

CIT217

FOUNDATIONS OF SEQUENTIAL PROGRAM

Course Team: Dr. B. S. Olanrewaju - (Developer/Writer) –

Wellspring University Benin

Benin City, Edo State

Dr. Dada E. G. - Content Editor

Dr. Francis B. Osang – HOD/Internal Quality

Control Expert

NATIONAL OPEN UNIVERSITY OF NIGERIA

COURSE

GUIDE

CIT 217 COURSE GUIDE

ii

National Open University of Nigeria

University Village, Plot 91

Jabi Cadastral Zone

Nnamdi Azikiwe Expressway

Jabi, Abuja

Lagos Office

14/16 Ahmadu Bello Way

Victoria Island, Lagos

Departmental email: computersciencedepartment@noun.edu.ng

NOUN e-mail: centralinfo@noun.edu.ng

URL: www.nou.edu.ng

First Printed 2022

ISBN: 978-058-557-5

All Rights Reserved

Printed by: NOUN PRESS

January 2022

CIT 217 COURSE GUIDE

iii

CONTENTS PAGE

Introduction... iv

What You will Learn in this Course...................................... v

Course Aims.. v

Course Objectives... v

Working through this Course... vi

Course Materials... vi

Study Units ... vi

Textbooks and References ... vii

Assignment File.. viii

Presentation Schedule... viii

Assessment... viii

Tutor-Marked Assignment ……….. viii

Final Examinations and Grading... ix

Course Marking Scheme... ix

Course Overview…………………………………………. x

How to Get the Best from This Course............................... x

Facilitators/Tutors and Tutorials .. xii

Summary .. xiii

CIT 217 COURSE GUIDE

iv

INTRODUCTION

CIT217 – Foundations of Sequential Program is a three credit unit course of

eight units. This course presents an overview of fundamental principles of

programming languages as it relates to how data and instructions are

processed in programming languages in view of the computer architecture.

It covers aspects on program structures, evolution of programming

languages, basic computer architecture considering data storage and

representation, computer instruction format, operations on data, block

structured concept of programming languages, and specification and

translation of programming languages.

This course is divided into three modules. The first module deals with basic

principles of programming, steps in designing good and correct programs and

also the evolution of programming languages. It includes discussions on

program design and specification, sequential program structure, how

computer handles number, and classification of programming languages.

The second module focuses on the basic computer architecture, data

storage, operations on data, and machine instruction. It includes

discussions on computer architecture models, microprocessor and memory

system. Discussions about storage of different types of data, logic, shift and

arithmetic operations of the Arithmetic and Logic Unit (ALU) operations, the

instruction formats, addressing modes, and instruction cycle were also

included.

The third module deals with block structured languages and specification and

translation of programming language. The discussion here centred on

different programming language paradigms, subprograms, block structured

programming and parameter pass. Discussion on forms of programming

language specification, syntax and semantics of programming languages and

the three programming language translators i.e. assembler, compiler, and

interpreters.

The aim of this course is to equip you with the basic knowledge you require

to understand the principles of designing good program structure in computer

programming. More importantly, this course is a foundational course that

will help you in understanding other higher level courses such as Software

Engineering, System Analysis and Design Computer Architecture, Survey of

Programming Languages, Compiler Techniques and many others. Your

ability to understand the content of this course will help you in these other

courses.

CIT 217 COURSE GUIDE

v

This Course Guide gives you a brief overview of the course content, course

duration, and course materials.

A course on computers can never be complete because of the existing

diversities of the computer system. Therefore, you are advised to read

through further readings to enhance the basic understanding you will acquire

from the course material.

WHAT YOU WILL LEARN IN THIS COURSE

The main purpose of this course is to introduce you to concepts relating to

relationships between high level languages and the Computer Architecture

with the focus on basic machine architecture, specification and translation of

programming languages block structured languages, and parameter passing

mechanisms. This we intend to achieve through the following:

COURSE AIMS

1. Introduce the basic principle of programming in high level languages;

2. Describe the motivation that led to the development of programming

languages in high level language from machine language.

3. Discuss the relevance of computer architecture to computer programs

4. Discuss how data is represented, stored, and processed in computer

system

5. Describe how the arithmetic and logic unit of the CPU performs its

operations on data and instructions.

6. Explain the cycle through which the processor executes each

instruction

7. Explain block structured programming

8. Explain methods of parameter passing in programming language

9. Explain the forms of programming language specification

10. Explain programming language translation and translators

COURSE OBJECTIVES

Certain objectives have been set out to ensure that the course achieves its

aims. Apart from the course objectives, every unit of this course has set

objectives. In the course of the study, you will need to confirm, at the end of

each unit, if you have met the objectives set at the beginning of the unit.

By the end of this course you should be able to:

1. E x p l a i n t he relationships between high level languages and the

Computer Architecture

CIT 217 COURSE GUIDE

vi

2. Explain the models of computer architecture

3. Describe how different data is stored inside the computer as bit

patterns

4. Understand some application of logical and shift operations

5. Distinguish between different programming language paradigms

6. Explain what is meant by programming language specification

7. Describe subprograms and explain some of the basic terminologies in

subprograms

8. Describe a compiler and explain different phases of compilation

9. Describe an interpreter and states its advantages and disadvantages

WORKING THROUGH THIS COURSE

To complete this course, you are required to study each unit very well, read

set books and other materials provided by the National Open University of

Nigeria.

This course is designed to cover approximately sixteen weeks, and it will

require your devoted attention. You should do the exercises in the Tutor-

Marked Assignments and submit to your tutors.

COURSE MATERIALS

These include:

1. The Course Guide

2. Study units

3. Recommended texts

4. A file for your assignments and for records to monitor your

progress.

STUDY UNITS

There are eight study units in this course:

Module 1

Unit 1 Principles of Programming

Unit 2 Evolution of Programming Languages

Module 2

Unit 1 Basic Machine Architecture

Unit 2 Data Storage in Computer

CIT 217 COURSE GUIDE

vii

Unit 3 Operations on Data

Unit 4 Machine Instructions

Module 3

Unit 1: Block Structured Languages

Unit 2: Specification and Translation of Programming Languages

Make use of the course materials, do the exercises to enhance your

learning.

TEXTBOOKS AND REFERENCES

Forouzan, B. and Mosharaf, F. (2011). Foundations of Computer Science.

 BookPower United Kingdom (2nd ed).

French C. S. (1996). Computer Science. BookPower United Kingdom (5th

ed). McGraw-Hill International Editions.

Stallings William. Computer Organisation and Architecture (3rd ed).

 Maxwell Macmillan International Editions.

PROG0101. (2019). Fundamentals of Programming Chapter 2:

Programming Languages. FTMS College Kualar Lumpur, Malaysia.

Retrieved online at https://ftms.edu.my on 20th November, 2021.

Cooke, D. A. (2003). Concise Introduction to Computer Languages. Pacific

Grove, CA: Brooks/Cole

Tucker, A. and Noonan, R. (2002). Programming Languages: Principles and

 Paradigms. McGraw-Hill.

Sebester, R. (2006). Concepts of programming languages. Addison Wesley.

Pratt, T. W. and Zelkowitz, M. V. (1999). Programming Languages: Design

and implementation Prentice Hall (3rd ed).

Johnew Zhang (2012). CS 241 Notes: Foundations of Sequential

Programming.Available online

Maurizio, Gabbrielli and Simone, Martini (2010). Programming Languages:

Principles and Paradigms. Springer-Verlag London Limited.

Available online

CIT 217 COURSE GUIDE

viii

ASSIGNMENT FILE

There are of two types of assignments: the Self-Assessment Exercises and

the Tutor-Marked Assignments. The self-assessment exercises will enable

you monitor your performance by yourself, while the tutor- marked

assignments will be supervised. The assignments take a certain percentage

of your total score in this course. The tutor-marked assignments will be

assessed by your tutor within a specified period.

The examination at the end of this course will aim at determining your level

of mastery of the subject matter. This course includes eight tutor- marked

assignments and each must be done and submitted accordingly. Your best

scores however, will be recorded for you. Be sure to send these

assignments to your tutor before the deadline to avoid loss of marks.

PRESENTATION SCHEDULE

The Presentation Schedule included in your course materials gives you the

important dates for the completion of tutor- marked assignments and for

attending tutorials. Remember, you are required to submit all your

assignments by the due date. You should guard against lagging behind in

your work.

ASSESSMENT

There are two aspects to the assessment of the course. First are the tutor

-marked assignments; second, is a written examination.

In tackling the assignments, you are expected to apply the information and

knowledge you acquired during this course. The assignments must be

submitted to your tutor for formal assessment in accordance with the

deadlines stated in the Assignment File. The work you submit to your tutor

for assessment will count for 30% of your total course mark.

At the end of the course, you will need to sit for a final three-hour

examination. This will also count for 70% of your total course mark.

TUTOR-MARKED ASSIGNMENT

There are eight tutor- marked assignments in this course. You need to submit

all the assignments. The total marks for the best four (4) assignments will be

30% of your total course mark.

CIT 217 COURSE GUIDE

ix

Assignment questions for the units in this course are contained in the

Assignment File. You should be able to complete your assignments from

the information and materials contained in your set textbooks and study

units. However, you may wish to use other references to broaden your

viewpoint and provide a deeper understanding of the subject.

When you have completed each assignment, send it together with a form to

your tutor. Make sure that each assignment reaches your tutor on or before

the deadline given. If however you cannot complete your work on time,

contact your tutor before the assignment is done to discuss the possibility of

an extension.

FINAL EXAMINATIONS AND GRADING

The final examination for the course will carry 70% percentage of the total

marks available for this course. The examination will cover every aspect of

the course, so you are advised to revise all your corrected assignments before

the examination.

This course endows you with the status of a teacher and that of a learner.

This means that you teach yourself and that you learn, as your learning

capabilities would allow. It also means that you are in a better position to

determine and to ascertain the what, the how, and the when of your language

learning. No teacher imposes any method of learning on you.

The course units are similarly designed with the introduction following the

table of contents, then a set of objectives and then the discourse and so on.

The objectives guide you as you go through the units to ascertain your

knowledge of the required terms and expressions.

COURSE MARKING SCHEME

This table shows how the actual course marking is broken down.

Assessment Marks

Assignment 1- 4 Four assignments, best three marks of the

four count at 30% of course marks

Final Examination 70% of overall course marks

Total 100% of course marks

CIT 217 COURSE GUIDE

x

COURSE OVERVIEW

Unit Title of Work Weeks

Activity

Assessment

(End of Unit)
 Course Guide Week 1

 Module 1

1 Principles of Programming Week 1-2 Assignment 1

2 Evolution of Programming

Languages

Week 3 - 4 Assignment 2

Unit Title of Work Weeks

Activity

Assessment

(End of Unit)
 Module 2

1 Basic Machine Architecture Week 5 - 6 Assignment 3

2 Data Storage in Computer Week 7 - 8 Assignment 4

3 Operations on Data Week 9 - 10 Assignment 5

4 Machine Instructions Week 11 - 12 Assignment 6

 Module 3

1 Block Structured Languages Week 13 -14 Assignment 7

2 Specification and Translation of

Programming Languages

Week 15 Assignment 8

 Revision Week 16

 Examination Week 17

Total 17 weeks

HOW TO GET THE BEST FROM THIS COURSE

In distance learning the study units replace the university lecturer. This is

one of the great advantages of distance learning; you can read and work

through specially designed study materials at your own pace, and at a time

and place that suit you best. Think of it as reading the lecture instead of

listening to a lecturer. In the same way that a lecturer might set you some

reading to do, the study units tell you when to read your set books or other

material. Just as a lecturer might give you an in-class exercise, your study

CIT 217 COURSE GUIDE

xi

units provide exercises for you to do at appropriate points.

Each of the study units follows a common format. The first item is an

introduction to the subject matter of the unit and how a particular unit is

integrated with the other units and the course as a whole. Next is a set of

learning objectives. These objectives enable you know what you should be

able to do by the time you have completed the unit. You should use these

objectives to guide your study. When you have finished the units you

must go back and check whether you have achieved the objectives. If you

make a habit of doing this you will significantly improve your chances of

passing the course.

Remember that your tutor’s job is to assist you. When you need help, don’t

hesitate to call and ask your tutor to provide it.

1. Read this Course Guide thoroughly.

2. Organise a study schedule. Refer to the Course Overview for more

details. Note the time you are expected to spend on each unit and

how the assignments relate to the units. Whatever method you chose

to use, you should decide on it and write in your own dates for

working on each unit.

3. Once you have created your own study schedule, do everything you

can to stick to it. The major reason that students fail is that they lag

behind in their course work.

4. Turn to Unit 1 and read the introduction and the objectives for the

unit.

5. Assemble the study materials. Information about what you need for

a unit is given in the overview at the beginning of each unit. You

will almost always need both the study unit you are working on and

one of your set of books on your desk at the same time.

6. Work through the unit. The content of the unit itself has been

arranged to provide a sequence for you to follow. As you work

through the unit you will be instructed to read sections from your set

books or other articles. Use the unit to guide your reading.

7. Review the objectives for each study unit to confirm that you have

achieved them. If you feel unsure about any of the objectives, review

the study material or consult your tutor.

8. When you are confident that you have achieved a unit’s objectives,

you can then start on the next unit. Proceed unit by unit through the

course and try to face your study so that you keep yourself on

schedule.

9. When you have submitted an assignment to your tutor for marking,

do not wait for its return before starting on the next unit. Keep to your

CIT 217 COURSE GUIDE

xii

schedule. When the assignment is returned, pay particular attention

to your tutor’s comments, both on the tutor-marked assignment form

and on the assignment. Consult your tutor as soon as possible if you

have any questions or problems.

10. After completing the last unit, review the course and prepare yourself

for the final examination. Check that you have achieved the unit

objectives (listed at the beginning of each unit) and the course

objectives (listed in this Course Guide).

FACILITATORS/TUTORS AND TUTORIALS

There are 15 hours of tutorials provided in support of this course. You will

be notified of the dates, times and location of these tutorials, together

with the name and phone number of your tutor, as soon as you are allocated

a tutorial group.

Your tutor will mark and comment on your assignments, keep a close watch

on your progress and on any difficulties you might encounter and provide

assistance for you during the course. You must mail or submit your tutor-

marked assignments to your tutor well before the due date (at least two

working days are required). They will be marked by your tutor and returned

to you as soon as possible.

Do not hesitate to contact your tutor by telephone, or e-mail if you need help.

The following might be circumstances in which you would find help

necessary. Contact your tutor if:

 you do not understand any part of the study units or the assigned

readings,

 you have difficulty with the self-tests or exercises,

 you have a question or problem with an assignment, with your

tutor’s comments on an assignment or with the grading of an

assignment.

You should try your best to attend the tutorials. This is the only chance to a

have face to face contact with your tutor and to ask questions which are

answered instantly. You can raise any problem encountered in the course of

your study. To gain the maximum benefit from course tutorials, prepare a

question list before attending them. You will learn a lot from participating in

discussions actively.

CIT 217 COURSE GUIDE

xiii

SUMMARY

Foundations of Sequential program as the title implies, introduces you to the

fundamental concepts of computer programs and how computer systems

process such programs. Therefore, you should acquire the basic knowledge

of program structure and basic computer architecture in this course. The

content of the course material was planned and written i n i t s s i m p l e s t

f o r m to enable your understanding of the topics and to ensure that you

acquire the foundational knowledge and skills that will be used subsequently

to write well-structured computer programs. The essence is to get you to

acquire the necessary knowledge and competence by the time you will be

studying actual computer programming languages.

We wish you success with the course and hope that you will find it interesting

and useful.

 CONTENTS PAGE

Module 1 …………………………………. 1

Unit 1 Principles of Programming ………….. 1

Unit 2 Evolution of Programming Languages.. 23

Module 2……………………........................... 42

Unit 1 Basic Machine Architecture………… 42

Unit 2 Data Representation and Storage …… 54

Unit 3 Operations on Data …………………. 70

Unit 4 Machine Instructions ……….............. 56

Module 3…..…………………….................... 98

Unit 1 Block Structured Languages ………. 98

Unit 2 Specification and Translation of

Programming Languages…………… 118

MAIN

COURSE

CIT 217 MODULE 1

1

MODULE 1

Unit 1 Principles of Programming

Unit 2 Evolution of Programming Languages

UNIT 1: PRINCIPLES OF PROGRAMMING

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content

 3.1 What is Programming

 3.2 Program Design and Specification

 3.2.1 Program Development Life Cycle

 3.3 Sequential Program Structures

 3.3.1 Storage

 3.3.2 Data Declaration

 3.3.3 Input and Output

 3.3.4 Operations on Data

 3.3.5 Control

 3.3.5.1 The sequence structure

 3.3.5.2 Decision Structure or Selection Structure

 3.3.5.3 Repetition or Iteration Structure

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Readings

1.0 INTRODUCTION

This unit serves as an introduction to computer programming by presenting

the fundamental concepts and terminology of programming. Skills in

designing and writing simple computer programs are developed,

programming concepts and terminology for identification and writing of

basic programs using constructs, such as variables and constants are to be

learnt.

Commented [1]: This unit serves as an introduction to
computer programming by presenting the fundamental concepts
and terminology of programming.

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

2

2.0 OBJECTIVES

At the end of the unit you will be able to:

 Understand what programming is all about

 Know the steps to be followed in designing programs

 Describe sequential programming

 Understand the basic structures in which sequential program

components are constructed

3.0 MAIN CONTENT

3.1 What is Programming

Computers do not understand natural language like English they have to be

instructed in special computer languages before they can perform any task.

The process of developing series of sequence of instructions known as

programs to be given to computer so as to perform a specific task is known

as programming. Though computer is viewed as a super machine, it cannot

solve any problem that it has not been directed to solve by humans

(Programmers). It is better said that the intelligence of computer is derived

from the intelligence of man (garbage in garbage out).

A programmer requires some basic facilities and tools to be able to design,

develop, test, implement or maintain computer programs. These facilities and

tools include text editors, compilers, interpreters, diagnostic tools, etc. Text

editors provide the basic means of creating and modifying text files that is

open, view, and edit plain text. Examples include Notepad, E-TextEditor,

GNU Emacs, EditPlus, gedit, Textpad, UltraEdit, etc. A compiler is a special

program that processes statements written in a particular programming

language and turns them into machine language or "code" that a computer's

processor uses. An Interpreter directly executes instructions written in a

programming or scripting language without previously converting them to

an object code or machine code. Examples of interpreted languages are Perl,

Python and Matlab. Diagnostic tools are for detecting error messages in a

programmer's source code that refer to statements or syntax that the compiler

cannot understand. These tools for writing, editing, compiling, and

debugging, programs are sometimes integrated into one graphical user

interface. This integrated tool is known as Integrated Development

Environment (IDE) and it is used for rapidly developing computer programs.

Examples are Visual Studio, NetBeans, JBuilder, Eclipse and others.

Commented [2]: These tools for writing, editing, compiling, and
debugging programs are sometimes integrated into one graphical
user interface

Commented [3]: Eclipse, and others.

CIT 217 MODULE 1

3

3.2 Program Design and Specification

Program design applies to the development or production of computer

programs. A basic knowledge of program design is needed to write programs

of reasonable quality. A program specification is usually part of a system

specification, which defines the whole system.

The aims of program design are summarized as follows:

i. Reliability: The program can be depended upon always to do what is

supposed to do.

ii. Maintainability: The program will be easy to change or modify when

the need arises

iii. Readability: The program will be easy for a programmer to read and

understand

iv. Performance: The program causes the tasks to be done quickly and

efficiently

v. Storage saving: The program is not allowed to be unnecessarily long

to achieve memory efficiency.

3.2.1 Program Development Life Cycle

When a computer program is to be developed using any programming

language, a sequence of steps is followed. These steps are called phases in

program development. There is need to carefully follow this sequence of

steps to successfully develop correct computer programs. The process

associated with this computer program development is called program

development life cycle (PDLC). The program development life cycle is a set

of steps or phases that are used to develop a program in any programming

language. PDLC is a systematic way of developing quality software. It

provides an organized plan for breaking down the task of program

development into manageable chunks, each of which must be successfully

completed before moving on to the next phase. The program development

process is divided into the steps discussed below:

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

4

This cycle is divided into the following six (6) steps as shown in Figure 1.

Figure 1: Program Development Life Cycle

1. Problem Definition
The first step is to define the problem. In major software projects, this is a

job for system analyst, who provides the results of their work to

programmers in the form of a program specification. The program

specification defines the data used in program, the processing that should

take place while finding a solution, the format of the output and the user

interface.

In this phase, the problem statement is defined and the boundaries of the

problem are decided. In this phase there is need to understand the problem

statement, what is the requirement, and what should be the output of the

problem solution. These are defined in this first phase of the program

development life cycle. The developers must obtain the program

requirements from the users and document the requirements. Typically, a

standard form is used to develop the requirements.

A programmer is usually given specification of what proposed program is

required to do. The programmer must then design and implement the

program so that it meets the specification. A program that meets its

specification is said to be correct. An important factor in determining

program specification is to produce requirements specification. A system

analyst will discuss the requirements specification with the users. A

requirement is simply a statement of what the system must do or what

characteristics it needs to have. During a systems development project,

Commented [4]: Figure ….

Commented [5]: Bold

CIT 217 MODULE 1

5

requirements will be created that describe what the business needs (business

requirements); what the users need to do (user requirements); what the

software should do (functional requirements); characteristics the system

should have (nonfunctional requirements); and how the system should be

built (system requirements). Although this list of requirement.

2. Problem Analysis

 During analysis, a programmer review specifications to fully understand

what the software should do. The analysis of the problem to be solved

involves having the basic understanding of the problem, identification and

designing of inputs and outputs and identification of any suitable solution

model. The requirements like variables, functions, etc. to solve the problem

are determined in this phase. That means the required resources to solve the

problem defined in the problem definition phase are gathered in this phase.

3. Algorithm Development

During this phase, a step by step procedure to solve the problem using the

specification given in the previous phase is developed. This phase is very

important for program development. That means we write the solution in step

by step statements. Program design starts by focusing on the main goal that

the program is trying to achieve and then breaking the program into

manageable components, each of which contributes to this goal. This

approach of program design is called top-bottom program

design or modular programming. The first step involve identifying main

routine, which is one of program’s major activity. From that point,

programmers try to divide the various components of the main routine into

smaller parts called modules. For each module, the programmer draws a

conceptual plan using an appropriate program design tool to visualize how

the module will do its assigned job.

The various program design tools are described below:

i. Algorithms
An algorithm is a step-by-step description of how to arrive at a solution in

the easiest way. Algorithms are not restricted to computer world only. In

fact, we use them in everyday life.

ii. Flowcharts
A flowchart is a diagram that shows the logic of the program. For example,

a flowchart shows the possible actions to be taken at any point during the

execution of instructions when data is to be taken from users, a process is to

be performed, a decision is to be made or when to display the output of a

computation.

Commented [6]: Bold

Commented [7]: Bold

Commented [8]: which is one of program’s major activity.

Commented [9]: For each module, the programmer draws a
conceptual plan using an appropriate program design tool to
visualize how the module will do its assigned job.

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

6

iii. Decision tables
A Decision table is a special kind of table, which is divided into four parts

by a pair of horizontal and vertical lines.

iv. Pseudo-code
Pseudo-code is a series of English like statements that represents the different

stages of an algorithm. Pseudo-code frequently follows the structural rules

of a traditional programming language, but it is written for humans rather

than machines.

4. Coding and Documentation

This phase uses a programming language to write or implement the actual

programming instructions for the steps defined in the previous phase. In this

phase, we construct the actual program. That means we write the program to

solve the given problem using programming languages like C, C++, Java,

etc., Coding the program means translating an algorithm into specific

programming language. The technique of programming using only well-

defined control structures is known as Structured programming.

Programmer must follow the language rules, violation of any rule

causes error. These errors must be eliminated before going to the next step.

5. Testing and Debugging

After removal of syntax errors, the program will execute. However, the

output of the program may not be correct. This is because of logical error

in the program. A logical error is a mistake that the programmer made while

designing the solution to a problem. So the programmer must find and

correct logical errors by carefully examining the program output using Test

data. Syntax error and Logical error are collectively known as Bugs. The

process of identifying errors and eliminating them is known as Debugging.

During this phase, there is need to check whether the code written in the

previous step is solving the specified problem or not. That means we test the

program whether it is solving the problem for various input data values or

not. We also test whether it is providing the desired output or not.

