

CIT 310

ALGORITHMS AND COMPLEXITY ANALYSIS

Course Team Prof. Kingsley Chiwuike Ukaoha -

 (Developer/Writer)

 Dr. Adewole Adetunji Philip - Content Editor

 Dr. Francis B. Osang – HOD/Internal Quality

 Control Expert

NATIONAL OPEN UNIVERSITY OF NIGERIA

COURSE

GUIDE

CIT 310 COURSE GUIDE

ii

National Open University of Nigeria

University Village, Plot 91

Jabi Cadastral Zone

Nnamdi Azikiwe Expressway

Jabi, Abuja

Lagos Office

14/16 Ahmadu Bello Way

Victoria Island, Lagos

Departmental email: computersciencedepartment@noun.edu.ng

NOUN e-mail: centralinfo@noun.edu.ng

URL: www.nou.edu.ng

First Printed 2022

ISBN: 978-058-557-5

All Rights Reserved

Printed by: NOUN PRESS

January 2022

CIT 310 COURSE GUIDE

iii

CONTENTS PAGE

Introduction iv

What you will learn in this Course iv

Course Aim iv

Course Objectives iv

Working through this Course v

The Course Material v

Study Units v

Presentation Schedule vi

Assessment vi

Tutor Marked Assignment vi

Final Examination and Grading vi

Course Marking Scheme vii

Facilitators/Tutors and Tutorials vii

Summary vii

CIT 310 COURSE GUIDE

iv

INTRODUCTION

In writing the Algorithms and Complexity Analysis course, emphasis

will be placed on understanding the concept of computer algorithms,

how to develop algorithms; test them before translating into viable and

workable programs. This course is specifically tailored towards those

students who are actually studying computing and interested in

developing and testing computer algorithms and in applying them

towards developing programs in any programming language.

WHAT YOU WILL LEARN IN THIS COURSE

This is a course with theoretical and self-exercises content. Throughout

the semester, students will complete 3 modules of 15 units, self-

assessment exercises and workable assignments expected to meet

specific course criteria.

COURSE AIMS

The aim of the course is to guide learners of Computing and Computer

Programs on how to design and test algorithms and also help them in

identifying different types of algorithm design paradigms. It is also to

help them simplify the task of understanding the theory behind computer

algorithms.

COURSE OBJECTIVES

Below are the objectives of the course which are to:

1. Provide sound understanding of computer algorithms.

2. Provide an understanding of algorithm design paradigms.

3. Provide suitable examples of different types of algorithms and

 why algorithms are very important in computing.

WORKING THROUGH THIS COURSE

To complete this course you are required to read each study unit and

other materials which may be provided by the National Open University

of Nigeria. Each unit contains self-assessment exercises and some units

with real-life problems to solve. At the end of every unit, you may be

required to submit tutor marked assignments for assessment and

grading. At the end of the course there is a final examination.

To be abreast of this course, you are advised to avail yourself the

opportunity of attending the tutorial or online facilitation sessions where

CIT 310 COURSE GUIDE

v

you have opportunity of comparing your knowledge with those of your

colleagues.

THE COURSE MATERIALS

The main components of the course are:

1.0 The Course Guide

2.0 Study Units

3.0 References/Further Readings

4.0 Assignments

5.0 Presentation Schedule

STUDY UNITS

The study units in this course are as follows:

Module 1 Basic Algorithm Analysis

Unit 1 Basic Algorithm Concepts

Unit 2 Analysis and Complexity of Algorithms

Unit 3 Algorithm Design Techniques

Unit 4 Recursion and Recursive Algorithms

Unit 5 Recurrence Relations

Module 2 Searching and Sorting Algorithms

Unit 1 Bubble Sort and Selection Sort Algorithm

Unit 2 Insertion Sort and Linear Search Algorithms

Unit 3 Radix Sort and Stability in Sorting

Unit 4 Divide-and-Conquer Strategies I: Binary Search

Unit 5 Divide-and-Conquer Strategies II: MergeSort and

 Quicksort Algorithms

Module 3 Other Algorithm Techniques

Unit 1 Binary Search Trees

Unit 2 Dynamic Programming

Unit 3 Computational Complexity

Unit 4 Approximate Algorithms I

Unit 5 Approximate Algorithms II

CIT 310 COURSE GUIDE

vi

PRESENTATION SCHEDULE

The course materials assignments have important deadlines for

submission. The learners should guide against falling behind stipulated

deadlines.

ASSESSMENT

There are three ways of carrying out assessment of the course. First

assessment is made up of self-assessment exercises, second consists of

the tutor marked assignments and the last is the written examination/end

of course examination.

You are expected to do all the self-assessment exercises by applying

what you have read in the units. The tutor marked assignments should be

submitted to your facilitators for formal assessment in accordance with

the deadlines stated in the presentation schedule and the assignment

files. The total assessment will carry 30% of the total course score. At

the end of the course, the final examination will not be more than three

hours and will carry 70% of the total marks.

TUTOR MARKED ASSIGNMENTS

Tutor Marked Assignments (TMA) is a very important component of the

course. You are to attempt three TMAs out four given before sitting for

final examination. The TMA will be given to you by your facilitator and

return same after the assignment is completed. Make sure the TMA

reach the facilitator before the deadline given in the presentation

schedule.

FINAL EXAMINATION AND GRADING

The final course examination will not exceed 3 hours which will total

70% of the final score. The examination questions will reflect the self-

assessment exercises, tutor marked assignments that are previously

encountered in the course units.

COURSE MARKING SCHEME

Your grade will be based on assignments and end of course

examination. The assignments submitted will be weighted equally.

CIT 310 COURSE GUIDE

vii

Marks

Assignments

30%

Examination 70%

Total 100%

FACILITATORS/TUTOR AND TUTORIALS

There are 16 hours of tutorials provided in support of this course. You

will be notified of the dates, times and location of these tutorials as well

as the name and phone number of your facilitator, as soon as you are

allocated a tutorial group.

You facilitator will mark and comment on your assignments, keep a

close watch on your progress and any difficulties you might face and

provide assistance to you during the course. You are expected to mail

you Tutor Marked Assignments to your facilitator before the schedule

date (at least two working days are required). The assignments will be

marked by your tutor and returned to you as soon as possible.

Do not delay in contacting your facilitator on telephone or e-mail if you

need assistance. Such assistance could be as a result of the followings:

 Having difficulties in understanding any part of the study unit or

assigned readings

 Difficulties in the self assessment exercises

 Questions or problems with assignment or grading of

assignments

The only way to have face to face contact and to ask questions from

your facilitator is to attend tutorials. To gain from the tutorials prepare

lists of questions and participate actively in discussions.

SUMMARY

This course is to provide overview of computer algorithms and analysis

of its complexity. In particular, we will see know more about the nature

and design of algorithms, why they are so important in the field of

computing and the several algorithm design paradigms that would be

explained.. In fact, the learners will actually learn how do basic run-time

and space-complexity analysis of computer algorithms. Some examples

of algorithms applied in the fields of Searching and Sorting would also

be examined..

CIT 310 COURSE GUIDE

viii

I wish you success in the course and I hope you will find the course both

interesting and useful.

CIT 310

ALGORITHMS AND COMPLEXITY ANALYSIS

CONTENT PAGE

Module 1 Basic Algorithm Analysis 1

Unit 1 Basic Algorithm Concepts 1

Unit 2 Analysis and Complexity of Algorithms 7

Unit 3 Algorithm Design Techniques 17

Unit 4 Recursion and Recursive Algorithms 27

Unit 5 Recurrence Relations 43

Module 2 Searching and Sorting Algorithms 62

Unit 1 Bubble Sort and Selection Sort

 Algorithm 62

Unit 2 Insertion Sort and Linear Search 72

 Algorithms

Unit 3 Radix Sort and Stability in Sorting 81

Unit 4 Divide-and-Conquer Strategies

 I: Binary Search 89

Unit 5 Divide-and-Conquer Strategies

 II: Merge Sort and Quicksort Algorithms 99

Module 3 Other Algorithm Techniques 111

Unit 1 Binary Search Trees 111

Unit 2 Dynamic Programming 131

Unit 3 Computational Complexity 146

Unit 4 Approximate Algorithms I 157

Unit 5 Approximate Algorithms II 169

MAIN

COURSE

CIT 310 MODULE 1

1

MODULE 1 BASIC ALGORITHMIC ANALYSIS

UNIT 1 BASIC ALGORITHM CONCEPTS

1.0 Introduction

2.0 Objectives

3.0 What is an Algorithm?

3.1 Characteristics of an Algorithm

 3.1.1 Advantages of Algorithms

 3.1.2 Disadvantages of Algorithms

 3.2 Pseudocode

 3.2.1 Advantages of Pseudocode

 3.2.2 Disadvantages of Pseudocode

 3.2.3 Differences between Algorithm and Pseudocode

 3.2.4 Problem Case/ Example

 3.3 Need of Algorithms

4.0 Conclusion

5.0 Summary

6.0 Tutor Marked Assignments

7.0 Further Reading and Other Resources

1.0 INTRODUCTION

The word algorithm literarily means “a step-by-step procedure used in

solving a problem” and is a type of effective method in which a finite

list of well-defined instructions for completing a task; that given an

initial state, will proceed through a well-defined series of successive

states, eventually terminating in an end-state. The concept of an

algorithm originated as a means of recording procedures for solving

mathematical problems such as finding the common divisor of two

numbers or multiplying two numbers.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

 Define and describe what an algorithm is

 Enumerate the different characteristics of an algorithm

 Examine some of the advantages of algorithms

 Identify some shortcomings or disadvantages of algorithms

 Look at the the concept of a pseudocode

 Examine some benefits and shortcomings of a pseudocode

 Make a comparison between and algorithm and a pseudocode

 Look at the various reasons why an algorithm is needed

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

2

3.0 WHAT IS AN ALGORITHM?

An algorithm can be defined as a finite set of steps, which has to be

followed while carrying out a particular problem. It is nothing but a

process of executing actions step by step.

An algorithm is a distinct computational procedure that takes input as a

set of values and results in the output as a set of values by solving the

problem. More precisely, an algorithm is correct, if, for each input

instance, it gets the correct output and gets terminated.

An algorithm unravels the computational problems to output the desired

result. An algorithm can be described by incorporating a natural

language such as English, Computer language, or a hardware language.

Algorithms are named after the 9th century Persian mathematician Al-

Khowarizmi. He wrote a treatise in Arabic in 825 AD, On Calculation

with Hindu Numerals. It was translated into Latin in the 12th century as

Algoritmi de numero Indorum, which title was likely intended to mean

"[Book by] Algoritmus on the numbers of the Indians", where

"Algoritmi" was the translator's rendition of the author's name in the

genitive case; but people misunderstanding the title treated Algoritmi as

a Latin plural and this led to the word "algorithm" (Latin algorismus)

coming to mean "calculation method".

3.1 Characteristics of Algorithms

The main Characteristics or features of Algorithms are;

 Input: It should externally supply zero or more quantities or data.

 Output: It results in at least one quantity or result.

 Definiteness: Each instruction should be clear and ambiguous.

 Finiteness: An algorithm should terminate after executing a

finite number of steps.

 Effectiveness: Every instruction should be fundamental to be

carried out, in principle, by a person using only pen and paper.

 Feasible: It must be feasible enough to produce each instruction.

 Flexibility: It must be flexible enough to carry out desired

changes with no efforts.

 Efficient: The term efficiency is measured in terms of time and

space required by an algorithm to implement. Thus, an algorithm

must ensure that it takes little time and less memory space

meeting the acceptable limit of development time.

 Independent: An algorithm must be language independent,

which means that it should mainly focus on the input and the

procedure required to derive the output instead of depending

upon the language.

CIT 310 MODULE 1

3

3.1.1 Advantages of Algorithms

 Effective Communication: Since it is written in a natural

language like English, it becomes easy to understand the step-by-

step delineation of a solution to any particular problem.

 Easy Debugging: A well-designed algorithm facilitates easy

debugging to detect the logical errors that occurred inside the

program.

 Easy and Efficient Coding: An algorithm is nothing but a

blueprint of a program that helps develop a program.

 Independent of Programming Language: Since it is a

language-independent, it can be easily coded by incorporating

any high-level language.

3.1.2 Disadvantages of Algorithms

 Developing algorithms for complex problems would be time-

consuming and difficult to understand.

 It is a challenging task to understand complex logic through

algorithms.

3.2 Pseudocode

Pseudocode refers to an informal high-level description of the operating

principle of a computer program or algorithm. It uses structural

conventions of a standard programming language intended for human

reading rather than the machine reading.

3.2.1 Advantages of Pseudocode

 It can be quickly transformed into an actual programming

language than a flowchart since it is similar to a programming

language.

 The layman or user can easily understand it.

 It can be easily modified as compared to flowcharts.

 Its implementation is beneficial for structured, designed elements.

 It can easily detect an error before transforming it into a code.

3.2.2 Disadvantages of Pseudocode

 Since it does not incorporate any standardized style or format, it

can vary from one user or programmer to another.

 Error possibility is higher while transforming into a code.

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

4

 It may require a tool for extracting out the Pseudocode and

facilitate the drawing flowcharts.

 It does not depict the design.

3.2.3 Difference between Algorithm and Pseudocode

i. An algorithm is simply a problem-solving process, which is used

not only in computer science to write a program but also in our

day to day life. It is nothing but a series of instructions to solve a

problem or get to the problem's solution. It not only helps in

simplifying the problem but also to have a better understanding

of it.

ii. However, Pseudocode is a way of writing an algorithm.

Programmers can use informal, simple language to write

pseudocode without following any strict syntax. It encompasses

semi-mathematical statements.

3.2.4 Problem Case/ Example:

Suppose there are 60 students in a class. How will you calculate

the number of absentees in the class?

i. Pseudocode Approach:

1. Initialize a variable called Count to zero, absent to

 zero, total to 60

2. FOR EACH Student PRESENT DO the following:

 Increase the Count by One

3. Then Subtract Count from total and store the result

 in absent

4. Display the number of absent students

ii. Algorithmic Approach:

1. Count <- 0, absent <- 0, total <- 60

2. REPEAT till all students counted

 Count <- Count + 1

3. absent <- total - Count

4. Print "Number absent is:" , absent

3.3 Need of Algorithms (Why do we need Algorithms?)

1. To understand the basic idea of the problem.

2. To find an approach to solve the problem.

3. To improve the efficiency of existing techniques.

4. To understand the basic principles of designing the algorithms.

CIT 310 MODULE 1

5

5. To compare the performance of the algorithm with respect to

other techniques.

6. It is the best method of description without describing the

implementation detail.

7. The Algorithm gives a clear description of requirements and goal

of the problem to the designer.

8. A good design can produce a good solution.

9. To understand the flow of the problem.

10. To measure the behavior (or performance) of the methods in all

cases (best cases, worst cases, average cases)

11. With the help of an algorithm, we can also identify the resources

(memory, input-output) cycles required by the algorithm.

12. With the help of algorithm, we convert art into a science.

13. To understand the principle of designing.

14. We can measure and analyze the complexity (time and space) of

the problems concerning input size without implementing and

running it; it will reduce the cost of design.

Self-Assessment Exercise

1. What is an algorithm?

2. Differentiate between an algorithm and a pseudocode

3. Highlight some of the basic reasons why algorithms are needed?

4. How is an algorithm similar to and different from a program?

5. Why must every good computer programmer understand an

 algorithm first?

6. State an algorithm for adding three numbers A, B, and C

4.0 CONCLUSION

The concept of understanding and writing computer algorithms is very

essential to understanding the task of programming and every computing

student has to imbibe the concepts of algorithms. In fact, algorithms are

the basic key to understanding the theory and practice of computing.

5.0 SUMMARY

In this unit we have considered an overview of algorithms and their

basic characteristics. In addition, we looked at some of the benefits and

shortcomings of algorithms and also examined the concept of a

pseudocode as well as some of its benefits and shortcomings. We also

made a brief comparison between a pseudocode and an algorithm and

finally looked at some of the reasons why an algorithm is needed

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

6

6.0 TUTOR MARKED ASSIGNMENT

1. Explain the following terms; (a) Algorithms (b)

 Pseudocode

(c) Computer Programs

2. State five properties or features of an algorithm.

3. State some basic differences between an algorithm and a

 pseudocode and also between an algorithm and a computer

 program

4. Give four benefits each of an algorithm and a pseudocode

7.0 FURTHER READING AND OTHER RESOURCES

Jena, S. R. and Patro, S. (2018) – Design and Analysis of Algorithms,

 ISBN 978-93-935274-311-7

Baase, S. and Van Gelder, A. (2008). Computer Algorithms:

 Introduction to Design and Analysis, Pearson Education.

CIT 310 MODULE 1

7

MODULE 1 BASIC ALGORITHM ANALYSIS

UNIT 2 ANALYSIS AND COMPLEXITY OF

 ALGORITHMS

1.0 Introduction

2.0 Objectives

3.0 Analysis of Algorithms

 3.1 Types of Time Complexity Analysis

 3.1.1 Worst-case Time Complexity

 3.1.2 Average-case Time Complexity

 3.1.3 Best-case Time Complexity

 3.2 Complexity of Algorithms

 3.3 Typical Complexities of an Algorithm

 3.3.1 Constant complexity

 3.3.2 Logarithmic complexity

 3.3.3 Linear complexity

 3.3.4 Quadratic complexity

 3.3.5 Cubic complexity

 3.3.6 Exponential complexity

 3.4 How to approximate the Time taken by an Algorithm

 3.4.1 Some Examples

 4.0 Conclusion

5.0 Summary

6.0 Tutor Marked Assignments

7.0 Further Reading/ References

1.0 INTRODUCTION

Analysis of an algorithm is the same thing as estimating the efficiency

of the algorithm. There are two fundamental parameters based on which

we can analyze the algorithm and they are Space and Time Complexity.

