
 

 

 

 

 

 

 

 

CIT301 

STRUCTURED PROGRAMMING 
 

 

 

Course Team  Dr. Moses Ekpenyong - (Developer/Writer) 

Prof. Stephen Olabiyisi - Content Editor 

Dr. Francis B. Osang – HOD/Internal Quality 

Control Expert  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

NATIONAL OPEN UNIVERSITY OF NIGERIA 

COURSE 

GUIDE 



CIT 301          COURSE GUIDE 

ii 
 

 

 

 

 

 

© 2022 by NOUN Press  

National Open University of Nigeria  

Headquarters  

University Village 

Plot 91, Cadastral Zone 

NnamdiAzikiwe Expressway 

Jabi, Abuja 

 

 

Lagos Office 

14/16 Ahmadu Bello Way 

Victoria Island, Lagos 

 

 

e-mail: centralinfo@nou.edu.ng 

URL:    www.nou.edu.ng 

 

 

 

All rights reserved. No part of this book may be reproduced, in any  

form or by any means, without permission in writing from the publisher. 

 

 

Printed, 2022 

 

 

 

ISBN: 978-058-557-5 

 

 

 

 

 

 

 

 

 

 

  

mailto:centralinfo@nou.edu.ng
http://www.nou.edu.ng/


CIT 301          COURSE GUIDE 

 

iii 
 

CONTENTS         PAGE  
 

Introduction …………………………………………………….. iv 

Course Objectives ………………………………………………. iv 

Working Through this Course ………………………………….. vi 

Study Units ……………………………………………………… vi 

References and Further Readings ………………………………. vii 

Presentation Schedule …………………………………………… vii 

Assessment ………………………………………………………. viii 

How to get the Most from the Course …………………………… viii 

Facilitation ……………………………………………………….. ix 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



CIT 301          COURSE GUIDE 

iv 
 

INTRODUCTION 
 

CIT301: Structured Programming is a 3-credit unit course for students 

studying towards acquiring a Bachelor of Science in Computer Science 

and other related disciplines. 

 

The course is divided into 8 modules and 20 study units. It provides an 

overview of programming languages and their types; and explains the 

principles of abstraction and modularity. The elements of structured 

programming are then given before outlining the steps in program 

design and execution. An introduction to the C programming language 

follows with how to use and apply operators and control statements. 

Functions and arrays in C are then discussed, finally ending the course 

with a study of structures and pointers in C.   

 

COURSE OBJECTIVES 
 

It is important to note that each unit has specific objectives. Students 

should study them carefully before proceeding to subsequent units. 

Therefore, it may be useful to refer to these objectives in the course of 

your studying the units, to assess your progress. Always look at the 

unit’s objective after completing a unit. In this way, you can be sure that 

you have done what is required of you at the end of the unit. 

 

Below are the overall objectives of this course. On completing the 

course, you should be able to: 

 

 Define programs and classify programming languages 

 State the advantages and disadvantages of high and low–level 

languages 

 State the characteristics of a good program 

 List the various phases of program development. 

 Explain the steps involved in problem definition and analysis 

 Describe functions and Procedures in program 

 Illustrate a typical function structure for sorting numerical arrays 

in C language. 

 Define a class in Object–oriented programming 

 Explain the abstraction costs and benefits 

 Define modularity in programming. 

 State the advantages of modular programming approach 

 Describe the real-life application of modularity concept. 

 Explain the importance of header file, module implementation 

and main program in C programming language. 

 Illustrate the structure of interface file in C language declarations. 



CIT 301          COURSE GUIDE 

 

v 
 

 State the purpose of IMPORT and the EXTERN macros in C 

language program declaration 

 State the advantages and disadvantages of structured 

programming  

 Describe the examples of programming paradigms. 

 State the various programming paradigms  

 Describe each of the named programming paradigms and 

programming languages associated with it. 

 Give a brief history of C Programming Language. 

 Explain the taxonomy of C programming types 

 Explain the importance of studying C programming language. 

 Describe the characteristics and uses of C Program. 

 Illustrate the structure of a C Programming language. 

 Explain the contents of the C program structure. 

 Explain the processes involved in compilation and execution of C 

program. 

 Describe the sample input/ output steps used in program 

compilation and execution. 

 List the character set in C 

 Apply the character set in constructing variables and identifiers 

 Differentiate between a variable and a keyword 

 Explain what a data type is 

 Define a constant 

 State the rules for constructing integer constants 

 State the rules for constructing real constants 

 State the rules for constructing real constants expressed in 

exponential form 

 State the rules for constructing character constants  

 Format your input 

 Format your output 

 Differentiate between the output of integer float 

 Differentiate between the input of integer float 

 Define an operator 

 Use operators in expressions 

 Mention the various operators applicable to C programming 

 Describe each of the operators  

 State the three control structures inherent in C 

 State the generic syntax for the various structures 

 Use these structures to write a program code or a block of code 

 Describe each of the structure 

 Manually simulate a program code involving the structures  

 Differentiate between monolithic Vs modular Programming   

 State the disadvantages of   monolithic Programming   

 State the advantages of   modular Programming   



CIT 301          COURSE GUIDE 

vi 
 

 Declare a function 

 Outline the various function categories 

 Differentiate between a user define functions vs standard 

function. 

 Differentiate between call by value and call by reference 

 Describe an array 

 Differentiate between one-dimensional and a two-dimensional 

array 

 Initialize one-dimensional, two-dimensional and multi-

dimensional arrays 

 State the syntax of array declaration 

 Define a string 

 Differentiate between a string and a character 

 Manipulate string 

 Mention some commonly used string input/output library 

functions 

 Read and write string 

 Declare a string variable  

 Understand C structures and pointers 

 Know how to define and use structures and pointers in C 

 

WORKING THROUGH THIS COURSE 
 

To complete this course, you are required to study all the units, the 

recommended textbooks, and other relevant materials. Each unit 

contains some self-assessment exercises and tutor marked assignments, 

and at some point, in this course, you are required to submit the tutor 

marked assignments. There is also a final examination at the end of this 

course. Stated below are the components of this course and what you 

should do. 

 

STUDY UNITS 
 

Module 1 Programing Languages 

 

Unit 1  Computer Programming 

Unit 2  Characteristics of a Good Program 

Unit 3  Phases of Program Development (Programming) 

 

Module 2 Abstraction and Modularity 

 

Unit 1  Introduction to Abstraction 

Unit 2  Modular Programming 

Unit 3  Modular Interface 

 



CIT 301          COURSE GUIDE 

 

vii 
 

Module 3 Elements of Structured Programming 

 

Unit 1  Overview of Structured Programming 

Unit 2  Programming Language Paradigms 

 

Module 4 Structured Programming with C 

 

Unit 1  Overview of C 

Unit 2  C Program Design 

Unit 3  Executing a C Program 

 

Module 5 Introduction to C Programming Language 

 

Unit 1  Element of C 

Unit 2  Data Type 

Unit 3  Variables, Statements, Expressions    

 

Module 6 Operators and Control Statements 

 

Unit 1  Operators 

Unit 2  Overview of Control Statements 

 

Module 7 Functions and Arrays in C Programming Language 

 

Unit 1  Overview of Functions in C 

Unit 2  Arrays 

Unit 3  Fundamentals of Strings   

 

Module 8 Structure and Pointers In C 

 

Unit 1  Structure and Pointers  

 

REFERENCES AND FURTHER READINGS 
 

Every study unit contain list of references and further readings. Do not 

hesitate to consult them if need be. 

 

PRESENTATION SCHEDULE 
 

The Presentation Schedule included in your course material gives you 

important dates for the completion of the Tutor Marked Assignments 

and tutorial attendance. Remember, you are required to submit all your 

assignments by the due date. You should guard against falling behind in 

your work. 

 

  



CIT 301          COURSE GUIDE 

viii 
 

ASSESSMENT 
 

There are two aspects to the assessment of this course. First, there are 

tutor marked assignments; and second, the written examination. 

Therefore, you are expected to take note of the facts, information and 

problem solving gathered during the course. The tutor marked 

assignments must be submitted to your tutor for formal assessment, in 

accordance to the deadline given. The work submitted will account for 

30% of your total course mark. At the end of the course, you will need 

to sit for a final written examination. This examination will account for 

70% of your total score. 

 

HOW TO GET THE MOST FROM THE COURSE 
 

In distance learning, the study units replace the university lectures. This 

is one of the great advantages of distance learning; you can read and 

work through specially designed study materials at your own pace, and 

at a time and place that suits you best. Think of it as reading the lecture 

instead of listening to the lecturer. In the same way a lecturer might give 

you some reading to do; the study units tell you when to read, and which 

are your text materials or set books. You are provided exercises to do at 

appropriate points, just as a lecturer might give you an in-class exercise. 

 

Each of the study units follows a common format. The first item is an 

introduction to the subject matter of the unit, and how a particular unit is 

integrated with the other units and the course as a whole. Next to this is 

a set of learning objectives. These objectives let you know what you 

should be able to do by the time you have completed the unit. These 

learning objectives are meant to guide your study. The moment a unit is 

finished, you must go back and check whether you have achieved the 

objectives. If you make this a habit, then you will significantly improve 

your chances of passing the course. The main body of the unit guides 

you through the required reading from other sources. This will usually 

be either from your set books or from a reading section. The following is 

a practical strategy for working through this course. If you run into any 

trouble, telephone your tutor. Remember that your tutor’s job is to help 

you. When you need assistance, do not hesitate to call and ask your tutor 

to provide it. 

 

In addition, do the following: 

1. Read this Course Guide thoroughly, it is your first assignment. 

2. Organize a Study Schedule. Design a Course Overview to guide 

you through the Course. Note the time you are expected to spend 

on each unit and how the assignments relate to the units. 

Important information, e.g., details of your tutorials, and the date 

of the first day of the semester is available from the study centre. 



CIT 301          COURSE GUIDE 

 

ix 
 

You need to gather all the information into one place, such as 

your diary or a wall calendar. Decide on a method and write in 

your own dates and schedule of work for each unit. 

3. Once you have created your own study schedule, do everything 

to stay faithful to it. The major reason students fail is that they get 

behind with their course work. If you get into difficulty with your 

schedule, please, let your tutor know before it is too late for help. 

4. Turn to Unit 1 and read the introduction and the objectives for the 

unit. 

5. Assemble the study materials. You will need your set books and 

the unit you are studying at any point in time. 

6. Work through the unit. As you work through it, you will know 

what sources to consult for further information. 

7. Keep in touch with your study centre as up-to-date course 

information will be continuously available there. 

8. Well before the relevant due dates (about 4 weeks before due 

dates), keep in mind that you will learn a lot by doing the 

assignments carefully. They have been designed to help you meet 

the objectives of the course and therefore will help you pass the 

examination. Submit all assignments not later than the due date. 

9. Review the objectives for each study unit to confirm that you 

have achieved them. If you feel unsure about any of the 

objectives, review the study materials or consult your tutor. 

10. When you are confident that you have achieved a unit’s 

objectives, you can begin the next unit. Proceed unit by unit 

through the course and try to pace your study so that you keep 

yourself on schedule. 

11. When you have submitted an assignment to your tutor for 

marking, do not wait for its return before starting on the next unit. 

Keep to your schedule. When the assignment is returned, pay 

particular attention to your tutor’s comments, both on the tutor-

marked assignment form and on the ordinary assignments. 

12. After completing the last unit, review the course and prepare 

yourself for the final examination. Check that you have achieved 

the unit objectives (listed at the beginning of each unit) and the 

course objectives (listed in the Course Guide). 

13. Finally, ensure that you practice on the personal computer as 

prescribed to gain the maximum proficiency required. 

 

FACILITATION 
 

The dates, times and locations of these Tutorials will be made available 

to you, together with the name, telephone number and address of your 

Tutor. Each assignment will be marked by your tutor. Pay close 

attention to the comments your tutor might make on your assignments as 



CIT 301          COURSE GUIDE 

x 
 

these will help in your progress. Make sure that assignments reach your 

tutor on or before the due date. 

 

Your tutorials are important; therefore, try not to skip any. It is an 

opportunity to meet your tutor and your fellow students. It is also an 

opportunity to get the help of your tutor and discuss any difficulties you 

might encounter when reading. 



 

 

 

 

 

CONTENTS        PAGE 

 

Module 1 Programing Languages ………………….  1 
 

Unit 1  Computer Programming ……………………….. 1 

Unit 2  Characteristics of a Good Program ……………. 6 

Unit 3  Phases of Program Development  

(Programming) ………………………………… 

 

Module 2 Abstraction and Modularity ……………   13 

 
Unit 1  Introduction to Abstraction ……………………  13 

Unit 2  Modular Programming ………………………… 19 

Unit 3  Modular Interface ……………………………… 

 

Module 3 Elements of Structured  

   Programming ……………………..  23 
 

Unit 1  Overview of Structured Programming ………..  23 

Unit 2  Programming Language Paradigms …………..  27 

 

Module 4  Structured Programming with C ………  31 
 

Unit 1  Overview of C …………………………………  31 

Unit 2  C Program Design ……………………………..  36 

Unit 3  Executing a C Program ………………………..  42 

 

Module 5  Introduction to C Programming  

   Language ………………………….  47 
 

Unit 1  Element of C …………………………………… 47 

Unit 2  Data Type ………………………………………. 51 

Unit 3  Variables, Statements, Expressions ……………   56  

 

  

MAIN 

COURSE  



 

 

Module 6  Operators and Control  

   Statements ………………………….  69 
 

Unit 1  Operators ………………………………………. 69 

Unit 2  Overview of Control Statements ………………. 78  
 

Module 7  Functions and Arrays in C  

  Programming Language ………………..        100 
 

Unit 1  Overview of Functions in C ……………………         100 

Unit 2  Arrays …………………………………………...        111 

Unit 3  Fundamentals of Strings ………………………..         130 
 

Module 8 Structure and Pointers in C ……………..       139 
 

Unit 1  Structure and Pointers ………………………….       139 

 
 



CIT301         MODULE 1 

 

1 

 

MODULE 1 PROGRAMING LANGUAGES 
 

Unit 1  Computer Programming 

Unit 2  Characteristics of a Good Program 

Unit 3  Phases of Program Development (Programming) 

 

 

UNIT 1 COMPUTER PROGRAMMING 
 

CONTENTS 

 

1.0 Introduction 

2.0 Intended Learning Outcomes (ILOs) 

3.0 Main Contents 

3.1 Classification of Programming Languages 

3.2 Low Level Language 

3.3 High Level Language 

3.4 Features of High-Level Language 

4.0 Conclusion 

5.0 Summary 

6.0 Tutor-Marked Assignment  

7.0 References/Further Reading 

 

1.0 INTRODUCTION 
 

A program is a finite set of sequenced instructions or commands given 

to a computer in order to carry out a particular task. To write a program 

for the computer to carry out these instructions, there must be a means 

of communication. Humans communicate via natural languages such as 

English, French, Chinese etc. Likewise, to communicate with the 

computer, we also use languages known as programming languages. 

Programming is the art of program writing using a particular 

programming language. It can also be said to be the process of writing a 

set of instructions in sequential manner using programming language to 

control the activity of a computer system. A computer programming 

language is an artificial language which is used in writing a set of formal 

instructions to control the activities of a computer system.  

 

There are two main types of computer programming languages; these 

are: Low-level language and High-level language. Low-level languages 

also known as machine language, are machine dependent and makes fast 

and efficient use of the computer. It requires no translator to translate the 

code. It is directly understood by the computer. On the contrary, writing 

a program in high-level language does not require knowledge of the 

computer in which the program is run. Hence, high-level languages are 



CIT301          STRUCTURED PROGRAMMING 

 

2 

 

machine independent, and which programs are portable to other 

computers, and very easy to learn and write.  

 

2.0 INTENDED LEARNING OUTCOMES (ILOS)  
 

By the end of this unit, you should be able to:  

 

 Define programs and classify programming languages 

 State the advantages and disadvantages of high- and low-level 

languages 

 

3.0 MAIN CONTENTS 
 

3.1 Classification of Programming Languages  
 

There are two major types of computer programming languages: the 

low-level language and high-level language.  

 

3.2 Low level language 
 

This type of language is closer to the machine compared with the human 

or natural language. The two major examples are the Machine language 

and the Assembly language. 

 

Machine Language: This is the only language computer understands. It 

is the native language of the computer. The computer directly executes a 

program written in machine language. These programs are coded using 

strings of 0’s and 1’s. It doesn’t need a translator.  

 

Advantages of Machine Language 

 Machine language makes fast and efficient use of the computer. 

 It requires no translator to translate the code. It is directly 

understood by the computer. 

 

Disadvantages of Machine Language 

 Very bulky.  

 They require much time for writing and reading.  

 They are prone to error which is difficult to detect and correct.  

 Very difficult to learn.  

 Can only run on the computer it is designed (i.e., it is machine 

dependent) 

 

Assembly Language: Assembly Language uses MNEMONICS 

(symbols) to represent data and instructions. Such program eliminates 

problems associated with machine language. Computer cannot execute 



CIT301         MODULE 1 

 

3 

 

directly a program written in assembly language; it requires a translator 

called assembler. Assembler is a special program designed to translate a 

program written in assembly language to a machine language 

equivalent.  

 

Advantages of Assembly Language 

 It allows complex jobs to run in a simpler way. 

 It is memory efficient, as it requires less memory. 

 It is faster in speed, as its execution time is less. 

 It is mainly hardware oriented. 

 It requires less instruction to get the result. 

 It is used for critical jobs. 

 

Disadvantages of Assembly Language  

 It is machine dependent; the programmer must be knowledgeable 

in both subject area and the operations of the machine.  

 It is cumbersome though less cumbersome than that of machine 

language.  

 Very expensive to develop  

 It consumes time 

 

3.3 High Level Language 
 

A high-level language is a problem-orientated programming language. 

The source programs are written in human readable languages like 

English instead of mere symbols. In other words, a high-level language 

is a convenient and simple means of describing the information 

structures and sequences of actions required to perform a particular task.  

 

Advantages of High-Level Language  

 No knowledge of the computer in which the program will be run 

is required 

 The programs are portable 

 Very easy to learn and write 

 

Disadvantages of High-Level Language  

 It takes additional translation times to translate the source to 

machine code. 

 High level programs are comparatively slower than low level 

programs. 

 Compared to low level programs, they are generally less memory 

efficient. 

 Cannot communicate directly with the hardware 

 



CIT301          STRUCTURED PROGRAMMING 

 

4 

 

3.4 Features of High-Level Language  

 

 Machine independent  

 Problem oriented  

 Ability to clearly reflect the structure of program written in it.  

 Readability  

 Programs are portable.  

 

Examples of High-level Languages are FORTRAN, COBOL, QBASIC, 

VISUAL BASIC, JAVA, PASCAL etc. 

 

SELF-ASSESSMENT EXERCISE 
 

Classify programming languages and explain the different categories 

Solution: 

Programming languages are basically classified into two main 

categories, that is Low-level language and High-level language. Every 

programming language belongs to one of these categories and sub-

category.  

 

Low level languages: Low-level languages are used to write programs 

that relate to the specific architecture and hardware of a particular type 

of computer. They are closer to the native language of a computer 

(binary), making them harder for programmers to understand. Programs 

written in low-level languages are fast and memory efficient. However, 

it is very difficult to write and debug and maintain. It is equally difficult 

to read and understand. Low level program developers must be 

acquainted with the particular machine architecture. Low level 

languages are subdivided into Machine language and Assembly 

language.   

 

Machine language: This is the native language of the computer. It 

consists of 0s and 1s. These 0s and 1s (i.e., sequence of binary bits) 

constitutes a set of instructions that are directly executed by the 

computer. Each instruction performs a very specific and small task. 

These instructions are machine dependent and varies from computer to 

computer.   

 

Assembly language: Assembly language uses mnemonics instead of 

bits. Assembly language instructions interacts directly with the 

computer. Assembly language instructions are translated into object 

code (i.e., specific machine code) by a special program known as 

assembler.  

 



CIT301         MODULE 1 

 

5 

 

High-level languages are similar to the human or natural language. high-

level languages are programmers friendly, easy to code, debug and 

maintain. It provides a higher level of abstraction from machine 

language. They do not interact directly with the hardware. Rather, they 

focus more on the complex arithmetic operations, optimal program 

efficiency and easiness in coding. Programs in a high-level language are 

written using English statements (e.g., Pascal, Java, C, BASIC, etc.). 

High-level programs require compilers/interpreters to translate source 

code to machine language. We can compile the source code written in 

the high-level language to multiple machine languages. Thus, they are 

machine independent language. High-level languages are grouped into 

two categories based on the execution model – compiled or interpreted 

languages 

 

4.0 CONCLUSION 
 

This unit introduced the students to the basic knowledge of computer 

programming. It defined computer program and discussed the two major 

classifications of programming languages (the low- and high-level 

programming languages). 

 

5.0 SUMMARY 
 

A computer program is a set of instruction given to a computer to carry 

out a particular task. Computer programs are written using programming 

languages. These languages can be classified into low-level (i.e., 

machine and assembly languages) and high-level languages. Machine 

language uses 0s and 1s while assembly uses mnemonics. The high-

level languages use mathematical symbols in combination with English-

like words. Both the low-level and high-level programming languages 

have their advantages and disadvantages. These are stated in the main 

contents of the unit 

 

6.0 TUTOR-MARKED ASSIGNMENT  
 

7.0 REFERENCES/FURTHER READING 
 

Fundamentals of Structured Programming, Lubia Vinhas, 2016 

 

Structured Programming with C++ by Kjell Backman, 2012 

 

. 

  



CIT301          STRUCTURED PROGRAMMING 

 

6 

 

UNIT 2 PROGRAM DESIGN 
 

CONTENTS 

 

1.0 Introduction 

2.0 Intended Learning Outcomes (ILOs) 

3.0 Main Contents 

3.1 Characteristics of a Good Program 

3.2 Phases of Program Development (Programming) 

4.0 Conclusion 

5.0 Summary 

6.0 Tutor-Marked Assignment 

7.0 References/Further Reading 

 

1.0 INTRODUCTION 
 

The principles of data processing set the pace for obtaining the 

requirements of a good program. In data processing, three phases are 

critical: The input, processing and the output phases. Input constitutes 

what instruction and data goes into the system. Processing has to do 

with what logic or tools are required to manipulate the data. Hence, we 

expect certain characteristics from a good program or tool intended to 

process the data to yield informed output. 

 

There are various phases in the development of computer programs. 

These phases must be strictly adhered to, to ensure a reliable, efficient 

program devoid of syntax and semantic errors.  

 

2.0 INTENDED LEARNING OUTCOMES (ILOS) 
 

By the end of this unit, you should be able to:  

 

 State at least six characteristics of a good program 

 List the various phases of program development. 

 Explain the steps involved in problem definition and analysis 

 

3.0 MAIN CONTENTS 

 

3.1 Characteristics of a Good Program  
 

 Portability/Transferability: Must be able to work on any 

computer machine.  

 Reliability: It can be relied upon to do what it is expected to do. 



CIT301         MODULE 1 

 

7 

 

 Efficiency/cost saving: It must not cost more than its benefits and 

enables problem to be solved appropriately, quickly and 

efficiently.  

 Clarity and Simplicity: It should be as simple as possible to 

understand.  

 Understandability/Readability: It must be readable and 

understandable by other programmers and end users.  

 Flexibility/Adaptability/Maintainability: A good program must be 

flexible adaptable and maintainable in order to suit user’s need. 

Modification must be possible and very easy. 

  

3.2 Phases of Program Development (Programming) 
 

The process of producing a computer program (software) may be 

divided into eight phases or stages:  

1) Problem definition/Analysis  

2) Selection or development of an algorithm  

3) Designing the program  

4) Coding the programming statements  

5) Compiling/Compilation stage  

6) Testing/Running and Debugging the program  

7) Documentation.  

8) Maintenance  

 

1) Problem Definition/Analysis Stage: There is need to understand 

the problem that requires a solution. The need to determine the 

data to be processed, form or type of the data, volume of the data, 

what to be done to the data to produce the expected/required 

output.  

2) Selection or development of an algorithm: An algorithm is the set 

of steps required to solve a problem written down in English 

language.  

3) Designing the program: In order to minimize the amount of time 

to be spent in developing the software, the programmer makes 

use of flowchart. Flowchart is the pictorial representation of the 

algorithm developed in step 2 above. Pseudocode IPO chart 

(input processing output) and HIPO (Hierarchical Input 

Processing and Output) chart may be used in place of flowchart 

or to supplement flowchart.  

4) Coding the statement: This involves writing the program 

statements. The programmer uses the program flow chart as a 

guide for coding the steps the computer will follow.  

5) Compiling: There is need to translate the program from the 

source code to the machine or object code if it is not written in 

machine language. A computer program is fed into the computer 



CIT301          STRUCTURED PROGRAMMING 

 

8 

 

first, then as the source program is entered, a translated 

equivalent (object program) is created and stored in the memory.  

6) Running, Testing and Debugging: When the computer is 

activated to run a program, it may find it difficult to run it 

because errors (syntax, semantics or logic, or runtime) might 

have been committed. Manuals are used to debug the errors. A 

program that is error free is tested using some test data. If the 

program works as intended, real life data are then loaded.  

7) Documentation: This is the last stage in software development. 

This involves keeping written records that describe the program, 

explain its purposes, define the amount, types and sources of 

input data required to run it. List the Departments and people 

who use its output and trace the logic the program follows. 

8) Maintenance: All the activities that occur after the completion of 

the program come under the program maintenance. Program 

maintenance includes the following: Finding and correcting the 

errors; Modifying the program to enhance it – i.e., adapting to 

some new concepts or when there is a change in the hardware or 

operating system; Update the documentation; Add new features 

and functions; Remove useless or redundant parts of code. 

 

SELF-ASSESSMENT EXERCISE 
 

i. Explain any five characteristics of a good program 

ii. Explain the phases or stages of program (or software) 

development 

iii. Describe the content of program documentation 

 

Solution 

1. Explain any five characteristics of a good program 

Transferability/portability: Program written in one computer should be 

able to run or execute on another computer. That means it should be 

easy to transfer a program from the machine on which it developed to 

the other computer. A program whose definition is independent of 

features of a particular machine architecture can 

support Transferability/portability. Example: Pascal, Java, C, c++, Java.  