6. Maintenance

After testing, the software project is almost complete. The structure charts,

pseudo-codes, flowcharts and decision tables developed during the design

phase become documentation for others who are associated with the

software project. This phase ends by writing a manual that provides an

overview of the program’s functionality, tutorials for the beginner, in-depth

explanations of major program features, reference documentation of all

program commands and a thorough description of the error messages

generated by the program.

Commented [10]: Bold

Commented [11]: Bold

Commented [12]: Bold

CIT 217 MODULE 1

7

The program is actively used by the users. If there is need for any

enhancements, all the phases are to be repeated to make the enhancements.

That means in this phase, the solution (program) is used by the end-user. The

program is deployed (installed) at the user’s site. Here also, the program is

kept under watch till the user gives a green signal to it. Even after the

software is completed, it needs to be maintained and evaluated regularly. In

software maintenance, the programming team fixes program errors and

updates the software.

3.3 Sequential Program Structures

Sequential programming is when the algorithm to be solved consists of

operations one after the other. A sequential program explicitly waits in-line,

for the expected events in various places in the execution path. First cooking

dinner, then eating, and then washing the dishes is one sequence. First eating,

then washing the dishes, and then cooking is a much less sensible sequence.

The ideas of sequence are the ideas with which almost every introduction to

programming begins. Most books compare a program to a recipe or a

sequence of instructions, along the lines of:

to go to work:

 get dressed

 eat breakfast

 catch the bus

In sequential composition, different program components execute in

sequence on all processors. Based on the number of microprocessors,

computers can be classified into Sequential computers and Parallel

computers. Any task complete in sequential computers is with one

microcomputer only. Most of the computers we see today are sequential

computers where in any task is completed sequentially instruction after

instruction from the beginning to the end. The parallel computer is relatively

fast. New types of computers that use a large number of processors. The

processors perform different tasks independently and simultaneously thus

improving the speed of execution of complex programs dramatically. Parallel

computers match the speed of supercomputers at a fraction of the cost.

Sequential program structures are forms in which program components are

constructed, organized and interrelated. In learning a programming language,

there is need to learn about two important aspects of the language: its syntax

and semantics. The syntax of a language is the grammatical rules that govern

the ways in which words, symbols, expressions and statements may be

formed and combined. The semantics of a language are the rules that govern

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

8

its meaning. In the case of computer language, meaning is defined in terms

of what happens when the program is executed.

The main features of the computer are still visible in features of the

programming language. These features are storage, input and output,

operation on data, and control.

3.3.1 Storage

Computers require a set of instructions and data to be stored in their

memory to perform a specific task. This stored program concept was

originated ever since the invention of Charles Babbage’s difference engine

in 1822. In programming languages, data are identified by name rather than

by their location addresses in main storage. The names that associate stored

data values are called identifiers because an identifier is the name by which

the data value may be identified. An identifier is a constant if it is always

associated with the same data value and it is a variable if its associated data

value is allowed to change. Changing a variable’s value implies changing

what is stored.

When using names in programs, care must be taken to specify whether the

names are literals or identifiers. When names or letters are used literally they

are called literals, and they are distinguished from identifiers by placing them

within quotation marks. So the instruction PRINT “N” means print the letter

N, and the instruction PRINT N means print the value associated with N.

3.3.2 Variable Declaration

A variable is a symbolic name assigned to a data item by the programmer.

At any particular time, a variable will stand for one particular data, called the

value of a variable, which may change from time to time during a computing

process. The value of a variable may change many times during the execution

of a program. A variable is usually given a name by the programmer. The

variable must be declared that is to state its data type and its Value.

A data type is a classification of data, which can store a specific type of

information. Data types are primarily used in computer programming in

which variables are created to store data. There are a number of traditional

data types found in most languages. The act of defining a variable is called

data declaration. Declarations provide information about the name and type

of data objects needed during program execution. Every language supports a

set of primitive data types. Usually these include integer, real, Boolean, and

character or string. A language standard determines the minimum set of

CIT 217 MODULE 1

9

primitive types that the language compiler must implement. There are two

types of declaration, implicit declaration and explicit declaration. Implicit

declaration or default declaration are those declaration which is done by compiler

when no explicit declaration or user defined declaration is mentioned. For

example in 'Perl' compiler implicitly understand that:

$abc ='astring' is a string variable and

$abc=7; is an integer variable.

In explicit declaration, user explicitly defined the variable type. For example:

Float A, B;

In this example it specifies that it is of float type variable which has name A

& B.

Purpose of Declarations:
i. Choice of storage representation: Translator determine the best

storage representation of data types that is why it needs to know

primarily the information of data type and attribute of a data object.

ii. Storage Management: It helps the computer to make best use of

memory for data object by providing its information so that computer

can allocate the optimum size of memory for the data.

A variable name does not have an associated value until it has been assigned

one. In computer programming, initialisation is the assignment of an initial

value for a data object or variable. The manner in which initialisation is

performed depends on programming language, as well as type, storage class,

etc., of an object to be initialized.

3.3.3 Input and Output

Programming languages have special functions for dealing with input and

output. Common names for these functions are input, read, get, accept,

output, write, print, put and display. This is illustrated using the following

simple Java program:

ComputeArea.java

1 public class ComputeArea {

2 public static void main (String[] args) {

3 double radius; // Declare radius

4 double area; // Declare area

5

6 // Assign a radius

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

10

7 radius = 20; // New value is radius

8

9 // Compute area

10 area = radius * radius * 3.14159;

11

12 // Display results

13 System.out.println("The area for the circle of radius " +

14 radius + " is " + area);

15 }

16 }

Variables such as radius and area correspond to memory locations. Every

variable has a name, a type, a size, and a value. Line 3 declares that radius

can store a double value. The value is not defined until a value is assigned.

Line 7 assigns 20 into radius. Similarly, line 4 declares variable area, and line

10 assigns a value into area.

Java uses System.out to refer to the standard output device and System.in to

the standard input device. By default the output device is the display monitor,

and the input device is the keyboard. To perform console output, you simply

use the println method to display a primitive value or a string to the console.

3.3.4 Operations on Data

The operation that may be applied to data items of various types were

discussed in previous chapter. It remains to examine how these operations

are incorporated into programs. Operations are expressed in the form of

statements. The simplest statement is the assignment statement. It consists

of a variable name, followed by the assignment operator (=), followed by

some sort of expression. The assignment operation has the form:

variable = expression

The assignment operation is used to assign a name to a value. Thus it is used

whenever there is need to keep track of a value that is needed later. Some

typical uses include:

 initialize a variable (count = 0)

 increment/decrement a counter (count = count + 1)

 accumulate values (sum = sum + item)

 capture the result of a computation (y = 3*x + 4)

 swap two values (t = x; x = y; y = t)

CIT 217 MODULE 1

11

 The assignment operator is not commute i.e. x = e is not the same as e = x.

Figure 2 illustrates variable declaration and various terminologies use in

declaring variables.

Figure 2: Variable Declaration

3.3.5 Control

In the problem-solving phase of computer programming, you will be

designing algorithms. This means that you will have to be conscious of the

strategies you use to solve problems in order to apply them to programming

problems. These algorithms can be designed though the use of flowcharts or

pseudocode. To implement an algorithm, it should be described in an

understandable form. The descriptions are called constructs. The key to

better algorithm design and thus to programming, lies in properly defining

the control structures. These control structures can be grouped into three

constructs namely the sequence structure, the decision structure or selection

structure and the repetition or iteration structure.

3.3.5.1 The sequence structure

The first type of control structures is called the sequence structure. This

structure is the most elementary structure. The sequence structure is a case

where the steps in an algorithm are constructed in such a way that, no

condition step is required. The sequence structure is the logical equivalent

of a straight line.

Example 1: Suppose you are required to design an algorithm for finding the

average of six numbers, and the sum of the numbers is given. The

pseudocode will be as follows:

Commented [13]: Figure …..

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

12

Start

Get the sum

Average = sum / 6

Output the average

Stop

The corresponding flowchart will appear as follows:

 Figure 3: Flowchart for finding the average and sum of six numbers

Example 2: This is the pseudo-code required to input three numbers from

the keyboard and output the result.

Use variables: sum, number1, number2, number3 of type integer

Accept number1, number2, number3

Sum = number1 + number2 + number3

Print sum

End program

Example 3: The following pseudo-code describes an algorithm which will

accept two numbers from the keyboard and calculate the sum and product

displaying the answer on the monitor screen.

Use variables sum, product, number1, number2 of type real display “Input

two numbers”

accept number1, number2

sum = number1 + number2

print “The sum is “, sum

product = number1 * number2

 print “The Product is “, product

 end program

Commented [14]: Figure

CIT 217 MODULE 1

13

3.3.5.2 Decision Structure or Selection Structure

The decision structure or most commonly known as a selection structure, is

a case wherein the algorithm, has to choose two alternatives by making

decision depending on a given condition.

Selection structures are also called CASE selection structures when there

are two or more alternatives to choose from. This structure can be illustrated

in a flowchart as shown in figure 4:

***Figure 4: Decision Structure

In pseudocode form:

If condition is true

Then do task A

else

Do Task-B

In this example, the condition is evaluated, if the condition is true Task-A

is evaluated and if it is false, then Task-B is executed

A variation of the construct of the above figure is shown below

Commented [15]: The decision structure or most commonly
known as a selection structure is a case wherein the algorithm has
to choose two alternatives by making a decision depending on a
given condition.

Commented [16]: Figure

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

14

The above structure implies the following:

If condition is true then

Do Task-A

In this case, if condition is false, nothing happens. Otherwise Task-A is

executed. The selection requires the following

• Choose alternative actions as a result of testing a logical condition

• Produce code to test a sequence of logical tests

There are many occasions where a program is required to take alternative

actions. For example, there are occasions where there is need to take action

according to the user choice. All computer languages provide a means of

selection. Usually it is in the form of If statement and our pseudo-code is no

exception to this. The if statement together with logical operators will be

used to test for true or false as shown below.

If a = b

print “a = b”

The action is only taken when the test is true.

The logical operators used in pseudo-codes are

= is equal to

> is greater than

< is less than

>= is greater than or equal

<= is less than or equal

<> is not eaqual to

Example 4: The following shows how the selection control structure is used

in a program where a user chooses the options for multiplying the numbers

or adding them or subtracting.

Use variables: choice, of the type character

ans, number1, number2, of type integer display “choose one of the

following”

display “m for multiply” display “a for add”

display “s for subtract” accept choice

display “input two numbers you want to use”

accept number1, number2

if choice = m then ans = number1 * number2

if choice = a then ans = number1 + number2

if choice = s then ans = number1 - number2

display ans

CIT 217 MODULE 1

15

Compound Logical Operators
There are many occasions when there is need to extend the conditions that

are to be tested. Often there are conditions to be linked.

In everyday language there is a statement like ‘If I had the time and the

money I would go on holiday’. The ‘and’ means that both conditions must be

true before any action is taken. Another statement is ‘I am happy to go to

the theatre or the cinema’. The logical link this time is or. Conditions in if

statements are linked in the same way. Conditions linked with and only result

in an action when all conditions are true. For example, if a >b and a > c then

display “a is the largest”. Conditions linked with an ‘or’ lead to an action

when either or both are true.

Example 5: The program is to input an examination mark and test it for the

award of a grade. The mark is a whole number between 1 and 100. Grades

are awarded according to the following criteria:

>= 80 Distinction

>= 60 Merit

>= 40 Pass

< 40 fail

The pseudo-code is

Use variables: mark of type integer

If mark >= 80 display “distinction”

If mark >= 60 and mark < 80 display “merit”

If mark >= 40 and mark < 60 display “pass”

If mark < 40 display “fail”

An if statement on its own is often not the best way of solving problems. A

more elegant set of conditions can be created by adding an else statement to

the if statement. The else statement is used to deal with situations as shown

in the following examples.

Example 6: A person is paid at top for category 1 work otherwise pay is at

normal rate.

If

 the work is category 1

 pay-rate is top

 Else

 pay-rate is normal

The else statement provides a neat way of dealing with alternative

condition. In pseudo- code this can be written as:

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

16

If

 work = cat1

then

 p-rate: = top

Else

 p-rate = normal

The following example illustrate the use of if … else statements in

implementing double alternative conditions.

If

 salary < 50000

then

 Tax = 0

Else

If

 salary > 50000 AND salary < 100000

then

Tax = 50000 * 0.05

Else

Tax = 100000 * 0.30

The case statement
Repeating the if … else statements a number of times can be somewhat

confusing. An alternative method provided in a number of languages is to

use a selector determined by the alternative conditions that are needed. This

is called a case statement.

Example 7: The following program segment outputs a message to the

monitor screen describing the insurance available according to a category

input by the user.

Use variables: category of type character

Display “input category” Accept category

If category = U

Display “insurance is not available”

Else

 If category = A then

 Display “insurance is double”

Else

 If category = B then

 Display “insurance is normal” Else

If category = M then

CIT 217 MODULE 1

17

Display “insurance is medically dependent”

Else

 Display “entry invalid”

This can be expressed in a case statement as follows:

Use variables: category of type character

Display “input category” Accept category

DO case of category

CASE category = U

Display “insurance not available” CASE category = A

Display “insurance is double” CASE category = B

Display “insurance is normal” CASE category = M

Display “insurance is medically dependent” OTHERWISE

Display “entry is invalid” ENDCASE

Instead of using the word otherwise, one can use else.

3.3.5.3 Repetition or Iteration Structure

A third structure causes the certain steps to be repeated.

 Figure 5: Repetition or Iteration Structure

The Repetition structure can be implemented using

• Repeat Until Loop

• The While Loop

• The For Loop

Any program instruction that repeats some statement or sequence of

statements a number of times is called an iteration or a loop. The commands

used to create iterations or loops are all based on logical tests. There are

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

18

three constructs for iterations or loops in our pseudo- code.

The Repeat Until loop.

The syntax is

REPEAT

A statement or block of statements

UNTIL a true condition

Example 8: A program segment repeatedly asks for entry of a number in

the range 1 to

100 until a valid number is entered.

REPEAT

DISPLAY “Enter a number between 1 and 100” ACCEPT number

UNTIL number < 1 OR number > 100

Example 9. A survey has been carried out to discover the most popular

sport. The results will be typed into the computer for analysis. Write a

program to accomplish this.

REPEAT

DISPLAY “Type in the letter chosen or Q to finish” DISPLAY “A: Athletics”

DISPLAY “S: Swimming” DISPLAY “F: Football” DISPLAY “B:

Badminton” DISPLAY “Enter data” ACCEPT letter

If letter = ‘A’ then

Athletics = athletics + 1

If letter = ‘S’ then

Swimming = Swimming + 1

If letter = ‘F’ then

Football = Football + 1

If letter = ‘B’ then

Badminton = Badminton + 1

UNTIL letter = ‘Q’

DISPLAY “Athletics scored”, athletics, “votes” DISPLAY “Swimming

scored”, swimming, “votes” DISPLAY “Football scored”, football, “votes”

 DISPLAY “Badminton scored”, Badminton, “votes”

The WHILE loop
The second type of iteration to be considered is the while iteration. This type

of conditional loop tests for terminating condition at the beginning of the

loop. In this case no action is performed at all if the first test causes the

terminating condition to evaluate as false.

The syntax is

Commented [17]: There are three constructs for iterations or
loops in our pseudo- code.

CIT 217 MODULE 1

19

WHILE (a condition is true)

A statement or block of statements

ENDWHILE

Example 10: A program segment to print out each character typed at a

keyboard until the character ‘q’ is entered.

WHILE letter <> ‘q’ ACCEPT letter

DISPLAY “The character you typed is”, letter

ENDWHILE

Example 11: Write a program that will output the square root of any number

input until the number input is zero.

In some cases, a variable has to be initialised before execution of the loop

as shown in the following example.

Use variable: number of type real

DISPLAY “Type in a number or zero to stop” ACCEPT number

WHILE number <> 0

Square = number * number

DISPLAY “The square of the number is”, square DISPLAY “Type in a

number or zero to stop”

 ACCEPT number

ENDWHILE

The FOR Loop
The third type of iteration, that can be used when the number of iterations is

known in advance is a for loop. This, in its simplest form, uses an

initialisation of the variable as a starting point, a stop condition depending

on the value of the variable. The variable is incremented on each iteration

until it reaches the required value.

The pseudo-code syntax will be:

FOR (starting state, stopping condition, increment) Statements

ENDFOR

Example 12.

FOR (n = 1, n <= 4, n + 1) DISPLAY “loop”, n

ENDFOR

The fragment of code will produce the output

Loop 1

Loop 2

Loop 3

Loop 4

In the example, n is usually referred to as the loop variable, or counting

variable, or index of the loop. The loop variable can be used in any statement

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

20

of the loop. The variable should not be assigned a new value within the

loop, which may change the behaviour of the loop.

Example 13: Write a program to calculate the sum and average of a series

of numbers. The pseudo-code solution is:

Use variables: n, count of the type integer

Sum, number, average of the type real DISPLAY “How many numbers do

you want to input” ACCEPT count

SUM = 0

FOR (n = 1, n <= count, n + 1)

DISPLAY “Input the number from your list” ACCEPT number

SUM = sum + number

ENDFOR

Average = sum / count

DISPLAY “The sum of the numbers is “, sum

DISPLAY “Average of the numbers is “, average

Flowcharts have been used in this section to illustrate the nature of the three

control structures. These three are the basic control structures out of which

all programs are built. Beyond this, flowcharts serve the programmer in two

distinct ways: as problem solving tools and as tools for documenting a

program.

Example 14
Design an algorithm and the corresponding flowchart for finding the sum of

n numbers.

Pseudocode Program
Start

Sum = 0

Display “Input value n”
Input n

For(I = 1, n, 5) Input a value

Sum = sum + value

ENDFOR Output sum Stop

In this example, ‘I’ is used to allow counting of the numbers for the addition.

‘I’ is compared with ‘n’ to check whether the numbers have been exhausted

or not in order to stop the computation of the sum (or to stop the iteration

structure). In such a case, ‘I’ is referred to as a counter.

CIT 217 MODULE 1

21

The corresponding flowchart will be as follows:

 Figure 6: Flowchart for finding the sum of ‘n’ numbers

4.0 CONCLUSION

In this unit, it has been demonstrated that ability to write simple computer

programs depends on the understanding of the concept of programming.

Also, the ability to go through and carefully adhere to the rules and processes

of program development life cycle will ensure the development of correct

and reliable programs. The discussion on program structures in this unit will

also ensure that students learning how to write computer programs will have

sound understanding of problem solving through the understanding of the

basic control structures.

5.0 SUMMARY

In discussing the basic programming concept, the importance of program

design and specification processes have been emphasized in this unit. The

forms in which program components are constructed, organized and

interrelated namely storage, data declaration, input and output mechanism,

operations on data and more importantly control structures were properly

discussed. The three control structures emphasized in this unit are sequence

structures, decision structures and repetition structures.

Commented [18]: Figure

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

22

6.0 TUTOR-MARKED ASSIGNMENT

1. What is Programming?

2. Explain Program Development Life Cycle (PDLC) in details

3. Differentiate between an identifier and a variable

4. Explain what sequential programs entail

5. Explain the following constructs in the implementation of algorithms

i. The sequence structure

ii. Decision Structure

iii. Repetition Structure

6. Design an algorithm and the corresponding flowchart for finding

the sum of the numbers 2, 4, 6, 8, …, n

7. Using flowcharts, write an algorithm to read 100 numbers and then

display the sum.

8. Write an algorithm to read two numbers then display the largest.

9. Write an algorithm to read two numbers then display the smallest

7.0 REFERENCES/FURTHER READINGS

Forouzan, B. and Mosharaf, F. (2011). Foundations of Computer Science.

BookPower United Kingdom (2nd ed).

French C. S. (1996). Computer Science. BookPower United Kingdom (5th

ed).

PROG0101. (2019). Fundamentals of Programming Chapter 2:

Programming Languages. FTMS College Kualar Lumpur,

Malaysia. Retrieved online at https:// ftms.edu.my on 20th

November, 2021.

Johnew Zhang. (2012). CS 241 Notes : Foundations of Sequential

Programming

Chris Thomson. (2013). CS 241: Foundations of Sequential Programs.

Winter 2013, University of Waterloo

Matt Fredrikson and Andre Platzer (2014). Lecture Notes on Sequential

Programs and Compositional Reasoning. Carnegie Mellon

University

CIT 217 MODULE 1

23

UNIT 2: EVOLUTION OF PROGRAMMING LANGUAGES

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Contents

3.1 Computers and Numbers

3.1.1 Decimal numbers

3.1.2 Binary Numbers

3.1.3 Octal Numbers

3.1.4 Base 16 (Hexadecimal)

3.1.5 Converting Between Number Bases

3.1.5.1 Converting from Base 10 to Any Base

3.1.5.2 Converting from Any Base to Base 10 (Decimal)

 3.1.5.3 Hexadecimal to Binary

 3.1.5.4 Binary to Hexadecimal

 3.1.5.5 Conversions between Other Bases

3.2 Programming Language Classifications

3.2.1 Low Level Languages (LLL)

3.2.1.1 Machine Language

3.2.1.2 Assembly Language

3.2.1.3 High Level Language (HLL)

3.3 Generations of Programming Language

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Readings

1.0 INTRODUCTION

To communicate with computers, data must be converted into forms more

readily acceptable to computers. Computers understands only a simple

language that consists of 1s and 0s, with a 1 representing the presence of

electrical signal in the signal path while a 0 represents the absence of

electrical signal. Instructions are therefore coded into computer’s memory as

0s and 1s. This method of instructing computer is called machine language.

As the computer operates using a program coded in 0s and 1s, it is highly

laborious for a programmer to write a program in 0s and 1s. Programmers

find it easier to write programs in a language approaching that of English.

This language is called high level language. Over the years, computer

languages have evolved from machine language to high-level languages.

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

24

In this unit, in discussing the evolution of programming languages, we will

study computer and number system as a basis of communicating with the

computer, the machine language, assembly language and high level

languages.

2.0 OBJECTIVES

At the end of the unit you will be able to:

 Understand the uses of number bases in computing

 Perform conversion between different number bases

 Understand what machine language entails

 Describe the composition of an assembly language statement

 Describe the motivation that led to the development of programming

languages in high level language from machine language.

 Understand the structure of sequential programs

3.0 MAIN CONTENT

3.1 Computers and Numbers

When digital computers store and process data, they make use of numbers in

base two. Several other number bases also have uses in computing and so the

general idea of number bases together with the methods for converting from

one base to another must be developed.

3.1.1 Decimal numbers

Decimal numbers also known as denary numbers or number to base 10 are

the numbers in everyday use because ten is the basis of the number system.

To write a number in decimal, we make use of the ten digit symbols 0, 1, 2,

3, 4, 5, 6, 7, 8, and 9.

Let say we have on our hands the decimal number 2,153. Let's have a look

at just what the number means:

Basically, it means 2 Thousands, 1 Hundred, 5 Tens and 3 Units. This could

also be expressed in the powers of 10 as follows:

T H T U

2 1 5 3

CIT 217 MODULE 1

25

Number 2 1 5 3

Place

Holder

103 102 101 100

Result 2 x 103

= 2, 000

1 x 102

= 100

5 x 101

= 50

3 x 100

= 3

Total

= 2,153

In the decimal system the place-holder for each digit is a power of 10 so that

moving from right to left, in the table, corresponds to an increase in

magnitude by a factor of 10 at every step.

3.2.2 Binary Numbers

The binary, or base 2, number system uses the two digits 0 and 1 to represent

numbers and is of particular importance in computing. In a computer’s

memory elements can be in one of two states, OFF or ON corresponding

to the digits 0 and 1 respectively. These elements represent one binary digit

or bit. All internal processing and calculations in computing are done

in binary.

We have seen that in base 10 every number can be written as a weighted sum

of powers of 10. In an analogous manner for base 2 we use a weighted

sum of powers of 2 to express numbers. The place-holder for each digit

is therefore a power of 2 and moving from right to left corresponds to an

increase in magnitude by a factor of 2 at every step. For example,

consider the following table.

The binary number in the table, 1101 is sometimes written with the subscript

“2” to indicate that it is a base 2 number, i.e. 11012. To obtain the decimal

representation of 1101 we multiply each binary digit by its column’s weight

and sum the values. Starting from the right,

Hence 11012 = 1310.

