NATIONAL OPEN UNIVERSITY OF NIGERIA

FACULTY OF SCIENCES
DEPARTMENT OF COMPUTER SCIENCE

COURSE CODE: CIT308

COURSE TITLE: FORMAL METHODS AND SOFTWARE DEVELOPME

NT

- T
T

NOUN

National Open University of Nigeria
University Village, Plot 91

Jabi Cadastral Zone

Nnamdi Azikiwe Expressway

Jabi, Abuja

Lagos Office

14/16 Ahmadu Bello Way

Victoria Island, Lagos

Departmental email: computersciencedepartment@adumg
NOUN e-mail: centralinfo@noun.edu.ng

URL: www.nou.edu.ng

First Printed 2022

ISBN: 978-058-557-5

All Rights Reserved

Printed byNOUN PRESS

January 2022

Course Guide
CIT308
FORMAL METHODS AND SOFTWARE DEVELOPMENT

Course Team:

Dr. Moses Ekpenyong & Dr. Francis Osang -
(Developer/Writer)
Prof. Oludele Awodele - Content Editor

Dr. Francis B. Osang — HOD/Internal Quality
Control Expert

Introduction

CIT 308: Formal Methods and Software Developmenis a 3-credit unit course for
students studying towards acquiring a Bachelor@ér&e in Computer Science and
other related disciplines.

The course is divided into 6 modules and 23 studtgsult will first take a brief review
of the concepts of Formal Methods and Software g@reent. This course will then
go ahead to deal with the detailed discussion omdbmethods as well as Software
development. This course also introduces such dthewledge that will enable the
reader have proper understanding of how Formal oastltan be used in Software
Development in order to produce high quality sofevaroduct.

The course guide therefore gives you an overviewlwdt the course CIT 308 is all
about, the textbooks and other materials to beerted, what you expect to know in
each unit, and how to work through the course nater

Course Competencies

The overall aim of this course, CIT 308, is to@alnce you to basic concepts of Formal
Methods and Software Development in order to engble to understand the basic
elements of Formal Methods as well as Software gveent use in design of software
especially, in security and life critical applicats such as aviation etc. In this course
of your studies, you will be put through the defomns of common terms in relation to
Formal Methods and Software Development, stagefiware development life cycle,
requirement specification, development tools etc.

Course Objectives
It is important to note that each unit has speadfifectives. Students should study them
carefully before proceeding to subsequent uniterdiore, it may be useful to refer to
these objectives in the course of your study ofuhi, to assess your progress. You
should always look at the unit objectives after ptating a unit. In this way, you can
be sure that you have done what is required ofagdbe end of the unit.
Below are overall objectives of this course. On plating this course, you should be
able to:

e State why software quality is important

e Outline some of the characteristics of a high-dyaoftware

e Enumerate a typical software development phase

e Define formal methods

Mention the of formal method used in Software Depetent
Mention and the uses of formal methods in Softvizeeelopment
Explain and where to use Formal Methods

Give a description on the need to used formal nustho
Give a background of formal methods

Define the phrase formal methods

State some advantages and disadvantages of foratlbds
Enumerate the stages of formal methods

Enumerate the stages of SDLC

Briefly describe each of the stage of SDLC

Define proposition

Identify proposition operators

Construct and interpret propositions

Construct truth tables

Give a background of formal methods

Discuss formal proof

Mention some terminologies used in mathematicabipro
Briefly explain the four proofing methods

Define a set

Mention and illustrate the terminologies used tectide sets Relationship
Differentiate between finite and infinite elements
Discuss the operations on set with appropriate piesn
Discuss the various stages to apply formal methods
Discuss what to do at various stages

Discuss terminologies used in Z notation

Outline the various functions in Z notation

Relate software development with engineering preces
State some software evolution laws

Discuss E-Type software evolution

Discuss the need of Software Engineering

Outline the characteristics of good software

List the SDLC activities

Explain the SDLC activities with aid of a diagram

List and explain the Software Development Paradigm

Identify the characteristics of a software project

Describe a software project

Justify the need for software project management

Identify the job of a software project manager

Explain the following: project planning, scope mg@ement and project
estimation

Mention at least 3 project management tools

List and explain the four steps in requirement eegring process
Depict the requirement elicitation process withagthm

Mention at least 6 requirement elicitation techeisju

List at least 10 software requirement charactessti
Differentiate between functional and non-functiosaiftware requirements
Mention at 10 user interface requirements

Outline the responsibility of a system analyst

Differentiate between software metric and softwasasures
Software design yields three levels of results. tibenand briefly describe them
Discuss modularization and state its advantages

Differentiate between cohesion and coupling

List and explain any 5 types of cohesion

Mention and discuss difference types of softwaggie

List and explain the different concepts of objedented design
Mention and discuss two generic approaches fowsoft design
Mention and discuss difference types of softwaisgie

List and explain the different concepts of objexdented design
Mention and discuss two generic approaches fowsoft design
Discuss the main concepts used in structured pnagiag
Discuss the concepts used in functional programming

State the coding guideline

Explain software testing

Differentiate between validation and verification

Identify the importance of software testing

Differentiate between manual and automated testing

Identify the basis of software testing

Differentiate between Black-box testing and Whitexbesting

e Mention the various level of testing

e Mention and discuss different types of softwarentemance

e Outline real world factors affecting software maimnce cost
e List software-end factors affecting maintenance cos

e Briefly describe CASE tool

e Mention and discuss different types of CASE tools

e Outline the concern of configuration management

Working Through this Course

To complete this course, you are required to saldthe units, the recommended text
books, and other relevant materials. Each unitatnatsome self assessment exercises
and tutor marked assignments, and at some poitjisncourse, you are required to
submit the tutor marked assignments. There isafgtal examination at the end of this
course. Stated below are the components of thiseand what you have to do.

This course material contains six modules and tyvémir study units as follows:
MODULE 1: AN OVERVIEW OF FORMAL METHODS AND SOFTWAR E
DEVELOPMENT

Unit 1: General Information

Unit 2: Approaches to formal methods and theirinssoftware development

MODULE 2: FORMAL METHODS
Unit 1: Introduction to Formal Methods
Unit 2: Proposition

Unit 3: Predicates

Unit 4. Sets

Unit 5: Series or Sequence

MODULE 3: FORMAL PROOFS AND APPLICATION
Unit 1: Mathematical Proof

Unit 2: Testing

Unit 3: Application to Formal Specification

Unit 4: Z Notation

MODULE 4: SOFTWARE DEVELOPMENT OVERVIEW
Unit 1: Software Development arSbftware Engineering
Unit 2: Software Development Life Cycle

Unit 3: Software Project Management

Unit 4: Software Requirements

MODULE 5: OVERVIEW OF SOFTWARE DESIGN, ANALYSIS AND
DESIGN TOOLS, DESIGN STRATEGIES AND USER INTERFACE BASICS
Unit 1: Software Design Basics

Unit 2: Analysis and Design tools

Unit 3: Software Design Strategies

Unit 4: Software User Interface Design

MODULE 6: OVERVIEW OF DESIGN COMPLEXITY , SOFTWARE
IMPLEMENTATION, TESTING , MAINTENANCE AND CASE TOOLS

Unit 1: Design Complexity

Unit 2: Software Implementation

Unit 3: Software Testing

Unit 4: Software Maintenance

Unit 5: Software Case Tools

References and Further Reading
Every study unit contain list of references andtlver Reading. Do not hesitate to
consult them if need be.

Presentation Schedule

The Presentation Schedule included in your coursemal gives you important dates
for the completion of Tutor Marked Assignments amtbrial attendance. Remember,
you are required to submit all your assignmentghgydue date. You should guard
against falling behind in your work.

Assessment

There are two aspects to the assessment of thrsecdkirst, there are tutor marked
assignments; and second, the written examinatibar€fore, you are expected to take
note of the facts, information and problem solvgaghered during the course. The tutor
marked assignments must be submitted to your ttdorformal assessment, in
accordance to the deadline given. The work subdhitiiéd count for 40% of your total
course mark. At the end of the course, you willchée sit for a final written
examination. This examination will account for 6@%s/our total score.

How to get the Most from the Course

In distance learning, the study units replace thigarsity lectures. This is one of the

great advantages of distance learning; you canaeddvork through specially designed
study materials at your own pace, and at a timepdenxce that suits you best. Think of

it as reading the lecture instead of listeninghi® lecturer. In the same way a lecturer
might give you some reading to do; the study ueitsyou when to read, and which are
your text materials or set books. You are provieeercises to do at appropriate points,
just as a lecturer might give you an in-class ggerc

Each of the study units follows a common formate Tinst item is an introduction to
the subject matter of the unit, and how a particuiat is integrated with the other units
and the course as a whole. Next to this is a sketaohing objectives. These objectives
let you know what you should be able to do by theetyou have completed the unit.
These learning objectives are meant to guide yoiglys The moment a unit is finished,
you must go back and check whether you have aathithes objectives. If you make
this a habit, then you will significantly improveyr chances of passing the course. The
main body of the unit guides you through the regglireading from other sources. This
will usually be either from your set books or frameading section. The following is a
practical strategy for working through this coudégou run into any trouble, telephone
your tutor. Remember that your tutor’s job is tdphgou. When you need assistance,
do not hesitate to call and ask your tutor to prevt.

In addition, do the following:
1. Read this Course Guide thoroughly, it is your fassignment.
2. Organize a Study Schedule. Design a Course Ovetaguide you through the
Course. Note the time you are expected to spendach unit and how the
assignments relate to the units. Important infoionate.g., details of your

9

tutorials, and the date of the first day of the sster is available from the study
centre. You need to gather all the information e place, such as your diary
or a wall calendar. Decide on a method and wrigur own dates and schedule
of work for each unit.

3. Once you have created your own study scheduleyeiything to stay faithful
to it. The major reason students fail is that thetybehind with their course work.
If you get into difficulty with your schedule, plea, let your tutor know before
it is too late for help.

4. Turn to Unit 1 and read the introduction and thgdlves for the unit.

5. Assemble the study materials. You will need yotbs®ks and the unit you are
studying at any point in time.

6. Work through the unit. As you work through it, yaull know what sources to
consult for further information.

7. Keep in touch with your study centre as up-to-daterse information will be
continuously available there.

8. Well before the relevant due dates (about 4 weelksré due dates), keep in
mind that you will learn a lot by doing the assigamts carefully. They have been
designed to help you meet the objectives of theseand therefore will help
you pass the examination. Submit all assignmertttater than the due date.

9. Review the objectives for each study unit to confihat you have achieved
them. If you feel unsure about any of the objeatjveview the study materials
or consult your tutor.

10.When you are confident that you have achieved@swhjectives, you can begin
the next unit. Proceed unit by unit through thersewand try to pace your study
so that you keep yourself on schedule.

11.When you have submitted an assignment to your fatamarking, do not wait
for its return before starting on the next unitelkgo your schedule. When the
assignment is returned, pay particular attentioyioiar tutor's comments, both
on the tutor-marked assignment form and on thenargiassignments.

12.After completing the last unit, review the coursel prepare yourself for the
final examination. Check that you have achieveditiieobjectives (listed at the
beginning of each unit) and the course objectilised in the Course Guide).

13.Finally, ensure that you practice on the persooaimuter as prescribed to gain
the maximum proficiency required.

Facilitation

10

The dates, times and locations of these Tutoridldbesmade available to you, together
with the name, telephone number and address of yatar. Each assignment will be
marked by your tutor. Pay close attention to thewments your tutor might make on
your assignments as these will help in your pragrigkake sure that assignments reach
your tutor on or before the due date.

Your tutorials are important; therefore, try notstap any. It is an opportunity to meet
your tutor and your fellow students. It is alsoogportunity to get the help of your tutor
and discuss any difficulties you might encounteewheading.

Course Information

Course Code: CIT 308

Course Title: FORMAL METHODS AND SOFTWARE DEVELOPN\E
Credit Unit: 3

Course Status:

Course Blurb: This course covers principal topicd=ormal Methods and Software
Development. It will first take a brief review did concepts of Formal Methods and
Software Development. This course will then go ahteadeal with the different stages
involved developing good and functional Softwaree Tourse went further to deal with
stages of SDLC. This course also introduces suuér &nowledge that will enable the
reader have proper understanding of developingbigj functional, maintainable

software.

Semester:

Course Duration: Required

Course Team

Course Developer: ??

Course Writer: Dr. Moses E. Ekpenyong
Department of Computer Science
University of Uyo
Uyo.

Content Editor: ??
??
??

11

??

12

MODULE 1: AN OVERVIEW OF FORMAL METHODS AND SOFTWAR E
DEVELOPMENT

This module is divided into two (2) units

Unit 1; General Information

Unit 2: Approaches to formal methods and their use in sowdevelopment
Unit 1; General Information

Contents

1.0 Introduction

2.0 Intended Learning Outcomes (ILOS)

3.0 Main Content

3.1 The importance of high-quality software
3.2 Characteristics of high-quality software
3.3 The need for precision in the specificatiosaftware
3.4 Typical software development phases
3.5 The role of formal methods

4.0 Self-Assessment Exercise(s)

5.0 Conclusion

6.0 Summary

7.0 References/Further Readings

Contents

1.0Introduction

Software is driving today’s society. It is usecaimost every area of endeavours, if not
all. It therefore becomes imperative, for softwdexelopers to produce software that
meets the user’s need in terms of functionalitijabdity, availability, etc. To achieve
this, the software developer makes use of seveodd and techniques which include
formal methods among others. In this unit, we shwl discussing some shared
characteristics of a high-quality software, thechf® precision in the specification of
software, typical software development phases aaddle of formal methods.

2.0 Intended Learning Outcomes (ILOs)
After studying this unit, you should be able to

e State why software quality is important
e Outline some of the characteristics of a high-dyaoftware

13

e Enumerate a typical software development phase

3.0 Main Content

3.1 The importance of high-quality software

Software development is a vital activity in modesociety, and is likely to have
increasing significance in the future. Software agas our bank accounts, pays our
salaries, controls the aircraft we fly in, reguiaf@wer generation and distribution,
controls our communications, etc. Hence, such so#wshould integrate certain
characteristics that guarantee accuracy and poecisi

3.2 Characteristics of high-quality software
High-quality software shares the following obviaigibutes:
« Intuition and ease of use — the right things happetomatically”
« Efficiency — people use it to get things done glyick
« Correctness — always produces the expected resutdoes not crash!

3.3 The need for precision in the specification «foftware

The notion that software components can be rewssagiincipal motivation of object-
oriented programming, and has virtually becomesipate of programming. To reuse
a previously written software component (or createew one), a software engineer
must have a precise description of its behaviobrs Precision is essential as even a
minor misconception of the function of a compontat is unapparent at the outset
may cause serious errors that are difficult anceagwe to correct later in the process.

3.4 Typical software development phases
Software development is subdivided into phasedairto the following:
1. Requirements analysigdetermine user needs
2. Specification:describe precisely what the role of the softwaitehe
3. Design: determine how to realize the software, and deuise overall
organization
4. Implementationformulate the algorithms and program(s)
5. Verification: certify that the program(s) meet the specification
6. Maintenanceperform ongoing changes and corrections aftestigvare is in
use

3.5 The role of formal methods

14

Formal methods are intended to systematize andduate rigor into all the phases of
software development. This helps us to avoid owdrlgy critical issues, provides a
standard means to record various assumptions aridiales, and forms a basis for
consistency among many related activities. By hong precise and unambiguous
description mechanisms, formal methods facilitdie tinderstanding required to
coalesce the various phases of software developmerd successful endeavour.

The programming language used for software devetopharnishes precise syntax and
semantics for the implementation phase, and thsslegen true since people began
writing programs. But precision in all but this goiease of software development must
derive from other sources. The term “formal metfigastains to a broad collection of
formalisms and abstractions intended to supporraparable level of precision for
other phases of software development. While tlukigres issues currently under active
development, several methodologies have reachegieh df maturity that can be of
benefit to practitioners.

There is a discernible tendency to merge discretih@matics and formal methods for
software engineering (e.g., see the books by Deimae, and Woodcock & Loomes).
Many such topics do indeed support software engimgand it is neither possible nor
desirable to avoid these topics when pursuing fom@hods. But we will not take the
approach that applying discrete mathematics toveoé engineering assures germane
formal methods. The overriding concern of softwamgineering is the creation of high-
guality software systems. With formal methods wespa melding those things that
nurture rigor and precision into this endeavour.il&/bur focus on the activities that
precede the actual programming itself does leatidohine independent abstractions
often associated with mathematics, much of the mahtbas been developed (or
tailored) to suit the context of software creation.

Some specific formalisms used in software develognmelude:
« algebraic specification (including OBJ) — useddpecification and verification.
« predicate logic (including Z) — used for specifioatand verification.
« statecharts — used for specification of “reactisgsStems
o UML — used primarily for design, and also for ragumnents analysis.

4.0 Self-Assessment Exercise(s)
Answer the following questions:

15

1. Why is software quality important in an organizafto

2. Outline some of the characteristics of a high-quaoftware

3. Enumerate the stages in software development

4. What is the role of formal methods in software depment?

5. Outline some specific formalisms used in softwarealiopment
Solution

1. Why is software quality important in an organizafo

Software cost money and time to develop. It theebecomes imperative that software
should be developed to meet users’ expectatioteyins of time, money and to avoid
losses. In critical software, it should avoid dieas Software quality drives
predictability. Do it once and do it right, and thevill be less re-work, less variation
in productivity and better performance overall.drrcts get delivered on time, and they
get built more productively. Poor quality is muclona difficult to manage. Quality
assurance helps identify errors and flaws in tHevsoe code and design throughout
the development process to prevent loss of timeraadey. It ensures that the end
product is competitive, secure, and smoothly perfoits expected functions.

2 Outline some of the characteristics of a highhguaoftware
e Intuition and ease of use — the right things happetomatically”
e Efficiency — people use it to get things done glyick
e Correctness — always produces the expected reswtdoes not crash!

3 Enumerate the stages in software devedopm

Stages of software development are as follows:

1. requirements analysis: determine user needs

2. specification: describe precisely what the rol¢hef software will be
design: determine how to realize the software,dadse overall organization
implementation: formulate the algorithms and proyis
verification: certify that the program(s) meet gpecification
maintenance: perform ongoing changes and correcafier the software is in

o ok w

use.

4 What is the role of formal methods in software depment?

16

The development of a formal specification providesghts and understanding of the

software requirements and the software design.rGavermal system specification and

a complete formal programming language definitibomay be possible to prove that a

program conforms to its specifications. Formal mdthare intended to systematize and
introduce rigor into all the phases of software elegment. This helps us to avoid

overlooking critical issues, provides a standarcmseto record various assumptions
and decisions, and forms a basis for consisten@ngmany related activities.

5 Outline some specific formalisms used in softwareedopment
Some specific formalisms used in software develognmelude:
« algebraic specification (including OBJ) — useddpecification and verification.
« predicate logic (including Z) — used for specifioatand verification.
» statecharts -- used for specification of “reactisgstems.
o UML — used primarily for design, and also for raguanents analysis.

5.0Conclusion
This unit provides general information concernifge tuse of formal methods in
software development.

6.0 Summary

Some of the points highlighted in this unit incluttee importance of high-quality

software, characteristics of high-quality softwathe need for precision in the

specification of software, typical software devetwgnt phases and the role of formal
methods

7.0 References/Further Readings

Barroca L. M., McDermid J. A. (1997). Formal MetlsodJse and Relevance for the
Development of Safety-Critical Systems, THE COMPW&RIEOURNAL, VOL.
35, NO. 6

Bjgrner, D., and Havelund, K (2015). "40 Years ofrRal Methods: Some Obstacles
and Some PossibilitiesM 2014: Formal Methods: 19th International
Symposium, Singapar8pringer. pp. 42—61

FTMS Consultants (M) Sdn Bhd (2011) SD3049 FormattiMds in Software
Engineering Kuala Lumpur, Malaysia

Jackson M, Cousot P., Bowen J. P, Tiziana M., (2@t8tware engineering and formal
methods, ACM

17

Mona Batra, Amit Malik, Dr. Meenu Dave (2020) Fotmislethods: Benefits,
Challenges and Future Directiodournal of Global Research in Computer

Science
Rodhe | and Karresand M (2015). Overview of formathods in software engineering
Wikipedia (2021). Formal methods. Retrieved from:

http://en.wikipedia.org/wiki/Formal_methods
Zoltan 1. (2016) Formal Methods in Software Engnireg Retrieved from:
https://www.foi.se

Unit 2: Approaches to formal methods and their usein software
development

Contents
1.0 Introduction

18

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content

3.1 Definition

3.2 Formal methods in Software Development
3.3 Classification of Formal Methods Semantics
3.4 Uses of Formal Methods

3.5 Applications of formal methods

3.6 In software development

3.7 Software verification

3.8 Why use Formal Methods?

3.9 Some Limitations to Formal methods

3.10 When and where to use Formal Methods?
3.11 Relevant areas of research

4.0 Self-Assessment Exercise(s)

5.0 Conclusion

6.0 Summary

7.0 References/Further Readings

1.0 Introduction

The application of mathematical methods in the Wgraent and verification of
software is very labour intensive, and thus expendn this unit, we shall be looking
at some of the semantics used in formal methogsicagion areas of formal method
(FM), etc.

2.0 Intended Learning Outcomes (ILOs)
After studying this unit, you should be able to

e Define formal methods

e Mention the of formal method used in Software Depeatent
e Mention the uses of formal methods in Software Dgwaent
e Explain and where to use Formal Methods

e Give a description on the need to used formal nustho

3.0 Main Content
3.1 Definition

19

Formal methods in software engineering or develojgraee mathematical techniques
that are used in the design, implementation anthte®f computer systems. These
techniques are necessary for the development aifccagon of software.

3.2 Formal methods in Software Development
Formal methods include:

e Formal specification

e Specification analysis and proof

e Transformational development

e Program verification

3.3 Classification of Formal Methods Semantics
As with programming language semantics, stylesoohal methods may be roughly
classified as follows:

e Denotational semantics, in which the meaning oystesn is expressed in the
mathematical theory of domains. Proponents of soethods rely on the well-
understood nature of domains to give meaning tosffstem; critics point out
that not every system may be intuitively or natiyralewed as a function.

e Operational semantics, in which the meaning of stesy is expressed as a
sequence of actions or a simpler computational imdé®ponents of such
methods point to the simplicity of their modelsaaseans to express clarity;
critics argue that the problem of semantics hasjesn delayed.

e Axiomatic semantics, in which the meaning of thsteg is expressed in terms
of preconditions and post conditions which are tra®ore and after the system
performs a task, respectively. Proponents notedhaection to classical logic;
critics note that such semantics never really desevhat a system does (merely
what is true before and afterwards).

3.4 Uses of Formal Methods
Formal methods can be applied at various pointautiir the development process.

20

Specification

Formal methods may be used to give a descriptiathe®tystem to be developed, at
whatever level(s) of detail desired. This formadcetion can be used to guide further
development activities. Additionally, it can be dge verify that the requirements for
the system being developed have been completelaerarately specified. The need
for formal specification systems has been notedyéars. In the ALGOL 58 report,
John Backus presented a formal notation for deisgriprogramming language syntax,
later named Backus normal form then renamed Badkaisform (BNF).

Development

Once a formal specification has been producedsbeification may be used as a guide
while the concrete system is developed during &sgyth process (i.e., realized typically
in software, but also potentially in hardware).

For example:

e If the formal specification is in an operationaisatics, the observed behaviour
of the concrete system can be compared with thevielr of the specification
(which itself should be executable). Additionallye operational commands of
the specification may be amenable to direct trdiosianto executable code.

e If the formal specification is in an axiomatic sartties, the preconditions and
postconditions of the specification may become réisss in the executable
code.

Verification

Once a formal specification has been developedseeification may be used as the
basis for proving properties of the specificatiamd hopefully by inference of the
developed system).

Human-directed proof

Sometimes, the motivation for proving the corresthef a system is not the obvious
need for reassurance of the correctness of theraydiut a desire to understand the
system better. Consequently, some proofs of caoresstare produced in the style of
mathematical proof: handwritten (or typeset) usuagural language, using a level of

informality common to such proofs. A “good” proaf one which is readable and

understandable by other human readers.

Critics of such approaches point out that the ambignherent in natural language

allows errors to be undetected in such proofsnoftebtle errors can be present in the

21

low-level details and typically overlooked by suploofs. Additionally, the work
involved in producing such a good proof requirehigh level of mathematical
sophistication and expertise.

Automated proof
In contrast, there is increasing interest in praayqroofs of correctness of such
systems by automated means. Automated technigliéstéethree general categories:

e Automated theorem proving, in which a system attsnp produce a formal
proof from scratch, given a description of the sgsta set of logical axioms,
and a set of inference rules.

e Model checking, in which a system verifies certaroperties by means of an
exhaustive search of all possible states that temsysould enter during its
execution.

e Abstract interpretation, in which a system verifaes over-approximation of a
behavioural property of the program, using a fixppocomputation over a
(possibly complete) lattice representing it.

Some automated theorem proofers require guidancéo ashich properties are
“interesting” enough to pursue, while others woilkhaut human intervention.

Model checkers can quickly get bogged down in chrecknillions of uninteresting
states if not given a sufficiently abstract model.

Proponents of such systems argue that the resaits greater mathematical certainty
than human produced proofs, since all the tedicaiaild have been algorithmically
verified. The training required to use such systénalso less than that required to
produce good mathematical proofs by hand, makiaggbhniques accessible to a wider
variety of practitioners.

Critics note that some of those systems are likeles: they make a pronouncement of
truth, yet give no explanation of that truth. Thexalso the problem of “verifying the
verifier”; if the program which aids in the veriéiton is itself unproven, there may be
reason to doubt the soundness of the producedseSadme modern model checking
tools produce a “proof log” detailing each steptheir proof, making it possible to
perform, given suitable tools, independent vertfaa

The main feature of the abstract interpretationr@ggh is that it provides a sound
analysis, i.e., no false negatives are returnedeber, it is efficiently scalable, by

22

tuning the abstract domain representing the prggerbe analyzed, and by applying
widening operators to get fast convergence.

3.5 Applications of formal methods

e Their principal benefits are in reducing the numbkerrors in systems. Their
main area of applicability is in critical systemgh as:
v’ Air traffic control information systems
v' Railway signalling systems
v' Spacecraft systems
v' Medical control systems
v Hardware and software, including routers, Ethersefitches, routing

protocols, and security applications.
e Inthese areas, the use of formal methods is nkady lto be cost-effective
e Formal methods have limited practical applicability

It is more cost effective to first determine wha trucial components of the software
are. These parts can then be isolated and studiddtail by creating mathematical
models and verifying them.

In this course we will focus on some formal methtethiniques which includes model
checking and theorem proving. The first method sa&dinite transition system and

systematically checks whether all the desired ptegsehold for every state of the

system. Because the number of states increasesenally with the size of the model,

this method will often have to limit itself to srhahriants of the system that is under
investigation. An advantage of model checking & tlwhen it finds a problem, it can

indicate how it got into an error state. This imi@tion can be used to improve the
model.

The second method uses general mathematical tessiq reason about the models.
This makes it possible to reason about systemdafvihe number states is unlimited.
For this a price must be paid: the reasoning cawcour fully automatically. By
combining the strong points of model checking; ematon and finding counter
examples, with the more general mathematical p@ivdreorem proving, it takes less
effort to guarantee the reliability of the investigd systems. This is a methodology in
which critical software components are investigategroved and verified, using the

23

earlier mentioned formal methods. Subsequently vdrdied models can be used to
derive (fragments of) computer programs, whichs$athigh reliability demands. These
fragments can then replace the original components.

3.6 Software development

In software development, formal methods are mathiealaapproaches to solving
software (and hardware) problems at the requiresnspecification, and design levels.
Formal methods are most likely to be applied tceetyaéritical or security-critical
software and systems. Software safety assuranodastés, such as DO-178B, DO-
178C, and Common Criteria demand formal methodshat highest levels of
categorization.

For sequential software, examples of formal method$ude the B-Method, the
specification languages used in automated theorewing, RAISE, and the Z notation.
In functional programming, property-based testireps hallowed the mathematical
specification and testing (if not exhaustive tegtiof the expected behaviour of
individual functions.

The Object Constraint Language (and specializatisush as Java Modelling
Language) has allowed object-oriented systems tofobmally specified, if not
necessarily formally verified.

For concurrent software and systems, Petri netscegs algebra, and finite state
machines (which are based on automata theory) &li@eutable software specification
and can be used to build up and validate applicdt&haviour.

3.7 Software verification

Important considerations when dealing with a foreyatem include:
Soundness/Correctness — This property states \tbay property that can be obtained
using the formal system/calculus is semanticallg in some sense. The rule of thumb
here is “What you can prove is also true.”

Completeness — This property is the opposite impba of correctness. It states that
for every true sentence there is also a proofenftihmal system/calculus. The rule of
thumb include: “What is true can also be provemd &xpressive power: “Can |
formulate all my properties in the language?”

Decidability — If a formal system is decidable, nhall proofs can be found
automatically by a program. The rule of thumb hseréCan a computer do my work?”

3.8 Why use Formal Methods?

24

Formal method is useful for:
e Improving the quality of software system
e Fitness of purpose
e Maintainability
e Ease of construction
e Higher confidence in software product
e Revealing ambiguity, incompleteness, and inconststén system
e Detecting design flaws
e Determining correctness
e Incrementally growing an effective solution aftech iteration
e Lowering complexity rate.
e Self-consistency verification.

3.9 Some Limitations to Formal methods
Formal methods have not become mainstream softlem@&lopment techniques as was
once predicted; due to the following reasons:
e The scope of formal methods is limited. They arewell-suited to specifying
and analysing user interfaces and user interaction
e Formal methods are hard to scale up to large sgstem
e Formal methods are time consuming and expensive.
e FM model is difficult to use as a communication treatsm for non-technical
personnel.
e Extensive training is required since only few depelrs have the essential
knowledge to implement the model.

3.10 When and where to use Formal Methods?
e Introduce FM into existing systems to:
v Verify critical properties
v Facilitate maintenance and reimplementation
e Introduce FM into new systems to:
e Capture requirements precisely
v" Reduce ambiguity
v Guide software development process
v’ Basis for testing
v Formalize requirements analysis and design

25

3.11 Relevant arrears of research
e Programming environments
e Formal methods in software development
e Tools that support construction of formal speciiimas
e Design tools that will generate formal specificato
e Problem/specification decomposition
e Procedural and data abstraction
e Synthesis of efficient code
e “Smart” user interfaces

Methods for determining reuse (of design/speciitcest/code)

4.0 Self-Assessment Exercise(s)
Answer the following questions:

1. Define formal methods

2 What are the uses of formal methods in softwareldgwment?

3. Differentiate between human directed proof and mated proof

4 Formal methods can be applied in the productionritical systems: Mention

any 5 of them
5. Write short notes on the following:
a) Denotational semantics
b) Operational semantics
c) Axiomatic semantics

Solutions

1. Define formal methods

Formal methods are mathematical approaches tongplsoftware (and hardware)
problems at the requirements, specification, asthddevels. Formal methods are most
likely to be applied to safety-critical or securdsitical software and systems, such as
avionics software.

They are a particular kind of mathematically rigggdechniques for the specification,
development and verification of software systerfise use of formal methods for
software design is motivated by the expectatioh #sin other engineering disciplines,
performing appropriate mathematical analysis cantrdmute to the reliability and
robustness of a design.

26

2 What are the uses of formal methods in softwareldgwment?
e Specification
e Development
e Verification (Sign off verification, human-directgaoof and automated proof)

3 Differentiate between human directed peow automated proof

In human directed proof, proof of correctness ischaritten or typeset in mathematical
format using natural language. It keeps to a lef/eiformality common to such proofs.
A “good” proof is one which is readable and undandible by other human readers.
Critics of such approaches point out that the ambjignherent in natural language
allows errors to go undetected in such proofs. #aidally, the work involved in
producing such a good proof requires a high let@hathematical sophistication and
expertise.

WHILE

In automated proof, proof of correctness is carogtby automated means. Automated
techniques fall into three general categories:

e Automated theorem proving, in which a system attsnmg produce a formal
proof from scratch, given a description of the sgsta set of logical axioms,
and a set of inference rules.

e Model checking, in which a system verifies certaroperties by means of an
exhaustive search of all possible states that temsysould enter during its
execution.

e Abstract interpretation, in which a system verifges over-approximation of a
behavioural property of the program, using a fixpotomputation over a
(possibly complete) lattice representing it. Som&mated theorem proofers
require guidance as to which properties are "isterg" enough to pursue, while
others work without human intervention. Model cherskcan quickly get bogged
down in checking millions of uninteresting statésot given a sufficiently
abstract model.

27

4 Formal methods can be applied in the prbda of critical systems: Mention
any 5 of them.

Railway/aircraft operating and control systems

Electric power grid systems

First responder communications systems

Online banking systems

Cloud-based data storage and networking systems

SR A o

6 Write short notes on the following:
a) Denotational semantics
b) Operational semantics
c) Axiomatic semantics

Denotational semantics expresses the meaning ygtans using mathematical theory
of domains. Proponents of such methods rely om#ieunderstood nature of domains
to give meaning to the system; critics point oat thot every system may be intuitively
or naturally viewed as a function.

Operational semantics expresses the meaning dtamsyas a sequence of actions of a
simpler computational model. Proponents of suchhoas point to the simplicity of
their models as a means to express clarity; citticsiter that the problem of semantics
has just been delayed.

Axiomatic semantics expresses the meaning oftesys terms of preconditions and
post conditions which are true before and aftesistem performs a task, respectively.
Proponents note the connection to classical lagitics note that such semantics never
really describe what a system does (merely whatiessbefore and afterwards).

5.0 Conclusion

The principal benefit of the application of forrmaéthods in crafting software product
is in the reduction of errors. It is therefore adMile to deploy them in software
development, especially in life and security caltisystems

6.0 Summary

Formal methods refer to mathematically based tegles for the specification,
development and verification of software and hamdwsystems. The approach is
especially important in high-integrity systems, é&xample where safety or security is
important, to help ensure that errors are not duced into the development process.

28

Formal methods are particularly effective earlg@velopment at the requirements and
specification levels, but can be used for a completormal development of an
implementation (e.g., a program). Formal methodsasst described as the application
of a fairly broad variety of theoretical computeiesice fundamentals, in particular
logic calculi, formal languages, automata theong] program semantics, but also type
systems and algebraic data types to problems twamd and hardware specification
and verification. It is very beneficial, thoughaiso has it demerits.

7.0 References/Further Readings

Barroca L. M., McDermid J. A. (1997). Formal MetlsodJse and Relevance for the
Development of Safety-Critical Systems, THE COMPW&RIEOURNAL, VOL.
35, NO. 6

Bjarner, D., and Havelund, K (2015). "40 Years ofrRal Methods: Some Obstacles
and Some PossibilitiesM 2014: Formal Methods: 19th International
Symposium, Singapar8pringer. pp. 42—61

FTMS Consultants (M) Sdn Bhd (2011) SD3049 FormattiMds in Software
Engineering Kuala Lumpur, Malaysia

Jackson M, Cousot P., Bowen J. P, Tiziana M., (2@8tware engineering and formal
methods, ACM

Mona Batra, Amit Malik, Dr. Meenu Dave (2020) Fotmislethods: Benefits,
Challenges and Future Directiodournal of Global Research in Computer

Science
Rodhe | and Karresand M (2015). Overview of formathods in software engineering
Wikipedia (2021). Formal methods. Retrieved from:

http://en.wikipedia.org/wiki/Formal_methods
Zoltan 1. (2016) Formal Methods in Software Engmreg Retrieved from:
https://www.foi.se

MODULE 2: FORMAL METHODS

This module is divided into five (5) units
Unit 1: Introduction to Formal Methods
Unit 2: Proposition

Unit 3: Predicates

29

Unit 4: Sets
Unit 5: Series or Sequence

Unit 1: Introduction to Formal Methods
Contents

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)
3.0 Main Content

3.1 Background

3.2 Formal Method

3.3 Advantages

3.4 Disadvantages

3.5 Critical Software

3.6 Integrity Level

3.7 Stages in Formal Methods

4.0 Self-Assessment Exercise(s)

5.0 Conclusion

6.0 Summary

7.0 References/Further Readings

Contents

1.0 Introduction

When creating a software there are few engineeatages one must follow, to ensure
that the software is built within time and budgEhese stages collectively are called
the software development life cycle (SDLC). The &Ddan be divided into seven (7)
stages: Initial Study, Analysis, Design, Developtnéresting, Implementation and
Review. To develop a high-quality software, whene number of bugs is greatly
reduced, formal method comes into play. Formal oedhused in developing computer
systems are mathematically based techniques faridegy system properties. Such
formal methods provide frameworks within which pkopan specify, develop, and
verify systems in a systematic, rather than adrhacner.

A method isformal if it has a sound mathematical basis, typicallegi by a formal
specification language. This basis provides a meépsecisely defining notions like
consistency and completeness, and, more relevaetifieation, implementation, and
correctness.

30

2.0 Intended Learning Outcomes (ILOs)
After studying this unit, you should be able to
e Give a background of formal methods
e Define the phrase formal methods
e State some advantages and disadvantages of forethbds
e Enumerate the stages of formal methods
e Enumerate the stages of SDLC
e Briefly describe each of the stage of SDLC

3.0 Main Content

3.1 Background

When a new system is to be implemented, the fiegh & to write a requirement
specification (usually in natural language). Thecsfication should correctly describe
the system’s desired behaviour and it should bepteten and unambiguous, which can
be hard to achieve. The specification is then foanted into code by a programmer,
who has to understand the specification correcttyfzandle any ambiguities. Also, the
programmer’s way of coding and solving technicalll@dnges can introduce faults in
the code. Then there is the sheer size of thermysiewadays systems are so big that it
can be hard to keep track of all the parts to nsmke that they correctly follow the
specification. Furthermore, there is often a tednprogrammers working together,
which also is a source of faults since they willralve their own interpretations of the
specification and of the information shared dutimg development process.

During and after the coding of the system, theesy& functionality is usually tested
to make sure that the resulting program satisfies¢quirements and that no errors or
bugs are present. Testing big and complex systamde very time consuming and,
due to the size of the system and the amount oé,cad exhaustive testing is not
practically feasible. Nevertheless, when the syssesafety and security critical, correct
functionality has to be guaranteed, which requeidser exhaustive testing or a way of
proving that the code correctly implements the Bpation.