A program should be supported by many different computers. The 

program should compile and run smoothly on different platforms. So, 

portability is measured by how a software application can be transferred 

from one computer environment to another without failure. A program is 

said to be more portable if it is easily adopted in different computer 

systems. 

 

Reliability: A good program is reliable. It does what it was designed to 

do  



CIT301         MODULE 1 

 

9 

 

Efficiency/cost saving: The user’s actual needs will change from time-

to-time, so the program is said to be reliable if it works smoothly in 

every version. It is measured as reliable if it gives same performance in 

all simple to complex conditions. 

 

Maintainability: It is the process of fixing program errors and improving 

the program. If a program is easy to read and understand, then its 

maintenance will be easier. It should also prevent unwanted works so 

that the maintenance cost in the future will be low. It should also have 

quality to easily meet new requirements. A maintainable program allows 

us to quickly and easily fix a bug, increase usability and performance, 

add new features, make changes to support multiple platforms, etc. 

 

Efficiency: A program is efficient if it makes use of less amount of 

memory and processing time and easily translated to machine code. The 

algorithm should be more effective. Every program needs certain 

processing time and memory to process the instructions and data. A 

program is equally said to be efficient if it has high speed of runtime 

execution. A program that gives due consideration to space and time 

efficiency is said to be efficient. 

 

Machine Independent: Program should be machine-independent. 

Program written on one system should be able to execute on many 

different types of computers without any changes. It is not hardware 

specific and provides more flexibility.  

 

Cost Effectiveness: Cost Effectiveness is the key to measure the 

program quality. Cost must be measured over the life of the program and 

must include both financial cost and human cost of producing these 

programs. The benefit of the program must outweigh the cost. 

 

Simplicity/Understandability/Readability: A good program must be 

simple, readable, easy to understand and use. The overall simplicity of a 

program strongly affects the readability of the programs and programs 

that are easier to read and understand are easier to maintain  

 

2. Explain the phases or stages of program (or software) 

development 

 1  Problem Definition: 

 The first step in the process of program development is the 

thorough understanding and identification of the problem for 

which is the program or software is to be developed. 

 In this step the problem has to be defined formally. 

 All the factors like Input/output, processing requirement, memory 

requirements, error handling, interfacing with other programs 

have to be taken into consideration in this stage. 



CIT301          STRUCTURED PROGRAMMING 

 

10 

 

2     Program Design: 

 In this phase the software developer makes use of tools like 

algorithms to develop the design of the program. 

o Algorithms are step by step methods to solving a problem and 

can either be represented by a natural language or by symbols 

(flowcharting)  

3    Coding: 

 Once the design process is complete, the actual computer 

program is written, i.e., the instructions are written in a computer 

language. 

 Coding is generally a very small part of the entire program 

development process and also a less time-consuming activity in 

reality. 

 In this process all the syntax errors i.e., errors related to spelling, 

missing commas, undefined labels etc. are eliminated. 

 For effective coding some of the guide lines which are applied 

are: 

o Use of meaningful names and labels of variables 

o Simple and clear expressions 

o Modularity with emphasis on making modules generalized 

o Making use of comments and indenting the code properly 

o Avoiding jumps in the program to transfer control. 

4    Debugging: 

 At this stage the errors in the programs are detected and 

corrected. 

 This stage of program development is an important process. 

Debugging is also known as program validation. 

 Some common errors which might occur in the programs include: 

o Uninitialization of variables. 

o Reversing of order of operands. 

o Confusion of numbers and characters. 

o Inverting of conditions e.g., jumping on zero instead of on not 

zero. 

5    Testing: 

 The program is tested on a number of suitable test cases. 

 A test plan of the program has to be done at the stage of the 

program design itself. 

 This ensures a thorough understanding of the specifications. 

 The most trivial and the most special cases should be identified 

and tested. 

 It is always useful to include the maximum and minimum values 

of all variables as test data. 

6     Documentation: 

 Documentation is a very essential step in the program 

development. 



CIT301         MODULE 1 

 

11 

 

 Documentation helps the users and the people who maintain the 

software. 

 This ensures that future modification if required can be done 

easily. Also, it is required during redesigning and maintenance. 

7     Maintenance: 

 Updating and correcting the program for changed conditions and 

field experience is accounted for in maintenance. 

 Maintenance becomes essential in following situations: 

o Change in specification, 

o Change in equipment, 

o Errors which are found during the actual execution of the 

program. 

3.     Describe the content of program documentation  

Program documentation should contain the following: 

 Written records that describe the program,  

 Explanation of its purposes,  

 Define the amount, types and sources of input data required to 

run it.  

 List the departments and people who use its output and  

 The logic the program follows 

 

4.0 CONCLUSION 
 

When designing a program, a conscious effort should be made to build 

in some characteristics that makes for a good and functional program. In 

this unit some of these characteristics are stated. The phases involved in 

the development of a program are enumerated. The steps for problem 

definition and analysis are also explained. 

. 

5.0 SUMMARY 
 

The characteristics of a good program are outlined which include: 

transferability, reliability, efficiency, cost saving, simplicity, 

understandability, readability, flexibility, adaptability, maintainability. 

The Phases of Program Development are:  

 

1. Problem definition/Analysis  

2. Selection or development of an algorithm  

3. Designing the program  

4. Coding the programming statements  

5. Compiling/Compilation stage  

6. Testing/Running and Debugging the program  

7. Documentation.  

8. Maintenance  

  



CIT301          STRUCTURED PROGRAMMING 

 

12 

 

6.0 TUTOR-MARKED ASSIGNMENT  

 

7.0 REFERENCES/FURTHER READING 
 

Fundamentals of Structured Programming, Lubia Vinhas, 2016 

 

Structured Programming with C++ by Kjell Backman, 2012. 



CIT301         MODULE 2 

 

13 
 

MODULE 2 ABSTRACTION AND MODULARITY 

 
Unit 1  Introduction to Abstraction 

Unit 2  Modular Programming 

Unit 3  Modular Interface 

 

 

UNIT 1 INTRODUCTION TO ABSTRACTION 
 

CONTENTS  

 

1.0 Introduction 

2.0 Intended Learning Outcomes 

3.0 Main Contents 

3.1 Abstraction  

3.2 Functions and Procedures 

3.3 Classes 

3.4 Abstraction Costs and Benefits 

4.0 Conclusion 

5.0 Summary 

6.0 Tutor-Marked Assignment 

7.0 References/Further Reading 

 

1.0 INTRODUCTION 
 

As programmers began to write instructions that were equivalent to a 

few bytes, the level of thinking in terms of what the computer was doing 

on a functional level raised the level of abstraction. Statements and 

structured code can be thought of as assembly language operations, at a 

higher level of abstraction. Statements are collected to form functions, 

procedures, subroutines, or methods. The abstraction or grouping code 

and its data structures is called object-oriented programming. However, 

the clump of code and data definitions is called a class in most 

programming languages. In many software maintenance projects, the 

cost of the additional performance of low levels of abstraction is far 

higher than the cost of the computer cycles that would be required to run 

the program. 

 

  



CIT301                                                                      STRUCTURED PROGRAMMING    

14 
 

2.0 INTENDED LEARNING OUTCOMES (ILOS)  
 

By the unit of this unit, you should be able to:  

 

 Describe functions and Procedures in program 

 Illustrate a typical function structure for sorting numerical arrays 

in C language. 

 Define a class in Object–oriented programming 

 Explain the abstraction costs and benefits 

 

3.0 MAIN CONTENTS 

 

3.1 Abstraction 
 

The history of programming has experienced rising levels of granularity. 

Decades ago, programmers manipulated individual bits of codes. Then 

the assembly language was invented, and programmers began to write 

instructions that were equivalent to a few bytes. The advantage was 

clear: Instead of thinking in terms of essentially meaningless 1s and 0s, 

you could think in terms of what the computer was doing on a functional 

level—move this value to that memory location, multiply these two 

bytes together. 

 

This is called raising the level of abstraction. Every time you raise the 

level of abstraction in a programming language, you get more clearer, 

structured program (as measured in terms of bits) for less work. The 

language at which you communicate with the computer can also be 

altered into something closer to the way we communicate in English. 

 

Each unit of the level of abstraction has a contract or agreement: The 

language makes an exact promise of what the computer will do when the 

unit is executed. For the following assembly language instruction: 

LD (BC), A 

the language promises that it will move the value from the register 

named A into the place in memory pointed to by registers B and C. 

Obviously, this is only a very small piece of what you want the 

computer to do, such as word processing, video processing, etc. but it’s 

a lot clearer and easier to use than its binary equivalent: 

00000010 

It may not seem any shorter or easier to remember LD (BC), A; but each 

of the letters here has an explicit and easily remembered meaning: LD is 

short for LOAD; A, B, and C refer to some registers, and (BC) refers to 

a way to do indirection into memory. 00000010 may be just seven 0s 

and a 1, but the order is both critical and hard to memorize. Swapping 

two of the bits to 00000100 means INC B (increment the B register), 

which is totally different. 



CIT301         MODULE 2 

 

15 
 

 

3.2 Functions and Procedures 
 

Statements and structured code can be thought of as assembly language 

operations, at a higher level of abstraction. The next level of abstraction 

is to group statements into operational units with contracts of their own. 

Statements are collected to form functions, procedures, subroutines, or 

methods, as they are called in various languages. The beauty about 

functions is that they limit even further the amount of code required to 

understand a piece of code. 

 

A typical function structure for sorting a numerical array in C 

programming language, is given below: 

 

/** This function takes the array and returns a sorted version, 

 * removing duplicates. It may return the same array, or it 

 * may allocate a new one. If there are no duplicates, it'll 

 * probably return the old array. If there are, it'll have to 

 * create a new one. */ 

int[] sort(int[] array) 

{  ... the body ...} 

 

You can learn a lot about the function without even seeing the body. The 

name sort, and the fact that it takes an array of integers and returns a 

(possibly different) array of integers, tell you a lot about what the 

function is supposed to do. The rest of the contract is described in the 

comment, which talks about other things such as memory allocation. 

That’s even more important in C and C++ than in Java, where it’s often 

up to the contract to express who’s responsible for freeing memory 

allocated in the function. 

 

The maintenance programmer’s life is made simpler because the 

program is chopped up into these functional units. A common rule is 

that a function should be only as long as a screenful of code. That makes 

it possible to visualize, all at once, a complete, nameable, 

understandable unit of the program you’re maintaining. That rule turns 

out to be a little bit too strict, though. 

 

The names of functions and procedures are a critical part of the 

abstraction. It takes a chunk of code and allows you to refer to it later 

with a single word (or a short collection of words, 

strungTogetherLikeThis or _like_this). This strategy focuses every line 

in the function on achieving the goal with that name. Once the scope of 

your function grows beyond the name you’ve assigned to it, it’s time to 

consider breaking the function into pieces with better names. If you find 

yourself writing code like this: 



CIT301                                                                      STRUCTURED PROGRAMMING    

16 
 

void sortNamesAndSendEmail() 

{ // Sort names 

 ... Spend 100 lines sorting the names ... 

 // Send email 

  . .. Spend 500 lines sending out emails ...} 

 

it’s a good indicator that it’s time to start breaking the function into 

pieces. In effect, you’ll probably write two functions: 

sortNames() 

sendEmail() 

which allows you to eliminate the verbose and weird function name 

sortNamesAndSendEmail. 

 

3.3 Classes 
 

Structured programming and functions neatly solve some of the 

problems of maintenance by limiting the amount of code you must look 

at in order to understand any given line. There’s still one way that far-

off pieces of code can affect a particular line of code, however. 

 

The sort example given earlier sorts only integers, which is not a 

particularly interesting job. Why would you ever want to sort just a list 

of numbers? More likely, you want to be able to sort a list of objects of 

some kind, based on an integer key. Or, more generally, you’d like to be 

able to sort on any key, so long as you can reliably compare any two 

objects. 

 

Even before object-oriented programming, there were ways to group 

chunks of data into functional units. In C, these units are called structs. 

However, structs don’t have any reliable way to compare them. You 

need some level of abstraction a little higher than provided by structs 

that allows you to tell which of two structs should come first. The 

abstraction of grouping code and its data structures is called object-

oriented programming. The clump of code and data definitions is called 

a class in most programming languages. 

 

C++ is an object-oriented language. It provides a higher level of 

abstraction than C does. In general, higher levels of abstraction come at 

a performance penalty, and many people criticize C++ for its 

performance cost relative to C. 

 

Java aims for an even higher level of abstraction than C++ by 

abstracting away access to locations in memory. Though not the first 

language to do so (Lisp and Basic readily come to mind, among general-

purpose programming languages), it probably has the highest market 

penetration. 



CIT301         MODULE 2 

 

17 
 

 

And that level of abstraction also costs performance most of the time. 

Not always, of course. An advantage to abstraction is that the 

intermediary translators are allowed to make any optimizations they 

want, so long as they don’t violate the contracts. The larger the program, 

the harder it is to perform all the optimizations and still make the 

schedule. The longer a language has been around, the more tricks the 

compiler writers learn for optimization. Increasingly, languages at 

higher levels of granularity perform faster than those at lower levels. 

There’s no way you could write a large program for a Pentium processor 

and make it as efficient as the same program written in C; the pipeline 

stalls would suck up all of your performance gains (even if you knew 

what they were). 

 

3.4 Abstraction Costs and Benefits 
 

In many software maintenance projects, the cost of the additional 

performance of low levels of abstraction is far higher than the cost of the 

computer cycles that would be required to run the program. As a 

maintenance programmer, your time is extremely expensive. The time 

of your users is even more expensive (since there are usually more of 

them than there are for you), so correctness of the program is key. If 

users lose work or time waiting for your software to be corrected, that 

easily represents lots of money. 

 

Higher levels of abstraction lead to improved maintenance, simply 

because there’s less code. The less code, the less you have to read to 

understand it. Certainly, there are limits to this, as 50 lines of clear code 

is preferable to 10 lines of total obscurity. In general, however, by using 

higher levels of abstraction, improved maintainability is gained. 

 

Of course, there’s a downside to these higher levels of abstraction in 

terms of performance. The more flexible a program is, the harder it is to 

optimize. As a maintainer, you’ll have to find the balance that works 

best. The old dictum of C.A.R. Hoare that “Premature optimization is 

the root of all evil” is particularly applicable to abstraction. Choose your 

levels appropriately and optimize those parts that can’t be made to 

function at the level of abstraction you choose. The payoff is in 

programming time, both in development and maintenance, and that 

makes users happy.  

 

SELF –ASSESSMENT EXERCISE  

 

i. What is Abstraction? 

ii. Write a function to select the largest of 3 numbers 

 



CIT301                                                                      STRUCTURED PROGRAMMING    

18 
 

1) What is Abstraction? 

Data abstraction is the reduction of a particular body of data to a 

simplified representation of the whole. Abstraction, in general, is the 

process of refining or taking away or removing characteristics from 

something in order to reduce it to a set of essential characteristics. 

Abstraction hides some characteristics of a system leaving only the 

essential characteristics for reason of simplicity 

2) Write a function to select the largest of 3 numbers 

#include<stdio.h> 

// function to find largest among three numbers 

float large (float a, float b, float c) 

{ 

  if(a>=b && a>=c) return a; 

    else if(b>=a && b>=c) return b; 

   else return c; 

} 

int main() 

{ 

float num1, num2, num3, largest; 

printf("Enter three numbers: "); 

scanf("%f %f %f", &num1, &num2, &num3); 

  largest = large(num1, num2, num3); 

printf("Largest number = %.2f",largest); 

return 0;} 

 

4.0 CONCLUSION 
 

Abstraction is a programming principle that allows for the hiding of 

details of the task at hand. Emphasis is on functionalities. In object-

oriented programming abstraction is achieved via the combination of 

code and data into one container. The definition of both the code and 

data together is a class. Class is a blue print for the production of 

objects. 

 

5.0 SUMMARY 

 

Abstraction is having a global view of the programming task at hand. It 

hides details of the task. Abstraction has it costs and benefits. Functions 

and procedures are ways of splitting a complex task into smaller units or 

modules. This makes room for easy design and implementation a 

program. 
 

7.0 REFERENCES/FURTHER READING 
 

Fundamentals of Structured Programming, Lubia Vinhas, 2016 

 

Structured Programming with C++ by Kjell Backman, 2012 



CIT301         MODULE 2 

 

19 
 

UNIT 2 MODULAR PROGRAMMING 
 

CONTENTS  

 

1.0 Introduction 

2.0 Intended Learning Outcomes 

3.0 Main Contents 

3.1 Modularity 

3.2 Advantages of Using Modular Programming Approach 

3.3 Real-life Example of Modules 

3.4 Modular Programming in C 

4.0 Conclusion 

5.0 Summary 

6.0 Tutor-Marked Assignment 

7.0 References/Further Reading 

 

1.0 INTRODUCTION 
 

A module is basically a set of interrelated files that shares their 

implementation details but hide it from the outside world. The main 

advantages of modular programming approach, includes ease of use, 

reusability, and ease of maintenance. Modularity is applicable in real-

life such as electrical devices that can plug into any outlet/socket. 

Modularization is a method to organize large programs in smaller parts, 

i.e., the modules. Every module has a well-defined interface toward 

client modules that specifies how “services” provided by this module are 

made available. Moreover, every module has an implementation part 

that hides the code, and any other private implementation details the 

clients’ module.  

 

2.0 INTENDED LEARNING OUTCOMES (ILOS) 
 

By the end of this unit, you should be able to: 

  

 Define modularity in programming. 

 State the advantages of modular programming approach 

 Describe the real-life application of modularity concept. 

 

  



CIT301                                                                      STRUCTURED PROGRAMMING    

20 
 

3.0 MAIN CONTENTS 

 

3.1 Modularity 
 

Modular programming is the process of subdividing a computer 

program into separate sub-programs. A module is a separate software 

component. It can be used in a variety of applications and functions with 

other components of the system. 

 

Some programs may have thousands or millions of lines and to manage. 

For such programs such programs it becomes quite difficult as there 

might be too many of syntax errors or logical errors present in the 

program, so to manage such programs, the concept of modular 

programming is essential. The modular programming concept permits 

that each sub-module contains something necessary to execute only one 

aspect of the desired functionality. Modular programming therefore 

places emphasis on breaking of large programs into small problems to 

increase the maintainability, readability of the code and to make the 

program handy for any changes in future. 

 

3.2 Advantages of Using Modular Programming Approach 
 

Ease of Use: This approach allows simplicity, as lines of program code 

can be accessed in the form of modules, rather than focusing on the 

entire thousands and millions of lines code. This allows ease in 

debugging the code and prone to less error. 

Reusability: It allows the user to reuse the functionality with a different 

interface without typing the whole program again. 

Ease of Maintenance: It helps in less collision at the time of working on 

modules, helping a team to work with proper collaboration while 

working on a large application. 

 

3.3. Real-life Example of Modules 
 

Let’s consider a familiar modular system. Consider the electrical devices 

(microwaves, electric kettles, washers, dryers, etc.) that can plug into 

any outlet/socket. None of these device care if they are plugged into the 

electrical outlet in your house or your neighbor’s house or your office, 

etc. They are designed to do their specific task and functionality when 

they are plugged in and when the power is on, regardless the place they 

are in. 

 

Application modules should follow the same philosophy. Regardless of 

the application and even regardless of what application they plugged 

into, they should do their specific task and only their specific task. 



CIT301         MODULE 2 

 

21 
 

Also, in exactly the same way that an electrical device can easily be 

unplugged from the wall outlet, a code module should be designed in 

such a way that it can easily be decoupled and removed from your 

application. 

 

Furthermore, as the removal of one electrical device has no impact on 

the functionality of other devices that are plugged into your electrical 

system, the removal of a code module or a series of code modules from 

your application should not have any effect on the functionality of the 

other parts of your application. 

 

This decoupling should also have no effect on the application, other than 

perhaps just losing the specific functionality that was provided by that 

particular module or group of modules in the application. 

 

3.4. Modular Programming in C 
 

C is called a structured programming language because to solve a large 

problem, C programming language divides the problem into smaller 

modules called functions or procedures each of which handles a 

particular responsibility. The program which solves the entire problem is 

a collection of such functions. 

 

A module is basically a set of interrelated files that share their 

implementation details but hide it from the outside world. Each function 

defined in C by default is globally accessible. This can be achieved by 

including the header file in which implementation of the function is 

defined. 

 

Modularization is a method to organize large programs in smaller parts, 

i.e., the modules. Every module has a well-defined interface toward 

client modules that specifies how “services” provided by this module are 

made available. Moreover, every module has an implementation part 

that hides the code and any other private implementation detail the 

clients’ modules should not care of. 

 

Modularization has several benefits, especially on large and complex 

programs: 

 modules can be re-used in several projects; 

 changing the implementation details of a modules does not 

require to modify the clients using them as far as the interface 

does not change; 

 faster re-compilation, as only the modules that have been 

modified are actually re-compiled; 

 self-documenting, as the interface specifies all that is required to 

know to use the module; 



CIT301                                                                      STRUCTURED PROGRAMMING    

22 
 

 easier debugging, as modules dependencies are clearly specified 

and every module can be tested separately. 
 

Programming by modules using the C language means splitting every 

source code into an header file module1.h that specifies how that 

module talks to the clients, and a corresponding implementation source 

file module1.c where all the code and the details are hidden. The header 

contains only declarations of constants, types, global variables and 

function prototypes that client programs are allowed to see and to use. 

Every other private item internal to the module must stay inside the code 

file. We describe in detail the general structure of the interface and the 

implementation files. 
 

SELF-ASSESSMENT EXERCISE 
 

i. State the benefits of modularization on large and complex 

programs 
 

Solution 

1 State the benefits of modularization on large and complex programs 

 Efficient Program Development. Programs can be developed 

more quickly with the modular approach since small 

subprograms are easier to understand, design, and test than large 

programs. 

 Multiple Use of Subprograms.  

 Ease of Debugging and Modifying. 
 

4.0 CONCLUSION 
 

Modular programming is a programming approach that allows 

programming task to be chopped into smaller tasks or modules. This in 

turn makes the job easier and minimizes occurrence of errors. It 

therefore becomes imperative for programmers to adopt this approach 

when designing a program.  

 

5.0 SUMMARY 
 

In this unit you have learnt the concept of modularity and the advantages 

derivable thereof. A real-life example was illustrated considering 

electrical devices microwaves, electric kettles, washers, dryers, etc. You 

also leant how to implement modular programming in C programming 

language. 

 

6.0 TUTOR-MARKED ASSIGNMENT  
 

7.0 REFERENCES/FURTHER READING 
 

Fundamentals of Structured Programming, Lubia Vinhas, 2016 

 

Structured Programming with C++ by Kjell Backman, 2012 



CIT301         MODULE 3 

  

23 
 

MODULE 3 ELEMENTS OF STRUCTURED  

   PROGRAMMING 
 

Unit 1  Overview of Structured Programming 

Unit 2  Programming Language Paradigms 

 

 

UNIT 1 OVERVIEW OF STRUCTURED  

  PROGRAMMING 
 

CONTENTS 

 

1.0 Introduction 

2.0 Intended Learning Outcomes (ILOs) 

3.0 Main Contents 

3.1 Structured Programming Concept 

3.2 Advantages of Structured Programming 

3.3 Disadvantages of Structured Programming 

4.0 Conclusion 

5.0 Summary 

6.0 Tutor-Marked Assignment 

7.0 References/Further Reading 

 

1.0 INTRODUCTION 
 

In structured programming design, programs are broken into different 

functions. These functions are also known as modules, subprograms, 

subroutines or procedures. Structured programming minimizes the 

chances of the function affecting another. It allows for clearer programs 

code. It made global variables to disappear and replaced by the local 

variables. 

 

2.0 INTENDED LEARNING OUTCOMES (ILOS) 
 

By the end of this unit, you should be able to:  

 

 State the advantages and disadvantages of structured 

programming  

 Describe the examples of programming paradigms. 

 

  



CIT301                                                                      STRUCTURED PROGRAMMING    
 

24 
 

3.0 MAIN CONTENTS 

 

3.1 Structured programming Concept 
 

In structured programming design, programs are broken into different 

functions these functions are also known as modules, subprogram, 

subroutines or procedures. 

 

Each function is design to do a specific task with its own data and logic. 

Information can be passed from one function to another function 

through parameters. A function can have local data that cannot be 

accessed outside the function’s scope. The result of this process is that 

all the other different functions are synthesized in another function. This 

function is known as main function. Many of the high-level languages 

support structured programming. 

 

Structured programming minimizes the chances of the function affecting 

another. It allows for clearer programs code. It made global variables to 

disappear and replaced by the local variables. Due to this change one 

can save the memory allocation space occupied by the global variable. 

Its organization helps in the easy understanding of programming logic. 

So that one can easily understand the logic behind the programs. It also 

helps the newcomers of any industrial technology company to 

understand the programs created by their senior workers of the industry.  

The languages that support Structured programming approach are: 

• C 

• C++ 

• Java 

• C# 

• Pascal 

 

3.2 Advantages of Structured programming 
 

 It is user friendly and easy to understand. 

 Similar to English vocabulary of words and symbols. 

 It is easier to learn. 

 They require less time to write. 

 They are easier to maintain. 

 These are mainly problem oriented rather than machine based. 

 Program written in a higher-level language can be translated into 

many machine languages and therefore can run on any computer 

for which there exists an appropriate translator. 

 It is independent of machine on which it is used, i.e., programs 

developed in high level languages can be run on any computer. 

 



CIT301         MODULE 3 

  

25 
 

 

3.3. Disadvantages of Structured Programming 
 

 Structured programming codes implemented in high-level 

language has to be translated into the machine language by 

translator and thus a price in computer time is paid. 

 The object code generated by a translator might be inefficient 

compared to an equivalent assembly language program. 

 Data type are proceeds in many functions in a structured 

program. When changes occur in those data types, the 

corresponding change must be made to every location that acts on 

those data types within the program. This is really a very time-

consuming task if the program is very large. 

 In a structured program, each programmer is assigned to build a 

specific set of functions and data types. Since different 

programmers handle separate functions that have mutually shared 

data type, other programmers in the team must reflect the changes 

in data types done by the programmer in data type handled. 

