COURSE
GUIDE

CIT 208
INFORMATION SYSTEMS

Course Team Dr. A. S. Sodiya (Developer/Writer) - UAA

Prof. Afolabi Adebanjo (Programme Leader) -
NOUN

A.A. Afolorunso (Coordinator) - NOUN

NATIONAL OPEN UNIVERSITY OF NIGERIA

CIT 208 COURSE GUIDE

© 2017 by NOUN Press

National Open University of Nigeria
Headquarters

University Village

Plot 91, Cadastral Zone

Nnamdi Azikiwe Expressway

Jabi, Abuja

Lagos Office
14/16 Ahmadu Bello Way
Victoria Island, Lagos

e-mail: centralinfo@nou.edu.ng
URL: www.nou.edu.ng

All rights reserved. No part of this book may bprogluced, in any
form or by any means, without permission in writingm the publisher.

Printed 2013, 2017

ISBN: 978-058-392-0

CIT 208 COURSE GUIDE

CONTENTS PAGE
INtrOdUCHION. ... e e e, \Y;
What You Will Learn in This Course.........ccceevvvene... \Y;
COUISE AIMIS ...t it e e e e e e e e e e iv
Course ObJECHVES.......oviiit e e e e e e e v
Working through This Course............cocooiviiiiiene. %
Course MaterialS.......c.oveiiii iV
StUdY UNItS. ..o e e e e v
Textbooks and References..........c.coovvvveiiiiinnn.n. Vi
Assignment File...... ... Vi
Presentation Schedule..........ccooiiiii i, IX
ASSESSIMENT .ttt it e e iX

Tutor-Marked Assignments (TMAS).......ccceevvvevenen. X
Final Examinations and Grading........ceceeevevvvvivieen. X

Course Marking Scheme............ccocviiiiii e, X
COUISE OVEIVIEW ...t e e e e Xi
How to Get the Best from This Course........cceeevnn..... Xi
Facilitators/Tutors and TutorialS..........o.ceviviiiinnnnn. Xiii
SUMMATIY ...t e e e e e et e e e e eeas Xiv

CIT 208 COURSE GUIDE

INTRODUCTION

CIT208 — Information Systems is a-three [3] crewhit course of fifteen
units. It deals with the various forms of inforneetitechnology used by
people to accomplish specific organisational onvigial objectives.

It also gives an insight into computer technologyd adata

communications technology which are the specificht®logies that
collectively sum up into information technology aswhole. Since

information comprises of data, this course takastjoough the various
ways through which data is created and manipulatguioduce relevant
information needed. It also deals with the variadsances in computer
hardware, software, and networking technologiextvhiave spurred an
evolution in the structure, design, and use of a@fe information

systems.

This course is divided into three modules. Thet fim®dule deals with
the basic introduction to the concept of Informat®ystems, SQL and
Database Programming with JDBC.

The second module deals with Conceptual modelimtpe®a design,
Functional dependency, Regular expression and iBeddtalgebra.

The third module deals with Web services, XML aatatbase recovery.
This Course Guide gives you a brief overview of twairse content,
course duration, and course materials.

WHAT YOU WILL LEARN IN THIS COURSE

The main purpose of this course is to provide theessary tools for
designing and managing Information Systems. It makeailable the
steps and tools that will enable you to make proped accurate
decision on database designs and operations whetiey@eed arises.
Thus, we intend to achieve through the following.

COURSE AIMS

. Introduce the concepts associated with informatgystems
development;

o Provide necessary tools for analyzing, designirgyetbping a
database of any size;

. Provide you with the necessary foundation in databa
programming

o Introduction of web services and their architedtir@ameworks;
and

. Provide you with the necessary foundation on tleeais<ML

CIT 208 COURSE GUIDE

COURSE OBJECTIVES

A number of objectives have been set out to ensuee the course
achieves its aims. Apart from the course objecties®ry unit of this
course has set objectives. In the course of thaystypu will need to
confirm, at the end of each unit, if you have nhet dbjectives set at the
beginning of each unit. By the end of this coursa ghould be able to:

o explain the term information system.

o identify the various types of information systems.

o write Structured Query Language statements.

o state the meaning, classification and propertiesfuoictional
dependency and the description of Relational Algeb

o use Structured Query Language (SQL) to retrieva fdam and
manipulate data in a database.

o use the JDBC to access databases.

o describe the basic concept and application of veelces.

o identify web services framework.

o state the rules of XML documents.

o indentify programming interfaces that work with XML
documents.

o define the concept of regular expression

WORKING THROUGH THIS COURSE

In order to have a thorough understanding of thesmunits, you will
need to read and understand the contents, prélcisteps by designing
an information system of your own, and be commitedearning and
implementing your knowledge.

This course is designed to cover approximately rsees weeks, and it
will require your devoted attention. You should tthe exercises in the
Tutor-Marked Assignments and submit to your tutors.

COURSE MATERIALS
These include:

Course Guide

Study Units

Recommended Texts

A file for your assignments and for recordsn@nitor your
progress.

PONPE

CIT 208 COURSE GUIDE

STUDY UNITS

Module 1

Unit 1 Introduction to Information Systems
Unit 2 Introduction to Basic SQL

Unit 3 SQL Syntax |

Unit 4 SQL Syntax I

unit 5 More SQL Statements

Unit 6 Database Programming and JBDC
Module 2

Unit 1 Conceptual Modelling and Schema Design
Unit 2 Functional Dependence

Unit 3 Regular Expression

Unit 4 Relational Algebra

Module 3

Unit 1 Web Services

Unit 2 Introduction to XML

Unit 3 XML and XML Queries

Unit 4 Database Recovery

Make use of the course materials, do the exerdisesnhance your
learning.

TEXTBOOKSAND REFERENCES

Dostal, J. (2007). School Information Systems (8kdhformacni
Systemy). In: Infotech-Modern Information and Conmaation
Technology in Education. Olomouc, EU: Votobia, 2087540 —
546. ISBN 978-80-7220-301-7.

Lindsay, John (2000)nformation Systems — Fundamentals and Issues
Kingston University, School of Information Systems.

Laudon, Kenneth C. and Laudon, Jane P. (199%anagement
Information SystemsOrganisation and Technology, "(4ed).
Upper Saddle River, NJ: Prentice-Hall.

Oz, Effy (1998).Management Information SystenGambridge, MA:
Course Technology.

vi

CIT 208 COURSE GUIDE

James Hoffman(1997). SQL TutorialsTeach yourself SQL in 21 days
(2" ed.). Macmillan computer publishing

SQL — A practical introduction by Akeel I. Din

Introduction to SQL 9i from Oracle Universiyww.wiki_ SQL.com

Database System Concepts, (5th ed).

Teach Yourself SQL in 21 Days, "(2ed), Macmillan Computer
Publishing

An Introduction to Database Systems, Eighth Edjt©©nJ. Date,
Addison Wesley, 2004, ISBN: 0-321-19784-4.

Functional Dependencies, Barbara L. Marcolin 1999
http://www.lightenna.com/book/export/s5/155

Ullman, J.D. and Widom, J. (2002). AKirst Course in Database
Systems(2™ ed.).Prentice Halll.

T.J. Teorey Database modelling and Desigr‘id, €d.). University of
Michigan.

Mastering Regular Expressions by Jeffrey E. F.dtrie
Jan, Goyvaerts. Regular Expressions.

Ashmore, D. C. (2000).Best Practices for JDBC Programminglava
Developers Journal, 5: no. 4: 4254.

Blaha, M. R., W. J. (1988). Premerlani and J. EnBaugh. Relational
Database Design Using an Object-Oriented Methodplog
Communications of the ACM, 31: no. 4: 414427.

Brunner, R. J. (2000).The Evolution of ConnectirigJava Developers
Journal, 5: no. 10: 2426.

Brunner, R. J. (2000) After the Connectiat Java Developers Journal,
5: no. 11: 4246.

Callahan, T. (1998).So You Want a Stand-Alone Database for Java
Java Developers Journal, 3: no. 12: 2836.

Vii

CIT 208 COURSE GUIDE

Codd, E. F. (1970).A Relational Model of Data for Large Shared Data
Banks" Communications of the ACM, June.

Codd, E. F. (1972).Further Normalization of the Data Base Relational
Model" Courant Computer Science Symposia, Vol. 6, [Bdae
Systems. Upper Saddle River, NJ: Prentice Hall.

Codd, E. F. (2000). Fatal Flaws in SQL' Datamation, 34: no. 16
(1988): 4548.

Cooper, J. W. Making Databases Easier for Your Usérdava Pro, 4:
no. 10: 4754.

Date, C. J. (2003)An Introduction to Database Systen8ge. Reading,
MA: Pearson Education.

Deitel, H. M.; Deitel, P. J. and D. R. Choffnes @2} Operating
Systems(Third Edition). Upper Saddle River, NJ: Prentitail.

Duguay, C. (1999/2000).Electronic Mail Mergée' Java Pro, Winter,
2232.

Ergul, S. (2001). Transaction Processing with JavaJava Report,
January, 3036.

Jeffrey, Ullman. Relational Algebra.

Ramakrishnan and Gehrke, J. Database Managemern®y&s ed.).
Isabelle, Bichindaritz. Database Systems Design.

Paul, Werstein. Relational Algebra.

A word definition from webopedia computer dictiopar

Luis Felipe Cabrera (2005Web Services Atomic TransactigWsS-
Atomic Transaction)

Bright; et al (1992).Policy of Exchanging Data with Other Databases.

Heimbigner and McLeod (1985).

Sheth and Larson (1990). heterogeneous databasemsg¥C++: See
Rick Parrish’s article at WWW-

106.ibm.com/developerworks/library/x-ctlbx.html
(developerWorks, September 2001).

viii

CIT 208 COURSE GUIDE

Java: See Doug Tidwell's article at WWW-
106.ibm.com/developerworks/library/j-java-xml-
toolkit/index.html (developerWorks, May 2000).

Perl: See Parand Tony Darugar's article at www-
106.ibm.com/developerworks/library/x-perl-xml-
toolkit/index.html (developerWorks, June 2001).

PHP: See Craig Knudsen's article at WWW-
106.ibm.com/developerworks/library/x-php-xml-toalkiml
(developerWorks,June 2000).

ASSIGNMENT FILE

These are of two types: the Self Assessment Exey@asd the Tutor-
Marked Assignments. The self assessment exercidesmable you

monitor your performance by yourself, while the drMarked

Assignment is a supervised assignment. The assigsnke a certain
percentage of your total score in this course. Theor-Marked

Assignments will be assessed by your tutor withigpacified period.
The examination at the end of this course will @tdetermining the
level of mastery of the subject matter. This coursgdudes twelve
Tutor-Marked Assignments and each must be done sarmnitted

accordingly. Your best scores, however, will beorded for you. Be
sure to send these assignments to your tutor b#dferdeadline to avoid
loss of marks.

PRESENTATION SCHEDULE

The Presentation Schedule included in your courstemals gives you
the important dates for the completion of tutor-kear assignments and
attending tutorials. Remember, you are requiredsubmit all your
assignments by the due date. You should guardhsiglaigging behind
in your work.

ASSESSMENT

There are two aspects to the assessment of theecolFirst, are the
tutor-marked assignments; second, is a written exaton.

In tackling the assignments, you are expected fyajme information
and knowledge acquired during this course. Thegassents must be
submitted to your tutor for formal assessment inoadance with the
deadlines stated in the Assignment File. The wark gubmit to your
tutor for assessment will count for 30% of youatatourse mark.

CIT 208 COURSE GUIDE

At the end of the course, you will need to sit torfinal three-hour
examination. This will also count for 70% of yootdl course mark.

TUTOR-MARKED ASSIGNMENTS (TMAYS)

There are twelve tutor-marked assignments in tbigse. You need to
submit all the assignments. The total marks for best four (4)
assignments will be 30% of your total course mark.

Assignment questions for the units in this counse @ontained in the

Assignment File. You should be able to completaryassignments

from the information and materials contained in ryset textbooks,

reading and study units. However, you may wistge other references
to broaden your viewpoint and provide a deeper rtstdeding of the

subject.

When you have completed each assignment, sendeather with the
form to your tutor. Make sure that each assignmeathes your tutor
on or before the deadline given. If, however, yaarmt complete your
work on time, contact your tutor before the assignimis done to
discuss the possibility of an extension.

FINAL EXAMINATION AND GRADING

The final examination for the course will carry 7Q8rcentage of the
total marks available for this course. The exanmmawill cover every
aspect of the course, so you are advised to rellsgour corrected
assignments before the examination.

This course endows you with the status of a teaghérthat of a learner.
This means that you teach yourself and that yown)ess your learning
capabilities would allow. It also means that yoa ar a better position
to determine and to ascertain the what, the how,the when of your
language learning. No teacher imposes any metht@haiing on you.

The course units are similarly designed with theonfuction following
the table of contents, then a set of objectivesthed the dialogue and
SO on.

The objectives guide you as you go through thesumitascertain your
knowledge of the required terms and expressions.

CIT 208 COURSE GUIDE

COURSE MARKING SCHEME
This table shows how the actual course markingakdm down.

Table 1: Course Marking Scheme

Assessment Marks

Assignments 1- 4 Four assignments, best three nwdrkise
four count at 30% of course marks

Final Examination 70% of overall course marks

Total 100% of course marks

COURSE OVERVIEW

Unit | Title of Work Weeks Assessment
Activity (End of Unit)
Course Guide Week 1
Module1
1 | Introduction to InformationWeek 1 Assignment 1
Systems
2 | Introduction to Basic SQL Week 2 Assignment 2
3 | SQL Syntax | Week 3 Assignment 3
4 | SQL Syntax Il Week 4 - 5| Assignment 4
5 | More SQL Statements Week 6 Assignment 5
6 | Database Programming withWeek 7 Assignment 6
JDBC
Module 2

1 | Conceptual Modelling andWeek 8 Assignment 7
Schema Design

2 | Functional Dependency Week 9 Assignment 8
3 | Regular Expressio Week 1(Assignment
4 | Relational Algebr Week 1: Assignment 1
Module3
1 | Web Services Week 12 Assignment 11
2 | Introduction to XML Week 13 Assignment 12
3 | XML and XQuerie Week 1: Assignment 1
4 | Database Recovery Week 15 Assignment |14
Revision Week 16
Examination Week 17

Total 15 week s

Xi

CIT 208 COURSE GUIDE

HOW TO GET THE MOST FROM THIS COURSE

In distance learning, the study units replace thigarsity lecturer. This

is one of the great advantages of distance learyiog can read and
work through specially designed study materialgaatr own pace, and
at a time and place that suit you best. Think afsireading the lecture
instead of listening to a lecturer. In the same Wt a lecturer might
set you some reading to do, the study units tell yden to read your
set books or other material. Just as a lecturehingiye you an in-class
exercise, your study units provide exercises far gmdo at appropriate
points.

Each of the study units follows a common formate Tirst item is an
introduction to the subject matter of the unit doav a particular unit is
integrated with the other units and the course ah@e. Next is a set
of learning objectives. These objectives enable konaw what you
should be able to do by the time you have complétedunit. You

should use these objectives to guide your studyhemyou have
finished the units you must go back and check wdre§you have
achieved the objectives. If you make a habit ofndothis you will

significantly improve your chances of passing tbarse.

Remember that your tutor’s job is to assist youheW you need help,
do not hesitate to call and ask your tutor to pievt.

1. Read this Course Guide thoroughly.

2. Organise a study schedule. Refer to the ‘Coursendaw’ for
more details. Note the time you are expected emdpn each
unit and how the assignments relate to the unithatéler
method you chose to use, you should decide ondtvenite in
your own dates for working on each unit.

3. Once you have created your own study schedule vdoything
you can to stick to it. The major reason that etus fail is that
they lag behind in their course work.

4. Turn to Unit 1 and read the introduction and thgctives for the
unit.

5. Assemble the study materials. Information abouatwou need
for a unit is given in the ‘Overview’ at the beging of each unit.
You will almost always need both the study unit yoa working
on and one of your set of books on your desk as#mee time.

6. Work through the unit. The content of the unitltshas been
arranged to provide a sequence for you to follods you work
through the unit you will be instructed to readtsms from your
set books or other articles. Use the unit to gymwmie reading.

Xii

CIT 208 COURSE GUIDE

7. Review the objectives for each study unit to confithat you
have achieved them. If you feel unsure about anythef
objectives, review the study material or consuliryiitor.

8. When you are confident that you have achieved a’suni
objectives, you can then start on the next unibced unit by
unit through the course and try to pace your stsolythat you
keep yourself on schedule.

9. When you have submitted an assignment to your tébor
marking, do not wait for its return before startmgthe next unit.
Keep to your schedule. When the assignment isned,) pay
particular attention to your tutor's comments, boththe tutor-
marked assignment form and also written on thegassent.
Consult your tutor as soon as possible if you hawe questions
or problems.

10. After completing the last unit, review the coursed gprepare
yourself for the final examination. Check that ywave achieved
the unit objectives (listed at the beginning ofteaait) and the
course objectives (listed in this Course Guide).

FACILITATORSTUTORSAND TUTORIALS

There are 15 hours of tutorials provided in suppdrthis course. You
will be notified of the dates, times and locatioh these tutorials,
together with the name and phone number of yowor tais soon as you
are allocated a tutorial group.

Your tutor will mark and comment on your assignmsemieep a close
watch on your progress and on any difficulties yaght encounter and
provide assistance to you during the course. Yastmail or submit

your tutor-marked assignments to your tutor wefbbe the due date (at
least two working days are required). They willrharked by your tutor

and returned to you as soon as possible.

Do not hesitate to contact your tutor by telephameg-mail if you need
help. The following might be circumstances in whiou would find
help necessary. Contact your tutor if:

o you do not understand any part of the study unithe assigned
readings,

. you have difficulty with the self-tests or exerdse

o you have a question or problem with an assignmaith your
tutor's comments on an assignment or with the gigadf an
assignment.

You should try your best to attend the tutorial$is is the only chance
to have face to face contact with your tutor anégsk questions which

Xiii

CIT 208 COURSE GUIDE

are answered instantly. You can raise any problecountered in the
course of your study. To gain the maximum benefdnf course
tutorials, prepare a question list before attendivegn. You will learn a
lot by participating in discussions actively.

SUMMARY

Information Systems introduce you to the concemsoeaated with
Information systems development which is criticaunderstanding the
various computer technology and data communicatiecisnology. The
content of the course material was planned andenmrito ensure that
you acquire the proper knowledge and skills for tepropriate
situations. Real-life situations have been cre&tednable you identify
with and create some of your own. The essence iketp you in

acquiring the necessary knowledge and competenaeqbiypping you

with the necessary tools to accomplish this.

We hope that by the end of this course you woulehacquired the
required knowledge to view Information Systems imeav way.

| wish you success with the course and hope thatwid find it both
interesting and useful.

Xiv

MAIN

COURSE
CONTENTS PAGE
Module 1 o s 1
Unit 1 Introduction to Information Systems........... 1
Unit 2 Introduction to Basic SQL..................... 7
Unit 3 SQL SyntaX l.....ovvveiiiiiii e 16
Unit 4 SQL Syntax l.......ooiviiiiii i e 26
Unit 5 More SQL Statements.. . NG 24
Unit 6 Database Programming and JBDC 37
Module 2 52
Unit 1 Conceptual Modelling and Schema Design..52.
Unit 2 Functional Dependence................ccooeviennee 67
Unit 3 SQLSyntax ..o 81
Unit 4 Relational Algebra.................ccoii 90
Module 3 104
Unit 1 Web Services..........cocevveii i . 104
Unit 2 Introduction to XML............ccooiiiiinennn. 121
Unit 3 XML and XML Queries............ccocvvvamnen. 154
Unit 4 Database Recovery............cooeevneennnes 181

CIT 208 MODULE 1
MODULE 1
Unit 1 Introduction to Information Systems
Unit 2 Introduction to Basic SQL
Unit 3 SQL Syntax |
Unit 4 SQL Syntax Il
Unit 5 More SQL Statements
Unit 6 Database Programming and JBDC
UNIT 1 INTRODUCTION TO INFORMATION
SYSTEMS
CONTENTS
1.0 Introduction
2.0 Objectives
3.0 Main Content
3.1 Definition
3.2 Overview
3.3 History
3.4 Types of Information Systems
3.4.1 Transaction Processing Systems
3.4.2 Management Information and Reporting Systems
(MIS)
3.4.3 Decision Support Systems
3.4.4 Expert Systems
3.5 Information Systems Department
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading
1.0 INTRODUCTION

Having read through the course guide, you will hawegeneral

understanding of what this unit is about and hofigtinto the course as
a whole. This unit describes the general conceptfofmation Systems
(IS), types and its application areas.

20 OBJECTIVES
At the end of this unit, you should be able to:

explain the term information system
identify the various types of IS
relate the history of IS

describe IS department.

CIT 208 INFORM@N SYSTEMS

3.0 MAINCONTENT

3.1 Information Systems

The term Information System (IS) refers to inforimattechnology that
is used by people to accomplish a specified org#ioisal or individual
objective. The technology may be used in the gathemprocessing,
storing, and/or dissemination of information, ahd tisers are trained in
the use of that technology, as well as in the pioces to be followed in
doing so. The specific technologies that -colledyivecomprise
information technology are computer technology andhta
communications technology.

Information system (IS) sometimes refers to a systé persons, data
records and activities that process the data amornmation in an

organisation, and it includes the organisation’snna and automated
processes. Computer-based information systemshardigld of study

for information technology, elements of which acengtimes called an
“information system” as well; a usage some considdre incorrect.

Advances in computer hardware, software, and n&iwgitechnologies

have spurred an evolution in the structure, desagi, use of corporate
information systems.

3.2 Overview
The term “Information System” has different measing

o Generally, Information System is described by thodgects:
Structure, channels and networks.

Structure:

o Repositories, which hold data permanently or te@plyr such
as buffers, RAM, hard disks, cache, etc.

o Interfaces, which exchange information with the -dagital

world, such as keyboards, speakers, scannersgis;imtc.

Channels: which connect repositories, such as busddes, wireless
links, etc. Network: is a set of logical or physdican introduction to
informatics in organisations.

The most common view of an information system i® @i Input-
Process-Output.

CIT 208 MODULE 1

3.3 History of Information Systems

The study of information systems originated as b-discipline of
computer science in an attempt to understand amtidnadise the
management of technology within organisations.al$ Imatured into a
major field of management that is increasingly gemphasised as an
important area of research in management studiekjsataught in all
major universities and business schools in the dvdsbrje Langefors
introduced the concept of “Information Systems” #te third
International Conference on Information Processargd Computer
Science in New York in 1965.

Information technology is a very important malleabésource available
to executives. Many companies have created a positif Chief
Information Officer (ClO) that sits on the execuativoard with the Chief
Executive Officer (CEO), Chief Financial Officer FO), Chief
Operating Officer (COO) and Chief Technical Offi¢€TO).The CTO
may also serve as ClO, and vice versa. The Chiefriration Security
Officer (CISO), which focuses on information seguriwithin an
organisation, normally reports to the CIO.

34 Typesof Information Systems

From prior studies and experiences with informatigstems there are at
least four classes of information systems:

3.4.1 Transaction Processing Systems

These record and track an organisation's transesgtisuch as sales
transactions or inventory items, from the momertheis first created
until it leaves the system. This helps managerghat day-to-day
operational level keep track of daily transactias well as make
decisions on when to place orders, make shipmantsso on.

3.4.2 Management Information and reporting Systems (M1Y9)

These systems provide mid-level and senior managéls periodic,

often summarized, reports that help them assedsrpmmnce (e.g., a
particular region's sales performance in a giveretperiod) and make
appropriate decisions based on that informatiors Mla subset of the
overall internal controls of a business covering dpplication of people,
documents, technologies, and procedures by manageoeountants to
solving business problems such as costing a prpd&vice or a
business-wide strategy. Management Information eé8ystare distinct
from regular information systems in that they asedito analyse other
information systems applied in operational actegtin the organisation.

CIT 208 INFORM@N SYSTEMS

Academically, the term is commonly used to referthe group of
information management methods tied to the aut@amatr support of
human decision making, e.g. Decision Support Systé&mpert systems,
and Executive information systems.

3.4.3 Decision Support Systems

These systems are designed to help mid-level amdrsmanagers make
those difficult decisions about which not everyexgnt parameter is
known. These decisions, referred to sasni-structured decisionsare
characteristic of the types of decisions made at ligher levels of
management. A decision on whether or not to intceda particular
(brand new) product into an organisation’s proding is an example of
a semi-structured decision. Another example isdib@sion on whether
or not to open a branch in a foreign country. Soiiae parameters that
go into the making of these decisions are knowne Thlue of a
Decision Support System (DSS) is in its ability germit “what-if”
analyses (e.g., What if interest rates rose byrZ@et? What if our main
competitor lowered its price by 5 per cent? Whaimport tariffs are
imposed/increased in the foreign country in whiahdwo, or plan to do,
business?). That is, a DSS helps the user (deasaker) to model and
analyse different scenarios in order to arrive atinal, reasonable
decision, based on the analysis. There are decssipport systems that
help groups (as opposed to individuals) to makesensus-based
decisions. These are known as Group Decision Stpfgstems
(GDSS.

A type of decision support system that is gearéchagmily toward high-

level senior managers is the Executive Informatgystem (EIS) or
Executive Support System (ESS). While this hasddeability to do

very detail analyses, just like a regular DSSs itésigned primarily to
help executives keep track of a few selected itédmas are critical to

their day-to-day high-level decisions. Examplessoth items include
performance trends for selected product or cust@reIps, interest rate
yields, and the market performance of major conbqueti

3.4.4 Expert Systems

An expert system is built by modeling into the cangp the thought
processes and decision-making heuristics of a resed expert in a
particular field. Thus, this type of informationssgm istheoretically
capable of making decisions for a user, based jout ireceived from the
user. However, due to the complex and uncertaiureabf most
business decision environments, expert system obofy has
traditionally been used in these environments milgndike decision
support systems "&€” that is, to help a human decisiaker arrive at a

CIT 208 MODULE 1

reasonable decision, rather than to actualigkethe decision for the
user.

3.5 Information System Department

The IS department partly governs the informatiostesyn development,
use, application and influence on a business oparation. An IS
department typically provides:

. technologically implemented medium for recordingprieig, and
disseminating information
o techniques for drawing conclusions from such infation.

Nowadays, IS department is also known as MIS, IBiomply Systems
department.

4.0 CONCLUSION

In this unit, you have been introduced to the fumeiatal concepts of
Information Systems. You have also learnt the cifié types of
information systems and its areas of applicatidnislthe basis for
information technology systems.

50 SUMMARY
What you have learnt in this unit concerns:

. introduction to Information Systems which refersat@ystenof
persons,_dataecords and activities that process the data and
informationin an organisation.

o the study of information systems originated asladiacipline of
computer science in an attempt to understand arahadise the
management of technology within organisations.

o areas of application or work which include:

- Information Systems Strategy
- Information Systems Management and
- Information Systems Development.

o types of Information Systems: Management Infornmaystems
(MIS) or Reporting Systems, Decision Support Sysiem
Transaction Information System (TIS) and Expertt&ys.

CIT 208 INFORM@N SYSTEMS

SELF-ASSESSMENT EXERCISE

I What do you understand by information system?

ii. A system built by modeling into the computer theought
processes and decision-making heuristics of a resed expert
in a particular field is called....................

6.0 TUTOR-MARKED ASSIGNMENT

I List and explain the different types of InformatiSgstems.
il. Write a short note on the areas of applicatiorsof |

7.0 REFERENCESFURTHER READING

Dostal, J. (2007).School Information System&Skolni Informacni
System).In: Infotech-Modern Information and Communication
Technology in Education. Olomouc, EU: Votobia, 2087540 —
546. ISBN 978-80-7220-301-7.

Lindsay, John (2000)nformation Systems — Fundamentals and Issues
Kingston University, School of Information Systems.

Laudon, Kenneth C. and Laudon, Jane P. (1996). ant
Information SystemsOrganisation and Technologgd” ed.).
Upper Saddle River, NJ: Prentice-Hall.

Oz, Effy (1998).Management Information Systen@ambridge, MA:
Course Technology.

CIT 208 MODULE 1

UNIT 2 INTRODUCTION TO BASIC SQL
CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content
3.1 Introduction to Database and Structured Quemguage
(SQL)
3.2 History of SQL
3.3 Basic Categories of SQL Statements
3.4 Viewing the Structure of a Table
3.5 Writing Basic SQL Select Statement
3.6 Summary of Functions of SQL
3.7 Using SQL in Your Web Site
3.8 Relational Database Management System
3.9 Introduction to SQL Syntax
3.9.1 Database Tables
3.9.2 SQL Statements
3.9.3 SQL, DML and DDL
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION

An aspect of information Systems is data processwith the prior
knowledge of information systems and computer teldgy as a whole
it will be easy to introduce the basic concept &fu&ured Query
Language which is a useful tool in accessing andipudating
databases. You will be introduced to the basicesiant of the SQL
programmes that will enable you write simple dasabjarogrammes.

20 OBJECTIVES
At the end of this unit, you should be able to:

explain the basics of the SQL programmes

define the standard keywords of the SQL programmes
work on any SQL platform/server such as mysqgl, Msé&ss etc
manage and access databases of any size easily.

CIT 208 INFORM@N SYSTEMS

3.0 MAINCONTENT

3.1 Introduction to Database and Structured Query
L anguage (SQL)

A database is an organised collection of data. There are nuhffigrent
strategies for organising data to facilitate easyeas and manipulation.
A database management system (DBMS) provides mechanfor
storing, organising, retrieving and modifying ddta many users.
Database management systems allow for the accdsst@mage of data
without concern for the internal representationlata.

Today’s most popular database systems ratational databases. A
language calle®QL pronounced “sequel,” or as its individual lettess i
the international standard language used almosvetsally with
relational databases to perform queries (i.e.etuest information that
satisfies given criteria) and to manipulate data.

o SQL is an acronym for Structured Query Languagends for
Structured Query Language

o SQL is used to access and manipulate databases
. SQL is an ANSI (American National Standards Inggju
standard

It is a database language that is used for querging modifying
relational databases. SQL is a programming langé@aggquerying and
modifying data and managing databases. Using SQiy gan
communicate with the database server. SQL has til®wing
advantages:

o efficient

o easy to learn and use

. functionally complete(With SQL, you can define,ri@te, and
manipulate data in the tables)

Although SQL is an ANSI (American National Standarbhstitute)
standard, there are many different versions oB@Q¢ language.

Note: Most of the SQL database programmes also have tven
proprietary extensions in addition to the SQL stadd

CIT 208 MODULE 1

3.2 History of SQL

SQL was developed by IBM Research in the mid 7@ standardised
by the ANSI and later by the ISO. Most databaseagament systems
implement a majority of one of these standardsaattitheir proprietary
extensions. SQL allows the retrieval, insertiorgating, and deletion of
data. A database management system also includeageraent and
administrative functions. Most — if not all — implentations also
include a command-line interface (SQL/CLI) thatoals for the entry
and execution of the language commands, as opposady providing
an application programming interface (API) intendedaccess from a
graphical user interface (GUI).

The first version of SQL was developed at IBM byddew Richardson,
Donald C. Messerly and Raymond F. Boyce in theyed®70s. This
version, initially calledSEQUEL, was designed to manipulate and
retrieve data stored in IBM’'s original relationahtdbase product;
System R. IBM patented their version of SQL in 1,98bile the SQL
language was not formally standardised until 1986the American
National Standards Institute (ANSI) as SQL-86. ®goent versions of
the SQL standard have been released by ANSI anbhtamational
Organisation for Standardisation (ISO) standards.

Originally designed as a declarative query and da&nipulation
language, variations of SQL have been created by S&abase
management system (DBMS) vendors that add prockdorsstructs,
flow-of-control statements, user-defined data typesd various other
language extensions. With the release of the SQ89 ktandard, many
such extensions were formally adopted as part@fSQL language via
the SQL Persistent Stored Modules (SQL/PSM) pontibiine standard.
SQL was adopted as a standard by ANSI in 1986 8adih 1987. In
the original SQL standard, ANSI declared that tHiial pronunciation
for SQL is “es queue el’. However, many Englishapeg database

professionals still use the nonstandard pronumcidtsi:kwal/ (like the

word “sequel”’). As mentioned above, SEQUEL was aniex I1BM
database language, a predecessor to the SQL lasmgb@dy. is designed
for a specific purpose: to query data contained nelational database.
SQL is a set-based, declarative query language, anoimperative
language such as C or BASIC. However, there arensiins to
Standard SQL which add procedural programming laggu
functionality, such as control-of-flow construct&n example is the
Procedural Language of SQL (PL/SQL).

CIT 208 INFORM@N SYSTEMS

3.3 TheBasic Categoriesof SQL Statements
SQL statements are basically divided into four; viz

Data Manipulation Language (DML)
Data Definition Language (DDL)
Data Control Language (DCL)
Transaction Control

Data Manipulation Language (DDL)

o DML retrieves data from the database, enters new vesiges
existing rows, and removes unwanted rows from talmethe
database, respectively. The basic Data Manipulatianguage
(DDL) includes the following:

select statement
- insert statement
- update statement
- delete statement
- merge statement

o DDL sets up, changes and removes data structures &lolest
The basic Data Definition Language includes thifaing:

- create statement
- alter statement
- drop statement
- rename statement
- truncate statement
- comment statement

. DCL gives or removes access rights to both a databa¢ha
structures within it. The basic Data Control Langesare:
- grant statement
- revoke statement

o Transaction Control manages the changes made by the DML
statements. Changes to the data can be groupethd¢ogeto
logical transactions. The basic Transaction Contrahguages
are:

- commit

- rollback

- save point
Using the following simple rules and guidelinesuyman construct valid
statements that are both easy to read and eashtto e

o SQL statements are not case sensitive, unlessabedic
. SQL statements can be entered on one or many lines
o Keywords cannot be split across lines or abbregiate

1C

CIT 208 MODULE 1

o Clauses are usually placed on separate lines dolat®lity
o Indents should be used to make code readable
. Keywords typically are entered in uppercase; afieotwords,

such as table names and columns are entered imdasee
3.4 Viewingthe Structureof a Table

The structure of any database table can be viewadsing the describe
clause of the SQL statement. The general syntaxhefdescribe
statement is given below:

DESCRIBE table:

For the purpose of this course two tables callegaenents and
Employees in the Oracle database will be used. , Miesieed to see the
structure of this table so that we will be ablefamiliarise ourselves
with the column used in the table. To do this, wéenthe query:

DESCRIBE departments:

Name NULL? Type
DEPARTMENT _ID NOT NULL NUMBER(4)
DEPARTMENT NAME | NOT NULL VARCHAR2(30)
MANAGER_ID NUMBER(6)
LOCATION_ID NUMBER(4)

From the table above, we can infer that departntabte has 4 columns
and that 2 of these columns are not allowed toutle n

DESCRIBE employee:

Name Null? Type
EMPLOYEE_ID NOT NULL NUMBER(6)
FIRST_NAME VARCHAR2(20)
LAST_NAME NOT NULL VARCHAR2(25)
EMAIL NOT NULL VARCHAR2(25)
PHONE_NUMBER VARCHARZ2(20)
HIRE_DATE NOT NULL DATE

JOB_ID NOT NULL VARCHARZ2(10)
SALARY NUMBER(8,2)
COMMISSION_PCT NUMBER(2,2)
MANAGER_ID NUMBER(6)

11

CIT 208 INFORM@N SYSTEMS

DEPARTMENT_ID NUMBER(4)

From the table above, we can infer that employaklke thas 11 columns
and that 5 of these columns are not allowed toutle n

3.5 Writing Basic SQL Select Statements

To extract data from the database, you need tahes&QL SELECT
statement. You may need to restrict the columns #na displayed.
Using a SELECT statement, you can do the following:

o Projection: You can use the projection capability to choose the
columns in a table that you want to return by yquery. You can
choose as few or as many columns of the table aseguire.

o Selection: You can use the selection capability in SQL to d®o
the rows in a table that you want to return by arguYou can
use various criteria to restrict the rows that yea.