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

26

3.2.3 Octal Numbers

Octal numbers are numbers to base 8. There are eight symbols used in the

octal system, 0, 1, 2, 3, 4, 5, 6, and 7. Its place holder increase in powers of

8. Octal numbers are used as a shorthand for binary. Octal used to be popular

when computers employed 12-bit, 24-bit or 36-bit words for data and

addressing. However, as modern computers all use 16-bit, 32-bit or 64-bit

words octal is rarely used nowadays. Consider the table given below:

Table 1: Place holder in octal Value

Place Holder 82 81 80

Weight 64 8 1

Octal Numbers 1 5 5

The octal number in the table, 155 is sometimes written with the subscript

“8” to indicate that it is a base 8 number, i.e. 1558. To obtain the decimal

representation of 155 we multiply each octal digit by its column’s weight and

sum the values. Starting from the right,

5 x 80 + 5 x 81 + 1 x 82 = 5 + 40 + 64 = 10910

Hence, 1558 = 10910

3.2.4 Base 16 (Hexadecimal)

The hexadecimal (often called hex) or base 16 number system uses sixteen

symbols,

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, to represent numbers. The first

ten digits are the same as in the decimal system while the remaining six, A

to F, correspond to the numbers from 10 to 15 respectively.

A computer carries out all its operations in binary but as numbers become

large the binary representation requires increasingly more digits (0’s and 1’s)

and becomes difficult for humans to read and write. For this reason

computers often display information, such as memory addresses, in

hexadecimal as their format is more compact.

In base 16 we use a weighted sum of powers of 16 to express numbers. The

place-holder for each digit is therefore a power of 16 and moving from right

to left corresponds to an increase in magnitude by a factor of 16 at every step.

Consider the table given below:

Commented [19]: Table

CIT 217 MODULE 1

27

The hex number in the table, 12BF can be written with the subscript “16”, to

indicate that it is a base 16 number, i.e. BF1216.

To obtain the decimal representation of BF1216, we multiply each hex digit

by its column’s weight, noting that B represents 11 and F corresponds to 15,

and sum the values, i.e.

Hence, 12BF16 = 479910

3.2.5 Converting Between Number Bases

In this section we look at converting integers between different number

systems. While the main focus will be on the bases most commonly used in

computing, i.e. 2 (binary), 10 (decimal) and 16 (hex) we also present some

results for other bases including octal (base 8). The ability to convert back

and forth between different bases is a fundamental skill required of anyone

working in the area of computing.

3.1.5.1 Converting from Base 10 to Any Base

Converting from base 10 (decimal) to any other base is easy. Start with the

decimal number to be converted and repeatedly divide by the new base

number retaining the remainder at each step. We shall illustrate with some

examples.

(i) Base 10 (Decimal) to Base 2 (Binary)

Example 1: Convert the decimal number 475 to a binary number.

Solution
Start by dividing 475 by 2 and keep the remainder. Repeat the process until

we can no longer perform a division.

475 / 2 = 237, remainder 1

237 / 2 = 118, remainder 1

118 / 2 = 59, remainder 0

59 / 2 = 29, remainder 1

29 / 2 = 14, remainder 1

14 / 2 = 7, remainder 0

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

28

7 / 2 = 3, remainder 1

3 / 2 = 1, remainder 1

1 / 2 = 0, remainder 1

Now read the binary number from the bottom to the top: 111011011.

Hence 47510 = 1110110112

(ii) Base 10 (Decimal) to Base 16 (Hexadecimal)

Example 2: Convert the decimal number 795 to a hex number.

Solution

Start by dividing 795 by 16 and keep the remainder. Repeat the process until

we can no longer perform a division.

795 / 16 = 49, remainder 11 (= B in hex)

49 / 16 = 3, remainder 1

3 / 16 = 0, remainder 3

Now read the hex number from the bottom to the top: 31B.

Hence 79510 = 31B16

(iii) Base 10 (Decimal) to Base 8 (Octal)

Example 3: Convert the decimal number 5361 to an octal number.

Solution

Start by dividing 5361 by 8 and keep the remainder. Repeat the process until

we can no longer perform a division. The octal number system is similar to

decimal except that it only uses the eight digits from 0 to 7.

5361 / 8 = 670, remainder 1

670 / 8 = 83, remainder 6

83 / 8 = 10, remainder 3

10 / 8 = 1, remainder 2

1 / 8 = 0, remainder 1

Now read the octal number from the bottom to the top:

Hence, 536110 = 123618

CIT 217 MODULE 1

29

3.1.5.2 Converting from Any Base to Base 10 (Decimal)

Converting to base 10 (decimal) from any other base is also fairly

straightforward. We shall consider the place value method. The method is

based on the “place values” of the digits in the number being converted.

To convert to base 10 we calculate as follows:

(i) Binary to Decimal

Example 4:

(a) Convert the binary number 11001 to a decimal number.

(b) Convert the binary number 11011101 to a decimal number.

Solution

(a) The place values of digits in a binary number are powers of 2. To

convert 11001 proceed as follows:

As base 2 only uses the numbers 0 and 1 this approach essentially involves

adding the non-zero place values together.

(b) From the right, adding the place values, corresponding to the non-zero

digits, in 11011101 gives:

(ii) Hexadecimal to Decimal

Example 5:

(a) Convert the hexadecimal number 3B2 to a decimal number.

(b) Convert the hexadecimal number 4BAE to a decimal number.

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

30

Solution

(a) The place values of digits in a hex number are powers of 16. To

convert 3B2 to its decimal representation, starting from the right,

multiply each digit in 3B2 by the appropriate power of 16.

(b)

(iii) Octal (Base 8) to Decimal

Example 6: Convert the octal number 7630 to a decimal number

Solution

The place values of digits in octal numbers are powers of 8. To convert 7630

to its decimal representation, starting from the right, multiply each digit in

7630 by the appropriate power of 8.

3.1.5.3 Hexadecimal to Binary

As hexadecimal is base 16 = 24, and binary is base 2 = 21, every digit in a

hex number can be replaced by its four bit binary equivalent.

Example 7: Convert the hexadecimal number 3C7D to a binary number.

CIT 217 MODULE 1

31

 Solution

Replace each hexadecimal number with its 4-bit binary equivalent.

3.1.5.4 Binary to Hexadecimal

Example 8: Convert the binary number 1111 1100 0100 1110 to a

hexadecimal number.

Solution

• Starting from the right-hand side-split the number into groups of four.

If necessary pad on the left with zeros to obtain a group of four.

• Convert each group of four to its decimal equivalent using the binary

placeholder weightings, i.e. 1, 2, 4 and 8. For example, in the table

below, the group of four on the right gives,

8 + 4 + 2 + 0 = 14. Hence, 11102 = 1410

Convert each decimal number to its hex equivalent, e.g. 1410 = E16

3.1.5.5 Conversions between Other Bases

Here we present some examples of how the methods described earlier can be

applied to conversions between other bases.

(i) Octal to Binary

As octal is base 8 = 23 and binary is base 2 =21, every digit in an octal number

can be replaced by its three bit binary equivalent.

Example 9: Convert the octal number 761 to a binary number.

Solution

Replace each octal digit with its 3-bit binary equivalent.

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

32

(ii) Binary to Octal

Example 10: Convert the binary number 1110101000101 to an octal number.

Solution

• Starting from the right hand side split the number into groups of three.

If necessary pad on the left with zeros to obtain a group of three.

• Convert each group of three to its octal equivalent using the binary

placeholder weightings, i.e. 1, 2 and 4. For example, on the right we

have, 4 + 0 + 1 = 5.

(iii) Hexadecimal to Octal

Example 11: Convert the hexadecimal number 8B6E to an octal number.

Solution

One method is to convert the hex number to binary and then convert from

binary to octal.

Write each hex digit as a four bit binary number.

Starting from the right, split the binary representation into groups of three.

Pad the leftmost triple with zeros if required.

CIT 217 MODULE 1

33

(iv) Octal to Hexadecimal

Example 12: Convert the octal number 6473 to a hex number.

Solution

All we have to do is reverse the process in the previous example.

Write each octal digit as a three bit binary number.

Starting from the right, split the binary representation into groups of four.

Pad the leftmost group with zeros if required.

Convert each decimal number to its hex equivalent, e.g. 10112 = 1110.

Convert each binary number to its decimal equivalent, e.g. 1110 = B16.

3.3 Programming Language Classifications

Programming language can be classified as Low Level Language (LLL) or

High Level Language (HLL). The binary machine language is usually

defined as the lowest level, whereas the highest level might be human

language such as English

3.2.1 Low Level Languages (LLL)

Low-level languages are designed to operate and handle the entire hardware

and instructions set architecture of a computer directly. A program written in

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

34

a low level language can be made to run very quickly, and with a very small

memory requirement when compared with the equivalent program in a high-

level language. However, they are considered difficult to use, due to the

numerous technical details such as the computer instruction set architecture

which must be remembered. Low-level programming languages are

sometimes divided into two categories: Machine Language and Assembly

language.

3.2.1.1 Machine Language

You have already seen how numbers are handled by computers. And

machine language is only a lot of numbers that we have just discussed. The

difference is that whereas we were thinking of these numbers as just

numbers, machine language treats them as more than such. A particular

number when used in machine language, will cause the CPU to perform a

particular activity or instruction. For example: $8B, decimal 139 or binary

1000 1011 could cause the CPU to add two numbers together. Nonetheless,

this is what machine language is all about. The name says it all! It is language

for machines. Each manufacturer of the different CPUs has designed a

different language for its product.

A machine language is a programming language in which the instruction are

in a form that allows the computer to perform them immediately, without any

further translation being required. Machine language is the sequence of bits

(machine code) that directly controls a processor, causing it to add, compare,

or move data from one place to another. The computer microprocessor can

process directly the machine codes without a previous transformation.

Writing programs at this level is an enormously tedious task and also requires

memorizing or looking up numerical codes for every instruction that is used.

Instructions in machine language are in the form of a binary code, also called

machine code, and are called machine instructions. Machine instructions are

stored in the same way as data, and each instruction corresponds directly to

a hardware facility on the machine for which it is written.

At this stage you may be asking yourself - if this is what machine language

is all about, why bother? The reason you should bother is because of the

benefits of machine language, these are:

i. Faster execution of the program

ii. More efficient use of memory

iii. Shorter programs (in memory)

iv. Freedom from the operating system

CIT 217 MODULE 1

35

All of the above benefits are a direct result of programming in a language

that the CPU can understand without having to have it translated first. When

you program in high level language, the operating system is a machine

language program that is being run by the machine. The program could be

described like this:

“Next

Look at the next instruction

Translate it into a series of machine language instructions

Perform each instruction

Store the result if required

Goto Next”

Programming in high level language can be up to 60 times slower than a

program written directly in machine language! This is because translation

takes time, and also the resulting machine language instructions generated

are usually less efficient. However, it would also be admitted that

programming in machine language does have drawbacks.

The main disadvantages of machine language are:

i. Programs are more difficult to read and debug

ii. Impossible to adapt to other computers

iii. Longer programs (in instructions)

iv. Arithmetic calculations difficult

It is not advocated that someone writes program in machine language instead

of high level language. A program used for calculating averages is a simple

one when written in high level language, but a machine language version

would take a lot more effort. The study of machine language today is good

for the understanding of how computers handles data and instructions.

Further discussion on machine language and machine instructions in

particular will be discuss in details in Module 2.

3.2.1.2 Assembly Language

Quite obviously if machine language could only be represented by numbers,

very few people would want to write programs in machine language. After

all, who would make sense of a program which looked like:

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

36

 Figure 7: A sample of assembly language

Fortunately, series of names can be invented for each of these numbers. Each

computer manufacturer normally devices a low-level language that

corresponds closely to the particular machine language used by that

manufacturer. This language is called an Assembly language. Assembly

language is just such a representation of machine language, enabling it to be

read by humans. The main difference between assembly language and

machine language is that assembly language is one level higher than machine

language. It is more easily read by humans than machine language, but on

the other hand, computers can't read assembly language

Assembly language can be converted directly into machine code by a

program. Such a program is called an assembler. Assembler is a program

which performs the task of translating assembly language program into a

sequence of machine language instructions that the CPU will understand i.e.

into binary numbers. The manufacturer provides the Assembler which

translate the Assembly language into machine code. For each assembly

language instruction there is an identical machine language instruction, and

vice versa; i.e. there is a one-to-one relationship between them. A program

written in assembly language is called the Source Program. The translated

program in machine code is called the Object Program. Assembly languages

differ, since the features of each assembly language depend on the particular

computer on which it is used.

Assembly language uses structured commands called mnemonics as

substitutions for numbers allowing humans to read the code easier than

looking at binary. For example, at this stage, the instruction:

‘INC A’

may not mean much but at least it can be read. If it is stated that "INC" is a

standard mnemonic for increment (INCrement) and that A is a variable, then

by simply looking at the instruction one can get a feel of what is happening.

Assuming that this same instruction in machine language is

0100 1100, although one can read the number, it doesn't mean much unless

there is a table to look up.

Although easier to read than binary, assembly language is a difficult

language. The problem with assembly language is that it requires a high level

of technical knowledge, and it's slow to write. Typically, one machine

instruction is represented as one line of assembly code. Mnemonic codes are

used in place of machine codes, e.g. using LDA 5 in place of

0000000000000101. Symbolic addresses are frequently used instead of

actual machine addresses e.g. using LDA N where N stands for the address

Commented [20]: Figure

CIT 217 MODULE 1

37

which can be assigned a numerical value at a more convenient time. A line

of an assembly language program can be divided into the following sections:

1. Comments

A comment is a few words which does not affect the actual program but is

there to remind the programmer or tell other people that may look at the

program, exactly what is being done in that section of the program.

2. Operands
An operation is a defined action upon data. For example, the addition ‘1 + 2’

is an arithmetic operation on two integers. The operands are the data items

operated upon, in this example, the operands are 1 and 2. This is what the

operand does. It can tell the CPU which numbers to use in an operation or,

in other cases the mnemonic tells the CPU what instruction to perform on

operands.

3. Mnemonics

This has been discussed earlier in section 3.2.1.2.

4. Labels
Labels let you give a name to a line and other things such as complete

programs, constants, variables, etc.

The program given below shows assembly language program to add two

numbers A and B.

3.2.1.3 High Level Language (HLL)

High Level languages have replaced machine and assembly language in all

areas of programming. Programming languages were designed to be high

level if it is independent of the underlying machine. High-level languages

(also known as problem-oriented languages) enable a programmer to write

programs that are more or less independent of a particular type of computer.

Such languages are considered high-level because they are closer to human

languages and farther from machine languages. High level languages are

Commented [21]: Bold

Commented [22]: Bold

Commented [23]: Bold

Commented [24]: Refer to the pages where it has been
discussed.

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

38

portable (machine independent) as it can be run on different machines with

little or no change. High-level languages provide a richer set of instructions

and support, making the programmer’s life even easier. High level languages

use translator programs such as compiler and interpreter to convert it into a

machine language program.

The followings are popular examples of high level languages:

A. Pascal
• A high-level programming language developed by Niklaus Wirth in

the late 1960s.

• The language is named after Blaise Pascal, a seventeenth-century

French mathematician who constructed one of the first mechanical

adding machines.

• It is a popular teaching language.

Example:

Program HelloWorld (output);

begin

end.

writeLn ('Hello, World!')

B. C
• Developed by Dennis Ritchie at Bell Labs in the mid-1970s.

• C is much closer to assembly language than are most other high-level

languages.

• The first major program written in C was the UNIX operating system.

• The low-level nature of C, however, can make the language difficult

to use for some types of applications.

Example:

#include <stdio.h>

int main(void)

{

printf("hello, world\n");

return 0;

}

C. C++
• A high-level programming language developed by Bjarne Stroustrup at Bell

Labs.

• C++ adds object-oriented features to its predecessor, C.

CIT 217 MODULE 1

39

• C++ is one of the most popular programming language for graphical

applications, such as those that run in Windows and Macintosh

environments.

Example:

#include <iostream>

int main()

{

std::cout << "Hello World!" << std::endl;

return 0;

}

D. BASIC
• Short for Beginner's All-purpose Symbolic Instruction Code.

• Developed in the 1950s for teaching University students to program

and provided with every self-respecting personal computer in the

1980s,

• BASIC has been the first programming language for many

programmers.

• It is also the foundation for Visual Basic.

Example:

PRINT "Hello world!"

E. Visual Basic
• A programming language and environment developed by Microsoft.

• Based on the BASIC language, Visual Basic was one of the first

products to provide a graphical programming environment and a paint

metaphor for developing user interfaces.

Example:

MsgBox "Hello, World!“

F. JAVA
• A high-level programming language developed by Sun Microsystems.

• Java was originally called OAK, and was designed for handheld

devices and set-top boxes.

• Oak was unsuccessful so in 1995 Sun changed the name to Java and

modified the language to take advantage of the burgeoning World

Wide Web.

• Java is a general purpose programming language with a number of

features that make the language well suited for use on the World Wide

Web.

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

40

Example:

/* * Outputs "Hello, World!" and then exits */

public class HelloWorld {

}

}

public static void main(String[] args) {

System.out.println ("Hello, World!");

3.3 Generations of Programming Language

The first generation languages, or 1GL, are low-level languages that are

machine language.

T

he second generation languages, or 2GL, are also low-level languages that

generally consist of assembly languages.

The third generation languages, or 3GL, are high-level languages such as C.

The fourth generation languages, or 4GL, are languages that consist of

statements similar to statements in a human language. Fourth generation

languages are commonly used in database programming and scripts.

The fifth generation languages, or 5GL, are programming languages that

contain visual tools to help develop a program. A good example of a fifth

generation language is Visual Basic

4.0 CONCLUSION

Programming languages have evolved from the machine instructions based

on binary number system to a better readable instructions of assembly

language and then to the more user friendly human method of constructing

computer instructions known as high level languages.

5.0 SUMMARY

This unit has discussed number systems namely base 2, base 8 base 10 and

base 16 in relation to computing. Conversion between number bases was also

discussed. The relevance of number bases to machine language was

emphasized. Subsequently, the evolution of programming languages from

machine language to high level languages was discussed. A brief survey of

few examples of high level programming languages was done. A summary

of the generations of programming languages capped the discussion in this

unit.

CIT 217 MODULE 1

41

6.0 TUTOR-MARKED ASSIGNMENT

1. Convert these decimal numbers to (a) Octal (b) Binary (c) Hex

i. 22

ii. 751

iii. 1453

2. Convert these octal numbers to (a) Decimal (b) Binary (c)

Hexadecimal

i. 73

ii. 152

iii. 1453

3. Convert these Hexadecimal numbers to decimal

i. 6A

ii. 2C8

iii. 347

4. Discuss the advantages and disadvantages of machine language

5. Explain why machine language instructions are executed faster than

high level languages instructions.

6. Explain the component of assembly language.

7. Explain the features of Java that make the language well suited for use

on the World Wide Web

7.0 REFERENCES/FURTHER READINGS

John, Vander Reyden (1983). Dragon Machine Language for absolute

Beginners. Melbourne House (Publishers) Ltd, United Kingdom (1st

ed).

Forouzan, B. and Mosharaf, F. (2011). Foundations of Computer Science.

BookPower United Kingdom (2nd ed).

French C. S. (1996). Computer Science. BookPower United Kingdom (5th

ed).

PROG0101. (2019). Fundamentals of Programming Chapter 2:

Programming Languages. FTMS College Kualar Lumpur,

Malaysia. Retrieved online at https:// ftms.edu.my on 20th

November, 2021.

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

42

MODULE 2

Unit 1 Basic machine architecture

Unit 2 Data storage in computer

Unit 3 Operations on data

Unit 4 Machine instructions

UNIT 1: BASIC MACHINE ARCHITECTURE

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main content

3.1 computer architecture models

3.2 levels within computer architecture

3.3 microprocessor

 3.3.1 functions of the processor

3.4 memory system

 3.4.1 memory hierarchy

4.0 Conclusion

5.0 Summary

6.0 Tutor-marked assignment

7.0 References/further readings

1.0 INTRODUCTION

In this unit, we consider the basic architectural features common to all

systems where the popular Von Neumann and the system bus models will

be introduced. As the hardware support computer programs by providing

the operations the software requires, the understanding of basic computer

architecture is therefore important in discussing computer programs.

However, only the processor which is responsible for data processing and

also the memory where data and instructions reside are emphasized in this

unit.

2.0 OBJECTIVES

At the end of the unit you will be able to:

 List the subsystems of a computer

 Understand the interconnection of subsystems and explain

different bus systems

 Understand the hierarchic nature of computer systems

CIT 217 MODULE 2

43

 Describe the role of the central processing unit (CPU) in a

computer

 Describe the role of the memory in a computer

3.0 MAIN CONTENT

3.1 Computer Architecture Models

The style of construction and organization of the many parts of a computer

system are its architecture. Conventional digital computers have a

common form that is attributed to Von Neumann. The Von Neumann’s

model consists of five major components as illustrated in Figure 8 below.

 Figure 8: Von Neumann’s model of Conventional Digital Computers

The input unit provides instructions and data to the system which are

subsequently stored in the memory unit. The instructions and data are

processed by the Arithmetic and logic Unit (ALU) under the direction of

the Control Unit (CU). The results are sent to the output unit. The ALU

and the CU are often referred to collectively as the central processing unit

(CPU). The CPU controls the operation of the computer and performs its

data processing functions.

Although the Von Neumann’s model prevails in modern computers, it has

been streamlined using system bus model as shown in Figure 9 below

Figure 9 System Bus Model

Commented [1]: You have previous figures, so this cannot be
figure 1.

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

44

This model partitions a computer system into three subunits: CPU,

Memory, and Input/output (I/O) units. This refinement of the Von

Neumann’s model combines the ALU and the CU into one functional

unit, the CPU. The input and output units are also combined into a single

I/O unit. The model shows the communications among the components

which are by means of a shared pathway called the system bus. A bus is

a communication pathway connecting two or more devices. A key

characteristic of a bus is that it is a shared transmission medium. Multiple

devices connect to the bus, and a signal transmitted by any one device is

available for the same time period, their signals will overlap and become

garbled. Thus, only one device at a time can successfully transmit.

Although there are many different bus designs, on any bus the lines can

be classified into three functional groups: data, address, and control lines.

The data bus carries the information being transmitted. Typically, the

number of lines in a data bus is referred to as the width of the data bus.

Since each line can carry only 1 bit at a time, the number of lines

determines how many bits can be transferred at a time. The width of the

data bus is a key factor in determining overall system performance. For

example, if the data bus is 8 bits wide, and each instruction is 16 bits long,

then the CPU must access the memory module twice during each

instruction cycle.

The address bus identifies where the information is being sent of fetched.

The address lines are used to designate the source of destination of the

data on the data bus. For example, if the CPU wishes to read a word (8,

16, or 32 bits) of data from memory, it puts the address of the desired

word on the address lines. Clearly, the width of the address bus determines

the maximum possible memory capacity of the system. Furthermore, the

address lines are generally also used to address I/O ports.

The control bus describes the manner in which information is being sent.

It controls the access to the use of the data and address buses. Since the

data and address lines are shared by all components, there must be a

means of controlling their use. Control signals transmit both command

and timing information between system modules. Timing signals indicate

the validity of data and address information. Command signals specify

operations to be performed.

In addition, there may be power distribution lines that supply power to the

attached modules.

3.2 Levels Within Computer Architecture

A computer is a complex system; contemporary computers contain

millions of elementary electronic components. How, then, can one clearly

CIT 217 MODULE 2

45

describe them? The key is to recognize the hierarchic nature of most

complex systems, including the computer. A hierarchic system is a set of

interrelated subsystem, each of the latter, in turn, hierarchic in structure

until we reach some lowest level of elementary subsystem. The hierarchic

nature of complex system is essential to both their design and their

description. The designer need only deal with a particular level of the

system at a time. At each level, the system consists of a set of components

and their interrelationships. The behavior at each level depends only on a

simplified, abstracted characterization of the system at the next lower

level. At each level, the designer is concerned with structure and function.

Figure 10 shows the seven levels in the computer, from the user level

down to the transistor level.

User Level: Application Programs

High Level High Level Languages

Assembly Language / Machine Code

Microprogrammed / Hardwired Control

Functional Units (Memory, ALU, etc.)

Logic Gates

Low Level Transistors and Wires

 Figure 10: Levels of machines in the computer hierarchy.

