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INTRODUCTION  

Discrete Structures is a 3- credit unit course. It is for students studying 

with a goal of acquiring the Bachelor of Science degree in Computer 

Science. This course will be a study of discrete objects and the 

relationship between them and introduce the applications of discrete 

mathematics in the field of Computer Science. This course also covers 

sets, logic, proving techniques, combinatorics, functions, relations, 

graph theory and Boolean algebra.  

The general objectives of this course are to familiarise students with the 

basic concepts of sets, logic, functions, matrices and graph theory. 

The structuring of this course commences with an introduction to 

discrete structures and move to the Boolean algebra and lattices. 

WHAT YOU WILL LEARN IN THIS COURSE  

This course is aimed at providing directions on what you should be 

expected to achieve at the end of studying this course. Individually, the 

units have their own unit objectives. They state precisely what you 

should achieve in the corresponding unit. Additionally, in order to 

continuously evaluate your progress-levels, you will be expected to refer 

to the overall aims and objectives of the course along with the 

corresponding unit objectives upon its completion. 

COURSE AIMS 

The aims and objectives of this course will help you to: 

1. Improve your knowledge and understanding of the basic concepts 

 of sets. 

2. Develop your ability to evaluate logic and different induction 

 techniques. 

3. Improve your skills in sets operations. 

4. Build up your knowledge on graph to design complex network 

 connections. 

 

COURSE OBJECTIVES 

At the completion of the course, you should be able to: 

1. Prove basic set equalities;  

2. Write an argument using logical notation and determine if the 

 argument is valid or not;  
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3. Demonstrate the ability to write and evaluate a proof using 

mathematical induction;  

4. Demonstrate an understanding of relations and functions and be 

 able to determine their properties;  

5. Recognize the use of Karnaugh map to construct and minimize 

 the canonical sum of products of Boolean expressions and 

 transform it into an equivalent Boolean expression;  

6. Demonstrate different traversal methods for trees and graphs;  

7. Discriminate between a Eulerian graph from a Hamiltonian graph 

 for use in solving mathematical problems;  

8. Model problems in Computer Science using graphs and trees;  

9. Apply counting principles to determine probabilities. 

 

WORKING THROUGH THIS COURSE  

To have a comprehensive understanding of the units in this course, it is 

vital that you carefully read and understand the contents of this course, 

practice the steps and techniques involved in order. Approximately, this 

course covers thirteen weeks. It requires your dedicated attention and 

demands you answering the exercises in the tutor-marked assignments 

and gets them submitted to your tutor(s). 

COURSE MATERIALS  

These include:  

1. Course Guide 

2. Study Units 

3. Recommended Texts 

4. A file for your assignments and for records to monitor your 

 progress.  

STUDY UNITS  

There are three (3) Modules and eight (8) Units in this course: 

Module 1 Introduction to Discrete Structures 

Unit 1  Set Theory 

Unit 2  Proofs and Induction 

Unit 3  Logic 
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Module 2 Boolean Algebra and Graph Theory  

Unit 1  Boolean Algebra and Lattices 

Unit 2  Graph Theory 

 

Module 3  Matrices, Applications to Counting and Discrete  

  Probability  

Unit 1   Matrices  

Unit 2   Applications to Counting 

Unit 3   Discrete Probability Generating Function 

 

Therefore, from the foregoing, the contents of the course can be grouped 

into three major blocks: 

1. Introduction to Discrete Structures 

2. Boolean Algebra and Graph Theory  

3. Matrices, Applications to Counting and Discrete Probability 

Module one describes the Set Theory, a mathematical theory that 

underlies all of modern mathematics. 

Module two explain in details the Boolean algebra and graph theory. 

Module three discusses matrices, application to counting and discrete 

probability. 

TEXTBOOKS AND REFERENCES 

 THEORY AND PROBLEMS OF DISCRETE 

MATHEMATICS- Seymour Lipschutz., 3rd Edition, Marc Lars 

Lipson. Schaum’s Outline Series, McGraw-Hill. DOI: 

10.1036/0071470387 

 DISCRETE MATHEMATICS – An Open Introduction 3rd 

Edition, Oscar Levin, 2019. ISBN: 978-1792901690 

 DISCRETE MATHEMATICS AND ITS APPLICATION, 

Kenneth H. Rosen, Tata McGraw-Hill Editions, 2003 

 INTRODUCTION TO GRAPH THEORY – Richard.J. Trudean, 

Dover publisher, Inc New York, 2013. ISBN: 13: 978-0-486-

67870-2 

 A TEXT BOOK OF GRAPH THEORY – Balakrishnan, R and 

Ranganathan, K, 2012. Department of Mathematics, University 

of Tiruchirappalli India. ISBN: 2191-6675 (electronic) 
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 PURE MATHEMATICS FOR ADVANCED LEVEL - Bunday, 

BD and Mulholland, H. (2014). Second edition. Published by 

Elsevier science. ISBN: 1483106136, 9781483106137  

 DISCRETE STRUCTURES, LOGIC AND COMPUTABILITY. 

 James, H. (2017). Published by Jones and Bartlett. Fourth 

 Edition. ISBN:978-284-07040-8. 

 A COURSE IN DISCRETE STRUCTURES - Pass, R., & Tseng, 

 W. L. D (2019).  Wei-Lung Dustin Tseng, Site Internet: 

 www.freechbooks.com(2019) 

 DISCRETE MATHEMATICS FOR COMPUTER SCIENCE - 

 Haggard, G., Schlipf J., Whitesides, S., (2006). Thomson 

 Brooks/Cole. 

PRESENTATION SCHEDULE  

The Presentation Schedule included in your course materials gives you 

the important dates for the completion of tutor-marked assignments and 

attending tutorials. Remember, you are required to submit all your 

assignments by the due date. You should guard against lagging behind 

in your work. 

ASSESSMENT 

There are two types of assessment for this course. The first one is the 

tutor-marked assignment and the second is a written examination. In 

tackling the assignments, you are expected to apply information and 

knowledge acquired during this course. The tutor-marked assignments 

must be submitted to your tutor, for formal assessment in accordance 

with the deadlines stated in the assignment file.  

The work you submit to your tutor for assessment will count for 30% of 

your total course mark. At the end of the course, you will need to sit for 

a final three-hour examination. This also accounts for 70% of your total 

course mark. 

COURSE MARKING SCHEME  

This table shows how the actual course marking is broken down:  

Assessment Marks 

Assignment (4 

or 5) 

The best three marks of all assignments 

administered. 30% of course marks 

Examination 70% of course marks 

Total 100% of course marks 
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HOW TO GET THE MOST FROM THE COURSE  

In distance learning, the study units replace the university lecturer. This 

is one of the great advantages of distance learning; you can read and 

work through specially designed study materials, at your own pace, and 

at a time and place that suit you best. Think of it as reading the lecture 

instead of listening to a lecturer. In the same way that a lecturer might 

set you some reading to do, the study units tell you when to read your 

set books or other material. Just as a lecturer might give you an in-class 

exercise, your study units provides exercises for you to do at appropriate 

points.  

Each of the study units follows a common format. The first item is an 

introduction to the subject matter of the unit, and how a particular unit is 

integrated with the other units and the course as a whole. Next is a set of 

learning objectives. These objectives enable you know what you should 

be able to do by the time you have completed the unit. You should use 

these objectives to guide your study. When you have finished the units, 

you must go back and check whether you have achieved the objectives, 

in order to significantly improve your chances of passing the course.  

Remember that your tutor’s job is to assist you. When you need help, 

don’t hesitate to call and ask your tutor to provide it.  

1.  Read this course guide thoroughly.  

2.  Organise a study schedule. Refer to the “course overview‟ for 

more details. Note the time you are expected to spend on each 

unit and how the assignments relate to the units. Whatever 

method you choose to use, you should decide on it and write in 

your own date, for working on each unit.  

3.  Once you have created your own study schedule, do everything 

you can, to stick to it. The major reason that students fail is that, 

they lag behind in their course work.  

4.  Turn to unit 1 and read the introduction and objectives for the 

unit.  

5.  Assemble the study materials. Information about what you need 

for a unit is given in the “overview‟ at the beginning of each unit. 

You will almost always need both the study unit you are working 

on and one of your set of books on your desk at the same time.  

6.  Work through the unit. The content of the unit itself has been 

arranged, to provide a sequence for you to follow. As you work 

through the unit, you will be instructed to read sections from your 

set of books or other articles. Use the unit to guide your reading.  

7.  Review the objectives for each study unit to confirm that you 

have achieved them. If you are not sure about any of the 

objectives, review the study material or consult your tutor.  
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8.  When you are confident that you have achieved a unit’s 

objectives, you can then start on the next unit. Proceed unit by 

unit through the course and try to pace your study, so that you 

can keep yourself on schedule.  

9.  When you have submitted an assignment to your tutor for 

marking, do not wait for its return before starting on the next unit. 

Keep to schedule. When the assignment is returned, pay 

particular attention to your tutor’s comments, both on the tutor- 

marked assignment form and also on the assignment. Consult 

your tutor as soon as possible, if you have any question or 

problem.  

10.  After completing the last unit, review the course and prepare 

yourself for the final examination. Check that you have achieved 

the unit objectives (listed at the beginning of each unit) and the 

course objectives (listed in this course guide).  

 

FACILITATION  

There are 12 hours of tutorials provided in support of this course. You 

will be notified of dates, times and locations of these tutorials, together 

with the name and phone number of your tutor, as soon as you are 

allocated a tutorial group.  

Your tutor will mark and comment on your assignments, keep a close 

watch on your progress and on any difficulty you might encounter, and 

provide assistance to you during the course. You must mail or submit 

your tutor-marked assignments to your tutor well before the due date (at 

least two working days are required). They will be marked by your tutor 

and returned to you as soon as possible.  

Do not hesitate to contact your tutor by telephone, or e-mail if you need 

help. The following might be circumstances in which you would find 

help necessary. Contact your tutor if:  

 you do not understand any part of the study units or assigned 

 reading  

 you have difficulty with the self-test or exercises  

 you have a question or problem with an assignment, with your 

 tutor’s comments on an assignment or with the grading of an 

 assignment.  

You should try your best to attend the tutorials. This is the only chance 

to have face to face contact with your tutor and ask questions, which are 

answered instantly. You can raise any problem encountered in the 

course of your study. To gain the maximum benefit from course 
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tutorials, prepare a question list before attending them. You will learn a 

lot from participating in discussions actively. 

SUMMARY 

The course, Discrete Structures is intended to get student acquainted 

with the basic principles of sets and operations in sets and to enable 

them prove basic set equalities. This course also provides you with 

knowledge on how to write an argument using logical notation and 

determine if the argument is valid or not. 

We hope that you will find the course enlightening and that you will find 

it both interesting and useful. In the longer term, we hope you will get 

acquainted with the National Open University of Nigeria and we wish 

you every success in your future 

Course Information: 

Course Code:  CIT 206 

Course Title:  Discrete Structures 

Credit Unit:  3 

Course Status: Compulsory 

Academic Year: 2022 

Semester:  Second 

Course Team 

Course Developer: NOUN 

Course Writer: Enem Theophilus Aniemeka (Ph.D.) 

Course Coordinator: Osang Francis (Ph.D.) 

Content Editor: Assoc. Prof. Emmanuel Gbenga Dada   
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MODULE 1  INTRODUCTION TO DISCRETE   

   STRUCTURES 

Unit 1  Set Theory 

Unit 2  Proofs and Induction 

Unit 3  Logic 

 

UNIT 1 SET THEORY 

CONTENTS 

1.0  Introduction  

2.0 Intended Learning Outcomes (ILOs)  

3.0 Main Content 

 3.1 Introduction to Mathematical Statements  

  3.1.1 Statement Definition 

  3.1.2 Logical Connectives 

 3.2 Sets 

  3.2.1 Definition of Set 

  3.2.2 Notations 

  3.2.3 Operations on Set 

  3.2.4 Rules of Set theory 

  3.2.5 Disjoint Set 

  3.2.6 Power Set 

  3.2.7 Venn Diagram 

 3.3 Relations 

  3.3.1 Definition of Relations 

4.0  Conclusion  

5.0  Summary  

6.0  Tutor-Marked Assignment  

7.0  References/Further Reading 

 

1.0 INTRODUCTION 

This unit describes Set Theory, a mathematical theory that underlies all 

of modern mathematics. Talking and writing about mathematics remains 

the best way to understand mathematics. Mathematics is not all about 

finding solutions to given tasks. Therefore, as we tackle a more 

advanced and abstract mathematics in this unit, your basic 

understanding of it will be helped by how well you can read, write and 

talk about mathematical statements. 
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2.0 INTENDED LEARNING OUTCOMES (ILOS)  

At the end of this unit you should be able to: 

 Learn basic properties of sets and operations of sets. 

 Work with sets, precisely define the number of elements of a 

 finite set. 

 Learn the essentials of mathematics. 

 Describe what a declarative statement is. 

 

3.0 MAIN CONTENT 

3.1 Introduction to Mathematical Statements  

We will take a few examples of mathematical statements to illustrate 

what a proper communication in mathematics is all about. 

3.1.1  Statement Definitions 

A statement is a declarative sentence that is either true or false. A 

statement is said to be an Atomic Statement if it cannot be divided into 

smaller statements, else it is termed a Molecular Statement. 

 

Example 3.1.1.1 

These statements are examples of atomic statements: 

• Mobile numbers in Nigeria have 11 digits. 

• 5 is larger than 7. 

• 12 is a perfect square. 

• Every even number that is greater than 2 can be expressed as the sum 

of two prime numbers. 

However, these examples are not statements: 

• Would you like some ice cream? 

• The product of two numbers. 

• 1 + 3 + 5 + 7 + · · · + 2n + 1. 

• Go to the lecture room! 
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• 4 + x = 15 

This sentence “4 + x = 15” is clearly not a statement. This is because it 

contains an unknown variable, x. The sentence is either true or false, 

depending on the value of x. However, at the moment, it is neither true 

nor false. We can also build a complicated (molecular) sentence by 

combining more than one or more simple atomic or molecular sentences 

by using Logical Connectives. An example of a molecular statement is: 

Mobile numbers in Nigeria have 11 digits and 5 is larger than 7. 

This example of a molecular statement can also be broken down into 

smaller statements which were only connected by an “and”. Obviously, 

molecular statements are also statements, therefore, they must be either 

true or false. The five connectives we can consider are “and”, “or”, “if… 

then”, “if and only if”, and “not. 

 “and”  -  I am a boy and my sister is a girl. 

“or”   -  Delight is a boy or a girl. 

“if… then” - If you register then you can write the exam. 

“if and only if”- You can register if and only if you were admitted. 

“not  - You are not admitted. 

The connectives, “and”, “or”, “if… then”, “if and only if”, connects two 

statements and are called binary connectives while the connective “not” 

applies to only a single sentence and is called a unary connective. 

In order to determine the truth values of molecular statements, the key 

observation to make is to completely determine what the truth values of 

the parts are and the type of connective(s). We do not necessarily have 

to know what the individual parts actually say, we however, only need 

to know whether those parts are true or false. Therefore, in order to 

analyse logical connectives, we use propositional variables (also called 

sentential variables) which are the characters found in the middle of the 

English alphabets represented in capital: P, Q, R, S, … to represent each 

atomic statements in the molecular statement. These variables can only 

have two values, true or false. The logical connectives: “and”, “or”, 

“if… then”, “if and only if”, and “not” can be represented by these 

symbols , , →, ↔, and ¬ respectively. 
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3.1.2 Logical Connectives 

• P ∧ Q means “P and Q,” and it is termed a conjunction. 

• P ∨ Q means “P or Q,” and it is termed a disjunction. 

• P → Q means “if P then Q,” and it is termed an implication or 

conditional. 

• P ↔ Q means “P if and only if Q,” and it is termed a bi-conditional. 

• ¬P means “not P,” and it is called a negation. 

The truth value of a statement is determined by the truth value(s) of its 

part(s), depending on the connectives: 

Truth Conditions for Connectives. 

• P ∧ Q is true whenever P and Q are both true. 

• P ∨ Q is true whenever P or Q or both are true. 

• P → Q is true whenever P is false or Q is true or both. 

• P ↔ Q is true whenever P and Q are both false, or both true. 

• ¬P is false whenever P is true and vice versa. 

3.2 Sets 

Sets are the most fundamental objects in all of mathematics.  

3.2.1 Definition of Set: An informal definition of set is that a set is an 

unordered collections of objects. These objects comprise of the set are 

termed elements. The number of objects in a set can be finite or infinite. 

3.2.2 Notations 

A single set, A can be expressed with the following notations: 

A = {1, 2}; A = {2, 1}; A = {1, 2, 1, 2}; A = {a : a is an integer, 1 ≤ a < 

3} 

The notation, A = {1, 2} is read as, “A is the set containing the elements 

1 and 3.”  
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The curly braces “{ }” is used to enclose the elements of the set and the 

comma “,” is used to separate the elements inside the braces. 

The symbol “:”  (or “|:” or “”), implies “such that”. Therefore, the 

notation, {a : a is an integer, 1 ≤ a < 3} is read as “the set of all a such 

that a is an integer between 1 and 3 (1 inclusive and 3 exclusive)”. 

Considering the notation: 

5 ∈ {1, 2, 5} 

The symbol “∈” implies “is in” or “is an element of.” Therefore, the 

notation is read as 5 is an element of a set containing 1,2, and 5. This is 

a true statement. We can also write another true statement if we say that 

3 “is not” an element of the set containing 1,2, and 5. This can be 

written as: 

3 ∉ {1, 2, 5} 

Some other notations 

⊆: A ⊆ B means that A is a subset of B  every element of A is also 

an element of B. 

If A is {2, 3, 4}, B is {2, 3, 4, 5}. Then A ⊆ B. 

If A is {2, 3, 4}, B is {2, 3, 4}. Then A ⊆ B and B ⊆ A. 

If A is {2, 3, 4, 5}, B is {2, 3, 4, 6, 7}. Then B ⊈ A. 

⊂:   A ⊂ B means that A is a proper subset of B  every element of 

A is also an element of B, but every element of B is not an element of A. 

Let A = {2, 3, 4} and B = {1, 2, 3, 4, 5}. Then, A ⊂ B. 

If A is {2, 3, 4}, B is {2, 3, 4}. Then, A ⊄ B (reads as A is a NOT a 

proper subset of B). 

U: A fixed set which contains all other sets under investigation is 

called universal set. In other words, all other sets under investigation 

are subsets of the universal set and it is denoted by U. 

Example: Considering population of humans, the universal set consist 

of every person in the world. 
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3.2.3 Operations on Sets 

∪:  A ∪ B is the union of A and B: is the set containing all elements 

 which are elements of A or B or both. 

If A is {1, 2, 4, 5}, B is {2, 3, 4}. Then A ∪ B = {1, 2, 3, 4, 5} 

∩:  A ∩ B is the intersection of A and B: the set containing all 

 elements which are elements of both A and B. 

If A is {1, 2, 4, 5}, B is {2, 3, 4}. Then A ∩ B = {2, 4} 

\:  A \ B is A minus B. That is the set containing all elements of A 

 excluding all elements of B that appears in A. 

Let A = {1, 2, 4, 5, 6}, B = {2, 3, 4}.  

Then A \ B = {1, 5, 6} and B/A = {3}. 

Ac or 𝐴 :  The complement of A is the set of everything that is not 

 an element of A. 

Let the universal set, U be {1, 2, . . ., 9, 10}, A = {2, 3, 4}. Then Ac = 

{1, 5, 6, …, 9, 10}. 

|A|:  The cardinality or size of a set, A is the number of elements that 

 exists in A. 

 |{1, 2, 3}| = |{a, b, c}| = |{1,{1, 2}, 5}| = |{1, 2, ∅}| = 3. 

×:  A × B is the Cartesian product of two non-empty sets A and B 

 is the set of all the ordered pairs (a, b) with a ∈ A and b ∈ B. 

Let A be a set. A × A is the set of ordered pairs (x, y)  x, y ∈ A.  

The expression A × A × · · · × A (n times) can also be denoted as An 

which is the set of all ordered subsets (with repetitions) of A of size n. 

Examples 

i. {0, 1}n the set of all “strings” of 0 and 1 of length n. 

ii. Let A = {1, 2}, B = {3, 4, 5}. Then A × B = {(1, 3), (1, 4), (1, 5), 

(2, 3), (2, 4), (2, 5)}. 
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Example 3.2.3.1 

Prove that if A × B = B × A, then A = B. 

Solution 3.2.3.1 

Proof: Let’s take A × B = B × A. This implies that A ⊆ B and B ⊆ A. 

Therefore, A = B. 