. Joining: You can use the join capability to bring togethatad
that is stored in different tables by creatingnk between them.

w
o

Summary of the Function of SQL

SQL can execute queries against a database

SQL can retrieve data from a database

SQL can insert records in a database

SQL can update records in a database

SQL can delete records from a database

SQL can create new databases

SQL can create new tables in a database

SQL can create stored procedures in a database
SQL can create views in a database

SQL can set permissions on tables, proceduresyiand
SQL can allow the construction codes manipulatiatpldase

3.7 Using SQL for Web Site

To build a web site that shows some data from abdeste, you will need
the following:

o An RDBMS database programme (i.e. MS Access, SQueBe

MySQL)
o A server-side scripting language, like PHP or ASP
o SQL

o HTML / CSS

12

CIT 208 MODULE 1

3.8 Relational Database Management System
RDBMS stands for Relational Database ManagemerieBys

RDBMS is the basis for SQL, and for all modern tdate systems like
MS SQL Server, IBM DB2, Oracle, MySQL, and Microséfccess.

The data in RDBMS is stored in database objecieccaébles. A table
is a collection of related data entries and it eiesof columns and
rows. Relational database will further be descriipeldlodule 2.

3.9 Introduction to SQL SYNTAX

3.9.1 Database Tables
A database most often contains one or more talitesh table is
identified by a name (e.g. “Customers” or “OrdersTables contain

records (rows) with data.

Below is an example of a table called “Persons”

P_ldLastName FirstName Address City

1 |Akinbode [Ola 10, Odeku Str Lagos

2 |Okafol Chris 23, Princewill Drive |Porthacoul
3 Amodu |Ali 20, Dauda lane Kaduna

The table above contains three records (one fdn @acson) and five
columns (P_Id, LastName, FirstName, Address, aty).Ci

3.9.2 Format of SQL Statements

Most of the actions you need to perform on a da@lme done with
SQL statements.

The following SQL statement will select all the oeds in the “Persons”
table:

SELECT * FROM Persons |

Some database systems require a semicolon at thefeeach SQL
statement.

Semicolon is the standard way to separate each S@tement in

database systems that allow more than one SQLnstateto be
executed in the same call to the server.

13

CIT 208 INFORM@N SYSTEMS

3.9.3 SQL, DML and DDL

SQL can be divided into two parts: The Data Maragoh Language
(DML) and the Data Definition Language (DDL).

The query and update commands form the DML paB8Qi :

SELECT - extracts data from a database
UPDATE - updates data in a database

DELETE - deletes data from a database
INSERT INTO - inserts new data into a database

The DDL part of SQL permits database tables torbated or deleted. It
also defines indexes (keys), specifies links betwables, and imposes
constraints between tables. The most important B@kements in SQL
are:

CREATE DATABASE - creates a new database
ALTER DATABASE - modifies a database
CREATE TABLE - creates a new table

ALTER TABLE - modifies a table

DROP TABLE - deletes a table

CREATE INDEX - creates an index (search key)
DROP INDEX - deletes an index

4.0 CONCLUSION

In this unit you have been introduced to the funelatal concept of a
typical database computing environment. You alsonlethe specific
requirement of an environment for the developmér@8@L statements.
You were also introduced to various SQL statemergsessary in
writing simple SQL codes.

50 SUMMARY
What you have learned in this unit concerns.
o Structured Query Language (SQL) which is a stantiamduage

for accessing and manipulating databases.
o The different SQL statements

o What SQL statement can be used for

. Not all SQL statements accept semicolon at the ehdt
depending on the platform or server that is usedxicute the
statement.

14

CIT 208 MODULE 1

SELF-ASSESSMENT EXERCISE

I. What does SQL mean?

il. List and state the functions of the component ef@DL parts of
SQL programme.

6.0 TUTOR-MARKED ASSIGNMENT

Write a short note on structured query languaggnamme and explain
the basic components of SQL.

70 REFERENCE/FURTHER READING

Hoffman,James (1997). SQL Tutorials.

15

CIT 208 INFORM@N SYSTEMS

UNIT 3 SQL SYNTAX |
CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content
3.1 SQL Create Table Statement
3.1.1 SQL CREATE TABLE Syntax
3.1.2 CREATE TABLE Example
3.2 SQL SELECT Statement
3.2.1 SQL SELECT Syntax
3.2.2 An SQL SELECT Example
3.2.3 Navigation in a Result-set
3.3 The SQL SELECT DISTINCT Statement
3.3.1 SQL SELECT DISTINCT Syntax
3.3.2 SELECT DISTINCT Example
3.4 SQL WHERE Clause
3.4.1 SQL WHERE Syntax
3.4.2 WHERE Clause Example
3.4.3 Quotes around Text Fields
3.4.4 Operators Allowed in the WHERE Clause
3.5 SQL AND & OR Operators
3.5.1 AND Operator Example
3.5.2 OR Operator Example
3.6 Combining AND & OR
4.0 Conclusion
50 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION

This unit will introduce you to how to write bas®QL programmes
such as creating tables, selecting a view fronbke tand familiarise you
with basic SQL operators.

2.0 OBJECTIVES
At the end of this unit, you should be able to:

write simple SQL programs

familiarise yourself with standard keywords of ®@L programs
understand how to construct a good SQL statement

manage and access databases using the creaté¢, wélee and
the logical operators.

16

CIT 208 MODULE 1

3.0 MAINCONTENT

3.1 SQL Create Table Statement

The CREATE TABLE statement is used to create aetabh database.

3.1.1 SQL CREATE TABLE Syntax

CREATE TABLE table_name
(

column_namel data_type,
column_name?2 data_type,
column_name3 data_type,

The data type specifies what type of data the colewan hold. For a
complete reference of all the data types availahleMS Access,
MySQL, and SQL Server visitww.datatyperef.com

3.1.2 CREATE TABLE Example

Now we want to create a table called “Persons” ttattains five
columns: P_ld, LastName, FirstName, Address, amyl Ci

We use the following CREATE TABLE statement:

CREATE TABLE Persons
(
P_ld int,

LastName varchar(255),
FirstName varchar(255),
Address varchar(255),
City varchar(255)

)

The P_Id column is of type int and will hold a nuenbThe LastName,
FirstName, Address, and City columns are of typecha with a
maximum length of 255 characters.

17

CIT 208

INFORM@N SYSTEMS

The empty “Persons” table will now look like this:

P Id

LastName

FirstName

Address

City

The empty table can be filled with data with theSBERT INTO

Statement.

3.2 TheSQL SELECT Statement

The SELECT statement is used to select data frdatabase.

The result is stored in a result table, calledrésailt-set.

3.2.1 SOL SELECT Syntax

SQL SELE

CT Syntax

SELECT column_name(s)
FROM table_name

and

SELECT * FROM table_name

Note: SQL is not case-sensitive. SELECT is the samelasts

3.2.2 An SQL SELECT Example

The “Persons” table:

P_IdL astName [FirstName Address City

1 |Akinbode Ola 10, Odeku Str. Lagos

2 |Okafol Chris 23, Princewill Driv¢ Porthacoul
3 Amodu Al 20, Dauda lane Kaduna

Now we want to select the content of the colummmeth “LastName”
and “FirstName” from the table above.

18

CIT 208 MODULE 1

We use the following SELECT statement:

SELECT LastName,FirstName FROM Persons

The result-set will look like this:

LastName

FirstName

Akinbode

Ola

Okafor

Chris

Ali

Amodu

SELECT * Example
Now we want to select all the columns from the ‘9oas” table.

We use the following SELECT statement:

SELECT * FROM Persons

Tip: The asterisk (*) is a quick way of selecting alumns!

The result-set will look like this:

P_ldLastName |FirstNameAddress City

1 |Akinbode |Ola 10, Odeku Str. Lagos

2 |Okafor Chris 23.’ Princew Porthacourt
Drive

3 JAmodu Ali 20, Dauda lane [Kaduna

3.2.3 Navigation in a Result Set
Most database software systems allow navigatiothenresult-set with

programming functions, like: Move-To-First-Record;et-Record-
Content, Move-To-Next-Record, etc.

19

CIT 208 INFORM@N SYSTEMS

3.3 TheSQL Sdect Distinct Statement

In a table, some of the columns may contain dugdigalues. This is not
a problem; however, sometimes you will wantigb dnly the different
(distinct) values in a table.

The DISTINCT keyword can be used to return onlytidet (different)
values.

3.3.1 SQL SELECT DISTINCT Syntax

SELECT DISTINCT column_name(s)
FROM table_name

3.3.2 SELECT DISTINCT Example

The "PersonsOne" table:

P_Id |LastName |[FirstName |Address City

1 Akinbode |Ola 10, Odeku Str. [Lagos

2 Okafor Chris 23.’ PrlncevvllLagos
Drive

3 Amodu Ali 20, Dauda lane|[Kaduna

Now we want to select only the distinct values frbra column named
“City” from the table above.

We use the following SELECT statement:

SELECT DISTINCT City FROM Persons

The result-set will look like this:

City
Lagos
Kadune

34 SQL WHERE Clause

The WHERE clause is used to filter records.

2C

CIT 208

MODULE 1

The WHERE clause is used to extract only thoserdscthat fulfill a
specified criterion.

3.4.1 SQL WHERE Syntax

FROM

table_name

SELECT column_name(s)

WHERE column_name operator value

3.4.2 WHERE Clause Example

The “Persons” table:

P Id |LastName FirstName |Address City

1 Akinbode Ola 10, Odeku Str. Lagos

2 Okafor Chris 23.’ Princewi Porthacourt
Drive

3 Amodu Ali 20, Dauda lar [Kadun:

Now we want to select only the persons living ie ity “Sandnes”
from the table above.

We use the following SELECT statement:

SELECT * FROM Persons
WHERE City='"Kaduna'

The result-set will look like this:

P Id

LastName

FirsstName

Address

City

1

Amodu

Ali

20, Dauda lane

Kaduna

3.4.3 Quotesaround Text Fields

SQL uses single quotes around text values (moabdaé systems will
also accept double quotes).

Although, numeric values should not be encloseglioies.

21

CIT 208 INFORM@N SYSTEMS

For text values:

This is correct:
SELECT * FROM Persons WHERE FirstName="Chris'
This is wrong:
SELECT * FROM Persons WHERE FirstName=Chris

For numeric values:

This is correct:

SELECT * FROM Persons WHERE Year=1965
This is wrong:

SELECT * FROM Persons WHERE Year='1965'

3.4.4 OperatorsAllowed in the WHERE Clause

With the WHERE clause, the following operators barused:

Operator |Description

= Equal

<> Not eque

> Greater tha

< Less than

>= Greaer than or equ

<= Less than or equal

BETWEENBetween an inclusiy
range

LIKE Search for a pattern

IN If you know the exas
value you want to retu
for at least one of ti
columns

Note: In some versions of SQL the <> operator may béevrias =

3.5 SQL AND & OR Operators

The AND & OR operators are used to filter recordsdd on more than
one condition.

The AND operator displays a record if both thetfecendition and the

second condition is true while the OR operatorldigpa record if either
the first condition or the second condition is true

22

CIT 208

3.5.1 AND Operator Example

MODULE 1

The "Persons" table:
P_Id |LastName FirstNamelAddress City
1 Akinbode Ola 10, Odeku Str Lagos
2 Okafor Chris 23, Princewill DrivePorthacour
3 Amodu Al 20, Dauda lane Kaduna

—+

Now we want to select only the persons with thetframe equal to
“Tove” AND the last name equal to “Svendson”:

We use the following SELECT statement:

SELECT * FROM Persons
WHERE FirstName='Ola’
AND LastName='Akinbod

The result-set will look like this:

P Id

LastName

FirssName

Address

City

Akinbode

1

Ola

10, Odeku Str.

Lagos

3.5.2 OR Operator Example

Now we want to select only the persons with thetframe equal to
“Tove” OR the first name equal to “Ola”:

We use the following SELECT statement:

SELECT * FROM Persons
WHERE FirstName='Chris'
OR FirstName="Ali'

The result-set will look like this:

P_ldLastName FirstName Address City
2 Okafor Chris 23, Princewill Drive|Porthacourt
3 Amodu |Ali 20, Dauda lar Kadunz

3.5.3 Combining AND & OR

You can also combine AND and OR (use parenthesiertn complex

expression

S).

23

CIT 208 INFORM@N SYSTEMS

Now we want to select only the persons with the fesme equal to
“Svendson” AND the first name equal to “Tove” OR‘@la”:

We use the following SELECT statement:

SELECT * FROM Persons WHERE
LastName="'Akinbode' OR LastName="Okafor’

The result-set will look like this:

P_Id|LastName |FirstName /Address City
1 |Akinbode Ola 10, Odeku Str. Lagos
2 Okafor Chris 23, Princewill Drive |Porthacourt

SELF-ASSESSMENT EXERCISE

I Create a table called student which will contaia fbllowing:
student_id, studentname, dept, level and grade?
. Write the syntax to insert into the table createdxercise 2.1

40 CONCLUSION

In this unit you have been introduced to the funeatal Queries of a
typical database computing environment e. g. SQau #lso learnt the
specific operators that work for SQL statements.u Yiwere also
introduced to various SQL statements necessaryritmg/ simple SQL
codes.

50 SUMMARY
The summaries of what you have learnt are:

o structured Query Language (SQL) which is a stanttmduage
for accessing and manipulating databases.

o the syntax of different SQL statement

o what SQL statement can be used for

. not all SQL statements accept semicolon at the ehdt
depending on the platform or server that is usedxgcute the
statement.

SELF-ASSESSMENT EXERCISE

i Create Table Student
(Student_id Varchar (25),

24

CIT 208 MODULE 1

Student name Varchar (70),
Dept varchar2 (255),
Level char (12),
Grade number (3))
il. INSERT INTO Student (Student_id, Student nabDept,
Level, Grade)
VALUES (valuel, value2, value3, value4, valueb)

6.0 TUTOR-MARKED ASSIGNMENT

Create a database performing all the discussedtsgiin this unit. i. e.
create a table, insert into that table etc.

7.0 REFERENCESFURTHER READING
Hoffman,James (1997). SQL Tutorials.

Teach Yourself SQL in 21 Day$2™ ed.). Macmillan Computer
Publishing SQL — A Practical Introduction by AkéeDin.

25

CIT 208 INFORM@N SYSTEMS

UNIT 4 SQL SYNTAX II
CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content
3.1 The ORDER BY Keyword
3.1.1 SQL ORDER BY Syntax
3.1.2 ORDER BY Example
3.2 SQL INSERT INTO Statement
3.2.1 SQL INSERT INTO Syntax
3.2.2 SQL INSERT INTO Example
3.3 SQL UPDATE Statement
3.3.1 SQL UPDATE Syntax
3.3.2 SQL UPDATE Example
3.4 SQL DELETE Statement
3.4.1 SQL DELETE Syntax
3.4.2 SQL DELETE Example
3.4.3 Delete All Rows
3.5 JOINING Tables
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION

This unit introduces you to how to write basic SQbgrammes such as
creating tables, selecting a view from a table tamdiliarise you with
basic SQL operators.

20 OBJECTIVES

At the end of this unit, you should be able to:

o write simple SQL programmes

o familiarise yourself with standard keywords of tHeQL
programmes

o state how to construct a good SQL statement

. manage and access databases using the create, wblee and

the logical operators.

26

CIT 208 MODULE 1

3.0 MAIN CONTENT

3.1 TheORDER BY Keyword

3.1.2 ORDER BY Syntax

The ORDER BY keyword is used to sort the result-§be ORDER BY
keyword is used to sort the result-set by a sptiftolumn. The
ORDER BY keyword sorts the records in ascendingeioby default. If
you want to sort the records in a descending orgew, can use the

DESC keyword. The order by clause comes last glecsstatement.

The syntax of the order by clause given below:

o SELECT expr

o FROM table

o [WHERE condition(s)

. [ORDER BY{column, exprfASC|DESC]

o In the syntax,

o ORDER BY specifies the order in which the isxted rows
are displayed

o ASC specifies rows in ascendingeo (this is the
default value)

o DESC order the rows in descendirtgr

With the ORDER BY clause:

o numeric values are displayed with the lowest véhs¢ e.g 1-999

o date values are displayed with the earliest vaised.g 01-JAN-
92 before 01-JAN-95

o character values are displayed in alphabeticalrorde

o null values are displayed last for ascending secpge@nd first
for descending sequences.

3.1.3 ORDER BY Example
Sorting in descending order

SELECT last_name, job_id, department_id, hire_date
FROM employees

ORDER BY last_name:

27

CIT 208 INFORM@N SYSTEMS

LAST_NAME JOB_ID DEPARTMENT_IDHIRE_DATE

Akinbode SA_REP | 80 21-APR-00
Amodu SA_REP | 20 21-APR-00
Buba SA_REP | 80 24-MAR-00
Ngozi ST_CLERK50 08-MAR-00
Okafor SA_REP | 80 23-FEB-00
Sowale ST_CLERK50 06-FEB-00

We also sort using multiple columns.
For example,

SELECT last_name, department_id, salary FROM engasy
ORDER BY department_id, salary DESC,;

3.2 SQL INSERT INTO Statement

3.2.1 SQL INSERT INTO Syntax

The INSERT INTO statement is used to insert new records into a new
row in a table.

The syntax of the insert statement is:

INSERT INTOtable [{column, [,column.....])]
VALUES (value [, value....]);

In the syntax,

table is the name of the table

column is the name of the column

value is the corresponding value for the column.
3.2.2 SQL INSERT INTO Example

INSERTING NEW ROWS

E.G

INSERT INTO departments (department id, departmeare,
manager_id, location_id)

VALUES (170, ‘Public Relations’,100,1700);

INSERTING ROWS WITH NULL VALUES

28

CIT 208 MODULE 1

Implicit method example

INSERT INTO departments (department_id, departnmearne)
Values (30,’Purchasing’):

Explicit Method example

INSERT INTO departments

Values (100, ‘Finance’, NULL, NULL);
INSERTING SPECIAL VALUES

Example

INSERT INTO employees (employee id, first_namet_laame, email,
phone_number, hire_date, job_id,salary, commisgiot_manager _id,
department_id)

Values (7, ‘Adeola’, ‘Chalse’, ‘ade_char’, ‘23480985,
SYSDATE, ‘AC_ACCOUNT’, 6900, NULL, 205, 100);

3.3 SQL UPDATE Statement
3.3.1 SQL UPDATE Statement Syntax

The UPDATE statement is used to update existingrdscin a table.

UPDATE table_name
SET columnl=value, column2=value2,...
WHERE some_column=some_value

Note: Notice the WHERE clause in the UPDATE syntax. WHERE
clause specifies which record or records that shbel updated. If you
omit the WHERE clause, all records will be updated!

3.3.2 SQL UPDATE Examples

Updating rows in a table

UPDATE employees

SET department_id=70

WHERE employee_id = 113;

3.4 DQL DELETE Statement

3.4.1 SQL DELETE Syntax

The DELETE statement is used to delete records@nsd in a table.

DELETE FROM table_name
WHERE some_column=some_value

29

CIT 208 INFORM@N SYSTEMS

3.4.2 SQL DELETE Examples

DELETE *

FROM employees;
DELETE FROM employees
Where department_id =60;

3.4.3 Delete All Rows

It is possible to delete all rows in a table withdeleting the table. This
means that the table structure, attributes, anekes will be intact:

DELETE FROM table_name
or
DELETE * FROM table_nan

Note: Be very careful when deleting records. You canmodlo this
statement!

3.5 Joining Tables

The select statement can be used to join two tablgsther. It can be
used to extract part of Table A and part of Tabl® Borm Table C. For
example, assumingfudentandstudentclassre two different tables. Let
us look at this instruction:

. Select student.SID, student.name, studentclassnelase
° From sudent, studentclass
. Where student.SID = studentclass.SID

This statement shows that SID, name are columfiglds from student
table and classname and SID are also columns frodestclass table.
The fields in the new table to form by this instran are:

SID name classname

SELF-ASSESSMENT EXERCISE
I. Write the SQL statement to delete two rows frondsetiu, Name
and grade = 567

il. What is the syntax to arrange the element of tablscending
and Descending order?

3C

CIT 208 MODULE 1

4.0 CONCLUSION

In this unit you have been introduced to the fundatal Queries of a
typical database computing environment e. g. SQhu ¥#lso learnt the
specific operators that work for SQL statements.u Yiwere also
introduced to various SQL statement syntax necgssawriting simple

SQL codes.

50 SUMMARY

What you have learnt in this unit concerns:

o Structured Query Language (SQL) which is a stantirduage
for accessing and manipulating databases

o the syntax of different SQL statements
o what SQL statement can be used for

ANSWER TO SELF-ASSESSMENT EXERCISE
i. DELETE FROM student
a. WHERE Name="Tjessem' AND grade= 56
il. SELECT * FROM Tablename
ORDER BY LastName DESC
6.0 TUTOR-MARKED ASSIGNMENT

Create a database performing all the discussedtsgiin this unit. i. e.
create a table, insert into that table etc.

7.0 REFERENCESFURTHER READING
Hoffman,James (1997). SQL Tutorials.

Teach Yourself SQL in 21 Day$2™ ed). Macmillian Computer
Publishing SQL — A Practical Introduction by AkéeDin.

31

CIT 208 INFORM@N SYSTEMS

UNIT 5 MORE SQL STATEMENTS
CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content

3.1 Arithmetic Operations

3.1.1 Using Arithmetic Operators
3.1.2 Operator Precedence
3.1.3 Defining a Null Value

4.0 Conclusion

50 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

Since SQL is a database language that is used derying and
modifying relational databases, this unit introduicenore SQL
instructions manipulating database. It presenteroitatements apart
from those described in Module 2.

2.0 OBJECTIVES
At the end of this unit, you should be able to:

write SQL statements

use the ORDER BY statement
use the INSERT INTO statement
update a group of data

delete rows from a table

3.0 MAIN CONTENT
3.1 Arithmetic Operations

Create expressions with number and date data hyg usiithmetic
operators. You may need to modify the way in whiela is displayed,
perform calculations, or look at what-if scenaribhese are all possible
using arithmetic expressions. An arithmetic expoesscan contain
column names, constant numeric values and aritbroperators.

32

CIT 208 MODULE 1

Operator Description
+ Add

- Subtrac

* Multiply

/ Divide

3.1.1 Using Arithmetic Operators

Let us first extend Table persons to Table emplsy®eadding salary
column to it and adding three more records. Fossgbent examples in
this unit, the table is also assumed to have ni@e 5 columns.

P_IdL astName|Fir sstNameAddress City Salary
1 |Akinbode |Ola 10, Odeku Str. |Lagos 4800
2 |Okafor |Chris 23_,Pr|nceW|II Porthacou LA
Drive
3 |Amodu Al 20, Dauda lane |Kaduna 12000
4 |Buba Ibrahim é%r I:)Om-:]()ra‘ya'Kastina L
5 |Ngozi Ebe 10, Felix Str. Imo 7700
6 |Sowale Ayo 63, Atoba road |Abeokuta 24000

The example below describes a scenario in whidhragtic operators
can be used.

SELECT last_name, salary, salary+300
FROM employees;

This gives

LastNameSalary Salary+300
Akinbode |480(510(¢
Okafor 17000 17300
Amodu 12000 12300
Buba 9000 9300

Ngozi 7700 8000
Sowale 24000 24300

3.1.2 Operator Precedence

If an arithmetic expression contains more than omgerator,

multiplication and division are evaluated first. dperators within an
expression are of the same priority, then evalnasodone from left to
right. Parenthesis can be used to force the expressthin parentheses
to be evaluated first.

33

CIT 208 INFORM@N SYSTEMS

Multiplication and division take priority over addin and subtraction
A guery that shows how operator precedence workkas/n below:

SELECT last_name, salary, 12*salary+100
FROM employees

L astNameSalary12* Salary+100
Akinbode 4800 57700

Okafor |17000204100
Amodu 12000144100

Buba 9000 108100
Ngozi 770C 19250(
Sowale |24000288100

A query that uses brackets to override the opepatredence is shown
below:

SELECT last_name, salary, 12*(salary+100)
FROM employees

L astNameSalary/12* (Salar y+100)
Akinbode 4800 58800
Okafor |1700(20520(
Amodu (12000145200
Bube 900C 10920(
Ngozi 7700 93600
Sowale 24000289200

3.1.3 Defining a Null Value

A null is a value that is unavailable, unassigneshknown, or
inapplicable. If a row lacks the data value foraatigular column, that
value is said to be null, or to contain a null. @ohs of any data type
can contain nulls. However, some constraints, NOULN and
PRIMARY KEY, prevent nulls from being used in th@umn.

A query that shows the null values is shown below:

SELECT last_name, job_id, salary, commission_pct
FROM employees:

34

CIT 208 MODULE 1

LAST_NAME JOB_ID SALARY COMMISSION_PCT
Akinbode ST_MAN | 4800

Okafor ST _CLERK/|17000
Amodu ST _CLERK/|12000
Bube ST_CLERK900(
Ngozi ST _CLERK 7700
Sowale ST_CLERK/|2400(

In the COMMISSION_PCT column in the EMPLOYEES tghtetice
that only a sales manager (form the job_id colunsah earn a
commission.

Null Valuesin Arithmetic Expressions
Arithmetic expressions containing a null value eaté to null.
E.g.

SELECT last_name, 12*salary*commission_pct
FROM employees:

LAST NAME 12*SALARY*COMMISSION_PCT
Akinbode

Okafot

Amodu

Bube

Ngozi

Sowale

4.0 CONCLUSION

In this unit, you have learnt how to write basiclSQatements, using
operators in SQL, how to use the SQL ORDER statg¢nerarrange a
group of data. Also the SQL INSERT statement wagplasned,
including how to update and delete rows in a table.

50 SUMMARY

What you have learned in this unit concerns:

o writing basic SQL statements

o ordering a group of data using the ORDER BY statéme

o updating, inserting and deleting rows in a tablengisSQL
statements

35

CIT 208 INFORM@N SYSTEMS

6.0 TUTOR-MARKED ASSIGNMENT

7.0 REFERENCESFURTHER READING

Introduction to SQL 9i from Oracle Universityww.wiki_SQL.com
Database System Concep8" ed).

SQL Tutorials byJames Hoffman(1997). Teach yourself SQL in 21
days (2" ed). Macmillan Computer Publishing.

SQL — A Practical Introduction by Akeel I. Din (200 An Introduction

to Database Systems,"(&d.). C. J. Addison Wesley. ISBN: 0-
321-19784-4.

36

CIT 208 MODULE 1

UNIT 6 DATABASE PROGRAMMING AND JBDC
CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content
3.1 Introduction to Database
3.1.1 Definition of Database
3.1.2 Classification of Database
3.1.3 Database Management Systems
3.1.4 Relational Database Model
3.2 Database Objects and Constraints
3.2.1 Definition of SQL
3.2.2 SQL Statements
3.2.3 Database Objects
3.2.4 Constraints
3.3 Database Programming
3.3.1 Database Programming in Java Using JDBC
3.3.2 Accessing the Database Using JDBC Step lyy Ste
3.3.3 Using JDBC in the Real World
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION

In this unit, you will be introduced to the concept database
programming, which involves knowing what a datab&sehow to
construct a simple database. The unit then teaghesiow to query the
database using SQL learnt in previous units thatingrprogrammes in
form of procedures which carry out specific assignta on the
database.

20 OBJECTIVES
At the end of this unit, you should be able to:

o explain the term database and Database Managenystén$
(DBMS) in use

construct entity relationship diagrams

identify the basic database objects

programme a database using JDBC

use JDBC in real world applications.

37

CIT 208 INFORM@N SYSTEMS

3.0 MAIN CONTENT
3.1 Introduction to Database
3.1.1 Definition of Database

A database is a structured collection of records or data thatored in a
computer system. Adatabase is an organised body of related
information that is organised so that it can belgascessed, managed
and updated. In one view, databases can be e#aslsifted according to
types of content bibliographic, full-text, numerand images. The
structure is achieved by organising the data acogrtb a database
model. The model in most common use today is thetioeal model.
Other models such as the hierarchical model and¢hgork model use
a more explicit representation of relationships.

3.1.2 Classfication of Database

In computing, databases are sometimes classifiedrdiag to their
organisational approach and these can be desadlows:

o Relational database: The most prevalent approach is the
relational database. A tabular database in whith idadefined so
that it can be reorganised and accessed in nunfbédifferent
ways.

o Distributed database: A distributed databasis one that can be
dispersed or replicated among points in a network.

o Object-oriented programming database: An object-oriented
programming database is one that is congruent thieh data
defined in object classes and subclasses. Complatitbases
typically contain aggregations of data records it@sf such as
sales transaction, product catalogs and inventoaied customer
profiles. Typically, a database manager providesdapabilities
of controlling read/write access specifying repgeheration, and
analysing usage. Databases and database managenewaalent
in large mainframe systems, but are also presensmaller
distributed workstations and mid-range systems sashthe
AS/400 and on personal computers.

o Structural Query Language (SQL): This is a language for
making interactive queries from and updating alolsga such as
IBM’'s DB2, Microsoft Access and database produatsmf
oracle, Sybase and computer associates.

38

CIT 208 MODULE 1

3.1.3 Database M anagement System

A computer database relies upon software to orgathie storage of
data. This software is known as a database managesystem

(DBMS). Database management systems are categaczading to

the database model that they support. The moddstendetermine the
guery languages that are available to access thbake. A great deal of
the internal engineering of a DBMS, however, issipeindent of the data
model, and is concerned with managing factors aglperformance,
concurrency, integrity, and recovery from hardwéaures. In these

areas, there are large differences between praducts

3.1.4 Relational Database M odel

The relational database model is a logical reptesen of data that
allows relationship among data to be consideredawit concern for the
physical structure of the data. A relational dasgbases relations or
two-dimension tables to store information. A taldehe basic storage
structure of a Relational Database Model. A tabdds all the data
necessary about something in the real world, sushemployees,
invoices, or customers. For example, one might wémt store

information about employees in a company. In refel database, one
creates several tables to store different piecemfofmation about a
company’s employees, such as an employee tablepartthent table
and a salary table.

A relational database:

o can be accessed and modified by executing stricct@®L
statements.

o contains a collection of tables with no physicahpers

J uses a set of operators

3.2 Database Object and Constraints
3.2.1 Database Objects

The commonly used database objects are:

. Table: This is the basic unit of storage; composed of rows

. View: This logically represents subsets of data from @nmore
tables

o Sequence: Generates numeric values

o Index: This improves the performance of some queries

. Synonym: Gives alternative names to objects

39

CIT 208 INFORM@N SYSTEMS

A table is the basic storage structure of a Relationabbege Model.
With views, one can present and hide data from tables. Many
applications require the use of unique numbersriasapy key values.
One can either build code into the applicationdadie this requirement

or use asequence to generate unique numbers. If the performance of
some queries is to be improved, one should consigting anndex.
Indexes can also be used to enforce uniqueness ocoluain or a
collection of columns. Alternative names can beegito database
objects by usingynonyms.

3.2.3 Constraints

Constraints enforce rules at the table level whenavrow is inserted,
updated, or deleted from that table. The constramst be satisfied for
the operation to succeed. Constraints prevent éhetidn of a table if
there are dependencies. The following constrapedyare valid:

. NOT NULL: This specifies that the column cannot tzam a null
value

o UNIQUE: This specifies that a column or combination
columns whose values must be unique for all rowthéntable.

. PRIMARY KEY: This uniquely identifies each row dfe table

o FOREIGN KEY: This establishes and enforces a farekgy
relationship between the column and a column ofréferenced
table.

o CHECK: This specifies a condition that must be true

3.3 Database Programming

It is very essential to pay special attention téabdase programming
because databases are the heart and soul of mémy i@fcent enterprise
applicationsFor a better performing database a Database Admaitos
(DBA) and a specialist database programmer is rmkelledatabase
specialists are not used during a programme denedap cycle,
database often ends up becoming the performantermak.

An application that does not collate its data idatabase is at stake.
Programming languages reflect this trend. That hy wost languages
provide a robust and flexible library for databaseess.

Databases can be managed in a programming coniexising a

database engine called Relational Database Manage®ystems. This
engine allows an interconnection between programgnemdes and the
database that keeps the data that is reserved tsdak by the codes.
Database connections within the context of programgnare of two

forms:

4C

CIT 208 MODULE 1

o Using a built-in (or an internal) Database Managenf&ystem:
Since most new high level programming languagesecwaith a
built-in DBMS, programmers most times prefer designthe
database and connecting to a database in the proung
environment. This reduces the stress the programmeid have
passed through if done otherwise. Some examplatatibases
that allow internal database connections are; Jéva, Visual
Basic, etc.

. Using an external Database Management System: riakter
RDBMS are not resident in the programming environinéus
an external connection is needed in order to cdrtogbem from
a programming environment.

In this section, one of the commonly used Databsisgagement
Systems will be considered. It is called the Jaatabase Connectivity
(JDBCQC).

3.3.1 Database Programmingin Java Using JDBC

Java provides the Java Database Connectivity (JD&8RI)to access
different databases. JDBC, which is shortfor Jawzatabase
Connectivity, can be defined as “An API for the dgwogramming
language that defines how a client may access abase.” In other
words, JDBC specifies the ways and methods thateeded to access a
database, more specifically a relational databaseh sas Oracle,
MySQL, and others. The main aspect of JDBC is thais a
specification and not a product. So different veadthere RDBMS
vendors) provide their own implementation for tpedfication.

For example, the JDBC implementation for Oracleabase is provided
by Oracle itself and the same is the case for dlers. The
implementations provided by the vendors are knowd@BC Drivers.
The most important point to be kept in mind is tABBC Drivers are
installed at client-side and not at server-side.

JDBC has been with the Java Standard Edition (#98) version 1.1.
The latest version is 4 and is being shipped w8k &. Regardless of
the version, JDBC supports four types of implemgmta or drivers.
They are:

1 Type | or IDBC-ODBC Bridge

2 Type Il or Partly Java Partly Native
3. Type Il or Network Protocol Driver
4 Type IV or Pure Java Driver

41

CIT 208 INFORM@N SYSTEMS

The types are defined by how the driver providesnmoaoinication
between the application and the database servee. afle the details.

