
between the protons inside the nucleus, which rgngty attractive,
much stronger than the electrostatic force betwkem. Strong nuclear
force also exists between neutrons in the nuclsusvel as between
neutrons and protons. The nuclear force decregseélyavith distance
so it is a short range force. You will study intaleabout the nuclear
forces in a nuclear physics course.
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The nuclear force as we have seen accounts fobititeng of atomic

nuclei. But this cannot account for processes t&k@ioactivity beta

decay about which, once again, you will read in theclear Physics
course. This can be explained from the point eiwbdf the so-called
weak nuclear force. It is much weaker than thetedenagnetic force at
nuclear distance but still greater by a factor @f than the gravitational
force. Just a few years ago, this weak force wehsd separately from
the electromagnetic force. However, a theory wap@sed which led
to the unification of the weak forces and the et@oagnetic forces and
hence the name “electroweak’ forces.

4.0 CONCLUSION

In this unit, you have learnt

. that the potential energy of a system of two pamasses
interacting with each other through the gravitadioforce is
Uy =—GmM/r.

. That escape sped | e speed an object can havdanto escape
from the surface of the earth into space

. tat the acceleration due to gravity, a decreasefattther away an
object is far away from the center of the earttsiolgt the earth’s
surface.

. tat there is no gravitational field inside the $Hestneath the
earth’s surface if the shell is of uniform density.

. That g decreases linearly with depth below thehéasurface,

. That the acceleration due to gravity g increasé!s hatitude.

. That fundamental forces or basic forces are fofoesvhich we
cannot find underlying forces from which they aegided.

. That gravitational force is one of the fundamerfaices in

nature. Others are electro weak and strong nufdeces.
5.0 SUMMARY

What you have learnt in this Unit are.
. ThatU(r)—U(oo):J';F(r)dr

where U(r) — Uf) is the potential energy of a system of two

point masses interacting with each other. ItoJE O then
GmM

U(r)=- .

. That the escape speed or escape velocity is thienomm velocity
needed by an object to be projected into space finensurface of
the earth.

. That the potential energy gained by the satelstequal to the
kinetic energy lost (neglecting air resistanceherefore from
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1 2-GMm
r
Weget
_ |2GMm
- r
but
_Gm
9 7
vV = 4/20r
. That the escape speed is calculated to be T1kms
. That the gravitational acceleration g at a distaac&kom the

center of the earth of radius r where a > r is igilvg

r2
gl=539

. From the above we conclude that, above the eartface, ¢
varies inversely as the square of the distanceveele® the object
and the center of the earth

. That when the point mass is placed inside the sphdr
experiences force of attraction only due to a cotreespherical
mass on whose surface it lies. The matter cordamé¢he shells
external to this point mass does not contributallatio the force
of attraction.

. That the mass of a uniform sphere is proportionaits radius
cubed hence from eqgn. 3.18 and 3.19

_ b
9 = . g
Where b is radius of the sphere and r the raditlseoéarth
. That g varies with latitude — greater at the pdiesn at the
equator because the earth bulges at the equator
. Gravitational force is a fundamental force in naturThere are
two other kinds of fundamental forces — #ectro weakand
thestrong nuclearforces.

6.0 TUTOR MARKED ASSIGNMENT
1. A satellite moves in a circular orbit around teartaking 90
minutes to complete 1 revolution. The distance ftbemmmoon to

earth is ge = 3.84 x 16m; the moon'’s orbit is circular, the speed
of the moon’s rotation about Earth ig £ 27.32¢l Earth’s radius
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is Re = 6.37 x 16 m and Earth’s gravitational force acts as if all
of Earth’s mass were concentrated at its centerth Whis
information, calculate the height of the sateliitlove Earth.

2. By what percentage of its value at sea-level do@scgease or
decrease when one gets to (i) an altitude of 25C&kadn(ii) Kolar
Gold Field at a depth of 3000m.
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1.0 INTRODUCTION

In Units 1, 5, 6 and 7 we saw that every objecyssia relative rest or
motion unless it is impinged upon by an appliecéor In this unit we
shall discuss friction. Friction is a type of forae experience everyday
without giving it a thought. Have you ever consetk why you walk
without slipping unless you unknowingly step onanéna peel or on
smooth slippery floor or on a thin film of water ansmooth film? We
do not slip and fall down when we walk becauseheffrictional forces
acting between our feet and the ground. Frictilowas cars to move on
the roads without skidding and it even holds nansl screws in place
etc. The study of friction, wear and lubricatiencalled tribology and it
is very important to industry. In studying friatal forces, you will
draw from your knowledge of conditions for equilibn of forces
treated in Units 3 and 7. We shall limit our dission in this course to
solid friction. Friction also exists in liquids é@gases but you will learn
about that in your course on Thermal Physics amgdtties of Matter
next semester.

2.0 OBJECTIVES

By the end of this Unit, you should be able to

. describe an experiment to determine the coefficedngtatic or
dynamic friction

. state where frictional forces act

. define the coefficients of static and kinetic fioct

. state the laws of friction

. apply the laws of friction in solving problems

. differentiate between static and dynamic friction

. explain the nature of friction
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3.0 MAIN BODY

3.1 Laws of Friction

Frictional forces act along the surface between bedies when one
tries to move or succeeds in moving over the oth®a Friction is a
contact force. It is that force that tries to pposes motion. Rubbing
surfaces in machinery need to be lubricated to aedtiction so that
their life span could be extended. Yet we needtifm because it
enables us to walk without slipping. It enablestaskeep things in
standing positions. But note that wherever theriction, you expect
some surface wear of the materials in contact.

Coefficient of Friction

There are different apparati one can use to sthdyfriction between
two solid surfaces. We shall limit our discussimre to the use of the
apparatus described in Figure 3.1 below.

Spring balance /
osn

Pulley Clamp
Wooden block Woddeh plnr:k

Stael rollar

Crank

Fig. 3.1

The set up is described in the diagram. Initidtlg plank is at rest, but
when some force is applied to the crank, the plaiikiend to move or
moves depending on the amount of force appliedl thA$ while, the
block remains at rest. The spring balance sehaws, measures the
frictional force between the block and the plank.

As the crank is wound slowly, the spring balan@aleg increases until
it reaches a maximum value. This maximum valuthésvalue of the
frictional force when the plank is just about tovepand it is called the
limiting frictional force. It is observed that whmethe plank starts
moving, the spring balance reading decreases Mligfthis shows that
the kinetic or dynamic frictional force is smalléman the limiting
frictional force. To check if friction depends orea of contact between
the two surfaces, the block can be positionedeaetige.
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The normal force N exerted by the plank on the lblscequal to the
weight w of the block. So we can then vary thegheiof the block by
putting standard weights on it, and recording th@responding
frictional forces as indicated by the spring batancdhus the effect of
frictional force of varying N can be found.

The results of such an experiment are summarizedhet we call the
laws of friction which state that:

1. The frictional force between two surface oppotbesr relative
motion.

2. The frictional force does not depend on the afemontact of the
surfaces

3(a) When the forces are at rest the limiting imical force F is
directly proportional to the normal force N
(b) When motion occurs the kinetic (dynamic) tiooal force F is
directly proportional to the normal force N i.es &N (or /N =
constant) and is reasonably independent of théwelaelocity of
the surfaces.

Hence the coefficient of limiting static friction js
F
M= = conatagt 31
and that coefficient of kinetic (dynamic) frictias
_FRe
My N Constagt 32

Note that for two given surfacesy |$ less than i though occasionally
they may be assumed to be equal. For sliding woeed, | is about 0.2
to 0.5.

Generally, when a surface exerts a frictional faheeresultant force in a
body on the surface has two components. It hasmal force N which
is perpendicular to the surface and a frictionatéoF along the surface
with direction opposite to the direction and motiorThis is illustrated
in Figure (3.2) below

N

A

Resultant force Body moving to the right

/
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Note that if the surface is smooth, ther 0 and so F = 0. We conclude
then that a smooth surface will only exert a fateght angles to itself,
that is, only the normal force survives here.

Can you think of any other way by which we can fthd coefficient of
limiting friction?

Yes. Another possible way is by placing a blocknzdiss m on the
surface of say a horizontal plank and tilting theng gradually. The
angle of tilt is slowly increased until the block just about to slip as
shown in Figure 3.3a. The forces acting on thelbire

0] its weight mg

(i)  the normal force N of the surface and

(i) the limiting frictional force F -uN.

These three forces are in equilibrium.

F

v
Mg

(a) (b)

@

|
O

|

|

| \

I mg co$

Let mg be the weight of mass m. When mg is resblweo its
components, we might get mgéoslong the surface and mgéos
perpendicular to the surface as shown in Fig 3[&kn we have that

F =uN = mg si® 3.3
N = mgco8 3.4

Dividing and Eqgn. (3.3) by (3.4) gives
u = tano 3.5

Thus if we measure angde thenu can be computed.
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Example

A uniform ladder 4.0m long, of mass 25kg, restshwit upper end
against a smooth vertical wall and with its lowaden rough ground.
What must be the least coefficient of friction beém the ground and
the ladder for it to be inclined at 60° with therizontal without

slipping?

Solution
Mg = wit. of ladder = 250N

The forces acting are as shown in the diagram\idikeis smooth so the
force S is normal to it. We assume the weighthefladder to be acting
from the mid point G because it is of uniform crgsstion. When the
ladder is just about to slip, the force exertedtdny the ground could be
resolved into its vertical (normal and horizontalnmponents i.e. its
normal force N and its limiting frictional forces s F= pudN
correspondingly. Nows is the expected coefficient of limiting friction,
we are to find.

So, for equilibrium

W = 250 Newtons = N for vertical forces and
Fs =usN = S for horizontal components
If we now take moments about point A then,

SXAC =W xAD
Sx4.0c0s30° =250x2Sin30°
= 250 Newtons

O S=gs Newtons
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Self Assessment Exercise 3

T}

2

.
—»

Motion crust

T
> E
Motion K

v

Fig 3.5
W

Suppose that the block in the figure above weigh®@wtons and that
the tension T can be increased to 8 Newtons befmrdlock starts to
slide, and that a force of 4 Newtons can keep iingpat constant speed
once it has been set in motion. Find the coefiitsi®f static and kinetic
(dynamic) friction.

Solution
Resolving the forces horizontally and vertically ngeve

>.F, =sumof vertical forces
2. F, =sumof Horizontal foreces
> F,=N-W=N-20Newtons=0

> F, =T - u;N=8Newtons-y N =0  }First Law
whereys is the coefficient of limiting friction,f Note: and = pN

For the same condition except that a force of 4taesvkeeps the block
in motion we have

2. F,=N-W=N-20Newtons=0 } First Law
> F, =T - f, =4Newtons- y, N =0} First Law

Sinceyy is the coefficient of kinetic friction, motion ests, N = fi
Hence

_ 4 Newtons _

H< =50 Newtons
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Example

A professor with a light eraser in her hand leagairsst a blackboard.
Her hand makes an angle of 30° with the horizoatal the Force F
exerted by her hand on the eraser has magnitude 39N: The
coefficient of prof static friction between the sea and the blackboard
is us = 0.15. Does the eraser slip?

Solution:
A
FDI‘O :':nmf | 3(0
|
|
|
30
a— Frror COS3C
N
v Fs
Fig 3.6

We have tried to represent the forces on the erasethe diagram
above. It also indicates a useful co-ordinateesystUnder equilibrium,
Newtons first law applies that is

Fy+F +F . =0

prof =
Component wise then, we have

—Fyi—F,j+F, CosOi+F Sindj=0
The unit vectors are included to show they ared®rmn component

form.

Separating the x-component from the y-componentbave,
For x-component;-F,+F_ Cosd=0

For y-component= f_+F_ , Sind=0

prof

prof

The x-component equation determingsffom the requirement that it
balances the perpendicular component of the ftre@tofessor exerts.

F,=F . Cosd

prof
The maximum value of the static friction is thus

fomax = Foror SING = LsFy

smax —
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Note that the eraser can only begin to slip if tmaximum limiting
frictional force is exceeded. Thus, when we stlstithis maximum
value of static friction into the y-component eqomi we find a
condition for the critical anglé; for which the eraser begins to slip.

- /JSFDrof Cosf,. + Fprof Sing. =0
Sing,

0 € —tend.=
Cosd, c —Hs

Note the striking feature that the critical angieimdependent of the
force the professor exerts. When numerical vahressubstituted, the
equation yields tafic = 0.15 or 6. is less than the 30° angle made by
the professor’s arm, so the razor slips down

Self Assessment Exercise 3

The figure below shows a person applying a horgldiarce in trying to

push a 25kg block up a frictionless plane incliaeédn angle of 15°

(@) Calculate the force needed just to keep the blo@quilibrium

(b)  Suppose that she applies three times that forckat Will be the
acceleration of the block?

Fy

W sino

For Equilibrium Note. Plane is frictionlegsu, =0

X'Componem:Fpush—WSin=O } First Law

y-Component:F, ~wCosé =0
(@) Therefore force needed o keep the block in equilibris

F =W SIing

push —

=250x 0259=64.7N

(b)  If she applies three times the force thgnpfecomes

Foun =3 647N
=1941N
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But the weight of the block acting in the negataxis is w Sif
Fretfor push is 194.1 — 64.7 = 129.4N

But Fetl =mxa
Where R is the net or effective force pushing up thebla

_F. _1294N
Da=-—"e=
m  25kg
a=517ms?

3.2 Nature of Friction

The coefficients of static and kinetic (dynamic sliding) friction
depend on the nature of surfaces in contact between bodies.
Coefficient of friction is large for rough surfactsn for smooth ones.
The coefficient of kinetic friction varies with threlative velocity but for
the sake of simplicity we assume it to be indepahdévelocity.

Close examination of the flattest and most polishdaces reveals that
there still exist hollows and humps which are mtran one hundred
atoms stacked one on top of the other. This mé@isvhen two solid
surfaces are placed one on the other, or are nmatteith, their actual
area of contact is very small. An example is shawRigure 3.7 below

Fia 3.7

Electrical resistance measurements of two metatomiact reveal that
the true area of contact between the surfacestisrezly very small. It

is estimated that in the case of steel, the adued that is touching
many be just about one ten thousandth (1/18060the apparent area
actually placed together. Two metal surfaces giu®n each other’s
projections when they are placed one on top obther. This goes for
non-metallic objects too. Look around your roomeveéhyou are now
and examine surfaces in contact with each othest nBte that you can
not see all we are saying with the naked eyes., et concept of

frictional force is easy to experience when you twypush or pull a

heavy table.
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Pressures at the points of contact between twolsrata extremely high
and cause the bumps to flatten until the increased of content enables
the upper solid to be supported. It is presumed #t the point of
contact small, cold welded joints’ are formed by tstrong adhesive
forces between molecules that are very close tegethhese have to be
broken before one surface can slide over the otfAdrns phenomenon
accounts for the first law of frictional force.