3.2.4 Rules of Set Theory 

Let A, B and C be sets.  

i. Commutative Law: (A ∪ B) = (B ∪ A) and (A ∩ B) = (B ∩ A). 

ii. Associative Law: (A ∪ (B ∪ C)) = ((A ∪ B) ∪ C) and (A ∩ (B ∩ 

 C)) = ((A ∩ B) ∩ C). 

iii. Distributive Law: (A ∪ (B ∩ C)) = (A ∪ B) ∩ (A ∪ C) and (A ∩ 

 (B ∪ C)) = (A ∩ B) ∪ (A ∩ C). 

iv. De Morgan’s Law: (A ∪ B)C = (Ac ∩ Bc) and (A ∩ B)C = (Ac ∪ 

 Bc) 

   

Some special sets we will consider in this unit:  

• ∅   The empty set that contains no element (also denoted as { }). 

• U  A universal set, is the set of all elements. 

• ℕ  Non-negative integers: {0, 1, 2, 3, . . . }. 

• ℕ +  Positive integers: {1, 2, 3, . . . }. 

• ℤ  Integers: {. . .  −2, −1, 0, 1, 2 . . . }. 

• ℚ  Rational numbers: {q | q = a/b, a, b ∈ ℤ, b 6= 0}. 

• ℚ+  Positive rational: {q | q ∈ Q, q > 0}. 

• ℝ  Real numbers. 

• ℝ+  Positive reals. 

• P(A)  The power set of any set A is the set of all subsets of A. 
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3.2.5 Disjoint Set 

Sets X and Y are called disjoint sets, if they contain no common 

elements, that is, no element of X is in Y and no element of Y is also in 

X. 

Example 3.2.5.1: 

i. Given 𝑋 = {1,2,3} and 𝑌 = {4,5,6}, then 𝑋 and 𝑌 are disjoint 

 sets. 

ii. If 𝐴 = {𝑏, 𝑐, 𝑑} and 𝐵 = {𝑑, 𝑒, 𝑔}, then 𝐴 and 𝐵 are not disjoint 

 sets, since 𝑑 is in both sets. 

3.2.6 Power Set 

The power set of A is the set of all subsets of A, and it is represented as 

P(A)   

Example 3.2.6.1 Find P(A), if A = {1, 2, 3}. 

Solution 3.2.6.1 By definition of power set,  

P(A) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. 

Note: The power set of any set is normally, 2n, where n is the cardinality 

of the set A. Therefore, since the cardinality of A in Example 3.2.6.1 is 

3, the cardinality of the power set of A, |P(A)| = 23 = 8. 

Note: Although 1 ∈ A, it will be wrong to say that 1 ∈ P(A) because 

there are no elements of P(A) that are numbers. However, we can say 

that {1} ∈ P(A) because {1} ⊆ A. 

We can relate the symbols of union and intersect to resemble the logic 

symbols of “or” and “and”. Remember that the statement x ∈ A ∪ B is 

read as x is an element of either A or B. Therefore,  

x ∈ A ∪ B ↔ x ∈ A ∨ x ∈ B. 

Similarly, 

x ∈ A ∩ B ↔ x ∈ A ∧ x ∈ B. 

Also, 

x ∉ A ↔ ¬(x ∈ A) 
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Example 3.2.6.2 

Let A = {2, 4, 6}, B = {1, 2, 3, 4, 5, 6}, C = {1, 2, 3}, D = {1, 3, {4, 5}, 

x}, and  

E = {7, 8, 9}. 

Determine each statement to be either a true, false, or meaningless 

statement. 

i. A ⊂ B.  ii. B ⊂ A.  iii. A ∈ C. iv. ∅ ∈ B. v. ∅ ⊂ A. 

vi. A < E. vii. 2 ∈ C. viii. x ⊂ D. ix. {9} ⊂ P(E). 

Solution 3.2.6.2 

i.  True. All the elements in A are also elements in B. 

ii.  False. 1 ∈ B but 1 ∉ A. 

iii.  False. The set C contains the elements 1, 2, and 3. The set A is 

 not equal to 1, 2, or 3. 

iv.  False. B contains exactly 6 elements with none been an empty 

 set. 

v.  True. An empty set is a subset of every set, therefore, it is a 

 subset of A. 

vi.  Meaningless. This is because a set cannot be bigger than or lesser 

 than another set. 

vii.  True. 2 is an elements of C. 

viii.  Meaningless. Since x is not a set, it therefore cannot be a subset 

 of another set. 

ix.  True. {9} is an element of P(E). 

3.2.7 Venn Diagrams  

A Venn Diagram is a great tool used to visualize and represent 

operations on sets. It is used to display sets as intersecting circles. 

Therefore, we can highlight a region under consideration when we carry 

out an operation. The cardinality of a set can be represented by putting 

numbers in the corresponding area. 
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3.3 Relations 

3.3.1 Definition : A relation on a single set B is a subset of B × B. A 

relation on two sets B and C is a subset of B × C. Now, let’s consider 

relationships among sets. For example, we can say that X is married to 

Y and they both have a child, Z. In our daily lives, we deal a lot with 

talks about relationships. For example, if we consider two human beings 

(B, C), “taller-than”, “smarter-than” are relations between them. That is 

(B, C) ∈ “taller-than” if the person B is taller than the person C. “≥” is a 

relation on ℝ. “≥” = {(b, c) | b, c ∈ ℝ, b ≥ c}.  

3.3.2 Definition:  A relation R on a set S is:  

i. Reflexive: if ∀ x ∈ S, (x, x) ∈ R. (∀ means for all) 

ii. Symmetric: if ∀x, y ∈ S, whenever (x, y) ∈ R, (y, x) ∈ R.  

iii. Transitive: if ∀x, y, z ∈ S, whenever (x, y) ∈ R and (y, z) ∈ R, 

 then (x, z) ∈ R. 

Example 3.3.1.1 

i. “≤” is reflexive, however, “<” is not. 

ii. “sibling-of” is symmetric, however, “≤” and “sister-of” are not. 

iii. “sibling-of”, “≤”, and “<” are both transitive, however, “parent-

 of” is not (nevertheless, “ancestor-of” is transitive). 

An Equivalence relation is a relation that is reflexive, symmetric and 

transitive and it is denoted by the symbol “≡”. 

For the set S, let “≡” be its equivalence relation. An equivalence class is 

a maximal subset E of the set S, such that any two elements in the set E 
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is related.  There can be multiple equivalence class corresponding to the 

relation ≡. 

4.0 CONCLUSION 

In this unit, most of the work is on set theory (a branch of mathematical 

logic) and gives insight into how Discrete Structure are viable in 

Computer Science. Emphasis were made on a set being a collection of 

objects or groups of objects. The unit further highlighted on the rules of 

set theory and its power set. 

5.0 SUMMARY 

In this unit we learnt that Sets are the most fundamental objects in all of 

mathematics. That, a set is a collection of objects or groups of objects. A 

statement that cannot be divided into smaller statements is an Atomic 

Statement, else it is referred to as a Molecular Statement. 

There are rules governing the set and Venn diagram is a great tool used 

to visualize and represent operations on sets. In the next unit, we will 

discuss Proofs and Induction, where we will treat the different types of 

mathematical proofs, such as direct and indirect proofs and proof by 

induction. 

6.0 TUTOR-MARKED ASSIGNMENTS 

1. Describe the following sets in words and determine their 

 elements. 

a. {x | x + 2 ∈ ℕ}. 

b. {x | x + 2 ∈ ℕ+}. 

c. {x ∈ ℕ | x + 2 ∈ ℕ}. 

d. {x | x ∈ ℕ ∨ −x ∈ ℕ}. 

e. {x | x ∈ ℕ ∧ −x ∈ ℕ}. 

2. Let A = {7, 1, 2, 3, 6}, B = {2, 3, 4}, C = {1, 6, 7} and D = {5, 8, 

 4, 9} be subsets of U = {n ℕ : 1 ≤ n ≤10}.  

a. Find the following;  

            i.  A ⋃ C       ii. (A ⋂ Dc) ⋃ (A ⋂ B)c         iii. ∅ ⋃ B         iv. (A 

 ⋃ B)c       

b. Represent the sets in 2a above by the use of a Venn Diagram.  

3. Using a Venn Diagram, determine if the representation A \ B is 

 equivalent to A ∩ B¯. 

4. Using the sets W = {2, a, {u, v, w}, ∅}, X = {∅, a}, Y = {1, 2, 4} 

 and Z = {2, 4, 8}. Determine if the following statements are true, 

 false or meaningless. State your reasons for each.  

i. w  A      ii. B  A     iii.  D > C   iv.  {2, a} A 

j. Find the cardinality of each set below (show cardinality check):  

i. A = {23, 24, . . . , 37, 38} 
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i. B = {1, {2, 3, 4}, 5, ∅} 

ii. P(K  L)  K = {n  ℕ : n ≤ 19} and L = { n  ℕ : n is 

  prime} 

iii. P(C)  C = {a, b, c, d}  

k. Let A = {1, 2, 3}, B = {4, 5, 6, 7}. Find B × A. 

l. If |A| = 5 and |B| = 8 and |A ∪ B| = 11 what is the size of A ∩ B?  

m. If |Ac ∩ B| = 10 and |A ∩ Bc | = 8 and |A ∩ B| = 5 then how many 

 elements are there is A ∪ B? 
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1.0  INTRODUCTION 

Mathematical Induction is an elegant and powerful technique that is 

used to prove some types of mathematical statements and propositions 

which assert that for all positive integers something is true or that for all 

positive integers from some point on. There are different types of 

mathematical proofs. However, in this unit, we will introduce several 

basic types, with more emphasis on the proof by induction technique. 

This technique is invaluable to the study of discrete mathematics.  

2.0  INTENDED LEARNING OUTCOMES (ILOS)  

At the completion of the unit the student will be able to: 

 Understand basic type of proofs 

 Learn types of induction techniques  

 Have the ability to prove certain mathematical statements 

3.0  MAIN CONTENT 

3.1  Basic Proof Techniques  

Proof techniques can either be direct, indirect or by induction. The 

choice of a proof technique depends on the problem or task at hand. 

Therefore, it is important to realize that there is no single method 

applicable to solving all tasks. This implies that your level of ingenuity, 

skills and implementation of common sense must be applied to every 
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task. In this Unit, we will discuss the direct, proof by induction and 

indirect proofs (contrapositive and contradiction). 

3.2  Direct Proof (Proof by Construction) 

To prove a mathematical statement using this method, we have to show 

that for a given premise, the conclusion given can be derived. 

Considering any given task: such that when we take a premise X, we 

have to determine how to show that a conclusion Y holds? We can 

achieve this by giving a Direct Proof. In this form of proof, we will start 

with X as the premise, and by a series of logical steps we will directly 

deduce Y as the conclusion.  

The two steps to directly prove that X → Y is true. 

a. Demonstrate that Y must follow from X. 

Example 3.2.1. Let n be an integer. If n is odd, then, n2 is odd. If n is 

even, then, n2 is even. 

Solution 3.2.1 

Using direct proof: For an integer k; 

Let assume that n is even, then n = 2k, and  

n2 = (2k)2 = 4k2 = 2 (2k2), which is even.  

Also, if we say n is odd, then n = 2k + 1, and  

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2 (2k2+ 2k) + 1, which is odd. 

3.3  Proofs by Induction 

The initial step  

Firstly, let’s prove that for n = 1 the statement is true. Therefore, if the 

claim is that the statement is true for n ≥ a, first prove it for n = a. 

Inductive step  

Prove that if for n = k the proposition (statement) is true, then for n = k + 

1 it must also be true. This is the difficult step and we will carefully 

explain it by breaking it down into steps.  

Step 1: Here we perform Inductive Hypothesis by writing down what 

the proposition asserts for the case n = k. 
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Step 2: Now, describe what the proposition asserts for the case n = k + 

1. Clearly remember that this is the case that you need to prove. 

Step 3: By using the assumption made in Step 1, try and prove the 

statement in Step 2. Have in mind that this stage varies for most 

problems depending on their mathematical contents, therefore, there is 

no single way to solve all problems. The main aim here is to apply your 

skills and determine how you get from Step1 to Step2.  

After the initial and inductive steps have been successfully performed, 

we then conclude instantly that the proposition is true ∀ n ≥ 1. 

Example 3.3.1. For the first n positive integers, the sum is 
1

2
n(n + 1).  

Initial step: The sum is clearly1, if n = 1, 

For n = 1, 

 
1

2
 n (n + 1) = 

1

2
× 1 × 2 = 1.  

Therefore, this is true for n = 1.  

Inductive step:  

Step 1: Our assumption (the inductive hypothesis) states that  

1+2+3+ ··· + k = 
1

2
k(k + 1).  

Step 2: In this step, we have to prove that  

1+2+3+ ··· + (k + 1)  =   
1

2
 (k + 1)[(k + 1) + 1]  

=   
1

2
 (k + 1)(k + 2). 

Step 3: Now we have to ask ourselves how we can get to step 2 from 

step 1. 

To answer this, we will take the left-hand sides of both step 2 and step 1 

by adding (k + 1) to step 1.  

Therefore, 1+2+3+ ··· + (k + 1) = 1 + 2 + 3 + ··· + k + (k + 1)  

= 
1

2
 k(k + 1) + (k + 1) [using the inductive hypothesis] 



CIT206              DISCRETE STRUCTURES 

 

16 

= (k + 1)( 
1

2
k + 1) [factorizing] 

= 
1

2
 (k + 1)(k + 2) [which is what we wanted to prove]  

This completes the inductive step. Hence, the result is true ∀ n ≥ 1. 

Example 3.3.2. If a and b are consecutive integers, then the sum a + b is 

odd.  

Solution 3.3.2 

Proof. We have to define the propositional form F(x) to be true when 

the sum of x and its successor is odd.  

Step 1: Let’s consider the proposition F(1). The sum 1 + 2 = 3 is odd 

because we can demonstrate there exists an integer k such that 2k + 1 = 

3. That is, 2(1) + 1 = 3. Thus, F(x) is true when x = 1. 

Step 2: Assume that F(x) is true for some x. Thus, for some x we have 

that x + (x + 1) is odd. We add one to both x and x + 1 which gives the 

sum (x+1) + (x+2). We can make claim to two things: firstly, the sum 

(x+1) + (x+2) = F(x+1). Secondly, we claim that the addition of two (2) 

to any integer does not change the evenness or oddness of that integer 

(e.g., 1 + 2 = 3, 2 + 2 = 4). With these two observations we claim that 

F(x) is odd implies F(x + 1) is odd.  

Step 3: By the principle of mathematical induction, we thus claim that 

F(x) is odd ∀ integers x. Thus, the sum of any two consecutive numbers 

is odd. 

3.4 Indirect Proofs 

3.4.1 Proof by Contrapositive  

This proof starts by assuming that the conclusion Y is false, and through 

a series of logical steps deduce that the premise X must also be false.  

Based on first-order logic we can make a statement such as P → Q is 

equivalent to ¬Q → ¬P. Steps to proving a theorem by contrapositive:  

b. Assume ¬Q is true.  

c. Demonstrate that ¬P must be true.  

d. By contraposition, you will deduce that P → Q. 
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Example 3.4.1.1 Let n be an integer. If n is even, then n2 is even. 

Solution 3.4.1.1 

Suppose that n is not even. Then from solution 3.2.1, n2 is not even as 

well. Yes, that all!  

3.4.2 Proof by Contradiction. 

This form of proof tries to reach a logical fallacy by assuming that the 

premise X is true and the conclusion Y is false.  

Steps involved to applying the proof by contradiction:  

a. Assume P is true. 

b. Assume Q is false (¬Q is true). 

c. Demonstrate a contradiction. 

Example 3.4.2.1 Let’s apply this form of proof to example 3.4.1.1 

Solution 3.4.2.1 

Assume that n2 is even, but n is odd. From solution 3.2.1, we observe 

that n2 must be odd. However, n2 cannot be both even and odd at the 

same time. 

4.0  CONCLUSION  

You have learnt from this unit that proof techniques can either be direct, 

indirect or by induction. That the choice of a proof technique depends on 

the problem or task at hand. You should note that there is no single 

method applicable to solving all tasks. This means that your level of 

ingenuity, skills and implementation of common sense must be applied 

to every task. 

5.0  SUMMARY  

In this Unit, we have discussed the direct, indirect proofs, and proof by 

induction (proof by contrapositive and proof by contradiction). We also 

performed Inductive Hypothesis and applied necessary skills. The 

subsequent unit will discuss Logic which helps to give precise meaning 

to mathematical propositions and statements through systematic 

reasoning.   
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6.0  TUTOR-MARKED ASSIGNMENT  

1. Prove the following: 

a. √ 2 is irrational. 

b. Let a, b ∈ ℝ+ (non-negative reals). Then, 
a + b 

2
 ≥ √ ab. 

2. Prove that ∀ n ∈ ℕ, ∑ 2𝑘 =  2𝑛+1 − 1𝑛
𝑘=0 . (Use the proof by 

 induction). 

3. Prove that 7n − 1 is a multiple of 6,∀ n ∈ ℕ.  

4. Prove that 1 + 3 + 5 + · · · + (2n − 1) = n2,∀ n ≥ 1.  

5. Prove that F0 + F2 + F4 + · · · + F2n = F2n+1 – 1. Where Fn is the nth 

 Fibonacci number. 
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1.0  INTRODUCTION  

Logic is a study of mathematics that deals with mathematic reasoning 

and proofs. This unit covers logic in some of its basic forms. In the 

propositional logic, we will discuss the logical connectives for example 

“and”, “or”, and “not”. In the first-order logic, we will discuss the 

reasoning tools. It contains predicates, quantifiers and variables.  

2.0 INTENDED LEARNING OUTCOMES (ILOS)  

At the completion of this unit, you should be able to: 

 Understand some mathematical reasoning and proofs. 

 Understand some basic forms of logic. 

 Apply logical connectives. 

 Apply some tools to reason. 

3.0 MAIN CONTENT 

3.1 Propositional Logic 

Logic is the study of consequences. Given some mathematical 

statements, we would like to derive some conclusions from them. For 

instance, we can say the statement: “Abuja is the capital of Nigeria” is 

True and that the statement: “December in a month in the summer” is 

False. This kind of statements are called propositions because they are 

either true or false. The truth or falsehood of a proposition is called its 

truth value.  



CIT206              DISCRETE STRUCTURES 

 

20 

As stated earlier, propositional variables which are the characters (P, Q, 

R, S, …) found in the middle of the English alphabet represented in 

capital and used to represent each atomic statements in the molecular 

statement. These variables can only have two values, true or false. The 

logical connectives: “and”, “or”, “if… then”, “if and only if ( or if)”, and 

“not” represented by these symbols , , →, ↔, and ¬ respectively. The 

atomic statements: “It is raining” and “I need an umbrella” can be 

represented by the letters P and Q respectively. 

P  Q  ¬P  ¬Q  P ∧ Q P ∨ Q P → Q P ↔ Q 

T T F F T T T T 

T F F T F T F F 

F T T F F T T F 

F F T T F F T T 

 

Example 3.1.1. describe the statement ¬P ∨ Q using a truth table.  

Solution 3.1.1. Solving such exercises, you will have to be careful as to 

knowing the exact position of the ¬. Carefully observe that the negation 

belongs only to P (i.e. ¬P) and not ¬(P ∨ Q). The truth table is: 

P  Q  ¬P  ¬P ∨ Q 

T T F T 

T F F F 

F T T T 

F F T T 

 

Example 3.1.2. Using truth table, analyse the statement, “if you get 

more doubles than any other player you will lose, or that if you lose you 

must have bought the most properties,”.  

Solution 3.1.2. Let’s start by breaking down the molecular statement 

into atomic statements. Let P be the statement “you get more doubles 

than any other player,”; Q be the statement “you will lose,” and R be the 

statement “you must have bought the most properties.” Now let’s 

construct a truth table to represent the statement as this symbol         (P 

→ Q) ∨ (Q → R). 

Since there are three atomic statements, we need to develop a truth table 

of 8 rows. This helps to take account for every possible combination of 

truth values among the atomic statements. Here is the full truth table: 
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P  Q  R (P → Q)  (Q → R) (P → Q) ∨ (Q → R) 

T T T T T T 

T T F T F T 

T F T F T T 

T F F F T T 

F T T T T T 

F T F T F T 

F F T T T T 

F F F T T T 

 

This is a true statement about monopoly, such that it is irrelevant to the 

number of properties you own, the number of doubles you roll, whether 

you win or lose, the outcome is true for all 8 possible combinations. 

The statement about monopoly in example 3.1.2 is a clear instance of 

tautology. Tautology is a statement that is true based on its logical form. 

