

 CIT108

 PROBLEM SOLVING STRATEGIES

 Course Team Dr. Tola John Odule

(Developer/Writer)

 Prof. Julius Olatunji Okesola

 (Content Editor)

 Dr. Francis B. Osang – HOD/Internal

 Quality Control Expert

 NATIONAL OPEN UNIVERSITY OF NIGERIA

COURSE

GUIDE

CIT108 COURSE GUIDE

ii

National Open University of Nigeria

University Village, Plot 91

Jabi Cadastral Zone

Nnamdi Azikiwe Expressway

Jabi, Abuja

Lagos Office

14/16 Ahmadu Bello Way

Victoria Island, Lagos

Departmental email: computersciencedepartment@noun.edu.ng

NOUN e-mail: centralinfo@noun.edu.ng

URL: www.nou.edu.ng

First Printed 2022

ISBN: 978-058-557-5

All Rights Reserved

Printed by: NOUN PRESS

January 2022

CIT108 COURSE GUIDE

iii

CONTENTS PAGES

Introduction…………………………………………. iv

Course Aim……………………………………… v

Course Objectives ….………………………………..v

Working through this course…………………… vii

Study Units……………………………………… vii

Presentation Schedule………………………………. viii

Assessment……………………………………… ix

Tutor-Marked Assignment (TMAs)…………….. ix

Final Examination and Grading………………… ix

Course Marking Scheme…………………………… x

Facilitators/Tutors and Tutorials……………….. x

Summary……………………………………….. xi

file:///C:/Users/Dell/Documents/CIT108/CIT108%20Corrected%20Modules.docx%23_Toc101685074
file:///C:/Users/Dell/Documents/CIT108/CIT108%20Corrected%20Modules.docx%23_Toc101685077
file:///C:/Users/Dell/Documents/CIT108/CIT108%20Corrected%20Modules.docx%23_Toc101685078
file:///C:/Users/Dell/Documents/CIT108/CIT108%20Corrected%20Modules.docx%23_Toc101685081
file:///C:/Users/Dell/Documents/CIT108/CIT108%20Corrected%20Modules.docx%23_Toc101685082
file:///C:/Users/Dell/Documents/CIT108/CIT108%20Corrected%20Modules.docx%23_Toc101685085
file:///C:/Users/Dell/Documents/CIT108/CIT108%20Corrected%20Modules.docx%23_Toc101685086
file:///C:/Users/Dell/Documents/CIT108/CIT108%20Corrected%20Modules.docx%23_Toc101685088
file:///C:/Users/Dell/Documents/CIT108/CIT108%20Corrected%20Modules.docx%23_Toc101685091
file:///C:/Users/Dell/Documents/CIT108/CIT108%20Corrected%20Modules.docx%23_Toc101685094
file:///C:/Users/Dell/Documents/CIT108/CIT108%20Corrected%20Modules.docx%23_Toc101685096
file:///C:/Users/Dell/Documents/CIT108/CIT108%20Corrected%20Modules.docx%23_Toc101685097

CIT108 COURSE GUIDE

iv

INTRODUCTION

Usually the term problem is used to refer to a situation where it is not

immediately obvious how to reach the goal. Formally, a problem is

defined by the following four conditions or parameters: A clearly

defined

1. Initial situation.

2. Goal.

3. Set of resources that may be applicable to move from the given

initial situation to the desired goal situation. There may be

specified limitations on resources, such as rules, regulations, and

guidelines for what is allowed to do in attempting to solve a

particular problem.

4. Commitment to using some of one’s own resources, such as

knowledge, skills, and energies, to achieve the desired final goal.

If one or more of these components are missing, the problem is ill-

defined.

Critical thinking is the use of those cognitive skills or strategies that

increases the probability of a desirable outcome. Problem solving

consists of moving from a given initial situation to a desired goal

situation. It is the process of designing and carrying out a set of steps to

reach a goal, and includes answering questions, solving problems,

accomplishing tasks, making decisions, using critical thinking to do all

of the above. Often the problem solving that students are expected to do

is to recognize, pose, clarify, and solve complex, challenging problems

that they have not previously encountered.

Although nowadays algorithms are primarily associated with software

and computers, their origins lie much further in the past. They have been

used intuitively for centuries, in the form of regulatory systems,

instructions, rules for games, architectural plans and musical scores. An

algorithm is a procedure for decision-making or an instruction on how to

act which consists of a finite number of rules. It may also be defined as a

limited sequence of unambiguous elementary instructions which exactly

and completely describe the way to solve a specific problem.” This

applies regardless of whether it relates to mathematics, fine art or music.

However, the most well-known application of algorithms is undoubtedly

their use in computer programming. A program is thus an algorithm that

is formulated in a language that allows it to be processed by a computer.

This course is about deploying computational approaches to the

problem-solving process using algorithm as a medium to achieve the

defined goal in a computer-enabled format.

CIT108 COURSE GUIDE

v

COURSE AIM

This course has two main goals:

1. It intends to introduction the student to the logical formulation

 and representation of problems in computer science, using critical

 thinking together with the established problem-solving strategies

 presented and with applicable implementation approaches.

It seeks to equip the learner with the required technical know-how to

handle common elementary routine problems that arise in practice the

use of appropriate algorithms, flowcharts and pseudocodes as tools in a

way to facilitate a computer-enabled representation for solution.

COURSE OBJECTIVES

To achieve the aims set out, the course has a set of objectives. Each unit

has specific objectives which are included at the beginning of the unit.

Students may wish to refer to them during their study to check on their

progress. They should always look at the unit objectives after

completion of each unit. By doing so, they would know whether they

have followed the instruction in the unit. Below are the comprehensive

objectives of the course as a whole. By meeting these objectives,

learners should have achieved the aims of the course as a whole. In

addition to the aims earlier stated, this course sets to achieve some

objectives. Thus, after going through the course, learners should be able

to:

 Understand problem solving strategies

 Define algorithm and heuristic and their role in problem solving

 Describe typical common problem solving strategies

 Explain some common roadblocks to effective problem solving

 Understand the computer as a model of computation

 Explain the problem solving process in detail

 Apply the problem solving paradigm to routine elementary

problems

 Describe the various computational approaches available for

solving a problem

 Classify computational approaches based on their paradigms

 Evaluate a computational approach best suited for a given

problem

 Apply a computational approach to solve a problem

 Define abstraction as a problem aid

 Understand the importance of abstraction in problem solving

 Describe how to perform abstraction

CIT108 COURSE GUIDE

vi

 Explain the various types of abstraction used in problem solving

 Understand the concept of algorithms

 Appreciate the need for algorithms

 Describe the steps involved in developing an algorithm

 Develop algorithms for simple problems

 Evaluate different algorithms based on their efficiency

 Understand the basic concepts of flowcharts

 Apply basic symbols and notations to create flowcharts

 Differentiate among common types of flowcharts and where they

apply

 Understand the conditions that apply in the design of flowcharts

 Undertake simple flowcharting problems

 Understand the relevance of pseudocode in problem solving

 Apply the rules guiding the use of pseudocodes

 Demonstrate basic skills in writing pseudocode to address simple

problems

 Understand and define recursion as an implementation strategy

 Know where and when to apply recursion to implement a

solution

 Determine how to avoid circularity in recursion

 Explain the inner workings of recursion and the associated

overhead

 Explain control structures and their importance in implementation

 Apply selection control structure to implement algorithms

 Implement solutions using iteration as an alternative

implementation strategy

 Combine control structures in ways that facilitate solution to the

problem at hand

 Appreciate the term “decomposition” and “modularisation”

 Understand how best decomposition can be approached

 Justify the motivations for modularisation

 Describe the basic properties of modularisation

 Discuss the advantages of modularisation

 Define and classify program testing

 Explain the desirable properties of program testing

 Appreciate the need for and benefits of program testing

 Understand the debugging process and programming errors

 Apply common strategies in debugging processes

CIT108 COURSE GUIDE

vii

WORKING THROUGH THIS COURSE

To complete this course, learners are required to read each study unit,

read the textbooks and read other materials which may be provided by

the National Open University of Nigeria.

Each unit contains self-assessment exercises and at certain point in the

course learners would be required to submit assignments for assessment

purposes. At the end of the course there is a final examination. The

course should take you about a total of 17 weeks to complete. Below

learners will find listed all the components of the course, what they have

to do and how they should allocate their time to each unit in order to

complete the course on time and successfully.

This course entails that learners spend a lot of time reading. It is advised

that learners avail themselves the opportunity of comparing their

knowledge with that of others.

Study Units

The study units in this course are as follows:

Module 1 Problem Solving Strategies

Unit 1 Roadmap to Solving Problems: Typical Strategies

Unit 2 The Problem Solving Process

Unit 3 Computational Approaches to Problem Solving

Module 2 Role of Algorithms in Problem Solving

Unit 1 Abstraction as a Problem Solving Tool

Unit 2 Algorithms

Unit 3 Flowcharts

Unit 4 Pseudocode

Module 3 Implementation Strategies

Unit 1 Recursion

Unit 2 Control Structure: Selection and Iteration

Unit 3 Decomposition and Modularisation

Unit 4 Testing and Debugging

Module 1 is concerned with the problem solving strategies. It discusses

the typical strategies commonly employed in creative thinking. It then

CIT108 COURSE GUIDE

viii

goes on to discuss the actual processes involved in solving typical real-

life problems using the computational paradigm. The module concludes

with an examination of the different computational approaches

applicable to different problem classes.

The central theme of Module 2 is the role of algorithms in problem

solving. The use of abstraction (logical representation of ideas) as a

problem-solving tool was given prominence in this module. Ways to

present the abstraction step-by-step for a mechanical procedure were

discussed. Two other complementary discussions meant to aid graphical

representation of the abstraction as well as constructs to aid the logical

flow were also presented.

Module 3, the final module, focussed on the implementation strategies.

Since the main goal of every problem solving approach is to produce an

efficient solution, various means through which a cost-effective

implementation could be achieved constitute the subject-matter of this

module. Implementation strategies such as recursion, control structures

involving selection and iteration, decomposition and modularisation

were covered. Finally, the issue of program testing and debugging was

carefully x-rayed to ensure that the learner is adequately equipped with

techniques to ensure that the presented solution not only works but is

guaranteed to work.

Each unit consists of one or two weeks’ work and include an

introduction, objectives, reading materials, exercises, conclusion,

summary, tutor-marked assignments (TMAs), references and other

resources. The units direct the learners to work on exercises related to

the required reading. In general, these exercises are meant to test the

learners on the materials they have just covered or require them to apply

the knowledge gained. They are thus assisted in evaluating their

progress and reinforce their understanding of the materials. Together

with TMAs, these exercises will help learners in achieving the stated

learning objectives of the individual units and of the course as a whole.

PRESENTATION SCHEDULE

The course materials have important dates for the early and timely

completion and submission of the TMAs and attending tutorials.

Learners should remember that they are required to submit all their

assignments by the stipulated time and date. They should guide against

falling behind in their schedules.

CIT108 COURSE GUIDE

ix

ASSESSMENT

There are three aspects to the assessment of the course. First is made up

of self-assessment exercises. Second, consists of the tutor-marked

assignments and third is the written examination/end of course

examination. Learners are strictly advised to do the exercises. In

tackling the assignments, they are expected to apply information,

knowledge and techniques gathered during the course. The assignments

must be submitted to their facilitator for formal assessment in

accordance with the deadline stated in the presentation schedule and the

assessment file. The work submitted to the tutor for assessment will

count for 30% of the total course mark. At the end of the course,

learners will need to sit for a final or end of course examination of about

three hours’ duration. This examination will count for 70% of the total

course mark.

TUTOR-MARKED ASSIGNMENT (TMAS)

The TMA is a continuous assessment component of the course. It

accounts for 30% of the total score. Learners will be given four TMAs

to answer. Three of these must be answered before they are allowed to

sit for end of course examination. The TMAs would be assigned by the

facilitator and should be returned after you have done the assignment.

Assignment questions for the units in this course are contained in the

assignment file. Learners will be able to complete their assignments

from the information and material contained in their reading, references

and study units. However, it is desirable in all degree level of education

for learners to demonstrate that they have read and researched more into

their references, which will give a wider view point and may provide

them with a deeper understanding of the subject.

Make sure that each assignment reaches your facilitator on or before the

deadline given in the presentation schedule and assignment file. If for

any reason you cannot complete your work on time, contact your

facilitator before the assignment is due to discuss the possibility of an

extension. Extension will not be granted after the due date unless in

exceptional circumstances.

FINAL EXAMINATION AND GRADING

The end of course examination for Problem Solving Algorithm

(CIT108) will be for three (2) hours and it has a value of 70% of the

total course score. The examination will consist of questions, which will

CIT108 COURSE GUIDE

x

reflect the type of self-testing, practice exercise and tutor-marked

assignment problems that were previously encountered. All areas of the

course will be assessed.

Use the time between finishing the last unit and sitting for the

examination to revise the whole course. You might find it useful to

review your self-test, TMAs and comments on them before the

examination. The end of course examination covers information from all

parts of the course.

COURSE MARKING SCHEME

Assignment Marks

Assignment 1 – 4 For assignment, best three marks of the four

counts at 10% each, i.e., 30% of Course

Marks.

End of Course

Examination

70% 0f the overall Course Marks.

Total 100% of Course Material.

FACILITATORS/TUTORS AND TUTORIALS

There are 16 hours of tutorials provided in support of this course.

Learners will be notified of the dates, time, and location of these

tutorials as well as the name and phone number of the facilitator, as soon

as they are allocated to a tutorial group.

The facilitator will mark and comment on your assignments, keep a

close watch on your progress and any difficulties you might face and

provide assistance to you during the course. You are expected to mail

your Tutor-Marked Assignments to your facilitator before the schedule

date (at least two working days are required). They will be marked by

the tutor and returned as soon as possible.

Do not delay to contact your facilitator by telephone or e-mail if you

need assistance.

The following might be circumstances in which learners may find

assistance necessary, hence they have to contact their facilitator if:

 They do not understand any part of the study or assigned readings

 They have difficulty with self-tests

CIT108 COURSE GUIDE

xi

 They have question or problem with an assignment or with the

grading of an assignment.

Learners should endeavour to attend the tutorials. This is the only

chance to have face- to-face contact with their course facilitator and to

ask questions which may be answered instantly. They can also raise any

problem encountered in the course of your study.

To have more benefits from course tutorials, learners are advised to

prepare a list of questions before attending them. They will learn a lot

from participating actively in discussions.

SUMMARY

Problem solving algorithm is a course designed to acquaint the learner

with the tools and techniques required to navigate the deeper waters of

computer science. It prepares the learner with the knowledge needed in

the application of principles and theories of other areas of information

communication technology. Upon completion of this course, learners

will be able to apply the techniques and knowledge gained in handling

basic and rudimentary design problems in computer science.

CONTENT PAGE

Module 1 Problem Solving Strategies…………… 1

Unit 1 Roadmap to Solving Problems:

Typical Strategies……………………… 1

Unit 2 The Problem Solving Process…………. 11

Unit 3 Computational Approaches to

Problem Solving……………………… 24

Module 2 Role of Algorithms in Problem

Solving…………………………………34

Unit 1 Abstraction as a Problem

 Solving Tool…………………………...34

Unit 2 Algorithms……………………………..44

Unit 3 Flowcharts……………………………..59

Unit 4 Pseudocode…………………………….73

Module 3 Implementation Strategies…………..83
Unit 1 Recursion……………………………...83

Unit 2 Control Structure: Selection and

Iteration……………………………..…96

Unit 3 Decomposition and Modularisation…112

Unit 4 Testing and Debugging………………121

MAIN

COURSE

CIT 108 MODULE 1

1

MODULE 1 PROBLEM SOLVING STRATEGIES

INTRODUCTION OF MODULE

Problem solving is the process of identifying an existing problem,

determining the root cause or causes of the problem, deciding the best

course of action in order to solve the problem, and then finally

implementing it to solve the problem. Problem-solving is used to solve

our everyday basic needs; and there are many ways to solve problems.

The countless number of everyday solutions are as diverse and

specialized as the problems themselves.

Problem solving techniques are great in variation and are nearly as

important as the problem solving itself. Without having proper

techniques to begin the problem solving process, individuals would find

it much more difficult to do effectively. It Includes: trial and error,

algorithms and heuristics, means-ends-analysis, etc. This list is by no

means exhaustive and exemplifies how simple problem-solving

techniques can be as well as how different they are from one another at

times. Choosing the correct technique for the given situation is

dependent on the individual, their experience and their resourcefulness.

These issues are the subject-matter of this module and are covered in

greater detail in subsequent Units that follow.

UNIT 1 ROADMAP TO SOLVING PROBLEM:

 TYPICAL STRATEGIES

1.0 Introduction

2.0 Intended Learning Outcome

3.0 Main Content

3.1 Problem-solving strategies defined

3.2 Importance of Understanding Multiple Problem-solving

 Strategies

3.3 Trial and Error

3.4 Algorithm and Heuristic

3.5 Means-Ends Analysis

3.6 Other Problem-solving Strategies

4.0 Conclusion

5.0 Summary

6.0 Self-Assessment Exercise

7.0 References/Further Reading

CIT 108 PROBLEM SOLVING STRATEGIES

2

1.0 INTRODUCTION

People face problems every day—usually. Sometimes these problems

are straightforward, however, the problems we encounter are more

complex. For example, say you have a work deadline, and you must

mail a printed copy of a report to your supervisor by the end of the

business day. The report is time-sensitive and must be sent overnight.

You finished the report last night, but your printer will not work today.

What should you do? First, you need to identify the problem and then

apply a strategy for solving the problem.

Practicing different problem-solving strategies can help professionals

develop efficient solutions to challenges they encounter at work and in

their everyday lives. Each industry, business and career has its own

unique challenges suggesting that employees may implement different

strategies to solve them. If you are interested in learning how to solve

problems more effectively, then understanding how to implement

several common problem-solving strategies may benefit you. In the

sections that follow, we discuss what problem-solving strategies are,

why they are important and list several examples of problem-solving

strategies you can try.

2.0 Intended Learning Outcome

At the end of this unit, students should be able to:

 Understand problem solving strategies

 Define algorithm and heuristic and their role in problem solving

 Describe typical common problem solving strategies

 Explain some common roadblocks to effective problem solving

3.0 Main Content

3.1 Problem-solving strategies defined

Given a problem—be it a complex mathematical problem or a broken

printer, the main concern is mapping out a strategy to solve or fix it.

Finding a solution implies that the problem must first be clearly

identified. After that, one of the many problem solving strategies can be

applied, hopefully resulting in a solution.

A problem-solving strategy is a plan used to find a solution or overcome

a challenge. Different strategies have different action plans associated

with them. For example, a well-known strategy is trial and error. Each

problem-solving strategy includes multiple steps to provide you with

helpful guidelines on how to resolve a business problem or industry

CIT 108 MODULE 1

3

challenge. Effective problem-solving requires you to identify the

problem, select the right process to approach it and follow a plan

tailored to the specific issue you are trying to solve.

3.2 Importance of Understanding Multiple Problem-solving

 Strategies

Problems themselves can be classified into two different categories

known as ill-defined and well-defined problems. Ill-defined problems

represent issues that do not have clear goals, solution paths, or expected

solutions whereas well-defined problems have specific goals, clearly

defined solutions, and clear expected solutions. Problem solving often

incorporates logical reasoning and interpretation of meanings behind the

problem, and also in many cases require abstract thinking and creativity

in order to find novel solutions. Various methods of studying problem

solving exist including introspection, simulation, computer modelling,

and experimentation.

It is important to have a clear understanding of how a variety of

problem-solving strategies work because different problems are

typically required to be approached in different ways to find the best

solution. By mastering several problem-solving strategies, you can more

effectively select the right plan of action when faced with challenges in

the future. This can help you solve problems faster and develop stronger

critical thinking skills.

3.3 Trial and Error

A trial-and-error approach to problem-solving involves trying a number

of different solutions and ruling out those that do not work. This

approach can be a good option if you have a very limited number of

options available. In terms of a broken printer for example, one could try

checking the ink levels, and if that doesn’t work, you could check to

make sure the paper tray isn’t jammed. Or maybe the printer isn’t

connected to a laptop. When using trial and error, one would continue to

try different solutions until the problem is solved. Although trial and

error is not typically one of the most time-efficient strategies, it is a

commonly used one.

3.4 Algorithm and Heuristic

A common type of strategy is an algorithm. An algorithm is a problem-

solving formula that provides you with step-by-step instructions used to

achieve a desired outcome (Kahneman, 2011). You can think of an

algorithm as a recipe with highly detailed instructions that produce the

same result every time they are performed. Algorithms are used

CIT 108 PROBLEM SOLVING STRATEGIES

4

frequently in our everyday lives, especially in computer science. When

you run a search on the Internet, search engines like Google use

algorithms to decide which entries will appear first in your list of results.

Facebook also uses algorithms to decide which posts to display on your

newsfeed. Can you identify other situations in which algorithms are

used?

A heuristic is another type of problem-solving strategy. While an

algorithm must be followed exactly to produce a correct result, a

heuristic is a general problem-solving framework. You can think of

these as mental shortcuts that are used to solve problems. A “rule of

thumb” is an example of a heuristic. Such a rule saves the person time

and energy when making a decision, but despite its time-saving

characteristics, it is not always the best method for making a rational

decision. Different types of heuristics are used in different types of

situations, but the impulse to use a heuristic occurs when one of five

conditions is met:

 When one is faced with too much information

 When the time to make a decision is limited

 When the decision to be made is unimportant

 When there is access to very little information to use in making

the decision

 When an appropriate heuristic happens to come to mind in the

same moment

Working backwards is a useful heuristic in which you begin solving the

problem by focusing on the end result. It is common to use the working

backwards heuristic to plan the events of your day on a regular basis,

probably without even thinking about it.

Another useful heuristic is the practice of accomplishing a large goal or

task by breaking it into a series of smaller steps. Students often use this

common method to complete a large research project or long essay for

school. For example, students typically brainstorm, develop a thesis or

main topic, research the chosen topic, organize their information into an

outline, write a rough draft, revise and edit the rough draft, develop a

final draft, organize the references list, and proofread their work before

turning in the project. The large task becomes less overwhelming when

it is broken down into a series of small steps.

3.5 Means-Ends Analysis

This strategy involves choosing and analysing an action at a series of

smaller steps to move closer to the goal. One example of means-end

CIT 108 MODULE 1

5

analysis can be found by using the Tower of Hanoi paradigm. This

paradigm can be modelled as a word problem.

The actual Tower of Hanoi problem consists of three rods sitting

vertically on a base with a number of disks of different sizes that can

slide onto any rod. The puzzle starts with the disks in a neat stack in

ascending order of size on one rod, the smallest at the top making a

conical shape. The objective of the puzzle is to move the entire stack to

another rod obeying the following rules:

1. Only one disk can be moved at a time.

2. Each move consists of taking the upper disk from one of the

stacks and placing it on top of another stack or on an empty rod.

3. No larger disc may be placed on top of a smaller disk.

With 3 disks, the puzzle can be solved in 7 moves. The minimal moves

required to solve a Tower of Hanoi puzzle is 2n – 1, where 𝑛 is the

number of disks. For example, if there were 14 disks in the tower, the

minimum amount of moves that could be made to solve the puzzle

would be 214 – 1 = 16,383 moves. There are various ways of

approaching the Tower of Hanoi or its related problems in addition to

the approaches listed above including an iterative solution, recursive

solution, non-recursive solution, a binary and Gray-code solutions, and

graphical representations.

An iterative solution entails moving the smallest pieces over one, then

moving the next over one and if there is no tower position in the chosen

direction you are moving to, move the pieces to the opposite end, but

then continue to move in the same direction. By doing this one will

complete the puzzle in the minimum amount of moves when there are 3

disks. Recursive solutions represent recognizing that the puzzle can be

broken down into a series of sub problems to each of which the same

general solving procedures apply, and then the total solution can be

found by putting together the sub solutions. Non-recursive solutions

entail recognizing that the procedures required to solve the problem

have many regularities such as when counting the moves starting at 1,

position of the disk in the series to be moved during move 𝑚 represents

the number of times 𝑚 can be divided by 2 which indicates that every

odd move involves the smallest disk. This allows for the following

algorithm:

Move the smallest disk to the peg that it has not recently come from.

Move another disk legally (there will only be one possibility).

A binary and Gray solutions describe disk move numbers in binary

notation (base-2) where there is only one binary digit (a bit) for each

CIT 108 PROBLEM SOLVING STRATEGIES

6

disk and the most significant (leftmost bit) represents the largest disk. A

bit with a different value to the previous one means that the

corresponding disk is one position to the left or right of the previous

one.

Graphical representations, as their name imply, represent visual

presentations of conditions that can be modelled in order to view the

most efficient and effective solutions. A common graph for the Tower of

Hanoi is represented by a unidirectional, pyramid shaped graph, where

different nodes (pieces within each level of the graph) represent

distributions of disks and the edges represent moves, as shown in Fig. 1-

1-1 below.