The concept of formal methods introduces tools &thematically describe a system
(or parts of a system) in a specification and wvprthat the resulting program meets
the requirements described in the specificatioriodnal specification is precise and
there is no risk for misinterpretations. Also,hkte is a proof that the implementation
abides by the specification, then one can be she¢ the programmers have
implemented what is described in the specificatinrpractice, one cannot completely

31

guarantee that the resulting implementation istfneé, since the formal method used
can have defects, or there might be some errtreiptoof. Nevertheless, increased use
of formal methods and tools will result in bettedamore reliable methods and tools.
To summarise: by using formal methods in the systemelopment, errors can be found
earlier and some classes of errors can be neamynaked.

A limitation of formal methods is that they onlyrcée used to prove a system’s
correctness with respect to a specification. Tleegfjust because a program has been
mathematically proved to abide to the specificatithrere is no guarantee that the
specification in itself is correct and fault fré¢evertheless, properties can be proved
on the specification to strengthen the belief thatspecification correctly represents
the desired functionality.

A brief description of the stages of Software Depenent Life (SDLC) will enhance
the understanding application of formal methodsafiware development.

When creating a software there are few engineeatiages that is normally be followed
to ensure that they software is built within theg¢iand budget. These stages collectively
are called the software development life cycle (€L

The SDLC can be divided into seven (7) stages;

1. Initial Study: This is the first time the system development teaeets the clients to
collective information regarding the problem. Notin¢his stage delivers the proposal
and quotation to the clients.

2. Analysis: After the client has agreed to the proposal amcepthe team will go in
and study the current system with the intentiodiszover the source of the problem.
The System analyst will use diagrams and data ct@ie techniques (observation,
inspections, interview, etc) to aid them. Normdiis stage delivers a report stating the
source of the problem and more than one alternabugions.

3. Design: After the client agrees with the analysis findinthe client will choose one
(1) solution. From this one solution the systemigiesr will create the specification.
Take note that different IT section will requirdfdrent specification. For the software
section, the deliverables will take the form of ereen design, logic design,
representation of the codes, etc.

4.DevelopmentBased on the given specification, the respeciivaktion will develop
the solution. For the software section, the deéibobrs will be a full running software
program created from the specification.

5. Testing: The test documents (Test Plan and Test Case)oangaily created by the
System Analyst during the development stages. &sieit (normally a 3rd party) will

32

use the Test Plan and Test Case to complete tiregteBhe deliverables will be a letter
from the tester stating the outcome of the test.

6. Implementation:At this stage onward, the software is no longeorcern, the main
objective now will be to prepare the environmerite Tmplementation plan will list the
tasks necessary to prepare the environment to awgegpsoftware, such as installation,
training, conversion of data, change over methtad, Tdhere are many deliverables here
depending on what is listed in the implementatitampFor example, for user training
a user’'s manual is normally created.

7. Review:This is the final stage where the software user taam will sit down to
review the software performance and to decide aggbtmte on the maintenance
contract. If all goes well, normally but not neaayss a sign off letter will be the last
deliverables.

3.2 Formal Method

Formal method is a way to take the specificationitf@n in natural language) and
converts it into its mathematical equivalent. Thiags normally used in the SDLC

Analysis and Design stages. The natural languagellyscontains ambiguous,

incomplete and inconsistent statements.

Once a specification in English for example is $tated to a mathematical form, it will

remove all ambiguity and uncertainty in these staiats.

Formal method will also bring to light all differeprobable perspective to any given
variables and functions that could have been hiddrnd the English language.

This can be done using a number of formal languages as Z notation, VDM,

Algebra, Functional Programming, etc.

Creating software need not use formal method. Hdraeng formal method embedded
into the SDLC does give the software huge advastam®l also a new set of
disadvantages

In computer science, formal methods are matheniigtiegorous techniques and tools
for the specification, design and verification affterare and hardware systems.
Mathematically rigorous means that the specificatioonsists of well-formed
statements using mathematical logic and that adbwarification consists of rigorous
deductions in that logic. The strength of formaltmoels is that they allow for a
complete verification of the entire state spacthefsystem and that the properties that
can be proved to hold in the system will hold fdrpmssible inputs. When formal
methods cannot be used through the entire develapmnecess (due to the complexity

33

of the system, lack of tool or other reasons), ttey still successfully be used on parts
of the system, for example; for the requirements laigh-level design or only on the
most safety or security critical components.

The diversity of available formal methods is a testithe different modelling methods
and proof approaches needed by different applicaiomains. Also, different
development phases of a system might require difteools and techniques.
Although many developed formal methods are the lrest research efforts in
universities, more and more tools and techniguesasailable outside the academic
community. Several of the standards used for syslemelopment require formal
methods at the highest levels of accreditation.

3.3 Advantages
Some of the (plausible) advantages of the use ahdb methods for software
development are as follows.

o The development of a formal specification providasights into and an
understanding of the software requirements andveoét design. This reduces
requirements errors and omissions. It providessastfar an elegant software
design.

Indeed, it is sometimes helpful to develop a forsgcification ofan existing
systemif that system is complex, and it is to be changedeplaced, since this
can detect subtle errors that would otherwise lbtuded in the modified (or
new) system. In some editions of his book, Pressmamtions a case involving
the development of an operating system. Here gabglthis technique has been
used to detect errors in VLSI chips before the slhigve been fabricated.

« Formal software specifications are mathematicatieatand may be analysed
using mathematical methods. In particular, it may fpossible toprove
specification consistency and completeness. Itatsybe possible to prove that
an implementation conforms to its specificatione Ebsence of certain classes
of errors may be demonstrated. However, prograrficegion is expensive and
the ability to reason about the specification ftseprobably more significant.

o Formal specifications may be automatically procésSoftware tools can be
built to assist with their development, understagdi and debugging.
Sommerville discusses the possibility of ““animgtifiormal specifications in
order to produce prototypes of systems.

34

« Formal specifications may be used as a guide tdesier of a component in
identifying appropriate test cases. For exampleynation'spreconditionsand
postconditionsan be used to design (black box) tests, atldss invariantcan
be useful when testing a class in an object-oréesiestem. These can all be
written explicitly in (or deduced from) formal spications.

NOTE: Formal Method forces the System Analyst &wsigner to think carefully
about the specification as it enforces proper esgging approach using discrete
mathematics.

Formal Method forces the System Analyst and Desigmsee all the different possible
states for any given variables and functions thilisawoid many faults and therefore
reduces the bugs and errors from the design stagard.

3.4 Disadvantages

Disadvantages of formal methods include the faat these methods aren’t always
appropriate (there are some kinds of requiremdrds rieally are more easily, and
accurately, specified using pictures with annotef)p and involve the difficulty of
adopting such methods in industry.

« Software management is often conservative and vgillurg to adopt new
techniques for which payoff is not obvious. It iffidult to demonstrate that the
relatively high cost of developing a formal systspecification will reduce
overall software development costs. In this respibet use of mathematics in
software engineering is different from in other egring disciplines:
Mathematical analysis of physical structures casultein cost savings in
materials and allows cheaper designs to be used.

« Some software engineers, particularly those inasgmositions, have not been
trained in the techniques needed to develop forsoétware specifications.
Developing specifications requires a familiaritythwdiscrete mathematics and
logic. Inexperience with these techniques makesdénelopment of formal
specifications more difficult than it would be othese.

o System customers are unlikely to be familiar witbrnial specification
techniques. They may be unwilling to fund developtmactivities that they
cannot easily monitor.

« Some classes of software system requirements #reulito specify using
existing techniques. In particular, current teches cannot be used to specify

35

the interactive components of user interfaces. Sanasses of parallel
processing systems, such as interrupt-driven systara difficult to specify.

« There is a widespread ignorance of the practicalitycurrent specification
techniques and their applicability. The technighase been used successfully
in a significant number of nontrivial developmenbjpcts.

« Most of the effort in specification research hasrbeconcerned with the
specification of languages and their theoreticalarpinnings. Relatively little
effort has been devoted to method and tool support.

NOTE: Formal Method requires knowledge of discretghematics; and will obviously
slow down the analysis and design stage resountesrae; and therefore also the cost
of the project.

There are too many different formal methods andtmbem are not compatible with
each other.

Formal methods do not guarantee that a specifitaioomplete. For each variable and
function, it just forces the System Analyst and iDesr to view the specification from
a different perspective but it does not guarartteéariable and functions will not be
left out.

3.5 Critical Software

Having known the advantages and disadvantagesmifanethods, most clients will
see the justification to use formal methods fatical systems, but this thinking is now
slowly fading as most clients realize the imporggnmost saving and convenience of
having a good specification initially in the SDLC.

There are basically three (3) different types dfcal systems:

1. Business Critical System

Business Critical System refers to a system whieeehibnesty and integrity of the
business is paramount. All data kept in the systaust be accurate at all times. If a
fault is found the entire process must be stoppedldw correction. Most government,
business and manufacturing company that requingsig@at are business critical.

2. Mission Critical System

Mission Critical System refers to a system whesedbntinuous running of the system
Is paramount. Accuracy takes a lower priority coregao the running of the system.
Automatic Teller Machine, Car ticketing system, itaSystems are mission critical.
3. Safety Critical System

36

Safety Critical System refers to a system wherestfety of everyone directly or
indirectly affected by the system is paramount. dtiemality and Accuracy takes a
lower priority compared to the safety of the usdfest medical, construction and oil
rig systems are safety critical system.

Many organizations today require a combinationhafse systems; as such you may
have a business mission critical system, a bussedgesy critical system, etc.

3.6 Integrity Level

Integrity level refers to how much cost an orgatzais willing to spend and how
much risk an organization is willing to take whesvdloping software. The table below
categorises the integrity levels by cost and rgly examples.

Integrity Level Cost Risk Example of System
1 Low Low Address Book System
Low High Global Tsunami Warning System
2
High Low Waste Water System
3 High High Muclear Reactor System

3.7 Stages in Formal Methods

1. Formal Specification

This is where normal system specification is usad &anslated using a formal
language into a formal specification. There aredadly two types of formal language:
Model Oriented (VDM, Z, etc.) and Properties Orezh{Algebraic Logic, Temporal
Logic, etc). This is the cheapest way to handlenédrmethod.

37

The formal specification generally does the follogvprocess.

e Get user requirement usually from the specificatwrtten in the natural
language.

e Clarify the requirement using mathematical approddms is to remove all
ambiguous, incomplete and inconsistent statement.

e After statements are clearly identified. Then fadtlassumptions (Things that
must be in place before something can happen)disdate or not stated within
the clarified requirement.

e Then expose every possible logic defect (fault)oorission in the clarified
requirement.

¢ |dentify what are the exceptions (bad things) thdltarise if the defects are not
corrected.

e Find a way to test for all the possible each exoapOnly when you can test for
an exception can you be able to stop that excefrioon happening.

2. Formal Proof

This level studies the formal specification andiests the goals of the formal specifics.
Then fixed rules are created and with these rukgs Isy step instructions are listed to
achieve the specified goals. This is relativelyagier but there are more task steps.

3. Model Checking

This level studies the formal specification andrial proof deliverables to make sure
that the system or software contains ALL possiblegpprties to be able to handle all
possible scenarios that could happen for a givegipation. This stage is beginning
to be more expensive.

4. Abstraction

This level uses mathematical and physical modelsdate a prototype of the entire
system for simulation. This prototype is used t@ul on the properties and
characteristic of the system. This is the most egpe formal method.

Integrity Level and Formal Method Stages

The integrity level decided by the organizationlwétermine how deep to go into the
Formal Method stage.

38

Remember that the deeper into the formal methodhee®re time and resources thus
more cost will be incurred. The Table below classithe integrity level by cost and
risk, with the stages of formal method.

Integrity Level Cost Risk Formal Method Stages
1 Low Low Formal Specification
Low High Formal Proof
2
High Low Model Checking
3 High High Abstraction

4.0 Self-Assessment Exercise(s)
Answer the following questions:
1. Briefly discuss the background of formal methods
2. Enumerate the stages of formal methods
Briefly describe each of the stage of SDLC
Define the phrase formal methods
State some advantages and disadvantages of foretabds

ok w

Solutions

1 Briefly discuss the background of formal methods

Functional and non-functional requirements of avgafe system are very important.
When the system is developed, correct functionality to be kept high. This requires
either exhaustive testing or a way of proving thet code correctly implements the
specification.

The concept of formal methods introduces tools &thmmatically describe a system
(or parts of a system) in a specification and wvprthat the resulting program meets
the requirements described in the specificatioriodnal specification is precise and
there is no risk for misinterpretations. Also,hkte is a proof that the implementation
abides by the specification, then one can be shat the programmers have
implemented what is described in the specification.

In practice, one cannot completely guaranteetttgtesulting implementation is fault
free, since the formal method used can have defarctisere might be some error in the

39

proof. Nevertheless, increased use of formal metlaod tools will result in better and
more reliable methods and tools. To summarisesiygu/ormal methods in the system
development, errors can be found earlier and sdasses of errors can be nearly
eliminated.

A limitation of formal methods is that they onlyrcée used to prove a system’s
correctness with respect to a specification. Tleegfjust because a program has been
mathematically proved to abide to the specificatihrere is no guarantee that the
specification in itself is correct and fault fré¢evertheless, properties can be proved
on the specification to strengthen the belief thatspecification correctly represents
the desired functionality.

2 Enumerate the stages of formal methods
The following are the stages of formal methods:
1. Formal Specification
2. Formal Proof
3. Model Checking
4. Abstraction

3 Briefly describe each of the stage of SDLC

1. Initial Study: This is the first time the system development teaeets the clients to
collective information regarding the problem. Notipn¢his stage delivers the proposal
and quotation to the clients.

2. Analysis: After the client has agreed to the proposal amcepthe team will go in
and study the current system with the intentiodiszover the source of the problem.
The System analyst will use diagrams and data ctmie techniques (observation,
inspections, interview, etc) to aid them. Normdliis stage delivers a report stating the
source of the problem and more than one alternablugions.

3. Design: After the client agrees with the analysis findinthe client will choose one
(1) solution. From this one solution the systemigiesr will create the specification.
Take note that different IT section will requirdfdrent specification. For the software
section, the deliverables will take the form of eregn design, logic design,
representation of the codes, etc.

4.DevelopmentBased on the given specification, the respeciivakction will develop
the solution. For the software section, the deéiabs will be a full running software
program created from the specification.

40

5. Testing: The test documents (Test Plan and Test Case)oangaily created by the
System Analyst during the development stages. &sieit (normally a 3rd party) will
use the Test Plan and Test Case to complete tiregteBhe deliverables will be a letter
from the tester stating the outcome of the test.

6. Implementation:At this stage onward, the software is no longeorcern, the main
objective now will be to prepare the environmerite Tmplementation plan will list the
tasks necessary to prepare the environment to awcegpsoftware, such as installation,
training, conversion of data, change over methtad, Tdhere are many deliverables here
depending on what is listed in the implementatitampFor example, for user training
a user’'s manual is normally created.

7. Review:This is the final stage where the software user t@am will sit down to
review the software performance and to decide aggbtmte on the maintenance
contract. If all goes well, normally but not neaayss a sign off letter will be the last
deliverables.

4 Define the phrase formal methods

Formal methods are mathematical approaches tongplsoftware (and hardware)
problems at the requirements, specification, asthddevels. Formal methods are most
likely to be applied to safety-critical or securisitical software and systems, such as
avionics software.

They are a particular kind of mathematically rigggdechniques for the specification,
development and verification of software systerfise use of formal methods for
software design is motivated by the expectatioh #sin other engineering disciplines,
performing appropriate mathematical analysis candwgributed to the reliability and
robustness of a design.

5 State some advantages and disadvantddgermal methods
Advantages

1. Discovers ambiguity, incompleteness, and inconscstén the software.

2. Offers defect-free software.

3. Incrementally grows in effective solution after eai@ration.

4. This model does not involve high complexity rate.

5. Formal specification language semantics verify-selisistency.
Disadvantage

1. Time consuming and expensive.

41

2. Difficult to use this model as a communication maukm for non technical
personnel.

3. Extensive training is required since only few depelrs have the essential
knowledge to implement this model.

5.0 Conclusion

Formal methods can be applied at different stagheoSDLC. It can be applied at any
stage but the earlier it is applied the betteis wery useful, most especially at the
specification and design stages. Its advantagesveigh its disadvantages.

6.0 Summary

Formal Method forces the System Analyst and Desigmehink carefully about the
specification as it enforces proper engineering@ggh using discrete mathematics. In
this unit we discussed the following:

Background

Formal Method

Advantages

Disadvantages

Critical Software

Integrity Level

Stages in Formal Methods

7.0 References/Further Readings

Barroca L. M., McDermid J. A. (1997). Formal MetlsodJse and Relevance for the
Development of Safety-Critical Systems, THE COMPW&RIEOURNAL, VOL.
35,NO. 6

Bjarner, D., and Havelund, K (2015). "40 Years ofrRal Methods: Some Obstacles
and Some PossibilitiesM 2014: Formal Methods: 19th International
Symposium, Singapar8pringer. pp. 42—61

FTMS Consultants (M) Sdn Bhd (2011) SD3049 FormattiMds in Software
Engineering Kuala Lumpur, Malaysia

Jackson M, Cousot P., Bowen J. P, Tiziana M., (2@t8tware engineering and formal
methods, ACM

Mona Batra, Amit Malik, Meenu Dave (2020) Formal thieds: Benefits, Challenges
and Future Direction]Journal of Global Research in Computer Science

Rodhe | and Karresand M (2015). Overview of formathods in software engineering

42

Wikipedia (2021). Formal methods. Retrieved from:
http://en.wikipedia.org/wiki/Formal_methods
Zoltan 1. (2016) Formal Methods in Software Engnireg Retrieved from:
https://www.foi.se

Unit 2: Proposition
Contents
1.0 Introduction
2.0 Intended Learning Outcomes (ILOS)
3.0 Main Content
3.1 Introduction to Proposition
3.2 Connectives
3.2.1 AND Connective
3.2.2 OR Connective
3.2.3 Implies Connective (ie If... Then...)
3.2.4 |Iff
3.2.5 Not Connective
3.2.6 Comments
3.2.7 Tautologies and Consistency
3.3 Truth Table
3.4 Truth Table and Proposition
3.5 Result terminology
4.0 Self-Assessment Exercise(s)
5.0 Conclusion
6.0 Summary
7.0 References/Further Readings

Contents

1.0Introduction

Proposition is a declarative statement that caultrigseither true or false. The statement
must be a constant thus the value cannot change.

2.0 Intended Learning Outcomes (ILOs)
After studying this unit, you should be able to

43

e Define proposition

¢ |dentify proposition operators

e Construct and interpret propositions
e Construct truth tables

3.0 Main Content

3.1 Introduction to Proposition

Proposition is a declarative statement that canltrigseither true or false. The statement
must be a constant thus the value cannot change.

In formal methods, the natural language scansrfiggsitions. Each proposition (either
true or false) will be translated into an expressisually joined using operators, and
all the possible value for each proposition will listed in a truth table to cover all
possible values.

For example:
Statement Result
FTMS College KL is a college. True
FTMS College KL is not a college False
“liar paradox”

If two statements have the same meaning, thatnséattieor proposition is considered to
be equal even if they are spoken in different farardanguage.
When most people say ‘logic’, they mean either psmjonal logic or first-order
predicate logic. However, the precise definitioquste broad, and literally hundreds of
logics have been studied by philosophers, compgientists and mathematicians.
Any ‘formal system’ can be considered a logic i#s:

e a well-defined syntax;

e a well-defined semantics; and

e a well-defined proof-theory.

The syntax of a logic defines the syntactically ptaiele objects of the language, which
are properly called well-formed formulae (wff). (Weall just call them formulae.). The

semantics of a logic associate each formula witmemning. The proof theory is

concerned with manipulating formulae accordingddain rules.

The simplest, and most abstract logic we can sitdglled propositional logic.

44

Definition: A proposition is a statement that can be either or false; it must be one
or the other, and it cannot be both.

EXAMPLES. The following are propositions:
e the reactor is on;
e the wing-flaps are up;
e John Major is prime minister.
whereas the following are not:
e are you going out somewhere?
o 2+3

It is possible to determine whether any given stat& is a proposition by prefixing it
with:

It is true that ...

and seeing whether the result makes grammaticaésen

We now define atomic propositions. Intuitively, teesre the set of smallest
propositions.

Definition: An atomic proposition is one whose truth or fgisibes not depend on the
truth or falsity of any other proposition. So, thié above propositions are atomic.

Now, rather than write out propositions in full, well abbreviate them by using
propositional variables. It is standard practiceise the lower-case roman letters p, q,
r, ... to stand for propositions. If we do this, mest define what we mean by writing
something like:

Let p be John Major is prime Minister.
Another alternative is to write something like ‘céar is on’, so that the interpretation
of the propositional variable becomes obvious.

3.2 Connectives
The study of atomic propositions is pretty boringe introduce a number of
connectives which will allow us to build up complgsopositions.
The connectives we introduce are:
Aand (&or.)
v or (Jor +)

45

= not (~)
= implies or—)
s iff

Some books use other notations; these are givearentheses.

3.2.1 AND Connective

Any two propositions can be combined to form a dhproposition called the
conjunction of the original propositions.

Definition: If p and q are arbitrary propositioneeh the conjunction of p and q is
written pAg and will be true iff both p and q are true

We can summarise the operatiomah a truth table. The idea of a truth table famso
formula is that it describes the behaviour of arfola under all possible interpretations
of the primitive propositions the are included Ire tformula. If there are n different
atomic propositions in some formula, then thereZaréifferent lines in the truth table
for that formula. (This is because each propositiam take one 1 of 2 values — true or
false.) Let us write T for truth, and F for falsity

Then the truth table foram is:

P19 |pPNq
F][F[F
FIT| F
T|F| F
T|T| T

3.2.1 OR Connective

Any two propositions can be combined by the wor®R*@ form a third proposition
called the disjunction of the originals.

Definition: If p and q are arbitrary propositiortseh the disjunction of p and q is written
pvq and will be true iff either p is true, or q isié; or both p and q are true.

46

The operation o¥ is summarised in the following truth table:

pPlg|lprVyg
FIF| F
FIT| T
T|\F| T
T|T| T

3.2.3 Implies Connective (i.e., If... Then...)
Many statements, particularly in mathematics, &até@form: if p is true then q is true.
Another way of saying the same thing is to write:

p implies g.
In propositional logic, we have a connective tl@nhbines two propositions into a new
proposition called the conditional, or implicatiah the originals, that attempts to

capture the sense of such a statement.

Definition: If p and g are arbitrary propositions, then thedibonal of p and q is written
p=q and will be true iff either p is false or q iger

The truth table fopis:

Pl9|P=1
FIF| T
FIT| T
T|\F| F
TIT| T

The=operator is the hardest to understand of the opsrate have considered so far,
and yet it is extremely important. If you find iffttult to understand, just remember
that the p>q means ‘if p is true, then q is true’. If p isda) then we don’t care about g,
and by default, make=pq evaluate to T in this case.

Terminology: if ¢ is the formula p>q, then p is the antecedent @fand q is the
consequent.

47

3.2.4 |Iff
Another common form of statement in maths is: fwus if and only if, q is true. The
sense of such statements is captured using thadimmal operator.
Definition: If p and q are arbitrary propositionegih the biconditional of p and q is
written:
p<=q
and will be true iff either:
1. p and q are both true; or
2. p and q are both false.

The truth table for is:

Plalreg
F[F| T
FIT| F
T|F| F
T|T| T

If p&qis true, then p and g are said to be logicallyivaent. They will be true under
exactly the same circumstances.

3.2.5 Not Connective
All of the connectives we have considered so faehmeen binary: they have taken two
arguments. The final connective we consider heweasy. It only takes one argument.
Any proposition can be prefixed by the word ‘notféom a second proposition called
the negation of the original.
Definition: If p is an arbitrary proposition, themetnegation of p is written

p
and will be true iff p is false.
Truth table for-:

PP
F| T
T | F

3.2.6 Comments
We can nest complex formulae as deeply as we Wéatcan use parentheses i.e., ‘(’,
‘)’, to disambiguate formulae.

48

EXAMPLES. If p, g, r, s and t are atomic proposigpthen all of the following are
formulae:

pPAQ=T

PA(G=T)

(PA(g=T))VS

((pA(g=T))Vs)At
whereas none of the following is:

pA

PAQ)

p—|

3.2.7 Tautologies and Consistency

Given a particular formula, can you tell if it rsi& or not? No, you usually need to know
the truth values of the component atomic propasstio order to be able to tell whether
a formula is true.

Definition: A valuation is a function which assigns a truthueato each primitive
proposition.

In Modula-2, we might write:

PROCEDURE Val (p : AtomicProp): BOOLEAN;

Given a valuation, we can say for any formula whethis true or false.
EXAMPLE. Suppose we have a valuation v, such that:

v(p) = F
v(g) =T
v(r)=F

Then the truth value of ym) =r is evaluated by:
(v(p)vv(a)) =v(r) (1)
= (FvT) =F (2)
=T=F (3)
=F (4)
Line (3) is justified since we know thavF =T.
Line (4) is justified since BF = F. If you can’t see this, look at the truthlésbfor
vand=.

49

When we consider formulae in terms of interpretajoit turns out that some have
interesting properties.

Definition:

1. A formula is a tautology iff it is true underezy valuation;

2. A formula is consistent iff it is true underl@ast one valuation;

3. A formula is inconsistent iff it is not made érunder any valuation.

Now, each line in the truth table of a formula esponds to a valuation. So, we can
use truth tables to determine whether or not foamuare tautologies.

3.3 Truth Table

Truth tables is used to tell whether a propositian#&rue or false not only for one (1)
instance but for all possible instance of the \@dea

Since proposition is either true or false thuscae use a truth table to list down all the
position state of that proposition.

Proposition: A = Ali is a boy.

Possible value: true or false therefore in a ttatite.
(A) Aliis a boy.
-

F

Proposition: A = Aliis NOT a boy or NOT (Ali islaoy)
Possible value: true or false therefore in a ttatie.

With a NOT operator true becomes false and falserbe true.

A | Result (mA)
T |F

F T

For every increase in proposition, there is a deuitrease in possible value.
Proposition: Ali is a boy and Mary is a girl. AAti is a boy M = Mary is a girl

Notice that this is actually two propositions jewth the AND operator. We see it as A
M

Possible value: true or false for A and possibleezarue or false for M

With an AND operator both statements must be tnea the join statement will be true.

50

A__[M_[Result(A*M)
T [T [T
T |F_[F
F [T [F
F _[F_|[F

Once we understand the above explanation, we carthgs same principal for the
remaining proposition operators.

A M Result (Av M)
T T T
T |F [T
OR F [T [T
F _[F_[F
A |m |Resuit(a @ wm
T T F
Different T b T
F T T
F_[F_[F

A more complex proposition

(P->Qv(Q->P)

P Q P—-Q |[Q—> P |[Result(P - Q)v(Q —» P)
T T T T T
T F F T T
F T T F T
F F T T T
Precedence of operation
Precedence | Symbol | Meaning Example
1 0
2 r NOT Fail means NOT Pass
3 n AND Hard work AND good attitude
Conjunction
4 v OR Code in Java OR Code in C++
Disjunction
5 — Conditional If you pass then you get reward
Implies
Equals Pass if and only if marks above
“ Bi-directional 40
6 Bi-implication
® Different Success is different from
Exclusive Failure

51

4.0 Self-Assessment Exercise(s)
Answer the following questions:
1. State the rules that governs the results of ogaraésulting from the joining of
two propositions using OR, implies, and Difference
2. lllustrate tautology and consistency with an exampl
3. Construct a truth table with 3 inputs X, Y and &r AND operator Solutions
4. Construct a truth table with 3 inputs X, Y and 4r ARND operator Solutions

Solutions

1. State the rules that governs the results of omeraésulting from the joining of
two propositions using OR, implies, and Difference

The rules for OR

Any two propositions can be combined by the wor@&®*@ form a third proposition

called the disjunction of the originals.

Rule: If p and g are arbitrary propositions, thiea disjunction of p and g is writteivg

and will be true iff either p is true, or g is trw both p and g are true.

The rules for implies:

If p and g are arbitrary propositions, then theditbonal of p and q is writtensq and

will be true iff either p is false or q is true.

The rules for difference (XOR &)

Difference or Exclusive OR or exclusive disjunctiera logical operation that is true if

and only if its arguments differ (one is true, tiker is false).

2 lllustrate tautology and consistency withexample

A formula is a tautology iff it is true under evergluation. Tautology is a proposition
that is always true.

Example: pv -p

A formula is consistent iff it is true under at$¢ane valuation.

3 Construct a truth table with 3 inputs X, Ydah For AND operator

X Y Z Output (X\Y AZ)
0 0 0 0
1 0 0 0
0 1 0 0
1 1 0 0

52

X Y Z Output (XAY AZ)

0 0 1 0

1 0 1 0

0 1 1 0

1 1 1 1

3 Construct a truth table with 3 inputs X, Y and @. ©OR operator

X Y Z | Output (XvYVZ)

0 0 0 0

1 0 0 1

0 1 0 1

1 1 0 1

0 0 1 1

1 0 1 1

0 1 1 1

1 1 1 1

5.0 Conclusion

Proposition is a formalism that can be used invai® development to remove
ambiguity in requirement specification. It usefolhunting and removing bugs and
errors during software testing

A declarative sentence that is either true or fdisenotboth, is a proposition

6.0 Summary

In this unit propositional logic was introduced.releve discussed several Connectives
which include AND, OR, NOT, etc. We also illustrafgroposition with the use of truth
table.

7.0 References/Further Readings

Barroca L. M., McDermid J. A. (1997) Formal Methodlisse and Relevance for the
Development of Safety-Critical Systems, THE COMPW&RIEOURNAL, VOL.
35, NO. 6

53

Bjarner, D., and Havelund, K (2015). "40 Years ofrRal Methods: Some Obstacles
and Some PossibilitiesM 2014: Formal Methods: 19th International
Symposium, Singapar8pringer. pp. 42—61

FTMS Consultants (M) Sdn Bhd (2011)SD3049 Formaltidds in Software
Engineering Kuala Lumpur, Malaysia

Jackson M, Cousot P., Bowen J. P, Tiziana M., (2@t8tware engineering and formal
methods, ACM

Mona Batra, Amit Malik, Meenu Dave (2020). Formaétidods: Benefits, Challenges
and Future Direction]Journal of Global Research in Computer Science

Rodhe | and Karresand M (2015). Overview of formakthods in software engineering

Wikipedia (2021). Formal methods Retrieved from.
http://en.wikipedia.org/wiki/Formal_methods

Zoltan 1. (2016) Formal Methods in Software Engmeg Retrieved from:

https://www.foi.se

54

Unit 3: Predicates

Contents

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content

3.1 Introduction to Predicates
3.1.2 Bound and Free (Bound) variables
3.1.1 Predicates and Truth Table

3.2 Existential

3.3 Universal

4.0 Self-Assessment Exercise(s)

5.0 Conclusion

6.0 Summary

7.0 References/Further Readings

Contents
1.0 Introduction
A predicate is a relation among objects, andnis@gis of a condition part and an action
part, IF (condition) and THEN (action). Predicatkat have no conditional part are
facts.
2.0 Intended Learning Outcomes (ILOS)
After studying this unit, you should be able to
e Give a background of formal methods
e State some advantages and disadvantages of forethbds
e Enumerate the stages of formal methods
e Enumerate the stages of SDLC
e Briefly describe each of the stage of SDLC

3.0 Main Content

3.1 Introduction to Predicate

In formal methods, the natural language scans fedipates. Each function and
variables (bounded or free) will be translated iatoexpression also usually joined
using operators. Then all possible qualifiers Wwél listed. Sometime a truth table is
used to cover all possible value.

55

But this is not practical as most statement actw@htains variables and changes in the
variables will change the validity of the statemémttrue or false, because some
statements refer to a set of different elements.
Therefore, we use predicate to handle such statefanthis subject we will use First-
Order Logic only.
To use predicate there must be at least two (2)ei¢s;

1. A variable or a constant

2. A function that will be performed on or by thariable(s)

For example:

An ostrich has wing and can fly; a eagle has wimgj @an fly
The constant object here is “Wing”

The variable object here is either “Ostrich” or tfel

The function here is “Fly”

Constant / Varniable | Function Resuit
Wing / Ostrich Fly(Wing, Ostrich) | False
Wing / Eagle Fly(Wing, Eagle) | True

Predicate quantifiers
The following are quantifiers that can be use \aifbredicate;

Symbol | Meaning Example

| Existential There exists some or
For some the elements
including itself
v universal For every element
For all the elements obviously
including itself

Quialifier is normally place with an object (varialdr constant)
Assuming a function call fly with only one (1) s#tobject Airplane, therefore using
the above qualifier we can have two (2) differaatesments.

VAirplane Fly (Airplane) = All airplane can fly
JAirplane Fly (Airplane) = Some airplane can fly

56

If we have two sets of Airplane (Plane A and Pl&)aising the above “Fly Faster”
function we can have four (4) different statemeRtane A is denoted as A and Plane
B is denoted as

B.

VYA VB Fly Faster (A, B) = All Plane A fly faster then All Plane B

YA 3B Fly Faster (A, B) = All Plane A fly faster then Some Plane B
JA VB Fly Faster (A, B) = Some Plane A fly faster then All Plane B
3A 3B Fly Faster (A, B) = Some Plane A fly faster then Some Plane B

If we have two sets of different object Boys andl$Gusing the above “Run Faster”
function we also have four (4) different statemeBisys is denoted as B and Girls is
denoted as G.

vB vG Run Faster (B, G) = All Boys run faster then All Girls

¥vB 3G Run Faster (B, G) = All Boys run faster then Some Girls
B vG Run Faster (B, G) = Some Boys run faster then All Girls
B 3G Run Faster (B, G) = Some Boys run faster then Some Girls

Predicates and Operators
All the operators used with proposition can be usdgdin different predicates.

Predicate Example Symbol | Meaning
= Fly (Airplane) r Airplane cannot fly
Fly (Airplane) * Fly (Birds) o Airplane fly AND Bird fly
Fly (Aurplane) v Fly (Birds) v Airplane fly OR Bird fly
Repair (Airplane) — Fly (Airplane) - Eﬁlpf?;rthe airplane then airplane
: : “ Repair the Car is the same as
Repair (Car) «& Repair(Bus) Repair Bus

® Repair the airplane is different

Repair (Airplane) ® Repair(Bus) from Repair Bus

3.1.1 Predicates and Truth Table
Because the result of a predict function can be tnufalse, Truth tables can also be
used with predicates.

For example:

For a one function predict A=Fly (Airplane)

A Result (- A)
T F
F T

57

For a two (2) function predict Fly (Airplane) * HBirds)
A = YAirplane Fly (Airplane)
B = vBirds Fly (Birds)

Result (A" B)

|| || >
T[T |0
| T T =

3.1.2 Bound and Free (Bound) variables
This term is use in mathematics, in formal langsggeathematical logic and computer
science).
A free variable is a notation that specifies plaicean expression where substitution
may take place.
A bound variable is a notation that specifies pdanean expression no changes can take
place.
The idea is related to a symbol that will latereplaced with strings or values. It can
also be represented by a wildcard character thatistfor an unspecified symbol.
Based on the example, below:

1. vx, function (x, y)

2. 3x, function (x, y)
If symbol x in the function represents a bound afale because it is stated in the
gualifier. The symbol y in the function represemfsee variable because it is not stated
in the qualifier. The symbol w (or any other valigea neither bound nor free as it was
never use in the function.

vx on the left refers to an instance of x

function (x, y) on the right should also refersatoinstance of x
But technically the left x and right x could meamgething else but this will cause a lot
of confusion, thus the symbol on the left is usu&#pt in consistent with the symbol
on the right

4.0 Self-Assessment Exercise(s)
Answer the following questions:
1. Explain bound and free variables
2. What are predicate, operators and truth sets?

58

3. lllustrate a first-order logic with appropriate gdreates
4. List the predicates quantifiers for each of uniaéend existential statements.
5. Explain Universal and Existential statements

Solutions

1. Explain bound and free variables

A free variable is a variable that has no limitaipwhile a bound variable, on the other
hand, is a variable with limitations. To determimeether a variable is free or bound,
use these two criteria. Bound variables have limoits; free variables don't. Bound

variables can be swapped; free variables can't.

2 What are predicate, operators and trufset

Predicate: A predicate is an expression of one orenvariables defined on some
domain. Itis a relation among objects, and itststis of a condition part and an action
part, IF (condition) and THEN (action).

Operators: Operators are logical symbols used witbposition to join different
predicates

Set: A set is an unordered collection of items. Wde aS to denote that a is an
element of set S, or that set S contains element a.

3 lllustrate a first-order logic with appropriate gdreates
First order logic — Contains predicates, quansfiand variables
Example: Philosopher(a)pScholar(a)
VX, King(x) A Greedy (X)= Evil (x)

— Variables range over individuals (domain otdig'se)

4 List the predicates quantifiers for eaclimiversal and existential statements
Universal:Vv
Existential:3

5 Explain Universal and Existential statements

Universal: This is a global statement for all tHengents in the domain. This also
includes itself. It is denoted by

Existential: This is a statement of existence. Thahere exist some elements, in some
case including the element itself. It is denotediby

59

5.0 Conclusion

A predicate is a relation among objects, and isins of a condition part and an action
part, IF (condition) and THEN (action). Predicatkat have no conditional part are
facts.