Experiments like the ones made by Leonardo da \8pnane 200 years
before Newton’s work on dynamics (Fishbane et atij & set of blocks
of varying sizes sliding on table tops show tharging the apparent
area of contact of the bodies has little effecttlom actual area for the
same normal force. This explains the second lawiction. It is also
found that the actual area is proportional to themal force and since
this theory suggests that frictional force depeowlghe actual area, we
might expect the frictional force to be proportibteathe normal force —
as the third law states.

4.0 CONCLUSION

In this unit, you have learnt

. that friction is a contact force which acts alorige tsurface
between two bodies in contact when one tries to anov
succeeds in moving.

. that friction opposes motion

. that the coefficient of friction is the maximum limg force just
before a body starts sliding over another surface.

. the three laws of friction.

. how to apply the laws of friction to solve relevamioblems
pertaining to friction.

. about the nature of friction.

5.0 SUMMARY

What you have learnt in this unit concerns friciibforce. You have
learnt

. what frictional force is
. where it acts
. how it is determined
. the laws of frictional force
. to differentiate between static and dynamic frictio
. how to apply the laws of friction in solving prohie
. the nature of friction that
— FS . —_ FK
Hs= N My = N
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where the symbols have their usual nmgan

. that friction is important to life because it allews to walk, drive
cars etc. and place things in steady positions, etc

. that friction between two surfaces in contact lemdsearing off
of such surfaces hence such matter needs lubmcatio

. that since friction is important in the industryistessential that

we study about it.
6.0 TUTOR MARKED ASSIGNMENT (TMA)

1. An automobile with four wheel drive and a powerualgine has a
mass of 1000kg. Its weight is evenly distributed its four
wheels whose coefficient of static friction withydroad isus =
0.8. If the car starts from rest on a horizontafece, what is the
greatest forward acceleration that it can attaithewt spinning
its wheels?

2. What is the friction force if the block weighing = 20N in the
figure above is at rest on the surface and a hot@dorce of 5N
Is exerted on it.

3. What force T at an angle of 30° above the hotalois required
to drag a block weighing 20N to the right at const&peed, if the
coefficient of kinetic friction between block andriace is 0.207?

4. Two blocks of masses M and m are connected lgha rope
which passes over a frictionless pulley. Mass M ©ih an
inclined plane with an angle of inclination of 30he coefficient
of static friction between mass M and the inclindane is 0.20,
while m = 30kg. Determine the smallest and largasssible
values of M for which the system remains in equilitn.
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UNIT 5 WORK AND ENERGY
CONTENTS
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2.0 Objectives
3.0 Main Body
3.1 Work
3.1.1 Work done by a Constant Force
3.1.2 Unit of Work
3.1.3 Work done by a Varying Force
3.2 Energy
3.2.1 Kinetic Energy
3.2.2 Potential Energy
3.2.3 Conservation of Energy
4.0 Conclusion
5.0 Summary
6.0 Tutor Marked Assignment (TMA)
7.0 References and Further Reading

1.0 INTRODUCTION

Work and energy is central to life. We do it angh@xence it every day.
We can thus say that the notion of energy is on¢hef most basic
concepts in physics and indeed in all sciencestdgyrtiakes many forms
and in this unit we shall focus on energy contaiirednoving objects
which we call kinetic energy and also in energycabpossesses by
virtue of its position called potential energy. Twierk done on an object
involves the force acting on it as it moves. We oalate the change in
kinetic energy of an object to the work done omstit moves. This
relation is called work-energy theorem. In thistwyaiu will learn how to
calculate the work done by an object which willveeas a powerful tool
for the understanding of motion.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

. define work in the scientific sense

. distinguish between positive and negative work

. determine the work done by a varying force

. explain the terms energy, potential and kinetiergn

. state the principle of conservation of mechanicairgy

. apply the work-energy equation in solving energyatssl
problems.

. state the fundamental law of conservation of energy
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3.0 MAIN BODY
3.1 Work

3.1.1 Work Done by a Constant Force

The term work is erroneously used in everyday diseapplied in any
form of activity where we exercise muscular or naémgffort. But in
physics the term work is used in a specific seBgg.in the scientific
sense work is done when a force moves its pointabplication along
the direction of its line of action.

i i L L
A 5 B— » A B
— —

S

d »
<« »

F Co9® F Co9®
(@) Fig 3.1

A
(49]

v

(b)

For example, in Figure 3.1 (a) if constant forceéves from point A to
point B a distance of s in a constant directioentthe work done by this
force is defined as

Work

Force x distance moved by force
W = Fs 3.1

If the force acts at an angbeto the direction of motion of the point of
application of the force as shown in Figure 3.Jdntthe work is defined
as the product of the component of the force indinection of motion
and the displacement in that direction. That is

W = (F co9)s 3.2

We note that whef = 0, Cosb = 1 and so, W =Fs. This agrees with
equation (3.1). Wher® =9C°, Cos = 0 and we see that F has no
component in the direction of motion and so, no kwisr done. This
means that if we relate this to the force of gsgvit is clear that for
horizontal motion, no work is done by the force grfavity. You
remember we saw this situation during our discussia projectile
motion in Unit 8.

Now, get a big textbook and place it on the tabihere you are reading.
Apply a push force horizontal to it. What do youselve? You have
now seen that work is done only when a force istegeon a body while
the body at the same time moves in such a waytheaforce has a
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component along the line of motion of its pointagiplication. | would
want you to pay special attention to this: If tieenponent of the force is
in the same direction as the displacement, the worie W is positive.
If it is opposite in direction to the displacemetiten the work is
negative. If the force is perpendicular to the lispment, it has no
component in the direction of the displacement #red work is zero.
Can you give some examples where work done in sactigities is
positive and negative? Think of the work done whdyody is lifted up.
It is positive work. The work done by a stretchspging is also positive.
On the other hand, the work done by the force alviy on a body
being lifted up is negative. Why is this so? Thlidecause the force of
gravity is opposite to the upward displacement. Vadody slides on a
fixed surface, the work of the frictional force ebegl on the body is
negative since frictional force is always oppositeéhe displacement of
the body. Because the fixed surface does not mbeefrictional force
does no work on it.

3.1.2 Unit of Work

The unit of work is the unit of force multiplied Itlye unit of distance in
any particular system of measurement. Recall thstemys of
measurement you studied in unit 2 of this course.

In the SI system, the unit of force is the Newtad ¢he unit of distance
is the meter; therefore in this system the unitvofk is one Newton
meter (I Nm). This is called the joule (1J).

In the cgs system, the unit of work is one dynetioegter (1 dyn cm)
and it is called one erg. Note that since 1m = f9@ad 1N = 10dyn,
then

ANm = 10dyn cm or 1J = 1@rg.

In the engineering system, the unit of work is o pound (1ft Ib):
Note: 1J=0.7376 ft 1b
And 1 ftlb=1.356J

We remark that when several forces act on a bodyesolve them into
their components and find the algebraic sum ofvileek done by the
effective component forces. This follows becausekwis a scalar
guantity. Na P

|

|

/AW/:L Co$
./
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Self Assessment Exercise 3.1

The diagram above shows a box being dragged alomgrizontal

surface by a constant force P making a constante ahgvith the

direction of motion. The other forces on the bog @s weight w, the
normal upward force N exerted by the surface awmdftiction force f.

What is the work of each force when the box movesstance s along
the surface to the right. Given w = 100N, P =50N,15N,0 =37° and s

=20m

Solution
The component of p, in the direction of motion is

wp = (Pcod)s
= (50N) (0.8) (20m) = 800Nm

The forces w and N are both perpendicular to desgsteent hence,
wy=0andw=0
The frictional force f is opposite to the displa@erso its work is

w = -f,= (-15N) (20m)
= - 300 Nm

Therefore, the total work done W is

W =W+ W; = (800 -300) Nm
=500 Nm
=500 J

Self Assessment Exercise 3.2

A box of books of mass 100kg is pushed with coristpeed in a
straight line across a rough floor with a coeffintief kinetic friction py
= 0.2. Find the work done by the force that pughesbox if the box is
moved a distance d = 3m

(Take g = 9.8 m9.
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Solution
We approach this problem by drawing a force diagiagm (3.2b) below

Fig .3.2b Force diagram of a crate being pusheasadhe floor.

With no vertical displacement, no work is done bawity or by the
normal force. The forces in the vertical directimmst therefore cancel
each other so\= mg.

Now, because the box moves with a constant velaitigynet horizontal
force must vanish. Thus the pushing force F mustch&l in magnitude
but opposite in direction to the force of frictibrwhose magnitude is
given by f =y Fy = wymg. Hence, the magnitude of F is ajgeng. The
direction of F is the same direction as the disgraent d.

Thus, the work done by the pushing force is pasitivhis work is then
given by

W Fd =3y mgd
(0.2) (100kg) (9.8rif)%3m)
6 x 1

You see how easy the solution of this problem iac®you try to
understand and analyse the problem before you stemputing, the
work is half done. So never be mesmerized with esglguestions.

3.1.3 Work Done by A Varying Force

We started this Unit by defining the work done bgoastant force. We
shall now consider the work done by a varying fdreeause this is also
encountered in the practical world. Here work cdutddone by a force,
which varies in magnitude or direction during theptacement of the
body. For example on stretching a spring slowlg, thrce required to
do this increases steadily as the spring elongaiss. the gravitational
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force pulling an upward vertically projected pddicdownward
decreases inversely as the square of the distaooethe centre of the
earth.

We can find the work done by a varying force graphy as follows:
With reference to Figure 3.3 suppose the force iswlken the
displacement is x, then for a further small disptaent dx is Fdx (i.e. if
we take dx to be so small that Fis considered eot)st

ForceA B
F
A
o =
XT d Displacement
Fig 3.3

If the whole area under the curve AB is divideaismall narrow strips,
the total work done during a displacement S willgaeen by the area
under the curve AB i.e. Area OABC.

3.2 Energy

A body is said to expend energy when it does waorlamother body. For
example if body A does work by exerting a forcebmay B, then body
A is said to lose energy. This energy lost by bédg equal in amount
to the work it performed on body B. thus we canrgekenergy as that
which enables a body to do work. So when we salyyiba have some
energy in you, we mean that you are capable ofgdsimme work.

Energy is measured in joules just like work. Wodne can be taken to
be a measure of the quantity of energy transfdoeddieen two bodies.
That is, if for example, body P does 10 joules ofkvon body Q then
the energy transfer from P to Q is 10 joules.

Power

When we talk about the power of equipment we mbarrate at which
it does work. This is the same as the rate at lwithe machine or
appliance converts energy from one form to anothiee unit of power
is the watt (W). When one joule of work is doneone second it is
known as the watt or that energy expended is IW

L 1Iw=1J%
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The two basic reasons why bodies have mechanicaiggnwill be
considered
now.

3.2.1 Kinetic Energy

Kinetic energy is the energy a body passes byevidfuits motion. For
example a moving hammer does work against thetaesis of the wood
into which a nail is being driven. We obtain thepeession of kinetic
energy by computing the amount of work done by dybwhile the
body is being brought to rest. Consider a body aistant mass, m
moving with velocity u. A constant force F actsibto bring it to rest in
a distance s (Fig. 3.4)

U
—

O—F5%— O
- - F
Fig 3.4

When it comes to rest, its final velocity, v is @efThen from the
equation of motion you studied in Unit 5 we have

V2 =1f + 2as
3.3
where a is the acceleration
. O=U+2as
and
u2
a=-— 3.4
2s

the negative sign in equation 3.4 shows that acaibe is in the
opposite direction to the motion of the body hetieebody decelerates.
We expect the acceleration in the direction offdree F to be + *2s.
Now, the kinetic energy of the body is equal to wark ,W the body
does against F, Therefore,

Kinetic energy, K.E of the body =W =Fs

But Fs = mas
.. K.E =mas 35

2

Putting a =l
2s
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we have
KE:%mm 3.6

You now see how we derive the popular expressioikfa. Conversely
if work is done on a body the gain of kinetic enewghen its velocity

) 1
increases from zero to u can be shown also tg e .

We now generalise. If a body of mass, m with atiahvelocity of u
moves when work is done on it by a force actingravdistance s and if
its final velocity is v then the work done Fs is@n by

Fs =1 mv - Emu2
2 2
3.7

Egn. (3.7) is called the work- energy equatioméy be stated in words
as follows:

Work done by the forces (Acting on the body) = d®nn kinetic
energy of the body.

3.2.2 Potential Energy

The potential energy of a system of bodies is tlexgy the body has by
virtue of the relative position of the parts of thedy of the system.
Potential energy P.E arises when a body experiemdesce in a region

or field. An example is the gravitational field thfe earth. In this case,
the body occupies a position with respect to th¢thedhe P.E is then
taken to be a joint property of the body—earthesysand not of either
body separately. Thus the P.E is determined bydlaive position of

the body and the earth. It is seen that the greaagrseparation, the
greater the P.E. The P.E of a body on the surfatieecearth is always
taken to be zero. But for a body of mass m at ghten above ground
level, the P.E. is equal to the work that will bend against gravity, to
raise the body to this height. This means thatreefequal and opposite
to mg is needed to be applied to the body to raige the required

height. This is because we have assumed g to bstacdnnear the
surface of the earth. Hence ,

Work done by external force (against gravity)

= Force x displacement

mgh

mgh 3.8

. P.E
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When the body returns straight to the ground levekequal amount of
potential energy is lost.

Example:

A car of mass 1x Tkg traveling at 72 kmhon a horizontal road is
brought to rest in a distance of 40m by the actbrthe brakes and
frictional forces. Find (a) the average stoppingcéo(b) the time taken
to stop the car.

Solution:
A speed of 72kmh = 72 x1Gm/3600s
= 20m3
(@) If the car has mass m and initial speed u, then
K.E lost by car = ¥ nfu
If F is the average stopping force and s the destarver which it
acts, then

Work done by car against F = Fs
But Fs=%mu
F x 40m = % x (1 x¥kg) x (20ms")?

E = 10x10°x400 ky m2 s*
2x40 m
= 50x10°N

(b) Assuming constant acceleration and substituting
0, u =20m$and s= 40m in

VvV =
v = (f +2as
we have 0 = 2b+ 2a x 40
: a=-5.0ms
the negative sign indicates the acceleration theénopposite direction to
the displacement. Usingv = u +at we have
0 = 20-5. Ot
.t = 4.0s

Self Assessment Exercise 3.3

What is the kinetic energy of a body of mass l1@kayving with an
initial velocity V; = 4m $' If the force applied to the body is 25N. What
Is its acceleration and final K.E if the body coaea distance of 20m

The initial K.E = 12 MV?= % (10kg) (4ms)?
= 80J

To find the final K.E we need to know the accelemtand final
velocity. Hence
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from F = ma We have

a :E :ﬂ =25m 3_2
m 10.0C

hence v = v/ + 2as

= (4ms ) + 2x(2.5ms "* {20 m)

=116 m? s7?
| 1,
H Final K.E.:?mv2
= %:(116 m?2 s 2 )x10 kg
=580 J

If the increase In K .E is needed , it is found

Increase  in K .E :%mvzz - %mvl2

=580 J -80J
=500 J.