Otherwise, it requires rewriting several functions. 

 

SELF-ASSESSMENT EXERCISE 

 

Describe how structured programming can lead to programming 

efficiency. 

 

Solution: 

Structured programming is a programming paradigm aimed at 

improving the clarity, quality, and development time of a computer 

program by making extensive use of the structured control flow 

constructs of selection (if/then/else) and repetition (while and for), block 

structures, and subroutines. It provides tools for efficient coding, save 

memory usage and program performance. It provides pointers which has 

a lot of advantages as more efficient code, faster execution and memory 

saving, higher productivity can be achieved. It provides recursive 

function which also makes for efficiency. 

  

4.0 CONCLUSION 
 

Structured programming design allows a program to be subdivided into 

different functions. These functions can also be called modules, 

subprogram, subroutines and procedures. Each function performs a 

particular task. These functions are logically combined to carry out the 

desired task. 

 

  



CIT301                                                                      STRUCTURED PROGRAMMING    
 

26 
 

5.0 SUMMARY 
 

In this unit, you have learnt structured programming concept, 

Advantages and Disadvantages of Structured programming. Some 

programming languages that support Structured programming approach 

are also listed.  

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

7.0 REFERENCES/FURTHER READING 
 

Fundamentals of Structured Programming, Lubia Vinhas, 2016 

 

Structured Programming with C++ by Kjell Backman, 2012 

 

  



CIT301         MODULE 3 

  

27 
 

UNIT 2 PROGRAMMING PARADIGMS 
 

CONTENTS 

 

1.0 Introduction 

2.0 Intended Learning Outcomes (ILOs) 

3.0 Main Contents 

3.1 Imperative Paradigm 

3.2 Functional Paradigm 

3.3 Logical Paradigm 

3.4 Object Oriented Paradigm 

3.5 Other Paradigms 

4.0 Conclusion 

5.0 Summary 

6.0 Tutor-Marked Assignment 

7.0 References/Further Reading 

 

1.0 INTRODUCTION 
 

A programming paradigm, or programming model, is an approach to 

programming a computer based on a mathematical theory or a coherent 

set of principles. Examples of these paradigms are imperative, 

functional, logical, object-oriented paradigms and others. 

 

2.0 INTENDED LEARNING OUTCOMES (ILOS) 
 

By the end of this unit, you should be able to:  

 

 State the various programming paradigms  

 Describe each of the named programming paradigms and 

programming languages associated with it. 

 

3.0 MAIN CONTENTS 

 

3.1 Programming paradigms 
 

Solving a programming problem requires choosing the right concepts. 

All but the smallest toy problems require different sets of concepts for 

different parts of the program. A programming paradigm, or 

programming model, is an approach to programming a computer based 

on a mathematical theory or a coherent set of principles. It is a way of 

conceptualizing what it means to perform computation and how tasks to 

be carried out on the computer should be structured and organized. 

Programming languages are used to realize programming paradigms. 

Examples of programming paradigms are: imperative, functional, 

logical, object-oriented. Most popular languages are imperative and use 



CIT301                                                                      STRUCTURED PROGRAMMING    
 

28 
 

structured programming techniques. Structured programming techniques 

involve giving the code you write structures, these often involve writing 

code in blocks such as sequence (code executed line by line), selection 

(branching statements such as if..then..else, or case) and repetition 

(iterative statements such as for, while, repeat, loop). 

 

3.2 Imperative paradigm 
 

This paradigm is based on the ideas of a Von Neummann architecture. A 

command has a measurable effect on the program and the order of 

commands is important. First do this and next do that. Its main 

characteristics are incremental change of the program state (variables) as 

a function of time; execution of commands in an order governed by 

control structures; and the use of procedures, abstractions of one or more 

actions, which can be called as a single command. Examples: Fortran, 

Algol, Basic, C, Pascal. 

 

3.3 Functional paradigm 
 

This paradigm is based on mathematics and theory of functions. The 

values produced are non-mutable and plays a minor role compared to 

imperative program. All computations are done by applying functions 

with no side effects. Functions are firsts class citizens. Evaluate an 

expression and use the resulting value for something. Example: Haskell. 

 

3.4 Logical paradigm  
 

The logic paradigm fits well when applied in problem domains that deal 

with the extractionof knowledge from basic facts and relations. Is based 

on axioms, inference rules, and queries. Program execution becomes a 

systematic search in a set of facts, making use of a set of inference rules. 

Examples: Prolog and List. 

 

3.5 Object-oriented paradigm 
 

Data as well as operations are encapsulated in objects. Information 

hiding is used to protect internal properties of an object. Objects interact 

by means of message passing. In most object-oriented languages, 

objects are grouped in classes and classes are organized as hierarchies. 

Examples: C++, Java. 

 

  



CIT301         MODULE 3 

  

29 
 

3.6 Other Paradigms 
 

Other paradigms include Visual paradigm, Constraint based paradigm, 

Aspect oriented paradigm and Event-oriented paradigm. 

 

SELF-ASSESSMENT EXERCISE 

 

i. List the examples of object-oriented programming language 

ii. Differentiate with examples, the difference between functional 

and object-oriented programming paradigms. 

 

Solution 

1) List the examples of object-oriented programming language 

 Java 

 C++ 

 C# 

 Ruby 

 Python  

 TypeScript 

 PHP 

 

2)   Differentiate with examples, the difference between functional 

and object-oriented programming paradigms 

Object-oriented programming, or simply referred to as “OOP”, is 

a software programming model based on the concept of objects, 

instead of just functions and procedures. OOP is so designed that 

real world concepts can be programmed in a computer program. 

As the name suggests, OOP uses objects in programming which 

are organized into classes, allowing individual objects to be 

grouped together. Each object in OOP is responsible for a set of 

tasks. So, various tasks in the program are performed, by 

invoking the operations defined on corresponding objects. 

Although, the fundamental features of OOP were invented in the 

1960s, it wasn’t until the 1980s that object-oriented languages 

actually started getting the attention. OOP is a revolutionary idea 

and there are a number of reasons why it has become the 

dominant programming paradigm in the last few decades. 

While 

Functional programming is a programming methodology that 

emphasizes on the use of function calls as the primary programming 

construct. It provides practical approaches to problem solving in general 

and insights into many aspects of computing. It is a style of 

programming where you focus on the evaluation of expressions rather 

than the execution of commands. You use expressions to transform the 

data in the functional programming approach which ideally doesn’t 

contain side effects. Like the name implies, it uses functions as building 



CIT301                                                                      STRUCTURED PROGRAMMING    
 

30 
 

blocks to create new functions. Functional programming is generally 

regarded as a programming paradigm that can be applied in many 

languages, even those that weren’t intended to be used with that 

paradigm. In functional languages, there is no fixed execution order 

meaning the order does not affect the final result. Higher order functions 

are also important in functional programming. 

 

4.0 CONCLUSION 
 

A programming paradigm, or programming model, is an approach to 

programming a computer based on a mathematical theory or a coherent 

set of principles. 

 

5.0 SUMMARY 
 

In this unit you have learnt some programming paradigms. These 

include Imperative, Functional, Logical, Object-Oriented Paradigms etc. 

These Paradigms are briefly discussed. The programming languages 

associated with these Paradigms are also discussed. 

 

6.0 TUTOR-MARKED ASSIGNMENT  

 

7.0 REFERENCES/FURTHER READING 
 

Fundamentals of Structured Programming, Lubia Vinhas, 2016 

 

Structured Programming with C++ by Kjell Backman, 2012 
 



CIT301         MODULE 4 

 

31 
 

MODULE 4  STRUCTURED PROGRAMMING WITH C 
 

Unit 1  Overview of C 

Unit 2  C Program Design 

Unit 3  Executing a C Program 

 

 

UNIT 1 OVERVIEW OF C 
 

CONTENTS 

  

1.0 Introduction 

2.0 Intended Learning Outcomes (ILOs) 

3.0 Main Contents 

3.1 Brief History of C 

3.2 Taxonomy of C Types 

3.3 Why Study C? 

3.4 Why is C Popular? 

3.5 Characteristics of C program 

3.6 Uses of C 

4.0 Conclusion 

5.0 Summary 

6.0 Tutor-Marked Assignment 

7.0 References/Further Reading 

 

1.0 INTRODUCTION  
 

C programming language is a structure-oriented programming language, 

developed at Bell Laboratories in 1972 by Dennis Ritchie. It is defined 

with C Types taxonomy. C language is popular because it is reliable, 

simple and easy to use among others. It is also characterized with 

supports for loose typing and extensive use of function calls. The C 

programming language is used for developing system applications that 

forms a major portion of operating systems such as Windows, UNIX 

and Linux. 

 

2.0 INTENDED LEARNING OUTCOMES (ILOS) 
 

By the end of  this unit, you should be able to:  

 

 Give a brief history of C Programming Language. 

 Explain the taxonomy of C programming types 

 Explain the importance of studying C programming language. 

 Describe the characteristics and uses of C Program. 

 

  



CIT301                                                                      STRUCTURED PROGRAMMING    
 

32 
 

3.0 MAIN CONTENTS 

 

3.1 Brief History of C   
 

 The C programming language is a structure-oriented 

programming language, developed at Bell Laboratories in 1972 

by Dennis Ritchie.  

 C programming language features were derived from an earlier 

language called “B” (Basic Combined Programming Language – 

BCPL)   

 C language was invented for implementing UNIX operating 

system.   

 In 1978, Dennis Ritchie and Brian Kernighan published the first 

edition “The C Programming Language” and is commonly 

known as K&RC.  

 In 1983, the American National Standards Institute (ANSI) 

established a committee to provide a modern, comprehensive 

definition of C. The resulting definition, the ANSI standard, or 

“ANSI C” was completed late 1988.   

 Many of C’s ideas & principles were derived from the earlier 

language B, thereby naming this new language “C”.  

 

3.2 Taxonomy of C Types 

 

 Scalar types 

 Arithmetic types 

 Integral types: char, short, int, long 

 Floating-point types: float, double, long double 

 Pointer types 

 Aggregate types 

 Array types 

 Structure types 

 Union types 

 Function types 

 Void types 

 

3.3 Why is C Popular? 
 

 It is reliable, simple and easy to use.   

 C is a small, block-structured programming language.   

 C is a portable language, which means that C programs written 

on one system can be run on other systems with little or no 

modification.   



CIT301         MODULE 4 

 

33 
 

 C has one of the largest assortments of operators, such as those 

used for calculations and data comparisons.   

 Although the programmer has more freedom with data storage, 

the languages do not check data type accuracy for the 

programmer.   

 

3.4 Why Study C? 
 

 By the early 1980s, C was already a dominant language in the 

minicomputer world of Unix systems. Since then, it has spread to 

personal computers (microcomputers) and to mainframes.   

 Many software houses use C as the preferred language for 

producing word processing programs, spreadsheets, compilers, 

and other products.   

 C is an extremely flexible language—particularly if it is to be 

used to write operating systems.   

 Unlike most other languages that have only four or five levels of 

precedence, C has 15.   

 

3.5 Characteristics of a C Program   
 

 Middle level language. 

 Small size – has only 32 keywords   

 Extensive use of function calls- enables the end user to add their 

own functions to the C library.   

 Supports loose typing – a character can be treated as an integer & 

vice versa.   

 Structured language   

 Low level (Bit Wise) programming readily available  

 Pointer implementation - extensive use of pointers for memory, 

array, structures and functions.   

 It has high-level constructs.   

 It can handle low-level activities.   

 It produces efficient programs.   

 It can be compiled on a variety of computers 

 

3.6 Uses of C 

 

 The C programming language is used for developing system 

applications that forms a major portion of operating systems such 

as Windows, UNIX and Linux. Below are some examples of C 

being used:   

 Database systems   

 Graphics packages   

 Word processors   



CIT301                                                                      STRUCTURED PROGRAMMING    
 

34 
 

 Spreadsheets   

 Operating system development   

 Compilers and Assemblers   

 Network drivers and Interpreters    

 

SELF-ASSESSMENT EXERCISE 

 

i. State the uses of C Programming language 

ii. Explain the reasons C language is popular. 

iii. List the application packages that C language is considered useful 

tools for developments. 

Solution: 

1)   State the uses of C Programming language 

C is used for developing system applications such as:  

 Database Systems 

 Language Interpreters 

 Compilers and Assemblers 

 Operating Systems 

 Network Drivers 

 Word Processors 

 

1) Explain the reasons C language is popular 

There are various reasons why C has become popular. The following are 

some of the reasons: 

 C can be learnt quickly. 

 C language is reliable, simple and easy to use. 

 C language is a structured language. 

 Modern programming concepts are based on C. 

 It can be compiled on a variety of computer platforms 

 C has one of the largest assortments of operators, such as those 

used for calculations and data comparisons.   

 Universities preferred to add C programming in their courseware. 

 

2) List the application packages that C language is considered useful 

tools for developments. 

C programming language can be used for the development of the 

following application packages: 

 Inventory systems  

 Medical diagnostic systems 

 Expert systems 

 Accounting systems 

 Scheduling systems 

 etc 

  



CIT301         MODULE 4 

 

35 
 

4.0 CONCLUSION 
 

C programming language is a structure-oriented programming language, 

developed at Bell Laboratories in 1972 by Dennis Ritchie. C programs 

are reliable, simple and easy to use among others. C programming 

language is not a strongly typed language. It makes use of extensive 

function calls. The C programming language is used for developing 

system applications that forms a major portion of operating systems 

such as Windows, UNIX and Linux etc. 

 

5.0 SUMMARY 
 

In this unit you learnt a brief history of C programming language, 

taxonomy of C types, the need to study C programming language. you 

also learnt some characteristics of C program and it uses. 

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

7.0 REFERENCES/FURTHER READING 
 

Fundamentals of Structured Programming, Lubia Vinhas, 2016 

 

Structured Programming with C++ by Kjell Backman, 2012 

 

 

  



CIT301                                                                      STRUCTURED PROGRAMMING    
 

36 
 

UNIT 2 C PROGRAM DESIGN 
 

CONTENTS  

 

1.0 Introduction 

2.0 Intended Learning Outcomes 

3.0 Main Contents 

3.1 C Program Structure 

 3.2 Files Used in A C Program 

4.0 Conclusion 

5.0 Summary 

6.0 Tutor-Marked Assignment  

7.0 References/Further Reading 

 

1.0 INTRODUCTION 
 

The structure of a C program is a protocol (rules) to the programmer, 

which he has to follow while writing a C program. A number of files are 

used in a C Program. Examples of these files are: source, object, header 

and executable files.   

 

2.0 INTENDED LEARNING OUTCOMES (ILOS) 
 

By the end of this unit, you should be able to:  

 

 Illustrate the structure of a C Programming language. 

 Explain the contents of the C program structure. 

 

3.0 MAIN CONTENTS 

 

3.1 C Program Structure 
 

The structure of a C program is a protocol (rules) to the programmer, 

which he has to follow while writing a C program. The general basic 

structure of C program is shown in the code below.Based on this 

structure, we can write a C program. Example:   

  /* This program accepts a number and displays it to the user*/   

#include <stdio.h> 

 void main(void)  

 { int number;  

printf( "Please enter a number: " );      

scanf( "%d", &number ); 

printf( "You entered %d", number );  

return 0; 

 }   

 



CIT301         MODULE 4 

 

37 
 

Explanation:    

 #include: The part of the compiler which actually gets your 

program from the source file is called the preprocessor.   

 #include <stdio.h>:#include is a pre-processor directive. It is not 

really part of our program, but instead it is an instruction to the 

compiler to make it do something. It tells the C compiler to 

include the contents of a file (in this case the system file called 

stdio.h).  

 The compiler knows it is a system file, and therefore must be 

looked for in a special place, by the fact that the filename is 

enclosed in <> characters   

<stdio.h>: stdio.h is the name of the standard library definition file for 

all STanDard Input and Output functions.    

The program will almost certainly want to send information to the 

screen and read things from the keyboard, and stdio.h is the name 

of the file in which the functions that we want to use are defined.   

The function we want to use is called printf. The actual code of printf 

will be tied in later by the linker.    

The ".h" portion of the filename is the language extension, which 

denotes an include file.  

 void:This literally means that this means nothing. In this case, it 

is referring to the function whose name follows. Void tells C 

compiler that a given entity has no meaning and produces no 

error.   

 main:In this example, the only function in the program is called 

main. A C program is typically made up of large number of 

functions. Each of these is given a name by the programmer and 

they refer to each other as the program runs. C regards the name 

main as a special case and will run this function first i.e. the 

program execution starts from main.   

 (void): This is a pair of brackets enclosing the keyword void.    

It tells the compiler that the function main has no parameters.   

A parameter to a function gives the function something to work on.    

 { (Brace): This is a brace (or curly bracket). As the name implies, 

braces come in packs of two - for every open brace there must be 

a matching close one. Braces allow us to group pieces of program 

together, often called a block.A block can contain the declaration 

of variable used within it, followed by a sequence of program 

statements.   

In this case the braces enclose the working parts of the function main. 

 ; (semicolon): The semicolon marks the end of the list of variable 

names, and also the end of that declaration statement.All 

statements in C programs are separated by ";" (semicolon) 

characters.  The ";" character is actually very important. It tells 

the compiler where a given statement ends.   



CIT301                                                                      STRUCTURED PROGRAMMING    
 

38 
 

 If the compiler does not find one of these characters where it 

expects to see one, then it will produce an error.  

 scanf:In other programming languages, the printing and reading 

functions are a part of the language. In C this is not the case; 

instead they are defined as standard functions which are part of 

the language specification, but are not a part of the language 

itself.    

 The standard input/output library contains a number of functions 

for formatted data transfer; the two we are going to use are scanf 

(scan formatted) and printf (print formatted).  

 printf:The printf function is the opposite of scanf.   

 It takes text and values from within the program and sends it out 

onto the screen.    

 Just like scanf, it is common to all versions of C and just like 

scanf, it is described in the system file stdio.h.   

 The first parameter to a printf is the format string, which contains 

text, value descriptions and formatting instructions.    

 

3.2 Files Used in a C Program  

 

 Source File- This file contains the source code of the program. 

The file extension of any c file is .c. The file contains C source 

code that defines the main function & maybe other functions.   

 Header File- A header file is a file with extension .h which 

contains the C function declarations and macro definitions and to 

be shared between several source files.    

 Object File- An object file is a file containing object code, with 

an extension .o, meaning relocatable format machine code that is 

usually not directly executable. Object files are produced by an 

assembler, compiler, or other language translator, and used as 

input to the linker, which in turn typically generates an 

executable or library by combining parts of object files.    

 Executable File- The binary executable file is generated by the 

linker. The linker links the various object files to produce a 

binary file that can be directly executed. 

 

SELF-ASSESSMENT EXERCISE 

 

i. Explain all the reserved words used in the description of a C 

program structure. 

ii. Describe the types of files used in a C Program 

 

Solution: 

Explain all the reserved words used in the description of a C program 

structure. 



CIT301         MODULE 4 

 

39 
 

1. volatile 

This keyword is needed so as to create volatile objects. These volatile 

objects have the ability to get modified in the unknown or unmentioned 

method through hardware. 

2. auto 

This keyword is used to declare the automatic variables. 

3. char 

char keyword is used to declare the character variable. Variables that are 

of type char are of 1-byte length. They can get signed (it is by default 

unless we use the compiler option ‘-funsigned-char’ or ‘unsigned’), 

which implies they have got a range of -128 to 127 and 0 to 255, 

respectively. 

4. double and float 

Both keywords double, as well as float, are needed for declaration of 

floating type variables. 

 5. const 

We can declare an identifier to be constant through the usage of the 

const keyword. 

6. if and else 

 We use if and else so as to make decisions in C programming. 

7. break and continue 

The break statement would make the program jump out of the most 

inner and enclosing loop in an explicit manner. The continue is used for 

statements skipping certain statements that are inside the loop. 

8. enum 

In C programming enumeration types get declared through keyword 

enum. 

9. extern 

The extern keyword indicates that the identifier has benn defined 

somewhere else. It also indicates that in fact storage as well as the initial 

value, or function body has been defined somewhere else, mostly in the  

10. return 

Return is used for exiting the function. It would exit from the current 

function that is executing immediately and return to the calling routine. 

It can optionally return value too. 

11. sizeof 

sizeof is used for returning the size of expression or type of it. It is used 

for returning the size in bytes. 

13. int 

int keyword is used for declaration of the integer type variable. 

14. register 

This keyword is used for the creation of the register variables that are 

much faster as compared to the normal variables. 

15. static 

This keyword is used for the creation of a static variable. The static 

variables’ values persist until the end of the program. It tells that the 

https://www.educba.com/c-plus-plus-keywords/
https://www.educba.com/break-statement-in-javascript/
https://www.educba.com/enum-in-c-sharp/
https://www.educba.com/enum-in-c-sharp/


CIT301                                                                      STRUCTURED PROGRAMMING    
 

40 
 

function or the element is only known inside the scope of the current 

compilation. Also, if we use the static keyword along with the variable 

which is local to the function, it would allow the last value of the 

variable to get preserved in successive calls to that function. 

16. struct 

struct keyword is used for the declaration of the structure. The structure 

is used for holding the variables of varied data types under one name. 

Just like the union, it groups the variables into a single record. Also, 

the struct-type-name is considered to be the optional tag name which 

points to structure type. The variables of a structure are data definitions, 

and they are optional. Although both are optional, one of the two must 

appear. 

17. union 

Union keyword is needed for grouping the varied types of a variable 

under one name. 

18. void 

This keyword denotes that the function won’t be returning any value. 

19. typedef 

This keyword is required so as to associate a type along with an 

identifier in an explicit manner. 

20. short, long, signed and unsigned 

The short, long, signed as well as unsigned keywords are the type of 

modifiers which alters the meaning of the base data type in order to 

yield the new type. 

21. for 

In total, there exist 3 kinds of loops in C. The for loop in C is written 

using the keyword for. 

22. switch, case and default 

We use switch as well as case statements whenever the block of 

statements needs to be executed among various blocks. 

23. do-while loop 

do is used along with a while to make a different form of repetition of 

the statement. 

24. while  

It is used for repeating the execution when the condition is true. 

 

Describe the types of files used in a C Program 

C programming language supports two types of files and they are as 

follows... 

1. Text Files (or) ASCII Files 

2. Binary Files 

Text Files (or) ASCII Files 

 Source File- This file contains the source code of the program. 

The file extension of any c file is .c. The file contains C source 

code that defines the main function & maybe other functions.   

https://www.educba.com/c-union/


CIT301         MODULE 4 

 

41 
 

 Header File- A header file is a file with extension .h which 

contains the C function declarations and macro definitions and to 

be shared between several source files.   

Binary Files 

 Object File- An object file is a file containing object code, with 

an extension .o, meaning relocatable format machine code that is 

usually not directly executable. Object files are produced by an 

assembler, compiler, or other language translator, and used as 

input to the linker, which in turn typically generates an 

executable or library by combining parts of object files.    

 Executable File- The binary executable file is generated by the 

linker. The linker links the various object files to produce a 

binary file that can be directly executed. 

 

4.0 CONCLUSION 
 

To write a C program certain must be followed. First of you must be 

conversant with it structure and content, otherwise you will not be able 

write a reasonable C program. 

 

5.0 SUMMARY 
 

In this unit you have been exposed to the structure of a C program and 

some programming elements such #include, stdio.h, void, main, printf, 

scanf, return etc. These elements are adequately explained in the unit. 

Some of the files used in C program are also outlined. 

 

6.0 TUTOR-MARKED ASSIGNMENT  

 

7.0 REFERENCES/FURTHER READING 
 

Fundamentals of Structured Programming, Lubia Vinhas, 2016 

 

Structured Programming with C++ by Kjell Backman, 2012 

 

  



CIT301                                                                      STRUCTURED PROGRAMMING    
 

42 
 

UNIT 3 EXECUTING A C PROGRAM 
 

CONTENTS  

 

1.0 Introduction 

2.0 Intended Learning Outcomes 

3.0 Main Contents 

3.1 Compilation and Execution of a C Program 

3.2 Commonly used Programs for execution on Linux System 

3.3. Pictorial Diagram of C Compilation and Execution 

4.0 Conclusion 

5.0 Summary 

6.0 Tutor-Marked Assignment 

7.0 References/Further Reading 

 

1.0 INTRODUCTION  
 

Program compilation and execution processes are divided into several 

steps, namely: preprocessing, compilation, assembly, linking and 

loading. In each of these input and output are defined during the 

compilation and execution process depending on the operating systems 

e.g., Linux.  

 

2.0 INTENDED LEARNING OUTCOMES (ILOS) 
 

By the end of this unit, you should be able to:  

 

 Explain the processes involved in compilation and execution of C 

program. 

 Describe the sample input/ output steps used in program 

compilation and execution. 

 

3.0 MAIN CONTENTS 

 

3.1 Compilation and Execution of a C Program 
 

 The compilation and execution process of C can be divided into 

several steps: 

 Preprocessing - Using a Preprocessor program to convert C 

source code in expanded source code. "#includes" and "#defines" 

statements will be processed and replaced source codes in this 

step. 

 Compilation - Using a Compiler program to convert C expanded 

source to assembly source code. 



CIT301         MODULE 4 

 

43 
 

 Assembly - Using an Assembler program to convert assembly 

source code to object code. 

 Linking - Using a Linker program to convert object code to 

executable code. Multiple units of object codes are linked to 

together in this step. 

 Loading - Using a Loader program to load the executable code 

into CPU for execution. 

 

Sample I/O steps 

Here is a simple table showing input and output of each step in the 

compilation and execution process: 

Input    Program  Output 

source code            > Preprocessor  > expanded source code 

expanded source code  > Compiler      > assembly source code 

assembly code          > Assembler     > object code 

object code            > Linker        > executable code 

executable code        > Loader         > execution 

 

3.2 Commonly used Programs for execution on Linux  

 System 
 

Below are examples of commonly used programs for different 

compilation and execution steps on a Linux system: 

 "cpphello.c -o hello.i" - Preprocessor preprocessing hello.c and 

saving output to hello.i. 

 "cc1hello.i -o hello.s" - Compiler compiling hello.i and saving 

output to hello.s. 