6.0 Summary

An introduction to Predicates was discussed as a®lbound and Free variables,
predicates and Truth Table. Predicate quantifiach xistential and universal was
highlighted’

7.0 References/Further Readings

Barroca L. M., McDermid J. A. (1997). Formal MetlsodJse and Relevance for the
Development of Safety-Critical Systems, THE COMPW&RIEOURNAL, VOL.
35, NO. 6

Bjgrner, D., and Havelund, K (2015). "40 Years ofrRal Methods: Some Obstacles
and Some PossibilitiesM 2014: Formal Methods: 19th International
Symposium, Singapar8pringer. pp. 42—61

FTMS Consultants (M) Sdn Bhd (2011) SD3049 FormattiMds in Software
Engineering Kuala Lumpur, Malaysia

Jackson M, Cousot P., Bowen J. P, Tiziana M., (2@8tware engineering and formal
methods, ACM

Mona Batra, Amit Malik, Meenu Dave (2020) Formal thleds: Benefits, Challenges
and Future DirectionJournal of Global Research in Computer Science

Rodhe | and Karresand M (2015). Overview of formathods in software engineering

Wikipedia (2021). Formal methods. Retrieved from:
http://en.wikipedia.org/wiki/Formal_methods

Zoltan 1. (2016) Formal Methods in Software Engmreg Retrieved from:

https://www.foi.se

60

Unit 4: Sets

Contents

1.0 Introduction

2.0 Intended Learning Outcomes (ILOS)

3.0 Main Content

3.1 Universe (U)

3.2 Elements

3.3 Finite Elements

3.4 Infinite Elements

3.5 Cardinality

3.6 Reserve Letter used by Mathematician

3.7 Terminology used to describe sets Relationship
3.8 Terminology used to describe sets Operation
4.0 Self-Assessment Exercise(s)

5.0 Conclusion

6.0 Summary

7.0 References/Further Readings

Contents

1.0Introduction

Set is very basic mathematical concept used topgotojects. It is basically used to
show the relationship between each type of objddts.Venn diagram is always used
to picture the set theory graphically. A set iseug that may contain none or one (1)
or more elements.

In formal methods, there are many ways to uselsiry. One example will be to
categories many types of objects available in gegysnostly in the form of data. Base
on the purpose of the particular system or softwaebjects are properly grouped and
then related to one another.

2.0 Intended Learning Outcomes (ILOs)
After studying this unit, you should be able to

e Define a set
e Mention and illustrate the terminologies used tsadibe sets Relationship
e Differentiate between finite and infinite elements

61

e Discuss the operations on set with appropriate piesn

3.0 Main Content

3.1 Universe (V)

The Universe represents the scope of the systemel&inents that are within the
universe is considered necessary and elements antianed in the universe are
considered none existent. Thus, it is very impdrtdnat we define the universe
accurately.

U

3.3 Elements

All elements in a set must be unique. In Venn Daags, the individual small letter
element names are prefixed with a dot. Capitaldtattmes are used to group many
duplicates elements (sets) do not have a dot. Eheesce or arrangement of the
elements is not important.

There are two (2) ways to describe elements irt.a se

1. Using a rule or semantic description:

A is the set whose members are the first four pasihtegers.

B is the set of colours of the Malaysian flag.

2. Listing each member of the set or extensionéihidien. Elements in a list are
enclosed inside curly brackets separated by commas.

62

All elements in a set must be unique. In the Venn Diagrams the individual small
letter element name are prefix with a dot. Capital Letter names is use to group many

duplicates elements (sets) do not have a dot. The sequence or arrangement of the
elements is not important.

There are two (2) ways to describe elements in a set.

1. Using a rule or semantic description:

U A B
A Is the set whose members are the
first four positive integers.
B is the set of colors of the Malaysian
flag.
2. Listing each member of the set or U A

extensional definition. Elements in a list

- d bl
are enclosed inside curly brackets Iem'.'h.it:E
separated by commas. ;'f:ll{.‘r\'s.—

A={4 21,3}
B = {blue, white, red, yellow}

3.3 Finite Elements
Some elements may be finite (with a starting andiren value), thus, it can be
representation as:

To show a value from 1 to 100 is represented ag{3, ..., 100}

To show a value between 1 to 100 is representé?, &s ..., 99}
F contains a number power by 2 minus 4 such that |} all the numbers are integer
starting from 0O to 19 is represented as

F ={n2-4 |nisan integer; and 0 <n <19}
Or

F={n2-4:nisaninteger; and 0 <n <19}

3.4 Infinite Elements

Some elements may be infinite (has no ending vatha}, it can be represented as:
To show a integer value above 1 is represented &3, 3, ...}

F contains all the teachers in FTMS Global KL igresented as
F ={F | F all the teachers in FTMS Global KL }

Or
F ={F: F all the teachers in FTMS Global KL }

63

3.5 Cardinality
Cardinality means the number of elements in aGatdinality is denoted by vertical
bars around the set.
For example:
| {1, 3,9,15} | =4
|{1,2,3,...}|=0

3.6 Reserve Letter used by Mathematicians

P Set of all primes: P ={2, 3,5, 7, 11, 13, 1%, .

N Set of all natural numbers: N={1, 2, 3, ...}

Z Set of all integers (positive/ negative / zedk {..., -2, -1,0, 1, 2, ...}

Q Set of all rational numbers (that is, the seatlbproper and improper fractions):
R Set of all real numbers (rational numbers, iorzi numbers)

C Set of all complex numbers: C = {a + bi: & IR}.

H Set of all Quaternions: For example, 1 + i+ € H.

3.7 Terminology used to describe sets Relationship
Membership (€)
Membership happens when one element or a setnslfioside another set. This symbol
Is normally used in describing a set for examples:
A ={A € Colour of the rainbow}
If A is a member of B, this is denotedeB.
If A is not a member of B then £ B
A ={1, 2, 3, 4} therefore £ A but 9¢ A
B = {blue, white, red} therefore “blue& B but “pink” ¢ B

Subsets €)/ Supersets D)

A={421,3} U
B={1,2,3,4,56,7,8,9, 10}

ACBandACB

64

If every member of set A is found inside set Bntlieis a subset of B (& B). If set
B has every member of A and more then B is a sspeof A (B2 A) This kind of
relationship is also known as inclusion or contanin

If B is not a subset of A then we use the not aetf

If Ais not a superset of B then we use the natlzsst2

We call “A” a proper subset of “B” if A= B and A+ B
LetA={1,2,3},B={1, 2, 3, 4}, then A= B and also A=B
LetA={1, 2, 3}, B={3, 2, 1}, then Ac B because A =B

Disjoint Sets

A={4 21, 3

B={56,7, 8}

If every member of set A has no relation with sedri8l vice versa then we say that A
disjoint B. There is no special symbol to show tieigtionship.

NULL Set (9)
Every universe or set or subset contains a NULLAetull set is an empty set ({ })
that carries no elements. We can say that the N&#tlis a subset for every set.

Family Sets

There are times when a set does not contain ingwidlements but it contains many
subsets. Conveniently this is called a family sed & it describes using the curly
bracket within a curly bracket.

A={{1,2,3,4,5}, {6,7,8,9,10} , {1112, 13, 14, 15} }

Power Sets (P(setName))

Remember that a set is a group that may contaie nowne (1) or more elements. A
power set means to show how many possible diffesays to group all the elements
in a set. In other words, power set is the setldudsets of a given set.

A ={1, 2, 3}, A has 3 elements, there is 8 possivhys to arrange this 23 = 8.

65

PA)={o, {1}, {2} {8} {12}, {13} {23}, {1,2,3}}

3.8 Terminology used to describe sets Operation
Given the following sets:
u={10,1,23,4,5,6,7,8,9, 10}
A={1,0,1,2,5,6,09, 10}

B={1,2,4,6,8, 10}

C={1,3,5,7,9}

A

Union (U): Add in all elements that are found in both sets.
AuB={10,1,2,4,5,6,8,9, 10}
AuC={10,1,2,3,5/6,7,9, 10}
BuC={1,23,4,5,6,7,8,9, 10}

AuBuC=U

Intersect (1): Show only elements that is found only in bottsse
ANB={1,2,6,100 ANC={1,5,9} BnC={1}

Difference (-) Also known as subtract, this show only elemends is found in this set
but NOT found in another sets

A-B={10,59 A-C={1,0,2,6,30 BNC={2,4,6,8, 10}
B-A={4,8} C-A={3,7}

66

Complement (‘)Show only elements that is found NOT found this se
A ={3,4,7,8} B ={1,0,3,5,®} C={1,0,2,4,6,8, 10}
(AuB)y={3,7} (AnB)Y={10,3,4,5,7,8, 9}

Difference can be seen as the same as complement.

Equality: Both sets must have exactly the same number ofegits with exactly the
same value. Take note that sequence and duplicdties not affect the set.

A={3,4,7,8} Z={4,3,7,8} therefore A=Z
B={3,4,7,8, 4} Y={3,4,7,8, 7} herefore B=Y
A=B=Y=Z

Compatible:Two sets are compatible if all element in onenefset can fit nicely inside
another set.

A={x,b} Z={x, Db, c}therefore A is compatiblto Z Because elements in A (x and
b) can fit inside element in Z also have (x, b)

A ={x, b} Y ={b, c} therefore A is not compatiklto Y Because elements in Y cannot
contain (x) and A cannot contain (c).

4.0 Self-Assessment Exercise(s)
Answer the following questions:
1. How is set theory useful in formal methods?
2. List the terminologies used to describe sets walahip
State the differences between a finite and infiaieanent of set
Discuss three operations on set with appropriahengies
lllustrate the difference between a null set asohgleton using set notation only.

ok~ w

Solution

1. How is set theory useful in formal methods?

The axioms of set theory imply the existence oétatlseoretic universe so rich that all
mathematical objects can be construed as sets, thisdormal language of pure set
theory allows one to formalize all mathematicalioas and arguments. Since it is a
formal language, formal methods borrow some corscaptl constructs from it.

2 List the terminologies used to describe sets walahip
e Union
e Intersect

67

e Difference

e Complement

e Equality

e Compatible etc

3 State the differences between a finite and infiaieanent of set
Finite sets

Finite sets are the sets having a finite/countablaber of members. Finite sets are
also known as countable sets as they can be courtiegprocess will run out of
elements to list if the elements of this set haVieite number of members.

Examples of finite sets:
P={0,3,6,9, ..., 99
Q={a:aisaninteger,1<a<10}

A set of all English Alphabets (because it is cabig).

Infinite set

If a set is not finite, it is called an infinitetd@ecause the number of elements in that
set is not countable and also, we cannot représi@nRoster form. Thus, infinite sets
are also known as uncountable sets.

So, the elements of an Infinite set are represdmgedidots (ellipse) thus, it represents
the infinity of that set.

Examples of Infinite Sets

o A set of all whole numbers, W={0, 1, 2, 3, 4, ...}
o A set of all points on aline
o The set of all integers

Set operations

Union

Definition: Let A and B be sets. The union of A @ddenoted by A B, is the set
that contains those elements that are either iniA B, or in both.

Alternate: AUB={x|xe Avx € B}

68

Example:

+A={1,2,3,6} B={2,4,6,9}
«AB={1,2,346,9}
Intersection

Definition: Let A and B be sets. The intersectidrAand B, denoted by A B, is
the set that contains those elements that aretindand B. B} xA A €

* Alternate: AAB={x|xe AA X € B}.

Example:
*A={1,236}B={2,4,6,9}
ANB={2,6}

Difference

Definition: Let A and B be sets. The differencefoand B, denoted by A - B, is
the set containing those elements that are in Aabuin B. The difference of A
and B is also called the complement of B with respe A.

Alternate: A-B={x|xe AAX ¢ B}.
Example:

A={1,2,3,5,7} B ={1,5,6,8}
A-B={23,7}

5 lllustrate the difference between a nullas&d a singleton using set notation only.
Null set: A set consisting of no element is callbed empty set or null set or void
set.

Examples:

I A={x:x€eN,1<x<2}

69

N is the natural number and it should be gratem thand lesser than 2. Since it is not
possible, the set A will not contain any elemetits null set.

I B = The set of all even natural numbers which ot divisible by 2

Even number means, a number which is divisible bg the set B will contain the
elements which are not divisible by 2. It is nosgible. It is null or empty set.

Singleton Set: A set which has only one elememiited a singleton set. That is, it
contains only one element.

For examples:

i C ={0}.

The set C contains only one element. Hence iniglsion set.
I D = The set of all triangles having four sides.

All triangles will have only three sides. Hencedempty set.

5.0 Conclusion
Set is a mathematical concept used in groupingctshjé could also be used to model
relation between two sets or among several sets.

6.0 Summary

A set is a group of elements. In this unit we haxamined Universality of set,
Cardinality of set, elements of set (i.e., Finiteerients and Infinite Elements),
relationships, set operations/operators

7.0 References/Further Readings

Barroca L. M., McDermid J. A. (1997). Formal MetlsodJse and Relevance for the
Development of Safety-Critical Systems, THE COMPRIEOURNAL, VOL.
35, NO. 6

70

Bjarner, D., and Havelund, K (2015). "40 Years ofrRal Methods: Some Obstacles
and Some PossibilitiesM 2014: Formal Methods: 19th International
Symposium, Singapar8pringer. pp. 42—61

FTMS Consultants (M) Sdn Bhd (2011) SD3049 FormattiMds in Software
Engineering Kuala Lumpur, Malaysia

Jackson M, Cousot P., Bowen J. P, Tiziana M., (2@t8tware engineering and formal
methods, ACM

Mona Batra, Amit Malik, Meenu Dave (2020) Formal thieds: Benefits, Challenges
and Future Direction]Journal of Global Research in Computer Science

Rodhe | and Karresand M (2015). Overview of formathods in software engineering

Wikipedia (2021). Formal methods. Retrieved from:
http://en.wikipedia.org/wiki/Formal_methods

Zoltan 1. (2016) Formal Methods in Software Engmreg Retrieved from:

https://www.foi.se

Unit 5: Series or Sequence

Contents

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)
3.0 Main Content

3.1 Background

3.2 Type of sequence

3.3 How to find a SEQUENCE for a given term
4.0 Self-Assessment Exercise(s)

5.0 Conclusion

6.0 Summary

7.0 References/Further Readings

Contents

1.0Introduction

It is sometimes necessary to record the order inwdibjects are arranged: for example,
data may be indexed by an ordered collection o§ keyessages may be stored in order
of arrival; tasks may be performed in order of imignce. In this unit, we introduce the
notion of a sequence: an ordered collection ofabjaNe examine the ways in which
sequences may be combined, and how the informediotained within a sequence may

71

be extracted. We show that the resulting theorgegfuences falls within our existing
theory of sets, and provide formal definitionsdfirof the operators used. The unit ends
with a proof method for universal statements alseguences.

2.0 Intended Learning Outcomes (ILOs)
After studying this unit, you should be able to
1. Define a sequence using natural and notation
2. Mention different types of sequence
3. Find aterm in a given sequence
4. Find a sum in sequence

3.0 Main Content

3.1 Background

A sequence is simply a list, such as 2, 4, Gyvhere the numbers 2, 4, etc. are the terms
of the sequence.

Please take time to understand this terminology:

Terms(usually represented with a subscript italic leti®) refer to the index for a
given sequence starting from 0 to infinity. Thessace (usually represented with any
small letter “a”) refers to the value for a speciirm. For example:

Terms , 0 1 2 3
sequence (a) |0 2 4 6
an ap as az d3

The term 0 has the number O
The term 1 has the number 2
The term 2 has the number 4
The term 3 has the number 6

The formula for this sequence will be 2n (2 mudiply Terms)

72

The formula for this sequence will be 2n (2 multiple by Terms)
The symbol } (sigmoid) is normally used to represent a sequence.

Zz” The number starts with the term 1 and ends with the term 10. The
formula for this sequence iIs 2n

”(f) "(”) 2(3). 2(4). 2(3). 2(6). 2(7). 2(8). 2(9) . 2(10)
2 6. 8 10. 12, 14, 16. 18, 20

The Sequence Summation is 2 +4+6+8+10+12+14+16+18+20 = 110

3.2 Type of sequence

There are two types of sequence;

Finite sequenceA finite sequence has both a starting value anelnaliing value.
Eg.,1,2,3,4,5,6

Infinite sequence.An infinite sequence has a starting value butnuirey value
E.g.,1,23,45,6, ...

Sequences can be applied in two areas:

Arithmetic sequence

Arithmetic sequence also known as Arithmetic pregien is a sequence of numbers
that goes from one term to the next by always agl{n subtracting) the same value.
Geometric sequence

Geometric sequence also known as Geometric pragressa sequence of numbers
that goes from one term to the next by always plyitng (or dividing) by the same
value.

3.3 How to find a SEQUENCE for a given term
Arithmetic sequence

Finite or Infinite Sequence

a = the number for the first term in the sequence
d =the common difference (first term - seconder
n =the number of terms in the sequence needed

73

a, =dn—-1)+a

Example:
Term |1 [2 |3 [4 |5 |6 [7 [8 |9 |10
1 3 [5 |7 19 [11 [13 [15 117 119
Given X =1, 3, 57, 9, 11, what is the 10 terms?
Xwp=+2(10-1)+1=+2(9)+1=18+1=19
Geometric sequence
Finite or Infinite Sequence
a = the number for the first term in the sequence
r = ratio for the sequence
n = the number of terms in the sequence needed
Jh
a, =1
Example:
Tem|1]2 [3 [4 [5 6 7 8 9 10
16 [64 | 256 [1024 | 4096 | 16384 | 65536 | 262144 | 1048576

Given X =4, 16, 64, 256, 1024, what is the 10 terms?

X0 = 4" = 1048576

74

How to find a SUM for a given term
Arithmetic sequence
Finite or Infinite Sequence
a = the first term in the sequence
an = the last term in the sequence

d =the common difference (first term - second term)
n = the number of terms in the sequence needed

a+a

h

Remember:
Average the first and last then multiply by the number of terms

Example:

4 |5 |6 |7 |8 |9 |10
7 |9 |11 [13 |15 |17 [19

Term |1 |2
1 |3

3
5

SUM = 1+ 3+5+7+ 9+11+13+15+17+19 = 100
Given X =1, 3, 57,9, 11, 13, 15, 17, 19 calculate the sum of X,;?
X10 = ((1+ 19)/2)10 = (20/2)10 = (10)10 = 100
Geometric Sequence
a = the number for the first term in the sequence
m = start terms for the given sequence
n = stop terms for the given sequence
r = ratio for the sequence

Finite sequence (the first term value must above 0)
n
IS a(l—r")

i
|

75

Example:

Tem |1 |2 |3 4) 6 7 8) 10
4116] 64| 256]1024 | 4096 | 16384 | 65536 | 262144 | 1048576

SUM =4+ 16 + 64 + 256 + 1024 + 4096 + 16384 + 65536 + 262144 +
1048576 = 1398100

Given X = =4, 16, 64, 256, 1024, 4096, 16384, 65536, 262144, 1048576,
Calculate the sum of X?

Sum Xy =4 (1-4"9 /1-4
= 4 (1-1048576) / -3
= 4194300 /-3

(-1048575) /-3
398100

4
1398100

Infinite sequence that start (the first term value must above 0)

a

Soo = ——
l—r

Example:

Term |01 |2 |3 4 5 6
4116 |64 | 256 | 1024 | 4096 | 16384

SUM =4+ 16 + 64 + 256 + 1024 + 4096 + 16384 + ..

Given X ==4_ 16, 64, 256, 1024, 4096, 16384 ___ Calculate the sum of X?
SumX ,=4/1-4=4/-3=-13333333

4.0 Self-Assessment Exercise(s)
Answer the following questions:
1. Mention the different types of sequence
2. Describe Arithmetic and Geometrical Sequences apipropriate examples.

Solutions
1. Mention the different types of sequence
The following are some types of sequence

1. Arithmetic Sequences.

2. Geometric Sequences.

3. Harmonic Sequences.

76

4. Fibonacci Numbers

2 Describe Arithmetic and Geometrical Sequences apibropriate examples.
Arithmetic Sequence

An arithmetic progression or arithmetic sequenaessquence of numbers such that
the difference between the consecutive terms istaoh For instance, the sequence 5,
7,9, 11, 13,15, ..., is an arithmetic progm@ssvith a common difference of 2.

Geometric Sequence

A geometric sequence goes from one term to thelmeatways multiplying or
dividing by the same value. The number multiplieddivided) at each stage of a
geometric sequence is called the common ratio.

5.0 Conclusion
A sequence is list of numbers or terms generated @s particular expression or
construct. There are basically two types of seqgaie@enely: arithmetic and geometric.

6.0 Summary

The concept of sequence was introduced. Differgrgg of sequence were elaborated
upon, i.e., finite and infinite. Examples of Aritetic and Geometric sequence were
illustrated. Arithmetic and Geometric sequence essed with addition
(subtraction)and multiplication (division) respeedly.

7.0 References/Further Readings

Barroca L. M., McDermid J. A. (1997). Formal MetlsodJse and Relevance for the
Development of Safety-Critical Systems, THE COMPRIEOURNAL, VOL.
35, NO. 6

Bjegrner, D., and Havelund, K (2015). "40 Years ofrRal Methods: Some Obstacles
and Some PossibilitiesM 2014: Formal Methods: 19th International
Symposium, Singapar8pringer. pp. 42—61

FTMS Consultants (M) Sdn Bhd (2011) SD3049 FormattiMds in Software
Engineering Kuala Lumpur, Malaysia

Jackson M, Cousot P., Bowen J. P, Tiziana M., (2@t8tware engineering and formal
methods, ACM

77

Mona Batra, Amit Malik, Meenu Dave (2020) Formal thieds: Benefits, Challenges
and Future Direction]Journal of Global Research in Computer Science
Rodhe | and Karresand M (2015). Overview of formathods in software engineering
Wikipedia (2021). Formal methods. Retrieved from:

http://en.wikipedia.org/wiki/Formal_methods
Zoltan 1. (2016) Formal Methods in Software Engnireg Retrieved from:
https://www.foi.se

MODULE 3: FORMAL PROOFS AND APPLICATION

78

This module is divided into four (4) units
Unit 1: Mathematical Proof

Unit 2: Testing

Unit 3: Application to Formal Specification
Unit 4: Z Notation

Unit 1: Mathematical Proof
Contents

1.0 Introduction

2.0 Intended Learning Outcomes (ILOS)
3.0 Main Content

3.1 What is proof?

3.2 Terminology

3.3 Proofing Methods

4.0 Self-Assessment Exercise(s)
5.0 Conclusion

6.0 Summary

7.0 References/Further Readings

Contents

1.0 Introduction

Proof simply means to be able to show that a sieém correct or true. No matter how
the statement is twisted and turned or set agamesty different scenarios, that
statement comes up with the constant answer.

2.0 Intended Learning Outcomes (ILOS)

After studying this unit, you should be able to
1. Discuss formal proof
2. Mention some terminologies used in mathematicabfro
3. Briefly explain the four proofing methods

79

3.0 Main Content

3.1 What is proof?

Proof simply means to be able to show that a s&xé¢m correct or true. No matter how
the statement is twisted and turned or set agamesty different scenarios, that
statement comes up with the constant answer.

Before a statement can be proof it can have twptli2) conditions followed by the
result. For example, if it rains then | will be wathis can then express in a using
proposition symbol as;

Rain—I| am wet (if it rains then | will be wet)

3.2 Terminology

1) Conjecture/Hypothesis — This is a statementithbélieved to be true but has yet to
be proven.

2) Axiom/Postulate — If the statement is takengi@nted to be true even though it was
never tested, but based on logic it is assumee toue.

3) Paradox/Antinomy — This is a statement whicheapp to contradict itself or contrary
to expectations

4) Theorem — This is a statement that has beereprtw/be true.

5) Un-decidable — This is a statement that canagirbven right or wrong.

6) Lemma — A proven theorem that is used to prakiercstatements

7) Converse — Theorem that is reversed or turnsttdeplown or inward out thus a
converse of a theorem need not be always true.

3.3 Proofing Methods
1. Direct Proof — In direct proof, the conclusieneistablished by logically combining
the axioms, definitions, and earlier theorems. Ftioenexpression one can directly see
the answer.

For example: Rair| am wet
2. Contradiction Proof — In proof by contradictiahthat statement is true and we
logically contradict it then it will not be true ymore.

For example: Rair | am wet

No Rain-I am Dry

3. Contra-positive/Transposition Proof — Proof iansposition or contra-positive turns
the statement inside out and upside down. This odegwaps the result into the
condition and negates both the result and condition

For example: Raiml am wet

80

| am Not wet->No Rain

4. Induction Proof — This proof method insists tifathe statement is true for one
instance, it should be true for every instance.

For example: Raim|l am wet

On Monday (Rain-I am wet)

On Tuesday (Rair| am wet)

On Wednesday (Rarl am wet)

On Thursday (Rair| am wet)

On Friday (Rain-I am wet)

4.0 Self-Assessment Exercise(s)
Answer the following questions:
1. State any four proofing methods.
2. Explain the following terms: Conjecture/Hypothegigjom/ postulate, Lemma
3. Explain the concept of formal proof.
4. Describe the contradiction proof.

Solution
1. State at least four proofing methods.
The following are some of proofing methods in formethods
1. Direct Proof
2. Contradiction Proof
3. Contra-positive/ Transposition Proof
4. Induction Proof

2. Explain the following terms: Conjecture/Hypalse Axiom/postulate, Lemma
Conjecture/ HypothesisConjecture is an idea, hypothesis is a conjectwsie ¢dan be
tested by experiment or observation, and conseeswges when other interested
colleagues agree that evidence supports a hypsttiegihas explanatory value.
Axiom/ Postulate: If the statement is taken forngea to be true even though it was
never tested, but base on logic it is assume toulee

Lemma: A proven theorem that is used to prove atteements

81

3 Explain the concept of formal proof
Proof simply means to be able to show that a s&xém correct or true. No matter how
the statement is twisted and turned or set agamesty different scenarios, that
statement comes up with the constant answer.
Before a statement can be proof it can have twpt{2) conditions followed by the
result. For example, if it rains then | will be wéthis can then be expressed using
proposition symbol as;

Rain—| am wet (if it rains then | will be wet)

4 Describe the contradiction proof

The basic idea is to assume that the statementamétey prove is false, and then show
that this assumption leads to nonsense. We arddtiéa conclude that we were wrong
to assume the statement was false, so the statemesit be true. In proof by
contradiction, if that statement is true and wadally contradict it then it will not be
true anymore. Proof by contradiction is a powenfiakhematical technique: if you want
to prove X, start by assuming X is false and thenve consequences. If you reach a
contradiction with something you know is true, thiba only possible problem can be
in your initial assumption that X is false. ThemnefoX must be true.

5.0 Conclusion

Proofs are the heart and soul of mathematics, ritenfeow simple or complicated they

are. They play a central role in the developmentmathematics and guarantee the
correctness of mathematical results and algorithis. mathematical results or

computer algorithms are accepted as correct urlesg are proved using logical

reasoning.

6.0 Summary

Proofs are meant to show the correctness or oteerai a statement. In software
development, it could be used correctness of progitatement or algorithm. We have
examined some terminologies used in proof and #he@ws proofing methods.

7.0 References/Further Readings

Formal methods - Wikipedia, the free encyclopedienlife] Available at
http://en.wikipedia.org/wiki/Formal_methods

82

FTMS Consultants (M) Sdn Bhd (2011). SD3049 Formvthods in Software
Engineering Kuala Lumpur, Malaysia

L. M. Barroca, J. A. McDermid (1997) Formal Methodlitsse and Relevance for the
Development of Safety-Critical Systems, THE COMPRIEOURNAL, VOL.
35, NO. 6

Michael Jackson, Patrick Cousot, Jonathan PetereBpwlargaria Tiziana (2008)
Software engineering and formal methods, ACM

Mona Batra, Amit Malik, Meenu Dave (2020) Formal thieds: Benefits, Challenges
and Future Direction]Journal of Global Research in Computer Science

Zoltan Istenes (2016) Formal Methods in Softwareyib®ering. Retrieved from:
https://www.foi.se

Unit 2: Testing
Contents
1.0 Introduction
2.0 Intended Learning Outcomes (ILOS)
3.0 Main Content
3.1 Software Development Life Cycle
3.1.1 Revise Formal Method Process
3.2 Testing stage
3.3 Test plan
3.4 Test Case
3.5 Testing Concept
3.5.1 Test Flow
3.5.2 Test Size
3.6 Test Depth
3.7 Other Tests
4.0 Self-Assessment Exercise(s)
5.0 Conclusion
6.0 Summary
7.0 References/Further Readings

83

Contents

1.0Introduction

Testing is a way of validating and verifying soft@aThis ensures the removal and/ or
reduction of errors to the barest minimum. It fertlensures that the right product is
crafted and that it meets user’s requirement sjgations. Formal methods can be used
to achieve this to a higher extent.

2.0 Intended Learning Outcomes (ILOs)
After studying this unit, you should be able to
1. Outline stages in SDLC
2. ldentify the focus of both validation and verificat during software testing
Discuss test plan
Produce a sample of test plan
State the content of a test case
Discuss test in terms of size

o gk w

3.0 Main Content

3.1 Software Development Life Cycle

The SDLC can be divided into seven (7) stages;

. Initial Study: Team collects information reganglithe problem.

. Analysis: Team discovers the source of the bl

. Design: Team creates the specification for thetion.

. Development: Team builds the solution basedergtven specification.
. Testing: Team tests the software to make sw@ves the problem.

. Implementation: Team prepares the environmeattept software.

. Review: Team and client review the software.

~N o o b~ WODN B

3.1.1 Revise Formal Method Process

The formal specification generally does the follogvprocess:

1. Gets user requirement usually from the spetiinawritten in the natural language.
2. Clarifies the requirement using mathematicalreaph. This is to remove all
ambiguous, incomplete and inconsistent statement.

3. After statements are clearly identified, themg fall assumptions (things that must be
in place before something can happen) that is stateot stated within the clarified
requirement.

4. Exposes every possible logic defect (fault) mission in the clarified requirement.

84

5. ldentifies what are the exceptions (bad thirigaj will arise if the defects are not
corrected.

7. Finds a way to test for all the possible exaayi Only when you can test for an
exception can you be able to stop that exceptiom fnappening.

3.2 Testing stage

A test stage has only one (1) important purposat, i) to ensure that the software
solution built solves the problem as specifiechim &nalyst report and the specification.
Two terms mostly used in testing are validation &edfication. While validation
focuses on building the right solution, verificatibocuses on building the product
correctly.

No software is 100% bugs free and testing cannataguee that there are no bugs; it
can only ensure to a certain reasonable levelhigasystem is able to perform the task
it was created to do. It does not mean there araare bugs in the system.

Once the testing is done, the tester will writetselr to give their opinion on the testing
and the test result.

This letter will be given to the systems analysA)®/ho then decides the following
actions, which may take the form of returning to:

1) The development stage where the programmexdefilig the problem.

2) The design stage, to redesign the specificiien later continue to the development
stage.

3) Worst case scenario, to return to the Analytsigesto redo the analysis of that given
module which will then continue into the design aesdelopment stage again.

The same test document is reuse when the softeanas to the testing stage. The SA
may add in new test item(s) in the test plan ana test case but the previous test
document must remain intact. The tester will thepeat the testing for the failed
modules and the new modules.

After a successful test, if there are future chantie same test document is also reused,
thus the test plan can be used to audit the changassure changes do not introduce
new problems.

The test document consists of a test plan thatdistvn all the test items, each test item
will then be reflected in one (1) or more test case

For example; Test plan will have many test itemsre (1) of the test items, there is a
test for the customer’s name. There may be three¢8 cases for that test item;

1) To test if the customer’s name can be saved.

2) To test if the customer’s name can be numeric.

85

3) To test if the customer’s name can be blank.

3.3 Test plan

A test plan is a document that state down clearyyestep (test item) that will be taken
during testing, basically a systematic approadiesting a system.

The Test Plan is created first by the System Angfy4) using the Analyst and Design
deliverables. This is done during the developmé&adeswhen the work load has been
transferred to the software programmers.

In order to create the Test Plan, the SA must wtdled the testing concept, because
the strategy applied by the SA can easily be sedémei test plan.

The test plan will normally contain:

1. A sequence number call the test plan no.

2. The general description of the test item.

3. The date for the completion of each test plarOne (1) test item can hold many test
cases and each test case has a different purpose.

The tested date is inserted only after ALL the temtes for one (1) test item is
successfully tested. If after the testing is damethe test plan date remains blank means
that the software fails the testing.

This is sample of a test plan

No Description Tested
Date

1 System Installation into a Windows XP Professional Operating
System

Login Program.

Main Menu

Customer Module

Customer Particular

Customer Name

=/ D | =] LI M

Customer Search

86

3.4 Test Case

After completing the test plan, the SA will therate a test case. There will be at least
one (1) test case for each of the test in theptast Each test case can contain only one
(1) set of instruction and one (1) outcome.

There will always be a BLANK table inserted in tiest case to be used by the tester to
fill in the result of that particular testing.

The test case will normally contain:

1. The test plan number to tally back to the tésh @nd a test case number for that
given test case.

2. The test instruction explains to the tester #ydow to run that particular test.

3. The expected result for that given test usuaitit a simple screen design or simple

sentences to describe the result.

Please remember, the SA creates the test casene ftaster.

This is a sample of a test case

Test No 6 Description Customer Name
Test Case No 1 Description Save Customer Name
Instructions Go to a new customer

In the customer particular screen,
Enter the Customer Name as John
Click on the save button

Expected The customer record will be save and a pop up saying “"New
Result Customer Record Created”.
Test Run :

No Date Comment Good Bad

1

2

3

4

5

** Please state the successful date in the test plan when all test cases is done.

3.5 Testing Concept

3.5.1 Test Flow

1. Top Down — This is a test flow that starts frargeneral level down to the specific
detail level. Example for an inventory system v to start from a main menu and
slowly make the way down to the product module.

2. Bottom Up — This is a test flow that starts frametail specific level up to the general
level. Example for an inventory system will be tarsfrom the products and slowly
make the way up to the main menu.

87

3.5.2 Test Size

1. Unit Testing — This is a test that focuses oniratividual specific independent
module. Example for an inventory system will batart test the products module alone
and then the customer module alone.

2. Integration Testing — This is a test that sthytgoining individual modules. Example
for an inventory system will be after testing olo¢ product and customer module to
test out the sales invoice module.

3. System Testing — This is a test that starts tbhgysng the system environment
surrounding the software. Example for an invensystem will be to test if the bar code
reader at the POS can read the barcode label grddect.

4. User Acceptance Testing — This is the finalsa wéhere the end user will physically
test out the system themselves using real life datiastill in a control testing
environment. Example for an inventory system wdltb ask the POS staff to test out
the POS system and enter 100 products and prodaa®trect balance on the receipt.

3.6 Test Depth

1. Black box testing — This is commonly known asadidation testing. This is an
effectiveness test that is result based, inputivergand output is produced and
compared. Example for an inventory system will bestan a barcode label on the
product and see it appears on the POS interfatetetcorrect total.

2. White box testing — This is commonly known ageaification testing. This is an
efficiency test, to test out how much resources t@meé are required to complete a
process. Example for an inventory system will bede how much time and processing
resources to list and print a sales report for J@dlucts.

3. Grey box testing — This is partially effectivedean efficiency test. Basic processing
information is needed to discover how a processksvorhis test is normally used to
create the test case.

3.7 Other Tests

1. Boundary Testing — This is a test done usuaitii & black box that can be done at
the unit testing or integration testing stage. Tre@n objective of this test is to make
sure that the software can make the correct decighl the possible result and
alternative value is determined for the conditibhen extreme test data are generated
to see if the software can produce a correct result

2. Stress Testing — This is a test done usuallly wiblack box, unit testing approach.
The main objective will be to break the system. S tthis test will take a long time as

88

it will continue until the system breaks down. Frtra break down, a safe level can be
reach for contingency planning.

4.0 Self-Assessment Exercise(s)
Answer the following questions:
1. Identify the stages in SDLC
2. Explain the importance of validation and verificatiduring software testing
3. Discuss at least three test plans in software devetnt.
4. State the content of a test plan and test case

Solutions
1. Identify the stages in SDLC
Stages in SDLC

1. Initial Study: Team collects information regarditng problem.

2. Analysis: Team discovers the source of the problem.
Design: Team creates the specification for thetgwiu
Development: Team built the solution base on thergspecification.
Testing: Test the software to make sure it solliegproblem.
Implementation: Team prepares the environmentdegtcsoftware.

N o g~ w

Review: Team and client review the software.

2. Explain the importance of validation and veation during software testing
Verification and validation — These are the two aripnt aspects of software quality
management. Verification gives the answer to thesjan whether the software is
being developed in a correct way, while validafwavides the answer on whether the
right software is being produced.

3. Discuss three test plans in software developmen

A Test Plan refers to a detailed document that @gii@s the test strategy, objectives,
schedule, estimations, deadlines, and the resouemgred for completing that
particular project. Think of it as a blueprint famning the tests needed to ensure the
software is working properly — controlled by tesimagers.

Unit Testing — A unit test exercises a “unit” ofdeoin isolation and compares actual
with expected results. Unit testing is a type dftitey in which individual units or
functions of software are tested. Its primary psgs to test each unit or function to

89

ensure that the unit is working satisfactorily. Aitus the smallest testable part of an
application. It mainly has one or a few inputs @anoduces a single output.

Integration testing — Integration testing is a tygesoftware testing in which the
different units, modules or components of a sofewapplication are tested as a
combined entity. However, these modules may bedbgealifferent programmers. The
aim of integration testing is to test the interbetween the modules and expose any
defects that may arise when these components t@grated and need to interact with
each other.

System testing — System testing is defined asgsti a complete and fully integrated

software product. This testing falls in black-bexgting wherein knowledge of the inner

design of the code is not a pre-requisite and medxy the testing team. System testing
includes functionality testing, performance testamgl security and portability.

2 State the content of a test plan and test case
Contents of a Test Plan

« Introduction. This section must provide details@itbe document
e Scope of Testing
o Testing Approach
« Item pass/fail criteria
e Suspension criteria and resumption requirements
o Test deliverables
o Testing tasks
« Responsibilities
Contents of a Test case
« Testname
o TestID
o Objective
o References
o Prerequisites
o Testsetup
o Test steps.

90

o Expected results

5.0 Conclusion
Testing is carried out in software to eliminateoesror at least to reduce it to the barest
minimum. Different proofing methods can be useddbieve this.

6.0 Summary
In this unit we have explained different types efting including unit testing,
integration testing, system testing, etc.