A Type | Driver is also called a JDBC-ODBC Bridge. The reason is
that in this case JDBC internally makes calls te @DBC. It is the
ODBC that communicates with the database serves.jdln of JDBC is

to provide the queries to the ODBC in a form untirdable by ODBC
and to deliver the result provided by ODBC to tpel&ation in a form
that is understandable by the application. Thiz@rivorks mainly with
the Windows platform. This is the only type of Daivthat is shipped
with a Java installation.

A Type Il Driver uses the native API of the target database s¢over
communicate with the server. Hence it is known dsaéive Protocol
Driver as well as a Partly Java Partly Native Drivihis Driver doesn't
contain pure Java code as it uses the client-side pkovided by the
target database server. To call the client-side &fRthe database, it uses
JNI. However, since it does not have the overhdachlling ODBC, a
Type Il Driver is faster than a Type |. Also, byingsa Type Il Driver,
one can access functionalities that are specifithéo database server
which is being used.

A Type lll Driver is also known as Network Protocol Driver. Type |l
Drivers target the middleware. The middleware tbtemmunicates with
the database server. In essence, Type |l Driverdikee Type | with the
exception that Type Il Drivers are completely teit in Java and use
the network protocol of the middleware instead &BZL API. Type Il
Drivers are more secure since middleware is imptbire. In a nutshell,
in Type Il Drivers the conversion logic is at theddleware level and
not at the client-side.

TheTypelV Driver is known as a Pure Java Driver. It is comparatle t
Type Il as it directly interacts with the databasever. Unlike Type II,
Type IV does not use native API calls. InsteadARe has been written
in Java by the vendor. Apart from being a pure Jey@ementation of
database client API, a Type IV Driver delegates pghacessing to the
database server. That means at client side no gsiocerelated to the
database or SQL translation occurs. The only jab ¢hent does is
connecting to the server, passing the queries mat ito the database
server and getting the result back through the samneection. Due to
the delegation of all the processes to the settaer,Type IV Driver is
also known as the Thin Client Driver.

The choice of which driver to use depends on tpe tf application that

is being developed. For example, if the applicat®mweb-based, the
best option is Type IV as it releases the appbcaserver from being a

42

CIT 208 MODULE 1

part of database transactions. In this case, thkcapon server would
only have to provide services to look up the nafmé&® connection pool
and maintain the pool. All other data-related opers would be
delegated to the database server. Next we willdsthe steps involved
in using JDBC.

3.3.2 Accessing the Database Using JDBC Step by Step

The best part of using JDBC for database programmsithat if one has
the required type of driver, regardless of the loiasa server, the steps to
connect and query the database remain more otHessame. The steps
to access database for a typical relational databaer include:

loading the driver

creating a connection

instantiating a statement object

retrieving a result set object

accessing the data from the result set object.

All of these steps are the same for any databasg,Qracle or MySQL.
The only change comes in the query to be passstefour. Here are
the details.

L oading the Driver

The driver, regardless of type, can be loaded m @ntwo ways: using
the Class loader, or explicitly creating the ins@anThe difference
between them, apart from how the driver is ins&dad, is whether the
Driver has to be registered explicitly or not.

Using the Class L oader

A class can be loaded at runtime using the forName€thod of
the Class class. The method accepts a String hatimgiame of the
class to be loaded. Also, once the class is loadmdljng the
newlnstance() method of Class will create a neveabpf the loaded
class. When the forName() method is used, the Dmexd not be
registered explicitly. For example, to instantiatdriver of Type | using
the forName method, the statement would be:

o Class.forName(" sun.jdbc.odbc.JdbcOdbcDriver™).newlnstan
ce();

o Explicitly creating the instance

. The second way to load a driver is to instantiaéxplicitly using

the new operator. This is similar to that of cregta new instance
of any class. However, when the driver is being liedly

43

CIT 208 INFORM@N SYSTEMS

instantiated, one will have to register the driwath the runtime
environment using the register() method of the énianager
class. For example to load Type | Driver, the stetiets would

be:
o Driver driver=new sun.jdbc.odbc.JdbcOdbcDriver ();
o Driver Manager .register (driver);
o Or the statements can be merged as:
o Driver Manager .register (new

sun.jdbc.odbc.JdbcOdbcDriver ());

Once the driver is loaded and registered, the e is to get a
connection.

Creating a Connection

Once the driver has been loaded and registeredetkiestep is creating
a connection with the database server. The commedicreated when
one creates an instance of Connection. To getstanoe of Connection,
the getConnection() method of the DriverManages<laas to be called.
In reality, Connection is an interface and whenCgeinection() is

called, the DriverManager provides an instance bé tproper

implementing class to a reference variable of Conoe. There are
three forms of the getConnection() method which are

. getConnection(String url) - the URL contains all the necessary
information including the URL of the database seruser name
and password.

o getConnection(String url, Properties info) - the URL contains
only the URL to the server. The user name and pasbware
passed as part of the Properties instance.

o GetConnection(String url, String user, String password) - as
with the previous form, this form also contains thBL to the
server in the URL parameter. The user name andvoadsare
passed as separate parameters.

The URL is of the form jdbc:<subprotocol>:subnanfeeve subprotocol

refers to the protocol used by the database sangisubname refers to
the database to which the connection has to be .nframeexample, an

Oracle subname refers to the tablespace withirdétt@base server. So,
in order to create a connection using the ODBC datarce name or
DSN, the statement would be:

o Connection connection = DriverManager.getConnection
("jdbc:odbc:test”,
J "testl”, "test123");

44

CIT 208 MODULE 1

o where odbc is the subprotocol and test is the D&Mwpoints to
the database to connect to. The next step is aiecie statement
object.

I nstantiating a statement obj ect

A statement represents a query to be executedeatldtabase server
against a database. In other words, a statemeettaljresponsible for
executing a SQL query as well as retrieving thelltesf the executed
query. JDBC provides three types of statementsdobasethe type of

query to be executed. They are: Statement, Preptatnnent,

and CallableStatement. They are based on the typguexry to be

executed.

Statement is the simplest type that represents a simpleyquisr object
can be instantiated using any of the following fernof the
createStatement() method of the Connection interfac

o createStatement() -
o Returns a Statement object with default concurreongditions.
o createStatement(int resultSetType, int resultSetGaancy)-

Returns a Statement object with concurrency camditnd type of
ResultSet according to the values passed as valhesnost commonly
used resulSetTypes include ResultSet.TYPE_FORWARILYO
(indicating that the data can be read only in fodvdirection and once
read cannot be moved back to a previous data) and
ResultSet. TYPE_SCROLL_SENSITIVE (indicating thag thata can be
read in both forward and backward directions, drad the changes done
by any other operation are visible instantly). Toenmonly used values
for resultSetConcurrency are CONCUR_READ_ONLY (gading that
ResultSet may not be updated) and CONCUR_UPDATABLE
(indicating that object may be updated).

For example, to create a Statement object thatdvondvide a ResultSet
object which is scrollable and updatable, the statd would be

Statement statement = connection.cr eateStatement(

ResultSet. TYPE_SCROLL_SENSITIVE,

ResultSet. CONCUR_UPDATABLE);

PreparedStatement conserves resources. Whenever a query is sent to
the database server, it goes through four stepssingethe query,

compiling the query, linking and executing the quéthen a statement
object is used to execute a query all four stepsrepeated again and

45

CIT 208 INFORM@N SYSTEMS

again. This can create resource-hogging. The aliem to it is a

PreparedStatement object. If a PreparedStatemgadtad used, the first
three steps are performed only once at the stdrirasuccessive calls;
the values are then passed to the linked queryitaisdexecuted. To
create an object of PreparedStatement, any ofdlewing forms of

prepareStatement can be used:

o prepareStatement(String query)-

This form accepts a parameterised SQL query asaneder and returns
an object of PreparedStatement. "Select * from udwre user_id=?"is
an example of a parameterized query.

o prepareStatement(String query, int resultSetTypent i
resultSetConcurrency)-

This form is similar to the first form with the agdl options of
specifying whether ResultSets are scrollable ardhtgible or not. The
values for the two parameters are the same as thesgibed in the
Statement section.

For example, to create an instance of Preparedf¢atevhich provides
an updatable and scrollable ResultSet, the statsmeuld be:

String query="Select * from user where user_id=?";
PreparedStatement pStatement = connection.prepéea&nt(
query,

ResultSet. TYPE_SCROLL_SENSITIVE,

ResultSet. CONCUR_UPDATABLE);

To call procedures and functions within a databasee can use
CallableStatement. However, if the underlying database does not
support procedures and functions, then the Calldhtement object will
not work. For example, versions of MySQL databaser po 5.0 did not
support functions and procedures. To create an cobbjef
CallableStatement, use any of the following formhghe prepareCall()
method of Connection:

o prepareCall(String query)-
This returns a CallableStatement object that canubed to
execute a procedure or function, which is passethagjuery.
The query is of the form "{sum(?,?)}" where sum ftise
function/procedure to be called.

o prepareCall(String sql, int resultSetType, int
resultSetConcurrency)-

46

CIT 208 MODULE 1

To get a ResultSet which is both updatable andlabte, this form can
be used. The resultSetType and resultSetConcurrarecygame as that
used with prepareStatement().

For example, to call a procedure whose name is shenstatement
would be:

o CallableStatement cStatement = connection.prepé(eCa
o {sum(2.2)));

The next step is to retrieve the ResultSet.
Retrieving the ResultSet object

The rows retrieved by the execution of a SQL quew® given back by

JDBC in the form of a ResultSet object. A ResultGattains all the

rows retrieved by a query. To retrieve a Result$gect, one can call
the executeQuery() method of the Statement objédhe Statement

object is of the type PreparedStatement, then ¢ée@uery() without

any argument needs to be called. If it is of theetytatement, then a
SQL query will have to be passed to the method. &le, to

retrieve a ResultSet from a Statement for the qU@eject * from user”,

the code would be

o ResultSet result = statement.executeQuery("'Sel&oint user");
The next step is to get data from the ResultSet
Accessing the data from the Resultset object

The specialty of ResultSet is that it can be ietatver as a collection
and for each iteration, the data can be accessidsasn array using an
index. A ResultSet object can be iterated overgugm next() method.
During each iteration, one row is retrieved frone thumber of rows
returned by the execution of the SQL query. Themwls within the row
can be accessed using different forms of the gatihod of the
ResultSet object. The forms depend upon the da-@y the column to
be accessed such as getString() if the columnigyparchar, getint() if
the column type is int, and so on. Mostly getSifing used to retrieve
data from the columns. The argument that needsetpassed to the
method is either a string containing the column @awn the integer
value representing the index. The index starts ftoamd not O.

For example, if the user table has a column nanmasng," then the
statements to retrieve the values for the "nam&ineo would be

47

CIT 208 INFORM@N SYSTEMS

o while(result.next){
o System.out.printin(result.getString("name));
e 1}

3.3.3 Using JDBC in the Real World

It is now time to learn how to develop a practiegplication. An
application that implements what has been explamiéde considered
in this section:

o GenericDAO - Connects to the database and provides a
Statement object. It is generic in the sense thetdepts a driver
name and URL as an argument of constructor.

o DataOp - Implements database operations.

o DAQOTest - Tests the DAO and DataOp classes.

So, here is the GenericDAO class. It accepts tiverdclass and URL to
connect to as constructor arguments along with uber name and
password.

package jdbctest;

import java.sgl.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.sql.Statement;
public class GenericDAO

{

Connection connection;
Statement statement;

public GenericDAO()

{

connection=null;
statement=null;

}

public GenericDAO(String driverClass,String conmattRL,String
user,String password)

{

try

{

Class.forName(driverClass).newlnstance();
connection=DriverManager.getConnection(connectiobluRer,passwo
rd);

statement=connection.createStatement();

}

catch (InstantiationException e)

{

48

CIT 208 MODULE 1

e.printStackTrace();

}
catch (SQLException e)

{
e.printStackTrace();

catch (lllegalAccessException e)

{
e.printStackTrace();

}

catch (ClassNotFoundException e)

{
e.printStackTrace();
}
}

public void setStatement(Statement statement)

{

this.statement = statement;

}
public Statement getStatement()

{
return statement;
}
}

Next is the DataOp class. It has one method thatades on the user
table. This class is not generic.
package jdbctest;

import java.sql.ResultSet;

import java.sql.SQLEXxception;
import java.sql.Statement;

import java.util. ArrayList;

import java.util.List;

public class DataOp

{

Statement statement;

public DataOp(Statement statement)

{

this.statement=statement;

}
public List getUserList(String user)

{
List list=new ArrayList();

try
{

ResultSet result=statement.executeQuery("Selectom fuser where
user_id=""+user+"");

49

CIT 208 INFORM@N SYSTEMS

while(result.next())

{
list.add(result.getString(1));
}

}

catch (SQLException e)
{

e.printStackTrace();
list=null;

}

return list;

}

}

Last is the class that tests the GenericDAO and@gafclasses. Here we
are passing the driver name corresponding to Typaf MySQL JDBC
driver and the corresponding URL.

package jdbctest;

public class DAOTest
{

public static void main(String argsl])

{

llcreate instance of DAO class. Here we are usiryp@QL Type IV
Driver

DAO dao=new
DAO("com.mysql.jdbc.Driver","jdbc:mysql://localhgsgst","r
oot","root123");

/ICreating instance of DataOp class

DataOp dataOp=new DataOp();

//calling the getUserList method for user whosesid3
System.out.printin(dataOp.getUserList("23"));

}
}

That completes a basic application.

4.0 CONCLUSION

In this unit you have been introduced to the funeatal concepts of
Database and Database Management Systems. Youalsaviearnt the

different types of SQL statements, constraints addtabase
programming.

SC

CIT 208 MODULE 1

50 SUMMARY
What you have learnt in this unit concerns:

o introduction to Information Systems which refersat@ystenof
persons,_dataecords and activities that process the data and
informationin an organisation.

. the study of information systems originated astadigcipline of
computer science in an attempt to understand amwhadise the
management of technology within organisations.

o areas of application or work which includes:

- Information Systems Strategy
- Information Systems Management and
- Information Systems Development.

J types of Information Systems which Management imftion
Systems (MIS) or Reporting Systems, Decision Suppgstems,
Transaction Information System (TIS) and Expertt&ys.

6.0 TUTOR-MARKED ASSIGNMENT

I. List and explain the various SQL statements.
il. Write a short note on Database Management SystdniBiDC.

7.0 REFERENCE/FURTHER READING
SQL - A Practical Introduction by Akeel I. Din (200An Introduction

to Database Systemg" ed.). C. J. Addison Wesley. ISBN: 0-
321-19784-4.

51

CIT 208 INFORMATION SYSTEMS

MODULE 2

Unit 1 Conceptual Modelling and Schema Design
Unit 2 Functional Dependence

Unit 3 Regular Expression

Unit 4 Relational Algebra

UNIT 1 CONCEPTUAL MODELLING AND SCHEMA
DESIGN

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content
3.1 Conceptual Models
3.1.1 Mapping EER to Relational Data Model
3.2 Schema Design
3.2.1 Database Schema Design
3.2.2 Consideration for Schema Design
3.2.3 Schema Building Blocks
3.3 Database Relationships
3.3.1 Relationship and Relationship Type
3.3.2 Enhanced ER Data Model
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION

A database conceptual model is a high-level viewlatfbase structure.
Its purposes are to:

. aid understanding of the database structure bwladl want to
use it

. help decide where to make changes to existing iyste

o provide a firm basis from which to initiate applica

development projects.

52

CIT 208 MODULE 2

2.0 OBJECTIVES
At the end of this unit, you should be able to:

o the meaning of conceptual modelling

J schema designs:
- database schema designs
- considerations for schema designs
- schema building blocks

o Database relationships.

3.0 MAIN CONTENT
3.1 Conceptual Models

A conceptual model represents ‘concepts’ (enti@®s) relationships
between them. Conceptual modelling is a well kndgehnique of data
modelling, together with logical modelling and pitgd modelling. The
conceptual model is explicitly chosen to be indelset of
implementation details, such as concurrency or staage. The aim of
conceptual model is to express the meaning of temasconcepts used
by domain experts to discuss the problem, and nid the correct
relationships between different concepts. Thisl$® aalled semantic
model. The conceptual model attempts to clarifyrtteaning of various
usually ambiguous terms, and ensures that probleitis different
interpretations of the terms and concepts cannotirocSuch differing
interpretations could easily cause the softwargepts that are based on
the interpretation of the concepts to fail. Onee dlomain concepts have
been modelled, the model becomes a stable basissubsequent
development of applications in the domain. The epte of the
conceptual model can be used as basis of objemtted design and
implemented in programme code, in particular assda in object-
oriented languages. The realisation of conceptuateils of many
domains can be combined to a coherent platform.

Conceptual model is a term that has been used flan@ time in
database design. It has long been the practic& o describe a large
system in terms of a set of interacting modulegolf can describe what
each module does and describe how they interatt @dth other, you
have a high level description of the system. Furtlzge, if you describe
each module in terms of sub-modules each inteigatith each area,
you have now a more detailed description of théesysThus, arises the
concept of having being able to zoom into partshef system in more
and more detail and being able to zoom out to seeler and wider part
of the system.

53

CIT 208 INFORMATION SYSTEMS

In a conceptual model, activities (the concepteakl modules) rarely
interact using programmatic interfaces. Insteadtéh® most common
forms of interaction are:

o sharing data, one activity provides data, otheesitus

o through the action of external entities. For ins&am an airline
system a crucial factor in the interaction betwdes check-in
and departure gate activities is the passengersngdrom the
check-in desk to the departure gate.

What is distinctive about our approach to concdptoadelling is the
use of the box bag model which is designed to show activities
interact in terms of sharing data or passing datal to show how
activities and data depend on, or are relatedxtermal activities, things
or people.

The conceptual model is often described with ascthagram in which
classes represent concepts, associations repretsmnships between
concepts and role types of an association represéntypes taken by
instances of the modelled concepts in various g In ER (Entity
Relationship) notation, the conceptual model iscdbed with an
ER(Entity Relationship) Diagram in which entitiepresent concepts.

3.1.1 Mapping EER to Relational Data Model

External and conceptual schemas are designed ikHfe data model
Since there is no commercially available DBMS basedEER data
model, and since most modern DBMS are based oniomdd data
model, conceptual schema has to be mapped intaethgonal data
model Conversion is done using a mapping algoritithe mapping
algorithm, we are going to consider, contains seteps

Steps of the Mapping Algorithm
Map regular entity types

1.
2. Map weak entity types
3 Map relationship types with:

o 1 : 1 cardinality ratio
o 1 : N cardinality ratio
o N : M cardinality ratio

Map super class / subclass relationships
Map categories

Map multivalued attributes

Define referential integrity constraints

No oA

54

CIT 208

MODULE 2

Step 1 Map Regular Entity Types

Map each EER schema regular entity tifaato a relation

schema with:

- The same name (as the entity tfe

- The set of attributes containing all simple, sneplued
entity typeE attributes (including simple, single valued,
but excluding multivalued components of the comgosi
attributes),

- The same set of keys as the entity tipe

Result of applying step 1 onto Fig a:
- Departmen{Deptld, DeptNamsg,
- Student (Studld, StudName

Step 2 Map Weak Entity Types

For each weak entity typ#, having owner&l,..., EKin the

EER schema, create a relation schema with:

- The same name (as the entity tyjue,

- The set of attributes containing all simple, sneplued
entity typeW attributes (including simple, single valued,
but excluding multivalued components of the comgosi
attributes), and containing the union of the priynesys of
all ownersEl, ..., Ek,

- The primary key, composed of the union of thenainy
keys of all owner£&l, ..., Ek, and the partial key of the
entity typeW

Result of applying step 2 onto Fig a:
- Course(Deptld CourNg CourName

Step 3.1 Mapping Relationship Types (1:1)

Map binary relationship type with 1 : 1 cardinaligtio between
entity typesSandT, according to the rules that depend on
participation constrains

Cardinality ratio 1:1 is a seldom but complicatede

Step 3.2 Mapping Relationship Types 1: M

Consider a binary relationship type having enypyetSwith the
primary keyKeySon the 1 side, and entity tygewith primary

key KeyTon the M side

Map the binary relationship type by inserting thignary key
KeySof the entity typesSon the 1 side as the foreign key, together

55

CIT 208 INFORMATION SYSTEMS

with all simple, single valued relationship tyRettributes, into
relation schema representing the entity type on the M side

o If the participation constraint of the entity typen the M side is
partial, putNull (T, KeyS =Yes
o If the participation constraint of the entity typen the M side is

total, putNull (T, KeyS) = Not
Step 3.3 Mapping Relationship Types M:N

o Map each EER schema relationship teith the cardinality

ratio M : N into one relation schema with:

- The same name (as relationship tige

- The set of attributes containing all simple, sengplued
relationship typeR attributes (including simple, single
valued, but excluding multivalued components of the
composite attributes), and including the primaryskef
connected entity types

- The primary key composed of connected entity type

primary keys

o Result of applying step 5 onto Fig a:
- Exam(Studld Deptld CourNo, Gradg

Step 3.4 Relationship Types of the Order > 2

o Map each EER schema relationship tfgef the order greater

than two into one relation schema with:

- The same name (as relationship tiRe

- The set of attributes containing all simple, sengplued
relationship typeR attributes (including simple, single
valued, but excluding multivalued components of the
composite attributes), and including the primaryskef
all connected entity types

- The primary key that is the proper or impropdrssat of
the union of the connected entity type primary keys

Step 4 Mapping 1S-A Hierarchies

o Mapping of a superclass / subclass (IS-A hierarchigtionship
can be done in three ways:

1. Each subclass and the superclass is mappett iceparate
relation schema
- The superclass is mapped as a regular entity type
- The subclass is mapped as being a Weak entig/wyin
partial key being an empty set,

5€

CIT 208 MODULE 2

2. Each subclass is mapped into one relation seheomtaining
union of the superclass and this subclass attriette (superclass
is contained in each subclass, and there is nadaps relation
schema)

3. All subclasses together with the superclassragped into one
relation schema.

Step 5 Mapping Categories

o A category is the subclass of the union of two oren
superclasses
o A category is mapped to one relation schema with:

- The same name as the category type,

- All the single valued attributes of the categfncluding
the attributeCategoryTypg and

- An artificial attribute, so called surrogate key

- The relationship between category relation schanta
superclass relation schemas is accomplished bytimge
the surrogate key in each superclass relation sshem

Step 6 Mapping Multivalued Attributes

o For each multivalued attribukin an entity or relationship type
T, represented by relation schefméontaining all typd single
valued attributes), create a new relation schentia wi
- the name/,

- the set of attributes containing all simple, snealued
attributes inv, and the primary kel of T, and

- the primary key as the union kfand some attributes from

Vv

o Result of applying step 9 on Fig a:
- Lecturer(Deptld LectNqQ LectNameHireDate).

Step 7 Defining Referential Integrities

o Define areferential integrity constraintor each primary key /
foreign key pair
. No referential integrity defined should represetdgical

consequence of another primary key / foreign ke ganstraint

57

CIT 208

INFORMATION SYSTEMS

The Set of Relation Schemas

S={

Departmen{{ Deptld DeptNamg, { Deptlid}),

Studen({ Studld, StudNamg { Studid}),

Course({ Deptld CourNg CourNamg}, { Deptld+CourNo})
Exam({ Deptld, CourNo, Studld, Grade { Deptld+CourNo
+,Studld})

Lecturer({ Deptld LectNo, LectName, HireDatg{ Deptld+
LectNo})

}

Referential Integrity Constraints

The set of referential integrity constraints of th@mple
conceptual schema :

- IC = {Lecturer[Deptld] | Departmen{Deptid],

- Course[Deptld] | Departmen{Deptld],

- Exam[Studld] | Studen{StudId],

- Exanj(Deptld, CourNo)] | Course[(Deptld CourNo)] }

Note thatlC doesn’t contain referential integrity

- ExanjDeptld] | Departmen{Deptid]
- (because it is a logical consequence of

- Exan(Deptld CourNo)] i Course[(Deptld CourNo)] }

andCourse[Deptld] | Departmen{Deptid])

Deptic DeptNa
AN 1
Departmer

(Leaw | [Leoia] [Fireva]

M

Studen N—=< EXxé M Course

|

[St_ud\] [Stusz] [ﬂ] [CourNe]

Fig. 1:

58

Example of Conceptual Schema

CIT 208 MODULE 2

3.2 Schema Design

3.2.1 Database Schema Design

The goal is to design a schema that models thelgmllomain as
precisely as possible, such that both current knamah future unknown
use cases may employ the database. A possible agbpris to go
through the requirements and through the textdldha use cases and
put the nouns in a dictionary. Nouns that do somgth.e., are related
to a verb, are candidates for database tables. Nah have no verb are
possible attributes (table columns).

For example, consider the use case text: “The itengiven an
identification number.” We have two nouns: item adeéntification
number. “ltem”—has the verb “is given” and is a d@ate for a
database table. “ldentification number’—no relatgdrb, it will
probably be a column in the “Iltem” table.

Database constraintscan be defined over a schema. The constraints are
usually on the contents of database tables. Wheengér tries to change
the contents of a table, the relevant constrai@schecked first. If there

is a constraint violation—the database engine sa&® exception and
does not allow the update. The list of some compwrstraints follows:

o PRIMARY KEY a column, where all values are unique.
Example is the table Person_,(idfirstName, lastName,
dateOfBirth, address). The primary key “id” is urded. A
table cannot have two entries with equal primaryské’rimary
key may be a column combination, for example: Ckiaodel,
color, weight, price). A certain model may exist different
colors. A better solution, however, is Chair (idpdel, color,
weight, price).

o FOREIGN KEY is a column (or several columns), whose values
are limited to to the values of certain column(saoother table,
called the referencedtable. For example: consider a table
Pair(pairld, personldl, personld2). The valuesparsonidl” and
“personid2” columns denote the Id’s of two persand we want
these values to originate from the “Person” tadle. do not want
to have a person Id in the “Pair” table, that deesappear in the
“Person” table.

o Foreign key column(s) must reference column(s),thave a
PRIMARY KEY or UNIQUE constraint (see below).
. UNIQUE column(s) are columns whose values are unique. The

difference from the primary key is that a table ¢teve several
UNIQUE constraints but at most one PRIMARY KEY ctrast.
Consider the table Supplier(id, name, address).“dfiecolumn

59

CIT 208 INFORMATION SYSTEMS

is a primary key, but we can also define a UNIQUiAstraint
over (name, address). By that we emphasise the tfadt there
are no two suppliers that have the same name atréssd

o CHECK constraint is a user-defined boolean expressioat, th
must be true at all times. For example, in a t&adek(bookid, . .
., price) we may define a CHECHr{ce > 0).

Normalisation: The columns of the tables may be either key or keyn-
columns. In a normalised schema a non-key colunpeas only once,
in one table in the database. This is a specia¢ cdsthe software
engineering rule, saying that a piece of data alecshall appear only
once in the entire program. The motivation for tissommendation is
that when this rule is followed, an update has dnlype done in one
place. If the rule is not followed, an update maydrto be done in a
number of places. It is not the amount of work pflating in a number
of different places that bothers, but the possybithat one forgets to
update in one of the several required places.

3.2.2 Consideration for Schema Design

The schema design for a database affects its ugadmld performance
in many ways, so it is important to make the ihitievestment in time

and research to design a database that meetsdlle akits users. This
section is not intended to provide a detailed gumelatabase design,
but only to present some ideas to consider in desjga database.

A well-designed schema takes into account the \violg
considerations:

. What are the processes of the business?

Identify the main processes of the business; famede, taking orders
for the product, filling out insurance claims, @adking promotions.

These processes are different for every business,they must be

clearly identified and defined in order to createseful database. The
people who know the processes are the people whioiwthe business,
and interviews are essential to determine theseepees.

o What do the users want to accomplish with the datadse?

The database should reflect the business, bothhat w measures and
tracks and in the terminology used to describefdlbes and dimensions
of the business. Interviews with managers and usdlsreveal what
they want to know, how they measure the businebst writeria they
use to make decisions, and what words they usedorithe these things.

6C

CIT 208 MODULE 2

This information helps determine the contents effdct and dimension
tables.

° Where will the data come from?

The data to populate the tables in the databasebrusomplete enough
to be useful and must be valid, consistent data.aAalysis of the
proposed input data and its sources will revealtidrethe available
data can support the proposed schema.

. What are the dimensions of the business and theirttabutes
that will be reflected by the dimension tables?

Independent dimensions should be represented bgrageptables. If
dimensions are not independent, they can be comhlima single table.
Attributes are usually textual and discrete valdes;example, product
descriptions or geographic locations. They are usedorm query
constraints and to determine report breaks. Theniws and data
analysis will provide guidance in setting up thtddes.

o Are the dimensions going to change over time?

If a dimension changes frequently, it probably stéde measured as a
fact, not stored as a dimension.

. What facts should be measured?

Facts are usually numerical and continuous valieesxample, revenue
or inventory. Facts that are additive can be sumioegdroduce valid
measures in reports. For example, sales for eactthnave additive and
can be summed to produce year-to-date totals. Memthinventory
balances, however, are not additive in the senaseahyearly total of
month-end inventory balances is of dubious valuet & monthly
average might be meaningful.

o Is a family of fact tables needed?

Facts that are measured with different dimensionsse different timing
should be stored in separate tables. For exam@egée database can
be used for orders, shipments, and manufacturidignodgh the facts
measured in each area of the business are difféhayt share some but
not all of the same dimensions.

61

CIT 208 INFORMATION SYSTEMS

o What is the granularity of the facts?

Granularity refers to the level of detail of théormation stored in each
row of the fact table. Each row should hold the saype of data. For
example, each row could contain daily sales byesbyrproduct or daily
line items by store.

Differing data granularities can be handled by gsimultiple fact tables
(daily, monthly, and yearly tables) or by modifyiagingle table so that
a granularity flag (a column to indicate whether the data is a daily,
monthly, or yearly amount) can be stored along with data. Also
consider the amounts of data, space, and perfoemasguirements in
deciding how to handle different granularities.

o How will changes be handled, and how important isiktorical
information?

If change occurs infrequently and if historicaldmhation is not very
important, dimension tables can be modified toestflonly the new
reality without any loss of useful data. Howevérprievious history is
important, dimension tables can be modified toectfboth the old and
new conditions. If a dimension changes frequemérhaps it should be
considered time-dependent and include a time-basétibute; for

example, month, quarter, or year.

3.2.3 Schema Building Blocks

The following figures illustrate some common scheramples. Tables
named Fact or Factepresent fact (referencing) tables. The othdegab
represent dimension (referenced) tables. The fatigvfigures apply to
both single-star and multistar schemas.

A schema can consist of a single dimension table.

Ma ret

Fig. 2: Single Dimension Table

A schema can be a star schema with one fact taoleoae dimension
table.

62

CIT 208 MODULE 2

Fact

Markat

Fig. 3: Star Schema with One Dimension Table

A schema can be a star schema with one fact tabhte several
dimension tables.

Fact FProduct
T
Period /é
-
| E——
",
\ Market
Fig. 4: Star Schema with Several Dimension Tables

A schema can be a multiple star schema, with alyawhifact tables that
share some, but not necessarily all, dimensioresabl

Faitt Procluct
M N 1 Factz Sa esParson
[,
- - b
Y.
A
T_ .\\(T E
AT T
FacHa J,-" *\ F aarbet
| — I
Fig. 5: Star Schema with Several Fact Tables

A schema can be an extended star schema with diometables that
reference other dimension tables (outboard tables).

63

CIT 208 INFORMATION SYSTEMS
Fell Procucl
Hanod /!r{,) Counlry
(fz' J'-.‘ L
\x Ma ket d
3 L j |
= ”"f Type
:l"‘-__h__
T | F——
Fig. 6: Star Schema with Outboard Tables

A schema can be a star schema with a fact tabtectimaains multiple
foreign keys that reference single dimension tables

Fact1 Product
Fened |- |-
o ———
—S @ Market
——| 1:}“&%‘
Fig. 7: Star Schema with Multiple Foreign Keys

Example: Salad dressing database

This example illustrates how the schema designctsffboth usability
and usefulness of the database.

This database tracks the sales of salad dressouyigis in supermarkets
at weekly intervals over a four-year period andyical consumer-
goods marketing database. The salad dressing grodisgory contains
14,000 items at the Universal Product Code (UP@glleData is
summarised for each of 120 geographic areas (ngrkethe U.S. and
for each of 208 weekly time periods spanning foearg.

The salad dressing database has one fact tables, sahd three

dimension tables: Product, Week, and Market, asstiated in the
following figure.

64

CIT 208 MODULE 2

Penial lalbike
(208 records)
Pariod_id N
. Poriod_doec
Product table Salkes table K
3,800,000 recods! | Quarta-
(14,000 records) f "/ | Fiscalyear
- o ; = Calanda
Product_id € Product_d / P
Lesc ripaon Pariod_id /':
Brand Markst_id
Manufacturar Units \ —_—
Fack Diollars \"\
Class Lhscourt \ Markst table
Flavaor Salling_price (120 mcords)
SkEe Lamge_ads -
Mediur_ads Markst_id
Small_eds Markst_dosc
I District
Region
Fig. 8: Salad Dressing Database Example

Each record in the Sales fact table contains d fml each of the three
dimensions: Product, Period, and Market. The colimrihe Sales table
containing these fields are the foreign keys whosgcatenated values
give each row in the Sales table a unique identifi@ales also contain
seven additional fields that contain values for soeas of interest to
market analysts.

Each dimension table describes a business dimensidrcontains one
primary key and some attribute columns for thatedision.

3.3 Database Relationships
3.3.1 Relationship and Relationship Types

A relationship is an association between two or ementities. A
relationship can be represented by combining reptesons of
associated entities and properties of their assogiaA relationship
type is an abstract representation of an associagbwveen two or more
entity sets, and a representation of a set of sparding relationships.
Graphically, a relationship is represented by amdiad-shaped box
connecting associated entity types.

Student Course

65

CIT 208 INFORMATION SYSTEMS

Recursive Relationships

A relationship may be defined between entitieshef same entity set.
Associations between entities of the same setaledeecursive. Every
entity in a relationship hasrale

3.3.2 Enhanced ER Data Model

Enhanced ER data model brings a number of new ptsice

1. Superclass / subclass relationship, calledS-A hierarchy, as well,
together with specialisation / generalisation pdures, and
2. Category (a subset of the union of two different super class

entity sets)
3. Aggregate (as a representation of complex objects)

Super class / Subclass Relationship

An entity class can posses groups of such entibhias contain some
special properties, not imminent to the other angs

o Person class contains many such groups like: stsiden
employees, children, retirees etc

o Student class may be divided into full time andt ptme
students, or undergraduate, graduate, master, autordte
students.

A subclass contains only specific attributes andy marticipate in
relationship types by its own. A subclass is a shieation of its super
class. The super class is generalisation of all st#bclasses.
Specialisation and generalisation are inverseach ether. An instance
of the subclass is also an instance of the supssclThese two instances
represent the same real entity. A subclass insteregits all the super
class attribute values and all relationship pgrtitons from its image in
the super class.