3.2.3 Conservation of Energy

thus

The word conserve could be taken to mean presentbas nothing is
lost. So in this section we are going to find obattas energy is
transformed from one form to another that no pdritas lost. For
example if body of mass m is projected verticalpwards and if its
initial velocity is u at point of projection A sait,will do work against

the constant force of gravity, Figure (3.5).

mg

Fig 3.5
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Let the velocity of body at a higher point B be Miahe height attained
at this point be h. Now, by definition

K.E lost between points A and B = work done by badginst mg
Also by definition of P.E
Gain of P.E between A and B = work done by theytaghinst mg

Therefore, we have that
loss of K.E. = gain of P.E
Y% md — % mv = mgh 3.9

This is what we call the principle of conservatmfrmechanical energy.
This principle is stated as follows;
the total amounts of mechanical energy (K.E + RvBich the
bodies in an isolated system possess is constant.

This applies only to frictionless motion i.e. tonservative system. Also,
the gain in P.E will depend on the path taken Ibuldes not in a
conservative system.

Note that work done against frictional forces ienfaccompanied by a
temperature rise. Therefore in our energy accounhawve to take this
into consideration.

By so doing our energy conservation principles Wi extended to
include non- conservative systems and it becomes

loss of K.E = gain of P.E + gain of internal energ

Thus the mechanics of a body in motion has beeateglto a

phenomenon which is not clearly mechanical andhiciwmotion is not

directly detected. But we know that the internaérgly is as a result of
random molecular kinetic and potential energy @& particles of the

system. In the same way energy has been extendethéo parts of

physics and it is now a unifying theme. Physicatiimes referred to as
the study of energy transformations, measuredrmgef the workdone
by forces created in the transformation. We thastkat the principle of
conservation of mechanical energy is a special ohsge more general
principle of conservation of energy, which is orfetlte fundamental

laws of science.

Energy may be transformed from one form to anothet,it cannot be
created or destroyed, ie. The total energy of gegyss constant.
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Self Assessment Exercise 3.4

Early in the nineteenth century, James Watt watdedarket his newly
discovered steam engine to a society that unti tie relied heavily on
horses. So Watt invented a unit that made it deav useful a steam
engine could be. He conducted a demonstration ichwé horse lifted
water from a well over a certain period of time aodlled the
corresponding power expended “one horse power”.

Assume that water has a mass density of 1.0%kgl®’, the well was
20m deep, and the horse worked for 8 hours. Howyrhttes of water
did the horse raise from the well?

Solution:
Let the mass density of water pe
Then a volume V of water has mass,
M = pV. So, the work done in lifting a mass m of watemf the
bottom of the well is,

W = FAY = mgAy

WhereAy is the depth of the well. Thus the work doneifitnlg a
volume V from the well in a time t {sVgAy and the power is

_Work _ pvVghy
time t
We notice that the only unknown term here is voliwvhand we now
solve for it:

__Pt
J2s AV
Since
1 horse power = 746W

_ (746w )(8.0hx 3600 sh*)
(1.0x20 *kgm ~*)(9.8ms " )(20 m)

=1.1x10°m?

but because there are®L0on Im®
the number of litres lifted by the horse is
1.1 x10L.
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4.0

CONCLUSION

In this unit you have leant

5.0

how work is defined in the scientific sense

to distinguish between positive and negative wagRahding on
the sign of the force, which does the work.

that the unit of work is the joule.

how to determine the work done by a varying force

the forms of energy and the principle of conseoratiof

mechanical energy

how to apply the work-energy equation in solvingplpems
related to energy.

SUMMARY

What you have learnt in this unit concerns work andrgy.

6.0

that work is done when a force moves a distandbardirection
of the line of action of the force.

Fs =W or (Fco$) s=W

that the unit of work is the joule,

that work done by a varying force could be represzkn
graphically and it is equal to the area under e of a force-
displacement graph.

that work is a measure of the quantity of energ@ngferred
between two bodies.

that power is the rate of doing work.

that energy could be in the form of kinetic energy % mV?
Potential energy— mgh or internal energy due to molecular
vibrations and P.E

that the work-energy equation is given by Fs = 12 m¥s m{
where the symbols have their usual meanings.

that the total amount of mechanical energy (K.EE)Rvhich the
bodies of an isolated system possesses is constant.

that energy may be transformed from one form todther but
can never be created or destroyed i.e. total engfrgysystem is
always constant.

TUTOR MARKED ASSIGNMENT

A bullet of mass 10g traveling horizontally atspeed of 1.0x
10°m s* embeds itself in a block of wood of mass 9.9 %g10
suspended by strings so that it can swing freehd F

(a) the vertical height through which the block rises

(b) how much of the bullet’'s energy becomes internatrgy.
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2

7.0

(g = 10m%).

A car of mass 1200kg falls a verticataince of 24m
starting from rest what is the work done by the&oof gravity on
the car? Use the work-energy theorem to find thal fvelocity of
the car just before it hits the water. (Treatc¢he as a point like
object).
A crate of mass 96kg is pushed across a horizdiaat by a
force F. The coefficient of kinetic friction betwe¢he crate and
the floor isy, = 0.27. The crate moves with uniform velocity.
What is the magnitude of force F? Suppose thavaespoint the
crate passes on to a new section of floor, wipgré.085. The
pushing force on the crate is unchanged. After 1o2nthe new
section of the floor, the crate moves with a spafed= 2.3 m g,
What was the original speed of the crafe v
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1.0 INTRODUCTION

Recall that in Units 5, 8, and12 we discussed fin@aojectile and
circular motions. Another common type of motiontie to- and fro
motion which keeps repeating itself for ever ifrth@re no frictional
forces acting against it to dampen the motion. Suchotion we call a
periodic, oscillatory or vibrational motion. Periodr rythmic motion,
we sense is an important feature in the physicaldvorou have only to
think of the very concept of time, which arose frtime observation of
certain motions as we saw in Unit 1. Think of tlyeling of the seasons.
Do they not repeat themselves at regular intervdice your hand on
your chest for about one minute. What do you seNsef? heart beat?
That's an example of a rythmic motion. The mostidage of rythmic
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motion appears over and over again and this is wieaicall simple
harmonic motion.

Examples of this vibratory or oscillatory motioneaprovided by the
motion of a swinging pendulum, the balance wheeh afatch and by
the motion of a man on the end of a spring.

In simple harmonic motion (s.h.m) the position op@nt varies with
time as a sine or a cosine function. Such moticmuecwhere we have
restoring forces, (that is, forces that tend todpran object back to a
point), that vary linearly with a position variabléis interesting to note
that all stable equilibrium situations in naturgadlve a linear restoring
force. This makes the study of simple harmonic arotiery important.

In this unit we shall introduce the concept of m,hshow the connection
between it and circular motion, and then deriveresgions for the
parameters used in solving problems of s.h.m.ém#xt unit, we shall
study the s.h.m of say, a mass on a spring, thelsipendulum, and
energy of a s.h.m.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

. describe an experiment to demonstrate simple haormootion
s.h.m.

. define simple harmonic motion

. list at least seven examples of phenomena in wéitin. occurs

. show the connection between circular motion angrs.h

. determine the acceleration, period, velocity arspldicement of a
s.h.m.

3.0 MAIN BODY
3.1 Definitions
3.1.1 What is simple Harmonic Motion (s.h.m).

Earlier in this course, we consideractelerations that were constant
in magnitude and direction when we discussed lingation. In circular
motion, we saw that accelerations (centripetal) eweonstant in
magnitude but not in direction. Now, in oscillatanption, which is also
called simple harmonic motion (s.h.m) we shall Hes# accelerations
like displacements and velocities change perioljicalboth magnitude
and direction. To aid our definition, let us coreia@ body N, oscillating
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in a straight line about a point O, say betweenndl 8 as shown in
Figure 3.1 below.

A
Fig 3.1

Let us also assume that N is a mass hanging framiral spring. We
consider first its displacements and velocitiese Tdisplacement as
measured from O to A is downwards when N is belowVihile N
moves away from O towards A, the velocity is dieectiownwards but
upwards when N moves towards O. The velocity i® z¢points A and
B. When N is above O the displacement is upwardisthe velocity is
upwards or downwards depending on whether N is ngpaway from
or towards O.

Thus we can look at the variation of the accelerabf the oscillating
body on the spiral spring by studying the variatioiits displacement. It
is restricted to move about O and the magnitudih@felastic restoring
force increases with displacement but always acwartds the
equilibrium position O. We expect the resulting elecation to behave
likewise, increasing with displacement but beingcied to O no matter
what the displacement is. Thus, If N is below Ce thsplacement is
downwards but the acceleration is upwards, buhef displacement is
upwards the acceleration is downwards. Adoptingdiga connection
that quantities acting downwards are negative, tieth we see that
displacement and acceleration will always have sp@signs during an
oscillatory motion.

The magnitude of the acceleration a is seen tarbetty proportional to
the magnitude of the displacementSuch an oscillation is said to be a
simple harmonic oscillation or motion (s.h.m) asdlefined thus;

If the acceleration of a body is directly proponiab to its distance from a

fixed point and is always directed towards thisnpothe motion is
simple harmonic.
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The equation relating the acceleration and disphecd in a s.h.m. is
a x
[0 a = (- constant) x
3.1

The negative sign indicates that acceleration vgags in opposite
direction to the displacement and directed to edigoint.

Self Assessment Exercise 3.1

What kind of motion would you expect equation (3d.yepresent if the
negative term were positive?

Practically all mechanical motion are simple harmmomt small
amplitudes or are combinations of such oscillatioNste that any
system, which obeys Hook’s law, can exhibit s.h.frhis equation of
s.h.m. occurs in problems in other topics in phg/dike sound, optics,
electrical circuits and atomic physics to mentiomn d few.

So you except to be discussing this topic a lotyour physics
programme in this university. In calculus notatigmn. (3.1) is written

2

i 2X = —Constant.x 32

d?x
dt?

dv
where a=—-=
dt

This is a second order differential equation andoiild be solved to
obtain the values of displacement and velocity.

Can you think of other phenomena exhibiting Simpiarmonic
Motion?

3.1.2 Examples of Occurrence oOf Simple Harmonic Motion

We have seen that a repetitive to and fro motiavualb mean position
is known as an oscillatory or periodic or simplerhanic motion.

Examples of such a motion can be found in:

0] The balance wheel of a watch

(i)  The pistons in a gasoline engine

(i)  The strings in the musical instruments

(iv)  The molecules in a solid body vibrating about thegan
positions in the crystal lattice

(v)  The beating of the heart

(vi) Light waves and radio waves in space
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(vii) Voltages, currents and electric charges etc.

Definitely, you see that the study of periodic roatican lay the
foundation for future work in many different field$ physics.

Self Assessment Exercise 3.2

What do you understand by simple harmonic motion&t Iseven
examples of phenomena where you expect s.h.m tg.occ

3.2 Relating S.H.M. with Circular Motion

B

o
s

V= or

N p
Fig 3.2 A

Recall what you learnt about circular motion in Ub2. In the figure
above let point P move round the circle of radiasd the centre O with
uniform angular velocityn. It will have a constant speed V round the
circumference. The speed V is equatito Note that as P moves round
the circle in the direction shown (that is antiakwise), N the foot of
the perpendicular from P on the diameter AOB mdwas A to O to B
and back to A through O. By the time N arrives baxlkoint A, P also
completes one cycle. Now, let initial positiond\b&ind P be at A at time
t =O. At a later time, t =t, N and P are now adigated in the diagram
with radius OP making angle O with OA. Let distai@d be x. We are
now going to show that the motion of N from A toaBd back to A is
simple harmonic about O by describing the parametkat govern
s.h.m.

3.2.1 Acceleration

The motion of N is due to that of P hence the are#éibn of N is the
component of the acceleration of P parallel to A know that the
acceleration of P ie*r (or V?/r) along PO. Hence the component of this
parallel to AB is simply»’rn Co9. Therefore the acceleration a of N is

a=—wr Cod
3.2
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The negative sign, as already explained shows mmatteally that
acceleration is always directed towards O.
But, x =r Co8 inthe diagram

0 a =-n’X 3.3

This equation (3.3) states that the acceleratiod wwards O is directly
proportional to its distance from O. We concludattN describes a
s.h.m. about O as P revolves round the circle-ddhe auxiliary circle —
with constant speed.

For different values of x during the to and fro noey of N,
corresponding values of acceleration of N can bd. gduch
representative values have been tabulated in Table

Table 3.1
X @) +r -r
a o) -0°r +or

We see that at O displacement x is zero, accebderadi is zero.
Acceleration a is maximum at the limit points A aBdwhere the
direction of motion changes.

Alternatively, one can use the arrangements in reigd&t3 below to
connect s.h.m with motion in a circle.

S Ball

S ——
light

Screel

Compact light
source

Rotating turn
table

Fig 3.3

With the above set up, it is possible to view thadew of the ball,
rotating steadily in a circle, on the screen. Thadow moves with s.h.m
and represents the projection of the ball on theesx.
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3.2.2 Period
The period T of N is the time it takes N to do @wnplete to and fro

motion ie to go from A to B and back to A in theg&iie (3.2). In the
same time, P will move round the auxiliary circtese. Therefore,

Circumfere nce of Auxiliary circle

T =
speed of p
but V. = wr
0T = 2m_2”° 34
v w

For a particular s.h.m is constant and so T is constant and independent
of the amplitude r of the oscillation. We note thiathe amplitude
increases, the body travels faster and so T remackanged. Know
that a motion which, has a constat period whattheamplitude, is said

to beisochronous This property is an important characteristic bf .

The frequency f is the number of complete oscdiadi per unit time.
That is f =I/T. An oscillation per second is a laert

3.2.3 Velocity

The velocity of N we have seen is the same as dhgonent of P’'s is
velocity parallel to AB which

=-vsimM from fig 3.2
= - orf Sind 3.5

Since sif is positive when & 6 < 180, that is, N moving upwards,
and negative when 188<36C, ie. N moving downwards, the negative
sign ensures acting upwards and positive when@gdawnwards. The
variation of the velocity of N with time (assumif) and so N, start
from A at time zero)

= —or Sinot (sinced = ot) 3.6a

The variation of velocity of N with displacement

X =—or Sing 3.6b
=+ wr 4/1-Cos?6. (Since Sin?6 + Cos?6 =1) 37
=+ar J1- (x/1)’
=t w4r?-x? 3.8
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Hence the velocity of N is
+ or (a maximum) when x =0
zero when x = #r

3.2.4 Displacement
This is given by:
x=rCo® =r Coswt 3.9

The maximum displacement OA or OB is called the lgoge of the
oscillation Fig. (3.2).