 "as hello.s -o hello.o" - Assembler assembling hello.s and saving 

output to hello.o. 

 "ldhello.o -o hello" - Linker linking hello.o and saving output to 

hello. 

 "load hello" - Loader loading hello and running hello. 

 

3.3 Pictorial Diagram of C Compilation and Execution 
 

A pictorial diagram showing the compilation and execution of a C 

program is shown following. 



CIT301                                                                      STRUCTURED PROGRAMMING    
 

44 
 

 
SELF-ASSESSMENT EXERCISE 

 

i. Illustrate the compilation and execution of a C program with 

diagram only. 

ii. State the examples of commonly used programs for different 

compilation and execution steps on a Linux system 

 

Illustrate the compilation and execution of a C program with 

diagram only. 



CIT301         MODULE 4 

 

45 
 

 
 

1 State the examples of commonly used programs for different 

compilation and execution steps on a Linux system 

 

 "cpphello.c -o hello.i" - Preprocessor preprocessing hello.c and 

saving output to hello.i. 

 "cc1hello.i -o hello.s" - Compiler compiling hello.i and saving 

output to hello.s. 

 "as hello.s -o hello.o" - Assembler assembling hello.s and saving 

output to hello.o. 

 "ldhello.o -o hello" - Linker linking hello.o and saving output to 

hello. 

 "load hello" - Loader loading hello and running hello. 

 

4.0 CONCLUSION 
 

After writing a C program, you will need to compile and execute it. This 

involves some steps which has been heighted in this unit. 

 

5.0  SUMMARY 
 

In this unit, you have been taken through the compilation and execution 

steps. These include preprocessing, compilation, assembly, linking and 

loading. these steps are illustrated with a diagram for clearer 

understanding. 



CIT301                                                                      STRUCTURED PROGRAMMING    
 

46 
 

 

6.0 TUTOR-MARKED ASSIGNMENT  

 

7.0 REFERENCES/FURTHER READING 
 

Fundamentals of Structured Programming, Lubia Vinhas, 2016 

 

Structured Programming with C++ by Kjell Backman, 2012 



CIT301         MODULE 5 

 

47 
 

MODULE 5  INTRODUCTION TO C PROGRAMMING  

   LANGUAGE 
 

Unit 1  Element of C 

Unit 2  Data Type 

Unit 3  Variables, Statements, Expressions    

 

CONTENTS  

 

1.0  Introduction  

2.0  Intended Learning Outcomes (ILOs)  

3.0  Main Content  

3.1 Character Set 

3.2 Keywords 

3.3 Identifier 

4.0 Conclusion 

5.0 Summary 

6.0 Tutor-Marked Assignment 

7.0 References/Further Reading 

 

1.0 INTRODUCTION  
 

Every language has some basic elements and grammatical rules. Before 

starting with programming, we should be acquainted with the basic 

elements that build the language.  

 

 

2.0 INTENDED LEARNING OUTCOMES (ILOS)  
 

By the end of this unit, you should be able to:  

 

 List the character set in C 

 Apply the character set in constructing variables and identifiers 

 Differentiate between a variable and a keyword 

 

3.0  MAIN CONTENT  
 

Elements of C 

Every language has some basic elements and grammatical rules. Before 

starting with programming, we should be acquainted with the basic 

elements that build the language.  

 

  



CIT301                                                                      STRUCTURED PROGRAMMING    
 

48 
 

3.1 Character Set 
 

Communicating with a computer involves speaking the language the 

computer understands. In C, various characters have been given to 

communicate.  

Character set in C consists of: 

 
 

3.2 Keywords 
 

Keywords are the words whose meaning has already been explained to 

the C compiler. The keywords cannot be used as variable names because 

if we do so we are trying to assign a new meaning to the keyword, 

which is not allowed by the computer. There are 32 keywords available 

in C. The figure gives a list of these keywords for your ready reference.  

 

 
 

3.3 Identifier:  
 

In the programming language C, an identifier is a combination of 

alphanumeric characters, the first being a letter of the alphabet or an 

underline, and the remaining being any letter of the alphabet, any 

numeric digit, or the underline.   

Two rules must be kept in mind when naming identifiers.   

  



CIT301         MODULE 5 

 

49 
 

 The case of alphabetic characters is significant. Using "INDEX" 

for a variable is not the same as using "index" and neither of them 

is the same as using "InDeX" for a variable. All three refer to 

different variables.   

 As C is defined, up to 32 significant characters can be used and 

will be considered significant by most compilers. If more than 32 

are used, they will be ignored by the compiler.   

 

SELF-ASSESSMENT EXERCISE  
 

i. What are the character sets used C programming language? Put 

your response in a tabular format. 

ii. List at least 10 key words used in C programming language. 

 

Solution 

1.   What are the character set used C programming language? Put 

your response in a tabular format. 

 
2.  List at least 10 key words used in C programming language. 

The following are some of the key words used in C programming 

language: auto, signed, const, extern, register, unsigned, return, 

continue, enum, sizeof, struct, typedef, union, etc. 

 

4.0 CONCLUSION 
 

C programming language has some basic elements and rules that 

students must be acquainted with before starting to write a program. 

These elements include character set, key words, identifiers etc. 

 

5.0 SUMMARY 
 

In this you have learnt the basic elements of C programs. These 

elements include character set (letters of the alphabet, both upper and 

lower cases), key words (e.g., auto, double, struct, if, return, while etc), 

identifiers (this include both key words and user defined variables). 

There are rules to be followed in constructing identifiers. 

 

6.0 TUTOR-MARKED EXERCISE  
  



CIT301                                                                      STRUCTURED PROGRAMMING    
 

50 
 

7.0 REFERENCES/FURTHER READING 
 

Fundamentals of Structured Programming, Lubia Vinhas, 2016 

 

Structured Programming with C++ by Kjell Backman, 2012 

 

  



CIT301         MODULE 5 

 

51 
 

UNIT 2 DATA TYPE   
 

CONTENTS  

 

1.0  Introduction  

2.0  Intended Learning Outcomes (ILOs)  

3.0  Main Content  

3.1 Data Types  

3.2 Constants 

3.3 Rules for Constructing Integer Constants 

3.4 Rules for Constructing Real Constants 

3.5 Rules for constructing real constants expressed in 

exponential form 

3.6 Rules for Constructing Character Constants  

4.0 Conclusion 

5.0 Summary 

6.0 Tutor-Marked Assignment  

7.0 References/Further Reading 

 

1.0 INTRODUCTION  
 

A data type defines a set of values and the operations that can be defined 

on those values. Data types are especially important in C programming 

language All operations are type checked by the compiler for type 

compatibility. Illegal operations will not be compiled. Thus, strong type 

checking helps prevent errors and enhances reliability.  

 

2.0     INTENDED LEARNING OUTCOMES (ILOS)  
 

By the end of  this unit, you should be able to:  

 

 Explain what a data type is 

 Define a constant 

 State the rules for constructing integer constants 

 State the rules for constructing real constants 

 State the rules for constructing real constants expressed in 

exponential form 

 State the rules for constructing character constants  

 

  



CIT301                                                                      STRUCTURED PROGRAMMING    
 

52 
 

3.0 MAIN CONTENT  

 

3.1 Data Types  
 

In the C programming language, data types refer to a domain of allowed 

values and the operations that can be performed on those values. The 

type of a variable determines how much space it occupies in storage and 

how the bit pattern stored is interpreted. There are 4 fundamental data 

types in C, which are- char, int, float and, double. Char is used to store 

any single character; int is used to store any integer value, float is used 

to store any single precision floating point number and double is used to 

store any double precision floating point number. We can use 2 

qualifiers with these basic types to get more types.  

 

There are 2 types of qualifiers     

 

 Sign qualifier- signed & unsigned   

 Size qualifier- short & long     

 

The data types in C can be classified as follows: 

 

 
 

  

 

 

 

 

 

 

 



CIT301         MODULE 5 

 

53 
 

3.2 Constants 
 

A constant is an entity that doesn’t change whereas a variable is an 

entity that may change. C constants can be divided into two major 

categories:   

 

 Primary Constants  

 Secondary Constants 

 

 
 

Here our only focus is on primary constant. For constructing these 

different types of constants certain rules have been laid down.  

 

3.3 Rules for Constructing Integer Constants 

 

 An integer constant must have at least one digit.   

o It must not have a decimal point.   

o It can be either positive or negative.   

o If no sign precedes an integer constant it is assumed to be 

positive.   

o No commas or blanks are allowed within an integer constant.   

o The allowable range for integer constants is -32768to 32767.   

o Eg.: 426, +782,-8000, -7605   

 

3.4 Rules for Constructing Real Constants 
 

 Real constants are often called Floating Point constants.  

 The real constants could be written in two forms—Fractional 

form and Exponential form.  

 Rules for constructing real constants expressed in fractional form:   

o A real constant must have at least one digit.    



CIT301                                                                      STRUCTURED PROGRAMMING    
 

54 
 

o It must have a decimal point.    

o It could be either positive or negative.    

o Default sign is positive.    

o No commas or blanks are allowed within a real constant.   

o Ex. +325.34, 426.0, -32.76, -48.5792   

 

3.5 Rules for constructing real constants expressed in 

exponential form 
 

o The mantissa part and the exponential part should be separated by 

a letter e.  b) The mantissa part may have a positive or negative 

sign.    

o Default sign of mantissa part is positive.    

o The exponent must have at least one digit, which must be a 

positive or negative integer. Default sign is positive.   

o Range of real constants expressed in exponential form is -3.4e38 

to 3.4e38.   

o Ex. +3.2e-5, 4.1e8, -0.2e+3, -3.2e-5   

 

3.6 Rules for Constructing Character Constants  
 

 A character constant is a single alphabet, a single digit or a single 

special symbol enclosed within single inverted commas.  

 The maximum length of a character constant can be 1 character.  

 Ex.: ‘M’, ‘6’, ‘+’   

 

SELF-ASSESSMENT EXERCISE  
 

i. Differentiate between a variable and a constant in C programs 

ii. What are the rules for constructing an integer constant? 

 

Solution: 

1.  Differentiate between a variable and a constant in C programs 

A variable is a programming element that can change during 

program execution where as constant do not change. 

 

2.  What are the rules for constructing an integer constant? 

An integer constant must have at least one digit.   

 It must not have a decimal point.   

 It can be either positive or negative.   

 If no sign precedes an integer constant it is assumed to be 

positive.   

 No commas or blanks are allowed within an integer 

constant.   



CIT301         MODULE 5 

 

55 
 

 The allowable range for integer constants is -32768to 

32767.   

 Eg.: 426, +782,-8000, -7605   

 

4.0 CONCLUSION 
 

Data types in C programming language refer to a domain of allowed 

values and the operations that can be performed on those values. The 

type of a variable determines how much space it occupies in storage and 

how the bit pattern stored is interpreted. There are four fundamental data 

types in C, which are- char, int, float and double. Char is used to store 

any single character; int is used to store any integer value, float is used 

to store any single precision floating point number and double is used to 

store any double precision floating point number. 

 

5.0 SUMMARY 
 

In this unit, you have learnt about C data types which include char, int, 

float and double. You have also learnt about the various classifications 

of these data types as well as constant and the rules for constructing the 

various constants. 

 

6.0 TUTOR-MARKED ASSIGNMENT 

 

7.0 REFERENCES/FURTHER READING 
 

Fundamentals of Structured Programming, Lubia Vinhas, 2016 

 

Structured Programming with C++ by Kjell Backman, 2012 

 

  



CIT301                                                                      STRUCTURED PROGRAMMING    
 

56 
 

UNIT 3 VARIABLES, STATEMENTS, EXPRESSIONS    
 

CONTENTS  

 

1.0  Introduction  

2.0  Intended Learning Outcomes (ILOs)  

3.0  Main Content  

3.1 Variables and Variable Declaration 

3.2 Initialization of Variables   

3.3 Expressions   

3.4 Statements 

3.5 Compound Statements (Blocks)   

3.6 Input-Output in C 

3.7 Input-Output of integers in C     

3.8 Input-Output of floats in C 

3.9 Input-Output of characters and ASCII code   

3.10 ASCII code   

4.0 Conclusion 

5.0 Summary 

6.0 Tutor-Marked Assignment 

7.0 References/Further Reading 

 

1.0 INTRODUCTION  
 

A variable is the name given to a memory location that allows values to 

be stored in those locations. When declaring variables, the type of value 

or data to be stored is also indicated. A statement is an executable 

instruction given to the computer to execute. An expression is a 

combination of operands, operators and constant for the purpose of 

evaluation 

 

2.0    INTENDED LEARNING OUTCOMES (ILOS)  
 

By the end of this unit, you should be able to:  

 

 Explain what a data type is 

 Define a constant 

 State the rules for constructing integer constants 

 State the rules for constructing real constants 

 State the rules for constructing real constants expressed in 

exponential form 

 State the rules for constructing character constants  

 



CIT301         MODULE 5 

 

57 
 

7.0 MAIN CONTENT  

 

3.1 Variables and Variable Declaration 
 

Variables are names that are used to store values. It can take different 

values but one at a time. A data type is associated with each variable & 

it decides what values the variable can take. When you decide your 

program needs another variable, you simply declare (or define) a new 

variable and C makes sure you get it. You declare all C variables at the 

top of whatever blocks of code need them. Variable declaration requires 

that you inform C of the variable's name and data type.  

Syntax: datatype variablename;   

Eg:  

int page_no;  

char grade;  

float salary;  

long y;   

 

There are two places where you can declare a variable:   

 After the opening brace of a block of code (usually at the top of a 

function)   

 Before a function name (such as before main() in the program)  

 

Consider various examples:  

Suppose you had to keep track of a person's first, middle, and last 

initials. Because an initial is obviously a character, it would be prudent 

to declare three character variables to hold the three initials. In C, you 

could do that with the following statement:  

1.  main()   

 {   

  char first, middle, last;  

  // Rest of program follows   

 }   

2.  main()  

 {  

  char first;  

  char middle;  

  char last;     

  // Rest of program follows  

}   

 

  



CIT301                                                                      STRUCTURED PROGRAMMING    
 

58 
 

3.2 Initialization of Variables   
 

When a variable is declared, it contains undefined value commonly 

known as garbage value. If we want, we can assign some initial value to 

the variables during the declaration itself. This is called initialization of 

the variable.   

Eg., 

int pageno=10;   

 char grade=’A’;      

 float salary= 20000.50;   

 

3.3 Expressions   
 

An expression consists of a combination of operators, operands, 

variables & function calls. An expression can be arithmetic, logical or 

relational. Here are some expressions:   

a+b – arithmetic operation  

 a>b- relational operation  

 a == b – logicaloperation  

 func (a,b) – function call   

 4+21   

 a*(b + c/d)/20  

 q = 5*2  

x = ++q % 3   

 q > 3   

 

As you can see, the operands can be constants, variables, or 

combinations of the two. Some expressions are combinations of smaller 

expressions, called subexpressions. For example, c/d is a subexpression 

of the sixth example.  

 

An important property of C is that every C expression has a value. To 

find the value, you perform the operations in the order dictated by 

operator precedence.   

 

3.4 Statements 
 

Statements are the primary building blocks of a program. A program is a 

series of statements with some necessary punctuation. A statement is a 

complete instruction to the computer. In C, statements are indicated by a 

semicolon at the end. Therefore  

legs = 4   

is just an expression (which could be part of a larger expression), but, 

legs = 4;   

is a statement. What makes a complete instruction? First, C considers 

any expression to be a statement if you append a semicolon. (These are 



CIT301         MODULE 5 

 

59 
 

called expression statements.) Therefore, C won't object to lines such as 

the following:   

8;   

3 + 4;   

However, these statements do nothing for your program and can't really 

be considered sensible statements. More typically, statements change 

values and call functions:   

x = 25;  

++x;   

y = sqrt(x);   

Although a statement (or, at least, a sensible statement) is a complete 

instruction, not all complete instructions are statements. Consider the 

following statement:   

x = 6 + (y = 5);   

In it, the subexpression y = 5 is a complete instruction, but it is only part 

of the statement. Because a complete instruction is not necessarily a 

statement, a semicolon is needed to identify instructions that truly are 

statements.    

 

3.5 Compound Statements (Blocks)   
 

A compound statement is two or more statements grouped together by 

enclosing them in braces; it is also called a block. The following while 

statement contains an example:   

while (years < 100)   

{   

     wisdom = wisdom * 1.05;      

printf("%d %d\n", years, wisdom);      

     years = years + 1;   

}   

 If any variable is declared inside the block, then it can be declared only 

at the beginning of the block. The variables that are declared inside a 

block can be used only within the block.  

 

3.6 Input-Output in C   
 

When we are saying Input that means we feed some data into program. 

This can be given in the form of file or from command line. C 

programming language provides a set of built-in functions to read given 

input and feed it to the program as per requirement.    

 

When we are saying Output that means to display some data on screen, 

printer or in any file. C programming language provides a set of built-in 

functions to output the data on the computer screen. Functions printf() 

and scanf() are the most commonly used to display out and take input 

respectively.  



CIT301                                                                      STRUCTURED PROGRAMMING    
 

60 
 

 

Let us consider an example:     

#include <stdio.h>      //This is needed to run printf() function.  

 int main()   

{  

printf("C Programming");  //displays the content inside quotation     

     return 0;   

}     

 

Output: 

C Programming   

 

Explanation:     

 Every program starts from main() function.   

 printf() is a library function to display output which only works if 

#include<stdio.h>is included at the beginning.   

 Here, stdio.h is a header file (standard input output header file) 

and #include is command to paste the code from the header file 

when necessary. When compiler encounters printf()function and 

doesn't find stdio.h header file, compiler shows error. 

 return 0; indicates the successful execution of the program.    

 

3.7 Input-Output of integers in C     
 

#include<stdio.h> 

int main()   

{  

  int c=5;   

printf("Number=%d",c);      

     return 0;   

}    

 

Output: 

Number=5    

 

Inside quotation of printf() there, is a conversion format string "%d" (for 

integer). If this conversion format string matches with remaining 

argument, i.e, c in this case, value of c is displayed.     

 

#include<stdio.h> 

int main()   

{   

int c;   

printf("Enter a number\n");  

scanf("%d",&c);        

printf("Number=%d",c);      



CIT301         MODULE 5 

 

61 
 

return 0;   

}     

 

Output: 

Enter a number   

4   

Number=4   

 

The scanf() function is used to take input from user. In this program, the 

user is asked an input and value is stored in variable c. Note the '&' sign 

before c. &c denotes the address of c and value is stored in that address. 

 

3.8 Input-Output of floats in C     
 

#include <stdio.h> 

int main()  

{  

float a;   

printf("Enter value: ");      

scanf("%f",&a);   

printf("Value=%f",a);    //%f is used for floats instead of %d     

return 0;   

}      

 

Output   

Enter value:  

23.45   

Value=23.450000    

 

Conversion format string "%f" is used for floats to take input and to 

display floating value of a variable.    

 

3.9 Input-Output of characters and ASCII code   
 

#include <stdio.h> 

int main()  

{  

char var1; 

printf("Enter character: ");   

scanf("%c",&var1);           

printf("You entered %c.",var1);     

return 0;   

}     

 

Output   

Enter character:  



CIT301                                                                      STRUCTURED PROGRAMMING    
 

62 
 

g   

You entered g.    

Conversion format string "%c" is used in case of characters.  

 

3.10 ASCII code   
 

When character is typed in the above program, the character itself is not 

recorded a numeric value (ASCII value) is stored. And when we 

displayed that value by using "%c", that character is displayed.     

#include <stdio.h> 

int main()  

{  

char var1;       

printf("Enter character: ");      

scanf("%c",&var1);        

printf("You entered %c.\n",var1); 

/* \n prints the next line(performs work of enter). */  

printf("ASCII value of %d",var1);  

return 0;  

} 

 

 

Output:   

Enter character:  

g   

103   

When, 'g' is entered, ASCII value 103 is stored instead of g.   

You can display character if you know ASCII code only. This is shown 

by following example.   

 

#include <stdio.h> 

int main()  

{  

int var1=69;   

printf("Character of ASCII value 69: %c",var1); 

return 0;   

}   

 

Output   

Character of ASCII value 69:  

E     

 

The ASCII value of 'A' is 65, 'B' is 66 and so on to 'Z' is 90. Similarly, 

ASCII value of 'a' is 97, 'b' is 98 and so on to 'z' is 122.   

 

SELF-ASSESSMENT EXERCISE 



CIT301         MODULE 5 

 

63 
 

 

i. What is a Variable? 

ii. Declare a variable for each of the following C data type: integer, 

float, double, and character and assign appropriate data value at 

the pointer of declaration 

iii. What is a statement? Give few examples. 

iv. What is an Expression?  Give few examples. 

v. Write a program to display the upper- and lower-case letter “B”, 

using two printf() function 

 

Solution 

1 What is a Variable? Give few meaningful examples 

Variable is basically a name of a memory location that we use for 

storing data. We can change the value of a variable in C or any 

other language, and we can also reuse it multiple times. 

Examples: 

rate  

salary 

product 

 

2   Declare a variable for each of the following C data type: integer, 

float, double, and character and assign appropriate data value at 

the pointer of declaration. 

int num = 76; 

float = height 4.6; 

double amount  = 34456677.55; 

char singleChar = ‘a’; 

 

 3       What is a statement? Give few examples. 

A statement is a command given to the computer that instructs 

the computer to take a specific action, such as display to the 

screen, or collect input or evaluate an expression. A computer 

program is made up of a series of statements. 

 

Examples:  

area =length * breadth; 

printf (“Structured Programming”); 

           scanf("%d",&c);        

    

  



CIT301                                                                      STRUCTURED PROGRAMMING    
 

64 
 

4  What is an expression? Give few examples. 

An expression is a combination of operators, operands and/or 

constants which reduces to a single value. An operation is 

performed on a data item which is called an operand. An operator 

indicates an operation to be performed on data.  

Example: 

simpleInt  = (principal * time * rate)/100;   

sum = num1 + num2; 

z = (4 + (4%2)/ 3);       
 

5  Write a program to display the upper- and lower-case letter “B”. 

use two printf () function 

#include <stdio.h> 

int main()  

{  

int var1=66;   

int var2=98; 

printf("Character of ASCII value 66: %c",var1); 

printf("Character of ASCII value 98: %c",var2); 

return 0;   

}   
 

4.0 CONCLUSION 
 

A variable is the name given to a memory location that allows values to 

be stored in those locations. When declaring variables, the type of value 

or data to be stored is also indicated. A statement is an executable 

instruction given to the computer to execute. An expression is a 

combination of operands, operators and/or constant for the purpose of 

evaluation. 
 

5.0 SUMMARY 
 

In this unit, you have learned about variables, statements and 

expressions. You have also learnt how variables are declared and 

initialized, how expressions are constructed, and what constitutes a 

statement including compound statements. All these are well illustrated 

with examples. 

 

6.0 TUTOR-MARKED ASSIGNMENT  
 

7.0         REFERENCES/FURTHER READING 
 

Fundamentals of Structured Programming, Lubia Vinhas, 2016 

 

Structured Programming with C++ by Kjell Backman, 2012 

 

UNIT 4 FORMATTED INPUT-OUTPUT   



CIT301         MODULE 5 

 

65 
 

 

CONTENTS  

 

1.0   Introduction  

2.0   Intended Learning Outcomes (ILOs)  

3.0   Main Content  

3.1 Formatted Input-Output   

3.2 Variations in Output for integer and floats 

3.3 Variations in Input for integer and floats  

4.0 Conclusion 

5.0 Summary 

6.0 Tutor-Marked Assignment  

7.0 References/Further Reading 

 

1.0 INTRODUCTION  
 

Normally printf() method display output on the screen in an unpleasant 

and undesirable manner. It therefore implies that the programmer must 

format the output to suit his requirements. For example, he must specify 

how many places of decimal are required, the space between two 

outputs, etc. 

 

2.0    INTENDED LEARNING OUTCOMES (ILOS)  
 

By the end of this unit, you should be able to:  

 

 Format your input 

 Format your output 

 Differentiate between the output of integer float 

 Differentiate between the input of integer float 

 

3.0  MAIN CONTENT  

 

3.1 Formatted Input-Output   
 

Data can be entered & displayed in a particular format. Through format 

specifications, better presentation of results can be obtained.   

 

3.2 Variations in Output for integer and floats 
 

#include<stdio.h> 

int main()  

{   

printf("Case 1:%6d\n",9876);   

 /*  Prints the number right justified within 6 columns  */     



CIT301                                                                      STRUCTURED PROGRAMMING    
 

66 
 

printf("Case 2:%3d\n",9876);     

/* Prints the number to be right justified to 3 columns but, there are 4 

digits so number is not right justified  */       

printf("Case 3:%.2f\n",987.6543);  

/* Prints the number rounded to two decimal places */      

printf("Case 4:%.f\n",987.6543);   

/* Prints the number rounded to 0 decimal place, i.e, rounded to integer 

*/     

printf("Case 5:%e\n",987.6543);   

/* Prints the number in exponential notation (scientific notation) */     

return 0;   

}    

 

Output   

Case 1:  9876   

Case 2:9876   

Case 3:987.65   

Case 4:988   

Case 5:9.876543e+002 

 

3.3 Variations in Input for integer and floats  
 

#include <stdio.h> 

int main()  

{  

int a,b;  

float c,d;  

printf("Enter two intgers: ");  

/*Two integers can be taken from user at once as below*/   

scanf("%d%d",&a,&b);    

printf("Enter integer and floating point numbers: ");   

/*Integer and floating point number can be taken at once from user as 

below*/      

scanf("%d%f",&a,&c);  

return 0;   

}     

Similarly, any number of inputs can be taken at once from user.   

 

SELF-ASSESSMENT EXERCISE 

 

1. To print out a and b given below, which of the following printf() 

statement or  statement will you use?   

#include<stdio.h> 

float a=3.14;   

double b=3.14;   

 



CIT301         MODULE 5 

 

67 
 

A. printf("%f %lf", a, b);   

B. printf("%Lf %f", a, b);   

C. printf("%Lf %Lf", a, b);   

D. printf("%f %Lf", a, b);   

 

2. To scan a and b given below, which of the following scanf() 

statement will you use?   