Figure 1-1-1: Graphical representation of nodes (circles) and

moves (lines) of Tower of Hanoi.

3.6 Other Problem-solving Strategies

Here are some examples of problem-solving strategies that may equally

be adopted to see which works best for you in different situations:

3.6.1 Past Experience

Take the time to consider if you have encountered a similar situation to

your current problem in the past. This can help draw connections

between different events. Ask yourself how you approached the

previous situation and adapt those solutions to the problem currently

being solved. For example, a company trying to market a new clothing

line may consider marketing tactics they have previously used, such as

magazine advertisements, influencer campaigns or social media

CIT 108 MODULE 1

7

advertisements. By analysing what tactics have worked in the past, they

can create a successful marketing campaign again.

3.6.2 Bring in a facilitator

If one is trying to solve a complex problem with a group of other people,

bringing in a facilitator can help increase efficiency and mediate

collaboration. Having an impartial third party can help a group stay on

task, document the process and have a more meaningful conversation.

Consider inviting a facilitator to your next group meeting to help

generate better solutions.

3.6.3 Develop a decision matrix for evaluation

If multiple solutions are developed for a problem, one may need to

determine which one is the best. A decision matrix can be an excellent

tool to help you approach this task because it allows you to rank

potential solutions. Some factors you can analyse when ranking each

potential solution are:

 Timeliness

 Risk

 Manageability

 Expense

 Practicality

 Effectiveness

After having decided which factors to include, use them to rank each

potential solution by assigning a weighted value of 0 to 10 in each of

these areas. For example, one solution may receive a score of 10 in the

timeliness factor because it meets all the requirements, while another

solution may only receive a seven. Having ranked each of the potential

solutions based on these factors, add up the total number of points each

solution received. The solution with the highest number of points should

meet the most important criteria.

3.6.4 Ask your peers for help

Getting opinions from peers can expose new perspectives and unique

solutions. Friends, families or colleagues may have different

experiences, ideas and skills that may contribute to finding the best

solution to a problem. Consider asking a diverse range of colleagues or

peers to share what they would do if they were in your situation. Even if

you don't end up taking one of their suggestions, the conversation may

help you process your ideas and arrive at a new solution.

CIT 108 PROBLEM SOLVING STRATEGIES

8

3.6.5 Step away from the problem

Finally, if the problem being worked on does not need an immediate

solution, consider stepping away from it for a short period of time. You

can do this literally by taking a walk to help clear your mind or

figuratively by setting the problem aside for a few days until you are

ready to approach it again. Allowing yourself time to rest, exercise and

take care of your own well-being can make solving the problem easier

when you come back to it because you may feel energised and focused.

4.0 CONCLUSION

Problem-solving is not a flawless process. There are a number of

different obstacles that can interfere with the ability to solve a problem

quickly and efficiently. These include functional fixedness, irrelevant

information, and assumptions.

When dealing with a problem, people often make assumptions about the

constraints and obstacles that prevent certain solutions. Functional

fixedness is the tendency to view problems only in their customary

manner. It prevents people from fully seeing all of the different options

that might be available to find a solution. It is important to distinguish

between information that is relevant to the issue and irrelevant data that

can lead to faulty solutions. When a problem is very complex, the easier

it is to focus on misleading or irrelevant information. Mental set makes

people to only want to use solutions that have worked in the past rather

than looking for alternative ideas. It can often work as a heuristic,

making it a useful problem-solving tool. However, it can also lead to

inflexibility, making it more difficult to find effective solutions.

5.0 SUMMARY

In this unit you learnt that:

 Problem-solving strategies which may include multiple steps in

order to proffer solution to business problem or industrial

challenges.

 Effective problem-solving requires you to identify the problem,

select the right process to approach it and follow a plan tailored

to the specific issue you are trying to solve

 Understanding the strategies of proffering solutions to problem

through trial and error, algorithm, heuristic and means-ends

analysis.

CIT 108 MODULE 1

9

 Applying Tower of Hanoi to solve strategy which involves

choosing and analysing an action at a series of smaller steps to

move closer to the goal

 6.0 SELF ASSESSMENT EXERCISE

1. Identify differences between ill-defined problem and well-

defined problems

2. Explain how the following methods for solving algorithmic

problem: introspection, simulation, computer modelling, and

experimentation.

3. Describe how the following methods: Trial and error, Algorithm,

Heuristic and Means-ends analysis can be applied in proffering

solution to problems

4. Use a diagram to describe the application of Tower of Hanoi in

choosing and analysing an action at a series of smaller steps to

move closer to the goal

5. State the factors to consider when developing a decision matrix

for evaluation

7.0 REFERENCES / FURTHER READINGS

Mueller, J., Beckett, D., Hennessey, E., & Shodiev, H. (2017).

Assessing computational thinking across the curriculum. In

Emerging research, practice, and policy on computational thinking

(pp. 251-267). Springer, Cham.

Saygılı, S. (2017). Examining the problem solving skills and the

strategies used by high school students in solving non-routine

problems. E-International Journal of Educational Research, 8(2),

91-114.

Spielman, R. M., Dumper, K., Jenkins, W., Lacombe, A., Lovett, M., &

Perlmutter, M. (2021). Problem Solving. Psychology-H5P Edition.

Tambunan, H. (2019). The Effectiveness of the Problem Solving

Strategy and the Scientific Approach to Students' Mathematical

Capabilities in High Order Thinking Skills. International

Electronic Journal of Mathematics Education, 14(2), 293-302.

Yağcı, M. (2019). A valid and reliable tool for examining computational

thinking skills. Education and Information Technologies, 24(1),

929-951.

Zhao, N., Teng, X., Li, W., Li, Y., Wang, S., Wen, H., & Yi, M. (2019).

A path model for metacognition and its relation to problem-solving

CIT 108 PROBLEM SOLVING STRATEGIES

10

strategies and achievement for different tasks. ZDM, 51(4), 641-

653.

CIT 108 MODULE 1

11

UNIT 2 THE PROBLEM SOLVING PROCESS

1.0 Introduction

2.0 Intended Learning Outcome

3.0 Main Content

3.1 Computer as a model of computation

3.2 Understanding the Problem

3.3 Formulating a Model

3.4 Developing an Algorithm

3.5 Writing the Program

3.6 Testing the Program

3.7 Evaluating the Solution

4.0 Conclusion

5.0 Summary

6.0 Self-Assessment Exercise

7.0 References/Further Reading

1.0 INTRODUCTION

Regardless of the area of study, computer science is all about solving

problems with computers. Hence, it is important to first understand the

computer’s information processing model. The problems that we want to

solve can come from any real-world problem or perhaps even from the

abstract world. We need to have a standard systematic approach to

solving problems. The model shown in Fig. 1-2-1 below assumes a

single CPU (Central Processing Unit). Many computers today have

multiple CPUs, so it can be imagined the above model being duplicated

multiple times within the computer.

CIT 108 PROBLEM SOLVING STRATEGIES

12

Input devices

A typical single CPU computer processes information as shown in the

diagram. Problems are solved using a computer by obtaining some kind

of user input (e.g., keyboard/mouse information or game control

movements), then processing the input and producing some kind of

output (e.g., images, text, sound). Sometimes the incoming and outgoing

data may be in the form of hard drives or network devices.

Figure 1-2-1: Simplified Model of a Uniprocessor Computer

S
to

ra
g
e/

N
et

w
o
rk

 d
ev

ic
e
s

CIT 108 MODULE 1

13

2.0 INTENDED LEARNING OUTCOME

At the end of this unit, students should be able to:

 Understand the computer as a model of computation

 Explain the problem solving process in detail

 Apply the problem solving paradigm to routine elementary

problems

3.0 MAIN CONTENT

3.1 Computer as a model of computation

In regards to problem solving, we will apply the model in Fig. 2-1 and

assume that we are given some kind of input information that we need to

work with in order to produce some desired output as solution.

However, the above model is quite simplified. For larger and more

complex problems, we need to iterate (i.e., repeat) the

input/process/output stages multiple times in sequence, producing

intermediate results along the way that solve part of our problem, but not

necessarily the whole problem. For simple computations, the above

model is sufficient.

Since it is the “problem solving” part of the process that is the main

focus in this unit, more attention will be devoted to this. Among the

many definitions for “problem solving”, the following will be adopted in

this unit:

Definition 1-2-1: Problem Solving is the sequential process of

analysing information related to a given situation and generating

appropriate response options.

In solving a problem, there are some well-defined steps to be followed.

For example, consider how the input/process/output works on a simple

problem:

Example: Calculate the average grade for all students in a class.

1. Input: get all the grades … possibly by typing them in via the

keyboard or by reading them from a USB flash drive or hard disk.

2. Process: add them all up and compute the average grade.

3. Output: output the answer to either the monitor, to the printer, to

the USB flash drive or hard disk … or a combination of any of

these devices.

CIT 108 PROBLEM SOLVING STRATEGIES

14

It is noted that the problem is easily solved by simply getting the input,

computing something and producing the output. We now examine the

steps to problem solving within the context of the above example.

3.2 Understand the Problem

It sounds strange, but the first step to solving any problem is to make

sure that one understands the problem about to be solved. One needs to

know:

What input data/information is available?

 What does the data/information represent?

 In what format is the data/information?

 What is missing in the data provided?

 Does the person solving the problem have everything needed?

 What output information needs to be produced?

 In what format should the result be: text, picture, graph?

 What are the other requirements needed for computation?

In the example given above, it is understood that the input is a bunch of

grades. But we need to understand the format of the grades. Each grade

might be a number from 0 to 100 or it may be a letter grade from A to F.

If it is a number, the grade might be a whole integer like 73 or it may be

a real number like 73.42. We need to understand the format of the

grades in order to solve the problem.

We also need to consider missing grades. What if we do not have the

grade for every student: for instance, some were away during the test?

Should we be able to include that person in our average (i.e., they

received 0) or ignore them when computing the average? We also need

to understand what the output should be. Again, there is a formatting

issue. Should the output be a whole or real number or a letter grade? Do

we want to display a pie chart with the average grade? The choice is

ours.

Finally, one needs to understand the kind of processing that must be

performed on the data. This leads to the next step.

3.3 Formulating a Model

The next step is to formulate a model for the problem. A model (or

formula) is thus needed for computing the average of a bunch of

numbers. If there is no such “formula”, one must be developed. In order

to come up with a model, we need to fully understand the information

available to us. Assuming that the input data is a bunch of integers or

CIT 108 MODULE 1

15

real numbers 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 representing a grade percentage, the

following computational model may apply:

𝐴𝑣𝑒𝑟𝑎𝑔𝑒1 = (𝑥1 + 𝑥2 + 𝑥3 + ⋯ + 𝑥𝑛)/𝑛

where the result will be a number from 0 to 100.

That is very straight forward, assuming that the formula for computing

the average of a bunch of numbers is known. However, this approach

will not work if the input data is a set of letter grades like B-, C, A+, F,

D-, etc., because addition and division cannot be performed on the

letters. This problem solving step must figure out a way to produce an

average from such letters. Thinking is required.

After some thought, we may decide to assign an integer number to the

incoming letters as follows:

𝐴+ = 12
𝐴 = 11
𝐴− = 10

𝐵+ = 9
𝐵 = 8
𝐵− = 7

𝐶+ = 6
𝐶 = 5
𝐶− = 4

𝐷+ = 3
𝐷 = 2
𝐷− = 1

 𝐹 = 0

If it is assumed that these newly assigned grade numbers are

𝑦1, 𝑦2, ⋯ , 𝑦𝑛, then the following computational model may be used:

 𝐴𝑣𝑒𝑟𝑎𝑔𝑒2 = (𝑦1 + 𝑦2 + 𝑦3 + ⋯ + 𝑦𝑛)/𝑛

where the result will be a number from 0 to 12.

As for the output, if it is to be represented as a percentage, then

𝐴𝑣𝑒𝑟𝑎𝑔𝑒1 can either be used directly or one may use (𝐴𝑣𝑒𝑟𝑎𝑔𝑒2/12),

depending on the input that we had originally. If a letter grade is

preferred as output, then one may need to use (𝐴𝑣𝑒𝑟𝑎𝑔𝑒1/100 ∗ 12) or

(𝐴𝑣𝑒𝑟𝑎𝑔𝑒1 ∗ 0.12) or 𝐴𝑣𝑒𝑟𝑎𝑔𝑒2 and then map that to some kind of

“lookup table” that allows one to look up a grade letter according to a

number from 0 to 12.

The main point to understand in this step is that it is all about figuring

out how to make use of the available data to compute an answer.

3.4 Develop an Algorithm

Having understood the problem and formulated a model, it is time to

come up with a precise plan of what the computer is expected to do.

Definition 1-2-2: Algorithm is a precise sequence of instructions for

solving a problem.

CIT 108 PROBLEM SOLVING STRATEGIES

16

Some of the more complex algorithms may be considered randomized

algorithms or non-deterministic algorithms where the instructions are

not necessarily in sequence and may not even have a finite number of

instructions. However, the above definition will apply for all algorithms

that will be discussed in this course.

To develop an algorithm, the instructions must be represented in a way

that is understandable to a person who is trying to figure out the steps

involved. Two commonly used representations for an algorithm is by

using (1) pseudocode, or (2) flowcharts. Consider the following example

for solving the problem of a broken lamp. First is the example in a

flowchart, and then in pseudocode, as presented in Fig. 1-2-2 and Fig. 1-

2-3 respectively.

Pseudocode

1. IF lamp works, go to step 7.

2. Check if lamp is plugged in.

3. IF not plugged in, plug in lamp.

4. Check if bulb is burnt out.

5. IF blub is burnt, replace bulb.

6. IF lamp doesn’t work buy new lamp.

7. Quit ... problem is solved.

Figure 1-2-3: Flowchart for a broken Lamp

No

Yes

 Yes

No

Figure 1-2-2: Flowchart for a broken Lamp

Lamp not working

Lamp

plugged

in?

Plug in Lamp

Bulb

burned

out?

Replace Bulb

Buy new Lamp

CIT 108 MODULE 1

17

Note: pseudocode is a simple and concise sequence of English-like

instructions to solve a problem.

Pseudocode is often used as a way of describing a computer program to

someone who doesn’t understand how to program a computer.

Although flowcharts can be visually appealing, pseudocode is often the

preferred choice for algorithm development because:

 It can be difficult to draw a flowchart neatly, especially when

mistakes are made.

 Pseudocode fits more easily on a page of paper.

 Pseudocode can be written in a way that is very close to real

program code, making it easier later to write the program.

 Pseudocode takes less time to write than drawing a flowchart.

Pseudocode will vary according to whoever writes it. That is, one

person’s pseudocode is often quite different from that of another person.

However, there are some common control structures (i.e., features) that

appear whenever pseudocode is written. These features are shown along

with some examples:

 Sequence: Listing instructions step-by-step in order (often

numbered)

1. Make sure switch is turned on

2. Check if lamp is plugged in

3. Check if bulb is burned out

4. ……

If lamp is not plugged in

then plug it in

If bulb is burned out

then replace bulb

Else buy new lamp

 Condition: Making a decision and doing one thing or something

else depending on the outcome of the decision.

 Repetition: repeating something a fixed number of times or until

some condition occurs

CIT 108 PROBLEM SOLVING STRATEGIES

18

get a new light bulb
Repeat put it in the lamp

Until lamp works or no more bulbs left

Repeat 3 times

Unplug lamp

Plug into different socket

…..

Storage: storing information for use in instructions further down the list

x ← a new bulb

count ← 8

Transfer of Control: being able to go to a specific step when needed If

bulb works then goto step 7

Note:

 The bold in the above examples highlights the specific control

structure.

 For the condition and repetition structures, the portion of the

pseudocode that is part of the condition or the repeat loop are

indented a bit in order to make it clear that these kinds of inner

steps that belong to that structure. Braces ({ }) may also be used

to indicate what is in or out of a control structure as shown

below.

The point is that there are a variety of ways to write pseudocode. The

important thing to remember is that the algorithm should be clearly

explained with no ambiguity as to what order the steps are performed in.

Whether using a flow chart of pseudocode, an algorithm should be

tested by manually going through the steps in mentally to make sure a

step or a special situation is not missed out. Often, a flaw will be found

in one’s algorithm because a special situation that could arise was

If (bulb is burned out) then {

Replace bulb

}

Else {

Buy a new bulb

} Repeat {

Get a new light bulb

Put it in the lamp

} until lamp works or no more bulbs left

Repeat 3 times {

Unplug lamp

Plug into different socket }

CIT 108 MODULE 1

19

missed out. Only when one is convinced that the algorithm will solve

the problem, should the next step be attempted.

Consider the previous example of finding the average of a set of 𝑛

grades stored in a file. What would the pseudocode look like? Here is an

example of what it might look like if we had the example of 𝑛 numeric

grades 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 that were loaded from a file:

It would be wise to run through the above algorithm with a real set of

numbers. Each time an algorithm is tested with a fixed set of input data,

this is known as a test case.

Many test cases can be created. Here are some to try:

𝑛 = 5, 𝑥1 = 92, 𝑥2 = 37, 𝑥3 = 43, 𝑥4 = 12, 𝑥5 = 71… result

should be 51

𝑛 = 3, 𝑥1 = 1, 𝑥2 = 1, 𝑥3 = 1……………………….… result

should be 1

𝑛 = 0…………………………………………………… result

should be 0

3.5 Writing the Program

Writing a program is often called "coding" or “implementing an

algorithm”. So the code (or source code) is actually the program itself.

Without much of an explanation, below is a program (written in

processing) that implements the given algorithm for finding the average

of a set of grades. Note that the code looks quite similar in structure,

however, the processing code is less readable and seems somewhat more

mathematical:

Algorithm: DisplayGrades

1. set the sum of the grade values to 0.

2. load all grades 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 from file.

3. repeat n times {

4. get grade xi

5. add xi to the sum

6. compute the average to be sum / n.

7. print the average

CIT 108 PROBLEM SOLVING STRATEGIES

20

For now, the details of how to produce the above source code will not be

discussed. In fact, the source code would vary depending on the

programming language that was used. Learning a programming

language may seem difficult at first, but it will become easier with

practice.

The computer requires precise instructions in order to understand what it

is being asked to do. For example, removing one of the semi-colon

characters (;) from the program above, will make the computer become

confused as to what it’s being asked to do because the semi-colon

characters (;) is what it understands to be the end of an instruction.

Leaving one of them off will cause the program to generate what is

known as a compile-time error.

Definition 1-2-3: Compiling is the process of converting a program into

instructions that can be understood by the computer.

The longer a program is, the more the likelihood of having multiple

compile-time errors. One needs to fix all such compile-time errors

before continuing on to the next step.

3.6 Test the Program

Running a program is the process of telling the computer to evaluate the

compiled instructions. When a program is run and all is well, you should

see the correct output. It is possible however, that a program works

correctly for some set of input data but not for all. If the output of a

program is incorrect, it is possible that the algorithm was not properly

converted into a proper program. It is also possible that the programmer

did not produce a proper algorithm back in step 3 that handles all

situations that could arise. Perhaps some instructions are performed out

of sequence. Whatever happened, such problems with the program are

known as bugs.

Pseudocode

1. set the sum of the grade values to 0.

2. load all grades 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 from file.

3. repeat 𝑛 times {

4. get grade 𝑥𝑖

5. add 𝑥𝑖 to the sum

}

6. compute average to be sum/𝑛.

7. print the average.

Processing code (Program)

int sum = 0;

byte[] x = loadBytes("numbers");

for (int i=0; i<x.length; i++)

sum = sum + x[i];

int avg = sum / x.length;

print(avg);

CIT 108 MODULE 1

21

Definition 1-2-4: Bugs are errors with a program that cause it to stop

working or produce incorrect or undesirable results.

It is the responsibility of the programmer to fix as many bugs in a

program as present. To find bugs effectively, a program should be tested

with many test cases (called a test suite). It is also a good idea to have

others test one’s program because they may think up situations or input

data that one may never have thought of.

Definition 1-2-5: Debugging is the process of finding and fixing errors

in program code.

Debugging is often a very time-consuming “chore” when it comes to

being a programmer. However, if one painstakingly and carefully

follows steps 1 through 3, this should greatly reduce the amount of bugs

in a program, thus making debugging much easier.

3.7 Evaluating the Solution

Once the program produces a result that seems correct, the original

problem needs to be reconsidered to make sure that the answer is

formatted into a proper solution to the problem. It is often the case that it

may be realised that the program solution does not solve the problem the

way it is expected. It may also be realised that more steps are involved.

For example, if the result of a program is a long list of numbers, but the

intent was to determine a pattern in the numbers or to identify some

feature from the data, then simply producing a list of numbers may not

suffice. There may be a need to display the information in a way that

helps visualise or interpret the results with respect to the problem;

perhaps a chart or graph is needed. It is also possible that when the

results are examined, it is realised that additional data are needed to fully

solve the problem. Alternatively, the results may need to be adjusted to

solve the problem more efficiently (e.g., a game is too slow).

It is important to remember that the computer will only do what it is told

to do. It is up to the user to interpret the results in a meaningful way and

determine whether or not it solves the original problem. It may be

necessary to re-do some of the steps again, perhaps going as far back as

step 1 again, if data were missing.

4.0 CONCLUSION

The decision to get a solution to any existing problem involves a cycle

that consist of the following using a Computer as a model of

computation, Understanding the Problem, Formulating a Model,

Developing an Algorithm, Writing the Program, Testing the Program

and finally Evaluating the Solution. It is important to emphasize,

CIT 108 PROBLEM SOLVING STRATEGIES

22

however, that there are usually many different problem-solving

processes with different steps, and the afore stated is simply meant as a

guide. Problem-solving in real world situations requires a great deal of

resourcefulness, flexibility, resilience and continuous interaction with

the environment.

5.0 SUMMARY

Problem-solving involves defining the problem, determining,

identifying, prioritising and selecting alternatives for a solution and

implementing the solution. Regardless of how the solution is deployed,

however, feedback channels should be built into the implementation.

This allows for continuous monitoring and testing of actual events

against expectations. Problem-solving, and the processes used to gain

clarity, are most effective if the solution remains in place and is

updatable to respond to future changes.

6.0 SELF ASSESSMENT EXERCISES

1. Discuss various stages that will be needed to get a problem

solved.

2. How do you identify the most important stage in the problem-

solving process?

3. What effect will be generated if the stage that involves program

writing is not observed in the problem-solving process?

4. List the steps involved in writing an algorithm

5. What is the role of model formulation in the problem-solving

process?

6. State the properties of algorithms

7.0 REFERENCES / FURTHER READINGS

Kirn, A., & Benson, L. (2018). Engineering students' perceptions of

problem solving and their future. Journal of engineering

education, 107(1), 87-112.

Koren, I. (2018). Computer arithmetic algorithms: AK Peters/CRC

Press.

Price, A. M., Kim, C. J., Burkholder, E. W., Fritz, A. V., & Wieman, C.

E. (2021). A detailed characterization of the expert problem-

solving process in science and engineering: Guidance for teaching

and assessment. CBE—Life Sciences Education, 20(3), ar43.

Sarathy, V. (2018). Real world problem-solving. Frontiers in human

 neuroscience, 12, 261.

CIT 108 MODULE 1

23

doi:10.3389/frhum.2018.00261

Spielman, R. M., Dumper, K., Jenkins, W., Lacombe, A., Lovett, M., &

Perlmutter, M. (2021). Problem Solving. Psychology-H5P

Edition.

CIT 108 PROBLEM SOLVING STRATEGIES

24

UNIT 3 COMPUTATIONAL APPROACHES TO

 PROBLEM-SOLVING

1.0 Introduction

2.0 Intended Learning Outcome

3.0 Main Content

3.1 Brute-force Approach

3.2 Divide-and-conquer Approach

3.2.1 Example: The Merge Sort Algorithm

3.2.2 Advantages of Divide and Conquer Approach

3.2.3 Disadvantages of Divide and Conquer Approach

3.3 Dynamic Programming Approach

3.3.1 Example: Fibonacci series

3.3.2 Recursion vs Dynamic Programming

3.4 Greedy Algorithm Approach

3.4.1 Characteristics of the Greedy Algorithm

3.4.2 Motivations for Greedy Approach

3.4.3 Greedy Algorithms vs Dynamic Programming

3.5 Randomized Approach

4.0 Conclusion

5.0 Summary

6.0 Self-Assessment Exercise

7.0 References/Further Reading

1.0 INTRODUCTION

Solving a problem involves finding a way to move from a current

situation to a desired outcome. To be able to solve a problem using

computational approaches, the problem itself needs to have certain

characteristics such as:

 The problem needs to be clearly defined — this means that one

should be able to identify the current situation, the end goal, the

possible means of reaching the end goal, and the potential

obstacles

 The problem needs to be computable — one should consider

what type of calculations are required, and if these are feasible

within a reasonable time frame and processing capacity

 The data requirements of the problem need to be examined, such

as what types of data the problem involves, and the storage

capacity required to keep this data

 One should be able to determine if the problem can be

approached using decomposition and abstraction, as these

methods are key for tackling complex problems

CIT 108 MODULE 1

25

Once these features of the given problem are identified, an informed

decision can then be made as to whether the problem is solvable or not

using computational approaches.