There is also the concept in Time Complexity of estimating the running

time of an algorithm and we have the Best-case, Average-case and

Worst-case

2.0 OBJECTIVES

By the end of this unit, you will be able to

 Understand runtime and space analysis or complexity of

algorithms

 Know the different types of analysis

 Understand the typical complexities of an algorithm

 Learn how to approximate the time taken by an algorithm

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

8

3.0 Analysis of Algorithm

The analysis is a process of estimating the efficiency of an algorithm

and that is, trying to know how good or how bad an algorithm could be.

There are two main parameters based on which we can analyze the

algorithm:

 Space Complexity: The space complexity can be understood as

the amount of space required by an algorithm to run to

completion.

 Time Complexity: Time complexity is a function of input

size n that refers to the amount of time needed by an algorithm to

run to completion.

Let's understand it with an example.

Suppose there is a problem to solve in Computer Science, and in

general, we solve a problem by writing a program. If you want to write a

program in some programming language like C, then before writing a

program, it is necessary to write a blueprint in an informal language.

Or in other words, you should describe what you want to include in your

code in an English-like language for it to be more readable and

understandable before implementing it, which is nothing but the concept

of Algorithm.

In general, if there is a problem P1, then it may have many solutions,

such that each of these solutions is regarded as an algorithm. So, there

may be many algorithms such as A1, A2, A3, …, An.

Before you implement any algorithm as a program, it is better to find out

which among these algorithms are good in terms of time and memory.

It would be best to analyze every algorithm in terms of Time that relates

to which one could execute faster and Memory or Space corresponding

to which one will take less memory.

So, the Design and Analysis of Algorithm talks about how to design

various algorithms and how to analyze them. After designing and

analyzing, choose the best algorithm that takes the least time and the

least memory and then implement it as a program in C or any preferable

language.

We will be looking more on time rather than space because time is

instead a more limiting parameter in terms of the hardware. It is not easy

to take a computer and change its speed. So, if we are running an

algorithm on a particular platform, we are more or less stuck with the

performance that platform can give us in terms of speed.

https://www.javatpoint.com/c-programs

CIT 310 MODULE 1

9

However, on the other hand, memory is relatively more flexible. We can

increase the memory as when required by simply adding a memory card.

So, we will focus on time than that of the space.

The running time is measured in terms of a particular piece of hardware,

not a robust measure. When we run the same algorithm on a different

computer which might be faster or use different programming languages

which may be designed to compile faster, we will find out that the same

algorithm takes a different time.

3.1 Types of Time Complexity Analysis

We have three types of analysis related to time complexity, which are:

3.1.1 Worst-case time complexity: For 'n' input size, the worst-case

time complexity can be defined as the maximum amount of time

needed by an algorithm to complete its execution. Thus, it is

nothing but a function defined by the maximum number of steps

performed on an instance having an input size of n. Computer

Scientists are more interested in this.

3.1.2 Average case time complexity: For 'n' input size, the average-

case time complexity can be defined as the average amount of

time needed by an algorithm to complete its execution. Thus, it is

nothing but a function defined by the average number of steps

performed on an instance having an input size of n.

3.1.3 Best case time complexity: For 'n' input size, the best-case time

complexity can be defined as the minimum amount of time

needed by an algorithm to complete its execution. Thus, it is

nothing but a function defined by the minimum number of steps

performed on an instance having an input size of n.

3.2 Complexity of Algorithms

The term algorithm complexity measures how many steps are required

by the algorithm to solve the given problem. It evaluates the order of

count of operations executed by an algorithm as a function of input data

size.

To assess the complexity, the order (approximation) of the count of

operation is always considered instead of counting the exact steps.

O(f) notation represents the complexity of an algorithm, which is also

termed as an Asymptotic notation or "Big O" notation. Here the f

corresponds to the function whose size is the same as that of the input

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

10

data. The complexity of the asymptotic computation O(f) determines in

which order the resources such as CPU time, memory, etc. are

consumed by the algorithm that is articulated as a function of the size of

the input data.

The complexity can be found in any form such as constant, logarithmic,

linear, n*log(n), quadratic, cubic, exponential, etc. It is nothing but the

order of constant, logarithmic, linear and so on, the number of steps

encountered for the completion of a particular algorithm. To make it

even more precise, we often call the complexity of an algorithm as

"running time".

3.3 Typical Complexities of an Algorithm

We take a look at the different types of complexities of an algorithm and

one or more of our algorithm or program will fall into any of the

following categories;

3.3.1 Constant Complexity

Imposes a complexity of O (1). It undergoes an execution of a constant

number of steps like 1, 5, 10, etc. for solving a given problem. The count

of operations is independent of the input data size.

3.3.2 Logarithmic Complexity

Imposes a complexity of O (log(N)). It undergoes the execution of the

order of log (N) steps. To perform operations on N elements, it often

takes the logarithmic base as 2.

For N = 1,000,000, an algorithm that has a complexity of O(log(N))

would undergo 20 steps (with a constant precision). Here, the

logarithmic base does not hold a necessary consequence for the

operation count order, so it is usually omitted.

3.3.3 Linear Complexity

Imposes a complexity of O (N). It encompasses the same number of

steps as that of the total number of elements to implement an operation

on N elements.

For example, if there exist 500 elements, then it will take about 500

steps. Basically, in linear complexity, the number of elements linearly

depends on the number of steps. For example, the number of steps for N

elements can be N/2 or 3*N.

CIT 310 MODULE 1

11

It also imposes a run time of O(n*log(n)). It undergoes the

execution of the order N*log(N) on N number of elements to

solve the given problem.

For a given 1000 elements, the linear complexity will execute

10,000 steps for solving a given problem.

3.3.4 Quadratic Complexity

It imposes a complexity of O (n2). For N input data size, it undergoes

the order of N2 count of operations on N number of elements for solving

a given problem.

If N = 100, it will endure 10,000 steps. In other words, whenever the

order of operation tends to have a quadratic relation with the input data

size, it results in quadratic complexity.

For example, for N number of elements, the steps are found to be in the

order of 3*N2/2.

3.3.5 Cubic Complexity

It imposes a complexity of O (n3). For N input data size, it executes the

order of N3 steps on N elements to solve a given problem.

For example, if there exist 100 elements, it is going to execute 1,000,000

steps.

3.3.6 Exponential Complexity

It imposes a complexity of O(2n), O(N!), O(nk), …. For N elements, it

will execute the order of count of operations that is exponentially

dependable on the input data size.

For example, if N = 10, then the exponential function 2N will result in

1024. Similarly, if N = 20, it will result in 1048 576, and if N = 100, it

will result in a number having 30 digits.

The exponential function N! grows even faster; for example, if N = 5

will result in 120. Likewise, if N = 10, it will result in 3,628,800 and so

on.

Since the constants do not hold a significant effect on the order of count

of operation, so it is better to ignore them.

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

12

Thus, to consider an algorithm to be linear and equally efficient, it must

undergo N, N/2 or 3*N count of operation, respectively, on the same

number of elements to solve a particular problem

A summary of these complexities is given below:

Self Assessment Exercises

1. Compare the Worst-case and the Best-case analysis of an

algorithm

2. Why is the Worst-case analysis the most important in algorithm

analysis?

3. Among the different complexity types of an algorithm, which do

you consider as the worst?

4. Presently we can solve problem instances of size 30 in 1 minute

using algorithm A, which is a Θ(2n) algorithm. On the other

hand, we will soon have to solve problem instances twice this

large in 1 minute. Do you think it would help to buy a faster (and

more expensive) computer?

3.4 How to approximate the time taken by the Algorithm?

So, to find it out, we shall first understand the types of the algorithm we

have. There are two types of algorithms:

1. Iterative Algorithm: In the iterative approach, the function

repeatedly runs until the condition is met or it fails. It involves

the looping construct.

2. Recursive Algorithm: In the recursive approach, the function

calls itself until the condition is met. It integrates the branching

structure.

CIT 310 MODULE 1

13

However, it is worth noting that any program that is written in iteration

could be written as recursion. Likewise, a recursive program can be

converted to iteration, making both of these algorithms equivalent to

each other.

But to analyze the iterative program, we have to count the number of

times the loop is going to execute, whereas in the recursive program, we

use recursive equations, i.e., we write a function of F(n) in terms of

F(n/2).

Suppose the program is neither iterative nor recursive. In that case, it

can be concluded that there is no dependency of the running time on the

input data size, i.e., whatever is the input size, the running time is going

to be a constant value. Thus, for such programs, the complexity will

be O(1).

3.4.1 Some Examples to Consider

a. For Iterative Programs

Consider the following programs written in simple English and does not

correspond to any syntax.

Example1

In the first example, we have an integer i and a for loop running from i

equals 1 to n. Now the question arises, how many times does the name

get printed?

A()

{

int i;

for (i=1 to n)

printf("Abdullahi");

}

Since i equals 1 to n, so the above program will print Abdullahi, n

number of times. Thus, the complexity will be O(n).

Example2:

A()

{

int i, j:

for (i=1 to n)

for (j=1 to n)

printf("Abdullahi");

}

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

14

In this case, firstly, the outer loop will run n times, such that for each

time, the inner loop will also run n times. Thus, the time complexity will

be O(n2).

Example3:

A()

{

i = 1; S = 1;

while (S<=n)

{

i++;

SS = S + i;

printf("Abdullahi");

}

}

As we can see from the above example, we have two variables; i, S and

then we have while S<=n, which means S will start at 1, and the entire

loop will stop whenever S value reaches a point where S becomes

greater than n.

Here i is incrementing in steps of one, and S will increment by the value

of i, i.e., the increment in i is linear. However, the increment in S

depends on the i.

Initially;

i=1, S=1

After 1st iteration;

i=2, S=3

After 2nd iteration;

i=3, S=6

After 3rd iteration;

i=4, S=10 … and so on.

Since we don't know the value of n, so let's suppose it to be k. Now, if

we notice the value of S in the above case is increasing; for i=1, S=1;

i=2, S=3; i=3, S=6; i=4, S=10; …

Thus, it is nothing but a series of the sum of first n natural numbers, i.e.,

by the time i reaches k, the value of S will be
𝑘 (𝑘+1)

2
 .

To stop the loop,
𝑘 (𝑘+1)

2
 has to be greater than n, and when we solve

this equation,

CIT 310 MODULE 1

15

we will get > n.

Hence, it can be concluded that we get a complexity of O(√n) in this

case.

b. For Recursive Program

Consider the following recursive programs.

Example1

A(n)

{

if (n>1)

return (A(n-1))

}

Solution;

Here we will see the simple Back Substitution method to solve the

above problem.

T(n) = 1 + T(n-1) … Eqn. (1)

Step1: Substitute n-1 at the place of n in Eqn. (1)

T(n-1) = 1 + T(n-2) .. .Eqn. (2)

Step2: Substitute n-2 at the place of n in Eqn. (1)

T(n-2) = 1 + T(n-3) … Eqn. (3)

Step3: Substitute Eqn. (2) in Eqn. (1)

T(n)= 1 + 1+ T(n-2) = 2 + T(n-2) … Eqn. (4)

Step4: Substitute eqn. (3) in Eqn. (4)

T(n) = 2 + 1 + T(n-3) = 3 + T(n-3) = …... = k + T(n-k) …Eqn. (5)

Now, according to Eqn. (1), i.e. T(n) = 1 + T(n-1), the algorithm will run

until n>1. Basically, n will start from a very large number, and it will

decrease gradually. So, when T(n) = 1, the algorithm eventually stops,

and such a terminating condition is called anchor condition, base

condition or stopping condition.

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

16

Thus, for k = n-1, the T(n) will become.

Step5: Substitute k = n-1 in eqn. (5)

T(n) = (n-1) + T(n-(n-1)) = (n-1) + T(1) = n-1+1

Hence, T(n) = n or O(n).

4.0 CONCLUSION

Analysis of algorithms helps us to determine how good or how bad they

are in terms of speed or time taken and memory or space utilized.

Designing good programs is dependent on how good or how bad the

algorithm is and the analysis helps us to determine the efficiency of such

algorithms.

5.0 SUMMARY

In the unit, we have learnt the meaning of algorithm analysis and the

different types of analysis. We also examined the complexity of

algorithms and the different types of complexities.

6.0 TUTOR MARKED ASSIGNMENT

1. Between the Worst-case and the Best-case analysis, which is

 more important to a computer programmer and why?.

2. Why must we avoid exponential complexity at all costs?

3. What do we gain by the analysis of algorithms?

4. Assuming you have a computer that requires 1 minute to solve

 problem instances of size n = 1,000. Suppose you buy a new

 computer that runs 1,000 times faster than the old one. What

 instance sizes can be run in 1 minute, assuming the following

 time complexities T(n) for our algorithm?

(a) T(n) = n (b) T(n) = n3 (c) T(n) = 10n

7.0 FURTHER READING AND OTHER RESOURCES

Berman, K.A. and Paul, J.L.(2005). Algorithms: Sequential, Parallel,

 and Distributed. Course Technology.

Cormen, T.H., Leiserson, C.E., Rivest, R.L., and Stein, C. (2009).

 Introduction to Algorithms, 3rd ed. MIT Press.

Jena, S. R. and Patro, S. (2018) – Design and Analysis of Algorithms,

 ISBN 978-93-935274-311-7

CIT 310 MODULE 1

17

UNIT 3 ALGORITHM DESIGN TECHNIQUES

1.0 Introduction

2.0 Objectives

3.0 Algorithm Design Techniques

 3.1 Popular Algorithm Design Techniques

 3.1.1 Divide-and-Conquer Approach

 3.1.2 Greedy Techniques

 3.1.3 Dynamic Programming

 3.1.4 Branch and Bound

 3.1.5 Backtracking Algorithm

 3.1.6 Randomized Algorithm

 3.2 Asymptotic Analysis (Growth of Function)

 3.2.1 Asymptotic Analysis

 3.2.2 Why is Asymptotic Analysis Important?

 Asymptotic Notation

 3.3.1 Big O Notation

 3.3.2 Big Omega Notation

 3.3.3 Big Theta Notation

4.0 Conclusion

5.0 Summary

6.0 Tutor Marked Assignment

7.0 Further Reading and Other References

1.0 INTRODUCTION

The design of any algorithm follows some planning as there are different

design techniques, strategies or paradigms that could be adopted

depending on the problem domain and a better understanding by the

designer. Some of these techniques could be combined also while the

limiting behaviour of the algorithm can be represented with asymptotic

analysis of which we shall be looking at examples of algorithm design

techniques and asymptotic notations.

2.0 OBJECTIVES

By the end of this unit, you will be able to

 Understand several design techniques or paradigms of algorithms

 Know the meaning of Asymptotic notations

 Understand some popular Asymptotic notations

 Learn how to apply some of the Asymptotic notations learnt

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

18

3.0 Algorithm Design Techniques

An algorithm design technique (or “strategy” or “paradigm”) is a

general approach to solving problems algorithmically that is applicable

to a variety of problems from different areas of computing. Learning

these techniques is of utmost importance for the following reasons.

 First, they provide guidance for designing algorithms for new

problems, i.e., problems for which there is no known satisfactory

algorithm.

 Second, algorithms are the cornerstone of computer science.

Every science is interested in classifying its principal subject, and

computer science is no exception. Algorithm design techniques

make it possible to classify algorithms according to an underlying

design idea; therefore, they can serve as a natural way to both

categorize and study algorithms.

While the algorithm design techniques do provide a powerful set of

general approaches to algorithmic problem solving, designing an

algorithm for a particular problem may still be a challenging task. Some

design techniques can be simply inapplicable to the problem in question.

Sometimes, several techniques need to be combined, and there are

algorithms that are hard to pinpoint as applications of the known design

techniques.

3.1 Popular Algorithm Design Techniques

The following is a list of several popular design approaches:

3.1.1 Divide and Conquer Approach:

The divide-and-conquer paradigm often helps in the discovery of

efficient algorithms. It is a top-down approach. The algorithms which

follow the divide & conquer techniques involve three steps:

 Divide the original problem into a set of sub-problems.

 Solve every sub-problem individually, recursively.

 Combine the solution of the sub-problems (top level) into a

solution of the whole original problem.

Following are some standard algorithms that are of the Divide and

Conquer algorithms variety.

 Binary Search is a searching algorithm. ...

 Quicksort is a sorting algorithm. ...

CIT 310 MODULE 1

19

 Merge Sort is also a sorting algorithm. ...

 Closest Pair of Points The problem is to find the closest pair of

points in a set of points in x-y plane.

3.1.2. Greedy Technique

Greedy method or technique is an algorithmic paradigm that builds

up a solution piece by piece, always choosing the next piece that offers

the most obvious and immediate benefit. So the problems where

choosing locally optimal also leads to global solution are best fit for

Greedy. The Greedy method is used to solve the optimization problem.

An optimization problem is one in which we are given a set of input

values, which are required either to be maximized or minimized (known

as objective), i.e. some constraints or conditions.