7.0 References/Further Readings

Formal methods - Wikipedia, the free encyclopedienlife] Available at
http://en.wikipedia.org/wiki/Formal_methods

FTMS Consultants (M) Sdn Bhd (2011). SD3049 Formvthods in Software
Engineering Kuala Lumpur, Malaysia

L. M. Barroca, J. A. McDermid (1997) Formal Methoditsse and Relevance for the
Development of Safety-Critical Systems, THE COMPW&RIEOURNAL, VOL.
35,NO. 6

Michael Jackson, Patrick Cousot, Jonathan PetereBpwWlargaria Tiziana (2008)
Software engineering and formal methods, ACM

Mona Batra, Amit Malik, Meenu Dave (2020) Formal thleds: Benefits, Challenges
and Future DirectionJournal of Global Research in Computer Science

Zoltan Istenes (2016) Formal Methods in Softwaregii®ering. Retrieved from:
https://www.foi.se

Unit 3: Application to Formal Specification

Contents

1.0 Introduction

2.0 Intended Learning Outcomes (ILOS)

3.0 Main Content

3.1 Formal method

3.2 Formal Specification

3.3 Formal Specification in the SDLC
3.3.1 Analyst Stage

91

3.3.2 Design Stage
3.3.3 Development Stage
3.3.4 Testing Stage
4.0 Self-Assessment Exercise(s)
5.0 Conclusion
6.0 Summary
7.0 References/Further Readings

Contents

1.0Introduction

Formal methods are used at various stages of seftdevelopment to improve the
guality of the software.

2.0 Intended Learning Outcomes (ILOS)

After studying this unit, you should be able to
1. Discuss the various stages to apply formal methods
2. Discuss what to do at various stages

3.0 Main Content

3.1 Formal method

Formal methods are a way of applying mathematidadlyed techniques to the
specification, development and verification of sa@fte. When Formal method is
applied it is likely to produce a more reliabiléyd robustness specification design.
Thus, it is important to stress that Formal Methodtself cannot guarantee perfect
software. It depends very much on how the formahids are interpreted and applied
into the specification.

Formal Method stages consist of; Formal SpecifcgtiFormal Proof, Model Checking
and Abstraction.

3.2 Formal Specification

Formal Specification is the initial part of formmakthod that describes what the system
must do without saying how it is to be done. Itogally language independent and
focuses only on the abstract rather than detailgit |

A formal specification can serve as a single, bddiaeference point for those who
investigate the customer’s needs, those who impiepregrams to satisfy those needs,
those who test the results, and those who writeucson manuals for the system.

92

3.3 Formal Specification in the SDLC

Two (2) things are very important during requiremgathering; the data and the
process done on the data. Formal specificationbgilhpplied directly on these things.
If formal Specification is used during the Analysisd Design stage, there is no need
to use them again. If formal specification is nséd by the SA and SD then the only
window of opportunity to apply it will be duringetpre-development stage.

If no formal specification was ever applied, andsiapplied in the testing stage, this
will expose a lot of possible bugs not cateredafod the problem will loop back to the
design and possibly the analysis stage.

3.3.1 Analysis Stage

The main purpose of Analysis is to find the sowftthe problem. During this stage the
System Analyst (SA) would collect all the data sndcesses (observation, document
inspection, interview, etc...). The SA would then g3 the requirements into some
form of diagrams such as DFD or Rich Picture, Uaeds and Case Diagram, etc, ...
Then the SA will write a report (in English — commatural language) to indicate the
source of the problem and some alternative solution

When studying the current system, the SA couldyappbposition and predicate to
every client’s statement thus translating them methematical equivalent. This will
remove ambiguity and expose all possible hiddete sththe process and data. Proof is
then used to be sure if the statement given bglibet is correct. The SA can also apply
set theories and series to categories and viewfdaatadifferent perspective. This is
very helpful when SA needs to understand how re@re generated.

By doing this the SA can be to a certain degredéident to cover all possible alternative
to a given statement.

3.3.2 Design Stage

The main purpose of Design is to create a spetibicdor the selected solution. It
should be stressed that, the specification wilubed in building the solution, thus a
good specification will create a good software armhd specification will create a bad
software.

During this stage the System Designer (SD) usesattadysed report to create the
specification. The SD also expresses their spatiin into some form of diagrams
sometimes similar to those used by the SA.

93

Before creating the specification, the SD coulddfate all the natural language found
in the analysis report into mathematical equiva{praposition and predicates) that will
remove all ambiguity and uncertainty. Proofs canubed here to ensure that every
statement given is logically correct. Set theodnd series are used to categorise and
view data from different perspectives and to crealkevant reports.

Then studying the mathematical form, the SD willdide to create the new system
environment and also the solution that can catealfgossible scenarios and state for
each data and processes.

3.3.3 Development Stage

The main purpose of Development is to find the smubased on the specification.
During this stage the Senior Programmer (SP) wultlg the specification, create the
relevant data structure, study the modules andgdtdethe programming team to
develop the solution.

To apply formal specification at this stage will Aebit late but a small window of

opportunity still exists.

During this stage the Senior Programmer (SP) witlg the specification. The SP could
translate all the natural language found in theisigation into mathematical equivalent
(proposition and predicates) that will remove atléguity and uncertainty. Proofs can
be used here to ensure that every statement gvegically correct. Set theories and
series are used to categories and view data fréfereit perspective and to create
relevant reports.

The SP can then verify that the specification isnplete before starting out the

development.

If there is any problem with the design, the SR stdp the development and return the
specification to the SD for correction. Worst casenario, the entire specification is
dropped and the system is reanalyzed.

3.3.4 Testing Stage

The main purpose of Testing is to make sure thastiution solves the problem found
in the analysis and created base on the specticaBefore this stage the (SA) will
have already created the test plan and test gafi@sistage the tester will then use the
test plan and test case to execute the testing.

To apply formal specification at this stage is Iseaéry late.

94

During this stage the SA will revise the specificatbuilt during the design stage by
the SD. The SA could then translate all the natiarajuage found in the specification
into mathematical equivalent (proposition and pratis) that will remove all
ambiguity and uncertainty. Proofs can be used toezasure that every statement given
is logically correct. Set theories and series a@duo categorise and view data from
different perspective and to create relevant report

After studying the specification, the SA can thesate a Test Plan that will cover all
aspects of the system. Using what is learnt froenRbrmal specification, the SA will
be able to create a test case for each test it¢estout all the different exceptions.

If there is any problem with the testing, the SAlwtop the testing and return the
specification to the SD for correction. Worst casenario, the entire specification is
dropped and the system is reanalyzed.

Notice that this will not return to the developmedmtcause development only follows
the specification created during the design stage.

Formal Specification should not be used duringltiglementation stage

4.0 Self-Assessment Exercise(s)
Answer the following questions:
1. Explain the various stages in software developrtiaitformal methods are

applied.

Solution

1. Explain the various stages in software developrttattformal methods are
applied.

Formal methods can be applied in almost all thgest@f software development

At Analysis Stage — When studying the current systhe SA could apply proposition

and predicate to every client’'s statement thusstesimg them into mathematical

equivalent. This will remove ambiguity and expodlepassible hidden state of the

process and data. Proof is then used to be stine statement given by the client is
correct. The SA can also apply set theories andsstr categories and view data from
different perspective.

At Design Stage — During this stage the Systemdbesi(SD) uses the analysis report
to create the specification. The SD also expregsespecification into some form of
diagrams sometimes similar to those used by the SA.

95

Before creating the specification, the SD coulddfate all the natural language found
in the analysis report into mathematical equiva{priposition and predicates) that will
remove all ambiguity and uncertainty. Proofs canubed here to ensure that every
statement given is logically correct. Set theodrd series are used to categories and
view data from different perspectives and to crealkevant reports.

Then studying the mathematical form, the SD willdi®e to create the new system
environment and also the solution that can catealigqpossible scenario and state for
each data and processes.

At Development Stage — During this stage the SeProgrammer (SP) will study the
specification. The SP could translate the nataragliage found in the specification into
mathematical equivalent (proposition and prediQatiest will remove all ambiguity
and uncertainty. Proofs can be use here to ensarevery statement given is logically
correct. Set theories and series are used to caegand view data from different
perspective and to create relevant reports.

At Testing Stage — During this stage the SA willise the specification built during by
the SD. The SA could then translate the naturguage found in the specification into
mathematical equivalent (proposition and prediQatiest will remove all ambiguity
and uncertainty. Proofs can be used here to ettsafrevery statement given is logically
correct. Set theories and series are used to caegand view data from different
perspective and to create relevant reports.

5.0 Conclusion

Formal methods are applied at various stages divacé development in order to
precisely specify the requirement of the systemdgpdieveloped and to find and remove
errors. The application of formal methods assistsafting error free, safe and reliable
software.

6.0 Summary

The application of formal methods at several stagfesoftware development are

discussed.

7.0 Further Reading

Formal methods - Wikipedia, the free encyclopedienlife] Available at
http://en.wikipedia.org/wiki/Formal_methods

96

FTMS Consultants (M) Sdn Bhd (2011). SD3049 Formvthods in Software
Engineering Kuala Lumpur, Malaysia

L. M. Barroca, J. A. McDermid (1997) Formal Methodlitsse and Relevance for the
Development of Safety-Critical Systems, THE COMPRIEOURNAL, VOL.
35, NO. 6

Michael Jackson, Patrick Cousot, Jonathan PetereBpwlargaria Tiziana (2008)
Software engineering and formal methods, ACM

Mona Batra, Amit Malik, Meenu Dave (2020) Formal thieds: Benefits, Challenges
and Future Direction]Journal of Global Research in Computer Science

Zoltan Istenes (2016) Formal Methods in Softwareyib®ering. Retrieved from:
https://www.foi.se

97

MODULE 4: SOFTWARE DEVELOPMENT OVERVIEW

This module is divided into four (4) units

Unit 1: Software Development arbftware Engineering
Unit 2: Software Development Life Cycle

Unit 3: Software Project Management

Unit 4: Software Requirements

Unit 1: Software Development argbftware Engineering
Contents
1.0 Introduction
2.0 Intended Learning Outcomes (ILOS)
3.0 Main Content
3.1 Definitions
3.1.1 Software
3.1.2 Engineering
3.1.3 Software Development
3.1.4 Software Developer
3.1.5 Software Engineering
3.2 Software Evolution
3.2.1 Software Evolution Laws
3.2.2 E-Type software evolution
3.3 Software Paradigms
3.3.1 Software Development Paradigm
3.3.2 Software Design Paradigm
3.3.4 Programming Paradigm
3.4 Need of Software Development
3.5 Characteristics of good software
3.5.1 Operational
3.5.2 Transitional
3.5.3 Maintenance
4.0 Self-Assessment Exercise(s)
5.0 Conclusion
6.0 Summary
7.0 References/Further Readings

98

Contents

1.0Introduction

Much of our endeavour in software development & dlesign and construction of
software to meet some recognised need — of peofganisations or society at large —
with tangible effect on the real worl8oftware Development process is the practice of
organising the design and construction of softveane its deployment in context. Note
that Software development arfébftware Engineering can be used interchangeably. In
this unit, we shall give some definitions and dsisoftware Evolution, Software
Paradigms, Need of Software Engineering, and Clexratics of good software

2.0 Intended Learning Outcomes (ILOS)
After studying this unit, you should be able to
1. Relate software development with engineering preces

2. State some software evolution laws

3. Discuss E-Type software evolution

4. Discuss the need of Software Engineering
5. Outline the characteristics of good software

3.0 Main Content

3.1 Definitions

3.1.1 Software

Software is more than just a program code. A progisaan executable code, which
serves some computational purpose. Software isidenesi to be collection of
executable programming code, associated libranwk dbcumentations. Software,
when made for a specific requirement is calledveafé product.

3.1.2 Engineering
Engineering on the other hand, is all about devetpproducts, using well-defined,

scientific principles and methods.

3.1.3 Software Development

Software development refers to a set of computense activities dedicated to the
process of creating, designing, deploying and sdjgpsoftware. Software itself is the
set of instructions or programs that tells a coraputhat to do. It is independent of
hardware and makes computers programmable. Thetbrae basic types:

99

System software provide core functions such as operating systdisk management,
utilities, hardware management and other operdtioe@essities.

Programming software give programmers tools such as text editors, densp
linkers, debuggers and other tools to create code.

Application softwardapplications or apps)— help users perform tasks. Office
productivity suites, data management software, anpthyers and security programs
are examples. Applications also refers to web aodile applications like those used
to shop on Amazon.com, socialize with Facebookost pictures to Instagram.

3.1.4 Software Developer

Software developetsave a less formal role than engineers and cafobelg involved
with specific project areas — including code wigtirAt the same time, they drive the
overall software development lifecycle — includiwgrking across functional teams
to transform requirements into features, managenglbpment teams and processes,
and conducting software testing and maintenance.

3.1.5 Software Engineering

Software engineering is an engineering branch &ssoc with development of
software product using well-defined scientific miples, methods and procedures. The
outcome of software engineering is an efficient eldble software product.

Definitions
IEEE defines software engineering as:

e The application of a systematic, disciplined, queftle approach to the
development, operation and maintenance of softviaa¢]s, the application of
engineering to software.

e The study of approaches as in the above statement.

Fritz Bauer, a German computer scientist, defiofisvare engineering as:

e The establishment and use of sound engineeringciplas to obtain
economically viable software that is reliable andrkv efficiently on real
machines.

3.2 Software Evolution

The process of developing a software product usoftyvare engineering principles
and methods is referred tosatware evolution. This includes the initial development

100

of software and its maintenance and updatesgilirdd software product is developed,
which satisfies the expected requirements.

/r’J m‘:a:“ga Reg Jé‘-@i

Software
Evolistion

Evolution starts from the requirement gatheringcpss. After which developers create
a prototype of the intended software and show théousers to get their feedback at
the early stage of software product developmerg. dders suggest changes, on which
several consecutive updates and maintenance keaghanging too. This process
changes to the original software, till the dessetiware is accomplished.

Even after the user has desired software in hdnredatlvancing technology and the
changing requirements force the software produchamge accordingly. Re-creating
software from scratch and to go one-on-one withiiregnent is not feasible. The only
feasible and economical solution is to update tistiag software so that it matches
the latest requirements.

3.2.1 Software Evolution Laws
Lehman has given laws for software evolution. Héd#id the software into three
different categories:

1. S-type (static-type) -This is a software, which works strictly accorditay
defined specifications and solutions. The soluaod the method to achieve it,
both are immediately understood before coding. $tgpe software is least
subjected to changes hence this is the simpleall.ofor example, calculator
program for mathematical computation.

2. P-type (practical-type) -This is a software with a collection of procedurBsis
is defined by exactly what procedures can do. imgbftware, the specifications
can be described but the solution is not obviogtamtly. For example, gaming
software.

101

3. E-type (embedded-type) This software works closely as the requirement of

3.2.2

real-world environment. It has a high degree ofl@vwon as there are various
changes in laws, taxes, etc. in the real-worldasibms. For example, Online
trading software.

E-Type software evolution

Lehman has given eight laws for E-Type softwardugian -

3.3

Continuing change -An E-type software system must continue to adapiéo
real-world changes, else it becomes progressiesly liseful.

Increasing complexity -As an E-type software system evolves, its compjexit
tends to increase unless work is done to maintaraduce it.

Conservation of familiarity - The familiarity with the software or the
knowledge about how it was developed, why wasvetiged in that particular
manner etc. must be retained at any cost, to imgikthe changes in the system.
Continuing growth- In order for an E-type system intended to resolwees
business problem, its size of implementing the gkargrows according to the
lifestyle changes of the business.

Reducing quality -An E-type software system declines in quality usles
rigorously maintained and adapted to a changingabie@al environment.
Feedback systemsThe E-type software systems constitute multi-loop)ti-
level feedback systems and must be treated astsumhsuccessfully modified
or improved.

Self-regulation - E-type system evolution processes are self-regjatith the
distribution of product and process measures ¢msermal.

Organizational stability - The average effective global activity rate in an
evolving E-type system is invariant over the lifegi of the product.

Software Paradigms

Software paradigms refer to the methods and stepish are taken while designing
the software. There are many methods proposedrand work today, but we need to
see where in the software engineering these parsdsgiand. These can be combined
into various categories, though each of them i¢azpnad in one another:

102

Programming paradigm is a subset of Software desagadigm which is further a
subset of Software development paradigm.

3.3.1 Software Development Paradigm

This Paradigm is known as software engineeringdignas where all the engineering
concepts pertaining to the development of softveaeeapplied. It includes various

researches and requirement gathering which hesdfiware product to build and
consists of:

« Requirement gathering
« Software design
« Programming

3.3.2 Software Design Paradigm

This paradigm is a part of Software Developmentiaotlides:
« Design

« Maintenance
o Programming

3.3.4 Programming Paradigm

This paradigm is related closely to the programnasgect of software development
and includes:

o Coding
« Testing
« Integration

103

3.4 Need of Software development

The need of software development arises becausegbér rate of change in user
requirements and environment on which the softiganerking. This need is triggered
by several factors including:

« Large software —It is easier to build a wall than a house or buaiglilikewise,
as the size of software become large engineerisgdhatep up to give it the
required scientific process.

« Scalability — If the software process was not based on sciemtiftcengineering
concepts, it would be easier to re-create new swévthan to scale an existing
one.

o Cost —The hardware industry has shown its skills and hmgaufacturing has
lowered the price of computer and electronic haréwBut the cost of software
remains high if the proper process is not adapted.

« Dynamic Nature —The always growing and adapting nature of softvisaigely
depends upon the environment in which user wofkbel nature of software is
always changing, new enhancements need to be dotle@xisting one. This
is where software engineering plays a good role.

« Quality Management —Better process of software development providetebet
and quality software product.

3.5 Characteristics of good software
A software product can be judged by what it ofand how well it can be used. Hence,
a well-engineered and crafted software is expeictd:

e Operational

e Transitional

e Maintainable

3.5.1 Operational
This tells us how well software works in operatiolhi€an be measured on:
o Budget
o Usability
« Efficiency
o Correctness
« Functionality
« Dependability

104

o Security
o Safety

3.5.2 Transitional
This aspect is important when the software is mdvea one platform to another:
« Portability
« Interoperability
o Reusability
o Adaptability

3.5.3 Maintainable
This aspect briefs about how well a software hasctpabilities to maintain itself in
the ever-changing environment. The capabilitiefuohe:

« Modularity

« Maintainability
« Flexibility

« Scalability

4.0 Self-Assessment Exercise(s)
Answer the following questions:
1. Explain maintainability, scalability and modularity
2. Compare and contrast interoperability and reudsbili
3. State the characteristics of a good software
4. In a diagram describe the components of a softpareuct

Solution

1 Explain maintainability, scalability and modularity

Maintainability: Software maintenance is an expeasictivity that consumes a major
portion of the cost of the total project. Variowusities carried out during maintenance
include the addition of new features, deletionlndaete code, correction of errors, etc.
Software maintainability means the ease with whiese operations can be carried out.
Software maintainability is defined as the degoeeliich an application is understood,
repaired, or enhanced. Software maintainability ingportant because it takes
approximately 75% of the cost related to a project

105

Scalability: Scalability is the measure of a systeability to increase or decrease in
performance and cost in response to changes incapph and system processing
demands.

Modularity: Software modularity is measured by heell software is decomposed into
smaller pieces with standardized interfaces. dnalogous to modularity for hardware.
We want to create products by combining reusablenk$ of code, so you only
iImplement a feature or functionality once and theximize reuse.

2 Compare and contrast interoperability sausability

Software interoperability is the capability of éifént solutions (software components)
to communicate with one another freely and eaSlystems that are interoperable
exchange information in real-time, without the nded specialized IT support or
behind-the-scenes coding.

WHILE

Reusability is the act of using components of ammelpct to facilitate the development
of another product. Reusability is the use of exigsssets in some form within the
software product development process; these amsepsoducts and by-products of the
software development life cycle and include coddtwsare components, test suites,
designs and documentation.

2 State the characteristics of a good software
A good software must be:

o Operational

o Transitional

o Maintainable

3. With a diagram, describe the components of avsoé product

106

5.0 Conclusion
Definitions of some software development concepts given. Software has gone
through evolutionary processes which has beenigigfield

6.0 Summary
In this unit, software evolution, some paradignigracteristics of good software, etc.
have been discussed. The need of Software Develdpsalso examined.

7.0 References/Further Readings

Adnan N. H. and Ritzhaupt A. D (2018). Software i&egring Design Principles
Applied to Instructional Design: What can we Le&mwm our Sister Discipline?
Springer. 62, 77-94.

Charles S. Wasson (2006) System Analysis, Desigd, @Revelopment Concepts,
Principles, and Practices, Published by John W&lejons, Inc., Hoboken, New
Jersey.

Hans-Petter Halvorsen (2020). Software Developmekt:Practical Approach.
Retrieved from. https://halvorsen.blog

Kaur I., Narula G. S., Wason R., Jain V., and BaliyA (2018).Neuro fuzzy—
COCOMO Il model for software cost estimation. Imi@ional Journal of
Information technology. 10, 181-187.

Richard H. Thayer, Barry W. Boehm (1986). Tutorisbftware engineering project
management. Computer Society Press of the IEEBOp.1

Salve S. M., Samreen S. N. and Khatri-Valmik N @01A Comparative Study on
Software Development Life Cycle Models. Interna@ibrResearch Journal of
Engineering and Technology. 5(2), 696-700.

Unit 2: Software Development Life Cycle
Contents
1.0 Introduction
2.0 Intended Learning Outcomes (ILOs)
3.0 Main Content
3.1 SDLC Activities
3.2 Software Development Paradigm
3.2.1 Waterfall Model
3.2.2 Iterative Model

107

3.2.3 Spiral Model
3.2.4V — model
3.2.5 Big Bang Model
4.0 Self-Assessment Exercise(s)
5.0 Conclusion
6.0 Summary
7.0 References/Further Readings

Contents

1.0 Introduction

Software Development Life Cycle (SDLC) allows tledgt@are developer or engineer
to follow well-defined phases or stages to achopyaity in the design and construction
of software product that will meet users’ need. tTisa in terms of functionality,
reliability, maintainability, availability, etc. SBC comes in different flavours,
including among others — waterfall model, iteratmedel, spiral model, V-model, etc.
The stages and various models will be discusséasrunit.

2.0 Intended Learning Outcomes (ILOS)
After studying this unit, you should be able to
1. Listthe SDLC activities
2. Explain the SDLC activities with aid of a diagram
3. List and explain the Software Development Paradigm

3.0 Main Content
Software Development Life Cycle, SDLC for short, aswell-defined, structured
sequence of stages in software development to aleviet intended software product.

3.1 SDLC Activities

SDLC provides a series of steps to be followed ésigh and develop a software
product efficiently. SDLC framework includes théléaving steps:

108

Shau L] i
Syptem Ansiyeis

Y
% Sotftwere Design
e

oo}

Cuding

=

F 4

ﬁ; isnpsbmivenniaiion
oac————— =

| Operations & Maintanence
T ——— i T T

1. Communication:This is the first step where the user initiates tequest for a
desired software product. He contacts the servio@ger and tries to negotiate the
terms. He submits his request to the service pitogidrganization in writing.

2. Requirement Gatheringzrom this step onwards, the software developnmeannt
works to carry on the project. The team holds dismns with various stakeholders
from the problem domain and tries to bring out asiminformation as possible on
their requirements. The requirements are conteegblahd segregated into user
requirements, system requirements and functiomplirements. The requirements
are collected using a number of practices as falow
« studying the existing or obsolete system and soéiywa
« conducting interviews of users and developers,

« referring to the database or
« collecting answers from the questionnaires.

3. Feasibility StudyAfter requirement gathering, the team comes up witough plan
of software process. At this step the team analiyzesoftware can be made to fulfil
all requirements of the user and if there is argspmlity of software being no more
useful. A decision is made to decide if the projsctinancially, practically and
technologically feasible for the organization tkaaip. There are many algorithms
available, which help the developers to concluagddiasibility of a software project.

4. System AnalysisAt this step the developers decide a roadmabesf plan and try
to bring up the best software model suitable far groject. System analysis
includes: understanding the software product litiwtes, learning system related

109

problems or changes to be done in existing systash@rehand, identifying and
addressing the impact of project on organizatioth parsonnel, etc. The project
team analyzes the scope of the project and plamssthedule and resources
accordingly.

. Software DesignNext step is to bring down whole knowledge of egments and
analysis on the desk and design the software ptodihe inputs from users and
information gathered in requirement gathering plasdhe inputs of this step. The
output of this step comes in the form of two desidngical design and physical
design. Engineers produce meta-data and datarieies, logical diagrams, data-
flow diagrams and in some cases pseudocodes.

. Coding: This step is also known as the programming phEseimplementation of
software design starts in terms of writing progi@de in the suitable programming
language and developing error-free executable progrefficiently.

. Testing: Estimate reveals that 50% of the whole softwareeliggment process
should be tested. Errors may ruin the software fratical level to its own removal.
Software testing is done while coding by the depefts and thorough testing is
conducted by testing experts at various levels amfecsuch as module testing,
program testing, product testing, in-house teséing testing the product at user’'s
end. Early discovery of errors and their remedyéskey to reliable software.

. Integration: Software may need to be integrated with the libeardatabases and
other program(s). This stage of SDLC is involvethimintegration of software with
outer world entities.

. ImplementationThis involves installing the software on user maeh. At times,
software needs post-installation configurationsisdr end. Software is tested for
portability and adaptability and integration rethtessues are solved during
implementation.

10.Operation and Maintenancé&his phase confirms the software operation in $erm

of more efficiency and less errors. If requirea tisers are trained on, or aided with
the documentation on how to operate the softwadehanwv to keep the software

operational. The software is maintained timely pgating the code according to

the changes taking place in user end environmetgabmology. This phase may

face challenges from hidden bugs and real-worldemified problems.

11.Disposition:As time elapses, the software may decline on énfopnance front. It

may go completely obsolete or may need intenseadaegrHence, a pressing need
to eliminate a major portion of the system arigéss phase includes archiving data

110

and required software components, closing dowrsyiséem, planning disposition
activity and terminating system at appropriate efidystem time.

3.2 Software Development Paradigm

The software development paradigm helps develapselect a strategy to develop the
software. A software development paradigm has W& @et of tools, methods and

procedures, which are expressed clearly and de$oft@are development life cycle. A

few of software development paradigms or processatscare defined as follows:

3.2.1 Waterfall Model

Waterfall model is the simplest model of softwasvelopment paradigm. Here, all the
phases of SDLC will function one after anotherine&r manner. That is, when the first
phase is finished then only the second phase taift and so on.

Reguirement Gathering

This model assumes that everything is carried ndttaken place perfectly as planned

in the previous stage and there is no need to tidut the past issues that may arise
in the next phase. This model does not work smgottihere are some issues left at

the previous step. The sequential nature of moaoles$ diot allow us go back and undo

or redo our actions.

This model is best suited when developers alreae ldesigned and developed

similar software in the past and are aware oftalllomains.

3.2.2 Iterative Model
This model leads the software development processrations. It projects the process

of development in cyclic manner repeating every saéier every cycle of SDLC
process.

111

n-1 fteration n n+1

The software is first developed on very small sealé all the steps are followed which
are taken into consideration. Then, on every rterdiion, more features and modules
are designed, coded, tested and added to the seft&ery cycle produces a software,
which is complete in itself and has more featuned eapabilities than that of the

previous one.

After each iteration, the management team can dik wa risk management and

prepare for the next iteration. Because a cycleides small portion of whole software

process, it is easier to manage the developmentepsobut it consumes more

resources.

3.2.3 Spiral Model

Spiral model is a combination of both, iterativedaband one of the SDLC model. It
can be seen as if you choose one SDLC model andbinenit with cyclic process
(iterative model).

112

This model considers risk, which often goes unawsatiby most other models. The
model starts with determining objectives and camsts of the software at the start of
one iteration. Next phase is of prototyping thewsafe. This includes risk analysis.

Then one standard SDLC model is used to build dfievare. In the fourth phase of
the plan of next iteration is prepared.

3.2.4 V-model

The major drawback of waterfall model is we movdhe next stage only when the
previous one is finished and there was no changotback if something is found

wrong in later stages. V-Model provides means sfirig of software at each stage in
reverse manner.

Requirement U Aoceplance
Gathering Tasting
_w 7
. Syatem e Bysiam
Anaiysis ' Testing <
Softwars < intagration
& K Dosign Tasting
3 = - 4
% Module Unit §

% Daozign Tenebirsg

A e O i 4

&
B
Coding

113

At every stage, test plans and test cases areedreaverify and validate the product
according to the requirement of that stage. Fomgie, in requirement gathering stage
the test team prepares all the test cases in pomdence to the requirements. Later,
when the product is developed and is ready fomigstest cases of this stage verify
the software against its validity towards requiratset this stage.

This makes both verification and validation go arglel. This model is also known
as verification and validation model.

3.2.5 Big Bang Model

This model is the simplest model in its form. lquees little planning, but lots of
programming and lots of funds. This model is cotgalzed around the big bang of
universe. As scientists say that after big bartg,dbgalaxies, planets and stars evolved
just as an event. Likewise, if we put together titprogramming and funds, you may
achieve the best software product.

Time

florts ===
e = ——=——a

N
o e Ty

For this model, very small amount of planning iguieed. It does not follow any
process, or at times the customer is not sure gheutequirements and future needs.
So, the input requirements are arbitrary.

This model is not suitable for large software petgebut good one for learning and
experimenting.

4.0 Self-Assessment Exercise(s)
Answer the following questions:
1. List at least four types of software developmenteais.
2. State the weaknesses and strengths of each cathedimodel in (1) above.
3. Describe the iterative model of software developmen
4. Explain the importance of model verification andlidation in software
development.

114

Solution

1

2

List the types of software development msdel
1. Waterfall Model

Iterative Model

Spiral Model

V — model

Big Bang Model

ok wn

State the weaknesses and strengths of éslic bamed model in (1) above

Strengths of the Waterfall Model

It uses a clear structure.

The progression of the waterfall model is intuitive

The waterfall model determines the end goal early.

It transfers information in superior ways when canga to other methodologies.
The waterfall model keeps a project to a spedifiescale.

There are fewer financial surprises with the wadérhethod.

It reinforces good testing habits.

The phases of the waterfall model are predictahbtedon’t overlap.

Weaknesses of the Waterfall Model

The waterfall model doesn’t support making changes.

It can invalidate the work you’ve previously accdisiped.

This method excludes end-users and clients.

It delays testing until after the completion of freject.

The waterfall model can promote longer deliverygan

It typically works better for small projects.

Working models aren’t available until the latteages of a project.

Strengths of Iterative Model

This model produces a working software much quickhg early during the
SDLC.

This model is very flexible. As new functionalitpre be added to it at any time
of development.

This model is considerably cheap as it is lesslgdstchange requirements as
compared to the other process models.

115

The end-user or the stakeholders can give thaiibfek quickly, which can then
be implemented into the system.

The errors and bugs in the system can be identfely.

Takes smaller development teams as compared ta @ifteess models.

Weaknesses of Iterative Model

Problems pertaining to the system architecture @ame up because all the
requirements are not gathered upfront.

It is not a good choice for small projects.

More resource-intensive than waterfall model.

Risk analysis requires highly qualified specialistsscheck the risks in our
system.

The whole process is difficult to manage.

Strengths of Spiral Model

Spiral Life Cycle Model is one of the most flexidBDLC models in place.
Development phases can be determined by the progthger, according to the
complexity of the project.

Project monitoring is very easy and effective. Epbbhse, as well as each loop,
requires a review from concerned people. This matkes model more
transparent.

Risk management is one of the in-built featureshef model, which makes it
extra attractive compared to other models.

Changes can be introduced later in the life cyslevall. And coping with these
changes isn't a very big headache for the projestager.

Project estimates in terms of schedule, cost etorhe more and more realistic
as the project moves forward and loops in spiratgepleted.

It is suitable for high risk projects, where buss@eeds may be unstable.

A highly customized product can be developed uspital model.

Weaknesses of Spiral Model

Cost involved in this model is usually high.
It is a complicated approach especially for prgevuith a clear SRS.
Skills required, to evaluate and review projechfriome to time, need expertise.

116

e Rules and protocols should be followed properlgffectively implement this
model. Doing so, through-out the span of projetbisgh.

e Due to various customizations allowed from thentli@ising the same prototype
in other projects, in future, is difficult.

e It is not suitable for low-risk projects.

e Meeting budgetary and scheduling requirements ughaf this development
process is followed. 8) Amount of documentatioruresd in intermediate stages
makes management of project very complex affair.

Strengths of V-model
« Simple and easy to use.
« Testing activities like planning, test designingppans well before coding. This
saves a lot of time. Hence higher chance of suanessthe waterfall model.
« Proactive defect tracking — that is defects aredoat early stage.
o Avoids the downward flow of the defects.
o Works well for small projects where requirements @asily understood.

Weaknesses of V-model:
« Veryrigid and least flexible.
« Software is developed during the implementationsphao no early prototypes
of the software are produced.
o If any changes happen in midway, then the test mecds along with
requirement documents has to be updated.

3 Describe the iterative model of software developime

Software is a flexible and malleable medium whatilftates iterative analysis, design,

construction, verification and validation to a gezadegree than is usually possible for
the purely physical components of a system. Eguétiteon of an iterative development

model adds code to the growing software base. Kpangled code base is tested,
reworked as necessary, and demonstrated to stitestysers’ requirements.

Developing and modifying software involves creatp@cesses that are subject to
many external and changeable forces. Long expearibas shown that it is impossible
to “get it right” the first time, and that iteraévdevelopment processes are preferable to
linear, sequential development process models, sscthe well-known Waterfall
model. In iterative development, each cycle ofitheation subsumes the software of

117

the previous iteration and adds new capabilitieth&oevolving product to create an
expanded version of the software. lterative mod&wes continuous increment,
integration, verification, and validation of theadwing product.

4 Explain the importance of model verificationdawalidation in software
development.
Software testing is a process of examining the tfanality and behaviour of the
software through verification and validation.
« Verification is a process of determining if thetsadre is designed and developed
as per the specified requirements.
« Validation is the process of checking if the softevlas met the client’s true
needs and expectations.
Software testing is incomplete until it undergoesification and validation processes.
Verification and validation are the main elemerftsaftware testing workflow because
they:
e Ensure that the end product meets the design msgairts.
e Reduce the chances of defects and product failure.
e Ensures that the product meets the quality stasdandl expectations of all
stakeholders involved.

5.0 Conclusion

Software Development Life Cycle consist of stepglugises in developing a software.
The steps are as follows: communication, requiréngathering, feasibility study,
system analysis, system design, coding, iteratiomplementation, operation and
maintenance and disposition. There are quite a summiparadigms used in software
development. This includes among others: waterrfedtlel, spiral model, V-model
Iterative model etc.

6.0 Summary

The Software Development Life Cycle has been dssdisAlso discussed are the
various software paradigms, among which are: watiemodel, spiral model, V-model,
iterative model, etc.

7.0 References/Further Readings

118

Adnan N. H. and Ritzhaupt A. D (2018). Software i&egring Design Principles
Applied to Instructional Design: What can we Le&om our Sister Discipline?
Springer. 62, 77-94.

Charles S. Wasson (2006) System Analysis, Desigd, [Revelopment Concepts,
Principles, and Practices, Published by John WAle§ons, Inc., Hoboken, New
Jersey.

Hans-Petter Halvorsen (2020) Software DevelopmeRtaktical Approach. Retrieved
from: https://halvorsen.blog

Kaur I., Narula G. S., Wason R., Jain V., and BaliyA (2018).Neuro fuzzy—
COCOMO Il model for software cost estimation. Imi@ional Journal of
Information technology. 10, 181-187.

Richard H. Thayer, Barry W. Boehm (1986). Tutorisdftware engineering project
management. Computer Society Press of the IEEBOp.1

Salve S. M., Samreen S. N. and Khatri-Valmik N.1&0, A Comparative Study on
Software Development Life Cycle Models. InternaéibrResearch Journal of
Engineering and Technology. 5(2), 696-700.

Unit 3: Software Project Management
Contents
1.0 Introduction
2.0 Intended Learning Outcomes (ILOS)
3.0 Main Content
3.1 Software Project
3.1.1 Need for software project management
3.2 Software Project Manager
3.2.1 Managing People
3.2.2 Managing Project
3.3 Software Management Activities
3.3.1 Project Planning
3.3.2 Scope Management
3.3.3 Project Estimation
3.4 Project Estimation Techniques
3.4 .1 Decomposition Technique
3.4.2 Empirical Estimation Technique

119

3.5 Project Scheduling
3.6 Resource management
3.7 Project Risk Management

3.7.1 Risk Management Process

3.8 Project Execution & Monitoring
3.9 Project Communication Management
3.10 Configuration Management

3.10,1 Baseline
3.10.2 Change Control

3.11 Project Management Tools

3.11,1 Gantt Chart
3.11.2 PERT Chart
3.11.3 Resource Histogram

3.11.4 Critical Path Analysis

4.0 Self-Assessment Exercise(s)
5.0 Conclusion

6.0 Summary

7.0 References/Further Readings

Contents
1.0 Introduction

The job pattern of an IT company engaged in sofvagvelopment can be seen split
in two parts:

Software Creation
Software Project Management

A project is well-defined task, which is a collegtiof several operations done in order
to achieve a goal (for example, software develograad delivery). A Project can be
characterized as:

Every project may have a unigue and distinct goal.

Project is not routine activity or day-to-day operas.

Project comes with a start time and end time.

Project ends when its goal is achieved hence & temporary phase in the
lifetime of an organization.

Project needs adequate resources in terms of i

me, manpower, finance, material and knowledge-bank.

120

2.0 Intended Learning Outcomes (ILOs)
After studying this unit, you should be able to

1. Identify the characteristics of a software pcoje

2. Describe a software project

3. Justify the need for software project management

4. ldentify the job of a software project manager

5. Explain the following: project planning, scope mgement and project

estimation
6. Mention at least 3 project management tools

3.0 Main Content

3.1 Software Project

A Software Project is the complete procedure oftvemfe development from

requirement gathering to testing and maintenaneeried out according to the
execution methodologies, in a specified periodimetto achieve intended software
product.

3.1.1 Need for software project management

Software is said to be an intangible product. Safendevelopment is a kind of all new
stream in world business and there’s very littlgoerience in building software
products. Most software products are tailor madé tdient’s requirements. The most
important is that the underlying technology changed advances so frequently and
rapidly that experience of one product may not jpgliad to the other one. All such
business and environmental constraints bring risgoftware development hence it is
essential to manage software projects efficiently.

The image above shows triple constraints for sofvgaojects. It is an essential part
of software organization to deliver quality produkgeping the cost within client’s
budget constrain and deliver the project as peeduled. There are several factors,
both internal and external, which may impact thé constrain triangle. Any of three
factors can severely impact the other two.

Therefore, software project management is essdntiacorporate user requirements
along with budget and time constraints.

3.2 Software Project Manager

121

A software project manager is a person who undest#tke responsibility of executing
the software project. Software project managehasaughly aware of all the phases
of SDLC that the software would go through. Proje@nager may never directly
involve in producing the end product but he comstrahd manages the activities
involved in production.