Super class / subclass relationship is introduced t

o Enhance thesemantic representation power of the ER data
model,

. To avoidnull values of the type "not applicable" in the extension
of the super class, and

o To avoid impression that super class instancesicpgate in

meaninglessubclass specific relationships

66

CIT 208 MODULE 2

[Employee i| | Name | [Positon |

N

Emplovet

4.0 CONCLUSION

In this unit you have been given an insight intghhievel modelling of
database structures and the processes involvedsigrding a schema
that models an arbitrary problem domain as preciasl possible, you
were also introduced to the various database oeltip types and
modelling using enhanced ER Data.

5.0 SUMMARY

o A conceptual model represents ‘concepts’ (entities)d
relationships between them.
o A relationship is an association between two orevemtities. A

relationship can be represented by combining reptations of
associated entities and properties of their assonia
o Each relationship type can be mapped as a sepeekton
schema, but it is considered to be a good pratdiceap it as:
- A separate relation schema in the case of M: idl (k1)
cardinality ratios, and
- By primary key propagation in the other cases
o The relation schema that gets the propagated pyikey as the
foreign key, simultaneously represents an entitgetyand a
relationship type
o There are three possible ways to map a IS-A hibyarc
- Each class as a separate relation schema, witbtlass
relation schemas inheriting super class primary key
- Only subclasses as separate relation schemasntiexit
all the super class attributes, and
- The super class and all the subclasses map ine® o
relation schema

o Each set of mutivalued attributes is mapped infasse relation
schema

o EER data model is introduced to provide more selmaotver to
UoD modelling

o EER introduces a number of new modelling constructd a

diagrammatic technique

o Set of similar UoD entities is represented by dityetype

o Set of associations between two or more entitiesgsesented by
a relationship type

67

CIT 208 INFORMATION SYSTEMS

o Classification is represented by super class /lagbeelationship
o Category is a subset of the union of two (or merger classes

6.0 TUTOR-MARKED ASSIGNMENT

I Using the mapping algorithm, create a relatiodata model
using your own example.

ii. Design a database schema using the relationsfpies, taking
notes of the important considerations in databaseyds.

7.0 REFERENCES/FURTHER READING

Borgida, A. and Brachman, R.J. Conceptual Modeliridy Description
Logics.

Fowler, M. (1997). Analysis Patterns, Reusable Object Models.
Addison-Wesley Longman. ISBN 0-201-89542-0.

Mogin, P. (2008)Database DesigrVictoria University of Wellington.

Mogin, P. (2008)Entity — Relationship Data ModéV¥ictoria University
of Wellington.

68

CIT 208 MODULE 2

UNIT 2 FUNCTIONAL DEPENDENCY
CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content
3.1 Functional Dependencies
3.2 Classification of Functional Dependencies
3.2.1 Fully Functional Dependency
3.2.2 Partial Functional Dependency
3.2.3 Transitive Functional Dependency
3.3 Properties of Functional Dependencies
3.4 Closure of a Set of Functional Dependencies
3.4.1 Algorithm to Determine Closure
3.5 Keys
3.5.1 Super Key
3.5.2 Primary Key
3.5.3 Candidate Key
3.5.4 Secondary Key
3.5.5 Alternative Key
3.5.6 Keys Example
3.6 Database Normalisation
3.6.1 Example
3.7 Decomposition
3.7.1 Lossless-Join Decomposition
3.7.2 Decomposition into BCNF
3.7.3 Decomposition into 3NF
3.8 Minimal Cover for a Set of Functional Dependesc
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION

This unit will describe the concepts of functiodapendency as well as
the concepts of relational algebra.

69

CIT 208 INFORMATION SYSTEMS

2.0 OBJECTIVES

At the end of this unit, you should be able to:

o state the meaning, classification and propertiesfuoictional
dependency
o define the closure of a set of functional depengescwell as the

algorithm to determine the closure
o outline and identify the basic types of keys afperforming
closure of asset of functional dependency

o explain database normalisation, determine if atioglas in 1NF,
2NF, 3NF or BCNF and how to decompose into 3NF GNB
o describe the concept of relational algebra.

3.0 MAIN CONTENT
3.1 Functional Dependence

A functional dependency is a constraint betweengeis of attributes in
a relation from a database. Given a relation Retasattributes X in R
is said to functionally determine another attribMtealso in R (written
X=Y) if and only if each X value is associated with prlgione Y
value. Customarily we call X the determinant sed &nhthe dependent
attribute. Thus, given a tuple and the values efdtiributes in X, one
can determine the corresponding value of the Yibat. For the
purposes of simplicity, given that X and Y are #ets of attribute R,
X—Y denotes that X functionally determines each efrttembers of Y-
in this case Y is known as the dependent set. Tdhesndidate key is a
minimal set of attributes that functionally detemmiall of the attributes
in a relation.

A functional dependency FD:-XY is called trivial if Y is a subset of
X. The determination of functional dependencieansmportant part of
designing databases in the relational model and detabase
normalisation and denormalisation. The functiodependency along
with the attribute domains are selected so as hemgée constraints as
much data inappropriate to the user domain fronsyiséem as possible.

For example, suppose one is designing a systeradk vehicles and the
capacity of their engines. Each vehicle has a uwigeehicle

identification number (VIN). One could write VIN Enginecapacity
because it would be inappropriate for a vehicleigiee to have more
than one capacity. However, EnginecapaseityIN is incorrect because
there could be many vehicles with the same engpadity.

7C

CIT 208 MODULE 2

3.2 Classification of Functional Dependency
Functional dependency can be classified as follows:
3.2.1 Fully Functional Dependency

It indicates that if A and B are attributes of aléa B is fully
functionally dependent on A if B is functionallymEndent on A but not
on A but on any proper subset of A. E.g. StaffiBranchID

3.2.2 Partial Functional Dependency

It indicates that if A and B attributes of a taldBejs partially dependent
on A if there is some attribute that can be remadveth A and yet the
dependency still holds. Say for example; considee following
functional dependency that exists in the tablef:stafaffilD, Name
BranchlID.

BranchID is functionally dependent on a subset ofStaffiD, Name)
namely StaffiD.

3.2.3 Transitive Functional Dependency

A condition where A, B and C are attributes of bléasuch that if A is
functionally dependent on B and B is functionalgpdndent on C then
C is transitively dependent on A via B. Say for myde, consider the
following functional dependency that exists in #taff table and Branch
table:

o StaffiD— Name, Sex, Position, Sal, BranchlD, Br_Address
) BranchID— Br_Address

So, StaffID attribute functionally determines Br_dkdss via BranchID
attribute.

3.3 Properties of Functional Dependency

Given that X, Y and Z are sets of attributes ineation R, one can
derive several properties of functional dependemaoyiong the most
important are Armstrong’s axioms which are used database
normalisation:

1. Subset property(Axiom of reflexivity): If Y is a Bset of X, then

X—Y

2. Augmentation(Axiom of augmentation): If-X Y, then XZ-
YZ

3. Transitivity(Axiom of transitivity): If X— Y and Y— Z then
X—>Z

71

CIT 208 INFORMATION SYSTEMS

From these rules, we can derive these seconday:rul

1. Union: If X— Y and X— Z, then X- YZ
2. Decomposition: If X-> YZ then X— Y and X— Z
3 Pseudo-transitivity: If X> Y and YZ—- W then XZ-> W

3.4 Closure of a Set of Functional Dependency

The closure of a set of dependencies is the setllofpossible
dependencies that can be derived from it. To gefctbsure of a set of
functional dependencies, one needs to consider fafictional
dependencies that hold. Given a set F of functialegdendencies, we
can prove that certain other ones also hold. Wetlsase ones are also
logically implied by F. We denote the closure diyF+.
Suppose we have a scheme R={A, B, C}and FBs &

B>D

To compute F+, we can use some rules of infereattedcArmstrong’s
Axioms as stated in the properties of functionapetelency above.
These rules are sound because they do not genangtencorrect
functional dependencies. They are also completeeasgenerate all of
F+. To make life easier we can also use the secpndé&es derivable
from Armstrong’s Axioms.

3.4.1 Algorithm to Determine Closure

1. Let C— CA

2. Let the next dependency be-f. If A is in CA and B is not,
then C-CA +B

3. Continue step 2 until no new attributes can be dddeCA.

The result of this algorithm is CA that is equal @+. The above
algorithm may also be used to remove redundant rakgresies. For
example, to check if & A is redundant, we find closure of C without
using C—A as redundant.

For example, if we wish to determine the closura oélation using the
following functional dependencies-A B, C

G D

A D->F

A+ is all attributes that can be derived from A.pApng the above
algorithm:

° we first initialize A+ =A
. because A> B, C add BC to A+

72

CIT 208 MODULE 2

. because C is in A+ and-€ D add D to A+
. because A and D are in A+, add F to A+

Therefore A+ =A,B,C,D, F
3.5 Keys

There are basically five kinds of keys which arés s# attributes of a
relation functionally depending on one or moreilatites of the relation:

3.5.1 Super Key

A super key is defined in the relational model aetof attributes of a
relation for which it holds that in all instancestloe relation there are no
two distinct tuples that have the same valuesHerattributes in this set.
Equivalently, a super key can also be defined asetlsets of attributes

of a relation upon which all attributes of the tela are functionally
dependent.

3.5.2 Primary Key

A primary key can be said to be a super key thad akrves as part of
the determinants in the functional dependencies.

3.5.3 Candidate Key

A candidate key is a subset of attributes thatnisiue for every tuple.
Therefore, a valid candidate key determines aleotttributes in the
tuple. Simply said, a candidate key is the minimsaper key. A
candidate key can also be a primary key.

3.5.4 Secondary Key

A secondary key is a key that is part of the casgidey and not part of
the primary key.

3.5.5 Alternative Key

An alternative key is a key that is part of theesukeys and not part of
the candidate keys.

3.5.6 Keys Example
Consider the relation R (A, B, C, D) having its étional dependencies

tobe B- C
B- D

73

CIT 208 INFORMATION SYSTEMS

Find

o all the super key(s)
o primary key(s)

o candidate key(s)

o secondary key(s)

o alternative key(s)

Solution:

To find the keys, it is advisable to first computee closure of the
relation. The number of different attributes thah de derived from the
relation can known by using the formula; 2”n — hieh implies that the
numbers of the different attributes = I5 and se, dttribute are; A, B,C,
D, AB,AC, AD, BC, BD, CD,ABC,ABD, ACD, BCD and ABCD

The next thing to do now is to determine the cledor each attribute:

A+ =A

B+ =BC, BCD B- C, B—»D
C+=C

D+ =D

AB+ =ABC, ABCD AB— C, AB—D
AC+ =AC

AD+ =AD

BC+ =BCD BC-» D
BD+ = BCD BD— C
CD+ =CD

ABC+ = ABCD ABC— D
ABD+ = ABCD ABD—C
ACD+ =ACD

BCD+ =BCD

ABCD+ =ABCD

From here, it is much easier for us to find all kiegs.

o Since super keys are those sets of attributes refation upon
which all attributes of the relation are functidgatiependent.
Therefore, the super keys are AB,ABC,ABD

Primary key = none

Candidate key=min(super key)= min(AB,ABC,ABD) =AB
Secondary key = candidate key — primary key =AB
Alternative key = super key- candidate key=ABCD- ABD

74

CIT 208 MODULE 2

3.6 Database Normalisation

Database normalisation is a stepwise formal prodesisallows us to
decompose database tables in such a way that btalretlundancy and
update anomalies are minimised. It makes use ofctifumal
dependencies that exist in a relation and the pyirkay/candidate keys
in analysing the relation.

Three norm forms were initially proposed calledsEmorm form (INF),
Second norm form (2NF) and Third norm form (3NFubSequently
R.Boyce and E.F. Codd introduced a stronger dedmiof 3NF called
Boyce Codd norm form (BCNF).With the exception biFl all these
norm forms are based on functional dependencies@rtie attributes
of a table. Higher norm forms that go beyond BCNé&ravintroduced
later such as 4NF and 5NF. However, these latanrforms deal with
situations that are very rare.

o INF: A relation is said to be in INF if every functional
dependency contains only atomic values i.e. intéise of each
functional dependency should contain one and only walue.
We often assume that it always holds

o 2NF: A relation is said to be in 2NF if it is in INF arkdere are
no partial dependencies i.e. every non-primary &tgibute of
the relation is fully dependent on the primary key.

o 3NF: A relation is said to be in 3NF if every FD—XA that
holds over the relation, X is a super key or Aastf some keys
in the relation.

o BCNF: A relation is in BCNF if for every FD: % A that holds
over the relation, X is a super key and functiodependency
must be trivial.

. 4ANF: 4NF is stronger than BCNF as it prevents relafiam
containing non-trivial multivalued functional demkmcies
(MVD) and hence data redundancy. The normalisatioB CNF
tables to 4NF involves the removal of MVDs from tiadle by
placing attributes in a new relation along with t@py of the
determinant(s).

o 5NF: 5NF is also called Project Join Norm Form (PJRfJ] d
specifies that a 5NF table has no join dependency.

3.6.1 Example

Using the relation R above, determine whether #lation is in INF,
2NF, 3NF or in BCNF.

75

CIT 208 INFORMATION SYSTEMS

Solution:

o Looking at the functional dependencies that weenligven, it is
very hard to deduce what B, C or D represents aoi g0, we
often assume that INF holds over any given relatidmerefore,
the relation is INF.

. Combining the two functional dependencies, we athat the
result is not fully dependent. Therefore, the retats not in 2NF.
o Since a relation that is in 3NF must have its deteant to be a

super key or the attribute that was been determiggghart of
some keys in the super key. So, the relation BNR because C
and D form a part of the super keys which are therraative
keys.

o The relation violates BCNF because the determinsmot a
super key and more so, the new functional depeneeticat are
just been derived are non-trivial.

3.7 Decomposition

As we have seen, a relation in BCNF is free of nelduncy and a
relation schema in 3NF comes close. If a relatrema is not in one of
these normal forms, the FDs that cause a violateom give us insight
into the problems. The main technique for addrgssirch redundancy-
related problems is decomposing a relation schetoaelation schemas
with fewer attributes.

A decomposition of a relation schema R consistsregflacing the
relation schema by two or more relation schema ¢aah contains a
subset of the attribute of R and together includi¢ha attributes in R.
Intuitively, we want to store the information inyagiven instance of R
by sorting projections of the intense.

We begin with the relation example from above. Thetation has
attributes ABCD and two FDs:-BC and B~ D .Assuming B is not a
key and D is not part of any key. The second FDsesawa violation of
3NF.

Our decision to decompose ABCD into ABC and BDheatthan say
AB and BC was just a good guess. It was guidechbyobservation that
the dependency B D caused the violation of 3NF; the most natural
way to deal with this violation is to remove thdriaute D from the
schema. To compensate for removing D from the reelfema, we can
add a relation BD because each B value is assdaondth at most one D
value according to the FD:-B D

7€

CIT 208 MODULE 2

A very important question must be asked at thisipdf we replace a
legal instance r of relation schema ABCD with it®jpctions on AC
(rl) and BD (r2), can we recover r from rl and % decision to
decompose ABCD into ABC and BD is equivalent toiisgyhat we will
store instances rl and r2 instead of r. Howevas, ihe instance r that
captures the intended entities or relationshipsvdfcannot compute r
from rl and r2, our attempt to deal with redundaheg effectively
thrown out the baby with the bathwater.

3.7.1 Lossless-Join Decomposition

Let R be a relation schema and let F be a set o Bier R. A
decomposition of R into two schemas with attribsgés X and Y is said
to be a lossless-join decomposition with respectFtaof for every
instance r of R that satisfies the dependenciés Ih x(r) « IT y(r) = R
or let R be a relation and F be a set of FDs tluddl lover R. The
decomposition of R into relations with attributetss&kl and R2 is
lossless if and only if F+ contains either the FDRR2 — R1 or the
FD R1N R2

— R2.

In other words, the attributes common to R1 anchR&t contain a key
for either R1 or R2. If a relation is decomposei itwo relations, this
test is a necessary and sufficient condition fer decomposition to be
lossless-join. If a relation is decomposed into entiran two relations,
an efficient algorithm is available to test whether not the

decomposition is lossless, but we will not disatiss

Consider the relation again. It has attributes AB&a the FD B> D
cause a violation of 3NF. We dealt with this viaatby decomposing
the relation into ABC and BD. Since R is commorbtdh decomposed
relations and B» D holds, this decomposition is kless-join.

3.7.2 Decomposition into BCNF

We now present an algorithm for decomposing aicglagchema R into
a collection of BCNF relation schemas:

o Step 1. Suppose that R is not in BCNF. Let X balsst of R, A
be a single attribute in R, and—X A be an FD that causes a
violation of BCNF. Decompose R into R-A and XA.

o Step 2. If either R-A or XA is not in BCNF, deconggothem
further by a recursive application of this algamith

R-A denotes the set of attributes other than A i XA denotes the
union of attributes in X and A. Since-X A violates BCNF, it is not a

77

CIT 208 INFORMATION SYSTEMS

trivial dependency. Further, A is a single attrdaufherefore, A is not in
X; i.e. XNA is empty. Thus, each decomposition carried oudtap (1)
IS lossless-join.

The set of dependencies associated with R-A andsXhAe projection of
F onto their attributes. If one of the new relatiaa not in BCNF, we
decompose further in step (2). Since decomposrésults in relations
with strictly fewer attributes, this process weérminate, leaving us with
a collection of relations schemas that are all @N\E-. Further, joining
instances of the relations obtained through thgordghm will yield
precisely the corresponding instance of the origielation.

Consider the contracts relation with attributes @3QV and key C. We
are given FDs JP C and SB- P. By using the dependency SDP to
guide the decomposition, we get the two schemas &RPCSJIDQV.
SDP is in BCNF. Suppose that we also have the @nstthat each
project deals with a single supplie~JS. This means that the schema
CSJDQV is not in BCNF. So we decompose it furtheo iJS and
CJIDQV. G- JDQV holds over CIDQV; the only other FDs that hold
are those obtained from this FD by augmentationtaadefore all FDs
contain a key in the left side. Thus, each of ttleesnas SDP, JS and
CJDQYV is in BCNF and this collection of schemasoalspresents a
lossless-join decomposition of CSJDQV.

3.7.3 Decomposition into 3NF

Clearly the approach that we outlined for lossiegs-decomposition
into BCNF will also give us lossless-join decompiosi into 3NF but
this approach does not ensure dependency presearvati

A simple modification, however, yields a decompositinto 3NF
relations that is lossless-join. Before we descttie modification, we
need to introduce the concept of a minimal coveafeet of FDs.

3.8 Minimal Cover for a Set of FDs

A minimal cover for a set F of FDs is a set G ofsHddich that:

o every dependency in G is of the form—XA, where A is a single
attribute.

o the closure F+ is equal to the closure of G+.

o if we obtain a set H of dependencies from G by rgldine or

more dependencies, or by deleting attributes frode@endency
in G, then F+ is not equal to H+.

78

CIT 208 MODULE 2

Intuitively, a minimal cover for a set F of FDsas equivalent set of
dependencies that is minimal in two respects:

o every dependency is as small as possible i.e. &#dbute on the
left side is necessary and the right side is aeiatjribute.

o every dependency in it is required in order for thesure to be
equal to F+.

As an example, let F be the set of dependencies: By ABCD— E,
EF— G, EF~ H and ACDF EG.

First, let us rewrite ACDF EG so that every side is a single attribute:
ACDF— E and ACDF G.

Next consider ACDF G. This dependency is phied by the following
FDs: A—~ B, ABCD— E and EF G.

Therefore, we can delete it. Similarly, we can telkCDF— E. Next
consider ABCDB- E. Since A~ B holds, we can replace it with AGB
E. Thus, a minimal cover for F is the set-AB, ACD— E, EF~ G and
EF— H.

The preceding example suggests a general algoritiinobtaining a
minimal cover of a set of FDs:

o put the FDs in a standard form: obtain a collecti@n of
equivalent FDs with a single attribute on the rigide using
decomposition axiom.

o minimise the left side of each FD: for each FD indBeck each
attribute in the left side to see if it can be tldlewhile preserving
equivalence to F+.

o delete redundant FDs: Check each remaining FD fa &ee if it
can be deleted while preserving equivalence to F+.

Note that the order in which we consider FDs whiglying these steps
could produce different minimal covers, there cdoédseveral minimal
covers for a given set of FDs.

SELF-ASSESSMENT EXERCISE
I. Given SUPPLIERS(S, A, I, P) and
F={S—>A S+1>P}L

Show that S + | is a key.
. Prove the following: If A B and B— C, then A~ C.

79

CIT 208 INFORMATION SYSTEMS

4.0 CONCLUSION

In this unit, you have been introduced to the funedatal concepts of a
functional dependency, the classification of fuowél dependency,
properties of functional dependency, closure keydatabase
normalisation, decomposition and minimal coverdaset of functional
dependencies.

5.0 SUMMARY

What you have learnt in this unit concerns:

. a functional dependency which comes in varioussdiaations
namely; fully, partial and transitive functionalpdency.
o identification of keys which include primary, caddie,

secondary, alternative and super keys.

o data normalisation which consists of 1NF, 2Nf, 3MKF, 5NF
and the BCNF

o decomposition.

6.0 TUTOR-MARKED ASSIGNMENT

Consider the relation (A, B, C) having functionabéndencies: B> C
B> D
Find:

I. Super keys

i. Primary keys

ii. Candidate keys
\2 Alternative keys
V. Secondary keys

70 REFERENCES/FURTHER READING

Functional Dependencies, Barbara L. Marcolin (1999)
http://www.lightenna.com/book/export/s5/155

J.D. Ullman and J. Widom. (2002). First Course in Database Systems
(2" ed.). Prentice Hall.

Teorey, T.J.Database Modelling and Desig(8® ed). University of
Michigan.

8C

CIT 208 MODULE 2

REGULAR EXPRESSIONS
CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content
3.1 General Introduction
3.2 Regular Expressions
3.3 ElementéMetacharactersf Regular Expressions
3.3.1 Classes
3.3.2 Range Operator
3.3.3 Class Repetition Operators
3.3.4 Backslash Operator
3.3.5 Repetition Operator’s Specific Charactesssti
3.3.6 Class Denying
3.3.7 The Period
3.3.8 Alternacy Operator
3.3.9 Anchors
3.3.10 Groups
3.3.11 Question Mark
3.4 Regular Expression Engines
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION
In this unit, you will be introduced to the crafowerful time-saving
regular expressions, starting with the basic cotscegp that you can

follow through this unit even if you know nothing @l about regular
expressions. Regular expression engines are destbsefly.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

o write the regular expression equivalence of a atarar string
o convert any regular expression to its character sting
equivalence.

81

CIT 208 INFORMATION SYSTEMS

3.0 MAIN CONTENT
3.1 General Introduction

Basically, a regular expression is a pattern desgia certain amount
of text. The regex (regular expressions are very useful for
programmers. Using this regular expression, you dascribe every
string that presents to it is inside certain regtyaRegular expressions
can be used to search for patterns and, once fawndnodify the

patterns in complex ways. They can also be usedlat;nch

programmatic actions that depend on patterns.

Their name comes from the mathematical theory oiclwithey are
based. In writings, it is often abbreviated to segeregexp. In this unit,
regex is used because it is easy to pronouncduba fregexes”.

3.2 Regular Expressions

The easiest and most convenient way to define “Redixpression” is
to say: “They are search patterns to match chasatestrings.” All
regex are case sensitive unless told not to be so.

Think about having a web page with a form with fibllowing fields:

Name
Surname
E-mail

Phone number

Once you have filled in the format and sent theadatthe script, it is
very important to check if they are correct.

You need to define the specific area:

o Name It is made by one word only and by alphabetietter.
o Surname It is made by one or more words that can be noadie
by alphabetical letter
o Email: It is made by 3 parts: the first one is made by

alphanumeric issues, underscore (_) and periodhg)e is the
second one made by alphanumeric issues and désiwed by a
period, which is always followed by 2 to 4 alphatet letters.
This one is compulsory.

. Phone number made by 2 parts. It is divided by a dash.

82

CIT 208 MODULE 2

All the following fields owe a specific regularity and there is a
specific expression that defines thenThese are the expressions:

name [a-zA-Z]*

surname [a-zA-Z' |+

email: [a-zA-Z0-9 \.]+@[a-zA-Z0-9-]+\.[a-zA-Z[{0,4}
phone number. [0-9]+\-[0-9]+

3.3 Elements/Metacharacters of Regular Expressions

Regexes use characters with a special meaningchaetecters. To find
them literally they must be escaped. This is donth & preceding
backslash: *+ 2 . () [1{}\/|"$

3.3.1 Classes

The operator sigi] is made of two square brackets. Several constant
characters can be inserted into this metacharadtarough this
metacharacter it is possible to characterise desimgcurrence of one of
the present characters to its inside, if it is rteslike normal characters

or using constants. For example, the clggsrepresents the single
occurrence of tha character and allows to us verify if it is inside
string and/or executing some operation on it. Qtie, the clasfabcd]
represents the single occurrence in one of the ébaracters present
inside it and permit to verify if they are presentthe strings and
execute operations on them.

3.3.2 Range Operator
The sign- is an operator that permits us to identify a rafigeexample:

a-z for all the lower case letters

A-Z for all the upper case letters

0-9for all the numbers.

[a-fA-F0-9] individualizes all thefigures and the letters froma
to f (lower case and upper case) all the charactetsatbanside
an hexadecimal figure.

3.3.3 Class Repetition Operators

The first one we are going to analyze is the stdt is the one that can
verify how many times a class is repeated insid#riag and to select
the entire consecutive occurrence. For example fahewing regular

expressiona-z]* selects in a string all the consecutive occurresice

83

CIT 208 INFORMATION SYSTEMS

alphabetical letters. This operator considers aptgrset as positive
solution.

Very similar to the star is the plus operator that works in the same
way, but it verifies if a class it is repeated desia string one or more
times. This operator considers an empty set agative solution.

Another operator is made by {2 braces, in their inside it can be a
number{3} or a numerical rang 2,58} The first one individualises all
the repetitions of 3 characters that verify thesglaThe second one
individualises from 12 to 58 repetitions of chaeastthat verify the
class. For examplf-9]{3,4)\-[0-9]{7} individualises all the telephone
numbers in an area code made by 3 or 4 figuresandfix of 7 figures.

3.3.4 Backslash Operator

The backslash \ operator is used before a chardateis an operator
and it does not consider it as character, if weitpéfore a letter it is a
constant. The dash is used to indicate a rangé¢hamnefore if we want to
use as a character we have to write it down this Wwa

Now you can understand the regex that we usedrify ¥iee email:

o [a-zA-z0-9 \]+@[a-zA-Z0-9-]+\.[a-zA-Z}{0,4}

And the one for the telephone number:
o [0-9]+\[0-9]+

3.3.5 Repetition Operator’'s Specific Characteristis

One of the characteristics of the repetition omegmtis selecting
everything that is related to the expressions. Tharacteristic could be
counterproductive sometimes. If we want to elimgnabm an html page
all the tags, we can use the following regular egpion:

° <.+>

If this operation does not satisfy our demand wedn® use one of the
following methods:

o <.+?7>
o <[A<>]+>

The first one makes the repetition operator lessngtand it makes it
stop in the first part of the closing character.

84

CIT 208 MODULE 2

The second individuates inside a strings or saieharacters that start

with < followed by any characters different frerrand> followed by an
>,

3.3.6 Class Denying

Let us focus on a different problem. Let us suppuséng a story and
we need to individuate all the sentences presemdenit. If inside the
story the period is used only at the end of théeseres, we have to deny
a class in order to individuate a sentence in areeaay.

. [M\]+

The” sign if it is put immediately after the first bkat of a class, it
denies the class.

3.3.7 The Period

The period is a constant, and if it is inserted iregex it is equivalent to
a class that has all the characters but the “nae/’.liThis is just an
example to better understand the function of thegde

. C.S.

The former regex individuates all the 4 characsaguences that start
with ¢ followed by any characters and then followeg a and s. It
creates different combinations such as:

case
cosa
cose
c%s9
cA£sl

3.3.8 Alternancy Operator
This operator is in form of a pigewhich has the same function of the

OR. For example, the regepeorge|stuartindividuates inside a string
the word george or the word stuart.

3.3.9 Anchors
Another problem can be faced if you need to modaifie or more

elements inside a CSV (comma-separated value) aksgala textual
database in which fields are separated by comntdhsvhich records are

85

CIT 208 INFORMATION SYSTEMS

divided by a new line. The following database is example that
represents the daily gain of an expense made bg fhiends.

124,~, 504,~, 704,
304,—, 464,~, 684,
154,~, 528,~, 734,
164,—, 304,~, 854,

If one day one of the friends was banned from egeghis data would
not be useful anymore and could be necessary towertinem. If there
were thousands data the regex would be the fasbpédion. If the data
of the banned friend is the ones in the third coluthe fastest solution
to remove them would be to eliminate the entireuo@nce in the
following regex:

J ,[0-9]*4,-$

The $ character does not identify any characters, kpdsition, the end
of a line. Therefore the former regex finds all dtumsecutive characters
series that start with a comma followed by some lbensy followed by
the &,-, followed by the ending of a line.

3.3.10 Groups

We can consider a characters series as a singl@,gn@ can operate on
it using some of the operators that build the red#e could find out
inside a text a code we do not know its length,clwvhé composed by 5
numbers followed by a letter, followed by 5 numbélowed by a
letter etc etc...until it terminates with a new lin€here is only a
solution to find this code; we need to use a grdaghis example the
group is made by a class which has numbers onlgateg five times,
followed by an only letters class. This group ha$e¢ repeated at least
once and must end with a new line. It could betemidown as:

. ([0-9]{5}[a-zA-Z])+$
The regex creates this effect:

o My secret code 1$2345T45345R12343F34567]

. Phil’s secret code is
34526954638j92725K63723H72829D12345I

o 12345T45345R12343F34567] is not phil's code.

8€

CIT 208 MODULE 2

3.3.11 Question Mark

In the groups the question mark can be used todatlme match
memorisation. We have already seen that questiok npwld be used
to restrict the repetitions. Now we will see thaere exist many
different functions for this simple character.

The first function makes a group optional, as yan cee in the
following example:

o michael (owen)?

In the former regex the grouypwen)is made optional and therefore it
will be possible to select both the simple occureerof the word
michael and the occurrence of the word coupliehael owen

The second function is being anchor. The question mark can also be
used in the groups as a keeper, to individuate @ @osition inside the
text. Example:

J michael(?=owen)

The former regex selects the wonichaelin a text only if it is followed
by the grougowen) that will not be selected.

You can also use the question mark to individuate absence of a
position. For example the following function setetihe wordmichael
only if it is not followed by the groufowen).

o michael(?!owen)
3.4 Regular Expressions Engines

A regular expression “engine” is a piece of sofevéinat can process
regular expressions, trying to match the patterrth® given string.
Usually, the engine is part of a larger applicatoml you do not access
the engine directly. Rather, the application wilvake it for you when
needed; making sure the right regular expressi@pdied to the right
file or data.

As usual in the software world, different regulapeession engines are
not fully compatible with each other. It is not pide to describe every
kind of engine and regular expression syntax (&@vtr”). The Perl 5,
regex flavor is the most popular one, and deseyvedl Many more
recent regex engines are very similar, but nottidah to the one of Perl
5. Examples are thepen source PCRE engiiesed in many tools and

87

CIT 208

INFORMATION SYSTEMS

languages likePHP), the .NET regular expression libraryand the
regular expression package included with versighahd later of the
Java JDK There are certain important differences in reftgevor.

4.0

CONCLUSION

In this unit, you learnt about regular expressiovisich are search
patterns to match characters in a string, theiraoketracters and
elements, we also considered regular expressiarsls@ngines. You
can also transform characters or strings to thegular expression
equivalence.

5.0

SUMMARY

What did we learn in this chapter?

6.0

88

Regular expressions search for any character. laks for
exactly these letters in that order. All regex aese-sensitive
unless told not to be so.

Regexes use characters with a special meaning.chatecters.
To find them literally they must be escaped. Tkisione with a
preceding backslash: *+ 2. () [1{}\/|"$

A dot "." is used to a single unknown character.idt a
metacharacter.

There are metacharacters which symbolize groupshafacters
like \d for digits ([0-9]) \D for non-digits ([*09 \w for
alphanumeric characters ([a-zA-Z0-9]) \W for non-
alphanumeric characters ([*a-zA-Z0-9_])

It is possible to define your own set of charadiasses by using
square brackets e.g. "[A-Z]". A ” as first charadtethe square
bracket negates the class.

TUTOR-MARKED ASSIGNMENT

Transform the following regular expressions itieir character

or string equivalence:

a. <[a-zA-Z0-9_\.]"\@[a-zA-Z0-9-]*\.[a-zA-Z]*>

b. ([a-zA-Z][0-9]|[0-9][a-zA-Z])

C. ANN@VAS\Y\NEN\ ()LD NN ?Va-zA-Z0-
9]*[a-zA-Z0-
9+ P\N@WAS\ YN\ (V)\ \HLDRNW NN \?Va-zA-
Z0-91*$

d. (1@#$%"&*()_+.JN\:",.2)

Transform the following strings and statemetdstheir regular
expression equivalence:

CIT 208 MODULE 2

a. “I have got 7 telephone numbers, but this is my-cel
phone: 0004578907
b. “llive in the 8" house on 88 street”.

7.0 REFERENCES/FURTHER READING
Jeffrey, E. F. FriedMastering Regular Expressions

Jan, Goyvaert®kegular Expressions

89

CIT 208 INFORMATION SYSTEMS

UNIT 4 RELATIONAL ALGEBRA
CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content
3.1 Introduction to Query Language
3.2 Relational Algebra
3.3 Operations in Relational Algebra
3.3.1 Selection Operator
3.3.2 The Projection Operator
3.3.3 The Union Operator
3.3.4 The Set Difference Operator
3.3.5 The Cartesian product Operator
3.4 Additional operations in Relational Algebra
3.5 Relational Algebra Expressions
4.0 Conclusion
50 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION

In this unit, you will be introduced to Query larages in particular
Relational Algebra which is a procedural query laaqge. Basically, a
query language allows users of a database to reqdesmation from
the database. A complete query language has iesifivr inserting and
deleting tuples from relations as well as for mgidi§j existing tuples. It
consists of set operations which are either unatyireary, meaning that
either one or two relations are operands to thesetations.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

o explain what a query language does

o differentiate between procedural and non procedargjuages

o have a good knowledge of fundamental operatiorRdtational
Algebra

o use basic operators in Relational Algebra to fouarigs

. construct Relational Algebra expressions to perfoperations.

9C

CIT 208 MODULE 2

3.0 MAIN CONTENT

3.1 Introduction to Query Language

A query language is a language in which a datahessr requests
information from the database. Most query languaeson a higher-
level than standard programming languages like @ dawva. Query
languages fall into a category of languages knosvAGiL.