The graph of the variation of the displacement ofwiNh time is
displayed in Figure (3.4). It is a sinusoidal pattgist as the graphs of
velocity and acceleration with time Fig. (3.4b&c).

I

g
(a) % (@] t
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o
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>
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S D
>
T/4 T2 3T/ T
wr?
5
() S t
5O
D
(]
(]
b
T/4 T/2 374 T

Observe that when velocity is zero, the accelemasoa maximum and
vice versa. We say that there exists a phase eliféer of a quarter of a
period (ie. T/4) between the velocity and the aseion.

228



PHY 111 ELEMEARY MECHANICS

| would like you to find out the phase differenceetween the
displacement and the acceleration.

3.2.5 Expression form

We shall now discover what quantityis equivalent to in a s.h.m.
Recall that

a= —o 2X
Ignoring the sign we can write

310

where m is the mass of the system.
The force causing the acceleration a at displacemén ma, therefore
ma/x is the force per unit displacement. Hence,

_ forceperunitdisplacemat 311
massof ocillating system '
The period T of the s.h.m is given by
T2
w
312

P massof oscillating system
force perunitdisplacemat

This expression reveals that T increases if (1)mhss of the oscillating
system increases and (2) the force per unit disptent decreases i.e. if
the elasticity factor decreases.

A vibration is simple harmonic if it's equation ofotion can be written
in the form

a = — (positive constant) X 3.13
and we, by convention, represent this positive &onisby »° since
T=21/ ®. Hence,o is the square root of the positive constant in the

acceleration —displacement equation.

We have thus defined and explained the importardarpeters that we
use in describing a s.h.m.
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Example.

A cork floating on a pond moves in s.h.m, bobbipgamd down over a
range of 4cm. The period of the motion is T =1.08d a clock is started
at t = Os when the cork is at its minimum heighhat/are the height
and velocity of the cork at t =10.5s7?

Solution:

Let us suppose that the cork moves along the zis-amd we set the
origin z = O to be the mid point of the motion. Thhe maximum value
of Zis

Zmnax = 2cm, and the minimum value is,£= -2cm. The motion takes
the general form z(t) = A sinof +6 ). We know the period T and from
the equationn =21/T. The constants A andl must be determined from
other information namely, the initial conditionshélamplitude, A is the
maximum excursion from equilibrium and is given A2 o« = |[Zmin|-
The phaseé, is then determined by the initial condition tkiz¢ height is
a minimum when t =0 s. Thus the equation deterrgifirs

Zmin = A sinot +0/-g = A sSind

When we substitute A = }4|, this equation becomesg,d= |Znin| Sind.
Because 4, is negative, this result implies Sire -1

When the sign function is —1,its argument ig2-or 3t/2. In fact, any
integer multiple of 2 can be added to or subtracted fromd2;, and it is
just a matter of convenience to choose the phadee ter/2. When a
simple phase such as this occurs, it is often wdrile to expand the
sine function with trigonometric identities

Sin § t +8) = Sin [ax —’—sz
= Sin(at) CO{’—Q — Coqat) Sin[gj
=-Cosut
We have used the fact that Ca#2) =0 and Sins{/2) = 1. Then instead
of Sin (t +3), We have —Cosuft) appearing in the expression for z(t).

We gather our results.

z=-A Cos[z—nj
T

where A=2cmand T = 1s
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The velocity is the time derivative of the expressithat is

V = d_Z = —A{__ 2”)8"’][2_71)
dt T T

T T

We now evaluate z and V at t = 10.5 s or 10.5 periéoth z and V
repeat themselves every period, so the valuesantl2/ at 10.5 s are the
same as at 0.5 s (or 0.5 period):

(27)(105s) 7 _
Cos {—} = Cos(277) (L05)

10s
= Cos [271(10) + 271(05)]

= Cod27(05)|
=-1 ;

Sir{%} = Sin(277) (105)
= Sin [272(10) + 272(05)|
= Sif27(05)]
=0
Thus, for t=10.5s

Z=-A(-1)
=A=+2cm
and

- Zh (0)=0cms™

It is simple to deduce this result from physicadsening. We are
interested in where the cork is after exactly oadf b period. So we
look at it this way-because the cork starts amisimum height, half a
period later, it is at its maximum height, + 2cmtlms case. That is a
point where the cork stops momentarily and stamsing back down

wards, so the velocity there is zero.

Self Assessment Exercise 3.3

A particle moving with s.h.m. has velocities of vh & and 3cm? at
distances of 3cm and 4 cm respectively from itslgxjiwm position.
Find (a) the amplitude of the oscillation,

(b)  the period
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(c) the velocity of the particle as it passes throupe t
equilibrium position.

Solution:

3cme?
‘—

3cm 4cn
| ik |
4—
4cme?

Let the above Figure represent the problem. Réal

V=—r?-x°

Assuming that velocities and displacements to idjiet )are positive and
those to the left are negative, we see that whentx3cm, velocity = -
Acms' therefore

~4=-aw\r’-9
When x = + 4 cm, velocity = -3cnitstherefore
-3=-wVr’-16
. - : &9 _r’-9
Squaring and dividing these equations we g T
r —

Hence, r=+5
(b)  We substitute for r in one of the velocity equasion get
o =18t

0T=? =07 s
[

(c) Atthe equilibrium position x =0

.. Velocity =+ a /r* - x?
= tar
= +5cm§
4.0 CONCLUSION

In this unit, you have learnt the preliminary cqpiseof simple harmonic
motion (s.h.m.) equation.
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5.0

that s.h.m is a periodic vibration of a body whaseeleration is
directly proportional to its distance from a fixgint and is
always directed towards this point i.e. a = - cansk
at least seven phenomena where s.h.m. occurs
that s.h.m is connected to circular motion where

a = X
that the period of a s.h.m is the same as theititages a particle
to move round on auxiliary circle.
that the velocity of a s.h.m is given byr—Sind and the
displacement by r Cés
that when the velocity of a s.h.m is zero, the lca#ion is
maximum and vice versa.
that the motion of a particle undergoing a s.h.nuladobe
represented by a sinusoidal function.

SUMMARY

What you have learnt in this unit concerns the phamnon of simple
harmonic motion. You have learnt that

s.h.m is a to-and-fro motion under the influenceaaf elastic
restoring force proportional to displacement anthabsence of
all friction. Thatisa = -k x

a complete vibration or complete cycle is one tod-a0 motion
regarded as one round trip.

examplesofpriodic motion include seasons of the,\e@ating of
the heart, lattice vibrations, the simple pendulushectrical
oscillations etc.

s.h.m is intimately related to circular motion

te periodic time, T of a s.h.m is the time reqdif®r one
complete revolution or vibration, Tt

The frequency f of vibration is f =1/T

In s.h.m the velocity and acceleration are alsasodal.

o= -0

velocity v =-w r Sirf

displacement x = r Cés = r cosmt

amplitude is the maximum displacement.

simple Harmonic motion is a special class of ostdh where
the period T is the same for all amplitudes, beyttarge or
small.
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6.0 TUTOR MARKED ASSIGNMENTS (TMA)

la. Complete the following sentences:
When a particle oscillates in a straight line watimple harmonic
motion, the period of the oscillation is indeperndef--------------

2. Use a force displacement graph to represent theinvaich the
force F acting on a particle depends on the disptent r? (By
convention, a force acting in the direction of srtaken to be
positive force).

3. What expression i® in a s.h.m. Derive it from first principles.
Use it to determine the expression for the perioaf ©scillation
of the vibrating system.

4. What is a simple harmonic motion?
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1.0 INTRODUCTION

In this Unit we shall study about harmonic motio exhibited by a
mass hanging from a coiled spring and the simptelpleim. This will
bring us to the study of the energy of a simplarfmaric motion. The
rest of the introductory part is as covered in Wit In the next Unit,
we shall conclude our discussion on simple harmamiation by
studying damped oscillations, forced oscillationd eesonance.

2.0 OBJECTIVES

By the end of this Unit, you should be able to:

. determine the period of oscillation of a mass haggdirom a
coiled spring undergoing s. h. m.

. determine the length of such a spring undergoirg 1. and also
the effective mass of the spring.

. explain what a simple pendulum is and how to deiteznits
period of oscillation

. describe an experiment to use the simple pendutucalculate
acceleration due to gravity, g.

. determine the energy of s. h. m.
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3.0 MAIN BODY
3.1 Mass Hanging from a Coiled Spring

3.1.1 Period of Oscillation

From Hooke’s law, we know that the extension ofadled spring is
directly proportional to the force causing it.

In the diagram below Figure 3.1 you expect the niessying from a
coiled spring to exert a downward tension mg ongpeng. This is
exactly

what happens. Let the extension produced by thwndiard tension be
|, and if k is the tension required to produce & lamngth of the spring
than the stretching tension is also kl. (k is dls@wn as the spring
constant and is measured in Nm This means that,

mg = KI. 3.1

When we now pull down the mass below its equilibriposition as
shown, a distance x, the stretching tension becdtiesx). this is the
same as the tension in the spring acting upwardshawn in Figure
3.1(b). Thus we can represent the resultant riegtdorce upwards on
the mass as

K(l + x) — mg

= Kl + kx —mg 3.2
but mg = Kl
00 The resultant restoring force = kx 3.3
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Note that when we then release the mass after sateit starts moving
up and down continuously in what we call oscillgtanotion. If at an
extension x it has acceleration a, then its eqnatfanotion will be

ma = -kx 3.4

The minus sign shows that at the instant while ldgment X is
downwards (i.e positive) acceleration a, is dirdctepwards the
equilibrium position (i.e negative).

X =—w’X 35

What«? = k/m. Because m and k are positive constantseeethaty’
also is a positive constant. Consequently accéberat is constant and
this is a condition for a motion to be simple hammgo We therefore
conclude that the motion of the mass is simple baimas long as
Hooke’s law is obeyed.

The period T is given by

T = 2_]T :27]'\/6 36
w k

Squaring both sides we have that
T? = 4rm/k 3.7

If in an experiment, we vary the mass m and re¢bedsquare of the
corresponding periodic time, T on plotting the dragd T versus m, a
straight line graph will be expected. This type e{periment has
actually been done many times over. It was sean the straight line
graph did not pass through the origin. And expianawas sought by
scientists and it was discovered that it was bexdhe mass of the
spring itself was not taken into consideration. iSwas essential to
determine the effective mass undergoing simple barenmotion and
this is done as follows together with a method @tednining the value
of g in the next session.

Example:

A light spiral spring is loaded with a mass of 58gd it extends by
1Ocmé Calculate the period of small vertical oatitins. Take g =
10ms
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Solution:
Recall that the expression for the period of osttdh of a mass hanging
on a spiral spring is,

T:27T\/E
k

When k is the force per unit displacement. Sultstiguvalues given we
have

50x10° x10N

0 K = S = 50Nm’
10x10™“m
-3
O T = 277,/% = 2714J107%s
= 2rx10%s

= 063s

3.1.2 Measurement of g and Effective Mass of Spring

If m is the effective mass of the spring then

. 38

Let us recall that
KI = mg Om = Kkl/g

So substituting this value for m in Eqgn. (3. 8) haae

K | +m

Squaring both sides of equation (3.9) gives 3.9
T2 = ﬁ ﬂ +m
k g °
_ 9 > _gm
gl = —=—T°“-=— 310
4 k
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When the static extension | (i.e the extension piing before the
vibration of the spring sets in) are used and tb@iresponding periods,
T noted, then, a graph of | versu$ dn be drawn. The result gives a
straight line with intercept g#k on the negative axis. The slope of the
line is given by g/#2. This has been shown in figure 3.2.

Slope = CD/BD
= g/4n®

\ 4

Intercept 4 D T?
OA=gms/k

Fig. 3.2

It is estimated that theoretically the effectivess@f a spring is about
one third of its actual mass.

The Simple Pendulum

What is a Simple Pendulum?

As we stated in Unitl6, simple harmonic motion ascthroughout
nature and an example of such a motion is the smgngendulum in
some clocks. Such clocks served as accurate, tieee$ for many
centuries. You may ask - what does a pendulum sbo§? But | tell

you it is not far fetched. You can even construat gourself. If you get
the fruit of a gmelina tree, for example, (you knibws a tiny fruit) and

using needle and thread, you pass the thread ot 20cm long through
its centre and suspend the thread and fruit (nailed the bob) from a
ceiling or clamp as shown in figure 3.3 below. Thanstitutes a
pendulum. Thus, we say that the simple pendulunsistsmof a small
bob referred to as a particle of mass m suspengedight inextensible
thread of length | from a fixed point B say. Fig38 below
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Fig 3.3

When the bob is displaced vertically to point Aaigh a very small
angleB as shown and then released, it oscillates to mmdrf a vertical

plane, about the equilibrium position 0. The motidrthe bob is seen to
trace an arc of a circle with radius | (assuming lob is a point man).
We shall see that this motion is simple harmonmui®.

Now, let the arc thread by the bob be OA = x and #mgle of
displacement OBA $ at some instant of time when the bob is at point
A. At that instant, the forces on the bob are tlegim of the bob mg
acting vertically downwards as shown and P theidens the string (or
thread). But mg has tangential component mgBiwhich acts as the
balancing restoring force towards O and the rach@ahponent mgCds
balancing the tension P in the string. If a is délceeleration of the bob
along the arc at A due to mg8ithen from Newtons law of motion we
have,

ma = --- mgsirf 3.11a

The displacement x is measured from O towards Anglarc OA
whereas the negative sign shows that the restdionge is acting
opposite to the direction of displacement thatowards6. For very
small angl®, mathematics permits us to assume tha@s#® in radians
(for example, ifd = 5°, Sin® = 0.0872 and® = 0.0873 rad.) and x 6.
Therefored = x/I
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Hence,
X
ma=mgl = —mgl— 316b
0 a = —ng 312
i g - 2
settlng/ —w
wehave
a=-—w’X 313

We can then calculate that the motion of the bokirngle harmonic if
the oscillations are of small amplitude as we assumed. In shdt
should not exceed 10The period T for the simple pendulum, is given

by

T = £ = 25 314

= 2m |— 315

We notice that T does not depend on the amplitid@e oscillations.
For a particular location on the surface of thaleamhere g is constant,
the period of oscillation of a simple pendulumeis to depend only on
the length of the pendulum.