 Greedy Algorithm always makes the choice (greedy criteria)

looks best at the moment, to optimize a given objective.

 The greedy algorithm doesn't always guarantee the optimal

solution however it generally produces a solution that is very

close in value to the optimal.

Examples of Greedy Algorithms

 Prim's Minimal Spanning Tree Algorithm.

 Travelling Salesman Problem.

 Graph – Map Coloring.

 Kruskal's Minimal Spanning Tree Algorithm.

 Dijkstra's Minimal Spanning Tree Algorithm.

 Graph – Vertex Cover.

 Knapsack Problem.

 Job Scheduling Problem.

3.1.3 Dynamic Programming

Dynamic Programming (DP) is an algorithmic technique for solving

an optimization problem by breaking it down into simpler sub-

problems and utilizing the fact that the optimal solution to the overall

problem depends upon the optimal solution to its sub-problems.

Dynamic programming is both a mathematical optimization method and

a computer programming method. The method was developed by

Richard Bellman in the 1950s and has found applications in numerous

fields, from aerospace engineering to economics

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

20

Dynamic programming is used where we have problems, which can be

divided into similar sub-problems, so that their results can be re-used.

Mostly, these algorithms are used for optimization. Before solving the

in-hand sub-problem, dynamic algorithm will try to examine the results

of the previously solved sub-problems.

Some examples of Dynamic Programming are;

 Tower of Hanoi

 Dijkstra Shortest Path

 Fibonacci sequence

 Matrix chain multiplication

 Egg-dropping puzzle, etc

3.1.4 Branch and Bound

The branch and bound method is a solution approach that partitions

the feasible solution space into smaller subsets of solutions. , can

assume any integer value greater than or equal to zero is what gives this

model its designation as a total integer model.

It is used for solving the optimization problems and minimization

problems. If we have given a maximization problem then we can

convert it using the Branch and bound technique by simply converting

the problem into a maximization problem.

An important advantage of branch-and-bound algorithms is that we can

control the quality of the solution to be expected, even if it is not yet

found. The cost of an optimal solution is only up to smaller than the cost

of the best computed one.

Branch and bound is an algorithm design paradigm which is generally

used for solving combinatorial optimization problems.

Some examples of Branch-and-Bound Problems are:

 Knapsack problems

 Traveling Salesman Problem

 Job Assignment Problem, etc

3.1.5. Backtracking Algorithm

A backtracking algorithm is a problem-solving algorithm that uses a

brute force approach for finding the desired output. The Brute force

approach tries out all the possible solutions and chooses the desired/best

solutions.

CIT 310 MODULE 1

21

Backtracking is a general algorithm for finding solutions to some

computational problems, notably constraint satisfaction problems,

that incrementally builds candidates to the solutions, and abandons a

candidate ("backtracks") as soon as it determines that the candidate

cannot possibly be completed to a valid solution.

The algorithm works as follows:

Given a problem:

\Backtrack(s)

if is not a solution return false if is a new solution add to list of

solutions backtrack(expand s)

It finds a solution by building a solution step by step, increasing levels

over time, using recursive calling. A search tree known as the state-

space tree is used to find these solutions. Each branch in a state-space

tree represents a variable, and each level represents a solution.

A backtracking algorithm uses the depth-first search method. When the

algorithm begins to explore the solutions, the abounding function is

applied so that the algorithm can determine whether the proposed

solution satisfies the constraints. If it does, it will keep looking. If it does

not, the branch is removed, and the algorithm returns to the previous

level.

In any backtracking algorithm, the algorithm seeks a path to a feasible

solution that includes some intermediate checkpoints. If the checkpoints

do not lead to a viable solution, the problem can return to the

checkpoints and take another path to find a solution

There are the following scenarios in which you can use the

backtracking:

 It is used to solve a variety of problems. You can use it, for

example, to find a feasible solution to a decision problem.

 Backtracking algorithms were also discovered to be very effective

for solving optimization problems.

 In some cases, it is used to find all feasible solutions to

the enumeration problem.

 Backtracking, on the other hand, is not regarded as an optimal

problem-solving technique. It is useful when the solution to a

problem does not have a time limit.

 Backtracking algorithms are used in;

 Finding all Hamiltonian paths present in a graph

 Solving the N-Queen problem

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

22

 Knights Tour problem, etc

3.1.6 Randomized Algorithm

A randomized algorithm is an algorithm that employs a degree of

randomness as part of its logic or procedure. ... In some cases,

probabilistic algorithms are the only practical means of solving a

problem.

The output of a randomized algorithm on a given input is a random

variable. Thus, there may be a positive probability that the outcome is

incorrect. As long as the probability of error is small for every possible

input to the algorithm, this is not a problem.

There are two main types of randomized algorithms: Las Vegas

algorithms and Monte-Carlo algorithms.

Example 1: In Quick Sort, using a random number to choose a pivot.

Example 2: Trying to factor a large number by choosing a random

number as possible divisors.

Self-Assessment Exercise

1. What do you understand by an Algorithm design paradigm?

2. How does the Greedy Technique work and give an example?

3, Give a difference between the Backtracking and Randomized

algorithm techniques

3.2 Asymptotic Analysis of algorithms (Growth of function)

Resources for an algorithm are usually expressed as a function regarding

input. Often this function is messy and complicated to work. To study

Function growth efficiently, we reduce the function down to the

important part.

Let f (n) = an2+bn+c

In this function, the n2 term dominates the function that is when n gets

sufficiently large.

Dominate terms are what we are interested in reducing a function, in

this; we ignore all constants and coefficient and look at the highest order

term concerning n.

CIT 310 MODULE 1

23

3.2.1 Asymptotic analysis

It is a technique of representing limiting behavior. The methodology has

the applications across science. It can be used to analyze the

performance of an algorithm for some large data set.

In computer science in the analysis of algorithms, considering the

performance of algorithms when applied to very large input datasets

The simplest example is a function ƒ (n) = n2+3n, the term 3n becomes

insignificant compared to n2 when n is very large. The function "ƒ (n) is

said to be asymptotically equivalent to n2 as n → ∞", and here is

written symbolically as

ƒ (n) ~ n2.

Asymptotic notations are used to write fastest and slowest possible

running time for an algorithm. These are also referred to as 'best case'

and 'worst case' scenarios respectively.

"In asymptotic notations, we derive the complexity concerning the size

of the input. (Example in terms of n)"

"These notations are important because without expanding the cost of

running the algorithm, we can estimate the complexity of the

algorithms."

3.2.2 Why is Asymptotic Notation Important?

1. They give simple characteristics of an algorithm's efficiency.

2. They allow the comparisons of the performances of various

 algorithms.

3.3 Asymptotic Notations:

Asymptotic Notation is a way of comparing function that ignores

constant factors and small input sizes. Three notations are used to

calculate the running time complexity of an algorithm:

3.3.1. Big-oh notation:

Big-oh is the formal method of expressing the upper bound of an

algorithm's running time. It is the measure of the longest amount of

time. The function f (n) = O (g (n)) [read as "f of n is big-oh of g of n"]

if and only if exist positive constant c and such that

 f (n) ⩽ k.g (n)f(n)⩽k.g(n) for n>n0n>n0 in all case

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

24

Hence, function g (n) is an upper bound for function f (n), as g (n) grows

faster than f (n)

Examples:

1. 3n+2=O(n) as 3n+2≤4n for all n≥2

2. 3n+3=O(n) as 3n+3≤4n for all n≥3

Hence, the complexity of f(n) can be represented as O (g (n))

3.3.2. Big Omega () Notation

The function f (n) = Ω (g (n)) [read as "f of n is omega of g of n"] if and

only if there exists positive constant c and n0 such that

F (n) ≥ k* g (n) for all n, n≥ n0

CIT 310 MODULE 1

25

Example:

 f (n) =8n2+2n-3≥8n2-3

 =7n2+(n2-3)≥7n2 (g(n))

Thus, k1=7

Hence, the complexity of f (n) can be represented as Ω (g (n))

3.3.3. Big Theta (θ)

The function f (n) = θ (g (n)) [read as "f is the theta of g of n"] if and

only if there exists positive constant k1, k2 and k0 such that

 k1 * g (n) ≤ f(n)≤ k2 g(n)for all n, n≥ n0

For Example:

3n+2= θ (n) as 3n+2≥3n and 3n+2≤ 4n, for n

 k1=3,k2=4, and n0=2

Hence, the complexity of f (n) can be represented as θ (g(n)).

The Theta Notation is more precise than both the big-oh and Omega

notation. The function f (n) = θ (g (n)) if g(n) is both an upper and lower

bound.

Self-Assessment Exercise

1. Which of the Asymptotic notations do you consider more

 important and why?

2. What do you understand by a Backtracking algorithm?

3. What do you understand by the Upper and Lower bound of an

 algorithm?

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

26

4.0 CONCLUSION

Algorithm design techniques presents us with different paradigms or

methods of representing or designing computer algorithms and as the

algorithm executes and grows in bounds (upper or lower), the

Asymptotic notations helps us to determine the levels of growth.

5.0 SUMMARY

Several design techniques or paradigms are available for specifying

algorithms and they range from the popular Divide-and-Conquer,

Greedy techniques and Randomized algorithms amongst others. In the

same vein, we have three main notations for carrying out the Asymptotic

analysis of algorithms and they are the Big O, Big Omega and Big Theta

notations.

6.0 TUTOR MARKED ASSIGNMENT

1. Give two examples each of functions that can be represented as

a. O(f(n)) b. ϴ(f(n)) c. Ω(f(n))

2. Mention two types of problems each that can be solved with

a. Dynamic Programming b. Divide-and-Conquer

 technique

3. Why is Asymptotic notation considered important?

4. The function f(x) = n + n2 + 2n + n4 belongs in which of the

 following complexity categories: (a) θ(n) (b) θ(n2)

 (c) θ(n3)

(d) θ(n lg n) (e) θ(n4) (f) None of these

7.0 FURTHER READING AND OTHER RESOURCES

Dave, P. H. and Dave, H. B. (2008). Design and Analysis of Algorithms,

 Pearson Education.

Jena, S. R. and Swain, S. K, (2017). Theory of Computation and

 Application, 1st Edition, University Science Press, Laxmi

 Publications.

Levitin, A. (2012). Introduction to the Design and Analysis of

 Algorithms, 3rd Ed. Pearson Education, ISBN 10-0132316811

CIT 310 MODULE 1

27

UNIT 4 RECURSION AND RECURSIVE ALGORITHMS

1.0 Introduction

2.0 Objectives

3.0 Recursion and Recursive Algorithms

 3.1 Why use Recursion

 3.1.1 Factorial Example

 3.1.2 Purpose of Recursions

 3.1.3 Conditionals to Start, Continue and Stop Recursion

 3.1.4 The Three Laws of Recursion

 3.2 Types of Recursions

 3.2.1 Direct Recursion

 3.2.2 Indirect Recursion

 3.3 Recursion versus Iteration

 Some Recursive Algorithms (Examples)

 3.4.1 Reversing an Array

 3.4.2 Fibonacci Sequence

4.0 Conclusion

5.0 Summary

6.0 Tutor Marked Assignment

7.0 Further Reading and other Resources

1.0 INTRODUCTION

Recursion is a method of solving problems that involves breaking a

problem down into smaller and smaller sub-problems until you get to a

small enough problem that it can be solved trivially. In computer

science, recursion involves a function calling itself. While it may not

seem like much on the surface, recursion allows us to write elegant

solutions to problems that may otherwise be very difficult to program.

2.0 OBJECTIVES

By the end of this unit, you will be able to

 Know the meaning of Recursion and a Recursive algorithm

 Understand the different types of recursive algorithms

 See some examples of recursive algorithms

 Understand how the recursive algorithm works

 Know the difference between recursion and iteration

 Know the reasons why recursion is preferred in programming

 Know the runtime and space complexity of different recursive

algorithms

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

28

3.0 Recursion and Recursive Algorithms (Definitions)

The Merriam-Webster describes recursion as:

“a computer programming technique involving the use of a procedure,

subroutine, function, or algorithm that calls itself one or more times until

a specified condition is met at which time the rest of each repetition is

processed from the last one called to the first.”

Recursion is the process of defining something in terms of itself. A

physical world example would be to place two parallel mirrors facing

each other. Any object in between them would be reflected recursively.

A recursive algorithm is an algorithm which calls itself with "smaller (or

simpler)" input values, and which obtains the result for the current input

by applying simple operations to the returned value for the smaller (or

simpler) input.

There are two main instances of recursion. The first is when recursion is

used as a technique in which a function makes one or more calls to itself.

The second is when a data structure uses smaller instances of the exact

same type of data structure when it represents itself.

3.1 Why use recursion?

Recursion provides an alternative for performing repetitions of the task

in which a loop is not ideal. Most modern programming languages

support recursion. Recursion serves as a great tool for building out

particular data structures.

So now let’s start with an example exercise of creating a factorial

function.

3.1.1 Factorial Example

The factorial function is denoted with an exclamation point and is

defined as the product of the integers from 1 to n. Formally, we can state

this as:

n! = n ⋅ (n−1) ⋅ (n−2) … 3 ⋅ 2 ⋅ 1

Note, if n = 0, then n! = 1. This is important to take into account,

because it will serve as our base case.

Take this example:

4! = 4 ⋅ 3 ⋅ 2 ⋅ 1 = 24.

So how can we state this in a recursive manner? This is where the

concept of base case comes in.

CIT 310 MODULE 1

29

Base case is a key part of understanding recursion, especially when it

comes to having to solve interview problems dealing with recursion.

Let’s rewrite the above equation of 4! so it looks like this:

4! = 4 ⋅ (3 ⋅ 2 ⋅ 1) = 24

Notice that this is the same as:

4! = 4 ⋅ 3! = 24

Meaning we can rewrite the formal recursion definition in terms of

recursion like so:

n! = n ⋅ (n−1) !

Note, if n = 0, then n! = 1. This means the base case occurs once n=0,

the recursive cases are defined in the equation above. Whenever you are

trying to develop a recursive solution it is very important to think about

the base case, as your solution will need to return the base case once all

the recursive cases have been worked through. Let’s look at how we can

create the factorial function in Python:

def fact(n):

 '''

 Returns factorial of n (n!).

 Note use of recursion

 '''

 # BASE CASE!

 if n == 0:

 return 1

 # Recursion!

 else:

 return n * fact(n-1)

Let’s see it in action! Fact (5) = 120

Note how we had an if statement to check if a base case occurred.

Without it this function would not have successfully completed running.

We can visualize the recursion with the following figure:

We can follow this flow chart from the top, reaching the base case, and

then working our way back up.

Recursion is a powerful tool, but it can be a tricky concept to implement.

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

30

3.1.2 Purpose of Recursions

Recursive functions have many uses, but like any other kind of code,

their necessity should be considered. As discussed above, consider the

differences between recursions and loops, and use the one that best fits

your needs. If you decide to go with recursions, decide what you want

the function to do before you start to compose the actual code.

3.1.3 Conditionals to Start, Continue, and Stop the Recursion

It’s important to look at any arguments or conditions that would start the

recursion in the first place. For example, the function could have an

argument that might be a string or array. The function itself may have to

recognize the datatype versus it being recognized before this point (such

as by a parent function). In simpler scenarios, starting conditions may

often be the exact same conditions that force the recursion to continue.

More importantly, you want to establish a condition where the recursive

action stops. These conditionals, known as base cases, produce an actual

value rather than another call to the function. However, in the case of

tail-end recursion, the return value still calls a function but gets the value

of that function right away.

The establishment of base cases is commonly achieved by having a

conditional observe some quality, such as the length of an array or the

CIT 310 MODULE 1

31

amount of a number, just like loops. However, there are multiple ways to

go about it, so feel free to alter the complexity as needed.

3.1.4 The Three Laws of Recursion

All recursive algorithms must obey three important laws:

1. A recursive algorithm must have a base case, which denotes the

point when it should stop.

2. A recursive algorithm must change its state and move toward the

base case which enables it to store and accumulate values that

end up becoming the answer.

3. A recursive algorithm must call itself, recursively with smaller

and smaller values.

Self-Assessment Exercises

1. What do you understand by the term “base case”?

2. Why must a stopping criterion be specified in a recursive

algorithm?

3. What happens when a recursive algorithm calls itself recursively?

3.2 Types of Recursion

Recursion are mainly of two types depending on whether a function

calls itself from within itself or more than one function call one another

mutually. The first one is called direct recursion and another one is

called indirect recursion.

Thus, the two types of recursion are:

3.2.1. Direct Recursion

These can be further categorized into four types:

a. Tail Recursion:

If a recursive function calling itself and that recursive call is the last

statement in the function then it’s known as Tail Recursion. After that

call the recursive function performs nothing. The function has to

process or perform any operation at the time of calling and it does

nothing at returning time.

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

32

Example:

// Code Showing Tail Recursion

#include <iostream>

using namespace std;

// Recursion function

void fun(int n)

{

 if (n > 0) {

 cout << n << " ";

 // Last statement in the function

 fun(n - 1);

 }

}

// Driver Code

int main()

{

 int x = 3;

 fun(x);

 return 0;

}

Output:

3 2 1

Time Complexity For Tail Recursion : O(n)

Space Complexity For Tail Recursion : O(n)

Lets us convert Tail Recursion into Loop and compare each other in

terms of Time & Space Complexity and decide which is more efficient.