As we progress from the top level downward, the levels become less

“abstract” and more of the internal structure of the computer shows

through. These levels are discussed below.

User or Application-Program Level

The applications layer is the language of the computer as seen by the end

user. We are most familiar with the user, or application program level of

the computer. At this level, the user interacts with the computer by

running programs such as word processors, spreadsheet programs, or

games. Here the user sees the computer through the programs that run on

it, and little (if any) of its internal or lower-level structure is visible.

High Level Language Level

Anyone who has programmed a computer in a high level language such

as C, Pascal, FORTRAN, or Java, has interacted with the computer at this

level. Here, a programmer sees only the language, and none of the low-

level details of the machine. At this level the programmer sees the data

types and instructions of the high-level language, but needs no knowledge

of how those data types are actually implemented in the machine. It is the

role of the compiler to map data types and instructions from the high-level

language to the actual computer hardware. Programs written in a high-

level language can be re-compiled for various machines that will

(hopefully) run the same and provide the same results regardless of which

machine on which they are compiled and run.

Commented [2]: Same thing here

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

46

Assembly Language/Machine Code Level

This controls the way in which all software uses the hardware layers.

Programming with 1s and 0s is tedious and error prone. As a result, one

of the first computer programs written was the assembler, which translates

ordinary language mnemonics such as MOVE Data, Acc, into their

corresponding machine language 1s and 0s. This language, whose

constructs bear a one-to-one relationship to machine language, is known

as assembly language.

Hardwired Control (Machine layer)

It is the control unit that effects the register transfers. It does so by means

of control signals that transfer the data from register to register, possibly

through a logic circuit that transforms it in some way. The control unit

interprets the machine instructions one by one, causing the specified

register transfer or other action to occur. Hardwired control units have the

advantages of speed and component count, but until recently were exceed-

ingly difficult to design and modify.

Functional Unit (Microprogrammed Layer)

The microprogrammed layer interprets the machine language instructions

from the machine layer and directly causes the digital logic elements to

perform the required operations. The register transfers and other

operations implemented by the control unit move data in and out of

“functional units. Functional units include internal CPU registers, the

Arithmetic Logic Unit (ALU), and the computer’s main memory.

Logic Gates (Digital Logic layer)

The level at which any semblance of the computer’s higher-level func-

tioning is visible is at the logic gate and transistor levels. It is from logic

gates that the functional units are built, and from transistors that logic

gates are built. The logic gates implement the lowest-level logical

operations upon which the computer’s functioning depends.

Physical Layer

At the very lowest level, a computer consists of electrical components

such as transistors and wires, which make up the logic gates, but at this

level the functioning of the computer is lost in details of voltage, current,

signal propagation delays, quantum effects, and other low-level matters.

3.3 Microprocessor

A computer consists of five functionally independent main parts input,

memory, Arithmetic and Logic Unit (ALU), output and control unit. This

is illustrated in Figure 11

CIT 217 MODULE 2

47

Figure 11: Block Diagram of a Computer

The ALU and the Control unit constitutes the central processing unit. The

CPU and some other components connected to it form the microprocessor

shown in Figure 12.

Figure 12: Generic Block Diagram of Processor Internals

The following is a description of the components of the processor.

A. Central Processing Unit (CPU)
This is the brain of the processor. The execution of all instructions occurs

inside the CPU along with the computation required to determine

addressing. In most architectures it has three parts: an Arithmetic and

Logic Unit (ALU), a Control Unit (CU), and a set of registers (Figure 13).

Commented [3]: Same thing here

Commented [4]: Here too

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

48

Figure 13: Functional Parts of the Central Processing Unit (CPU)

a. The Arithmetic and Logic Unit

The arithmetic and logic unit performs logic, shift, and arithmetic

operations on data.

i. Logic Operations: Logic operations include NOT, AND, OR,

NAND, NOR, XOR etc. These operations treat the input data as

bit patterns and the result of the operation is also a bit pattern.

Detail discussion is in Module 2 Unit 3.

ii. Shift Operations: Shift operations include logical shift and

arithmetic shift operations. Logical shift operations are used are

used to shift bit patterns to the left or right, while logical arithmetic

operations are applied to integers to divide or multiply integers by

two. Detail discussion is in Module 2 Unit 3.

iii. Arithmetic Operation: Arithmetic operations involve adding,

subtracting, multiplying and dividing integers or floating numbers.

More discussion in Module 2 Unit 3

b. Registers

Registers are fast stand-alone storage locations that hold data temporarily.

Multiple registers are needed to facilitate the operations of the CPU.

These include:

i. Data Registers: Computers use dozens of registers inside the CPU

to speed up their operations, because complex operations are done

using hardware and this requires several registers to hold the

intermediate results. Data registers are named R0 to Rn in Figure

6.

ii. Instruction Registers: Computers not only stores data in their

memory but also programs. The CPU is responsible for fetching

instructions one by one from the memory, storing them in the

instruction register (IR in figure 6), decoding them, and executing

them.

Commented [5]: Here too

CIT 217 MODULE 2

49

iii. Program Counter: Another common register in the CPU is the

program counter (PC). The program counter keeps track of the

instruction currently being executed. After execution of the

instruction, the counter is incremented to point to the address of

the next instruction in memory.

c. Control Unit

The third part of the CPU is the control unit and it is the nerve of the

computer. The control unit controls the operation of each subsystem.

Controlling is achieved through signals sent from the control unit to other

subsystems.

B. Internal Memory
A small, but extremely quick memory. It is used for any internal

computations that need to be done fast without the added overhead of

writing to external memory. It is also used for storage by processes that

are transparent to the applications, but necessary for the operation of the

processor.

C. Data Buffer

This buffer is a bi-directional device that holds outgoing data until the

memory bus is ready for it or incoming data until the CPU is ready for it.

This circuitry also provides signal conditioning ensuring the output

signals are strong enough and the fragile internal components of the CPU

are protected.

D. Address Latch

This group of latches maintains the address that the processor wishes to

exchange data with on the memory bus. It also provides signal

conditioning and circuit protection for the CPU.

E. I/O Ports
These ports represent the device interfaces that have been incorporated

into the processor's hardware.

F. Configuration Registers
A number of features of the processor are configurable. These registers

contain the flags that represent the current configuration of the processor.

These registers might also contain addressing information such as which

portions of memory are protected and which are not.

3.3.1 Functions of the Processor

The basic function performed by a computer is execution of a program,

which consists of a set of instructions stored in memory. The processor

does the actual work by executing instructions specified in the program.

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

50

The processor controls the input of data and its transfer into main storage,

processes data, and then sends the result to the output unit. As already

been indicated the processor is connected to other elements of the

computer by means of buses. The functions of the processor are:

i. To control the use of main storage to store data and instructions

ii. To control the sequence of operations

iii. To give commands to all parts of the computer system

iv. To carry out processing

3.4 Memory System

A simple model of a computer system as a CPU that executes instructions

and a memory system that holds instructions and data for the CPU has

been considered. In this simple model, the memory system is a linear array

of bytes, and the CPU can access each memory location in a constant

amount of time. The memory system is divided into two, the primary

memory and the secondary memory. The classifications of computer

memory is shown in Figure 14.

1. Primary memory: - Is the one exclusively associated with the

processor and operates at the electronics speeds programs must be stored

in this memory while they are being executed. The memory contains a

large number of semiconductors storage cells. Each capable of storing one

bit of information. These are processed in a group of fixed site called

word.

 Figure 14: Types of Memory

2. Secondary memory: - Is used where large amounts of data &

programs have to be stored, particularly information that is accessed

infrequently. Examples: - Magnetic disks & tapes, optical disks (i.e. CD-

ROM’s), floppies etc.

Commented [6]: Here too

CIT 217 MODULE 2

51

In earlier computers, the most common form of random-access storage

for computer main memory employed an array of doughnut-shaped

ferromagnetic loops referred to as cores. The advent of, and advantages

of, microelectronics has long since vanquished the magnetic core

memory. Today, the use of semiconductor chips for main memory is

almost universal. The most common semiconductor memory is referred

to as random-access memory (RAM). A RAM must be provided with a

constant power supply. If the power is interrupted, then the data are lost.

Thus, RAM can be used only as temporary storage.

3.4.1 Memory Hierarchy

In practice, a memory system is a hierarchy of storage devices as

illustrated in Figure 15 with different capacities, costs, and access times.

Figure 15: Memory Hierarchy

CPU registers hold the most frequently used data. Small, fast cache

memories nearby the CPU act as staging areas for a subset of the data and

instructions stored in the relatively slow main memory. The main memory

stages data stored on large, slow disks, which in turn often serve as staging

areas for data stored on the disks or tapes of other machines connected by

networks.

Memory hierarchies work because well-written programs tend to access

the storage at any particular level more frequently than they access the

storage at the next lower level. So the storage at the next level can be

slower, and thus larger and cheaper per bit. The overall effect is a large

pool of memory that costs as much as the cheap storage near the bottom

of the hierarchy, but that serves data to programs at the rate of the fast

storage near the top of the hierarchy.

Commented [7]: Here too

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

52

Accessing Main Memory

Data flows back and forth between the processor and the DRAM main

memory over shared electrical conduits called buses. Each transfer of data

between the CPU and memory is accomplished with a series of steps

called a bus transaction. A read transaction transfers data from the main

memory to the CPU. A write transaction transfers data from the CPU to

the main memory.

4.0 CONCLUSION

In this unit, we have discussed the basic computer machine architecture

and discussed two models that is the Von Neumann and the system bus

models. The hierarchic nature of computer systems, the roles of the

central processing unit (CPU) and that of the memory in a computer as

support for computer programs were discussed.

5.0 SUMMARY

In this unit we have seen that the parts that make up a computer can be

divided into three broad categories or subsystems: the central processing

unit (CPU), the memory and the input/output subsystem. The

interconnection of the three subsystems plays an important role, because

information needs to be exchanged between these subsystems. The CPU

and the memory are normally connected by three groups of connections,

each called a bus: data bus, address bus, and control bus. The central

processing unit performs operations on data. It has three parts: an

arithmetic logic unit (ALU), a control unit, and a set of registers. Memory

is a collection of storage locations. The two broad types of memory

discussed here are the primary memory and the secondary memory. The

memory hierarchy of the computer system was also discussed.

6.0 TUTOR-MARKED ASSIGNMENT

1. The basic elements of computer are essentially the same for all

digital computers. However, there are variations in

construction that reflect the differing ways in which computers are

used. Compare and contrast the System Bus and Von Neumann’s

models in view of discussing the basic architectural features

common to all systems.

2. There are a number of levels at which the construction and

organisation of computer system is studied. Explain these levels

briefly

3. Explain the generic block diagram of computer processor internals

4. Differentiate between the digital level and the physical level of

Computer architecture

CIT 217 MODULE 2

53

5. At the top of the memory hierarchy are the registers and caches.

Explain these two memory devices

6. Explain the following components of a typical central Processing

Unit (CPU)

i. Control Unit

ii. Arithmetic Logic Unit

iii. Instruction Decoder

7. There are five basic ROM types, state their respective features,

merits and demerits.

7.0 REFERENCES/FURTHER READINGS

William Stallings (2013). Computer Organization and Architecture:

Designing For Performance. Pearson Education, Inc., publishing

as Prentice Hall (9th ed).

Forouzan, B. and Mosharaf, F. (2011). Foundations of Computer Science.

BookPower United Kingdom (2nd ed).

French C. S. (1996). Computer Science. BookPower United Kingdom

(5th ed).

Tanenbaum, Andrew S. (1993) Structural Computer Organisation. India:

Prentice Hall. (3rd ed).

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

54

UNIT 2: DATA REPRESENTATION AND STORAGE

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Contents

3.1 Storing Data as Bit Patterns

3.2 Storing Numbers

3.2.1 Storing Integers

 3.2.1.1 Unsigned Representation

 3.2.1.2 Overflow

 3.2.1.3 Signed Representation

 3.2.1.4 Two's Complement Representation

 3.2.1.5 Comparison of the three Systems

 3.2.2 Storing Reals

 3.2.2.1 Fixed-Point Representation

 3.2.2.2 Floating-Point Number Representation

3.3 Storing Text

3.4 Storing Audio

3.5 Storing Images

3.6 Storing Videos

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Readings

1.0 INTRODUCTION

A computer is a programmable data processing machine and since all

operations on data must be performed by the computer’s hardware, there

is need to understand the representations of data within the computer and

also the nature and operations performed on data. Data comes in different

forms including numbers, text, audio, image and video. All data types are

transformed into a uniform representation when they are stored in a

computer and transformed back into their original form when retrieved.

This representation is called bit pattern. This unit discusses data

representation and storage or computer processing.

2.0 OBJECTIVES

At the end of the unit you will be able to:

 List five different data types used in a computer

 Describe how different data is stored inside the computer as bit

patterns

CIT 217 MODULE 2

55

 Describe how integers are stored in a computer using unsigned,

sign-and-magnitude, and two’s complement formats

 Describe how reals are stored inside the computer using floating-

point format

 Describe how text is stored in a computer using one of the various

encoding systems.

 Describe how audio is stored in a computer using sampling

technique.

 Describe how image is stored in a computer using PIXELS

 Describe the basic principle of storing video

3.0 MAIN CONTENTS

3.1 Storing Data as Bit Patterns

A bit (binary digit) is the smallest unit of data that can be stored in a

computer and has a value of 0 or 1. A bit represents the state of a device

that can take one of two states. A convention can be established to

represent the ‘ON’ state as 1 and the ‘OFF’ state as 0, or vice versa.

Computers use various two-state devices to store data.

A bit pattern, a sequence or a string of bits can be used to represent

different types of data. With a text editor, the character ‘A’ typed on the

keyboard can be stored as an 8-bit pattern 01000001. The same 8-bit

pattern can represent the number 65, a part of an image, part of a song, or

part of a video.

To further discuss operations on data, this section discusses how different

data types, numbers, text, audio, image and video are stored inside a

computer.

3.2 Storing Numbers

The numerical data types are coded for storage purposes. The basic types

of representation are:

i. Binary Coded Decimal (BCD) Representation: in which each decimal

digit in the number is coded separately. BCD is a 4-bit code used for

coding numeric values only as follows
Decimal

Digit
0 1 2 3 4 5 6 7 8 9

BCD

Code
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001

For Example, the number 2875 is coded thus:

Decimal Digit 2 8 7 5

BCD Code 0010 1000 0111 0101

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

56

ii. Pure Binary Representation: A number is changed into the binary

system before being stored in the computer’s memory. This type

of representation addresses how to store signed and unsigned

numbers and also how to show the decimal point. There are several

ways the computer handles the sign issue, for the decimal point,

computers use two different representations: fixed-point and

floating-point. The first is used to store a number as an integer

while the second is used to store a number as a real.

3.2.1 Storing Integers

Integers are whole numbers together with negatives. For example . . . –3,

–2, –1, 0, 1, 2, 3 . . . are set of integers. An integer can also be thought of

as a number in which the position of the decimal point is fixed. Fixed-

point representation is used to store an integer. In this representation, the

decimal point is assumed but not stored. However, a user or program may

store an integer as a real with the fractional part set to zero. To use

computer memory more efficiently, unsigned and signed integers are

stored inside computer differently.

3.2.1.1 Unsigned Representation

An unsigned integer is an integer that can never be negative and can take

only ‘0’ or positive values. A computer with n-bit storage location stores

an unsigned integer by converting it to binary and then, if the number of

bits is less than n 0s are added to the left of the binary integer so that there

is a total of n bits. If the number of bits is greater than n, the integer cannot

be stored. A condition referred to as overflow will occur.

Example 1: Store 7 in an 8-bit memory location using unsigned

representation

Solution:

First change the integer to binary then add five 0s to make a total of eight

bits

 Change 7 to binary 111

 Add five bits at the left 00000111

Example 2:

Store 258 in a 16-bit memory location

Solution:

 Change 258 to binary 100000010

 Add seven bits at the left 0000000100000010

CIT 217 MODULE 2

57

3.2.1.2 Overflow

Due to size limitations, the range of integers that can be represented is

limited. In an n-bit memory location only an unsigned integer between 0

and 2n – 1 can be stored. In a memory location that can only hold 4-bits,

an integer larger than 24 – 1 = 15 cannot be stored. Overflow happens

when for example, there is 11 in a 4-bit memory location and then try to

add 9 to the integer. The minimum number of bits required to represent

the decimal 20 is five bits. In other words, 20 = 101002, so the computer

drops the leftmost bit and keeps the rightmost four bits (0100) the result

is now presented as 4 instead of 20 due to overflow error.

3.2.1.3 Signed Representation

In this method, the available range for unsigned integers (0 and 2n – 1) is

divided into two equal halves. The first half represents positive integers,

the second half, represents negative integers. For example, if n is 4, the

range is 0000 to 1111. This range is divided into two halves: 0000 to 0111

and 1000 to 1111. The bit patterns are then assigned to negative and

positive integers (Figure 16).

Figure 16: Sign-and-magnitude Representation of 4-bit integers

In signed representation, the leftmost bit defines the sign of the integer. If

it is 0, the integer is positive, if it is 1, the integer is negative. There are

two 0s in sign-and-magnitude representation: +0 and -0.

Example 3:

a. Store +28 in an 8-bit memory location using sign –and-magnitude

representation.

b. Store -28 in an 8-bit memory location using sign –and-magnitude

representation.

Solution

a. The integer is changed to 7-bit binary then add 0 as the eighth

leftmost bit to make it 8-bit number

 Change 28 to 7-bit binary 0011100

 Add the sign and store 00011100

b. The integer is changed to 7-bit binary then add 1 as the eighth

leftmost bit to make it 8-bit number

Change 28 to 7-bit binary 0011100

Add the sign and store 10011100

Commented [8]: Wrong numbering

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

58

3.2.1.4 Two's Complement Representation

Almost all computers use two’s complement representation to store a

signed integer in an n-bit memory location. Two's complement numbers

are identical to unsigned binary numbers except that the most significant

bit position has a weight of −2N−1 instead of 2N−1. They overcome the

shortcomings of sign/magnitude numbers: zero has a single

representation, and ordinary addition works.

In two's complement representation, zero is written as all zeros: 00…0002.

The most positive number has a 0 in the most significant position and 1's

elsewhere: 01…1112 = 2N−1 − 1. The most negative number has a 1 in the

most significant position and 0's elsewhere: 10…0002 = −2N−1. And −1 is

written as all ones: 11…1112.

Notice that positive numbers have a 0 in the most significant position and

negative numbers have a 1 in this position, so the most significant bit can

be viewed as the sign bit. However, the overall number is interpreted

differently for two's complement numbers and sign/magnitude numbers.

The sign of a two's complement number is reversed in a process

called taking the two's complement. The process consists of inverting all

of the bits in the number, then adding 1 to the least significant bit position.

Another method is to copy bits from the right until a 1 is copied, then

invert the rest of the bits. The two's complement representation is useful

to find the representation of a negative number or to determine the

magnitude of a negative number.

To store an integer in two’s complement representation, the computer

follows the step below:

i. The integer is changed to an n-bit binary

ii. If the integer is positive or zero, it is stored as it is; if it is negative,

the computer takes the two’s complement of the integer and then

stores it.

To retrieve an integer in two’s complement representation, the computer

follows the steps below:

i. If the leftmost bit is 1, the computer applies the two’s complement

operation to the integer. If the leftmost bit is 0, no operation is

applied

ii. The computer changes the integer to decimal

Example: 4

a. Store +28 in an 8-bit memory location using two’s complement

representation.

b. Store -28 in an 8-bit memory location using two’s complement

representation.

CIT 217 MODULE 2

59

Solution:

a. The integer is positive, so after decimal to binary conversion, no

more action is needed. Note that three extra 0s are added to the left

of the integer to make it eight bits.

Change 28 to 8-bit binary 00011100

b. The integer is negative, so after decimal to binary conversion, the

computer applies the two’s complement operation on the integer.

Example 5:

Two's Complement Representation of a Negative Number

Find the representation of −210 as a 4-bit two's complement number.

Solution

Start with + 210 = 00102. To get −210, invert the bits and add 1. Inverting

00102 produces 11012. 11012 + 1 = 11102. So −210 is 11102.

Example 6:

Value of Negative Two's Complement Numbers

Find the decimal value of the two's complement number 10012.

Solution
10012 has a leading 1, so it must be negative. To find its magnitude, invert

the bits and add 1. Inverting 10012 = 01102. 01102 + 1 = 01112 = 710.

Hence, 10012 = −710.

Two's complement numbers have the compelling advantage that addition

works properly for both positive and negative numbers. Recall that when

adding N-bit numbers, the carry out of the Nth bit (i.e., the N + 1th result

bit) is discarded.

Example 7:

Adding Two's Complement Numbers

Compute (a) −210 + 110 and (b) −710 + 710 using two's complement

numbers.

Solution

(a) −210 + 110 = 11102 + 00012 = 11112 = −110. (b) −710 + 710 = 10012 +

01112 = 100002. The fifth bit is discarded, leaving the correct 4-bit result

00002.

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

60

Subtraction is performed by taking the two's complement of the second

number, then adding.

Example 8:

Subtracting Two's Complement Numbers

Compute (a) 510 − 310 and (b) 310 − 510 using 4-bit two's complement

numbers.

Solution

(a) 310 = 00112. Take its two's complement to obtain −310 = 11012.

Now add 510 + (−310) = 01012 + 11012 = 00102 = 210. Note that the carry

out of the most significant position is discarded because the result is

stored in four bits. (b) Take the two's complement of 510 to obtain −510 =

1011. Now add 310 + (−510) = 00112 + 10112 = 11102 = −210.

The two's complement of 0 is found by inverting all the bits (producing

11…1112) and adding 1, which produces all 0's, disregarding the carry

out of the most significant bit position. Hence, zero is always represented

with all 0's. Unlike the sign/magnitude system, the two's complement

system has no separate −0. Zero is considered positive because its sign bit

is 0.

Like unsigned numbers, N-bit two's complement numbers represent one

of 2N possible values. However the values are split between positive and

negative numbers. For example, a 4-bit unsigned number represents 16

values: 0 to 15. A 4-bit two's complement number also represents 16

values: −8 to 7. In general, the range of an N-bit two's complement

number spans [−2N−1, 2N−1 − 1]. It should make sense that there is one

more negative number than positive number because there is no −0. The

most negative number 10…0002 = −2N−1 is sometimes called the weird

number. Its two's complement is found by inverting the bits (producing

01…1112) and adding 1, which produces 10…0002, the weird number,

again. Hence, this negative number has no positive counterpart.

Adding two N-bit positive numbers or negative numbers may cause

overflow if the result is greater than 2N−1 − 1 or less than −2N−1. Adding a

positive number to a negative number never causes overflow. Unlike

unsigned numbers, a carry out of the most significant column does not

indicate overflow. Instead, overflow occurs if the two numbers being

added have the same sign bit and the result has the opposite sign bit.

Example 9:

Adding Two's Complement Numbers with Overflow

Compute 410 + 510 using 4-bit two's complement numbers. Does the result

overflow?

Commented [9]: Bold

CIT 217 MODULE 2

61

Solution
410 + 510 = 01002 + 01012 = 10012 = −710. The result overflows the range

of 4-bit positive two's complement numbers, producing an incorrect

negative result. If the computation had been done using five or more bits,

the result 010012 = 910 would have been correct.

When a two's complement number is extended to more bits, the sign bit

must be copied into the most significant bit positions. This process is

called sign extension. For example, the numbers 3 and −3 are written as

4-bit two's complement numbers 0011 and 1101, respectively. They are

sign-extended to seven bits by copying the sign bit into the three new

upper bits to form 0000011 and 1111101, respectively.

3.2.1.5 Comparison of the three Systems

Table 2 shows a comparison between unsigned, two’s complement, and

sign-and-magnitude integers. A 4-bit memory location can store an

unsigned integer between 0 and 15, and the same location can store two’s

complement signed integers between -8 and +7.

Table 2: Summary of Integer Representation

Contents of

Memory
Unsigned

Sign-and-

magnitude

Two’s

Complement

0000 0 0 +0

0001 1 1 +1

0010 2 2 +2

0011 3 3 +3

0100 4 4 +4

0101 5 5 +5

0110 6 6 +6

0111 7 7 +7

1000 8 -0 -8

1001 9 -1 - 7

1010 10 -2 - 6

1011 11 -3 -5

1100 12 -4 -4

1101 13 -5 -3

1110 14 -6 -2

1111 15 -7 -1

3.2.2 Storing Reals

A real is a number that include fractions or values after the decimal point.