Query languages can be broadly categorized into tgvoups:
procedural languages and nonprocedural languages.

o A procedural query language requires the user wcip a
sequence of operations on the db to compute thieedeesult.
(User specifies how and what.) e.g. Relational Atge

o A nonprocedural query language requires the usdesaribe the
desired result without needing to specify the saqgaeof
operations required to obtain the result. (Usercifipe only
what.) E.g. Relational tuple calculus, Relationainéin calculus.

3.2 Relational Algebra

Therelational algebrais a procedural query language. It consists of set
operations which are either unary or binary, meguiat either one or
two relations are operands to the set operations.

o Each of the set operations produces a relatiots asitput.

o Relational Algebra is an important tool in querytiopsation
whereby a SQL query is transformed into relatioaljebra
equivalent, optimised and executed.

o There are five fundamental operations in the refati algebra
and several additional operations which are defimeterms of
the five fundamental operations.

. There is also aenameoperation which is sometimes referred to
as a fundamental operation; we will save this ome & little
while.

o The five fundamental operations aselect, project, union, set

difference, and Cartesian product. We will examine each
operationindividually before combining operations into more
powerfulexpressions.

91

CIT 208 INFORMATION SYSTEMS

3.3 Operations in Relational Algebra

The five fundamental operations are: select, ptpjamion, set
difference, and Cartesian product.

o There are several additional (redundant) operatitas have
been defined in the relational algebra. The mostroon of these
include: intersection, natural join, division, sejin, and outer
join.

o We will examine each operation individually befarembining
operations into more powerful expressions.

3.3.1 Selection Operator

Type: unary

Symbol: Greek letter sigmag

General form: o(predicate)(relation instance)
Schema of result relation:same as operand relation
Size of result relation (tuples):< |operand relation |

Examples:

o o(major = “CS”)(students)
o o(major = “CS” and hair-color = “brown”)(students)
o o(hours-attempted > hours-earned)(students)

The select operation selects tuples from a relatistance which satisfy
a specified predicate.

o In general, a predicate, may contain any of theichlg
comparative operators, which are#,<, <, >, >. Furthermore,
several predicates may be combined using the ctmascand
(A), or (V), and not (=).

o The select operation may be thought of as providifmgrizontal
cross section of the operand relation.

92

CIT 208 MODULE 2
Selector operator examples
" "= 0y q(R)
A|B|C|D AlBlclD
a Ay |l a | a | ves | 1
b | d | no |7 2l d !l | o6
¢ | f | yes | 34 a e Lo |7
a d | no| 6 . a | yes | 3
a C 10 7
b b 10 69 = Olh=ac= tyesr)(R)
c | a | yes | 24 A|BICID
d | d | yes | 47 aa |y || an empty
a a | ves | § relation
h | d | yes | 34 -
e | ¢ | no |26 1= 0goy(R)
a a | yes | 5 AlBIl CID
3.3.2 The Projection Operator
Type: unary
Symbol: Greek letter pix
General form: n(attribute-list)(relation instance)
Schema of result relation:specified by <attribute-list>
Size of result relation (tuples):<| operand relation|
Examples:
o n(student-id, name, major)(students)
o n(name, advisor)(students)
o n(name, gpa, hours-attempted)(students)
. The project operation can be viewed as producingerical
cross-section of the operand relation.
o If the operation produces duplicate tuples, these tgpically

removed from the result relation in keeping witk get-like

characteristics.

93

CIT 208 INFORMATION SYSTEMS

Projector operator examples

R r= 10 ofR) r=1 oR) r=1oR)
A|lB| C|D Al C A| D C
a a | yes | 1 a | yes a l ves
b | djmn |7 b | no b |7 10
¢ f | ves | 34 ¢ | yes ¢ | M4
a d | no 6 a 10 a 6
a c o 7 d | ves a 7
b b | no | 69 b | yes b | 69
¢ a | yes | 24 c | A4

e | no
d | d | yes | 47 d | 47
h | d | ves | 4 h | 4
e ¢ | no | 26 e | 26
a a | yes | 5 a 5

3.3.3 The Union Operator

Type: binary
Symbol: union symbol,U
General form: r Us, wherer ands are union compatible

Schema of result relation:schema of operand relations
Size of result relation (tuples):< max {|r|+|s|}

Examples:
° rus T(a, b{r) U g, bis)

The union operation provides a means for extragtifagmation.
This resides in two operand relations which mustien
compatible Union compatibility requires that two conditionsldho

1. relationsr(R) and s(S)in the expressiom U s must be of the
same degreaafity). That is, they must have the same number of
attributes.

2. the domains of thigh attribute ofr(R) and theith attributes of
s(S)must be the same, for all

94

CIT 208 MODULE 2

Union operator examples

R T r=RuT r=RuUS
Al B|D Al B not valid - R and T are EIlF|G
not union compatible
a a l a a a a 1
b 417 b d b | a7
¢ f | ¢ f ¢ I | i
a | d| 6 a d a | d| 6
a e’ a ¢ r=TuX a | ¢ |7
Al B a | m| 4
i X b | ¢ |22
a a
SR A|B b | d a | d 16
a |m| 4 -
b | ¢ |2 a)a ¢ |t
: |
2 d 16 b | d a | d
- a ¢ a C
a ¢

3.3.4 The Set Difference Operator

Type: binary

Symbol: -

General form: r — s, wheer ands are union compatible
Schema of result relation:schema of operand relation
Size of result relation (tuples)< |relation r|

Examplesr — s
The set difference operation allows for the extoactof information
contained in one relation that is not contained isecond relation. As

with the union operation, the set difference openatequires that the
two operand relations be union compatible.

95

CIT 208 INFORMATION SYSTEMS

Set difference operator examples

i T r=R-T r=R-§
A|B|D Al B not valid - R and T are EIF |G
not union compatible
a a 1 a a a |l a |
b d ” b d r:T_X b d -
e | £ | M e | f Al B c | £ 1 n
1 d 6 a | d ¢ | | a | d| 6
ajc |7 a ¢ a | d
r=8-R
S E|F |G
X S a | m| 4
X|Y|Z A B
ALB b|c |22
! m 4 empty relation
b | ¢ |2 a1 a | d |16
NIRRT b | d
- a c
a ¢

3.3.5 The Cartesian product Operator

Type: binary

Symbol: x

General form: r x s (no restrictions onands)

Schema of result relation:schema x schema with renaming
Size of result relation (tuples) >|relationr |[and >|relatiorg|

Examples: rx s
The Cartesian product operation allows for the domp of any two
relations into a single relation. Recall that Etren is by definition a

subset of a Cartesian product of a set of domam#is gives you some
idea of the behavior of the Cartesian product dmera

9€

CIT 208 MODULE 2

Cartesian Product Operator examples

T TxX
r=Tx
A B
TA|TB | XA|XB
d d
d d d d
b d
a a b d
a a da C
a da C a
X
b d a a
A B
b d b d
da d
b d a ¢
b d
b d C a
a C
C d
. r=RxS
A B|C|D|X|Y]|Z
A|B|C|D
a a I |yes| a | m | 4
a3 b yes a | a I Jyes| b | ¢ | 22
b | d i R a a 1 |yves| a | d | 16
C f | 34] no -
a a I |yes | a ¢
b | d | 7 |vyes| a | m]| 4
b | d | 7 |yes| b | ¢ |22
S b d T |ves | a d 16
XY]|z b | d yes | a | ¢
c f | 34| no| a m 4
a m 4
b . | c f |34 |no| b c 22
. 4 | 16 c f | 3 | no| a d 16
- c f |3 | no| a c 7
a C

97

CIT 208 INFORMATION SYSTEMS

3.4 Additional Operations in Relational Algebra

Relational database and set theoretic operatiomsnat sufficient to
perform some common database queries

. To enhance the power of relational algebra, theeesame new
operations introduced:

- Aggregate functions (SUM, AVERAGE, MAX, MIN, COUN,
- Grouping, and

- Outer join

o Aggregate functions are defined on numeric attributes and
applied on all relation tuples

o Relation is partitioned by means gfouping attribute values,

and the defined aggregate functions are computeth&tuples
of each group
o Outer join extends the join operation to cope vt values

AGGREGATE FUNCTIONS AND GROUPING

Notation: <grouping attributes> F <(function, ditrie) list>¢ (N))
where:

<grouping attributes> is a list of attributes fréin

F (pronounced as "script F") is the symbol usedeioote
aggregate operation, and

<(function, attribute) list> is a list of pairs @ggate function
from {SUM, AVERAGE, COUNT, MIN, MAX }, attribute fom
R)

o The resulting relation has columns for groupingilaites, and
one column with the name of the form
FUNCTION_ATTRIBUTE for each (function, attributegip

OUTER JOIN

Introduced to insert those tuples that don't madclgontain null values
for join attributes into join relation

. Notation:

~ =< LEFT,>< RIGHT, and =< FULL outer join

98

CIT 208

MODULE 2
Example
r(BC) r(ABBC)
r(AB) B |C A |B |B |C
A B 1217 11227
Tpef—""=8fr 1o = [1]2]2]9
216 w1 516 | wlo

3.5 Relational Algebra Expressions

While each of the five fundamental relational algebperators can be
used individually to form a query, their expressiyower is
tremendously enhanced when they are combined tegtiform query
expressions. Before we introduce the redundamatipes in relational
algebra we will look at forming more complicatedrdmnations of the
five fundamental operations. This will also makeuyappreciate the
redundant operations all the more. To form meaninggieries, we need
to be able to pose them against a database. Fof thle examples that
follow, we will use the following database:

99

CIT 208 INFORMATION SYSTEMS

Using the techniques for converting an ERD intoea &f relational
schemas we have the following resulting schemas:

S = STUDENTS(s#, name, age, major, gpa, hours_cegl
C = COURSES(c#, term, name, dept, enroliment)

P = PROFESSORS(p#, name, dept, yrs_teaching, area)
TA = TAKES(s#, c#, term, grade)

TE = TEACH(p#, c#, term)

When you first begin to write queries in a new gukmguage, it is
sometimes helpful to actually visualise the dat thight be in one of
the operand (argument) relations upon which youoperating. To this
end, the last two pages of this set of notes peoaidinstance of each of
the relations above so that you can perform thesalisation. However,
this is something that you will need to move awayrf as you get more
advanced in your query composition, because youndb want to
influence the design of your query by visualisingekation instance that
may not contain all possible tuples that your queityencounter.

Example Query 1:
Find the names of all the students who are Com@&dmnce majors.
Approach:

First select all of the students who are CS majors.

r = s(major = “Computer Science”)(S)

Next project only the name attribute from the poegi result.
result =nz(name)(r)

Complete Query Expression:

result =zr(name)6(major = “Computer Science”)(S))

Example Query 2:

Find the student-num (s#) and name of all the stisdevho have
completed more than 90 hours.

Approach:

o First select all of the students who have completede than 90
hours.

o r = o(hours_completed > 90)(S)

o Next project the student-num and name attributesn fithe
previous result.

o result =x(s#, name)(r)

10C

CIT 208 MODULE 2

o Complete Query Expression:
o result =n(s#, name}(hours_completed > 90)(S))
Example Query 3:

Find the names of all those students who are hess 20 years old who
have completed more than 80 hours.

Approach:

o First select all of the students who have completede than 80
hours and are less than 20 years old.

r = o((hours_completed > 80) AND (age < 20))(S)

Next project the name attribute from the previcesuit.

result =z(name)(r)

Complete Query Expression:

result =n(name)6((hours_completed > 80) AND (age < 20))(S))

Example Query 4:

Find the names of all the courses that are offéne@ither Computer
Science or Physics.

Approach:

o First select all of the courses that are offeredelizer CS or
Physics.

r = o((dept = Computer Science) or (dept = Physics))(C))
Next project the name attribute from the previcesuit.

result =x(name)(r)

Complete Query Expression:

result = n(name)6((dept = Computer Science) or (dept
Physics))(C))

Example Query 5:

Find the names of all the students who took a eurghe Fall 2006
term that was taught by a professor who had moae @0 years of
teaching experience.

Approach:

. First put the professor information together witie tcourse

information together with the teachers informattogether with
the takes information.

101

CIT 208 INFORMATION SYSTEMS

o Next, select only related students, professors amdses from
previous result.

o Finally, select only the students name from theipres result.

o Complete Query Expression:

o result = n(S.name)§((TA.term = Fall 2006) AND

(P.yrs_teaching > 20) AND (S.s# = TA.s#) AND (P.p#
TE.p#)AND (TA.c# = TE.c#) AND (TA.term = TE.termJ(x P
x TA x TE))

Example Query 6:

Find the names of all the professors who are eiimghe Computer
Science department or have more than 20 yearsdfitey experience.

Complete Query Expression:

. result = p(name)6(dept = Computer Science)(P))]U
[x(name)6(yrs_teaching > 20)(P))]

. or:

o result =x(name)6((dept = Computer Science) OR (yrs_teaching
> 20))(P))

4.0 CONCLUSION

In this unit, you have been introduced to the fumeatal concepts of
query languages and relational algebra. You hawe #arnt the
different types of operations in relational algebhow to use the
operators, constructing relational algebra exposessiand using these
expressions to query a database.

SELF-ASSESSMENT EXERCISE
Using the sample database given under 3.5, wrigeygexpressions to:

I Find the name of the professor who tauglebarse in the Fall
2006 term

. Find the student numbers for those stuslemho were enrolled
only in the spring 2007 term.

5.0 SUMMARY

What you have learnt in this unit concerns:

o What a Query Language does
o Procedural and non — procedural language
o Fundamental operations in Relational Algebra

10z

CIT 208 MODULE 2

o How to construct relational Algebra expressionsigisiperators

6.0 TUTOR-MARKED ASSIGNMENT

Consider the following relational schemas whichrespnt Sailors and
Reserves, where sid is Sailor’s identity, bid iaBidentity and sname is
Sailor's name.

. R1(sid, bid, day)

o S1(sid,sname,rating,age)

o S2(sid,sname,rating,age)

Using relational Algebra, find:

1. The names of sailors who reserved all boats
2. Find sailors who reserved a red or a grea b

7.0 REFERENCES/FURTHER READING
Hoffman, James (1997). SQL Tutorials.

Teach Yourself SQL in 21 Day$2™ ed). Macmillan Computer
Publishing SQL — A Practical Introduction by AkéeDin.

103

CIT 208 ARRMATION SYSTEMS

MODULE 3

Unit 1 Web Services

Unit 2 Introduction to XML
Unit 3 XML and XML Queries
Unit 4 Database Recovery

UNIT 1 WEB SERVICES
CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content
31 Whatis Web Service?
3.1.1 Web Service Security
3.1.2 Web Service Reliability
3.1.3 Web Services Transaction
3.2 Applications of Web Services
3.2.1 Remote Procedure Calls (RPC)
3.2.2 Service-Oriented Architecture
3.2.3 Representational State Transfer
3.3 Web Services Framework
3.4 Web Services Architecture
3.4.1 Purpose of Web Services Architecture
3.4.2 Agent and Services
3.4.3 Requesters and Providers
3.4.4 Service Description
3.4.5 Semantics
3.4.6 Overview of Engaging a Web Service
3.5 Concepts and Relationships
3.5.1 Introduction
3.5.2 How to Read This Section
3.5.3 Concepts
3.5.4 Relationships
3.5.5 Concept Maps
3.5.6 Model
3.5.7 Conformance
3.5.8 The Architectural Models
3.5.9 Message-Oriented Model
4.0 Conclusion
50 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

104

CIT 208 MODULE 3

1.0 INTRODUCTION

Web services increasingly tie together a numbgrasficipants forming
large distributed applications. The resulting datiég may have complex
structure and relationships.

The current set of web service specifications @sfiprotocols for web
service interoperability.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

. describe the basic concept and application of veelices.
o identify web services framework
o describe web services architecture.

3.0 MAIN CONTENT
3.1 What is Web Services?

The term web services describes a standardizedayegrating web-
based applications using the XML, SOAP, WSDL andDJDbpen

standards over an Internet protocol backbone. XBllused to tag the
data, SOAP is used to transfer the data, WSDLes @sr describing the
services available and UDDI is used for listing wis@rvices are
available. Used primarily as a means for businessesommunicate
with each other and with clients, web servicesvallarganisations to
communicate data without intimate knowledge of eaither's IT

systems behind the firewall.

3.1.1 Web Service Security

Web Service Security defines how to use XML Endoiptand XML
Signature in SOAP to secure message exchanges akeanative or
extension to using HTTPS to secure the channel.

3.1.2 Web Service Reliability

Web Service Reliability describes an OASIS standardtocol for
reliable messaging between two web services.

105

CIT 208 ARRMATION SYSTEMS

3.1.3 Web Services Transaction

Web Services Transaction is a way of handling aatigns. It is also
defined as protocols that govern the outcome ohetdransactions.

3.2 Application of Web Services

Web services are a set of tools that can be usednamber of ways.
The three most common ways of use are Remote mceedlls (RPC),
SOA and REST.

3.2.1 Remote Procedure Calls (RPC)

Remote procedure calls web services present abdistd function (or
method) call interface that is familiar to many diepers. Typically, the
basic unit of RPC Web services is the WSDL openatio

The first web services tools were focused on RR, & a result this
style is widely deployed and supported. Howeverjsitsometimes
criticised for not being loosely coupled, becaude was often
implemented by mapping services directly to languspgecific
functions or method calls.

3.2.2 Service-Oriented Architecture

Web services can also be used to implement arthite@ccording to
Service-oriented architecture (SOA) concepts, whikesbasic unit of
communication is a message, rather than an operafibis is often
referred to as "message-oriented" services.

SOA web services are supported by most major softwandors and
industry analysts. Unlike RPC Web services, looseptng is more
likely, because the focus is on the "contract” WW&DL provides, rather
than the underlying implementation details.

3.2.3 Representational State Transfer

Finally, RESTful Web Servicesattempt to emulate HTTP and similar
protocols by constraining the interface to a seweli-known, standard
operations (e.g., GET, PUT, DELETE). Here, the fouon interacting
with stateful resources, rather than messages enabpns. Restful web
services can use WSDL to describe SOAP messageghoiTP, which
defines the operations, or can be implemented aabatraction purely
on top of SOAP (e.g., WS-Transfer).

10¢€

CIT 208 MODULE 3
3.3 Web Services Framework
A list of web service frameworks is given below:
Name Platform Messf”‘g"?g Mige Specifications Protocols
(Destination)
ActionWeb Ruby (on| ;. 5 SOAP, XML-
Service |Rails |ClenuServer | 2 RPC, WSDL
WS-ReliableMessaging
Apache WS-Coordination, WS-
Kgis_ Java/C++ Client/Server Security, WS- SOAP, WSDL
—_ AtomicTransaction, WS
Addressini
WS-
ReliableMessaging, WS
. Security, WS- SOAPMTOM
%[%Zhe Java/C ggerr:tlssuervgx AtomicTransaction, WS, WSDL 2.Q
EXIS< yn supp Addressing ,MTOM WSDL
,WS-Policy, WS-
MetadataExchange
WS-Addressing, WS- |SOAP1.1
Apache Java Client/Server/ Policy, WS- SOAP1.2MT
CXF Asyn Support ReliableMessaging, WS OM, WSDL
Security, MTON 2.C, WSDL
ﬁllghem o C++ Client/Server WS-Addressing SOAP
csoap C Client/Server ? SOAP
Halcyon Ruby Client/Server N/A JSON
Java,
Ruby,
. Python, . . .
Hessian Erlang, Client/Server Hessian 1.0.1 Hessian
PHP,
other:
JSON-RPC- 5002 server 222 JSON-RPC
Java
JSON-RPC- |\ Server ?2?? JSON-RPC
Lua
Java Web
gg/%;gsmen Java Client/Server Wisrehlcesiig, bies | S0l
Security, ??? WSDL, ???
t Pack/ -
GlassFist
NUSOAP PHP |Client/Server OPi€ct Oriented, Create o b \ysp

Users Help document,

107

CIT 208 ARRMATION SYSTEMS

SOAP Lite |Perl Client/Server 7?7

WS-Addressing, WS-
ReliableMessaging, WS

Web Coordination, WS-
Services AtomicTransaction, WS SOAP,
Interoperab Java Client/Server Security, WS-Security |WSDL,
ility Policy, WS-Trust, WS- MTOM
Technology SecureConversation,
WS-Policy, WS-
MetadataExchange
Web
SeIViCes jaua | Client 277 SOAP, WSDL
Invocation
Framework
%lca WS-Addressing, WS-
tlon— .Net Client/Server ? | ReliableMessaging, WS SOAP, WSDL
Foundation SR
XFire
became ;.0 |Clienvserver | WS-Addressing, WS- g0 0p wspL
Apache Security
CXF
XML
Interface SOAP, XML-
U=t 2) LA, AN
for Network Java Server 7 2% RPC
Service:
WS-Addressing, WS-
. Discovery, WS- SOAP, XML-
SOAP C/C++ | Client/Server SrUTTEE G, WS —RPC WSDL_
Security
Zolera
e Python Client/Server | 222 SOAP, WSDL
Infrastructu
re (ZSl)
%Ze\geb WS-Addressing, WS-
Framework < (e Client/Server, PElEY, LS EDelliy, SOAP,
— —— —— on . . |WS-SecurityPolicy, WS oo~y
for Axis2/c) Publish/Subscribe ReliableMessaaina. We WSDPL WSDL, TLS
e Eventing e
WSF/C)
WS-Addressing, WS-
Policy, WS-Security, SOAP
WS02 ; WS-SecurityPolicy, WS o o~
WSF/PHP PHP Gl senEr ReliableMessaging, WCWSDL
=S WSDL 2.0
SecureConversation,
MTOM
SO2 Ruby on |Client/Server WS-Addressing, WS- | SOAP, WSDL

10¢

CIT 208 MODULE 3

WSF/Ruby Rails Security, WS-
SecurityPolicy, WS-
ReliableMessaging,
MTOM

3.4 Web Services Architecture

3.4.1 Purpose of Web Services Architecture

This Web Service Architecture (WSA) is intendegtovide a common
definition of a web service, and define its placghim a larger web
services framework to guide the community. The Wpvides a
conceptual model and a context for understanding segvices and the
relationships between the components of this model.

The architecture does not attempt to specify how wervices are
implemented, and imposes no restriction on how sexlices might be
combined. The WSA describes both the minimal charestics that are
common to all web services, and a number of charnstits that are
needed by many, but not all, web services.

The web services architecture is interoperabilitschaecture: it
identifies those global elements of the global welvices network that
are required in order to ensure interoperabilityveen web services.

3.4.2 Agents and Services

A web service is an abstract notion that must bplemented by a
concrete agent. (See Figure 1-1) The agent is tmerete piece of
software or hardware that sends and receives messaghile the
service is the resource characterised by the absted of functionality
that is provided. To illustrate this distinctiongy might implement a
particular web service using one agent one dayhgpes written in one
programming language), and a different agent thda day (perhaps
written in a different programming language) witlhet same
functionality. Although the agent may have changbe, web service
remains the same.

3.4.3 Requesters and Providers
The purpose of a web service is to provide sometiomality on behalf

of its owner -- a person or organisation, such alsusiness or an
individual. The provider entity is the person organisation that

109

CIT 208 ARRMATION SYSTEMS

provides an appropriate agent to implement a pdaticservice. (See
Figure 1-1: Basic Architectural Roles.)

A requester entity is a person or organisation wiahes to make use of
a provider entity’s web service. It will use a regter agent to exchange
messages with the provider entity’s provider agent

(In most cases, the requester agent is the onnittaté this message
exchange, though not always. Nonetheless, for starsty we still use
the term “requester agent” for the agent that adex with the provider
agent, even in cases when the provider agent §ctuatiates the

exchange.).

3.4.4 Service Description

The mechanics of the message exchange are docuimenta web
service description (WSD) (Fig.1). The WSD is a hiae-processable
specification of the web service’s interface, veritin WSDL. It defines
the message formats, datatypes, transport proto@sid transport
serialisation formats that should be used betwlkemgquester agent and
the provider agent. It also specifies one or maevork locations at
which a provider agent can be invoked, and may igeovsome
information about the message exchange patternishakpected. In
essence, the service description represents aeragnt governing the
mechanics of interacting with that service. (Agdims is a slight
simplification that will be explained further 8.3 Using Web
Services)

3.4.5 Semantics

The semantics of a web service is the shared eafp@ttabout the
behavior of the service, in particular in respoisanessages that are
sent to it. In effect, this is the “contract” be®vethe requester entity and
the provider entity regarding the purpose and ogumseces of the
interaction. Although this contract represents theerall agreement
between the requester entity and the provideryenotit how and why
their respective agents will interact, it is notcessarily written or
explicitly negotiated. It may be explicit or implic oral or written,
machine-processable or human-oriented, and it may ab legal
agreement or an informal (non-legal) agreement.

While the service description represents a contgmerning the
mechanics of interacting with a particular servidtee semantics
represents a contract governing the meaning angopar of that
interaction. The dividing line between these twoas necessarily rigid.
As more semantically-rich languages are used toriiesthe mechanics

11C

CIT 208 MODULE 3

of the interaction, more of the essential informatmay migrate from
the informal semantics to the service descriptids. this migration
occurs, more of the work required to achieve swgfoemteraction can
be automated.

3.4.6 Overview of Engaging a Web Service

There are many ways that a requester entity migésge and use a web
service. In general, the following broad stepsrarpiired, as illustrated
in Figure 1: (1) the requester and provider ertitieecome known to
each other (or at least one becomes known to ther)ot(2) the
requester and provider entities somehow agree@asédtvice description
and semantics that will govern the interaction lestwthe requester and
provider agents; (3) the service description amdasgics are realised by
the requester and provider agents; and (4) theestgu and provider
agents exchange messages, thus performing somernds&half of the
requester and provider entities. (l.e., the exchasfgnessages with the
provider agent represents the concrete manifestafionteracting with
the provider entity’s web service). These stepsex@ained in more
detail in 3.4 Web Service Discovery. Some of thetgps may be
automated, others may be performed manually.

L, FParties "hecome known" to each ather
N

&, Interaet

- ~

_____ Requester Entity A& A Provider Entity

' Requester i_,. - n - . i
! Human % - #* 2. Agree on semantics & WS, . ;rowder:
i & | | 4 uman |
i L oSm | ' em | 3 |
3 D 5 | BT B
| Semantics’ ! L+ & Semantics
& WD % | ' [ow) § €D

111

CIT 208 ARRMATION SYSTEMS

3.5 Concepts and Relationship
3.5.1 Introduction

The formal core of the architecture is this enurienaof the concepts
and relationships that are central to web serving'operability.

3.5.2 How to Read this Section

The architecture is described in terms of a few psmelements:
concepts, relationships and models. Concepts &a abun-like in that
they identify things or properties that we expecsee in realisations of
the architecture, similarly relationships are ndiynienguistically verbs.

As with any large-scale effort, it is often necegsto structure the
architecture itself. We do this with the largeriscaneta-concept of
model. A model is a coherent portion of the araiiee that focuses on
a particular theme or aspect of the architecture.

3.5.3 Concepts

A concept is expected to have some correspondenite any
realisations of the architecture. For example, thessage concept
identifies a class of object (not to be confusethvdbjects and Classes
as are found in Object-Oriented Programming langspthat we expect
to be able to identify in any web services cont@xie precise form of a
message may be different in different realisatidmst the message
concept tells us what to look for in a given cotergystem rather than
prescribing its precise form.

Not all concepts will have a realisation in termisdata objects or
structures occurring in computers or communicatiaieyvices; for
example the person or organisation refers to pe@pld human
organisations. Other concepts are more abstraltf f&ir example,
message reliability denotes a property of the nggsseansport service
— a property that cannot be touched but nonethédagportant to web
services.

Each concept is presented in a regular, stylisedosasisting of a short
definition, an enumeration of the relationshipshwither concepts, and
a slightly longer explanatory description. For exdam the concept of
agent includes as relating concepts the fact thatagent is a
computational resource, has an identifier and aneswThe description
part of the agent explains in more detail why agené important to the
architecture.

112

CIT 208 MODULE 3

3.5.4 Relationships

Relationships denote associations between conc&tsmmatically,
relationships are verbs; or more accurately, pegdgc A statement of a
relationship typically takes the form: concept pcate concept. For
example, in agent, we state that:

o An agent is
A computational resource

This statement makes an assertion, in this cassytahe nature of
agents. Many such statements are descriptive,o#rerdefinitive:

o A message has
A message sender

Such a statement makes an assertion about validnoes of the
architecture: we expect to be able to identify itiessage sender in any
realisation of the architecture. Conversely, angtay for which we
cannot identify the sender of a message is notocorEnt to the
architecture. Even if a service is used anonymoubly sender has an
identifier but it is not possible to associate tidientifier with an actual
person or organisation.

3.5.5 Concept Maps

Many of the concepts in the architecture are ithtstd with concept
maps A concept map is an informal, graphical way tasirate key
concepts and relationships. For example the diadgp@iow shows three
concepts which are related in various ways. Eack fepresents a
concept, and each arrow (or labeled arc) represer@tionship.

relationship

Concepti T -—~__‘\‘1
Concept2
another relationship
yet another relationship
e ‘_F,_,_.--'-""'_'_-
Concept3
Fig. 2: Concept Map

113

CIT 208 ARRMATION SYSTEMS

The merit of a concept map is that it allows rapayigation of the key
concepts and illustrates how they relate to eadlerotlt should be
stressed, however, that these diagrams are prymaaiigational aids;
the written text is the definitive source.

3.5.6 Model

A model is a coherent subset of the architectua¢ typically revolves
around a particular aspect of the overall architectAlthough different
models share concepts, it is usually from diffenpoints of view; the
major role of a model is to explain and encapsudasggnificant theme
within the overall web services architecture.

For example, the Message-Oriented Model focusesexpthins web
services strictly from a message-passing perspectiv particular, it
does not attempt to relate messages to servicegdptb The Service -
Oriented Model, however, lays on top of, and extetite Message -
Oriented Model in order to explain the fundamem@hcepts involved
in service-in effect to explain the purpose of tmessages in the
Message-Oriented Model.

Each model is described separately below, in terhile concepts and
relationships inherent to the model. The orderihthe concepts in each
model section is alphabetical; this should not bdeustood to imply
any relative importance. For a more focused viewpthe reader is
directed to the Stakeholder’'s perspectives seatibith examines the
architecture from the perspective of key stakehsldé the architecture.

The reason for choosing an alphabetical orderirthas there is a large
amount of cross-referencing between the concegsa result, it is very
difficult, if not misleading, to choose a non-alple#c ordering that
reflects some sense of priority between the coscdpirthermore, the
optimal ordering depends very much on the pointieWv of the reader.
Hence, we devote the Stakeholders perspectivemisg¢ota number of
prioritized readings of the architecture.

3.5.7 Conformance

Unlike language specifications, or protocol speaifions, conformance
to architecture is necessarily a somewhat imprearseHowever, the
presence of a concept in this enumeration is axgtiont that, in any
realisation of the architecture, there should lseraesponding feature in
the implementation. Furthermore, if a relationsigpidentified here,
then there should be corresponding relationshipsamy realised
architecture. The consequence of non-conformancdkedy to be

reduced interoperability: The absence of such areta feature may not

114

CIT 208 MODULE 3

prevent interoperability, but it is likely to malsch interoperability
more difficult.

A primary function of the Architecture’s enumeration terms of

models, concepts and relationships is to give guea about

conformance to the architecture. For example, tbeitecture notes that
a message has a message sender; any realisatloa afchitecture that
does not permit a message to be associated witberider is not in
conformance with the architecture. For example, 8Mould be used to
transmit messages. However, since SMTP (at preadotys forgery of

the sender’s identity, SMTP by itself is not su#fitt to discharge this
responsibility.

3.5.8 The Architectural Models
This architecture has four models, illustrated ig. B. Each model in

the figure is labeled with what may be viewed askay concept of that
model.

Palicy Model

Service Oriented Model Resource Oriented Model

Resource

Action

@ Partially layered on *

Message Oriented Model

Fig. 3 Meta Model of the Architecture

115

CIT 208 ARRMATION SYSTEMS

The four models are:

o The Message-Oriented Model focuses on messagesagees
structure, and message transport and so on — weithan
particular reference as to the reasons for the agess nor to
their significance.

agent

\

processes

&riginati/

— Message

body |e—— has

delivers
has
/ Message Transport
headeris)
Fig. 4: Simplified Message- Oriented Model

The essence of the message model revolves arotewd key concepts
illustrated above: the agent that sends and reseiessages, the
structure of the message in terms of message teaddrbodies and the
mechanisms used to deliver messages. Of courses #ne additional
details to consider: the role of policies and hbeytgovern the message
level model. The abridged diagram shows the kegepis; the detailed
diagram expands on this to include many more cdscegnd
relationships.

o The Service-Oriented Model focuses on aspectsroicesg action
and so on. While clearly, in any distributed systesarvices
cannot be adequately realised without some meanss$aging,
the converse is not the case: messages do nottoeethte to
services.

11€

CIT 208 MODULE 3

Person or
organization

Agent

realizes ownsicontrols

Senvice

describes
/shnals

Message meta-data

Fig. 5: Simplified Service-Oriented Model

The Service-Oriented Model is the most complex Ibtree models in
the architecture. However, it too revolves arountew key ideas. A
service is realised by an agent and used by anath@nt. Services are
mediated by means of the messages exchanged beteperster agents
and provider agents.

A very important aspect of services is their relaship to the real
world: services are mostly deployed to offer fuoctdlity in the real
world. We model this by elaborating on the cona®pa service owner
— which, whether it is a person or an organisatioss a real world
responsibility for the service.

Finally, the Service-Oriented Model makes use ofartlata, which, as
described im3.1 Service- Oriented Architecture is a key property of
Service-Oriented Architecture. This meta-data i®duso document
many aspects of services: from the details of mberface and transport
binding to the semantics of the service and whatyoestrictions there

may be on the service. Providing rich descriptioasthe key to

successful deployment and use of services acredsitiernet.

. The Resource-Oriented Mod&cuses omesourceshat exist and
have owners.

117

CIT 208 ARRMATION SYSTEMS

representation
URI /
\ may have
has
™ resource \
owWns
Person or
organization
Fig. 6: Simplified Resource- Oriented Model

The resource model is adopted from the Web Arctutecconcept of
resource. We expand on this to incorporate thdioaelships between
resources and owners.

. The Policy Model focuses on constraints on the Wiela of
agents and services. We generalize this to res®gimee policies
can apply equally to documents (such as descripudrservices)
as well as active computational resources.

person or
arganization

agent

. subject 1o
establishes l

policy

about \

about

\

Fig. 7: Simplified Policy Model

resource

action

Policies are about resources. They are appliedeata that may attempt
to access those resources, and are put in plaestailished, by people
who have responsibility for the resource.

Policies may be enacted to represent security cosceajuality of
service concerns, management concerns and apphcaincerns.