Although tautologies are always true they don’t usually tell us much 

about the world. You do not need any prior knowledge of monopoly to 

confirm that the statement is true. 

3.1.1 Logical Equivalence 

Consider two molecular statements P and Q. They will be logically 

equivalent as long as P is true exactly when Q is also true. This implies 

that for any assignment of truth values to the distinct atomic parts P and 

Q they have the same truth value. Then we symbolize it as P ≡ Q. A 

truth table can be used to verify that two or more statements are 

logically equivalent. You then have to check if the columns for the 

statements are identical. 

Example 3.1.3. Determine if the statements ¬P ∨ Q and P → Q are 

logically equivalent. 

Solution 3.1.3. Let us start by making the truth table for these 

statements. Check example 3.1.1 and our first truth table. 

P  Q  ¬P  ¬P ∨ Q P → Q 

T T F T T 

T F F F F 

F T T T T 

F F T T T 
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Since the atomic parts of ¬P ∨ Q and P → Q either both true or both 

false for whatever values of P and Q. We therefore say that ¬P ∨ Q is 

logically equivalent to P → Q. 

Exercise 3.1.4. Use a truth table to determine whether ¬(P∨Q) is 

logically equivalent to ¬P ∧ ¬Q.  

Solution 3.1.4.  

Try it yourself. 

The solution to exercise 3.1.4 will show that both statements are 

logically equivalent. It also shows that we can distribute a negation over 

a disjunction (“or”). Likewise, the distribution of negation over a 

conjunction (“and”) is also possible. 

De Morgan’s Laws 

1. ¬(P ∧ Q) and ¬P ∨ ¬Q are logically equivalent  

2. ¬(P ∨ Q) and ¬P ∧ ¬Q are logically equivalent 

Example 3.1.5. Without truth table, prove that ¬(P → Q) is logically 

equivalent P ∧ ¬Q.  

Solution 3.1.5. Let’s select one of the statements and through a series of 

logically equivalent statements transform it into the other.  

Let’s select ¬(P → Q) to start with.  

The implication can be written as a disjunction this is logically 

equivalent to ¬(¬P ∨ Q). 

Solution 3.1.3 shows that P → Q is logically equivalent to ¬P ∨ Q 

By applying De Morgan’s law we get  

¬¬P ∧ ¬Q (¬¬P is logically equivalent to P. Double negation) 

Therefore, by applying double negation we get 

P ∧ ¬Q. 

Deduction Rule 

An argument is said to be valid as long as the conclusion is true when 

the premises are true. This means that whenever the premises are true, 
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the conclusion must be true for the argument to be a valid deduction 

rule, else it is invalid. 

Example 3.1.6. Determine if the argument 

P  Q 
P  

Q
 is a valid deduction 

rule. 

Solution 3.1.6. Considering solution 3.1.2, we can see that: 

P  Q  P → Q 

T T T 

T F F 

F T T 

F F T 

 

Our premises are P → Q and P. From the truth table we can obverse that 

in row 1 where both of the premises are true, our condition Q is also 

true. Therefore this implies that the argument is a valid deduction rule. 

Exercise 3.1.6. Determine if the argument 

P  Q 
¬P ∨ Q  

Q
  is a valid deduction 

rule. 

Solution 3.1.6.  

 Try it yourself. 

Example 3.1.7. Decide whether the argument 

P  Q 
Q  R

R  

P ∨ Q
  is a valid deduction 

rule. 

Solution 3.1.7. 

P  Q  R P → Q  Q → R P ∨ Q 

T T T T T T 

T T F T F T 

T F T F T T 

T F F F T T 

F T T T T T 

F T F T F T 

F F T T T F 

F F F T T F 
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The premises P → Q, Q → R and R are all true in rows 1, 5, and 7.  

However, the conclusion P ∨ Q is not always true when the premises are 

all true as seen in row 7. Hence this is not a valid deduction rule. 

3.2 First Order Logic  

This is an extension of the propositional logic. Propositional logic only 

deals with “facts”, statements that may be true or false for example, “It 

is raining”. However, we cannot assign variables that represent for cars 

or chairs. First order logic operates generally over a set of objects (for 

example, numbers, persons, etc.). It permits us to represent the 

properties of individual objects, to define possible relationships between 

the objects, and, most importantly, to quantify the entire set of objects. 

Let’s give a standard example of an argument in first order logic: 

All men are mammals. 

Adam is a man. 

Therefore, Adam is a mammal. 

In first order logic, this argument can be interpreted as: 

∀x, Man(x)  →  Mammal(x)

Man (Adam) 

Mammal (Adam)
 

 

 Let’s give some statements in first order logic: 

i. “When you paint a with blue paint, it becomes blue.” cannot be 

made in propositional logic but can be made in first order logic. 

In propositional logic, we would need a statement for every 

single wall, as we cannot make a general statement for all walls. 

ii. “When you take the vaccine, all the chances of contracting the 

disease dies.” In first order logic, we can talk about all the 

bacteria without having to name them explicitly. 

4.0  CONCLUSION  

With the overview of proposition logic and, given a few mathematical 

statements, we were able to draw some conclusions that logic is the 

study of consequences. We were also able to apply De Morgan’s law 

and logical equivalence. 
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5.0  SUMMARY  

At the end of this unit you have learnt some mathematical reasoning and 

proofs. Some basic forms of logic were highlighted using logical 

connectives. There were some applications of reasoning tools. This Unit, 

Logic is the final unit in Module 1: Introduction to Discrete Structures. 

The next will be Module 2: Boolean Algebra and Graph Theory. 

6.0  TUTOR-MARKED ASSIGNMENT  

1. Consider this statement about an event. “If it’s your birthday or 

 there will be cake, then there will be cake.” 

a. Translate the statement into logical expressions. Clearly state the 

 atomic statements, P, Q, etc.  

b. Develop the truth table.  

c. Suppose that the statement is true, can you conclude if there will 

 be cake?  

d. Suppose that the statement is true, can you conclude if there will 

 not be cake?  

e. Assume you confirm the statement to be false. What can you 

 conclude about it?  

2. Represent the statement (P ∨ Q) → (P ∧ Q) using a truth table. 

3. Using a truth table, determine if the following statements are 

 logically equivalent.  

i. (P ∨ Q) → R and (P → R) ∨ (Q → R). 

ii. P  (P  Q), (P  Q) and (P  Q)   (P  Q)   (P  Q). 

iii. “I will not eat or drink” and “I will not eat and I will not drink”. 

Hint: First translate to statement into a logical expression. 

4. Simplify the following statements such that that negations only 

 appears immediately before variables. 

a. ¬(P → ¬Q). 

b. (¬P ∨ ¬Q) → ¬(¬Q ∧ R). 

c. ¬((P → ¬Q) ∨ ¬(R ∧ ¬R)). 

d. It is false that if John is not a male then Jude is a female and that 

 Jude is not a female. 

5. Show that  

P  Q 
Q  R  

P  R
  is a valid deduction rule. 
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MODULE  2  BOOLEAN ALGEBRA AND GRAPH  

   THEORY 

Unit 1  Boolean Algebra and Lattices  

Unit 2  Graph Theory 

 

UNIT 1  BOOLEAN ALGEBRA AND LATTICES 

CONTENTS 

1.0 Introduction  

2.0 Intended Learning Outcomes (ILOs)   

3.0 Main Content 

3.1 Lattice 

3.2 Boolean Algebra 

3.3 Self-study Questions 

4.0 Conclusion  

5.0 Summary  

6.0 Tutor-Marked Assignment  

7.0 References/Further Reading 

1.0 INTRODUCTION 

In this unit, you will acquire the skills to distinguish a partially ordered 

set, in which there exists a least upper bound and greatest lower bound 

between a pair of elements. To achieve this, you will learn from this 

unit, the types of relations and Boolean algebra.  

2.0 INTENDED LEARNING OUTCOMES (ILOS)  

At the completion of this unit, you will learn how to:  

 Manipulate symbolic logic 

 Distinguish a partially ordered set 

 Understand operations that have logical significance 

3.0 MAIN CONTENT 

 

3.1 Lattices  

3.1.1  Partially Ordered Sets 

Let’s start this unit by studying lattices and Boolean algebras and 

generalizing the idea of inequality. Since the relation on a set X is a 
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subset of X×X. The relation P on X is referred to as a partial 

order of X as long as it satisfies these axioms:  

i. Reflexive: (a, a) ∈ P ∀ a ∈ X. 

ii. Antisymmetric: if (a, b) ∈ P and (b, a) ∈ P, then a = b. 

iii. Transitive: if (a, b) ∈ P and (b, c) ∈ P, then (a, c) ∈ P. 

We normally represent a ≼ b to mean (a, b) ∈ P except some symbols 

are naturally associated with a particular partial order, such as a ≼ b for 

integers a and b, or A ⊂ B with sets A and B. The set X along with a 

partial order ≼ is called a partially ordered set, or poset. 

A partially ordered set (L, ≼) is termed a lattice if for every pair of 

elements a, b ∈ L ∃ a Least Upper Bound (LUB) or Supremum and a 

Greatest Lower Bound (GLB) or Infimum. 

Take Y to be a subset of the poset X. Let u ∈ X be an upper 

bound of Y if a ≼ u ∀ a ∈ Y. If u is an upper bound of Y such that u ≼ 

v for every other upper bound v of Y, then u is the LUB of Y. Also an 

element l ∈ X is said to be a lower bound of Y if l ≼ a ∀ a ∈ Y. If l is a 

lower bound of Y such that k ≼ l for every other lower 

bound k of Y, then l is the GLB of Y. 

The least upper bound is also referred to as the join of a and b, 

represented by a ∨ b. The greatest lower bound is also referred to as the 

meet of a and b, represented by a ∧ b. 

If (L, ≼) is a lattice and a, b, c, d ∈ L, then the meet and join have the 

following order properties: 

i. a ∧ b ≼ {a, b} ≼ a ∨ b, 

ii. a ≼ b if and only if a ∧ b = a, 

iii. a ≼ b if and only if a ∨ b = a, 

iv. if a ≼ b, then a ∧ c ≼ b ∧ c and a ∨ c ≼ b ∨∧ c 

v. if a ≼ b and c ≼ d, then a ∧ c ≼ b ∧ d and a ∨ c ≼ b ∨ d 

Therefore, by the definitions of LUB and GLB, this implies that if the 

join and meet exist, they are unique. 

Example 3.1.1 The set of integers (or rational, or real) is a poset where a 

≤ b has the usual meaning for two integers a, b ∈ ℤ. 

Example 3.1.2 Take X be a set of any kind. Then, the power set of X, 

P(X) is the set of all subsets of X. For example, let X = {a, b, c}.  
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Then P(X) = P({1, 2, 3}) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, 

b, c}} 

In the power set of a set, the set inclusion, ⊂, is a partial order. This 

order on {a, b, c} can be represented through a diagram as in Figure 3.1.  

 

Figure 3.1 Partial Order of ({a, b, c}) 

Example 3.3 For a group, G, the set of subgroups of G is a poset, where 

the partial order is set inclusion. 

Example 3.4 A set can have more than one partial order. A partial order 

on ℕ can be formed by a ≼ b if a | b. This relation is reflexive since a | 

a ∀ a ∈ N. The relation is antisymmetric also, if m | n and n | m, then m 

= n. Additionally, the relation is transitive, because if m | n and n | 

p, then m | p. 

Example 3.5 Take X = {1, 2, 3, 4, 6, 8, 12, 24} to be the set of divisors 

of 24 with a partial order as defined in Example 3.4. The partial order 

on X is represented in Figure 3.2. 

 

Figure 3.2 The partial order for the divisors of 24 

Example 3.6 If Y = {2, 3, 4, 6} is contained in the set X in Example 3.5. 

Then the upper bounds of Y are 12 and ,24. The LUB of Y is 12. Y has 

only one lower bound which is 1; therefore, it is also the GLB. 

Theorem 3.1 Let Y be a nonempty subset of a poset X. If Y has a least 

upper bound, then Y has a unique least upper bound. If Y has a greatest 

lower bound, then Y has a unique greatest lower bound. 
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Proof: We can possibly define binary operations on many posets 

through the greatest lower bound and the least upper bound of two 

elements. A lattice is a poset L such that every pair of elements in L has 

a least upper bound and a greatest lower bound.  

Example 3.7 Let X be a set. Then the power set of X, P(X), is a lattice. 

For two sets A and B in P(X), the least upper bound of A and B is A ∪ 

B. Certainly A ∪ B is an upper bound of A and B, since A ⊂ A ∪ 

B and B ⊂ A ∪ B. If C is some other set containing 

both A and B, then C must contain A ∪ B; hence, A ∪ B is the least 

upper bound of A and B. Similarly, the greatest lower bound 

of A and B is A ∩ B. 

Axiom 3.1 Principle of Duality: Any statement that is true for all 

lattices remains true when ≼ is replaced by ≽ and ∨ and ∧ are 

interchanged throughout the statement. 

Theorem 3.2 If L is a lattice, then the binary operations ∨ and ∧ satisfy 

the following properties for x, y, z ∈ L. 

i. Commutative laws: x ∨ y = y ∨ x and x ∧ y = y ∧ x 

ii. Associative laws: x ∨ (y ∨ z) = (x ∨ y) ∨ z and x ∧ (y ∧ z) = (x ∧ 

y) ∧ z. 

iii. Idempotent laws: x ∨ x = x and x ∧ x = x. 

iv. Absorption laws: x ∨ (x ∧ y) = x and x ∧ (x ∨ y) = x. 

Proof 

By the Principle of Duality, we need only prove the first statement in 

each part. 

i. By definition x ∨ y is the least upper bound of {x, y}, and y ∨ x is 

the least upper bound of {y, x}; however, {x, y} = {y, x}. 

ii. We will show that x ∨ (y ∨ z) and (x ∨ y) ∨ z are both least upper 

bounds of {x, y, z}. Let a = x ∨ y. Then z ≼ a ∨ z = (x ∨ y) ∨ z.  

 

We also know that  

 

x ≼ x ∨ y = a ≼ a ∨ z = (x ∨ y) ∨ z.  

 

A similar argument demonstrates that y ≼ (x ∨ y) ∨ z. Therefore, (x ∨ y) 

∨ z is an upper bound of {x, y, z}. We now need to show that (x ∨ y) ∨ 

z is the least upper bound of {x, y, z}. Let u be some other upper bound 

of {x, y, z}. Then x ≼ u and y ≼ u hence, a = x ∨ y ≼ u. Since c ≼ u, it 

follows that (x ∨ y) ∨ z = a ∨ z ≼ u. Therefore, (x ∨ y) ∨ z must be the 

least upper bound of {x, y, z}. The argument that shows x ∨ (y ∨ z) is 
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the least upper bound of {x, y, z} is the same. Consequently, x ∨ (y ∨ z) 

= (x ∨ y) ∨ z. 

 

iii. The join of x and x is the least upper bound of {x}; hence, x ∨ x 

 = x. 

iv. Let a = x ∧ y. Then x ≼ x ∨ a. On the other hand, a = x ∧ y ≼ 

 x, and so x ∨ a ≼ x. Therefore, x ∨ (x ∧ y) = x. 

Given any arbitrary set L with operations ∨ and ∧, satisfying the 

conditions of the previous theorem, it is natural to ask whether or not 

this set comes from some lattice. The following theorem says that this is 

always the case. 

Theorem 3.3 Let L be a nonempty set with two binary 

operations ∨ and ∧ satisfying the commutative, associative, idempotent, 

and absorption laws. We can define a partial order on L by a ≼ b if a ∨ b 

= b. Furthermore, L is a lattice with respect to ≼ if ∀ a, b ∈ L, we define 

the least upper bound and greatest lower bound of a and b by a ∨ b and a 

∧ b, respectively. 

Proof 

Firstly, let’s show that L is a poset under ≼. Since a ∨ a = a, a ≼ 

a and ≼ is reflexive. To show that ≼ is antisymmetric, let a ≼ b and b ≼ 

a. Then a ∨ b = b and b ∨ a = a. By the commutative law, b = a ∨ b = b ∨ 

a = a. Finally, we must show that ≼ is transitive. Let a ≼ b and b ≼ 

c. Then a ∨ b = b and b ∨ c = c. Thus, 

a ∨ c = a ∨ (b ∨ c) = (a ∨ b) ∨ c = b ∨ c = c,  

or a ≼ c. 

Now, to show that L is a lattice, we need to prove that a ∨ b and a ∧ 

b are, respectively, the least upper and greatest lower bounds 

of a and b. Since a = (a ∨ b) ∧ a = a ∧ (a ∨ b), it follows that a ≼ a ∨ 

b. Similarly, b ≼ a ∨ b. Therefore, a ∨ b is an upper bound for a and b.  

Let u be any other upper bound of both a and b. Then a ≼ u and b ≼ 

u. But a ∨ b ≼ u since  

(a ∨ b) ∨ u = a ∨ (b ∨ u) = a ∨ u = u. 
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Exercise 3.1: Prove that a ∧ b is the greatest lower bound of a and b. 

3.2  Boolean Algebras 

Let us investigate the example of the power set, P(X), of a set X more 

closely. The power set is a lattice that is ordered by inclusion. By the 

definition of the power set, the largest element in P(X) is X itself and the 

smallest element is ∅, the empty set. For any set A in P(X), we know 

that A ∩ X = A and A ∪ ∅ = A. This suggests the following definition 

for lattices. An element I in a poset X is a largest element if a ≼ I ∀ a ∈ 

X. An element O is a smallest element of X if O ≼ a ∀ a ∈ X.  

Let A be in P(X). Recall that the complement of A is  

𝐴 = X∖A = {x: x ∈ X and x ∉ A}. 

We know that A ∪ 𝐴=X and A ∩ 𝐴 = ∅. We can generalize this example 

for lattices. A lattice L with a largest element I and a smallest 

element O is complemented if for each a ∈ L, ∃ 𝑎 | a ∨ 𝑎 = I and a ∧ 𝑎 = 

O.  

In a lattice, L, the binary operations ∨ and ∧ satisfy commutative and 

associative laws; however, they need not satisfy the distributive law 

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c);  

however, in P(X) the distributive law is satisfied since 

A ∩ (B∪ C) = (A ∩ B) ∪ (A ∩ C)  

for A, B, C ∈ P(X). We will say that a lattice L is distributive if the 

following distributive law holds: 

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)  

∀ a, b, c ∈ L. 

Theorem 3.4 A lattice L is distributive if and only if 

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)  

∀ a, b, c ∈ L. 

Proof 

Let us assume that L is a distributive lattice. 
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a ∨ (b ∧ c)  = [a ∨ (a ∧ c)] ∨ (b ∧ c)  

= a ∨ [(a ∧ c) ∨ (b ∧ c)]  

= a ∨ [(c ∧ a) ∨ (c ∧ b)]  

= a ∨ [c ∧ (a ∨ b)]  

= a ∨ [(a ∨ b) ∧ c]  

= [(a ∨ b) ∧ a] ∨ [(a ∨ b) ∧ c]  

= (a ∨ b) ∧ (a ∨ c). 

The converse follows directly from the Duality Principle. 

A Boolean algebra is a lattice B with a greatest element I and a smallest 

element O such that B is both distributive and complemented. The 

power set of X, P(X), is our prototype for a Boolean algebra. As it turns 

out, it is also one of the most important Boolean algebras. The following 

theorem allows us to characterize Boolean algebras in terms of the 

binary relations ∨ and ∧ without mention of the fact that a Boolean 

algebra is a poset. 

Theorem 3.5 A set B is a Boolean algebra if and only if ∃ (there exist) 

binary operations ∨ and ∧ on B satisfying the following axioms. 

i. a ∨ b = b ∨ a and a ∧ b = b ∧ a for a, b ∈ B. 

ii. a ∨ (b ∨ c) = (a ∨ b) ∨ c and a ∧ (b ∧ c) = (a ∧ b) ∧ c for a, b, c ∈ 

B. 

iii. a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) and a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ 

c) for a, b, c ∈ B. 

iv. ∃ elements I and O such that a ∨ O = a and a ∧ I = a ∀ a ∈ B. 

v. For every a ∈ B ∃ 𝑎 ∈ B such that a ∨ 𝑎 = I and a ∧ 𝑎 = O. 

Proof 

Let B be a set satisfying (i) – (v) in the theorem. One of the idempotent 

laws is satisfied since  

a  = a ∨ O  

 = a ∨ (a ∧ a′)  

 = (a ∨ a) ∧ (a ∨ a′)  

 = (a ∨ a) ∧ I  
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= a ∨ a. 