2.0 INTENDED LEARNING OUTCOME

At the end of this unit, students should be able to:

 Describe the various computational approaches available for

solving a problem

 Classify computational approaches based on their paradigms

 Evaluate a computational approach best suited for a given

problem

 Apply a computational approach to solve a problem

3.0 MAIN CONTENT

3.1 Brute-force Approach

This strategy is characterised by a lack of sophistication in terms of their

approach to the solution. It typically takes the most direct or obvious

route, without attempting to minimise the number of operations required

to compute the solution.

Brute-force approach is considered quite often in the course of

searching. In a searching problem, we are required to look through a list

of candidates in an attempt to find a desired object. In many cases, the

structure of the problem itself allows us to eliminate a large number of

the candidates without having to actually search through them. As an

analogy, consider the problem of trying to find a frozen pie in an

unfamiliar grocery store. You would immediately go to the frozen food

aisle, without bothering to look down any of the other aisles. Thus, at

the outset of your search, you would eliminate the need to search down

most of the aisles in the store. Brute force approach, however, ignores

such possibilities and naively search through all candidates in an attempt

to find the desired object. This approach is otherwise known as

exhaustive search.

Example:

Imagine a small padlock with 4 digits, each from 0-9. You forgot your

combination, but you don't want to buy another padlock. Since you can't

remember any of the digits, you have to use a brute force method to

open the lock. So you set all the numbers back to 0 and try them one by

one: 0001, 0002, 0003, and so on until it opens. In the worst case

scenario, it would take 104, or 10,000 tries to find your combination.

CIT 108 PROBLEM SOLVING STRATEGIES

26

3.2 Divide-and-conquer Approach

In the divide and conquer strategy, a problem is solved recursively by

applying three steps at each level of the recursion: Divide, conquer, and

combine.

Divide

“Divide” is the first step of the divide and conquer strategy. In this step

the problem is divided into smaller sub-problems until it is small enough

to be solved. At this step, sub-problems become smaller but still

represent some part of the actual problem. As stated above, recursion is

used to implement the divide and conquer algorithm. A recursive

algorithm calls itself with smaller or simpler input values, known as the

recursive case. So, when the divide step is implemented, the recursive

case is determined which will divide the problem into smaller sub-

problems.

Then comes the “conquer” step where we straightforwardly solve the

sub-problems. By now, the input has already been divided into the

smallest possible parts and we’re now going to solve them by

performing basic operations. The conquer step is normally implemented

with recursion by specifying the recursive base case. Once the sub-

problems become small enough that it can no longer be divided, we say

that the recursion “bottoms out” and that we’ve gotten down to the base

case. Once the base case is arrived at, the sub-problem is solved.

Combine

In this step, the solution of the sub-problems is combined to solve the

whole problem. The output returned from solving the base case will be

the input of larger sub-problems. So after reaching the base case we will

begin to go up to solve larger sub-problems with input returned from

smaller sub-problems. In this step, we merge output from the conquer

step to solve bigger sub-problems. Solutions to smaller sub-problems

propagate from the bottom up until they are used to solve the whole

original problem.

Example: The Merge Sort Algorithm

The merge sort algorithm closely follows the divide and conquer

paradigm. In the merge sort algorithm, we divide the n-element

sequence to be sorted into two subsequences of 𝑛 = 2 elements each.

Next, we sort the two subsequences recursively using merge sort.

Finally, we combine the two sorted subsequences to produce the sorted

answer.

https://www.baeldung.com/java-merge-sort

CIT 108 MODULE 1

27

Let the given array be:

Divide the array into two halves

Again, divide each subpart recursively into two halves until you get

individual elements.

Now, combine the individual elements in a sorted manner. Here,

conquer and combine steps go side by side.

3.2.1 Advantages of Divide and Conquer Algorithms

The first, and probably the most recognizable benefit of the divide and

conquer paradigm is the fact that it allows us to solve difficult problems.

Being given a difficult problem can often be discouraging if there is no

CIT 108 PROBLEM SOLVING STRATEGIES

28

idea how to go about solving it. However, with the divide and conquer

method, it reduces the degree of difficulty since it divides the

problem into easily solvable sub-problems.

Another advantage of this paradigm is that it often plays a part in finding

other efficient algorithms. In fact, it played a central role in finding the

quick sort and merge sort algorithms. It also uses memory caches

effectively. The reason for this is the fact that when the sub-problems

become simple enough, they can be solved within a cache, without

having to access the slower main memory, which saves time and

makes the algorithm more efficient. And in some cases, it can even

produce more precise outcomes in computations with rounded

arithmetic than iterative methods would.

In the divide and conquer strategy problems are divided into sub-

problems that can be executed independently from each other. Thus,

making this strategy suited for parallel execution.

3.2.2 Disadvantages of Divide and Conquer Algorithms

One of the most common issues with this sort of algorithm is the fact

that the recursion is slow, which in some cases outweighs any

advantages of this divide and conquer process. Another concern with it

is the fact that sometimes it can become more complicated than a

basic iterative approach, especially in cases with a large n. In other

words, if someone wanted to add large numbers together, if they just

create a simple loop to add them together, it would turn out to be a much

simpler approach than it would be to divide the numbers up into two

groups, add these groups recursively, and then add the sums of the two

groups together.

3.3 Dynamic Programming Approach

Dynamic programming approach is similar to divide-and-conquer in that

both solve problems by breaking it down into several sub-problems that

can be solved recursively. The difference between the two is that in the

dynamic programming approach, the results obtained from solving

smaller sub-problems are reused in the calculation of larger sub-

problems. Thus, dynamic programming is a bottom-up technique that

usually begins by solving the smallest sub=problems, saving these

results and then reusing them to solve larger and larger sub-problems

until the solution to the original problem is obtained. This is in contrast

to the divide-and-conquer approach, which solves problems in a top-

down fashion. In this case the original problem is solved by breaking it

down into increasingly smaller sub-problems, and no attempt is made to

reuse previous results in the solution of any of the sub-problems.

CIT 108 MODULE 1

29

It is important to realise that a dynamic programming approach is only

justified if there is some degree of overlap in the sub-problems. The

underlying idea is to avoid calculating the same result twice. This is

usually accomplished by constructing a table in memory, and filling it

with known results as they are calculated (memoization). These results

are then used to solve larger sub-problems. Note that retrieving a given

result from this table takes Θ(1) time.

Dynamic programming is often used to solve optimisation problems. In

an optimisation problem, there are typically large number of possible

solutions, and each has a cost associated with it. The goal is to find a

solution that has the smallest cost (i.e., optimal solution).

Example: Fibonacci Series

Let's find the Fibonacci sequence up to the 5th term. A Fibonacci series

is the sequence of numbers in which each number is the sum of the two

preceding ones. For example, 0,1,1, 2, 3. Here, each number is the sum

of the two preceding numbers.

Algorithm

We are calculating the Fibonacci sequence up to the 5th term.

1. The first term is 0.

2. The second term is 1.

3. The third term is sum of 0 (from step 1) and 1(from step 2),

which is 1.

4. The fourth term is the sum of the third term (from step 3) and

second term (from step 2) i.e. 1 + 1 = 2.

5. The fifth term is the sum of the fourth term (from step 4) and

third term (from step 3) i.e. 2 + 1 = 3.

Hence, we have the sequence 0,1,1, 2, 3. Here, we have used the results

of the previous steps as shown below. This is called a dynamic

programming approach.

Let 𝑛 be the number of terms.

1. If 𝑛 ≤ 1, return 1.

2. Else return the sum of two preceding numbers.

CIT 108 PROBLEM SOLVING STRATEGIES

30

Recursion vs Dynamic Programming

Dynamic programming is mostly applied to recursive algorithms. This is

not a coincidence, most optimization problems require recursion and

dynamic programming is used for optimization. But not all problems

that use recursion can use Dynamic Programming. Unless there is a

presence of overlapping sub-problems like in the Fibonacci sequence

problem, a recursion can only reach the solution using a divide and

conquer approach. This is the reason why a recursive algorithm like

Merge Sort cannot use Dynamic Programming, because the sub-

problems are not overlapping in any way.

3.4 Greedy Algorithm Approach

In a greedy algorithm, at each decision point the choice that has the

smallest immediate (i.e., local) cost is selected, without attempting to

look ahead to determine if this choice is part of our optimal solution to

the problem as a whole (i.e., a global solution). By locally optimal, we

mean a choice that is optimal with respect to some small portion of the

total information available about a problem.

The most appealing aspect of greedy algorithm is that they are simple

and efficient – typically very little effort is required to compute each

local decision. However, for general optimization problems, it is

obvious that this strategy will not always produce globally optimal

solutions. Nevertheless, there are certain optimization problems for

which a greedy strategy is, in fact, guaranteed to yield a globally optimal

solution.

F(0) = 0

F(1) = 1

F(2) = F(1) + F(0)

F(3) = F(2) + F(1)

F(4) = F(3) + F(2)

CIT 108 MODULE 1

31

3.4.1 Characteristics of the Greedy Algorithm

The important characteristics of a Greedy algorithm are:

1. There is an ordered list of resources, with costs or value

attributions. These quantify constraints on a system.

2. Take the maximum quantity of resources in the time a constraint

applies.

3. For example, in an activity scheduling problem, the resource

costs are in hours, and the activities need to be performed in

serial order.

3.4.2 Motivations for Greedy Approach

Here are the reasons for using the greedy approach:

 The greedy approach has a few trade-offs, which may make it

suitable for optimization.

 One prominent reason is to achieve the most feasible solution

immediately. In the activity selection problem (Explained below),

if more activities can be done before finishing the current

activity, these activities can be performed within the same time.

 Another reason is to divide a problem recursively based on a

condition, with no need to combine all the solutions.

 In the activity selection problem, the “recursive division” step is

achieved by scanning a list of items only once and considering

certain activities.

3.4.3 Greedy Algorithms vs Dynamic Programming

Greedy algorithms are similar to dynamic programming in the sense that

they are both tools for optimization. However, greedy algorithms look

for locally optimum solutions or in other words, a greedy choice, in the

hopes of finding a global optimum. Hence greedy algorithms can make a

guess that looks optimum at the time but becomes costly down the line

and do not guarantee a globally optimum. Dynamic programming, on

the other hand, finds the optimal solution to sub-problems and then

makes an informed choice to combine the results of those sub-problems

to find the most optimum solution.

3.5 Randomized Approach

This approach is dependent not only on the input data, but also on the

values provided by a random number generator. If some portion of an

algorithm involves choosing between a number of alternatives, and it is

CIT 108 PROBLEM SOLVING STRATEGIES

32

difficult to determine the optimal choice, then it is often more effective

to choose the course of action at random rather than taking the time to

determine the vest alternative. This is particularly true in cases where

there are a large number of choices, most of which are “good.”

Although randomising an algorithm will typically not improve its worst-

case running time, it can be used to ensure that no particular input

always produces the worst-case behaviour. Specifically, because the

behaviour of a randomised algorithm is determined by a sequence of

random numbers, it would be unusual for the algorithm to behave the

same way on successive runs even when it is supplied with the same

input data.

Randomised approaches are best suited in game-theoretic situations

where we want to ensure fairness in the face of mutual suspicion. This

approach is widely used in computer and information security as well as

in various computer-based games.

4.0 CONCLUSION

Solving problems is a key professional skill. Quickly weighing up

available options and taking decisive actions to select the best

computational approach to a problem is integral to efficient

performance.

It is important to always get the problem-solving process right, avoiding

taking too little time to define the problem or generate potential

solutions. A wide range of computational techniques for problem

solving exist, and each can be appropriate given the peculiarity of the

problem and the individual involved. The important skills to attain are to

assess the situation independently of any other factors and to know when

to trust your own instincts and when to ask for a second opinion on a

potential solution to a problem.

5.0 SUMMARY

In this Unit computational approaches for solving a problem were

discussed viz. brute force, divide and conquer, dynamic programming,

genetic algorithm and randomized. The technique for classifying the

computational approaches based on their paradigms was deliberated and

various computational approaches best suited for a given problem were

evaluated and recommended. The conclusion of the Unit applies the

computational approach to solve a problem.

CIT 108 MODULE 1

33

6.0 SELF ASSESSMENT EXERCISE

1. State the characteristics of the Greedy algorithm

2. Explain how the divide-and-conquer algorithm works

3. Define brute-force approach in the problem-solving process

4. In what problem-solving scenario is dynamic programming a

 preferred option?

5. Give an instance where the use of a randomised algorithm is

 desirable.

7.0 REFERENCES/FURTHER READINGS

Chevalier, M., Giang, C., Piatti, A., & Mondada, F. (2020). Fostering

computational thinking through educational robotics: a model for

creative computational problem solving. International Journal of

STEM Education, 7(1), 1-18.

Costa, E. J. F., Campos, L. M. R. S., & Guerrero, D. D. S. (2017).

Computational thinking in mathematics education: A joint

approach to encourage problem-solving ability. In 2017 IEEE

Frontiers in Education Conference (FIE) 1-8. IEEE.

Doleck, T., Bazelais, P., Lemay, D. J., Saxena, A., & Basnet, R. B.

(2017). Algorithmic thinking, cooperativity, creativity, critical

thinking, and problem solving: exploring the relationship between

computational thinking skills and academic performance. Journal

of Computers in Education, 4(4), 355-369.

de Ruffieu, F. L. (2016). Divide and Conquer Book 1: Fundamental

Dressage Techniques: Xenophon Press LLC.

Priemer, B., Eilerts, K., Filler, A., Pinkwart, N., Rösken-Winter, B.,

Tiemann, R., & Zu Belzen, A. U. (2020). A framework to foster

problem-solving in STEM and computing education. Research in

Science & Technological Education, 38(1), 105-130.

Roughgarden, T. (2019). Algorithms Illuminated: Greedy algorithms

and dynamic programming. Part 3: Soundlikeyourself

Publishing, LLC.

CIT 108 MODULE 2

34

MODULE 2 ROLE OF ALGORITHM IN PROBLEM

 SOLVING

INTRODUCTION OF MODULE

Computational thinking allows us to take a complex problem,

understand what it is and develop possible solutions. The solutions can

then be presented in a way that a computer, a human or both, can

understand. There are four cornerstones to computational thinking:

 decomposition - breaking down a complex problem or system

into smaller, more manageable parts

 pattern recognition – looking for similarities among and within

problems

 abstraction – focusing on the important information only,

ignoring irrelevant detail

 algorithms - developing a step-by-step solution to the problem, or

the rules to follow to solve the problem

Correctly applying all the four cornerstones will help to develop a

computer-enabled solution.

This approach involves taking a complex problem and breaking it down

into a series of small, more manageable problems (decomposition).

Each of these smaller problems can then be looked at individually,

considering how similar problems have been solved previously (pattern

recognition) and focusing only on the important details, while ignoring

irrelevant information (abstraction). Next, simple steps or rules to solve

each of the smaller problems can be designed (algorithms).

Finally, these simple steps or rules are used to implement a computer-

enabled solution.

For example, when playing a videogame, depending on the game and in

order to complete a level, one may need to know:

 what items are needed to collect, how to collect them, and how

much time one has to collect them

 where the exit is and the best route to reach it in the quickest time

possible

 what kinds of enemies there are and their weak points?

From these details, a strategy can be worked out for completing the level

in the most efficient way.

The methodical ways in which to perform these identified cornerstones

form the central themes of the constituent Units in this module.

CIT 108 PROBLEM SOLVING STRATEGIES

35

UNIT 1 ABSTRACTION AS A PROBLEM-SOLVING

 TOOL

1.0 Introduction

2.0 Intended Learning Outcome

3.0 Main Content

3.1 The Concept of Abstraction

3.2 Importance of Abstraction

3.3 How to Abstract

3.4 Types of Abstraction

3.4.1 Representational Abstraction

3.4.2 Abstraction by Generalisation

3.4.3 Procedural abstraction

1.4.4 Functional Abstraction

1.4.5 Data Abstraction

4.0 Conclusion

5.0 Summary

6.0 Self-Assessment Exercise

7.0 References/Further Reading

1.0 INTRODUCTION

One of the most crucial issues associated with problem solving involves

managing the complexities of the problem solving process. Good

strategies typically use some form of abstraction as a tool for dealing

with this complexity. The use of abstraction in this context refers to the

intellectual capability of considering an entity apart from any specific

instance of this entity. For example, hardware designers attempting to

design a computer typically concern themselves with the functionality of

the integrated circuits they intend to use and not with the operation of

the transistors found in these integrated circuits. Abstraction skills are

essential in the construction of appropriate models, designs, and

implementations that are fit for the purpose at hand and is, therefore, the

focus in this unit.

2.0 INTENDED LEARNING OUTCOME

At the end of this unit, student should be able to:

 Define abstraction as a problem aid

 Understand the importance of abstraction in problem solving

 Describe how to perform abstraction

 Explain the various types of abstraction used in problem solving

CIT 108 MODULE 2

36

3.0 MAIN CONTENT

3.1 The Concept of Abstraction

This is the creation of well-defined interfaces to hide the inner workings

of computer programs from users. It may also be defined as the process

of identifying the general characteristics needed to solve a problem

while filtering out unnecessary information. It is also described as

simplifying a process or artefact by providing what you really need, and

hiding the useless details you don't care about, thus removing

unnecessary detail.

Abstraction is widely used to simplify things that may be very complex.

We use abstractions all the time, almost without thinking. For example,

if you learn to drive, you will be taught that putting your foot on the

accelerator will speed up the car and putting your foot on the brake

pedal will slow it down. You will not be taught anything about how the

acceleration or braking systems work.

3.2 Importance of Abstraction

In computer science, abstraction is used to manage the complexity of a

lot of what is designed and created. Computer hardware is seen as

components or black boxes.

The abstraction in Fig. 2-1-1 above represents a computer. It shows the

names of the components and how they interact with each other but

hides the complexity of each type of component. Without proper

abstraction, we may end up with the wrong solution to the problem we

are trying to solve. In the case of drawing cats, for example, if we didn’t

perform abstraction we might think that all cats have long tails and short

fur. With abstraction, however, we know that although cats have tails

and fur, not all tails are long and not all fur is short. In this case,

abstraction will help us to form a clearer perception (view) of a cat.

Figure 2-1-1: Abstraction of a Computer Hardware

https://www.schoolsofkingedwardvi.co.uk/wp-content/uploads/2017/08/abstraction.png

CIT 108 PROBLEM SOLVING STRATEGIES

37

3.3 HOW TO ABSTRACT
When performing abstraction, the characteristics of the problem that are

not needed are ignored in order to concentrate on those that are needed.

Specific detail and any patterns that will not help in solving the problem

are also removed. Consider creating a program to calculate the area of

shapes. The problem could first be decomposed into rectangle, square

and triangle. Abstraction can then be followed for each shape.

Rectangles, for instance, share the following general characteristics:

 Width, but for a program design the actual rectangle width is not

needed

 Height, also for a program design the actual rectangle height is

not needed

 Area is always width × height

Therefore, all the program needs to work is receive a width and a height,

then calculate the area from those numbers. The actual numbers are

irrelevant—they change with every rectangle—so they are discarded.

The school timetable shown in Table.2-1-2 below is an abstraction of

what happens in a typical week: it captures key information such as who

is taught what subject where and by whom, but leaves to one side further

layers of complexity, such as the learning objectives and activities

planned in any individual lesson.

Thus, abstraction allows us to form our idea (model) of the problem.

Once we have a model of our problem, we can then design an algorithm

to solve it.

Table 2-1-2: An Abstraction of a School Time-table

CIT 108 MODULE 2

38

3.4 Types of Abstraction

3.4.1 Representational Abstraction

Abstraction appears in many forms within computing, both in terms of

techniques used to approach problem-solving, and in the computational

tools employed to develop solutions.

The maps of many metropolitan public transport systems worldwide,

such as the one shown in Fig. 2-1-3, are a classic example of a

representational abstraction. Many specific details about the lines are

removed because they are not necessary for the purpose of the map,

which is to help plan a journey. What remains when unnecessary detail

has been removed is a representational abstraction, i.e. a simpler

version directed at solving a particular problem.

Figure 2-1-3: Representational Abstraction of a metropolitan

public transport system 'map'

Many real-world objects and situations are represented in computer

systems. In a flight simulator, different planes will be represented in

some way within the system. If object-oriented programming is used,

CIT 108 PROBLEM SOLVING STRATEGIES

39

the plane will be an object with a set of properties that are relevant to the

features of the simulator. Some details will be essential, such as the

weight of the plane (as this will affect its handling). Other details, such

as the material used to upholster the seats, will be irrelevant, and these

aspects will not need to be represented within the system or model.

Computer scientists have to choose what to include in the model and

what to discard. They must ensure that they include the minimum

amount of detail necessary to solve the given problem to the required

degree of accuracy.

3.4.2 Abstraction by Generalisation

When you group things in terms of a set of common characteristics, you

are generalising. This is a fundamental technique used in object-

oriented programming (although it is not exclusive to OOP) when you

identify that some objects are 'kinds of' more generic objects. For

example, you might say that a cocker spaniel is a kind of dog. Dogs

have common sets of characteristics, such as having four legs, a tail, and

ears. However, so do cats; a biologist may tell you that both animals

belong to the order Carnivora (a group that includes many other types of

animal including bears, skunks, and badgers). Generalising in this way

allows code to be developed and shared between objects.

You can also apply the technique of generalisation to the problem itself.

It is often helpful to be able to identify a problem as an example of a

more general set of problems. Sometimes, this will help you to

understand quickly that the problem is non-computable, or that it is

intractable. Otherwise, if the problem can be solved, you can benefit

from a solution that already exists.

3.4.3 Procedural abstraction

This type represents a computational method. One of the skills that you

will develop as a computer scientist is the ability to design a well-

abstracted procedure that is generalised as far as possible.

For example, consider the problem of calculating the surface area of a

chopping board. You write the following subroutine:

PROCEDURE calculate_chopping_board_area()

 side1_length = INPUT("Enter length of side 1: ")

 side2_length = INPUT("Enter length of side 2: ")

 side1_length = STR(side1_length)

 side2_length = STR(side2_length)

 area = side1_length * side2_length

 PRINT(area)

ENDPROCEDURE

CIT 108 MODULE 2

40

This is an example of a subroutine that is too specific. Firstly, it is bound

to a specific (command line) user interface. If you abstract away this

detail, the subroutine will be independent of the user interface, and will

therefore be more general. Here is a more general version of the same

subroutine:

A further abstraction is to replace the name (identifier) of the subroutine

with something more general:

3.4.4 Functional Abstraction

In functional abstraction, the implementation detail of the computational

method is hidden. You can think of a function as a black box. The

function will receive an input (or set of inputs), process the input(s), and

return the output. How the transformation is achieved is hidden from the

user?

Most languages will provide a set of built-in functions that can be used

by the programmer. In the previous example of a subroutine that

calculates the area of a regular polygon, a maths library is used to

provide useful mathematical functions. In the example, functions were

used to provide the value of pi, to calculate the square root of a number,

and to calculate the tangent of a number.

In Python, for example, the built-in function to display a value to the

console or command line interface is print. If you code in Python, you

will be familiar with typing a command such as print ("Hello

World"). You will know that the name of the function is print, and

it must be followed by a value (to print) enclosed in parentheses.

FUNCTION calculate_chopping_board_area(side1_length, side2_length)

 area = side1_length * side2_length

 RETURN area

ENDFUNCTION

FUNCTION calculate_area(side1_length, side2_length)

 area = side1_length * side2_length

 RETURN area

ENDFUNCTION

CIT 108 PROBLEM SOLVING STRATEGIES

41

Using the Python 'help' facility, you can see the details of the interface.

It is more technical than you might expect and you will usually only

need to delve into this level of documentation when you want to do

something a bit different. The first line is the name of the function and

its parameters. The remaining information is provided through a

'docstring' (a documentation strings that provides a convenient way of

documenting a functions, classes, and methods). This provides sufficient

information for the programmer to use the function, but hides all of the

other information.

3.4.5 Data Abstraction

Some data types, such as unsigned integers, are conceptually simple;

others are more complex. Data abstraction is a technique that allows

you to separate the way that a compound data object is used, from the

details of how it is constructed.

If you have studied data structures, you will be aware of the concept of a

stack as an example of an abstract data type (ADT). A stack is a last in,

first out (LIFO) data structure that supports three standard operations:

push (add an item to the stack), pop (remove an item from a stack), and

peek (look at the item at the top of the stack). The abstract concept of a

stack, and its operations, can be understood without any consideration of

how it is implemented. Sometimes, you will see a stack drawn as an

upright container with a single opening at the top. This abstraction helps

you to understand the LIFO nature of the structure.