3.1.2 Measurement of g. With a Simple Pendulum

The simple pendulum method provides a fairly adeunmeans of
determining acceleration due to gravity g. Whenghgodic time T for
a simple pendulum is measured and recorded foegsponding different
values of the length, | of the string supporting gendulum bob, a plot
of | versus T gives a straight line so drawn so that the poimtsthe
graph are evenly distributed about the line. Anngde of such a result
is shown in figure 3.4.
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T2
Fig 3.4

From the diagram, you see that such a line OB rmpass$ through the

origin. The slope of the line OB is given by BC/AC/T% From this,
we determine the value of g thus

T = 2”\/79 3.16

oT? = 4772'—
g
Dg = 4,12T'72 317a
= 4r? % 3.17b

The necessary precautions you need to take in rparfg this
experiment to achieve good results are that you g at least fifty
oscillations for each length of the pendulum; that do not let the
angle of swing to exceed %@hat the length of your string is measured
from the support to the centre of the pendulum &t that you count
the oscillations as the bob passes the equilibposition O on a round
trip. |1 suppose you can now try to perform thisckiof experiment at
home even before you go to the Study Centre forlitis easy and
interesting to do it and get the expected restihat’'s where physics is
stimulating. Wish you luck!

Example:

A simple pendulum has a period of 2.0s and an anuai of swing
5.0cm. Calculate the maximum magnitudes of (i) vilecity of the bob
(if) the acceleration of the bob.
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T = 2nla

Solution:
Recall that,

Oa =27nlT = 2n/20s

The velocity is a maximum at the equilibrium pamiti where x
displacement =0
Recall the expression for the variation of veloaityh displacement x

= +w4r?-x°

0 whenx =0 l.e maximumvelocity

vV = +71+25cn?

577cm st

I+

16cms™

I+

which

(b)  The acceleration is maximum at the limits of thengywhere x =

r=+5.0cm

Da = WPr
= X 5cm &
= -50cm &

Self Assessment Exercise. 3.1

A simple pendulum 2.0m long is suspended in a regibere g = 9.81m
s2. The point mass at the end is displaced fronvérgcal and given a
small push, so its maximum speed is 0.1'm ¥hat is the maximum
horizontal displacement of the mass from the valtioe it makes when
at rest? Assume that all the motion take placaratl angles.

Solution:

The angle that the string makes the vertical vani@snonically,0 =
B,cost + ), where o is the angular frequency. The horizontal
displacement from the vertical is x & (where | is the strings length) as
long as 6 remains small. Thus x also varies harmonically.

243



PHY 111 ELEMEARY MECHANICS
X = A cos (ot + 0) where A =10,
This is the quantity we want to find.

Another good small angle approximation is thatvb#gical component
of the velocity is small, so v = dx/dt. Thus wevba

v = %[ACOS@I+5) = A%[cos(wt +0)]

O v = —-AwSinwt +9)

From this expression we see that v varies harmbyieath amplitude
Aw. The maximum value of v occurs whet = 0. That is when the
pendulum is passing through its equilibrium positioThis is given by
Vmax = Aw = 0.11m & as given.

From the following equation,

g = 0,Sin(wt+9)withw = \/|§

weseethat wis

98Ims™ }
w = Y = /= = 221rads™
V/ \" 20m

so fromV, ., = Aw
\V 01lims™
A = ™X = _ - -
w 221rad s™
= 005m

We observe that this horizontal displacement 5.0snmndeed small
compared to the length of the pendulum so our snaadble
approximations are good. The figures below illustthe motion.
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t2>0 W
= ! >t

|
| | |
| | |
: 0 | I
I |
| | |
| |
| Jd LONE.
I O v 4CL 4—»: Vmax :

O_, Vmax maximum horizontal  (d) | O
(b)  distance (c) ! v=_
(a) (e
Fig. 3.5

3.2 Energy of Simple Harmonic Motion

During simple harmonic motion of an object, these a constant
interchange of energy of the object between itetkinand potential
forms. Note that if there is no influence of réses forces (i.e. damping
forces) on the object, its total energy E = (K+ER. E) is constant.

3.2.1 Kinetic Energy, K. E.

The velocity of a particle N of mass m at a diseardrom ist centre of
oscillation O is given by:

v = +wyr?-x> asshownin (fig.35)

vel =or = 2 _y2
. vel QAH; X

N
B A

»
»

A
-

v
Oa

Fig 3.6

The kinetic energy K. E. at x, say, is

K.E. = %mv2 = %mwz(rz—xz) 318
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3.2.2 The Potential Energy, P. E.

During the motion of the particle N from O towardsor B, work is
done against the force trying to restore it to Therefore, the particle
loses some K. E. but gains some P. E. When x keOrestoring force is
zero. But at any displacement, say, x the forceni€x because the
acceleration at that point has magnitade.

Thus, average force on N while moving to displaceime

O+mw’x 1 _ .,
2

O work done = averageforce x displacemat in thedirectionof force

1 5
= —mw’X XX
2

0 P. E. at displacemat x = %ma)zx2

3.3 Total Energy, E

The total energy at displacement x is then giveKbl + P. E

00 Total EnergyE %mwz(r2 -x?) + %ma)zx2

L et
2

We see that this value is constant and does nandepn x. It is also
directly proportional to the product of (i) magd) the square of the
frequency (iii) the square of the amplitude.

We represent the variation of K. E. and P. E. fasiraple harmonic
motion in Figure 3.7 below:
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Displacement

In the case of the simple pendulum we note thahallenergy is kinetic
when the pendulum bob passes through the centsaifation. But at
the maximum point of displacement when velocitynementarily zero,
the total energy is Potential.

Self Assessment Exercise 3.2

A small bob of mass 20g oscillates as a simple plenad with amplitude
5cm and period 2 seconds. Find the velocity oflible and the tension
in the supporting thread, when the velocity of leé is maximum.
Solution:

The velocity v of the bob is a maximum when it gassshrough its
original position given by

vl = r’-x*l . = wr

Wherer istheamplitude = 005m

Hencewehavethatv,, is

V., = wr-mx005ms*
= 0l16ms”

247



PHY 111 ELEMEARY MECHANICS

Suppose P is the tension in the thread. The neé facting towards the
centre of the circle along which the bob movesvemby (P — mg). The
acceleration towards the centre of the circle, Wwhis the point of

suspension, is4./] Where | is the length of the pendulum.

mv?

OP-mg = |

me2

OP = mg + —

Recall T = Zﬂ\/I
g

0 = gT? _ 98x2°
4 4

OP = 1965x10°N

4.0 CONCLUSION

In this Unit, you have learnt

. about the period of oscillation of a mass hangiagnf a coiled
spring.

. how to measure the acceleration due to gravitydgthe effective
mass of the spring.

. to determine the period of oscillation of a simpéndulum and g
also.

. to determine the kinetic energy, potential enengy #tal energy

of a simple harmonic motion.
5.0 SUMMARY

What you have learnt in the unit concerns simpleniaaic motion as it
relates to a mass hanging from a coiled springaasichple pendulum.

. that the vibration of mass hanging from a coiledrgpis in the
vertical plane with mg = kI
K is the spring constant
With the restoring force given by kx
Hence with an acceleration of a, for an extensidhexequation
of motion for the mass is

248



PHY 111 ELEMEARY MECHANICS

ma = -kx.

Forw’ = k/m,  w = angular velocity
T = 2_7T = 277\/E
w k

. the length of the spring is given by

9 ;- 9m

4 Kk

Where mis the mass of the spring

. that the period T of the simple pendulum is givgn b

T :277\/I
g

From where g the acceleration due to gravity cinédletermined more
accurately as

T2

. that the kinetic energy of a simple harmonic motgn
K.E. = %mcuz(r2 - x%)

. that Potential energy of s. h. m. is

P.E = 1 mw?x>
2

at displacement x

. that total Energy of s. h. m. is given by

K.E.+PE. = %ma)zr2
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6.0 TUTOR MARKED ASSIGNMENT

la. Define simple harmonic motion and state the retati@tween
displacement from its mean position and the resgoiorce when
a body executes simple harmonic motion.

b. A body is supported by a spiral spring and causefredch of
1.5cm in the spring. If the mass is now set inigattoscillation
of small amplitude, what is the periodic time otitlation?.

2. A flat steel strip is mounted on a support. Byaehing a spring
balance to the freend and pulling side-ways, we determine that
the force is proportional to the displacement, acdoof 4N
causing a displacement of 0.02m. Then a 2kg bodytahed to
the end, and pulled aside, a distance 0.04m aadsed.

(@) Find the force constant of the spring

(b)  Find the frequency and period of vibration.

(c) Compute the maximum velocity attained by the vibigat
body.

(d) Compute the maximum acceleration

(e) Compute the velocity and acceleration when the by
moved half way toward the centre from its initialsgion.

) How long a time is it required for the body to madvaf
way in to the centre from its initial position?
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1.0 INTRODUCTION

See introduction of Units 16 and 17.

In this unit you will study about damped simplerhanic motion, s. h.
m., forced oscillation and resonance. These waltlles to see that s. h.
m. is a mathematical model. We shall conclude bwysittering a
physical pendulum where we observe that in reétiéypendulum string
and bob can have dimensions and some mass. Thetamp® of s. h. m.
to life is also emphasized in this unit. After winiwe shall move on to
the motion of rigid bodies in the next unit becaules is what we
experience in real life situations. There, you wi#arn about
translational and rotational motions of rigid badie

2.0 OBJECTIVES

By the end of this Unit, you should be able to,

. explain damped oscillations-stating the conditiander which a
physical oscillator can experience it.

. draw the wave patterns of the effects of differéypes of
damping phenomenon.

. state some applications of damping phenomenon

. define resonance and give examples of its occuerenc

. state the importance of resonance

. show that the period of a physical pendulum is i
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T = 21 %ngh

3.0 MAIN BODY

3.1 Damped Oscillations

In Units 16 and 17 we discoursed simple harmonitionaas vibrations
that continue perpetually without diminishing in@itude. | want to let
you know that in reality, this does not obtain. Témplitude of the
oscillations of, for example, a simple pendulungdyrally decreases to
zero over time as a result of resistive force mggrom the surrounding
air in this case. In other forms of s. h. m. itlwdrise from the
surrounding medium (e. g. liquid or gas). The motitor such
oscillations is not therefore a perfect s. h. mslsaid to be damped by
air resistance, that is, there is steady loss efgnas the energy is
converted to other forms. Usually it will be intatrenergy through
friction but energy may also be radiated away. &@ample, a vibrating
turning fork loses energy by sound radiation.

The behaviour of a mechanical system, we know, midpen the extent
of the damping. For example, the mass hanging &xawiled spring and
immersed in a liquid as shown in Figure 3.1, wheh t® vibrate,

experiences more damping than when it is in airowKthat undamped
oscillations are said to be free. Fig. 3.2a shogsaph of its

et :: — Liquid

displacement against time. Figure 3.2b depicts dhse of slightly
damped oscillations with decreasing amplitude. Wihen
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\,

(d) critically
(C) heavily )
Fia 3.2

vibrating system is heavily damped, no oscillati@esur. The system
just gradually returns to its equilibrium positiaa shown in Figure 3.2c.
Now, when the time taken for the displacement tadr® is very small,
the vibrating system is said to be critically dachps in Fig. 3.2d.

When the damping forces are proportional to theaig}, v, the period
remain constant as the amplitude diminishes anasb#lator is said to
be isochronous. The dotted line in Fig. 3.2b is exponentially
diminishing curve.

It will interest you to know that the motion of serdevices is critically
damped on purpose to achieve a certain desiredtotlgeFor example,
the shock absorbers on a car critically damp th&pesusion of the
vehicle and so resist the setting up of vibratiamich could make
control difficult or cause damage. In the shockoabsr shown in Figure
(3.3) the motion of the suspension up or down igpospd by viscous
forces when the liquid passes through the trariafex from one side of
the piston to the other. You can test the damping car by applying
your weight momentarily on the car. You will n&ithat the car will
rapidly return to its original position without vdting.

Liquid

Reservoir.

Piston—ij- —I—Transfer tube

Fig. 3.3
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Instruments such as balances and electrical matersritically damped
so that the pointer moves quickly to the correcsijmn without
oscillating. The damping is often produced by etechagnetic forces.

Self Assessment Exercise 3.1

Describe some examples of simple harmonic motioat @re not
discussed in this unit.
What do you understand by damped oscillation?

3.2 Forced Oscillation and Resonance

Barton’s Pendulums

A number of paper coned pendulums of length varyiogn %2 m to %

m, each loaded with a plastic curtain ring are sodpd from the same
string as a ‘driver’ pendulum which has a heavy baoll a length of %2
m. this is shown in Figure 3.4 below:

8gring

Driver pandulum

Paper cone— ‘ O
ot b 3 ﬂ Heavy bob
Piastic curtain ring k

Fig. 3.4

When the driver pendulum is pulled well aside ahedntreleased, it
oscillates in a plane perpendicular to the plan¢hefdiagram. After a
short time, the motion settles down and all theoffendulums oscillate
with very nearly the same frequency as that ofdheer though with
different amplitudes. This is an example of forosdillation. Out of the
set of pendulums, the one whose length equals dhahe driver
pendulum has the greatest amplitude of vibratiorhus, its natural
frequency of oscillation is the same as the frequeof the driving
pendulum. This is an example of resonance and tivengl oscillator
passes on its energy most easily to the othermygtet is, the proper
cone pendulum of the same length.

| would like you to note that the amplitudes of idations also depend
on the extent to which the system is damped. Twhgn the rings on
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the paper cone pendulums are removed, their masdase and so the
damping increases. All amplitudes are then founetoeduced and that
of the resonance frequency being less pronouncéed. résults are
summarized in Figure (3.5). It is shown that tharpbst resonance is
given by a lightly damped system.

A
©
(5}
= | .
L | Light
ks l S
9 |
RS |
o © | .
g—g | Heavy damping
<5 |
|
I »
Natural Driving
frequenc :
Fig 3.5

3.2.3 Examples of Resonance

These are common throughout science and are ggnarséful.
Resonance occurs in the production of musical sefmain air columns
in wind instruments. In many cases it occurs betwde vibrations of
air columns and of small vibrating reeds. Electrimsonance occurs
when a radio circuit is tuned by making its natufa@quency for
electrical oscillations equal to that of the incamiradio signal. | am
sure you have experienced this a lot in your horhdewturning your
radio.

Resonance effect is also used to obtain informatimyut the strength of
chemical bonds between ions in a crystal. Takimgptliof infrared

radiation as a kind of oscillating electrical diktance and irradiating it
on a crystal, the ions of the crystal will startidating. Then, with the
radiation of the correct frequency, the ions ccagdset into vibration by
resonance. The crystal would absorb energy fronrdde&tion and the
absorbed frequency could be found using a suitadggument called
the spectrometer. For example, sodium chloride valdsorb infrared
radiation and resonance could be observed in syshats.

In mechanical system, resonance can constitutermeeeto engineers.
For examples, resonance occurring in bridges cahtie the breaking of
such bridges. A life example is the breaking ad facoma Narrows
Suspension Bridge in America in 1940. This resultden a moderate
gale (wind) set the bridge oscillating and prodgcian oscillating
resultant force in resonance with a natural frequesf the bridge. An
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oscillation of large amplitude was thus built updaib destroyed the
structure. To avoid destruction due to resonan@enals for building
constructions, aircraft etc are subjected undegersmsonance test in the
factories before they are put to use. You seerdsinance phenomenon
aids science in some respects but constitutes samee in other
respects. | want you to find out and list more epke® of resonance
phenomena. They are many in literature.