A project manager closely monitors the developnpeatess, prepares and executes
various plans, arranges necessary and adequatggesomaintains communication
among all team members in order to address isduessq budget, resources, time,
guality and customer satisfaction.

Let us see few responsibilities that a project ganahoulders:

3.2.1 Managing People
« Act as project leader
« Liaison with stakeholders
« Managing human resources
« Setting up reporting hierarchy etc

3.2.2 Managing Project
« Defining and setting up project scope
« Managing project management activities
« Monitoring progress and performance
« Risk analysis at every phase
« Take necessary step to avoid or come out of prablem
« Act as project spokesperson

3.3 Software Management Activities
Software project management comprises of a numbectivities, which contains
planning of project, deciding scope of softwareduat, estimation of cost in various
terms, scheduling of tasks and events, and resomso@agement. Project management
activities may include:

« Project Planning

e Scope Management

« Project Estimation

3.3.1 Project Planning

122

Software project planning is task, which is perfechbefore the production of software
actually starts. It is there for the software prctthn but involves no concrete activity
that has any direction connection with softwaredpation; rather it is a set of multiple
processes, which facilitates software productiamjdet planning may include the
following:

3.3.2 Scope Management
In scope management, the scope of project is dkfifieis includes all the activities;
process need to be done in order to make a ddhileisoftware product. Scope
management is essential because it creates boesdathe project by clearly defining
what would be done in the project and what wouldb®odone. This makes project to
contain limited and quantifiable tasks, which casily be documented and in turn
avoids cost and time overrun.
During Project Scope management, it is necessary to

« Define the scope

« Decide its verification and control

« Divide the project into various smaller parts fase of management.

« Verify the scope

« Control the scope by incorporating changes to tope

3.3.3 Project Estimation
For an effective management, accurate estimatimambus measures is a must. With
correct estimation, managers can manage and cehé&@roject more efficiently and
effectively.
Project estimation may involve the following:
« Software size estimation
Software size may be estimated either in termsldD® (Kilo Line of Code)
or by calculating number of function points in theftware. Lines of code
depend upon coding practices and Function poinmtsa@cording to the user or
software requirement.
« Effort estimation
The managers estimate efforts in terms of persamgglirement and man-hour
required to produce the software. For effort estiomasoftware size should be
known. This can either be derived by managers’ egpee, organization’'s
historical data or software size can be conventéd efforts by using some
standard formulae.

123

Time estimation
Once size and efforts are estimated, the time requo produce the software
can be estimated. Efforts required is segregatedsumb categories as per the
requirement specifications and interdependency afous components of
software. Software tasks are divided into smallsks$, activities or events by
Work Breakthrough Structure (WBS). The tasks ateedaled on day-to-day
basis or in calendar months.
The sum of time required to complete all tasksaark or days is the total time
invested to complete the project.
Cost estimation
This might be considered as the most difficultlbbacause it depends on more
elements than any of the previous ones. For estigptoject cost, it is required
to consider -

e Size of software

e Software quality

e Hardware

e Additional software or tools, licenses etc.

e Skilled personnel with task-specific skills

e Travel involved

e Communication

e Training and support

3.4 Project Estimation Techniques

We have discussed various parameters involvingptejstimation such as size, effort,
time and cost.

The project manager can estimate the listed faaieisg two broadly recognized
techniques:

3.4 .1 Decomposition Technique
This technique assumes the software as a prodwetrimius compositions. There are
two main models:

Line of Code (LOC) Estimation is done on behalf of number of lineodles in
the software product.

Function Points (FPs)Estimation is done on behalf of number of funcpomts
in the software product.

124

3.4.2 Empirical Estimation Technique
This technique uses empirically derived formulaenike estimation. The formulae
are based on LOC or FPs.
o Putnam Model
This model is made by Lawrence H. Putnam, whiclhdsed on Norden’s
frequency distribution (Rayleigh curve). Putnam edashaps time and efforts
required with software size.
« COCOMO
COCOMO stands for COnstructive COst MOdel, devealopgy Barry W.
Boehm. It divides the software product into thresegories of software:
organic, semi-detached and embedded.

3.5 Project Scheduling
Project Scheduling in a project refers to roadmaplloactivities to be done with
specified order and within time slot allotted taleactivity. Project managers tend to
define various tasks, and project milestones arahge them keeping various factors
in mind. They look for tasks that occur in theicat path of the schedule, which are
necessary to complete in specific manner (becafidas& interdependency) and
strictly within the time allocated. Arrangementtasks which lies out of the critical
path are less likely to impact the overall scheddlhe project.
For scheduling a project, it is necessary to:

« Break down the project tasks into smaller, manalgefaibm

« Find out various tasks and correlate them

« Estimate time frame required for each task

« Divide time into work-units

« Assign adequate number of work-units for each task

« Calculate total time required for the project fretart to finish

3.6 Resource management

All elements used to develop a software product begssumed as resource for that
project. This may include human resource, prodedils and software libraries.

The resources are available in limited quantity stay in the organization as a pool
of assets. The shortage of resources hampers ¥eéogeent of project and it can lag
behind the schedule. Allocating extra resourceeases development cost in the end.
It is therefore necessary to estimate and allcadégjuate resources for the project.

125

Resource management includes:

Defining proper organization project by creatingraject team and allocating
responsibilities to each team member

Determining resources required at a particularestagl their availability
Manage Resources by generating resource request thvbg are required and
de-allocating them when they are no more needed.

3.7 Project Risk Management

Risk management involves all activities pertaintogidentification, analyzing and
making provision for predictable and non-predictabsks in the project. Risk may
include the following:

Experienced staff leaving the project and new staffiing in.
Change in organizational management.

Requirement change or misinterpreting requirement.
Under-estimation of required time and resources.

Technological changes, environmental changes, essicompetition.

3.7.1 Risk Management Process
There are following activities involved in risk ne&gement process:

Identification— Make note of all possible risks, which may occuthe project.
Categorize— Categorize known risks into high, medium and losk rintensity
as per their possible impact on the project.

Manage- Analyse the probability of occurrence of risks atisus phases. Make
plan to avoid or face risks. Attempt to minimizeithside-effects.

Monitor —Closely monitor the potential risks and their ea{ynptoms. Also
monitor the effects of steps taken to mitigatevaicthem.

3.8 Project Execution & Monitoring

In this phase, the tasks described in project pkmesexecuted according to their
schedules.

Execution needs monitoring in order to check whe#werything is going according
to the plan. Monitoring is observing to check th@hability of risk and taking
measures to address the risk or report the stierious tasks.

These measures include:

126

Activity Monitoring —All activities scheduled within some tasks can be
monitored on day-to-day basis. When all activitrea task are completed, it is
considered as complete.

Status Reports-The reports contain status of activities and taskspleted
within a given time frame, generally a week. Statas be marked as finished,
pending or work-in-progress etc.

Milestones Checklist Every project is divided into multiple phases wheagor
tasks are performed (milestones) based on the pludseDLC. This milestone
checklist is prepared once every few weeks andrteploe status of milestones.

3.9 Project Communication Management

Effective communication plays vital role in the sass of a project. It bridges gaps
between client and the organization, among the te@mbers as well as other stake
holders in the project such as hardware suppliers.

Communication can be oral or written. Communicati@anagement process may have
the following steps:

Planning— This step includes the identifications of all gtakeholders in the
project and the mode of communication among theralsb considers if any
additional communication facilities are required.

Sharing— After determining various aspects of planninghager focuses on
sharing correct information with the correct personcorrect time. This keeps
everyone involved the project up to date with prbogress and its status.
Feedback- Project managers use various measures and féediazhanism
and create status and performance reports. Thisianean ensures that input
from various stakeholders is coming to the projeahager as their feedback.
Closure— At the end of each major event, end of a phaSDdfC or end of the
project itself, administrative closure is formakynounced to update every
stakeholder by sending email, by distributing albapy of document or by other
mean of effective communication.

After closure, the team moves to next phase oeptoj

127

3.10 Configuration Management

Configuration management is a process of trackimg) @ontrolling the changes in
software in terms of the requirements, design, tiane and development of the
product.

IEEE defines it as “the process of identifying atefining the items in the system,
controlling the change of these items throughowrthife cycle, recording and
reporting the status of items and change requastkyerifying the completeness and
correctness of items”.

Generally, once the SRS is finalized there is @snce of requirement of changes
from user. If they occur, the changes are addresskdwith prior approval of higher
management, as there is a possibility of cost el dverrun.

3.10.1 Baseline

A phase of SDLC is assumed over if it is baselined, baseline is a measurement that
defines completeness of a phase. A phase is badelihen all activities pertaining to
it are finished and well documented. If it was tia final phase, its output would be
used in next immediate phase.

Configuration management is a discipline of orgaman administration, which takes
care of occurrence of any change (process, reqamenechnological, strategical etc.)
after a phase is baselined. CM keeps check onlamges done in software.

3.10.2 Change Control

Change control is function of configuration manageim which ensures that all
changes made to software system are consistemhadd as per organizational rules
and regulations.

A change in the configuration of product goes tgiotollowing steps -

« ldentification— A change request arrives from either internaxternal source.
When change request is identified formally, itispgerly documented.

« Validation— Validity of the change request is checked arsd hiandling
procedure is confirmed.

« Analysis— The impact of change request is analyzed inderhschedule, cost
and required efforts. Overall impact of the prospecchange on system is
analyzed.

o Control- If the prospective change either impacts too ynamtities in the
system or it is unavoidable, it is mandatory tceetakproval of high authorities

128

before change is incorporated into the systens Hacided if the change is
worth incorporation or not. If it is not, changeuest is refused formally.

« Execution- If the previous phase determines to executelthage request, this
phase take appropriate actions to execute the ehdogs a thorough revision
if necessary.

« Close request The change is verified for correct implementaémd merging
with the rest of the system. This newly incorpodatbange in the software is
documented properly and the request is formaltased.

3.11 Project Management Tools

The risk and uncertainty rise multi-fold with respéo the size of the project, even
when the project is developed according to set auetlogies.

There are tools available, which aid for effectm®ject management. A few are
described as follows:

3.11.1 Gantt Chart

Gantt charts was devised by Henry Gantt (191 #ggtesents project schedule with
respect to time periods. Below shows a Gantt saathorizontal bar chart) with bars
representing activities, time scheduled for thggmtoactivities, and responsibilities.

GANTT CHART

B Gantt Ohart s a schiedule which plots the tasks, people responsible forthe tasks, and a
Ernaling,

List of fichwiRies Guarter |Quarter |(Quarter |Quarter | Resporsibdity
1 2 1 4
1. Hirimg of project staff and
grientabion training Program Directnrs
2. Baseling study and nesds I | |)
assesmment Frogram Cdficers
3. Haat ings e fnalizeg s 1:|':_|:-'\-\.- | | Pr egram Direstors & |
and activities CeTicars

4, Traming programs for
hapaficiarias Field Warkers

3.11.2 PERT Chart

PERT (Program Evaluation & Review Technique) cled tool that depicts project
as network diagram. It is capable of graphicaljyresenting main events of project in
both parallel and consecutive way. Events, whichuoomne after another, show
dependency of the later event over the previous one

129

Events are shown as numbered nodes. They are dedrm®clabelled arrows depicting
sequence of tasks in the project.

3.11.3 Resource Histogram
This is a graphical tool that contains bar or cliepresenting number of resources

(usually skilled staff) required over time for aomrct event (or phase). Resource
Histogram is an effective tool for staff planningdacoordination.

3.11.4 Critical Path Analysis

This tool is useful in recognizing interdependex®ks in the project. It also helps to
find out the shortest path or critical path to céetg the project successfully. Like
PERT diagram, each event is allotted a specifice titame. This tool shows

dependency of event assuming an event can progeezkt only if the previous one is
completed.

As illustrated below, the events are arranged aacgrto their earliest possible start
time. Path between start and end node is critiatd which cannot be further reduced
and all events require to be executed in same .order

TaskD _ . TaskE - i
2 Doy / 4 Doy / 1 Day "]
A -]
i Y
|
\ Task A \
Q Ill S c““ I\. @
Start Firish

s B

4.0 Self-Assessment Exercise(s)
Answer the following questions:

1. Explain software development project

130

2. Explain the need for software project management

3. Give the detail description of the job of a s@lte project manager.

4. Explain the terms: project planning, scope manant and project estimation
5. Mention at least 3 project management tools

Solution

1 Explain software development project

A software development project is a complex und@ntaby two or more persons
within the boundaries of time, budget, and staBoteces that produces new or
enhanced computer code that adds significant bssimalue to a new or existing
business procesSoftware project involves project initiation, projglanning, project
monitoring and control and project closure.

2 Explain the need for software project aggment

Software project consumes resources, budget army ifitnerefore become imperative
to manage software project in order to optimize tbsources, budget, and time.
Software management ensures the production oftgusadftware that will satisfy the

client's need. Therefore, the software project tenmst put everything in place to
ensure the success of the project to avoid thetikézction of the client which could

culminate into mitigation. Software project invabseroject initiation, project planning,

project monitoring and control, and project closééthese activities must be properly
managed.

3 Give the detail description of the jobacfoftware project manager.

Software project managers are in charge of thenplgh scheduling, budgeting,

execution, and delivery of software and web prgjedthey ensure the successful
completion of all software projects and also overse people performing work on the
projects.

4 Explain the terms: project planning, scommagement and project estimation
Project planning: Project planning is a disciplaggressing how to complete a project
in a certain timeframe, usually with defined staged designated resources. One view
of project planning divides the activity into thesteps: setting measurable objectives.
identifying deliverables

131

Scope management: Scope management is the probesshy the outputs, outcomes
and benefits are identified, defined and controll&tope’ is the term used in the
management of projects to refer to the totalitthefoutputs, outcomes and benefits and
the work required to produce them.

Project estimation: Generally speaking, it's thecpss of analyzing available data to
predict the time, cost, and resources needed tpletena project. Typically, project
estimation includes scope, time-frames, budget riskd.

4 Mention three project management tools
e Gantt Chart
e PERT Chart
e Critical Path Analysis

5.0 Conclusion

Software project management involves both softwdeelopment skills and
managerial skills. It is therefore imperative fopject managers to acquire technical
skills in software development such communicatikil, sequirement elicitation skill,
specification writing skill, analysis skill, desigkill, coding skill etc. And managerial
skills such as leadership skill, cost estimatioifi, scheduling skill etc.

6.0 Summary

This unit has highlighted need for software projaenagement, the duties of Software
Project Manager, Software Management Activitieg.(i.Project Planning, Scope
Management, Project Estimation) and Project Estonatechniques. We have also
discussed Project Scheduling, Resource manageRmepct Risk Management,
Execution and Monitoring, Project Communication Mgement, Configuration
Management, Project Management Tools etc

7.0 References/Further Readings

Adnan N. H. and Ritzhaupt A. D (2018). Software i&egring Design Principles
Applied to Instructional Design: What can we Le&om our Sister Discipline?
Springer. 62, 77-94.

132

Charles S. Wasson (2006) System Analysis, Desigd, Revelopment Concepts,
Principles, and Practices, Published by John WAle§ons, Inc., Hoboken, New
Jersey.

Hans-Petter Halvorsen (2020) Software DevelopmeRtaktical Approach. Retrieved
from: https://halvorsen.blog

Kaur I., Narula G. S., Wason R., Jain V., and BaliyA (2018).Neuro fuzzy—
COCOMO Il model for software cost estimation. Imi@ional Journal of
Information technology. 10, 181-187.

Richard H. Thayer, Barry W. Boehm (1986). Tutorisftware engineering project
management. Computer Society Press of the IEEBOp.1

Salve S. M., Samreen S. N. and Khatri-Valmik N 1&0, A Comparative Study on
Software Development Life Cycle Models. InternaéibrResearch Journal of
Engineering and Technology. 5(2), 696-700.

Unit 4 Software Requirements
Contents
1.0 Introduction
2.0 Intended Learning Outcomes (ILOS)
3.0 Main Content
3.1 Requirement Engineering
3.1.1 Requirement Engineering Process
3.2 Software Requirement Validation
3.3 Requirement Elicitation Process
3.4 Requirement Elicitation Techniques
3.5 Software Requirements Characteristics
3.6 Software Requirements
3.6.1 Functional Requirements
3.6.2 Non-Functional Requirements
3.7 User Interface requirements
3.8 Software System Analyst
3.9 Software Metrics and Measures
4.0 Self-Assessment Exercise(s)
5.0 Conclusion
6.0 Summary
7.0 References/Further Readings

133

Contents

1.0 Introduction

The software requirements are description of fegtand functionalities of the target
system. Requirements convey the expectations fserswof the software product. The
requirements can be obvious or hidden, known onawk, expected or unexpected
from client’s point of view.

2.0 Intended Learning Outcomes (ILOs)
After studying this unit, you should be able to
1. List and explain the four steps in requirement pegring process

2. Depict the requirement elicitation process withagthm

3. Mention at least 6 requirement elicitation techeisju

4, List at least 10 software requirement charactessti

5. Differentiate between functional and non-functiorsaftware
requirements

6. Mention at least 10 user interface requirements

7. Outline the responsibility of a system analyst

8. Differentiate between software metric and softwasasures

3.0 Main Content

3.1 Requirement Engineering

The process to gather the software requiremenis @igent, analyze and document
them is known as requirement engineering.

The goal of requirement engineering is to develog maintain sophisticated and
descriptive ‘System Requirements Specification’woent.

3.1.1 Requirement Engineering Process
It is a four-step process, which includes:
o Feasibility Study
« Requirement Gathering
« Software Requirement Specification
« Software Requirement Validation

134

Feasibility study -When the client approaches the organization farrgethe desired
product developed, it comes up with rough idea aldwat all functions the software
must perform and which all features are expectewh fihe software.
Referencing to this information, the analysts ddetailed study about whether the
desired system and its functionality are feasiblddvelop.
This feasibility study is focused towards goaltw brganization. This study analyzes
whether the software product can be practically emalized in terms of
implementation, contribution of project to organiaa, cost constraints and as per
values and objectives of the organization. It esgdaechnical aspects of the project
and product such as usability, maintainability,quactivity and integration ability.
The output of this phase should be a feasibilitydgtreport that should contain
adequate comments and recommendations for manageiyant whether or not the
project should be undertaken.
Requirement Gathering If the feasibility report is positive towardsdertaking the
project, next phase starts with gathering requirgemérom the user. Analysts and
engineers communicate with the client and end-useksow their ideas on what the
software should provide and which features theytvlza software to include.
Software Requirement Specification (SRS) — SRS #®@ment created by system
analyst after the requirements are collected franous stakeholders.
SRS defines how the intended software will inteveith hardware, external interfaces,
speed of operation, response time of system, pbityabf software across various
platforms, maintainability, speed of recovery afterashing, Security, Quality,
Limitations etc.
The requirements received from client are writtenniatural language. It is the
responsibility of system analyst to document tlggirements in technical language so
that they can be comprehended and useful by thwaef development team.
SRS should come up with following features:

« User Requirements are expressed in natural language

« Technical requirements are expressed in structlameguage, which is used

inside the organization.

« Design description should be written in Pseudo code

o Format of Forms and GUI screen prints.

« Conditional and mathematical notations for DFDs, et

135

3.2 Software Requirement Validation
After requirement specifications are developed, rdguirements mentioned in this
document are validated. User might ask for illegmapractical solution or experts may
interpret the requirements incorrectly. This resuithuge increase in cost if not nipped
in the bud. Requirements can be checked againswial conditions:

« If they can be practically implemented

« If they are valid and as per functionality and donad software

« If there are any ambiguities

o If they are complete

« If they can be demonstrated

3.3 Requirement Elicitation Process
Requirement elicitation process can be depicteugusie following diagram:

Requirements gathering The developers discuss with the client and endsused
know their expectations from the software.

Organizing RequirementsThe developers prioritize and arrange the requirgsne
order of importance, urgency and convenience.

Negotiation and discussienlf requirements are ambiguous or there are somiicisn

in requirements of various stakeholders, if they; dris then negotiated and discussed
with stakeholders. Requirements may then be pdedtand reasonably compromised.
These requirements come from various stakeholdersemove the ambiguity and
conflicts, they are discussed for clarity and coimess. Unrealistic requirements are
compromised reasonably.

Documentation- All formal and informal, functional and non-funatial requirements
are documented and made available for next phasegsing.

3.4 Requirement Elicitation Techniques

Requirements Elicitation is the process to find i requirements for an intended
software system by communicating with client, eadrs, system users and others who
have a stake in the software system development.

There are various ways to discover requirementsyTifclude:

136

Interviews— Interviews are strong medium to collect requeais. Organization may
conduct several types of interviews such as:
e Structured (closed) interviews, where every singl®rmation to gather is
decided in advance, they follow pattern and maiteliscussion firmly.
e Non-structured (open) interviews, where informatiomgather is not decided in
advance, more flexible and less biased.
e Oral interviews
e \Written interviews
e One-to-one interviews, which are held between terspns across the table.
e Group interviews, which are held between groupgasticipants. They help to
uncover any missing requirement as numerous peoplavolved.
Surveys -Organization may conduct surveys among variousesialkiers by querying
about their expectation and requirements from gfeming system.
Questionnaires —A document with pre-defined set of objective quesi and
respective options is handed over to all stakemslaieanswer, which are collected and
compiled.
A shortcoming of this technique is, if an optiom smme issue is not mentioned in the
guestionnaire, the issue might be left unattended.
Task analysis- Team of engineers and developers may analysgp#ration for which
the new system is required. If the client alreadyg Bbome software to perform certain
operation, it is studied and requirements of predas/stem are collected.
Domain Analysis- Every software falls into some domain categ®he expert people
in the domain can be a great help to analyse geaedaspecific requirements.
Brainstorming— An informal debate is held among various stalddrs and all their
inputs are recorded for further requirements amglys
Prototyping— Prototyping is building user interface withodtang detail functionality
for user to interpret the features of intendedvgaifé product. It helps in giving better
idea of requirements. If there is no software itestiaat client’s end for developer’'s
reference and the client is not aware of its owquirements, the developer creates a
prototype based on initially mentioned requiremeifitse prototype is shown to the
client and the feedback is noted. The client feekilsarves as an input for requirement
gathering.
Observation— Team of experts visits the client’'s organizatamworkplace. They
observe the actual working of the existing insthlleystems. They observe the

137

workflow at client’'s end and how execution probleans dealt. The team itself draws
some conclusions which aid to form requirementsetgal from the software.

3.5 Software Requirements Characteristics
Gathering software requirements is the foundatiath® entire software development
project. Hence, they must be clear, correct andidefined.
A complete Software Requirement Specifications rbast

o Clear

« Correct

o Consistent

o Coherent

« Comprehensible

« Modifiable

« Verifiable

o Prioritized

« Unambiguous

o Traceable

o Credible source

3.6 Software Requirements

We should try to understand what sort of requireiemay arise in the requirement
elicitation phase and what kinds of requirements expected from the software
system.

Broadly software requirements should be categorizédo categories:

3.6.1 Functional Requirements
Requirements, which are related to functional atspiesoftware fall into this category.
They define functions and functionality within afndm the software system.
Examples:

« Search option given to user to search from vanowusices.

o User should be able to mail any report to managémen

« Users can be divided into groups and groups caives separate rights.

« Should comply business rules and administrativetfans.

« Software is developed keeping downward compatyhititact.

138

3.6.2 Non-Functional Requirements
Requirements, which are not related to functiorsgeat of software, fall into this
category. They are implicit or expected charadiessf software, which users make
assumption of.
Non-functional requirements include:

o Security

» Logging

o Storage

« Configuration

o Performance

o Cost

« Interoperability

« Flexibility

« Disaster recovery

« Accessibility
Requirements are categorized logically as

« Must have: Software cannot be said operationalouitthem.

« Should have: Enhancing the functionality of softsvar

« Could have: Software can still properly functioriiwihese requirements.

« Wish list: These requirements do not map to angabjes of software.
While developing software, ‘Must have’ must be iempented, ‘Should have’ is a
matter of debate with stakeholders and negatioeyeds ‘could have’ and ‘wish list’
can be kept for software updates.

3.7 User Interface requirements
Ul is an important part of any software or hardwarénybrid system. A software is
widely accepted if it is:

e easy to operate

e quick in response

» effectively handling operational errors

« providing simple yet consistent user interface
User acceptance majorly depends upon how usersmatha software. Ul is the only
way for users to perceive the system. A well penfag software system must also be
equipped with attractive, clear, consistent andaasive user interface. Otherwise, the
functionalities of software system cannot be usetbnvenient way. A system is said

139

be good if it provides means to use it efficienthger interface requirements are briefly
mentioned below:

« Content presentation

« [Easy Navigation

o Simple interface

« Responsive

o Consistent Ul elements

o Feedback mechanism

o Default settings

o Purposeful layout

« Strategical use of colour and texture.

« Provide help information

« User centric approach

« Group based view settings.

3.8 Software System Analyst

System analyst in an IT organization is a persdmp w@nalyzes the requirement of
proposed system and ensures that requirements ameeiced and documented
properly and correctly. Role of an analyst statsmd) Software Analysis Phase of
SDLC. Itis the responsibility of analyst to makeesthat the developed software meets
the requirements of the client.

System Analysts have the following responsibilities
« Analyzing and understanding requirements of intdrstgtware
« Understanding how the project will contribute i thrganization objectives
« ldentify sources of requirement
« Validation of requirement
« Develop and implement requirement management plan
« Documentation of business, technical, process apdlpt requirements
« Coordination with clients to prioritize requirems@nd remove and ambiguity
« Finalizing acceptance criteria with client and otsiakeholders

3.9 Software Metrics and Measures

Software Measures can be understood as a procegsanfifying and symbolizing
various attributes and aspects of software.

140

Software Metrics provide measures for various aspef software process and
software product.

Software measures are fundamental requirementfof/@@ engineering. They not
only help to control the software development pssdeut also aid to keep quality of
ultimate product excellent.

According to Tom DeMarco, a (Software Engineer)plivcannot control what you
cannot measure.” By his saying, it is very clear mportant software measures are.
Let us see some software metrics:

o Size Metrics-LOC (Lines of Code), mostly calculated in thousaoiddelivered
source code lines, denoted as KLOC.

Function Point Count is measure of the functioggliovided by the software.
Function Point count defines the size of functicasect of software.

o Complexity Metrics-McCabe’s Cyclomatic complexity quantifies the upper
bound of the number of independent paths in a pragkvhich is perceived as
complexity of the program or its modules. It is negented in terms of graph
theory concepts by using control flow graph.

« Quality Metrics—Defects, their types and causes, consequence sitytef
severity and their implications define the quatifyproduct.

The number of defects found in development proeessnumber of defects
reported by the client after the product is insthlor delivered at client-end,
define quality of product.

« Process Metrics-In various phases of SDLC, the methods and toasd,ube
company standards and the performance of develdpanersoftware process
metrics.

« Resource Metrics Effort, time and various resources used, represeptsics
for resource measurement.

4.0 Self-Assessment Exercise(s)
Answer the following questions:
1. Explain the four steps in requirement engimgeprocess
lllustrate requirement elicitation process vatdiagram only.
List at least 6 requirement elicitation techrgu
Name at least 10 software requirement charatteyi
Differentiate between functional and non-funieéibsoftware requirements
Explain the user interface requirements
Outline the responsibility of a system analyst

N o s~ wDd

141

8. Differentiate between software metric and safevmeasures

Solution

1 Explain the four steps in requirement eagring process

Requirement Engineering is the process of defindogumenting and maintaining
the requirements. It is a process of gatheringdsithing service provided by the
system. Requirements Engineering Process congitite ¢ollowing main activities:

Requirements elicitation

Requirements specification
Requirements verification and validation
Requirements management

hwn R

a. Requirements Elicitation: It is related to tleigus ways used to gain knowledge
about the project domain and requirements. Theuarsources of domain knowledge
include customers, business manuals, the exisbfigvare of same type, standards
and other stakeholders of the project.
The techniques used for requirements elicitatiaruite interviews, brainstorming,
task analysis, Delphi technique, prototyping, &mme of these are discussed .

b. Requirements specification: This activity is dis® produce formal software
requirement models. All the requirements including functional as well as the non-
functional requirements and the constraints areipd by these models in totality.
During specification, more knowledge about the peobmay be required which can
again trigger the elicitation process. The modededuat this stage include ER
diagrams, data flow diagrams (DFDs), function deposition diagrams (FDDs), data
dictionaries, etc.

c. Requirements verification and validation: Vexdiion: It refers to the set of tasks
that ensures that the software correctly implemeats specific function.
Validation: It refers to a different set of taskst ensures that the software that has
been built is traceable to customer requirements.

d. Requirements management: Requirement managesridiet process of analyzing,
documenting, tracking, prioritizing and agreeingtbe requirement and controlling

142

the communication to relevant stakeholders. Thagesttakes care of the changing
nature of requirements.

2 lllustrate requirement elicitation process withiagdam only.

3 List at least 6 requirement elicitationheiques

o Interviews

° Surveys

o Questionnaires

e Task analysis

o Domain Analysis
o Brainstorming

o Prototyping

o Observation

4 Name at least 10 software requirement cheariatics
o Clear
. Correct

« Consistent

« Coherent

« Comprehensible
« Modifiable

« Verifiable

e Prioritized

« Unambiguous

o« Traceable

o Credible source

5 Differentiate between functional and nonéfimnal software requirements
Functional Requirements are related to functiorsgleat of software. They define
functions and functionality within and from the swére system. Examples include the
following:

« Search option given to user to search from vanousices.

143

o User should be able to mail any report to managémen
« Users can be divided into groups and groups caives separate rights.
« Should comply business rules and administrativetfans.
« Software is developed keeping downward compatyhititact.
WHILE
Non-Functional Requirements are requirements whieh not related to functional
aspect of software. They are implicit or expectbdracteristics of software, which
users make assumption of. Non-functional requirésgciude:
o Security
Logging
Storage
Configuration
Performance
Cost
Interoperability
Flexibility
Disaster recovery
Accessibility

6. Explain the user interface requirements
User interface requirements include:
o Content presentation
Easy Navigation
Simple interface
Responsive
Consistent Ul elements
Feedback mechanism
Default settings
Purposeful layout
Strategical use of colour and texture.
Provide help information
User centric approach
Group based view settings.

7 Outline the responsibility of a systemIlgsia
System Analysts have the following responsibilities

144

o Analyzing and understanding requirements of intdrst#tware

« Understanding how the project will contribute i thrganization objectives

« Identify sources of requirement

« Validation of requirement

« Develop and implement requirement management plan

« Documentation of business, technical, process aodlpt requirements

o Coordination with clients to prioritize requirems@nd remove and ambiguity
« Finalizing acceptance criteria with client and otsiakeholders

8 Differentiate between software metric aoffveare measures

Software Metrics provide measures for various aspef software process and
software product.

WHILE

Software Measures can be understood as a procagsanfifying and symbolizing
various attributes and aspects of software.

5.0 Conclusion

Software requirements specify the needs or expeustaft the user or client. They are
captured through the process of elicitation. Botimctional and non-functional
requirements are captured or elicited. This ingslthe interaction between the user or
client and the System Analyst and/or the developrieam.

6.0 Summary
In this unit we discussed the following:

e Requirement Engineering Process

e Software Requirement Validation

e Requirement Elicitation Process

e Requirement Elicitation Techniques

e Software Requirements Characteristics
e Software Requirements

e User Interface requirements

e Software System Analyst

e Software Metrics and Measures

145

7.0 References/Further Readings

Adnan N. H. and Ritzhaupt A. D (2018). Software i&egring Design Principles
Applied to Instructional Design: What can we Le&om our Sister Discipline?
Springer. 62, 77-94.

Charles S. Wasson (2006) System Analysis, Desigd, Revelopment Concepts,
Principles, and Practices, Published by John WAle§ons, Inc., Hoboken, New
Jersey.

Hans-Petter Halvorsen (2020) Software DevelopmeRtaktical Approach. Retrieved
from: https://halvorsen.blog

Kaur I., Narula G. S., Wason R., Jain V., and BaliyA (2018).Neuro fuzzy—
COCOMO Il model for software cost estimation. Imi@ional Journal of
Information technology. 10, 181-187.

Richard H. Thayer, Barry W. Boehm (1986). Tutorisbftware engineering project
management. Computer Society Press of the IEEBOp.1

Salve S. M., Samreen S. N. and Khatri-Valmik N 1&0, A Comparative Study on
Software Development Life Cycle Models. InternaéibrResearch Journal of
Engineering and Technology. 5(2), 696-700.

146

MODULE 5: OVERVIEW OF SOFTWARE DESIGN, ANALYSIS AND
DESIGN TOOLS, DESIGN STRATEGIES AND USER INTERFACE
BASICS

This module is divided into four (4) units

Unit 1: Software Design Basics

Unit 2: Analysis and Design tools

Unit 3: Software Design Strategies

Unit 4. Software User Interface Design

Unit 1: Software Design Basics
Contents
1.0 Introduction
2.0 Intended Learning Outcomes (ILOS)
3.0 Main Content
3.1 Software Design Levels
3.2 Modularization
3.2.1 Advantage of modularization

3.3 Concurrency
3.4 Coupling and Cohesion

3.4.1 Cohesion

3.4.2 Coupling
3.5 Design Verification
4.0 Self-Assessment Exercise(s)
5.0 Conclusion
6.0 Summary
7.0 References/Further Readings

Contents

1.0 Introduction

Software design involves describing, conceptualgoftware solution that meets the
requirements of the problem. Before proffering soly the problem must be analysed
adequately to have good understanding of the pmabld he intent is to solve the
problem, that is, the requirement in context, wididation as the means to check that
understanding.

Software design is a creative activity in which ydantify software components and
their relationships, based on a customer’s requargs

147

2.0 Intended Learning Outcomes (ILOs)
After studying this unit, you should be able to

1. Mention and briefly describe the three levels
of software design

2. Discuss modularization and state its
advantages in software development

3. Differentiate between cohesion and coupling
in software

4. List and explain any 5 types of cohesion

3.0 Main Content

Software design is a process to transform userinEgeants into some suitable form,
which helps the programmer in software coding amglémentation.

For assessing user requirements, an SRS (Softwarpiif@ment Specification)
document is created whereas for coding and implé&atien, there is a need of more
specific and detailed requirements in software serithe output of this process can
directly be used into implementation in programmiggguages.

Software design is the first step in SDLC (Softwessign Life Cycle), which moves
the concentration from problem domain to solutiomndin. It tries to specify how to
fulfil the requirements mentioned in SRS.

3.1 Software Design Levels
Software design yields three levels of results:

« Architectural Designr- The architectural design is the highest abstrasioe of
the system. It identifies the software as a systeith many components
interacting with each other. At this level, theidesrs get the idea of proposed
solution domain.

« High-level Design—The high-level design breaks the ‘single entity-tipie
component’ concept of architectural design intes{abstracted view of sub-
systems and modules and depicts their interactitim @ach other. High-level
design focuses on how the system along with alitofcomponents can be
implemented in forms of modules. It recognizes ntadstructure of each sub-
system and their relation and interaction amond eflaer.

« Detailed Design-Detailed design deals with the implementation parthat is
seen as a system and its sub-systems in the psetiau designs. It is more

148

detailed towards modules and their implementatitirgefines logical structure
of each module and their interfaces to communiadtte other modules.

3.2 Modularization

Modularization is a technique of dividing a softeaystem into multiple discrete and
independent modules, which are expected to be t@patbcarrying out task(s)
independently. These modules may work as basictemts for the entire software.
Designers tend to design modules such that theybeaexecuted and/or compiled
separately and independently.

Modular design unintentionally follows the rules ‘divide and conquer’ problem-
solving strategy this is because there are marer tgnefits attached with the modular
design of a software.

3.2.1 Advantages of modularization
« Smaller components are easier to maintain
« Program can be divided based on functional aspects
« Desired level of abstraction can be brought inpitegram
« Components with high cohesion can be re-used again
« Concurrent execution can be made possible
« Desired from security aspect

3.3 Concurrency

Back in time, all software are meant to be execwgeduentially. By sequential
execution we mean that the coded instruction wall dxecuted one after another
implying only one portion of program being activé@itat any given time. Say, a
software has multiple modules, then only one ofredlmodules can be found active at
any time of execution.

In software design, concurrency is implementeddytg the software into multiple
independent units of execution, like modules aretating them in parallel.

In other words, concurrency provides capabilitylte software to execute more than
one part of code in parallel to each other.

It is necessary for the programmers and desigoemscbgnize those modules, which
can be made parallel execution.

Example

149

The spellcheck feature in word processor is a neodis$oftware, which runs alongside
the word processor itself.

150

3.4Coupling and Cohesion

When a software program is modularized, its tasksdavided into several modules
based on some characteristics. As we know, modaressets of instructions put
together in order to achieve some tasks. Theyhamegh, considered as single entity
but may refer to each other to work together. Tlaeeemeasures by which the quality
of a design of modules and their interaction amtrgn can be measured. These
measures are cohesion and coupling.

3.4.1 Cohesion

Cohesion is a measure that defines the degredrafdependability within elements
of a module. The greater the cohesion, the bettirei program design.

There are seven types of cohesion, namely:

« Co-incidental cohesior It is unplanned and random cohesion, which might b
the result of breaking the program into smaller olesl for the sake of
modularization. Because it is unplanned, it mayveeconfusion to the
programmers and is generally not-accepted.

« Logical cohesionr- When logically categorized elements are put togreihio a
module, it is called logical cohesion.

« Temporal Cohesior When elements of module are organized such thgtatee
processed at a similar point in time, it is caliechporal cohesion.

« Procedural cohesior When elements of module are grouped together, which
are executed sequentially in order to perform &,tésis called procedural
cohesion.

o Communicational cohesionWhen elements of module are grouped together,
which are executed sequentially and work on sartee(ddormation), it is called
communicational cohesion.

« Sequential cohesichWhen elements of module are grouped because thatout
of one element serves as input to another and sot @s called sequential
cohesion.

« Functional cohesior It is considered to be the highest degree of cohesind
it is highly expected. Elements of module in fuonal cohesion are grouped
because they all contribute to a single well-defirienction. It can also be
reused.