Notice that 

I ∨ b = (b ∨ b′) ∨ b = (b′ ∨ b) ∨ b = b′ ∨ (b ∨ b) = b′ ∨ b = I. 

Consequently, the first of the two absorption laws holds, since 

a ∨ (a ∧ b)  = (a ∧ I) ∨ (a ∧ b)  

= a ∧ (I ∨ b)  

= a ∧ I  

= a. 

The other idempotent and absorption laws are proven similarly. 

Since B also satisfies (i)–(iii), the conditions of Theorem 3.3 are met; 

therefore, B must be a lattice. Condition (iv) tells us that B is a 

distributive lattice. 

For, a ∈ B, O ∨ a = a; hence, O ≼ a and O is the smallest element 

in B. To show that I is the largest element in B, we will first show that a 

∨ b = b is equivalent to a ∧ b = a. Since a ∨ I = a ∀ a ∈ B, using the 

absorption laws we can determine that  

a ∨ I = (a ∧ I) ∨ I = I ∨ (I ∧ a) = I or a ≼ I  

∀ a in B. Finally, since we know that B is complemented by (v), B must 

be a Boolean algebra. 

Conversely, suppose that B is a Boolean algebra. Let I and O be the 

greatest and least elements in B, respectively. If we define a ∨ b and a ∧ 

b as least upper and greatest lower bounds of {a, b}, then B is a Boolean 

algebra by Theorem 3.3 and Theorem 3.4. 

 Some of these identities in Boolean algebras are listed in the following 

theorem.  

Theorem 3.6 Let B be a Boolean algebra. Then, 

i. a ∨ I = I and a ∧ O = O ∀ a ∈ B. 

ii. If a ∨ b = a ∨ c and a ∧ b = a ∧ c for a, b, c ∈ B then, b = c. 

iii. If a ∨ b = I and a ∧ b = O, then b = 𝑎. 

iv. (a′)′ = a ∀ a ∈ B. [Note: a′ = 𝑎 ] 

v. I′ = O and O′ = I. 

vi. (a ∨ b)′ = a′ ∧ b′ and (a ∧ b)′ = a′ ∨ b′ (De Morgan's Laws). 
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Proof 

We will prove only (ii). The rest of the identities are left as your 

exercises. 

For a ∨ b = a ∨ c and a ∧ b = a ∧ c, we have 

b  = b ∨ (b ∧ a)  

 = b ∨ (a ∧ b)  

 = b ∨ (a ∧ c)  

= (b ∨ a) ∧ (b ∨ c)  

= (a ∨ b) ∧ (b ∨ c)  

= (a ∨ c) ∧ (b ∨ c)  

= (c ∨ a) ∧ (c ∨ b)  

= c ∨ (a ∧ b)  

= c ∨ (a ∧ c)  

= c ∨ (c ∧ a)  

 = c. 

 Finite Boolean Algebras 

A Boolean algebra is a finite Boolean algebra if it contains a finite 

number of elements as a set. Finite Boolean algebras are particularly 

nice since we can classify them up to isomorphism. 

Let B and C, be Boolean algebras. A bijective map ϕ: B→C is 

an isomorphism of Boolean algebras if 

ϕ (a ∨ b) = ϕ(a) ∨ ϕ(b)  

ϕ (a ∧ b) = ϕ(a) ∧ ϕ(b)  

∀ a and b in B.  

We will show that any finite Boolean algebra is isomorphic to the 

Boolean algebra obtained by taking the power set of some finite 

set X. We will need a few lemmas and definitions before we prove this 



CIT206              DISCRETE STRUCTURES 

 

36 
 

result. Let B be a finite Boolean algebra. An element a ∈ B is 

an atom of B if a ≠ O and a ∧ b = a ∀ b ∈ B with b ≠ 

O. Equivalently, a is an atom of B if there is no b ∈ B with b ≠ 

O distinct from a such that O ≼ b ≼ a. 

Lemma 3.1 Let B be a finite Boolean algebra. If b is an element 

of B with b ≠ O, then there is an atom a in B such that a ≼ b. 

Proof 

If b is an atom, let a = b. Otherwise, choose an element b1, not equal 

to O or b, such that b1 ≼ b. We are guaranteed that this is possible 

since b is not an atom. If b1 is an atom, then we are done. If not, choose, 

b2, not equal to O or b1, such that b2 ≼ b1. Again, if b2 is an atom, let a = 

b2. Continuing this process, we can obtain a chain 

O ≼ … ≼ b3 ≼ b2 ≼ b1 ≼ b. 

Since B is a finite Boolean algebra, this chain must be finite. That is, for 

some k, bk is an atom. Let a=bk. 

Lemma 3.2 Let a and b be atoms in a finite Boolean algebra B such 

that a ≠ b. Then a ∧ b = O. 

Proof 

Since a ∧ b is the greatest lower bound of a and b, we know that a ∧ b ≼ 

a. Hence, either a ∧ b = a or a ∧ b = O. However, if a ∧ b = a, then 

either a ≼ b or a = O. In either case we have a contradiction 

because a and b are both atoms; therefore, a ∧ b = O. 

Lemma 3.3 Let B be a Boolean algebra and a, b ∈ B. The following 

statements are equivalent. 

i. a ≼ b, 

ii. a ∧ b′ = O, 

iii. a′ ∨ b = I. 

Proof  

(i) ⇒ (ii). If a ≼ b, then a ∨ b = b. Therefore,  

a ∧ b′  = a ∧ (a ∨ b)′  

= a ∧ (a′ ∧ b′)  

= (a ∧ a′) ∧ b′   

= O ∧ b′  

= O. 
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(ii) ⇒ (iii). If a ∧ b′ = O, then a′ ∨ b = (a ∧ b′)′ = O′ = I. 

(iii) ⇒ (i). If a′ ∨ b = I, then  

a = a ∧ (a′ ∨ b)  

= (a ∧ a′) ∨ (a ∧ b)  

= O ∨ (a ∧ b) 

= a ∧ b. 

Thus, a ≼ b. 

Lemma 3.4 Let B be a Boolean algebra and b and c be elements 

in B such that b ⋠ c. Then there exists an atom a ∈ B such that a ⪯ 

b and a ⋠ c. 

Proof 

By Lemma 3.3, b ∧ c′ ≠ O. Hence, there exists an atom a such that a ≼ b 

∧ c′. Consequently, a ≼ b and a ⋠ c. 

Lemma 3.5 Let b ∈ B and a1,…,an be the atoms of B such that ai ⪯ 

b. Then b = a1 ∨⋯∨ an. Furthermore, if a, a1,…,an are atoms of B such 

that, a ≼ b, ai ≼ b, and b = a ∨ a1 ∨⋯∨ an, then a = ai for some i = 

1,…,n. 

Proof 

Let b1 = a1 ∨⋯∨ an. Since ai ≼ b for each i, we know that b1 ≼ b. If we 

can show that b ≼ b1, then the lemma is true by antisymmetry. Assume b 

≼ b1. Then there exists an atom a such that a ≼ b and a ⋠ b1. Since a is 

an atom and a ≼ b, we can deduce that a = ai for some ai. However, this 

is impossible since a ≼ b1. Therefore, b ≼ b1. 

Now suppose that b = a1∨⋯∨an. If a is an atom less than b,  

a = a ∧ b = a ∧ (a1 ∨⋯∨ an) = (a ∧ a1) ∨⋯∨ (a ∧ an). 

But each term is O or a with a ∧ ai occurring for only one .ai. Hence, by 

Lemma 3.2, a = ai for some i. 

Theorem 3.6 Let B be a finite Boolean algebra. Then there exists a 

set X such that B is isomorphic to P(X). 
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Proof  

We will show that B is isomorphic to P(X), where X is the set of atoms 

of B. Let a ∈ B. By Lemma 3.5, we can write a uniquely as a = a1 ∨⋯∨ 

an for a1, …, an ∈ X. Consequently, we can define a map ϕ: B → 

P(X) by  

ϕ(a) = ϕ(a1 ∨⋯∨ an) = {a1, …, an}. 

Clearly, ϕ is onto. 

Now let a = a1 ∨⋯∨ an and b = b1 ∨⋯∨ bm be elements in B, where 

each ai and each bi is an atom. If ϕ(a) = ϕ(b), then {a1,⋯, an} = 

{b1,⋯,bm} and a = b.  

Consequently, ϕ is injective. 

The join of a and b is preserved by ϕ since  

ϕ(a ∨ b) = ϕ(a1 ∨⋯∨ an ∨ b1 ∨⋯∨ bm)  

= { a1,⋯, an, b1,⋯,bm}  

= { a1,⋯, an} ∪ { b1,⋯,bm}  

= ϕ(a1 ∨⋯∨ an) ∪ ϕ(b1 ∨⋯∨ bm)  

= ϕ(a) ∪ ϕ(b). 

Similarly, ϕ(a ∧ b) = ϕ(a) ∩ ϕ(b). 

Exercise 3.2 Prove  

Corollary 3.1. The order of any finite Boolean algebra must be 2n for 

some positive integer n. 

Study Questions 

1. Describe succinctly what a poset is. Do not just list the defining 

properties, but give a description that another student of algebra 

who has never seen a poset might understand. For example, part 

of your answer might include what type of common algebraic 

topics a poset generalizes, and your answer should be short on 

symbols. 

2. How does a lattice differ from a poset? Answer this in the spirit 

of the previous question. 
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3. How does a Boolean algebra differ from a lattice? Again, answer 

this in the spirit of the previous two questions. 

4. Give two (perhaps related) reasons why any discussion of finite 

Boolean algebras might center on the example of the power set of 

a finite set. 

5. Describe a major innovation of the middle twentieth century 

made possible by Boolean algebra. 

4.0 CONCLUSION  

In conclusion, the unit dwelt extensively on partially ordered sets, 

principle of duality and Boolean algebra. A poset is short for partially 

ordered set which is a set whose elements are ordered but not all pairs of 

elements are required to comparable in the order. A Boolean algebra is 

a finite Boolean algebra if it contains a finite number of elements as a 

set. Finite Boolean algebras are particularly nice since we can classify 

them up to isomorphism The power set is a lattice that is ordered by 

inclusion.  

5.0 SUMMARY  

In the unit you have learnt that: 

 A relation P on X is called a partial order of X if it satisfies the 

 axioms of reflective, antisymmetric and transitive. 

 lattices and Boolean algebras are generalizing by the idea of 

 inequality 

 A Boolean algebra is a finite Boolean algebra if it contains a 

 finite number of elements as a set. 

 power set is a lattice that is ordered by inclusion. 

 Finite Boolean algebras are particularly nice since we can classify 

 them up to isomorphism. 

The next unit discusses Graphs which are very important tools used in 

representing mathematical objects and for other applications in the field 

of Computer Science. 

6.0 TUTOR-MARKED ASSIGNMENT  

1. Draw the lattice diagram for the power set of X = {a, b, c, d} with 

 the set inclusion relation, ⊂. 

2. Draw the diagram for the set of positive integers that are divisors 

 of 30. Is this poset a Boolean algebra? 

3. Let B be the set of positive integers that are divisors 

 of .210. Define an order on B by a ≼ b if a | b. Prove that B is a 

 Boolean algebra. Find a set X such that B is isomorphic to P(X). 
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4. Prove or disprove: ℤ is a poset under the relation a ≼ b if a | b. 

5. Draw the switching circuit for each of the following Boolean 

 expressions. 

i. (a ∨ b ∨ a′) ∧ a 

ii. (a ∨ b)′ ∧ (a ∨ b) 

iii. a ∨ (a ∧ b) 

iv. (c ∨ a ∨ b) ∧ c′ ∧ (a ∨ b)′ 

v. Draw a circuit that will be closed exactly when only one of 

three switches a, b, and c are closed. 

6. Prove or disprove: The set of all nonzero integers is a lattice, 

 where a ≼ b is defined by a | b. 
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UNIT 2  GRAPH THEORY 
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1.0 INTRODUCTION  
 

Graphs are simple, however, they are extremely useful mathematical 

objects. They are universal in the practical applications of Computer 

Science. For example:  

i. In a computer network, we can use graphs to represent how 

computers are connected to each other. We use the nodes to 

represent the individual computers and the edges to represent the 

network connections. Such a graph can then be used to route 

messages as quickly as possible. 

ii. In a digitalized map, nodes represent intersections (or cities), and 

edges represent roads (or highways). We may use directed edges 

to capture one-way traffic on streets, and weighted edges to 

capture distance. Such a graph can be used for generation 

directions (e.g., in GPS units).  

iii. On the internet, nodes represent web pages, and (directed) edges 

represent links from one web page to another. Such a graph can 

be used to rank each web page in the order of importance when 

displaying search results (e.g., the importance of a web page can 

be determined by the amount of other web pages that are 
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referencing it or pointing to it, and recursively how important 

those web pages are). 

iv. In a social network, nodes represent people, and edges represent 

friendships. One hot research topic currently is the understanding 

social networks. For example, how does a network achieve “x-

degrees of separation”, where everyone is approximately x 

number of friendships away from anyway else?  

 

2.0 INTENDED LEARNING OUTCOMES (ILOS)  

At the end of this unit, you will able to: 

 Increase your knowledge on graph and to design complex 

 network connections 

 Analyse traffic routes and determine the shortest path to any 

 location   

 Understand more on rating of web sites through referencing or 

 site visits 

3.0 MAIN CONTENT 

3.1 Graphs  

Graphs are made up of a collection of dots that are called vertices and 

lines connecting those dots that are called edges. When two vertices are 

connected by an edge, we say that they are adjacent. 

Definition 3.1.1 A graph is an ordered pair G = (V, E) consisting of a 

nonempty set V (vertices) and a set E (edges) of two-element subsets of 

V. 

 Definition 3.1.2. A directed graph G is a pair (V, E) where V is 

 a set of vertices (or nodes), and E ⊆ V × V is a set of edges. 

 The order of the two connected vertices is important. 

 Definition 3.1.3. An undirected graph additionally has the 

 property that (u, v) ∈ E if and only if (v, u) ∈ E. 

 Example 3.1.1.1 In a school social gathering, Abel, Bill, Clair, Dan, 

and Eve were assigned to a group. In that group, all members are 

allowed to “discuss” with each other. However, it turns out that the 

discussions were between Abel and Clair, Bill and Dan. While Eve 

discussed with everyone. Represent this situation with a graph.  

Solution 3.1.1.1 Each person will be represented by a vertex and each 

discussion will be represented by an edge. That is, two vertices will be  
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A B 

C D

E 

 

 

 

 

adjacent (there will be an edge between them) if and only if the people 

represented by those vertices discussed.  

     

  

From definition 3.1.1, a graph could be G = (V, E) = ({a, b, c, d}, {{a, 

b}, {a, c}, {b, c}, {b, d}, {c, d}}). This graph has four vertices (a, b, c, 

d) and five edges (the pairs {a, b}, {a, c}, {b, c}, {b, d}, {c, d}). 

Exercise 3.1.1.2 Draw the graph ({a, b, c, d}, {{a, b}, {a, c}, {b, c}, {b, 

d}, {c, d}}). 

In directed graphs, edge (u, v) (starting from node u, ending at node v) 

is not the same as edge (v, u). We also allow “self-loops” or “recursive-

loops”, i.e., edges of the form (v, v). Since the edge (u, v) and (v, u) 

must both be present or missing, we often treat a non-self-loop edge as 

an unordered set of two nodes (e.g., {u, v}). A common extension is a 

weighted graph, where each edge additionally carries a weight (a real 

number). The weight can have a variety of meanings in practice: 

distance, importance and capacity, to name a few. 

Example 3.1.1.3 Before we proceed further, try to determine: 

i. Which (if any) of the graphs below are the same? 

 

ii. Are the graphs below the same or different?  

 Graph 1:  

V = {a, b, c, d, e},  

E = {{a, b}, {a, c}, {a, d}, {a, e}, {b, c}, {d, e}}.  

E 
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E 

c
E 

v

E 
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w
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Graph 2:  

V = {v1, v2, v3, v4, v5},  

E = {{v1, v3}, {v1, v5}, {v2, v4}, {v2, v5}, {v3, v5}, {v4, v5}} 

 

iii. Are the graphs below equal?  

 G1 = ({a, b, c}, {{a, b}, {b, c}}); G2 = ({a, b, c}, {{a, c}, {c, 

 b}}).  

Solution 3.1.1.3 (iii). No. Here the vertex sets of each graph are equal, 

which is a good start. Also, both graphs have two edges. In the first 

graph, we have edges {a, b} and {b, c}, while in the second graph we 

have edges {a, c} and {c, b}. Now we do have {b, c} = {c, b}, so that is 

not the problem. The issue is that {a, b}, {a, c}. Since the edge sets of 

the two graphs are not equal (as sets), the graphs are not equal (as 

graphs). 

Example 3.1.1.4 Consider the graphs:  

G1 = {V1, E1} where V1 = {a, b, c} and E1 = {{a, b}, {a, c}, {b, c}}; 

G2 = {V2, E2} where V2 = {u, v, w} and E2 = {{u, v}, {u, w}, {v, w}}. 

Are these graphs the same?  

Solution 3.1.1.4 The two graphs are NOT equal. It is enough to notice 

that V1, V2 since a ∈ V1 but a ∉ V2. However, both of these graphs 

consist of three vertices with edges connecting every pair of vertices. By 

drawing the graph as follows:  

 

 

 

We can clearly see that these graphs are basically the same, so while 

they are not equal, they will be isomorphic. This means the renaming of 

the vertices of one of the graphs and results in the second graph. 

3.1.4 Isomorphic Graphs 

An isomorphism between two graphs G1 and G2 is a bijection, f: V1 → 

V2 between the vertices of the graphs such that {a, b} is an edge in G1 
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if and only if {f(a), f(b)} is an edge in G2. Two graphs are isomorphic if 

there is an isomorphism between them. In this case we write G1 ≌ G2. 

Example 3.1.4.1 Decide whether the graphs G1 = {V1, E1} and G2 = 

{V2, E2} are equal or isomorphic. V1 = {a, b, c, d}, E1 = {{a, b}, {a, 

c}, {a, d}, {c, d}} and V2 = {a, b, c, d}, E2 = {{a, b}, {a, c}, {b, c}, {c, 

d}}. 

Solution 3.1.4.1 The graphs are NOT equal, since {a, d} ∈ E1 but {a, d} 

∉ E2. However, we can confirm that both graphs contain the exact same 

number of vertices and edges. By this, they might be isomorphic (this is 

a good start but in most cases, it is not enough).  

Let’s try to build an isomorphism. From the definition, let’s try to build 

a bijection f: V1 → V2, such that f(a) = b, f(b) = c, f(c) = d and f(d) = a. 

This is a bijection, but to make sure that the function is an isomorphism, 

we must make sure it respects the edge relation.  

In G1, the vertices a and b are connected by an edge. In G2, f(a) = b and 

f(b) = c are connected by an edge. We are on the right track, however, 

we have to check the other three edges.  The edge {a, c} in G1 

corresponds to {f(a), f(c)} = {b, d}, now we have a problem here. There 

is no edge between b and d in G2. Thus f is NOT an isomorphism.  

If f is not an isomorphism, it does not mean that there is no isomorphism 

between G1 and G2. Let’s draw the graphs and then try to create some 

match ups (if possible).  

It is noticeable in G1 that the vertex a is adjacent to every other vertex. 

In G2, there is also a vertex with such property and that is c. Therefore, 

we can build the bijection g: V1 → V2 by defining g(a) = c to start with. 

Next, which vertex should we match with b? In G1, the vertex b is only 

adjacent to vertex a. There is exactly one vertex like this in G2, that is d. 

Therefore, let g(b) = d. By looking at the last two, we can see that we 

are free to choose the matches. Therefore, let go with g(c) = b and g(d) = 

a (switching these would still work fine).  

Finally, let’s check that there is really is an isomorphism between G1 

and G2 using g. We have seen that g is definitely a bijection. Now we 

have to make sure that the edges are respected. The four edges in G1 are  

{a, b}, {a, c}, {a, d}, {c, d}.  

Under the proposed isomorphism these become  

{g(a), g(b)}, {g(a), g(c)}, {g(a), g(d)}, {g(c), g(d)}  
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The bijection results in the edges: 

{c, d}, {c, b}, {c, a}, {b, a}. 

These edges are precisely the edges in G2. Thus g is an isomorphism, 

hence G1 ≌ G2. 

3.1.5 Subgraphs 

3.1.5.1 Definition. We say that G′ = (V′, E′) is a subgraph of G = (V, 

E), and write G′ ⊆ G, provided V′ ⊆ V and E′ ⊆ E.  