With more complex data structures, data abstraction becomes more and

more important to prevent you getting caught up in the implementation

detail. You will often use more than one layer of abstraction. For

example, in classic computer science theory, you will learn that the data

structure underpinning a graph is an adjacency matrix or an adjacency

list. These are in themselves abstractions. For example, consider an

adjacency list. You might choose to implement it using a dictionary or a

linked list, however, a dictionary is also an abstract data type that is

conceptually a set of key–value pairs, and a linked list is a traversable

sequence. Neither abstraction tells you anything about the way that the

structure will be implemented. Only at the lowest level will the

implementation detail be revealed.

4.0 CONCLUSION

Abstraction is one of the four cornerstones of computer science. It is

important in the study of computing and problem solving and involves

identification of critical aspects of the problem environment and the

required system. The generalisation aspect of abstraction is seen in the

programming with the use of data abstraction. Abstraction skills are

CIT 108 MODULE 2

42

essential in the construction of appropriate models, designs and

implementation fit for the particular purpose.

5.0 SUMMARY

In this Unit the concept of abstraction and its importance in problem

solving were described, Abstraction involves the process of taking away

or removing characteristics from something in order to reduce it to a set

of essential characteristics. In abstraction, essential elements are

displayed to the user and trivial elements are kept hidden. Its main goal

is to handle complexity by hiding unnecessary details from the user. In

computing, when we decompose problems, we then look for patterns

among and within the smaller problems that make up the complex

problem. Abstraction allows us to create a general idea of what the

problem is and how to solve it. We remove all specific detail, and any

patterns that will not help us solve the problem. There are five types of

abstractions namely – representational abstraction, abstraction by

generalization, procedural abstraction, functional abstraction and data

abstraction

6.0 SELF ASSESSMENT EXERCISE

1. What is abstraction?

2. Discuss the concept and importance of abstraction

3. Describe the steps needed to carry out abstraction

4. Explain the various types of abstraction used in problem solving

5. List 3 different types of abstraction

REFERENCES/FURTHER READINGS

Acharjya, D. P., & Abraham, A. (2020). Rough computing—A review

of abstraction, hybridization and extent of applications.

Engineering Applications of Artificial Intelligence, 96, 103924.

Amelia, R., Chotimah, S., & Kadarisma, G. (2020, October). The

abstraction process of junior high school students. In Journal of

Physics: Conference Series (Vol. 1657, No. 1, p. 012068). IOP

Publishing.

Dreyfus, T. (2020). Abstraction in mathematics education. Encyclopedia

of mathematics education, 13-16.

Gentner, D., & Hoyos, C. (2017). Analogy and abstraction. Topics in

cognitive science, 9(3), 672-693.

CIT 108 PROBLEM SOLVING STRATEGIES

43

Yee, E. (2019). Abstraction and concepts: when, how, where, what and

why?. Language, Cognition and Neuroscience, 34(10), 1257-1265.

CIT 108 MODULE 2

44

UNIT 2 ALGORITHMS

1.0 Introduction

2.0 Intended Learning Outcome

3.0 Main Content

3.1 The Notion of Algorithm

3.2 Reasons for Algorithm

3.3 Steps Involved in Algorithm Development

3.4 Characteristics of Algorithm

3.5 Representation of Algorithms

3.5.1 Representative Algorithms for Simple Problems

3.6 Measuring Efficiency of Algorithms

3.7 Advantages and Disadvantages of Algorithm

3.7.1 Advantages

3.7.2 Disadvantages

4.0 Conclusion

5.0 Summary

6.0 Self-Assessment Exercise

7.0 References/Further Reading

1.0 INTRODUCTION

In our day-to-day life we perform activities by following certain

sequence of steps. Examples of activities include getting ready for

school, making breakfast, riding a bicycle, wearing a tie, solving a

puzzle and so on. To complete each activity, we follow a sequence of

steps. Suppose the following are steps required for an activity ‘riding a

bicycle’:

1) remove the bicycle from the stand,

2) sit on the seat of the bicycle,

3) start peddling,

4) use breaks whenever needed and

5) stop on reaching the destination.

It is clear that we need to follow a sequence of steps to accomplish the

task. Such a finite sequence of steps required to get the desired output is

called an algorithm. It will lead to the desired result in a finite amount of

time, if followed correctly. Algorithm has a definite beginning and a

definite end, and consists of a finite number of steps.

CIT 108 PROBLEM SOLVING STRATEGIES

45

2.0 INTENDED LEARNING OUTCOME

At the end of this unit, student should be able to:

 Understand the concept of algorithms

 Appreciate the need for algorithms

 Describe the steps involved in developing an algorithm

 Develop algorithms for simple problems

 Evaluate different algorithms based on their efficiency

3.0 MAIN CONTENT

3.1 The Notion of Algorithm

By definition, an algorithm is an effective step-by-step procedure for

solving a problem in a finite number of steps. In other words, it is a

finite set of well-defined instructions or step-by-step description of the

procedure written in human readable language for solving a given

problem. An algorithm itself is division of a problem into small steps

which are ordered in sequence and easily understandable. Algorithms

are very important to the way computers process information, because a

computer program is basically an algorithm that tells computer what

specific tasks to perform in what specific order to accomplish a specific

task. The same problem can be solved with different methods. So, for

solving the same problem, different algorithms can be designed. In these

algorithms, number of steps, time and efforts may vary.

For example, we might need to sort a sequence of numbers into non-

decreasing order. This problem arises frequently in practice and

provides fertile ground for introducing many standard design techniques

and analysis tools. Here is how we formally define the sorting problem:

Input: A sequence of 𝑛 numbers 〈𝑎1, 𝑎2, ⋯ , 𝑎𝑛〉,.

Output: A reordering 〈𝑎1
′ , 𝑎2

′ , ⋯ , 𝑎𝑛
′ 〉of the input sequence such that

𝑎1
′ ≤ 𝑎2

′ ≤ ⋯ ≤ 𝑎𝑛
′ .

For example, given the input sequence 〈31; 41; 59; 26; 41; 58〉, a

sorting algorithm returns as output the sequence
〈26; 31; 41; 41; 58; 59〉. Such an input sequence is called an instance

of the sorting problem. In general, an instance of a problem consists of

the input (satisfying whatever conditions are imposed in the problem

statement) needed to compute a solution to the problem.

In computer science we give a special name to the sub-algorithms. They

are sometimes called modules, functions or procedures. In fact, it is

CIT 108 MODULE 2

46

not a good idea to simply number all the sub-algorithms but instead to

give them meaningful names. As standard convention, when naming a

function or procedure, you should use letters, numbers and underscore

(i.e., _) characters but not any spaces or punctuation. Also, the first

character in the name should be a lower case letter. If multiple words are

used as the name, each word except the first should be capitalized.

Lastly, we often use parentheses (i.e., ()) after the function or procedure

name to identify it as a sub-algorithm. You should choose meaningful

names that are not too long as will be evident in our discussion. When a

sub-algorithm comes back with some kind of object or value such as

numerical result, we call the sub-algorithm a function. If the sub-

algorithm does not return any particular value, it is instead known as a

procedure.

3.2 Reasons for Algorithm

A programmer writes a program to instruct the computer to do certain

tasks as desired. The computer then follows the steps written in the

program code. Therefore, the programmer first prepares a roadmap of

the program to be written, before actually writing the code. Without a

roadmap, the programmer may not be able to clearly visualise the

instructions to be written and may end up developing a program which

may not work as expected. Such a roadmap is nothing but the algorithm

which is the building block of a computer program.

 For example, searching using a search engine, sending a message,

finding a word in a document, booking a taxi through an app,

performing online banking, playing computer games, all are based on

algorithms. Writing an algorithm is mostly considered as a first step to

programming. Once we have an algorithm to solve a problem, we can

write the computer program for giving instructions to the computer in

high level language. If the algorithm is correct, computer will run the

program correctly, every time. So, the purpose of using an algorithm is

to increase the reliability, accuracy and efficiency of obtaining solutions.

3.3 Steps Involved in Algorithm Development

An algorithm can be defined as “a complete, unambiguous, finite

number of logical steps for solving a specific problem “

Step1. Identification of input: For an algorithm, there are quantities to

be supplied called input and these are fed externally. The input is

to be identified first for any specified problem.

Step2: Identification of output: From an algorithm, at least one

quantity is produced, called for any specified problem.

CIT 108 PROBLEM SOLVING STRATEGIES

47

Step3: Identify the processing operations: All the calculations to be

performed in order to lead to output from the input are to be

identified in an orderly manner.

Step4: Processing Definiteness: The instructions composing the

algorithm must be clear and there should not be any ambiguity in

them.

Step5: Processing Finiteness: If we go through the algorithm, then for

all cases, the algorithm should terminate after a finite number of

steps.

Step6: Possessing Effectiveness: The instructions in the algorithm must

be sufficiently basic and in practice they can be carries out easily.

3.4 Characteristics of Algorithm

An algorithm must possess following characteristics:

1. Precision — the steps are precisely stated or defined.

2. Uniqueness — results of each step are uniquely defined and only

depend on the input and the result of the preceding steps.

3. Finiteness — the algorithm always stops after a finite number of

steps.

4. Input — the algorithm receives some input.

5. Output — the algorithm produces some output.

3.5 Representation of Algorithms

Using their algorithmic thinking skills, software designers or

programmers analyse the problem and identify the logical steps that

need to be followed to reach a solution. Once the steps are identified, the

need is to write down these steps along with the required input and

desired output. There are two common methods of representing an

algorithm —flowchart and pseudocode.

Either of the methods can be used to represent an algorithm while

keeping in mind the following:

 It showcases the logic of the problem solution, excluding any

implementation details

 It clearly reveals the flow of control during execution of the

program

Flowcharts will be discussed in Unit 3 while pseudocode will be the

subject of Unit 4

CIT 108 MODULE 2

48

3.5.1 Representative Algorithms for Simple Problems

Write an algorithm for the following

1. Write an algorithm to calculate the simple interest using the

formula: 𝑆𝑖𝑚𝑝𝑙𝑒 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 = 𝑃 ∗ 𝑁 ∗ 𝑅/100, Where 𝑃 is

principle Amount, 𝑁 is the number of years and 𝑅 is the rate of

interest.

2 Write an algorithm to find the area of the triangle.

 Let 𝑏, 𝑐 be the sides of the triangle 𝐴𝐵𝐶 and 𝐴 the included angle

 between the given sides.

3. Write an algorithm to find the largest of three numbers 𝑋, 𝑌, 𝑍.

4. Write an algorithm to find the largest data value of a set of given data

values

Algorithm calculateSimpleInterset

Step 1: Read the three input quantities’ P, N and R.

Step 2: Calculate simple interest as

Simple interest = P* N* R/100

Step 3: Print simple interest.

Step 4: Stop.

Algorithm find Area Of Triangle

Step 1: Input the given elements of the triangle namely sides 𝑏, 𝑐 and angle

between the sides 𝐴

Step 2: Area =
1

2
∗ 𝑏 ∗ 𝑐 ∗ 𝑠𝑖𝑛(𝐴)

Step 3: Output the Area

Step 4: Stop.

Algorithm findLargestOfThreeNumbers

Step 1 Read the numbers 𝑋, 𝑌, 𝑍.

Step 2 If (X > Y)

big = X

Else big = Y

Step 3 If (big < Z)

big = Z

Step 4 Print big

Step 5 Stop.

CIT 108 PROBLEM SOLVING STRATEGIES

49

5. Write an algorithm which will test whether a given integer value

 is prime or not.

6. Write algorithm to find the factorial of a given number N

Algorithm findLargestDataValue

Step 1: LARGE = 0

Step 2: read NUM

Step 3: While NUM > = 0 do

3.1 If NUM > LARGE then

3.1.1 LARGE = NUM

3.2. Read NUM

Step 4: Write “largest data value is”, LARGE

Step 5: Stop

Algorithm testForPrime

Step 1: M = 2

Step 2: read N

Step 3: MAX = SQRT (N)

Step 4: While M < = MAX do

4.1 If (M * (N/M) = N then

4.1.1 goto step 7

Step 4.2. M = M+1

Step 5: Write “number is prime”

Step 6 goto step 8

Step 7 Write “number is not a prime”

Step 8 End

Algorithm findFactorial

Step 1: PROD = 1

Step 2: I = 0

Step 3 read N

Step 4: While I < N do

4.1 I = I + 1

Step 4.2. PROD = PROD* I

Step 5: Write “Factorial of N is”, PROD

Step 6: End

CIT 108 MODULE 2

50

7. Write an algorithm to calculate the perimeter and area of rectangle.

Given its length and width.

8. Write an algorithm to find sum of given data values until negative

value is entered.

3.6 Measuring Efficiency of Algorithms

It may be possible to solve to problem in more than one ways, resulting

in more than one algorithm. The choice of various algorithms depends

on the factors like reliability, accuracy and easy to modify. The most

important factor in the choice of algorithm is the time requirement to

execute it, after writing code in High-level language with the help of a

computer. The algorithm which will need the least time when executed

is considered the best.

Algorithm calculatePerimeterAndAreaOfRectangle

Step 1: Read length and width of the rectangle

Step 2: Calculate perimeter = 2* (length + width)

Step 3: Calculate area = length *width.

Step 4: Print perimeter

Step 5 Print area

Step 6: Stop

Algorithm findSumUntilNegative

Step 1: SUM = 0

Step 2: I= 0

Step 3: read NEW VALUE4

Step 4: While NEW VALUE > = 0 do

4.1 SUM = SUM + NEW VALUE

4.1.2 I = I + 1

4.1.3. Read NEW VALUE

Step 5: Write “sum of ”, I, “ data values is”, SUM

Step 5: End

CIT 108 PROBLEM SOLVING STRATEGIES

51

Consider an algorithm for drawing a house. Since the problems is a little

vague, there are many potential solutions. Here is one of them:

Obviously, we could have made a more elaborate house, but the solution

above solves the original problem. What if this was our solution?

Which is a “better” solution? That’s not an easy question to answer. It

depends on what “better” means. If time is of the essence (e.g., as in

playing a game of Pictionary) then Algorithm2-2-1 would be better

because it can be drawn faster. The more elaborate house of

Algorithm2-2-2 would perhaps be “better” if visual appearance was the

aim, as opposed to speed of drawing. This example brings up an

important topic in computer science called algorithm efficiency.

Definition 2-2-1: Algorithm efficiency is used to describe properties

of an algorithm elating to how much of various types of resources it

consumes.

Normally in computer science we are interested in algorithms that are

time and space efficient, although there are also other ways (i.e., metrics)

for measuring efficiency. For example, Algorithm2-2-1 is more

efficient in terms of time but it is also more efficient in terms of ink or

pencil usage as well as the amount of space that it takes on the paper.

Algorithm2-2-2 may be more efficient in terms of detailing in that,

depending on the context, it may take longer for a person to guess what

the drawing is (i.e., it could be confused with a barn, shed or dog house

Algorithm2-2-1: DrawSimpleHouse

1. draw a square frame

2. draw a triangular roof

3. draw a door

Algorithm2-2-2: DrawMoreComplexHouse

4. draw a square frame

5. draw a triangular roof

6. draw a door

7. draw windows

8. draw chimney

9. draw smoke

10. draw land

11. draw path to door8. draw path to door

CIT 108 MODULE 2

52

if this was drawn in a farm setting). In this case, the extra time taken to

distinguish the house through the drawing of the windows and chimney

may result in a quicker guess.

Definition 2-2-2: The runtime complexity (execution time) of an

algorithm is the amount of time that it takes to complete once it has

begun.

Definition2-2-3: The space complexity of an algorithm is the amount

of storage space that it requires while running from start to completion.

Consider the following algorithm for setting a table:

Why is this not an efficient real-world solution?

It is inefficient in that it requires a lot of unnecessary travelling back and

forth to the cupboard and table because it gets one glass at a time. While

this may be a safer solution for a small child, an adult would likely grab

all 4 glasses at once as well as the plates and utensils.

Here is a different, though similar, algorithm.

AlgorithmY1: SetTableFor4

12. Walk to kitchen

13. Repeat 4 times {

14. getGlass()

15. place glass on table

16. getPlate()

17. place plate on table

18. getUtensils()

19. place knife and fork on table

}

20. go back onto couch

CIT 108 PROBLEM SOLVING STRATEGIES

53

Notice that there is nolonger a need for a repeat loop since we are

getting all the glasses, plates and utensils once. We can actually

generalise the algorithm to set the table for as many guests as we want

by supplying some additional information in our functions.

Definition 2-2-4: A parameter is a piece of data provided as input to a

function or procedure We can supply an arbitrary number inour

algorithm to specify how many place setting to set as follows:

Notice that we supplied a number 8 between the parentheses of our

function. This is where we normally supply additional information (i.e.,

parameters) to our functions. Now our function is clear as to how many

place settings will be made, whereas AlgorithmY2 was not clear. But

what would the getGlasses() function now look like ? Here was the 1-

glass version:

AlgorithmY2: EfficientSetTableFor4

1 Walk to kitchen

2 getGlass()

3 place glass on table

4 getPlate()

5 place plate on table

6 getUtensils()

7 place knife and fork on table

8 go back onto couch

AlgorithmY#: EfficientSetTableFor8

1. walk to kitchen

2. getGlasses(8)

3 place glasses on table

4 getPlates(8)

5 place plates on table

6 getUtensils(8)

7 place knives and forks on table

8 go back onto couch

CIT 108 MODULE 2

54

Now we need to specify the parameter for the function and use it within

the function itself:

Notice how the parameter is now being used within the function to get

the necessary glasses. The value of n will vary according to how we call

the function. For example, if we use getGlasses(8), then within the

function, 𝑛 will have the value of 8.

If we use getGlasses(4), then within the function, 𝑛 will have the value

of 4. So, the value for parameter 𝑛 will always be the number that was

passed in when the function was called. For algorithms that are the most

general, we often use the letter 𝑛 as a kind of “placeholder” or “label” to

indicate that we want the algorithm to work for any number from 0 to 𝑛.

The “𝑛” itself is not a special letter, it is just commonly used. So, the

statement getGlasses(n) is indicating “get 𝑛 glasses”, where 𝑛 may be

any integer number that we want.

Obviously, there is a limit as to how many glasses a person could carry.

However, to describe an algorithm in a very general way, we use n to

indicate that our algorithm will work for any number from 0 to n. Using

n instead of a fixed number, also allows us to compare two algorithms in

regards to their efficiency. That is, we can often compare the number of

steps that one algorithm requires with another algorithm. For example,

consider these two algorithms for setting the table for n people:

GetGlass()

1. go to the cupboard

2. open cupboard

3. take a glass

4. close cupboard

GetGlasses(n)

1. go to the cupboard

2. open cupboard

3. repeat n times {

4. take a glass

}

5. close cupboard

CIT 108 PROBLEM SOLVING STRATEGIES

55

What if we defined efficiency in this example to refer to the “number of

times we walked back and forth between the cupboard and the table”?

Which algorithm is more efficient? Well each time through the loop,

AlgorithmA makes 3 trips between the cupboard and table. Since there

are 𝑛 place settings (i.e., 𝑛 times through the loop), then the whole

algorithm takes 𝑛 𝑥 3, or 3𝑛, steps. What about AlgorithmB? It takes

only 3 trips between the cupboard and table altogether, regardless of

how many place settings will be required. So what can we conclude?

If we are setting a place for 1 person, either algorithm is good. If setting

for 2 people, then AlgorithmB is twice more efficient than AlgorithmA

since it requires half the travel between the cupboard and table. As 𝑛

gets larger, the difference becomes more significant. For example, if we

are setting the table for 8 people, then AlgorithmA uses 8 times (total of

24) more trips than AlgorithmB (which takes 3 trips). Regardless of the

number of place settings, AlgorithmB has a fixed cost of 3 (in regards

to back and forth travels). Since this cost is fixed, we say that the

algorithm has constant efficiency in terms of our particular cost metric.

In contrast, AlgorithmA is said to be linear in that the efficiency grows

equally with respect to the value of 𝑛. Sometimes an algorithm has a

constant value times 𝑛 (e.g., 3𝑛). Since the 3 is constant (i.e., fixed in

our case, because we have exactly 3 kinds of items that we are placing),

the algorithm is still considered to be linear. If we were to vary the 3

items to be 𝑛 items (e.g., place 8 items at each of the 8 people’s place

settings, or 12 items at each of the 12 person’s place settings), then we

would end up with an 𝑛 𝑥 𝑛 (or 𝑛2) algorithm which is called quadratic.

Other common algorithm efficiency measures are logarithmic (i.e.,

log2 𝑛), cubic (i.e., 𝑛3) and exponential (i.e., 𝑛𝑛) … just to name a few.

Here are two graphs comparing various algorithm efficiencies as the

value of 𝑛 grows (graphs

shown at two different scales):

Algorithm A

1. walk to kitchen

2. repeat n times {

3. getGlass()

4. place glass on table

5. getPlate()

6. place plate on table

7. getUtensils()

8. place knife and fork on table

}

9. go back onto couch

Algorithm B

1. walk to kitchen

2. getGlasses(n)

3. place glasses on table

4. getPlates(n)

5. place plates on table

6. getUtensils(n)

7. place knives and forks on table

8. go back onto couch

CIT 108 MODULE 2

56

Notice that the logarithmic, constant and linear algorithms are

insignificant when compared to the quadratic, cubic and (especially)

exponential algorithms. You may notice as well that the linear algorithm

eventually passes the constant algorithm for larger values of 𝑛.

You may also notice that for very small values of 𝑛, the efficiency is

generally not a big factor but that the efficiency can quickly become an

issue for larger values. Exponential algorithms, for example, are usually

unreasonable (or useless) in practice except for very small values of 𝑛.

Logarithmic solutions are often preferred since they are significantly

more efficient than even linear algorithms. For example, if 𝑛 is 1,000,000

then a linear algorithm can take 1,000,000 steps whereas a logarithmic

algorithm may take only 20 steps. Sometimes it is hard to think in terms

of an unknown number 𝑛 because we are used to working with actual

concrete numbers.

3.7 Advantages and Disadvantages of Algorithm

3.7.1 Advantages

Designing an algorithm has following advantages:

1. Effective Communication: Since algorithm is written in English

like language, it is simple to understand step-by-step solution of

the problems.

2. Easy Debugging: Well-designed algorithm makes debugging

easy so that we can identify logical error in the program.

3. Easy and Efficient Coding: An algorithm acts as a blueprint of a

program and helps during program development.

CIT 108 PROBLEM SOLVING STRATEGIES

57

4. Independent of Programming Language: An algorithm is

independent of programming languages and can be easily coded

using any high level language.

3.7.2 Disadvantages

An algorithm has following disadvantages:

1. Developing algorithm for complex problems would be time

consuming and difficult to understand.

2. Understanding complex logic through algorithms can be very

difficult.

4.0 CONCLUSION

As a student of computer science, it is important to understand

algorithms so that one can use them properly. If you are working on a

given algorithm to solve a problem, you will likely need to be able to

estimate how fast it is going to run. Such an estimate will be less

accurate without an understanding of runtime analysis. Furthermore, one

needs to understand the details of the algorithms involved so that one

can predict if there are special cases in which the coding won’t work

quickly, or if it will produce unacceptable results. By developing a good

understanding of a large range of algorithms, you will be able to choose

the right one for a problem and apply it properly.

5.0 SUMMARY

Algorithm is a finite set of well-defined instructions or step-by-step

description of the procedure written in human readable language for

solving a given problem. The purpose of using an algorithm is to

increase the reliability, accuracy and efficiency of obtaining solutions.

There are two common methods of representing an algorithm —

flowchart and pseudo code. Designing an algorithm has advantages of

effective Communication, easy debugging, easy and efficient coding and

Independent of programming language> the disadvantages are in the

time consumption especially when developing complex problems and

difficulty in understanding complex logic problem

6.0 SELF ASSESSMENT EXERCISE

1. Explain the concept of algorithms

2. Explain the need for algorithms and their desirable characteristics

3. Describe the steps involved in developing an algorithm

4. Describe the steps involved in developing simple problems

 algorithms

CIT 108 MODULE 2

58

5. Evaluate different algorithms based on their efficiency

7.0 REFERENCES/FURTHER READINGS

Doleck, T., Bazelais, P., Lemay, D. J., Saxena, A., & Basnet, R. B.

(2017). Algorithmic thinking, cooperativity, creativity, critical

thinking, and problem solving: exploring the relationship between

computational thinking skills and academic performance. Journal

of Computers in Education, 4(4), 355-369.

Nurkaeti, N. (2018). Polya’s strategy: an analysis of mathematical

problem solving difficulty in 5th grade elementary school. Edu

Humanities| Journal of Basic Education Cibiru Campus, 10(2),

140.

Seaver, N. (2019). Knowing algorithms. DigitalSTS, 412-422.

Steger, C., Ulrich, M., & Wiedemann, C. (2018). Machine vision

algorithms and applications. John Wiley & Sons.