Self Assessment Exercise 3.2

What is resonance? Does resonance constitute acmdoascience?
Discuss.

Solution:
See text above.

3.2.3 Energy Considerations

XA

v

Fig 3.6 Finding the Q factor of a Resonant system.

Whether or not a body is at or close to resonatieepscillator settles
down in a steady state where the energy suppl@ah the driver per
cycle is equal to the energy dissipated per cythe sharpness of the
resonance, called the Q-factor (Fig. 3.6) is etpal

energylost per cycle
energyat the start of thecycle

It is also given by

Q:—o 31

256



PHY 111 ELEMEARY MECHANICS

WhereAf is the width of the resonance curve

When

Kmax 32

Np)

Xmax being the maximum value of displacement x and weltigis the
resonant frequency.

3.3.4 Phase

At resonance, an oscillator lags behind the drbxe®( ie it is 90 out
of phase with the driver. When the driver is at acmlower frequency
than the oscillator’'s natural frequency € fy) the oscillator is in step
with the driver. When the driver frequency is muaigher than the
natural frequency {f> fy), the driver and the oscillator are 28fut of
phase (Fig. 3.7).

A
Phase anglg
between Low damping
oscillator and
driver 90
Heavy damping
O | >

le Frequ;ncy of driver,f

Fig 3.7 Phase relationship between driver and
oscillator for different amounts of
damping

Self Assessment Exercise 3.3

What is the phenomenon that allows you to increaseeamplitude of
your motion when you swing on a swing?

3.3 S. H. M. - A Mathematical Model

We want to emphasize here that s. h. m. is purelygl@alized situation
that does not exist in nature or in the practicatlk Real oscillators
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such as a motor cycle on its suspension, a tathiedy swaying in the
wind, atoms or ions vibrating in a crystal etc oalyproximate to the
ideal type of motion we call s.h.m.

Simple harmonic motion is a mathematical model fulsbecause it
represents many real oscillations due to its sieiigli It does not have
complications such as damping, variable mass airftersi(elastic

modulus). The only condition it (s. h. m.) has ttidy is that the
restoring force should be directed towards thereeot motion and be
proportional to the displacement.

A more complex model might, for example, take damgpiinto

consideration and hence may be a better descrigfoa particular
oscillator. Such may probably not be widely apghie. On the other
hand, if a model is too simple, it may be of littlse for dealing with
real systems. Hence, a model must have just theeatodegree of
complexity. The mathematical s. h. m. has this andis useful in
practice.

3.4 The Physical Pendulum

It is not always that a pendulum consists of a feassstring with a
pointlike mass at the end of it. At times a pendulcan consist of a
suspended swinging object of some form. We calé tai physical

pendulum. Any object can be suspended from anytmointhe object
and act as physical pendulum. This illustratesféioe that s. h. m. is a
general characteristic of motion about a stablelibgum. You can

even set up a physical pendulum, with your meaguriier in your

room.

Hence, the so-called ‘physical’ pendulum is any pssdulum in which
all the mass is taken to be concentrated at a.péiilgure 3.8 represents
a body with irregular shape pivoted about a hotialofnictionless axis O
and displaced from the vertical by an amgleThe distance from the
pivot to the centre of gravity is h, the momentrartia of the pendulum
about an axis through the pivot is | and the mdgbhe pendulum is m.
The weight mg causes a restoring torfjuef value given by

r = -mgh si®
When released, the body oscillates about its dxjiuin position. Note
that, unlike the s.h.m., the motion of the physipahdulum is not
simple harmonic since the torqlias proportional not t® but to sino.
However, if0 is small, we can again approximate 8iby 6 so that the
motion becomes approximately harmonic.
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Assuming this approximation then,

The effective torque constant is
KU o= -1 = mgh 35
6
Hence, the period of the physical pendulum is

T = 2m/I/K" = 2m/l/mgh 36

v
Fig 3.8: A Physical Pendulum

Example:

Let the body in Fig.3 be a meter-stick pivoted¢ end. Then, if L is
the total length = 1m, then the moment of inerig |

I :% mL* Andif h :% and g = 9.8ms™”

[ —

“mlL?
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Self Assessment Exercise 3

Find the moment of inertia of the complex shape eoanecting rod
pivoted about a horizontal knife edge. The rodrass 2kg at its centre
of gravity (c.g) is at 0.2 below the knife edge.

Solution: we apply the principle that period

T = 21 1
mgh

So, we set the system into vibration and usingddfiplete vibration in
120s the period was found to be 1.2.5

|
2kg x 9.8ms? x 0.2

UT=12s =21 \/
Rearranging, we have

(12)? (2kg) (9.8ms?) (0:2m)

| =
4n?

= 0.143 kg
4.0 CONCLUSIONS

In this Unit you have learnt that,

. most real oscillators are damped, that is, thergtaady loss of
energy as it is converted to their forms
. damping of oscillators is due to the presence aditexhal

velocity - dependent drag, or resistive forces icausthe
amplitude of the vibrating particle to decrease.

. when a system that, by itself, would move in simp&monic
motion is driven by a force with sinusoidal timgpdadence, the
system moves with the frequency of the driving érdhe
amplitude of the resulting motion of the systemvehaoesonant
behaviour when the frequency of the driving forcpas the
natural frequency of the system.

. the width of the resonance peak is inversely rdlaie the
exponential rate of fall off of the undriven systedue to
damping.

. s. h.m is a mathematical model.
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5.0 SUMMARY

What you have learnt in this unit concerns dampetple harmonic
oscillations, forced oscillations and resonance ahe physical
pendulum. You have learnt that

. the amplitude of oscillations of a particle in mhis damped by
resistive forces due to the surrounding medium.

. when the amplitude is reduced to zero in mininraktthe system
Is said to be critically damped

. when the damping forces are proportional to veyodhe period

remain constant as the amplitude diminishes thélatsc is said
to be isochronous

. resonance occurs when the driving frequency isstlmee as the
natural frequency of the oscillator resulting in n@aximum
amplitude of oscillation.

. the sharpness of the resonance curve is calleQ4aetor and is
given by
Q = fo/ A

whereAf is the width of the resonance curve when

x=x__ /2
Xmax IS the maximum displacement and fo is the resonant
frequency.
. the period of a physical pendulum is

T = 2m/l/mgh

6.0 TUTOR MARKED ASSIGNMENTS

1. A light helical spring is suspended from a beand a mass m, is
attached at its lower end, causing the spring terekthrough a
distance a. The mass is now caused to executecalert
oscillations of amplitude a. When the mass issatatwvest point,
what is the energy stored in the spring?

2. A wire of mass per unit length 5.0 g'nis stretched between two
points 30 cm apart. The tension in the wire is 7GHElculate the
frequency of the sound emitted by the wire wheosttillates in
its fundamental mode.

b. Explain, with reference to this example, the terrmmged
harmonic motion.
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3. A thin rod of mass M and length L swings frora énd as a
physical pendulum. What is the period of the oatolly motion
for small angles? Find the length L of the simpd:gulum that
has the same period as the swinging rod.

TSimpIep. = 277—\/I = 2” %E
g V39

O
"
wino
—
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1.0 INTRODUCTION

So far in this course, we have been concerned phynveith the motion
of point masses. We have also treated differeneatdjsuch as boxes
and planet as if they were point objects or pasicBut we know that in
nature, we hardly come across an ideal point Wdsshave to deal with
motion of bodies, which have finite dimensions.vi& have to develop
a technique for studying the motion of such bodies.

A special class of such bodies is known as rigidiém In this Unit, you
will first learn what a rigid body is. You will sebat the definition of a
rigid body provides a model for studying the motadrvarious kinds of
physical bodies. You will then study about the elifint kinds of motion
of a rigid body. A rigid body can execute both si@tional and
rotational motion. We shall see that the generalanof a rigid body is
a combination of both translation and rotation.

You will find that the translational motion of agr body can be
described in terms of the motion of its centre afss1 So, we shall be
able to apply the dynamics of point masses for rijesan of
translational motion. Hence, our chief concern vio# the study of
dynamics of rotational motion of rigid bodies.
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To aid our understanding of the dynamics of rigatlyp we shall also
study moment of inertia, radius of gyration, monseand couples and
recapitulate equilibrium of coplanar forces. Thedléput us on a sound
footing for studying angular momentum and its covson, torque and
kinetic energy of a rotating body in the next Umhich will be the last
Unit of this course.

2.0 OBJECTIVES

By the end of this unit, you should be able to:
. identify a rigid body.

. distinguish between the features of translatiomal eotational
motion of a rigid body.

. outline the features of the general motion of &rigpdy.

. explain the significance of moment of inertia ofrigid body
about a certain axis.

. solve problems on the concept of rotational dynanat rigid
bodies.

3.0 MAIN BODY
3.1 A Rigid Body and Its Motion

3.1.1 What is a Rigid Body

To attempt to answer this, just think of the whafed car rotating about
its axle. Let us consider any two points on the eth¥ou will see that
the relative separation between them does not enashgn the wheel is
in motion. This is an example of a rigid body. Garu think of objects
in your room you can refer to as rigid bodies’hisBic ball pen you use
in writing a rigid body?

Technically speaking, a rigid body is defined asaggregate of point
masses such that the relative separation betweaetwarof these always
remains invariant, that is, for any position of toaly,

rk = a constant as shown in Figure 3.1. below.

Fig
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In short, a rigid body is one which has a defirsteape. It does not
change even when a deforming force is applied. vigitknow that in
nature there is no perfectly rigid body as all feadies experience some
deformation when forces are exerted. So, a peyfegild body can only
be idealised. We shall see that this model is quseful in cases where
such deformation can be ignored. For example, #ferchation of a
lawn tennis ball as it bounces off the ground camgiored.

You know that if a heavy block is dragged alondamg, frictional force
acts on it.

But its deformation due to the frictional force cée neglected.
However, you cannot neglect the deformation ofilavey track due to
the weight of the train. So, the model of a rigwti cannot be applied
in the last case.

Self Assessment Exercise 3.1

Which of the following can be considered as rigidlies?
(@) Atop (b) A rubber (c) A ballet (d) a ballo(e) The earth.
Let us now study the motion of a rigid body.

3.1.2 Translational Motion of a Rigid Body

Suppose you are traveling in a bus, then, durirgeréain interval of
time, your displacement will be exactly equal tattlof your co —
passenger provided both of you do not move witlpeesto the bus.
This will also be true for any two objects attachedhe body of the bus,
say a bulb and a switch. This is the characteradticanslational motion.
A rigid body is said to execute pure translatiomaktion if each particle
in it undergoes the same displacement as every ptrécle in a given
interval of time. Translational motion of a rigiody is shown in Figure
3.2

P e
Y ~N

-
S
S|P )
z ,\Q}’
4 O ¥
X C
y )

O

Fig 3.2 Translational Motion Of A Rigid Body
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You must have noticed that the path taken is noessarily a straight
line. The magnitudes of the distance between Ar@ Q should always
be the same.

Self Assessment Exercise 3.2

Give two examples of translational motion

Now that you have worked out exercise 3.2 you athat if we are
able to describe the motion of a single particlethe body, we can
describe the motion of the body as a whole. We ltave this exercise
a number of times before. However, you may likeeonsolidate your
understanding by working out the following exercise

Self Assessment Exercise 3.3

A rigid body of mass M is executing a translationadtion under the
influence of an external force.FSuggest a suitable differential equation
of motion of the body.

What does the answer to exercise 3.3 signify? Weavikihat the relative
separation between any two points of a rigid boalgysdnot change. That
IS,

& g

dt
So all the points follow the same trajectory ontlas centre of mass.
Hence for studying translational motion, the bodgynbe treated as a
particle of mass M located at its centre of masMjCYou may recall
that we had treated the sun and a planet as gariiciUnits 11, 12, and
13. They were treated as particles as their sieesegligible compared
to the distances between them and also becausshtpmes of these
bodies were insignificant. But here we are consngea rigid body as a
particle for another reason as explained aboves W can represent
the translational motion of its C.M. It becomesieaso describe the
translational motion in this way. Recall that wed hepplied the above
idea when we studied cases like a body falling lmlingg down an
inclined plane in Unit 14. Let us now discuss tbwtional motion of a
rigid body.

3.1.3 Rotational Motion of a Rigid Body
Let us consider the motion of the earth. Every poim it moves in a
circle (the corresponding latitude), the centresvbich lie on the polar

axis. Such a motion is an example of a rotationaion. A rigid body is
said to execute rotational motion if all the pdetcin it move in circles,
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the centres of which lie on a straight line calted axis of rotation.
When a rigid body rotates about an axis every @arin it remains at a
fixed distance from the axis. So, each point in bogly, such as P
describes a circle about this axis. See Fig. 3.3.

Fig. 3.3

You must have realised that perpendiculars draam fany point in the
body to the axis will sweep through the same aigleny other such
line in any given interval of time.

3.1.4 General Motion of a Rigid Body

The general motion of a rigid body is the combiratwf translation and
rotation. This can be understood by considering ¢ikample of a
moving car. If you look at the tyres of the movicay you observe that
the wheel is turning round as well as moving fovar backwards as
the case may be. So the car changes position aghtels rotate.

You may perform an activity for the sake of betiederstanding of the
motion of a rigid body.

Self Assessment Exercise 3.4

Take a beer bottle or a pencil and roll it on itkeson a table.

What do you observe?

You would have observed that the bottle or permdsides rotating
round also changed location as it rolled down #tdet That gives you a
feel of what we are talking about. Now think of m@&xamples.

267



PHY 111 ELEMEARY MECHANICS

We shall now move on to study moment of inertiaaose it will play
an important role in the determination of the aaguhomentum of a
rotating rigid body.

In dealing with circular motions, we have all theshile considered
particles in motion with the result that a particbeolved round a circle
of the same radius. But now we are going to comditk rotation of a
system of connected “particles” moving in circlésddferent radii. The
spatial distribution of the mass of the body alettte behaviour of the
body. We note also that the mass of a body is asuneaf its in — built
resistance to any change of linear motion. Thus sag that mass
measures inertia. The corresponding property featianal motion is
called the moment of inertia. The more difficultist to change the
velocity of a body rotating about a particular axise greater is its
moment of inertia about that axis. From experimemt&as seen that a
wheel with most of its mass concentrated in theisirmore difficult to
start and stop than a uniform disc of equal magwead rotating about
the same axis. The former has a greater momemnieaia. Take note of
this important point that moment of inertia is aproperty of a body
rotating about a particulaxis. If the axischanges,the value of the
moment of inertialso changes

3.2 Moment of Inertia

We need now to measure the moment of inertia wiaikk&s into account
the mass distribution of the body about the axisatétion and which
plays a role in rotational motion. This is analogdo that played by
mass in linear motion.