// Converting Tail Recursion into Loop

#include <iostream>

using namespace std;

void fun(int y)

{

 while (y > 0) {

 cout << y << " ";

 y--; }}

CIT 310 MODULE 1

33

// Driver code

int main()

{

 int x = 3;

 fun(x);

 return 0;

}

Output

3 2 1

Time Complexity: O(n)

Space Complexity: O(1)

So it was seen that in case of loop the Space Complexity is O(1) so it

was better to write code in loop instead of tail recursion in terms of

Space Complexity which is more efficient than tail recursion.

b. Head Recursion:

If a recursive function calling itself and that recursive call is the first

statement in the function then it’s known as Head Recursion. There’s

no statement, no operation before the call. The function doesn’t have to

process or perform any operation at the time of calling and all

operations are done at returning time.

Example:

// C++ program showing Head Recursion

#include <bits/stdc++.h>

using namespace std;

// Recursive function

void fun(int n)

{

 if (n > 0) {

 // First statement in the function

 fun(n - 1);

 cout << " "<< n;

 }

}

// Driver code

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

34

int main()

{

 int x = 3;

 fun(x);

 return 0;

}

Output:

1 2 3

Time Complexity For Head Recursion: O(n)

Space Complexity For Head Recursion: O(n)

Let’s convert the above code into the loop.

// Converting Head Recursion into Loop

#include <iostream>

using namespace std;

// Recursive function

void fun(int n)

{

 int i = 1;

 while (i <= n) {

 cout <<" "<< i;

 i++;

 }

}

// Driver code

int main()

{

 int x = 3;

 fun(x);

 return 0;

}

Output:

1 2 3

c. Tree Recursion:

To understand Tree Recursion let’s first understand Linear

Recursion. If a recursive function calling itself for one time then

it’s known as Linear Recursion. Otherwise if a recursive

CIT 310 MODULE 1

35

function calling itself for more than one time then it’s known as

Tree Recursion.

Example: Pseudo Code for linear recursion

fun(n)

{

 // some code

 if(n>0)

 {

 fun(n-1); // Calling itself only once

 }

 // some code

}

Program for tree recursion

// C++ program to show Tree Recursion

#include <iostream>

using namespace std;

// Recursive function

void fun(int n)

{

 if (n > 0)

 {

 cout << " " << n;

 // Calling once

 fun(n - 1);

 // Calling twice

 fun(n - 1);

 }

}

// Driver code

int main()

{

 fun(3);

 return 0;

}

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

36

Output:

3 2 1 1 2 1 1

Time Complexity For Tree Recursion: O(2n)

Space Complexity For Tree Recursion: O(n)
.

d. Nested Recursion:

In this recursion, a recursive function will pass the parameter as a

recursive call. That means “recursion inside recursion”. Let see the

example to understand this recursion.

Example:

// C++ program to show Nested Recursion

#include <iostream>

using namespace std;

int fun(int n)

{

 if (n > 100)

 return n - 10;

 // A recursive function passing parameter

 // as a recursive call or recursion inside

 // the recursion

 return fun(fun(n + 11));

}

 // Driver code

int main()

{

 int r;

 r = fun(95);

 cout << " " << r;

 return 0;

}

Output:

9 1

3.2.2. Indirect Recursion:

In this recursion, there may be more than one functions and they are

calling one another in a circular manner.

CIT 310 MODULE 1

37

From the above diagram fun(A) is calling for fun(B), fun(B) is calling

for fun(C) and fun(C) is calling for fun(A) and thus it makes a cycle.

Example:

// C++ program to show Indirect Recursion

#include <iostream>

using namespace std;

void funB(int n);

void funA(int n)

{

 if (n > 0) {

 cout <<" "<< n;

 // Fun(A) is calling fun(B)

 funB(n - 1);

 }

}

void funB(int n)

{

 if (n > 1) {

 cout <<" "<< n;

 // Fun(B) is calling fun(A)

 funA(n / 2);

 }

}

// Driver code

int main()

{

 funA(20);

 return 0;

}

Output:

20 19 9 8 4 3 1

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

38

3.3 Recursion versus Iteration

The Recursion and Iteration both repeatedly execute the set of

instructions. Recursion is when a statement in a function calls itself

repeatedly. The iteration is when a loop repeatedly executes until the

controlling condition becomes false. The primary difference between

recursion and iteration is that recursion is a process, always applied to a

function and iteration is applied to the set of instructions which we want

to get repeatedly executed.

Recursion

 Recursion uses selection structure.

 Infinite recursion occurs if the recursion step does not reduce

the problem in a manner that converges on some condition

(base case) and Infinite recursion can crash the system.

 Recursion terminates when a base case is recognized.

 Recursion is usually slower than iteration due to the overhead

of maintaining the stack.

 Recursion uses more memory than iteration.

 Recursion makes the code smaller.

Iteration

 Iteration uses repetition structure.

 An infinite loop occurs with iteration if the loop condition test

never becomes false and Infinite looping uses CPU cycles

repeatedly.

 An iteration terminates when the loop condition fails.

 An iteration does not use the stack so it's faster than recursion.

 Iteration consumes less memory.

 Iteration makes the code longer.

Self-Assessment Exercises

1. Try and find the Sum of the elements of an array recursively

2. Find the maximum number of elements in an array A

of n elements using recursion

3. How is recursion different from iteration?

CIT 310 MODULE 1

39

3.4 Some Recursive Algorithms (Examples)

3.4.1 Reversing an Array

Let us consider the problem of reversing the n elements of an array, A,

so that the first element becomes the last, the second element becomes

the second to the last, and so on. We can solve this problem using the

linear recursion, by observing that the reversal of an array can be

achieved by swapping the first and last elements and then recursively

reversing the remaining elements in the array.

Algorithm ReverseArray(A, i, j):

 Input: An array A and nonnegative integer indices i and j

 Output: The reversal of the elements in A starting at index i and

ending at j

 if i < j then

 Swap A[i] and A[j]

 ReverseArray(A, i+1, j-1)

 return

3.4.2 Fibonacci Sequence

Fibonacci sequence is the sequence of numbers 1, 1, 2, 3, 5, 8, 13, 21,

34, 55, The first two numbers of the sequence are both 1, while each

succeeding number is the sum of the two numbers before it. We can

define a function F(n) that calculates the nth Fibonacci number.

First, the base cases are: F(0) = 1 and F(1) = 1.

Now, the recursive case: F(n) = F(n-1) + F(n-2).

Write the recursive function and the call tree for F(5).

Algorithm Fib(n) {

 if (n < 2) return 1

 else return Fib(n-1) + Fib(n-2)

}

The above recursion is called binary recursion since it makes two

recursive calls instead of one. How many number of calls are needed to

compute the kth Fibonacci number? Let nk denote the number of calls

performed in the execution.

n0 = 1

n1 = 1

n2 = n1 + n0 + 1 = 3 > 21

n3 = n2 + n1 + 1 = 5 > 22

n4 = n3 + n2 + 1 = 9 > 23

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

40

n5 = n4 + n3 + 1 = 15 > 23

...

nk > 2k/2

This means that the Fibonacci recursion makes a number of calls that are

exponential in k. In other words, using binary recursion to compute

Fibonacci numbers is very inefficient. Compare this problem with

binary search, which is very efficient in searching items, why is this

binary recursion inefficient? The main problem with the approach

above, is that there are multiple overlapping recursive calls.

We can compute F(n) much more efficiently using linear recursion. One

way to accomplish this conversion is to define a recursive function that

computes a pair of consecutive Fibonacci numbers F(n) and F(n-1) using

the convention F(-1) = 0.

Algorithm LinearFib(n) {

 Input: A nonnegative integer n

 Output: Pair of Fibonacci numbers (Fn, Fn-1)

 if (n <= 1) then

 return (n, 0)

 else

 (i, j) <-- LinearFib(n-1)

 return (i + j, i)

}

Since each recursive call to LinearFib decreases the argument n by 1,

the original call results in a series of n-1 additional calls. This

performance is significantly faster than the exponential time needed by

the binary recursion. Therefore, when using binary recursion, we should

first try to fully partition the problem in two or, we should be sure that

overlapping recursive calls are really necessary.

Let's use iteration to generate the Fibonacci numbers. What's the

complexity of this algorithm?

public static int IterationFib(int n) {

 if (n < 2) return n;

 int f0 = 0, f1 = 1, f2 = 1;

 for (int i = 2; i < n; i++) {

 f0 = f1;

 f1 = f2;

 f2 = f0 + f1;

 }

 return f2;

}

CIT 310 MODULE 1

41

Self-Assessment Exercises

1. Either write the pseudo-code or the Java code for the following

problems. Draw the recursion trace of a simple case. What is the

running time and space requirement?.

 Recursively searching a linked list

 Forward printing a linked list

 Reverse printing a linked list

4.0 CONCLUSION

Recursive algorithms are very important in programming as they help us

write very good programs and also allow us to understand the concept of

computing well. So many programs are naturally recursive and many

others can be turned into a recursive algorithm.

5.0 SUMMARY

In computer science, recursion is a method of solving a problem where

the solution depends on solutions to smaller instances of the same

problem. Such problems can generally be solved by iteration, but this

needs to identify and index the smaller instances at programming time.

There exist several natural examples of recursive algorithms while other

programming algorithms that are iterative can be turned into recursive

algorithms.

The concept of recursion is very important to developers of algorithms

and also to programmers.

6.0 TUTOR MARKED ASSIGNMENT

1 Given the following recursive algorithm:

 F0 =1, F1 = 1

 Fn = Fn-1 + Fn-2 for n≥2

 Find F10 and F15 by simulating it manually

2. Mathematically, the greatest common divisor, gcd is given as:

 gcd(p, q) =

 Compute; i. gcd (48, 12) ii. gcd (1035, 759)

3. What makes recursion better than iteration and what makes

iteration better than recursion.

P, if q = 0

gcd (q, remainder (p, q)), if p ≥ q and q > 0

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

42

4. Give a vital difference between Head recursion and Tail

recursion.

7.0 FURTHER READING AND OTHER REFERENCES

Cormen, T. H., Leiserson, C., Rivest, R. and Stein, C. (2009).

 Introduction to Algorithms. Third Edition. MIT Press.

Jena, S. R. and Swain, S. K, (2017). Theory of Computation and

 Application, 1st Edition, University Science Press, Laxmi

 Publications.

CIT 310 MODULE 1

43

UNIT 5 RECURRENCE RELATIONS

1.0 Introduction

2.0 Objectives

3.0 Recurrence Relations

 3.1 Methods for Resolving Recurrence Relations

 3.1.1 Guess-and-Verify Method

 3.1.2 Iteration Method

 3.1.3 Recursion Tree method

 3.1.4 Master Method

 3.2 Example of Recurrence relation: Tower of Hanoi

 3.2.1 Program for Tower of Hanoi

 3.2.2 Applications of Tower of Hanoi Problem

 3.2.3 Finding a Recurrence

 3.2.4 Closed-form Solution

4.0 Conclusion

5.0 Summary

6.0 Tutor Marked Assignment

7.0 Further Reading and Other References

1.0 INTRODUCTION

A recurrence or recurrence relation on the other hand defines an

infinite sequence by describing how to calculate the n-th element of the

sequence given the values of smaller elements, as in:

T(n) = T(n/2) + n, T(0) = T(1) = 1.

In principle such a relation allows us to calculate T(n) for any n by

applying the first equation until we reach the base case. To solve a

recurrence, we will find a formula that calculates T(n) directly from n,

without this recursive computation.

2.0 OBJECTIVES

By the end of this unit, you will be able to

 Know more about Recurrences and Recurrence relations

 Understand the different methods for resolving recurrence

relations

 Know the areas of applications of recurrence relations

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

44

3.0 Recurrence Relations

A recurrence is an equation or inequality that describes a function in

terms of its values on smaller inputs. To solve a Recurrence Relation

means to obtain a function defined on the natural numbers that satisfy

the recurrence.

For Example, the Worst Case Running Time T(n) of the MERGE

SORT Procedures is described by the recurrence.

T (n) = θ (1) if n=1

 2T + θ (n) if n>1

3.1 Methods for Resolving Recurrence Relations

Recurrence relations can be resolved with any of the following four

methods:

1. Substitution Method (Guess-and-Verify)

2. Iteration Method.

3. Recursion Tree Method.

4. Master Method.

3.1.1. Guess-and-Verify Method:

As when solving any other mathematical problem, we are not required

to explain where our solution came from as long as we can prove that it

is correct. So the most general method for solving recurrences can be

called "guess but verify". Naturally, unless you are very good friends

with the existential quantifier you may find it had to come up with good

guesses. But sometimes it is possible to make a good guess by iterating

the recurrence a few times and seeing what happens.

The Guess-and-Verify Method consists of two main steps:

1. Guess the Solution.

2. Use the mathematical induction to find the boundary condition

and shows that the guess is correct.

CIT 310 MODULE 1

45

For Example1 Solve the equation by Substitution Method.

 T (n) = T + n

We have to show that it is asymptotically bound by O (log n).

Solution:

For T (n) = O (log n) We have to show that for some constant c

T (n) ≤c log n.

Put this in given Recurrence Equation.

T (n) ≤c log + 1

≤c log + 1 = c logn-clog2 2+1

≤c logn for c≥1

Thus T (n) =O logn.

Example2 Consider the Recurrence

T (n) = 2T + n n>1

Find an Asymptotic bound on T.

Solution:

We guess the solution is O (n (logn)).Thus for constant 'c'.

 T (n) ≤c n logn

Put this in given Recurrence Equation.

Now,

 T (n) ≤2c log +n

 ≤cnlogn-cnlog2+n

 =cn logn-n (clog2-1)

 ≤cn logn for (c≥1)

Thus T (n) = O (n logn).

3.1.2. Iteration Methods

It means to expand the recurrence and express it as a summation of

terms of n and initial condition.

Example1: Consider the Recurrence

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

46

T (n) = 1 if n=1

= 2T (n-1) if n>1

Solution:

 T (n) = 2T (n-1)

 = 2[2T (n-2)] = 22T (n-2)

 = 4[2T (n-3)] = 23T (n-3)

 = 8[2T (n-4)] = 24T (n-4) (Eq.1)

Repeat the procedure for i times

 T (n) = 2i T (n-i)

 Put n-i=1 or i= n-1 in (Eq.1)

 T (n) = 2n-1 T (1)

 = 2n-1 .1 {T (1) =1given}

 = 2n-1

Example2: Consider the Recurrence

T (n) = T (n-1) +1 and T (1) = θ (1).

Solution:

T (n) = T (n-1) +1

 = (T (n-2) +1) +1 = (T (n-3) +1) +1+1

 = T (n-4) +4 = T (n-5) +1+4

 = T (n-5) +5= T (n-k) + k

Where k = n-1

 T (n-k) = T (1) = θ (1)

 T (n) = θ (1) + (n-1) = 1+n-1=n= θ (n).

3.1.3 Recursion Tree Method

Recursion Tree Method is a pictorial representation of an iteration

method which is in the form of a tree where at each level nodes are

expanded.

In general, we consider the second term in recurrence as root. It is useful

when the divide & Conquer algorithm is used.

It is sometimes difficult to come up with a good guess. In Recursion

tree, each root and child represents the cost of a single sub-problem. We

sum the costs within each of the levels of the tree to obtain a set of pre-

level costs and then sum all pre-level costs to determine the total cost of

all levels of the recursion.

A Recursion Tree is best used to generate a good guess, which can be

verified by the Substitution Method.

CIT 310 MODULE 1

47

Example 1

 Consider T (n) = 2T + n2

We have to obtain the asymptotic bound using recursion tree method.

Solution: The Recursion tree for the above recurrence is

Example 2: Consider the following recurrence

 T (n) = 4T +n

Obtain the asymptotic bound using recursion tree method.

Solution: The recursion trees for the above recurrence

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

48

Example 3: Consider the following recurrence

Obtain the asymptotic bound using recursion tree method.

Solution: The given Recurrence has the following recursion tree

CIT 310 MODULE 1

49

When we add the values across the levels of the recursion trees, we get a

value of n for every level. The longest path from the root to leaf is

3.1.5 Master Method

The Master Method is used for solving the following types of recurrence

T (n) = a T + f (n) with a≥1 and b≥1 be constant & f(n) be a function

and can be interpreted as

Let T (n) is defined on non-negative integers by the recurrence.

 T (n) = a T + f (n)

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

50

In the function to the analysis of a recursive algorithm, the constants and

function take on the following significance:

 n is the size of the problem.

 a is the number of sub-problems in the recursion.

 n/b is the size of each sub-problem. (Here it is assumed that all

sub-problems are essentially the same size.)

 f (n) is the sum of the work done outside the recursive calls,

which includes the sum of dividing the problem and the sum of

combining the solutions to the sub-problems.

 It is not possible always bound the function according to the

requirement, so we make three cases which will tell us what kind

of bound we can apply on the function.

Master Theorem:

It is possible to complete an asymptotic tight bound in these three cases:

Case1: If f (n) = for some constant ε >0, then it follows

that:

T (n) = Θ

Example:

T (n) = 8 T apply master theorem on it.

Solution:

Compare T (n) = 8 T with

 T (n) = a T

 a = 8, b=2, f (n) = 1000 n2, logba = log28 = 3

 Put all the values in: f (n) =

CIT 310 MODULE 1

51

 1000 n2 = O (n3-ε)

If we choose ε=1, we get: 1000 n2 = O (n3-1) = O (n2)

Since this equation holds, the first case of the master theorem applies to

the given recurrence relation, thus resulting in the conclusion:

T (n) = Θ

 Therefore: T (n) = Θ (n3)

Case 2: If it is true, for some constant k ≥ 0 that:

F (n) = Θ

then it follows that: T (n) = Θ

Example:

T (n) = 2 , solve the recurrence by using the master

method.