For example, 231.54 is a real number. Real numbers are represented either

as fixed point number representation or floating-point number

representation. In fixed point notation, there are a fixed number of digits

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

62

after the decimal point, whereas floating point number allows for a

varying number of digits after the decimal point.

Figure 17: Classification of Real Numbers

3.2.2.1 Fixed-Point Representation

This representation has fixed number of bits for integer part and for

fractional part. There are three parts of a fixed-point number

representation: the sign field, integer field, and fractional field.

For a fixed-point number representation the programmer requires a

computer-storage location of sufficient size to store all the digits of the

number.

For an 8-bit representation, if the programmer assumes the point to be:

In using fixed-point number representation, the result may not be accurate

or it may not have the required precision. For example in a decimal

system, assume a fixed-point representation with two digits at the right of

the decimal point and fourteen digits at the left of the decimal point, for a

total of sixteen digits is used. The precision of a real number in this system

is lost if a decimal number such as 1.00792 is represented; the system

stores the number as 1.00. Also, assume a fixed-point number

Commented [10]: Figure….

CIT 217 MODULE 2

63

representation with six digits to the right of the decimal point and ten

digits to the left of the decimal point for a total of sixteen digits. The

accuracy of a real number in this system is lost if a decimal number such

as 631254378943.43 is represented; the system stores the number as

1254378943.43. Therefore, real numbers with very large parts or very

small fractional parts should not be stored in fixed-point representation.

3.2.2.2 Floating-Point Number Representation

The solution for maintaining accuracy or precision is to use floating-point

representation. This representation allows the decimal point to float that

is, there can be different numbers of digits to the left or right of the

decimal point. The range of real numbers that can be stored using this

method increases tremendously. Numbers with large integer parts or

small fractional parts can be stored in memory. In floating-point number

representation, a number is made of three section:

sign shifter Fixed-point number

The first section is the sign, either positive or negative, the second section

shows how many places the decimal point should be shifted to the right

or left to form the actual number while the third section is a fixed-point

representation in which the position of the decimal is fixed.

To make the fixed part of the representation uniform, the floating-point

method uses only one none-zero digit to the left of the decimal point. This

is called normalisation. In the decimal system, this digit can be 1 to 9,

while in the binary system it can only be 1. After a binary number is

normalized, only three pieces of information about the number are stored:

sign, exponent, and mantissa. The sign can be stored using 1 bit (0 or 1).

The exponent (power of 2) defines the shifting of the decimal point. The

power can be negative or positive. A new representation call the Excess

system is used to store the exponent. In the Excess system, both the

positive and negative integers are stored as unsigned integers. To

represent a positive or negative, a positive integer called a bias is added

to each number to shift them uniformly to the non-negative side. The

value of this bias is 2m-1 – 1, where m is the size of the memory location

to store the exponent. The mantissa is the binary integer to the right of the

decimal point. It defines the precision of the number. The mantissa is

stored in fixed-point notation. The mantissa is a fractional part that

together with the sign, is treated like an integer stored in sign-and-

magnitude representation.

The Institute of Electrical and Electronics Engineers (IEEE) has defined

several standards for storing floating-point numbers. The two most

common are the single precision and double precision formats. The single

precision format uses a total of 32 bits to store a real number in floating-

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

64

point representation. The ‘sign’ occupies one bit (0 for positive and 1 for

negative), the ‘exponent’ occupies eight bits using a bias o 127, and the

mantissa uses twenty-three bits (unsigned number). This standard is

referred to as Excess_127 because the bias is 127. Double precision

format uses a total of 64 bits to store a real number in floating-point

representation. The sign occupies one bit, the exponent occupies eleven

bits using a bias of 1023, and the mantissa uses fifty-two bits. The

standard is referred to as Excess_1023 because the bias is 1023.

A real number can be stored in one of the IEEE standard floating-point

format using the following procedure:

a. Store the sign as either 0 or 1 (depending on if the number is

positive or negative)

b. Change the number to binary if not in binary

c. Normalise the number

d. Find the values of exponent and mantissa

e. Concatenate the sign, exponent and mantissa

Example 10:

Show the Excess_127 representation of the decimal number 5.75

Solution

a. The sign is positive, so sign = 0

b. Decimal to binary conversion: 5.75 = 101.11

c. Normalisation: 101.11 = 1.0111 x 22

d. Exponent = 2 + 127 = 129 = (10000001)2, mantissa = 0111.

e. Nineteen zeroes are added at the right of the mantissa to make it

23 bits

f. The presentation is shown below

Table 3: Excess_127 representation

Number Normalise

d Value

Stored Value

sig

n

Exponen

t

Mantissa

5.75 =

(101.11)

2

1.0111 x 22 0 1000000

1

0111000000000000000000

0

The number is stored as 01000000101110000000000000000000

Example 11:

Show the Excess_127 representation of the decimal number -161.875

Solution

a. The sign is negative, so sign = 1

b. Decimal to binary conversion: 161.875 = 10100001.111

c. Normalisation: 10100001.111= 1.0100001111 x 27

Commented [11]: Table

Commented [12]: Bold

CIT 217 MODULE 2

65

d. Exponent = 7 + 127 = 134 = (10000110)2, mantissa = 0100001111.

Thirteen zeroes are added at the right of the mantissa to make it 23 bits

e. The presentation is shown below
Number Normalised

Value

Stored Value

si

gn

Expon

ent

Mantissa

161.875 =

10100001.111

1.0100001111

x 27

1 100001

10

01000011110000000

000000

The number is stored as 11000011001000011110000000000000

Example 12:

The bit pattern (11001010000000000111000100001111)2 is stored in

memory in Excess_127 format. Show what the value of the number is in

decimal notation.

Solution

a. The first bit represent the sign, the next eight bits represents the

exponent, and the remaining 23 bits represents the mantissa;

b. The first bit represent the sign, the next eight bits represents the

exponent, and the remaining 23 bits represents the mantissa;

c. The sign is negative;

d. The exponent (10010100)2 ≡ 14810

e. Therefore, the shifter = 148 – 127 = 21

f. Denormalisation gives 1.00000000111000100001111 x 221

g. The binary number is 1000000001110001000011.11

h. Conversion from binary to decimal:

1000000001110001000011.11 = 2,104,378.75 (absolute value)

i. The number is -2,104,378.75

3.3 Storing Text

Character data, sometimes referred to as “string” data, may consist of any

digits, letters of the alphabet or symbols which, the internal coding system

of the computer is capable of representing. Any sequence of symbols used

to represent an idea is therefore referred to as text data type. Different sets

of bit patterns have been designed to represent text symbols. Each set is

called a code, and the process of representing symbols is called coding.

Some popular codes are:

1. ASCII

The American National Standards Institute (ANSI) developed a code

called American Standard Code for Information Interchange (ASCII).

This code uses seven bit for each symbol. This means that 27 = 128

different symbols can be defined in this code. ASCII codes are widely

used throughout the computer industry.

Commented [13]: Bold

Commented [14]: Bold

Commented [15]: Bold

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

66

2. EBCDIC

Extended Binary Coded Decimal Interchange Code (EBCDIC) is

sometimes called 8-bit ASCII. There are 256 characters in the EBCDIC

character set.

3. Unicode

Unicode uses 32 bits and can therefore represent up to 232 = 4,294,967,296

symbols. Different sections of the code are allocated to symbols from

different languages in the world. Some part of the code are used for

graphical and special symbols.

3.4 Storing Audio

Audio is a representation of sound. Sound can also be given a binary

coded representation suitable for storage as data in a computer. Audio is

an example of analog data. Even if it is possible to measure all its values

in a period of time, these values cannot be stored in the computer’s

memory as an infinite memory location will be needed. If the all the

values of an audio signal over an interval cannot be recorded, some of

them can be recorded. A finite number of points of the analog audio signal

is selected and their values measured and recorded to represent the entire

audio signal. The sampling rate determines how well an audio signal is

processed, the higher the better. In simple cases the input device is a

combination of a microphone and a digitising sound sampler. It is the

latter that produces a binary coded representation of the sound picked up

by the microphone.

The dominant standard for storing audio is MP3 (short for MPEG layer

3). This standard is a modification of the MPEG (Motion Picture Experts

Group) compression method used for video. It uses 44,100 samples per

second and 16 bits per sample.

3.5 Storing Images

Computer-generated images can be stored in several different formats and

differing resolutions. But all computer files, whether numbers, words or

graphics, are stored as digital information. What computers do is translate

the image into digital code for storage and then interpret the file back into

an image for display. How the computer does this involves the manner in

which the image was created and the code and formats needed for making

a graphic image file and then creating a graphic image display. Images

are stored as 1’s and 0's! To store an image on a computer, the image is

first broken down into tiny elements called PIXELS.

The smallest element in a picture or image is called Pixel (in short

of Picture Element = Pixel). The number of pixels is the product of height

Commented [16]: Bold

Commented [17]: Bold

CIT 217 MODULE 2

67

and width of an image (In other words, we can say it’s calculated using

image resolution). If your image resolution is 1020 x 800 (width x height),

the total number of pixels is 816,000. Now, for the computer to store the

image, each pixel is represented by a binary value.

For every pixel, an average color is found and a binary value is assigned.

For monochrome (two-color) image, only 1 bit is needed to represent each

pixel. 0 for white and 1 for black. For colored images, each pixel is

represented by multiple bits, one combination per shade. The number of

bits allocated for each pixel color is called color depth or bit depth (in

simple words, how many bits represent each pixel). If the color depth of

an image is 8-bit, the image contains 256 colors. The most common color

depths you see are 8-bit (2⁸ = 256 colors), 16-bit (2¹⁶ = 65,536 colors) and

24-bit (2²⁴ = 16.7 million colors). Larger color depth allows more shades

and different colors. You can find the color depth or bit depth of your

image from your image properties.

Computers store graphic information in several formats. Postscript is one.

There are also JPEGs (pictures for computer screens), TIFFs (quality

images for printing presses), PICTs (simple line drawings) and MOVs

(movie video files), among many others. New formats are constantly

developed to address growing graphic image needs. Each format uses

different types of digital data to represent, store and display the graphic

image.

3.6 Storing Videos

Video is a representation of images called frames over time. A movie

consists of a series of frames shown one after the other to create the

illusion of motion. In other words, video is the representation of

information that changes in space (single image) and in time (a series of

images). So, if we know how to store an image inside a computer, we also

know how to store video: each image or frame is transformed into a set of

bit patterns and stored.

Today video is normally compressed using a common video compression

technique known as MPEG (Moving Picture Experts Group) format.

4.0 CONCLUSION

In this unit, we have discussed the five different data types used in a

computer namely numbers, texts, image, audio and videos. This unit has

demonstrated how this data types are represented and stored as bit patterns

for processing in a computer.

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

68

5.0 SUMMARY

Data comes in different forms, including numbers, texts, image, audio and

videos. All data types are transformed into a uniform representation called

a bit pattern. A number is changed to the binary system before being

stored in computer memory. There are two ways to handle the decimal

point: fixed-point and floating-point. Integers can be taught of as numbers

in which the position of the decimal point is fixed: the decimal point is at

the right of the least significant bit. An unsigned integer is an integer that

can never be negative. One of the methods used to store a signed integer

is the sign-and-magnitude format. In this format, the leftmost bit is used

to show the sign and the rest of the bits define the magnitude. Sign and

magnitude are separated from each other. In two’s complement

representation, the leftmost bit defines the sign of the integer, but sign and

magnitude are not separated from each other.

A real is number with an integer part and a fractional part. Real numbers

are stored in the computer using floating-point representation. In floating-

point representation, a number is made up of three segments: a sign, a

shifter and a fixed-point number.

Text can also be represented with bit pattern. Different sets of bit patterns

(codes) have been designed to represent text symbols; ASCII, EBCDIC,

and UNICODE were discussed.

Storage of image is done by scanning and then stored as Picture Elements

known as PIXELS. Video is the representation of images that changes in

space and time. Video is stored using MPEG format.

6.0 TUTOR-MARKED ASSIGNMENT

1. Name five types of data that a computer can process

2. How is bit pattern length related to the number of symbols the bit

pattern can represent?

3. What steps are needed to convert audio data to bit pattern?

4. Compare and contrast the representation of positive integers in

unsigned, sign-and-magnitude format and two’s complement

format

5. Compare and contrast the representation of negative integers in

sign-and-magnitude format and two’s complement format

6. Compare and contrast the representation of zero sign-and-

magnitude two’s complement, and Excess formats

7. Find the representation of −410 as a 4-bit two's complement

number

8. Compute (a) −510 + 310 and (b) −610 + 610 using two's complement

numbers.

Commented [18]: Word to word repetition of what was written
on first and second lines of page 88.

CIT 217 MODULE 2

69

9. Store +20 in an 8-bit memory location using sign –and-magnitude

representation.

10. Store -20in an 8-bit memory location using sign –and-magnitude

representation.

11. The bit pattern (11001010000000000111000100011011)2 is stored

in memory in Excess_127 format. Show what the value of the

number is in decimal notation.

12. Show the Excess_127 representation of the decimal number -

161.875

7.0 REFERENCES/FURTHER READINGS

Forouzan, B. and Mosharaf, F. (2011). Foundations of Computer Science.

BookPower United Kingdom (2nd ed).

French C. S. (1996). Computer Science. BookPower United Kingdom

(5th ed).

Hamer, F., Horan R. & Lavelle, M. (2005). Basic Engineering: Binary

Numbers 2

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

70

UNIT 3: OPERATIONS ON DATA

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main contents

 3.1 Logic operation

 3.1.1 Logic gates

 3.1.2 Logic operations at pattern level

 3.1.3 Applications of logic operation

 3.2 Shift operations

 3.2.1 Logical shift operations

3.2.2 Arithmetic shift operations

 3.3 Arithmetic operations

 3.3.1 Binary addition

 3.3.2 Binary subtraction

 3.3.3 Binary multiplication

 3.3.4 binary division

 3.3.5 Two’s complement arithmetic

4.0 Conclusion

5.0 Summary

6.0 Tutor-marked assignment

7.0 References/further readings

1.0 INTRODUCTION

After the discussion on data representation and storage, it is time to

discuss the operation on stored data. The focus of this unit is the operation

of the arithmetic logic unit (ALU) of the central processing unit (CPU).

Operations on data can be divided into three broad categories: logic

operations, shift operations and arithmetic operations. Therefore, this unit

discusses the logic, shift and arithmetic operations of the ALU.

2.0 OBJECTIVES

At the end of the unit you will be able to:

 List the three operations performed on data

 Perform unary and binary logic operations on bit patterns

 Distinguish between logic shift operations and arithmetic shift

operations

 Perform logic shift operations on bit patterns

 Perform addition and subtraction on integers stored in two’s

complement format

CIT 217 MODULE 2

71

 Perform addition and subtraction on integers stored in sign-and-

magnitude format

 Understand some application of logical and shift operations such

as setting, unsetting and flipping specific bits.

3.0 MAIN CONTENTS

3.1 Logic Operation

In the previous chapters, it was explained that data and instructions are

coded and stored in binary form. This chapter explains how the computer

handles binary data and instructions at the digital logic level of the

machine. Logic operations refer to those operations that apply the same

basic operation on individual bits of a pattern, or on two corresponding

bits in two patterns.

Data and instructions are transmitted between the various parts of the

processor or between the processor and the peripherals by mean of pulse

trains. Various tasks are performed by passing pulse trains through

electronic switches called gates. Each gate is an electronic circuit that may

have provision for receiving or sending several pulses at once. Each gate

normally performs some simple function like AND, OR, NOT, etc.

3.1.1 Logic Gates

In logic operations, gates are represented by symbols and inputs and

outputs are represented by arrowed lines labelled by letters. There are

several ways of representing logic functions:

– Symbols to represent the gates;

– Truth tables defines the values of the output for each possible

inputs; and

– Boolean algebra to manipulate bits in order to minimize the

number of gates needed for a logic operation.

The basic gates are:

1. The NOT gate is a unary operator. It takes only one input and the

output is the complement of the input. A NOT gate is also called

an ‘inverter’

Figure 18: NOT Gate

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

72

y is only TRUE if a is FALSE

Circle (or ‘bubble’) on the output of a gate implies that it as an inverting

(or complemented) output.

2. The AND gate is a binary operator. It takes two inputs and the

output is 1 if both inputs are 1s otherwise the output is 0. In

Boolean algebra AND is represented by a dot.

Figure 19: AND Gate

y is only TRUE only if a is TRUE and b is TRUE

3. The OR gate is also a binary operator. The output is I if either of

the input is 1 or both inputs are 1s. The output is 0 only when both

inputs are 0s. In Boolean algebra OR is represented by a plus sign

+

Figure 20: OR Gate

• y is TRUE if a is TRUE or b is TRUE (or both)

4. The XOR gate is also a binary operator. The XOR gate can be

viewed as a comparator testing non-equivalence of the inputs. If

the two inputs are the same the output of XOR gate will be 0 but if

they are different, the output will be 1.

Commented [19]: Figure…

Commented [20]: Figure…

Commented [21]: Figure…

CIT 217 MODULE 2

73

 Figure 21: XOR Gate

• y is TRUE if a is TRUE or b is TRUE (but not both)

5. The NAND gate in the complement of the AND gate. The output

is 1 if either or both inputs are 0 otherwise, the output will be 0.

Figure 22: NAND Gate

• y is TRUE if a is FALSE or b is FALSE (or both)

• y is FALSE only if a is TRUE and b is TRUE

6. The NOR gate is the complement of the OR gate. The output is 0

if either or both inputs are 1 otherwise, the output will be 1.

Figure 23: NOT Gate

• y is TRUE only if a is FALSE and b is FALSE

• y is FALSE if a is TRUE or b is TRUE (or both)

3.1.2 Logic Operations at Pattern Level

The operators can be applied to n-bit pattern. The same properties are

exhibited by the operators as when they are applied to individual bit. For

example, the use of NOT operator on the bit pattern 1 0 0 1 1 0 0 0

as input will produce:

Example 1:

Commented [22]: Figure…

Commented [23]: Figure…

Commented [24]: Figure…

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

74

Use the AND operator on the bit patterns 1 0 0 1 1 0 0 0 and 0 0 0 1 0 1

0.

Solution

3.1.3 Applications of Logic Operation

1. Complementing: Logic operation can be applied to complement bit

pattern. Applying a NOT operator to a pattern or bits changes every

0 to 1 and vice versa. This is sometimes referred to as one’s

complement.

2. Unsetting Specific Bits: Logic operation can be performed to unset

specific bit in a pattern. Applying an AND gate to specific bit in a

pattern can unset the bit. To unset any bit, 0 bits are applied to the

specific bits. The second input in this case is called a mask. The 0

bit in the mask unset the corresponding bits in the first input, the 1

bit in the mask leave the corresponding bits in the first input

unchanged.

Example 2:

Use a mask to unset the five leftmost bits of a pattern 1 0 1 0 0 1 1 0.

Solution

The mask is 0 0 0 0 0 1 1 1. The result of applying the mask is:

Note that the rightmost bits are unchanged due to 1 bits mask.

3. Setting Specific Bits: Logic operation can be performed to set

specific bit in a pattern. This means that a bit is forced to 1.

Applying an OR gate to specific bit in a pattern can set the bit. To

set any bit, 1 bits are applied to the specific bits. The second input

is also a mask. The 1 bit in the mask set the corresponding bits in

the first input, the 0 bit in the mask leave the corresponding bits in

the first input unchanged.

Example 3:

Use a mask to set the five leftmost bits of a pattern 1 0 1 0 0 1 1 0.

CIT 217 MODULE 2

75

Solution

The mask is 1 1 1 1 1 0 0 0. The result of applying the mask is:

3.2 Shift Operations

Shift operations move the bits in a pattern, changing the positions of the

bits. This operation can move bits to the left or to the right. There are two

categories of shift operations these are logical shift operations and

arithmetic shift operations.

3.2.1 Logical Shift Operations

These operations are used for serial transfer of information. A logical

shift operation is applied to a pattern that does not represent a signed

number. There are three types of logical shift operations, these are logical

shift left, logical shift right and circular shift

A. Logical Shift Left: Logical shift left operation moves each bit to

the left one by one. The Empty least significant bit (LSB) is filled

with zero and the most significant bit (MSB) is rejected.

Figure 24: Left Logical Shift

B. Logical Shift Right: Logical shift right operation moves each bit

to the right one by one and the least significant bit (LSB) is

rejected and the empty MSB is filled with zero.

Commented [25]: Figure…

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

76

Figure 25: Right Logical Shift

C. Circular shift: The circular shift circulates the bits in the sequence

of the register around the both ends without any loss of

information. There are two types:

i. Circular Left Shift: This shifts each bit one position to the left.

The leftmost bit circulates and become the rightmost bit.

Figure 26: Left Circular Shift

ii. Circular Right Shift: This shifts each bit one position to the

right. The rightmost bit circulates and become the leftmost bit.

Commented [26]: Figure…

Commented [27]: Figure…

CIT 217 MODULE 2

77

Figure 27: Right Circular Shift

3.2.2 Arithmetic Shift Operations

Since the logical shifts do not work for signed numbers, there is another

kind of shifts called arithmetic shifts for signed numbers. An arithmetic

shift operation shifts a signed binary number to the left or to the right

position. In an arithmetic shift-left, it multiplies a signed binary number

by 2 and in an arithmetic shift-right, it divides the number by 2.

a) Arithmetic Left shift: This operation works just like logical shift left, the

only difference is that it deals with signed numbers. As long as the sign

bit is not changed by the shift, the result will be correct (i.e., will be

multiplied by 2). Arithmetic Left shift operation moves each bit to the

left one by one.

Commented [28]: Figure…

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

78

The empty least significant bit (LSB) is filled with zero nd the most

significant bit (MSB) is rejected. Same as the Left Logical Shift.

Figure 28: Left Arithmetic Shift

b) Arithmetic Right shift: This operation does NOT shift the sign bit:

the new bits entering on the left are copies of the sign bit.

Arithmetic Right shift operation moves each bit to the right one

by one and the least significant bit is rejected and the empty MSB

is filled with the value of the previous MSB.

Figure 29: Right Arithmetic Shift

Example 4:

Use an arithmetic right shift operation on the bit pattern 1 0 0 1 1 0 0

1. The pattern is an integer in two’s complement format.

Solution

The solution is shown below:

Figure 30: Arithmetic Shift Operation

The leftmost bit is retained and also copied to its right neighbour bit.

3.3 Arithmetic Operations

Arithmetic operations involve adding, subtracting, multiplying, and

dividing. These operations are applied to integers and floating-point

numbers.

Commented [29]: Figure…

Commented [30]: Figure…

Commented [31]: Bold

Commented [32]: Figure…

CIT 217 MODULE 2

79

3.3.1 Binary Addition

Binary addition is performed in the same way as addition in the decimal-

system and is, in fact, much easier to master. Assuming binary addition is

performed between two variables, say X and Y, since both X and Y can

take only the role 0 and 1, the possible input and output combinations may

be arranged as follows:

0 + 0 = 0

0 + 1 =1

1 + 0 = 1

1 + 1 = 1 0

This table represents a standard binary addition, except for the last entry.

When both' X and Y represents 1‟s, the value of X + Y is 1 0. Put into

words, the last rule states that binary one + binary one = binary two =

binary "one zero"

3.3.2 Binary Subtraction

Binary subtraction is just as simple as addition. Subtraction of one bit

from another obey the following four basic rules

 0 – 0 = 0

1 – 1 =0

1 – 0 = 1

10 – 1 = 1 with a transfer (borrow) of 1.

When performing subtraction, it is sometimes necessary to borrow from

the next higher-order column. It will be necessary to borrow when a 1 is

to be subtracted from a 0. In this case a 1 is borrowed from the next higher-

order column, which leaves a 0 in that column.

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

80

3.3.3 Binary Multiplication

Binary multiplication is performed in the same manner as decimal

multiplication. It is much easier, since there are only two possible results

of multiplying two bits. The Binary multiplication obeys the four basic

rules.

0  0 = 0

0  1 = 0

1  0 = 0

1  1 = 1

Example 5:

Multiply the following binary numbers.