Willson, M. (2017). Algorithms (and the) everyday. Information,

Communication & Society, 20(1), 137-150.

CIT 108 PROBLEM SOLVING STRATEGIES

59

UNIT 3 FLOWCHARTS

1.0 Introduction

2.0 Intended Learning Outcome

3.0 Main Content

3.1 Concept of Flowcharts

3.2 Symbols used in Creating a Flowchart

3.2.1 Basic Symbols

3.2.2 Intermediate and Advanced Symbols

3.3 Common Types of Flowchart Types

3.4 Areas for using Flowcharts

3.5 Considerations in Flowcharting

3.6 Sample Flowcharts

3.7 Differences between Algorithm and Flowchart

3.8 Advantages of Flowcharts

4.0 Conclusion

5.0 Summary

6.0 Self-Assessment Exercise

7.0 References/Further Reading

1.0 INTRODUCTION

A flowchart is a type of diagram that represents an algorithm, workflow

or process, showing the steps as boxes of various kinds, and their order

by connecting them with arrows. This diagrammatic representation

illustrates a solution model to a given problem. Flowcharts are used in

analysing, designing, documenting or managing a process or program in

various fields. Like other types of diagrams, they help visualize what is

going on and thereby help understand a process, and perhaps also find

flaws, bottlenecks, and other less-obvious features within it. There are

many different types of flowcharts, and each type has its own repertoire

of boxes and notational conventions. Common alternative names

include: flowchart, process flowchart, functional flowchart, process

map, process chart, functional process chart, business process model,

process model, process flow diagram, work flow diagram, business flow

diagram.

2.0 INTENDED LEARNING OUTCOME

At the end of this unit students should be able to:

 Understand the basic concepts of flowcharts

 Apply basic symbols and notations to create flowcharts

 Differentiate among common types of flowcharts and where they

apply

 Understand the conditions that apply in the design of flowcharts

CIT 108 MODULE 2

60

 Undertake simple flowcharting problems

3.0 MAIN CONTENT

3.1 Concept of Flowcharts

A well-made flowchart can be used to break big ideas into small, bite-

sized pieces that are expressed visually, so knowing how to make one is

sort of like having a universal language. Being able to flowchart makes

it possible to communicate with any stakeholder or audience, because

visuals are typically easier to understand than words. For this reason,

flowcharts are a valuable type of business diagram but can also be used

for more technical fields like manufacturing or software engineering.

3.2 Symbols Used in Creating a Flowchart

Whether you're trying to read a flowchart or creating a flowchart,

knowing the most common flowchart symbols and conventions is going

to make it a lot easier. Table 2-3-1 presents a list of common

flowchart symbols you need to know, plus a rundown on some more

intermediate process symbols if you're looking for extra credit.

Table 2-3-1 Basic Flowchart Symbols

Flowchart

symbol

Function Description

Start/End Also called “Terminator”

symbol. It indicates where the

flow starts and ends.

Process Also called “Action Symbol,” it

represents a process, action, or a

single step.

Decision A decision or branching point,

usually a yes/no or true/ false

question is asked, and based on

the answer, the path gets split

into two branches.

Input/Output Also called data symbol, this

parallelogram shape is used to

input or output data

Arrow Order of program flow of control

CIT 108 PROBLEM SOLVING STRATEGIES

61

3.2.2 Intermediate and Advanced Flowchart Symbols

As pointed out earlier, flowcharts illustrate where data are being input

and output, where information is being stored, what decisions need to be

made, and which people need to be involved. In addition to the basic

flowchart conventions, rules, and symbols, these intermediate flowchart

symbols help describe a process with even more detail.

Document Symbols

Fig. 2-3-1 shows single and multiple document icons These icons show

additional points of reference involved in a flowchart. They may be used

to indicate items like “create an invoice” or “review testing paperwork.”

Data Symbols

Data symbols (Fig. 2-3-2) clarify where the data that the flowchart

references are being stored. (You probably won’t use the paper tape

symbol, but it definitely came in handy back in the day.)

Figure 2-3-1: Flowchart Document Symbols

Figure 2-3-2: Flowchart Data Symbols

CIT 108 MODULE 2

62

Input & Output Symbols

Input and output symbols (Fig. 2-3-3) show where and how data are

coming in and out throughout a process.

Merging & Connecting Symbols

Agreed-upon merging and connector symbols (Fig. 2-3-4) make it easier

to connect flowcharts that span multiple pages.

Additional Useful Flowchart Symbols

The above are a few additional symbols, shown in Fig. 2-3-5, that prove

a flowcharting prowess when put to good use.

Figure 2-3-3: Flowchart Input and Output Symbols

Figure 2-3-4: Flowchart Merging and Connection Symbols

Figure 2-3-5: Other Flowchart Symbols

CIT 108 PROBLEM SOLVING STRATEGIES

63

3.3 Common Flowchart Types

While the variations and versions of flowcharts are endless, there are

four flowchart types that are particularly popular and very versatile.

These four common diagrams are great for describing business,

manufacturing, or administrative processes, seeing how an organization

functions, or how different departments work together.

3.3.1 The Process Flowchart

A process flowchart or process flow diagram, shown in Fig. 2-3-6, is

probably the most versatile of the four commonly used flowchart types

because it can be applied to virtually anything. Process flow diagrams or

process mapping can help quickly explain how something gets done in

your organization. Sometimes, these types of flowcharts use a standard

language or notation, like Business Process Modelling Notation

(BPMN). Use a process flow diagram to:

 Map out roles and responsibilities within an organization to gain

clarity.

 Describe the manufacturing process or inputs that go into creating

a finished product.

 Draw up a proposal for a new process or project to understand its

scope and steps.

 Show the way you wake up in the morning, as shown below.

3.3.2 The Workflow Chart or Workflow Diagram

A workflow chart (Fig. 2-3-7) shows the way a business or process

functions. The below example illustrates the steps required for a

Figure 2-3-6: Process Flowchart

CIT 108 MODULE 2

64

potential customer to renew a policy through a company website. This

type of workflow diagram can be used to:

 train new employees

 discover potential problem areas

 create or organize your team around a new standard operating

procedure

 clarify business operations by showing a high-level overview

3.3.3 The Swimlane Flowchart

The swimlane flowchart comes in handy when one needs to show

multiple flows of information side by side. Swimlane diagrams might

sound really similar to a workflow diagram, but the key here is that it

allows the creation of different categories where activity takes place.

This diagram is great for documenting a whole process that interacts

with different segments of an organization or requires collaboration

among different teams. Figure 2-3-9 shows a sample.

More complicated diagrams could include five, six, or even more

swimlanes, like for each department within an organization or each role

on a cross-functional team. Though the goal of swimlanes is to clarify

and simplify a flowchart, avoid adding too many lanes and keep things

simple! The diagram below illustrates the way an internal-facing

department runs parallel with an external-facing one and at what times

in the process they interact with each other.

Figure 2-3-8: Work Flowchart

CIT 108 PROBLEM SOLVING STRATEGIES

65

3.3.4 The Data Flowchart

A data flowchart or data flow diagram shows the way data is processed.

It comes in handy when designing or analysing a system. Although most

often used for software development and design, it can be used to

analyse any type of information flow, like how information moves

through a process. The diagram below in Fig. 2-3-10 shows a typical

sales funnel. In this case the “data” is consumer behaviour.

3.3.5 Software Engineering or Programming

These charts can describe highly technical information in a clearer way.

While coding or working in software, diagrams can:

 Show how users navigate a page or use an application

 Describe how code is structured or organized

 Explain the flow of data through a system or a program

 Visualize an algorithm

3.4 Areas for using Flowcharts

Flowcharts are normally deployed to use in the following areas:

3.4.1 Sales & Marketing

In sales, flowcharts can be used to:

 Show the sales process and chart an opportunity's movement

through that process

 Help identify opportunities based on data

 Guide sales representatives' decisions on pricing packages or

quotes to customers

 Document policies or communications plans

Figure 2-3-9: Swimlane Flowchart

CIT 108 MODULE 2

66

Figure 2-3-10: A Typical Data flow diagram

3.4.2 Manufacturing

Flow diagrams are extremely valuable in manufacturing, where

standardization and uniformity are important. In manufacturing, they're

used to:

 Show the ingredients, chemicals, or other inputs that go into the

creation of a product

 Clearly illustrate the manufacturing process to show

dependencies and bottlenecks

 Create a consistent quality assurance or evaluation process

3.4.3 Business Operations

Visualizing your operations will help your team perform consistently. A

flow diagram can:

 Help on board employees by describing tasks or routines

 Document order and fulfilment processes

 Describe a project and identify milestones for its completion

3.5 Considerations in Flowcharting

Understanding the function of different flowcharts and when to use them

is important, but so is how you design your flowcharts. That is why

flowcharts need a balance between information and design. They need to

be informative but in a way that gets the people intended to read and use

them.

CIT 108 PROBLEM SOLVING STRATEGIES

67

Here are a few factors to consider when designing flowcharts.

3.5.1 Style and Design

 Direction is important. For the most part, charts should flow

left-to-right or top-to-bottom. Eyes follow this path naturally,

making it easier for people looking at the flowchart to understand

them.

 Keep them on one page when possible. Charts are easier to

digest when they're simple and kept to one page. The more pages

there are, the more complex the chart seems. To be fair there

might be times when you need more than one page and this is

when you're dealing with complex processes and have to be well

documented. In that case, they can't be summarized because key

information might be lost.

 Use consistent sizing and spacing because uniform design

makes them easier to read and follow.

 Include a chart key. There are standard symbols that most

flowcharts use. Because these symbols are standardized, they

make it easier to understand the flowchart. Also include a key so

that it is clear to people reading it the point you are passing

across.

 Use no more than three colours. It's tempting to want to use as

many colours as possible to show a path or highlight certain

information. But the truth is, the fewer colours used, the easier it

is to follow the flow of the chart.

3.5.2 Text and Content

 Stick to one font to make flowcharts easy to follow. Also, make

sure that the fonts are easy to read and large enough.

 Fewer words the better. Because documentation is important,

don't get rid of it completely. Instead, use flowcharts to

emphasize the important parts and use the documentation as

backup with more details. Readability is important on charts so

the less words you use there, the better.

3.5.3 Access and Communication

 Know your audience and how to speak to them. Some

flowcharts have to be more technical than others but make sure

the people reviewing them understand them. When possible,

make your charts as straightforward as possible.

CIT 108 MODULE 2

68

3.6 Sample Flowcharts

This section presents pictorial representation of some simple problems

as flowcharts.

1. Draw a flowchart to solve the problem of a non-functioning light

bulb

2. Draw a flowchart to find the square of a number

3. Draw the Flowchart to find Roots of Quadratic equation 𝑎𝑥2 +
𝑏𝑥 + 𝑐 = 0 The coefficients 𝑎, 𝑏, 𝑐 are the input data

CIT 108 PROBLEM SOLVING STRATEGIES

69

4. Draw a flowchart to find out the biggest of the three positive

numbers.

5. Draw a flowchart for adding the integers from 1 to 100 and print

their sum.

CIT 108 MODULE 2

70

6. ABC company plans to give a 6% year-end bonus to each of its

employees earning N6,000 or more per month and a fixed

N250/bonus to the remaining employees. Draw a flowchart for

calculating the bonus for an employee

CIT 108 PROBLEM SOLVING STRATEGIES

71

3.7 Differences between Algorithm and Flowchart

3.8 Advantages of Flowcharts

1. The flowchart shows the logic of a problem displayed in pictorial

fashion which felicitates easier checking of an algorithm.

2. The Flowchart is good means of communication to other users. It

is also a compact means of recording an algorithm solution to a

problem.

3. The flowchart allows the problem solver to break the problem

into parts. These parts can be connected to make master chart.

4. The flowchart is a permanent record of the solution which can be

consulted at a later time.

4.0 CONCLUSION

Flowcharts are simple diagrams that map out a process, so that that can

easily be communicated to other people. They are typically used to

define and analyse a process, build a step-by-step picture of it, and then

standardise or improve it.

To draw a flow chart, identify the tasks and decisions that you make

during a process, and write them down in order. Then, arrange these

steps in the flow chart format, using the appropriate symbols.

Finally, check and challenge your flowchart to make sure that it

accurately represents the process, and that it shows the most efficient

way of doing the job.

Algorithm

1. A method of representing the step-by-step

logical procedure for solving a problem

2. It contains step-by-step English

descriptions, each step representing a

particular operation leading to solution of

problem

3. These are particularly useful for small

problems

4. For complex programs, algorithms prove

to be inadequate

Flowchart

1. Flowchart is diagrammatic representation

of an algorithm. It is constructed using

different types of boxes and symbols.

2. The flowchart employs a series of blocks

and arrows, each of which represents a

particular step in an algorithm

3. These are useful for detailed

representations of complicated programs

4. For complex programs, Flowcharts prove

to be adequate

CIT 108 MODULE 2

72

5.0 SUMMARY

In this Unit, the areas covered include concept of flowcharts, symbols

used in creating a flowchart (viz. basic symbols, intermediate and

advanced symbols), common types of flowchart types, areas for using

flowcharts, considerations in flowcharting, sample flowcharts,

differences between algorithm and flowchart and advantages of

flowcharts.

6.0 SELF ASSESSMENT EXERCISE

1. Draw and briefly explain five symbols commonly used in a

 flowchart.

2. Identify the advantages of using flowcharts.

3. Draw a flowchart to solve the problem of a non-functioning light

 bulb

4. Flowchart for an algorithm which gets two numbers and prints

 sum of their value

5. Flowchart for the problem of printing even numbers between 9

 and 100

7.0 REFERENCES/FURTHER READINGS

Davis, W. S. (2019). Logic (process) flowcharts The Information System

Consultant’s Handbook 439-448. CRC Press.

Gajewski, R. R. (2018). Algorithms, Programming, Flowcharts and

Flowgorithm. E-Learning and Smart Learning Environment for the

Preparation of New Generation Specialists, 393-408.

Lee, C. H., Jwo, J. S., & Lin, C. S. (2020). Development of Flowchart-

based Programming Tool for Non-CS Majors. In Education and

Awareness of Sustainability: Proceedings of the 3rd Eurasian

Conference on Educational Innovation 2020 (ECEI 2020) 307-

310.

Malik, S. I., Mathew, R., & Hammood, M. M. (2019). PROBSOL: A

web-based application to develop problem-solving skills in

introductory programming. In Smart Technologies and Innovation

for a Sustainable Future 295-302. Springer, Cham.

Supaartagorn, C. (2017, November). Web application for automatic code

generator using a structured flowchart. In 2017 8th IEEE

International Conference on Software Engineering and Service

Science (ICSESS) 114-117. IEEE.

CIT 108 PROBLEM SOLVING STRATEGIES

73

UNIT 4 PSEUDOCODE

1.0 Introduction

2.0 Intended Learning Outcome

3.0 Main Content

3.1 Meaning and Definition of Pseudocode

3.2 Reasons for using Pseudocode

3.3 The main constructs of pseudocode

3.4 Rules for writing pseudocode

3.5 Advantages of pseudocode

3.6 Worked Examples

4.0 Conclusion

5.0 Summary

6.0 Self-Assessment Exercise

7.0 References/Further Reading

1.0 INTRODUCTION

As developers or data scientists, we often go through many stages, from

getting an idea to reaching a valid, working implementation of it. We

need to design/ validate an algorithm, apply it to the problem at hand,

and then test it for various input datasets.

In the initial state of solving a problem, it helps a lot if we could

eliminate the hassle of having to be bound by the syntax rules of a

specific programming language when we are designing or validating an

algorithm. By doing this, we can focus our attention on the thought

process behind the algorithm, how it will/ won’t work instead of paying

much attention to how correct our syntax is.

Here is where pseudocode comes to the rescue. Pseudocode is often

used in all various fields of programming, whether it be app

development, data science, or web development. Pseudocode is a

technique used to describe the distinct steps of an algorithm in a manner

that is easy to understand for anyone with basic programming

knowledge.

2.0 INTENDED LEARNING OUTCOME

At the end of this unit, students should be able to:

 Understand the relevance of pseudocode in problem solving

 Apply the rules guiding the use of pseudocodes

 Demonstrate basic skills in writing pseudocode to address simple

problems

CIT 108 MODULE 2

74

3.0 MAIN CONTENT

3.1 Meaning and Definition of Pseudocode

Pseudocode is a term which is often used in programming and

algorithm based fields. It is a methodology that allows the programmer

to represent the implementation of an algorithm. Simply, we can say that

it’s the cooked up representation of an algorithm. Often at times,

algorithms are represented with the help of pseudo codes as they can be

interpreted by programmers no matter what their programming

background or knowledge is. Pseudo code, as the name suggests, is a

false code or a representation of code which can be understood by even

a layman with some school level programming knowledge. It’s simply

an implementation of an algorithm in the form of annotations and

informative text written in plain English. It has no syntax like any of the

programming language and thus can’t be compiled or interpreted by the

computer.

Although pseudocode is a syntax-free description of an algorithm, it

must provide a full description of the algorithm’s logic so that moving

from it to implementation should be merely a task of translating each

line into code using the syntax of any programming language.

3.2 Reasons for using Pseudocode

1. Better readability. Often, programmers work alongside people

from other domains, such as mathematicians, business partners,

managers, and so on. Using pseudocode to explain the mechanics

of the code will make the communication between the different

backgrounds easier and more efficient.

2. Ease up code construction. When the programmer goes through

the process of developing and generating pseudocode, the process

of converting that into real code written in any programming

language will become much easier and faster as well.

3. A good middle point between flowchart and code. Moving

directly from the idea to the flowchart to the code is not always a

smooth ride. That’s where pseudocode presents a way to make

the transition between the different stages somewhat smoother.

4. Act as a start point for documentation. Documentation is an

essential aspect of building a good project. Often, starting

documentation is the most difficult part. However, pseudocode

can represent a good starting point for what the documentation

should include. Sometimes, programmers include the pseudocode

as a docstring at the beginning of the code file.

5. Easier bug detection and fixing. Since pseudocode is written in

a human-readable format, it is easier to edit and discover bugs

CIT 108 PROBLEM SOLVING STRATEGIES

75

before actually writing a single line of code. Editing pseudocode

can be done more efficiently than testing, debugging, and fixing

actual code.

3.3 The main constructs of pseudocode

The core of pseudocode is the ability to represent 6 programming

constructs (always written in uppercase): SEQUENCE, CASE, WHILE,

REPEAT-UNTIL, FOR, and IF-THEN-ELSE. These constructs — also

called keywords —are used to describe the control flow of the

algorithm.

1. SEQUENCE represents linear tasks sequentially performed one

after the other.

2. WHILE a loop with a condition at its beginning.

3. REPEAT-UNTIL a loop with a condition at the bottom.

4. FOR another way of looping.

5. IF-THEN-ELSE a conditional statement changing the flow of

the algorithm.

6. CASE the generalization form of IF-THEN-ELSE.

Although these 6 constructs are the most often used (Table 2-4-1), as

you can theoretically use them to implement any algorithm. You might

find yourself needing some more based on your specific application.

Perhaps the two most needed commands are:

1. Invoking classes or calling functions (using the CALL keyword).

2. Handling exceptions (using EXCEPTION, WHEN keywords). See

Table 2-4-2)

3.

Table 2-4-1: Commonly used Programming Constructs

Table 2-4-2: Some Less Commonly used Program Constructs

SEQUENCE

Input: READ, OBTAIN, GET

Output: PRINT, DISPLAY, SHOW

Compute: COMPUTE

Calculate: DETERMINE

Initialise: SET, INIT

Add: INCREMENT

Subtract: DECREMENT

FOR

FOR Iteration bound

Sequence

END FOR

WHILE

WHILE condition

Sequence

ENDWHILE

CASE

CASE expression OF

Condition 1: Sequence

Condition 2: Sequence 2

….

Condition n: Sequence n

OTHERS

default sequence

ENDCASE

REPEAT-UNTIL

REPEAT

Sequence

UNTIL condition

IF-THEN-ELSE

IF condition THEN

Sequence-1

ELSE

Sequence-2

ENDIF

CIT 108 MODULE 2

76

Of course, based on the field you’re working in, you might add more

constructs (keywords) to your pseudocode glossary as long as you never

use these keywords as variable names and that they are well known

within your field or company.

3.4 Rules for writing pseudocode

When writing pseudocode, everyone often has their own style of

presenting things out since it’s read by humans and not by a computer;

its rules are less rigorous than that of a programming language.

However, there are some simple rules that help make pseudocode more

universally understood.

1. Always capitalize the initial word (often one of the main 6

constructs).

2. Have only one statement per line.

3. Indent to show hierarchy, improve readability, and show nested

constructs.

4. Always end multiline sections using any of the END keywords

(ENDIF, ENDWHILE, etc.).

5. Keep your statements programming language independent.

6. Use the naming domain of the problem, not that of the

implementation. E.g., “Append the last name to the first name”

instead of “name = first+ last.”

7. Keep it simple, concise, and readable.

Following these rules help you generate readable pseudocode and be

able to recognize a not well-written one.

3.5 Advantages of Pseudocode

1. Improves the readability of any approach. It’s one of the best

approaches to start implementation of an algorithm.

2. Acts as a bridge between the program and the algorithm or

flowchart. Also works as a rough documentation, so the program

of one developer can be understood easily when a pseudo code is

CALLING CLASSES/FUNCTIONS

CALL AvgAge with StudentAges

CALL Swap currentItem and TargetItem

CALL getBalance RETURNING aBalance

CALL SquareRootwith orbitHeight RETURNING

nominalOrbit

EXCEPTION HANDLING

BEGIN

Statements

EXCEPTION

WHEN exception

Statements to handle the exception

WHEN another exception

Statements to handle the exception

END

CIT 108 PROBLEM SOLVING STRATEGIES

77

written out. In industries, the approach of documentation is

essential. And that’s where a pseudo-code proves vital.

3. The main goal of a pseudo code is to explain what exactly each

line of a program should do, hence making the code construction

phase easier for the programmer.

3.6 Worked Examples

1. Write pseudocode that reads two numbers and multiplies them

together and print out their product.

2. Write pseudocode that tells a user that the number they entered is

not a 5 or a 6.

3. Write pseudocode to print all multiples of 5 between 1 and 100

(including both 1 and 100).

4. Write pseudocode that will count all the even numbers up to a

user defined stopping point.

READ 𝑛𝑢𝑚1, 𝑛𝑢𝑚2

SET product to 𝑛𝑢𝑚1* 𝑛𝑢𝑚2

Write product

READ isfive

IF (isfive = 5)

WRITE "your number is 5"

ELSE IF (isfive = 6)

WRITE "your number is 6"

ELSE

WRITE "your number is not 5 or 6"

END IF

SET x to 1

WHILE (x < 20)

WRITE x

WRITE x = x*5

ADD 1 to x

END WHILE

GET count

SET x to 0;

WHILE (x < count)

SET even to even + 2

ADD 1 to x

WRITE even

END WHILE

CIT 108 MODULE 2

78

5. Write pseudocode that performs the following: Ask a user to

enter a number. If the number is between 0 and 10, write the

word blue. If the number is between 10 and 20, write the word

red. if the number is between 20 and 30, write the word green. If

it is any other number, write that it is not a correct colour option.

6. Write pseudocode that will perform the following.

a) Read in 5 separate numbers.

b) Calculate the average of the five numbers.

c) Find the smallest (minimum) and largest (maximum) of

the five entered numbers.

d) Write out the results found from steps b and c with a

message describing what they are

WRITE "Please enter a number"

READ color_num

IF (color_num >0 and color_num <= 10)

WRITE blue

ELSE IF (color_num >0 and color_num <= 10)

WRITE blue

ELSE IF (color_num >0 and color_num <= 10)

WRITE blue

Else

WRITE "not a correct color option"

END IF

WRITE "please enter 5 numbers"

READ n1,n2,n3,n4,n5

WRITE "The average is"

SET avg to (n1+n2+n3+n4+n5)/5

WRITE avg

IF (n1 < n2)

SET max to n2

ELSE

SET max to n1

END IF

IF (n3 > max)

SET max to n3

END IF

IF(n4 > max)

SET max to n4

END IF

CIT 108 PROBLEM SOLVING STRATEGIES

79

7. The HappyPetBox Company needs a program to validate

customer identifiers. Valid customer identifiers are nine

characters long, ending with three uppercase letters.

Here are four examples of valid customer identifiers.