As compare the given problem with T (n) = a T

 a = 2, b=2, k=0, f (n) = 10n, logba =

log22 =1

Put all the values in f (n) =Θ , we will get

 10n = Θ (n1) = Θ (n) which is true.

Therefore: T (n) = Θ

 = Θ (n log n)

Case 3: If it is true f(n) = Ω for some constant ε >0 and it

also true that: a f for some constant c<1 for large value of n

,then :

T (n) = Θ((f (n))

Example: Solve the recurrence relation:

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

52

T (n) = 2

Solution:

Compare the given problem with

T (n) = a T

a= 2, b =2, f (n) = n2, logba = log22 =1

Put all the values in f (n) = Ω (Eq. 1)

If we insert all the value in (Eq.1), we will get

n2 = Ω(n1+ε) put ε =1, then the equality will hold.

n2 = Ω(n1+1) = Ω(n2)

Now we will also check the second condition:

 2

If we will choose c =1/2, it is true:

 ∀ n ≥1

So it follows: T (n) = Θ ((f (n))

 T (n) = Θ(n2)

Self-Assessment Exercises

1. How is the Guess-and-Verify method better than the Iteration

method

2. Is a recurrence relation similar to a recursive algorithm? Discuss.

3. What is the essence of the base case in every recurrence relation?

3.2 Example of Recurrence Relation: Tower of Hanoi

It was invented in 1883 by mathematician Edouard Lucas. He wanted to

sell his 8-disk puzzle, and he created the name and the story to make the

puzzle more intriguing. The pegs are of diamond, and the 64 disks are of

gold. They were put there in an ancient temple at Hanoi, Vietnam by the

Creator who gave the Monks the following divine conditions:

1. The disks must all be moved one at a time from one peg to another

peg using only three pegs.

CIT 310 MODULE 1

53

2. No larger disk should be placed on top of a smaller disk

3. Only one disk can be transferred at a time.

Once all the disks have been moved, the World will end !!! This

problem can be easily solved by Divide & Conquer algorithm

In the above 7 step all the disks from peg A will be transferred to C

given Condition:

1. Only one disk will be shifted at a time.

2. Smaller disk can be placed on larger disk.

Let T (n) be the total time taken to move n disks from peg A to peg C

1. Moving n-1 disks from the first peg to the second peg. This can

be done in T (n-1) steps.

2. Moving larger disks from the first peg to the third peg will

require first one step.

3. Recursively moving n-1 disks from the second peg to the third

peg will require again T (n-1) step.

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

54

So, total time taken T (n) = T (n-1)+1+ T(n-1)

Relation formula for Tower of Hanoi is:

We get,

It is a Geometric Progression Series with common ratio, r=2.

First term, a=1(20)

CIT 310 MODULE 1

55

B equation is the required complexity of technique tower of Hanoi when

we have to move n disks from one peg to another.

T (3) = 23- 1

 = 8 - 1

= 7 Ans

[As in concept we have proved that there will be 7 steps now proved by

general equation]

3.2.1 Program for Tower of Hanoi:

#include<stdio.h>

void towers(int, char, char, char);

 int main()

 {

 int num;

 printf ("Enter the number of disks : ");

 scanf ("%d", &num);

printf("The sequence of moves involved in the Tower of Hanoi are:\n");

 towers (num, 'A', 'C', 'B');

 return 0;

}

 void towers(int num, char from peg, char topeg, char auxpe

g)

 {

 if (num == 1)

 {

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

56

 printf ("\n Move disk 1 from peg %c to peg %c", from peg, to

peg);

 return;

 }

 Towers (num - 1, from peg, auxpeg, topeg);

Printf ("\n Move disk %d from peg %c to peg %c", num, from pe

g, topeg);

 Towers (num - 1, auxpeg, topeg, from peg);

 }

3.2.2 Applications of Tower of Hanoi problem

It has been used to determine the extent of brain injuries and helps to

build/rebuild neural pathways in the brain as attempting to solve, Tower

of Hanoi uses parts of the brain that involve managing time, foresight of

whether the next move will lead us closer to the solution or not.

The Tower of Hanoi is a simple puzzle game that is used to amuse

children. It is also often used as programming challenge when

discussing recursion,

3.2.3 Finding a Recurrence (Tower of Hanoi)

To answer how long it will take our friendly monks to destroy the world,

we write a recurrence (let's call it M(n)) for the number of

moves MoveTower takes for an n-disk tower.

The base case - when n is 1 - is easy: The monks just move the single

disk directly.

M(1) = 1

In the other cases, the monks follow our three-step procedure. First they

move the (n-1)-disk tower to the spare peg; this takes M(n-1) moves.

Then the monks move the nth disk, taking 1 move. And finally they

move the (n-1)-disk tower again, this time on top of the nth disk,

taking M(n-1) moves. This gives us our recurrence relation,

M(n) = 2 M(n-1) + 1.

Since the monks are handling a 64-disk tower, all we need to do is to

compute M(64), and that tells us how many moves they will have to

make.

This would be more convenient if we had M(n) into a closed-form

solution - that is, if we could write a formula for M(n) without using

CIT 310 MODULE 1

57

recursion. Do you see what it should be? (It may be helpful if you go

ahead and compute the first few values, like M(2), M(3), and M(4).)

3.2.4 Closed-form solution

Let's figure out values of M for the first few numbers.

M(1) =1

M(2)=2M(1) + 1 =3

M(3)=2M(2) + 1 =7

M(4)=2M(3) + 1 =15

M(5)=2M(4) + 1 =31

By looking at this, we can guess that M(n) = 2n - 1.

We can verify this easily by plugging it into our recurrence.

M(1) = 1 = 21 - 1

M(n) = 2 M(n - 1) + 1 = 2 (2n - 1 + 1) - 1 = 2n + 1

Since our expression 2n+1 is consistent with all the recurrence's cases,

this is the closed-form solution.

So the monks will move 264+1 (about 18.45x1018) disks. If they are

really good and can move one disk a millisecond, then they'll have to

work for 584.6 million years. It looks like we're safe.

Self-Assessment Exercise

1. Simulate the Tower-of-Hanoi problem for N = 7 disks and N = 12

disks.

2. Can we solve the Tower of Hanoi problem for any value of Tn

without using a Recurrence relation? Discuss.

3. What are the application areas for the Tower of Hanoi problem?

4.0 CONCLUSION

Recurrence relation permits us to compute the members of a sequence

one after the other starting from one or more initial values.

Recurrence relations apply recursion completely and there exist one or

more base cases to help determine the stopping criterion.

5.0 SUMMARY

In mathematics and computer science, a recurrence relation is an

equation that expresses the nth term of a sequence as a function of the k

preceding terms, for some fixed k, which is called the order of the

relation. Recurrence relations can be solved by several methods ranging

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

58

from the popular Guess-and-Verify method to the Master method and

they help us understand the workings of algorithms better.

6.0 TUTOR MARKED ASSIGNMENT

1. A new employee at an exciting new software company starts

with a salary of N50,000 and is promised that at the end of each

year her salary will be double her salary of the previous year,

with an extra increment of N10,000 for each year she has been

with the company.

a) Construct a recurrence relation for her salary for her n-th year

of employment.

b) Solve this recurrence relation to find her salary for her n-th

year of employment.

2. Suppose that there are two goats on an island initially. The

number of goats on the island doubles every year by natural

reproduction, and some goats are either added or removed each

year.

a) Construct a recurrence relation for the number of goats on the

island at the start of the n-th year, assuming that during each

year an extra 100 goats are put on the island.

b) Solve the recurrence relation from part (a) to find the number

of goats on the island at the start of the n-th year.

c) Construct a recurrence relation for the number of goats on

the island at the start of the n-th year, assuming that n goats

are removed during the n-th year for each n≥3n≥3 .

 d) Solve the recurrence relation in part (c) for the number of

goats on the island at the start of the n-th year.

3. a) Find all solutions of the recurrence

 relation an=2an−1+2n2.an=2an−1+2n2.

 b) Find the solution of the recurrence relation in part (a) with

 initial condition a1=4

CIT 310 MODULE 1

59

7.0 FURTHER READING AND OTHER RESOURCES

Jena, S. R. and Swain, S. K, (2017). Theory of Computation and

 Application, 1st Edition, University Science Press, Laxmi

 Publications.

Michalewicz, Z. and Fogel, D. (2004). How to Solve It: Modern

 Heuristics. Second Edition. Springer.

Pearl, J. (1984). Heuristics: Intelligent Search Strategies for Computer

 Problem Solving. Addison-Wesley, 1984.

CIT 310 MODULE 2

61

MODULE 2 SEARCHING AND SORTING

 ALGORITHMS

Unit 1 Bubble Sort and Selection Sort Algorithm

Unit 2 Insertion Sort and Radix Sort Algorithms

Unit 3 Linear Search and Stability in Sorting

Unit 4 Divide-and-Conquer Strategies I: Binary Search

Unit 5 Divide-and-Conquer Strategies II: Merge Sort and

 Quicksort Algorithms

UNIT 1 BUBBLE SORT AND SELECTION SORT

 ALGORITHM

1.0 Introduction

2.0 Objectives

3.0 Bubble Sort Algorithm

 3.1 How Bubble sort works

 3.2 Complexity Analysis of Bubble Sort

 3.2.1 Time Complexities

 3.2.2 Advantages of Bubble Sort

 3.2.3 Disadvantages of Bubble Sort

 3.3 Selection Sort Algorithm

 3.3.1 Algorithm Selection Sort

 3.3.2 How Selection Sort works

 3.3.3 Complexity of Selection sort

 3.3.4 Time Complexity

 3.3.5 Advantages of Selection Sort

 3.3.6 Disadvantages of Selection Sort

4.0 Conclusion

5.0 Summary

6.0 Tutor Marked Assignment

7.0 Further Reading and other Resources

1.0 INTRODUCTION

Sorting and searching are two of the most frequently needed algorithms

in program design. Common algorithms have evolved to take account of

this need.

Since computers were created, users have devised programs, many of

which have needed to do the same thing. As a result,

common algorithms have evolved and been adopted in many programs.

Two algorithms often used are searches and sorts:

 searches allow a set of data to be examined and for a specific item

to be found

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

62

 sorts allow a data set to be sorted into order

 Methods of searching include:

 linear search

 binary search

Methods of sorting include:

 bubble sort

 merge sort

 insertion sort

 quicksort

 radix sort

 selection sort

2.0 OBJECTIVES

By the end of this unit, you should be able to:

 Know some of the techniques for sorting a list containing

numbers or texts

 Identify how the bubble sort and Selection sort algorithm works

 Know some benefits and disadvantages of Bubble sort and

Selection sort

 Identify the worst case and best case of Bubble sort and selection

sort

 Know where the bubble sort and selection sort algorithms are

applied

3.0 Bubble Sort

Bubble Sort, also known as Exchange Sort, is a simple sorting

algorithm. It works by repeatedly stepping throughout the list to be

sorted, comparing two items at a time and swapping them if they are in

the wrong order. The pass through the list is duplicated until no swaps

are desired, which means the list is sorted.

This is the easiest method among all sorting algorithms.

CIT 310 MODULE 2

63

Algorithm

Step 1 ➤ Initialization

set 1 ← n, p ← 1

Step 2 ➤ loop,

Repeat through step 4 while (p ≤ n-1)

set E ← 0 ➤ Initializing exchange variable.

Step 3 ➤ comparison, loop.

Repeat for i ← 1, 1, …... l-1.

if (A [i] > A [i + 1]) then

set A [i] ↔ A [i + 1] ➤ Exchanging values.

Set E ← E + 1

Step 4 ➤ Finish, or reduce the size.

if (E = 0) then

exit

else

set l ← l - 1.

3.1 How Bubble Sort Works

1. The bubble sort starts with the very first index and makes it a

bubble element. Then it compares the bubble element, which is

currently our first index element, with the next element. If the

bubble element is greater and the second element is smaller, then

both of them will swap.

After swapping, the second element will become the bubble

element. Now we will compare the second element with the third

as we did in the earlier step and swap them if required. The same

process is followed until the last element.

2. We will follow the same process for the rest of the iterations.

After each of the iteration, we will notice that the largest element

present in the unsorted array has reached the last index.

 For each iteration, the bubble sort will compare up to the last unsorted

element.

Once all the elements get sorted in the ascending order, the algorithm

will get terminated.

Consider the following example of an unsorted array that we will sort

with the help of the Bubble Sort algorithm.

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

64

Initially,

16 36 24 37 15

Pass 1:

o Compare a0 and a1

16 30 24 37 15

As a0 < a1 so the array will remain as it is.

o Compare a1 and a2

16 36 24 37 15

Now a1 > a2, so we will swap both of them.

 16 24 36 37 15

o Compare a2 and a3

16 24 36 37 15

As a2 < a3 so the array will remain as it is.

o Compare a3 and a4

16 24 36 37 15

Here a3 > a4, so we will again swap both of them.

16 24 36 15 37

Pass 2:

o Compare a0 and a1

16 24 36 15 37

As a0 < a1 so the array will remain as it is.

o Compare a1 and a2

16 24 36 15 37

Here a1 < a2, so the array will remain as it is.

o Compare a2 and a3

16 24 36 15 37

In this case, a2 > a3, so both of them will get swapped.

16 24 15 36 37

Pass 3:

o Compare a0 and a1

16 24 15 36 37

As a0 < a1 so the array will remain as it is.

o Compare a1 and a2

16 24 15 36 37

Now a1 > a2, so both of them will get swapped.

16 15 24 36 37

Pass 4:

o Compare a0 and a1

16 15 24 36 37

Here a0 > a1, so we will swap both of them.

CIT 310 MODULE 2

65

15 16 24 36 37

Hence the array is sorted as no more swapping is required.

3.2.1 Complexity Analysis of Bubble Sort

Input: Given n input elements.

Output: Number of steps incurred to sort a list.

Logic: If we are given n elements, then in the first pass, it

will do n-1 comparisons; in the second pass, it will

do n-2; in the third pass, it will do n-3 and so on.

Thus, the total number of comparisons can be found

by;

Therefore, the bubble sort algorithm encompasses a time complexity

of O(n2) and a space complexity of O(1) because it necessitates some

extra memory space for temp variable for swapping.

3.2.2 Time Complexities:

 Best Case Complexity: The bubble sort algorithm has a best-

case time complexity of O(n) for the already sorted array.

 Average Case Complexity: The average-case time complexity

for the bubble sort algorithm is O(n2), which happens when 2 or

more elements are in jumbled, i.e., neither in the ascending order

nor in the descending order.

 Worst Case Complexity: The worst-case time complexity is

also O(n2), which occurs when we sort the descending order of

an array into the ascending order.

3.2.3 Advantages of Bubble Sort

1. Easily understandable.

2. Does not necessitate any extra memory.

3. The code can be written easily for this algorithm.

4. Minimal space requirement than that of other sorting algorithms.

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

66

3.2.4 Disadvantages of Bubble Sort

1. It does not work well when we have large unsorted lists, and it

necessitates more resources that end up taking so much of time.

2. It is only meant for academic purposes, not for practical

implementations.

3. It involves the n2 order of steps to sort an algorithm.

Self-Assessment Exercise

1. What exactly do we mean by the concept of “Sorting”

2. Explain the terms “Sorting in Ascending order” and “Sorting in

 Descending order”.

3. Why do we prefer using the Bubble sort algorithm in teaching

 Sorting and in sorting small list of numbers?

3.3 Selection Sort Algorithm

The selection sort enhances the bubble sort by making only a single

swap for each pass through the rundown. In order to do this, a selection

sort searches for the biggest value as it makes a pass and, after finishing

the pass, places it in the best possible area. Similarly, as with a bubble

sort, after the first pass, the biggest item is in the right place. After the

second pass, the following biggest is set up. This procedure proceeds

and requires n-1 goes to sort n item since the last item must be set up

after the (n-1) th pass.

3.3.1 Algorithm: Selection Sort (A)

k ← length [A]

for j ←1 to n-1

smallest ← j

for I ← j + 1 to k

if A [i] < A [smallest]

then smallest ← i

exchange (A [j], A [smallest])

3.3.2 How Selection Sort works

1. In the selection sort, first of all, we set the initial element as

a minimum.

2. Now we will compare the minimum with the second element. If

the second element turns out to be smaller than the minimum, we

CIT 310 MODULE 2

67

will swap them, followed by assigning to a minimum to the third

element.

3. Else if the second element is greater than the minimum, which is

our first element, then we will do nothing and move on to the

third element and then compare it with the minimum. We will

repeat this process until we reach the last element.

4. After the completion of each iteration, we will notice that our

minimum has reached the start of the unsorted list.

5. For each iteration, we will start the indexing from the first

element of the unsorted list. We will repeat the Steps from 1 to 4

until the list gets sorted or all the elements get correctly

positioned.

6. Consider the following example of an unsorted array that we will

sort with the help of the Selection Sort algorithm.

A[] = (7, 4, 3, 6, 5).