11¢€

CIT 208 MODULE 3

3.5.9 Message-Oriented Model

The Message-Oriented Model focuses on those aspefttghe

architecture that relate to messages and theirepsitg (Fig 8).
Specifically, in this model, we are not concerneihwany semantic
significance of the content of a message or itati@iship to other
messages. However, the MOM does focus on the steiof messages,
on the relationship between message senders aed/egex and how
messages are transmitted.

message exchange has had
pattern
f is set of

associates
f associates

message

correlation -
delivers known by

r
envelope Ko {
has ;
encapsulates / | Message Transport ‘

/ encapsulates \
A
body header(s) constrained by property of

—| Message

may be conveyed in about
i,
Delivery Policy | Message reliability ‘

Fig. 8: Message-Oriented Model

SELF-ASSESSMENT EXERCISE

1. Explain the various web services applications
2. Briefly describe the various architectural moddlsveb services.

4.0 CONCLUSION
In this unit you have been introduced to the funeatal concepts of

web services, web services framework and the varmhases of web
service architecture.

119

CIT 208 ARRMATION SYSTEMS

5.0 SUMMARY

What you have learned in this unit concerns:

o introduction to web service, web Service Secunitgp Service
Reliability, web Services Transaction and Applicas of web
Services

. web services frame work

o purpose of Web services Architecture, Agents andviGeas,

Requesters and Providers, Service Description, aB8os,
Overview of Engaging a web Service

. concepts and Relationships, Concept Maps, Models,
Conformance, the Architectural Models: policy majedervice
oriented models, resource oriented models, messagated
models.

6.0 TUTOR-MARKED ASSIGNMENT

List and explain the various phases of web semichitecture.
7.0 REFERENCES/FURTHER READING

A Word Definition from Webopedia Computer Dictiogar

Louis, Felipe Cabrera (2005Veb Services Atomic TransactigWwS-
Atomic Transaction).

12C

CIT 208 MODULE 3

UNIT 2 INTRODUCTION TO XML
CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content
3.1 General Introduction
3.2 Origin and Goals
3.3 Terminology
3.4 Why Do We Need XML?
3.5 Rendering HTML
3.6 Processing HTML
3.7 Tags, Elements, and Attributes
3.8 How XML is Changing the Web
3.9 XML Document Rules
3.9.1 Overview
3.9.2 The Root Element
3.9.3 Elements Cannot Overlap
3.9.4 End Tag is Required
3.9.5 Elements are Case- Sensitive
3.9.6 Attributes Must Have Quoted Values
3.9.7 XML Declarations
3.9.8 Other Things in XML Documents
3.9.9 Namespaces
3.10 Defining Document Content
3.10.1 Overview
3.10.2 Document Type Definitions
3.10.3 Symbols in DTDs
3.10.4 A Word about Flexibility
3.10.5 Defining Attributes
3.10.6 XML Schemas
3.10.7 A Sample XML Schema
3.10.8 Defining Elements in Schema
3.10.9 Defining Element Content in Schemas
3.11 XML Programming Interfaces
3.11.1 Overview
3.11.2 The Document Object Model
3.11.3 DOM Issues
3.11.4 The Simple APL for XML
3.11.5 SAX Issues
3.11.6 JDOM
3.11.7 The Java API for XML Parsing
3.11.8 Which Interface is Right for You?
3.12 Determining the Right Interface
3.12.1 Overview

121

CIT 208 ARRMATION SYSTEMS

3.12.2 The XML Specification
3.12.3 XML Schema
3.12.4 XSL, XSLT, and XPath
3.12.5 DOM
3.12.6 SAX, JDOM and JAXP
3.12.7 Linking and Referencing
3.12.8 Security
3.13 Web Services
3.14 Other Standards
3.15 Case Studies
3.16 Real-World Examples
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION
In this unit, you will be introduced to ExtensibMarkup Language
(XML), origin, terminologies and goals. You willsa learn about XML

document rules, document contents, programmingfades, standards
and several case studies.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

o explain why XML was created

o list the rules of XML documents

o define what an XML document can and cannot contain

o explain the programming interfaces that work withiMIX
documents

. explain what the main XML standards are and howy twerk
together

o describe how companies use XML in the real world.

3.0 MAIN CONTENT

3.1 General Introduction

Extensible Markup Language, abbreviated XML, dé®msia class of
data objects called XML documents and partially cdess the

behaviour of computer programmes which process thelhL is an
application profile or restricted form of SGML, th&tandard

122

CIT 208 MODULE 3

Generalised Markup Language [ISO 8879]. By consmagc XML
documents are conforming SGML documents.

XML documents are made up of storage units calletties, which

contain either parsed or unparsed data. Parsed islatsade up of
characters, some of which form character data,sante of which form
markup. Markup encodes a description of the doctisstorage layout
and logical structure. XML provides a mechanisnmpose constraints
on the storage layout and logical structure.

A software module called aKML processor is used to read XML
documents and provide access to their content anattwre. It is
assumed that an XML processor is doing its workbehalf of another
module, called thapplication. This specification describes the required
behaviour of an XML processor in terms of how itgntead XML data
and the information it must provide to the applimat

3.2 Origin and Goals

XML was developed by an XML Working Group (origiyaknown as
the SGML Editorial Review Board) formed under thesgices of the
World Wide Web Consortium (W3C) in 1996. It was iced by Jon
Bosak of Sun Microsystems with the active partitgra of an XML
Special Interest Group (previously known as the SGWorking
Group) also organised by the W3C. The membershighef XML
Working Group is given in an appendix. Dan Conndérved as the
Working Group's contact with the W3C.

The design goals for XML are:

XML shall be straightforwardly usable over the hmigt.

XML shall support a wide variety of applications.

XML shall be compatible with SGML.

It shall be easy to write programmes which proc&dgL
documents.

The number of optional features in XML is to be keép the
absolute minimum, ideally zero.

XML documents should be human-legible and reasgnabér.
The XML design should be prepared quickly.

The design of XML shall be formal and concise.

XML documents shall be easy to create.

Terseness in XML markup is of minimal importance.

123

CIT 208 ARRMATION SYSTEMS

This specification, together with associated stagla(Unicode
[Unicode] and ISO/IEC 10646 [ISO/IEC 10646] for cheters, Internet
BCP 47 [IETF BCP 47] and the Language Subtag Rgg[$ANA-
LANGCODES] for language identification tags), prdes all the
information necessary to understand XML Version ar@ construct
computer programmes to process it.

This version of the XML specification may be distried freely, as long
as all text and legal notices remain intact.

3.3 Terminology

The terminology used to describe XML documents eéingéd in the
body of this specification. The key words MUST, MDUNOT,

REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT,

RECOMMENDED, MAY, and OPTIONAL, when EMPHASIZED, ar
to be interpreted as described in [IETF RFC 2118]addition, the
terms defined in the following list are used inlBung those definitions
and in describing the actions of an XML processor:

° Error

A violation of the rules of this specification; s are undefined.
Unless otherwise specified, failure to observe asguiption of this
specification indicated by one of the keywords MUSREQUIRED,
MUST NOT, SHALL and SHALL NOT is an error. Conforming
software MAY detect and report an error and MAYaeer from it.

° Fatal Error

An error which a conforming XML processor MUST dstand report
to the application. After encountering a fatal ertbe processor MAY
continue processing the data to search for fuehers and MAY report
such errors to the application. In order to supportection of errors,
the processor MAY make unprocessed data from tleairdent (with
intermingled character data and markup) availablehe application.
Once a fatal error is detected, however, the psmreMUST NOT
continue normal processing (i.e., it MUSYOT continue to pass
character data and information about the documkgisal structure to
the application in the normal way).

o At User Option
Conforming software MAY or MUST (depending on thedal verb in

the sentence) behave as described; if it doesUSMprovide users a
means to enable or disable the behaviour described.

124

CIT 208 MODULE 3

o Validity Constraint

A rule which applies to all valid XML documents.odkations of validity
constraints are errors; they MUST, at user optibe, reported by
validating XML processors.

. Well-Formedness Constraint

A rule which applies to all well-formed XML docuntsn Violations of
well-formedness constraints are fatal errors.

. Match

(Of strings or names:) Two strings or names beioghmared are
identical. Characters with multiple possible repreations in ISO/IEC
10646 (e.g. characters with both precomposed asetolacritic forms)
match only if they have the same representatidyoth strings. No case
folding is performed. (Of strings and rules in tig@mmar:) A string
matches a grammatical production if it belongs b tlanguage
generated by that production. (Of content and cuntaodels:) An
element matches its declaration when it conformstha fashion
described in the constraint.

J For Compatibility

Marks a sentence describing a feature of XML inetlidolely to ensure
that XML remains compatible with SGML.

o For Interoperability

Marks a sentence describing a non-binding recomatendincluded to
increase the chances that XML documents can beegsed by the
existing installed base of SGML processors whictedpte the
WebSGML Adaptations Annex to 1ISO 8879.

3.4 Why Do We Need XML?

HTML is the most successful markup language oftialle. You can
view the simplest HTML tags on virtually any deviédem palmtops to
mainframes, and you can even convert HTML markup woice and
other formats with the right tools. Given the swscef HTML, why did
the W3C create XML? To answer that question, takeok at this
document:

. <p>Mrs. Mary Wobo
.

125

CIT 208 ARRMATION SYSTEMS

° 14 Ken Street
°

. Enugu</p>

The trouble with HTML is that it was designed whlmans in mind.
Even without viewing the above HTML document inravieser, you and
| can figure out that it is someone’s postal adslr¢Specifically, it is a
postal address for someone in Nigeria addresses;cgald probably
guess what this represents.).

As humans, you and | have the intelligence to ustdad the meaning
and intent of most documents. A machine, unforelgatannot do that.
While the tags in this document tell a browser htmwdisplay this
information, the tags do not tell the browseénat the information is.
You and | know it is an address, but a machine does

3.5 Rendering HTML

To render HTML, the browser merely follows the mstions in the
HTML document. The paragraph tag tells the browsestart rendering
on a new line, typically with a blank line beforela while the two
break tags tell the browser to advance to the hestwithout a blank
line in between. While the browser formats the daoent beautifully,
the machine still does not know this is an address.

3.6 Processing HTML

To wrap up this discussion of the sample HTML doeuntnconsider the
task of extracting the postal code from this adslredere is an
(intentionally brittle) algorithm for finding thegstal code in HTML
markup:

o If you find a paragraph with two
 tags, thetabsode is the
second word after the first comma in the secondlotag.
Although this algorithm works with this examplegeth is any
number of perfectly valid addresses worldwide fdnick this
simply would not work. Even if you could write algarithm that
found the postal code for any address written ilvidTthere is
any number of paragraphs with two break tags thatat contain
addresses at all. Writing an algorithm that looksway HTML
paragraph and finds any postal codes inside it avolk
extremely difficult, if not impossible.

12¢

CIT 208 MODULE 3

3.6.1 A Sample XML Document

Now let us look at a sample XML document. With XMlgu can assign
some meaning to the tags in the document. More riraptly, it is easy
for a machine to process the information as wetiuan extract the
postal code from this document by simply locatinge tcontent
surrounded by the <postal-code> and </postal-cadgs, technically
known as the <postal-code> element.

<address>

<name>
<title>Mrs.</title><first-name>
Mary

</first-name>
<last-name>
McGoon
</last-name>
</name>

<street>

1401 Main Street
</street>
<city>Anytown</city>
<state>NC</state>
<postal-code>

34829
</postal-code>
</address>

3.7 Tags, Elements and Attributes

There are three common terms used to describe paremn XML
document:tags elements and attributes Here is a sample document
that illustrates the terms:

<address>
<name>
<title>Mrs.</title>
<first-name>
Mary
</first-name>
<last-name>
McGoon
</last-name>
</name>

127

CIT 208 ARRMATION SYSTEMS

<street>

1401 Main Street

</street>

<city state="NC">Anytown</city>
<postal-code>

34829

</postal-code>

</address>

- A tag is the text between the left angle bragkg¢tand the right
angle bracket (>).There are starting tags (suckrasne>) and
ending tags (such as </name>)

- An element is the starting tag, the ending tangl averything in
between. In the sample above, the <name> elemeaidios three
child elements: <title>, <first-name>, and <lastyee.

- An attribute is a name-value pair inside thetstgrtag of an
element. In this example, state is an attributethef <city>
element; in earlier examples,<state> was an elen(sz¢ A
sample XML document).

3.8 How XML is Changing the Web

Now that you have seen how developers can use Xbllcreate
documents with self-describing data, let us look@t people are using
those documents to improve the web. Here are &éswvareas:

o XML simplifies data interchange. Because different
organisations (or even different parts of the samganisation)
rarely standardise on a single set of tools, itte&e a significant
amount of work for applications to communicate. ngsXML,
each group creates a single utility that transfothesr internal
data formats into XML and vice versa. Best of @lgre is a good
chance that their software vendors already provio@s to
transform their database records (or LDAP direegrior
purchase orders, and so forth) to and from XML.

o XML enables smart code.Because XML documents can be
structured to identify every important piece ofamhation (as
well as the relationships between the pieces)s ipassible to
write code that can process those XML documentshowit
human intervention. The fact that software vendwmse spent
massive amounts of time and money building XML depment
tools means writing that code is a relatively sienptocess.

. XML enables smart searchesAlthough search engines have
improved steadily over the years, it is still qut@mmon to get
erroneous results from a search. If you are seaychiTML

12¢

CIT 208 MODULE 3

pages for someone named "Chip," you might also fiages on
chocolate chips, computer chips, wood chips, ansl ¢d other
useless matches. Searching XML documents for <imste>
elements that contained the text Chip would give yomuch
better set of results.

3.9 XML Document Rules
3.9.1 Overview

If you have looked at HTML documents, you are faamilvith the basic
concepts of using tags to mark up the text of augdmnt. This section
discusses the differences between HTML documentd ML
documents. It goes over the basic rules of XML doents, and
discusses the terminology used to describe them.

One important point about XML documeniBhe XML specification
requires a parser to reject any XML document that aes not follow
the basic rulesMost HTML parsers will accept sloppy markup, making
a guess as to what the writer of the document d#enTo avoid the
loosely structured mess found in the average HTMcudnhent, the
creators of XML decided to enforce document stmectirom the
beginning. (By the way, if you are not familiar withe term, garseris

a piece of code that attempts to read a documettiterpret its
contents.).

Invalid, valid, and well-formed documents
There are three kinds of XML documents:

o Invalid documents do not follow the syntax rules defined by the
XML specification. If a developer has defined rufes what the
document can contain in a DTD or schema, and tleairdent
does not follow those rules, that document is iivals well.
Valid documents follow both the XML syntax rulesdathe rules
defined in their DTD or schema.

. Well-formed documents follow the XML syntax rules but do
not have a DTD or schema.

3.9.2 The Root Element

An XML document must be contained in a single elein&hat single
element is called theot element and it contains all the text and other
elements in the document. In the following exampilee XML
document is contained in a single element, the etgrg> element.

129

CIT 208 ARRMATION SYSTEMS

Notice that the document has a comment that isdsutle root element;
that's perfectly legal.

<?xml version="1.0"?>

<l-- A well-formed document -->
<greeting>

Hello, World!

</greeting>

Here is a document that does not contain a sigiealement:

<?xml version="1.0"?>

<l-- An invalid document -->
<greeting>

Hello, World!

</greeting>

<greeting>

Hola, el Mundo!
</greeting>

An XML parser is required to reject this documengigardless of the
information it might contain.

3.9.3 Elements Cannot Overlap
XML elements cannot overlap.Here is some markup that is not legal:

<!-- NOT legal XML markup -->
<p>

| <i>really love XML.
</i>

</p>

If you begin a <i> element inside a elementy yave to end it
there as well. If you want the text XML to appeauitalics, you need to
add a second <i> element to correct the markup:

<!-- legal XML markup -->
<p>

| <i>really
love</i>

<i>XML.</i>

</p>

13C

CIT 208 MODULE 3

An XML parser will accept only this markup; the HTMparsers in most
web browsers will accept both.

3.9.4 End Tags are Required

You can not leave out any end tagdn the first example below, the
markup is not legal because there are no end @ghgi/p>) tags.
While this is acceptable in HTML (and, in some cas&GML), an XML
parser will reject it.

<!-- NOT legal XML markup -->
<p>Yada yada yada...

<p>Yada yada yada...
<p>...

If an element contains no markup at all it is chlésempty element
the HTML break (
) and image () elements @avo examples.
In empty elements in XML documents, you can putdtesing slash in
the start tag. The two break elements and the tvage elements below
mean the same thing to an XML parser:

<!I-- Two equivalent break elements -->

</br>

<!I-- Two equivalent image elements -->

3.9.5 Elements are Case-Sensitive

XML elements are case-sensitivdn HTML, <h1> and <H1> are the
same; in XML, they are not. If you try to end anlxhelement with a
</H1> tag, you will get an error. In the exampldowe the heading at
the top is illegal, while the one at the bottonfing.

<l-- NOT legal XML markup -->
<h1>Elements are

case sensitive</H1>

<l-- legal XML markup -->
<h1>Elements are

case sensitive</h1>

131

CIT 208 ARRMATION SYSTEMS

3.9.6 Attributes Must Have Quoted Values
There are two rules for attributes in XML documents

o Attributes must have values
o Those values must be enclosed within quotation snark

Compare the two examples below. The markup at dpeig legal in
HTML, but not in XML. To do the equivalent in XMlyou have to give
the attribute a value, and you have to encloseduiotes.

<I-- NOT legal XML markup -->
<ol compact>

<l-- legal XML markup -->

<ol compact="yes">

You can use either single or double quotes, jusloag as you are
consistent.

If the value of the attribute contains a singledouble quote, you can
use the other kind of quote to surround the vaageif name="Doug’s
car"), or use the entities " for a double guahd ' for a
single quote. Arentityis a symbol, such as ", that the XML parser
replaces with other text, such as ".

3.9.7 XML Declarations

Most XML documents start with adML declarationthat provides basic
information about the document to the parser. AnLXd&claration is
recommended, but not required. If there is onmust be the first thing
in the document.

The declaration can contain up to three name-vpdukes (many people
call them attributes, although technically they act). The version is
the version of XML used; currently this value mhet1.0. The encoding
is the character set used in this document. The888®-1 character set
referenced in this declaration includes all of tharacters used by most
Western European languages. If no encoding is fpecithe XML
parser assumes that the characters are in the U3é%;8a Unicode
standard that supports virtually every character ideograph from the
world's languages.

<?xml version="1.0" encoding="ISO-8859-1" stand&sino"?>

Finally, standalone, which can be either yes ordedines whether this
document can be processed without reading any ofites. For

132

CIT 208 MODULE 3

example, if the XML document does not reference aiier files, you
would specify standalone="yes". If the XML documesfierences other
files that describe what the document can contaoré¢ about those files
in a minute), you could specify standalone="no". c&ese
standalone="no" is the default, you rarely see dabme in XML
declarations.

3.9.8 Other Things in XML Documents
There are a few other things you might find in @filXdocument:

Comments: Comments can appear anywhere in the document;ctrey
even appear before or after the root element. Ancemt begins with <!-
- and ends with -->. A comment cannot contain abtunyphen (--)

except at the end; with that exception, a commantaontain anything.
Most importantly, any markup inside a comment rsoiged; if you want
to remove a large section of an XML document, sympirap that

section in a comment. (To restore the commentedseation, simply

remove the comment tags.) Here is some markup d¢batains a

comment:

o <l—Here’s a PI for Cocoon: -->
o <?cocoon-process type="sql"?>

Processing instructions:A processing instruction is markup intended
for a particular piece of code. In the example @&hothere is a
processing instruction (sometimes called a Pl) Gmcoon, an XML
processing framework from the Apache Software Fatiod. When
Cocoon is processing an XML document, it looks fmocessing
instructions that begin with cocoon-process, themcgsses the XML
document accordingly. In this example, the typeF"sdtribute tells
Cocoon that the XML document contains a SQL stateme

<l-- Here's an entity: -->
<IENTITY dw "developerWorks">

Entities: The example above defines amtity for the document.
Anywhere the XML processor finds the string &dwt,réplaces the
entity with the string developerWorks. The XML spaso defines five
entities you can use in place of various speciaratters. The entities
are:

< for the less-than sign

> for the greater-than sign

" for a double-quote

' for a single quote (or apostrophe)
& for an ampersand.

133

CIT 208 ARRMATION SYSTEMS

3.9.9 Namespaces

XML'’s power comes from its flexibility, the fact & you and | and
millions of other people can define our own tagsiéscribe our data.
Remember the sample XML document for a person’senand address?
That document includes the <title>element for aspeis courtesy title,
a perfectly reasonable choice for an element nédinyeu run an online
bookstore, you might create a <title> element Far title of a book. If
you run an online mortgage company, you might ereat <title>
element for the title to a piece of property. Allthose are reasonable
choices, but all of them create elements with #ames name. How do
you tell if a given <title>element refers to a pmrsa book, or a piece of
property? Withamespaces

To use a namespace, you definmamespace prefiand map it to a
particular string. Here is how you might define rspace prefixes for
our three <title> elements:

<?xml version="1.0"?>

<customer_summary
xmins:addr="http://www.xyz.com/addresses/"
xmins:books="http://www.zyx.com/books/"
xmlns:mortgage="http://www.yyz.com/title/">

... <addr:name><title>Mrs.</title> ... </addr:name>

... <books:title>Lord of the Rings</books:title> ..

... <mortgage:title>NC2948-388-1983</mortgage #itle

In this example, the three namespace prefixes dde, dooks, and
mortgage.

Notice that defining a namespace for a particuament means that all
of its child elements belong to the same namespHge.first <title>
element belongs to the addr namespace becausearistpelement,
<addr:Name>, does. One final pointhe string in a namespace
definition is just a string. Yes, these strings look like URLS, but they
are not. You could define xmIns:addr="mike" andttwauld work just
as well. The only thing that is important about tlenespace string is
that it is unique; that is why most namespace defirs look like URLSs.
The XML parser does not go to http://www.zyx.contgks/ to search
for a DTD or schema,; it simply uses that text asrimg. It is confusing,
but that is how namespaces work.

134

CIT 208 MODULE 3

3.10 Defining Documents Content
3.10.1 Overview

So far, in this unit you have learned about theidbasles of XML
documents; that is all well and good, but you needefine the elements
you are going to use to represent data. You walingwo ways of doing
that in this section.

One method is to use@ocument Type Definition,or DTD. A DTD
defines the elements that can appear in an XML mhec, the order in
which they can appear, how they can be nestederessth other, and
other basic details of XML document structure. DT&re part of the
original XML specification and are very similar &ML DTDs.

The other method is to use AML Schema. A schema can define all of
the document structures that you can put in a Daily it can also

define data types and more complicated rules tHam can. The W3C

developed the XML Schema specification a coupleyedrs after the

original XML spec.

3.10.2 Document Type Definitions

A DTD allows you to specify the basic structureaof XML document.
The next couple of panels look at fragments of DTkt of all, here is
a DTD that defines the basic structure of the askld®dcument example
in the section, What is XML? :

<!-- address.dtd -->

<IELEMENT address (name, street, city, state, paside)>
<IELEMENT name (title? first-name, last-name)>
<IELEMENT title (#PCDATA)>

<IELEMENT first-name (#PCDATA)>

<IELEMENT last-name (#PCDATA)>

<IELEMENT street (#PCDATA)>

<IELEMENT city (#PCDATA)>

<IELEMENT state (#PCDATA)>

<IELEMENT postal-code (#PCDATA)>

This DTD defines all of the elements used in theagda document. It
defines three basic things:

o An <address> element contains a <name>, a <straeteity>, a

<state>, and a <postal-code>. All of those elemanist appear,
and they must appear in that order.

135

CIT 208 ARRMATION SYSTEMS

A <name> element contains an optional <title> eleim@he
guestion mark means the title is optional), followey a <first-
name> and a <last-name> element.

All of the other elements contain text. (#PCDATAarsds for
parsed character data; you cannot include anotleeneat in
these elements.) Although the DTD is pretty simfilenakes it
clear what combinations of elements are legal. Aluress
document that has a <postal-code> element befa@e<#tate>
element is not legal, and neither is one that lmslast-name>
element.

Also, notice that DTD syntax is different from ordinary XML
syntax. (XML Schema documents, by contrast, are themseXiMs,
which has some interesting consequences.) Destdifferent syntax
for DTDs, you can still put an ordinary commenthe DTD itself.

3.10.3 Symbols in DTDs

There are a few symbols used in DTDs to indicates lajten (or
whether) something may appear in an XML documemireHare some
examples, along with their meanings:

13€

<IELEMENT address (hame, city, state)>

The <address> element must contain a <name>, g><a@nd a
<state> element, in that order. All of the elemeants required.
The comma indicates a list of items.

<IELEMENT name (title?, first-name, last-name)>

This means that the <name> element contains aor@tktitle>
element, followed by a mandatory <first-name> andcklast-
name> elementThe question mark indicates that an item is
optional; it can appear once or not at all.

<IELEMENT addressbook (address+)>

An <addressbook> element contains one or more <addr
elements. You can have as many <address> elemsny®wa
need, but there has to be at least Dine plus sign indicates that
an item must appear at least once, but can appearng
number of times.

<IELEMENT private-addresses (address*)>

A <private-addresses> element contains zero or Madelress>
elementsThe asterisk indicates that an item can appear any
number of times, including zero.

<IELEMENT name (title?, first-name, (middle-initigmiddle-
name)?, last-name)>

A <name> element contains an optional <title> eletyi®llowed
by a <first-name> element, possibly followed byheit a
<middle-initial> or a <middle-name> element, folletv by a

CIT 208 MODULE 3

<last-name> element. In other words, both <middlgal> and
<middle-name> are optional, and you can have only of the
two. Vertical bars indicate a list of choices; you can lmose
only one item from the list. Also notice that this example uses
parentheses to group certain elements, and itaugasstion mark
against the group.

. <IELEMENT name ((title?, first-name, last-name)spjrpame,
mothers-name, given-name))>
The <name> element can contain one of two sequerfges
optional <title>, followed by a <first-name> and<ist-name>;
or a <surname>, a <mothers-name>, and a <given-name

3.10.4 A Word about Flexibility

Before going on, a quick note about designing XMicuiment types for
flexibility. Consider the sample name and addressuthent type; |
clearly wrote it with U.S. postal addresses in mitidfou want a DTD
or schema that defines rules for other types ofrest#s, you would
have to add a lot more complexity to it. Requirmg<state> element
might make sense in Australia, but it would nothe UK. A Canadian
address might be handled by the sample DTD, bunhgdad <province>
element is a better idea. Finally, be aware thamany parts of the
world, concepts like title, first name, and lastmeado not make sense.
The bottom line: If you are going to define theusture of an XML
document, you should put as much forethought inbaryDTD or
schema as you would if you were designing a databalsema or a data
structure in an application. The more future reguents you can
foresee, the easier and cheaper it will be for y@umplement them
later.

310.5 Defining Attributes

This introductory unit does not go into great detddiout how DTDs
work, but there is one more basic topic to coveeheéefining attributes.
You can define attributes for the elements thak appear in your XML
document. Using a DTD, you can also:

o define which attributes are required
o define default values for attributes
o list all of the valid values for a given attribute

Suppose that you want to change the DTD to make ataattribute of
the <city> element. Here is how to do that:

e <IELEMENT city (#PCDATA)>
e <IATTLIST city state CDATA #REQUIRED>

137

CIT 208 ARRMATION SYSTEMS

This defines the <city> element as before, butréwsed example also
uses an ATTLIST declaration to list the attributésthe element. The
name city inside the attribute list tells the patbat these attributes are
defined for the <city> element. The name statehis hame of the
attribute, and the keywords CDATA and #REQUIRED tkk parser
that the state attribute contains text and is requiif it's optional,
CDATA #IMPLIED will do the trick).

To define multiple attributes for an element, writkee ATTLIST like
this:

. <IELEMENT city (#PCDATA)>
. <IATTLIST city state CDATA #REQUIRED
o postal-code CDATA #REQUIRED>

This example defines both state and postal-codattabutes of the
<city> element.

Finally, DTDs allow you to define default valuesr fattributes and
enumerate all of the valid values for an attribute:

e <IELEMENT city (#PCDATA)>
e <IATTLIST city state CDATA (AZ|CA|NV|OR|UT|WA) "CA%

The example here indicates that it only supportdresses from the
states of Arizona (AZ), California (CA), Nevada (IN\WOregon (OR),
Utah (UT), and Washington (WA), and that the ddfastiate is
California. Thus, you can do a very limited form ddita validation.
While this is a useful function, it is a small sebsf what you can do
with XML schemas.

3.10.6 XML Schemas

With XML schemas, you have more power to define twredid XML
documents look like. They have several advantagesDTDs:

o XML schemas use XML syntax.In other words, an XML
schema is an XML document. That means you can psoee
schema just like any other document. For exampmla,can write
an XSLT style sheet that converts an XML schema amiWVeb
form complete with automatically-generated JavgBawode that
validates the data as you enter it.

o XML schemas support datatypes.While DTDs do support
datatypes, it is clear those datatypes were degdldpom a
publishing perspective. XML schemas support althaf original
datatypes from DTDs (things like IDs and ID refares).They

13¢

CIT 208 MODULE 3

also support integers, floating point numbers, slatemes,
strings, URLSs, and other datatypes useful for gatgessing and
validation.

o XML schemas are extensible.In addition to the datatypes
defined in the XML schema specification, you casoatreate
your own, and you can derive new datatypes basedtoer
datatypes.

. XML schemas have more expressive powelFor example, with
XML schemas you can define that the value of antate>
attribute cannot be longer than 2 characters, ar ttie value of
any <postal-code> element must match the regulamession [O-
9{5}(-[0-9{4})?. You cannot do either of those ithgs with
DTDs.

3.10.7 A Sample XML Schema

Here is an XML schema that matches the original enamd address
DTD. It adds two constraints: The value of the testaelement must be
exactly two characters long and the value of thestgd-code> element
must match the regular expression [0-9]{5}(-[0-9f2. Although the
schema is much longer than the DTD, it expressa® learly what a
valid document looks like. Here's the schema:

) <?xml version="1.0" encoding="UTF-8"?>
<xsd:schema
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="address">
<xsd:complexType>

<xsd:sequence>

<xsd:element ref="name"/>
<xsd:element ref="street"/>
<xsd:element ref="city"/>

<xsd:element ref="state"/>

<xsd:element ref="postal-code"/>
</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="name">
<xsd:complexType>

<xsd:sequence>

<xsd:element ref="title" minOccurs="0"/>
<xsd:element ref="first-Name"/>
<xsd:element ref="last-Name"/>
</xsd:sequence>

</xsd:complexType>

139

CIT 208 ARRMATION SYSTEMS

</xsd:element>

<xsd:.element name="title" type="xsd:string"/>
<xsd:element name="first-Name" type="xsd:string"/>
<xsd:element name="last-Name" type="xsd:string"/>
<xsd:element name="street" type="xsd:string"/>
<xsd:element name="city" type="xsd:string"/>
<xsd:element name="state">
<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:length value="2"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:.element name="postal-code">
<xsd:simpleType>

<xsd:restriction base="xsd:string">
<xsd:pattern value="[0-9]{5}(-[0-9]{4})?"/>
</xsd:restriction>

</xsd:simpleType>

</xsd:element>

</xsd:schema>

3.10.8 Defining Elements in Schemas

The XML schema in A sample XML schema defined a benof XML
elements with the <xsd:element> element. The firgdb elements
defined, <address> and <name>, are composed of elaments. The
<xsd:sequence> element defines the sequence ofeelenthat are
contained in each. Here's an example:

<xsd:element name="address">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="name"/>

<xsd:element ref="street"/>

<xsd:element ref="city"/>

<xsd:element ref="state"/>

<xsd:element ref="postal-code"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

As in the DTD version, the XML schema example dedithat an
<address> contains a <name>, a <street>, a <a@tystate>, and
a <postal-code> element, in that order. Notice that schema

14C

CIT 208 MODULE 3

actually defines a new datatype with the <xsd:cexipype>
element.

Most of the elements contain text; defining thersiraple. You merely
declare the new element, and give it a datatypedastring:

<xsd:element name="title" type="xsd:string"/>
<xsd:element name="first-Name" type="xsd:string"/>
<xsd:element name="last-Name" type="xsd:string"/>
<xsd:element name="street" type="xsd:string"/>
<xsd:element name="city" type="xsd:string"/>

3.10.9 Defining Element Content in Schemas

The sample schema defines constraints for the nbofegwo elements:
The content of a <state> element must be two ctersatong, and the
content of a <postal-code> element must match ¢gelar expression
[0-91{5}(-[0-9]{4})?. Here's how to do that:

<xsd:element name="state">
<xsd:simpleType>

<xsd:restriction base="xsd:string">
<xsd:length value="2"/>
</xsd:restriction>
</xsd:simpleType>

</xsd:element>

<xsd:element name="postal-code">
<xsd:simpleType>

<xsd:restriction base="xsd:string">
<xsd:pattern value="[0-9]{5}(-[0-9]{4})?"/>
</xsd:restriction>
</xsd:simpleType>

</xsd:element>

For the <state> and <postal-code> elements, thensahdefines new
data types with restrictions. The first case udes &xsd:length>
element, and the second uses the <xsd:pattern>epteta define a
regular expression that this element must match.

This summary only scratches the surface of what Xddhemas can do;
there are entire books written on the subject. ther purpose of this
introduction, suffice to say that XML schemas areeay powerful and
flexible way to describe what a valid XML documémbks like.

141

CIT 208 ARRMATION SYSTEMS

3.11 XML Programming Interfaces
3.11.1 Overview

This section takes a look at a variety of prograngminterfaces for
XML. These interfaces give developers a consistem¢rface for
working with XML documents. There are many APIs ialde; this

section looks at four of the most popular and galheuseful ones: the
Document Object Model (DOM), the Simple API for XM(SAX),

JDOM, and the Java API for XML Parsing (JAXP).

3.11.2 The Document Object Model

The Document Object Model, commonly called the DQMfines a set
of interfaces to the parsed version of an XML doeuotn The parser
reads in the entire document and builds an in-mgnree, so your code
can then use the DOM interfaces to manipulaterge tYou can move
through the tree to see what the original docuncentained, you can
delete sections of the tree; you can rearrangé&¢lee add new branches,
and so on. The DOM was created by the W3C, andnif#icial
Recommendation of the consortium.

3.11.3 DOM Issues

The DOM provides a rich set of functions that y@un aise to interpret
and manipulate an XML document, but those functiom®e at a price.
As the original DOM for XML documents was being dmped, a
number of people on the XML-DEV mailing list voicedncerns about
it:

o The DOM builds an in-memory tree of an entire doeam|f the
document is very large, this requires a significamount of
memory.

o The DOM creates objects that represent everytmrige original

document, including elements, text, attributes, whiespace. If
you only care about a small portion of the origidatument, it is
extremely wasteful to create all those objects iltnever be
used.

. A DOM parser has to read the entire document befoue code
gets control. For very large documents, this coodlise a
significant delay. These are merely issues raisethé design of
the Document Object Model; despite these concehess DOM
APl is a very useful way to parse XML documents.