 836154JSA

 579317NOY

 958375MEB

 294713PUC

Write a pseudocode that will:

 take a potential customer identifier from the user

 if input is “Q”, allow the user to quit the program

 if the potential customer identifier is too short, then tell the

user

 if the last three characters do not follow the rules, then tell

the user

 allow the user to keep entering customer identifiers

IF (n5 > max)

SET max to n5

WRITE "The max is"

Write max

END IF

IF (n1 > n2)

SET min to n2

ELSE

SET min to n1

END IF

IF (n3 < min)

SET min to n3

END IF

IF (n4 < min)

SET min to n4

END IF

IF (n5 < min)

SET min to n5

WRITE "The min is"

WRITE min

END IF

CIT 108 MODULE 2

80

Solution:

SET looping TO TRUE #used to keep the loop running until user

quits

WHILE looping = TRUE DO #loop to keep asking for

identifiers

RECEIVE identifier FROM (STRING) KEYBOARD

IF identifier = ‘Q’ THEN #user wants to quit

SET looping TO FALSE #loop won’t run again once condition is false

SEND ‘Bye’ TO DISPLAY

ELSE IF LENGTH (identifier) <> 9 THEN

SEND ‘The customer identifier is not nine characters long’ TO

DISPLAY

ELSE` #check last 3 characters

SET badAlpha TO FALSE #change to TRUE if non-uppercase letter

found

FOR count FROM 6 TO 8 DO

IF (NOT (identifier[count] >= ‘A’ AND identifier[count] <= ‘Z’))

THEN

SEND ‘Bad character in last 3 characters found’ TO DISPLAY

SET badAlpha TO TRUE

END IF

END FOR

IF badAlpha = FALSE THEN

SEND ‘Final three characters are valid’ TO DISPLAY

END IF

END IF

4.0 CONCLUSION

As the complexity and size of a problem increase, the need for

generating pseudocode to make writing the actual code much easier

becomes more apparent. It helps the problem solver realise possible

problems or design flaws in the algorithm earlier in the development

stage. Hence, saving more time and effort on fixing bugs and avoiding

errors. Moreover, pseudocode allowed programmers to communicate

more efficiently with others from different backgrounds, as it delivers

the algorithm's idea without the complexity of syntax restrictions.

A clear, concise, straightforward pseudocode can make a big difference

in the road from idea to implementation, a smooth ride for the

programmer. It’s one of the overall tools underestimated by the

programming community but defiantly, needs to be utilised more.

CIT 108 PROBLEM SOLVING STRATEGIES

81

5.0 SUMMARY

This Unit discussed Pseudocode as a methodology that allows the

programmer to represent the implementation of an algorithm. The

reasons for using Pseudocode are highlighted as for better readability,

ease up code construction, a good middle point between flowchart and

code, acting as a start point for documentation, easier bug detection and

fixing. Other areas covered also includes the main constructs of

pseudocode, the rules for writing pseudocode, advantages of pseudocode

and lastly worked examples were discussed

6.0 SELF ASSESSMENT EXERCISE

1. What is pseudocode

2. Write a pseudocode to sum the first n terms of a given number

3. What is meant by the construct of pseudo code

4. Differentiate between a pseudocode and an algorithm

5. State the importance of using pseudocode in the problem-solving

 process

7.0 REFERENCES/FURTHER READINGS

Bard, J. (2018). Using Pseudocode: Instructions in Plain English: Rosen

Publishing Group.

Basuhail, A. (2019). e-Learning Objects Designing Approach for

Programming-Based Problem Solving. International Journal of

Technology in Education, 2(1), 32-41.

Bubnó, K., & Takács, V. L. (2019). Cognitive aspects of mathematics-

aided computer science teaching. Acta Polytechnica Hungarica,

16(6), 73-93.

Imam, A. T., & Alnsour, A. J. (2020). The use of natural language

processing approach for converting pseudo code to C# code.

Journal of Intelligent Systems, 29(1), 1388-1407.

Malik, S. I., Mathew, R., & Hammood, M. M. (2019). PROBSOL: A

web-based application to develop problem-solving skills in

introductory programming. In Smart Technologies and Innovation

for a Sustainable Future (pp. 295-302). Springer, Cham.

Munroe, K. J. (2017, March). FunGram: A Tool to Facilitate Problem

Solving Among First Year Programming Students. In Society for

Information Technology & Teacher Education International

CIT 108 MODULE 2

82

Conference (pp. 222-227). Association for the Advancement of

 Computing in Education (AACE).

CIT 108 MODULE 3

83

MODULE 3 IMPLEMENTATION STRATEGIES

INTRODUCTION OF MODULE

Implementation strategies often entail methods and techniques involved

in producing a computer program-(application) oriented solution to a

problem.

In writing a program, for example, we first consider what the overall

goal is? Then the problem is broken down (decomposed) into smaller

chunks, until a chunk defines a definite task(s) that needs to be

accomplished in a short sentence (module). Each of the modules’ tasks

may be defined as overlapping smaller subtasks which may be solved

trivially at a point. The function then calls itself repeatedly to produce

solution to the original task (recursion). The overall order of program

flow is accomplished through the use of various control structures.

Finally, tests are conducted on the program to validate its behaviour

compared to its overall goal (testing). Errors (bugs) identified in the test

report are documented, traced and corrected (debugging) to certify that

the program delivers according to requirements.’

These topics are the main focus of this module.

UNIT 1 RECURSION

1.0 Introduction

2.0 Intended Learning Outcome

3.0 Main Content

3.1 Recursion Defined

3.2 Reasons for using Recursion

3.3 The Call Stack

3.3.1 Recursion and the Stack

3.4 Avoiding Circularity in Recursion

3.5 Overhead of Recursion

3.6 Types of Recursion

4.0 Conclusion

5.0 Summary

6.0 Self-Assessment Exercise

7.0 References/Further Reading

CIT 108 PROBLEM SOLVING STRATEGIES

84

1.0 INTRODUCTION

Recursion is a powerful implementation technique in which a function

calls itself (either directly or indirectly) on a smaller problem of the

same type in order to simplify the problem to a solvable state. There are

many kinds of recursion, such as linear, tail, binary, nested, and mutual.

All of these will be examined in this unit since this unit is meant as an

introduction to a fairly advanced implementation strategy.

2.0 INTENDED LEARNING OUTCOME

At the end of this unit, students should be able to:

 Understand and define recursion as an implementation strategy

 Know where and when to apply recursion to implement a

solution

 Determine how to avoid circularity in recursion

 Explain the inner workings of recursion and the associated

overhead

3.0 MAIN CONTENT

3.1 Recursion Defined

Recursion is a computer programming technique involving the use of a

procedure, subroutine, function, or algorithm that calls itself in a step

having a termination condition so that successive repetitions are

processed up to the critical step where the condition is met at which time

the rest of each repetition is processed from the last one called to the

first. Every recursive function must have at least two cases: the

recursive case and the base case. The base case is a small problem that

we know how to solve and is the case that causes the recursion to end.

The recursive case is the more general case of the problem we're trying

to solve. As an example, with the factorial function, 𝑛!, the recursive

case is n! = n*(n - 1)! and the base case is 1 when n = = 0 or n = = 1.

The above recursion is called a linear recursion since it makes one

recursive call at a time.

3.2 Why the need for Recursion?

Recursion tends to shine in situations where the problem is a little more

complex. Recursion can be applied to pretty much any problem, but

there are certain scenarios for which it’s particularly helpful as discussed

below.

CIT 108 MODULE 3

85

3.2.1 A Typical Scenario: Hierarchies, Networks, or Graphs

A graph refers to a network of things, people, or concepts that are

connected to each other in various ways. For example, a road map could

be thought of as a graph that shows cities and how they are connected by

roads. Graphs can be large, complex, and awkward to deal with

programatically. They are also very common in algorithm theory.

Luckily, working with graphs can be made much simpler using

recursion. One common type of a graph is a hierarchy, an example of

which is a business’s organization chart such as the one shown in Fig. 3-

1-1. The code snippet in Code 3-1-1 is a specimen implementation of

Fig. 3-1-1

Figure 3-1-1: A Typical organisational chart

If the above scenario shown in in Code. 3-1-1 is not very clear, try

following it through line-by-line a few times mentally. Remember that

NAME MANAGER

Bettys Sam

Bob Sally

Dilbert Nathan

Joseph Sally

Nathan Veronica

Sally Veronica

Sam Joseph

Susan Bob

Veronica

1. {

2. Declare variable counter

3. Counter = 0

4. For each person in emplyeeDatabase {

5. If (person.manager == employeeName) {

6. Counter = counter + 1

7. Counter = counter + countEmployeesUnder(person.name)

8. }

9. }

10. Return counter

11. }

Code 3-1-1: Implementing Graphs using Recursion

CIT 108 PROBLEM SOLVING STRATEGIES

86

each time a recursive call is made, a new copy of all the local variables

is produced. This means that there will be a separate copy of counter for

each call. If that wasn’t the case, we would really mess things up when

we set counter to zero at the beginning of the function.

3.2.2 Mission Statements

A very important thing to consider when writing a recursive algorithm is

to have a clear idea of our function’s “mission statement.” For example,

in this case it is assumed that a person should not be counted as

reporting to him or herself. This means countEmployeesUnder(‘Betty’)

will return zero. Our function’s mission statement might thus be “Return

the count of people who report, directly or indirectly, to the person

named in employeeName – not including the person named

employeeName.”

In this case, we first need to make it such that if there are no people who

report to someone we return one instead of zero. This is simple — we

just change the line “𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 0″ to “𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 1″ at the

beginning of the function. This makes sense, as our function has to

return a value 1 higher than it did before. A call to

countEmployeesUnder(‘Betty’) will now return 1.

However, we have to be very careful here. We have changed our

function’s mission statement, and when working with recursion that

means taking a close look at how we are using the call recursively. For

example, countEmployeesUnder(‘Sam’) would now give an incorrect

answer of 3. To see why, follow through the code: First, we will count

Sam as 1 by setting counter to 1. Then when we encounter Betty we’ll

count her as 1. Then we will count the employees who report to Betty —

and that will return 1 now as well. It is clear we are double counting

Betty; our function’s “mission statement” no longer matches how we are

using it. We need to get rid of the line “𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1″,

recognising that the recursive call will now count Betty as “someone

who reports to Betty” (and thus we don’t need to count her before the

recursive call).

Having a clear “mission statement” means that we can be confident our

recursive calls will behave as expected and the whole picture will come

together correctly.

3.3 The Call Stack

When a function is called, a certain amount of memory is set aside for

that function to use for purposes such as storing local variables. This

memory, called a frame, is also used by the computer to store

CIT 108 MODULE 3

87

information about the function such as the function's address in memory;

this allows the program to return to the proper place after a function call

(for example, if you write a function that calls printf(), you would

like control to return to your function after printf() completes; this

is made possible by the frame).

Every function has its own frame that is created when the function is

called. Since functions can call other functions, often more than one

function is in existence at any given time, and therefore there are

multiple frames to keep track of. These frames are stored on the call

stack, an area of memory devoted to holding information about currently

running functions.

A stack is a Last In First Out (LIFO) data structure in which case, the

last item to enter the stack is the first item to leave. A useful example in

understanding how a stack works is the pile of trays in a school's dining

hall. The trays are stacked one on top of the other, and the last tray to be

put on the stack is the first one to be taken off.

In the call stack, the frames are put on top of each other in the stack.

Adhering to the LIFO principle, the last function to be called (the most

recent one) is at the top of the stack while the first function that was

called resides at the bottom of the stack. When a new function is called

(meaning that the function at the top of the stack calls another function),

that new function's frame is pushed onto the stack and becomes the

active frame. When a function finishes, its frame is destroyed and

removed from the stack, returning control to the frame just below it on

the stack (the new top frame).

As an example, suppose we have the following functions shown in Code

3-1-2:

void main() {

johnny();

void johnny() {;

theLecture();

RecursionNotes();

}

void theLecture() {

do something...

}

void RecursionNotes() {

... do something...}

}

}

Code 3-1-2 Recursion and the Stack Frame

CIT 108 PROBLEM SOLVING STRATEGIES

88

We can trace the flow of functions in the program by looking at the call

stack. The program begins by calling main() and so the main()

frame is placed on the stack as shown in Fig. 3-1-2.

Figure 3-1-2(a):The main() frame on stack Figure 3-1-2(b):

main() calls

johnny()

The main() function then calls the function johnny() as shown in Fig. 3-

1-2(b) above. The johnny() function then calls the function theLecture()

as shown in Fig. 3-1-3 below.

Figure 3-1-3: johnny() calls theLecture() Figure 3-1-4: theLecture()

finishes

execution
When the function theLecture() is finished executing, its frame is

deleted from the stack and control returns to the johnny() frame as

shown in Fig.3-1-4. After regaining control, johnny() then calls

RecursionNotes(), according to Fig. 3-1-5.

main() main()

johnny()

main()

johnny()

theLecture()

main()

johnny()

theLecture()

CIT 108 MODULE 3

89

Figure 3-1-5: johnny() calls RecursionNotes() Figure 3-1-6:

RecursionNotes() finishes execution and deleted from stack

When the function RecursionNotes() is finished executing, its frame is

deleted from the stack as shown in Fig. 3-1-6 and control returns to

johnny() as before. When johnny() is finished, its frame is deleted and

control returns to main().When the main() function is done, it is

removed from the call stack as shown in Fig.3-1-7 below.

Figure 3-1-7: main() finishes execution,

call stack empty and program done

As there are no more functions on the call stack, and thus nowhere to

return to after main() finishes, the program is finished.

Recursion and the Call Stack

When using recursive techniques, functions "call themselves". If the

function johnny() were recursive, it might make a call to itself during

the course of its execution. However, as mentioned before, it is

important to realise that every function called gets its own frame, with

its own local variables, its own address, etc. As far as the computer is

concerned, a recursive call is just like any other call.

3.4 Avoiding Circularity in Recursion

A crucial problem to avoid when writing recursive functions is

circularity. Circularity occurs when a point is reached in recursion

where the arguments to the function are the same as with a previous

function call in the stack. If this happens, the base case will never be

main()

johnny()

RecursionNotes()

main()

johnny()

RecursionNotes()

CIT 108 PROBLEM SOLVING STRATEGIES

90

reached and the recursion will continue forever, or until the computer

runs out of memory and crashes, whichever comes first.

For example, suppose we have a function as shown in Code 3-1-3:

If this function is called with the value 1, then it calls itself with the

value 2, which in turn calls itself with the value 1. Can you now note

the circularity?

Recursion might not be the most efficient way to implement an

algorithm. Each time a function is called, there is a certain amount of

"overhead" that takes up memory and system resources. When a

function is called from another function, all the information about the

first function must be stored so that the computer can return to it after

executing the new function.

3.5 Overhead of Recursion

Imagine what happens when the factorial function is called on some

large input, say 1000. The first function will be called with input 1000.

It will call the factorial function on an input of 999, which will call the

factorial function on an input of 998. Etc. Keeping track of the

information about all active functions can use many system resources if

the recursion goes many levels deep. In addition, functions take a small

amount of time to be instantiated, to be set up. If we have a lot of

function calls in comparison to the amount of work each one is actually

doing, the program will run significantly slower.

To avoid this situation, one will need to decide up front whether

recursion is necessary. It has been proven mathematically that any

problem that can be solved with recursion can also be solved with

iteration, and vice versa. However, there are certainly cases where

recursion is a blessing, such as tree data structure, and in these instances

one should not shy away from using it.

void not_smart(int value) {

if (value == 1)

return not_smart(2);

else if (value == 2)

return not_smart(1);

else return 0;

}

Code 3-1-3: Circularity in Recursive Function

CIT 108 MODULE 3

91

Consider once again that 5! = 5*4*3*2*1 and 9! = 9*8*7*6*5*4*3*2*1.

Let us use this definition instead of the recursive one to write our

function iteratively. The factorial of an integer is that number multiplied

by all integers smaller than it and greater than 0. Consider the function

in Code 3-1-4 below.

This program is more efficient and should execute faster than the

recursive solution.

For mathematical problems like factorial, there is sometimes an

alternative to both an iterative and a recursive implementation: a closed-

form solution. A closed-form solution is a formula that involves no

looping of any kind, only standard mathematical operations in a formula

to compute the answer. The Fibonacci function, for example, does have

a closed-form solution as given in Code 3-1-5 below:

This solution and implementation uses four calls to sqrt(), two calls

to pow(), two additions, two subtractions, two multiplications, and four

divisions.

One might argue that this is more efficient than both the recursive and

iterative solutions for large values of n. Those solutions involve a lot of

looping/repetition, while this solution does not. However, without the

source code for pow(), it is impossible to say that this is more efficient.

Most likely, the bulk of the cost of this function is in the calls to pow().

If the programmer for pow() wasn't smart about the algorithm, it could

have as many as n - 1 multiplications, which would make this solution

int factorial(int n) {

int fact=1;

if (n<0) return 0; /* error check */

for(; n>0; n--)

fact *= n; /* return the result */

return(fact);

}

Code 3-1-4: Non-recursive Factorial function

double Fib(int n){

return (5 + qrt(5))*pow(1+sqrt(5)/2,n)/10 + (5-

sqrt(5))*pow(1-sqrt(5)/2,n)/10;

}

Code 3-1-5: Closed-form Approach

CIT 108 PROBLEM SOLVING STRATEGIES

92

slower than the iterative, and possibly even the recursive,

implementation.

However, there are two situations where recursion is the best solution:

1. The problem is much more clearly solved using recursion: there

are many problems where the recursive solution is clearer,

cleaner, and much more understandable. As long as the efficiency

is not the primary concern, or if the efficiencies of the various

solutions are comparable, then you should use the recursive

solution.

2. Some problems are much easier to solve through recursion: there

are some problems which do not have an easy iterative solution.

Here you should use recursion. The Towers of Hanoi problem is

an example of a problem where an iterative solution would be

very difficult.

Example

Consider the problem of reversing the n elements of an array, A, so that

the first element becomes the last, the second element becomes the

second to the last, and so on. This problem can be solved using linear

recursion, by observing that the reversal of an array can be achieved by

swapping the first and last elements and then recursively reversing the

remaining elements in the array as shown in Algorithm 3-1-1 below.

Algorithm 3-1-1: Reversing elements in an array

Algorithm ReverseArray(A, i, j):

Input: An array A and nonnegative integer indices i and j

Output: The reversal of the elements in A starting at

index i and ending at j

if i < j then

Swap A[i] and A[j]

ReverseArray(A, i+1, j-1)

return

CIT 108 MODULE 3

93

3.6 Types of Recursion

3.6.1 Tail Recursion

One can convert a recursive algorithm into a non-recursive algorithm

and there are some instances when this conversion can be done more

easily and efficiently. Specifically, one can easily convert algorithms

that use tail recursion. An algorithm uses tail recursion if it uses linear

recursion and the algorithm makes a recursive call as its very last

operation. The recursive call must be absolutely the last thing the

method does. A good example of a tail recursive function is a function

to compute the (Greatest Common Denominator) of two numbers. It

resembles a linear recursion in that the recursive call is always the last

operation the function does.

Linear Recursive

A linear recursive function is a function that only makes a single call to

itself each time the function runs (as opposed to one that would call

itself multiple times during its execution). The factorial function is a

good example of linear recursion.

Binary Recursive

Some recursive functions don't just have one call to themselves, they

have two (or more). Functions with two recursive calls are referred to as

binary recursive functions. The mathematical combinations operation is

a good example of a function that can quickly be implemented as a

binary recursive function. The difference between linear and binary

recursion is in the number of times a call is made to the recursive

function.

3.6.2 Exponential recursion

An exponential recursive function is one that, if you were to draw out a

representation of all the function calls, would have an exponential

number of calls in relation to the size of the data set (exponential

meaning if there were n elements, there would be O(an) function calls

where a is a positive number). A good example an exponentially

recursive function is a function to compute all the permutations of a data

set.

CIT 108 PROBLEM SOLVING STRATEGIES

94

3.6.3 Nested Recursion

In nested recursion, one of the arguments to the recursive function is the

recursive function itself! These functions tend to grow extremely fast. A

good example is the classic mathematical function, "Ackerman's

function. It grows very quickly (even for small values of x and y,

Ackermann(x,y) is extremely large) and it cannot be computed with

only definite iteration (a completely defined for() loop for example);

it requires indefinite iteration (recursion, for example).

3.6.4 Mutual Recursion

A recursive function doesn't necessarily need to call itself. Some

recursive functions work in pairs or even larger groups. For example,

function A calls function B which calls function C which in turn calls

function A. A simple example of mutual recursion is a set of function to

determine whether an integer is even or odd.

4.0 CONCLUSION

Use of recursion in problem solving has both merits and demerits. The

main advantage is usually the simplicity of instructions. The main

disadvantage is that the memory usage of recursive algorithms grows

very quickly, rendering the approach impractical for larger instances.

Care must, therefore, be taken when developing a recursive solution to a

problem as it is easy to slip into writing a function which never

terminates. However, when written correctly, recursion can be a very

efficient and elegant approach to problem-solving.

5.0 SUMMARY

Recursive techniques can often present simple and elegant solutions to

problems. However, they are not always the most efficient. Recursive

functions often use a good deal of memory and stack space during their

operation. The stack space is the memory set aside for a program to use

to keep track of all of the functions and their local states currently in the

middle of execution. Because they are easy to implement but relatively

inefficient, recursive solutions are often best used in cases where

development time is a significant concern.

CIT 108 MODULE 3

95

6.0 SELF ASSESSMENT EXERCISE

1. Write a recursive function that takes a number and returns the

 sum of all the numbers from zero to that number.

2. Write a recursive function that takes a number as an input and

 returns the factorial of that number.

3. Write a recursive function that takes a number ‘n’ and returns the

 nth number of the Fibonacci number.

4. Write a recursive function that takes a list of numbers as an input

 and returns the product of all the numbers in the list.

5. Explain how a tail recursive function can be converted to an

 iterative function

7.0 REFERENCES/FURTHER READINGS

Blokdyk, G. (2018). Fifo and Lifo Accounting: A Clear and Concise

Reference: CreateSpace Independent Publishing Platform.

García, T., Boom, J., Kroesbergen, E. H., Núñez, J. C., & Rodríguez, C.

(2019). Planning, execution, and revision in mathematics problem

solving: Does the order of the phases matter?. Studies in

Educational Evaluation, 61, 83-93.

Rubio-Sanchez, M. (2017). Introduction to Recursive Programming:

CRC Press.

Savitch, W. (2019). Java: An introduction to problem solving &

programming. Pearson Education Limited.

Sun, Y., Kirley, M., & Halgamuge, S. K. (2017). A recursive

decomposition method for large scale continuous optimization.

IEEE Transactions on Evolutionary Computation, 22(5), 647-661.

CIT 108 PROBLEM SOLVING STRATEGIES

96

UNIT 2 CONTROL STRUCTURES: SELECTION AND

 ITERATION

1.0 Introduction

2.0 Intended Learning Outcome

3.0 Main Content

3.1 Control Structures

3.2 Selection

3.2.1 The If Statement

3.2.2 The If-Else Statement

3.3.3 SELECT CASE Statement

3.3 Iteration

3.3.1 For Loops

3.3.2 While Loops

3.3.3 Repeat Loops

4.0 Conclusion

5.0 Summary

6.0 Self-Assessment Exercise

7.0 References/Further Reading

1.0 INTRODUCTION

To understand computer programs and learn how to make them one

needed to understand their building blocks. When a program runs, the

code is read by the computer line by line from top to bottom, and from

left to right. At some point, the program may reach a situation where it

needs to make a decision such as jump to a different part of the program

or re-run a certain piece again. These decisions that affect the flow of

the program’s code are known as Control Structures.

2.0 INTENDED LEARNING OUTCOME

At the end of this unit, students should be able to:

 Explain control structures and their importance in

implementation

 Apply selection control structure to implement algorithms

 Implement solutions using iteration as an alternative

implementation strategy

 Combine control structures in ways that facilitate solution to the

problem at hand

CIT 108 MODULE 3

97

3.0 MAIN CONTENT

3.1 Control Structures

Control Structures can be considered as the building blocks of

computer programs. They are commands that enable a program to

“take decisions”, following one path or another. A program is usually

not limited to a linear sequence of instructions since during its process it

may bifurcate, repeat code or bypass sections. Control Structures are the

blocks that analyse variables and choose directions in which to go based

on given parameters.

The basic Control Structures in programming languages are:

 Selection (Conditionals): which are used to execute one or more

statements if a condition is met.

 Iteration (Loops): which purpose is to repeat a statement a

certain number of times or while a condition is fulfilled.

We now take a look at each one of these concepts

3.2 Selection

Selection is at the very core of programming. The idea behind them is

that they allow the control flow of the code that is executed based on

different conditions in the program (e.g. an input taken from the user, or

the internal state of the machine the program is running on). In This

section will explore the If and the If-Else statements.

3.2.1 The If Statement

If statements execute one or more statements when a condition is met. If

the testing of that condition is TRUE, the statement gets executed. But if

it is FALSE (the condition is not met), then nothing happens. Let´s

visualize it (Fig. 3-2-1):

CIT 108 PROBLEM SOLVING STRATEGIES

98

Figure 3-2-1: If statement

The syntax of the If statements is:

If(condition)

Statements

Example

To show a simple case, let’s say you want to verify if the value of a

variable (x) is positive:

In this example, first we assign the value of 4 to the variable (x) and use

the “If statement” to verify if that value is equal or greater than 0. If the

test results TRUE (as in this case), the function will print the sentence:

“variable x is a positive number”.