A [] =

1st Iteration:

Set minimum = 7

o Compare a0 and a1

As, a0 > a1, set minimum = 4.

o Compare a1 and a2

As, a1 > a2, set minimum = 3.

o Compare a2 and a3

As, a2 < a3, set minimum= 3.

o Compare a2 and a4

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

68

As, a2 < a4, set minimum =3.

Since 3 is the smallest element, so we will swap a0 and a2.

2nd Iteration:

Set minimum = 4

o Compare a1 and a2

As, a1 < a2, set minimum = 4.

o Compare a1 and a3

As, A[1] < A[3], set minimum = 4.

o Compare a1 and a4

Again, a1 < a4, set minimum = 4.

Since the minimum is already placed in the correct position, so there

will be no swapping.

3rd Iteration:

Set minimum = 7

o Compare a2 and a3

As, a2 > a3, set minimum = 6.

o Compare a3 and a4

CIT 310 MODULE 2

69

As, a3 > a4, set minimum = 5.

Since 5 is the smallest element among the leftover unsorted elements, so

we will swap 7 and 5.

4th Iteration:

Set minimum = 6

o Compare a3 and a4

As a3 < a4, set minimum = 6.

Since the minimum is already placed in the correct position, so there

will be no swapping.

3.3.3 Complexity Analysis of Selection Sort

Input: Given n input elements.

Output: Number of steps incurred to sort a list.

Logic: If we are given n elements, then in the first pass, it will

do n-1 comparisons; in the second pass, it will do n-2; in the third pass,

it will do n-3 and so on. Thus, the total number of comparisons can be

found by;

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

70

Therefore, the selection sort algorithm encompasses a time complexity

of O(n2) and a space complexity of O(1) because it necessitates some

extra memory space for temp variable for swapping.

3.3.4 Time Complexities:

 Best Case Complexity: The selection sort algorithm has a best-

case time complexity of O(n2) for the already sorted array.

 Average Case Complexity: The average-case time complexity

for the selection sort algorithm is O(n2), in which the existing

elements are in jumbled ordered, i.e., neither in the ascending

order nor in the descending order.

 Worst Case Complexity: The worst-case time complexity is

also O(n2), which occurs when we sort the descending order of

an array into the ascending order.

3.3.5 Advantages of Selection Sort

 It is an in-place algorithm. It does not require a lot of space for

sorting. Only one extra space is required for holding the temporal

variable.

 It performs well on items that have already been sorted

3.3.6 Disadvantage of selection sort

 As the input size increases, the performance of selection sort

decreases.

Self-Assessment Exercise

1. How does the Selection sort algorithm work?

2. What is the Average case and Worst case complexity of the

 Selection Sort algorithm?

4.0 CONCLUSION

The sorting problem enables us to find better algorithms that would help

arrange the numbers in a list or sequence in any order. Ascending order

is when it is arranged from Smallest to Biggest while Descending order

is when the list is arranged from biggest item to the smallest item. We

looked at the case of the bubble sort and the Selection sort algorithms

which are well suited for sorting a small-sized list efficiently.

CIT 310 MODULE 2

71

5.0 SUMMARY

In simple terms, the Sorting algorithm arranges a list from either

smallest item consecutively to the biggest item (Ascending order) or

from the biggest item consecutively to the smallest item (Descending

order).

Two methods of Sorting small-sized lists (Bubble sort and Selection

Sort) were introduced and incidentally, they both have the same Worst

case runnung time of O(n2).

6.0 TUTOR MARKED ASSIGNMENT

1. Sort the following list [76, 23, 65, 2, 8, 43, 88, 2, 4, 7, 23, 8, 65]

 in ascending order using Selection Sort.

2. Sort the list given in Question 1 above in descending order using

 Bubble sort?

3. What are two benefits each of Bubble Sort and Selection Sort

 algorithms?

7.0 FURTHER READING AND OTHER RESOURCES

Baase, S. and Van Gelder, A. (2008). Computer Algorithms:

 Introduction to Design and Analysis, Pearson Education.

Jena, S. R. and Patro, S. (2018) – Design and Analysis of Algorithms,

 ISBN 978-93-935274-311-7

Karumanchi, N. (2016). Data Structures and Algorithms, CareerMonk

 Publications. ISBN-13 : 978-8193245279

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

72

UNIT 2 INSERTION SORT AND LINEAR SEARCH

 ALGORITHM

1.0 Introduction

2.0 Objectives

3.0 Insertion Sort

 3.1 How Insertion sort works

 3.2 Complexity of Insertion sort

 3.2.1 Time Complexities

 3.2.2 Space Complexity

 3.2.3 Insertion sort Applications

 3.2.4 Advantages of Insertion sort

 3.2.5 Disadvantages of Insertion sort

 3.3 Linear Search Algorithm

 3.4 Complexity of Linear Search

 3.4.1 Advantages of Linear Search

 3.4.2 Disadvantages of Linear Search

4.0 Conclusion

5.0 Summary

6.0 Tutor Marked Assignments

7.0 Further Reading and Other Resources

1.0 INTRODUCTION

Insertion sort is one of the simplest sorting algorithms for the reason that

it sorts a single element at a particular instance. It is not the best sorting

algorithm in terms of performance, but it's slightly more efficient

than selection sort and bubble sort in practical scenarios. It is an intuitive

sorting technique.

2.0 OBJECTIVES

By the end of this unit, you will be able to:

 Know how Insertion sort and Linear search works

 Understand the complexities of both Linear search and Insertion

sort

 Know the advantages and disadvantages of Linear search

 Know the advantages and disadvantages of Insertion sort

 Use the Linear Search and Insertion sort algorithms to write good

programs in any programming language of your choice.

https://www.javatpoint.com/daa-selection-sort

CIT 310 MODULE 2

73

3.0 INSERTION SORT

Insertion sort is one of the simplest sorting algorithms for the reason that

it sorts a single element at a particular instance. It is not the best sorting

algorithm in terms of performance, but it's slightly more efficient

than selection sort and bubble sort in practical scenarios. It is an intuitive

sorting technique.

Let's consider the example of cards to have a better understanding of the

logic behind the insertion sort.

Suppose we have a set of cards in our hand, such that we want to

arrange these cards in ascending order. To sort these cards, we have a

number of intuitive ways.

One such thing we can do is initially we can hold all of the cards in our

left hand, and we can start taking cards one after other from the left

hand, followed by building a sorted arrangement in the right hand.

Assuming the first card to be already sorted, we will select the next

unsorted card. If the unsorted card is found to be greater than the

selected card, we will simply place it on the right side, else to the left

side. At any stage during this whole process, the left hand will be

unsorted, and the right hand will be sorted.

In the same way, we will sort the rest of the unsorted cards by placing

them in the correct position. At each iteration, the insertion algorithm

places an unsorted element at its right place.

Algorithm: Insertion Sort (A)

1. for j = 2 to A.length

2. key = A[j]

3. // Insert A[j] into the sorted sequence A[1.. j - 1]

4. i = j - 1

5. while i > 0 and A[i] > key

6. A[i + 1] = A[i]

7. ii = i -1

8. A[i + 1] = key

3.1 How Insertion Sort Works

1. We will start by assuming the very first element of the array is already

sorted. Inside the key, we will store the second element.

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

74

Next, we will compare our first element with the key, such that if the

key is found to be smaller than the first element, we will interchange

their indexes or place the key at the first index. After doing this, we will

notice that the first two elements are sorted.

2. Now, we will move on to the third element and compare it with the

left-hand side elements. If it is the smallest element, then we will place

the third element at the first index.

Else if it is greater than the first element and smaller than the second

element, then we will interchange its position with the third element and

place it after the first element. After doing this, we will have our first

three elements in a sorted manner.

3. Similarly, we will sort the rest of the elements and place them in their

correct position.

Consider the following example of an unsorted array that we will sort

with the help of the Insertion Sort algorithm.

A = (41, 22, 63, 14, 55, 36)

Initially,

1st Iteration:

Set key = 22

Compare a1 with a0

Since a0 > a1, swap both of them.

2nd Iteration:

Set key = 63

Compare a2 with a1 and a0

Since a2 > a1 > a0, keep the array as it is.

CIT 310 MODULE 2

75

3rd Iteration:

Set key = 14

Compare a3 with a2, a1 and a0

Since a3 is the smallest among all the elements on the left-hand side,

place a3 at the beginning of the array.

4th Iteration:

Set key = 55

Compare a4 with a3, a2, a1 and a0.

As a4 < a3, swap both of them.

5th Iteration:

Set key = 36

Compare a5 with a4, a3, a2, a1 and a0.

Since a5 < a2, so we will place the elements in their correct positions.

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

76

Hence the array is arranged in ascending order, so no more swapping is

required.

3.2 Complexity Analysis of Insertion Sort

Input: Given n input elements.

Output: Number of steps incurred to sort a list.

Logic: If we are given n elements, then in the first pass, it will

make n-1 comparisons; in the second pass, it will do n-2;

in the third pass, it will do n-3 and so on. Thus, the total

number of comparisons can be found by;

Output:

(n-1) + (n-2) + (n-3) + (n-4) = …… +1

Sum = i.e…. O(n2)

Therefore, the insertion sort algorithm encompasses a time complexity

of O(n2) and a space complexity of O(1) because it necessitates some

extra memory space for a key variable to perform swaps.

3.2.1 Time Complexities

 Best Case Complexity: The insertion sort algorithm has a best-

case time complexity of O(n) for the already sorted array because

here, only the outer loop is running n times, and the inner loop is

kept still.

 Average Case Complexity: The average-case time complexity

for the insertion sort algorithm is O(n2), which is incurred when

the existing elements are in jumbled order, i.e., neither in the

ascending order nor in the descending order.

 Worst Case Complexity: The worst-case time complexity is

also O(n2), which occurs when we sort the ascending order of an

array into the descending order.

In this algorithm, every individual element is compared with the

rest of the elements, due to which n-1 comparisons are made for

every nth element.

CIT 310 MODULE 2

77

The insertion sort algorithm is highly recommended, especially when a

few elements are left for sorting or in case the array encompasses few

elements.

3.2.2 Space Complexity

The insertion sort encompasses a space complexity of O(1) due to the

usage of an extra variable key.

3.2.3 Insertion Sort Applications

The insertion sort algorithm is used in the following cases:

 When the array contains only a few elements.

 When there exist few elements to sort.

3.2.4 Advantages of Insertion Sort

1. It is simple to implement.

2. It is efficient on small datasets.

3. It is stable (does not change the relative order of elements with

equal keys)

4. It is in-place (only requires a constant amount O (1) of extra

memory space).

5. It is an online algorithm, which can sort a list when it is received.

3.2.5 Disadvantages of Insertion Sort

1. Insertion sort is inefficient against more extensive data sets.

2. The insertion sort exhibits the worst-case time complexity of

O(n2)

3. It does not perform well than other, more advanced sorting

algorithms

Self-Assessment Exercise:

1. What is the worst case time complexity of insertion sort where

position of the data to be inserted is calculated using binary

search?

2. Consider an array of elements arr[5]= {5,4,3,2,1} , what are the

steps of insertions done while doing insertion sort in the array.

3. How many passes does an insertion sort algorithm consist of?

4. What is the average case running time of an insertion sort

 algorithm?

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

78

5. What is the running time of an insertion sort algorithm if the

input is pre-sorted?

3.3 Linear Search

A linear search is the simplest method of searching a data set.

Starting at the beginning of the data set, each item of data is examined

until a match is made. Once the item is found, the search ends.

A way to describe a linear search would be:

1. Find out the length of the data set.

2. Set counter to 0.

3. Examine value held in the list at the counter position.

4. Check to see if the value at that position matches the value

searched for.

5. If it matches, the value is found. End the search.

6. If not, increment the counter by 1 and go back to step 3 until there

are no more items to search.

Consider this list of unordered numbers:

Suppose we were to search for the value 2. The search would start at

position 0 and check the value held there, in this case 3.

3 does not match 2, so we move on to the next position.

The value at position 1 is 5.

5 does not match 2, so we move on to the next position.

The value at position 2 is 2 - a match. The search ends.

A linear search in pseudocode might look like this:

find = 2

found = False

length = list.length

counter = 0

while found == False and counter < length

if list[counter] == find then found = True

print ('Found at position', counter)

else:

counter = counter + 1

endif

endwhile

if found == False then

print('Item not found')

endif

CIT 310 MODULE 2

79

A linear search, although simple, can be quite inefficient. Suppose the

data set contained 100 items of data, and the item searched for happens

to be the last item in the set? All of the previous 99 items would have to

be searched through first.

However, linear searches have the advantage that they will work on any

data set, whether it is ordered or unordered.

3.4 Complexity of Linear Search

The worst case complexity of linear search is O(n).

If the element to be searched lived on the the first memory block then

the best case complexity would be: O(1).

3.4.1 Advantages of Linear Search

a. Will perform fast searches of small to medium lists. With today's

powerful computers, small to medium arrays can be searched

relatively quickly.

b. The list does not need to sorted. ...

c. Not affected by insertions and deletions.

3.4.2 Disadvantages of Linear Search

a. It is less efficient in the case of large-size data sets.

b. The worst- case scenario for finding the element is O(n).

Self-Assessment Exercises

1. Given a list of numbers 12, 45, 23, 7, 9, 10, 22, 87, 45, 23, 34, 56

a. Use the linear search algorithm to search for the number 10

b. Comment on the worst-case running time of your algorithm

2. When do we consider the linear search algorithm a better

alternative?

3. What is the best case for linear search?

4.0 CONCLUSION

The Insertion sort is a simple sorting algorithm that builds the final

sorted array one item at a time. It is much less efficient on large lists

than more advanced algorithms such as quicksort, or merge sort while a

linear search or sequential search is a method for finding an element

within a list. It sequentially checks each element of the list until a match

is found or the whole list has been searched

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

80

5.0 SUMMARY

We examined the Insertion sort algorithm and how it can be used to sort

or arrange a list in any order while at the same time noting its

complexity, advantages and disadvantages. A Linear Search algorithm

which is also known as Sequential search is used in finding a given

element in a list and returns a positive answer once the element is

located else it returns a negative answer. Linear search is very efficient

for searching an item within a small-sized list’

6.0 TUTOR MARKED ASSIGNMENT

1. How many linear searches will it take to find the value 7 in the list

[1,4,8,7,10,28]?

2. Consider the following lists of partially sorted numbers. The

double bars represent the sort marker. How many comparisons

and swaps are needed to sort the next number. [1 3 4 8 9 || 5 2]

using Insertion sort?

3. What is an advantage of the Linear search algorithm?

4. If all the elements in an input array is equal for example

{1,1,1,1,1,1}, what would be the running time of the Insertion

sort Algorithm?

5. For linear search, describe the "worst case scenario" and the “best

case scenario.

7.0 FURTHER READING AND OTHER RESOURCES

Berman, K. and Paul,J. (2004). Algorithms: Sequential, Parallel, and

 Distributed. Course Technology.

Cormen, T. H., Leiserson,C, Rivest,R. and Stein,C. (2009). Introduction

 to Algorithms. Third Edition. MIT Press.

Trivedi, K. S.(2001). Probability and Statistics with Reliability,

 Queueing, and Computer Science Applications. Second Edition.

 Wiley-Blackwell Publishing.

CIT 310 MODULE 2

81

UNIT 3 RADIX SORT AND STABILITY IN SORTING

1.0 Introduction

2.0 Objectives

3.0 Radix Sort

 3.1 Complexity of Radix Sort

 3.1.1 Advantages of Radix Sort

 3.1.2 Disadvantages of Radix Sort

 3.1.3 Applications of Radix Sort

 3.2 Stability in Sorting

 3.2.1 Why is Stable Sort Useful?

4.0 Conclusion

5.0 Summary

6.0 Tutor Marked Assignments

7.0 Further Reading and Other Resources

1.0 INTRODUCTION

Radix sort is one of the simplest sorting algorithms for the reason that it

sorts a single element at a particular instance. It is not the best sorting

algorithm in terms of performance, but it's slightly more efficient

than selection sort and bubble sort in practical scenarios. It is an intuitive

sorting technique.

2.0 OBJECTIVES

By the end of this unit, you will be able to:

 Know how to calculate with various data types

 Specify input and output statements

 Differentiate between formatted and unformatted I/O statements.

3.0 Radix Sort

Radix Sort is a Sorting algorithm that is useful when there is a constant

'd' such that all keys are d digit numbers. To execute Radix Sort, for p

=1 towards 'd' sort the numbers with respect to the Pth digits from the

right using any linear time stable sort.

Radix sort is a sorting technique that sorts the elements digit to digit

based on radix. It works on integer numbers. To sort the elements of the

string type, we can use their hash value. This sorting algorithm makes

no comparison.

https://www.javatpoint.com/daa-selection-sort

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

82

The Code for Radix Sort is straightforward. The following procedure

assumes that each element in the n-element array A has d digits, where

digit 1 is the lowest order digit and digit d is the highest-order digit.

Here is the algorithm that sorts A [1.n] where each number is d digits

long.

Radix-Sort (array A, int n, int d)

 1 for i ← 1 to d

 2 do stably sort A to sort array A on digit i

Example: The first Column is the input. The remaining Column shows

the list after successive sorts on increasingly significant digit position.

The vertical arrows indicate the digits position sorted on to produce each

list from the previous one.