(a) 101  1 1

(b) 1101  10

(c) 1010  l 0 1

 (d) 1 0 1 1  1 0 1 0

Commented [33]: I think it is better to type rather than copy-
paste

CIT 217 MODULE 2

81

Multiplication of fractional number is performed in the same way as with

fractional numbers in the decimal numbers.

Example 6:

Perform the binary multiplication 0.01  11.

3.3.4 Binary Division

Division in the binary number system employees the same procedure as

division in the decimal system, as will be seen in the following examples.

Example 7:

Perform the following binary division

(a) 110 ÷ 11

(b) 1100 ÷ 11

Solution

(a)

(b)

Binary division problems with remainders are also treated the same as in

the decimal system, as illustrates the following example.

Example 8:

 Perform the following binary division:

(a) 1111 ÷ 110

(b) 1100 ÷ 101

Commented [34]: Bold

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

82

Solution

(a)

(b)

3.3.5 Two’s Complement Arithmetic

The issue of representing integers as binary strings in a computer as

discussed in previous chapter is based on two’s complement by most

computers. One of the advantage of two’s complement representation is

that there is no difference between addition and subtraction. When the

subtraction operation is encountered, the computer simply changes it to

an addition operation, but makes two’s complement of the second

number. In other words:

𝐴 − 𝐵 ≡ 𝐴 + (𝐵̅ + 1)

Where (𝐵̅ + 1) is the two’s complement of B.

This means only addition is needed for discussion. Adding numbers in

two’s complement is like adding the numbers in decimal. The addition is

done column by column, and if there is a carry, it is propagated to the next

column. However, the carry is discarded in the last column.

Example 9:

Two integers A and B are stored in two’s complement format. Show how

B is added to A and the result stored in R.

A = 0 0 0 1 0 0 0 1 B = 0 0 0 1 0 1 1 0

Commented [35]: Bold

CIT 217 MODULE 2

83

Solution

The operation is adding. A is added to B and the result is stored in another

location R.

 Check: (+17) + (+22) = +39

Example 10:

Two integers A and B are stored in two’s complement format. Show how

B is added to A and the result stored in R.

A = 0 0 0 1 1 0 0 0 B = 1 1 1 0 1 1 1 1

Solution

The operation is adding. A is added to B and the result is stored in another

location R.

 Check: (+24) + (-17) = +7

Example 11:

Two integers A and B are stored in two’s complement format. Show how

B is subtracted from A and the result stored in R.

A = 0 0 0 1 1 0 0 0 B = 1 1 1 0 1 1 1 1

Solution

The operation is subtraction. A is added to (𝐵̅̅ ̅ + 1) and the result is stored

in another location R.

The two’s complement of B is 0 0 0 1 0 0 0 1

Therefore, the operation is thus:

 Check: (+24) + (-17) = +7

Commented [36]: Bold

Commented [37]: Bold

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

84

4.0 CONCLUSION

The arithmetic logic unit of the central processing unit performs three

operations on data. These operations are logic operations, shift operations

and arithmetic operations. The differences among these operations and

how the different operations are performed were demonstrated through

solved examples. Also, the applications of logical and shift operations

such as setting, unsetting and flipping specific bits were explained.

5.0 SUMMARY

Operations on data can be divided into three broad categories: logic

operations, shift operations and arithmetic operations. Logic operations

refer to those operations that apply the same basic operation to individual

bits of a pattern or to two corresponding bits in two patterns. Shift

operations move the bits in the pattern. Arithmetic operations involve

adding, subtracting, multiplying, and dividing.

6.0 TUTOR-MARKED ASSIGNMENT

1. What is the difference between logic operations and arithmetic

operations

2. What is the difference between unary operations and binary

operations

3. Explain when the results of the following logic gates are true

i. AND

ii. OR

iii. XOR

iv. NOR

7. Use the AND operator on the bit patterns 1 0 0 1 1 1 0 0 and 0

0 1 0 1 0 1 1.

8. Use a mask to unset the five leftmost bits of a pattern 1 0 1 0 0

1 0 0.

9. Use a mask to set the five leftmost bits of a pattern 1 0 1 0 0 1

0 0.

10. Use an arithmetic right shift operation on the bit pattern 1 0 0 0

0 1 1 1. The pattern is an integer in two’s complement format.

11. Two integers A and B are stored in two’s complement format.

Show how B is added to A and the result stored in R.

12. Two integers A and B are stored in two’s complement format.

Show how B is subtracted from A and the result stored in R.

CIT 217 MODULE 2

85

7.0 REFERENCES/FURTHER READINGS

Forouzan, B. and Mosharaf, F. (2011). Foundations of Computer Science.

BookPower United Kingdom (2nd ed).

French C. S. (1996). Computer Science. BookPower United Kingdom

(5th ed).

Hamer, F., Horan R. & Lavelle, M. (2005). Basic Engineering: Binary

Numbers 2

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

86

UNIT 4: MACHINE INSTRUCTION

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Contents

3.1 Instruction Format

3.2 Address Format

 3.2.1 Three-address machines

 3.2.2 Two-address machines

 3.2.3 One address machine (Accumulator machines)

 3.2.4 Zero-address machines (stack machines)

3.3 Instruction Cycle

 3.3.1 Fetch cycle

 3.3.2 Decode instruction cycle

 3.3.3 Execute Cycle

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Readings

1.0 INTRODUCTION

This unit concentrates on computer machine language and consequently

covers several aspects of machine operations. The purpose of this unit is

to demonstrate the various features of machine language. The unit also

explains how a computer can carry out instructions presented to it in

machine language. It is believe that the basic programming skill acquired

in module 1 will be supplemented in this unit.

2.0 OBJECTIVES

At the end of the unit you will be able to:

 Explain the composition of machine language instruction format

 Understand the part of the instruction format that deals with

specifying the address of operands that is the address format

 Explain the different methods of specifying the address format

 Understand how to implement the high level statement in the

different methods address format

 Understand the cycle through which the processor executes each

instruction

CIT 217 MODULE 2

87

3.0 MAIN CONTENTS

3.1 Instruction Format

The basic function performed by a computer is execution of a program,

which consists of a set of instructions stored in memory. The processor

does the actual work by executing instructions specified in the program.

A machine instruction has several components, this is illustrated in Figure

31. The instruction format is the size and arrangement of these

components. Two major components are the function code also called

‘opcode’, which specifies the function or operation performed, and the

operand addresses, which specify the locations of the operands used.

Figure 31: Basic Computer Instruction Format

The operation code field of an instruction is a group of bits that define

various processor operations, such as add, subtract, complement, and

shift. Operations specified by computer instructions are executed on some

data stored in memory or processor registers, Operands residing in

processor registers are specified with a register address. Each instruction

initiates a sequence of micro operations that fetch operands from registers

or memory, possibly perform arithmetic, logic, or shift operations, and

store results in registers or memory

Consider the following statement in a high level language (C for

instance):

a = a + b + a * c;

The meaning of this statement is: take the value of ‘a’ and multiply it with

‘c’, then add ‘a’ and ‘b’ to the result; the result is assigned to the variable

‘a’.

The sequence of operations (single statement per operation) that evaluates

the statement is:

Commented [38]: Wrong figure numbering

Commented [39]: Wrong numbering

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

88

t = a * c;

a = a + b;

a = a + t;

It is important to note that, in order to understand what the above sequence

does, one has to know how sequencing works that is execution of

instructions one after the other and what every operation does. The above

sequence points out why computers are said to be sequential. In the

example above, ‘t’ stands for temporary, an intermediate variable that

holds the value of the first operation; in this case the value of

multiplication a * c could not be assigned to ‘a’ because ‘a’ is also needed

for the second operation.

In executing the above statement, the question is to know which operation

is to be performed first. The spontaneous and yet not very correct answer

is multiplication; it is not simple multiplication because the statement

specify not only the operation to be performed but also where the result

is to be stored (this is a computer statement, not a simple mathematical

equality). The proper name is therefore multiply_and_store, while for the

second statement the proper name would be add_and_store.

Multiplication and addition are binary operations; multiply_and_store

and add_and _store are ternary operations.

The operands which specify the values for the binary operation (which is

a part of the ternary operation) are called source operands. The operand

that specifies where the result is to be stored is called the destination

operand.

Operands may be constants like in the following example:

a = b * 4

where the value in operand b is multiplied with 4 (the other operand) and

to assign the result to the operand a. However, in most cases generic

names are used because the value is not known but where it is stored that

is its address.

3.2 Address Format

This is the part of the instruction format that deals with specifying the

address of operands. The main methods are:

• 3-address machines;

• 2-address machines;

• 1-address machines;

• 0-address machines.

In an n-address machine the maximum number of operands is n. The

convention is that the destination is the first operand in the instruction.

This a commonly used convention though not generally accepted. It is

CIT 217 MODULE 2

89

consistent with the assignment statements in high level languages. The

other used convention, listing the destination after the source operands, is

coherent with our verbal description of operations.

3.2.1 Three-address machines

In a 3-address machine all three operands are explicit in each instruction.

Each instruction specifies the address of two operands and gives a further

address for the results of the operation

The general format of an instruction is:

operation dest, op1, op2

where:

• operation is the name of the operation to be performed;

• dest is the destination operand, the place where the result will be

stored;

• op1 and op2 are the two source operands.

Thus the meaning of:

ADD r2, r1, r0 is to add the value stored in register r1, with the value

stored in register r0, and put the result in the register r2.

In the example above all operands were held in registers the reason for

discussing the addresses is that registers can be seen as a special part of

the memory, very fast and very close to the CPU;

Example 1:

What is the meaning of the following instruction?

ADD x, y, z

Solution

Add the value of variable y to the value of variable z and then store the

result in the memory location corresponding the variable x.

3.2.2 Two-address machines

Each instruction specifies the address of two operands. The result of the

operation would replace one of the two operands. It is an improvement

over the three-address machine.

The general format of instructions is:

operation dest, op

where:

• operation is the name of the operation to be performed

• dest designates the name of one source operand and the name of

the destination

• op is the name of the second source operand

Commented [40]: Bold

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

90

Thus the meaning of an instruction like:

ADD r1, r2

is to add the values stored in the registers r1 and r2, and to store the result

r1.

There is an advantage in having two-address instructions as compared

with three-address instructions; the instructions are shorter, which is

important when preserving memory. Moreover shorter instructions might

be fetched faster (in the case instructions are wider than the data-path,

multiple accesses to memory are required). There is a drawback however

with two-address instructions: one of the source operands is destroyed; as

a result extra moves are sometimes necessary to preserve the operands

that will be needed later.

Example 2:

Show how to implement the high level statement

a = a + b + a * c on a 3-address machine and then on a 2-address machine.

Both machines are 8 bit register-register machines with 32 general

purpose registers and a 16 bit addresses. The values of variables a, b, and

c are stored in r1, r2 and r3 respectively. In any case calculate the number

of clock cycles necessary if every memory access takes two clock cycles

and the execution phase of an instruction takes one clock cycle.

Solution

For the 3-address machine:

MUL r4, r1, r3 # 3 * 2 + 1 clock cycles

ADD r1, r1, r2 # 3 * 2 + 1

ADD r1, r1, r4 # 3 * 2 + 1

This sequence requires 21 clock cycles to complete; each instruction has

a fetch phase that takes three (3 bytes/instruction) times two clock cycles

(2 clock cycles per memory access), plus an execution phase which is one

clock cycle long.

For the 2-address machine:

MOV r4, r1 # 2 * 2 + 1 clock cycles

MUL r4, r3 # 2 * 2 + 1

ADD r1, r2 # 2 * 2 + 1

ADD r1, r4 # 2 * 2 + 1

The sequence requires 20 clock cycles to complete; it is slightly faster

than the implementation of the same statement on the 3-address machine.

The two address machine requires 10 bits (5 + 5) to encode the two

operands and the example assumes an instruction is 16 bit wide.

Commented [41]: Bold

Commented [42]: Bold

CIT 217 MODULE 2

91

3.2.3 One address machine (Accumulator machines)

In a 1-address machine the accumulator is implicitly both a source

operand and the destination of the operation. The instruction has only to

specify the second source operand. The format of an instruction is:

operation op

where:

• operation is the name of the operation to be performed

• op is a source or a destination operand. Example of source or

destination operand is the accumulator.

Thus the meaning of:

ADD a

is to add the value of variable a to the content of the accumulator, and to

leave the result in the accumulator. The accumulator is a register which

has a special position in hardware and in software. Instructions are very

simple and the hardware is also very simple.

Example 3:

Show how to implement the statement

a = a + b + a * c using an accumulator machine.

Answer:

LOAD a # bring the value of a in accumulator

MUL c # a * c

ADD b # a * c + b

ADD a # a * c + b + a

STO a # store the final result in memory

Due to its simplicity, only one operand has to be explicitly specified,

accumulator machines present compact instruction sets. The problem is

that the accumulator is the only temporary storage: memory traffic is at

the highest for accumulator machines compared with other approaches.

3.2.4 Zero-address machines (stack machines)

How is it possible to have a machine without explicit operands

instructions? This is possible if the locations of the operands and the result

to be stored are known. A stack is a memory (sometimes called LIFO =

Last-In-First-Out) defined by two operations PUSH and POP: PUSH

moves a new item from the memory into the stack while POP gets the last

item that was pushed into the stack. The formats of operations on a stack

machine are:

operation

PUSH op

POP op

where:

Commented [43]: Bold

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

92

• operation indicates the name of the operation to be performed.

Operation always acts on the value(s) at top of the stack

• op is the address in the main memory where the value to be

pushed/popped is located.

A stack machine has two memories: an unstructured one, we call it the

main memory, where instructions and data are stored, and a structured

one, the stack where access is allowed only through predefined operations

(PUSH/POP).

Example 4:

Show how to implement the statement

a = a + b + a * c using a stack machine.

Solution

PUSH a # push the value of a;

PUSH c # push the value of c

MUL # multiply the two values on top of the stack

PUSH b

ADD

PUSH a

ADD

POP a # store the result back in memory at the address where a is

located.

Whenever an operation is performed, the source operands are popped

from the stack, the operation is performed, and the result is pushed into

the stack

Example 5:

Show the content of the stack while implementing the statement:

a = a + b + a * c

Solution

Figure 32: Implementation of Statement in a Stack machine

Commented [44]: Bold

Commented [45]: Bold

CIT 217 MODULE 2

93

3.3 Instruction Cycle

A computer instruction is a binary code that specifies a sequence of micro

operations for the computer. Instruction codes together with data are

stored in memory. The computer reads each instruction from memory and

places it in a control register. The control then interprets the binary code

of the instructions and proceeds to execute it by issuing a sequence of

micro operations.

A program that exists inside a computer's memory unit consists of a series

of instructions.

The instruction cycle (also known as the fetch–decode–execute cycle, or

simply the fetch-execute cycle) is the cycle that the central processing unit

(CPU) follows from boot-up until the computer has shut down in order to

process instructions. Figure 33 illustrated this cycle.

The processor executes these instructions through a cycle for each

instruction. In a basic computer, each instruction cycle consists of the

following phases:

Instruction fetch: fetch instruction from memory

Decode the instruction: what operation to be performed.

Read the effective address from memory

Execute the instruction

Figure 33: Instruction Cycle

Registers involved in each instruction cycle as shown in Figure 34 are:

i. Memory address registers (MAR): It is connected to System Bus

address lines. It specifies the address of a read or write operation

in memory.

ii. Memory Buffer Register (MBR): Also called Memory Data

Register (MDR). It is connected to the system bus Data Lines. It

holds the memory value to be stored, or the last value read from

the memory.

Commented [46]: Figure

Commented [47]: Wrong numbering

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

94

iii. Program Counter (PC): Holds the address of the next instruction to

be fetched.

iv. Instruction Register (IR): Holds the last instruction fetched.

3.3.1 Fetch cycle

The address of the next instruction to execute is in the Program Counter

(PC) at the beginning of the fetch cycle.

Step 1: The address in the program counter is transferred to the Memory

Address Register (MAR), as this is the only register that is connected to

the system bus address lines.

Step 2: The address in MAR is put on the address bus, now a Read order

is provided by the control unit on the control bus, and the result appears

on the data bus and is then copied into the memory buffer register.

Program counter is incremented by one, to get ready for the next

instruction. These two acts can be carried out concurrently to save time.

Step 3: The content of the MBR is moved to the instruction register (IR).

Figure 34: Registers Involved In Instruction Cycle

3.3.2 Decode instruction cycle

During the instruction fetch, the opcode in the instruction is decoded by

the control unit (CU). The CU now “knows” which instruction it should

execute, and can therefore output a sequence of levels and pulses to set

up paths and effect the desired register transfers.

3.3.3 Execute Cycle

The CPU executes the instruction by reading values from registers,

performing arithmetic or logical functions on them, and writing the result

Commented [48]: Wrong numbering

CIT 217 MODULE 2

95

into a register. The result is stored in main memory or is sent to an output

device

To perform a given task an appropriate program consisting of a list of

instructions is stored in the memory. Individual instructions are brought

from the memory into the processor, which executes the specified

operations. Data to be stored are also stored in the memory.

Transfers between the memory and the processor are started by sending

the address of the memory location to be accessed to the memory unit and

issuing the appropriate control signals. The data are then transferred to or

from the memory. In high-level languages, the compiler is responsible for

translating high-level operations into low-level operations that access

registers. This translation will be discussed in module 3.

The cycle of execution is summarized in Figure 35 below.

Figure 35: Instruction Cycle with Interrupt

Programs reside in the memory and usually get these through the Input

unit. Execution of the program starts when the program counter is set to

point at the first instruction of the program. The contents of the program

counter are transferred to MAR and a Read Control Signal is sent to the

memory. After the time required to access the memory elapses, the

address word is read out of the memory and loaded into the MDR. Now

contents of MDR are transferred to the IR and now the instruction is ready

to be decoded and executed. If the instruction involves an operation by

the ALU, it is necessary to obtain the required operands. An operand in

the memory is fetched by sending its address to MAR and initiating a read

cycle. When the operand has been read from the memory to the MDR, it

is transferred from MDR to the ALU. After one or two such repeated

cycles, the ALU can perform the desired operation. If the result of this

operation is to be stored in the memory, the result is sent to MDR. Address

of location where the result is stored is sent to MAR and a write cycle is

initiated. The contents of PC are incremented so that PC points to the next

instruction that is to be executed.

Commented [49]: Wrong numbering

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

96

Normal execution of a program may be preempted (temporarily

interrupted) if some devices require urgent servicing, to do this one device

raises an Interrupt signal. An interrupt is a request signal from an input

and output device for service by the processor. The processor provides

the requested service by executing an appropriate interrupt service

routine. The Diversion may change the internal stage of the processor so

its state must be saved in the memory location before interruption. When

the interrupt-routine service is completed the state of the processor is

restored so that the interrupted program may continue

4.0 CONCLUSION

We have discussed the composition of machine language instruction

format. The two major components of the instruction format are the

function code also called ‘opcode’, which specifies the function or

operation performed, and the operand addresses, which specify the

locations of the operands used. The main methods of addressing in the

instruction formats which specifies the address of operands that is 3-

address machines, 2-address machines, 1-address machines, and 0-

address machines were discussed. The instruction cycle for the execution

of instructions was also explained. This unit has therefore shown how

statements in high level programming language which is translated into

machine language is implemented.

5.0 SUMMARY

This unit covered several aspects of machine instructions. The instruction

format which is the size and arrangement of the component of machine

instructions and the address format which is the addressing part of the

instruction format were discussed. The main methods of address formats

that is the 3-address format, 2-address format, 1-address format, and 0-

address format were discussed with examples of how an high level

language statement are processed in each of the format.

The instruction cycle was also discussed. The first operation in the cycle

is the fetch cycle where the address of the next instruction to be executed

in the Program Counter (PC) is retrieved from memory. Then decode

cycle where, the opcode in the instruction is decoded by the control unit

(CU). The last operation of the cycle is the execute cycle where the CPU

executes the instruction by reading values from registers, performing

arithmetic or logical functions on them, and writing the result into a

register. It was also discussed that the operations of the cycle may be

interrupted by a required service from an input and output device. In this

case, the CPU will have to save the state of the operation so that it can

resume it after the interrupt servicing has ended.

CIT 217 MODULE 2

97

6.0 TUTOR-MARKED ASSIGNMENT

1. What is an instruction in machine language?

2. Differentiate between 2-operand and 3-operand address format

3. What is the meaning of the following instruction?

ADD x, y, z

4. Show how to implement the high level statement

a = a + 2b + 3a * c on a 3-address machine and then on a 2-address

machine

5. Implement the high level statement:

 a = (a * b) + 2 * a * c

 on a three-address machine. Assume that variables a, b, and c are

in registers R1, R2, and R3 respectively.

6. Show the content of the stack while implementing the statement: a

= (a * b) + 2 * a * c

7. Discuss the instruction cycle

8. Discuss all registers involved in each instruction cycle

7.0 REFERENCES/FURTHER READINGS

William Stallings (2013). Computer Organization and Architecture:

Designing For Performance. Pearson Education, Inc.,

publishing as Prentice Hall (9th ed).

Forouzan, B. and Mosharaf, F. (2011). Foundations of Computer Science.

BookPower United Kingdom (2nd ed).

French C. S. (1996). Computer Science. BookPower United Kingdom

(5th ed).

Tanenbaum, Andrew S. (1993) Structural Computer Organisation. India:

Prentice Hall. (3rd ed).

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

98

MODULE 3: PROGRAMMING LANGUAGES

Unit 1: Block structured languages

Unit 2: Specification and translation of programming languages

UNIT 1: BLOCK STRUCTURED LANGUAGES

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main content

 3.1 programming language paradigm

 3.1.1 Overview of the imperative paradigm

 3.1.2 Overview of the functional paradigm

 3.1.3 Overview of the logic paradigm

 3.1.4 Overview of the object-oriented paradigm

 3.2 Subprograms

 3.3 Block structured programming

 3.3.1 Names

 3.3.2 Denotable objects

 3.3.3 Blocks

 3.3.4 Environment

 3.4 Parameter passing

 3.4.1 Parameter passing techniques

 3.4.1.1 Pass by value

 3.4.1.2 Pass by reference

4.0 Conclusion

5.0 Summary

6.0 Tutor-marked assignment

7.0 References/further readings

1.0 INTRODUCTION

In module 1, we discussed the basic principles of programming and stated

that designing a sound and correct computer programs involves following

strictly the principles of program development life cycle. A good program

could be developed when a good technique, model, pattern or paradigm

is followed. A common term used to explain techniques, approaches or

framework on which programming languages are developed is known as

programming paradigm. This unit will present an overview of the main

programming language paradigms. The paradigms presented are

imperative, functional, logic, and object-oriented programming.

Subprograms which are important aspect of program structure will be

discuss. The two types of subprograms: functions and procedures will be

CIT 217 MODULE 3

99

discussed as well. Block structure approach which is the building blocks

from which programs are constructed for efficiency and clarity to ensure

quality of programs in programming languages is also part of the

discussion in this unit.

Finally, the unit will discuss parameter passing and its techniques. The

main methods of parameter passing that will be discuss is the pass by

value and pass by reference.

2.0 OBJECTIVES

At the end of the unit you will be able to:

 Understand what is meant by programming language paradigm

 Distinguish between four computer programming language

paradigms

 Describe subprograms and explain some of the basic terminologies

in subprograms

 List the general characteristics of subprograms

 Explain block structured programming

 Understand parameter passing in programming language

 Explain two methods of parameter passing in programming

language

3.0 MAIN CONTENT

3.1 Programming language paradigm

Paradigm means an example that serves as pattern, approach or model.

Programming paradigm therefore means a pattern that serves as a school

of thoughts for programming of computers. It is the preferred approach to

programming that a language supports and also a classification of

programming languages based on their features even though most popular

languages support multiple paradigms. A good programmer might write

great software using any programming paradigm

Programming paradigm presents programming techniques that are related

to an algorithmic idea for solving a particular class of problems. Examples

of these techniques are ‘divide and conquer', 'program development by

stepwise refinement' and programming style. The details of these

techniques are dealt with in Software engineering. A programming style

that is of concern in this unit is block structure. Before we delve fully into

that we will briefly enumerate the four main programming paradigms.

These are the imperative paradigm, the functional paradigm, the logical

paradigm, and the object-oriented paradigm. More details will be in

another course titled “survey of programming languages”.