3.1.5.2 Definition. We say that G′ = (V′, E′) is an induced subgraph of 

G = (V, E) provided V′ ⊆ V and every edge in E whose vertices are still 

in V′ is also an edge in E′. 

Example 3.1.5. Considering the graph G1. Which of the graphs G2, G3 

and G4 are subgraphs or induced subgraphs of G1?  

 

Solution 3.1.5. By carefully applying the definitions of a subgraph and 

an induced subgraph, we can see that: 

i. The graphs G2 and G3 are both subgraphs of G1.  

ii. Only the graph G2 is an induced subgraph. This is because 

 every edge in G1 that connects vertices in G2 is also an edge in 

 G2. However, in G3, the edge {a, b} is in E1 but not E3, even 

 though vertices a and b are in V3.  

iii. The graph G4 is NOT a subgraph of G1. It might seem like it is, 

 however, if you look closely, you will realize that vertex e does 

 not exist in G4. Therefore, it is enough to say that G4 is NOT a 

 subgraph of G1, since {c, f} ∈ E4 but {c, f} ∉ E1 and that we 

 don’t have the required E4 ⊆ E1. 

3.1.6 Bipartite Graphs 

A graph is bipartite if the vertices can be divided into two sets, A and 

B, with no two vertices in adjacent in A and B. The vertices in A can be 

adjacent to some or all of the vertices in B. If each vertex in A is 

adjacent to all the vertices in B, then the graph is a complete bipartite 

graph, and gets a special name: Km,n, where |A| = m and |B| = n.  
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Figure 3: Bipartition and complete bipartite graphs. 

3.1.7 Union and Intersection of a Graph: These are two useful 

 operations for combining graphs. Let G1 = (V1, E1) and G2 = 

 (V2, E2) be graphs.  

i. The union of G1 and G2, denoted by G1 ⋃ G2, is the graph G3 

defined as G3 = (V1 ⋃ V2, E1 ⋃ E2).  

ii. The intersection of G 1 and G2, denoted by G1 ∩ G2, is the 

graph G4 defined as G4 = (V1 ∩ V2, EI ∩ E2).  

 

3.1.8 Complement of a Graph: This operation that is used with a 

single graph. To define this, we need an analogue of a universal set. In 

this case, we use the complete graph on the vertex set of the graph for 

which we would like to find the complement. Let G = (V, E) be a 

subgraph of K|V|, the complete graph on |V| vertices. The complement of 

G¯ in K|V|, denoted as G = (V1, El), is the subgraph of K|V| with V1 = V 

and E1 = K|V| (E) - E. 
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3.2 The Handshaking Problem 

Theorem 1. (Handshaking Theorem) Let G be a graph with at least 

two vertices. At least two vertices of G have the same degree.  

Proof. The proof is by induction on the number of vertices n in a graph. 

Let no = 2 and T = {n ∈ N: any graph with n vertices has at least two 

vertices of the same degree}.  

(Base step) For no, the only graphs to consider are the graph consisting 

of two isolated vertices and the graph having a single edge. Clearly, the 

result holds for each of these graphs. Therefore, the base case no = 2 is 

true and no ∈ T.  

(Inductive step) Let n ≥ no. Show that if n ∈ T, then n + 1 ∈ T.  

Assuming that any graph on n vertices with n ≥ 2 has two vertices of the 

same degree, we must prove that any graph on n + 1 vertices has two 

vertices of the same degree.  

Let G = (V, E) be a graph with n + 1 vertices where n + 1 ≥ 3. Clearly, 0 

≤ deg(v) ≤ n for any v ∈ V.  

If there is an isolated vertex in G, then by the induction hypothesis, the 

subgraph of G consisting of all the vertices but one isolated vertex must 

have two vertices with the same degree. Adding an isolated vertex to the 

subgraph with at least two vertices having the same degree gives the 

result for G.  

If there is no isolated vertex in G, then all the degrees of vertices v ∈ V 

satisfy 1 ≤ deg(v) ≤ n. In this case, we have at most n different values 

for the degrees of vertices in G. Since G has n + 1 vertices, then by the 

Pigeon-Hole Principle (see reference material for more explanation), at 

least two vertices of G have the same degree.  
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Therefore, n + 1 ∈ T. By the Principle of Mathematical Induction, T = 

{n ∈ N: n ≥ 2}. 

The handshake theorem is sometimes called the degree sum formula, 

and can be written symbolically as  

∑ d(v)v∈V  = 2e.  

Here we are using the notation d(v) for the degree of the vertex v. One 

use for the theorem is to actually find the number of edges in a graph. 

To do this, you must be given the degree sequence for the graph (or be 

able to find it from other information). This is a list of every degree of 

every vertex in the graph, generally written in non-increasing order. 

Example 3.2.1. How many vertices and edges must a graph have if its 

degree sequence is (4, 4, 3, 3, 3, 2, 1)?  

Solution 3.2.1. The number of vertices is easy to find: it is the number 

of degrees in the sequence: 7. To find the number of edges, we compute 

the sum of the degrees:  

4 + 4 + 3 + 3 + 3 + 2 + 1 = 20. 

Therefore, the number of edges is half of 20 (20/2) = 10. 

Example 3.2.2. At a recent mathematics competition, 9 mathematicians 

greeted each other by shaking hands. Is it possible that each 

mathematician shook hands with exactly 7 people at the competition?  

Solution 3.2.2. It looks like this should be possible. Each mathematician 

chooses one person to not shake hands with. But this cannot happen. We 

are asking whether a graph with 9 vertices can have degree 7 for each 

vertex. If such a graph existed, the sum of the degrees of the vertices 

would be 9 x 7 = 63. This would be twice the number of edges 

(handshakes) resulting in a graph with 31.5 edges. That is impossible. 

Thus at least one (in fact an odd number) of the mathematicians must 

have shaken hands with an even number of people at the competition. 

3.3 Euler Paths and Circuits 

An Euler path, in a graph or multigraph can be defined as a walk 

through the graph which uses every edge exactly once. While an Euler 

circuit is an Euler path which starts and stops at the same vertex. The 

main goal here is to find a quick way to determine if a graph has an 

Euler path or an Euler circuit. 
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In summary, we can conclude the followings: 

i. A graph has an Euler circuit if and only if the degree of every 

vertex is even. 

ii. A graph has an Euler path if and only if there are at most two 

vertices with odd degree. 

3.4 Adjacency Matrices 

A graph can be represented in several different ways in a computer. It 

can be shown   diagrammatically when the number of vertices and edges 

are reasonably small. Though, graphs can also be represented in the 

form of matrices. Thus, adjacency matrix is a square matrix used to 

represent a finite graph in graph theory and computer science. The 

element of the matrix shows whether pairs of vertices are adjacent or not 

in the graph. Also, directed and undirected graphs can be represented 

using adjacency matrices. Let 𝐺 = (𝑉, 𝐸) be a graph with "𝑛" vertices, 

then the 𝑛 × 𝑛 matrix 𝐴, in which 𝑉 = {𝑣1, 𝑣2, .  .  . , 𝑣𝑛} is the vertex set, 

𝐸 is the edge set, 𝑎𝑖𝑗 = 1 is the number of edges between the vertices 𝑣𝑖 

and 𝑣𝑗 (if there exists a path from 𝑣𝑖 to 𝑣𝑗) and 𝑎𝑖𝑗 = 0 otherwise is 

called adjacency matrix. 

Example 3.4.1: The adjacency matrix 𝐴𝐺1
 of the directed graph 𝐺1 is 

given in Figure 1. 

    

 

4.0  CONCLUSION  

Graphs are very simple and are extremely useful mathematical objects. 

They are universal in the practical applications. They are made up of a 

collection of dots that are called vertices and lines connecting those dots 

that are called edges. There are directed or undirected graph. 
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5.0  SUMMARY  

In this unit, you have learnt that: 

 Graphs useful mathematical objects 

 You can use your knowledge on graph to design complex 

 network connections 

 Analyse traffic routes and determine the shortest path to any 

 location   

 Graphs are used on rating of web sites through referencing or site 

 visits 

 Two graphs are isomorphic if there is an isomorphism between 

 them 

 A graph is bipartite if the vertices can be divided into two sets 

Graph Theory is the final Unit in Module 2: Boolean Algebra and Graph 

Theory. The next Unit, Matrices and Determinants will be the start of 

Module 3: Matrices, Applications to Counting and Discrete Probability. 

6.0  TUTOR-MARKED ASSIGNMENT  

1. Are the graphs below equal? Are they isomorphic? If they are 

 isomorphic, give the isomorphism else state why they are not.  

 G1 = V1 = {a, b, c, d, e}, E1 = {{a, c}, {a, d}, {a, e}, {b, d}, {b, 

 e}, {c, e}, {d, e}} 

 

   G2 =  

 

 

2. Consider the following two graphs:  

 G1  V1 = {a, b, c, d, e, f, g} E1 = {{a, b}, {a, d}, {b, c}, {b, 

 d}, {b, e}, {b, f}, {c, g}, {d, e}, {e, f}, {f, g}}.  

 G2  V2 = {v1, v2, v3, v4, v5, v6, v7}, E2 = {{v1, v4}, {v1, 

 v5}, {v1, v7}, {v2, v3}, {v2, v6}, {v3, v5}, {v3, v7}, {v4, v5}, 

 {v5, v6}, {v5, v7}}  

i.Let f: G1 → G2 be a function that takes the vertices of Graph 1 to 

 vertices of Graph 2. The function is given by the following table:  

x  a  b  c  d  e  f  g 

f(x)  v4 v5 v1 v6 v2 v3 v7 

 Does f define an isomorphism between Graph 1 and Graph 2?  

ii.Define a new function g (with g, f) that defines an isomorphism 

 between Graph 1 and Graph 2. 
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3. If 10 people each shake hands with each other, how many 

 handshakes took place? What does this question have to do with 

 graph theory? 

4. Decide whether the statements below about subgraphs are true or 

 false. If true in 1 or 2 sentences, explain why, else, give a 

 counterexample if false. 

i. Any subgraph of a complete graph is also complete.  

ii. Any induced subgraph of a complete graph is also complete.  

iii. Any subgraph of a bipartite graph is bipartite.  

 

i. Which of the graphs below have Euler paths or Euler circuits?  

 
ii. List the degrees of each vertex of the graphs 5 i above. Is there a 

connection between degrees and the existence of Euler paths and 

circuits?  

iii. Is it possible for a graph with a degree 1 vertex to have an Euler 

circuit? If so, draw one. If not, explain why not. What about an 

Euler path?  

iv. What if every vertex of the graph has degree 2? Is there an Euler 

path or an Euler circuit? Draw some graphs. 
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MODULE 3   MATRICES, APPLICATIONS TO   

   COUNTING AND DISCRETE PROBABILITY 

Unit 1  Matrices and Determinants 

Unit 2  Applications to Counting 

Unit 3  Discrete Probability Generating Function 

 

UNIT 1  MATRICES AND DETERMINANTS 

CONTENTS 
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2.0 Intended Learning Outcomes (ILOs) 

3.0  Main Content 

3.1 Matrix 

3.1.1 Types of Matrices 

3.1.2 Main or Principal Diagonal 

3.1.3 Particular cases of a square matrix  

3.1.4 Operations on Matrices 
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3.2.1 Minor and Cofactor of Element 

3.3  Special Matrices 

4.0  Conclusion  

5.0  Summary  

6.0  Tutor-Marked Assignment  

7.0 References/Further Reading 

 

1.0 INTRODUCTION  

In many analysis, variables are assumed to be related by sets of linear 

equations. Matrix algebra provides a clear and concise notation for the 

formulation and solution of such problems, many of which would be 

complicated in conventional algebraic notation. The concept of 

determinant is based on that of matrix. 

2.0 INTENDED LEARNING OUTCOMES (ILOS)  
 

At the end of this unit, you should be able to: 

 

 Compactly write and work with multiple linear equations 

 Understand the concept of matrices  

 Know how to perform some simple operations addition, 

 subtraction, multiplication, determinant and transpose 

 Know how to find the inverse of a matrix 

 Know the business application aspect of matrices 
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3.0 MAIN CONTENT 

3.1  MATRIX  

Definition 3.1.1. A matrix is a rectangular array of numbers. A matrix 

with m rows and n columns is said to have dimension m × n. 

Definition 3.1.2. A set of mn numbers (real or complex), arranged in a 

rectangular formation (array or table) having m rows and n columns and 

enclosed by a square bracket [ ] is called m × n matrix (read “m by n 

matrix”) . 

A matrix may be represented as follows 

𝐴 =  [

𝑎11 𝑎12 … 𝑎1𝑛

𝑎21 𝑎22 … 𝑎2𝑛

…    …    …
𝑎𝑚1 𝑎𝑚2 … 𝑎𝑚𝑛

] 

The letters aij stand for real numbers. Note that aij is the element in the 

ith row and jth column of the matrix. Thus, the matrix A is sometimes 

denoted by simplified form as (aij) or by {aij} i.e., A = (aij). Matrices are 

usually denoted by capital letters A, B, C etc. and its elements by 

corresponding small letters a, b, c etc. 

Order of a Matrix: The order or dimension of a matrix is the ordered 

pair having as first component the number of rows and as second 

component the number of columns in the matrix. If there are 3 rows and 

2 columns in a matrix, then its order is written as (3 × 2) or (3, 2) which 

is read as three by two. In general, if m are rows and n are columns of a 

matrix, then its order is (m × n). 

Example 3.1.1.  

A = [
 3  1 
0  2

], B = [
 1 
3
4

]  and C = [
 4  2  6 
2  1  3

]. 

The order of the matrices, A, B and C are (2 × 2), (3 × 1) and (2 × 3) 

respectively. 

Definition 3.1.3. Matrices A and B are equal, A = B, if A and B have 

the same dimensions and each entry of A is equal to the corresponding 

entry of B. 
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3.1.1 Types of Matrices 

1. Row Matrix and Column Matrix: A matrix consisting of a 

 single row is called a row matrix or a row vector, whereas a 

 matrix having single column is called a column matrix or a 

 column vector.  

2. Null or Zero Matrix: A matrix in which each element is „0‟ is 

 called a Null or Zero matrix. Zero matrices are generally denoted 

 by the symbol O. This distinguishes zero matrix from the real 

 number 0.  

For example O = [
 0  0  0 
 0  0  0 

]is a zero matrix of order 2  3.  

 

The matrix Omxn has the property that for every matrix Amxn, A + O = O 

+ A = A  

3. Square matrix: A matrix A having same numbers of rows and 

 columns is called a square matrix. A matrix A of order m  n can 

 be written as Amn. If m = n, then the matrix is said to be a square 

 matrix. A square matrix of order n  n, is simply written as An. A 

 = and C =. 

Thus [
𝑎  𝑏
 𝑐  𝑑 

] and [
𝑎  𝑑  𝑔
𝑏  𝑒  ℎ
 𝑐  𝑓  𝑖 

] are square matrix of order 2 and 3. 

3.1.2. Main or Principal Diagonal: The principal (leading) diagonal 

of a square matrix is the ordered set of elements aij, where i = j, 

extending from the upper left-hand corner to the lower right-hand corner 

of the matrix. Thus, the principal diagonal contains elements a11, a22, a33 

etc. For example, the principal diagonal of  

[
𝑎  𝑑  𝑔
𝑏  𝑒  ℎ
 𝑐  𝑓  𝑖 

]  

consists of a, e and i, in that order. 

3.1.3. Particular cases of a square matrix 

1. Diagonal matrix: A square matrix in which all elements are zero 

 except those in the main or principal diagonal is called a diagonal 

 matrix. Some elements of the principal diagonal may be zero but 

 not all. 

For example, [
1  0 0
0  1  0
 0  0 1 

] and [
 1 0 
 0 2 

] are diagonal matrices. 
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In general, 𝐴 = [

𝑎11 𝑎12 ⋯ 𝑎1𝑛

⋮ ⋱ ⋮
𝑎𝑛1 𝑎𝑛2 ⋯ 𝑎𝑛𝑛

] = (𝑎𝑖𝑗)𝑛𝑥𝑛 

is a diagonal matrix if and only if  

  aij = 0   for i ≠ j, and 

  aij ≠ 0   for at least one i = j 

2. Scalar Matrix 

A diagonal matrix in which all the diagonal elements are same, is called 

a scalar matrix i.e.  

Thus, [
1 0
0 2

] and [
𝑘 0 0
0 𝑘 0
0 0 𝑘

] are scalar matrices. 

3. Identity Matrix or Unit Matrix 

A scalar matrix in which each diagonal element is 1 (unity) is called a 

unit matrix. An identity matrix of order n is denoted by In. 

Thus, 𝐼2 = [
1 0
0 1

] and 𝐼3 = [
1 0 0
0 1 0
0 0 1

] are identity matrices of the order 2 

and 3 respectively. 

In general, 𝐴 = [

𝑎11  𝑎12 ⋯ 𝑎1𝑛

⋮ ⋱ ⋮
𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

] = (𝑎𝑖𝑗)𝑚𝑥𝑛 

Is an identity matrix if and only if  

  aij = 0   for i ≠ j, and 

  aij ≠ 1  for i = j. 

Note: If a matrix A and identity matrix I are conformable for 

multiplication, then I has the property that AI = IA = A i.e., I is the 

identity matrix for multiplication.  

4. Equal Matrices 

Two matrices A and B are said to be equal if and only if they have the 

same order and each element of matrix A is equal to the corresponding 

element of matrix B. this implies that for each i, j, aij = bij. 
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Thus, 𝐼2 = [
2 1
3 0

] and 𝐼3 =  [

4

2
2 − 1

√9 0
] 

Then A = B because the order of matrices A and B is same and aij = bij 

for every i, j. 

Example 3.1.1. Find the values of x, y, z and a which satisfy the matrix 

equation  

[ 
𝑥 + 3 2𝑦 + 𝑥
𝑧 − 1 4𝑎 − 6

 ] =  [
 0 −7 
3 2𝑎

] 

Solution 3.1.1. By the definition of equality of matrices, we have: 

x + 3 = 0 ……………………………(1)  

2y + x = -7 ………………………….(2)  

z – 1 = 3 …………………………….(3)  

4a – 6 = 2a ………………………….(4)  

i. From (1) x = -3, 

ii. Put the value of x in (2), we get y = -2, 

iii. From (3) z = 4, 

iv. From (4) a = 3 

 

5. The Negative of a Matrix 

The negative of the matrix Amxn, denoted by -Amxn, is the matrix formed 

by replacing each element in the matrix Amxn with its additive inverse. 

For example,  

If 𝐴3𝑥2 = [
1  ­2

 3  ­4 
­5  6 

] 

Then ­𝐴3𝑥2 = [
­1  2

 ­3  4 
 5  ­6 

] 

for every matrix Amxn, the matrix -Amxn has the property that  

A + (-A) = (-A) + A = 0  

i.e., (-A) is the additive inverse of A.  
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The sum Bm-n + (-Amxn) is called the difference of Bmxn and Amxn and is 

denoted by Bmxn – Amxn. 

3.1.4. Operations on Matrices 

 

1. Multiplication of a Matrix by a Scalar: If A is a matrix and k is 

 a scalar (constant), then kA is a matrix whose elements are the 

 elements of A, each multiplied by k. 

 For example, if , 𝐴 =  [
1  ­2  3
2   4  ­6
3  ­6  9

] then for a scalar k, 

k𝐴 =  [
𝑘   ­2𝑘  3𝑘
2𝑘  4𝑘  ­6𝑘
3𝑘  ­6𝑘  9𝑘

] 

Example 3.3.1. From A given, determine 3A. 

𝐴 =  [
1  ­2  3
2   4  ­6
3  ­6  9

] 

3𝐴 =  3 [
1  ­2  3
2   4  ­6
3  ­6  9

] =  [
3     ­6    9
6   12  ­16
9   ­18  27

] 

2. Addition and subtraction of Matrices: If A and B are two 

 matrices of same order m  n then their sum A + B is defined as 

 C, m  n matrix such that each element of C is the sum of the 

 corresponding elements of A and B. For example, 

 

Let 𝐴 =  [
2  9
5 ­6

] and 𝐵 =  [
1 ­5
3  2

]. 

Then, C = A + B = [
2 + 1    9 + (­5)
5 + 3     ­6 + 2

] = [
3   4
8  ­4

] 

Similarly, the difference A – B of the two matrices A and B is a matrix 

each element of which is obtained by subtracting the elements of B from 

the corresponding elements of A. 

Then, D = A - B = [
2 − 1    9 − (­5)
5 − 3      ­6 − 2

] = [
1   14
3  ­8

] 

If A, B and C are the matrices of the same order m  n then,  

A + B = B + A and (A + B) + C = A + (B + C)  
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i.e., the addition of matrices is commutative and associative 

 respectively.  