576 49[4] 9[5]4 [1]76 176

494 19[4] 5[7]6 [1]94 194

194 95[4] 1[7]6 [2]78 278

296 → 57[6] → 2[7]8 → [2]96 → 296

278 29[6] 4[9]4 [4]94 494

176 17[6] 1[9]4 [5]76 576

954 27[8] 2[9]6 [9]54 954

3.1 Complexity of the Radix sort algorithm

Worst case time complexity

The worst case in radix sort occurs when all elements have the same

number of digits except one element which has significantly large

number of digits. If the number of digits in the largest element is equal

to n, then the runtime becomes O(n2). The worst case running time of

Counting sort is O(n+b). If b=O(n), then the worst case running time is

O(n). Here,the countingSort function is called for d times, where d

= ⌊logb(mx)+1⌋⌊logb(mx)+1⌋.
Total worst case complexity of radix sort is O(logb(mx)(n+b)).

Best case time complexity

The best case occurs when all elements have the same number of digits.

The best case time complexity is O(d(n+b)). If b = O(n), then time

complexity is O(dn).

Average case time complexity

CIT 310 MODULE 2

83

In the average case, we have considered the distribution of the number

of digits. There are D passes and each digit can take on up to b possible

values. Radix sort doesn't depend on the input sequence, so we may

keep n as a constant.

The running time of radix sort is, T(n) = d(n+b). Taking expectations of

both sides and using linearity of expectation,

The average case time complexity of radix sort is O(D*(n+b)).

Space Complexity

In this algorithm, we have two auxiliary arrays cnt of size b (base)

and tempArray of size n (number of elements), and an input

array arr of size n.

Space complexity: O(n+b)

The base of the radix sort doesn't depend upon the number of elements.

In some cases, the base may be larger than the number of elements.

Radix sort becomes slow when the element size is large but the radix is

small. We can't always use a large radix cause it requires large memory

in counting sort. It is good to use the radix sort when d is small.

3.1.1 Advantages of Radix Sort:

 Fast when the keys are short i.e. when the range of the array

elements is less.

 Used in suffix array construction algorithms like Manber's

algorithm and DC3 algorithm.

 Radix Sort is stable sort as relative order of elements with equal

values is maintained.

3.1.2 Disadvantages of Radix Sort:

 Since Radix Sort depends on digits or letters, Radix Sort is much

less flexible than other sorts. ...

 The constant for Radix sort is greater compared to other sorting

algorithms.

 It takes more space compared to Quicksort which is in-place

sorting.

3.1.3 Applications of Radix Sort

Here are a few applications of the radix sort algorithm:

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

84

 Radix sort can be applied to data that can be sorted

lexicographically, such as words and integers. It is also used for

stably sorting strings.

 It is a good option when the algorithm runs on parallel machines,

making the sorting faster. To use parallelization, we divide the

input into several buckets, enabling us to sort the buckets in

parallel, as they are independent of each other.

 It is used for constructing a suffix array. (An array that contains

all the possible suffixes of a string in sorted order is called a

suffix array.

Self-Assessment Exercises

1. If we use Radix Sort to sort n integers in the range (nk/2,nk], for

some k>0 which is independent of n, the time taken would be?

2. The maximum number of comparisons needed to sort 9 items

using radix sort is? (assume each item is 5 digit octal number):

3. Sort the following list in descending order using the Radix sort

algorithm

3.2 Stability in Sorting

Stable sort algorithms sort equal elements in the same order that they

appear in the input. For example, in the card sorting example to the

right, the cards are being sorted by their rank, and their suit is being

ignored. This allows the possibility of multiple different correctly sorted

versions of the original list. Stable sorting algorithms choose one of

these, according to the following rule: if two items compare as equal

(like the two 5 cards), then their relative order will be preserved, i.e. if

one comes before the other in the input, it will come before the other in

the output.

Stability is important to preserve order over multiple sorts on the

same data set. For example, say that student records consisting of name

and class section are sorted dynamically, first by name, then by class

section. If a stable sorting algorithm is used in both cases, the sort-by-

class-section operation will not change the name order; with an unstable

sort, it could be that sorting by section shuffles the name order, resulting

in a nonalphabetical list of students.

More formally, the data being sorted can be represented as a record or

tuple of values, and the part of the data that is used for sorting is called

the key. In the card example, cards are represented as a record (rank,

suit), and the key is the rank. A sorting algorithm is stable if whenever

there are two records R and S with the same key, and R appears before S

in the original list, then R will always appear before S in the sorted list.

CIT 310 MODULE 2

85

When equal elements are indistinguishable, such as with integers, or

more generally, any data where the entire element is the key, stability is

not an issue. Stability is also not an issue if all keys are different.

An example of stable sort on playing cards. When the cards are sorted

by rank with a stable sort, the two 5s must remain in the same order in

the sorted output that they were originally in. When they are sorted with

a non-stable sort, the 5s may end up in the opposite order in the sorted

output.

Unstable sorting algorithms can be specially implemented to be stable.

One way of doing this is to artificially extend the key comparison, so

that comparisons between two objects with otherwise equal keys are

decided using the order of the entries in the original input list as a tie-

breaker. Remembering this order, however, may require additional time

and space.

One application for stable sorting algorithms is sorting a list using a

primary and secondary key. For example, suppose we wish to sort a

hand of cards such that the suits are in the order clubs (♣), diamonds (♦),

hearts (♥), spades (♠), and within each suit, the cards are sorted by rank.

This can be done by first sorting the cards by rank (using any sort), and

then doing a stable sort by suit:

https://en.wikipedia.org/wiki/File:Sorting_stability_playing_cards.svg

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

86

Within each suit, the stable sort preserves the ordering by rank that was

already done. This idea can be extended to any number of keys and is

utilized by radix sort. The same effect can be achieved with an unstable

sort by using a lexicographic key comparison, which, e.g., compares

first by suit, and then compares by rank if the suits are the same.

3.2.1 Why is stable sort useful?

A stable sorting algorithm maintains the relative order of the items

with equal sort keys. An unstable sorting algorithm does not. In other

words, when a collection is sorted with a stable sorting algorithm, items

with the same sort keys preserve their order after the collection is sorted.

Suppose you need to sort following key-value pairs in the increasing

order of keys:

INPUT: (4,5), (3, 2) (4, 3) (5,4) (6,4)

Now, there is two possible solution for the two pairs where the key is

same i.e. (4,5) and (4,3) as shown below:

OUTPUT1: (3, 2), (4, 5), (4,3), (5,4), (6,4)

OUTPUT2: (3, 2), (4, 3), (4,5), (5,4), (6,4)

The sorting algorithm which will produce the first output will be known

as stable sorting algorithm because the original order of equal keys are

maintained, you can see that (4, 5) comes before (4,3) in the sorted

order, which was the original order i.e. in the given input, (4, 5) comes

before (4,3) .

On the other hand, the algorithm which produces second output will

know as an unstable sorting algorithm because the order of objects with

the same key is not maintained in the sorted order. You can see that in

https://en.wikipedia.org/wiki/File:Sorting_playing_cards_using_stable_sort.svg

CIT 310 MODULE 2

87

the second output, the (4,3) comes before (4,5) which was not the case

in the original input.

Self-Assessment Exercise

1. Can any unstable sorting algorithm be altered to become stable?

If so, how?

2. What is the use of differentiating algorithms on the basis of

stability?

3. When is it definitely unnecessary to look at the nature of stability

of a sorting algorithm?

4. What are some stable sorting techniques?

5. What properties of sorting algorithms are most likely to get

affected when a typically unstable sorting algorithm is

implemented to be stable?

4.0 CONCLUSION

In computer science, radix sort is a non-comparative sorting algorithm.

It avoids comparison by creating and distributing elements into buckets

according to their radix. Stable sorting algorithms on the other hand

maintain the relative order of records with equal keys (i.e. values). That

is, a sorting algorithm is stable if whenever there are two records R and

S with the same key and with R appearing before S in the original list, R

will appear before S in the sorted list.

5.0 SUMMARY

We considered another good example of a sorting algorithm known as

Radix sort which unconsciously, is the commonest method we use in

sorting some items in a list. On the other hand, we looked at stability in

sorting algorithms and how to identify stable and unstable sorting

algorithms.

6.0 TUTOR MARKED ASSIGNMENT

1. In what cases should we prefer using stable sorting algorithms?

2. Assuming that the number of digits used is not excessive, the

worst-case cost for Radix Sort when sorting nn keys with distinct

key values is:

3. If an unstable sorting algorithm happens to preserve the relative

order in a particular example, is it said to be stable?

4. The running time of radix sort on an array of n integers in the

range [0……..n5 -1] when using base 10 representation is?

5. How can you convert an unstable sorting algorithm into a stable

sorting algorithm?

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

88

7.0 FURTHER READING AND OTHER RESOURCES

Dave, P. H. and Dave, H. B. (2008). Design and Analysis of Algorithms,

 Pearson Education.

Jena, S. R. and Swain, S. K, (2017). Theory of Computation and

 Application, 1st Edition, University Science Press, Laxmi

 Publications.

Levitin, A. (2012). Introduction to the Design and Analysis of

 Algorithms, 3rd Ed. Pearson Education, ISBN 10-0132316811

Michalewicz, Z. and Fogel, D. (2004). How to Solve It: Modern

 Heuristics. Second Edition. Springer.

CIT 310 MODULE 2

89

UNIT 4 DIVIDE AND CONQUER STRATEGIES I:

 BINARY SEARCH ALGORITHM

1.0 Introduction

2.0 Objectives

3.0 Divide-and-Conquer Algorithms

 3.1 Fundamentals of Divide-and-Conquer Strategy

 3.1.1 Applications of Divide-and-Conquer Approach

 3.1.2 Advantages of Divide-and-Conquer

 3.1.3 Disadvantages of Divide-and-Conquer

 3.1.4 Properties of Divide-and-Conquer Algorithms

 3.2 Binary Search

 3.2.1 Complexity of Binary Search

 3.1.2 Advantages of Binary Search

 3.1.3 Disadvantages of Binary Search

 3.1.4 applications of Binary Search

4.0 Conclusion

5.0 Summary

6.0 Tutor Marked Assignment

7.0 Further Reading and other Resources

1.0 INTRODUCTION

Divide-and-Conquer is a useful problem-solving technique that divides a

large instance of a problem sixe into smaller and smaller instances and

then solves these smaller instances to give a complete solution of the

bigger problem. There are several strategies for implementing the

Divide-and-Conquer approach and we shall first examine the Binary

Search algorithm which first requires that a list be sorted and then

proceeds to find any requested item on the list and is very efficient for

large lists since it uses logarithmic time.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

 Know the meaning of a Divide-and-Conquer Algorithm

 Know how to use a Divide-and-Conquer algorithm

 Know the different applications of Divide-and-Conquer

algorithms

 Understand the Binary Search algorithm,

 Know why the Binary Search algorithm is useful

 Understand the benefits and shortcomings of Binary search

 Know the different application areas of Binary Search

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

90

3.0 Divide and Conquer Algorithms

Divide and Conquer is an algorithmic pattern. In algorithmic methods,

the design is to take a dispute on a huge input, break the input into minor

pieces, decide the problem on each of the small pieces, and then merge

the piecewise solutions into a global solution. This mechanism of

solving the problem is called the Divide & Conquer Strategy.

Divide and Conquer algorithm consists of a dispute using the following

three steps.

1. Divide the original problem into a set of sub-problems.

2. Conquer: Solve every sub-problem individually, recursively.

3. Combine: Put together the solutions of the sub-problems to get

the solution to the whole problem.

Generally, we can follow the divide-and-conquer approach in a three-

step process.

Examples: The specific computer algorithms are based on the Divide &

Conquer approach:

1. Maximum and Minimum Problem

2. Binary Search

3. Sorting (merge sort, quick sort)

4. Tower of Hanoi.

CIT 310 MODULE 2

91

3.1 Fundamental of Divide & Conquer Strategy:

There are two fundamental of Divide & Conquer Strategy:

1. Relational Formula

2. Stopping Condition

1. Relational Formula: It is the formula that we generate from the

 given technique. After generation of Formula we apply D&C

 Strategy, i.e. we break the problem recursively & solve the

 broken sub-problems.

2. Stopping Condition: When we break the problem using Divide

 & Conquer Strategy, then we need to know that for how much

 time, we need to apply divide & Conquer. So the condition where

 the need to stop our recursion steps of Divide & Conquer is

 called as Stopping Condition.

3.1.1 Applications of Divide and Conquer Approach:

Following algorithms are based on the concept of the Divide and

Conquer Technique:

1. Binary Search: The binary search algorithm is a searching

algorithm, which is also called a half-interval search or

logarithmic search. It works by comparing the target value with

the middle element existing in a sorted array. After making the

comparison, if the value differs, then the half that cannot contain

the target will eventually eliminate, followed by continuing the

search on the other half. We will again consider the middle

element and compare it with the target value. The process keeps

on repeating until the target value is met. If we found the other

half to be empty after ending the search, then it can be concluded

that the target is not present in the array.

2. Quicksort: It is the most efficient sorting algorithm, which is

also known as partition-exchange sort. It starts by selecting a

pivot value from an array followed by dividing the rest of the

array elements into two sub-arrays. The partition is made by

comparing each of the elements with the pivot value. It compares

whether the element holds a greater value or lesser value than the

pivot and then sort the arrays recursively.

3. Merge Sort: It is a sorting algorithm that sorts an array by

making comparisons. It starts by dividing an array into sub-array

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

92

and then recursively sorts each of them. After the sorting is done,

it merges them back.

4. Closest Pair of Points: It is a problem of computational

geometry. This algorithm emphasizes finding out the closest pair

of points in a metric space, given n points, such that the distance

between the pair of points should be minimal.

5. Strassen's Algorithm: It is an algorithm for matrix

multiplication, which is named after Volker Strassen. It has

proven to be much faster than the traditional algorithm when

works on large matrices.

6. Cooley-Tukey Fast Fourier Transform (FFT) algorithm: The

Fast Fourier Transform algorithm is named after J. W. Cooley

and John Turkey. It follows the Divide and Conquer Approach

and imposes a complexity of O(nlogn).

7. Karatsuba algorithm for fast multiplication: It is one of the

fastest multiplication algorithms of the traditional time, invented

by Anatoly Karatsuba in late 1960 and got published in 1962. It

multiplies two n-digit numbers in such a way by reducing it to at

most single-digit.

3.1.2 Advantages of Divide and Conquer

a. Divide and Conquer tend to successfully solve one of the biggest

problems, such as the Tower of Hanoi, a mathematical puzzle. It

is challenging to solve complicated problems for which you have

no basic idea, but with the help of the divide and conquer

approach, it has lessened the effort as it works on dividing the

main problem into two halves and then solve them recursively.

This algorithm is much faster than other algorithms.

b. It efficiently uses cache memory without occupying much space

because it solves simple sub-problems within the cache memory

instead of accessing the slower main memory.

c. It is more proficient than that of its counterpart Brute Force

technique.

d. Since these algorithms inhibit parallelism, it does not involve any

modification and is handled by systems incorporating parallel

processing.

3.1.3 Disadvantages of Divide and Conquer

a. Since most of its algorithms are designed by incorporating

recursion, so it necessitates high memory management.

CIT 310 MODULE 2

93

b. An explicit stack may overuse the space.

c. It may even crash the system if the recursion is performed

rigorously greater than the stack present in the CPU.

3.1.4 Properties of Divide-and-Conquer Algorithms

Divide-and-Conquer has several important properties.

a. It follows the structure of an inductive proof, and therefore

usually leads to relatively simple proofs of correctness. To prove

a divide-and-conquer algorithm correct, we first prove that the

base case is correct. Then, we assume by strong (or structural)

induction that the recursive solutions are correct, and show that,

given correct solutions to smaller instances, the combined

solution is correct.

b. Divide-and-conquer algorithms can be work efficient. To ensure

efficiency, we need to make sure that the divide and combine

steps are efficient, and that they do not create too many sub-

instances.

c. The work and span for a divide-and-conquer algorithm can be

expressed as a mathematical equation called recurrence, which

can be usually be solved without too much difficulty.

d. Divide-and-conquer algorithms are naturally parallel, because the

sub-instances can be solved in parallel. This can lead to

significant amount of parallelism, because each inductive step

can create more independent instances. For example, even if the

algorithm divides the problem instance into two subinstances,

each of those subinstances could themselves generate two more

subinstances, leading to a geometric progression, which can

quickly produce abundant parallelism.

Self-Assessment Exercise

1. The steps in the Divide-and-Conquer process that takes a

recursive approach is said to be?

2. Given the recurrence f(n) = 4 f(n/2) + 1, how many sub-problems

will a divide-and-conquer algorithm divide the original problem

into, and what will be the size of those sub-problems?

3. Design a divide-and-conquer algorithm to compute kn for k > 0

and integer n >= 0.

4. Define divide and conquer approach to algorithm design

3.2 Binary Search

In computer science, binary search, also known as half-interval search,

logarithmic search, or binary chop, is a search algorithm that finds the

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

94

position of a target value within a sorted array. Binary search compares

the target value to the middle element of the array.

A binary search is an efficient method of searching an ordered list. A

binary search works like this:

1. Start by setting the counter to the middle position in the list.

2. If the value held there is a match, the search ends.

3. If the value at the midpoint is less than the value to be found, the

list is divided in half. The lower half of the list is ignored and the

search keeps to the upper half of the list.

4. Otherwise, if the value at the midpoint is greater than the value to

be found, the upper half of the list is ignored and the search keeps

to the lower half of the list.