Consider a rigid body rotating about a fixed axmsotugh O with
constant angular

Velocity w, as shown in Figure (3.4) below. A particle Ajnodss m, at
a distance rfrom O describes its own circular path andsvits linear
velocity along the tangent of the path at the missaown, then

V1= nw 3.1
and

the Kinetic Energy of A:%mlvl2

= % myr?ew? 32
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Rigid

Fig 3.4

The kinetic energy of the whole body is the sunthaf kinetic energies
of its component particles. Assuming these havesegs), M, M, .....
m, and are at distances

r, I I3, ... r, from O, then, since all the particles have the esam
angular velocityw, we have

Total K.E for the whole body =

1 1
Ml +=myrfe’ + ...+
2 1 2 2'2

n

= lezm r? 33a
=

i.e. Total K.E

_a)z[i%mrin 3%

Where represents the sum of the, nvalues for all the particles of the
body. Note that the quantitymrr? depends on the mass and its
distribution and it is a measure of the momentnafrtia | of the body
about the axis in question.

So we define | as

[ = Z m;r, 3.4
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We can then write the K.E. as
K.E of body =

1Icu2
2

Comparing this with the kinetic energy for lineaotion % mv we see
that mass m is replaced by the moment of ineréiad the velocity v is
replaced by the angular velociy

The Unit of moment of inertia | is kg’m

Values of | for regular shapes of bodies can beerdehed using
calculus. For example, That for a uniform rod ofssian and length L

about an axis through its centre is #lL2.

When the rotation is about an axis at one of itlséhbecomes nf13.
Fig. 3.5 say

[
| = ml%12 | |
| | )
! L | axis of
[ axis of : rotation
! rotation [
(i) IL o
. =/2m
Flg 3.5 (i)

Do you think rotational kinetic energy “4is a new kind of energy?
Not at all. It is simply the sum of the linear kilneenergies of all the
particles making up the body, and is a convenieay of representing
the K.E of a rotating rigid body.

The mass of a flywheel is concentrated in the timereby giving it a

large moment of inertia. When it rotates, it posssslarge K.E. This
explains why it is able to keep an engine (e.g @@ running at a fairly
steady speed despite the fact that energy is appiiby intermittently to

it. You may do well to know that some toy cars havemall lead

flywheel which is set into rapid rotation by a Wbrpush across a solid
surface. The K.E of the flywheel will then keep tter in motion for

some distance.
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Values of moments of inertia for other regular gfs@re shown in
Figure 3.6

| P
L Z g
A : ~
‘//J i’ /)?\._
. <! 5
| )/ ]
l",am!;’ I'zm(ag—f—h!] _;mt_Rf | R_"_EJ
(a) Slender rod, axis (b) Rectangular plate, (c) Hollow cylinder 9-7 Moments of inertia.
through center axis through center
= L
'mR? mR2 'IT:m R?
(d) Solid cylinder (e) Thin-walled hollow (f) Solid sphere
cylinder
Fig 3.6

Example:
Three small bodies, which can be considered aglesriare connected
by light rigid rods, as in the Figure 3.7 below.

B
0.1kg
0.5 0.3kg

A a C
0.3kg 0.4m O.2kg

Fig 3.7

What is the moment of inertia of the system (a)ulam axis through A,
perpendicular to the plane of the diagram?
(b) about an axis coinciding with the rod BC?

Solution:

Since particle A lies on the axis, it does not dbnte to the moment of
inertia because the distance from the axis of ioytas zero.
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Hence,

| =¥ m P = (0.1kg) (0.5m) + (0.2kg) (0.4nH

= 0.057kg rh
(b) The particles B and C both lie in the axis aodhey too contribute
nothing
Hence,

| =Y m = (0.3kg) (0.4
= 0.048 kg h

Self Assessment Exercise 3.5

If in Figure 3.4 above the body rotates about ais #xough A and
perpendicular to the plane of the diagram, witlaagular velocityw = 4
rad s, what is the rotational kinetic energy?

Solution.

KE. = % 10 = % (0057kg)(drads™)

= 0456

3.2.1 Raduis of Gyration

No matter what the shape of a body is, it is alwmagssible to find a
radial distance from any given axis at which thessnaf the body could
be concentrated without changing the moment oftimesf the body
about that axis. This distance is known as theusadf gyration of the
body about the given axis. It is denoted by K. Smass m of the body
actually were concentrated at this distance, thenemt of inertia would
be that of a particle of mass m at a distance kfam axis, or ntk But
we see that this is equal to actual moment ofimértherefore

mié = |
3.6

Self Assessment Exercise 3.6

What is the radius of gyration of a slender rodrofss m and length L
about an axis perpendicular to its length and pgdsirough the centre?
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Solution:
The moment of inertia about an axis through thereds | = mL?/ 12

Therefore,

AmL? /12m
=L/243

= 0289L
Ko -

We therefore note that the radius of gyration, tike moment of inertia
depends on the location of the axis.

3.2.2 The Dumbbell.

The simplest rotating object that we can conterapiata dumbbell. It
consists of two point masses end m connected by a massless rigid
rod of length L as shown in Figure 3.8 below.

mz
: : g
I |
N e |
! : A
| | |
| | |
Xx=0 X = pimi+mp XI_L
Fig 3.8

Let the total mass M be m m,. Positioning mass mat the origin of
the x — axis and manJat x = L. it could be shown that the centre of
mass is at x where

« = (M )(0)+(m, )(L)

m, +m,

m, L
M

If we consider the case in which the axis of rotatgoes through the
centre of mass (C.M) (i.e through point x 5 M, then the axis is
taken perpendicular to the rod. So, measuring fittbe C.M, the
coordinates of mand m will be —m, L/M and L- (my/m) = mL/M
respectively.
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Now, the rotational inertia about an axis passimgugh the centre of
mass and perpendicular to the axis of the dumlbgliven by

2 2

_ _(m m,
| = 2L | 4 i

ml(Mj mz(Mj
_ o[ mm +mm? ) _(mm,L2(m, +m,)

M* (m, +m,)’

- rnlmZ L2

m, +m,

3.3 Moments and Couples

Knowledge of moments and couples will aid our ustierding of the
next section of this unit which will deal on torgquend angular
momentum.

“A force applied to a hinged or pivoted body change rotation about
the hinge or pivot. Experience shows that the hgreffect or moment
or torque of the force is greater, the greaterniagnitude of the force
and the greater the distance of its point of apgbn from the pivot.The
moment or torque of a force about a point is messby the product of
the force and the perpendicular distance from e &f action of the
force to the point.

Thus in Figure, 3.9 if OAB is a trapdoor hinged(atand acted on by
forces P and Q as shown, then,

Moment of P about

O =P xOA 3.7
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and moment of Q about
O=Qx0C 3.8

Note that the particular distance must be takemerAtively we can
resolve Q into components Q €operpendicular to OB and Q shh
along OB as shown in Figure 3.b.

The moment of the latter about O is zero, its lofeaction passes
through O. for the former, we have

Moment of Q co® about O = Q cdbx OB 3.9a
=Qx0C 3.9b

(since co8 = OC/ OB), we see that this result is as weliefdre.

Note that moments are measured in Newton metre9 @xich are given
a positive sign if they tend to produce clockwisttion.

A couple consists of two equal and opposite pdridkees whose lines
of action do not coincide. It always tends to cleengiation. A couple is
applied to a water tap to open it. Figure 3.10 sh@avdiagrammatic
representation of a couple. We can say that theenbor torque of the
couple P — P about O

=P x OA + P x OB (both are clockwise)
=P xAB 3.10

Hence, moment of couple = one force x perpendialigtance between
forces.

Tap
} \ I~ AL

Fig

D 1r

3.3.1 Equilibrium of Coplanar Forces.

General conditions for equilibrium. If a body ided on by a number of
coplanar forces (that is, forces in the same plan€)is in equilibrium
(i.e. there is rest or motion under constant sptest)
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0] The components of the forces in both of any tdicections
(usually taken at right angles) must balance.

(i)  The sum of the clockwise moments about a pempials the sum
of the anticlockwise moments about the same period.

The first statement is a consequence of there bemmdranslational
motion in any direction and the second follows sitizere is no rotation
of the body. In brief, if a body is in equilibriutte forces and the
moment must both balance. The following worked epi@nshows how
the conditions for equilibrium are used to solveljpems.

Example:

A sign of mass 5.0kg is hung from the end B of donm bar AB of
mass 2.0kg. The bar is hinged to a wall at A ard herizontally by a
wire joining B to a point C which is on the wallrtieally above A. If
angle ABC = 38 find the force in the wire and that exerted by lfinge
(g = 10m%).

Solution:

The weight of the sign will be 50N and that of thea 20N (since w =
mg). The arrangement is as shown in Figure 3.1&8PL be the force in
the wire and suppose Q, the force exerted by himgdées angl® with
the bar. The bar is uniform and so its weight aetsically downwards
at its centre G. Let the length of the bar be 2

C
D Q sird P sin30
P Q T Q co9% P cos30 T
z > v
: b
A B
< >le > 20N 50N
L L
(b)
v v
. 20N 50N
()
Fig 3.11

There is no rotational acceleration, therefore nigkmoments
about A we have
Clockwise moments = anticlockwise moments. i.e.:

20 x L +50x 2L = P x AD (AD0?" to BC)
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0120L = P x AB sin 30 sincéO:%
=Px2Lx05
OP=12x16N

Note: by taking moments about A there is no need to dems)
since it passes through A and so has zero moment.

There is no translational acceleration, therefdne tvertical
components (and force) must balance, likewise tbezontal
components. Hence resolving Q and P into verticdlleorizontal
components (which now replace them) shown in Fih, we
have :

Vertically
Q sinB + P sin 30 = 20 + 50

1
0Q sinB=70 - 12E7J
Q si® =10 (1)

Horizontally. Q Co® = P cos 30 =120(\/§

[ ¢sing =603 (2)

Dividing (1) by (2)
tand =10/(603)
0e=5%
Squaring (1) and (2) and adding

Q (sirf 6 + co$8 ) = 100 + 10800
0Q =10900 (sih® + cos6 =1)

and Q = 1.0(4) x TON.
Structures: Forces act at a joint in many structures andekéhare in
equilibrium then so too are the joints. The joininGhe bridge structure

of Fig. 3.12 is in equilibrium under the actionfofces P and Q exerted
by girders and the normal force S exerted by tiselsupport at O. The
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components of the forces in two perpendicular dioes at the joint
must balance.

Hence,

S=Qsi and P= Q co8

Sy Q

»

7

If 8 and S are known (the latter from the weight amading of the
bridge) then P and Q (which the bridge designer miai to know) can
be found. Other points may be treated similarifduncan, 1982)

Fig 3.12

4.0 CONCLUSION

In this Unit, you have learnt

what a rigid body is.
that a rigid body can undergo both rotational arahglational
motions at the same time.
to distinguish between the features of translatiana rotational
motion of a rigid body.

to define moment of inertia and state its signiiica

to determine the turning effect of a force.

to state the conditions off equilibrium of coplamhairces.

5.0 SUMMARY

What you have learnt in this unit concerns rigidypdynamics.
You have learnt that:

. a rigid body is an aggregate of point masses swaththe relative
separation between any two of these always renmamasiant.

. a rigid body can execute both translational andtiaal motion.

. a rigid body executes pure translational motioeath particle in

it undergoes the same distance as every othecleairi a given
interval of time.

. the total K.E for the whole rotating body is givieny. wm r;?

. the moment of inertia for the rotating body is
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6.0

7.0

where the symbols have their usual meanings.

the moment or torque of a force about a point iasuesd by the

product of the force and the perpendicular distdrnme the line

of action of the force to the point.

a couple consists of two equal and opposite parfallees whose

lines of acfion do not coincide. It always tendsl@ange rotation.

if a body is acted on by a number of coplanar fertteen for

equilibrium

0] The components of the forces in both of anyo tw
directions must balance.

(i)  The sum of the clockwise moments about anpeiquals
the sum of the anticlockwise moments about the same
point.

TUTOR MARKED ASSIGNMENT

Two point-like masses are placed on a masstesshat is 1.5m

long. The masses are placed as follows 1.6kgeaeft end and

1.8kg 1.2m from the left end.

(@) What is the location of the centre of mass?

(b) By moving the 1.8kg mass, can you arrangeawehthe
centre of mass in the middle of the rod?

A pulley is rotating at the rate of 32 rev/imimotor speeds up

the wheel so that 30.0s later it is turning at&2min.

(@) What is the average angular acceleration thars per
sec?

(b)  How far will a point 0.30cm from the centretbe pulley
travelled during the acceleration period, assuntiag the
acceleration is uniform?

The flywheel of a gasoline engine is requiredite up 300 J of

kinetic energy while its angular velocity decreasexin 600 rev
min™ to 540 rev.miit. What moment of inertia is required?
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1.0 INTRODUCTION

This unit is a continuation of the preceding urgg, most of the
introductory remarks are covered there.

Additionally, in this Unit you will study about théorce that causes
rotation; angular momentum and its conservation.o\al also see real
physical systems, such as divers and figure skatezsuting complex
maneuvers, yet they are not rigid bodies showingt tangular
momentum and its conservation are very useful qasceMore
examples of the applications of angular momentuchienconservation
abound though they are beyond the scope of thisseowou will
definitely study about some of them in your futyears.

We shall wrap up this course with the introductadrihe concept of the
top or gyroscope.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

. state what causes rotation of rigid bodies.

. explain the concept of moment of a couple.

. define the angular momentum of a rigid body.

. apply the law of conservation of angular momentum.

. solve problems based on the concept of rotatiogahhics of
rigid bodies.
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3.0 MAIN BODY
3.1 Rotational Dynamics of a Rigid Body

3.1.1 Torque

It is time for us to ask what causes rotation. @&halogies we have made
between linear motion and rotational motion earheiis course will be
useful here. Recall that Newton’s, second law dlessrthe dynamics of
linear motion whereby we have that a force causesi motion given
by an equation.

Here you will learn that rotational motion is cadidey what we call a
torgue. You know that when we talk of a force, yawitively think of a

push or pull, so, in the case of torque. | wouldhtwgou always to think
of a twist. Know also that to increase the angutdocity of a rotating
body, a torque of a couple must be applied. We thae torque is
analogous to force.

F=——=ma 31
dt
where Torque,
Torque T = dle _ I da 32
dt dt

It is often necessary to find the work done by apte so that the energy
exchange that takes place as a result of its aciom body can be
known.