Output

[1] "variable x is a positive number"

But since the If statement only executes a statement if the tested

condition is TRUE, what would have happened if the variable value was

negative? To execute a statement on a tested condition with a FALSE

result, we need to use If-Else statement.

x = 4

If(x >= 0) {

Print(“variable x is a positive number”)

}

CIT 108 MODULE 3

99

3.2.2 The If-Else Statement

This Control Structure allows a program to follow alternative paths of

execution, whether a condition is met or not as shown in Fig.3-2-2

below.

Figure 3-2-2: If-Else statement

The syntax of “If-Else statements” is:

If(condition)

Statements

Else

statements

The else part of the instruction is optional and is only evaluated if the

condition tests FALSE.

Example 1

Following our example, the previous conditional If statement is

extended by adding the else part to test if the value of a variable is

positive or negative and perform an action i.e., whether the test result is

TRUE or FALSE.

x = -4

If(x >= 0) {

Print(“variable x is a positive number”)

}else {

Print(“variable x is a negative number”)

}

CIT 108 PROBLEM SOLVING STRATEGIES

100

In this example, a value of -4 is assigned to the variable x and use the If

statement to verify if that value is equal to or greater than 0. If the test

results TRUE, the function will print the sentence: “variable x is a

positive number”. But in case the test results FALSE (as in this case),

the function continues to the alternative expression and prints the

sentence: “variable x is a negative number”.

Output

[1] "variable x is a negative number"

Example 2

Assume we need to define more than 2 conditions, as obtained in the

grading of an exam. In that case we can grade A, B, C, D or F (5

options), so, how can this be done?

If-Else statements can have multiple alternative statements. In the

example below we define an initial score, and an If-Else statement of 5

rating categories. This piece of code will go through each condition until

reaching a TRUE test result.

Output

[1] “C”

3.2.3 SELECT CASE Statement

For a multi-way branching such as the above example, a handy construct

to implement such scenario is the Select Case statement, also referred to

as CASE statement.

Score = 75

If(score >= 90) {

Print(“A”)

}else if(score >=80 {

Print(“B”)

} else if(score >=70 {

Print(“C”)

} else if(score >=60 {

Print(“D”)

}else {

Print(“F”)

}

CIT 108 MODULE 3

101

The following is its syntactic form:

SELECT CASE (selector)

CASE label-list-1

statements-1

CASE label-list-2

statements-2

CASE label-list-3

statements-3

.....

CASE label-list-n

statements-n

CASE DEFAULT

statements-DEFAULT

END SELECT

where statements-1, statements-2, statements-3, ..., statements-n and

statements-DEFAULT are sequences of executable statements, including

the SELECT CASE statement itself, and selector is an expression

whose result is of type INTEGER, CHARACTER or LOGICAL or

BOOLEAN (i.e., no REAL type can be used for the selector). The label

lists label-list-1, label-list-2, label-list-3, ..., and label-list-n are called

case labels.

A label-list is a list of labels, separated by commas. Each label must be

one of the following forms.

value

value-1..value-2

value-1 :

 : value-2

where value, value-1 and value-2 are constants. The type of these

constants must be the same as that of the selector.

 The first form has only one value

 The second form means all values in the range of value-1 and

value-2. In this form, value-1 must be less than value-2.

 The third form means all values that are greater than or equal to

value-1

 The fourth form means all values that are less than or equal to

value-2

CIT 108 PROBLEM SOLVING STRATEGIES

102

The rule of executing the SELECT CASE statement goes as follows:

1. The selector expression is evaluated

2. If the result is in label-list-i, then the sequence of statements in

statements-i are executed, followed by the statement following

END SELECT
3. If the result is not in any one of the label lists, there are two

possibilities:

 if CASE DEFAULT is there, then the sequence of

statements in statements-DEFAULT are executed,

followed by the statement following END SELECT

 if there is no CASE DEFAULT, the statement following

END SELECT is executed.

Example 3

We now re-implement example 2 above using the SELECT

CASE statement.

Score = 75

Select Case(score) {

Case 90..100 {

Print(“A”)

break

}

Case 80..89 {

Print(“B”)

break

}

Case 70..79 {

Print(“C”)

break

}

Case 60..69 {

Print(“D”)

break

}

Case default {

Print(“F”)

}

End Select

CIT 108 MODULE 3

103

Output

[1] “C”

Note: The above syntax is generalised and there may be slight

differences in the actual implementation by specific programming

languages.

3.3 Iteration (Looping)

Iteration is the automation of multi-step processes by organizing

sequences of actions, and grouping the parts that need to be repeated.

Also a central part of programming, iteration (or Looping) gives

computers much of their power. They can repeat a sequence of steps as

often as necessary, and appropriate repetitions of simple steps can solve

complex problems. Iteration allows us to simplify our algorithm by

stating that we will repeat certain steps until told otherwise.

In general terms, there are two types of “Looping techniques”:

1. For Loops: are the ones that execute for a prescribed number of

times, as controlled by a counter or an index.

2. While Loops and Repeat Loops: are based on the onset and

verification of a logical condition. The condition is tested at the

start or end of the loop construct.

Let’s take a look at them:

3.3.1 For Loops

In this Control Structure, statements are executed one after another in a

consecutive order over a sequence of values that gets evaluated only

when the For Loop is initiated (never re-evaluated). In this case, the

number of iterations is fixed and known in advance. Fig. 3-2-3 shows

CIT 108 PROBLEM SOLVING STRATEGIES

104

Figure 3-2-3: For Loop

If the evaluation of the condition on a variable (which can assume

values within a specified sequence) results TRUE, one or more

statements will be executed sequentially over that string of values. Once

the first condition test is done (and results TRUE), the statement is

executed and the condition is evaluated again, going through an iterative

process. The “variable in sequence” section performs this test on each

value of the sequence until it covers the last element.

If the condition is not met and the resulting outcome is FALSE (e.g. the

“variable in sequence” part has finished going through all the elements

of the sequence), the loop ends. If the condition test results FALSE in

the first iteration, the For Loop is never executed.

The syntax of For Loops is:

For (variable-in-sequence)

statements

Example 1

To show how For Loops work, first we will create a sequence by

concatenating different names of fruits to create a list called “fruit_list”:

Fruit_list <- c (‘Apple’, ‘Kiwi’, ‘Orange’, ‘Banana’)

We will use this fruit list as the “sequence” in a For Loop, and make the

it run a statement once (print the name of each value) for each provided

value in the sequence (the different fruits in the fruit list):

Note: This example code is in Python.

CIT 108 MODULE 3

105

This way, the outcome of the For Loop is as follows:

[1] "Apple"

[1] "Kiwi"

[1] "Orange"

[1] "Banana"

Example 2

Suppose we want to modify values, or perform calculations sequentially,

we can use For Loops to perform mathematical operations sequentially

over each value of a vector (elements of the same type, which in this

case will be numerical). In this example, we will create a sequence of

numbers (from 1 to 10), and set a For Loop to calculate and print the

square root of each value in that sequence:

In this case, the outcome of the For Loop is:

[1] 1

[1] 1.414214

[1] 1.732051

[1] 2

[1] 2.236068

[1] 2.449490

[1] 2.645751

[1] 2.828427

[1] 3

[1] 3.162278

You can use any type of mathematical operator over a numerical

sequence, and as we will see shortly, make all sorts of combinations

between different Control Structures to reach more complex results.

for (i in fruit) {

print (i)

}

for (i in c(1:10) {

print (sqrt(i))

}

CIT 108 PROBLEM SOLVING STRATEGIES

106

3.3.2 While Loops

In While Loops (Fig. 3-2-4) a condition is first evaluated, and if the

result of testing that condition is TRUE, one or more statements are

repeatedly executed until that condition becomes FALSE.

Figure 3-2-4: While Loop

Unlike If statements, in which a condition tested as TRUE executes an

expression only once and ends, While Loops are iterative statements

that execute some expression over and over again until the condition

becomes FALSE. If the condition never turns out to be FALSE, the

While Loop will go on forever and the program will crash. The other

way around, if the condition test results FALSE in the beginning of the

loop, the expression will never get executed.

The syntax of “While Loops” is:

While(condition)

statement

Example 1

First we will create a variable (x) and assign it the value of 1. Then we

set a While Loop to iteratively test a condition over that variable until

the condition test results FALSE:

x = 1

while(x < 10) {

print (x)

x = x+1

}

CIT 108 MODULE 3

107

This is how it works: the initial value of the variable x is 1, so when we

test the condition “is the variable (x) less than 10?”, the result evaluates

to TRUE and the expression is executed, printing the result of the

variable x, which in the first case is 1. But then something happens: the

variable x is incremented by 1 before the function ends, and in the next

iteration the value of x will be 2.

This variable reassignment is important because it will eventually reach

the FALSE condition and the loop exit (value of x = 10). Failing to

change the initial conditions in a While Loop will result into an infinite

loop, causing the program to crash.

Output

[1] 1

[1] 2

[1] 3

[1] 4

[1] 5

[1] 6

[1] 7

[1] 8

[1] 9

Example 2

Have you heard of the Fibonacci sequence? This is a series of numbers

with the characteristic that the next number in the sequence is found by

adding up the two numbers before it: 0, 1, 1, 2, 3, 5, 8, 13, 21,… This

sequence can be found in several natural phenomena, and has different

applications in finance, music, architecture, and other disciplines.

Let’s calculate it using a While Loop.

a = 0

b = 1

print(a)

while(b < 100) {

print (b)

temp = a+b

a = b

b = temp

}

CIT 108 PROBLEM SOLVING STRATEGIES

108

In this case we set a maximum value in the series as the stop

condition, so that the loop prints the Fibonacci series only for numbers

below 100. When a series element (which ever it is) becomes bigger

than 100, the loop cycle ends.

Output

[1] 0

[1] 1

[1] 1

[1] 2

[1] 3

[1] 5

[1] 8

[1] 13

[1] 21

[1] 34

[1] 55

[1] 89

3.3.3 Repeat Loops

Closely linked to While Loops, Repeat Loops execute statements

iteratively, but until a stop condition is met (Fig.3-2-5). This way,

statements are executed at least once, no matter what the result of the

condition is, and the loop is exited only when certain condition becomes

TRUE:

CIT 108 MODULE 3

109

Figure 3-2-5: Repeat Loop

The syntax of “Repeat Loops” is:

Repeat

Statements

(Condition)

break

Repeat Loops use Break statements as a stop condition. Break

statements are combined with the test of a condition to interrupt cycles

within loops, since when the program hits a break, it will pass control to

the instruction immediately after the end of the loop (if any). Repeat

Loops will run forever if the Break condition is not met.

Example

First we create a variable x and assign it the value of 5. Then we set a

Repeat Loop to iteratively print the value of the variable, modify the

value of the variable (increase it by 1), and test a condition over that

variable (if it equals 10) until the condition test results TRUE.

CIT 108 PROBLEM SOLVING STRATEGIES

110

The “breaking condition” triggers when the variable x reaches 10, and

the loop ends.

Output

[1] 5

[1] 6

[1] 7

[1] 8

[1] 9

4.0 CONCLUSION

Though we have seen and explained Control Structures in isolation, they

can actually be combined in any way desired: Loops may contain

several internal Loops; Conditionals may contain Loops and

Conditionals, the options are endless. You can develop advanced

solutions just by combining the Control Structures we explained in this

Unit. Like Minsky stated, we can reach complex outcomes as a result of

the interaction of simpler components. Control Structures constitute the

basic blocks for decision making processes in computing. They change

the flow of programs and enable us to construct complex sets of

instructions out of simpler building blocks.

5.0 SUMMARY

This Unit looked into the Control Structures. They are commands that

enable a program to “take decisions”, following one path or another.

Control Structures are the blocks that analyse variables and choose

directions in which to go based on given parameters. The basic control

structure in programming language can be conditional (selection) or

loop (iterations). Selection (Conditional) is used to execute one or more

statements if a condition is met. It can be executed with the If

x = 5

Repeat {

print(x)

x = x+1

if(x == 10) {

break

}

}

CIT 108 MODULE 3

111

Statement, If-Else Statement or SELECT CASE Statement and Iteration

is to repeat a statement a certain number of times or while a condition is

fulfilled. Iteration can be executed with the following statement or

commands: For Loops, While Loops and Repeat Loops.

6.0 SELF ASSESSMENT EXERCISE

1. Explain the 3 control structures in programming?

2. What are control structures in programming?

3. Which control structures are used in the algorithm? and explain

their use

4. In what instance is a case construct preferred to an if construct?

5. What is the major motivation for implementing control

 structures?

7.0 REFERENCES/FURTHER READINGS

Katebi, J., Shoaei-parchin, M., Shariati, M., Trung, N. T., & Khorami,

M. (2020). Developed comparative analysis of metaheuristic

optimization algorithms for optimal active control of structures.

Engineering with Computers, 36(4), 1539-1558.

Mall, R. (2018). Fundamentals of software engineering. PHI Learning

Pvt. Ltd.

Oliver, B. (2020). The Loop: Chicken House.

Wynn, D. C., & Eckert, C. M. (2017). Perspectives on iteration in design

and development. Research in Engineering Design, 28(2), 153-

184.

CIT 108 PROBLEM SOLVING STRATEGIES

112

UNIT 3 DECOMPOSITION AND

 MODULARISATION

1.0 Introduction

2.0 Intended Learning Outcome

3.0 Main Content

3.1 Decomposition

3.1.1 Approach to Problem Decomposition

3.2 Modularisation

3.2.1 Motivations for Modularisation

3.2.2 Basic concept of Modularisation

3.3 Basic Properties of Modularity

3.4 Advantages of modularisation in Programming

4.0 Conclusion

5.0 Summary

6.0 Self-Assessment Exercise

7.0 References/Further Reading

1.0 INTRODUCTION

To design a system is to determine a set of components and inter

component interface that satisfy a specified set of requirements.

Basically there are many methods to create good designs, however every

design method involves some kind of decomposition starting with a

high-level depiction of the system’s key elements and creating lower-

level looks at how the system feature and functions will fit together. No

matter which design approach is used, each kind of decomposition

separates the design into parts called modules.

This unit discusses the mechanics of decomposition and modularisation,

the cornerstone of software development.

2.0 INTENDED LEARNING OUTCOME

At the end of this unit students should be able to:

 Appreciate the term “decomposition” and “modularisation”

 Understand how best decomposition can be approached

 Justify the motivations for modularisation

 Describe the basic properties of modularisation

 Discuss the advantages of modularisation

CIT 108 MODULE 3

113

3.0 MAIN CONTENT

3.1 Decomposition

When we solve computer programming problems we need to make

choices about what to do and in what order to do them. Sometimes

the problem is so big or complex that we don’t know where to start.

Decomposition is when we break a problem down into smaller parts to

make it easier to tackle. Decomposition is a useful problem-solving

strategy. It can help you write a complex computer program, plan a

holiday or make a model plane. Think of a mobile phone. Mobile

phones are made up of lots of different parts. Companies who make

phones might make a list of everything they need and decompose the

manufacturing process so that one factory can be making the screens

while another makes batteries and another makes the phone case.

Decomposition saves a lot of time: the code for a complex program

could run to many lines of code. If a mistake was made it would take a

very long time to find.

3.1.1 Approach to Problem Decomposition

A problem should be decomposed into modules such that each module

should have only a single responsibility. Thus, it should depend

minimally on other modules. The independence of a module can be

measured using coupling and cohesion (Fig. 3-3-1). Each module should

have a clear and focused purpose, such that its developers have a clear

idea of the requirement for each function. Its interface should be easy to

understand and use, even without understanding its implementation

details. Thus its implementation details, while not only correct, should

be encapsulated and private, and that it should be changeable without

affecting another module. Furthermore, the dependency between

modules should be minimised.

Figure 3-3-1: Coupling and Cohesion

CIT 108 PROBLEM SOLVING STRATEGIES

114

Coupling is the measure of the degree of interdependence between the

modules. A good software will have low coupling while cohesion is a

measure of the degree to which the elements of the module are

functionally related. It is the degree to which all elements directed

towards performing a single task are contained in the component.

Basically, cohesion is the internal glue that keeps the module together.

A good software design will have high cohesion.

3.2 Modularisation

Modularisation is the process of separating the functionality of a

program into independent, interchangeable modules, such that each

contains everything necessary to execute only one aspect of the desired

functionality. Fig. 3-3-2 shows a modularised system. In this Figure,

suppose Application 1 is a payroll program for an academic institution,

then Module 1 may take care of teaching staff while Module 2 is for

non-teaching staff. Further, Func 1 and Func 2 may compute taxable

and non-taxable incomes respectively for each of the indicated

categories.

Figure 3-3-2: A Modularised System

3.2.1 Motivations for Modularisation

One of the most prominent problems in software engineering has been

how to program large and complex pieces of software. Often, large

projects involve hundreds of programmers working on millions of lines

of code. In this kind of environment, it is easy to lose track of what

particular code does, or to produce code that must be rewritten

elsewhere. To avoid such poor-planning scenarios, computer scientists

began to organize around the concept of modularisation. In this way,

code becomes reusable and easier to debug and manage. The followings

are some of the major motivations.

CIT 108 MODULE 3

115

 Ease of Debugging When debugging large programs, how and

when any bugs occur can become a mystery. This can take much

of a programmer valuable time as he searches through lines and

lines of code to find out where an error occurred, and problems it

causes later in the program. If a program is designed with

modularity in mind, however, then each discrete task has its own

discrete section of code. So, if there is a problem in a particular

function, the programmer knows where to look and can manage a

smaller portion of code.

 Reusable Code Modular code allows programmers to easily reuse

code. If particular tasks are sectioned off to certain functions or

classes, this means that the programmer can reuse that particular

code whenever she needs to perform that task again. If code is not

organized into discrete parts, then it is harder (or impossible) to

reference, separate or implement that code in other programming

contexts.

 Readability Modular code is code that is highly organized. To

organize code based on task means that the programmer can

organize each piece of code based on what it does. Then, she can

easily find or reference that code based on her organization

scheme. Furthermore, other programmers working on the code can

follow her organization scheme to read the code as well. This

optimizes code for use among multiple developers with less

trouble.

 Reliability All these advantages add up to one big advantage:

reliability. Code that is easier to read, easier to debug, easier to

maintain and easier to share will always run smoother with less

errors. This becomes necessary when working on extremely large

projects, with hundreds of developers, all of which have to either

share code or work on code that will have to interface with other

developers' code in the future. Modularization of code is necessary

to create complex software reliably.

3.2.2 Basic concept of Modularisation

One of the most important concepts of programming is the ability to

group some lines of code into a unit that can be included in our program.

The original wording for this was a sub-program. Other names include:

macro, sub-routine, procedure, module and function. We are going to

use the term function for that is what they are called in most of the

predominant programming languages of today. Functions are important

because they allow us to take large complicated programs and to divide

them into smaller manageable pieces. Because the function is a smaller

piece of the overall program, we can concentrate on what we want it to

do and test it to make sure it works properly.

Generally, functions fall into two categories:

CIT 108 PROBLEM SOLVING STRATEGIES

116

1. Program Control – Functions used to simply sub-divide and

control the program. These functions are unique to the program

being written. Other programs may use similar functions, maybe

even functions with the same name, but the content of the

functions are almost always very different.

2. Specific Task – Functions designed to be used with several

programs. These functions perform a specific task and thus are

usable in many different programs because the other programs

also need to do the specific task. Specific task functions are

sometimes referred to as building blocks. Because they are

already coded and tested, we can use them with confidence to

more efficiently write a large program.

Program Control functions normally do not communicate information to

each other but use a common area for variable storage. Specific Task

functions are constructed so that data can be communicated between the

calling program piece (which is usually another function) and the

function being called. This ability to communicate data is what allows

us to build a specific task function that may be used in many programs.

The rules for how the data is communicated in and out of a function

vary greatly by programming language, but the concept is the same. The

data items passed (or communicated) are called parameters. Thus the

wording: parameter passing.

Program Control Function

The main program piece in many programming languages is a special

function with the identifier name of main() (program entry and exit

point). The special or uniqueness of main() as a function is that this is

where the program starts executing code and this is where it usually

stops executing code. It is often the first function defined in a program

and appears after the area used for includes, other technical items,

declaration of prototypes, the listing of global constants and variables

and any other items generally needed by the program. The code to

define the function main is provided; however, it is not prototyped or

usually called like other functions within a program.

Specific Task Function

We often have the need to perform a specific task that might be used in

many programs.

General layout of a function in a language such as Java:

CIT 108 MODULE 3

117

General layout of a function in a language such as Python:

In some programming languages, functions have a set of braces {} used

for identifying a group or block of statements or lines of code. Other

languages use indenting or some type of begin and end statements to

identify a code block. There are normally several lines of code within a

function. Programming languages will either have specific task

functions defined before or after the main function, depending on coding

conventions for the given language.

When a function is called, its identifier name and a set of parentheses

are used. You place any data items you are passing inside the

parentheses. After the program is compiled and running, the lines of

code in the main function are executed, and when it gets to the calling of

a specific task function, the control of the program moves to the

function and starts executing the lines of code in the function. When it is

done with the lines of code, it will return to the place in the program that

called it (in our example the function main) and continue with the code

in that function.

3.3 Basic Properties of Modularity

The basic principle of Modularity is that systems should be built from

cohesive, loosely coupled components (modules); which means a

system should be made up of different components that are united and

work together in an efficient way and such components have a well-

defined function. To define a modular system, several properties or

criteria are there under which we can evaluate a design method while

considering its abilities. Some of these criteria are given below:

1. Modular Decomposability
 Decomposability simply means to break down something into

smaller pieces. Modular decomposability means to break down

the problem into different sub-problems in a systematic manner.

Solving a large problem is difficult sometimes, so the

decomposition helps in reducing the complexity of the problem,

<return value data type> function identifier name(<data type> <identifier name for input value>)

{

 //lines of code;

 return <value>;

}

def function identifier name(<identifier name for input value>):

 //lines of code

 return <value>

CIT 108 PROBLEM SOLVING STRATEGIES

118

and sub-problems created can be solved independently. This

helps in achieving the basic principle of modularity.

2. Modular Composability
 Composability simply means the ability to combine modules that

are created. It’s actually the principle of system design that deals

with the way in which two or more components are related or

connected to each other. Modular composability means to

assemble the modules into a new system that means to connect

the combine the components into a new system.

3. Modular Understandability
 Understandability simply means the capability of being

understood, quality of comprehensible. Modular

understandability means to make it easier for the user to

understand each module so that it is very easy to develop

software and change it as per requirement. Sometimes it’s not

easy to understand the process models because of its complexity

and its large size in structure. Using modularity

understandability, it becomes easier to understand the problem in

an efficient way without any issue.

4. Modular Continuity
 Continuity simply means unbroken or consistent or uninterrupted

connection for a long period of time without any change or being

stopped. Modular continuity means making changes to the

system requirements that will cause changes in the modules

individually without causing any effect or change in the overall

system or software.

5. Modular Protection
 Protection simply means to keep something safe from any harms,

to protect against any unpleasant means or damage. Modular

protection means to keep safe the other modules from the

abnormal condition occurring in a particular module at run time.

The abnormal condition can be an error or failure also known as

run-time errors. The side effects of these errors are constrained

within the module.

3.4 Advantages of modularisation in Programming

1. Manageability

One of the advantages of using this strategy is that it breaks

everything down into more manageable sections. When creating a

large software program, it can be very difficult to stay focused on

a single piece of coding. However, if you break it down into

individual tasks, the job does not seem nearly as overwhelming.

This helps developers stay on task and avoid being overwhelmed

CIT 108 MODULE 3

119

by the thought that there is too much to do with a particular

project.

2. Promotes Team Programming

 Another advantage of this strategy is that it allows for team

programming. Instead of giving a large job to a single programmer,

you can split it up into a large team of programmers. Each

programmer can be given a specific task to complete as part of the

overall program. Then, at the end, all of the various work from the

programmers is compiled to create the program. This helps speed up

the work and allows for specialization.

3. Improved Quality

 Modularization can also improve the quality of a piece of code.

When you break everything down into small parts and make each

person responsible for a certain section, it can improve the quality of

each individual section. When a programmer does not have to worry

about the entire program, he can make sure that his individual piece

of code is flawless. Then, when all of the parts are combined, fewer

errors are likely to be found overall.

4.0 CONCLUSION

Modularization is essential while working in a team, maximising the

problem-solving strategy and productivity. The complexity of a program

can easily scale exponentially as it grows, which is the crux of

development time and productivity. Modularization helps us break down

large, complex systems into small and manageable components. Without

it, it would be difficult to handle any but the smallest programs. The

power of modularization lies in its ability in allowing code to remain

flexible when facing ever-changing requirements. Thus, we should

always decompose our programs into modules so that we can fully enjoy

the benefits of modularisation.