#include<stdio.h> 

float a;   

double b;   

 

A. scanf("%f %f", &a, &b);   

B. scanf("%Lf %Lf", &a, &b);   

C. scanf("%f %Lf", &a, &b);   

D. scanf("%f %lf", &a, &b);   

 

3. For a typical program, the input is taken using.   

A. scanf 

B. Files   

C. Command-line   

D. None of the mentioned   

 

4. What is the output of this C code?   

 #include <stdio.h> 

int main()  

{    

int i = 10, j = 2;           

printf("%d\n", printf("%d %d ", i, j));  }   

 

A. Compile time error   

B. 10 2 4   

C. 10 2 2   

D. 10 2 5   

 

5. What is the output of this C code?   

 #include <stdio.h> 

int main()       

{  

int i = 10, j = 3;          

printf("%d %d %d", i, j);  }     

 

A. Compile time error   

B. 10 3   

C. 10 3 some garbage value   

D.  Undefined behavior   

 



CIT301                                                                      STRUCTURED PROGRAMMING    
 

68 
 

Solution 

1. A and D 

2. C and D 

3. D 

4. A 

5. C 

 

4.0 CONCLUSION 
 

Using the printf() function you can output your result, display the output 

in a desirable format. It therefore becomes imperative that the 

programmer formats the output to his desired format. This is achieved 

via some format specifications. 

 

5.0 SUMMARY 
 

In this unit, you have learnt how to format your output to your desired 

format. You have also learnt the variations in output for integer and 

floats as well as the variations in input for integer and floats. 

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

7.0 REFERENCES/FURTHER READING 
 

Fundamentals of Structured Programming, Lubia Vinhas, 2016 

 

Structured Programming with C++ by Kjell Backman, 2012 
 



CIT301         MODULE 6 

 

69 
 

MODULE 6  OPERATORS AND CONTROL  

   STATEMENTS 
 

Unit 1  Operators 

Unit 2  Overview of Control Statements 

 

 

UNIT 1  OPERATORS 
 

CONTENTS  

 

1.0  Introduction  

2.0  Intended Learning Outcomes (ILOs)  

3.0  Main Content  

3.1 Arithmetic Operators   

3.2 Relational Operators   

3.3 Logical Operators   

3.4 Bitwise Operators   

3.5 Assignment Operators   

3.6 Increment and decrement operators   

3.7 Conditional operators   

3.8 Misc Operators  

3.9 Operators Precedence in C 

4.0 Conclusion 

1.0 Summary 

6.0 Tutor-Marked Assignment 

7.0 References/Further Reading 

 

1.0 INTRODUCTION  
 

An operator is a symbol that tells the compiler to perform specific 

mathematical or logical manipulations. C language is rich in built-in 

operators and provides the following types of operators:   

 

 Arithmetic Operators   

 Relational Operators   

 Logical Operators   

 Bitwise Operators   

 Assignment Operators   

 Increment and decrement operators   

 Conditional operators   

 Misc Operators 

 Operators Precedence in C   

 

  



CIT301                                                                      STRUCTURED PROGRAMMING    
 

70 
 

2.0  INTENDED LEARNING OUTCOMES (ILOS)  
 

By the end of this unit, you should be able to: 

 

 Define an operator 

 Use operators in expressions 

 Mention the various operators applicable to C programming 

 Describe each of the operators  

 

3.0  MAIN CONTENT  

 

3.1 Arithmetic operators  
 

These are used to perform mathematical calculations like addition, 

subtraction, multiplication, division and modulus.   

 

The following table shows all the arithmetic operators supported by C 

language. Assume variable A holds 10 and variable B holds 20 then: 

 

 

 
 

3.2 Relational Operators:   
 

These operators are used to compare the value of two variables.   

Following table shows all the relational operators supported by C 

language. Assume variable A holds 10 and variable B holds 20, then: 

 



CIT301         MODULE 6 

 

71 
 

 
 

3.3 Logical Operators:   
 

These operators are used to perform logical operations on the given two 

variables.   

 

The following table shows all the logical operators supported by C 

language. Assume variable A holds 1 and variable B holds 0, then: 

 
 

3.4 Bitwise Operators   
 

Bitwise operator works on bits and performs bit-by-bit operation. 

Bitwise operators are used in bit level programming. These operators 

can operate upon int and char but not on float and double.   

 

Showbits( ) function can be used to display the binary representation of 

any integer or character value.   



CIT301                                                                      STRUCTURED PROGRAMMING    
 

72 
 

Bit wise operators in C language are; & (bitwise AND), | (bitwise OR), 

~ (bitwise OR), ^ (XOR), << (left shift) and >> (right shift).   

 

The truth tables for &, |, and ^ are as follows: 

 
 

The Bitwise operators supported by C language are explained in the 

following table. Assume variable A holds 60 (00111100) and variable B 

holds 13 (00001101), then:   

 

 
 

3.5 Assignment Operators:   
 

In C programs, values for the variables are assigned using assignment 

operators.  

There are following assignment operators supported by C language: 



CIT301         MODULE 6 

 

73 
 

 

 
 

3.6 Increment and Decrement Operators  
 

In C, ++ and – are called increment and decrement operators 

respectively. Both of these operators are unary operators, i.e, used on 

single operand. ++ adds 1 to operand and – subtracts 1 to operand 

respectively. For example:   

Let a=5 and b=10   

a++;  //a becomes 6  

a--; //a becomes 5   



CIT301                                                                      STRUCTURED PROGRAMMING    
 

74 
 

++a; //a becomes 6   

--a; //a becomes 5   

When i++ is used as prefix(like: ++var), ++var will increment the value 

of var and then return it but, if ++ is used as postfix(like: var++), 

operator will return the value of operand first and then only increment it. 

This can be demonstrated by an example:  

 

#include <stdio.h> 

int main()  

{  

int c=2,d=2;   

printf(“%d\n”,c++); //this statement displays 2 then, only c incremented 

by 1 to 3.   

Printf(“%d”,++c);   //this statement increments 1 to c then, only c is 

displayed.   

Return 0;   

}   

 

Output   

     2   

     4   

 

3.7 Conditional Operators (?) 
 

Conditional operators are used in decision making in C programming, 

i.e., executes different statements according to test condition whether it 

is either true or false.  

 

Syntax of conditional operators: 

conditional_expression?expression1:expression2 

If the test condition is true (that is, if its value is non-zero), expression1 

is returned and if false expression2 is returned.   

Let us understand this with the help of a few examples:    

int x, y;  

scanf ( “%d”, &x ) ;  

y = ( x> 5 ? 3 : 4 ) ;    

This statement will store 3 in y if x is greater than 5, otherwise it will 

store 4 in y.    

The equivalent if statement will be,   

if ( x > 5 )  

 y = 3;  

else   

y = 4;   

 

  



CIT301         MODULE 6 

 

75 
 

3.8 Misc Operators  
 

There are few other operators supported by c language. 

 
 

3.9 Operators Precedence in C   
 

Operator precedence determines the grouping of terms in an expression. 

This affects how an expression is evaluated. Certain operators have 

higher precedence than others; for example, the multiplication operator 

has higher precedence than the addition operator.   

 

For example x = 7 + 3 * 2; here, x is assigned 13, not 20 because 

operator * has higher precedence than +, so it first gets multiplied with 

3*2 and then adds into 7.   

 

Here, operators with the highest precedence appear at the top of the 

table, those with the lowest appear at the bottom. Within an expression, 

higher precedence operators will be evaluated first.  

 

SELF-ASSESSMENT EXERCISE 

 

i. What are the operators used in C programming language? 

ii. What will be the value of y, given x is equals 9. 

 

{int x, y;  

scanf ( “%d”, &x ) ;  

y = ( x> 5 ? 1 : 4 ) ;  }  

3.   Given the mathematical expression: S + 3 x Y – 1, where S = 5 and 

Y = 34. Reconstruct the expression in C format and evaluate it. 

Reconstruct the express such that the result will be 271 

 

  

 

 

 

 



CIT301                                                                      STRUCTURED PROGRAMMING    
 

76 
 

Solution 

1.   What are the operators used in C programming language? 

 

The following are the operators used in C: 

 Arithmetic Operators   

 Relational Operators   

 Logical Operators   

 Bitwise Operators   

 Assignment Operators   

 Increment and decrement operators   

 Conditional operators   

 Misc Operators 

 

2,   What will be the value of y, given x is equals 9. 

{int x, y;  

scanf ( “%d”, &x ) ;  

y = ( x> 5 ? 1 : 4 ) ;  }  

 The value of y will be 1 

 

3.   Given the mathematical expression: S + 3 x Y – 1, where S = 5 and 

Y = 34. Reconstruct the expression in C format and evaluate it. 

Reconstruct the express such that the result will be 271 

S + 3 x Y – 1 => S + 3*Y -1 

        5+  3*34 -1 

                         107 – 1 

        106  

(S + 3)* Y – 1 

(5 + 3) *34 – 1 

8 * 34 – 1 

272 – 1 

271 

 

4.0 CONCLUSION 
 

Operators are symbols or special characters used to perform 

mathematical, logical, relational as well as bitwise manipulations. This 

also includes assignment operators used in assigning values to variables. 

 

5.0 SUMMARY 
 

In this unit, you have been exposed to the operators used in C programs. 

This includes mathematical, logical, relational, bitwise, assignment, 

increment and decrement operators etc. These operators are used to 

manipulate data. The details of these operators are adequately discussed 

within the unit. 

 



CIT301         MODULE 6 

 

77 
 

6.0 TUTOR-MARKED ASSIGNMENT 

 

7.0 REFERENCES/FURTHER READING 
 

Fundamentals of Structured Programming, Lubia Vinhas, 2016 

 

Structured Programming with C++ by Kjell Backman, 2012 

 

 

  



CIT301                                                                      STRUCTURED PROGRAMMING    
 

78 
 

UNIT 2 OVERVIEW OF CONTROL STATEMENTS 
 

CONTENTS  

 

1.0  Introduction  

2.0  Intended Learning Outcomes (ILOs)  

3.0  Main Content  

3.1 Selection Statements   

3.1.1 if  Statement   

3.1.2 else-if Statement     

3.1.3  Nested if-else     

3.1.4 switch case     

3.2 Iterative Statements   

3.2.1 while statement   

3.2.2 do-while Loop   

3.2.3 for Loop   

3.2.4 Nesting of Loops     

3.3 Jump Statements   

 3.3.1 The break statement 

3.3.2 The continue Statement   

3.3.3 The goto statement    

4.0 Conclusion 

5.0 Summary 

6.0 Tutor-Marked Assignment 

7.0 References/Further Reading 

 

1.0 INTRODUCTION  
 

C programming language has basically three control structures which 

make C qualify as a structured programming language. These structures 

include sequence, selection and repetition structure. Normally 

programming are executed sequentially but the last two structures i.e. 

selection and repetition allow the sequence to be broken. That is the 

sequence of execution is transferred a different line or block of code. 

These structures will be examined in more details in this module. 

 

2.0  INTENDED LEARNING OUTCOMES (ILOS)  
 

By the of this unit, you should be able to: 

 

 State the three control structures inherent in C 

 State the generic syntax for the various structures 

 Use these structures to write a program code or a block of code 

 Describe each of the structure 

 Manually simulate a program code involving the structures  

  



CIT301         MODULE 6 

 

79 
 

3.0  MAIN CONTENT  
 

In C, programs are executed sequentially in the order of which they 

appear. This condition does not hold true always. Sometimes a situation 

may arise where we need to execute a certain part of the program. Also, 

it may happen that we may want to execute the same part more than 

once. Control statements enable us to specify the order in which the 

various instructions in the program are to be executed. They define how 

the control is transferred to other parts of the program. Control 

statements are classified in the following ways:   

   

 
 

3.1 Selection Statements   
 

The selection statements are also known as Branching or Decision 

Control Statements. Sometimes we come across situations where we 

have to make a decision. E.g., If the weather is sunny, I will go out and 

play, else I will be at home. Here my course of action is governed by the 

kind of weather. If it’s sunny, I can go out and play, else I have to stay 

indoors. I choose an option out of 2 alternate options. Likewise, we can 

find ourselves in situations where we have to select among several 

alternatives. We have decision control statements to implement this 

logic in computer programming.  

 



CIT301                                                                      STRUCTURED PROGRAMMING    
 

80 
 

The programmer therefore specifies one or more conditions to be 

evaluated or tested by the program, along with a statement or statements 

to be executed if the condition is determined to be true, and optionally, 

other statements to be executed if the condition is determined to be 

false.  

 

3.1.1 If Statement   
 

The keyword if tells the compiler that what follows is a decision control 

instruction. The if statement allows us to put some decision -making into 

our programs. A flowchart illustrating the general form of the if 

statement is shown below: 

 
 

Fig 2: if statement construct 

 

Syntax of if statement:   

if (condition )   

{   

Statement 1;  

Statement 2;   

………….. 

………….. 

…………..   

Statement n;     

}   

//Rest of the code   

 

If the condition is true(nonzero), the statement will be executed. If the 

condition is false(0), the statement will not be executed. For example, 

suppose we are writing a billing program.   

 if (total_purchase>=1000)  



CIT301         MODULE 6 

 

81 
 

printf("You are gifted a pen drive.\n");   

Multiple statements may be grouped by putting them inside curly braces 

{}. For example: 

 

 if (total_purchase>=1000)    

{    

gift_count++;    

printf("You are gifted a pen drive.\n");   

}   

 

For readability, the statements enclosed in {} are usually indented. This 

allows the programmer to quickly tell which statements are to be 

conditionally executed. As we will see later, mistakes in indentation can 

result in programs that are misleading and hard to read.   

 

Programs:   

1. Write a program to print a message if negative no is entered.     

#include<stdio.h> 

int main()   

{       

int no;       

printf("Enter a no : ");   

scanf("%d", &no);     

 if(no<0)        

{         

printf("no entered is negative");    

no = -no;     

}     

printf("value of no is %d \n",no);              

return 0;   

}    

 

Output:   

Enter a no: 6  

value of no is 6    

Output:   

Enter a no: -2  

value of no is 2   

 

2. Write a program to perform division of 2 nos 

#include<stdio.h> 

int main()   

{        

int a,b;    

float c;         

printf("Enter 2 nos : ");      



CIT301                                                                      STRUCTURED PROGRAMMING    
 

82 
 

scanf("%d %d", &a, &b);        

if(b == 0)        

   {             

printf("Division is not possible");     

     }   

c = a/b;     

printf("quotient is %f \n",c);              

return 0;   

}    

 

Output:   

Enter 2 nos:   

6 2  

quotient is 3    

Output:  Enter 2 nos:  

6 0   

Division is not possible   

 

3.1.2 If-else Statement   
 

The if statement by itself will execute a single statement, or a group of 

statements, when the expression following if evaluates to true. By using 

else we execute another group of statements if the expression evaluates 

to false.   

if (a > b)   

   { 

 z = a;   

printf(“value of z is :%d”,z);  

   }   

else   

  { 

 z = b;   

printf(“value of z is :%d”,z);       

  }     

 

The group of statements after the if is called an ‘if block’. Similarly, the 

statements after the else form the ‘else block’. 

 

Programs:   

3. Write a program to check whether the given no is even or odd      

#include<stdio.h> 

int main()      

{         

int n;         

printf("Enter an integer\n");             

scanf("%d",&n);       



CIT301         MODULE 6 

 

83 
 

if ( n%2 == 0 )          

printf("Even\n");             

else     

printf("Odd\n");       

return 0;      

}     

Output:  Enter an integer 3  

Odd   

Output:  Enter an integer 4  

Even     

 

4. Write a program to check whether a given year is leap year or not     

#include <stdio.h> 

int main()     

   {       

int year;    

printf("Enter a year to check if it is a leap year\n");   

scanf("%d", &year);        

if ( (year%4 == 0) && (( year%100 != 0) || ( year%400 == 0 ))        

printf("%d is a leap year.\n", year);       

  else           

printf("%d is not a leap year.\n", year);            

return 0;     

   }     

Output:  Enter a year to check if it is a leap year 1996   

1996 is a leap year     

Output:  Enter a year to check if it is a leap year 2015   

2015 is not a leap year 

 

else-if Statement     

This sequence of if statements is the most general way of writing a 

multi−way decision. The expressions are evaluated in order; if an 

expression is true, the statement associated with it is executed, and this 

terminates the whole chain. As always, the code for each statement is 

either a single statement, or a group of them in braces.     

if (expression)  

statement   

else if (expression)  

statement   

else if (expression)  

statement   

else if (expression)  

statement   

else   

statement     

 



CIT301                                                                      STRUCTURED PROGRAMMING    
 

84 
 

The last else part handles the ``none of the above'' or default case where 

none of the other conditions is satisfied. Sometimes there is no explicit 

action for the default; in that case the trailing can be omitted, or it may 

be used for error checking to catch an “impossible” condition.    

 

Program 

6. The above program can be used as an e.g., here.    

#include <stdio.h> 

int main()   

{   

  int m=40,n=20;     

  if (m>n)       

{          

printf("m is greater than n");      

}      

else if(m<n)       

{          

printf("m is less than n");       

}      

else       

{         

printf("m is equal to n");     

 }   

}   

 

Output:    m is greater than n   

   

3.1.3 Nested if-else   
 

An entire if-else construct can be written within either the body of the if 

statement or the body of an else statement. This is called ‘nesting’ of ifs. 

This is shown in the following structure.   

if (n > 0)   

{   

if (a > b)   

z = a;   

}  

else   

z = b;     

 

The second if construct is nested in the first if statement. If the condition 

in the first if statement is true, then the condition in the second if 

statement is checked. If it is false, then the else statement is executed.    

 

  



CIT301         MODULE 6 

 

85 
 

Program:     

 

5. Write a program to check for the relation between 2 nos 

#include <stdio.h> 

int main()     

{ 

int m=40, n=20;      

if ((m >0 ) && (n>0))         

{         

printf("nos are positive");         

if (m>n)        

{          

printf("m is greater than n");        

}        

else        

{          

printf("m is less than n");        

}     

}     

           else    

{       

printf("nos are negative");       

}     

return 0;      

}   

 

Output     

40 is greater than 20   

 

3.1.4 Switch Case     
 

This structure helps to make a decision from the number of choices. The 

switch statement is a multi−way decision that tests whether an 

expression matches one of a number of constant integer values, and 

branches accordingly.       

switch( integer expression)    

{    

case constant 1 :     do this;    

case constant 2 :   do this ;    

case constant 3 :   do this ;    

default :   do this ;   }    

 

The integer expression following the keyword switch is any C 

expression that will yield an integer value. It could be an integer 

constant like 1, 2 or 3, or an expression that evaluates to an integer. If a 

case matches the expression value, execution starts at that case. All case 



CIT301                                                                      STRUCTURED PROGRAMMING    
 

86 
 

expressions must be different. The case labelled default is executed if 

none of the other cases are satisfied. A default is optional; if it isn't there 

and if none of the cases match, no action at all takes place. Cases and 

the default clause can occur in any order.    

Consider the following program:      

 

main( )   

{  

int i = 2;  

switch ( i )    

   {   

case 1:      

printf ( "I am in case 1 \n" ) ;   

case 2:       

printf ( "I am in case 2 \n" ) ;   

case 3:       

printf ( "I am in case 3 \n" ) ;   

default :   

printf ( "I am in default \n" ) ;  

    }   

}      

The output of this program would be:    

I am in case 2   

I am in case 3   

I am in default     

 

Here the program prints case 2 and 3 and the default case. If you want 

that only case 2 should get executed, it is up to you to get out of the 

switch then and there by using a break statement.   

main( )    

{   

int i = 2 ; switch ( i )    

   {   

case 1:       

printf ( "I am in case 1 \n" ) ;  

break ;    

case 2:      

printf ( "I am in case 2 \n" ) ;       

break ;    

case 3:      

printf ( "I am in case 3 \n" ) ;      

 break ;    

default:      

printf ( "I am in default \n" ) ;    

   }   

}      



CIT301         MODULE 6 

 

87 
 

 

The output of this program would be:    

I am in case 2 

 

Program     

7. Write a program to enter a grade and check its corresponding 

remarks.     

#include <stdio.h> 

int main ()   

{         

char grade;        

printf(“Enter the grade”);       

scanf(“%c”, &grade);      

switch(grade)     

   {        

case 'A' :  printf("Outstanding!\n" );        

break;      

case 'B' :   

printf("Excellent!\n" );         

break;             

case 'C' : printf("Well done\n" ); 

break;        

case 'D' : printf("You passed\n" );                     

break;        

case 'F' : printf("Better try again\n" );    

break;      

default :  printf("Invalid grade\n" );      

   }   

printf("Your grade is  %c\n", grade );   

return 0;   

}     

Output     

Enter the grade    

B     

Excellent     

Your grade is B   

 

3.2 Iterative Statements   

 

3.2.1 while statement   
 

The while statement is used when the program needs to perform 

repetitive tasks. The general form of a while statement is: 

 while ( condition)  

statement ;     

 



CIT301                                                                      STRUCTURED PROGRAMMING    
 

88 
 

The program will repeatedly execute the statement inside the while until 

the condition becomes false(0). (If the condition is initially false, the 

statement will not be executed.)  

 

Consider the following program:   

main( )    

{   

int p, t, count;   

float r, si;    

count = 1;    

while ( count <= 3 )    

   {   

printf ( "\nEnter values of p, t and r " ) ;   

scanf(“%d %d %f", &p, &t, &r ) ;  

si=p * t * r / 100;    

printf ( "Simple interest = N. %f", si ) ;   

count = count+1;     

   }   

}     

 

Some outputs of this program:     

Enter values of p, t and r 1000000 5 13.5   

Simple Interest = N. 675000.000000   

Enter values of p, t and r 2000000 5 13.5   

Simple Interest = N. 1350000.000000   

Enter values of p, t and r 3500000 5 13.5   

Simple Interest = N. 612000.000000      

 

The program executes all statements after the while 3 times. These 

statements form what is called the ‘body’ of the while loop. The 

parentheses after the while contain a condition. As long as this condition 

remains true all statements within the body of the while loop keep 

getting executed repeatedly.    

 

Consider the following program;     

/* This program checks whether a given number is a palindrome or not 

*/     

#include <stdio.h> 

int main()   

{      

int n, reverse = 0, temp;      

printf("Enter a number to check if it is a palindrome or not\n");     

scanf("%d",&n);      

temp = n;     

while( temp != 0 )      

   {           



CIT301         MODULE 6 

 

89 
 

reverse = reverse * 10;          

reverse = reverse +temp%10; 

temp = temp/10;      

   }      

if ( n == reverse )        

printf("%d is a palindrome number.\n", n);     

else         

printf("%d is not a palindrome number.\n", n);        

 return 0;   

}     

 

Output:    

Enter a number to check if it is a palindrome or not   

12321   

12321 is a palindrome     

Enter a number to check if it is a palindrome or not   

12000   

12000 is not a palindrome    

 

3.2.2 do-while Loop   
 

The body of the do-while executes at least once. The do-while structure 

is similar to the while loop except the relational test occurs at the bottom 

(rather than top) of the loop. This ensures that the body of the loop 

executes at least once. The do-while tests for a positive relational test; 

that is, as long as the test is True, the body of the loop continues to 

execute.   

The format of the do-while is     

do   

{  

block of one or more C statements;  

}  while (test expression)        

 

The test expression must be enclosed within parentheses, just as it does 

with a while statement.    

 

Consider the following program      

// C program to add all the numbers entered by a user until user enters 0.     

#include <stdio.h> 

int main()  

{     

int sum=0,num;      

do              

/* Codes inside the body of do...while loops are at least executed once. 

*/      

{                                               



CIT301                                                                      STRUCTURED PROGRAMMING    
 

90 
 

printf("Enter a number\n");         

scanf("%d",&num);          

sum+=num;            

} while(num!=0);    

printf("sum=%d",sum);  

return 0;   

}     

 

Output:     

Enter a number   

3   

Enter a number   

-2   

Enter a number   

0   

sum=1   

 

Consider the following program:     

#include <stdio.h> main()   

{       

int i = 10;        

do    

{         

printf("Hello %d\n", i );          

i = i -1;      

}while ( i> 0 );  }      

 

Output     

Hello 10   

Hello 9   

Hello 8   

Hello 7   

Hello 6   

Hello 5   

Hello 4   

Hello 3  

Hello 2   

Hello 1    

 

Program    

8. Program to count the no of digits in a number     

#include <stdio.h> 

int main()   

{     

int n,count=0;     

printf("Enter an integer: ");     



CIT301         MODULE 6 

 

91 
 

scanf("%d", &n);   

do       

 {           

n/=10;              

/* n=n/10 */          

count++;     

 } while(n!=0);       

printf("Number of digits: %d",count);    

}     

Output   

Enter an integer: 34523   

Number of digits: 5   

 

3.2.3 for Loop   
 

The for is the most popular looping instruction. The general form of for 

statement is shown below:      

for ( initialize counter ; test counter ; Updating counter )    

{     

do this;     

and this;     

and this;   

}     

 

The for keyword allows us to specify three things about a loop in a 

single line:    

 Setting a loop counter to an initial value.   

 Testing the loop counter to determine whether its value has 

reached the number of repetitions desired.   

 Updating the value of loop counter either increment or 

decrement.    

 

Consider the following program    

int main(void)   

{  

int num;   

printf("    n   n cubed\n");   

for (num = 1; num <= 6; num++)  

printf("%5d %5d\n", num, num*num*num);       

return 0;   

}   

 

The program prints the integers 1 through 6 and their cubes.     

 n   n cubed   

1     1   

2     8   



CIT301                                                                      STRUCTURED PROGRAMMING    
 

92 
 

3     27   

4     64   

5    125   

6     216   

 

The first line of the for loop tells us immediately all the information 

about the loop parameters: the starting value of num, the final value of 

num, and the amount that num increases on each looping  

Grammatically, the three components of a for loop are expressions. Any 

of the three parts can be omitted, although the semicolons must remain.     

Consider the following program:     

main( )   

{   

int i ;    

for ( i = 1 ; i<= 10 ; )    

   {   

printf ( "%d\n", i ) ;   

i = i + 1 ;    

   }   

}    

 

Here, the increment is done within the body of the for loop and not in 

the for statement. Note that in spite of this the semicolon after the 

condition is necessary.    