151

3.4.2 Coupling
Coupling is a measure that defines the level aridependability among modules of
a program. It tells at what level the modules iieier and interact with each other. The
lower the coupling, the better the program.
There are five levels of coupling, namely:
« Content coupling- When a module can directly access or modify orrrefehe
content of another module, it is called conteneleoupling.
o Common coupling When multiple modules have read and write accessrtee
global data, it is called common or global coupling
« Control coupling—Two modules are called control-coupled if one oénth
decides the function of the other module or charnigd®w of execution.
o Stamp coupling- When multiple modules share common data structace a
work on different part of it, it is called stampugaing.
« Data coupling-Data coupling is when two modules interact withreather by
means of passing data (as parameter). If a modadseg data structure as
parameter, then the receiving module should usesalbmponents.

Ideally, no coupling is considered to be the best.

3.5 Design Verification

The output of software design process is designmentation, pseudocodes, detailed
logic diagrams, process diagrams, and detailedriggisn of all functional or non-
functional requirements.

The next phase, which is the implementation ofveafe, depends on all outputs
mentioned above.

It then becomes necessary to verify the outputregimoceeding to the next phase. The
early any mistake is detected, the better it is might not be detected until testing of
the product. If the outputs of design phase aréoimal notation form, then their
associated tools for verification should be uségatise a thorough design review can
be used for verification and validation.

By structured verification approach, reviewers datect defects that might be caused
by overlooking some conditions. A good design revie important for good software
design, accuracy and quality.

152

4.0 Self-Assessment Exercise(s)
Answer the following questions:

1. Mention and briefly describe the result of s@tevdesign.

2 Discuss modularization and state its advantagssftware development
3. Differentiate between cohesion and couplingoiitvgare

4 List and explain any five types of cohesion

Solution

1 Mention and briefly describe the resulsoftware development.

Software design yields three levels of results:

2

Architectural Designr- The architectural design is the highest abstrasioe of
the system. It identifies the software as a systeith many components
interacting with each other. At this level, theidesrs get the idea of proposed
solution domain.

High-level Design—The high-level design breaks the ‘single entity-tiple
component’ concept of architectural design intes{abstracted view of sub-
systems and modules and depicts their interactitim @ach other. High-level
design focuses on how the system along with alitofcomponents can be
implemented in forms of modules. It recognizes niadstructure of each sub-
system and their relation and interaction amond efcer.

Detailed Design- Detailed design deals with the implementation pawhat is
seen as a system and its sub-systems in the psetian designs. It is more
detailed towards modules and their implementatitirdefines logical structure
of each module and their interfaces to communigatte other modules.

Discuss modularization and state its achgad in software development

Modularization is a technigue to divide a softwaystem into multiple discrete and

independent modules, which are expected to be tapabcarrying out task(s)
independently. These modules may work as basictremts for the entire software.
Modular design unintentionally follows the rules ‘divide and conquer’ problem-
solving strategy this is because there are marer tnefits attached with the modular
design of a software.

Advantages of modularization:

Smaller components are easier to maintain
Program can be divided based on functional aspects
Desired level of abstraction can be brought inpitegram

153

3

Components with high cohesion can be re-used again
Concurrent execution can be made possible
Desired from security aspect

Differentiate between cohesion and cogpimsoftware

Cohesion is a measure that defines the degre¢rafdependability within elements of

a module. The greater the cohesion, the bettéeiptogram design.

WHILE

Coupling is a measure that defines the level a@ridependability among modules of
a program. It tells at what level the modules iieier and interact with each other. The
lower the coupling, the better the program.

4

List and explain any five types of cohesion
Co-incidental cohesior It is unplanned and random cohesion, which might b
the result of breaking the program into smaller olesl for the sake of
modularization. Because it is unplanned, it mayveeconfusion to the
programmers and is generally not-accepted.
Logical cohesionr- When logically categorized elements are put tageitito a
module, it is called logical cohesion.
Temporal Cohesior When elements of module are organized such thgtatee
processed at a similar point in time, it is caliechporal cohesion.
Procedural cohesiorWhen elements of module are grouped together, which
are executed sequentially in order to perform &,tésis called procedural
cohesion.
Communicational cohesionWhen elements of module are grouped together,
which are executed sequentially and work on sartee(ddormation), it is called
communicational cohesion.
Sequential cohesionWhen elements of module are grouped because thatout
of one element serves as input to another and sat e called sequential
cohesion.
Functional cohesior- It is considered to be the highest degree of cohesind
it is highly expected. Elements of module in fuanal cohesion are grouped
because they all contribute to a single well-defirienction. It can also be
reused.

154

5.0 Conclusion

Software design is the art of finding solution tesimess problem(s). This in three
different levels, namely: architectural designligvel design and detailed design. The
design is carried out in modules which performspdarfunction. The interactions
between and within modules are design with coupding cohesion in mind.

6.0 Summary
In this unit we discussed the following:

Software Design Levels
Modularization

Concurrency

Coupling and Cohesion

Design Verification

7.0 References/Further Readings

Adnan N. H. and Ritzhaupt A. D (2018). Software i&egring Design Principles
Applied to Instructional Design: What can we Le&om our Sister Discipline?
Springer. 62, 77-94.

Charles S. Wasson (2006) System Analysis, Desigd, Revelopment Concepts,
Principles, and Practices, Published by John WAle§ons, Inc., Hoboken, New
Jersey.

Hans-Petter Halvorsen (2020) Software DevelopmeRtaktical Approach. Retrieved
from: https://halvorsen.blog

Kaur I., Narula G. S., Wason R., Jain V., and BaliyA (2018).Neuro fuzzy—
COCOMO Il model for software cost estimation. Imi@ional Journal of
Information technology. 10, 181-187.

Richard H. Thayer, Barry W. Boehm (1986). Tutorisbftware engineering project
management. Computer Society Press of the IEEBOp.1

Salve S. M., Samreen S. N. and Khatri-Valmik N 1&0, A Comparative Study on
Software Development Life Cycle Models. InternaéibrResearch Journal of
Engineering and Technology. 5(2), 696-700.

155

Unit 2: Analysis and Design tools
Contents
1.0 Introduction
2.0 Intended Learning Outcomes (ILOs)
3.0 Main Content
3.1 Data Flow Diagram
3.1 Data Flow Diagram
3.1.1 Types of DFD
3.1.2 Levels of DFD
3.2 Structure Charts
3.3 HIPO Diagram
3.4 Structured English
3.5 Pseudo-Code
3.6 Decision Tables
3.6.1 Creating Decision Table
3.7 Data Dictionary
3.7.1 Requirement of Data Dictionary
3.7.2 Contents
3.8 Data Elements
3.9 Data Store
3.10 Data Processing
4.0 Self-Assessment Exercise(s)
5.0 Conclusion
6.0 Summary
7.0 References/Further Readings

Contents

1.0Introduction

Analysisinvolves understanding the problem which the saféwsa intended to solve,
while design is the solution to problem. Softwanalgsis and design tools are tools
used to convert requirement specifications intofagre product. As the name implies,
they are used for both analysis and design. We Bbaliscussing some of these tools
in this unit.

156

2.0 Intended Learning Outcomes (ILOs)
After studying this unit, you should be able to:

1. Explain what data flow is

2. Describe the following: Logical DFD, Physical DFD

3. Describe the components of DFD with their corresiog
symbols

4. Differentiate between a data flow and control flowa structure
chart

5. Compare and contrast between HIPO and IPO

6. State the steps needed to create a decision table

7. List the content of a data dictionary

3.0 Main Content

Software analysis and design includes all actisjtighich help the transformation of
requirement specification into implementation. Regment specifications specify all
functional and non-functional expectations from #swtware. These requirement
specifications come in the shape of human readatdleinderstandable documents, to
which a computer has nothing to do.

Software analysis and design is the intermediagestwhich helps human-readable
requirements to be transformed into actual code.

Let us discuss few analysis and design tools ugebtiware designers:

3.1 Data Flow Diagram

Data flow diagram is graphical representation ofvfbf data in an information system.
It is capable of depicting incoming data flow, anityg data flow and stored data. The
DFD does not mention anything about how data fldwsugh the system.

There is a prominent difference between DFD andvEtart. The flowchart depicts

flow of control in program modules. DFDs depiciilof data in the system at various
levels. DFD does not contain any control or braglements.

3.1.1 Types of DFD
Data Flow Diagrams are either Logical or Physical.
« Logical DFD- This type of DFD concentrates on the systemgsgscand flow
of data in the system. For example, in a Bankirfgwswe system, how data is
moved between different entities.

157

o Physical DFD- This type of DFD shows how the data flow is atiju
implemented in the system. It is more specific eloder to the implementation.
DFD Components
DFD can represent Source, destination, storagdlawdof data using the following
set of components -

« Entities— Entities are source and destination of infororatilata. Entities are
represented by rectangles with their respectiveasam

« Process- Activities and action taken on the data areesgnted by Circle or
Round-edged rectangles.

« Data Storage- There are two variants of data storage - it e#@her be
represented as a rectangle with absence of botltessides or as an open-sided
rectangle with only one side missing.

« Data Flow— Movement of data is shown by pointed arrowsalabvement is
shown from the base of arrow as its source towhetsd of the arrow as
destination.

3.1.2 Levels of DFD
« Level 0— Highest abstraction level DFD is known as Lé&/BIFD, which depicts
the entire information system as one diagram cdimgeall the underlying
details. Level O DFDs are also known as contexalI®FDs.

Online Shopping Syste

&

Customers

158

o Level 1- The Level 0 DFD is broken down into more specifievel 1 DFD.
Level 1 DFD depicts basic modules in the systentflamdof data among various
modules. Level 1 DFD also mentions basic procemsésources of information.

o Level 2— At this level, DFD shows how data flows insidee tmodules
mentioned in Level 1.

Higher level DFDs can be transformed into more sigelower level DFDs

with deeper level of understanding unless the dddivel of specification is
achieved.

3.2 Structure Chart
Structure chart is a chart derived from Data Floagam. It represents the system in
more detail than DFD. It breaks down the entiréesysinto lowest functional modules,

describes functions and sub-functions of each neodiithe system to a greater detail
than DFD.

Structure chart represents hierarchical struct@inmadules. At each layer a specific
task is performed.

Here are the symbols used in construction of sireatharts -

159

« Module— It represents process or subroutine or taskorrol module branches
to more than one sub-module. Library Modules anagsable and invokable from
any module.

« Condition— It is represented by small diamond at the baseoalule. It depicts
that control module can select any of sub-routiasell on some condition.

/ N\
ol Module
o Jump- An arrow is shown pointing inside the modul@épict that the control

will jump in the middle of the sub-module.

o Loop- A curved arrow represents loop in the modulésAb-modules covered
by loop repeat execution of module.

160

o Control flow— A directed arrow with filled circle at the enepresents control
flow.

3.3 HIPO Diagram

HIPO (Hierarchical Input Process Output) diagrara mbination of two organized
method to analyze the system and provide the mafasiscumentation. HIPO model
was developed by IBM in year 1970.

HIPO diagram represents the hierarchy of modulehensoftware system. Analyst
uses HIPO diagram in order to obtain high-levelwief system functions. It

decomposes functions into sub-functions in a hefviaal manner. It depicts the
functions performed by the system.

161

HIPO diagrams are good for documentation purpokeirigraphical representation
makes it easier for designers and managers tohgepittorial idea of the system
structure.

In contrast to IPO (Input Process Output) diagratmich depicts the flow of control
and data in a module, HIPO does not provide angrinétion about data flow or
control flow.

fespast Dot

Example:
Both parts of HIPO diagram, Hierarchical presenta@and IPO Chart are used for
structure design of software program as well asig@ntation of the same.

3.4 Structured English

Most programmers are unaware of the large picttisofiware so they only rely on
what their managers tell them to do. It is the oesbility of higher software
management to provide accurate information to tkgnammers to develop accurate
yet fast code.

Other forms of methods, which use graphs or diagramay are sometimes interpreted
differently by different people.

162

Hence, analysts and designers of the software egnweith tools such as Structured

English. It is nothing but the description of witequired to code and how to code
it. Structured English helps the programmer toewveitror-free code.

Other form of methods, which use graphs or diagranas are sometimes interpreted
differently by different people. Here, both Struet English and Pseudo-Code tries
to mitigate that understanding gap.

Structured English uses plain English words incitmed programming paradigm. It

IS not the ultimate code but a kind of descriptrdmat is required to code and how to
code it. The following are some tokens of struayseogramming.

IF-THEN-ELSE,
DO-WHILE-UNTIL

Analyst uses the same variable and data name, velneclstored in Data Dictionary,
making it much simpler to write and understanddbée.

Example

We take the same example of Customer Authenticatiothe online shopping
environment. This procedure to authenticate custazaa be written in Structured
English as:

Enter Customer_Name
SEEK Customer_Name in Customer_Name_ DB file
IF Customer_Name found THEN
Call procedure USER_PASSWORD_AUTHENTICATE()
ELSE
PRINT error message
Call procedure NEW_CUSTOMER_REQUEST()
ENDIF

The code written in Structured English is more lday-to-day spoken English. It
cannot be implemented directly as a code of so@&w&tructured English is
independent of programming language.

3.5 PseudoCode

Pseudocode is written closer to programming langudigmay be considered as
augmented programming language, full of commendsdascriptions.

Pseudocode avoids variable declaration but theywvait#en using some actual
programming language’s constructs, like C, FortRascal etc.

163

Pseudocode contains more programming details thrant&red English. It provides a
method to perform the task, as if a computer icetieg the code.

Example:

Program to print Fibonacci up to n numbers.
void function Fibonacci

Get value of n;

Set value of a to 1;

Set value of b to 1;

Initialize 1t0 O

for (i=0; i< n; i++)

{

if a greater than b

{
Increase b by a;
Print b;

}

else if b greater than a

{
increase a by b;
print a;

}

}

3.6 Decision Tables

A Decision table represents conditions and thea@sge actions to be taken to address
them, in a structured tabular format.

It is a powerful tool to debug and prevent errdrdielps group similar information

into a single table and then by combining tableddlivers easy and convenient
decision-making.

3.6.1 Creating Decision Table

To create the decision table, the developer muiswidasic four steps:
1. Identify all possible conditions to be addressed
2. Determine actions for all identified conditions

164

3. Create Maximum possible rules

4. Define action for each rule
Decision Tables should be verified by end-users eaudl lately be simplified by
eliminating duplicate rules and actions.
Example
Let us take a simple example of day-to-day probgth our Internet connectivity.
We begin by identifying all problems that can amgdele starting the internet and their
respective possible solutions.
We list all possible problems under column condsiand the prospective actions
under column Actions.

Table: Decision Table — In-house Internet Troubbesimg

Conditions/Actions Rules

Shows Connected NNNNYYYY
Conditions Ping is Working NNYYNNYY

Opens Website YNYNYNYN

Check network cable X

Check internet router X X X X
Actions Restart Web Browser X

Contact Service provider XX X X X X

Do no action

3.8 Entity-Relationship Model

Entity-Relationship model is a type of database ehdihsed on the notion of real-
world entities and relationship among them. We roap real world scenario onto ER
database model. ER Model creates a set of entitigs their attributes, a set of
constraints and relation among them.

165

relationship

ER Model is best used for the conceptual designlathbase. ER Model can be
represented as follows:

« Entity— An entity in ER Model is a real world being, whihas some properties
called attributes. Every attribute is defined k®/dbrresponding set of values,
called domain. For example, Consider a school databHere, a student is an
entity. Student has various attributes like namgage and class etc.

« Relationship- The logical association among entities is caléddtionship.
Relationships are mapped with entities in varioaysv Mapping cardinalities
define the number of associations between twoiesitit

Mapping cardinalities:
e oOnetoone
e oOne to many
e many to one
e many to many

3.7 Data Dictionary

Data dictionary is the centralized collection dbmation about data. It stores meaning
and origin of data, its relationship with other ajatlata format for usage etc. Data
dictionary has rigorous definitions of all namemder to facilitate user and software
designers.

Data dictionary is often referenced as meta-datda(ébout data) repository. It is
created along with DFD (Data Flow Diagram) modelsoftware program and is
expected to be updated whenever DFD is changegddated.

3.7.1 Requirement of Data Dictionary
The data is referenced via data dictionary whikigieng and implementing software.

Data dictionary removes any chances of ambiguityhdlps keeping work of

166

programmers and designers synchronized while usame object reference
everywhere in the program.

Data dictionary provides a way of documentationth@ complete database system in
one place. Validation of DFD is carried out usiragaddictionary.

3.7.2 Contents
Data dictionary should contain information abow tbllowing
o Data Flow
« Data Structure
o Data Elements
o Data Stores
« Data Processing
Data Flow is described by means of DFDs as studmdier and represented in
algebraic form as described.

= Composed of
{} Repetition
§) Optional
+ And
[/] Or
Example:

Address = House No + (Street / Area) + City + State
Course ID = Course Number + Course Name + CoursellieCourse Grades

3.8 Data Elements
Data elements consist of Name and descriptionsatd Bnd Control Items, Internal or
External data stores etc. with the following detail

o Primary Name

« Secondary Name (Alias)

« Use-case (How and where to use)

« Content Description (Notation, etc.)

« Supplementary Information (pre-set values, comnssaetc.)

3.8 Data Store

167

It stores the information from where the data enieto the system and exists out of
the system. The Data Store may include -
o Files
o Internal to software.
o External to software but on the same machine.
o External to software and system, located on diffeneachine.
o Tables
o Naming convention
o Indexing property

3.9 Data Processing

There are two types of Data Processing:
o Logical: As user sees it
« Physical: As software sees it

4.0 Self-Assessment Exercise(s)

Answer the following questions:

lllustrate data flow diagram using diagram only.

Explain the following: Logical DFD and Physidc2FD

Describe the components of DFD with their cqroesling symbols
Differentiate between a data flow and controwflin a structure chart
Compare and contrast between HIPO and IPO

State the steps needed to create a dectadte

List the content of a data dictionary

N o gk owNRE

Solution
1 lllustrate data flow diagram using diagram only.

168

169

2 Explain the following: Logical DFD and Physid®FD
Data Flow Diagrams are either Logical or Physical.

o Logical DFD- This type of DFD concentrates on the systemga®cand flow
of data in the system. For example, in a Bankirfgwswe system, how data is
moved between different entities.

o Physical DFD- This type of DFD shows how the data flow is afiju
implemented in the system. It is more specific eloder to the implementation.

3 Describe the components of DFD with theiresponding symbols

DFD Components:

DFD can represent Source, destination, storagdlawdof data using the following
set of components -

« Entities — Entities are source and destinationnédrmation data. Entities are
represented by rectangles with their respectiveasam

» Process — Activities and action taken on the dedaregpresented by Circle or
Round-edged rectangles.

o Data Storage — There are two variants of data ggorait can either be
represented as a rectangle with absence of botlfesrsides or as an open-sided
rectangle with only one side missing.

« Data Flow — Movement of data is shown by pointedwas. Data movement is
shown from the base of arrow as its source towhesd of the arrow as
destination.

4 Differentiate between a data flow and cdrftoo in a structure chart
Data flow - A directed arrow with empty circle &etend represents data flow
as indicated in the diagram below.

170

o Control flow - A directed arrow with filled circlat the end represents control
flow as indicated in the diagram below.

5 Compare and contrast between HIPO and IPO

HIPO (Hierarchical Input Process Output) diagrarm mbination of two organized
method to analyze the system and provide the n@fadmcumentation. HIPO diagram
represents the hierarchy of modules in the softverem. Analyst uses HIPO
diagram in order to obtain high-level view of systdunctions. It decomposes
functions into sub-functions in a hierarchical manrHIPO diagrams are good for
documentation purpose. Their graphical represemanakes it easier for designers
and managers to get the pictorial idea of the systeucture. HIPO does not provide
any information about data flow or control flowpnly shows the hierarchy

WHILE
IPO (Input Process Output) diagram depicts the i control and data in a module.

Frageaik
P— o eyiinn
fios i amasr,

6 State the steps needed to create a dectadte

171

The following are the four basic steps to createasion table.

1.

2

Identify all possible conditions to be addressed

2. Determine actions for all identified conditions
3.
4. Define action for each rule

Create Maximum possible rules

List the content of a data dictionary

Data dictionary should contain the following infation

Data Flow

Data Structure
Data Elements
Data Stores
Data Processing

5.0 Conclusion

As stated in the previous module, software desircancerned with finding or

proffering solution to business problem(s). To agkithis feat, the designer will need
some software design tools. These tools includengnmthers: Data Flow Diagram,

Structure Charts, HIPO Diagram, Structured Enghbstld Pseudocode

6.0 Summary
In this unit we discussed the following:
e Data Flow Diagram
e Structure Charts
e HIPO Diagram
e Structured English
e Pseudo-Code
e Decision Tables
e Data Dictionary

7.0 References/Further Readings

Adnan N. H. and Ritzhaupt A. D (2018). Software iBegring Design Principles
Applied to Instructional Design: What can we Le&mwm our Sister Discipline?

Springer. 62, 77-94.

172

Charles S. Wasson (2006) System Analysis, Desigd, Revelopment Concepts,
Principles, and Practices, Published by John WAle§ons, Inc., Hoboken, New
Jersey.

Hans-Petter Halvorsen (2020) Software DevelopmeRtaktical Approach. Retrieved
from: https://halvorsen.blog

Kaur I., Narula G. S., Wason R., Jain V., and BaliyA (2018).Neuro fuzzy—
COCOMO Il model for software cost estimation. Imi@ional Journal of
Information technology. 10, 181-187.

Richard H. Thayer, Barry W. Boehm (1986). Tutorisftware engineering project
management. Computer Society Press of the IEEBOp.1

Salve S. M., Samreen S. N. and Khatri-Valmik N 1&0, A Comparative Study on
Software Development Life Cycle Models. InternaéibrResearch Journal of
Engineering and Technology. 5(2), 696-700.

Unit 3: Software Design Strategies

Contents

1.0 Introduction

2.0 Intended Learning Outcomes (ILOS)

3.0 Main Content

3.1 Structured Design

3.2 Function Oriented Design

3.3 Object Oriented Design

3.4 Design Process

3.5 Software Design Approaches
3.5.1 Top-down Design
3.5.2 Bottom-up Design

4.0 Self-Assessment Exercise(s)

5.0 Conclusion

6.0 Summary

7.0 References/Further Readings

Contents

1.0Introduction

Software design is a process to conceptualizedfieare requirements into software
implementation. Software design takes the usernmreaents as challenges and tries to

173

find optimum solution. While the software is beiognceptualized, a plan is chalked
out to find the best possible design for implenmnthe intended solution.

2.0Intended Learning Outcomes (ILOs)

After studying this unit, you should be able to

1. Mention and discuss different types of softw@esign

2. List and explain the different concepts of obj@tented design
3. Mention and discuss two generic approachesoftware design

3.0Main Content

3.1 Structured Design

Structured design is a conceptualization of problemo several well-organized
elements of solution. It is basically concernedhwiite solution design. Benefit of
structured design is, it gives better understandingow the problem is being solved.
Structured design also makes it simpler for desigmeoncentrate on the problem more
accurately.

Structured design is mostly based on ‘divide antjoer’ strategy where a problem is
broken into several small problems and each smaltllem is individually solved until
the whole problem is solved.

The small pieces of problem are solved by meansobftion modules. Structured
design emphasis that these modules be well orghnizerder to achieve precise
solution.

These modules are arranged in hierarchy. They conuaiie with each other. A good
structured design always follows some rules for momication among multiple
modules, namely:

Cohesion — grouping of all functionally relatedreénts.

Coupling — communication between different modules.

A good structured design has high cohesion ancclmypling arrangements.

3.2 Function Oriented Design

In function-oriented design, the system is compkisé many smaller sub-systems
known as functions. These functions are capabjeedbrming significant task in the

system. The system is considered as top view dfiaditions.

Function oriented design inherits some propertiestraictured design where divide
and conquer methodology is used.

174

This design mechanism divides the whole system srtmller functions, which
provides means of abstraction by concealing tha@métion and their operation. These
functional modules can share information among gedwes by means of information
passing and using information available globally.
Another characteristic of functions is that whegr@gram calls a function, the function
changes the state of the program, which sometisnestiacceptable by other modules.
Function oriented design works well where the systdate does not matter and
program/functions work on input rather than onadest
Design Process
« The whole system is seen as how data flows inyisies) by means of data flow
diagram.
« DFD depicts how functions changes data and stagatoke system.
« The entire system is logically broken down into Bemaunits known as functions
on the basis of their operation in the system.
« Each function is then described at large.

3.3 Object Oriented Design

Object oriented design works around the entitied their characteristics instead of
functions involved in the software system. Thisiglestrategy focuses on entities and
its characteristics. The whole concept of softveadation revolves around the engaged
entities.

Let us see the important concepts of Object-OrceDtesign:

« Objects—All entities involved in the solution design areokyn as objects. For
example, person, banks, company and customerseated as objects. Every
entity has some attributes associated to it andsba® methods to perform on
the attributes.

« Classes—A class is a generalized description of an objéct.object is an
instance of a class. Class defines all the ategyuwhich an object can have and
methods, which defines the functionality of theealb)

In the solution design, attributes are stored ambkes and functionalities are
defined by means of methods or procedures.

« Encapsulation-In OOD, the attributes (data variables) and mett{odsration
on the data) are bundled together and this isccalteapsulation. Encapsulation
not only bundles important information of an objemgether, but also restricts
access of the data and methods from the outside widris is called information
hiding.

175

« Inheritance—OOD allows similar classes to stack up in hierasz@hmanner
where the lower or sub-classes can import, implénaer re-use allowed
variables and methods from their immediate suesés. This property of OOD
Is known as inheritance. This makes it easier tmdspecific class and to create
generalized classes from specific ones.

o Polymorphism —OOD languages provide a mechanism where methods
performing similar tasks but vary in arguments, lbammssigned same name. This
is called polymorphism, which allows a single ifaee performing tasks for
different types. Depending upon how the functionnigoked, the respective
portion of the code gets executed.

3.4 Design Process
Software design process can be perceived as sdérigsll-defined steps. Though it
varies according to design approach (function ¢eiéror object oriented, yet it may
have the following steps involved:
« A solution design is created from requirement @vpusly used system and/or
system sequence diagram.
« Objects are identified and grouped into classdsebralf of similarity in attribute
characteristics.
« Class hierarchy and relation among them is defined.
« Application framework is defined.

3.5 Software Design Approaches
Here are two generic approaches for software degjgn

3.5.1 Top-Down Design

We know that a system is composed of more thansabesystem and it contains a
number of components. Further, these sub-systeshc@mponents may have their
onset of sub-system and components and createsdtigral structure in the system.
Top-down design takes the whole software systeonasentity and then decomposes
it to achieve more than one sub-system or compdoesgd on some characteristics.
Each sub-system or component is then treated gstens and decomposed further.
This process keeps on running until the lowest ll@fesystem in the top-down
hierarchy is achieved.

176

Top-down design starts with a generalized modslystem and keeps on defining the
more specific part of it. When all components asmposed the whole system comes
into existence.

Top-down design is more suitable when the softvemlation needs to be designed
from scratch and specific details are unknown.

3.5.2 Bottom-up Design

The bottom-up design model starts with most speaind basic components. It
proceeds with composing higher level of componéytsising basic or lower-level
components. It keeps creating higher level compisnantil the desired system is
evolved as one single component. With each highaal| the amount of abstraction is
increased.

Bottom-up strategy is more suitable when a systeeds to be created from some
existing system, where the basic primitives canded in the newer system.

Both, top-down and bottom-up approaches are nattiped individually. Instead, a
good combination of both is used.

4.0 Self-Assessment Exercise(s)
Answer the following questions:

1. Explain the types of software design

2. Explain the different concepts of object-oriehtkesign

3. Mention and discuss two generic approachesofitware design
Solution

1 Explain the types of software design

Structured design: Structured design is mostly dase'divide and conquer’ strategy
where a problem is divided into smaller problemtsiniThese smaller units are
individually solved until the whole problem is setl. Structured design emphasis that
these modules be well organized in order to achpegeise solution. These modules
are hierarchically arranged. They communicate egtth other via cohesion (grouping
of all functionally related elements) and coupliesgmmunication between different
modules). A good structured design has high cohesid low coupling arrangements.
Function Oriented Design: In function-oriented desithe system is comprised of
many smaller sub-systems known as functions. THagsetions are capable of
performing significant task in the system. The egsis considered as top view of all
functions. Function oriented design inherits somoperties of structured design where

177

divide and conquer methodology is used. This desigchanism divides the whole
system into smaller functions, which provides meainabstraction by concealing the
information and their operation. These functionatimes can share information among
themselves by means of information passing andyusfiormation available globally.
Object Oriented Design: In object-oriented desithie design strategy focuses on
objects and their characteristics. The whole conoépsoftware solution revolves
around the engaged objects. Some of the concepiigj@tt-oriented design: objects,
classes, encapsulation, inheritance, polymorphistnedstraction.

2 Explain the different concepts of objedented design

Some of the concepts of object-oriented desigribaedly explained below

Objects - All entities involved in the solution dg@sare known as objects. For example,
person, banks, company and customers are treatebjeds. Every entity has some
attributes associated to it and has some methgasrtorm on the attributes.

Classes - A class is a generalized descriptiom @fgect. An object is an instance of a
class. Class defines all the attributes, which lajead can have and methods, which
defines the functionality of the object. In thewamn design, attributes are stored as
variables and functionalities are defined by mesmaethods or procedures.
Encapsulation - In OOD, the attributes (data vdeisband methods (operation on the
data) are bundled together and this is called esutagon. Encapsulation not only
bundles important information of an object togetlbeit also restricts access of the data
and methods from the outside world. This is caillédrmation hiding.

Inheritance - OOD allows similar classes to stagkruhierarchical manner where the
lower or sub-classes can import, implement andseeallowed variables and methods
from their immediate super classes. This proper@@D is known as inheritance. This
makes it easier to define specific class and tatergeneralized classes from specific
ones.

Polymorphism - OOD languages provide a mechanisrarevimethods performing
similar tasks but vary in arguments, can be asdiggeame name. This is called
polymorphism, which allows a single interface peariong tasks for different types.
Depending upon how the function is invoked, theeesive portion of the code gets
executed.

178

3 Mention and discuss two generic approachesdibware design

These approaches are Top-Down Design and bottodesign

Top-Down Design: Top-down design takes the wholénsge system as one entity
and then decomposes it to achieve more than onsysi®m or component based on
some characteristics. Each sub-system or compasi¢nén treated as a system and
decomposed further. This process keeps on runmhbtiie lowest level of system in
the top-down hierarchy is achieved. Top-down desggymore suitable when the
software solution needs to be designed from scia@tcdhspecific details are unknown.
Bottom-up Design: The bottom-up design model stasite most specific and basic
components. It proceeds with composing higher leebmponents by using basic or
lower-level components. It keeps creating highgelleomponents until the desired
system is evolved as one single component. Witlh éégher level, the amount of
abstraction is increased. Bottom-up strategy isersaitable when a system needs to be
created from some existing system, where the Ipasidtives can be used in the newer
system.

5.0 Conclusion

It is pertinent to note that in the design of saiitey certain strategies need to be applied.
Some of these strategies include: Structured DeBigmction Oriented Design, Object
Oriented Design, Design Process, Software Desigprégerhes (Top-down Design,
Bottom-up Design).

6.0 Summary
In this unit we discussed the following:
e Structured Design
e Function Oriented Design
e Object Oriented Design
e Design Process
e Software Design Approaches

7.0 References/Further Readings

Adnan N. H. and Ritzhaupt A. D (2018). Software iBegring Design Principles
Applied to Instructional Design: What can we Le&mwm our Sister Discipline?
Springer. 62, 77-94.

179

Charles S. Wasson (2006) System Analysis, Desigd, Revelopment Concepts,
Principles, and Practices, Published by John WAle§ons, Inc., Hoboken, New
Jersey.

Hans-Petter Halvorsen (2020) Software DevelopmeRtaktical Approach. Retrieved
from: https://halvorsen.blog

Kaur I., Narula G. S., Wason R., Jain V., and BaliyA (2018).Neuro fuzzy—
COCOMO Il model for software cost estimation. Imi@ional Journal of
Information technology. 10, 181-187.

Richard H. Thayer, Barry W. Boehm (1986). Tutorisftware engineering project
management. Computer Society Press of the IEEBOp.1

Salve S. M., Samreen S. N. and Khatri-Valmik N 1&0, A Comparative Study on
Software Development Life Cycle Models. InternaéibrResearch Journal of
Engineering and Technology. 5(2), 696-700.

Unit 4: Software User Interface Design

Contents

1.0 Introduction

2.0 Intended Learning Outcomes (ILOS)

3.0 Main Content

3.1 Broad Classification of User Interface
3.1.1 Command Line Interface (CLI)
3.1.2 Graphical User Interface

3.2 GUI Elements

3.3 Application specific GUI components

3.4 Other impressive GUI components are

3.5 User Interface Design Activities

3.6 GUI Implementation Tools

3.7 User Interface Golden rules

4.0 Self-Assessment Exercise(s)

5.0 Conclusion

6.0 Summary

7.0 References/Further Readings

180

Contents

1.0 Introduction

User interface (Ul) is part of software and is dasd such a way that it is expected to
provide the user insight of the software. Ul pr@gdundamental platform for human-
computer interaction.

2.0 Intended Learning Outcomes (ILOs)

After studying this unit, you should be able to

1. Mention some qualities of a user interface that enaksoftware more
popular

Give a broad classification of user interface

Mention and explain 3 elements of a text-basedmand line interface

Briefly describe graphical user interface

Mention at least 5 Application specific GUI compatse

State at least 5 user Interface Golden rules

o0 kWb

3.0 Main Content
User interface is the front-end application viewuioich user interacts in order to use
the software. User can manipulate and control tiavare as well as hardware by
means of user interface. Today, user interfaceusd at almost every place where
digital technology exists, right from computers, bib® phones, cars, music players,
airplanes, ships etc.
User interface is part of software and is desigegch a way that it is expected to
provide the user insight of the software. Ul pr@gdundamental platform for human-
computer interaction.
Ul can be graphical, text-based, audio-video badedending upon the underlying
hardware and software combination. Ul can be harelwasoftware or a combination
of both.
The software becomes more popular if its user fiateris:

o Attractive

o Simple to use

« Responsive in short time

o Clear to understand

« Consistent on all interfacing screens

181

3.1 Broad Classification of User Interface
Ul is broadly divided into two categories:
« Command Line Interface
« Graphical User Interface

3.1.1 Command Line Interface (CLI)

CLI has been a great tool of interaction with cotepsiuntil the video display monitors
came into existence. CLI is first choice of mamght@cal users and programmers. CLI
is the minimum interface a software can providésdasers.

CLI provides a command prompt, the place whereuser types the command and
feeds to the system. The user needs to remembsytit@x of command and its use.
Earlier CLI were not programmed to handle the esears effectively.

A command is a text-based reference to set ofuattms, which are expected to be
executed by the system. There are methods likeasascripts that make it easy for
the user to operate.

CLI uses less amount of computer resource as caunparGUI.

CLI Elements

el X BOF . e,
3t AT Swk B4 U830 .. T
2313 sonctunionge-gpd. iay

auaff BE8EE Jel 3
. oopked¥ B804E Sul 3 ALY sadelimeerid.daz
eppegegeed I gopal steadf 1B638 Mal R ML cutellmeelaine
-gw-r--r--§ 1 gopal etaff IBTRI0 Jul 2 2013 catalina-tribea.jar
-gw-r~-g-~§ 1 gopal estvaff 1581311 Jul 2 2013 catalina.jar
~guw-r-=g~~§ 1 gopal staff 1801636 Jul 2 2013 eci-4.2.2.3ar
-gw-r--g--§ 1 gopal staff 46085 Jul 2 2013 el-api.jar
~gw-g--r--§ 1 gopal estaff 123241 Jul 2 2013 jsapear-el.jer
~gw-r~~g--§ 1 gopal ateff 599428 Jul 2 2013 jaspez.jar
ru-p--x=-~§ 1 gopal szaff 80690 Jul 2 2013 jsp-api.jar
suw-g--r--§ 1 gopal staff 177538 Jul 2 2013 sezviet-api.jac
rw-z-=z-=~§ 1 gopal estaff $873 Jul 2 2013 cemcat-apl.jax
ru-r=--gr~-§ 1| gopal astaflf 796527 Jul 2 2013 tomcat-coyote.jar
~peep-=§ 1 gopal estaff 235411 Jul 2 2013 tomcat-dbop.jar
rw-gr-=-r-=-§ 1 gopal staff 77364 Jul 2 2013 tomcat-ildn-es.jer
rw-r--z--§ 1 gopal otaff 48693 Jul 2 2013 tomcat-ilda-fr.jar
~-ru-r--r-~§ 1 gopal staff 51678 Jul 2 2013 temcat-il8n-ja.jar
rw-r--r--§ 1 gopal astaff 126006 Jul 2 2013 temcat-jdbe.jar
Iw-r -8 1 gopal etaff 23201 Jul 2 2013 tomcat-util.jaz

Command Prompt

182

A text-based command line interface can have thewmg elements:

« Command Prompt It is a text-based notifier that is mostly shatws context
in which the user is working. It is generated by software system.

o Cursor— It is a small horizontal line or a vertical bdrtbe height of line, to
represent position of character while typing. Cursanostly found in blinking
state. It moves as the user writes or deletes $onget

« Command A command is an executable instruction. It mayehone or more
parameters. Output on command execution is sholimeian the screen. When
output is produced, command prompt is displayethemext line.

3.1.2 Graphical User Interface

Graphical User Interface provides the user graphieans to interact with the system.
GUI can be combination of both hardware and so#widsing GUI, user interprets the
software.

Typically, GUI is more resource consuming than tl&atCLI. With advancing
technology, the programmers and designers creaiplea GUI designs that work with
more efficiency, accuracy and speed.

3.2 GUI Elements

GUI provides a set of components to interact watftivgare or hardware.

Every graphical component provides a way to worththe system. A GUI system as
shown in the figure below has elements such as:

183

Window— An area where contents of application are dysgula Contents in a
window can be displayed in the form of icons aslisf the window represents
file structure. It is easier for a user to navigatthe file system in an exploring
window. Windows can be minimized, resized or maxedi to the size of
screen. They can be moved anywhere on the scregnndow may contain
another window of the same application, calledcchvindow.

Tabs— If an application allows executing multiple iastes of itself, they
appear on the screen as separate winddalsbhed Document Interface has
come up to open multiple documents in the same avind his interface also
helps in viewing preference panel in applicatioh.rdodern web-browsers use
this feature.