14z

CIT 208 MODULE 3

3.11.4 The Simple API for XML

To get around the DOM issues, the XML-DEV particifga (led by
David Megginson) created the SAX interface. SAX hsesveral
characteristics that address the concerns aboni@hé:

o A SAX parser sends events to your code. The paedlsryou
when it finds the start of an element, the endroékement, text,
the start or end of the document, and so on. Yauiddewhich
events are important to you, and you decide whad kif data
structures you want to create to hold the data ftlonse events.
If you do not explicitly save the data from an eyen is
discarded.

o A SAX parser does not create any objects at aliniply delivers
events to your application. If you want to creabgeots based on
those events, it is up to you.

o A SAX parser starts delivering events to you ansa®the parse
begins. Your code will get an event when the pafsels the
start of the document, when it finds the startroeéement, when
it finds text, and so on. Your application starenegrating results
right away; you do not have to wait until the emtitocument has
been parsed.

Even better, if you are only looking for certainnips in the document,
your code can throw an exception once it is foutaiwt is looking for.

The exception stops the SAX parser, and your catledo whatever it
needs to do with the data it has found.

Having said all of these things, both SAX and DORVé their place.
The remainder of this section discusses why yolhimigant to use one
interface or the other.

3.11.5 SAX Issues
To be fair, SAX parsers also have issues that aasecconcern:

o SAX events are stateless. When the SAX parser fiexsin an
XML document, it sends an event to your code. Téagnt
simply gives you the text that was found; it doestell you what
element contains that text. If you want to knowttlyau have to
write the state management code yourself.

o SAX events are not permanent. If your applicatieeds a data
structure that models the XML document, you havevtibe that
code yourself. If you need to access data from X 8¥ent, and
you did not store that data in your code, you have@arse the
document again.

143

CIT 208 ARRMATION SYSTEMS

o SAX is not controlled by a centrally managed orgation.
Although this has not caused a problem to datesome
developers would feel more comfortable if SAX weomntrolled
by an organisation such as the W3C.

3.11.6 JDOM

Frustrated by the difficulty in doing certain taskgh the DOM and
SAX models, Jason Hunter and Brett McLaughlin @dathe JDOM
package. JDOM is a Java technology-based, opercesqupject that
attempts to follow the 80/20 rule: Deliver what 8@¥users need with
20% of the functions in DOM and SAX. JDOM works lWwiBAX and
DOM parsers, so it is implemented as a relativehals set of Java
classes.

The main feature of JDOM is that it greatly reduttessamount of code
you have to write. Although this introductory umibes not discuss
programming topics in depth, JDOM applications tgcally one-third
as long as DOM applications, and about half as l@asy SAX
applications. (DOM purists, of course, suggest thatning and using
the DOM is good discipline that will pay off in tHeng run.) JDOM
does not do everything, but for most of the parsiog want to do, it is
probably just the thing.

3.11.7 The Java API for XML Parsing

Although DOM, SAX, and JDOM provide standard inéeds for most
common tasks, there are still several things theyndt address. For
example, the process of creating a DOMParser ohjeca Java
programme differs from one DOM parser to the nékb. fix this
problem, Sun has released JAXP, the Java API foL Mrsing. This
API provides common interfaces for processing XMicuiments using
DOM, SAX, and XSLT. JAXP provides interfaces suck the
DocumentBuilderFactory and the DocumentBuilder tlpsbvide a
standard interface to different parsers. Therealm@ methods that allow
you to control whether the underlying parser is egpace-aware and
whether it uses a DTD or schema to validate the Xddtument.

Determining the right interface

To determine which programming interface is righttyou, you need to
understand the design points of all of the intesfacand you need to
understand what your application needs to do viiéhXML documents

you are going to process. Consider these questiiohslp you find the

right approach.

144

CIT 208

MODULE 3

Will your application be written in Java? JAXP works with
DOM, SAX, and JDOM,; if you are writing your code iava,
you should use JAXP to isolate your code from the
implementation details of various parsers.

How will your application be deployed?If your application is
going to be deployed as a Java applet, and you wwaninimise
the amount of downloaded code, keep in mind thaX Parsers
are smaller than DOM parsers. Also be aware thagui(DOM
requires a small amount of code in addition to$AeX or DOM
parser.

Once you parse the XML document, will you need to cess
that data many times?If you need to go back to the parsed
version of the XML file, DOM is probably the righthoice.
When a SAX event is fired, it is up to you (the eleper) to save

it somehow if you need it later. If you need to &gx an event
you did not save.

3.11.8 Which Interface is Right for You?

To determine which programming interface is rightyou, you need to
understand the design points of all of the intesfacand you need to
understand what your application needs to do viéhXML documents

you are going to process. Consider these questiiohslp you find the

right approach.

Will your application be written in Java? JAXP works with
DOM, SAX, and JDOM,; if you are writing your code ilava,
you should use JAXP to isolate your code from the
implementation details of various parsers.

How will your application be deployed?If your application is
going to be deployed as a Java applet, and you wwaninimise
the amount of downloaded code, keep in mind thaX PAarsers
are smaller than DOM parsers. Also be aware thaguiDOM
requires a small amount of code in addition to$Ae&X or DOM
parser.

Once you parse the XML document, will you need to cess
that data many times?If you need to go back to the parsed
version of the XML file, DOM is probably the righthoice.
When a SAX event is fired, it is up to you (the eleper) to save

it somehow if you need it later. If you need to esx an event
you did not save, frustrated by the difficulty ioing certain tasks
with the DOM and SAX models, Jason Hunter and Brett
McLaughlin created the JDOM package. JDOM is a Java
technology-based, open source project that attetodtdlow the
80/20 rule: Deliver what 80% of users need with 26%tthe
functions in DOM and SAX. JDOM works with SAX andOM

145

CIT 208 ARRMATION SYSTEMS

parsers, so it is implemented as a relatively srsell of Java
classes.

The main feature of JDOM is that it greatly reduttessamount of code
you have to write. Although this introductory umbes not discuss
programming topics in depth, JDOM applications tgcally one-third
as long as DOM applications, and about half as l@asy SAX
applications. (DOM purists, of course, suggest thatning and using
the DOM is good discipline that will pay off in tHeng run.) JDOM
does not do everything, but for most of the parsiog want to do, it is
probably just the thing.

3.12 XML Standards
3.12.1 Overview

A variety of standards exist in the XML universe.dddition to the base
XML standard, other standards define schemas, styets, links, web
services, security, and other important items. Td@stion covers the
most popular standards for XML, and points youdterences to find
other standards.

3.12.2 The XML Specification

This spec, located aw3.org/TR/REC-xmldefines the basic rules for
XML documents. All of the XML document rules dissesl earlier in
this unit is defined here. In addition to the baXiL standard, the
Namespaces spec is another important part of XMtu ¥an find the
namespaces standard at the W3C asw@lirg/TR/REC-xml-names/.

3.12.3 XML Schema
The XML Schema language is defined in three parts:

o A primer, located atw3.org/TR/xmlschema-0Q that gives an
introduction to XML schema documents and what tleg
designed to do;

o A standard for document structures located at
w3.org/TR/xmlschema-1 that illustrates how to define the
structure of XML documents;

. A standard fordata types located atw3.org/TR/xmlschema-2
that defines some common data types and rulesréating new
ones. This unit discussed schemas briefly in Defirdocument
content; if you want the complete details on adl things you can
do with XML schemas, the primer is the best placstart.

146

CIT 208 MODULE 3

3.12.4 XSL, XSLT, and XPath

The Extensible Stylesheet Language, XSL, definesetaof elements
(called formatting objects) that describes how ddwauld be formatted.
For clarity, this standard is often referred toX&i_-FO to distinguish it
from XSLT. Although it is primarily designed for gerating high-
quality printable documents, you can also use faiinga objects to
generate audio files from XML. The XSL-FO standarsl at

wa3.org/TR/xsl/

The Extensible Stylesheet Language for Transfoonati XSLT, is an
XML vocabulary that describes how to convert an XElihcument into
something else. The standard isv8torg/TR/xsl{no closing slash).

XPath, the XML Path Language, is a syntax that mless locations in
XML documents. You use XPath in XSLT style sheaisdescribe
which portion of an XML document you want to traorsh. XPath is

used in other XML standards as well, which is whysi a separate
standard from XSLT. XPath is definedwB.org/TR/xpathino closing

slash).

3.12.5 DOM

The Document Object Model defines how an XML docomés
converted to an in-memory tree structure. The DQMdefined in a
number of specifications at the W3C:

o The Core DOM defines the DOM itself, the tree structure, and
the kinds of nodes and exceptions your code witl fas it moves
through the tree. The complete spec iwatorg/TR/DOM-Level-
2-Corel/.

o Events define the events that can happen to the tree,hamd
those events are processed. This specificatiom iat@mpt to
reconcile the differences in the object models suga by
Netscape and Internet Explorer since Version 4 lobsé
browsers. This spec isaB.org/TR/DOM-Level-2-Events/

o Style defines how XSLT style sheets and CSS style slvagtde
accessed by a programme. This specg3abrg/TR/DOM-Level-
2-Style/

J Traversals and Rangeslefine interfaces that allow programmes
to traverse the tree or define a range of noddsertree. You can
find the complete spec at3.org/TR/DOM-Level-2-Traversal-
Range/.

o Views define an AbstractView interface for the documeseli.
Seew3.0rg/TR/DOM-Level-2-Viewsdr more information.

147

CIT 208 ARRMATION SYSTEMS

3.12.6 SAX, JDOM, and JAXP

The Simple API for XML defines the events and ifdees used to
interact with a SAX-compliant XML parser. You cand the complete
SAX specification atvww.saxproject.org

The JDOM project was created by Jason Hunter aett BfcLaughlin
and lives adom.org/ At the JDOM site, you can find code, sample
programmes, and other tools to help you get startééor
developerWorkarticles on JDOM, see Resources on page 32).

One significant point about SAX and JDOM is thathbof them came
from the XMLdeveloper community, not a standardsglyborheir wide
acceptance is a tribute to the active participatbrXML developers
worldwide.

You can find out everything there is to know abalAXP at
java.sun.com/xml/jaxp/

3.12.7 Linking and Referencing

There are two standards for linking and referenamthe XML world:
XLink and XPointer:

. XLink, the XML Linking Language, defines a variety of wags
link different resources together. You can do ndrpaint-to-
point links (as with the HTML <a> element) or exded links,
which can include multipoint links, links throughird parties,
and rules that define what it means to follow aegivink. The
XLink standard is atv3.org/TR/xlink/

o XPointer, the XML Pointer Language, uses XPath as a way to
reference other resources. It also includes sontensions to
XPath. You can find the specwatvw.w3.org/TR/xptr/

3.12.8 Security

There are two significant standards that addresss#turity of XML
documents. One is theXML Digital Signature standard
(w3.org/TR/xmldsig-core/which defines an XML document structure
for digital signatures. You can create an XML digisignature for any
kind of data, whether it is an XML document, an HI e, plain text,
binary data, and so on. You can use the digitadatige to verify that a
particular file was not modified after it was signéf the data you are
signing is an XML document, you can embed the XMicuiment in the
signature file itself, which makes processing th#adand the signature
very simple.

14¢

CIT 208 MODULE 3

The other standard addresses encrypting XML doctsné&Mhile it is
great that XML documents can be written so thatiadn can read and
understand them, this could mean trouble if a damniell into the
wrong hands. Th&XML Encryption standard\3.org/TR/xmlenc-core/
) defines how parts of an XML document can be guiey. Using these
standards together, you can use XML documents eattiidence. | can
digitally sign an important XML document, genergtia signature that
includes the XML document itself. | can then enc¢ryfpe document
(using my private key and your public key) and séniw you. When
you receive it, you can decrypt the document wihryprivate key and
my public key; that lets you know that I'm the om#o sent the
document. (If need be, you can also prove thatnt #ge document.)
Once you have decrypted the document, you can heedigital
signature to make sure the document has not bediiewin any way.

3.13 Web Services

Web servicesare an important new kind of application. A webvesy

is a piece of code that can be discovered, destrdoed accessed using
XML. There is a great deal of activity in this spatut the three main
XML standards for web services are:

o SOAP: Originally the Simple Object Access Protocol, SOAP
defines an XML document format that describes howvoke a
method of a remote piece of code.

. My application creates an XML document that deswilthe
method | want to invoke, passing it any necessamarpeters,
and then it sends that XML document across a né&twmithat
piece of code. The code receives the XML documereyprets
it, invokes the method | requested, then sends laeckKML
document that describes the results. Version 1.thefSOAP
spec is aw3.org/TR/SOAPR/Visit w3.org/TR/to see all of the
W3C's SOAP-related activities.

J WSDL: The Web Services Description Language is an XML
vocabulary that describes a web service. It isiptesso write a
piece of code that takes a WSDL document and irve@keveb
service it is never seen before. The informatiothenWSDL file
defines the name of the web service, the namets ohethods,
the arguments to those methods, and other de¥als.can find
the latest WSDL spec at3.org/TR/wsd(no closing slash).

J UDDI: The Universal Description, Discovery, and Integmati
protocol defines a SOAP interface to a registrweb services. If
you have a piece of code that you would like tologas a web
service, the UDDI spec defines how to add the dasmn of
your service to the registry. If you are looking &opiece of code
that provides a certain function, the UDDI specirtesf how to

149

CIT 208 ARRMATION SYSTEMS

guery the registry to find what you want. The seuo€ all things
UDDI is uddi.org

3.14 Other Standards

A number of other XML standards exist. In additibm widely-
applicable standards like Scalable Vector Graphics
(www.w3.0rg/TR/SVG/ and SMIL, the Synchronised Multimedia
Integration Language wivw.w3.org/TR/smil2))/ there are many
industry-specific standards. For example, the HREX®bnsortium has
defined a number of XML standards for Human Resesirgou can find
those standards at-xml.org.

Finally, for a good source of XML standards, vikie XML Repository
atxml.org/xml/registry.jspThis site features hundreds of standards for a
wide variety of industries.

3.15 Case Studies

a. Real-world examples
At this point, | hope you are convinced that XMLshteemendous
potential to revolutionise the way eBusiness workghile
potential is great, what really counts is actuadules in the
marketplace. This section describes three caseesturd which
organisations have used XML to streamline their irnmss
processes and improve their results.

All of the case studies discussed here come froli'$gStart program.
The jStart team exists to help customers use nelntdogies to solve
problems. When a customer agrees to a jStart engagethe customer
receives IBM consulting and development servicea dtscount, with
the understanding that the resulting project wéllused as a case study.
If you would like to see more case studies, inclgdcase studies
involving web services and other new technologrest the jStart Web
page atbm.com/software/jstart

Be aware that the jStart team is no longer doingagements for XML
projects; the team's current focus is Web servieegagements. Web
services use XML in a specialized way, typicallsodlgh the SOAP,
WSDL, and UDDI standards mentioned earlier in Wetvises.

b. A messaging-based system
The bank's distributed applications are built on n@essaging

infrastructure, using IBM's MQSeries to deliver seges to the OS/390
system. The message content is based on a spgecriiczalled the

15C

CIT 208 MODULE 3

Common Interface Message (CIM), a First Union pietary standard.
Both the front-end and back-end components of thelication are
dependent on the message format. Using XML as tita ¢rmat
isolates both sides of the application from futdn@anges and additions
to the messaging protocol.

C. Using XML tools to automate data flows

In developing this XML-based application, the Fik$hion and IBM
team created a service that converts the CIM intcXBIL document.
Another part of the application converts the XMLguest into the
appropriate format for the back-end processingesyst Finally, a third
service converts COBOL copy books into DTDs. Orlee ¢opy book
has been converted into a DTD, First Union cantheeDTD and the
XML4J parser to validate the XML document automeltic the bank
can then be sure that the XML document matchesCOG&OL data
structure that OS/390 expects.

Using Java technology and XML has been very subge$sr First

Union. According to Bill Barnett, Manager of the ddibuted Object
Integration Team at First Union, "The combinatidnJava and XML
really delivered for us. Without a platform-indedent environment
like Java and the message protocol independenaeseeved from the
use of XML, we would not have the confidence that distributed
infrastructure could evolve to meet the demand frmam ever-growing
customer base."

4.0 CONCLUSION

At this point, | hope you are convinced that XMLti®e best way to
move and manipulate structured data. If you areuswig XML already,
how do you get started? Here are some suggestions:

o Decide what data you want to convert to XML.Typically this
is data that needs to be moved from one systenmather, or
data that has to be transformed into a varietpohéts.

o See if there are any existing XML standards.If you are
looking at very common data, such as purchase graeedical
records, or stock quotes, chances are good thag@werout there
has already defined XML standards for that data.

o See if your existing tools support XML.If you are using a
recent version of a database package, a spreadsitesbme
other data management tool, it is likely that yeuisting tools
(or upgrades to them) can use XML as an input gpuddformat.

o Learn how to build XML-based applications. You need to
understand how your data is stored now, how it seedbe

151

CIT 208 ARRMATION SYSTEMS

transformed, and how to integrate your XML develepirefforts
with your existing applications. Benoit Marchalorking XML
column is a great place to start; you can find @aeru listing of
all his columns at http://www-
106.ibm.com/developerworks/xml/library/x-wxxmcol/

Join the appropriate standards groups. Consider joining
groups like the World-Wide Web Consortium (W3C),vesll as
industry-specific groups like HR-XML.org. Being aember of
these groups will help you keep track of what ipgening in the
industry, and it gives you the chance to shapdiuthee of XML
standards.

Avoid proprietary shenanigans. It is important that you use
only standards-based technology in your developnesfurts;
resist the lures of vendors who offer so-calledronpments to
you. One of XML's advantages is that you have ceteptontrol
of your data. Once it is held hostage by a propnetiata format,
you have given up a tremendous amount of control.

Contact the jStart team. If you think your enterprise could work
with the jStart engagement model, contact the teasee what
your possibilities are.

Stay tuned todeveloperWorks. Our XML zone has thousands of
pages of content that deal with various XML topicgluding
DTD and schema development, XML programming, ameating
XSLT style sheets.

5.0 SUMMARY

In this unit you have been introduced to the funeatal concepts of
XML, XML document rules, document content, XML pragiming

interfaces, XML standards and the various Casei&uaf XML Data

Framework.

6.0TUTOR-MARKED ASSIGNMENT

152

Briefly explain the concept of XML and elaboraie why XML
Is required for modern day application development
Define the following terminologies

a. error fatal error

b. at user option validity constraint

C. well-formedness constraint match

d. for compatibility for interoperability

Design an XML Document for a personnel addressk
Design an XML Document File for New User Emaiégistration

CIT 208 MODULE 3

70 REFERENCES/FURTHER READING
Here are some resources to get you started:

The dW XML zone is your one-stop shop for XML resources. See
www-106.ibm.com/developerworks/xniibr everything you always
wanted to know about XMLXML tools: developerWorksas "Fill
your XML toolbox" articles that describe XML prognaning tools for a
variety of languages:

C/C++: See Rick Parrish's article at www-
106.ibm.com/developerworks/library/x-ctlbx.html
(developerWorksSeptember 2001).

Java: See Doug Tidwell's article at www-
106.ibm.com/developerworks/library/j-java-xml-
toolkit/index.htm{developerWorksMay 2000).

Perl: See Parand Tony Darugar's article atwww-
106.ibm.com/developerworks/library/x-perl-xml-
toolkit/index.htm{(developerWorksJune 2001).

PHP: See Craig Knudsen's article at www-
106.ibm.com/developerworks/library/x-php-xml-tobhiml
(developerWorksune 2000).

In addition to these articles, see David Mertzisenw of Python XML
tools in his article "Charming Python: RevisitindMX tools for
Python" at www-106.ibm.com/developerworks/library/I-
pxml.html.

XML units: Dozens of units on XML topics are available on

developerWorks see http://www-
106.ibm.com/developerworks/views/xml/units.j&p the latest
list.

IBM's jStart team: The jStart team works at very low cost to help
customers build solutions using new technology (XMWeb
services, for example). In return, those custonagnee to let
IBM publicize their projects as a case study.

153

CIT 208 ARRMATION SYSTEMS

UNIT 3 XML AND XML QUERIES
CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content
3.1 General Introduction
3.2 XML and Relational - Opposites Attract
3.3 XML and Relational: Four Approaches
3.4 SQL/XML
3.5 XML Publishing Functions
3.6 The XML Datatype
3.7 SQL/XML Mapping Rules
3.8 XQuery and Native XML Programming
3.9 Native XML Programming
3.9.1 XML is not Objects!
3.9.2 XML is not just text!
3.9.3 What should a Native XML Programming
Language do?
3.10 XQuery and SQL/XML Views
3.11 Spanning Sources: XQuery, Web Messages, and
Databases
3.12 XQuery for Java (JSR 225)
3.13 SQL/XML and XQuery: Do we need both?
4.0 Conclusion
50 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION

In this unit, you will be introduced to the undarsting of Extensible
Markup Language (XML) and basic XML Queries. Youlwiso learn
about central notions of XML.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

o define XML
o write and use XML Queries to solve real life praobte

154

CIT 208 MODULE 3

3.0 MAIN CONTENT

3.1 General Introduction

Most web applications have connections to databasdsuse XML to
transfer data from the database to the web applicand vice versa.
Every major database vendor has proprietary exaaador using XML
with relational databases, but they take compladéfgrent approaches,
and there is no interoperability between them. Mdeayelopers need to
be able to write applications that work for datasagrom multiple
vendors. XQuery and SQL/XML are two standards tiss declarative,
portable queries to return XML by querying databbth standards, the
XML can have any desired structure, and the queaesbe arbitrarily
complex. XQuery is XML-centric, while SQL/XML is SQcentric.

SQL/XML is an extension of SQL that is part of AMNSIO SQL 2003.
It lets SQL queries create XML structures with a fpowerful XML
publishing functions.

For a SQL programmer, SQL/XML is easy to learn beeait involves
only a few small additions to the existing SQL laage. Since SQL is a
mature language, there are a lot of tools andsirnature for SQL. For
instance, SQL/XML uses JDBC to return results, Hrede is currently
no equivalent standard API for XQuery. SQL also fuactionality not
yet found in XQuery, such as updates or storedguioes.

Note

SQL/XML is completely different from Microsoft's IQML, a
proprietary technology used in SQL Server. The lainty in hames has
caused a great deal of confusion in the industry.

XQuery is a completely new query language that X3k as the basis
for its data model and type system. It is beingettegped in the XML
Query Working Group [XQWG], which is a part of théorld Wide
Web Consortium. In this paper, we characterise XQ@s a "Native
XML Programming Language". XQuery is based on XNiLthe same
way that SQL is based on the relational model ojeakoriented
languages are based on the object-oriented motidIL-is central to its
type system, in which elements and attributes @stgs fundamental as
integers and strings. Although XQuery per se hascoaocept of
relational data, several products and many projpctsvide ways to
query relational data using an XML view of the detse, and the need
to make this possible has influenced the desigk@biery throughout
its development. XQuery allows you to work in thé/X world no

155

CIT 208 ARRMATION SYSTEMS

matter what type of data you are working with -atienal, XML or
object data.

XQuery is ideal for native XML programming. Whenedswith XML
views of relational data, it is also ideal for geerdata that must
represent results as XML, to query XML stored iesmr outside the
database, or to span relational and XML sources.

For queries based only on relational data, SQL/Xahd XQuery have
substantially similar functionality. However, theayin which a given
task is done is quite different, since SQL/XML ogtes on the
borderline between SQL and XML, and XQuery livesaipurely XML
world. Even when the data is all relational, the tanguages appeal to
very different audiences - SQL/XML is very muchetension of SQL,
designed for SQL programmers, and XQuery takesralypXML view
of the world. For queries that span relational XML sources, XQuery
has important advantages.

This talk uses a series of concrete queries writteeach language to
show the advantages of each. It explains why wel he¢h languages,
discussing the ways in which the languages diffedt & which they
overlap. It also explores the role of SQL/ XML mamys as a way of
creating XML views for XQuery.

3.2 XML and Relational — Opposites Attract

XML and relational databases are tightly wed in tvasb applications,
but a look at the two models shows that it is ahkaly marriage -
though a necessary one. The relational model isdasn two
dimensional tables which have neither hierarchy significant order.
XML is based on trees in which order is significaimt the relational
model, neither hierarchy nor sequence may be usedmodel
information; in XML, hierarchy and sequence are thain ways to
represent information. Although this is one of there fundamental
differences between the two models, it is by nomsdhe only one.

In many environments, the same information is regméed in relational
databases when it is stored or queried, but in Xiden it is exchanged
or displayed on web pages. These representatiensfan completely
different due to the differences in the models.

On web pages, XML is useful because the structirkML closely
matches the structure used to display the samemiation in HTML. If
you look at web pages, they often use a distintuttyarchical structure
to present data for users - after all, users donaott to look at a bunch
of tables and do joins in their head.

15¢€

CIT 208 MODULE 3

But most of the data for these web pages comes frelational
databases, and needs to be converted to appro}hdiehierarchies.

For web messages, the format of a web messag¢ers sppecified by a
standards organisation or a trade partner, ane floesiats are generally
hierarchical. Again, the data for a web messagegdly comes from

relational data, and the consumer of a web messtige needs to put
data into a relational database.

For instance, suppose a consulting company needgptesent a set of
projects and the companies for whom the projeasbaing done. In a
relational database, this might be representethdyailowing tables:

Projecta
rrojid Hama custIid
1 Meduaa 1
2 Pegasusa 4
g Typhon 4
10 Sphinx 5
Cuatomers
Custid Nams City
1 Woodworks Baltimore
2 Software Solutiona Boston
3 Food sSupplies Hew York
4 Hardware Shop Washington
5 Booke Inc. New Orleans

In SQL, if we want to see the projects associati#d @ach customer, we
would do the following query:

select *

from Customers ¢, Projects p
whare c.CustId = p.Custid
order by c¢.CuzatId, p.Projid

157

CIT 208 ARRMATION SYSTEMS

Here is the output of the above query:

Custid CustName city FrojId Projlame
1 Woodworks Baltimore 1 Medusa
4 Hardware Shop Washington 2 Pegasus
4 Hardware Shop Washington 8 Typhon
5 Booka Inc. Naw Orleans 10 sphinx

Suppose we want to translate this information XML for use on a
web page, in a document, or in a web message. hiket XML
applications, we will leverage the hierarchy of XMio express
relationships, listing the projects for each customwithin the element
that represents the customer:

«?7xml verslon="1.0" encoding="UTF-3"7>
zCustomerss
<customer id="1"s
enama>Woodworks</names
ecltysBaltimore</citys
<projectss>
cproject 1d="1"><name>Medusae</names<,/projacts
</projactss
</customars
ecustomer id-=m4rs
cname>Hardware Shop</name>
<city»Washingtons/city>
<projectas
eproject id="2"secnamesPegasuge/names«<,/projacts
eproject id="3'senamasTyphons/namese</projects
</projacts>
< /customars
<l-- |11l BNIP Il --=
</customerss

Note that in the original SQL tables, each custoimeepresented only
once. This is also true of the XML. The SQL ressdtt, however,
contains multiple rows for a given customer if thaistomer is
associated with more than one project, and thess contain duplicate
information. Translating this result set into thesded XML is tedious
for the programmer. And just as a single relatiateihbase may be used
with an infinite number of queries, it may also bged to create an
infinite number of XML documents with different satures. Today,
many programmers spend a great deal of time ddmg kind of
translation.

15¢

CIT 208 MODULE 3

3.3 XML and Relational: Four Approaches

XML applications that use relational data can cleodsom four
approaches, each with distinct advantages and\disgaes. The first
three of these are compared in some detail, witthe ceamples, in
[SQL/XML-JDBC].

The programmer can use JDBC or ODBC together wikX $r DOM
and perhaps XSLT to transform the results of SQérigs to XML. For
instance, the programme might first query for costos, then perform
an additional query to find the projects associatgti each customer.
This is inefficient because of the number of queraguired.

Another approach would be to use SQL to createbée tthat lists
customers and their projects, and pick throughrtves to determine
when a row represents a new customer. This requims code, but is
more efficient. Both of these approaches requgeaicant amounts of
tedious code, but they are often used when databdependence is
important.

The programmer can use the XML extensions providgdhe major
database vendors. These are based on severalediffapproaches.
Some of these are simpler to use or maintainahle dthers, but they all
make the task easier. However, since these extensmre all
proprietary, they are not an option when a databaependent solution
is needed.

The programmer can use SQL/XML, which is part ofLSXD03. For a
SQL programmer, this approach requires little nearning - a small set
of XML publishing functions have been added to SQlallow queries
to create any desired XML structure. This approath be explored
with examples in the next section. SQL/XML is lggisupported by
Oracle and IBM, but not by Microsoft. Database-ipeledent
implementations of SQL/XML are also available, anach be used with
any major relational database. SQL/XML can be usél traditional
database APIs such as JDBC.

The programmer can use XQuery, a native XML quanguage. Since
XQuery is a new language, it requires more learnfog SQL

programmers, but it is likely to be more natural XML programmers.
Unlike SQL/XML, XQuery is optimal for processing XM and it is

also particularly good for applications that musigess XML together
with relational data, with full support for XML. Mb of the major
database vendors intend to support XQuery. The dtesdardized API
for XQuery, XQuery for Java (JSR 225), is now beileyeloped under

159

CIT 208 ARRMATION SYSTEMS

Java Community Process, and is expected to beablaithortly after
the XQuery Recommendation is released.

3.4 SQL/XML

SQL/XML refers to the XML extensions of SQL. Theme developed
by INCITS H2.3, with participation from Oracle, IBMMicrosoft
(which does not plan to implement SQL/XML), Sybased DataDirect
Technologies. In SQL 2003, these extensions include

o XML Publishing Functions
o The XML Datatype
. Mapping Rules

The XML Publishing Functions are the part that directly used in a
SQL query. The XML Datatype governs the result afuery, and the
Mapping Rules determine how SQL data or metadatapeesented as
XML.

3.5 XML Publishing Functions
The XML Publishing Functions allow SQL to createy atesired XML

structure. They are part of SQL 2003, and can leel us normal SQL
expressions. Here are the XML publishing functiohSQL 2003:

xmlelement() Creates an XML element, allowing tiaene
to be specified.
xmlattributes() Creates XML attributes from colusnuising

the name of each column as the name of the
corresponding attribute.

xmiroot() Creates the root node of an XML docuime

xmlcomment() Creates an XML comment.

xmlpi() Creates an XML processing instruction.

xmlparse() Parses a string as XML and returns the
resulting XML structure.

xmlforest() Creates XML elements from columnsngsi

the name of each column as the name of the
corresponding element.

xmlconcat() Combines a list of individual XML vals to
create a single value containing an XML
forest.

xmlagg() Combines a collection of rows, each

containing a single XML value, to create a
single value containing an XML forest.

16C

CIT 208 MODULE 3

Let us compare a traditional SQL query with onet tiiges an XML
publishing function. Here is a traditional SQL quethat shows
customers and their associated projects:

gelect c.CuatId, c.Name as CustName
from customers c

Here is an excerpt of the result:

oustId CustName

1 Woodworksa

4 Hardwars shop

g Photo Shop

g Computer Suppliea

Now let is wrap the result in XML elements usingl&l@ment(), one of
the publishing functions:

select xmlalement (name "Customar™,
xmlalement (name "CustId", c.CustId),
xmlalement (nams "CustName", c.Mame)
xmlalement (name "City", c.City))
from Customers o

Each row in the result contains one Customer elém&nCustomer
element looks like this:

=Cuatomars
eCustIdsle/CustIids
cCustNamasWoodworkse< /CustNamea »
<City=Baltimore«/Cltys

</ Customer>

xmlforest() is an XML publishing function that ctea elements from a
list of columns, using the name of the column as tlame of the
element. Using xmlforest() simplifies many querggnificantly. For

instance, the following query is equivalent to pinevious one:

select xmlelement iname "Customer",
xmlforeat{c.CustId, c.Name as CustWame, c.City))
from Customers o

Now suppose we want to show customers and the gsogssociated
with them. This is easily done with the followin@BE query:

161

CIT 208 ARRMATION SYSTEMS

gelect *

from Customers ¢, Projects p
where c.CustId = p.CuatId
order by c.CustId, p.ProjId

However, the result of this query is that showrthiea CustomerProject
table in the previous section, with one row forre&ustomer/Project
pair. If a customer is associated with more tham pmoject, there will be
a row for that customer for each project. Here 8/XML query that
creates the XML equivalent to that table:

gelect xmlelement (name "CustcmarProj",
xmlforestic.CustId, c.Name as CustWName, p.FProjId, p.Name as ProjName))
from Customers ¢, Projects p
whare p.CustId=c.CustId
order by c.cCustid

Here are the results of this query:

<CustomarPro]>
cfustId=le/CustIds
<CustNamesWoodworks< /CustNames>
<ProjId=le/Projids
<ProjNams-Meduza</ ProjHams >

«/CustomerPro]s

cfustomerProl>
=CfustId=4«/CustId>
<CustName>Hardware Shope</CustHame:
<ProjId=2<,/ProjIds
<ProjNans»Pegasude /Projlames

=/ CustomerPro]s

2CUaLomerPro]) >
<CustId-4</CustIds>
zCfustNamg>Hardware shope/CustHames
<ProjId=é</Projld>
=ProjName>Typhonis/ ProjHame»

«/CustomerProd >

This is a straightforward XML translation of the S€esult set shown in
the previous section, but for most XML applicatiahss not what we
would want. Instead, we want to represent eachomuest once, with a
list of that customer's projects, as shown in tHdLXoutput in the

previous section. In SQL/XML, this can be done lsying a sub-query.
Here is a subquery that retrieves the projects cesteal with each
customer. In this subquery we use xmlattributes) XML publishing

function that creates attributes within an elemérite names of the
attributes are taken from the names of the columns.

162

CIT 208 MODULE 3

{aalact xmlelemant (name project,
¥mlattributea (p.ProjId as id),
xmlforest (p.Name as name))

from Projects p

whara p.CustId=c.Cuatid)

Here is the output of the above sub-query whenstl@is 4:

cproject id='2'>
<name>Fagasua</nama>

«/projects

cproject id='g'>
<name>Typhon«,/name:

«/projects

This output contains two rows, with one element eaach row.
Subqueries in SQL/XML are allowed to return onlyeawow; therefore,
to return more than one row of values in a SQL/XBlUbquery, they
must be combined to form a single value. xmlagg)an XML
publishing function that produces a forest of eletadoy collecting the
XML values that are returned from multiple rows amhcatenating the
values to make one value. Here is a query that tiigeabove subquery
to create the XML output from the previous section:

gelect
xmlalement (name customer,

¥xmlattributes (c.custid as id),

¥mlforest{c.Mame as name, <.Jity as city),

xmlalement (name projects,

[select xmlagg{xmlelement iname project,
¥xmlattributes (p.ProjId as 1d),
xmlforeat (p.Hame as name))]
from Projects p

whare p.Custld=c.CustId])} az "cuatcmer-projects®

from Customera o

The above query illustrates a very common pattegduo create XML
hierarchies using SQL/XML.