 

Programs:   

9.  Program to print the sum of the first N natural numbers.     

#include <stdio.h> 

int main()   

{     

int n, i, sum=0;    

printf("Enter the limit: ");   

scanf("%d", &n);      

for(i=1;i<=n;i++)     

   {                

sum = sum +i;        

   }     

printf("Sum of N natural numbers is: %d",sum);    

}     

 

Output   

Enter the limit: 5  Sum of N natural numbers is 15.     

10.  Program to find the reverse of a number     

#include<stdio.h> 

int main()   

{         



CIT301         MODULE 6 

 

93 
 

int num,r,reverse=0;          

printf("Enter any number: ");         

scanf("%d",&num);         

for(num!=0;num=num/10)   

{            

r=num%10;            

reverse=reverse*10+r;         

}   

printf("Reversed of number: %d",reverse);  

return 0;   

}       

Output:      

Enter any number: 123   

Reversed of number: 321   

 

3.2.4 Nesting of Loops     
 

C programming language allows using one loop inside another loop. 

Following section shows few examples to illustrate the concept.     

Syntax:   

The syntax for a nested for loop statement in C is as follows:  

 

for ( init; condition; increment )   

{     

 for ( init; condition; increment)   

   {   

 statement(s);   

    }      

statement(s);   

}   

 

The syntax for a nested while loop statement in C programming 

language is as follows:  

 

while(condition)   

{        

   while(condition)        

   {             

statement(s);        

   }        

statement(s);   

}     

 

The syntax for a nested do...while loop statement in C programming 

language is as follows:  

 



CIT301                                                                      STRUCTURED PROGRAMMING    
 

94 
 

do   

    {  

      statement(s);      

      do      

        {         

         statement(s);     

}while( condition );     

}while( condition );   

 

A final note on loop nesting is that you can put any type of loop inside 

of any other type of loop. For example, a for loop can be inside a while 

loop or vice versa. 

 

Programs:  11. program using a nested for loop to find the prime 

numbers from 2 to 20:     

 

#include <stdio.h> 

int main ()   

{      

/* local variable definition */    

int i, j;      

for(i=2; i<20; i++)     

{         

for(j=2; j <= (i/j); j++)           

if(!(i%j))   

break;  

// if factor found, not prime         

if(j > (i/j))  

printf("%d is prime\n", i);      

}        

return 0;  }     

 

Output     

2 is prime   

3 is prime   

5 is prime   

7 is prime   

11 is prime   

13 is prime   

17 is prime   

19 is prime   

Programs:  12. Using for loops reproduce the star triangle below 

      *      

    ***     

   *****    

  *******   



CIT301         MODULE 6 

 

95 
 

*********     

 

#include <stdio.h> 

int main()   

{       

int row, c, n,I, temp;   

printf("Enter the number of rows in pyramid of stars you wish to see ");   

scanf("%d",&n);    

temp = n;       

    for ( row = 1 ; row <= n ; row++ )        

   {        

      for ( i= 1 ; i< temp ; i++ )                   

      {   

printf(" ");  

          temp--;       

for ( c = 1 ; c <= 2*row - 1 ; c++ )   

            {                      

printf("*");   

printf("\n");   

            }       

      }      

  }        

 return 0;   

}   

 

13.  Write a program to print series from 10 to 1 using nested loops.      

#include<stdio.h> 

void main ()   

{  int a;   

a=10;       

   for (k=1;k=10;k++)     

   {   

     while (a>=1)   

     {   

printf ("%d",a);  a--;   

      } printf("\n");   

a= 10;   

    }   

}     

 

Output:     

 

10 9 8 7 5 4 3 2 1   

10 9 8 7 5 4 3 2 1   

10 9 8 7 5 4 3 2 1   

10 9 8 7 5 4 3 2 1   



CIT301                                                                      STRUCTURED PROGRAMMING    
 

96 
 

10 9 8 7 5 4 3 2 1   

10 9 8 7 5 4 3 2 1   

10 9 8 7 5 4 3 2 1   

10 9 8 7 5 4 3 2 1   

10 9 8 7 5 4 3 2 1   

10 9 8 7 5 4 3 2 1   

 

3.3 Jump Statements   

 

3.3.1 The break Statement 
 

The break statement provides an early exit from for, while, and do, just 

as from switch. A break causes the innermost enclosing loop or switch 

to be exited immediately. When break is encountered inside any loop, 

control automatically passes to the first statement after the loop.  

 

Consider the following example;     

main( )    

{    

int i = 1 , j = 1 ;   

while ( i++ <= 100 )    

    { 

   while ( j++<= 200 )    

{   

    if ( j == 150 )    

    break ;   

else    

printf ( "%d %d\n", i, j ); 

}   

    }    

}    

 

In this program when j equals 150, break takes the control outside the 

inner while only, since it is placed inside the inner while. 

 

3.3.2 The continue Statement   
 

The continue statement is related to break, but less often used; it causes 

the next iteration of the enclosing for, while, or do loop to begin. In the 

while and do, this means that the test part is executed immediately; in 

the for, control passes to the increment step. The continue statement 

applies only to loops, not to switch.     

 

Consider the following program:     

main( )    

{    



CIT301         MODULE 6 

 

97 
 

int i, j ;    

for ( i = 1 ; i<= 2 ; i++ )    

    {   

         for ( j = 1 ; j <= 2 ; j++ )    

         {     

           if ( i == j)         

           continue ;       

printf ( "\n%d %d\n", i, j ) ;    

        }  

    }    

}       

 

The output of the above program would be...      

1 2    

2 1     

 

Note that when the value of I equals that of j, the continue statement 

takes the control to the for loop (inner) by passing rest of the statements 

pending execution in the for loop (inner). 

    

3.3.3 The goto statement     
 

Kernighan and Ritchie refer to the goto statement as "infinitely 

abusable" and suggest that it "be used sparingly, if at all. The goto 

statement causes your program to jump to a different location, rather 

than execute the next statement in sequence.  

The format of the goto statement is;     

goto statement label;     
 

Consider the following program fragment    

if (size > 12)  

goto a;   

goto b;     

a: cost = cost * 1.05;      

flag = 2;   

b: bill = cost * flag;   

 

Here, if the if conditions satisfies the program jumps to block labelled as 

a: if not then it jumps to block labelled as b:.  
 

SELF-ASSESSMENT EXERCISES 
 

i. Differentiate between if and if else statements in C programming 

language using diagram ONLY. 

ii. Write a C program to print EVEN or ODD  depending on the 

integer number supplied at the prompt and simulate the output. 

iii. Give the syntax of an if statement. 



CIT301                                                                      STRUCTURED PROGRAMMING    
 

98 
 

 

Solution 

1     Differentiate between if and if else statements in C programming 

language using diagram ONLY. 
 

if statement 

 

 
 

if else statement  

 

 
2       Write a C program to print EVEN or ODD  depending on the 

integer number supplied at the prompt and simulate the output. 

#include<stdio.h> 

int main()      

{         

int n;         

printf("Enter an integer\n");             

scanf("%d",&n);       

if ( n%2 == 0 )          

printf("EVEN\n");             

else     

printf("ODD\n");       

return 0;      

}     

Output:  Enter an integer 3  

ODD   



CIT301         MODULE 6 

 

99 
 

Output:  Enter an integer 4  

      EVEN 

 

3        Give the syntax of an if statement. 

 

Syntax of if statement:   

if (condition )   

{   

Statement 1;  

Statement 2;   

………….. 

………….. 

…………..   

Statement n;     

}   

//Rest of the code   

 

4.0 CONCLUSION 
 

C programming language has basically three control structures which 

make C qualify as a structured programming language. These structures 

include sequence, selection and repetition structure. 
 

5.0 SUMMARY 
 

In this unit, you have learnt Selection (if  Statement, else-if Statement, 

nested if-else and switch case), iterative (while statement, do-while loop, 

for loop, and nesting of loops), jump statements (the break statement, 

the continue statement, the goto statement). Details are discussed in the 

unit 

 

6.0 TUTOR-MARKED ASSIGNMENT  

 

7.0 REFERENCES/FURTHER READING 

 
Fundamentals of Structured Programming, Lubia Vinhas, 2016 

 

Structured Programming with C++ by Kjell Backman, 2012 
 



CIT301                                                                      STRUCTURED PROGRAMMING    

100 

 

MODULE 7  FUNCTIONS AND ARRAYS IN C  

   PROGRAMMING LANGUAGE 
 

Unit 1  Overview of Functions in C 

Unit 2  Arrays 

Unit 3  Fundamentals of Strings   

 

 

UNIT 1  OVERVIEW OF FUNCTIONS IN C 
 

CONTENTS  

 

1.0  Introduction  

2.0  Intended Learning Outcomes (ILOs)  

3.0  Main Content  

3.1 Monolithic Vs Modular Programming:   

3.2 Function   

3.2.1 Function Declaration OR Function Prototype: 

3.2.2 Function Definition: 

3.5 User Define Functions Vs Standard Function:   

3.5.1 User Define Function:   

3.5.2 Standard Function:   

3.6 Function Categories 

3.6.1 Function with no arguments and no return values:   

3.6.2 Function with no arguments and a return value:  

3.6.3 Function with arguments and return value:   

3.7 Actual Arguments and Formal Arguments   

3.7.1 Actual Arguments 

3.7.2 Formal Arguments 

3.7.3 Basic difference between formal and local 

argument  

3.7.4 Parameter Passing Techniques 

4.0 Conclusion 

5.0 Summary 

6.0 Tutor-Marked Assignment 

7.0 References/Further Reading 

 

1.0  INTRODUCTION  
 

A function is a block of organized, reusable code that is used to perform 

a single, related action. Functions provide better modularity for your 

application and a high degree of code reusing. Different programming 

languages name them differently, for example, functions, methods, sub-

routines, procedures, etc. function interface is a declaration of a function 



CIT301         MODULE 7 

 

101 

 

that specifies the function's name and type signature (arity, data types of 

parameters, and return type), but omits the function body.  

 

2.0 INTENDED LEARNING OUTCOMES (ILOS)  
 

By the end of this unit, you should be able to:  

 

 Differentiate between monolithic vs. modular Programming   

 State the disadvantages of monolithic Programming   

 State the advantages of modular Programming   

 Declare a function 

 Outline the various function categories 

 Differentiate between a user define functions vs standard 

function. 

 Differentiate between call by value and call by reference 

 

3.0  MAIN CONTENT 

 

3.1 Monolithic vs. Modular Programming:   

 

 Monolithic Programming indicates the program which contains a 

single function for the large program. 

 Modular programming helps the programmer to divide the whole 

program into different modules and each module is separately 

developed and tested. Then the linker will link all these modules 

to form the complete program.  

 Monolithic programming will not divide the program and it is a 

single thread of execution. When the program size increases it 

leads to inconvenience and difficult to maintain.    

 

Disadvantages of monolithic programming: 

 Difficult to check error on large programs.  

 Difficult to maintain 

 Code can be specific to a particular problem. i.e., it cannot be 

reused.   

  

Advantage of modular programming 

 Modular programs are easier to code and debug.  

 Reduces the programming size.  

 Code can be reused in other programs.  

 Problem can be isolated to specific module so easier to find the 

error and correct it.     

 

  



CIT301                                                                      STRUCTURED PROGRAMMING    

102 

 

3.2 Function   
 

A function is a group of statements that together performs a task. Every 

C program has at least one function, which is main(), and all the most 

trivial programs can define additional functions.     

 

3.2.1 Function Declaration OR Function Prototype 
 

1.  It is also known as function prototype.   

2.  It informs the computer about these three things:     

a)  Name of the function    

b)  Number and type of arguments received by the function.   

c)  Type of value return by the function  

Syntax:    

return_typefunction_name (type1arg1, type2arg2);  

       OR  

return_typefunction_name (type1type2);   

 

1. The calling function needs information about the called function. 

If a called function is placed before a calling function, then the 

declaration is not needed. 

 

3.2.2 Function Definition 
 

1.  It consists of code description and code of a function.  

      It consists of two parts  

a)  Function header  

b) Function coding   

      Function definition tells what are the I/O function and what is going 

to do.   

      Syntax:   

return_typefunction_name (type1arg1, type2arg2)  

              {   

                   local variable;                

                   statements;                   

                   return (expression);   

               }   

2.  Function definition can be placed anywhere in the program but 

generally placed after the main function.   

3.  Local variable declared inside the function is local to that 

function. It cannot be used anywhere in the program and its 

existence is only within the function.    

4.  Function definition cannot be nested.  



CIT301         MODULE 7 

 

103 

 

5.  Return type denote the type of value that function will return and 

return type is optional    if omitted it is assumed to be integer by 

default.   

 

3.3 User Define Functions Vs Standard Function:   

 

3.3.1 User Define Function:   
  

A function that is declare, calling and define by the user is called user 

defined function. Every user define function has three parts as:  

1.  Prototype or Declaration   

2.  Calling   

3.  Definition    

 

3.3.2 Standard Function:   
 

The C standard library is a standardized collection of header files and 

library routines used to implement common operations, such as 

input/output and character string handling. Unlike other languages (such 

as COBOL, FORTRAN, and PL/I) C does not include built in keywords 

for these tasks, so nearly all C programs rely on the standard library to 

function.    

 

3.4 Function Categories 
 

There are four main categories of the functions these are as follows:   

1.  Function with no arguments and no return values.   

2.  Function with no arguments and a return value.   

3.  Function with arguments and no return values.   

4.  Function with arguments and return values.   

 

3.4.1 Function with no arguments and no return values:   
syntax:   

 

void funct (void);  

main ( )   

{   

funct (  );   

}   

void funct ( void );   

{   

}   

 



CIT301                                                                      STRUCTURED PROGRAMMING    

104 

 

NOTE:  There is no communication between calling and called function. 

Functions are executed independently, they read data and print result in 

same block.   

 

Example:      

void  link (void) ;  

int  main ()   

{  link ();  

}   

void link ( void );   

{        

printf (“ link the file “)   

}   

 

3.4.2 Function with no arguments and a return value:  
 

This type of functions has no arguments but a return value   

example:   

 int msg (void) ;   

int main ( )   

{ 

int s = msg (  );  

printf( “summation = %d” , s);   

}   

int msg ( void )   

{  

int a, b, sum ;  

sum = a+b ;  

return (sum) ;   

}   

NOTE:  Here called function is independent, it read the value from the 

keyboard, initialize and return a value .Both calling and called function 

are partly communicated with each other.   

 

Function with arguments and no return values:  Here functions have 

arguments so, calling function send data to called function but called 

function does no return value. such functions are partly dependent on 

calling function and result obtained is utilized by called function .  

 

Example:   

void  msg ( int , int );   

int main ( )   

{  

int a,b;   

a= 2; 



CIT301         MODULE 7 

 

105 

 

b=3;   

msg( a, b);   

}  

void msg ( int a , int b)   

{  

int s ;   

sum = a+b;  

printf (“sum = %d” , s ) ;   

}   

 

3.4.3 Function with arguments and return value:   
 

Here calling function of arguments that passed to the called function and 

called function return value to calling function.  

 

example:   

int  msg ( int , int ) ;  

int main ( )   

{  

int a, b;   

a= 2; 

b=3;  

int s = msg (a, b);  

printf (“sum = %d” , s ) ;   

}  

int msg( int a , int b)   

{  

int sum ;  

sum =a+b ;  

return (sum);   

}   

 

3.5 Actual Arguments and Formal Arguments   

 

3.5.1 Actual Arguments:    

 
1.  Arguments which are mentioned in the function call are known as 

calling function.   

2.  These are the values which are actual arguments called to the 

function.   

 

It can be written as constant , function expression on any function call 

which return a value .    

ex: funct (6,9) , funct ( a,b )   

 



CIT301                                                                      STRUCTURED PROGRAMMING    

106 

 

3.7.2 Formal Arguments:   

 
1.  Arguments which are mentioned in function definition are called 

dummy or formal argument.  

2.  These arguments are used to just hold the value that is sent by 

calling function.    

3.  Formal arguments are like other local variables of the function 

which are created when function call starts and destroyed when 

end function.   

 

3.7.3 Basic difference between formal and local argument are:   

 
a)  Formal arguments are declared within the ( ) where as local 

variables are declared at beginning.   

b)  Formal arguments are automatically initialized when a value of 

actual argument is passed.   

c)  Where other local variables are assigned variable through the 

statement inside the function body.   

 

Note:  Order, number and type of actual argument in the function call 

should be matched with the order, number and type of formal arguments 

in the function definition.   

 

3.7.4 Parameter Passing Techniques:   

 
1.  call by value    

2.  call by reference    

 

Call by value:   

Here value of actual arguments   is passed to the formal arguments and 

operation is done in the formal argument.   

 

Since formal arguments are photo copy of actual argument, any change 

of the formal arguments does not affect the actual arguments.   

Changes made to the formal argument t are local to block of called 

function, so when control back to calling function changes made vanish.   

 

Example:    

void swap (int a , int b)   /* called function */   

{                

int t;                 

t = a;                

a=b;                

b = t;   

}   



CIT301         MODULE 7 

 

107 

 

main( )   

{   

int k = 50, m= 25;    

swap( k, m) ;    / * calling function */  

print (k, m);     / * calling function */   

}     

 

Output:   

50, 25    

 

Explanation:   

int k= 50, m=25 ;   

Means first two memory space are created k and m , store the values 50 

and 25 respectively.     

swap (k,m);  

When this function is calling the control goes to the called function.   

 void swap (int a , int b),  

k and m values are assigned to the ‘a’ and ‘b’.  

then a= 50 and b= 25 ,   

After that control enters into the function a temporary memory space ‘t’ 

is created when int t is executed.   

t=a; Means the value of a is assigned to the t , then t= 50.     

a=b; Here value of b is assigned to the a, then a= 25;   

b=t; Again t value is assigned to the b, then b= 50;   

after this control again enters into the main function and execute the 

print function print (k,m). it returns the value 50, 25.   

NOTE:   Whatever change made in called function does not affect the 

values in the calling function.      

 

Call by reference:   

Here instead of passing value, address or reference are passed. Function 

operators or address rather than values. Here, formal arguments are the 

pointers to the actual arguments.   

 

Example:   

#include<stdio.h> 

void add(int *n);            

int main()             

{   

int num=2;  

printf(“\n The value of num before calling the function=%d”, num);   

add(&num);  

printf(“\n The value of num after calling the function = %d”, num);  

return 0;   

}    

void add(int *n)   



CIT301                                                                      STRUCTURED PROGRAMMING    

108 

 

{   

   *n=*n+10;  

printf(“\n The value of num in the called function = %d”, n);  

}   

 

Output:    

The value of num before calling the function=2   

The value of num in the called function=20 The  

value of num after calling the function=20   

NOTE:  

In call by address mechanism whatever change made in called function  

affect the values in calling function.   

 

EXAMPLES:   

1: Write a function to return larger number between two numbers:    

int fun(int p, int q)   

{   

int large;   

if(p>q)   

{  

large = p;   

}   

else    

{  

large = q;   

}   

return large;   

}   

 

2: Write a program using function to find factorial of a number.   

#include <stdio.h> 

int factorial (int n)   

{    

int i, p;      

p = 1;        

for (i=n; i>1; i=i-1)   

   {       

p = p * i;     

}         

return (p);    

}     

void main()   

{     

int a, result;     

printf ("Enter an integer number: ");     

scanf ("%d", &a);      



CIT301         MODULE 7 

 

109 

 

result = factorial (a);     

printf ("The factorial of %d is %d.\n", a, result);   

} 

 

SELF-ASSESSMENT EXERCISE 
  

i. What do you mean by function? 

ii. Why is function used in a program?   

iii. What do you mean by call by value and call by address?   

iv. Mention the main categories of function Categories 

 

Solution 

1. What do you mean by function?   

A function is a block of statements that performs a specific task. 

Let's say you are writing a C program and you need to perform a 

same task in that program more than once. In such case you have 

two options:  

a) Use the same set of statements every time you want to perform 

the task. 

b)  Create a function to perform that task, and just call it every time 

you need to perform that task. 

2. Why is function used in a program?   

 It provides modularity to the program.  

 Easy code reusability. You just have to call the function by its 

name to use it.  

 In case of large programs with thousands of code lines, 

debugging and editing becomes easier if you use functions.  

 A function is independent: 

 It is “completely” self-contained.  

 It can be called at any place in the code and can be ported to 

another program 

 Reusable: Use existing functions as building blocks for new 

programs  

 Readable - more meaningful 

 procedural abstraction: hide internal details  

 factoring of code- divide and conquer 

 

3. What do you mean by call by value and call by address?   

The call by value method of passing arguments to a 

function copies the actual value of an argument into the formal 

parameter of the function. In this case, changes made to the 

parameter inside the function have no effect on the argument. By 

default, C programming uses call by value to pass arguments. 

  



CIT301                                                                      STRUCTURED PROGRAMMING    

110 

 

WHILE 

The call by Address method of passing arguments to a function copies 

the address of an argument into the formal parameter. Inside the 

function, the address is used to access the actual argument used in the 

call.2. Why function is used in a program?   

 

4. Mention the main categories of function Categories 

There are four main categories of the functions these are as 

follows:   

1.  Function with no arguments and no return values.   

2.  Function with no arguments and a return value.   

3.  Function with arguments and no return values.   

4.  Function with arguments and return values.   

 

4.0 CONCLUSION 
 

A function is a block of code that performs a single but related action. 

Function can be reusable. and functions provide better modularity for 

your application. Different programming languages name them 

differently, for example, functions, methods, sub-routines, procedures, 

etc. Function interface is a declaration of a function that specifies the 

function's name and type signature (arity, data types of parameters, and 

return type), but omits the function body.  

 

5.0 SUMMARY 
 

In this unit, you have learnt about functions. The difference between 

monolithic and modular programming has been highlighted. The 

advantages of modular programming and disadvantages of monolithic 

programming are also outlined. You have also learnt the difference 

between user define function and standard function, function declaration 

or function prototype, its syntax, function categories etc. 

 

6.0 TUTOR-MARKED ASSIGNMENT  

 

7.0 REFERENCES/FURTHER READING 
 

Fundamentals of Structured Programming, Lubia Vinhas, 2016 

 

Structured Programming with C++ by Kjell Backman, 2012 

 

 

  



CIT301         MODULE 7 

 

111 

 

UNIT 2 ARRAYS 
 

CONTENTS  

 

1.0  Introduction  

2.0  Intended Learning Outcomes (ILOs)  

3.0  Main Content  

3.1 Arrays   

3.1.1 One Dimensional Array   

3.1.2 Declaration One Dimensional Array   

3.1.3 Initialization of One-Dimensional Array   

3.1.4 Array Processing  

3.1.5 Two Dimensional Arrays   

3.1.6 Declaration of Two-Dimensional Arrays   

3.1.7 Initialization of one-Dimensional Array   

3.1.8 Multidimensional Array   

3.1.9 Arrays Using Functions   

3.1.10 Passing Whole 1-D array to a Function 

4.0 Conclusion 

5.0 Summary 

6.0 Tutor-Marked Assignment  

7.0 References/Further Reading 

 

1.0  INTRODUCTION  
 

In C programming language an array is a collection of similar data items 

stored at contiguous memory locations and elements can be accessed 

randomly using indices of an array. They can be used to store collection 

of primitive data types such as int, float, double, char, etc of any 

particular type. Note the items in an array must be of the same data type. 

In computer science, array programming refers to solutions which allow 

the application of operations to an entire set of values at once. Such 

solutions are commonly used in scientific and engineering settings. 

 

2.0  INTENDED LEARNING OUTCOMES (ILOS)  
 

By the end of this unit, you should be able to:  

 

 Describe an array 

 Differentiate between one-dimensional and a two-dimensional 

array 

 Initialize one-dimensional, two-dimensional and multi-

dimensional arrays 

 State the syntax of array declaration 

 



CIT301                                                                      STRUCTURED PROGRAMMING    

112 

 

3.0  MAIN CONTENT  

 

3.1 Arrays   
 

A data structure is the way data is stored in the machine and the 

functions used to access that data. An easy way to think of a data 

structure is a collection of related data items. An array is a data structure 

that is a collection of variables of one type that are accessed through a 

common name. Each element of an array is given a number by which we 

can access that element which is called an index. It solves the problem 

of storing a large number of values and manipulating them.   

 

Previously we use variables to store the values. To use the variables we 

have to declare the variable and initialize the variable i.e, assign the 

value to the variable. Suppose there are 1000 variables are present, so it 

is a tedious process to declare and initialize each and every variable and 

also to handle 1000 variables. To overcome this situation we use the 

concept of array .In an Array values of same type are stored. An array is 

a group of memory locations related by the fact that they all have the 

same name and same type. To refer to a particular location or element in 

the array we specify the name to the array and position number of 

particular element in the array.   

 

3.1.1 One Dimensional Array   

 

3.1.2 Declaration one Dimensional Array   
 

Before using the array in the program, it must be declared   

 

Syntax:    

data_typearray_name[size];  

 

data_type represents the type of elements present in the array.  

array_name represents the name of the array.   

Size represents the number of elements that can be stored in the array.  

 

Example:   

int age[100];  

float sal[15];  

char grade[20];  

Here age is an integer type array, which can store 100 elements of 

integer type. The array sal is floating type array of size 15, can hold float 

values.  Grade is a character type array which holds 20 characters.   

 

  



CIT301         MODULE 7 

 

113 

 

3.1.3 Initialization of One-Dimensional Array   
 

We can explicitly initialize arrays at the time of declaration. 

 

Syntax:    

data_typearray_name[size]={value1, value2,……..valueN};   

 

Value1, value2, valueN are the constant values known as initializers, 

which are assigned to the array elements one after another.    

 

Example:    

int marks[5]={10,2,0,23,4};   

The values of the array elements after this initialization are:   

marks[0]=10, marks[1]=2, marks[2]=0, marks[3]=23, marks[4]=4 

 

Note:   

1. In 1-D arrays it is optional to specify the size of the array. If size is 

omitted during initialization, then the compiler assumes the size of array 

equal to the number of initializers. 