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

100

3.1.1 Overview of the imperative paradigm

The word 'imperative' can be used both as an adjective and as a noun. As

an adjective it means 'expressing a command or plea'. In other words,

asking for something to be done. As a noun, an imperative is a command

or an order. For example

“First do this and next do that”

The 'first do this and next do that' is a short phrase which really in a

nutshell describes the spirit of the imperative paradigm. The basic idea is

the command, which has a measurable effect on the program state. The

phrase also reflects that the order to the commands is important. 'First do

that, then do this' would be different from 'do this, then do that'. It is the

oldest but still the dominant paradigm. It is closest to the actual

mechanical behaviour of a computer as its languages were abstractions of

assembly language. It is based on commands that update variables held in

storage. Variables and assignment commands constitute a simple but

useful abstraction from the memory fetch and update of machine

instruction sets. Imperative programming languages can be implemented

very efficiently and is still dominant because it is related to the nature and

purpose of programming. As programs are written to model real-world

processes affecting real world objects, imperative programs model such

processes.

In imperative paradigm also called procedural paradigm, we can think of

a program as an active agent that manipulates passive objects. We

encounter many passive objects in our daily life: a stone, a book, a lamp,

and so on. A passive object cannot initiate an action by itself, but it can

receive actions from active agents. A program in an imperative paradigm

is an active agent that uses passive objects that we refer to as data or data

items. Examples of an imperative language are FORTRAN (FORmula

TRANslation), COBOL (Common Business-Oriented Language), Pascal,

C, and Ada.

3.1.2 Overview of the Functional Paradigm

In the functional paradigm, a program is considered a mathematical

function. In this context, a function is a black box that maps a list of inputs

to a list of outputs (Figure 36). For example, “summation” can be

considered as a function with n inputs and only one output.

Figure 36: A function in a functional Language Commented [1]: Figure 3.1:…

CIT 217 MODULE 3

101

The function takes the n inputs and adds them and created the sum.

Functional programming is in many respects a simpler and cleaner

programming paradigm than the imperative one. The reason is that the

paradigm originates from a purely mathematical discipline: the theory of

functions. As described in section 3.1.1, the imperative paradigm is rooted

in the key technological ideas of the digital computer, which are more

complicated, and less 'clean' than mathematical function theory.

Functional programming evaluates an expression and use the resulting

value for something. Below we characterize the most important, overall

properties of the functional programming paradigm.

i. It is based on mathematics and the theory of functions

ii. The values produced are non-mutable that is it is impossible to

change any constituent of a composite value. As a remedy, it is

possible to make a revised copy of composite value.

iii. Functions are full-fledged data just like numbers, lists, ...

iv. The language fits well with computations driven by needs.

Examples of functional language are LISP (LISt Programming), Scheme,

Haskell, F#, etc.

3.1.3 Overview of the logic paradigm

The logic paradigm is dramatically different from the other three main

programming paradigms. It uses the principle of logical reasoning to

answer queries. It based on formal logic. The logic paradigm fits

extremely well when applied in problem domains that deal with the

extraction of knowledge from basic facts and relations. The logical

paradigm seems less natural in the more general areas of computation. For

example, the famous rule of deduction in logic is:

If (A is B) and (B is C), then (A is C)

One famous logic language is PROLOG (PROgramming in LOGic)

3.1.4 Overview of the object-oriented paradigm

The object-oriented paradigm has gained great popularity in the recent

decade. The primary and most direct reason is undoubtedly the strong

support of encapsulation and the logical grouping of program aspects.

These properties are very important when programs become larger and

larger. The underlying, and somewhat deeper reason to the success of the

object-oriented paradigm is probably the conceptual anchoring of the

paradigm. An object-oriented program is constructed with the outset in

concepts, which are important in the problem domain of interest. An

object-oriented program he theory of concepts, and models of human

interaction with real world phenomena.

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

102

There are four key object-oriented program concepts, these are data

abstraction, encapsulation, inheritance, and polymorphism. Data

Abstraction focuses on the essential characteristics of some object which

yields clearly defined boundaries. It is relative to the perspective of the

viewer. Encapsulation is the compartmentalisation of structure and

behaviour so that the details of an object’s implementation are hidden.

Inheritance allow classes to use parent classes’ behavior and structure. It

improves reliability and manageability and allows code reusability.

Polymorphism ensures that different implementations can be hidden

behind a common interface. This means we can define several operations

with the same name that can do different things in related classes.

We will now describe the most important properties of object-oriented

programming as seen as a school of thought in the area of computer

programming.

i. Data as well as operations are encapsulated in objects

ii. Information hiding is used to protect internal properties of an

object

iii. Objects interact by means of message passing, a metaphor for

applying an operation on an object. In most object-oriented

languages, objects are grouped in classes.

iv. Objects in classes are similar enough to allow programming of the

classes, as opposed to programming of the individual objects.

v. Classes represent concepts whereas objects represent phenomena.

vi. Classes are organized in inheritance hierarchies

Some object-oriented programming languages include C++,JAVA, C#,

etc.

3.2 Subprograms

The subprogram may be used to describe a component part of a program.

Used loosely, the term may merely refer to any set of statements forming

part of a program used for a specific task. However, a properly

constructed subprogram should be self-contained, perform well-defined

operations on well-defined data and have an internal structure that is

independent of the program in which it is contained. When a subprogram

has all these properties, it is sometimes called a program module.

Subprograms are the fundamental building blocks of programs and are

therefore among the most import concepts in programming language

design.

CIT 217 MODULE 3

103

The general characteristics of Subprogram are:

i. A subprogram has a single entry point.

ii. The caller is suspended during execution of the called subprogram,

which implies that there is only one subprogram in execution at

any given time.

iii. Control always returns to the caller when the called subprogram’s

execution terminates

Basic terminologies in Subprograms

i. A subprogram definition is a description of the actions of the

subprogram abstraction.

ii. A subprogram call is an explicit request that the called subprogram

be executed.

iii. A subprogram is said to be active if, after having been called, it

has begun execution but has not yet completed that execution.

iv. A subprogram header is the first line of the definition, serves

several definitions:

- It specifies that the following syntactic unit is a subprogram

definition of some particular kind.

- The header provides a name for the subprogram.

- May optionally specify a list of parameters.

 Consider the following header examples:

FORTRAN:

Subroutine Adder(parameters)

Ada

procedure Adder(parameters)

C

void Adder(parameters)

v. The parameter profile (sometimes called the signature) of a

subprogram is the number, order, and types of its formal

parameters.

vi. The protocol of a subprogram is its parameter profile plus, if it is

a function, its return type.

vii. A subprogram declaration provides the protocol, but not the body,

of the subprogram.

viii. A formal parameter is a dummy variable listed in the subprogram

header and used in the subprogram.

ix. An actual parameter represents a value or address used in the

subprogram call statement.

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

104

There are two distinct categories of subprograms, these are procedures

and functions.

Procedures: Procedures provide user-defined parameterized

computation statements. Any defined way of carrying out some actions

may be called a procedure. Programming procedures are defined

operations on defined data and may be used as program components. The

computations are enacted by single call statements.

Functions: Many high-level programming languages have inbuilt

functions such as those that perform mathematical computations, such as

Sine or absolute value. Another example are functions that convert from

one numeric type to another such as an “Int” function, which has a real

argument and evaluates to the largest integer not greater than the real, e.g.

Int(3.6) evaluates to 3. There are functions that covert from characters to

their integer ordinal value or vice versa e.g. a function with argument “A”

that evaluates to 65 (ASCII charcter set)

A function is a piece of code identified by name, it is given a local

environment of its own and is able to exchange information with the rest

of the code using parameters. This concept translates into two different

linguistic mechanisms. The first, definition (or declaration) of function,

and its use (or call). In the program segment A shown below, the first five

lines constitute the definition of the function named foo, whose local

environment is composed from three names n, a, and tmp. The first line

is the header, while the remaining lines constitute the body of the function.

The last two lines are the uses (or calls) of foo.

int foo (int n, int a) {

 int tmp = a;

 if (tmp == 0)

 return n;

 else return n+1;

 }

. . .

int x;

x = foo (3, 0);

x = foo (x+1, 1);

Program Segment A: Definition and use of a function

A function exchanges information with the rest of the program using three

principal mechanisms: parameters, return value, nonlocal environment.

CIT 217 MODULE 3

105

3.3 Block Structured Programming

An insistence on structured programming can directly contribute to the

overall quality of programs and the achievement of many design aims.

Structured programs are not only more comprehensible they are also

much easier to test. Aids to good program design include using

meaningful identifiers in programs, using subprograms and procedures,

indenting of code to highlight its structure, and restricting the size of

subprograms to manageable lengths. Block structured languages provide

these aids to improve the quality of programs. Some terminologies used

in block structured languages are discussed below.

3.3.1 Names

When a new variable is declared in a program:

 int fie;

or a new function is defined:

int foo () {

 fie = 1;

}

We introduce new names, such as fie and foo to represent an object (a

variable and a function in our example). The character sequence fie can

be used every time that we want to refer to the new variable, just as the

character sequence foo allows us to call the function that assigns to fie the

value. A name is therefore nothing more than a sequence of characters

used to represent, or denote, another object. In most languages, names are

formed of identifiers.

The use of names implements a first, elementary, data abstraction

mechanism.

For example, when, in an imperative language, we define a name using a

variable, we are introducing a symbolic identifier for a memory location;

therefore we are abstracting from the low-level details of memory

addresses. If, then, we use the assignment command:

fie = 2;

the value 2 will be stored in the location reserved for the variable named

‘fie’. At the programming level, the use of the name avoids the need to

bother with whatever this location is. The correspondence between name

and memory location must be guaranteed by the implementation. We will

use the term environment to refer to that part of the implementation

responsible for the associations between names and the objects that they

denote.

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

106

3.3.2 Denotable Objects

The objects to which a name can be given are called denotable objects.

Even if there are considerable differences between programming

languages, the following is a non-exhaustive list of possible denotable

objects:

• Objects whose names are defined by the user: variables, formal

parameters, procedures (in the broad sense), user-defined types,

labels, modules, user-defined constants, exceptions.

 • Objects whose names are defined by the programming language:

primitive types, primitive operations, predefined constants.

The association (or binding) between a name and an object it denotes can

therefore be created at various times. Some names are associated with

objects during the design of a language, while other associations are

introduced only when a program is executed.

Not all associations between names and denotable objects are fixed once

and for all at the start of program execution. Many can vary during

execution. To be able to understand how these associations behave, we

need to introduce the concept of environment.

The set of associations between names and denotable objects which exist

at runtime at a specific point in the program and at a specific time during

execution, is called the (referencing) environment. Usually, when we

speak of environments, we refer only to associations that are not

established by the language definition. The environment is therefore that

component of the abstract machine which, for every name introduced by

the programmer and at every point in the program, allows the

determination of what the correct association is. Note that the

environment does not exist at the level of the physical machine. The

presence of the environment constitutes one of the principle

characteristics of high-level languages which must be simulated in a

suitable fashion by each implementation of the language. A declaration is

a construct that allows the introduction of an association in the

environment. High-level languages often have explicit declarations, such

as:

 int x;

 int f (){

 return 0;

 }

 type T = int;

The first is a declaration of a variable, the second of a function named f,

the third is declaration of a new type, T, which coincides with type int).

Some languages allow implicit declarations which introduce an

Commented [2]: This should be on a new line or should be a
sub-heading

Commented [3]: Type not screenshot

CIT 217 MODULE 3

107

association in the environment for a name when it is first used. The

denoted object’s type is deduced from the context in which the name is

used for the first time.

As we will see in detail below, there are various degrees of freedom in

associations between names and denotable objects. First of all, a single

name can denote different objects in different parts of the program.

Consider the following code segment:

 {int fie;

 fie = 2;

 {char fie;

 fie = a;

 }

 }

The outermost name fie denotes an integer variable, while the inner one

is of type character.

While different names for the same object are used in different

environments, no particular problems arise. The situation is more

complicated when a single object is visible using different names in the

same environment. This is called aliasing and the different names for the

same object called aliases. If the name of a variable passed by reference

to a procedure is also visible inside the same procedure, we have a

situation of aliasing. Other aliasing situations can easily occur using

pointers. If X and Y are variables of pointer type, the assignment X = Y

allows us to access the same location using both X and Y.

Let us consider, for example, the following fragment of C program where,

it is assumed that write(Z) is a procedure which allows us to print the

value of the integer variable Z:

int *x, *y; // x,y pointers to integers

x = (int *) malloc (sizeof (int)); // allocate heap memory

*x = 5; // * dereference

y=x; // y points to the same object as x

*y=10;

Write(*x);

The names X and Y denote two different variables, which, however, after

the execution of the assignment command X=Y, allow to access the same

memory location (therefore, the next print command will output the value

10)

3.3.3 Blocks

Almost all important programming languages today permit the use of

blocks, a structuring method for programs introduced by ALGOL60.

Block structuring is fundamental to the organisation of the environment.

Commented [4]: Should not be a picture

Commented [5]: Same here too

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

108

A block is a textual region of the program, identified by a start sign and

an end sign, which can contain declarations local to that region (that is,

which appear within the region).

The start- and end-block constructs vary according to the programming

language: begin ... end for languages in the ALGOL family, braces {...}

for C and Java, round brackets (...) for LISP and its dialects, let ... in ...

end in ML, etc. Moreover, the exact definition of block in the specific

programming language can differ slightly from the one given above. In

some cases, for example, one talks about block only when there are local

declarations. Often, though, blocks have another important function, that

of grouping a series of commands into a syntactic entity which can be

considered as a single (composite) command. These distinctions,

however, are not relevant as far as we are concerned. We will, therefore,

use the definition given above and we distinguish two cases:

Block associated with a procedure: This is a block associated with

declarations local to a procedure. It corresponds textually to the body of

the procedure itself, extended with the declarations of formal parameters.

In-line block: This is a block which does not correspond to a declaration

of procedure and which can appear (in general) in any position where a

command can appear.

3.3.4 Environment

The environment changes during the execution of a program. However,

the changes occur generally at two precise times: on the entry and exit of

a block. The block can therefore be considered as the construct of least

granularity to which a constant environment can be associated. A block’s

environment, meaning by this terminology the environment existing

when the block is executed, is initially composed of associations between

names declared locally to the block itself.

In most languages allowing blocks, blocks can be nested; that is, the

definition of one block can be wholly included in that of another. An

example of nested anonymous blocks is shown in the program segment

below:

 {int fie;

 fie = 2;

 {char fie;

 fie = a;

 }

 }

Program Segment B: Nested Anonymous Blocks

CIT 217 MODULE 3

109

The overlapping of blocks so the last open block is not the first block to

be closed is never permitted. In other words a sequence of commands of

the following kind is not permitted in any language:

open block A;

 open block B;

close block A;

 close block B;

Different languages vary, then, in the type of nesting they permit. In C,

for example, blocks associated with procedures cannot be nested inside

each other (that is, there cannot be procedure declarations inside other

procedures), while in Pascal and Ada this restriction is not present. Block

nesting is an important mechanism for structuring the environment. There

are mechanisms that allow the declarations local to a block to be visible

in blocks nested inside it.

Remaining informal for the time being, we say that a declaration local to

a block is visible in another block when the association created by such a

declaration is present in the second block. Those mechanisms of the

language which regulate how and when the declaration is visible are

called visibility rules. The canonical visibility rule for languages with

blocks states that a declaration local to a block is visible in that block and

in all blocks listed within it, unless there is a new declaration of the same

name in that same block. In this case, in the block which contains the

redefinition, the new declaration hides the previous one.

In the case in which there is a redefinition, the visibility rule establishes

that only the last name declared will be visible in the internal block, while

in the exterior one there is a visibility hole. The association for the name

declared in the external block will be, in fact, deactivated for the whole

of the interior block (containing the new declaration) and will be

reactivated on exit from the inner block. Note that there is no visibility

from the outside inwards. Every association introduced in the

environment local to a block is not active (or rather the name that it defines

is not visible) in an exterior block which contains the interior one.

Analogously, if we have two blocks at the same nesting level, or if neither

of the two contains the other, a name introduced locally in one block is

not visible in the other.

The definition just given, although apparently precise, is insufficiently so

to establish with precision what the environment will be at an arbitrary

point in a program.

We will assume this rule for the rest of this section, while the next will be

concerned with stating the visibility rules correctly.

Commented [6]: Should be written not screenshot

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

110

In general we can identify three components of an environment. The

environment associated with a block is formed of the following

components:

Local environment: This is composed of the set of associations for

names declared locally to the block. In the case in which the block is for

a procedure, the local environment contains also the associations for the

formal parameters, given that they can be seen, as far as the environment

is concerned, as locally declared variables.

Non-local environment: This is the environment formed from the

associations for names which are visible from inside a block but which

have not been declared locally.

Global environment: Finally, there is the environment formed from

associations created when the program’s execution began. It contains the

associations for names which can be used in all blocks forming the

program.

The environment local to a block can be determined by considering only

the declarations present in the block. We must look outside the block to

define the non-local environment. The global environment is part of the

non-local environment. Names introduced in the local environment can

be themselves present in the non-local environment. In such cases, the

innermost (local) declaration hides the outermost one. The visibility rules

specify how names declared in external blocks are visible in internal ones.

In some cases, it is possible to import names from other, separately

defined modules. The associations for these names are part of the global

environment.

Consider the program segment C below where, for ease of reference, it is

assumed that the blocks can be labelled. The labels behave as comments

as far as the execution is concerned.

 A: {int a =1;

 B: {int b = 2;

 int c = 2;

 C: {int c = 3;

 int d;

 d = a+b+c;

 write (d)

 }

 D: {int e;

 e = a+b+c;

 write (e)

 }

 }

Commented [7]: Bold

Commented [8]: Bold

CIT 217 MODULE 3

111

 }

Program Segment B: Global, Local and Non-Local Environment

It is assumed that block A is the outermost. It corresponds to the main

program. The declaration of the variable ‘a’ introduces an association in

the global environment.

Inside block B two variables are declared locally (b and c). The

environment for B is therefore formed of the local environment,

containing the association for the two names (b and c) and from the global

environment containing the association for ‘a’.

Inside block C, 2 local variables (c and d) are declared. The environment

of C is therefore formed from the local environment, which contains the

association for the two names (c and d) and from the non-local

environment containing the same global environment as above, and also

the association for the name ‘b’ which is inherited from the environment

of block B. Note that the local declaration of ‘c’ in block C hides the

declaration of ‘c’ present in block B. The print command present in block

C will therefore print the value 6.

In block D, finally, we have a local environment containing the

association for the local name ‘e’, the usual global environment and the

non-local environment, which, in addition to the association for a contains

the association for the names ‘b’ and ‘c’ introduced in block B. Given that

variable ‘c’ has not been internally re-declared, in this case, therefore, the

variable declared in block B remains visible and the value printed will be

5. Note that the association for the name ‘d’ does not appear in the

environment non-local to D, given that this name is introduced in an

exterior block which does not contain D. The visibility rules, indeed,

allows only the inheritance of names declared in exterior blocks from

interior ones and not vice versa.

3.4 Parameter passing

One way that a non-local method program can gain access to the data that

it is to process is through parameter passing. Data that passed through

parameters are accessed through names that are local to the subprogram.

A subprogram with parameter access to the data it is to process is a

parameterized computation. It can perform its computation on whatever

data it receives through its parameters. Parameter is a special kind of

variable, used in subprogram to refer to one of the pieces of data provided

as input to the subprogram. These pieces of data are called arguments. An

ordered list of parameters is usually included in the definition of a

Commented [9]: Should be typed not screenshot

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

112

subprogram, so that, each time the subprogram is called, its arguments for

that call can be assigned to the corresponding parameters (Figure 37).

Figure 37: Assigning Arguments to the corresponding parameters

A formal parameter is a dummy variable listed in the subprogram header

and used in the subprogram. Subprograms call statements must include

the name of the subprogram and a list of parameters to be bound to the

formal parameters of the subprogram. An actual parameter represents a

value or address used in the subprogram call statement. Consider the

following Figure 38:

Figure 38: Difference between Formal and Actual Parameters

We distinguish between formal parameters, which appear in the definition

of a function, and actual parameters, which appear, instead, in the call.

The formal parameters are always names which, as far as the environment

Commented [10]: Figure 3.3:

Commented [11]: Wrong figure

CIT 217 MODULE 3

113

is concerned, behave as declarations local to the function itself. They

behave, in particular, as bound variables, in the sense that their consistent

renaming has no effect on the semantics of the function. For example, the

function foo in Program Segment A and that in Program Segment C are

indistinguishable, even though this second one has different names for its

formal parameters.

int foo (int m, int b) {

 int tmp = b;

 if (tmp = = 0) return m;

 else return m+1;

}

Program Segment C: Different Names for Formal Parameters.

The way in which actual parameters are paired with formal parameters,

and the semantics which results from this, is called the parameter passing

discipline. According to what is now traditional terminology, a specific

mode is composed of the kind of communication that it supports, together

with the implementation that produces this form of communication. The

mode is fixed when the function is defined and can be different for each

parameter; it is fixed for all calls of the function.

From a strictly semantic viewpoint, the classification of the type of

communication permitted by a parameter is simple. From a subprogram’s

viewpoint, three parameter classes can be discerned:

• Input parameters.

• Output parameters.

• Input/output parameters.

A parameter is of input type if it allows communication which is only in

the direction from the caller to the function (the “callee”). It is of output

type if it permits communication only in direction from the callee to the

caller. Finally, it is input/output when it permits bidirectional

communication.

Note that this is a linguistic classification, part of the definition of the

language; it is not derived from the use to which parameters are put. An

input/output parameter remains that way even if it is used only in a

unidirectional fashion (e.g., from caller to callee).

3.4.1 Parameter Passing Techniques

The main techniques for parameter passing are Pass by Value, Pass by

Reference, Pass by Pointer pass by name and pass by results. Of the

techniques that we will discuss, the first two (by value and by reference)

are the most important and are widely used. The others are little more than

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

114

variations on the theme of call by value. An exception is call by name,

which we will discuss last. Although call by name is no longer used as a

parameter-passing mechanism, nevertheless, it allows us to present a

simple case of what it means to “pass an environment” into a procedure.

3.4.1.1 Pass by Value

Pass by value Call by value is a mode that corresponds to an input

parameter. The local environment of the procedure is extended with an

association between the formal parameter and a new variable. The actual

parameter can be an expression. When called, the actual parameter is

evaluated and its r-value that is the value of the contents of variable (or

result of expression) obtained and associated with the formal parameter.

On termination of the procedure, the formal parameter is destroyed, as is

the local environment of the procedure itself. During the execution of the

body, there is no link between the formal and the actual parameter. There

is no way of making use of a value parameter to transfer information from

the callee to the caller.

Program segment D shows a simple example of passing by value. Like in

C, C++, Pascal and Java, when we do not explicitly indicate any

parameter-passing method for a formal parameter, it is to be understood

that parameter is to be passed by value. The variable y never changes its

value (it always remains 1). During the execution of foo, x assumes the

initial value 2 by the effect of passing the parameter. It is then incremented

to 3, finally it is destroyed with the entire activation record for foo.

int y = 1;

void foo (int x) {

 x = x + 1;

}

. . .

y = 1;

foo (y + 1); // here y = 1

Program Segment D: Pass By Value

Passing by value is a very simple mechanism with clear semantics. It is

the default mechanism in many languages (e.g., Pascal) and is the only

way to pass parameters in C and Java.

3.4.1.2 Pass by reference

Pass by reference (also called by variable) implements a mechanism in

which the parameter can be used for both input and output. Used when

we want to return more than one value from a function.

Commented [12]: 3.6

Commented [13]: Figure 3.6:

CIT 217 MODULE 3

115

The actual parameter must be an expression with l-value that is the

location of variable. At the point of call, the l-value of the actual

parameter is evaluated and the procedure’s local environment is extended

with an association between the formal parameter and the actual

parameter’s l-value (therefore creating an aliasing situation). The most

common case is that in which the actual parameter is a variable. In this

case, the formal and the actual are two names for the same variable. At

the end of the procedure, the connection between the formal parameter

and the actual parameter’s l-value is destroyed, as is the environment local

to the procedure. It is clear that call by reference allows bidirectional

communication: each modification of the formal parameter is a

modification of the actual parameter.