3.6 The XML Datatype

The XML Datatype is a datatype in the same way ithi&iger, date, or
CLOB are datatypes in SQL. Since SQL/XML allowsuery to create
XML instances, there must be a datatype that cpomds to these
instances. It is anticipated that the XML Datatyp# be supported in
JDBC 4.0. It is too early to say exactly how it mie used in that
specification, but it is likely that it will retniee XML values much like
other values, and that XMLvalues can be retrievedext, DOM, or
SAX events. This is the approach currently take®bjaDirect Connect
for SQL/XML. To illustrate this, let us use a SQIMX query to create

163

CIT 208 ARRMATION SYSTEMS

a table with two columns, an integer containing Cestld and an XML
column containing the XML output from the previaysery. Here is the

query:

select c.CustId,
xmlalament (name customer,

xmlattributez (c.Custid as id},

xmlforest (c.Name as name, c.City as city),

xmlalament (name projects,

[select xmlagg(xmlelement (name project,
xmlattributes (p.Projid as id),
¥xmlforeat (p.Nams as name)))
from Projects p

whara p.CustId=c.CuatId))) as "cuastcmer-projects"®

from Customers c

Suppose the above query is in a string called d§timg. Then the
following Java code can be used to execute theygeed retrieve
values.

Statement statement=con.createStatement();
ResultSst ra=statement.executefuary (aglxmlstring) ;
while(rs.next())

int id=ra.getInt(l);
com.ddtek. jdbe. jxtr. XMLType xmli=

{com.ddtek. jdbc. jxtr. ZMLType) rs.getchbiect (2] ;
org.wic. dom.Document doc=xmlC.getDoM(] ;
dosomethingUseful (id, doc);

}

The XML Type also plays a second important rolelational databases
now routinely store XML in individual column, antheé XML Type
provides a standard type for such columns, whiakseful both in SQL
and in JDBC.

6.1SQL/XML Mapping Rules

The XML publishing functions use SQL values to teedXML values,
and these XML values have W3C XML Schema types. Whe
discussed the XML publishing functions, we did address specifically
how the XML representation is determined. The magpiules of
SQL/XML describe in excruciating detail how SQL we$ can be
mapped to and from XML values, and how SQL metadata be
mapped to and from W3C XML Schemas.

164

CIT 208 MODULE 3

To give a flavor for the level of detail in whichig is specified, here are
the equivalent headings from the SQL/XML specifimat table of
contents:

. Mapping SQL character sets to Unicode.

o Mapping SQL <identifier>s to XML Names.

o Mapping SQL data types (as used in SQL-schemasetimed
SQL-schema objects such as columns) to XML Scheata d
types.

. Mapping values of SQL data types to values of XMth&na
data types.

o Mapping an SQL table to an XML document and an XML
Schema document.

o Mapping an SQL schema to an XML document and an XML
Schema document.

o Mapping an SQL catalog to an XML document and anLXM
Schema document.

. Mapping Unicode to SQL character sets.

o Mapping XML Names to SQL <identifier>s.

These mappings can be parameterized in several, wastading the
target namespace for the result, whether to hamdle using xsi:nil or
absence, and whether to map a table to a singheeakeor a forest of
elements. Here is an XML representation of the @usts table shown
earlier, using a single element for each tableramthrget namespace:

emyachemas

=Customerss>

<Fows»
<fustId>1l«/Custids>
<Name>Woodworksae /Hame:
<AddrasasBaltimore«/Addreass

</Tows

<FoW>

«CustId=z«/CustIids
<Name=Software Scluticns«/Names
<hAddrasa>Bostone /Aaddreass
=/ rows
<l-- 111 SBHIP Il --»
< /Customara:
My achemas

Here is an XML representation of the same tablewgus forest of
elements to represent each table:

165

CIT 208 ARRMATION SYSTEMS

<myachemas

=Customers>
eCustIdsle/Custids
<Name>Woodworkae /Name:
<Addresa>Baltimore</Addreas>
</Customeras
=Customerss
<CustId>2</Custid>
<Name>Software Scluticns</Name>
<Addresa-Bostone/addreass
</Customaras

<myachemas

These mappings are also defined on the metada¢h IEgr instance,
SQL/XML defines how the datatypes of SQL are repnésd in the
equivalent XML Schema. Each SQL type is derivednfran equivalent
built-in W3C XML Schema type. Where needed, facats used to
represent constraints added to those of the base ty

<¥ad:simpleType name="INTEZER":
<¥ad:reatriction base="xad:int" /=
< /¥xsd:simplaType:

<¥gd:simpleType name="CHAR 50"=
exgd:restriction base-"xsd:string"s
<xad:length value="50"/>
</xad:reatricticns
</xad:simplaTypes

<Customerss

<Fow>
<CustIds1le/Custid>
<Name>Woodworkas< /Names
<hddress xal:nil="trua" />

< /TOW>

«l-- I1l] BNIP 11l --=

As mentioned above, there are two ways to represefit values.
Suppose the City column may have null values. Hera row in the
Customer's table that represents a null value ugiadirst strategy, a
nilled element:

«CUSComers=
=F0wW>
eCustIds1le/Custids

<Name>Woodworksa< /Name »
</TowW>
<l-- 1Ll BNIF 1l -->

16€

CIT 208 MODULE 3

6.2 XQuery and Native XML Programming

The XQuery language was designed for querying ocgssing XML.
Just as a traditional SQL query takes a set oésahs input and returns
an XML table as its result, XQuery takes sequermfesML nodes as
input and evaluates to a sequence of XML nodes. édew from the
very beginning, XQuery was designed to allow XMlews of non-
XML data, as well as serialised forms of non-XMLltalalhe reason for
this is simple: XML is used to represent almost aogceivable kind of
information, and it is easiest to integrate infotioma if it is given a
common view.

If everything looks like a nail, all you need ilhammer. Conventional
Internet applications often store and query dabaguSQL, process data
using Java or C#, and exchange data as XML. UsiQueXy, it is

possible to store, query, process, and exchange aatXML. This

eliminates some of the mismatches that cause coatighs when

working with XML in other environments.

6.3 Native XML Programming

XQuery is a language designed for integrating daten multiple
sources, including XML sources like documents obweessages and
databases. It does this by leveraging the abilityXML to model
virtually any kind of data.

To query anything with XQuery, it must be preserasdhough it were
XML, either by serializing it as XML or by creatingn XML view of
the data through some form of middleware. For i@hal data, most
systems use the SQL/XML mappings for the XML vieince they are
quite suitable and have been specified in detail.

XML is the basis of XQuery's type system and datadeh The

fundamental types of XQuery include the kinds ofle®found in XML

documents: document nodes, elements, attributespcepsing

instructions, comments, and text nodes. XQuery sigports the built-
in datatypes of W3C XML Schema for representingegets, strings,
dates, and other datatypes - these built-in dag¢atygre predefined in
XQuery, and are available with or without a schema.

Most modern programming languages provide some fofraomplex
user-defined types, such as structures or objéctXQuery, the only
complex types are XML documents, elements, atteuand W3C
XML Schema complex types. There is no need to waitechema to
create and manipulate complex XML structures in ¥Qu

167

CIT 208 ARRMATION SYSTEMS

However, if a query needs to ensure consistentofigbe types in a
schema, a schema may be imported into a query. fdssan effect
analogous to importing structure or class defingioin an object-
oriented language.

Programmes tend to revolve around data, and theplesndatatypes
used in a language have a profound effect on thethat a language is
used. As a result, languages are sometimes id=htify the way they
represent complex data; for instance, there arectbyiented languages
and relational query languages. In this sense, XyQcen be considered
Native XML Programming Language. XSLT and XPath als® Native
XML Programming Languages.

Most other languages used to process XML, includiaga, C#, Perl,
and Python are not. SQL/XML is fundamentally aneasion to a
relational query language, providing a bridge to XM

The concept of a Native XML Programming Languagenésv, and

many XML programmers are used to thinking of XMLterms of the

constructs used in the languages with which theycgss XML. On

XML-related mailing lists it is reasonably common $ee beginners
assert that XML is fundamentally relational or atjeriented, and even
sophisticated XML programmers have been known seraghat XML

is just text. In fact, the phrase “XML is Unicodethvpointy brackets”

has come to identify a vocal part of the XML commntyn

3.9.1 XML is not Objects!

An XML document can be represented using objects] this is

precisely the approach taken by DOM and JDOM. AnLXpérser can
be used to create an appropriate object represmntaf an XML

document without involving the programmer. Howetbke fundamental
types of XML are not fundamental in object-orientiesthguages, so
casting and conversion is frequently required. Hiry, the basic
notions of hierarchy and containment are not dyestipported in the
object-oriented model, so explicit navigation igeof required. This
causes significant work for the programmer.

Adam Bosworth pointed this out with the followingxaenple
[Bosworth]. Suppose a programmer wants to compuige/jearnings
ratios from an XML feed. An individual stock mighe represented as
follows:

16¢

CIT 208 MODULE 3

zgtocks
<name>Cindy's Sncowshoes</namax
<ticker>NASDR:RAKD</tickers>
=pricas2z0.00«/prices
<ravenues>2.00</revenues>
<eXpensass1.00<«/expengess
«/stocks

To compute the price/earnings ratio, we use thedita "pe = price /
(revenues - expenses)". To do this with the DOM alge need to parse
the XML, navigate to the places where this infororatis found, and
convert the text of the document to the appropuiatatype. Here is the
DOM code Adam provides for this:

Tree £ = ParseiML|"stock.xml") ;

FERatio = number (t.getmember (" /atock/pricen))
/[{number (t.getmember (" /atock/ revenues") -
numbarit.getmenber ("/stock,/expenses"))

This solution would have been much messier if Aded not used the
path expressions of XPath, a simple Native XML lzege. In XQuery,
path expressions are part of the language, and mu@nversions are
automatically done for untyped data. If the dataaidated against a
schema, the types assigned by the schema are Tbe&d.makes it
possible to solve the same problem much more simply

let gstock := document ('stock.xml'] fatock
return $atock/price div (sstock/revenue - Satock/expenzas)

For XML-centric applications, an object-orientenesentation of an
XML document imposes unneeded overhead that coatpic
programmes.

3.9.2 XML is not just Text!

To many intelligent and articulate XML programmeYXML is just
Unicode with pointy brackets" is almost a statemanit faith.
Predictably, these people also complain that itifficult to process
XML without a parser. For instance, Joe Gregoricej§ariol] notes that
in XML this document:

169

CIT 208 ARRMATION SYSTEMS

zitem xmlns:dc="http:/ /purl.crg/dc/elements,/1.1/">
«titlasMatabDataz/titles
edc:date=2003-01-12T00:18:05-05:00«</bo:dates
elinkshttp: //bitworking. org/news/8</link>

«descriptionsUpon waking, the dincsaur...s/descriptions
</ itams>

must be treated as identical to this document:

<roct:item xmlns:be="http://purl.crg/de/elaments/1.1/" xmlna:root="" »
<root:titlesMetaData</root:titles

<bc:date»>2003-01-12T00:18:05-05:00<,/bo:dates

<root:link=http://bitworking. org/news/g</roct:link>
cdescriptionsUpon waking, the dincsaur...e</descriptions
</root : 1tams

To many of us, this is merely an indication that XMust first be
parsed and converted to an appropriate data madefebit can easily
be processed. In fairness to Joe, he initially meslithis as well, but
then changed his mind:

o More XML experience is gained by yours truly and many
occasions | have found myself pining for the apild do regular
expression processing of XML. If only the pathokxyiof the
above examples did not exist then | could use abauation of
XPath and regular expressions to perform XML malaipons
that would be easier for me to implement, undecstamd
maintain.

o Today | reached the breaking point. The problemrmas with
regular expressions, the problem is with XML. Tla¢hplogies in
XML that preclude the use of regular expressiores jast that,
pathologies, and ones that need to be excised.

As a result, he suggests that XML be subset agvistl

o all namespace declarations must be done in thesteotent.

. never a declaration for the " namespace i.e. iélament sits the
"™ namespace then the element name will never have
namespace qualifier.

o no CDATA sections.

. no DTDs.

17C

CIT 208 MODULE 3

The above restrictions would make it easier for@gmmmer to work
with XML without using an XML parser, but it is ukély that the XML
community will replace XML with something along #e lines -
especially since there are important usage scemdoio features like
DTDs, schemas, and the ability to build compoundudeents without
knowing, at the root level, all of the namespaded tay be used in a
document. More to the point, Joe's original reafwntrying to solve
these problems with XPath and regular expressi@sstiat the standard
APIs do not make it easy to solve many simple @il

Looking at his article as a whole and other artide has written, we
believe that many of these difficulties are caubgdhe same kind of
semantic mismatches that a Native XML Programmiragpduage is
designed to solve.

In this paper, we assume that XML will remain as asd that for
general processing, the best approach is to u¥dvknparser to build a
data model instance from the XML documents, andryquke data
model instance. Not everybody believes this iskibst approach. Tim
Bray, one of the editors of the original XML spégdttion, objects to the
Native XML Programming solution because he objéatthe notion of
an XML data model: [Bray]

The notion that there is an "XML data model" idysdnd unsupported
by real-world evidence. The definition of XML is rdgctic: the

"Infoset” is an afterthought and in any case isif@eed from being a
data model specification that a programmer couldkwath. Empirical

evidence:

o | can point to a handful of different popular XMh-Java APIs
each of which has its own data model and each a¢hworks.
So why would you think that there is a data moHeté to build a
language around?

. Tim first says that there is no data model for XMhen argues
that there are several. The differences among thate models,
while annoying, are not great, and could have leerided if
XML had had a full-fledged data model. The diffezes between
the DOM data model and the XPath data model aré kmelwn
in the XML world.

XQuery, XPath, and XSLT now use one common dataatechich can
represent both XML and the XML Schema datatypeth@lgh it would
have been convenient if XML had defined a data rhoihere is no
requirement that the data model used by a NativeL Xogramming
Language be the same as any particular data meddlin a Java API.
As long as the data model supports the structur&XMti directly,

171

CIT 208 ARRMATION SYSTEMS

without losing or adding information in violatiorf the XML spec, it
can be used as the basis for processing.

Tim also suggests that XML is "syntactic", as thoubis implies that
there is no data model. This implies that syntaxl atructure are
opposites, which is rather surprising, since theppse of syntax is to
describe the structure of a language. In the XMkdremendation, the
structure that corresponds to a data model isccétle logical structure:

Each XML document has both a logical and a physstaicture. [. . .]
Logically, the document is composed of declaratioesements,
comments, character references, and processingudtishs, all of
which are indicated in the document by explicit kogr.

Like most modern computer languages, XML uses a BiNHescribe
the syntactic representation of these structures.iristance, here is a
production from the XML Recommendation:

[3%] element := EmptyElemTag| STag content ETag

The XML Recommendation is largely a descriptiontloése logical
structures and the relationships among them. Ftamce, consider the
following text:

o Example: Theelementstructure of arKML document may, for
validation purposes, be constrained using elemgpée tand
attribute-list declarations. An element type deati@n constrains
the element'sontent

o Element, XML document, and content all refer to idad
structures that are represented in the BNF. Thesgcdl
structures, taken together with the relationship®rag them as
described in the XML Recommendation, come very elts
being a data model, but the data model was not @idkcribed.
The whole point of parsing is to create structdres a sequence
of characters, using a grammar to determine whiclctsires to
create. When a parser is used to interpret theacteas of a
programme in Java, it creates an Abstract Syntar.TWhen it is
used to interpret the characters of XML, it creaesdata model
instance. We use parsers because:

o The parsed structure is more convenient for furpimecessing,

. The parsed structure distinguishes information fromise,
eliminating differences in the character repredemtahat are not
significant in the relevant model, and

o The parsed structure can fill in information notplkoitly
represented in the serialised form.

17z

CIT 208 MODULE 3

However, an XML parser is not enough. A parserteea convenient
representation of XML. We need a Native XML Prognaimg
Language to provide convenient processing of tivH X

3.9.3 What Should a Native XML Programming Language
Do?

A Native XML Programming Language must provide fhedamental
operations needed for XML. Some of these operatiares required
because of the structure of XML itself.

A Native XML Programming Language should be ables&sily find

anything in an XML structure. XQuery, like XSLT,as XPath for this
purpose. Every XPath expression is also an XQuepression. For
instance, if the variable $cust is bound to a Qusis element that
contains the rows of a relational table, represkateng the SQL/XML
mappings, then the following path expression fiatishe Custlds from
that table:

Souat /row/CustId

A Native XML Programming Language should be ableagily create
any XML structure. XQuery uses the syntax of XMLl tbis purpose.
For instance, the following XQuery expression aesat Customer
element:

«Cuatomar s
<CustId=17</Custids>
<Name>Fard Berfle</Name:

</Customers

When XQuery uses the syntax of XML, a curly braseapes to the
syntax of XQuery, allowing dynamic expressions ¢oittserted. Here is
an example that creates a customer with a new andgntifier:

zCuatomar
<CustId>{ max{ $cust/row/custid) + 1 }e/Cuatids
<Hame=Fard Berfle«/Name:

</ oustomers

A Native XML Programming Language should be able easily
combine and restructure information from XML sowceperating at
the logical level without requiring the programnterthink about the
internal representation of the XML. For instand¢eye are operating on
the SQL/XML views of the customers’ database, thiiowing XQuery

173

CIT 208 ARRMATION SYSTEMS

combines customers and projects to show the namewstomer and all
projects associated with that customer:

for $c in Zcust/row
let $p := Sproj/row[CustId = Sc/Custid]
return
<customars
ccustNames{ string{$c/nama) }e/custVames
<projlame|{ string($p/name) }e/projName=
< /cuatomars

A Native XML Programming Language should be ableetsily use
XML data in expressions. For instance, arithmeperations should be
able to work directly with XML content, observinget data types of
typed data and converting appropriately when thegoanter untyped
data. It should be able to leverage schemas tivat been imported into
a query, but work well on XML structures for whiclo schema has
been imported.

In short, a Native XML Programming Language shdwddable to work
with XML the way XML users think of it, easily penfming the kinds of
tasks that XML users need to have done. XQuerymatie to do just
that, based on the usage scenarios we gatherée it XML Query
Use Cases.

6.3 XQuery and SQL/XML Views

Some people seem to believe that the purpose ofe¥Qa largely the
same as that of SQL/XML - to allow XML structureslie created from
relational data. Although XQuery is useful for thask, it has relatively
few advantages over SQL/XML when this is all thatréquired. The
reason for this is simple: SQL is a language desigior handling SQL
data sources, and it does that very well. Adding LXl@gublishing
functions to SQL is a simple way to let it creat®llX However, it is
interesting to note that the SQL/XML views of reéatl tables have a
very constrained structure, and XQuery performedsooh views is
generally quite similar to the equivalent SQL/XML.

For instance, let us write an XQuery equivalenthte last SQL/XML

query we used. This query will operate on a SQL/XMew of the
relational tables. The Projects table is represkasefollows:

174

CIT 208 MODULE 3

<Projactas

<row>
<ProjIds=2</Projld>
<Name:>Pegasusd<,/Nama>
«CUStId>4«/CuUstIds

</Tows

<row>
<ProjId=g</ProjIds>
<Name>Typhon</Name:
<CustIds=4<,/Custid>

«/Tows

<l-- 111 SNIP 1Il --»

The Customers table is represented as follows:

zCustomarss
<Fows=
eCustIdsde/CustIds
<Name>Hardware Heavens/Names>
<Addresa-Washington=/Addresax
</Tows
<l-- 11] BNIP 1l -->

We want to rename these elements and create asesypaion that
shows customers together with their projects. Tagw should look
like this:

couatomar 1d = "4vs
<name-Hardware Heavens/name:s

<projectss
cproject id = "Z" name = "Pagasus"/»
eprojaect id = "8" name = "Typhon'/s
< /projectas
</customars

Here is an XQuery that creates the desired output:

for gc in Scuat/row
return
<customer id="{%c/Custid} -
<name>{ string($c/Name) }e</names
eprojactss

for Sp in sproj/row
where $p/CustId = 3c/CustId
return
cproject id="{$p/ProjId}" name=r{sp/Nama}"/>

</projactas
</customars

175

CIT 208 ARRMATION SYSTEMS

Let us compare this XQuery to the SQL/XML querynfrca prior
section:

SQLAML XQuery
selact for $c in Scust/row
xmlelement (name customer, return
xmlattributes (c.Custid as id), <customer id="{%c/custid}n=
xmlforest (c.Name a2 name, qname>{ stringd$chamej}<jname>
c.City as city), <projectss
xmlelemant (name projects, {
{8alact xmlagg(xmlelemant for p in Sproj/row
(name project, whare gp/custId = 3c/Custid
xmlattributesip.Projid as id), return
xmlforast (p.Name as name))) sproject id="{$p/Projidjr
from Projecta p name="{3p/Hame}" />
where p.CustId=c.CustId)}))
as "customer-projectan «/projectas
from Cuatomers ¢ </customers
Table 1.

In this example, as in most such examples, it id k@ argue that either
solution is particularly superior to the other. Het SQL/XML or
XQuery handle such tasks quite well. The real giiteiof XQuery is in
the ability to easily process XML, whether or nelational data is being
processed, including the XML that is frequentlyrstbin columns of
relational databases and the XML of web messagase XQuery also
works well on SQL/XML views of relational data, i particularly
useful when both XML data and relational data mhbst used in
processing.

This is explored in the next section.

3.11 Spanning Sources: XQuery, Web Messages and Blaase
XQuery, when combined with a SQL/XML view of a rabmal

database, is extremely good for processing XML togrewith relational
data. This is a very common requirement in manyirenments,
including web message processing environmentslldstrate this, we
will use example 1 from the SOAP Primer.

The task is as follows: an incoming message reguedtight to Los
Angeles departing from New York as follows:

17¢€

CIT 208 MODULE 3

«!-- Example 1 from SOAP Primer --=
zenv:Body >
cp:itinarary xmlns:p="http://travel.org/reservation/travel">

<p:departures
<p:departing-New Yorke/p:departings
cp:arrivingsLoa Angeles</p:arrivings
<p:departurebate>2001-12-14«/p:departurebates
ep:departureTimeslate afterncone/p:departureTimas
ep:asatPreferencesaisle«/p:seatPrefaranceas

< /p:departuras

«/p:itinerarys

According to the SOAP Primer, the proper resposge ipoint out that
there are three airports that depart from New Yedkthat the user can
be prompted to pick one. Here is the desired output

<env:Bodys>
ep:ltinerary xmlns:p="http://travel.ocrg/resaervation/travelms
cp:airportChoicea>JFK LGA EWRe/p:alrportchoiceas
</p:itinararys>
<fenv:Body>

Reading between the lines, we assume that ther@a idatabase
somewhere that lists the airports for each citye BQL/XML view of
the airports table might look like this:

<AIRPORTE >
<FOWs>
<CITY>Raleigh / Durhame/CITY=>
<AIRPCRT>RDU< /AIRFCRT>
</ rows
<TOW>
<CITY>New Yorke/CITY:
<BIRPORT>JFK< /AIRPORT>
< /rows>
<TOW>
«CITY>New Yorke,/CITY»
<AIRPORT>L3A< /AIRFPORT>
</ rows

We will assume that when there is only one airparia city, the output
should simply list that city, and that an error llobe raised if there is
no airport for a given city. The following XQuenamhdles all three of
these cases:

177

CIT 208 ARRMATION SYSTEMS

for fcity in doc("incoming.xml")//p:departing
let Sairports := sgl:tabla(vairports") /AIRPORTE//row [CITY = Scityl]
return
if (count{Zairports) = 0]
then <arror> Mo airports found for {Scity}tqferror;
alaa 1f (count (Sairports) = 1)
then <alrport={ string{Sairports/AIRPORT) }</airports
elaa 1f (count (fairports) = 1)
then
calrportCholicess

{

for &c in Sairporta/AIRPORT
return (string-wvalue(Sc }, " ")

I

<falrportChoicess
alasa ()

Note that this code operates at a level very clos¢he application
domain, rather than navigating XML documents andveating from
XML to appropriate types in the host language. Xhta sources and
relational data sources are treated in the same-w@ayhe query, they
both look like XML documents.

3.12 XQuery for Java (JSR 225)

SQL programmers are used to using APIs such as OBIDBC to set

up the environment, execute queries, and do primeess the business
domain using the data returned by a query. SimARlIs are expected to
emerge for XQuery. The first standard API for thispose is now being
developed under Java Community Process. It is knasviXQuery for

Java (XQJ), or JSR 225.

Significantly, the requirements of JSR 225 ensurat tboth XML
documents and XML views of databases will be suobhrand the
results of a query can be processed using JAXFS&hA.

3.13 SQL/XML and XQuery: Do we Need Both?

Although SQL/XML and XQuery are both XML query stkands, they
are based on quite different models, and fit bast different
architectures. SQL/XML fits cleanly into the retatal model as a
reasonably small extension to traditional SQL. Theans that it works
well in traditional SQL environments, providing ffuhccess to the
existing SQL language, including features like updaand full-text
queries that are not going to be part of XQuery

One of the other advantages of using SQL as a lmdlsat database

manufacturers have many years of experience inmaptig SQL
queries, which means that many of the optimizaigsues are well

17¢

CIT 208 MODULE 3

known. Also, it has existing APIs, including ODB@dJDBC. In short,
SQL/XML provides the functionality needed for ciegt XML from
relational data while still fitting cleanly into eh existing SQL
environment. SQL/XML implementations will be avéaila from Oracle
and IBM, but not Microsoft, and a cross-databaselementation is
available from DataDirect Technologies. Oracle'slementation also
provides functionality for querying and processikyIL as well as
SQL, and there is some interest in adding extessadong these lines to
SQL/XML. Some members of the SQL/XML task force wbalso like
to see parts of XQuery added to SQL/XML. XQueryg fihore cleanly
into the XML environment, providing Native XML Progmming for
both XML sources and non-XML sources accessedivigML view. It
is well designed for combining data from multipleusces, and is very
efficient for a variety of XML programming tasksottever, XQuery is
a brand new language — in fact, at the time ofimgjtXQuery 1.0 is
merely a Working Draft, not likely to emerge urttile second half of
2004. There is a great deal of enthusiasm surrogniQuery, most
major database vendors have announced support, fand there is a
great deal of research on optimizing XQuery. Howev&uery is a
much younger language, the industry has little Bgpee optimizing it,
and it lacks some features, including updates alttgxt, which are very
important for some kinds of tasks. Also, the APl XQuery, XQuery
for Java (JSR 225) is just now being developed.

4.0 CONCLUSION

In this unit we are confident that you have learbeth SQL/XML and
XQuery which will play an important role in XML ques, and that
XQuery will become very important for general pwspo XML

processing.

5.0 SUMMARY

Both languages will continue to evolve, trying dibih the functionality
found in the other. On the whole, we feel that SQUL is best for SQL
programmers who think of their task in terms of SQut need to create
results in XML. SQL/XML is used much like a repartiting language,
except that the reports are XML documents.

XQuery is best for XML programmers who are workingly with
XML, or need to work with XML and relational datagether. In the
short term, implementers and users of XQuery shbaldware that it is
both new and revolutionary - it shows great promisg we have less
industry experience with XQuery than with SQL/XML.

179

CIT 208 ARRMATION SYSTEMS

We are confident that both SQL/XML and XQuery wplay an
important role in XML queries, and that XQuery wikecome very
important for general purpose XML processing. NatixXML

Programming is a revolution waiting to happen, Z@@lery will be key
to this revolution.

6.0TUTOR-MARKED ASSIGNMENT

I With your acquired knowledge, design an XML Queoy the
computation of student personal information for iydepartment

il. Design an XML programme for an Electronic Votingsg&m.

7.0 REFERENCES/FURTHER READING

[XQueryExperts] XQuery from the Experts: A Guidetbe W3C XML
Query Language, by Howard Katz, Don Chamberlin, iBen
Draper, Mary Fernandez, Michael Kay, Jonathan Rad#iehael
Rys, Jerome Simeon, Jim Tivy, Philip Wadler. Addisbesley
Pub Co; (¥ ed.). (September 12, 2003) ISBN: 0321180607.

Jeffrey, Ullman .Relational Algebra.

Ramakrishnan and Gehrke Qhtabase Management Syste8$ed.).

Isabelle, BichindaritzDatabase Systems Design

Paul, WersteinRelational Algebra

18C

CIT 208 MODULE 3

UNIT 4 DATABASE RECOVERY
CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content
3.1 Data Integrity and Reliability
3.2 Database Recovery
3.3 Database Recovery Log
3.3.1 Definition of Data Recovery
3.3.2 Several Techniques for Damaged Media
3.4 Classification Criteria for Heterogeneous Datah
3.4.1 Database Sharing in a Heterogeneous Database
System
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION

Database recovery involves the process of makiogpa of database in
case of an equipment failure or disaster, thenvesirag or retrieving the
copied database if needed.

A database provides multiple autonomous centralgs®etl homogenous
views of data. The data in a database are struttaceording to a
schema specified in a data definition language (PDand are
manipulated using operations specified in a dataipodation language
(DML).

2.0 OBJECTIVES
At the end of this unit, you should be able to:

o describe the basic concept of database recoverpetedogeneity
and web services definition for database

describe the classification and techniques of destab

describe the classification criteria for heterogrrsedatabase
describe the database recovery log and technique

describe database sharing in a heterogeneous datsystem.

181

CIT 208 ARRMATION SYSTEMS

3.0 MAIN CONTENT

3.1 Data Integrity and Reliability

The integrity of a database comprises the accu@myectness, validity
and consistency of data. Although, database systmprovide little
protection against data error which are in the vealld before the data
are even loaded into the system, some protection bea built into
database to ensure that error within the systermarienised.

3.2 Database Recovery

Computer systems can fail, hardware can break dpragrammes have
bugs. Human procedures contain errors and peopke mastakes. All

these failure occur in database application. Itthen important to

recover database without any damage as soon amblpodshis can be
achieved by going back to a known point and rem®dbe workload
from there. The simplest form of this type is tokea copy periodically
of the database and keep a record of all transadhat have been
processed. Database recovery can be done in twe. way

Reprocessingsince processing cannot be resumed at a precise mipi
the next best alternative is to go to recovery viaollback/roll
forward.

This is to make a copy of the database (databasg pariodically and
to keep a log of the changes made by the transaatjainst the database
since the save.

Rollforward : The database is restored using the sort dataalhwdlid
transactions since the save are reapplied.

Rollback: we undo changes made by erroneous or partiaiggssed
transaction by undoing the changes they have madée database.
Then the valid transactions that were processéthatime of the failure
are restarted. Both of these required that a Idgaokaction be kept.

3.3 Database Recovery Log

A database recovery log keeps a record of all cbmngade to a
database, including the addition of new tables pdates to existing
ones. This log is made up of a number of log estezdch contained in a
separate file called a log file. The database regolog can be used to
ensure that a failure (for example, a system pawégige or application
error) does not leave the database in an inconsistate. In case of a
failure, the changes already made but not commétedolled back and

182

CIT 208 MODULE 3

all committed transactions, which may not have baeysically written
to disk, are redone. These actions ensure therityt@f the database.

3.3.1 Definition of Data Recovery

Restoring data from disks, tapes, CDs and digitait@ memory cards
that have been damaged by accidents, disasterserpswges and
malfunctioning electronics. Laptop hard disks aspeeially vulnerable
if users are constantly on the move.

The best data recovery technique is to have datady backed up on
another storage device either on the same computestwork server or
the internet. Data recovery becomes a simple copgegure after the
failed peripheral is replaced. At worst, applicasanay have to be re-
installed if only user data was backed up, butssitee applications are
vintage programmes that are no longer available ddita are far more
valuable than the software.

3.3.2 Recovery from Damaged Media

If there is no backup and data must be recoverdebrel are some
organisations that specialise in retrieving dabanfdamaged computers.
They may be able move the drive to a working compuir they may

have to open the drive and replace parts such ad/wate heads,

actuator arms and chips. Sometimes, the platterseanoved and placed
into another drive.

3.4 Classification Criteria for Heterogeneous Datahse

Data definition and manipulation languages are thasea data model
that defines the semantics of the constructs ardatipns provided by
these languages. Managing data in multiple pretiagisdatabases
entails dealing with their data distribution, syste(e.g. DBMS)

heterogeneity, and semantic (e.g. schema) hetesdgeApproaches to
managing heterogeneous databases including linkiegerogeneous
databases via the World Wide Web (www), organisthgm into

database federations or multidatabase systems,camstructing data
warehouses. Common to these approaches is alloworgponent

databases to preserve their autonomy, that isr tbheal definitions,

applications, and policy of exchanging data witheotdatabases (Bright
et al 1992).

Heterogeneous database systems have been traltjticlassified by
the type of schemas, extent of data sharing, amal a@ecess facilities
they support. Schema supported by a heterogenemtabate system
includes (Sheth and Larson, 1990):

183

CIT 208 ARRMATION SYSTEMS

o local view expressed representing the schemas oifponent
databases expressed in DDL of local databases and,
o global schema expressed in a common DDL, providingified

view of all component databases.

Thus, every database in a heterogeneous databsteensyan provide a
subset of its schema as its export schema intettacgher databases;
each database in turn can have import schemasildagcthe export

schemas of other databases in their local DDL (Hegmer and

McLeod, 1985). The global schema of a heterogendatabase system
can range from a loose export schema to a fullggiratted schema.
Similarly, local views of the system can range fraroose collection of
import schemas to an integration of the local sahewth all import

schemas. For example, a database federation caa haglobal

(federation) schema that provides users with aoumifview of the

federation and thus insulate them from the compbuatabases, or
local views that provide users with multiple vieafshe federation.

A data warehouse represents the materialisatioa gfobal schema.
That is, the warehouse database defined by thegsaihema is loaded
with data from the component databases. Unlike bda federations
and data warehouses, multidatabase systems aeetamis of loosely
coupled databases without global schemas.

3.4.1 Database Sharing in a Heterogeneous Datab&sgstem

Database sharing in a heterogeneous database syateloe at the level
of:

o linking specific data items in the component dasaisaor
o generic (Schema-driven) correlations across conmgone
databases.

Individual data item links (e.g. hypertext links@¢tlveen databases do
not require or comply with schema correlations ssrdatabases. For
schema correlations, data links need to be comsigtiéh the constraints

entailed by these correlations, such as inter-dateferential integrity

constraints.

SELF-ASSESSMENT EXERCISE
I Explain the basic concepts of database mgovand

heterogeneity
il. Briefly describe the various classificaigof database.

184

CIT 208 MODULE 3

4.0 CONCLUSION

In this unit, you have been introduced to the funmeiatal concepts of
database, its classification, database recovery atatabase
heterogeneity.

5.0 SUMMARY
What you have learnt in this unit concerns:

o introduction to database recovery and heterogeremity web
services definition for database

classification and techniques of database.

classification criteria for heterogeneous database.

database recovery log and technique.

database sharing in a heterogeneous database system

6.0 TUTOR-MARKED ASSIGNMENT

What is database recovery log and briefly desctitee classification
criteria for heterogeneous database.

7.0 REFERENCES/FURTHER READING
Bright; et al (1992).Policy of Exchanging Data with Other Databases
Heimbigner and McLeod (1985).

Sheth and Larson (199(0)eterogeneous Database System

185