 

Example:    

int marks[   ]={10,2,0,23,4};   

Here the size of array marks is initialized to 5.   

2. We can’t copy the elements of one array to another array by simply 

assigning it.   

 

Example:   

int a[5]={9,8,7,6,5};  

int b[5];   

b=a; //not valid   

  we have to copy all the elements by using for loop.   

 

for (a=i; i<5; i++)                          

     b[i]=a[i];   

 

3.1.4 Array Processing 
 

For processing arrays, we mostly use for loop. The total no. of passes is 

equal to the no. of elements present in the array and in each pass one 

element is processed. 

 

Example:  

#include<stdio.h> 

main()   

{  



CIT301                                                                      STRUCTURED PROGRAMMING    

114 

 

 int a[3], i;  

 for(i=0;i<=2;i++)            //Reading the array values   

{  

printf(“enter the elements”);  

scanf(“%d”,&a[i]);   

}  

for(i=0;i<=2;i++)                        //display the array values   

{  

printf(“%d”,a[i]);  

printf(“\n”);   

}   

}   

 

This program reads and displays 3 elements of integer type.    

 

Example 1. Write a  C Program to increment every element of the array 

by one and print incremented array.   

#include <stdio.h> 

void main()   

{  

int i;   

int array[4] = {10, 20, 30, 40};  

for (i = 0; i< 4; i++)  

arr[i]++;  

for (i = 0; i< 4; i++)  

printf("%d\t", array[i]);     

}    

 

Example 2. Write a C Program to print the alternate elements in an array   

#include <stdio.h> 

void main()  

{       

int array[10];      

int i, j, temp;       

printf("enter the element of an array \n");      

for (i = 0; i< 10; i++)      

scanf("%d", &array[i]);      

printf("Alternate elements of a given array \n");      

for (i = 0; i< 10; i += 2)       

printf( "%d\n", array[i]) ;   

}                  

 

Example 3: Write a C program to accept N numbers and arrange them in 

an ascending order    

#include <stdio.h> 

void main()   



CIT301         MODULE 7 

 

115 

 

{    

int i, j, a, n, number[30];      

printf("Enter the value of N \n");      

scanf("%d", &n);  

printf("Enter the numbers \n");      

for (i = 0; i< n; ++i)  

scanf("%d", &number[i]); for (i = 0; i< n; ++i)   

{        

for (j = i + 1; j < n; ++j)        

{            

 if (number[i] > number[j])              

{                  

a =number[i];                 

number[i] = number[j];                 

number[j] = a;               

}         

}   

}     

printf("The numbers arranged in ascending order are given below \n");      

for (i = 0; i< n; ++i)           

printf("%d\n", number[i]);   

}   

 

3.1.4 Two Dimensional Arrays   
 

Arrays that we have considered up to now are one dimensional array, a 

single line of elements. Often data come naturally in the form of a table, 

e.g. spreadsheet, which need a two-dimensional array.   

 

3.1.5 Declaration of Two-Dimensional Array     
 

The syntax is same as for 1-D array but here 2 subscripts are used.  

 

Syntax:    

data_typearray_name[rowsize][columnsize];   

 

Rowsize specifies the no.of rows Columnsize specifies the no.of 

columns.   

 

Example:   

int a[4][5];   

This is a 2-D array of 4 rows and 5 columns. Here the first element of 

the array is a[0][0] and last element of the array is a[3][4] and total no.of 

elements is 4*5=20. 

                           



CIT301                                                                      STRUCTURED PROGRAMMING    

116 

 

col 0                col 1             col 2           col 3           col 4  

row 0               a[0][0]             a[0][1]          a[0][2]        a[0][3]       

a[0][4]  

row 1               a[1][0]             a[1][1]           a[1][2]        a[1][3]       

a[1][4]  

row 2               a[2][0]             a[2][1]           a[2][2]        a[2][3]       

a[2][4]  

row 3               a[3][0]             a[3][1]           a[3][2]        a[3][3]       

a[3][4]   

 

3.1.6 Initialization of one-Dimensional Array   
 

2-D arrays can be initialized in a way similar to 1-D arrays.   

Example:   

 int m[4][3]={1,2,3,4,5,6,7,8,9,10,11,12};   

The values are assigned as follows:   

 
 

int m[4][3]={{11},{12,13},{14,15,16},{17}};   

The values are assigned as:   

 

 
 

Note:   

In 2-D arrays it is optional to specify the first dimension but the second 

dimension should always be present.   

 

Example:  

int m[][3]={   

                         {1,10},   

                         {2,20,200},   

                         {3},   

                         {4,40,400}   };   



CIT301         MODULE 7 

 

117 

 

Here the first dimension is taken 4 since there are 4 roes in the 

initialization list. A 2-D array is known as matrix.   

Processing:   

For processing of 2-D arrays we need two nested for loops. The outer 

loop indicates the rows and the inner loop indicates the columns.   

 

Example:   int a[4][5];   

a) Reading values in a  

      for(i=0;i<4;i++)       

for(j=0;j<5;j++)           

scanf(“%d”,&a[i][j]);   

 

b) Displaying values of a  

for(i=0;i<4;i++)       

for(j=0;j<5;j++)         

printf(“%d”,a[i][j]);   

Example 1:    Write a C program to find sum of two matrices   

#include <stdio.h> 

#include<conio.h> 

void  main()   

{      

float a[2][2], b[2][2], c[2][2];      

int i,j;      

clrscr();      

printf("Enter the elements of 1st matrix\n");   

/* Reading two dimensional Array with the help of two for loop. If there 

is an array of 'n' dimension, 'n' numbers of loops are needed for inserting 

data to array.*/    

for(i=0;i<2;I++)            

for(j=0;j<2;j++)      

{          

scanf("%f",&a[i][j]);      

}      

printf("Enter the elements of 2nd matrix\n");       

for(i=0;i<2;i++)       

for(j=0;j<2;j++)       

{   

scanf("%f",&b[i][j]);          

}   

/* accessing corresponding elements of two arrays. */     

for(i=0;i<2;i++)          

for(j=0;j<2;j++)  

{         

c[i][j]=a[i][j]+b[i][j];   

/* Sum of corresponding elements of two arrays. */   

}    



CIT301                                                                      STRUCTURED PROGRAMMING    

118 

 

/* To display matrix sum in order. */     

printf("\nSum Of Matrix:");     

for(i=0;i<2;++i)         

{            

for(j=0;j<2;++j)            

printf("%f", c[i][j]);         

printf("\n");         

}   

getch();   

}   

 

Example 2: Program for multiplication of two matrices   

#include<stdio.h> 

#include<conio.h> 

int main()     

{  

int i,j,k;        

int row1,col1,row2,col2,row3,col3;        

int mat1[5][5], mat2[5][5], mat3[5][5];       

clrscr();      

printf(“\n enter the number of rows in the first matrix:”);     

scanf(“%d”, &row1);       

printf(“\n enter the number of columns in the first matrix:”);     

scanf(“%d”, &col1);       

printf(“\n enter the number of rows in the second matrix:”);     

scanf(“%d”, &row2);      

printf(“\n enter the number of columns in the second matrix:”);    

scanf(“%d”, &col2);   

if(col1 != row2)       

{           

printf(“\n The number of columns in the first matrix must be equal to the 

number of rows   in the second matrix ”);   

getch();         

exit();       

}   

row3= row1;    

col3= col3;   

printf(“\n Enter the elements of the first matrix”);   

for(i=0;i<row1;i++)      

{          

for(j=0;j<col1;j++)           

scanf(“%d”,&mat1[i][j]);      

}         

printf(“\n Enter the elements of the second matrix”);     

for(i=0;i<row2;i++)     

{          



CIT301         MODULE 7 

 

119 

 

for(j=0;j<col2;j++)          

scanf(“%d”,&mat2[i][j]);      

}  

 for(i=0;i<row3;i++)     

{        

for(j=0;j<col3;j++)           

{              

mat3[i][j]=0;             

for(k=0;k<col3;k++)                   

mat3[i][j] +=mat1[i][k]*mat2[k][j];              

}          

}   

printf(“\n The elements of the product matrix are”):   

for(i=0;i<row3;i++)     

{         

printf(“\n”);        

for(j=0;j<col3;j++)          

printf(“\t %d”, mat3[i][j]);     

}  return 0;   

}     

 

Output:   

Enter the number of rows in the first matrix: 2   

Enter the number of columns in the first matrix: 2   

Enter the number of rows in the second matrix: 2   

Enter the number of columns in the second matrix: 2   

Enter the elements of the first matrix   

1 2 3 4   

Enter the elements of the second matrix   

5 6 7 8   

The elements of the product matrix are   

19 22   

43 50   

 

Example 3:  Program to find transpose of a matrix.   

#include <stdio.h>   

int main()   

{       

int a[10][10], trans[10][10], r, c, i, j;       

printf("Enter rows and column of matrix: "); 

 scanf("%d %d", &r, &c);       

printf("\nEnter elements of matrix:\n");       

for(i=0; i<r; i++)        

   for(j=0; j<c; j++)        

  {           



CIT301                                                                      STRUCTURED PROGRAMMING    

120 

 

printf("Enter elements a%d%d: ",i+1,j+1);          scanf("%d", &a[i][j]);      

}   

/*  Displaying the matrix a[][] */      

printf("\n Entered Matrix: \n");      

for(i=0; i<r; i++)       

     for(j=0; j<c; j++)       

     {           

        printf("%d  ",a[i][j]);          

if(j==c-1)               

printf("\n\n");       

}     

/* Finding transpose of matrix a[][] and storing it in array trans[][]. */      

for(i=0; i<r;i++)       

for(j=0; j<c; j++)       

   {   

      trans[j][i]=a[i][j];       

}     

/* Displaying the array trans[][]. */      

printf("\nTranspose of Matrix:\n");      

for(i=0; i<c;i++)      for(j=0; j<r;j++)       

{           

printf("%d  ",trans[i][j]);           

if(j==r-1)              

printf("\n\n");       

}      

return 0;   

}     

 

Output      

Enter the rows and columns of matrix:  

2   3  

Enter the elements of matrix:   

Enter elements a11: 1   

Enter elements a12: 2  

Enter elements a13: 9   

Enter elements a21: 0  

Enter elements a22: 4   

Enter elements a23: 7  

Entered matrix:  1 2 9  0 4 7   

ranspose of matrix:  1 0  2 4  9 7   

 

  



CIT301         MODULE 7 

 

121 

 

3.1.8 Multidimensional Array   
 

More than 2-dimensional arrays are treated as multidimensional arrays.   

Example:   

int a[2][3][4];   

Here a represents two 2-dimensional arrays and each of these 2-d arrays 

contains 3 rows and 4 columns.   

The individual elements are:   

a[0][0][0], a[0][0][1],a[0][0][2],a[0][1][0]…………a[0][3][2]  

a[1][0][0],a[1][0][1],a[1][0][2],a[1][1][0]…………..a[1][3][2]   

 

the total no. of elements in the above array is 2*3*4=24.   

Initialization:    

int a[2][4][3]={  {    

 {1,2,3},   

{4,5},   

{6,7,8},   

{9}   

},   

{   

{10,11},   

{12,13,14},   

{15,16},   

{17,18,19}   

}   

}          

 

The values of elements after this initialization are as:   

a[0][0][0]:1        a[0][0][1]:2        a[0][0][2]:3     

a[0][1][0]:4        a[0][1][1]:5        a[0][1][2]:0   

a[0][2][0]:6        a[0][2][1]:7        a[0][2][2]:8   

a[0][3][0]:9        a[0][3][1]:0        a[0][3][2]:0   

a[1][0][0]:10      a[1][0][1]:11      a[1][0][2]:0  

a[1][1][0]:12      a[1][1][1]:13      a[1][1][2]:14    

a[1][2][0]:15      a[1][2][1]:16      a[1][2][2]:0  

a[1][3][0]:17      a[1][3][1]:18      a[1][3][2]:19   

 

Note:  The rule of initialization of multidimensional arrays is that last 

subscript varies most frequently and the first subscript varies least 

rapidly.     

 

Example:   

#include<stdio.h> 

main()   

{   

int d[5];  



CIT301                                                                      STRUCTURED PROGRAMMING    

122 

 

int i;   

for(i=0;i<5;i++)   

{   

d[i]=i;   

}   

for(i=0;i<5;i++)   

{   

printf(“value in array %d\n”,a[i]);   

}   

}  

 

Pictorial representation of d will look like    

 

        d[0]                          d[1]                       d[2]                        d[3]                      

d[4]       

0 1 2 3 4 

 

3.1.9 Arrays Using Functions   
 

1-d arrays using functions   

Passing individual array elements to a function   

We can pass individual array elements as arguments to a function like 

other simple variables.    

 

Example:   

#include<stdio.h> 

void check(int);  

void main()   

{   

int a[10],i;   

clrscr();   

printf(“\n enter the array elements:”);  

for(i=0;i<10;i++)   

{   

scanf(“%d”,&a[i]);   

check(a[i]);   

}    

void check(int num)   

{    

if(num%2==0)     

printf(“%d is even\n”,num);  

else      

printf(“%d is odd\n”,num);   

} 

 



CIT301         MODULE 7 

 

123 

 

Output:  enter the array elements:   

1 2 3 4 5 6 7 8 9 10   

1 is odd   

2 is even   

3 is odd   

4 is even   

5 is odd   

6 is even   

7 is odd   

8 is even   

9 is odd   

10 is even   

 

Example:   

C program to pass a single element of an array to function   

#include <stdio.h> 

void display(int a)      

{       

printf("%d",a);      

}   

int main()  

{      

int c[]={2,3,4};      

display(c[2]);  //Passing array element c[2] only.      

return 0;  }   

 

Output   

2 3 4    

 

3.1.10  Passing whole 1-D array to a function   
 

We can pass whole array as an actual argument to a function the 

corresponding formal arguments should be declared as an array variable 

of the same type. 

 

Example 1:   

#include<stdio.h> 

main()   

{   

int i, a[6]={1,2,3,4,5,6};   

func(a);   

printf(“contents of array:”);  

for(i=0;i<6;i++)  printf(“%d”,a[i]);   

printf(”\n”);   

}   

func(int val[])   



CIT301                                                                      STRUCTURED PROGRAMMING    

124 

 

{   

int sum=0,i;   

for(i=0;i<6;i++)  

{   

val[i]=val[i]*val[i]; sum+=val[i];   

}   

printf(“the sum of squares:%d”, sum);   

}    

 

Output   

contents of array: 1 2 3 4 5 6  

the sum of squares: 91   

 

Example 2:   

Write a C program to pass an array containing age of person to a 

function. This function should find average age and display the average 

age in main function.   

 

#include <stdio.h> 

float average(float a[]);  

int main()  

{       

float avg, c[]={23.4, 55, 22.6, 3, 40.5, 18};  

avg=average(c);   /* Only name of array is passed as argument. */       

printf("Average age=%.2f",avg);      

return 0;   

}   

float average(float a[])  

{        

int i;       

float avg, sum=0.0; 

for(i=0;i<6;++i)  

{          

sum+=a[i];            

}        

avg =(sum/6);     

return avg;   

}    

 

Output   

Average age= 27.08   

 

Further Examples:   

1.  Write a program to find the largest of n numbers and its location in 

an array.   

#include <stdio.h> 



CIT301         MODULE 7 

 

125 

 

 #include<conio.h> 

void main()   

{    

int array[100], maximum, size, c, location = 1;  

clrscr();   

printf("Enter the number of elements in array\n");  

scanf("%d", &size);   

printf("Enter %d integers\n", size);   

for (c = 0; c < size; c++)       

scanf("%d", &array[c]);  maximum = array[0];        

for (c = 1; c < size; c++)     

{        

if (array[c] > maximum)       

{          

maximum  = array[c];          

location = c+1;       

}     

}     

printf("Maximum element is present at location %d and it's value is 

%d.\n", location, maximum);     

getch();   

}    

 

Output:   

Enter the number of elements in array  5   

Enter 5 integers   

2   

4   

7   

9   

1   

 

Maximum element is present at location 4 and it's value is 9     

 

2.  Write a program to enter n number of digits. Form a number using 

these digits.    

# include<stdio.h>  

#include<conio.h>  

#include<math.h>   

void  main()   

{ 

int number=0,digit[10], numofdigits,i;       

clrscr(); printf(“\n Enter the number of digits:”);       

scanf(“%d”, &numofdigits);       

for(i=0;i<numofdigits;i++)         

{              



CIT301                                                                      STRUCTURED PROGRAMMING    

126 

 

printf(“\n Enter the %d th digit:”, i);            

scanf(“%d”,&digit[i]);          

}    

i=0;   

while(i<numofdigits)   

{      

number= number + digit[i]* pow(10,i)      

i++;   

}   

printf(“\n The number is : %d”,number);   

getch();  }   

 

Output:   

Enter the number of digits:  

3   

Enter the 0th digit:  

5  

Enter the 1th digit:  

4   

Enter the 2th digit:  

3   

The number is: 543        

 

3.  Matrix addition:   

#include <stdio.h>  #include<conio.h>    

void main()  

{   

int m, n, c, d, first[10][10], second[10][10], sum[10][10];   

 clrscr();      

printf("Enter the number of rows and columns of matrix\n");      

scanf("%d%d", &m, &n);      

printf("Enter the elements of first matrix\n");      

for ( c = 0 ; c < m ; c++ )        

for ( d = 0 ; d < n ; d++ )           

scanf("%d", &first[c][d]);        

printf("Enter the elements of second matrix\n");      

for ( c = 0 ; c < m ; c++ )        

for ( d = 0 ; d < n ; d++ )               

scanf("%d", &second[c][d]);         

for ( c = 0 ; c < m ; c++ )         

for ( d = 0 ; d < n ; d++ )            

sum[c][d] = first[c][d] + second[c][d];         

printf("Sum of entered matrices:-\n");         

for ( c = 0 ; c < m ; c++ )      

{         

for ( d = 0 ; d < n ; d++ )            



CIT301         MODULE 7 

 

127 

 

printf("%d\t", sum[c][d]);            

printf("\n");      

}         

getch();   

}      

Output:    

Enter the number of rows and columns of matrix   

2   2   

Enter the elements of first matrix   

1 2  3 4   

Enter the elements of second matrix   

5 6   2 1   

Sum of entered matrices:- 6 8  5 5      

 

SELF-ASSESSMENT EXERCISE 

 

i. Compute sum of elements of an array in a C program?   

ii. Write a program to declare an array with 10 elements, populate it 

and display the contents 

iii. Write C program to add two multi-dimensional arrays  

  

Solution: 

1. Compute sum of elements of an array in a C program?   

//let's assume the maximum array size as 100. 

    //initialize sum as 0. Otherwise, it will take some garbage value. 

    int arr[100], size, i, sum = 0; 

     

    //Get size input from user 

    printf("Enter array size\n"); 

    scanf("%d",&size); 

     

    //Get all elements using for loop and store it in array 

    printf("Enter array elements\n"); 

    for(i = 0; i < size; i++) 

          scanf("%d",&arr[i]); 

           

    //add all elements to the variable sum. 

    for(i = 0; i < size; i++) 

          sum = sum + arr[i]; // same as sum += arr[i]; 

     

    //print the result 

    printf("Sum of the array = %d\n",sum); 

     

    return 0; 

} 

 



CIT301                                                                      STRUCTURED PROGRAMMING    

128 

 

2 Write a program to declare an array with 10 elements, populate it 

and display the contents 

#include <stdio.h> 

int main () { 

int n[ 10 ]; /* n is an array of 10 integers */ 

int i,j; 

/* initialize elements of array n to 0 */          

for ( i = 0; i < 10; i++ ) { 

n[ i ] = i + 100; /* set element at location i to i + 100 */ 

} 

    

/* output each array element's value */ 

for (j = 0; j < 10; j++ ) { 

printf("Element[%d] = %d\n", j, n[j] ); 

} 

return 0; 

} 

 

3          Write C program to add two multi-dimensional arrays  

 

#include <stdio.h> 

int main() { 

int r, c, a[100][100], b[100][100], sum[100][100], i, j; 

  printf("Enter the number of rows (between 1 and 100): "); 

   scanf("%d", &r); 

   printf("Enter the number of columns (between 1 and 100): "); 

   scanf("%d", &c); 

 

   printf("\nEnter elements of 1st matrix:\n"); 

   for (i = 0; i < r; ++i) { 

      for (j = 0; j < c; ++j) { 

         printf("Enter element a%d%d: ", i + 1, j + 1); 

         scanf("%d", &a[i][j]); 

      }} 

 

    printf("Enter elements of 2nd matrix:\n"); 

    for (i = 0; i < r; ++i) { 

       for (j = 0; j < c; ++j) { 

         printf("Enter element b%d%d: ", i + 1, j + 1); 

          scanf("%d", &b[i][j]); 

       }} 

   // adding two matrices 

    for (i = 0; i < r; ++i) { 

      for (j = 0; j < c; ++j) { 

        sum[i][j] = a[i][j] + b[i][j]; 

       }} 



CIT301         MODULE 7 

 

129 

 

 

    // printing the result 

    printf("\nSum of two matrices: \n"); 

    for (i = 0; i < r; ++i) { 

      for (j = 0; j < c; ++j) { 

        printf("%d   ", sum[i][j]); 

        if (j == c - 1) { 

         printf("\n\n"); 

        }} 

return 0; 

} 

 

4.0 CONCLUSION 
 

An array is a collection of similar data items stored at contiguous 

memory locations and each element can be accessed randomly using 

indices of an array. An array can be one dimensional, two dimensional 

or multi-dimensional. Arrays must be declared before it can be used. 

Array can be manipulated just like any other variable.  

 

5.0 SUMMARY 
 

In this unit, you have been introduced to arrays, it declarations, 

initialization and manipulation. You have also learnt how to read and 

display elements of an array. Several examples are provided for clearer 

understanding array and it manipulations. 

 

6.0 TUTOR-MARKED ASSIGNMENT  

 

7.0 REFERENCES/FURTHER READING 
 

Fundamentals of Structured Programming, Lubia Vinhas, 2016 

 

Structured Programming with C++ by Kjell Backman, 2012 

 

  



CIT301                                                                      STRUCTURED PROGRAMMING    

130 

 

UNIT 3 FUNDAMENTALS OF STRINGS  
 

CONTENTS  

 

1.0  Introduction  

2.0  Intended Learning Outcomes (ILOs)  

3.0  Main Content  

3.1 String  

3.2 Reading strings   

3.3 Writing string   

3.4 Common Functions in String   

4.0 Conclusion 

5.0 Summary 

6.0 Tutor-Marked Assignment 

7.0 References/Further Reading 

 

1.0  INTRODUCTION  
 

A string is defined as a contiguous sequence of code units terminated by 

the first zero code unit (often called the NUL code unit). What this 

means is that a string cannot contain the zero code unit, as the first one 

seen marks the end of the string. The length of a string is the number of 

code units before the zero-code unit. The memory occupied by a string 

is always one more code unit than the length, as space is needed to store 

the zero terminator. Generally, the term string means a string where the 

code unit is of type char which is exactly 8 bits on all modern machines. 

String literals ("text" in the C source code) are converted to arrays 

during compilation.   

 

2.0  INTENDED LEARNING OUTCOMES (ILOS)  
 

By the end of this unit, you should be able to:  

 

 Define a string 

 Differentiate between a string and a character 

 Manipulate string 

 Mention some commonly used string input/output library 

functions 

 Read and write string 

 Declare a string variable  

 

  



CIT301         MODULE 7 

 

131 

 

3.0 MAIN CONTENT 

 

3.1 String  
 

A string is a series of characters treated as a single unit. A string may 

include letters, digits and various special characters such as +, -, *, / and 

$. String literals or string constants in C are written in double quotation 

marks as follows:   

    “1000 Main Street” (a street address)   

    “(080)329-7082” (a telephone number)   

    “Kalamazoo, New York” (a city)   

In C language strings are stored in array of char type along with null 

terminating character ‘\0’ at the end.   

When sizing the string array, we need to add plus one to the actual size 

of the string to make space for the null terminating character, ‘\0’.   

Syntax:   

char fname[4];   

The above statement declares a string called fname that can take up to 3 

characters. It can be indexed just as a regular array as well.   

fname[]={‘t’,’w’,’o’}; 

 

character   T w o \0 

ASCII code   116 119 41 0 

 

Generalized syntax is:     

char str[size];   

when we declare the string in this way, we can store size-1 characters in 

the array because the last character would be the null character.  

For example,  

char mesg[10]; can store maximum of 9 characters.   

 

If we want to print a string from a variable, such as four name string 

above we can do this.  

printf(“First name:%s”,fname);   

 

We can insert more than one variable. Conversion specification %s is 

used to insert a string and then go to each %s in our string, we are 

printing.   

 

A string is an array of characters. Hence it can be indexed like an array.  

 

char ourstr[6] = “EED”;    

– ourstr[0] is ‘E’   

– ourstr[1] is ‘E’   

– ourstr[2] is ‘D’    



CIT301                                                                      STRUCTURED PROGRAMMING    

132 

 

– ourstr[3] is ‘\0’   

– ourstr[4] is ‘\0’  

– ourstr[5] is ‘\0’   

 

‘E’   ‘E’   ‘D’   \0 “\0 “ 

 

“\0 “ 

 

   ourstr[0]     ourstr[1]       ourstr[2]         ourstr[3]  ourstr[4]

 ourstr[5] 

 

3.2 Reading Strings    
 

If we declare a string by writing        

char str[100];  

then str can be read from the user by using three ways;   

1.  Using scanf() function  

2.  Using gets() function   

3.  Using getchar(), getch(), or getche() function repeatedly   

 

The string can be read using scanf() by writing             

scanf(“%s”,str);   

Although the syntax of scanf() function is well known and easy to use, 

the main pitfall with this function is that it terminates as soon as it finds 

a blank space. For example, if the user enters Hello World, then str will 

contain only Hello. This is because the moment a blank space is 

encountered, the string is terminated by the scanf() function.   

 

Example:                     

char str[10];                     

printf(“Enter a string\n”);                    

scanf(“%s”,str);       

 

The next method of reading a string a string is by using gets() function. 

The string can be read by writing                            

gets(str);   

gets() is a function that  overcomes the drawbacks of scanf(). The gets() 

function takes the starting address of the string which will hold the 

input. The string inputted using gets() is automatically terminated with a 

null character.     