Menu— Menu is an array of standard commands, groupgether and placed
at a visible place (usually top) inside the appgicmawindow. The menu can be
programmed to appear or hide on mouse clicks.

Icon— An icon is small picture representing an assediapplication. When
these icons are clicked or double clicked, the iappbn window is opened.
Icon displays application and programs installedaosystem in the form of
small pictures.

Cursor— Interacting devices such as mouse, touch pagifadipen are
represented in GUI as cursors. On screen cursiow®lthe instructions from
hardware in almost real-time. Cursors are also dgpoeters in GUI systems.
They are used to select menus, windows and otlpdicapon features.

3.3 Application specific GUI components
A GUI of an application contains one or more of liseed GUI elements:
« Application Window Most application windows use the constructs Sagpy

operating systems but many use their own custoreated windows to contain
the contents of application.

Dialogue Box- It is a child window that contains message fa tiser and
request for some action to be taken. For Examplgplidation generate a
dialogue to get confirmation from user to delefdea

184

D0 you want to save the changes made to the
document “Untitled™?

Fiaar changis will Be foet F wou SorY e Thees,

Save As: | Untitied txt 1E
Tags:
Where: 0 Desktap

D'y Save Cancel é:_m__f g
‘L 4 il achery W | Geg J,

Text-Box— Provides an area for user to type and enterb@sed data.

Buttons— They imitate real life buttons and are usedubnst inputs to the
software.

Time options: (=1 Digital | Analog
|| Display the time with seconds

' ash the time separators

Use a 24-hour clock

Show AM/PM

Date options: (¥ Show the day of the week
¥} Show date

Radio-button- Displays available options for selection. Onlgeocan be
selected among all offered.

Check-box- Functions similar to list-box. When an optiorsedected, the box

is marked as checked. Multiple options represeigdheck boxes can be
selected.

List-box— Provides list of available items for selectioroel than one item can
be selected.

185

First day of weeki's Sundav‘_

. Monday

CaiendaT Tuesday)

- . Wednesday |

Time format

! ‘ Thursday
List sort order Friday |
| Saturday [

Sunday, 5 janugry2uzs '

3.4 Other impressive GUI components are
o Sliders
o Combo-box
« Data-grid
o Drop-down list

3.5 User Interface Design Activities

There are a number of activities performed forglgisig user interface. The process of
GUI design and implementation is like SDLC. Any mbaan be used for GUI
implementation among Waterfall, Iterative or Spiviidel.

A model used for GUI design and development shtwifd these GUI specific steps.

o GUI Requirement Gathering The designers may like to have list of all
functional and non-functional requirements of GTHis can be taken from user
and their existing software solution.

« User Analysis- The designer studies who is going to use thsvaoé GUI. The
target audience matters as the design details etantgprding to the knowledge
and competency level of the user. If user is teminsavvy, advanced and

186

complex GUI can be incorporated. For a novice usere information is
included on how-to of software.

o Task Analysis- Designers have to analyze what task is to bes dpnthe
software solution. Here in GUI, it does not matiew it will be done. Tasks
can be represented in hierarchical manner takiegnaegor task and dividing it
further into smaller sub-tasks. Tasks provide gé@<sUl presentation. Flow
of information among sub-tasks determines the fidwsGUI contents in the
software.

o GUI Design and implementation Designers after having information about
requirements, tasks and user environment, desgg®t and implements into
code and embed the GUI with working or dummy sofena the background.
It is then self-tested by the developers.

« Testing— GUI testing can be done in various ways. Org#ion can have in-
house inspection; direct involvement of users aidase of beta version are
few of them. Testing may include usability, compdity, user acceptance etc.

3.6 GUI Implementation Tools
There are several tools available using which gsghers can create entire GUI on a
mouse click. Some tools can be embedded into tivwa@ environment (IDE).
GUI implementation tools provide powerful array GUI controls. For software
customization, designers can change the code angbyd
There are different segments of GUI tools accortlinipeir different use and platform.
Example: Mobile GUI, Computer GUI, Touch-Screen Gtt. Here is a list of few
tools which come handy to build GUI:

« FLUID

« Applnventor (Android)

o LucidChart

o Wavemaker

o Visual Studio

3.7 User Interface Golden rules
The following rules are mentioned to be the golddas for GUI design, described by
Shneiderman and Plaisant in their book “DesignirggWser Interface”.
« Strive for consistency Consistent sequences of actions should be estjunr
similar situations. Identical terminology shouldused in prompts, menus, and
help screens. Consistent commands should be engptby@ughout.

187

Enable frequent users to use short-cuiBhe user’s desire to reduce the number
of interactions increases with the frequency of. Usebreviations, function
keys, hidden commands, and macro facilities ang kelpful to an expert user.
Offer informative feedback For every operator action, there should be some
system feedback. For frequent and minor actiomstgbponse must be modest,
while for infrequent and major actions, the resgomsist be more substantial.
Design dialog to yield closure Sequences of actions should be organized into
groups with a beginning, middle, and end. The mifative feedback at the
completion of a group of actions gives the operattire satisfaction of
accomplishment, a sense of relief, the signal tip drontingency plans and
options from their minds, and this indicates thHa tvay ahead is clear to
prepare for the next group of actions.

Offer simple error handlinge As much as possible, design the system so the
user will not make a serious error. If an erranede, the system should be able
to detect it and offer simple, comprehensible maigmas for handling the error.
Permit easy reversal of actiorsThis feature relieves anxiety, since the user
knows that errors can be undone. Easy reversal ctbns encourages
exploration of unfamiliar options. The units of egsibility may be a single
action, a data entry, or a complete group of astion

Support internal locus of contrel Experienced operators strongly desire the
sense that they are in charge of the system anthihaystem responds to

their actions. Design the system to make usersiti@ors of actions rather

than the responders.

Reduce short-term memory loadThe limitation of human information
processing in short-term memory requires the dyspled be kept simple,
multiple page displays be consolidated, window-pofrequency be reduced,
and sufficient training time be allotted for codes)emonics, and sequences of
actions.

188

4.0 Self-Assessment Exercise(s)
Answer the following questions:

1. Mention some qualities of a user interface thake software more popular
2. Give a broad classification of user interface

3. Mention and explain 3 elements of a text-basedmand line interface

4. Briefly describe the tools used for developtadrgraphical user interface
5. Mention at least 5 Application specific GUI coomgnts

Solution

1 Mention some qualities of a user intezfitat make software more popular

The software becomes more popular if its user fiateris:

2

Attractive

Simple to use

Responsive in short time

Clear to understand

Consistent on all interfacing screens

Give a broad classification of user interface

Ul is broadly divided into two categories:

3

Command Line Interface
Graphical User Interface

Mention and explain 3 elements of a-teaded command line interface

A text-based command line interface has the folhgnelements:

4

Command Prompt It is text-based notifier that mostly shows tdumtext in
which the user is working. It is generated by tbi#vgare system.

Cursor— It is a small horizontal line or a vertical bdrtbe height of line, to
represent position of character while typing. Cursanostly found in blinking
state. It moves as the user types or deletes aaieaior more.

Command- A command is an executable instruction. It mayehone or more
parameters. Output on command execution is shokmeian the screen. When
output is produced, command prompt is displayethemext line.

Briefly describe the tools used for develepitrof graphical user interface

FLUID
Applnventor (Android)

189

e LucidChart
« Wavemaker
o Visual Studio

5 Mention at least 5 application specific Gldmponents
Specific GUI components include the following:
1. Application Window
Dialogue Box
Text-Box
Buttons
Radio-button
Check-box
List-box

N o gk wbd

5.0 Conclusion

User interface is the means through which a uspe(&or) interacts with the computer
(software). Ul provides a platform for the usemntanipulate the software. It becomes
imperative that while developing a software, therusterface must of necessity be
design and incorporated into the greater whole. Uder interface could be command
line based or graphical.

6.0 Summary

In this unit we discussed the following:
e Broad Classification of User Interface
e GUI Elements
e Application specific GUI components
e Other impressive GUI components are
e User Interface Design Activities
e GUI Implementation Tools
e User Interface Golden rules

7.0 References/Further Readings

Adnan N. H. and Ritzhaupt A. D (2018). Software iBegring Design Principles
Applied to Instructional Design: What can we Le&mwm our Sister Discipline?
Springer. 62, 77-94.

190

Charles S. Wasson (2006) System Analysis, Desigd, Revelopment Concepts,
Principles, and Practices, Published by John WAle§ons, Inc., Hoboken, New
Jersey.

Filipova O and Vilao R (2018). Software DevelopmErdm A to Z: A Deep Dive into
all the Roles Involved in the Creation of Softwakeress

Hans-Petter Halvorsen (2020) Software DevelopmeRtaktical Approach. Retrieved
from: https://halvorsen.blog

Kaur I., Narula G. S., Wason R., Jain V., and BaliyA (2018).Neuro fuzzy—
COCOMO Il model for software cost estimation. Imi@ional Journal of
Information technology. 10, 181-187.

Richard H. Thayer, Barry W. Boehm (1986). Tutorisdftware engineering project
management. Computer Society Press of the IEEBOp.1

Salve S. M., Samreen S. N. and Khatri-Valmik N 1&0, A Comparative Study on
Software Development Life Cycle Models. InternaéibrResearch Journal of
Engineering and Technology. 5(2), 696-700.

191

MODULE 6: OVERVIEW OF DESIGN COMPLEXITY , SOFTWARE
IMPLEMENTATION, TESTING , MAINTENANCE AND CASE
TOOLS

This module is divided into five (5) units
Unit 1: Design Complexity

Unit 2: Software Implementation

Unit 3: Software Testing

Unit 4: Software Maintenance

Unit 5: Software Case Tools

Unit 1: Design Complexity
Contents
1.0 Introduction
2.0 Intended Learning Outcomes (ILOS)
3.0 Main Content
3.1 Halstead's Complexity Measures
3.2 Cyclomatic Complexity Measures
3.3 Function Point
3.3.1 Parameters of function point
3.3.2 Characteristics for system Description
4,0 Self-Assessment Exercise(s)
5.0 Conclusion
6.0 Summary
7.0 References/Further Readings

Contents

1.0Introduction

The term complexity stands for state of events longss, which have multiple
interconnected links and highly complicated struesu In software programming, as
the design of software is realized, the numberl@hents and their interconnections
gradually emerge to be huge, which becomes tozdiffto understand at once.

192

2.0 Intended Learning Outcomes (ILOs)
After studying this unit, you should be able to
e Discuss
0 Halstead's Complexity Measures
0 Cyclomatic Complexity Measures
o Function Point
e State the formula for each of the following meamaig@ach parameter:
0 Halstead's Complexity Measures
o Cyclomatic Complexity Measures
o Function Point
e Mention any 3 parameter of function point
e Mention any 10 characteristics for system Desa@ipti

3.0 Main Content

The term complexity stands for state of events longss, which have multiple
interconnected links and highly complicated struesu In software programming, as
the design of software is realized, the numberl@hents and their interconnections
gradually emerge to be huge, which becomes todiffto understand at once.
Software design complexity is difficult to assesthaut using complexity metrics and
measures. Let us see three important software exiyplneasures.

3.1 Halstead's Complexity Measures

In 1977, Mr. Maurice Howard Halstead introduced nmetto measure software
complexity. Halstead’s metrics depends upon thaahdctplementation of program
and its measures, which are computed directly frlmenoperators and operands from
source code, in static manner. It allows to evaluasting time, vocabulary, size,
difficulty, errors, and efforts for C/C++/Java soecode.

According to Halstead, “A computer program is amplementation of an algorithm
considered to be a collection of tokens which carclassified as either operators or
operands”. Halstead metrics think a program as essmp of operators and their
associated operands.

He defines various indicators to check complexftynodule.

Parameter Meaning

nl Number of unique operators

n2 Number of unique operands

N1 Number of total occurrence of operators

193

Parameter Meaning
N2 Number of total occurrence of operands

When we select source file to view its complexitgtadls in Metric Viewer, the
following result is seen in Metric Report:

Metric Meaning Mathematical Representation

n Vocabulary nl + n2

N Size N1 + N2

Vv Volume Length * Log2 Vocabulary

D Difficulty (n1/2) * (N1/n2)

E Efforts Difficulty * Volume

B Errors Volume / 3000

T Testing time Time = Efforts / S, where S=18 selson

3.2 Cyclomatic Complexity Measures
Every program encompasses statements to execatdento perform some task and
other decision-making statements that decides wfad¢ments need to be executed.
These decision-making constructs change the flotli@program.
If we compare two programs of same size, the orid wiore decision-making
statements will be more complex as the controlrogmam jumps frequently.
McCabe, in 1976, proposed Cyclomatic Complexity Mea to quantify complexity
of a given software. It is graph driven model th&atbased on decision-making
constructs of program such as if-else, do-whilgeat-until, switch-case and goto
statements.
Process to make flow control graph:
« Break program in smaller blocks, delimited by decisnaking constructs.
« Create nodes representing each of these nodes.
o Connect nodes as follows:
o If control can branch from block i to block j
Draw an arc
o From exit node to entry node
Draw an arc.

194

To calculate Cyclomatic complexity of a program mied we use the formula
V(G)=e—-n +2

where,

e is total number of edges

n is total number of nodes

Frutementl | srenamsntl

A saxpressiond
alatimantld

o
Lol T
et

lae

SravaEnEd

it R

—_—

=]

The Cyclomatic complexity of the above module is

e =10

n =8
CyclomaticComplexity=10-8+2
=4

According to P. Jorgensen, Cyclomatic Complexita oiodule should not exceed 10.

3.3 Function Point

It is widely used to measure the size of softwdi@nction Point concentrates on
functionality provided by the system. Features faimgtionality of the system are used
to measure the software complexity.

Function point counts on five parameters, namefxsrnal Input, External Output,

Logical Internal Files, External Interface FileadaExternal Inquiry. To consider the
complexity of software each parameter is furthdegarized as simple, average or
complex.

195

Soltwers Program

Exdornd Progrmns

3.3.1 Parameters of function point
External Input— Every unique input to the system, from outsideconsidered as
external input. Uniqueness of input is measurediaagvo inputs should have same
formats. These inputs can either be data or coptn@meters, and is:

e Simple: if input count is low and affects less m files

e Complex: if input count is high and affects mortemal files

e Average: input count is in between simple and cempl
External Output- All output types provided by the system are ¢edn this category.
Output is considered unique if their output forraat/or processing are unique, and
Is:

e Simple: if output count is low

e Complex: if output count is high

e Average: if output count is in between simple aachplex.
Logical Internal Files— Every software system maintains internal filesorder to
maintain its functional information and to functiproperly. These files hold logical
data of the system. This logical data may contath bunctional data and control data,
and is:

e Simple: if number of record types are low

e Complex: if number of record types are high

e Average: if number of record types are in betwampke and complex.
External Interface Files- Software system may need to share its files witime
external software or it may need to pass the ditgpfocessing or as parameter to some
function. All these files are counted as externgriface files, and is:

196

e Simple: if number of record types in shared file kw

e Complex: if number of record types in shared file laigh

e Average: if number of record types in shared file en between simple and
complex.

External Inquiry— An inquiry is a combination of input and outpwhere user sends
some data to inquire about an input and the systgponds to the user with the output
of inquiry processed. The complexity of a querymere than External Input and
External Output. Query is said to be unique iinfsut and output are unique in terms
of format and data, and is:

e Simple: if query needs low processing and yieldalsamount of output data

e Complex: if query needs high process and yieldgel@mount of output data

e Average: if query is in between simple and complex.
Each of these parameters in the system is giveghwvaiccording to their class and
complexity. The table below shows the weight giteeach parameter:

Parameter Simple Average Complex
Inputs 3

Outputs 4 5 7

Enquiry 3 4 6

Files 7 10 15
Interfaces 5 7 10

The table above yields raw Function Points. Thasetfon points are adjusted
according to the environment complexity. A systesndescribed using fourteen
different characteristics.

3.3.2 Characteristics for system Description
Data communications

Distributed processing

Performance objectives

Operation configuration load
Transaction rate

Online data entry,

End user efficiency

Online update

© No g bk wbdPE

197

9. Complex processing logic
10.Re-usability

11.Installation ease
12.Operational ease
13.Multiple sites

14.Desire to facilitate changes

These characteristics or factors are then rated @do 5, as follows:

o No influence

e Incidental

o Moderate

« Average

« Significant

o Essential
All ratings are then summed up as N. The value cdmges from 0 to 70 (14 types of
characteristics x 5 types of ratings). It is therdito calculate Complexity Adjustment
Factors (CAF), using the following formulae:

CAF =0.65+0.01N

Then,

DeliveredFunctionPoints(FP)= CAF x Raw FP

This FP can then be used in various metrics, ssch a
Cost=%/FP
Quality = Errors / FP
Productivity = FP / person-month

4.0 Self-Assessment Exercise(s)

Answer the following questions:

1. Explain the following terms:

() Halstead's Complexity Measures

(i) Cyclomatic Complexity Measures

(i) Function Point

2. Describe the formula for each of the 1(i), (ii)d&iii) above.
3. Mention at least 10 characteristics for system migtsaen

4. Explain any three parameters of function point

198

Solution

1 Explain the following terms:
I. Halstead's Complexity Measures
ii. Cyclomatic Complexity Measures
lii. Function Point

Halstead’s complexity measure: Halstead’s compfaxasurement was developed
to measure a program module’s complexity direathyf source code, with emphasis
on computational complexity. The Halstead’s measare based on four scalar
number derived directly from a program’s sourceecod. is number of distinct
operators, n2 is number of distinct operands, Nated number of distinct operators
and N2 is total number of distinct operands. Frbasé numbers, five measures are
derived. These include: Program length, Volumefigifty and Effort/

Cyclomatic Complexity Measures: Programs consisa gequence of statements to
execute in order to perform some task and othersid@emaking statements that
determine the flow of execution of the program. Sehelecision-making constructs
change the flow of the program. Complexity is seaitev metric that gives the
guantitative measure of logical complexity of thiegram. The cyclomatic complexity
the program defines the number of independent pattiee program that provides the
upper bound for the number of tests that must beletted to ensure that all the
statements have been executed at least once. &tetbree methods of computing
cyclomatic complexities.

Function point: The function point is a unit of maeement used to express the amount
of business functionality in a product. Functiomg®are used to compute a functional
size measurement (FSM) of software. It is widelydutd measure the size of software.
Function point concentrates on functionality pr@ddby the system. Features and
functionality of the system are used to measursdifigvare complexity. Function point
considers five parameters namely: External Inputeial Output, Logical Internal
Files, External Interface Files, and External Imguilo consider the complexity of
software each parameter is further categorizethgsles, average or complex.

2 Describe the formula for each of the X{i), and (iii) above.

199

Halstead's formula

Measure Symbol Formula Parameters and meaning
Program N N =N1+ N2 | N1 is total number of distinct openat
length N2 is total number of distinct operands.
Program n n=nl+n2 nlis number of distinct operators.
vocabulary n2 is number of distinct operands.
Volume \% V =N * (log2 | N is program length.

n) n is program vocabulary
Difficulty D D=(1/2)* |nlisnumber of distinct operators
N2/ 2) N2 is total number of distinct operands.
Effort E E=D*V D is difficulty
V is volume

Cyclomatic formula:
Method 1: Total number of regions in the flow grapla Cyclomatic complexity.
Method 2: The Cyclomatic complexity, V(G) for ailagyraph G can be defined as
V(G)=E-N+2
where:
E is total number of edges in the flow graph.
N is the total number of nodes in the flow graph.
Method 3: The Cyclomatic complexity V(G) for a flayvaph G can be defined as
VG)=P+1
where:
P is the total number of predicate nodes contaiméae flow G.

Function point formula:
Function point = FP = UFP x VAF
where:

UFP = Sum of all the complexities,
VAF = Value added Factor i.e., 0.65 + (0.01 * TDI),
TDI = Total Degree of Influence of the 14 Genergdt®m Characteristics.

3. Mention at least 10 characteristics for systiscription

200

Characteristics for system description:
1. Data communications
2. Distributed processing
Performance objectives
Operation configuration load
Transaction rate
Online data entry,
End user efficiency
Online update
. Complex processing logic
10.Re-usability
11.Installation ease
12.Operational ease
13.Multiple sites
14.Desire to facilitate changes

© © N Ok~

3 Explain any three parameters of function point
External Input— Every unique input to the system, from outsideconsidered as
external input. Uniqueness of input is measuredyaasvo inputs should have same
formats. These inputs can either be data or coptm@meters, and is:

e Simple: if input count is low and affects less m files

e Complex: if input count is high and affects mortemal files

e Average: input count is in between simple and cempl
External Output- All output types provided by the system are ¢edin this category.
Output is considered unique if their output forraatl/or processing are unique, and
IS:

e Simple: if output count is low

e Complex: if output count is high

e Average: if output count is in between simple aachplex.
Logical Internal Files— Every software system maintains internal filesorder to
maintain its functional information and to functiproperly. These files hold logical
data of the system. This logical data may contath bunctional data and control data,
and is:

e Simple: if number of record types are low

e Complex: if number of record types are high

201

e Average: if number of record types are in betwaspke and complex.

5.0 Conclusion

Any enterprise software of value has some levet@hplexity. As components or
modules are developed and incorporated into theesysthe complexity increases.
Software design complexity is difficult to assesthaut using complexity metrics and
measures. These metrics and measures are discussedunit.

6.0 Summary
In this unit we discussed the following:
e Halstead's Complexity Measures
e Cyclomatic Complexity Measures
e Function Point
e Characteristics for system Description

7.0 References/Further Readings

Adnan N. H. and Ritzhaupt A. D (2018). Software i&egring Design Principles
Applied to Instructional Design: What can we Le&om our Sister Discipline?
Springer. 62, 77-94.

Charles S. Wasson (2006) System Analysis, Desigd, Revelopment Concepts,
Principles, and Practices, Published by John WAle§ons, Inc., Hoboken, New
Jersey.

Filipova O and Vilao R (2018). Software DevelopmErdm A to Z: A Deep Dive into
all the Roles Involved in the Creation of Softwakeress

Hans-Petter Halvorsen (2020) Software DevelopmeRtaktical Approach. Retrieved
from: https://halvorsen.blog

Kaur I., Narula G. S., Wason R., Jain V., and BaliyA (2018).Neuro fuzzy—
COCOMO Il model for software cost estimation. Imi@ional Journal of
Information technology. 10, 181-187.

Richard H. Thayer, Barry W. Boehm (1986). Tutorisbftware engineering project
management. Computer Society Press of the IEEBOp.1

Salve S. M., Samreen S. N. and Khatri-Valmik N 1&0, A Comparative Study on
Software Development Life Cycle Models. InternaéibrResearch Journal of
Engineering and Technology. 5(2), 696-700.

Unit 2: Software Implementation

202

Contents

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)
3.0 Main Content

3.1 Structured Programming

3.2 Functional Programming

3.3 Programming style

3.4 Coding Guidelines

3.5 Software Implementation Challenges
3.6 Software Documentation

4.0 Self-Assessment Exercise(s)

5.0 Conclusion

6.0 Summary

7.0 References/Further Readings

Contents

1.0 Introduction

The implementation phase plays a major role instifevare development process. It
is at this stage that the physical source codehefslystem being built is created.
Programmer’s code the IT system on the basis otdtiected requirements and the
developed project documentation. They are basezkparience and proven software
development techniques. Implementation is the @m®a# realizing the design as a
program.

2.0 Intended Learning Outcomes (ILOS)
After studying this unit, you should be able to:

1. Discuss the 3 main concepts used in structured@nuging
2. Discuss the concepts used in functional programming
3. State the coding guidelines

3.0 Main Content
In this unit, we will study about programming medspdocumentation and challenges
in software implementation.

203

3.1 Structured Programming

In the process of coding, the lines of code keeftiphying, thus, size of the software

increases. Gradually, it becomes next to impossibiemember the flow of program.
If one forgets how software and its underlying pewgs, files, procedures are
constructed it then becomes very difficult to shdebug and modify the program. The
solution to this is structured programming. It emages the developer to use
subroutines and loops instead of using simple jumphe code, thereby bringing

clarity in the code and improving its efficiencytri®tured programming also helps
programmer to reduce coding time and organize pooleerly.

Structured programming states how the program Wi coded. Structured

programming uses three main concepts:

« Top-down analysis A software is always made to perform some rafiorork.
This rational work is known as problem in the sa@ftevparlance. Thus, it is very
important that we understand how to solve the moblUnder top-down
analysis, the problem is broken down into smakk@swhere each one has some
significance. Each problem is individually solvetdasteps are clearly stated
about how to solve the problem.

« Modular Programming- While programming, the code is broken down into
smaller group of instructions. These groups arewknoas modules,
subprograms or subroutines. Modular programmingdbas the understanding
of top-down analysis. It discourages jumps usingtog statements in the
program, which often makes the program flow nowcdedle. Jumps are
prohibited and modular format is encouraged incstmed programming.

« Structured Coding- In reference with top-down analysis, structuredicg sub-
divides the modules into further smaller units ofle in the order of their
execution. Structured programming uses controksire, which controls the
flow of the program, whereas structured coding usestrol structure to
organize its instructions in definable patterns.

3.2 Functional Programming

Functional programming is a style of programminggiaage, which uses the concepts
of mathematical functions. A function in mathemastould always produce the same
result on receiving the same argument. In procédarguages, the flow of the
program runs through procedures, i.e., the comfgrogram is transferred to the
called procedure. While control flow is transferfeaim one procedure to another, the
program changes its state.

204

In procedural programming, it is possible for agaure to produce different results
when it is called with the same argument, as tbgnam itself can be in different state
while calling it. This is a property as well asrawback of procedural programming,
in which the sequence or timing of the proceduecaion becomes important.
Functional programming provides means of computaéi® mathematical functions,
which produces results irrespective of progranestiiis makes it possible to predict
the behaviour of the program.

Functional programming uses the following concepts:

» First class and High-order functionrsThese functions have capability to accept
another function as argument or they return othections as results.

« Pure functions- These functions do not include destructive ugglahat is, they
do not affect any I/O or memory and if they are inotise, they can easily be
removed without hampering the rest of the program.

« Recursion- This is a programming technique where a functialfs itself and
repeats the program code in it unless some preatkfcondition matches.
Recursion is the way of creating loops in functiggragramming.

« Strict evaluation- This is a method of evaluating the expressiossga to a
function as an argument. Functional programmingtiastypes of evaluation
methods, strict (eager) or non-strict (lazy). $teealuation always evaluates
the expression before invoking the function. Namestevaluation does not
evaluate the expression unless it is needed.

« A-calculus- Most functional programming languages usmlculus as their type
systems\i-expressions are executed by evaluating them gsottir.

Common Lisp, Scala, Haskell, Erlang and F# are semxmmples of functional
programming languages.

3.3 Programming style

Programming style is a set of coding rules follovibgdall the programmers to write
the code. When multiple programmers work on the esawftware project, they
frequently need to work with the program code wrtby some other developer. This
becomes tedious or at times impossible, if all tgers do not follow some standard
programming style to code the program.

An appropriate programming style includes usingfiom and variable names relevant
to the intended task, using well-placed indentatioommenting code for the
convenience of reader and overall presentatiomdé cThis makes the program code

205

readable and understandable by all, which in tuakes debugging and error solving
easier. Also, proper coding style helps ease tleardentation and updating.

3.4 Coding Guidelines

Practice of coding style varies with organizatiomgerating systems and language of
coding itself.

The following coding elements may be defined undeding guidelines of an
organization:

« Naming conventions Defines how to name functions, variables, coristand
global variables.

« Indenting— Space left at the beginning of line, usually @48tespace or single
tab.

« Whitespace- Generally omitted at the end of line.

« Operators— Define the rules of writing mathematical, assigmt and logical
operators. For example, assignment operator ‘=ukhbave space before and
afterit, asin “x = 2",

o Control Structuress The rules of writing if...then...else, case...switch,
while...until and for control flow statements, soledyd in nested fashion.

« Line length and wrapping Defines how many characters should be theraen o
line, mostly a line is 80 characters long. Wrapplefjines how a line should be
wrapped, if is too long.

« Functions— Defines how functions should be declared andkad, with and
without parameters.

« Variables— Mentions how variables of different data types declared and
defined.

« Comments One of the important coding components, as ¢tinengents included
in the code describe what the code actually doek aihother associated
descriptions. This section also helps creating liglpumentations for other
developers.

3.5 Software Implementation Challenges
There are some challenges faced by the developtaant while implementing the
software. Some of them are mentioned below:
o Code-reuse- Programming interfaces of present-day languages very
sophisticated and are equipped huge library funsti&till, to bring the cost
down of end product, the organization managemesfes to re-use the code,

206

which was created earlier for some other softwahere are huge issues faced
by programmers for compatibility checks and degdmw much code to re-
use.

« Version Management Every time a new software is issued to the custo
developers have to maintain version and configomatelated documentation.
This documentation needs to be highly accurateaaadable on time.

o Target-Host- The software program, which is being developadthe
organization, needs to be designed for host maslainthe customers’ end. But
at times, it is impossible to design a software warks on the target machines.

3.6 Software Documentation

Software documentation is an important part ofvgafe process. A well written

document provides a great tool and means of infoomaepository necessary to know
about software process. Software documentationpatsades information about how
to use the product.

A well-maintained documentation should involve tbkkowing documents:

« Requirement documentatien This documentation works as key tool for
software designer, developer and the test tea@rty out their respective tasks.
This document contains all the functional, non-tior@al and behavioural
description of the intended software.

Source of this document can be previously storgd daout the software,

already running software at the client’'s end, d¢lgemterview, questionnaires

and research. Generally, it is stored in the forimsppreadsheet or word

processing document with the high-end software gament team.

This documentation works as foundation for thevgaffe to be developed and
is majorly used in verification and validation peasMost test-cases are built
directly from requirement documentation.

« Software Design documentatiefT his documentation contains all the necessary
information, which are needed to build the softw#reontains: (a) High-level
software architecture, (b) Software design det@lsData flow
diagrams, (d) Database design
These documents work as repository for developeirmplement the software.
Though these documents do not give any detailsoentb code the program,

207

they give all necessary information that is reqiliréor coding and
implementation.

« Technical documentationThis documentation is maintained by the devealepe

and actual coders. These documents, as a wholesesy information about
the code. While writing the code, the programmése aention objective of

the code, who wrote it, where will it be requiradhat it does and how it does,
what other resources the code uses, etc.

The technical documentation increases the undelisiginbetween various
programmers working on the same code. It enhare@se capability of the

code. It makes debugging easy and traceable.

There are various automated tools available andesoomes with the

programming language itself. For example, java rdavaDoc tool to

generate technical documentation of code.

User documentatior This documentation is different from all the abo

explained. All previous documentations are mairgdito provide information

about the software and its development process. UBet documentation
explains how the software product should work aad fit should be used to
get the desired results.

The user documentation may include: software ilatah procedures, how-to
guide, user-guides, un-installation method and ispeeferences to get more
information like license updating etc.

4.0 Self-Assessment Exercise(s)
Answer the following questions:

1.

a kDN

Discuss the three main concepts used in strucfuneagtamming
Discuss the basic concepts used in functional pragring

State any five coding guidelines

Describe the importance of software documentation

List some of the challenges associated with so#waplementation

208

Solution:

1.

Discuss the three main concepts used in struchn@gramming

Structured programming uses three main conceptshvdre discussed below:
o Top-down analysis A software is always made to perform some rafiorork.

2

This rational work is known as problem in the s@ftesparlance. Thus, itis very
important that we understand how to solve the mmblUnder top-down
analysis, the problem is broken down into smakk@sawhere each one has some
significance. Each problem is individually solveutdasteps are clearly stated
about how to solve the problem.

Modular Programming- While programming, the code is broken down into
smaller group of instructions. These groups arewknoas modules,
subprograms or subroutines. Modular programmingdbas the understanding
of top-down analysis. It discourages jumps usingtog statements in the
program, which often makes the program flow nowcdedle. Jumps are
prohibited and modular format is encouraged incstmed programming.
Structured Coding- In reference with top-down analysis, structuredieg sub-
divides the modules into further smaller units ofle in the order of their
execution. Structured programming uses controksire, which controls the
flow of the program, whereas structured coding usestrol structure to
organize its instructions in definable patterns.

Discuss the basic concepts used in functional pragring

Functional programming uses the following concepts:

First class and High-order functionrsThese functions have capability to accept
another function as argument or they return othections as results.

Pure functions- These functions do not include destructive uggldhat is, they
do not affect any I/O or memory and if they are inotise, they can easily be
removed without hampering the rest of the program.

Recursion- This is a programming technique where a functialts itself and
repeats the program code in it unless some preekkfcondition matches.
Recursion is the way of creating loops in functiggragramming.

Strict evaluation- This is a method of evaluating the expressioss@a to a
function as an argument. Functional programmingtivastypes of evaluation
methods, strict (eager) or non-strict (lazy). $teealuation always evaluates
the expression before invoking the function. Namestevaluation does not
evaluate the expression unless it is needed.

209

3

» J-calculus- Most functional programming languages usmlculus as their type

systemsi-expressions are executed by evaluating them gsottwir.

State any five coding guidelines.

The following coding elements may be defined undeding guidelines of an
organization:

4

Naming conventions Defines how to name functions, variables, caristand
global variables.

Indenting— Space left at the beginning of line, usually @48tespace or single
tab.

Whitespace- Generally omitted at the end of line.

Operators— Define the rules of writing mathematical, assigmt and logical
operators. For example, assignment operator ‘=ukhbave space before and
afterit, asin “x = 2",

Control Structures- The rules of writing if...then...else, case...switch,
while...until and for control flow statements, soledyd in nested fashion.
Line length and wrapping Defines how many characters should be theraen o
line, mostly a line is 80 characters long. Wrapplefjnes how a line should be
wrapped, if is too long.

Functions— Defines how functions should be declared andked, with and
without parameters.

Variables— Mentions how variables of different data types declared and
defined.

Comments One of the important coding components, as ¢imensents included
in the code describe what the code actually doek aihother associated

descriptions. This section also helps creating liglpumentations for other
developers.

Describe the importance of software dosotation

Software Documentation is a critical activity infteaare engineering. Generally,
software documentation improves on the quality ab&ware product. It also plays
significant roles in software development environirend system maintenance.
Particularly,

They act as a communication medium between mendjeitse development
team.

They are system information repositories to be Ugechaintenance engineers.

210

e They provide information for management to helpnthplan, budget and
schedule the software development process.
e They tell the users how to use and administer yetem.

5 List some of the challenges associated saftware implementation
e Code-reuse

e Version Management

e Target-Host

e Misaligned expectations.

e Data Integrity.

e Lack of preparedness among project team members.
e Lack of preparedness among employees.

e Lack of support from the vendor.

¢ |nadequate software training tools.

e Declining productivity.

5.0 Conclusion

Implementation phase is a very important phas@é@®SDLC. This is when and where

the actual coding is carried out. That is, after thquirements have been elicited and
specified, analysis and design has been done. W& dxamined some ways through

which this can be accomplished.

6.0 Summary
In this unit we discussed the following:
e Structured Programming
e Functional Programming
e Programming style
e Coding Guidelines
e Software Implementation Challenges
e Software Documentation
7.0 References/Further Readings

211

Adnan N. H. and Ritzhaupt A. D (2018). Software i&egring Design Principles
Applied to Instructional Design: What can we Le&om our Sister Discipline?
Springer. 62, 77-94.

Charles S. Wasson (2006) System Analysis, Desigd, [Revelopment Concepts,
Principles, and Practices, Published by John WAle§ons, Inc., Hoboken, New
Jersey.

Filipova O and Vilao R (2018). Software DevelopmErdm A to Z: A Deep Dive into
all the Roles Involved in the Creation of Softwakeress

Hans-Petter Halvorsen (2020) Software DevelopmeRtaktical Approach. Retrieved
from: https://halvorsen.blog

Kaur I., Narula G. S., Wason R., Jain V., and BaliyA (2018).Neuro fuzzy—
COCOMO Il model for software cost estimation. Imi@ional Journal of
Information technology. 10, 181-187.

Richard H. Thayer, Barry W. Boehm (1986). Tutorisbftware engineering project
management. Computer Society Press of the IEEBOp.1

Salve S. M., Samreen S. N. and Khatri-Valmik N 1&0, A Comparative Study on
Software Development Life Cycle Models. InternaéibrResearch Journal of
Engineering and Technology. 5(2), 696-700.

Unit 3: Software Testing
Contents
1.0 Introduction
2.0 Intended Learning Outcomes (ILOs)
3.0 Main Content
3.1 Software Validation
3.2 Software Verification
3.3 Manual Vs Automated Testing
3.4 Testing Approaches
3.4.1 Black-box testing
3.4.2 White-box testing

212

3.5 Testing Levels
3.5.1 Unit Testing
3.5.2 Integration Testing
3.5.3 System Testing
3.6 Acceptance Testing
3.7 Regression Testing
3.8 Testing Documentation
3.9 Testing vs. Quality Control, Quality Assurarce Audit
4,0 Self-Assessment Exercise(s)
5.0 Conclusion
6.0 Summary
7.0 References/Further Readings

Contents

1.0 Introduction

Software testing is a critical element of softwdeselopment life cycles which is called
software quality control or software quality asswe It basic goals are for validation
and verification. Validation helps us to know whatkve are building the right product.
Verification helps us to know whether our produ@enits specification. The product
could be code, a model, a design diagram, a rageineetc. At each stage, we need to
verify that the thing we produce accurately repnésés specification

2.0 Intended Learning Outcomes (ILOS)
After studying this unit, you should be able to
« Explain software testing
« Differentiate between validation and verification
« ldentify the importance of software testing
« Differentiate between manual and automated testing
 ldentify the basis of software testing
« Differentiate between Black-box testiagd White-box testing
« Mention the various level of testing

213

3.0 Main Content

Software Testing is the evaluation of a softwarai@g requirements gathered from
users and system specifications. Testing is coeduat the phase level in software

development life cycle or at module level in pragreode. Software testing comprises
of Validation and Verification.

3.1 Software Validation

Validation is process of examining whether or nue software satisfies the user
requirements. It is carried out at the end of thd G. If the software matches
requirements for which it was made, it is validated

o Validation ensures the product under developmentass per the user
requirements.

« Validation answers the question — "Are we develgpthe product which
attempts all that user needs from this software?".

« Validation emphasizes on user requirements.