Note: The sum or difference of two matrices of different order is not 

defined. For example, the sum or difference of a matrices with orders (3 

 2) and (2  2) is not defined. 

3. Product of Matrices: Two matrices A and B are said to be 

 conformable for the product AB if the number of columns of A is 

 equal to the number of rows of B. Then the product matrix AB 

 has the same number of rows as A and the same number of 

 columns as B.  

Thus the product of the matrices Amxp and Bpxn is the matrix (AB)mxn. 

The elements of AB are determined as follows: 

The element Cij in the ith row and jth column of (AB)mxn is found by  

cij = ai1b1j  ai2b2j + ai3b3j + ……….+ ainbnj 

For example, let’s consider the matrices: 

𝐴2𝑥2 = [
𝑎11 𝑎12

𝑎21 𝑎22
] and 𝐵2𝑥2 = [

𝑏11 𝑏12

𝑏21 𝑏22
] 

Since the number of columns of A is equal to the number of rows of B, 

the product AB is defined and is given as  

𝐴𝐵 = [
𝑎11 𝑎12

𝑎21 𝑎22
] [

𝑏11 𝑏12

𝑏21 𝑏22
]

=  [
𝑎11𝑏11 +  𝑎12𝑏21 𝑎12 𝑏12 +  𝑎12𝑏22

𝑎21𝑏11+ 𝑎22𝑏21 𝑎21𝑏12 +  𝑎22𝑏22
] 

Thus c11 is obtained by multiplying the elements of the first row of A 

i.e., a11, a12 by the corresponding elements of the first column of B i.e., 

b11, b21 and adding the product. Similarly, c12 is obtained by multiplying 

the elements of the first row of A i.e., a11, a12 by the corresponding 

elements of the second column of B i.e., b12, b22 and adding the product. 

Similarly, for c21, c22. Note:  

i. Multiplication of matrices is not commutative i.e., AB  BA in 

general. 2. 

ii. For matrices A and B if AB = BA then A and B commute to each 

other. 

iii. A matrix A can be multiplied by itself if and only if it is a square 

matrix. The product A  A, in such cases is written as A2. 
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Similarly, we may define higher powers of a square matrix i.e., A 

 A2 = A3, A2  A2 = A4. 

iv. In the product AB, A is said to be pre multiple of B and B is said 

 to be post multiple of A.  

Example 3.1.2. If 𝐴 =  [
 1    2
­1   3

]and 𝐵 =  [
 2  1 
 1  1 

], find AB and BA. 

Solution 3.1.2.  

𝐴𝐵 =  [
 1    2
­1   3

] [
 2  1 
 1  1 

] 

= [
1.2 +  2.1 1.1 + 2.1
­1.2 + 3.1 ­1.1 + 3.1

] 

= [
 4  3 
 1  2 

] 

 

𝐵𝐴 =  [
 2  1 
 1  1 

] [
 1    2
­1   3

] 

= [
 2.1 +  1. ­1 2.2 + 1.3 
1.1 + 1. ­1 1.2 + 1.3 

] 

= [
 2 − 1 4 + 3 
1 − 1 2 + 3 

] 

= [
 1  7 
 0  5 

] 

Exercise 3.1.2 clearly shows that multiplication of matrices in general, is 

not commutative i.e., AB  BA. 

Example 3.1.3. If 𝐴 =  [
 3   1    2
1    0   1

] and 𝐵 =  [
 1  ­1 
2   1
3   1

], find AB  

Solution 3.1.3. Since A is a (2  3) matrix and B is a (3  2) matrix, 

they are conformable for multiplication. We have 

𝐴𝐵 =  [
 3   1    2
 1   0   1

] [
 1  ­1 
2   1
3   1

] 

= [
 3.1 +  1.2 + 2.3 3. ­1 + 1.1 + 2.1 
 1.1 + 0.2 + 1.3 1. ­1 + 0.1 + 1.1 

]  
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=  [
 3 + 3 + 6    ­3 + 1 + 2
1 + 0 + 3    ­1 + 0 + 1

] 

=  [
 11   0 
  4     0 

] 

Remarks:  

If A, B and C are the matrices of order (m  p), (p  q) and (q  n) 

respectively, then, 

i. Associative law: (AB)C = A(BC). 

ii. Distributive law: C (A + B) = CA + CB and (A + B) C = AC + 

BC.  

3.2  Determinant 

The determinant of a matrix is a scalar (number), obtained from the 

elements of a matrix by specified, operations, which is characteristic of 

the matrix. The determinants are defined only for square matrices. 

Determinant is denoted by det (A) or |A| for a square matrix A.  

Determinant of a 2  2 matrix: Given the matrix 𝐴 = [
𝑎11 𝑎12

𝑎21 𝑎22
], then  

|𝐴| = |
𝑎11 𝑎12

𝑎21 𝑎22
| 

= | 𝑎11𝑎22 −  𝑎21𝑎12| 

Example 3.2.1. If 𝐴 =  [
 1    2
­1   3

], find |A|. 

Solution 3.2.1.  

|𝐴| = |
1   2
­1  3

| = |1.3 − (­1.2)| = |3 + 2| = 5 

 

Determinant of a 3  3 matrix: Given the matrix 𝐴 =  [

 𝑎11   𝑎12  𝑎13 

𝑎21  𝑎22  𝑎23

𝑎31  𝑎32  𝑎33

], 

then  

|𝐴| = |

 𝑎11   𝑎12  𝑎13 

𝑎21  𝑎22  𝑎23

𝑎31  𝑎32  𝑎33

| 



CIT206              DISCRETE STRUCTURES 

 
 

62 

= 𝑎11 |
𝑎22 𝑎23

𝑎32 𝑎33
| − 𝑎12 | 

𝑎21 𝑎23

𝑎31 𝑎33
| + 𝑎13 |

𝑎21 𝑎22

𝑎31 𝑎32
| 

=  𝑎11(𝑎22𝑎33−𝑎32𝑎23) −  𝑎12 (𝑎21𝑎33

− 𝑎31𝑎23) + 𝑎13 (𝑎21𝑎32 − 𝑎31𝑎22) 

These determinants are called minors. We take the sign + or  , 

according to (  1)i+j aij Where i and j represent row and column. 

3.2.1. Minor and Cofactor of Element 

The minor Mij of the element aij in a given determinant is the 

determinant of order (n – 1  n – 1) obtained by deleting the ith row and 

jth column of Anxn. For example, in the determinant 

|𝐴| = |

 𝑎11   𝑎12  𝑎13 

𝑎21  𝑎22  𝑎23

𝑎31  𝑎32  𝑎33

| 
 

………………………….. (1) 

i. The minor of the element a11 is M11 = |
𝑎22 𝑎23

𝑎32 𝑎33
| 

ii. The minor of the element a12 is M12 = | 
𝑎21 𝑎23

𝑎31 𝑎33
| 

iii. The minor of the element a13 is M13 = |
𝑎21 𝑎22

𝑎31 𝑎32
| and so on. 

The scalars Cij = (-1)i+j Mij are called the cofactor of the element aij of 

the matrix A.  

The value of the determinant in equation (1) can also be found by its 

minor elements or cofactors, as  

a11M11 – a12M12 + a13M13   

Or    

a11C11 + a12C12 + a13C13.  

Hence, the |A| is the sum of the elements of any row or column 

multiplied by their corresponding cofactors. The value of the 

determinant can be found by expanding it from any row or column. 

Example 3.2.3.  If 𝐴 =  [
 3  2  1 
 0  1  ­2 
 1  3  4 

]find |A| by expansion about (a) the 

first row (b) the first column.  
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Solution 3.2.3. (a) Using the first row  

|𝐴| = |
 3  2  1 
 0  1  ­2 
 1  3  4 

| 

= 3 |
1  ­2
3   4

| − 2 |
 0  ­2
1   4

| + 1 |
0   1
1   3

|  

= 3(1.4 – (-2).3) -2(0.4 – 1. -2) +1(0.3 – 1.1)  

= 3(4+6) -2(0+2) +1(0-1) 

= 30 – 4 – 1  

= 25 

Solution 3.2.3. (b) Using the first column 

|𝐴| = |
 3  2  1 
 0  1  ­2 
 1  3  4 

| 

= 3 |
1  ­2
3   4

| − 0 |
 2   1
3   4

| + 1 |
2   1
1  ­2

|  

= 3(1.4 – (-2).3) - 0(2.4 – 3.1) +1(2.-2 – 1.1)  

= 3(4+6) - 0(8 - 2) +1(-4 - 1) 

= 30 – 0 – 5  

= 25 

3.3.  Special Matrices 
 

1. Transpose of a Matrix 

If A = [aij] is m  n matrix, then the matrix of order n  m obtained by 

interchanging the rows and columns of A is called the transpose of A. It 

is denoted At or A. For example,  

if 𝐴 = [
 3  2  1 
 0  1  ­2 
 1  3  4 

] then, 𝐴𝑡 = [
 3  0  1 
 2  1  3 
 1  ­2  4 

] 
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2. Symmetric Matrix 

A square matrix A is called symmetric if A = At. For example, 

if 𝐶 = [
 0  ­4 1 
 4  0  ­3 
 ­1  3  0 

] then, 𝐶𝑡 = [
 0  ­4 1 
 4  0  ­3 
 ­1  3  0 

] = 𝐶 

3. Skew Symmetric 

A square matrix A is called skew symmetric if A = At. For example,  

If 𝐶 = [
 0  ­4 1 
 4  0  ­3 
 ­1  3  0 

] then, 

𝐶𝑡 = [
 0  4  ­1 
 ­4  0  3 
 1  ­3  0 

] = (­1) [
 0  ­4 1 
 4  0  ­3 
 ­1  3  0 

] 

Ct =  −C. Thus matrix C is skew symmetric.  

4. Singular and Non-singular Matrices 

A square matrix A is called singular if |A| = 0 and is non-singular if |A|  

0, for example if t 

𝐴 =  [
 1   3
 1   3

] then,  

|𝐴| = |
 1   3
 1   3

| = |1.3 − (1.3)| = |3 − 3| = 0 

Then, |A| = 0, Hence A is singular. 

5. Adjoint of a Matrix 

Let A = (aij) be a square matrix of order n  n and (cij) is a matrix 

obtained by replacing each element aij by its corresponding cofactor cij 

then (cij)t is called the adjoint of A. It is written as Adj (A).  

     Example 3.1.4. If 𝐴 =  [
 1     0  − 1
 1     3      1
0     1      2

], find the cofactor matrix of A 
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Solution 3.1.4. The cofactors of A are: 

     C11 = (−1)1+1 |
3   1
1   2

| = 5;     C12 = (−1)1+2 |
1    1
0    2

| = -2;       C13 

= (−1)1+3 |
 1   3
 0   1

| = 1 

     C21 = (−1)2+1 |
0 − 1
1    2

| = -1; C22 = (−1)2+2 |
 1  − 1
 0     2

| = 2;    C23 = 

(−1)2+3 |
1   0
0   1

| = -1 

     C31 = (−1)3+1 |
0  − 1
3    1

| = 3;    C32 = (−1)3+2 |
1  − 1
1    1

| = -2;    C33= 

(−1)3+3 |
 1   0
 1   3

| = 3 

The matrix of cofactors of A will be, C: 

𝐶 =  [
 5  − 2   1

−1    2  − 1 
3   − 2      3

] 

𝐶𝑡 =  [
 5  − 1   3

−2    2  − 2 
1   − 1      3

] 

Therefore, Adj (A) = Ct 

Adjoint of a 22 Matrix 

The adjoint of matrix 𝐴 =  [
𝑎   𝑏
𝑐   𝑑

] is denoted by Adj (A) and is defined 

as: 

𝐴𝑑𝑗 (𝐴) =  [
𝑑 − 𝑎
−𝑐   𝑏

]  

6. Inverse of a Matrix 

If A is a non-singular square matrix then, 𝐴−1  =  
𝑎𝑑𝑗 (𝐴)

|𝐴|
  

22 Matrix 

Example 3.1.5. If 𝐴 =  [
 1   2
 1   3

], find A-1.  

Solution 3.1.5. 
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|𝐴| = |
 1   2
 1   3

| = |1.3 − (1.2)| = |3 − 2| = 1 

Adj (A) = [
 3  − 2
−1   1

] 

𝐴−1  =  
𝑎𝑑𝑗 (𝐴)

|𝐴|
=  

1

1
[
 3  − 2
−1   1

] =  [
 3  − 2
−1   1

] 

Alternately: For a non-singular matrix A of order (n  n) if there exist 

another matrix B of order (n  n) such that their product is the identity 

matrix I of order (n  n) i.e., AB = BA = I.  

Then B is said to be the inverse (or reciprocal) of A and is written as B = 

A-1. 

Example 3.1.6. If 𝐴 =  [
 1    ­3
­2   7

]and 𝐵 =  [
 7  3 
 2  1 

]. Show that AB = BA = 

I then, B = 𝐴−1. 

Solution 3.1.6. 

𝐴𝐵 =  [
 1    ­3
­2   7

] [
 7  3 
 2  1 

] = [
 1   0 
 0   1 

] 

 

𝐵𝐴 =  [
 7  3 
 2  1 

] [
 1    ­3
­2   7

] = [
 1   0 
 0   1 

] 

                    Example 3.1.7. If 𝐴 =  [
 0   ­2   ­3
1    3   3

­1  ­2   ­2
] 

Solution 3.1.7.  

 |A| = 0 +2 (–2 +3) – 3(–2 + 3) = 2 – 3  

 |A| = –1, Hence solution exists.  

        Cofactor of A are: 

        C11 = 0; C12 = −1; C13 = 1 

        C21 = 2 ; C22 = -3; C23 = 2 

          C31 = 3; C32 = -3; C33 = 2 
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          The matrix of cofactors of A is: 

𝐶 =  [
 0   ­1   1
2   ­3   2
3   ­3   2

] 

  The transpose of C is: 

𝐶𝑡 =  [
0    2    1

−1   ­3   ­3
 1    2    2

] = 𝐴𝑑𝑗 (𝐴) 

So, 

𝐴−1  =  
1

|𝐴|
𝑎𝑑𝑗 (𝐴) =  

1

−1
[

0    2    1
­1   ­3   ­3
 1    2    2

] 

=  [
0    ­2    ­1
1     3     3

 ­1    ­2    ­2
]   

 

7. Solution of Linear Equations by Matrices 

For a linear system:  

a11x1 + a12x2 + ------ + a1nxn = b1  

a21x1 + a22x2 + ------ + a2nxn = b2………………………….. (1) 

    

an1x1 + an2x2 + ------ + annxn = bn 

It can be written as the matrix equation: 

 

[

𝑎11  𝑎12 ⋯ 𝑎1𝑛

𝑎21  𝑎22 ⋯ 𝑎2𝑛

⋮        ⋱        ⋮
𝑎𝑛1  𝑎𝑛2 ⋯ 𝑎𝑛𝑛

] [

𝑥1

𝑥2

⋮
𝑥𝑛

] =  [

𝑏1

𝑏2

⋮
𝑏𝑛

] 
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Let 𝐴 = [

𝑎11  𝑎12 ⋯ 𝑎1𝑛

𝑎21  𝑎22 ⋯ 𝑎2𝑛

⋮        ⋱        ⋮
𝑎𝑛1  𝑎𝑛2 ⋯ 𝑎𝑛𝑛

] , 𝑋 = [

𝑥1

𝑥2

⋮
𝑥𝑛

] and 𝐵 =  [

𝑏1

𝑏2

⋮
𝑏𝑛

]. 

The equation can be written as, AX = B.  

If B  0, then (1) is called non-homogenous system of linear equations 

and if B = 0, it is called a system of homogenous linear equations.  

If now B  0 and A is non-singular then A-1 exists.  

Multiply both sides of AX = B on the left by A-1, we get  

A-1(AX) = A-1B  

(A-1A) X = A-1B  

1X = A-1B  

Or  X = A-1B  

Where A-1B is an n  1 column matrix. Since X and A-1B are equal, each 

element in X is equal to the corresponding element in A-1B. These 

elements of X constitute the solution of the given linear equations. 

If A is a singular matrix, then of course it has no inverse, and either the 

system has no solution or the solution is not unique.  

Example 3.1.8. Use matrices to find the solution set of  

    x + y – 2z = 3  

    3x – y + z = 5  

3x + 3y – 6z = 9 

Solution 3.1.8.  

𝐴 =  [
 1    1   ­2
3    ­1   1
3    3   ­6

] 

|A| = 3 + 21 – 24 = 0 

Since |A| = 0, the solution of the given linear equations does not exist. 
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Example 3.1.9. Use matrices to find the solution set of  

4x + 8y + z = –6  

2x – 3y + 2z = 0  

x + 7y – 3z = –8 

Solution 3.1.9.  

𝐴 =  [
 4    8    1
2    ­3   2
1    7   ­3

] 

|A| = –32 + 48 + 17 = 61 

Since |A|  0 then, A-1 exists. 

𝐴−1  =  
1

|𝐴|
𝑎𝑑𝑗 (𝐴) =  

1

61
[

­5    31   19
8   ­13   ­16

 17   ­20  ­28
] 

Now since, 

X = A-1B, we have 

[
𝑥
𝑦
𝑧

] =  
1

61
[

­5    31   19
8   ­13   ­16

 17   ­20  ­28
] [

­6
0
­8

] 

=  
1

61
[

30 + 152
­48 + 48

 ­102 + 224
] [

­2
0
2

] 

Hence solution set: {(x, y, z)} = {(­2, 0, 2)}. 

4.0 CONCLUSION  

A matrix is a rectangular array of numbers with m rows and n columns. 

Matrix algebra provides a clear and concise notation for the formulation 

and solution of some problems. There are different types of matrices:  

row, column, null, square, diagonal, upper triangular, lower triangular, 

symmetric and antisymmetric matrix. Different operations are carried 

out on matrices which include: addition, subtraction, multiplication, 

determinant and inverse.  
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5.0 SUMMARY  
 

In this unit, you are have learnt how to write and work with multiple 

linear equations.  

 

 Understand the concept of matrices  

 Know how to perform some simple operations addition, 

 subtraction, multiplication, determinant and transpose 

 Know how to find the inverse of a matrix 

The next unit is Applications to Counting. This unit will discuss 

different techniques applicable in counting problems. 

6.0 TUTOR-MARKED ASSIGNMENT  
 

1. Write the following matrices in tabular form:  

a. A = [aij], where i = 1, 2, 3 and j = 1, 2, 3, 4  

b. B = [bij], where i = 1 and j = 1, 2, 3, 4  

c. C = [cjk], where j = 1, 2, 3 and k = 1 

2. Show that if 𝐴 =  [
 ­1    2
 0   1

]and 𝐵 =  [
 1   0 
 ­1  2 

] then, 

a. (A + B)(A + B)  A2 + 2AB + B2  

b. (A + B)(A – B)  A2 – B2 

3. Write each product as a single matrix 

a. [
 3   1   ­1
 0   ­1   2

] [
 2  ­1 
0   2
1   1

] 

b. [3  1 ­2] [
 2 
­2
1

] 

c. [
 3   1   ­1
 0   ­1   2
1    2   1

] [
  2  ­1   ­1 
 0   2   ­1
­1   1   1

] 

4. If 𝐴 =  [
 ­1    2
 1   1

], 𝐵 =  [

 
3   0 
 ­1  2 

] and =  [
 3   1 
 ­1  1 

], find  

a. CB + A2  

b. B2 + AC 

c. kABC, where k = 2. 

5. Find K such that the following matrices are singular  

a. [
K   6
4   3

]  

b. [
1    2 − 1 
−3   4    K 
−4    2    6

] 

c. [
1    1 − 2 
3 − 1    1 
K     3 − 6

] 
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6. Find the solution set of the following system by means of 

 matrices:  

a. 2x – 3y = –1  

     x + 4y = 5 

b.       x + y = 2  

     2x – z = 1  

 2y – 3z = –1 

c. x – 2y + z = –1 

 3x + y – 2z = 4   

          y – z = 1  

d. –4x + 2y – 9z = 2 

     3x + 4y + z = 5  

     x – 3y + 2z = 8 

e.   x + y – 2z = 3  

     3x – y + z = 0  

 3x + 3y – 6z = 8 
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1.0 INTRODUCTION  

Counting is a basic mathematical tool that has uses in many diverse 

circumstances. How much RAM can a 32-bit register address? How 

many poker hands form full houses compared to flushes? How many 

ways can ten-coin tosses end up with four heads? To count, we can 

always take the time to enumerate all the possibilities; but even just 

enumerating all poker hands is already daunting, let alone all 32-bit 

addresses. This unit discusses some techniques that serve as useful 

shortcuts for counting. 