5.0 SUMMARY

The motivating principle in decomposition is that large problems are

disproportionately harder to solve than small problems. Approaches in

decomposition technique could either be problem-based estimation or

process-based estimation. Data is partitioned in data decomposition,

which induces a partitioning of the code in tasks while the functions to

be performed on data are split into multiple tasks in functional

decomposition. Modularization is the activity of dividing a product or

system into modules that are interchangeable. The motivation is to

CIT 108 PROBLEM SOLVING STRATEGIES

120

create a system that is flexible to produce different requested

configurations, while reducing the number of unique building blocks

(module variants) needed to do so. Modules can be separately compiled

into a library making them reusable by other programs and are

interoperable.

6.0 SELF ASSESSMENT EXERCISE

1. Explain decomposition in the context of problem-solving

2. Explain the relationship among decomposition, modularisation

and coupling

3. List the disadvantages of program modularisation

4. Mention the major motivations for breaking a large/complex

program into modules

5. State the importance of problem decomposition

6. Define coupling and cohesion

7.0 REFERENCES/FURTHER READINGS

Aghdasifam, M., Izadkhah, H., & Isazadeh, A. (2020). A new

metaheuristic-based hierarchical clustering algorithm for software

modularization. Complexity, 2020.

Dietz, G., Landay, J. A., & Gweon, H. (2019). Building blocks of

computational thinking: Young children's developing capacities for

problem decomposition. In CogSci 1647-1653.

Isazadeh, A. Izadkhah, H & Elgedawy I. (2017). Source Code

Modularization: Theory and Techniques, Springer, Berlin,

Germany, 2017.

Kargar, M., Isazadeh, A., & Izadkhah, H. (2019). Multi-programming

language software systems modularization. Computers &

Electrical Engineering, 80, 106500.

Sadat Jalali, N., Izadkhah, H., & Lotfi, S. (2019). Multi-objective

search-based software modularization: structural and non-

structural features. Soft Computing, 23(21), 11141-11165.

Yurek, E. E., & Ozmutlu, H. C. (2018). A decomposition-based iterative

optimization algorithm for traveling salesman problem with drone.

Transportation Research Part C: Emerging Technologies, 91, 249-

262.

CIT 108 MODULE 3

121

UNIT 4 TESTING AND DEBUGGING

1.0 Introduction

2.0 Intended Learning Outcome

3.0 Main Content

3.1 Program Testing

3.2 Types of Program Tests

3.2.1 Unit test

3.2.2 Integration test

3.2.3 End-to-End test

3.2.4 Functional test

3.2.5 Smoke test

3.3 Testing Properties

3.4 Need for Program Testing

3.5 Benefits of Program Testing

3.6 Debugging

3.6.1 Importance of Debugging

3.7 Types of Errors to Debug

3.8 Common Debugging Strategies

3.9 Difference between Testing and Debugging

4.0 Conclusion

5.0 Summary

6.0 Self-Assessment Exercise

7.0 References/Further Reading

1.0 INTRODUCTION

Every program or system, no matter how well-designed, will need some

fine-tuning either to make it conform to user requirements or improve

performance. Some sort of adjustments may have to be made in this

regard in the form of testing and debugging.

Testing means verifying correct behaviour. Testing can be done at all

stages of module development: requirements analysis, interface design,

algorithm design, implementation, and integration with other modules.

Debugging, on the other hand, is a cyclic activity involving execution

testing and code correction. The testing that is done during debugging

has a different aim from final module testing. Final module testing aims

to demonstrate correctness, whereas testing during debugging is

primarily aimed at locating errors. This difference has a significant

effect on the choice of testing strategies. This unit discusses this

important aspect of software development.

CIT 108 PROBLEM SOLVING STRATEGIES

122

2.0 INTENDED LEARNING OUTCOME

At the end of this unit learners should be able to:

 Define and classify program testing

 Explain the desirable properties of program testing

 Appreciate the need for and benefits of program testing

 Understand the debugging process and programming errors

 Apply common strategies in debugging processes

3.0 MAIN CONTENT

3.1 Program Testing

Fundamentally, program testing is a process to check if the program or

the entire system is working same as it is supposed to do, or not working

as it is not supposed to do. Program testing is done by the tester to

identify the defects in the program or system to determine if actual result

of test case execution matches or not with expected result. It can be done

using manual and automated processes. The issues are logged against all

the failed cases and are communicated to the development team for

debugging and fixing. After the bug fixes the tester then retests the bug

and checks if the issues no more exist.

3.2 Types of Program Tests

3.2.1 Unit Test

Unit tests are low-level tests that focus on testing a specific part of the

system. They are cheap to write and fast to run. Test failures should

provide enough contextual information to pinpoint the source of the

error. Unit tests should be independent and isolated; interacting with

external components increases both the scope of the tests and the time it

takes for the tests to run. The size of a unit test depends on what we are

trying to do. Thinking in terms of a unit of behaviour allows writing

tests around logical blocks of code.

Example

Suppose we have the following function shown in Code 3-4-1 that takes

a list of words and returns the most common word and the number of

occurrences of that word:

CIT 108 MODULE 3

123

We can test this function by creating a list, running the

find_top_word() function over that list and comparing the results

of the function to the value we expect as given in Code 3-4-2:

If we ever wanted to change the implementation of

find_top_words(), we can do it without fear. Our test ensures that

the functionality of find_top_word() cannot change without

causing a test failure.

3.2.2 Integration Tests

Every complex application has internal and external components

working together to do something interesting. Integration tests combine

various parts of the system and test them together as a group. It refers to

testing at service boundaries of an application, i.e. when it goes out to

the database, file system, or external API (application program

interface). By definition, integration tests are larger in scope and take

longer to run than unit tests. This means that test failures require some

investigation: we know that one of the components in our test is not

working, but the failure's exact location needs to be found. Integration

tests should be run in a production-like environment; this minimizes the

chance that tests fail due to differences in configuration.

Example

Suppose we have the following function, shown in Code 3-4-3, that

takes in a URL (uniform resource locator) and a tuple of (word,

occurrences). Our function creates a records and saves it to the

database:

def find_top_word(words)

Return most common word & occurrences

word_counter = Counter(words)

return word_counter.most_common(1)[0]

Code 3-4-1: Function to check word occurrence

def test_find_top_word():

words = ["foo", "bar", "bat", "baz", "foo", "baz", "foo"]

result = find_top_word(words)

assert result[0] == "foo"

assert result[1] == 3

Code 3-4-2: Test driver program for word search function

CIT 108 PROBLEM SOLVING STRATEGIES

124

We test this function by passing in known information; the function

should save the information we entered into the database.

Our test code pulls the newly saved record from the database and

confirms its fields match the input we passed in as shown in Code 3-4-4.

This test is commonly performed by programmers whenever a function

is added to a module to confirm that the addition does not introduce

unwanted side effects. Automating this test saves us from having to

repeatedly check this functionality each time a change is made to the

code.

3.2.3 End-to-End Tests

End-to-end tests check to see if the system meets the defined business

requirements. A common test is to trace a path through the system in the

same manner a user would experience. For example, we can test a new

user workflow: simulate creating an account, "clicking" the link in the

activate email, logging-in for the first time, and interacting with our web

application's tutorial modal pop-up.

 def save_to_db(url, top_word):

record = TopWord()

record.url = url

record.word = top_word[0]

record.num_occurrences = top_word[1]

db.session.add(record)

db.session.commit()

return record

Code 3-4-3: Function to check word occurrences through a URL

 def test_save_to_db():

url = "http://test_url.com"

most_common_word_details = ("Python", 42)

word = save_to_db(url, most_common_word_details)

inserted_record = TopWord.query.get(word.id)

assert inserted_record.url == "http://test_url.com"

assert inserted_record.word == "Python"

assert inserted_record.num_occurrences == 42

Code 3-4-4: Test driver function for Code 3-4-3

CIT 108 MODULE 3

125

End-to-end tests are considered black box as we do not need to know

anything about the implementation in order to conduct testing. This also

means that test failures provide no indication of what went wrong; we

would need to use logs to help us trace the error and diagnose system

failure.

Example

In Code 3-4-5, the Flask Test client is used to run subcutaneous testing

on our REST API. There are a lot of things happening behind the scene

and the result we get back (HTTP status code) lets us know that the test

either passed or failed.

3.2.4 Functional Tests

Functional tests focus on the business requirements of an application.

They only verify the output of an action and do not check the

intermediate states of the system when performing that action. There is

sometimes a confusion between integration tests and functional tests as

they both require multiple components to interact with each other. The

difference is that an integration test may simply verify that one can

query the database while a functional test would expect to get a specific

value from the database as defined by the product requirements.

3.2.5 Smoke Tests

Smoke tests are basic tests that check basic functionality of the

application. They are meant to be quick to execute, and their goal is to

give one the assurance that the major features of the system are working

as expected. Smoke tests can be useful right after a new build is made to

decide whether or not one can run more expensive tests, or right after a

deployment to make sure that the application is running properly in the

newly deployed environment.

def test_end_to_end():

client = app.test_client()

body = {"url": "https://www.python.org"}

response = client.post("/top-word", json=body)

assert response.status_code == HTTPStatus.OK

Code 3-4-5: Test driver function for End-to-End Test

CIT 108 PROBLEM SOLVING STRATEGIES

126

3.3 Testing Properties

Fast

Tests give us confidence that our code is working as intended. A slower

feedback loop hampers development as it takes us longer to find out if

our change was correct. If our workflow is plagued by slow tests, we

won't be running them as often. This will lead to problems down the

line.

Deterministic

Tests should be deterministic, i.e. the same input will always result in

the same output. If tests are non-deterministic, we have to find a way to

account for random behaviour inside of our tests. While there is

definitely non-deterministic code in production (i.e. Machine Learning

and AI), we should try to make all our non-probabilistic code as

deterministic as possible. There is no point of doing additional work

unless our program requires it.

Automated

We can confirm our program works by running it. This could be

manually running a command in the REPL or refreshing a webpage; in

both cases, we are looking to see if our program does what it is

supposed to do. While manual testing is fine for small projects, it

becomes unmanageable as our project grows in complexity. By

automating our test suite, we can quickly verify our program works on-

demand.

3.4 Need for Program Testing

The requirement of rigorous testing and their associated documentation

during the software development life cycle arises because of the

following reasons:

1. To identify defects

2. To reduce flaws in the component or system

3. Increase the overall quality of the system

There can also be a requirement to perform software testing to comply

with legal requirements or industry-specific standards.

For example, assume you are using a Net Banking application to transfer

the amount to your friend's account. So, you initiate the transaction, get

CIT 108 MODULE 3

127

a successful transaction message, and the amount also deducts from

your account. However, your friend confirms that his/her account has

not received any credits yet. Likewise, your account is also not

reflecting the reversed transaction. This will surely make you upset and

leave you as an unsatisfied customer.

The question is, why did it happen? It is because of the improper testing

of the net banking application before release. Thorough testing of the

website for all possible user operations would lead to early identification

of this problem. Therefore, one can fix it before releasing it to the public

for a smoother experience.

3.5 Benefits of Program Testing

A well-thought-out testing strategy paired with thorough test cases

provides the following benefits:

Modify Code with Confidence

Tests give us confidence in our code. By running our tests after we

modify our code, we can confirm our changes did not break existing

functionality as defined by our tests. In contrast, modifying a code base

without tests is a challenge. There is no way of knowing if things are

working as intended.

Identify Bugs Early

Detecting and fixing program errors can be very expensive both in terms

of time and money. This cost increases as we move further down in the

software development life cycle (SDLC).

Improve System Design

Writing code with tests in mind improves system design. A thorough

test suite shows that the developer has actually thought about the

problem in some depth. Writing tests compels you to write your own

API which, hopefully results in a better interface.

3.6 Debugging

Debugging is a computer programing process for finding and resolving

errors in software or a website, often referred to as "bugs." It often

requires a comprehensive procedure to identify the reason why a bug

occurred and ensure a program can run smoothly for users in the future.

CIT 108 PROBLEM SOLVING STRATEGIES

128

Debugging allows application developers to address individual sections

of code to ensure that every part of a program operates in an expected

and optimal way.

3.6.1 Importance of Debugging

Debugging is important because it allows software engineers and

developers to fix errors in a program before releasing it to the public. It's

a complementary process to testing, which involves learning how an

error affects a program overall. If you examine each section of code, you

can discover which variables and functions to adjust systematically.

Debugging can also improve the quality of a product, which may

increase the number of positive reviews a company receives.

3.7 Types of Errors to Debug

Here are some examples of common errors you can encounter while

debugging and how to address them:

Syntax errors

Syntax errors are grammatical interruptions in a line of code. For

example, an extra bracket or period might cause a syntax error to occur.

A compiler can often recognize a syntax error then notify you in a

separate message screen about where it is in the code and how to fix it

using a debugging tool.

Logic errors

Logic errors are issues in the code's algorithms. They can occur when a

program's code produces an unexpected output or causes the program to

stop working. For example, adding two number-type variables when you

intended to divide them. You can resolve logic errors by using a

debugging tool to carefully examine the variable causing the issue in a

line of data.

Run-time errors

Run-time errors occur when a person uses the program and they're

detected by the computer executing it. For example, an operating system

might format code in a certain configuration that renders it unusable. To

address these errors, it's important to ensure an operating system has the

information it needs to run a program correctly.

CIT 108 MODULE 3

129

Interface errors

Interface errors involve a disconnect in an API, which means one or

both coding languages in an API cause this error to occur. For example,

an API might have certain requirements that are only present in the code

of one program. To address an interface error, compare and contrast

lines in your code with the other. Be sure to have records of any

debugging and testing processes you completed in the past to help

streamline this step.

3.8 Common Debugging Strategies

Consider the following list of eight debugging strategies in common use:

1. Run a Debugging Feature

Most debugging tools have a particular feature that allows one to debug

sections of code using one’s own methods. This strategy might be

especially helpful if the code produces unexpected results outside of a

compiler's capacity to find and address them.

2. Use the Scientific Method

The scientific method can be applied to the debugging process before

you enter code into a compiler. It involves an assumption you make

based on collected data, then a test you design and conduct to confirm or

refute it.

3. Debug after Adding New Code

When you finish a section of code, consider operating it through a

compiler and debugging tool before adding a new section. Adding

sections in these increments gives you the ability to identify errors more

immediately, as the bug is likely in the last section you included. It also

helps prevent one bug from causing several others to occur later on in

the coding language, which might make the debugging process more

precise and efficient overall.

4. Incorporate the Backtracking Method

Sometimes one area of code can cause an error in another. When you

identify an area containing a bug, consider analysing it from the

beginning until that point. Use the output information to examine the

values of the variables and determine the first place you can observe an

CIT 108 PROBLEM SOLVING STRATEGIES

130

unexpected result. This gives you the information you need to debug it

entirely.

5. Perform the Binary Search Method

Similar to the previous strategy, the binary search method involves

separating sections of code to streamline the debugging process. This

may be especially helpful if the cause of a bug is at the beginning of a

coding language, while the actual error is closer to the end.

6. Classify Different Bug Types

In some debugging processes, one may find similar errors across

different sections. It may be helpful to group these errors and label them

for organisational purposes. One error can also be chosen from each

group for a debugging procedure, which may show how to address an

entire group. This strategy allows debugging a large group of errors with

one action, improving the quality of one’s efforts and increasing the

overall productivity.

7. Involve Static Code Analysis

In static analysis, you use a specific set of coding rules to frame your

evaluations, then use the data you collect to identify errors. This strategy

may be especially helpful for testing new code you intend to add.

8. Try Remote Debugging

Remote debugging involves running a program code on the software of

a separate computer. This strategy may especially be helpful if you

require a debugging tool that's on another machine in a separate

location. To try a remote debugging process, you can synchronise the

computer system you're currently using to debug to another by linking

two servers and then opening the other system's debugging software on

your own.

CIT 108 MODULE 3

131

3.9 Difference between Testing and Debugging

Table 3-4-1 below compares the processes of testing and debugging.

Table 3-4-1:

Comparative

Analysis of

Testing and

Debugging

S/No

Testing Debugging

1 Testing gets started with

known conditions with

expected results.

This is manual step by step

unstructured and unreliable

process to find and removes a

specific bug from the system.

2 It performed based on

the testing type.

It performed based on the

type of bug.

3 Testing is a process

which can be planned,

designed and executed.

Debugging is a process which

cannot be so forced.

4 It is a process to

identify the failure of

implemented code.

It is a process to give the

absolution to code failure.

5 It is a demonstration of

error or apparent

correctness.

It is always treated as a

deductive process.

6 Design knowledge is

not required for testing

the system under test.

Any person with test

case can perform

testing.

Detailed design knowledge is

definitely required to perform

debugging.

7 Testing can be

outsourced to outside

team as well.

Debugging cannot be

outsourced to outside team. It

must be done by inside

development team.

8 Most of the test cases in

testing can be

Automation in the debugging

cannot be done.

CIT 108 PROBLEM SOLVING STRATEGIES

132

automated.

9 Testing is the process to

identify the bugs in the

system under test.

Debugging is the process to

identify the root cause of the

bugs.

CIT 108 MODULE 3

133

4.0 CONCLUSION

The importance of software testing is imperative. Program testing is a

crucial component of software product development because it improves

consistency and performance. The main benefit of testing is the

identification and subsequent removal of the errors. However, testing

also helps developers and testers to compare actual and expected results

in order to improve quality. If the software production happens without

testing it, it could be useless or sometimes dangerous for customers. So,

a tester should wear a unique hat that protects the reliability of the

software and makes it safe to use in real-life scenarios.

5.0 SUMMARY

Testing means verifying correct behaviour and can be done at all stages

of module development: requirements analysis, interface design,

algorithm design, implementation, and integration with other modules.

Its primary purpose is to detect software failures so that defects may be

discovered and corrected. Testing cannot establish that a product

functions properly under all conditions, but that it does not function

abnormally under specific conditions. Debugging is a cyclic activity

involving execution testing and code correction. The testing that is done

during debugging has a different aim from final module testing. Final

module testing aims to demonstrate correctness, whereas testing during

debugging is primarily aimed at locating errors. This difference has a

significant effect on the choice of testing strategies

6.0 SELF ASSESSMENT EXERCISE

1. List the common types of program errors

2. State the importance of program testing

3. Differentiate between program testing and debugging

4. Explain the different types program tests

5. Discuss 5 debugging techniques in common practice

7.0 REFERENCES/FURTHER READINGS

Anwar, N., & Kar, S. (2019). Review paper on various software testing

techniques & strategies. Global Journal of Computer Science and

Technology.

Dutta, S., Zhang, W., Huang, Z., & Misailovic, S. (2019). Storm:

program reduction for testing and debugging probabilistic

programming systems. In Proceedings of the 2019 27th ACM Joint

Meeting on European Software Engineering Conference and

CIT 108 PROBLEM SOLVING STRATEGIES

134

Symposium on the Foundations of Software Engineering (pp. 729-

739).

Kirschner, L., Soremekun, E., & Zeller, A. (2020). Debugging inputs. In

2020 IEEE/ACM 42nd International Conference on Software

Engineering (ICSE) (pp. 75-86). IEEE.

Michaeli, T., & Romeike, R. (2017). Addressing teaching practices

regarding software quality: Testing and debugging in the

classroom. In Proceedings of the 12th Workshop on Primary and

Secondary Computing Education (pp. 105-106).

Perez, I., & Nilsson, H. (2017). Testing and debugging functional

reactive programming. Proceedings of the ACM on Programming

Languages, 1(ICFP), 1-27.

Wambugu, G. M., & Mwiti, K. (2017). Automatic Debugging

Approaches: A literature Review.

Widyasari, R., Sim, S. Q., Lok, C., Qi, H., Phan, J., Tay, Q., ... & Ouh,

E. L. (2020). Bugsinpy: a database of existing bugs in python

programs to enable controlled testing and debugging studies. In

Proceedings of the 28th ACM joint meeting on european software

engineering conference and symposium on the foundations of

software engineering (pp. 1556-1560).

	CIT 108 COURSE GUIDE.pdf
	INTRODUCTION
	COURSE AIM
	COURSE OBJECTIVES
	WORKING THROUGH THIS COURSE
	Study Units
	PRESENTATION SCHEDULE
	ASSESSMENT
	TUTOR-MARKED ASSIGNMENT (TMAS)
	The TMA is a continuous assessment component of the course. It accounts for 30% of the total score. Learners will be given four TMAs to answer. Three of these must be answered before they are allowed to sit for end of course examination. The TMAs woul...
	FINAL EXAMINATION AND GRADING
	COURSE MARKING SCHEME
	FACILITATORS/TUTORS AND TUTORIALS
	SUMMARY

	CIT 108 MAIN COURSE.pdf
	CIT 108 MODULE 1PROBLEM SOLVING STRATEGIES.pdf
	3.3 Trial and Error
	Figure 1-1-1: Graphical representation of nodes (circles) and moves (lines) of Tower of Hanoi.
	3.6.1 Past Experience
	3.6.2 Bring in a facilitator
	3.6.3 Develop a decision matrix for evaluation
	3.6.4 Ask your peers for help
	3.6.5 Step away from the problem
	3.2.1 Example: The Merge Sort Algorithm
	Combine

	Example: The Merge Sort Algorithm
	Let the given array be:

	3.2.1 Advantages of Divide and Conquer Algorithms
	3.2.2 Disadvantages of Divide and Conquer Algorithms
	Recursion vs Dynamic Programming
	3.4.1 Characteristics of the Greedy Algorithm
	3.4.2 Motivations for Greedy Approach
	3.4.3 Greedy Algorithms vs Dynamic Programming

	CIT 108 MODULE 2 ROLE OF ALGORITHM IN PROBLEM SOLVING.pdf
	3.7.2 Disadvantages
	3.2 Symbols Used in Creating a Flowchart
	3.2.2 Intermediate and Advanced Flowchart Symbols
	Document Symbols
	Data Symbols
	Merging & Connecting Symbols
	Additional Useful Flowchart Symbols

	3.3 Common Flowchart Types
	3.3.1 The Process Flowchart
	3.3.2 The Workflow Chart or Workflow Diagram
	3.3.3 The Swimlane Flowchart
	3.3.4 The Data Flowchart
	3.3.5 Software Engineering or Programming
	3.4.1 Sales & Marketing
	3.4.2 Manufacturing
	3.4.3 Business Operations

	3.5 Considerations in Flowcharting
	3.5.1 Style and Design
	3.5.2 Text and Content
	3.5.3 Access and Communication

	3.2 Reasons for using Pseudocode
	3.3 The main constructs of pseudocode
	3.4 Rules for writing pseudocode
	3.5 Advantages of Pseudocode

	CIT 108 MODULE 3 IMPLEMENTATION STRATEGIES.pdf
	3.2 Why the need for Recursion?
	3.2.1 A Typical Scenario: Hierarchies, Networks, or Graphs

	3.2.2 Mission Statements
	3.3 The Call Stack
	Recursion and the Call Stack
	3.4 Avoiding Circularity in Recursion
	3.5 Overhead of Recursion
	Linear Recursive
	Binary Recursive
	3.6.2 Exponential recursion
	3.6.3 Nested Recursion
	3.6.4 Mutual Recursion
	3.2 Selection
	3.2.1 The If Statement
	3.2.2 The If-Else Statement

	3.2.3 SELECT CASE Statement
	For a multi-way branching such as the above example, a handy construct to implement such scenario is the Select Case statement, also referred to as CASE statement.
	The following is its syntactic form:
	Example 3

	3.3 Iteration (Looping)
	3.3.1 For Loops
	3.3.2 While Loops
	3.3.3 Repeat Loops
	Though we have seen and explained Control Structures in isolation, they can actually be combined in any way desired: Loops may contain several internal Loops; Conditionals may contain Loops and Conditionals, the options are endless. You can develop ad...

	3.1.1 Approach to Problem Decomposition
	 Readability Modular code is code that is highly organized. To organize code based on task means that the programmer can organize each piece of code based on what it does. Then, she can easily find or reference that code based on her organization sch...
	3.2.2 Basic concept of Modularisation
	Program Control Function
	Specific Task Function

	1. Manageability
	2. Promotes Team Programming
	3. Improved Quality

	3.1 Program Testing
	3.2 Types of Program Tests
	Example
	3.2.2 Integration Tests
	Example

	3.2.3 End-to-End Tests
	Example

	3.2.4 Functional Tests
	3.2.5 Smoke Tests
	3.3 Testing Properties
	Fast
	Deterministic
	Automated

	3.5 Benefits of Program Testing
	Modify Code with Confidence
	Identify Bugs Early
	Improve System Design

	3.6 Debugging
	3.7 Types of Errors to Debug
	Syntax errors
	Logic errors
	Run-time errors
	Interface errors

	3.8 Common Debugging Strategies
	1. Run a Debugging Feature
	2. Use the Scientific Method
	3. Debug after Adding New Code
	4. Incorporate the Backtracking Method
	5. Perform the Binary Search Method
	6. Classify Different Bug Types
	7. Involve Static Code Analysis
	8. Try Remote Debugging

	3.9 Difference between Testing and Debugging