3.2 Software Verification

Verification is the process of confirming if thefiseare is meeting the business

requirements, and is developed adhering to the eprogpecifications and
methodologies.

Verification ensures the product being developedaésording to design
specifications.

Verification answers the question— Are we develgpimis product by firmly
following all design specifications?

« Verifications concentrates on the design and sysigguifications.
Target of the test are:

Errors — These are actual coding mistakes madevwsiapers. In addition, there
is a difference in output of software and desinepot, is considered as an error.
o Fault —When error exists. a fault occurs. A faalép known as a bug, is a result
of an error which can cause system to fail.

Failure— failure is said to be the inability of the systemperform the desired
task. Failure occurs when fault exists in the syste

214

3.3 Manual vs. Automated Testing
Testing can either be done manually or using annaated testing tool:

o Manual- This testing method is performed without thephef automated
testing tools. The software tester prepares testsctor different sections and
levels of the code, executes the tests and refhartesult to the manager.
Manual testing is time and resource consuming. fEseer needs to confirm
whether or not right test cases are used. Majotigroiof testing involves
manual testing.

o Automated -This testing method is a testing procedure donth \&id of
automated testing tools. The limitations with mdrnaating can be overcome
using automated test tools.

If a test needs to check if a webpage can be openiedernet Explorer. This can be

easily done with manual testing. But to check & tieb-server can take the load of 1
million users, it is quite impossible to test mahua

There are software and hardware tools which hegi®tt in conducting load testing,

stress testing, regression testing.

3.4 Testing Approaches
Tests can be conducted based on two approaches:

« Functionality testing

« Implementation testing
When functionality is being tested without takirge tactual implementation into
concern it is known as black-box testing. The othée is known as white-box testing
where not only functionality is tested but the vitag implemented is also analyzed.
Exhaustive tests are the best-desired methodderfact testing. Every single possible
value in the range of the input and output valseaested. However, it is not possible
to test each and every value in real world scenfti® range of values is large.

3.4.1 Black-box testing

Black-box testing is carried out to test the fuoicélity of the program. It is also called
‘Behavioural’ testing. The tester in this case, aaet of input values and respective
desired results. On providing input, if the outmatches with the desired results, the
program is tested ‘ok’, and problematic otherwi3éis testing approach is as
illustrated below:

215

& =

N T
e e —— -,

In this testing method, the design and structuth@itode are not known to the tester,
and testing engineers and end users conduct #tierighe software.

3.4.2 Black-box testing techniques
« Equivalence class The input is divided into similar classes. leoglement of
a class passes the test, it is assumed that allabe is passed.
« Boundary values The input is divided into higher and lower eralues. If
these values pass the test, it is assumed thaila#s in between may pass too.
« Cause-effect graphing In both previous methods, only one input valua a

time is tested. Cause (input) — Effect (outputhisesting technique where
combinations of input values are tested in a syatenwvay.

« Pair-wise Testing- The behaviour of software depends on multiplapeters.

In pairwise testing, the multiple parameters argte® pair-wise for their
different values.

State-based testing The system changes state on provision of inplkse
systems are tested based on their states and input.

3.4.2 White-box testing

White-box testing is conducted to test program amdmplementation, in order to

improve code efficiency or structure. It is alscokwm as ‘Structural’ testing and is
illustrated below:

[

In this testing method, the design and structuréhefcode are known to the tester.
Programmers of the code conduct this test on the.co
Below are some white-box testing techniques:

216

Control-flow testing- The purpose of the control-flow testing to qetest cases
which covers all statements and branch conditidhs. branch conditions are
tested for both being true and false, so thattatesnents can be covered.
Data-flow testing- This testing technique covers all the data emincluded

in the program. It tests where the variables werdaded and defines where
they were used or changed.

3.5 Testing Levels

Testing itself may be defined at various levelsSaiLC. The testing process runs
parallel to software development. Before jumpingtlo® next stage, a stage is tested,
validated and verified.

Testing separately is done just to make sure tieaetare no hidden bugs or issues left
in the software.

Software is tested on various levels including:

3.5.1 Unit Testing

While coding, the programmer performs some testhanunit of program to know if
it is error free. Unit testing is performed unddmite-box testing approach. It helps

developers decide which individual units of the grean are working as per
requirement and are error free.

3.5.2 Integration Testing

Even if the units of software are working fine wmidually, there is a need to find out

if the units if integrated together would also waskthout errors. For example,
argument passing and data updating, etc.

3.5.3 System Testing

The software is compiled as product and then tested as a whole. This can be
accomplished using one or more of the followingstes

Functionality testing- Tests all functionalities of the software agsitise
requirement.

Performance testing Proves how efficient the software is. It tesite t
effectiveness and average time taken by the sdoftwardo desired task.
Performance testing is done by means of load tgsimi stress testing where

the software is put under high user and data loabeluvarious environment
conditions.

217

Security and Portability- Performed when the software is meant to work on
various platforms and accessed by a number of pgrso

3.6 Acceptance Testing

When the software is ready to be handed over toub®mer it has to go through last
phase of testing where it is tested for user-ittgya and response. This is important
because even if the software matches all usermagents and if user does not like the
way it appears or works, it may be rejected. Acaepe test include:
« Alpha testing- The team of developer themselves perform alpgkting by
using the system as if it is being used in workiemment. They try to find out

how user would react to some action in software laod the system should
respond to inputs.

Beta testing- After the software is tested internally, it &lded over to the users
to use it under their production environment ordy testing purpose. This is

not as yet the delivered product. Developers exiattusers at this stage will
bring minute problems, which were skipped, for ratitan.

3.7 Regression Testing

Whenever a software product is updated with nevectehture or functionality, it is

tested thoroughly to detect if there is any negaimpact of the added code. This is
known as regression testing.

3.8 Testing Documentation
Testing documents are prepared at different stages:
Before Testing:

Testing starts with test cases generation. Thevatly documents are needed for
reference:

« SRS document — Functional Requirements document

o Test Policy document — Describes how far testingukh take place before
releasing the product.

o Test Strategy document — Mentions detail aspectesifteam, responsibility
matrix and rights/responsibility of test managed &st engineer.

« Traceability Matrix document — This is a SDLC doanty which is related to
requirement gathering process. As new requiremeaonse, they are added to

this matrix. These matrices help testers know thece of requirement. They
can be traced forward and backward.

218

While Being Tested:
The following documents may be required while tegis started and is being done:

Test Case document — This document contains listesis required to be
conducted. It includes Unit test plan, Integratiest plan, System test plan and
Acceptance test plan.

Test description — This document gives a detailescdption of all test cases
and procedures to execute them.

Test case report — This document contains testrepset as a result of the test.
Test logs — This document contains test logs feretest case report.

After Testing:
The following documents may be generated aftemigst

Test summary — Is a collective analysis of all tepbrts and logs. It summarizes
and concludes if the software is ready to be laadciihe software is released
under version control system if it is ready to leln

3.9 Testing vs. Quality Control, Quality Assuranceand Audit
We need to understand that software testing isewmdifit from software quality
assurance, software quality control and softwatktizg).

Software quality assurancels a software development process monitoring
means, by which it is assured that all the measaretaken as per the standards
of organization. This monitoring is done to makeesthat proper software
development methods were followed.

Software quality controt This is a system required to maintain the qualft
software product. It may include functional and +fonctional aspects of
software product, which enhance the goodwill ofdhganization. This system
makes sure that the customer is receiving quatigyct for their requirement
and the product certified as ‘fit for use’.

Software audit- This is a review of procedure used by the omgtitn to
develop the software. A team of auditors, indepahdé development team
examines the software process, procedure, requmntsnaad other aspects of
SDLC. The purpose of software audit is to checkt thaftware and its
development process, both conform to standardss arnd regulations.

4.0 Self-Assessment Exercise(s)

219

Answer the following questions:

1. Explain software testing
Compare validation and verification
State the importance of software testing
Differentiate between manual and automated testing
Differentiate between Black-box testing and Whitexbesting
Mention the various level of testing in softwareelepment

o gk wb

Solution

2 Explain software testing.

Testing is a critical element of software developtrige cycles called software quality

control or software quality assurance. The basial @b software testing is for the

validation and verification of the software produ¢alidation is to determine whether
the right product is being built while verificatios to determine whether the software
meet its specification. At each stage, we neecetdythat the software we produce
accurately represents its specification.

3 Compare validation and verification
1 Verification addresses the concern: "Are youdndg it right?" while validation
addresses the concern: "Are you building the rikyimig?"
2 Verification ensures that the software systemtsak the functionality. While
validation ensures that the functionalities meetititended behaviour.
3 Verification takes place first and includes thecking for documentation, code,
etc while validation occurs after verification amainly involves the checking of
the overall product.
4 Verification done by developers while validatdeone by testers.
5 Verification has static activities, as it inclgdeollecting reviews, walkthroughs,
and inspections to verify a software while validatihas dynamic activities, as it
includes executing the software against the remergs.
6 Verification is an objective process and no stitibje decision should be needed
to verify a software while validation is a subj&etiprocess and involves subjective
decisions on how well a software works.

3 State the importance of software testing

220

Software testing is important since it discovertedes/bugs before the delivery to the
client, which guarantees the quality of the sofevdirmakes the software more reliable
and easier to use. Thoroughly tested software easwliable and high-performance
software operation.

4 Differentiate between manual and automated testing

Manual testing is the process of checking the fonality of an application as per the
customer needs without taking any help of automatawls. While performing the
manual testing on any application, we do not nesgdsaecific knowledge of any testing
tool, rather than have a proper understandingeoptbduct so that we can easily prepare
the test document. Manual testing can be furthadéd into white box testing, black
box testing and Gray-box testing.

WHILE

Automation testing is a process of converting amyuoal test cases into the test scripts
with the help of automation tools, or any programgnianguage. With the help of

automation testing, we can enhance the speed d¢ésiuexecution because here, we do
not require any human efforts. We need to writesa $cript and execute those scripts.

5 Differentiate between Black-box testing and Whitexbesting

Black-box: This testing methodology looks at whet ¢he available inputs for an
application and what the expected outputs aresthaitild result from each input. It is
not concerned with the inner workings of the amilan, the process that the
application undertakes to achieve a particular wiubp any other internal aspect of the
application that may be involved in the transforiorabf an input into an output.

WHILE

White-box: This testing methodology looks under¢bgers and into the subsystem of
an application. White-box testing enables testesee what is happening inside the
application. White-box testing provides a degresayhistication as the tester is able
to refer to and interact with the objects that casgan application rather than only
having access to the user interface.

6 Mention the various level of testing in softwareelepment

221

The levels of software testing include:

1.

o gk Wb

Unit Testing
Integration Testing
System Testing
Acceptance Testing
Regression Testing
Testing Documentation

5.0 Conclusion

Software testing is basically carried out fish ewrbrs and bugs in the software before
it is delivered or deployed. It is aimed producfngctional, reliable and maintainable
software. It helps in the production of quality arakt-effective software. Software
testing is concerned with the validation and veaifion of software.

6.0 Summary
In this unit we discussed the following:

Software Validation

Software Verification

Manual Vs Automated Testing

Testing Approaches

Testing Levels

Acceptance Testing

Regression Testing

Testing Documentation

Testing vs. Quality Control, Quality Assurance andtlit

7.0 References/Further Readings

Adnan N. H. and Ritzhaupt A. D (2018). Software i&egring Design Principles
Applied to Instructional Design: What can we Le&wm our Sister Discipline?
Springer. 62, 77-94.

Charles S. Wasson (2006) System Analysis, Desigd, Revelopment Concepts,
Principles, and Practices, Published by John WAle§ons, Inc., Hoboken, New
Jersey.

Filipova O and Vilao R (2018). Software DevelopmErdm A to Z: A Deep Dive into
all the Roles Involved in the Creation of Softwakeress

222

Hans-Petter Halvorsen (2020) Software DevelopmeRtaktical Approach. Retrieved
from: https://halvorsen.blog

Kaur I., Narula G. S., Wason R., Jain V., and BaliyA (2018).Neuro fuzzy—
COCOMO Il model for software cost estimation. Imi@ional Journal of
Information technology. 10, 181-187.

Richard H. Thayer, Barry W. Boehm (1986). Tutorisftware engineering project
management. Computer Society Press of the IEEBOp.1

Salve S. M., Samreen S. N. and Khatri-Valmik NO1®2)., A Comparative Study on
Software Development Life Cycle Models. InternaéibrResearch Journal of
Engineering and Technology. 5(2), 696-700.

Unit 4: Software Maintenance

Contents

1.0 Introduction

2.0 Intended Learning Outcomes (ILOS)

3.0 Main Content

3.1 Types of maintenance

3.2 Cost of Maintenance

3.3 Factors Influencing Software Maintenance Cost
3.3.1 Real-world factors affecting Maintenance Cost
3.3.2 Software-end factors affecting MaintenancstCo

3.5 Maintenance Activities

3.6 Software Re-engineering
3.6.1 Re-Engineering Process
3.6.2 Terminologies in Software Re-Engineering

3.7 Reverse Engineering

3.8 Program Restructuring

3.9 Forward Engineering

3.10 Component reusability

3.11 Reuse Process

4.0 Self-Assessment Exercise(s)

5.0 Conclusion

6.0 Summary

7.0 References/Further Readings

Contents

223

1.0 Introduction

Software maintenance is widely accepted part of SDbw a days. It stands for all the
modifications and updates done after the delivéigoftware product.

2.0 Intended Learning Outcomes (ILOs)
After studying this unit, you should be able to
« Mention and discuss different types of softwarenteaiance
« Outline real world factors affecting software maimince cost
» List software-end factors affecting maintenance cos
« Mention at least 5 factors

3.0 Main Content
There are number of reasons, why modificationsregeired in a software, some of
them are:

« Market Conditions- Policies, which changes over the time, suchyaditan and
newly introduced constraints like, how to maintawokkeeping, may trigger
need for modification.

« Client Requirements Over the time, customer may ask for new featores
functions in the software.

« Host Modifications- If any of the hardware and/or platform (such psrating
system) of the target host changes, software clsaage needed to keep
adaptability.

« Organization Changes If there is any business level change at ckel, such
as reduction of organization strength, acquiringtlh@r company, organization
venturing into new business, need to modify indhginal software may arise.

3.1 Types of maintenance
In a software lifetime, type of maintenance may\Jaased on its nature. It may be just
a routine maintenance tasks as some bug discolsgredme user or it may be a large
event in itself based on maintenance size or natwdowing are some types of
maintenance based on their characteristics:
« Corrective Maintenance This includes modifications and updates done in
order to correct or fix problems, which are eitttkscovered by user or
concluded by user error reports.

224

« Adaptive Maintenance This includes modifications and updates apptmed
keep the software product up-to date and tunetldeever-changing world of
technology and business environment.

« Perfective Maintenance This includes modifications and updates doreaer
to keep the software usable over long period oétithincludes new features,
new user requirements for refining the software iamgrove its reliability and
performance.

« Preventive Maintenance This includes modifications and updates to pneve
future problems of the software. It aims to attgmdblems, which are not
significant at this moment but may cause seriosisas in future.

3.2 Cost of Maintenance
Reports suggest that the cost of maintenance s Aigtudy on estimating software
maintenance found that the cost of maintenance lnsgh as 67% of the cost of entire
software process cycle.

B cor b o apm o e 8
Fanuirament

On an average, the cost of software maintenanmoerie than 50% of all SDLC phases.

3.3 Factors Influencing Software Maintenance Cost
There are various factors, which trigger high mamaince cost. These factors are
discussed in the following subsections.

3.3.1 Real-world factors
« The standard age of any software is considered ap to 15 years.
« Older software, which were meant to work on slowchmaes with less memory
and storage capacity cannot keep themselves chaidgagainst newly coming
enhanced software on modern hardware.

225

« As technology advances, it becomes costly to miaimtia software.

« Most maintenance engineers are newbie and usatbérror method to rectify
problem.

« Often, changes made can easily hurt the originatiire of the software, making
it hard for any subsequent changes.

o Changes are often left undocumented which may cawse conflicts in future.

3.4 Software-end factors

o Structure of Software Program

o Programming Language

« Dependence on external environment

« Staff reliability and availability

3.5 Maintenance Activities
IEEE provides a framework for sequential mainteeapmcess activities. It can be

used in iterative manner and can be extended $atistomized items and processes
can be included.

Efalnananes

These activities go hand-in-hand with each of tilewing phase:
« ldentification and Tracing- This involves activities pertaining to ident#iwmn
of requirement of modification or maintenance.sltgenerated by the user or

the system may itself report via logs or error ragss. Here, the maintenance
type is classified also.

226

« Analysis— The modification is analysed for its impact be system including
safety and security implications. If probable imp&s severe, alternative
solution is looked for. A set of required modificats is then materialized into
requirement specifications. The cost of modificataintenance is analyzed
and estimation is concluded.

« Design- New modules, which need to be replaced or medifare designed
against requirement specifications set in the preyvistage. Test cases are
created for validation and verification.

« Implementation- The new modules are coded with the help of &ired design
created in the design step. Every programmer igarp to do unit testing in
parallel.

« System Testing Integration testing is done among newly createdtiules.
Integration testing is also carried out between mesdules and the system.
Finally, the system is tested as a whole, followiegyessive testing procedures.

o Acceptance Testing After testing the system internally, it is tebtéor
acceptance with the help of users. If at this stader complaints some issues
they are addressed or noted to address in neatider

« Delivery— After acceptance test, the system is deployeaf the organization
either by small update package or fresh instatiatd the system. The final
testing takes place at client end after the sofvimdelivered.

Training facility is provided if required, in addih to the hard copy of user
manual.

« Maintenance managementConfiguration management is an essential part of
system maintenance. It is aided with version cdéntrols to control versions,
semi-version or patch management.

3.6 Software Re-engineering

When we need to update the software to keepligaurrent market, without impacting
its functionality, it is called software re-engimieg. This is a thorough process where
the design of software is changed and programseangitten.

Legacy software cannot keep tuning with the latsdtnology available in the market.
As the hardware become obsolete, updating of soétvacomes a headache. Even if
software grows old with time, its functionality doeot.

For example, initially Unix was developed in assgnmanguage. When language C
came into existence, Unix was re-engineered in €cabse working in assembly
language was difficult.

227

Other than this, sometimes programmers noticefévaiparts of software need more

maintenance than others and they also need ree=1qig.

3.6.1 Re-Engineering Process

Decide what to re-engineer. Is it whole softwara art of it?

Perform Reverse Engineering, in order to obtaincifigations of existing
software.

Restructure Program if required. For example, chgndunction-oriented
programs into object-oriented programs.

Re-structure data as required.

Apply Forward engineering concepts in order torgetngineered software.

3.6.2 Terminologies in Software Re-Engineering
There are few important terms used in Softwarenggreering

3.7 Reverse Engineering

It is a process to achieve system specificatiothbyoughly analyzing, understanding
the existing system. This process can be seervasseeSDLC model, i.e., we try to
get higher abstraction level by analyzing lowertizsion levels.

An existing system is previously implemented desapout which we know nothing.
Designers then do reverse engineering by lookinlgeatode and try to get the design.
With design in hand, they try to conclude the sfeations. Thus, going in reverse
from code to system specification.

228

3.8 Program Restructuring

It is a process to re-structure and re-construeiethsting software. It is all about re-
arranging the source code, either in same progragnanguage or from one

programming language to a different one. Restrutgucan have either source code-
restructuring and data-restructuring or both.

Re-structuring does not impact the functionalitylef software but enhance reliability
and maintainability. Program components, which eaersors very frequently can be
changed, or updated with re-structuring.

The dependability of software on obsolete hardvgda&form can be removed via re-
structuring.

3.9 Forward Engineering

Forward engineering is a process of obtaining ddsoftware from the specifications
in hand which were brought down by means of reverggneering. It assumes that
there was some software engineering already dotieipast.

Forward engineering is same as software engineprimgess with only one difference
— it is carried out always after reverse enginegrin

3.10 Component reusability

A component is a part of software program codectvieixecutes an independent task
in the system. It can be a small module or subesystself.

Example

The login procedures used on the web can be caesides components, printing
system in software can be seen as a component gbftware.

Components have high cohesion of functionality weer rate of coupling, i.e. they
work independently and can perform tasks withoyieteling on other modules.

229

In OOP, the objects are designed are very speafibeir concern and have fewer
chances to be used in some other software.

In modular programming, the modules are coded tiopa specific tasks which can
be used across number of other software programs.

There is a whole new vertical, which is based ense of software component, and is
known as Component Based Software Engineering (JBSE

 —infarfaces —p @

Re-use can be done at various levels
« Application level Where an entire application is used as sub-systenew
software.
« Component levelWhere sub-system of an application is re-used.
o Modules level Where functional modules are re-used.
Software components provide interfaces, which canubed to establish
communication among different components.

3.11 Reuse Process
Two kinds of method can be adopted: either by keppequirements same and
adjusting components or by keeping components santienodifying requirements.

230

—— s

« Requirement Specificatien The functional and non-functional requirements
are specified, which a software product must contplywith the help of
existing system, user input or both.

« Design— This is also a standard SDLC process step, wmegp@rements are
defined in terms of software parlance. Basic aechitre of system as a whole
and its sub-systems are created.

« Specify ComponentsBYy studying the software design, the designegscgmte
the entire system into smaller components or sgkegsys. One complete
software design turns into a collection of a huged components working
together.

« Search Suitable ComponentsThe software component repository is referred
by designers to search for the matching compowoerthe basis of functionality
and intended software requirements.

« Incorporate Components All matched components are packed together to
shape them as complete software.

4.0 Self-Assessment Exercise(s)

Answer the following questions:

Mention and discuss different types of softwarenteiance

State the factors affecting software maintenansé co

Explain the software-end factors affecting maintex@acost

Explain software reuse at three levels of systeneld@ment

Describe the following terms: Forward engineerimgyerse engineering
and program restructuring.

ga B~ W DN

231

Solution
1 Mention and discuss different types of softwarenteiance

Solution

« Corrective Maintenance This includes modifications and updates done in
order to correct or fix problems, which are eitttkscovered by user or
concluded by user error reports.

» Adaptive Maintenance This includes modifications and updates apptmd
keep the software product up-to date and tunetldeever-changing world of
technology and business environment.

« Perfective Maintenance This includes modifications and updates doredger
to keep the software usable over long period oétithincludes new features,
new user requirements for refining the software iamatove its reliability and
performance.

« Preventive MaintenanceThis includes modifications and updates to pnéve
future problems of the software. It aims to attgmdblems, which are not
significant at this moment but may cause seriosisas in future.

2 State the factors affecting software maintenanst c
There are various factors, which trigger mainteeacost go high, such as:
e Real world factors affecting Maintenance Cost
e Software-end factors affecting Maintenance Cost

232

3 Explain the software-end factors affecting maintex@acost
Software-end factors affecting Maintenance Cost
o Structure of Software Program
o Programming Language
« Dependence on external environment
« Staff reliability and availability

4 Explain software reuse at three levels of systeneldpment
Re-use can be done at various levels. These include
« Application level Where an entire application is used as sub-systenew
software.
« Component leveWhere sub-system of an application is re-used.
« Modules level Where functional modules are re-used.

5 Describe with diagrams the following terms: Forwadgineering, reverse
engineering and program restructuring.

Forward engineering: Forward engineering is a gead obtaining desired software

from the specifications in hand which were brouglotvn by means of reverse

engineering. It assumes that there was some s@ft@ragineering already done in the

past.

Forward engineering is same as software engineprimgess with only one difference

— it is carried out always after reverse enginegrin

Specifications | Re-engineered

from Reverse B - Software
Engineering - . 1

Reverse Engineering: Reverse engineering is a gsdoeachieve system specification
by thoroughly analysing, understanding the exisiggtem. This process can be seen
as reverse SDLC model, i.e., we try to get higlbstraction level by analysing lower
abstraction levels.

An existing system is previously implemented desajpout which we know nothing.
Designers then do reverse engineering by lookinlgeatode and try to get the design.

233

With design in hand, they try to conclude the sfeations. Thus, going in reverse
from code to system specification.

G

Program Restructuring: Program restructuring isr@cess to re-structure and re-
construct the existing software. It is all abowareanging the source code, either in
same programming language or from one programnanguage to a different one.
Restructuring can have either source code-restingtand data-restructuring or both.

Re-structuring does not impact the functionalitytte software but enhance reliability
and maintainability. Program components, which eagrsors very frequently can be
changed, or updated with re-structuring.

The dependability of software on obsolete hardvpgdorm can be removed via re-
structuring.

5.0 Conclusion

Software maintenance allows for continuous modiioceof deployed software in order
to meet changing requirements. This elongatesfihgpan of the software. There are
basically four types of maintenance: Corrective iMiemance, Adaptive Maintenance,
Perfective Maintenance and Preventive Maintenance

6.0 Summary
In this unit we discussed the following:
e Types of maintenance
e Cost of Maintenance
e Factors Influencing Software Maintenance Cost
e Maintenance Activities
e Software Re-engineering
e Reverse Engineering
e Program Restructuring
e Forward Engineering
e Component reusability
e Reuse Process

234

7.0 References/Further Readings

Adnan N. H. and Ritzhaupt A. D (2018). Software i&egring Design Principles
Applied to Instructional Design: What can we Le&om our Sister Discipline?
Springer. 62, 77-94.

Charles S. Wasson (2006) System Analysis, Desigd, Revelopment Concepts,
Principles, and Practices, Published by John WAle§ons, Inc., Hoboken, New
Jersey.

Filipova O and Vilao R (2018). Software DevelopmErdm A to Z: A Deep Dive into
all the Roles Involved in the Creation of Softwakeress

Hans-Petter Halvorsen (2020) Software DevelopmeRtaktical Approach. Retrieved
from: https://halvorsen.blog

Kaur I., Narula G. S., Wason R., Jain V., and BaliyA (2018).Neuro fuzzy—
COCOMO Il model for software cost estimation. Imi@ional Journal of
Information technology. 10, 181-187.

Richard H. Thayer, Barry W. Boehm (1986). Tutorisbftware engineering project
management. Computer Society Press of the IEEBOp.1

Salve S. M., Samreen S. N. and Khatri-Valmik N 1&0, A Comparative Study on
Software Development Life Cycle Models. InternaéibrResearch Journal of
Engineering and Technology. 5(2), 696-700.

Unit 5: Software CASE Tools
Contents

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)
3.0 Main Content

3.1 CASE Tools

3.1.1 Components of CASE Tools
3.2 Scope of Case Tools

3.2.1 Case Tools Types

4.0 Self-Assessment Exercise(s)
5.0 Conclusion

6.0 Summary

7.0 References/Further Readings

235

Contents

1.0 Introduction

CASE stands fo€omputerAided SoftwareEngineering. It means, development and
maintenance of software projects with help of vasiautomated software tools.

2.0 Intended Learning Outcomes (ILOs)

After studying this unit, you should be able to
« Briefly describe CASE tool
« Mention and discuss different types of CASE tools
« Outline the concern of configuration management

3.0 Main Content
CASE stands fo€ComputerAided SoftwareEngineering. It means, development and
maintenance of software projects with help of vasiautomated software tools.

3.1 CASE Tools

CASE tools are set of software application prograwisich are used to automate
SDLC activities. CASE tools are used by softwarejgmt managers, analysts and
engineers to develop software system.

There are number of CASE tools available to simgpliirious stages of Software
Development Life Cycle such as Analysis tools, Dediools, Project management
tools, Database Management tools, Documentatida jost to name a few.

The use of CASE tools accelerates the developnigmogect to produce desired result
and helps to uncover flaws before moving ahead wigixt stage in software

development.

3.1.1 Components of CASE Tools
CASE tools can be broadly divided into the follogiiparts based on their use at a
particular SDLC stage:

« Central Repository- CASE tools require a central repository, whian serve
as a source of common, integrated and consisteéiormation. Central
repository is a central place of storage where yrbdspecifications,
requirement documents, related reports and diagratimsr useful information
regarding management is stored. Central repositdsp serves as data
dictionary.

236

i
%

« Upper Case Tools Upper CASE tools are used in planning, analsddesign
stages of SDLC.

« Lower Case Tools Lower CASE tools are used in implementationtjiigsand
maintenance.

« Integrated Case Tools Integrated CASE tools are helpful in all thegst of
SDLC, from Requirement gathering to Testing andudoentation.

CASE tools can be grouped together if they haveilainiunctionality, process
activities and capability of getting integratedwither tools.

3.2 Scope of Case Tools
The scope of CASE tools goes throughout the SDLC.

3.2.1 Case Tools Types

Now we briefly discuss the various CASE tools:

Diagram tools- These tools are used to represent system comizoal@ta and control
flow among various software components and systamtsre in a graphical form. For
example, Flow Chart Maker tool for creating statehe-art flowcharts.

Process Modelling Tools Process modelling is method to create softwaoegss
model, which is used to develop the software. F®amodelling tools help the
managers to choose a process model or modify peashe requirement of software
product. For example, EPF Composer

Project Management Toofs These tools are used for project planning, andteffort
estimation, project scheduling and resource plapnmfanagers have to strictly comply
project execution with every mentioned step inwgafe project management. Project

237

management tools help in storing and sharing projeformation in real-time
throughout the organization. For example, Cre@mnaeOffice, Trac Project, Basecamp.
Documentation Tools Documentation in a software project starts piodhe software
process, goes throughout all phases of SDLC amd e completion of the project.
Documentation tools generate documents for techoss and end users. Technical
users are mostly in-house professionals of theldpweent team who refer to system
manual, reference manual, training manual, ingtaflamanuals etc. The end user
documents describe the functioning and how-to efsystem such as user manual. For
example, Doxygen, DrExplain, Adobe RoboHelp forwmentation.
Analysis Tools- These tools help to gather requirements, autoaligtcheck for any
inconsistency, inaccuracy in the diagrams, datamdancies or erroneous omissions.
For example, Accept 360, Accompa, CaseCompleteeiquirement analysis, Visible
Analyst for total analysis.
Design Tools- These tools help software designers to desigibliick structure of the
software, which may further be broken down in seralhodules using refinement
techniques. These tools provide detailing of eackute and interconnections among
modules. For example, Animated Software Design
Configuration Management Tools An instance of software is released under one
version. Configuration Management tools deal with:

e Version and revision management

e Baseline configuration management

e Change control management
CASE tools help in this by automatic tracking, vems management and release
management. For example, Fossil, Git, Accu REV.
Change Control Tools- These tools are considered as a part of corafiigur
management tools. They deal with changes madeetsdfiware after its baseline is
fixed or when the software is first released. CA8&ls automate change tracking, file
management, code management and more. It also inefpgorcing change policy of
the organization.
Programming Tools- These tools consist of programming environmdikes IDE
(Integrated Development Environment), in-built medulibrary and simulation tools.
These tools provide comprehensive aid in buildioffveare product and include
features for simulation and testing. For exampkxdpe to search code in C, Eclipse.

238

Prototyping Tools- Software prototype is simulated version of thiemnded software
product. Prototype provides initial look and feéltbe product and simulates few
aspects of actual product.

Prototyping CASE tools essentially come with graphilibraries. They can create
hardware independent user interfaces and desiggseltools help us to build rapid
prototypes based on existing information. In additithey provide simulation of
software prototype. For example, Serena prototgmeposer, Mockup Builder.

Web Development Tools These tools assist in designing web pages Wiitalleed
elements like forms, text, script, graphic and soWeb tools also provide live preview
of what is being developed and how will it lookeaftompletion. For example, Fontello,
Adobe Edge Inspect, Foundation 3, Brackets.

Quality Assurance Tools Quality assurance in a software organizatiamasitoring
the engineering process and methods adopted tdogetvee software product in order
to ensure conformance of quality as per organimastandards. QA tools consist of
configuration and change control tools and softwhasting tools. For example,
SoapTest, AppsWatch, JMeter.

Maintenance Tools- Software maintenance includes modificationshe software
product after it is delivered. Automatic loggingda®rror reporting techniques,
automatic error ticket generation and root causalysis are few CASE tools, which
help software organization in maintenance phaselifC. For example, Bugzilla for
defect tracking, HP Quality Centre.

4.0 Self-Assessment Exercise(s)
Answer the following questions:

1 State the importance of CASE tools

2 Mention and discuss different types of CASE tools
3 Explain the concern of configuration management
4 Outline the task of configuration management tools

5 Provide examples of each of the following softwaevelopment tools: (i)
Maintenance (ii) Quality Assurance (iii) Prototygin

239

Solution

1 State the importance of CASE tools

CASE tools accelerate the development of projegiréaluce desired result and helps
to uncover flaws before moving ahead with nextsiagsoftware development. CASE
tools can be used at every stage of system develogife cycle (SDLC).

2 Mention and discuss different types of CASE tools

Diagram tools- These tools are used to represent system comizoal@ta and control
flow among various software components and systamtsire in a graphical form. For
example, Flow Chart Maker tool for creating statehe-art flowcharts.

Process Modelling Tools Process modelling is method to create softwaoegss
model, which is used to develop the software. Fa®cmodelling tools help the
managers to choose a process model or modify peashe requirement of software
product. For example, EPF Composer

Project Management Tools These tools are used for project planning, andteffort
estimation, project scheduling and resource plapnanagers have to strictly comply
project execution with every mentioned step inwaft project management. Project
management tools help in storing and sharing projeformation in real-time
throughout the organization. For example, Cred@neOffice, Trac Project, Basecamp.
Documentation Tools Documentation in a software project starts poodhe software
process, goes throughout all phases of SDLC armd #if¢ completion of the project.
Documentation tools generate documents for techogers and end users. Technical
users are mostly in-house professionals of theldpreent team who refer to system
manual, reference manual, training manual, ingtalamanuals etc. The end user
documents describe the functioning and how-to efstystem such as user manual. For
example, Doxygen, DrExplain, Adobe RoboHelp forwoentation.

Analysis Tools- These tools help to gather requirements, autoaiigtcheck for any
inconsistency, inaccuracy in the diagrams, datamdadncies or erroneous omissions.
For example, Accept 360, Accompa, CaseCompleteefquirement analysis, Visible
Analyst for total analysis.

Design Tools- These tools help software designers to desigiblitck structure of the
software, which may further be broken down in seralhodules using refinement
techniques. These tools provide detailing of eaocdute and interconnections among
modules. For example, Animated Software Design

Configuration Management Tools An instance of software is released under one
version. Configuration Management tools deal with:

240

e Version and revision management

e Baseline configuration management

e Change control management
CASE tools help in this by automatic tracking, vems management and release
management. For example, Fossil, Git, Accu REV.
Change Control Tools- These tools are considered as a part of comafiigur
management tools. They deal with changes madeetsdfiware after its baseline is
fixed or when the software is first released. CA8&ls automate change tracking, file
management, code management and more. It also inefpgorcing change policy of
the organization.
Programming Tools- These tools consist of programming environmédikes IDE
(Integrated Development Environment), in-built medulibrary and simulation tools.
These tools provide comprehensive aid in buildioftveare product and include
features for simulation and testing. For exampkxdpe to search code in C, Eclipse.
Prototyping Tools- Software prototype is simulated version of thiemnded software
product. Prototype provides initial look and feéltbe product and simulates few
aspects of actual product.
Prototyping CASE tools essentially come with graphilibraries. They can create
hardware independent user interfaces and desiggseltools help us to build rapid
prototypes based on existing information. In additithey provide simulation of
software prototype. For example, Serena prototgmeposer, Mockup Builder.
Web Development Toois These tools assist in designing web pages Wlitalleed
elements like forms, text, script, graphic and soWeb tools also provide live preview
of what is being developed and how will it lookeaftompletion. For example, Fontello,
Adobe Edge Inspect, Foundation 3, Brackets.
Quality Assurance Tools Quality assurance in a software organizatiamasgitoring
the engineering process and methods adopted tdogetiee software product in order
to ensure conformance of quality as per organimastandards. QA tools consist of
configuration and change control tools and softwhasting tools. For example,
SoapTest, AppsWatch, JMeter.
Maintenance Tools- Software maintenance includes modificationsha software
product after it is delivered. Automatic loggingdarror reporting techniques,
automatic error ticket generation and root causelysis are few CASE tools, which
help software organization in maintenance phaselifC. For example, Bugzilla for
defect tracking, HP Quality Centre.

241

3 Explain the concern of configuration management

Configuration Management is concerned with manageéroé software version and
revision, Baseline configuration and Change contiidlere are tools available to
automatically carry out these tasks.

4 Outline the task of configuration management tools
Configuration Management Tools: Configuration Magagnt tools deal with:
« Version and revision management
« Baseline configuration management
« Change control management
For examples include: Fossil, Git, Accu REV.

5 Provide examples of each of the following saftevdevelopment tools:
Examples of Maintenance Tools: Bugzilla, HP Qualntre.

Examples of Quality Assurance tools: SoapTest, Xgish, JMeter.
Examples of Prototyping tools: Serena prototype maser, Mockup Builder

5.0 Conclusion

CASE is an acronym fdComputerAided SoftwareEngineering. It is the application
of automated software tools in the crafting of waite product. They come in different
flavour depending on the task at hand: Analysislstod®esign tools, Project
management tools, Database Management tools, Dotatas tools etc.

6.0 Summary
In this unit we discussed the following:
e CASE Tools
e Components of CASE Tools
e Scope of Case Tools
e Case Tools Types

242

7.0 References/Further Readings

Adnan N. H. and Ritzhaupt A. D (2018). Software i&egring Design Principles
Applied to Instructional Design: What can we Le&om our Sister Discipline?
Springer. 62, 77-94.

Charles S. Wasson (2006) System Analysis, Desigd, Revelopment Concepts,
Principles, and Practices, Published by John WAle§ons, Inc., Hoboken, New
Jersey.

Filipova O and Vilao R (2018). Software DevelopmErdm A to Z: A Deep Dive into
all the Roles Involved in the Creation of Softwakeress

Hans-Petter Halvorsen (2020) Software DevelopmeRtaktical Approach. Retrieved
from: https://halvorsen.blog

Kaur I., Narula G. S., Wason R., Jain V., and BaliyA (2018).Neuro fuzzy—
COCOMO Il model for software cost estimation. Imi@ional Journal of
Information technology. 10, 181-187.

Richard H. Thayer, Barry W. Boehm (1986). Tutorisbftware engineering project
management. Computer Society Press of the IEEBOp.1

Salve S. M., Samreen S. N. and Khatri-Valmik N.1&0, A Comparative Study on
Software Development Life Cycle Models. InternaéibrResearch Journal of
Engineering and Technology. 5(2), 696-700.

243