 

Example:                    

char str[10];                     

printf(“Enter a string\n”);                     

gets(str);    

 



CIT301         MODULE 7 

 

133 

 

The string can also be read by calling the getchar() repeatedly to read a 

sequence of single characters (unless a terminating character is 

encountered) and simultaneously storing it in a character array as 

follows:   

int i=0;  

char str[10],ch;  

getchar(ch);  

while(ch!=’\0’)   

{   

str[i]=ch;       // store the read character in str  

i++;   

getch(ch);    // get another character   

 }   

 str[i]=’\0’;        // terminate str with null character   

 

3.3 Writing string   
 

The string can be displayed on screen using three ways:   

 

1.  Using printf() function   

2.  Using puts() function   

3.  Using putchar() function repeatedly   

 

The string can be displayed using pintf() by writing          

printf(“%s”,str);   

We can use width and precision specification along with %s. The width 

specifies the minimum output field width and the precision specifies the 

maximum number of characters to be displayed.   

 

Example:    

printf(“%5.3s”,str);  

 

This statement would print only the first three characters in a total field 

of five charaters; also these three characters are right justified in the 

allocated width.   

The next method of writing a string is by using the puts() function. The 

string can be displayed by writing:   

          puts(str);   

 

It terminates the line with a newline character (‘\n’). It returns an EOF(-

1) if an error occurs and returns a positive number on success.     

Finally the string can be written by calling the putchar( ) function 

repeatedly to print a sequence of single characters.  

int i=0;  

char str[10];  

while(str[i]!=’\0’)   



CIT301                                                                      STRUCTURED PROGRAMMING    

134 

 

{   

putchar(str[i]);     // print the character on the screen 

 i++;   

}   

 

Example:        

Read and display a string          

#include<stdio.h> 

#include<conio.h> 

void main()   

{   

char str[20];    

clrscr();   

printf(“\n Enter a string:\n”);            

gets(str);   

scanf(“The string is:\n”);            

puts(str);             

getch();  }     

 

Output:            

Enter a string:             

vssut burla  

The string is:   

vssut burla      

 

3.4 Common Functions in String   
 

Method  Description  char  strcpy(s1, s2)  Copy string  char  strcat(s1, 

s2)  Append string  int  strcmp(s1, s2)  Compare 2 strings  int  strlen(s)  

Return string length  char  strchr(s, int c)  Find a character in string  char  

strstr(s1, s2)  Find string s2 in string s1 

Type   Method   Description   

char   strcpy(s1, s2)   Copy string 

char   char  strcat(s1, s2)   Append string 

int   strcmp(s1, s2)   Compare 2 strings   

int   strlen(s) Return string length   

char   strchr(s, int c)   Find a character in 

string   

char   strstr(s1, s2)   Find string s2 in string 

s1 

strcpy():   

It is used to copy one string to another string. The content of the second 

string is copied to the content of the first string.    

Syntax:    

strcpy (string 1, string 2);   



CIT301         MODULE 7 

 

135 

 

 

Example:   

char mystr[10];   

mystr = “Hello”; // Error! Illegal!!! Because we are assigning the 

value to mystr which is not possible in case of an string. We can only 

use "=" at declarations of C-String.   

strcpy(mystr, “Hello”);   

It sets value of mystr equal to “Hello”.   

 

strcmp():   

It is used to compare the contents of the two strings. If any mismatch 

occurs then it results the difference of ASCII values between the first 

occurrence of 2 different characters.   

Syntax:   

int strcmp(string 1, string 2);    

 

Example:   

char mystr_a[10] = “Hello”;   

char mystr_b[10] = “Goodbye”;   

– mystr_a == mystr_b;    // NOT allowed!  

The correct way is   

if (strcmp(mystr_a, mystr_b ))  

printf ("Strings are NOT the same.");   

else   

printf( "Strings are the same.");   

Here it will check the ASCII value of H and G i.e, 72 and 71 and return 

the diference 1. 

 

strcat():   

It is used to concatenate i.e, combine the content of two strings.   

Syntax:    

strcat(string 1, string 2);   

 

Example:   

char fname[30]={“bob”};  

char lname[]={“by”};  

printf(“%s”, strcat(fname,lname)); 

 

Output:    

bobby.   

 

strlen():   

It is used to return the length of a string.   

 

  



CIT301                                                                      STRUCTURED PROGRAMMING    

136 

 

Syntax:   

int strlen(string);   

 

Example:  

char fname[30]={“bob”};  

int length=strlen(fname);  

It will return 3   

 

strchr():   

It is used to find a character in the string and returns the index of 

occurrence of the character for the first time in the string.    

Syntax:   

strchr(cstr);   

 

Example:   

char mystr[] = "This is a simple string";   

char  pch = strchr(mystr,‘s’);   

The output of pch is mystr[3]    

 

strstr():   

It is used to return the existence of one string inside another string and it 

results the starting index of the string.    

Syntax:   

strstr(cstr1, cstr2);   

 

Example:   

Char mystr[]="This is a simple string";  

char pch = strstr(mystr, “simple”);    

here pch will point to mystr[10]    

 

•  String input/output library functions 



CIT301         MODULE 7 

 

137 

 

 
 

NOTE:    

Character arrays are known as strings.   

 

SELF-ASSESSMENT EXERCISE   

 

i. What is a string in c? 

ii. Show 2 different methods of initializing character array vowel 

with the string of vowels “AEIOU”.  

iii. Outline the commonly used string functions in C. Put your 

answer in tabular format indicating type, method and description. 

 

Solution 

1 What is a string in c? 

The string in C programming language is actually a one-

dimensional array of characters which is terminated by a null 

character '\0'. Thus, a null-terminated string contains the 

characters that comprise the string followed by a null. 

2 Show 2 different methods of initializing character array vowel 

with the string of vowels “AEIOU”.  

Method1: char vowels [6] = “AEIOU” 

 Method 2: char vowels [6] = {'A','E','I','O','U','N','\0'}; // NULL 

character '\0' is required at end in this declaration 

 

3 Outline the commonly used string functions in C. Put your 

answer in tabular format indicating type, method and description. 

 
  



CIT301                                                                      STRUCTURED PROGRAMMING    

138 

 

Type   Method   Description   

char   strcpy(s1, s2)   Copy string 

char   char strcat(s1, s2)   Append string 

int   strcmp(s1, s2)   Compare 2 strings   

int   strlen(s) Return string length   

char   strchr(s, int c)   Find a character in string   

char   strstr(s1, s2)   Find string s2 in string s1 

 

4.0 CONCLUSION 
 

A string is a sequence of characters. Particularly in C program, a string 

is an array of characters. A string may include letters, digits and various 

special characters such as +, -, *, / and $. String literals or string 

constants in C are written in double quotation marks. String can be 

concatenated, that is “addition of two or more strings”. A string can be a 

constant and it can also be assigned to a string variable. 

 

5.0 SUMMARY 
 

In this unit, you have learnt about string, how to declare a string, how to 

read and write a string, how to manipulate a string, how to differentiate 

between a string and a character, common function in string (such as 

strcpy(s1, s2), strcmp(s1, s2), strlen(s) etc). Examples are given to 

illustrate string manipulation and functions. 

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

7.0 REFERENCES/FURTHER READING 
 

Fundamentals of Structured Programming, Lubia Vinhas, 2016 

 

Structured Programming with C++ by Kjell Backman, 2012 
 



CIT301         MODULE 8 

 

139 
 

MODULE 8 STRUCTURE AND POINTERS IN C 
 

Unit 1  Structure and Pointers  

 

CONTENTS  

 

1.0 Introduction 

2.0  Intended Learning Outcomes (ILOs)  

3.0  Main Content  

3.1 Structure  

3.2 Pointers 

3.3 Pointers and Addresses   

3.4 Pointers and Function Arguments   

           3.5 Pointers and Arrays  

4.0 Conclusion 

5.0 Summary 

6.0 Tutor-Marked Assignment 

7.0 References/Further Reading 

 

1.0 INTRODUCTION 
 

A structure is a user defined data type in C. A structure allows us to 

create data type that can be used to group items of different types into a 

single type. It is similar to array but array allows only a set of data 

values of one data type to be stored in it. It is equally similar to records 

in Pascal programming language.  A pointer is an object in 

many programming languages that stores a memory address. This can be 

that of another value located in computer memory, or in some cases, that 

of memory-mapped computer hardware. A pointer references a location 

in memory, and obtaining the value stored at that location is known 

as dereferencing the pointer. As an analogy, a page number in a book's 

index could be considered a pointer to the corresponding page; 

dereferencing such a pointer would be done by flipping to the page with 

the given page number and reading the text found on that page. The 

actual format and content of a pointer variable is dependent on the 

underlying computer architecture. 

 

2.0 INTENDED LEARNING OUTCOMES 
 

By the end of this unit, you should be able to:  

 

 Understand C structures and pointers 

 Know how to define and use structures and pointers in C 

  

https://en.wikipedia.org/wiki/Object_(computer_science)
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Memory_address
https://en.wikipedia.org/wiki/Computer_memory
https://en.wikipedia.org/wiki/Memory-mapped_I/O
https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Dereference_operator
https://en.wikipedia.org/wiki/Computer_architecture


CIT301                                                                      STRUCTURED PROGRAMMING    
 

140 
 

3.0 MAIN CONTENTS 

 

3.1 Structure  
 

A Structure is a user defined data type that can store related information 

together. The variable within a structure is of different data types and 

each has a name that is used to select it from the structure. C arrays 

allow you to define type of variables that can hold several data items of 

the same kind, but structure is another user defined data type available 

in C programming, which allows you to combine data items of different 

kinds.   

 

Structures are used to represent a record. Suppose you want to keep 

track of your books in a library, you might want to track the following 

attributes about each book:   

 

 Title   

 Author   

 Subject   

 Book ID   

 

Structure Declaration:   

It is declared using a keyword struct followed by the name of the 

structure. The variables of the structure are declared within the structure.   

Example:   

         Struct struct-name   

               {     

data_type var-name;  

data_type var-name;   

               };    

 

Structure Initialization:   

Assigning constants to the members of the structure is called initializing 

of structure.  Syntax:    

                     struct struct_name 

                    {   

                          data _type member_name1;  

                          data _type member_name2;   

                     } struct_var={constant1,constant2};   

Accessing the members of a structure   

A structure member variable is generally accessed using a ‘.’ operator. 

 

Syntax:  

strcut_var.  

member_name;   

 



CIT301         MODULE 8 

 

141 
 

The dot operator is used to select a particular member of the structure. 

To assign value to the individual   

Data members of the structure variable stud, we write,  

 

stud.roll=01;  

 stud.name=”Rahul”;   

 

To input values for data members of the structure variable stud, can be 

written as,  

scanf(“%d”,&stud.roll);  

scanf(‘’%s”,&stud.name);   

 

To print the values of structure variable stud, can be written as:   

printf(“%s”,stud.roll);  

printf(“%f”,stud.name);   

 

3.2      Pointers   
 

A pointer is a variable that contains the address of a variable. Pointers 

are much used in C, partly because they are sometimes the only way to 

express a computation, and partly because they usually lead to more 

compact and efficient code than can be obtained in other ways. Pointers 

and arrays are closely related; this chapter also explores this relationship 

and shows how to exploit it.  Pointers have been lumped with the goto 

statement as a marvelous way to create impossible to understand 

programs. This is certainly true when they are used carelessly, and it is 

easy to create pointers that point somewhere unexpected. With 

discipline, however, pointers can also be used to achieve clarity and 

simplicity. This is the aspect that we will try to illustrate.  The main 

change in ANSI C is to make explicit the rules about how pointers can 

be manipulated, in effect mandating what good programmers already 

practice and good compilers   already enforce. In addition, the type void 

* (pointer to void) replaces char * as the proper type for a generic 

pointer.     

 

3.3 Pointers and Addresses   
 

Let us begin with a simplified picture of how memory is organized. A 

typical machine has an array of consecutively numbered or addressed 

memory cells that may be manipulated individually or in contiguous 

groups. One common situation is that any byte can be a char, a pair of 

one-byte cells can be treated as a short integer, and four adjacent bytes 

form a long. A pointer is a group of cells (often two or four) that can 

hold an address. So if c is a char and p is a pointer that points to it, we 

could represent the situation this way:   



CIT301                                                                      STRUCTURED PROGRAMMING    
 

142 
 

 
The unary operator & gives the address of an object, so the statement     

p = &c;  assigns the address of c to the variable p, and p is said to ``point 

to'' c. The &operator only applies to objects in memory: variables and 

array elements. It cannot be applied to expressions, constants, or register 

variables.  The unary operator * is the indirection or dereferencing 

operator; when applied to a pointer, it accesses the object the pointer 

points to. Suppose that x and y are integers and ip is a pointer to int. 

This artificial sequence shows how to declare a pointer and how to use 

& and *:   

 

int x = 1, y = 2, z[10];                

int *ip;               

ip = &x;                

y = *ip;               

*ip = 0;                  

ip = &z[0];      

 

The declaration of x, y, and z are what we've seen all along. The 

declaration of the pointer ip.    

int *ip;   

is intended as a mnemonic; it says that the expression *ip is an int. The 

syntax of the declaration for a variable mimics the syntax of expressions 

in which the variable might appear. This reasoning applies to function 

declarations as well. For example,     

double *dp, atof(char *);     

says that in an expression *dp and atof(s) have values of double, and 

that the argument of atof is a pointer to char.  You should also note the 

implication that a pointer is constrained to point to a particular kind of 

object: every pointer points to a specific data type.  If ip points to the 

integer x, then *ip can occur in any context where x could, so     

*ip = *ip + 10;    

increments *ip by 10.  The unary operators * and & bind more tightly 

than arithmetic operators, so the assignment     

y = *ip + 1     

takes whatever ip points at, adds 1, and assigns the result to y, while     

*ip += 1    

increments what ip 

points to, as do     

++*ip and (*ip)++     

The parentheses are necessary in this last example; without them, the 

expression would increment ip instead of what it points to, because 



CIT301         MODULE 8 

 

143 
 

unary operators like * and ++ associate right to left. Finally, since 

pointers are variables, they can be used without dereferencing. For 

example, if iq is another pointer to int,     

iq = ip 

copies the contents of ip into iq, thus making iq point to whatever ip 

pointed to.    

 

3.4 Pointers and Function Arguments   
 

Since C passes arguments to functions by value, there is no direct way 

for the called function to alter a variable in the calling function. For 

instance, a sorting routine might exchange two out of order arguments 

with a function called swap. It is not enough to write     

swap(a, b);     

where the swap function is defined as                    

void swap(int x, int y)                   

{                  

int temp;                  

temp = x;                  

x = y;                  

y = temp;                  

}   

 

Because of call by value, swap can't affect the arguments a and b in the 

routine that called it. The function above swaps copies of a and b. The 

way to obtain the desired effect is for the calling program to pass 

pointers to the values to be changed:  

 

                swap(&a, &b);   

 

Since the operator & produces the address of a variable, &a is a pointer 

to a. In swap itself, the parameters are declared as pointers, and the 

operands are accessed indirectly through them.   

            void swap(int *px, int *py) /* interchange *px and *py */   

            {  

              int temp;  

              temp = *px;  

              *px = *py;  

              *py = temp;   

            }   

 

Pointer arguments enable a function to access and change objects in the 

function that called it. As an example, consider a function getint that 

performs free-format input conversion by breaking a stream of 

characters into integer values, one integer per call. getint has to return 

the value it found and also signal end of file when there is no more 



CIT301                                                                      STRUCTURED PROGRAMMING    
 

144 
 

input. These values have to be passed back by separate paths, for no 

matter what value is used for EOF,  that could also be the value of an 

input integer.  One solution is to have getint return the end of file status 

as its function value, while using a pointer argument to store the 

converted integer back in the calling function. This is the scheme used 

by scanf as well.  The following loop fills an array with integers by calls 

to getint:   

 

           int n, array[SIZE], getint(int *);              

           for (n = 0; n < SIZE &&getint(&array[n]) != EOF; n++) ;     

 

Each call sets array[n] to the next integer found in the input and 

increments n. Notice that it is essential to pass the address of array[n] to 

getint. Otherwise there is no way for getint to communicate the 

converted integer back to the caller.  Our version of getint returns EOF 

for end of file, zero if the next input is not a number, and a positive 

value if the input contains a valid number.                           

#include <ctype.h> 

int getch(void);                        

void ungetch(int);                       

int getint(int *pn)                         

{                         

int c, sign;                          

while (isspace(c = getch()));                          

if (!isdigit(c) && c != EOF&& c != '+' && c != '-') 

{                           

ungetch(c);  

return 0;                          

}                          

sign = (c == '-') ? -1 : 1;                         

if (c == '+' || c == '-')                          

c = getch();                         

for (*pn = 0; isdigit(c), c = getch())                         

*pn = 10 * *pn + (c - '0');                         

*pn *= sign;                        

 if (c != EOF)                         

ungetch(c);                         

return c;                         

}     

 

Throughout getint, *pn is used as an ordinary int variable. We have also 

used getch and ungetch so the one extra character that must be read can 

be pushed back onto the input. 

 

  



CIT301         MODULE 8 

 

145 
 

3.5 Pointers and Arrays  
 

In C, there is a strong relationship between pointers and arrays, strong 

enough that pointers and arrays should be discussed simultaneously. 

Any operation that can be achieved by array subscripting can also be 

done with pointers. The pointer version will in general be faster but, at 

least to the uninitiated, somewhat harder to understand. The declaration     

int a[10];    

defines an array of size 10, that is, a block of 10 consecutive objects 

named a[0], a[1], .. , a[9]. The notation a[i] refers to the i-th element of 

the array. If pa is a pointer to an integer, declared as     

int *pa;    

then the assignment     

pa = &a[0];     

sets pa to point to element zero of a; that is, pa contains the address of 

a[0]. Now the assignment     

x =*pa;    

will copy the contents of a[0] into x.  If pa points to a particular element 

of an array, then by definition pa+1 points to the next element, pa+i 

points i elements after pa, and pa-i points i elements before. Thus, if pa 

points to a[0], *(pa+1) refers to the contents of a[1], pa+i is the address 

of a[i], and *(pa+i) is the contents of a[i]. These remarks are true 

regardless of the type or size of the variables in the array a. The meaning 

of ``adding 1 to a pointer,'' and by extension, all pointer arithmetic, is 

that pa+1 points to the next object, and pa+i points to the i-th object 

beyond pa. The correspondence between indexing and pointer arithmetic 

is very close. By definition, the value of a variable or expression of type 

array is the address of element zero of the array. Thus after the 

assignment    

pa = &a[0];    

pa and a have identical values. Since the name of an array is a synonym 

for the location of the initial element, the assignment  

pa=&a[0]  

can also be written as     

pa = a;    

 

Rather more surprising, at first sight, is the fact that a reference to a[i] 

can also be written as *(a+i). In evaluating a[i], C converts it to *(a+i) 

immediately; the two forms are equivalent. Applying the operator & to 

both parts of this equivalence, it follows that &a[i] and a+i are also 

identical: a+i is the address of the i-th element beyond a. As the other 

side of this coin, if pa is a pointer, expressions might use it with a 

subscript; pa[i] is identical to *(pa+i). In short, an array-and-index 

expression is equivalent to one written as a pointer and offset.  There is 

one difference between an array name and a pointer that must be kept in 

mind. A pointer is a variable, so pa=a and pa++ are legal. But an array 



CIT301                                                                      STRUCTURED PROGRAMMING    
 

146 
 

name is not a variable; constructions like a=pa and a++ are illegal.  

When an array name is passed to a function, what is passed is the 

location of the initial element. Within the called function, this argument 

is a local variable, and so an array name parameter is a pointer, that is, a 

variable containing an address. We can use this fact to write another 

version of strlen, which computes the length of a string.                            

int strlen(char *s)                          

{                          

int n;                          

for (n = 0; *s != '\0', s++)                           

n++;                          

return n;                          

}     

 

Since s is a pointer, incrementing it is perfectly legal; s++ has no effect 

on the character string in the function that called strlen, but merely 

increments strlen's private copy of the pointer. That means that calls like     

strlen("hello, world");   

strlen(array); strlen(ptr);      

all work.   

As formal parameters in a function definition,     

char s[]; and char *s;     

are equivalent; we prefer the latter because it says more explicitly that 

the variable is a pointer. When an array name is passed to a function, the 

function can at its convenience believe that it has been handed either an 

array or a pointer, and manipulate it accordingly. It can even use both 

notations if it seems appropriate and clear.  It is possible to pass part of 

an array to a function, by passing a pointer to the beginning of the 

subarray. For example, if a is an array,     

 

f(&a[2])and f(a+2)   

both pass to the function f the address of the subarray that starts at a[2]. 

Within f, the parameter declaration can read   

f(int arr[])  

{ ... } or   

f(int *arr) { ... }     

 

So as far as f is concerned, the fact that the parameter refers to part of a 

larger array is of no consequence.  If one is sure that the elements exist, 

it is also possible to index backwards in an array; p[-1], p[2], and so on 

are syntactically legal, and refer to the elements that immediately 

precede p[0]. Of course, it is illegal to refer to objects that are not within 

the array bound. 

 

  



CIT301         MODULE 8 

 

147 
 

SELF-ASSESSMENT EXERCISE  

 

i. What is a structure in C programming language? 

ii. Declare a structure in C with the flowing members: Employee 

name, identification number, salary.  

iii. Declare a pointer for each of the following integer, double, float 

and character. Use comment to document your declarations. 

 

Solution 

1. What is a structure in C programming language? 

A structure is a key word that create user defined data type in C. 

A structure in C Programming language is a group of variables of 

different data types represented by a single name. It Allows us to 

store a collection of different data types in one memory location 

with one name. Each element of a structure is called a member.  

1 Declare a structure in C with the flowing members: Employee 

name, identification number, salary.  

struct employee Name { char name[50];  

        int idNo;  

      float salary; }; 

3        Declare a pointer for each of the following integer, double, float 

and character. Use comment to document your declarations. 

 

int    *ip;    /* pointer to an integer */ 

double *dp;    /* pointer to a double */ 

float  *fp;    /* pointer to a float */ 

char   *ch     /* pointer to a character */ 

 

4.0 CONCLUSION 
 

Structure is a group of variables of different data types represented by a 

single name. A structure is used to represent information about 

something more complicated than a single number, character, or boolean 

can do. It is more complicated than an array or  single data type. A 

pointer is a variable that stores the memory address of another variable 

as its value. A pointer variable points to a data type (e.g., int) of the 

same type, and is created with the * operator. 

 

5.0 SUMMARY 
 

In this unit, you have learnt about structure and pointers. You have been 

exposed to how to declare a structure, how to initialize a structure, how 

to declare a pointer variable, how to dereference a pointer. You have 

also learnt about pointers and addresses, pointers and functions 

arguments, pointers and arrays etc. 

 



CIT301                                                                      STRUCTURED PROGRAMMING    
 

148 
 

6.0 TUTOR-MARKED ASSIGNMENT  

 

7.0 REFERENCES/FURTHER READING 
 

Fundamentals of Structured Programming, Lubia Vinhas, 2016 

 

Structured Programming with C++ by Kjell Backman, 2012 
 


	CIT 301 COURSE GUIDE.pdf
	MAIN COURSE.pdf
	MODULE 1.pdf
	Efficiency: A program is efficient if it makes use of less amount of memory and processing time and easily translated to machine code. The algorithm should be more effective. Every program needs certain processing time and memory to process the instru...
	Machine Independent: Program should be machine-independent. Program written on one system should be able to execute on many different types of computers without any changes. It is not hardware specific and provides more flexibility.
	Cost Effectiveness: Cost Effectiveness is the key to measure the program quality. Cost must be measured over the life of the program and must include both financial cost and human cost of producing these programs. The benefit of the program must outwe...
	1  Problem Definition:
	2     Program Design:
	3    Coding:
	4    Debugging:
	5    Testing:
	6     Documentation:
	7     Maintenance:

	MODULE 2.pdf
	Data abstraction is the reduction of a particular body of data to a simplified representation of the whole. Abstraction, in general, is the process of refining or taking away or removing characteristics from something in order to reduce it to a set of...

	MODULE 3.pdf
	 Java
	 C++
	 C#
	 Ruby
	 Python
	 TypeScript
	 PHP
	While


	MODULE 4.pdf
	C is used for developing system applications such as:
	 Database Systems
	 Language Interpreters
	 Compilers and Assemblers
	 Operating Systems
	 Network Drivers
	 Word Processors
	There are various reasons why C has become popular. The following are some of the reasons:
	 C can be learnt quickly.
	 C language is reliable, simple and easy to use.
	 C language is a structured language.
	 Modern programming concepts are based on C.
	 It can be compiled on a variety of computer platforms
	 Universities preferred to add C programming in their courseware.
	1. volatile
	2. auto
	3. char
	4. double and float
	6. if and else
	7. break and continue
	8. enum
	9. extern
	10. return
	11. sizeof
	13. int
	14. register
	15. static
	16. struct
	17. union
	18. void
	19. typedef
	20. short, long, signed and unsigned
	21. for
	22. switch, case and default
	23. do-while loop
	do is used along with a while to make a different form of repetition of the statement.
	24. while
	It is used for repeating the execution when the condition is true.


	MODULE 5.pdf
	MODULE 6.pdf
	i. Differentiate between if and if else statements in C programming language using diagram ONLY.
	1     Differentiate between if and if else statements in C programming language using diagram ONLY.
	if statement
	if else statement

	MODULE 7.pdf
	ii. Why is function used in a program?
	2. Why is function used in a program?
	 It provides modularity to the program.
	 Easy code reusability. You just have to call the function by its name to use it.
	 In case of large programs with thousands of code lines, debugging and editing becomes easier if you use functions.
	 A function is independent:
	 It is “completely” self-contained.
	 It can be called at any place in the code and can be ported to another program
	 Reusable: Use existing functions as building blocks for new programs
	 Readable - more meaningful
	 procedural abstraction: hide internal details
	 factoring of code- divide and conquer

	MODULE 8.pdf
	i. What is a structure in C programming language?
	1. What is a structure in C programming language?