2.0 INTENDED LEARNING OUTCOMES (ILOS)  
 

By the end of this study, you should be able to  

 

 Apply product and sum rules  

 Understand permutation and combination 

 Use Pascal’s triangle to expand a binomial expression 

 Identify and apply inclusion-exclusion and pigeonhole principle. 

 

3.0 MAIN CONTENT 

 

3.1 The Product and Sum Rules  

The product and sum rules represent the most intuitive notions of 

counting. Suppose there are n(A) ways to perform task A, and regardless 

of how task A is performed, there are n(B) ways to perform task B.  
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Then, there are n(A)  n(B) ways to perform both task A and task B; this 

is the product rule. This can generalize to multiple tasks, e.g., n(A)  

n(B)  n(C) ways to perform task A, B, and C, as long as the 

independence condition holds, e.g., the number of ways to perform task 

C does not depend on how task A and B are done.  

Example 3.1.1. On an 8 × 8 chess board, how many ways can I place a 

pawn and a rook?  

Example 3.1.1. 1. First I can place the pawn anywhere on the board; 

there are 64 ways. Then I can place the rook anywhere except where the 

pawn is; there are 63 ways. In total, there are 64 × 63 = 4032 ways. 

Example 3.1.2. On an 8 × 8 chess board, how many ways can I place a 

pawn and a rook so that the rook does not threaten the pawn?  

Solution 3.1.2. Firstly, I can place the rook anywhere on the board; 

there are 64 ways. At the point, the rook takes up on square, and 

threatens 14 others (7 in its row and 7 in its column). Therefore, I can 

then place the pawn on any of the 64 − 14 − 1 = 49 remaining squares. 

In total, there are 64 × 49 = 3136 ways.  

Example 3.1.3. If a finite set A has n elements, then |P(A)| = 2n.  

Solution 3.1.3. We can proof this by using the product rule. P(A) is the 

set of all subsets of A. To form a subset of A, each of the n elements can 

either be in the subset or not (2 ways). Therefore, there are 2n possible 

ways to form unique subsets, therefore, |P(A)| = 2n.  

Example 3.1.4. How many legal configurations are there in the towers 

of Hanoi?  

Solution 3.1.4. Each of the n rings can be on one of three poles, giving 

us 3n configurations. Normally we would also need to count the height 

of a ring relative to other rings on the same pole, but in the case of the 

towers of Hanoi, the rings sharing the same pole must be ordered in a 

unique fashion: from small at the top to large at the bottom. 

The sum rule is probably even more intuitive than the product rule. 

Suppose there are n(A) ways to perform task A, and distinct from these, 

there are n(B) ways to perform task B. Then, there are n(A) + n(B) ways 

to perform task A or task B. This can generalize to multiple tasks, e.g., 

n(A) + n(B) + n(C) ways to perform task A, B, or C, as long as the 

distinct condition holds, e.g., the ways to perform task C are different 

from the ways to perform task A or B.  
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Example 3.1.5. To fly from Lagos to Brisbane you must fly through 

Istanbul or Dubai. 

Solution 3.1.5. There are 5 such flights a day through Istanbul, and 3 

such flights a day through Dubai. How many different flights are there 

in a day that can take you from Lagos to get to Brisbane? The answer is 

5 + 3 = 8. 

Example 3.1.6. How many 4- to 6-digit pin codes are there?  

Solution 3.1.6. By the product rule, the number of distinct n digit pin 

codes is 10n (each digit has 10 possibilities). By the sum rule, we have 

104 + 105 + 106 number of 4- to 6-digit pin codes (to state the obvious, 

we have implicitly used the fact that every 4-digit pin code is different 

from every 5-digit pin code). 

3.2 Permutations and Combinations 

Permutations and combinations are also tools for counting. Given n 

distinct objects, how many ways are there to “choose” r of them? Well, 

it depends on whether the r chosen objects are ordered or not. For 

example, suppose we deal three cards out of a standard 52-card deck. If 

we are dealing one card each to Alice, Bob and Cathy, then the order of 

the cards being dealt matters; this is called a permutation of 3 cards. On 

the other hand, if we are dealing all three cards to Alice, then the order 

of the cards being dealt does not matter; this is called a combination of 

3 cards.  

3.2.1. Permutations  

Definition 3.2.1.1. A permutation of a set A is an ordered arrangement 

of the elements in A. An ordered arrangement of just r elements from A 

is called an r-permutation of A. For non-negative integers r ≤ n, P(n, r) 

denotes the number of r-permutations of a set with n elements.  

What is P(n, r)? To form an r-permutation from a set A of n elements, 

we can start by choosing any element of A to be the first in our 

permutation; there are n possibilities. The next element in the 

permutation can be any element of A except the one that is already 

taken; there are n−1 possibilities. Continuing the argument, the final 

element of the permutation will have n − (r − 1) possibilities. Applying 

the product-rule, we have: 

Theorem 3.2.1. P(n, r) =  n(n −  1)(n −  2) · · · (n −  r +  1) =

 
n! 

(n − r)!
… … … … … . (1)  
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Note that 0! = 1.  

Example 3.2.1.1. How many one-to-one functions are there from a set A 

with m elements to a set B with n elements?  

Solution 3.2.1.1. If m > n we know there are no such one-to-one 

functions. If m ≤ n, then each one-to-one function f from A to B is a m-

permutation of the elements of B: we choose m elements from B in an 

ordered manner (e.g., first chosen element is the value of f on the first 

element in A). Therefore there are P(n, m) such functions.  

3.2.2. Combinations 

Considering unordered selections. 

Definition 4.10. An unordered arrangement of r elements from a set A is 

called an r-combination of A. For non-negative integers r ≤ n, C(n, r) or 

(
𝑛
𝑟

) denotes the number of r-combinations of a set with n elements. C(n, 

r) is also called the binomial coefficients (we will soon see why).  

For example, how many ways are there to put two pawns on a 8 × 8 

chess board? We can select 64 possible squares for the first pawn, and 

63 possible remaining squares for the second pawn. But now we are 

over counting, e.g., choosing squares (b5, c8) is the same as choosing 

(c8, b5) since the two pawns are identical. Therefore, we divide by 2 to 

get the correct count: 64 × 63/2 = 2016. More generally,  

Theorem 3.2.2.  

C(n, r) =  
n! 

(n − r)!r!
  

Proof. Let us express P(n, r) in turns of C(n, r). It must be that P(n, r) = 

C(n, r)P(r, r), because to select an r-permutation from n elements, we 

can first selected an unordered set of r elements, and then select an 

ordering of the r elements. Rearranging the expression gives:  

C(n, r) =  
P(n,r) 

P(r,r)
=  

n! (n−r)!⁄  

r!
=  

n! 

(n − r)!r!
 

 

Example 3.2.2.1. How many poker hands (i.e., sets of 5 cards) can be 

dealt from a standard deck of 52 cards?  

Solution 3.2.2.1. Exactly C(52, 5) = 52!/(47!5!).  
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Example 3.2.2.2. How many full houses (3 of a kind and 2 of another) 

can be dealt from a standard deck of 52 cards?  

Solution 3.2.2.2. We have 13 denominations (ace to king), and 4 suites 

(spades, hearts, diamonds and clubs). To count the number of full 

houses, we may  

i. First pick a denomination for the “3 of a kind”: there are 13 

choices.  

ii. Pick 3 cards from this denomination (out of 4 suites): there are 

C(4, 3) = 4 choices.  

iii. Next pick a denomination for the “2 of a kind”: there are 12 

choices left (different from the “3 of a kind”).  

iv. Pick 2 cards from this denomination: there are C(4, 2) = 6 

choices.  

So in total there are 13 ∗ 4 ∗ 12 ∗ 6 = 3744 possible full houses. 

3.3 Combinatorial Identities  

There are many identities involving combinations. These identities are 

fun to learn because they often represent different ways of counting the 

same thing; 66 counting one can also prove these identities by churning 

out the algebra, but that is boring. We start with a few simple identities. 

Lemma 3.1. If 0 ≤ k ≤ n, then C(n, k) = C(n, n − k).  

Proof. Each unordered selection of k elements has a unique 

complement: an unordered selection of n − k elements. So instead of 

counting the number of selections of k elements from n, we can count 

the number of selections of n−k elements from n (e.g., to deal 5 cards 

from a 52 card deck is the same as to throw away 52 − 5 = 47 cards).  

An algebraic proof of the same fact (without much insight) goes as 

follows:  

C(n, r) =
n! 

(n − k)!k!
=

n! 

(n−(n − k))!(n−k)!
= 𝐶(𝑛, 𝑛 − 𝑘) 

Lemma 3.2. (Pascal’s Identity). If 0 < k ≤ n, then C(n + 1, k) = C(n, k − 

1) + C(n, k).  

Proof. Here is another way to choose k elements from n + 1 total 

element. Either the n + 1st element is chosen or not:  

i. If it is, then it remains to choose k−1 elements from the first n 

elements.  
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ii. If it isn’t, then we need to choose all k elements from the first n 

elements. 

By the sum rule, we have C(n + 1, k) = C(n, k − 1) + C(n, k). 

Pascal’s identity, along with the initial conditions C(n, 0) = C(n, n) = 1, 

gives a recursive way of computing the binomial coefficients C(n, k). 

The recursion table is often written as a triangle, called Pascal’s 

Triangle; as shown in Figure 3.1.  

Lemma 3.3. ∑ C(n, k)  =  2nn
k=0 .  

Proof. Let us once again count the number of possible subsets of a set of 

n elements. We have already seen by induction and by the product rule 

that there are 2n such subsets; this is the RHS. 

Another way to count is to use the sum rule:  

No of subsets = ∑ No of subsets of size k =   ∑ C(n, k)n
k=0

n
k=0  This is 

the LHS. 

 

Figure 3.1. Pascal’s triangle contains the binomial coefficients C(n, k) 

ordered as shown in the figure. Each entry in the figure is the sum of the 

two entries on top of it (except the entries on the side which are always 

1). 

Theorem 3.3.1. (The Binomial Theorem). For n ∈ ℕ,  

(x + y)n ∑ C(n, k)xn−kyk

n

k=0

 

Proof. If we manually expand (x + y)n, we would get 2n terms with 

coefficient 1 (each term corresponds to choosing x or y from each of the 

n factors). If we then collect these terms, how many of them have the 

form xn−k yk? Terms of that form must chooses n−k many x’s, and k 
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many y’s. Because just choosing the k many y’s specifies the rest to be 

x’s, there are C(n, k) such terms.  

Exercise 3.3.1. What is the coefficient of x13y7 in the expansion of 

(x−3y)20?                          We write (x − 3y)20 as (x + (−3y))20 and apply 

the binomial theorem, which gives us the term: C(20, 7)x13(−3y)7 = −3 

7C(20, 7)x13y7. 

If we substitute specific values for x and y, the binomial theorem gives 

us more combinatorial identities as corollaries.  

Corollary 3.1. ∑ C(n, k) =  2nn
k=0 , again.  

Proof. Simply write 2n = (1+1)n and expand using the binomial 

theorem. 

Corollary 3.2. ∑ (−1)k+1n
k=1 𝐶(𝑛, 𝑘) = 1.  

Proof. Expand 0 = 0n = (1 − 1)n using the binomial theorem:  

0 = ∑ 𝐶(𝑛, 𝑘)1𝑛−𝑘n
k=0 (−1)k 

   = 𝐶(𝑛, 0) +  ∑ (−1)𝑘n
k=1  𝐶(𝑛, 𝑘) 

Rearranging terms gives us: 

𝐶(𝑛, 0) =  − ∑ (−1)𝑘n
k=1  𝐶(𝑛, 𝑘) =  ∑ (−1)𝑘+1𝐶(𝑛, 𝑘)n

k=1   

This proves the corollary since C(n, 0) = 1. 

3.3.1 Using Pascal’s triangle to expand a binomial expression 

Let’s now see how useful the triangle can be when we want to expand a 

binomial expression. Consider the binomial expression a + b, and 

suppose we wish to find (a + b)2.  

We know that  

(a + b)2 = (a + b)(a + b)  

 = a2 + ab + ba + b2  

= a2 + 2ab + b2  

That is,  

(a + b) 2 = 1a2 + 2ab + 1b2  
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Observe the following in the final result: 

1. As we move through each term from left to right, the power of a 

 decreases from 2 down to zero.  

2. The power of b increases from zero up to 2.  

3. The coefficients of each term, (1, 2, 1), are the numbers which 

 appear in the row of Pascal’s triangle beginning 1,2.  

4. The term 2ab arises from contributions of 1ab and 1ba, i.e. 1ab + 

 1ba = 2ab. This is the link with the way the 2 in Pascal’s triangle 

 is generated; i.e. by adding 1 and 1 in the previous row. 

If we want to expand (a + b)3 we select the coefficients from the row of 

the triangle beginning 1,3: these are 1,3,3,1. We can immediately write 

down the expansion by remembering that for each new term we decrease 

the power of a, this time starting with 3, and increase the power of b. So, 

(a + b) 3 = 1a3 + 3a2b + 3ab2 + 1b3 

 which we would normally write as just  

(a + b) 3 = a3 + 3a2b + 3ab2 + b3 

Thinking of (a + b)3 as  

(a + b) (a2 + 2ab + b2) = a3 + 2a2b + ab2 + ba2 + 2ab2 + b3  

= a3 + 3a2b + 3ab2 + b3 

we note that the term 3ab2, for example, arises from the two terms ab2 

and 2ab2 ; again this is the link with the way 3 is generated in Pascal’s 

triangle - by adding the 1 and 2 in the previous row. 

Example 3.3.2. Suppose we wish to find (a + b)4.  

Solution 3.3.2. To find this we use the row beginning 1,4, and can 

immediately write down the expansion. (a + b)4 = a4 + 4a3b + 6a2b2 + 

4ab3 + b4. 

Example 3.3.3. Suppose we want to expand (2x + y)3.  

Solution 3.3.3. We pick the coefficients in the expansion from the 

relevant row of Pascal’s triangle: (1,3,3,1). As we move through the 

terms in the expansion from left to right we remember to decrease the 

power of 2x and increase the power of y. So,  

(2x + y)3  = 1(2x) 3 + 3(2x)2y + 3(2x)1y2 + 1y3  
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= 8x3 + 12x2y + 6xy2 + y3 

Example 3.3.4. Let’s expand (1 +
2

𝑥
)

3

. 

Solution 3.3.4. We pick the coefficients in the expansion from the row 

of Pascal’s triangle (1,3,3,1). Powers of 2 x increase as we move left to 

right. Any power of 1 is still 1. 

(1 +
2

𝑥
)

3

=  1(1)3 + 3(1)2 (
2

𝑥
) + 3(1)1 (

2

𝑥
)

2

+1 (
2

𝑥
)

3

 

= 1 +  
6

𝑥
+  

12

𝑥2
+  

8

𝑥3
 

3.4 Inclusion-Exclusion Principle  

Some counting problems simply do not have a closed form solution. In 

this section we discuss a counting tool that also does not give a closed 

form solution. The inclusion-exclusion principle can be seen as a 

generalization of the sum rule.  

Suppose there are n(A) ways to perform task A and n(B) ways to 

perform task B, how many ways are there to perform task A or B, if the 

methods to perform these tasks are not distinct? We can cast this as a set 

cardinality problem. Let X be the set of ways to perform A, and Y be the 

set of ways to perform B. Then:  

|X ∪ Y | = |X| + |Y | − |X ∩ Y |  

This can be observed using the Venn Diagram. The counting argument 

goes as follows: To count the number of ways to perform A or B (|X ∪ 

Y |) we start by adding the number of ways to perform A (i.e., |X|) and 

the number of ways to perform B (i.e., |Y |). But if some of the ways to 

perform A and B are the same (|X ∩ Y |), they have been counted twice, 

so we need to subtract those.  

Example 3.4.1. How many positive integers ≤ 100 are multiples of 

either 2 or 5?  

Solution 3.4.1. Let A be the set of multiples of 2 and B be the set of 

multiples of 5. Then |A| = 50, |B| = 20, and |A ∩ B| = 10 (since this is the 

number of multiples of 10). By the inclusion-exclusion principle, we 

have 50 + 20 − 10 = 60 multiples of either 2 or 5. 

What if there are more tasks? For three sets, we can still gleam from the 

Venn diagram that  
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|X ∪ Y ∪ Z| = |X| + |Y | + |Z| − |X ∩ Y | − |X ∩ Z| − |Y ∩ Z| + |X ∩ Y ∩ 

Z| 

More generally,  

Theorem 3.4.1. Let A1, … , An be finite sets. Then, 

|⋃ 𝐴𝑖

𝑛

𝑖=1

| =  ∑(−1)𝑘+1

𝑛

𝑘=1

  ∑ |⋂ 𝐴𝑖

𝑖∈𝐼

|

𝐼,𝐼⊆{1,…,𝑛},|𝐼|=𝑘

= ∑ (−1)𝑘+1

  𝐼⊆{1,…,𝑛}

 |⋂ 𝐴𝑖

𝑖∈𝐼

| 

Proof. Consider some x ∈ ⋃iAi. We need to show that it gets counted 

exactly one in the RHS. Suppose that x is contained in exactly m of the 

starting sets (A1 to An), 1 ≤ m ≤ n. Then for each k ≤ m, x appears in 

C(m, k) many k-way intersections (that is, if we look at   |∩i∈I Ai|   ∀ |I| = 

k, x appears in C(m, k) many terms). Therefore, the number of times x 

gets counted by the inclusion-exclusion formula is exactly  

∑(−1)𝑘+1 𝐶(𝑚, 𝑘)

𝑚

𝑘=1

 

and this is 1 by Corollary 3.2.  

3.5 Pigeonhole Principle 

In this section, we will discuss the pigeonhole principle: a proof 

technique that relies on counting. The principle says that if we place k + 

1 or more pigeons into k pigeon holes, then at least one pigeon hole 

contains 2 or more pigeons. For example, in a group of 367 people, at 

least two people must have the same birthday (since there are a total of 

366 possible birthdays). More generally, we have  

Lemma 3.4. (Pigeonhole Principle). If we place n (or more) pigeons 

into k pigeon holes, then at least one box contains ⌈n/k⌉ or more pigeons.  

Proof. Assume the contrary that every pigeon hole contains ≤ ⌈n/k⌉ −1 < 

n/k many pigeons. Then the total number of pigeons among the pigeon 

holes would be strictly less than     k(n/k) = n, a contradiction.  

Example 3.5.1. In a group of 800 people, how many people are likely to 

share the same birthday? 
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Solution 3.5.1. There are at least ⌈800/366⌉ = 3 people with the same 

birthday. 

4.0 CONCLUSION 
 

Specially, you have learned about counting. You have also learned how 

to carry out counting using some special techniques and principles. 

The next Unit Discrete Probability Generating Function is also the last 

of Module 3. This unit will discuss some important tools required in 

dealing with sums and limits of random variables. 

  

5.0 SUMMARY  
 

In this unit, you have learnt how to use Pascal’s triangle to expand a 

binominal expression. You have also been taught how to identify and 

apply inclusion-exclusion and pigeonhole principle. In the next unit we 

will discussing the discrete probability generating function. 

 

6.0 TUTOR-MARKED ASSIGNMENT  
 

1. How many positive divisors does 2000 = 2453 have? 

2. Six friends Adam, Brian, Chris, Dan, Elvis and Frank want to go 

 see a movie. If there are only six seats available, how many ways 

 can we seat these friends 

3. Expand the following: 

a. (1 + p)4 

b. (3a − 2b)5 

c. (1 +
3

𝑎
)

4

 

d. (𝑥 −
1

𝑥
)

6

 

4. Find the minimum number of students in a class such that three 

 of them are born in the same month. 

5. Show that from any three integers, one can always choose two, so 

 that a3b – ab3 is divisible by 10. 
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UNIT 3  DISCRETE PROBABILITY GENERATING  

  FUNCTION 

CONTENTS 

1.0  Introduction  

2.0 Intended Learning Outcomes (ILOs) 

3.0 Main Content 

 3.1  Common Sums   

 3.2  Probability Generating Function  

 3.3  Using the PGF to calculate the mean and variance  

 3.4  Using the PGF to calculate the probabilities 

 3.5  Geometric Random Variables 

 3.6  Binomial Distribution  

4.0  Conclusion  

5.0  Summary  

6.0  Tutor-Marked Assignment  

7.0  References/Further Reading 

 

1.0 INTRODUCTION 

Discrete probability generating functions are important and useful tools 

for dealing with    sums and limits of random variables. The exact 

strength of Probability Generating Function (PGF), is that, it gives an 

easy way of characterizing the distribution of 𝐴 + 𝐵 when 𝐴 and 𝐵 are 

independent. To find the distribution of a sum using the common 

probability function we know is quite difficult, hence, the use of PGF 

which transform a sum into a product makes it much easier to handle. 