Program segment E shows a simple example of call by reference (which

we have notated in the pseudocode with the reference modifier). During

the execution of foo, x is a name for y. Incrementing x in the body is, to

all effects, the incrementing of y. After the call, the value of y is therefore

1.

int y = 0;

void foo (reference int x) {

 x = x + 1;

}

y = 0;

foo (y); // here y = 1

Program Segment E: Pass By Reference

It can be seen that, as shown in program segment F, the actual parameter

need not necessarily be a variable but can be an expression whose l-value

is determined at call time. In a way similar to the first case, during the

execution of foo, x is a name for v[1] and the increment of x in the body,

is an increment of v[1]. After the call, the value of v[1] is, therefore, 2.

int [] V = new V[10];

int i = 0;

void foo (reference int x) {

 x = x + 1;

 }

. . .

V[1] = 1;

Foo (V [I + 1]); // here V[1] = 2

Program Segment F: Another example of Pass by Reference

Pass by reference is a low-level operation. It is possible in Pascal (var

modifier) and in many other languages. It has been excluded from more

modern languages.

Commented [14]: Should not be screenshot

Commented [15]: Figure 3.7:

Commented [16]: Same here too

Commented [17]: Figure 3.8:

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

116

4.0 CONCLUSION

In this unit, what is meant by programming language paradigm and the

differences between four computer programming language paradigms

were discussed. We described the concept of subprograms and explain

some of the basic terminologies in subprograms. Some general

characteristics of subprograms were also listed.

The idea of block structured programming was explained and the unit

concluded on how programming languages handles parameter passing in

program structures. Discussions on the two main methods of parameter

passing in programming language concluded the unit.

5.0 SUMMARY

This unit has discussed the different approaches in different programming

language to give an insight on which language may be appropriate for any

particular problem. The development of good programs has been

emphasized in module 1, techniques in program structures such as usage

of subprograms and block structured languages to enhance the

development of good programs were discussed in this unit. In

programming principle, a function that is not local to a method cannot

gain access to data in such method. A way by which non-local method

program can gain access to the data that it is to process is through

parameter passing. The main methods of parameter passing: pass by value

and pass by reference were discussed.

6.0 TUTOR-MARKED ASSIGNMENT

1. List four common computer language programming paradigms

2. Compare and contrast, a procedural paradigm with an object-

oriented paradigm

3. Explain the main concept of object-oriented programming

4. What is subprogram? Explain its two basic types.

5. Described the concept of subprograms

6. Explain the following terminologies in subprograms

i. subprogram definition

ii. subprogram call

iii. active subprogram

iv. subprogram header

v. parameter profile

7. Explain the differences in use between actual parameters and

formal parameters

8. If the subprogram calculate (A, B, S, P) accepts the value of A and

B and calculates their sum S and product P, which variable do you

pass by value and which one by reference?

CIT 217 MODULE 3

117

7.0 REFERENCES/FURTHER READINGS

Forouzan, B. and Mosharaf, F. (2011). Foundations of Computer Science.

BookPower United Kingdom (2nd ed).

French C. S. (1996). Computer Science. BookPower United Kingdom

(5th ed).

Cooke, D. A. (2003). Concise Introduction to Computer Languages.

Pacific Grove, CA: Brooks/Cole

Tucker, A. and Noonan, R. (2002). Programming Languages: Principles

and Paradigms. McGraw-Hill.

Sebester, R. (2006). Concepts of programming languages. Addison

Wesley.

Pratt, T. W. and Zelkowitz, M. V. (1999). Programming Languages:

Design and implementation Prentice Hall (3rd ed).

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

118

UNIT 2: SPECIFICATION AND TRANSLATION OF

PROGRAMMING LANGUAGES

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Contents

3.1 Programming Language Specification

3.1.1 Forms of Programming Language Specification

3.1.1.1 Syntax

3.1.1.2 Semantics

3.1.2 Programming language reference

3.2 Programming Language Translation

3.2.1 Assembler

3.2.1.1 Types of Assembler

3.2.2 Compiler

3.2.2.1 Different Phases of Compilation

3.2.3 Interpreter

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Readings

1.0 INTRODUCTION

This unit can be grouped into two parts; in the first part we will consider

the specification of programming languages while the second part will be

for discussion on programming language translation. The specification of

programming language is the definition of such programming language.

It is a description of the syntax and semantics of the language so that the

language will be used without any ambiguity. Specification of

programming language also involves programming language reference

which is all about the documentation manual for the language.

For programming language translation, we will consider the three main

translator discussed in module 1: the assembler, the compiler, and the

interpreter. We will discuss the briefly the processes of translation

involved in each of the translator. This unit will serve as a foundation for

courses like Compiling Techniques and Programming with Assembly

language.

CIT 217 MODULE 3

119

2.0 OBJECTIVES

At the end of the unit you will be able to:

 Explain what is meant by programming language specification

 Explain the forms of programming language specification

 Describe the syntax and semantics of a programming language

 Explain programming language reference or language reference

manual as the part of the documentation associated with

most programming languages

 Explain programming language translation and translators

 Describe an assembler

 Describe a compiler and explain different phases of compilation

 Describe an interpreter and states its advantages and disadvantages

3.0 MAIN CONTENTS

3.1 Programming Language Specification

In computing, a programming language specification (or standard or

definition) is a documentation artefact that defines a programming

language so that users and implementors (language translators) can agree

on what programs in that language mean. Specifications are typically

detailed and formal, and primarily used by implementors, with users

referring to them in case of ambiguity; the C++ specification is frequently

cited by users, for instance, due to the complexity. Related documentation

includes a programming language reference, which is intended expressly

for users, and a programming language rationale, which explains why the

specification is written as it is; these are typically more informal than a

specification.

Not all major programming languages have specifications, and languages

can exist and be popular for decades without a

specification. Perl (through Perl 5) is a notable example of a language

without a specification, while PHP was only specified in 2014, after being

in use for 20 years. A language may be implemented and then specified,

or specified and then implemented, or these may develop together, which

is usual practice today. This is because implementations and

specifications provide checks on each other: writing a specification

requires precisely stating the behaviour of an implementation, and

implementation checks that a specification is possible, practical, and

consistent. Writing a specification before an implementation has largely

been avoided since ALGOL 68 (1968), due to unexpected difficulties in

implementation when implementation is deferred. However, languages

are still occasionally implemented and gain popularity without a formal

specification: an implementation is essential for use, while a specification

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

120

is desirable but not essential (informally, "code talks"). ALGOL 68 was

the first (and possibly one of the last) major language for which a full

formal definition was made before it was implemented.

3.1.1 Forms of Programming Language Specification

A programming language specification can take several forms, including

the following:

i. Formal Language Specification: Language Specifications consist

of two parts: The syntax of a programming language is the part of

the language definition that says what programs look like; their

form and structure. The semantics of a programming language is

the part of the language definition that says what programs do;

their behaviour and meaning. An explicit definition of

the syntax and semantics of the language. While syntax is

commonly specified using a formal grammar, semantic definitions

may be written in natural language (e.g., the approach taken for

the C language), or a formal semantics (e.g., the Standard

ML and Scheme specifications). A notable example is the C

language, which gained popularity without a formal specification,

instead being described as part of a book, The C Programming

Language (1978), and only much later being formally standardized

in ANSI C (1989).

ii. A description of the behaviour of a compiler (sometimes called

"translator") for the language (e.g., the C++ language

and FORTRAN). The syntax and semantics of the language has to

be inferred from this description, which may be written in natural

or a formal language.

iii. A model implementation, sometimes written in the language being

specified (e.g., Prolog). The syntax and semantics of the language

are explicit in the behaviour of the model implementation.

3.1.1.1 SYNTAX

The syntax of a programming language is usually described using a

combination of the following two components:

i. A regular expression describing its lexemes, and

ii. A context-free grammar which describes how lexemes may be

combined to form a syntactically correct program.

A context-free grammar basically consists of a finite set of grammar rules.

In order to define grammar rules, we assume that we have two kinds of

symbols: the terminals, which are the symbols of the alphabet underlying

the languages under consideration, and the non-terminals, which behave

like variables ranging over strings of terminals. A rule is of the form A →

Commented [18]: Bolden

CIT 217 MODULE 3

121

a, where A is a single nonterminal, and the right-hand side a is a string of

terminal and/or nonterminal symbols.

A context-free grammar is a quadruple G = (V, S, P, S)

Where

• V is a finite set of symbols called the vocabulary (or set of grammar

symbols);

• S ⊆ V is the set of terminal symbols (for short, terminals);

• S ∈ (V - S) is a designated symbol called the start symbol;

• P ⊆ (V - S) × V is a finite set of productions (or rewrite rules, or

rules).

3.1.1.2 Semantics

Formulating a rigorous semantics of a large, complex, practical

programming language is a daunting task even for experienced

specialists, and the resulting specification can be difficult for anyone but

experts to understand. The following are some of the ways in which

programming language semantics can be described; all languages use at

least one of these description methods, and some languages combine more

than one:

A. Natural language: Description by human natural language.

Most widely used languages are specified using natural language

descriptions of their semantics. This description usually takes the form of

a reference manual for the language. These manuals can run to hundreds

of pages, e.g., the print version of The Java Language Specification, 3rd

Ed. is 596 pages long.

B. Formal semantics: Description by mathematics.

Formal semantics are grounded in mathematics. As a result, they can be

more precise and less ambiguous than semantics given in natural

language. However, supplemental natural language descriptions of the

semantics are often included to aid understanding of the formal

definitions. For example, The ISO Standard for Modula-2 contains both a

formal and a natural language definition on opposing pages.

Programming languages whose semantics are described formally can reap

many benefits. For example:

i. Formal semantics enable mathematical proofs of program

correctness;

ii. Formal semantics facilitate the design of type systems, and proofs

about the soundness of those type systems. In programming

languages, a type system is a logical system comprising a set of

rules that assigns a property called a type to the various constructs

of a computer program, such as variables, expressions, functions

or modules.

Commented [19]: Bolden

Commented [20]: Bolden

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

122

iii. Formal semantics can establish unambiguous and uniform

standards for implementations of a language.

Automatic tool support can help to realize some of these benefits. For

example, an automated theorem prover or theorem checker can increase

a programmer's (or language designer's) confidence in the correctness of

proofs about programs (or the language itself). The power and scalability

of these tools varies widely: full formal verification is computationally

intensive, rarely scales beyond programs containing a few hundred

lines and may require considerable manual assistance from a

programmer; more lightweight tools such as model checkers require

fewer resources and have been used on programs containing tens of

thousands of lines; many compilers apply static type checks to any

program they compile.

C. Reference implementations: Description by computer

program

A reference implementation is a single implementation of a programming

language that is designated as authoritative. The behaviour of this

implementation is held to define the proper behaviour of a program

written in the language. This approach has several attractive properties.

First, it is precise, and requires no human interpretation: disputes as to the

meaning of a program can be settled simply by executing the program on

the reference implementation (provided that the implementation behaves

deterministically for that program).

On the other hand, defining language semantics through a reference

implementation also has several potential drawbacks. Chief among them

is that it conflates limitations of the reference implementation with

properties of the language. For example, if the reference implementation

has a bug, then that bug must be considered to be an authoritative

behaviour. Another drawback is that programs written in this language

may rely on quirks in the reference implementation, hindering portability

across different implementations.

Nevertheless, several languages have successfully used the reference

implementation approach. For example, the Perl interpreter is considered

to define the authoritative behaviour of Perl programs. In the case of Perl,

the open-source model of software distribution has contributed to the fact

that nobody has ever produced another implementation of the language,

so the issues involved in using a reference implementation to define the

language semantics are moot.

Commented [21]: Bolden

CIT 217 MODULE 3

123

D. Test suites: Description by examples of programs and their

expected behaviours.

While few language specifications start off in this form, the evolution of

some language specifications has been influenced by the semantics of a

test suite (e.g. in the past the specification of Ada has been modified to

match the behaviour of the Ada Conformity Assessment Test Suite).

Defining the semantics of a programming language in terms of a test

suite involves writing a number of example programs in the language, and

then describing how those programs ought to behave — perhaps by

writing down their correct outputs. The programs, plus their outputs, are

called the "test suite" of the language. Any correct language

implementation must then produce exactly the correct outputs on the test

suite programs.

The chief advantage of this approach to semantic description is that it is

easy to determine whether a language implementation passes a test suite.

The user can simply execute all the programs in the test suite, and

compare the outputs to the desired outputs. However, when used by itself,

the test suite approach has major drawbacks as well. For example, users

want to run their own programs, which are not part of the test suite;

indeed, a language implementation that could only run the programs in its

test suite would be largely useless. But a test suite does not, by itself,

describe how the language implementation should behave on any program

not in the test suite; determining that behaviour requires some

extrapolation on the implementor's part, and different implementors may

disagree. In addition, it is difficult to use a test suite to test behaviour that

is intended or allowed to be nondeterministic.

Therefore, in common practice, test suites are used only in combination

with one of the other language specification techniques, such as a natural

language description or a reference implementation.

3.1.2 Programming language reference

Documentation is any communicable material that is used to describe,

explain or instruct regarding some attributes of an object, system or

procedure, such as its parts, assembly, installation, maintenance and

use. In computing, a programming language reference or language

reference manual is part of the documentation associated with most

mainstream programming languages.

It is written for users and developers, and describes the basic elements of

the language and how to use them in a program. For a command-based

language, for example, this will include details of every available

command and of the syntax for using it. The reference manual is usually

Commented [22]: Bolden

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

124

separate and distinct from a more detailed programming language

specification meant for implementors of the language rather than those

who simply use it to accomplish some processing task.

There may also be a separate introductory guide aimed at giving

newcomers enough information to start writing programs, after which

they can consult the reference manual for full details. Frequently,

however, a single publication contains both the introductory material and

the language reference.

3.2 Programming Language Translation

Programming language translation is the conversion of statements written

in one language to statements in another language, e.g. converting

assembly language to machine code. A translator is a program that

performs this translation. There are three types of translator: assemblers,

interpreters and Compilers.

3.2.1 Assembler

The assembler translates mnemonic operation codes into machine code,

and symbolic addresses into machine addresses (Figure 39).

Figure 39: Translation by Assembler

Translation of source codes (assembly language statements) to object

codes (machine codes) needs:

i. Translation of mnemonic opcodes to equivalent machine codes

e.g. STL to 14

ii. Translation of symbolic labels to equivalent machine address e.g.

RETADR to 1033

iii. Building of machine instructions in proper format.

iv. Conversion of data constants into internal machine representation,

such as EOF to 454F46

v. Writing the object program and the assembly listing.

The above translation of object codes to source codes is done by the

assembler in two parts: analysis and synthesis. Analysis means to take

them into parts. Then synthesis means to put it together. First, to analyze

Commented [23]: Wrong

Commented [24]: Wrong numbering

CIT 217 MODULE 3

125

if it is a valid program and then transform into data structures. In the

transformation to data structures, the following steps are carried out:

a. split program into lines (get line, readline);

b. lexical analysis (scanning);

c. context-free analysis (parsing);

d. context-sensitive analysis (semantic analysis)

Secondly the machine binary codes will be created from the result of

analysis. In the middle, there is an intermediate representation.

3.2.1.1 Types of Assembler

a. Load-and-Go Assembler:

Load-and-go assembler generates their object code in memory for

immediate execution. No object program is written out and no loader is

needed. It is useful in a system with frequent program development and

testing. Programs are re-assembled nearly every time they are run,

efficiency of the assembly process is an important consideration.

b. One-Pass Assemblers

Assign addresses to all statements in source code and save values

(addresses) assigned to labels for subsequent usage and then process

directives.

One-Pass Assemblers generate their object code in memory for immediate

execution just like load-and-go assemblers. External storage for the

intermediate file between two passes is slow or is inconvenient to use

because they require that all areas be defined before they are referenced

(forward reference) this is possible, although inconvenient, to do so for

data items. This is the problem of forward reference in one-pass

assembler.

Forward reference in one pass assembler makes the assembler to omit the

operand address if the symbol has not yet been defined. The assembler

stores this undefined symbol and indicates that it is undefined. It then adds

the address of this operand address to a list of forward references

associated with the assembler’s entry. When the definition for the symbol

is encountered, it scans the reference list and inserts the address. At the

end of the program, it reports the error if there are still entries indicated

as undefined symbols.

c. Two Pass Assemblers

Two pass assembler translate instructions by converting labels to

addresses, generating values defined by BYTE and WORD, processing

the directives not done in pass one and then writing the object code to

output device

Commented [25]: Bolden

Commented [26]: Bolden

Commented [27]: Bolden

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

126

For a two pass assembler, forward references in symbol definition are not

allowed, symbol definition must be completed in pass 1. Prohibiting

forward references in symbol definition is not a serious inconvenience.

3.2.2 Compiler

A compiler translates a program written in one high level language, the

source code into another language which is the object code. Most

compilers are organized into three stages: a front end, an optimizer, and

a back end. The front end is responsible for understanding the program. It

makes sure the program is valid and transforms it into an intermediate

representation, a data structure used by the compiler to represent the

program. The optimizer improves the intermediate representation to

increase the speed or reduce the size of the executable which is ultimately

produced by the compiler. The back end converts the optimized

intermediate representation into the output language of the compiler.

Compilation is a different process, where a compiler reads in a program,

but instead of running the program, the compiler translates it into some

other language, such as bytecode or machine code. The translated code

may either be directly executed by hardware, or serve as input to another

interpreter or another compiler Figure 40.

Figure 40: Compilation Process

3.2.2.1 Different Phases of Compilation

The major phases of compilation process are lexical analysis, Syntactic

analysis, Semantic analysis, Code Optimisation, and Code generation.

A. Lexical analysis

The aim of lexical analysis is to read the symbols (characters) forming the

program sequentially from the input and to group these symbols into

meaningful logical units, which we call tokens. For example, the lexical

analyser of C or Java, when presented with the string x = 1 + y++; will

produce 7 tokens: the identifier x, the assignment operator =, the number

1, the addition operator +, the identifier foo, the auto increment operator

++ and finally the command termination token.

B. Syntactic analysis
Once the list of tokens has been constructed, the syntactic analyser (or

parser) seeks to construct a derivation tree for this list. This is, clearly, a

Commented [28]: Bolden

Commented [29]: Wrong numbering

Commented [30]: Wrong numbering

CIT 217 MODULE 3

127

derivation tree in the grammar of the language. Each leaf of this tree must

correspond to a token from the list obtained by the scanner (Figure 41).

Figure 41: Scanning and Parsing

C. Semantic analysis

The derivation tree (which represents the syntactic correctness of the

input string) is subjected to checks of the language’s various context-

based constraints. As we have seen, it is at this stage that declarations,

types, number of function parameters, etc., are processed. As these checks

are performed, the derivation tree is augmented with the information

derived from them and new structures are generated.

D. Code Optimisation

 The code obtained from the preceding phases by repeatedly traversing

the derivation tree is fairly inefficient. There are many optimisations that

can be made before generating object code. Typical operations that can

be performed are:

i. Removal of useless code (dead code removal). That is, removal of

pieces of code that can never be executed because there is no

execution sequence that can reach them.

ii. In-line expansion of function calls. Some function (procedure)

calls can be substituted by the body of the associated function,

making execution faster. It also makes other optimisations

possible.

iii. Subexpression factorisation. Some programs compute the same

value more than once. If, and when, this fact is discovered by the

compiler, the value of the common subexpression can be

calculated once only and then stored.

iv. Loop optimisations. Iterations are the places where the biggest

optimisations can be performed. Among these, the most common

consists of removing from inside a loop the computation of

subexpressions whose value remains constant during different

iterations.

E. Code generation

Starting with optimised intermediate form, the final object code is

generated. There follows, in general, a last phase of optimisation which

depends upon the specific characteristics of the object language. In a

compiler that generates machine code, an important part of this last phase

Commented [31]: Wrong numering

Commented [32]: Wrong numering

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

128

is register assignment (decisions as to which variables should be stored in

which processor registers). This is a choice of enormous importance for

the efficiency of the final program.

3.2.3 Interpreter

An Interpreter is also a program that translates high-level source code into

executable code. However the difference between a compiler and an

interpreter is that an interpreter translates one line at a time and then

executes it: no object code is produced, and so the program has to be

interpreted each time it is to be run. If the program performs a section

code 1000 times, then the section is translated into machine code 1000

times since each line is interpreted and then executed.

Interpretation is a method of executing a program. The program is read as

input by an interpreter, which performs the actions written in the program

Figure 42.

Figure 42: Interpretation Process

An interpreter is composed of two parts: a parser and an evaluator. After

a program is read as input by an interpreter, it is processed by the parser.

The parser breaks the program into language components to form a parse

tree. The evaluator then uses the parse tree to execute the program.

Advantages of an Interpreter

1. Good at locating errors in programs

2. Debugging is easier since the interpreter stops when it encounters

an error.

3. If an error is deducted there is no need to retranslate the whole

program

Disadvantages of an Interpreter

1. Rather slow

2. No object code is produced, so a translation has to be done every

time the program is running.

3. For the program to run, the Interpreter must be present

Commented [33]: Bolden

Commented [34]: Wrong numering

Commented [35]: Wrong numering

CIT 217 MODULE 3

129

4.0 CONCLUSION

Programming language specification has been described as a definition

that is necessary for the implantation of the programming language by

users. The forms of a programming language specification are formal

Language Specification which represents its syntax and semantics,

description of the behavior of a compiler, and model implementation.

The syntax of a programming language is usually described using a

combination of regular expressions and context free grammars.

Programming language semantics can be described by natural language,

formal semantics which is a description by mathematics, reference

implementation that is, description by computer program, and test suites

which are description by examples of programs and their expected

behaviors. Another characteristic of programming language specification

is the programming language reference which is written

for users and developers, and describes the basic elements of the language

and how to use them in a program.

As we already know that computer cannot execute instruction other than

its native language, any instruction given to it other than machine

language needs to be translated to machine codes. The three types of

translator: assemblers, interpreters and Compilers were discussed in this

unit. The assembler translates mnemonic operation codes into machine

code A compiler translates a program written in one high level language,

the source code into another language which is the object code. An

Interpreter is also a program that translates high-level source code into

executable code. However the difference between a compiler and an

interpreter is that an interpreter translates one line at a time and then

executes it: no object code is produced.

5.0 SUMMARY

In this unit, we have discussed the relevance of programming language

specification. The forms of programming language specification, the

syntax and semantics of a programming language, programming

language reference or language reference manual as the part of

the documentation associated with most programming languages.

The discussion also covers programming language translation and

translators where assemblers, compilers and interpreters were explained.

6.0 TUTOR-MARKED ASSIGNMENT

1. Explain what is meant by programming language specification.

2. Explain the forms of programming language specification

3. Describe the syntax and semantics of a programming language

CIT 217 FOUNDATIONS OF SEQUENTIAL PROGRAM

130

4. Explain programming language reference or language reference

manual

5. Explain programming language translation

6. Describe an assembler

7. Describe a compiler and explain different phases of compilation

8. Describe an interpreter and states its advantages and disadvantages

9. The box below shows part of a high-level language computer

program. Part A shows the program before it has been translated.

Part B shows the program after it has been translated.

a. Compilers, interpreters and assemblers are all translation

programs. Which one of the three translators would be necessary

to translate program A into program B.

b. What general name is given to the code, similar to B, produced

after translation?

10. Interpreters and assemblers differ in the way they translate

computer programs and the type of programs they translate. State

two such differences.

7.0 REFERENCES/FURTHER READINGS

Forouzan, B. and Mosharaf, F. (2011). Foundations of Computer Science.

BookPower United Kingdom (2nd ed).

French C. S. (1996). Computer Science. BookPower United Kingdom

(5th ed).

Cooke, D. A. (2003). Concise Introduction to Computer Languages.

Pacific Grove, CA: Brooks/Cole

Tucker, A. and Noonan, R. (2002). Programming Languages: Principles

and Paradigms. McGraw-Hill.

Sebester, R. (2006). Concepts of programming languages. Addison

Wesley.

Pratt, T. W. and Zelkowitz, M. V. (1999). Programming Languages:

Design and implementation Prentice Hall (3rd ed).

CIT 217 MODULE 3

131

Johnew Zhang (2012). CS 241 Notes: Foundations of Sequential

Programming. Available online

Maurizio, Gabbrielli and Simone, Martini (2010). Programming

Languages: Principles and Paradigms. Springer-Verlag London

Limited. Available online

https://en.wikipedia.org/wiki/Programming_language_specification

	CIT217 Course Guide.pdf
	Content page.pdf
	MODULE 1.pdf
	MODULE 2.pdf
	Solution

	MODULE 3.pdf