Consider a wheel as represented in Figure 3.1.theetradius of the
wheel be r and two equal and opposite forces paagentially so that
rotation occurs through angbe

Now, Work done by each force = force x distance

Wheel

Fia 3.1
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OWork done by each force = P x arc AB & 3.3
(O Total work done by couple = @#+ P18 = 2PB 3.4
But torque or moment of couple = Px 2r = 2Pr 3.5

Therefore, work done by couple = torque x angleotdtion
=re 3.6

Example:
If P =2.0N, r=0.50m
And the wheel makes 10 revolutions, then,

0=10x2t;andll =P x 2r
l.ell =2.0N x 2 x0.05m
=2Nm

Owork done by couple £6 = 2x20t= 1.3 x 10J.

In general if a couple of torque about a certain axis acts on a body of
moment of inertia, |, through an angbkeabout the same axis and its
angular velocity increases from Odp then,

Work done by couple = kinetic energy of rotation

e o= l1a)2
2

Self Assessment Exercise 3

A rope is wrapped several times around a uniforiid soylinder of
radius 0.1m and mass 50 kg pivoted so it can ratiadeit its axis. What
Is the angular acceleration when the rope is puili¢l a force of 20N?

Solution:

The torque i$” = (0.1m) (20N)
= 2.0Nm
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And the angular acceleration is

Q= r _ 20 Nm
| 1
> (50kg)(0.1m)*
=8rads™”
3.1.2 Angular Momentum

3.1.21 Definition

We recall that in linear motion we talked of lineaomentum. Now, in
rotational motion we shall talk of angular momentum

Let us consider a rigid body that is rotating abantaxis O with an
angular velocityw at some instant of time. See figure 3.2 below.

Rigid body

Fig 3.2

Let A be a particle of this body a distance r, frGnthe axis of rotation.
If the particle has linear velocity V, as showntle diagram then the

linear momentum of A is Wy = my wry ( since M = wry).

The angular momentum L ofgfabout O is then defined as the moment
of momentum about O.

Hence,
Angular momentum L of A =5, m;r,

- mlrlz 3.7
0 Total angular momentum <. wmr’
of a rigid body
= wymr 2.8

284



PHY 111 ELEMEARY MECHANICS

0L = 3.8b

Where we recognize 1 as the moment of inertia efabdy about O. It
Is thus evident that angular momentum is the ameogf linear
momentum (mv) where 1 is equivalent to mass m andeplaces
velocity V.

We can then state Newton’'s second law of rotatiahalamics as
follows.

A body rotates when it is acted on by a couple.
ar =la 3.9

where I' is the torque of moment of the couple causing tiatal
acceleratior.

In terms of momentum we have that
Torque = rate of change of angular momentum
l.e
de _dI

Mr=I— =— 310
dt dt

This is analogons to force which is the rate of ngea of linear
momentum

mdv

- 311
dt

3.1.3 Conservation Of Angular Momentum and Its
Applications.

Angular momentum is a vector that points in the ealmection aso.
For uniform rotational motion about an axis, thegaar momentum
does not change in either magnitude or directiast ds in the case for
linear momentum, angular momentum is independentioé for a
system on which there is no torque due to extdorakes. Note that it is
possible that the external torque is zero even wherexternal force is
not zero. This will depend on where the externatéas applied and on
its direction. Similarly, a net torque could exidten a net force is zero.
When the net torque is zero, the angular momentumdependent of
time and is conserved. For rigid bodies, the roteti inertia is constant,
and the conservation of angular momentum means theatangular
velocity is constant in time. When the rotatiomadrtia can vary because
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the system considered can vary its shape, thencdinservation of
angular momentum becomes a very important and usefciple.

Hence the principle of angular momentum states that
The total angular momentum of a system remains
constant provided no external torque acts on the
system rigid or otherwise

Mathematically we have that,

% =0 312

dt
Ice skaters, ballet dancers, acrobats and divesesthis principle of
conservation of angular momentum. For examplediher in the Figure
3.3 below leaves the high diving board with outstied arms and legs
and some initial angular velocity about his cewnfrgravity. His angular
momentum do remains constant since no external torques abtronTo
make a somersault he must increase his angulasityelble does this by
pulling in his legs and arms so that | decreases @ntherefore
increases. By extending his arms and legs agasahgular velocity
falls to its original value. Similarly a skater camirl faster on ice by
folding her arms.

Fig 3.3

The principle of conservation of angular momentsraseful for dealing
with large rotating bodies such as the earth, a$ agetiny, spinning
particles such as electrons, protons, neutrons.
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The earth is an object which rotates about an passing through its
geographic north and south poles with a period day . If it is struck
by meteorites, then since action and reaction auele no external
couple acts on the earth and meteorites. Theil &otgular momentum
Is thus conserved.

Neglecting the angular momentum of the meteoritesutithe earth’s
axis before collision compared with that of thetleaimhen, Angular
momentum of earth plus meteorites after collisioarrgular momentum
of earth before collision.

Since the effective mass of the earth has increa$ied collision the
moment of inertia has also increased. Hence, thth edll slow up

slightly. Similarly, when a mass of object is dredpgently on to a
turntable rotating freely at a steady speed, thesexwation of angular
momentum leads to a reduction in the speed ofuitmable.

Example:

Calculate the angular momentum of earth’s motionuabts axis of
rotation given that earth’s mass is 6 X% and its radius is 6.4 x 40
Assume that the mass density is uniform.

Solution :
arth makes one revolution about its axis in 24husThts period of
rotation is

60min « 60sec

T=24hx
m
= 86400
Hence
o =27 _ 628ad
T 86400s

=73x10"°rad s
Now since the rotational inertia of a uniform sphey

T =2MR?
5
= (04)(6x10*kg)(64x10°m)’
=10x10*" kg.m?
L =lw={10x10"kgm? | 73x10°rads)
=7x10%kgm’s™
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We notice that our calculated value of | is somep2€cent larger than
the correct value of 7.9 x &g.n?. Why is it so

Self Assessment Exercise 4
The earth is suddenly condensed so that it's raoae®mes half of its
usual value without its mass being changed. How thé period of

daily rotation change?

Solution: of (b) from the principle of conservation of angul
momentum, we get

oy = hoy

Herel, =

NPRGIIN

and R, =

2 2 2
DgMwal ZEM iwz

or w,=4w,
But w, :2—7Tanda)2 _an
Tl T2
whereT, andT, aretheusualand changedime periodsof daily rotationof earth

So the time period of daily rotation will become 6h

3.1.4 Experiment on Conservation Of Angular Momentum.

A simple experiment to illustrate the principle tie conservation of
angular momentum is illustrated below in Figure 3.4

2
4

g T, =

I

=6h
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Mo T

Fig. 3.10 Conservation ol angular momentum

In the Figure, a bicycle wheel A without a tyre gst rotating in a
horizontal plane and the time for three completelgions is taken
with the aid of a tape maker M on the rim. A ringpD known moment
of inertia, | is then gently placed on the wheeha@antric with it, by
dropping it from a small height. The time for thexhthree revolutions
is then determined. This is repeated with sevemlenings of greater
known moment of inertia.

If the principle of conservation of angular momentis true, then

ot = @+l 3.13

Where } is the moment of inertia of the wheel along,is the angular
frequency of the wheel alone ang is the angular frequency with a
ring. Thus if ¢, t; are the respective times for three revolutions,

| |
A 314
tl 0

Dividing throughbyl , gives

0ol

Lo

~+

= 315

b

Thus a graph ofit t, against { should be a straight line. Within the
limits of experimental error, this is found to Ibe tcase.

Example:

Consider a disc Fig. 3.5 of mass 100g and radiamli6 rotating freely
about axis O through its contre at 40 r.p.m. Tladagut O the moment
of inertia | is
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2
=M L 0akgx 017 m?
2 2
=5x10"kg.m?
and

angularmomenturs 1o =5%x10"w

Wherew is the angular velocity corresponding to 40 r.p.m.

Suppose some wax, w of mass m 20g is dropped genttp disc at a
distance r of 8.0cm from the centre O.

The disc then slows down to another speed, cornelpg to an angular
velocity w; say. The total angular momentum about O of digs plax.

= I+ mPw,  =5x100w + 0.02 x 10.08wy,
= 6.28 x 16wy,

From the conservation of angular momentum for ke dnd wax about
O

D&:S_OO :l w——>
w 628 40

wheren is ther.p.mof thedisc

On= 500 x40
628
=32 (approx)

6.28 x 10wy, = 5x 10w

Fig 3.5
Self Assessment Exercise 3.3

(a) Define angular momentum.
(b) Describe how you would demonstrate (using a simple
experiment) the principle of conservation of angut@mentum.

Solution:

(@) See the text. It is useful to include in your deigm Units of
angular momentum, also mention that it is a coreskiyuantity
in physics and is a vector.

(b) Remember to label the diagram you will use in the
demonstration. Note that the question asks only #&or
demonstration not for a verification.
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Self Assessment Exercise 3.4

The moment of inertia of a solid flywheel aboutatss is 0.1kgm It is
set in rotation by applying a tangential force & 6L N with a rope
wound round the circumference, the radius of thesethis 10cm.
Calculate the angular acceleration of the flywh&¢hat would be the
acceleration if a mass of 2kg were hung from theearthe rope?

Solution

T4

L

l a = rceo/dt?

v ma = 19.81
Fig 3.6

The couple C =

1@
dt?
0 (=196x0.1)Nm

= momentunof inertiax angular acceleraton

196x 0.1

[0 angular acceleraton = o1

=196 rad 52

If a mass of 2kg is hung from the end of the rafpeoves down with an
acceleration a. See the figure above. In this chsg,the tension in the
rope.

mg—-T=ma M

For the flywheel Tr = couple

1d?¢ y
- dt? (")

where r is the radius of the flywheel
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Now, the mass of 2kg descends a distance givert hyheref is the
angle the flywheel has turned. Hence the acceterai = rd 6/ dtt
Substituting we have

d29
mg - T =mr —-
J dt ?
2
mgr - Tr =mr? C:jtf (i )
adding egns (ii )and (iii )
d?o
mr =+ mr
2
0 d“-é _ _ mgr
dt ? | + mr ?
2x10 x 0.1

T 01+ 2x (0.1)
16 .7 rad S 2

3.1.5 The Top and the Gyroscope

A symmetrical body rotating about an axis, one poinwhich is fixed

is called a top. If the fixed point is at the cenaf gravity, the body is
called a gyroscope. We note that the axis of mmawf a top or
gyroscope can itself rotate about the fixed pomthse direction of the
angular momentum vector can change.

An example of the mounting of a toy gyroscope isvah in figure 3.7
below

P

Fig 3.7: VectorAL is the change in Angular Momentum produced inetim
At by the momenf of the force w Vectord\L and I' are in the same
direction.
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The top (since the fixed point is not at the cemtfrenass) is spinning
about its axis of symmetry and if the axis is adl§ set in motion in the

direction shown, with the proper angular velocttye system continues
to rotate uniformly about the pivot at O. The s@mmwis remains

horizontal.

The angular momentum of a top would equal the prbdtiits moment

of inertia about the axis and its angular velo@bput the axis would

point along it. If It's axis were fixed in spaceutBsince the axis itself
also rotates the angular momentum no longer lieheraxis. However,

if the angular velocity of the axis itself is smatimpared to the angular
velocity about the axis, then the component ofdahgular momentum

arising from former effect is small and can be eetgd. The angular
momentum vector L, about the fixed point O, camtbe drawn along

the axis as shown and as the top rotates abous @pgular momentum
vector rotates with it.

The upward force P at the pivot has no moment aouthe resultant
external moment is that due to the weight w; itgniade is

N =oR 3.14

The direction ofl” is perpendicular to the axis as shown. In a tikhe
this torque produces a chanfje in the angular momentum, having the
same direction as and given by

AL = TAt 3.15

The angular momentum L AL, after a timeAL is perpendicular to L,

the new angular momentum vector has the same ruagnés the old
but a different direction. The top of the angulaomentum vector

moves as shown, and as time goes on it swingsndrauhorizontal

circle. Since the angular momentum vector lies @ltime gyroscope
axis, the axis turns also, rotating in a horizoptahe about the point O.
This motion of the axis of rotatiion is called pession”. (Sears et at,
1975)

4.0 CONCLUSION.

In this unit, you have learnt that
» applied torque increases the angular velocity itating body.
e torque [ =
 de
dt

where, | is the moment of inertia aads angular velocity.
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work done by a couple or torque is given by theimenergy of
rotation. That is

reo =11a)2
2

the angular momentum L of a rotating body is gilagn

L=1lw
. the total angular momentum of a system remains taohs
provided no external torque acts on the systemgid ri or
otherwise.
. a symmetric body rotating about an axis, one poinwvhich is

fixed is called a top.

% =0
dt

5.0 SUMMARY

What you have learnt in this unit concerns the &rgmomentum of a
rigid body. You have learnt that:
» torque is the rotational analogue of force in limetion.
to increase the angular velocity of a rotating badiprque or a
couple must be applied.
torque is given by where
K.E of rotation is

-2 lde
dt
re =i
2
. the angular momentum L of a system about an axdefined as
the moment of its momentum about that axis.
L =lw
. when the net torque on a system in rotational mogozero, the
angular momentum is independent of time and isexwesl.
. using the formulas in this Unit and in the previamme you can
solve problems relating to angular momentum.
. a gyroscope is a symmetrical body rotating abaitcéntre of

gravity

Summary of Equivalences Between Linear And Rotatioal Motion
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Quantity or Formular in Linear
Motion

Equivalent in Rigid Body
Rotation

Displacement (s)

Velocity (V) Angular velocity (o)
— . da
Acceleration [a —3_ﬂ Angular acceleratiomr =50
Moment of inertia (| )
Mass ( m) Torque ()
Force (f)

- [1 m%}
Kinetic energy| >

Work done (Fs)
F=ma

myVi+ MV, = constant

Angular displacemerti

L 1 I
Kinetic energy 5 J

Work done (" 6)
M=1la
10+ L,y = constant

Wrinal = Winitial + Ot

V=u+at Ete

etc

6.0 TUTOR MARKED ASSIGNMENT

1. A shaft rotating at 3 x £@evolutions per minute is transmitting
a power of 10 kilowatts. Find the magnitude of ttheving
couple.

2. The turntable of a record player is a uniforrecdof moment of
inertia 1.2 x 1F kg nf. When the motor is switched on it takes
2.5s for the turntable to accelerate uniformly froest to 3.5 rad
s'(331/3r.p.m.)

(@) What is the angular acceleration of the turntable?
(b) What torque must the motor provide during this
acceleration?

3. A stationary horizontal hoop of mantle, 0.04akg mean radius

0.15m is dropped from a small height centrally and
symmetrically onto a gramophone turntable whichfrsely
rotating at an angular velocity of 3.0 rad. Eventually the
combined turntable and hoop rotate together withaagular
velocity of 2.0 rad.$. Calculate
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0] The moment of inertia of the turntable about ribtation
axis

(i)  The original kinetic energy of the turntable.

(i) The eventual kinetic energy of the combinedop and
turntable.

Account for any change in kinetic energy which besurred.
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