The PGF gives us details of everything we need to know about the 

distribution.    

2.0  INTENDED LEARNING OUTCOMES (ILOS) 

By the end of this study, you should be able to: 

 Obtain the sum of Geometric, Binomial and Exponential series 

 Define Probability Generating Functions (PGFs) and use it to 

 calculate the mean, variance and probability. 

 Identify and calculate the PGF for Geometric, Binomial and 

 Exponential distributions. 
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3.0 MAIN CONTENT 

3.1  Common Sums 

3.1.1 Geometric Series 

  1 + 𝑧 + 𝑧2 + 𝑧3 + 𝑧4+. . . =  ∑ 𝑧𝑥∞
𝑥=0 =  

1

1−𝑧
 ,      when |𝑧| < 1. 

 This formular proves that ∑ 𝑃(𝑋 = 𝑥) = 1∞
𝑥=0  when 

𝑋 ~ Geometric(𝑝): 

 𝑃(𝑋 = 𝑥) = 𝑝(1 − 𝑝)𝑥       ⟹     ∑ 𝑃(𝑋 = 𝑥) =∞
𝑥=0

  ∑ 𝑝(1 − 𝑝)𝑥∞
𝑥−0  

                 =  𝒑 ∑ (1 −∞
𝑥=0

𝑝)𝑥 

            =  
𝑝

1−(1−𝑝)
      (𝑏𝑒𝑐𝑎𝑢𝑠𝑒 |1 −

𝑝| < 1) 

            =
1       (𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑢𝑚 𝑜𝑓 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑠𝑒𝑟𝑖𝑒𝑠) 

3.1.2  Binomial Theorem 

Binomial theorem states that for any 𝑝, 𝑞 ∈ ℝ and integer 𝑛, then 

(𝑝 + 𝑞)𝑛  =   ∑ (
𝑛
𝑥

) 𝑝𝑥𝑞𝑛−𝑥𝑛
𝑥=0 , where (

𝑛
𝑥

) =  
𝑛!

(𝑛−𝑥)!𝑥!
 . 

The Binomial Theorem proves that ∑ 𝑃(𝑋 = 𝑥) = 1𝑛
𝑥=0  when 𝑋  ~  

Binomial(𝑛, 𝑝): 

𝑃(𝑋 = 𝑥) =  (
𝑛
𝑥

) 𝑝𝑥(1 − 𝑝)𝑛−𝑥  𝑓𝑜𝑟  𝑥 = 0, 1, 2, 3, . . . , 𝑛, 

∴         ∑ 𝑃(𝑋 = 𝑥) =   ∑ (
𝑛
𝑥

) 𝑝𝑥(1 − 𝑝)𝑛−𝑥

𝑛

𝑥=0

𝑛

𝑥=0

= [𝑝 + (1 − 𝑝)]𝑛  

=   1𝑛  = 1 

 Hence the prove. 

 3.1.3 Exponential Series 

 Exponential series state that for any 𝜆 ∈ ℝ, 𝑡ℎ𝑒𝑛  ∑
𝜆𝑥

𝑥!

∞
𝑥=0  =  𝑒𝜆 . 
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 The Exponential Series proves that ∑ 𝑃(𝑋 = 𝑥) = 1∞
𝑥=0  when 

𝑋  ~  Poisson(𝜆): 

 𝑃(𝑋 = 𝑥) =  
𝜆𝑥

𝑥!
𝑒−𝜆  𝑓𝑜𝑟   𝑥 = 0, 1, 2, 3, ⋯, 

 ∴     ∑ 𝑃(𝑋 = 𝑥) =   ∑
𝜆𝑥

𝑥!

∞
𝑥=0

∞
𝑥=0  𝑒−𝜆 =   𝑒−𝜆 ∑

𝜆𝑥

𝑥!

∞
𝑥=0   =

 𝑒−𝜆𝑒𝜆 = 1 

 But we know that 𝑒𝜆 =   lim
𝑛→∞

(1 +
1

𝑛
)

𝑛

   𝑓𝑜𝑟 𝜆 ∈ ℝ.  

3.2  Probability Generating Function (PGF) 

Let be a random variable defined over the negative integers 
{0, 1, 2, 3, ⋯ }. The     probability generating function of 𝑋 is given 

by 

𝐺𝑋(𝑧) =  𝑝0 +  𝑝1𝑧 +  𝑝2𝑧2+ . . . =  ∑ 𝑝𝑗𝑧𝑗∞
𝑗=0 =   𝔼(𝑧𝑋), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑧 ∈ ℝ  

for which the sum converges. Therefore, to calculate the probability 

generating function, we that  

𝐺𝑋(𝑧) =  𝔼(𝑧𝑋) =  ∑ 𝑧𝑥∞
𝑥=0 𝑃(𝑋 = 𝑥).  

3.2.1 Properties of the PGF 

(1) 𝐺𝑋(0) = 𝑃(𝑋 = 0): 

  𝐺𝑋(0) =   00 × 𝑃(𝑋 = 0) +  01 × 𝑃(𝑋 = 1) +  02 × 𝑃(𝑋 = 2)+. ..  

   𝐺𝑋(0) = 𝑃(𝑋 = 0). 

(2) 𝐺𝑋(1) = 1:    𝐺𝑋(1) =  ∑ 1𝑥∞
𝑥=0 𝑃(𝑋 = 𝑥) =  ∑ 𝑃(𝑋 = 𝑥) = 1.∞

𝑥=0  

Example 3.2.2: Let 𝑋 have a binomial distribution function with 

parameters 𝑛 𝑎𝑛𝑑 𝑝 (or 𝑋  ~ 𝐵(𝑛, 𝑝), so 𝑃(𝑋 = 𝑥) = (
𝑛
𝑥

) 𝑝𝑥𝑞𝑛−𝑥 for 

𝑥 = 0, 1, 2 , 3, . . . , 𝑛. The probability generating function is given by   

𝐺𝑋(𝑧) =  ∑ 𝑧𝑥

𝑛

𝑥=0

(
𝑛
𝑥

) 𝑝𝑥𝑞𝑛−𝑥  =    ∑ (
𝑛
𝑥

) (𝑝𝑧)𝑥

∞

𝑥=0

𝑞𝑛−𝑥   

                                                                                      =   (𝑝𝑧 + 𝑞)𝑛    by 

Binomial Theorem.  

Hence,  𝐺𝑋(𝑧) =  (𝑝𝑧 + 𝑞)𝑛   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 ∈ ℝ.  
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Example 3.2.3: Let 𝑋 have a Geometric distribution function with 

parameter 𝑝 (or               𝑋  ~ 𝑃(𝜆), so 𝑃(𝑋 = 𝑥) =  𝑝(1 − 𝑝)𝑥 = 𝑝𝑞𝑥 

for 𝑥 = 0, 1, 2, 3, . . .,  where 𝑞 = 1 − 𝑝. The probability generating 

function is given by   

𝐺𝑋(𝑧) =  ∑ 𝑧𝑥

∞

𝑥=0

𝑝𝑞𝑥 =   𝑝 ∑(𝑞𝑧)𝑥

∞

𝑥=0

 

=   
𝑝

1 − 𝑞𝑧
     𝑓𝑜𝑟 𝑎𝑙𝑙 𝑧 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 |𝑞𝑧| < 1. 

Hence,  𝐺𝑋(𝑧) =  
𝑝

1−𝑞𝑧
    𝑓𝑜𝑟  |𝑧| <  

1

𝑞
 . 

Example 3.2.4: Let 𝑋 have a Poisson distribution function with 

parameter 𝜆 (or 𝑋  ~ 𝑃(𝜆), so 𝑃(𝑋 = 𝑥) =
𝜆𝑥

𝑥!
𝑒−𝜆 for 𝑥 = 0, 1, 2 , 3, . .. . 

The probability generating function is given by   

𝐺𝑋(𝑧) =  ∑ 𝑧𝑥

∞

𝑥=0

𝜆𝑥

𝑥!
 𝑒−𝜆  =    𝑒−𝜆 ∑

(𝜆𝑧)𝑥

𝑥!
 

∞

𝑥=0

  =     𝑒−𝜆𝑒(𝜆𝑧)  =   𝑒𝜆(𝑧−1) 

Hence,   𝐺𝑋(𝑧) =   𝑒𝜆(𝑧−1)  𝑓𝑜𝑟 𝑎𝑙𝑙   𝑧 ∈ ℝ . 

3.3  Using the PGF to calculate the mean (expectation) and 

 variance 

Here, we will use the PGF to calculate the moments of the distribution 

of 𝑋. The moments of a distribution include the mean, variance, etc. 

3.3.1 Mean (Expected value) 

Let 𝑋 be a discrete random variable with PGF 𝐺𝑋(𝑧). Then, the 

expectation value can be expressed by  

𝐸[𝑋] =   ∑ 𝑥 𝑃(𝑋 = 𝑥)∞
𝑥=1 =  𝐺′

𝑋(1) , where 𝐺′
𝑋(𝑧) denotes the 

derivative of 𝐺𝑋(𝑧). 

Hence, 𝐺′
𝑋(𝑧) =  ∑ 𝑥 𝑃(𝑋 = 𝑥)∞

𝑥=0 𝑧𝑥−1 =  ∑ 𝑥 𝑃(𝑋 = 𝑥)𝑧𝑥−1∞
𝑥=1 . 

Also, the second moment is  

𝐸[𝑋2] =  𝐺′′
𝑋(1) +  𝐺′

𝑋(1) 

But we know that,  𝐺′
𝑋(𝑧) =  ∑ 𝑥 𝑃(𝑋 = 𝑥)∞

𝑥=1 𝑧𝑥−1, then 
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𝐺′′
𝑋(𝑧) =  ∑ 𝑥(𝑥 − 1) 𝑃(𝑋 = 𝑥)

∞

𝑥=2

𝑧𝑥−2

=    ∑(𝑥2 − 𝑥) 𝑃(𝑋 = 𝑥)

∞

𝑥=0

𝑧𝑥−2 

3.3.2 Variance 

Similarly, let 𝑋 be a random variable with PGF 𝐺𝑋(𝑧). Then, the 

variance is given by  

𝑉𝑎𝑟[𝑋] =  𝐸[𝑋2] − 𝐸[𝑋]2 =   𝐺′′
𝑋(1)  +   𝐺′

𝑋(1) +  𝐺′
𝑋(1)2. 

Example 3.3.3: Let 𝑋 have a Poisson distribution function with 

parameter 𝜆. The PGF of     𝑋 is   𝐺𝑋(𝑧) =   𝑒𝜆(𝑧−1) . Find (i) Mean, 𝐸[𝑋]      
(ii) Variance, 𝑉𝑎𝑟[𝑋]. 

Solution: Given   𝐺𝑋(𝑧) =   𝑒𝜆(𝑧−1) , then  

    (𝑖)     𝐺′
𝑋(𝑧)  =  𝜆𝑒𝜆(𝑧−1),     𝑤ℎ𝑖𝑐ℎ 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑡ℎ𝑎𝑡  𝐸[𝑋] =

 𝐺′
𝑋(1)  =  𝜆  

     (𝑖𝑖) Thus, 𝐺′′
𝑋(1) =  𝜆2𝑒𝜆(𝑧−1)|𝑧=1  =   𝜆2       

and  

     𝐸[𝑋2] =  𝐺′′
𝑋(1) +  𝐺′

𝑋(1) = 𝜆2 + 𝜆 

∴         𝑉𝑎𝑟[𝑋] =   𝐸[𝑋2] − 𝐸[𝑋]2  =    𝜆2 + 𝜆 −  𝜆2   =    𝜆  

Example 3.3.4: Let 𝑋 be a random variable that has Bernoulli 

distribution with parameter 𝑝. The PGF is defined by 𝐺𝑋(𝑧) =
(1 − 𝑝) + 𝑝𝑧. Calculate 𝐸[𝑋] and 𝑉𝑎𝑟[𝑋].   

Solution: This implies that 𝐺′
𝑋(𝑧) = 𝑝      𝑎𝑛𝑑   𝐺′′

𝑋(𝑧) = 0 

Hence, 𝐸[𝑋] =  𝐺′
𝑋(1)  =  𝑝 

and  𝑉𝑎𝑟[𝑋] =  𝐺′′
𝑋(1)  +  𝐺′

𝑋(1) +  𝐺′
𝑋(1)2 = 0 + 𝑝 −  𝑝2 =

𝑝(1 − 𝑝). 

3.4  Using the PGF to calculate the probabilities 

As well as calculating the moments of distribution of 𝑋, we can also 

calculate the probabilities using the PGF. Given the PGF 𝐺𝑋(𝑧) =
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𝐸(𝑧𝑋) of any probability function, we can recover all the possible 

probabilities 𝑃(𝑋 = 𝑥)  (𝑜𝑟   𝑠𝑜𝑚𝑒𝑡𝑖𝑚𝑒𝑠 𝑤𝑟𝑖𝑡𝑡𝑒𝑛 𝑎𝑠 𝑝𝑥). 

 ∴          𝐺𝑋(𝑧) =  𝐸(𝑧𝑋) =  𝑝0 +  𝑝1𝑧 +  𝑝2𝑧2+ . . . =  ∑ 𝑝𝑗𝑧𝑗

∞

𝑗=0

 

Hence, 𝑝0 = 𝑃(𝑋 = 0) = 𝐺𝑋(0).  

Also, the first derivative of the PGF is 

𝐺′
𝑋(𝑧) =   𝑝1 + 2𝑝2𝑧 +  3𝑝3𝑧2 + 4𝑝4𝑧3+ . ..   

Which implies that 

 𝑝1 = 𝑃(𝑋 = 1) = 𝐺′
𝑋(0). 

The second derivative of the PGF is 

𝐺′′
𝑋(𝑧) =  2𝑝2 +  6𝑝3𝑧 + 12𝑝4𝑐+ . .. 

Which implies that 

𝑝2 = 𝑃(𝑋 = 2) =
1

2!
𝐺′′𝑋(0). 

For the third derivative of the PGF, we have 

𝐺′′′
𝑋(𝑧) =   6𝑝3 + 24𝑝4𝑧+ . ..  

Which implies that 

 𝑝3 = 𝑃(𝑋 = 3) =
1

3!
𝐺′′′

𝑋
(0). 

Therefore, the 𝒏𝒕𝒉 derivative or the general form is given by  

𝑝𝑛 = 𝑃(𝑋 = 𝑛) =  (
1

𝑛!
) 𝐺(𝑛)

𝑋(0) =  (
1

𝑛!
)

𝑑𝑛

𝑑𝑧𝑛
 (𝐺𝑋(𝑧))|𝑧=0. 

Example 3.4.1: Let 𝑋 be a discrete random variable with PGF 𝐺𝑋(𝑧) =
𝑧

5
(2 + 3𝑧2). Obtain the distribution of 𝑋. 

Solution: Given 𝐺𝑋(𝑧) =
𝑧

5
(2 + 3𝑧2) =   

2

5
 𝑧 +  

3

5
 𝑧3 

∴          𝐺𝑋(𝑧) =   
2

5
 𝑧 +  

3

5
 𝑧3         ⟹            𝐺𝑋(0) = 𝑃(𝑋 = 0) = 0.        
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  𝐺′
𝑋(𝑧) =   

2

5
 +  

9

5
 𝑧2            ⟹           𝐺′

𝑋(0) =

𝑃(𝑋 = 1) =    
2

5
  

  𝐺′′
𝑋(𝑧) =  

18

5
 𝑧                    ⟹            

1

2!
𝐺′′

𝑋(0) =

𝑃(𝑋 = 2) = 0. 

  𝐺′′′
𝑋(𝑧) =   

18

5
                      ⟹             

1

3!
 𝐺′′′

𝑋(0) =

𝑃(𝑋 = 3) =    
3

5
  

   𝐺(𝑘)
𝑋(𝑧) = 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 ≥ 4  ⟹         

1

𝑘!
 𝐺(𝑘)

𝑋(0) = 𝑃(𝑋 = 𝑘) =

0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 ≥ 4 

Therefore, the distribution of 𝑋, 𝑖𝑠 𝑋 = {
1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 

2

5

3 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 
3

5

 

3.5  Geometric Random Variables 

The PGF of a geometrically distributed random variable 𝑋 is  

𝐺(𝑧) =  ∑ 𝑝(1 − 𝑝)𝑗−1𝑧𝑗

∞

𝑗=1

=        𝑝𝑧 ∑(1 − 𝑝)𝑗𝑧𝑗     

∞

𝑗=0

    

=    
𝑝𝑧

1 − (1 − 𝑝)𝑧
 

𝐺(𝑧) =  ∑ 𝑝(1 − 𝑝)𝑗−1𝑧𝑗

∞

𝑗=1

=          𝐺′(𝑧)

=  
𝑝

(1 − (1 − 𝑝)𝑧)2
 ,               𝐺′′(𝑧) =  

2𝑝(1 − 𝑝)

(1 − (1 − 𝑝)𝑧)3
 

∴        𝐸[𝑋] =   𝐺′
𝑋(1) =  

1

𝑃
  

and 

𝑉𝑎𝑟[𝑋] =  𝐺′′
𝑋(1)  +   𝐺′

𝑋(1) +  𝐺′
𝑋(1)2     

=       
2(1 − 𝑃)

𝑃2
+   

1

𝑝
+

1

𝑝2
   =     

1 − 𝑝

𝑝2
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3.6  Binomial Distribution 

Let 𝑋 have a binomial distribution function with parameters 𝑛 𝑎𝑛𝑑 𝑝. 
Then, the PGF is  

𝐺𝑋(𝑧) = ((1 − 𝑝) + 𝑝𝑧)𝑛 =  ∑ (
𝑛
𝑗 ) (1 − 𝑝)𝑛−𝑗𝑝𝑗𝑧𝑗

𝑛

𝑗=0

. 

⟹        𝐺′
𝑋(𝑧) =  𝑛𝑝((1 − 𝑝) + 𝑝𝑧)

𝑛−1
    𝑎𝑛𝑑     𝐸[𝑋] =   𝐺′

𝑋(1)

= 𝑛𝑝. 

⟹        𝐺′′
𝑋(𝑧) =  𝑛(𝑛 − 1)𝑝2((1 − 𝑝) + 𝑝𝑧)

𝑛−2
     

∴       𝑉𝑎𝑟[𝑋] =  𝐺′′
𝑋(𝑧) +  𝐺′

𝑋(1) + 𝐺′
𝑋(1)2  

=   (𝑛2 − 𝑛)𝑝2 + 𝑛𝑝 − 𝑛2𝑝2 

−𝑛𝑝2 + 𝑛𝑝 = 𝑛𝑝(1 − 𝑝). 

4.0 CONCLUSION 

PGFs are very useful tool for dealing with sums of random variables, 

which are difficult to tackle using the standard probability function. 

5.0  SUMMARY  

 In this unit, you have learnt how to  

 Compute the sums Geometric, Binomial and Exponential series. 

 Know the properties of PGF. 

 Use PGF TO calculate the mean, variance and probability. 

 Identify and calculate the PGF for Geometric and Binomial 

 distributions.  

6.0  TUTOR-MARKED ASSIGNMENT  

1. Find the sequence generated by the following generating 

 functions:  

a. 
4x

1 − x
  

b. 
1

1 − 4x
  

c. 
x

1 + x 
  

d. 
3x

(1 + x) 2
  

e. 
1 + x + x2 

(1 − x)  2
 (Hint: multiplication).  
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2. Show how you can get the generating function for the triangular 

 numbers in three different ways:  

a. Take two derivatives of the generating function for 1, 1, 1, 1, 1, . . 

.  

b. Multiply two known generating functions.  

3. Find a generating function for the sequence with recurrence 

 relation an = 3an−1 − an−2 with initial terms a0 = 1 and a1 = 5.  

4. Starting with the generating function for 1, 2, 3, 4, . . ., find a 

 generating function for each of the following sequences. 

a. 1, 0, 2, 0, 3, 0, 4, . . ..  

b. 1, −2, 3, −4, 5, −6, . . ..  

c. 0, 3, 6, 9, 12, 15, 18, . . ..  

d. 0, 3, 9, 18, 30, 45, 63, . . .. (Hint: relate this sequence to the 

 previous one.) 

5. Let 𝑋 be a discrete random variable with PGF 𝐺𝑋(𝑧) =
𝑤

3
(2 + 5𝑤3). Calculate the distribution of 𝑋. 
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