5. The search moves to the midpoint of the remaining items. Steps 2

through 4 continue until a match is made or there are no more

items to be found.

Consider this list of ordered numbers:

Suppose we were to search for the value 11.

The midpoint is found by adding the lowest position to the highest

position and dividing by 2.

Highest position (8) + lowest position (0) = 8 8/2 = 4

NOTE - if the answer is a decimal, round up. For example, 3.5 becomes

4. We can round down as an alternative, as long as we are consistent.

Check at position 4, which has the value 7.

7 is less than 11, so the bottom half of the list (including the midpoint) is

discarded.

The new lowest position is 5.

Highest position (8) + lowest position (5) = 13

13/2 = 6.5, which rounds up to 7

Check at position 7, which has the value 14.

CIT 310 MODULE 2

95

14 is greater than 11, so the top half of the list (including the midpoint)

is discarded.

The new highest position is 6.

Highest position (6) + lowest position (5) = 11

11/2 = 5.5, which rounds up to 6 Check at position 6.

The value held at position 6 is 11, a match. The search ends.

A binary search in pseudocode might look like this:

find = 11

found = False

length = list.length

lowerBound = 0

upperBound = length

while found == False

midpoint = int((upperBound + lowerBound))/2

if list[midPoint] == find then

print('Found at' , midPoint)

found = True

else

if list[midPoint]> item then

upperBound = midpoint-1

else

lowerBound = midpoint+1

endif

endif

endwhile

if found == False then

print('Not found')

endif

A binary search is a much more efficient algorithm than a linear search.

In an ordered list of every number from 0 to 100, a linear search would

take 99 steps to find the value 99. A binary search would only require

seven steps.

However, a binary search can only work if a list is ordered.

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

96

3.2.1 Complexity of Binary Search

The time complexity of the binary search algorithm is O(log n). The

best-case time complexity would be O(1) when the central index would

directly match the desired value. The worst-case scenario could be the

values at either extremity of the list or values not in the list.

The space complexity of the binary search algorithm depends on the

implementation of the algorithm. There are two ways of implementing

it:

 Iterative method

 Recursive method

Both methods are quite the same, with two differences in

implementation. First, there is no loop in the recursive method. Second,

rather than passing the new values to the next iteration of the loop, it

passes them to the next recursion. In the iterative method, the iterations

can be controlled through the looping conditions, while in the recursive

method, the maximum and minimum are used as the boundary

condition.

In the iterative method, the space complexity would be O(1). While in

the recursive method, the space complexity would be O(log n).

3.2.2 Advantages of Binary Search

a. A binary search algorithm is a fairly simple search algorithm to

implement.

b. It is a significant improvement over linear search and performs

almost the same in comparison to some of the harder to

implement search algorithms.

c. The binary search algorithm breaks the list down in half on

every iteration, rather than sequentially combing through the list.

On large lists, this method can be really useful.

3.2.3 Disadvantages of Binary Search

a. It employs recursive approach which requires more stack space.

b. Programming binary search algorithm is error prone and difficult.

c. The interaction of binary search with memory hierarchy i.e.

caching is poor.

CIT 310 MODULE 2

97

3.2.4 Applications of Binary Search

a. This algorithm is used to search element in a given sorted array

with more efficiency.

b. It could also be used for few other additional operations like- to

find the smallest element in the array or to find the largest

element in the array.

Self-Assessment Exercise

1. Which type of lists or data sets are binary searching algorithms

used for?

2. A binary search is to be performed on the list:

[3 5 9 10 23]. How many comparisons would it take to find

number 9?

3. How many binary searches will it take to find the value 7 in the list

[1,4,7,8,10,28]?

4. Given an array arr = {45,77,89,90,94,99,100} and key = 100;

What are the mid values(corresponding array elements) generated

in the first and second iterations?

4.0 CONCLUSION

In computer science, divide and conquer is an algorithm design

paradigm. A divide-and-conquer algorithm recursively breaks down a

problem into two or more sub-problems of the same or related type, until

these become simple enough to be solved directly.

A binary search algorithm is a widely used algorithm in the

computational domain. It is a fat and accurate search algorithm that can

work well on both big and small datasets. A binary search algorithm is a

simple and reliable algorithm to implement. With time and space

analysis, the benefits of using this particular technique are evident.

5.0 SUMMARY

We looked at the meaning of Divide-and-Conquer algorithms and how

they work and then considered a very good example of a Divide-and-

Conquer algorithm called Binary Search which is very efficient for large

lists as its worst case complexity is given in logarithmic time.

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

98

6.0 TUTOR MARKED ASSIGNMENT

1. Make a brief comparison between Binary Search and Linear

Search algorithms.

2. Explain why the complexity of binary search is O (log n)

3. Suppose you have an array, A, containing n numbers sorted into

increasing order. You want to construct a balanced binary tree

containing the numbers in A. Give a divide-and-conquer

algorithm to do so.

4. How many binary searches will it take to find the value 10 in the

list [1,4,9,10,11]?

5. Given a real number, x, and a natural number n, xn can be defined

by the following recursive function:

xn = 1 if n = 0

xn = (xn/2)2 if n > 0 and n is even

xn = x (x(n-1)/2)2 if n > 0 and n is odd

Use this recursion to give a divide-and-conquer algorithm for

computing xn. Explain how your algorithm meets the definition of

“divide and conquer.”

6. What is the maximum number of comparisons required to find a

value in a list of 20 items using a binary search?

7.0 FURTHER READING AND OTHER RESOURCES

Cormen, T. H., Leiserson, C., Rivest, R. and Stein, C. (2009).

 Introduction to Algorithms. Third Edition. MIT Press.

Jena, S. R. and Swain, S. K, (2017). Theory of Computation and

 Application, 1st Edition, University Science Press, Laxmi

 Publications.

Karumanchi, N. (2016). Data Structures and Algorithms, CareerMonk

 Publications. ISBN-13 : 978-8193245279

CIT 310 MODULE 2

99

UNIT 5 MERGE SORT AND QUICK SORT

 ALGORITHMS

1.0 Introduction

2.0 Objectives

3.0 MergeSort

 3.1 Mergesort Algorithm

 3.1.1 Complexity Analysis of Mergesort

 3.1.2 Mergesort Applications

 3.1.3 Advantages of Mergesort

 3.1.4 Disadvantages of Mergesort

3.2 Quicksort

 3.2.1 Complexity of Quicksort

 3.1.2 Advantages of Quicksort

 3.1.3 Disadvantages of Quicksort

 3.1.4 Applications of Quicksort

4.0 Conclusion

5.0 Summary

6.0 Tutor Marked Assignment

7.0 Further Reading and other Resources

1.0 INTRODUCTION

We continue with two more examples of Divide-and-Conquer

algorithms which incidentally, are sorting algorithms. The Merge sort

(also spelled mergesort) is an efficient sorting algorithm that uses a

divide-and-conquer approach to order elements in an array. It repeatedly

breaks down a list into several sublists until each sublist consists of a

single element and merging those sublists in a manner that results into a

sorted list.

Like mergesort, Quick Sort (also spelled QuickSort) is a Divide and

Conquer algorithm. It picks an element as pivot and partitions the

given array around the picked pivot.

2.0 OBJECTIVES

At the end of this unit, you will be able to:

 Understand the Mergesort algorithm

 Know when and where we can apply mergesort

 Understand the complexity of the mergesort approach

 Know the benefits and shortcomings of mergesort

 Know more about the Quicksort algorithm

 Understand how Quicksort works

 Be able to write codes for mergesort and quicksort

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

100

 Be able to perform simple sorting of any list using quicksort and

mergesort.

3.0 Merge Sort

Merge sort is yet another sorting algorithm that falls under the category

of Divide and Conquer technique. It is one of the best sorting techniques

that successfully build a recursive algorithm.

Divide and Conquer Strategy

In this technique, we segment a problem into two halves and solve them

individually. After finding the solution of each half, we merge them

back to represent the solution of the main problem.

Suppose we have an array A, such that our main concern will be to sort

the subsection, which starts at index p and ends at index r, represented

by A[p..r].

Divide

If assumed q to be the central point somewhere in between p and r, then

we will fragment the subarray A[p..r] into two

arrays A[p..q] and A[q+1, r].

Conquer

After splitting the arrays into two halves, the next step is to conquer. In

this step, we individually sort both of the subarrays A[p..q] and A[q+1,

r]. In case if we did not reach the base situation, then we again follow

the same procedure, i.e., we further segment these subarrays followed by

sorting them separately.

Combine

As when the base step is acquired by the conquer step, we successfully

get our sorted subarrays A[p..q] and A[q+1, r], after which we merge

them back to form a new sorted array [p..r].

3.1 Merge Sort algorithm

The MergeSort function keeps on splitting an array into two halves until

a condition is met where we try to perform MergeSort on a subarray of

size 1, i.e., p == r.

CIT 310 MODULE 2

101

And then, it combines the individually sorted subarrays into larger

arrays until the whole array is merged.

ALGORITHM-MERGE SORT

1. If p<r

2. Then q → (p+ r)/2

3. MERGE-SORT (A, p, q)

4. MERGE-SORT (A, q+1,r)

5. MERGE (A, p, q, r)

Here we called MergeSort(A, 0, length(A)-1) to sort the complete

array.

As you can see in the image given below, the merge sort algorithm

recursively divides the array into halves until the base condition is met,

where we are left with only 1 element in the array. And then, the merge

function picks up the sorted sub-arrays and merge them back to sort the

entire array.

The following figure illustrates the dividing (splitting) procedure.

FUNCTIONS: MERGE (A, p, q, r)

1. n 1 = q-p+1

2. n 2= r-q

3. create arrays [1.....n 1 + 1] and R [1.....n 2 +1]

4. for i ← 1 to n 1

5. do [i] ← A [p+ i-1]

6. for j ← 1 to n2

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

102

7. do R[j] ← A[q + j]

8. L [n 1+ 1] ← ∞

9. R[n 2+ 1] ← ∞

10. I ← 1

11. J ← 1

12. For k ← p to r

13. Do if L [i] ≤ R[j]

14. then A[k] ← L[i]

15. i ← i +1

16. else A[k] ← R[j]

17. j ← j+1

The merge step of Merge Sort

Mainly the recursive algorithm depends on a base case as well as its

ability to merge back the results derived from the base cases. Merge sort

is no different algorithm, just the fact here the merge step possesses

more importance.

To any given problem, the merge step is one such solution that

combines the two individually sorted lists(arrays) to build one large

sorted list(array).

The merge sort algorithm upholds three pointers, i.e., one for both of the

two arrays and the other one to preserve the final sorted array's current

index.

Did you reach the end of the array? No:

Firstly, start with comparing the current elements of both the arrays.

Next, copy the smaller element into the sorted array. Lastly, move the p

ointer of the element containing a smaller element.

CIT 310 MODULE 2

103

 Yes:

 Simply copy the rest of the elements of the non-empty array

Merge() Function Explained Step-By-Step

Consider the following example of an unsorted array, which we are

going to sort with the help of the Merge Sort algorithm.

A= (36,25,40,2,7,80,15)

Step1: The merge sort algorithm iteratively divides an array into equal

halves until we achieve an atomic value. In case if there are an odd

number of elements in an array, then one of the halves will have more

elements than the other half.

Step2: After dividing an array into two subarrays, we will notice that it

did not hamper the order of elements as they were in the original array.

After now, we will further divide these two arrays into other halves.

Step3: Again, we will divide these arrays until we achieve an atomic

value, i.e., a value that cannot be further divided.

Step4: Next, we will merge them back in the same way as they were

broken down.

Step5: For each list, we will first compare the element and then combine

them to form a new sorted list.

Step6: In the next iteration, we will compare the lists of two data values

and merge them back into a list of found data values, all placed in a

sorted manner.

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

104

Hence the array is sorted.

3.1.1 Complexity Analysis of Merge Sort:

Best Case Complexity: The merge sort algorithm has a best-case time

complexity of O(n*log n) for the already sorted array.

Average Case Complexity: The average-case time complexity for the

merge sort algorithm is O(n*log n), which happens when 2 or more

elements are jumbled, i.e., neither in the ascending order nor in the

descending order.

Worst Case Complexity: The worst-case time complexity is

also O(n*log n), which occurs when we sort the descending order of an

array into the ascending order.

Space Complexity: The space complexity of merge sort is O(n).

CIT 310 MODULE 2

105

3.1.2 Merge Sort Applications

The concept of merge sort is applicable in the following areas:

 Inversion count problem

 External sorting

 E-commerce applications

3.1.3 Advantages of Merge Sort

a. Merge sort can efficiently sort a list in O(n*log(n)) time.

b. Merge sort can be used with linked lists without taking up any

more space.

c. A merge sort algorithm is used to count the number of inversions

in the list.

d. Merge sort is employed in external sorting.

3.1.4 Disadvantages of Merge Sort

a. For small datasets, merge sort is slower than other sorting

algorithms.

b. For the temporary array, mergesort requires an additional space

of O(n).

c. Even if the array is sorted, the merge sort goes through the entire

process.

Self-Assessment Exercise

1. A list of n string, each of length n, is sorted into lexicographic

order using the merge-sort algorithm. The worst case running

time of this computation is?

2. What is the average case time complexity of merge sort?

3. A mergesort works by first breaking a sequence in half a number

of times so it is working with smaller pieces. When does it stop

breaking the list into sublists (in its simplest version)?

3.2 Quick Sort

A sorting technique developed by British computer scientist Tony Hoare

in 1959 and published in 1961, that sequences a list by continuously

dividing the list into two parts and moving the lower items to one side

and the higher items to the other. It starts by picking one item in the

entire list to serve as a pivot point. The entire process takes place in the

following three steps:

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

106

Divide: Rearrange the elements and split arrays into two sub-arrays and

an element in between search that each element in left sub array is less

than or equal to the average element and each element in the right sub-

array is larger than the middle element.

Conquer: Recursively, sort two sub arrays.

Combine: Combine the already sorted array.

Algorithm:

QUICKSORT (array A, int m, int n)

 1 if (n > m)

 2 then

 3 i ← a random index from [m,n]

 4 swap A [i] with A[m]

 5 o ← PARTITION (A, m, n)

 6 QUICKSORT (A, m, o - 1)

 7 QUICKSORT (A, o + 1, n)

Partition Algorithm:

Partition algorithm rearranges the sub arrays in a place.

PARTITION (array A, int m, int n)

 1 x ← A[m]

 2 o ← m

 3 for p ← m + 1 to n

 4 do if (A[p] < x)

 5 then o ← o + 1

 6 swap A[o] with A[p]

 7 swap A[m] with A[o]

 8 return o

Example of Quick Sort. Given the following list;

44 33 11 55 77 90 40 60 99 22 88

Let 44 be the Pivot element and scanning done from right to left

Comparing 44 to the right-side elements, and if right-side elements

are smaller than 44, then swap it. As 22 is smaller than 44 so swap

them.

22 33 11 55 77 90 40 60 99 44 88

Now comparing 44 to the left side element and the element must

be greater than 44 then swap them. As 55 are greater than 44 so swap

them.

CIT 310 MODULE 2

107

22 33 11 44 77 90 40 60 99 55 88

Recursively, repeating steps 1 and steps 2 until we get two lists one left

from pivot element 44 & one right from pivot element.

22 33 40 77 90 44 60 99 55 88

Swap with 77:

22 33 11 40 44 90 77 60 99 55 88

Now, the element on the right side and left side are greater than and

smaller than 44 respectively.

Now we get two sorted lists:

And these sublists are sorted under the same process as above done.

These two sorted sublists side by side.

Merging Sublists:

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

108

 SORTED LISTS

3.2.1 Complexity of Quicksort

Worst Case Analysis: The worst case occurs when the partition

process always picks greatest or smallest element as pivot. If we

consider above partition strategy where last element is always picked

as pivot, the worst case would occur when the array is already sorted in

increasing or decreasing order. Following is recurrence for worst case.

Worst Case Complexity of Quick Sort is T (n) =O (n2)

Average Case Analysis: T(n) = O(n log n) is the average case

complexity of quick sort for sorting n elements.

Best Case Analysis: In any sorting, best case is the only case in which

we don't make any comparison between elements that is only done when

we have only one element to sort.

T(n) = O(n log n)

3.2.2 Advantages of Quick Sort

a. It is in-place since it uses only a small auxiliary stack.

b. It requires only n (log n) time to sort n items.

c. It has an extremely short inner loop.

d. This algorithm has been subjected to a thorough mathematical

analysis, a very precise statement can be made about performance

issues.

3.2.3 Disadvantages of Quick Sort

a. It is recursive. Especially, if recursion is not available, the

implementation is extremely complicated.

b. It requires quadratic (i.e., n2) time in the worst-case.

c. It is fragile, i.e. a simple mistake in the implementation can go

unnoticed and cause it to perform badly.

3.2.4 Applications of QuickSort

a. It is used for information searching since it is the fastest and is

widely used as a better way of searching.

b. It is used everywhere where a stable sort is not needed.

c. Quicksort is a cache-friendly algorithm as it has a good locality

of reference when used for arrays.

CIT 310 MODULE 2

109

Self-Assessment Exercises

1. What is recurrence for worst case of QuickSort and what is the

time complexity in Worst case?

2. Sort the following list in descending order of magnitude using

QuickSort [23, 65, 8, 78, 3, 65, 21, 9, 4, 43, 76, 1, 6, 4, 8, 56].

You can pick any element as your pivot.

3. Apply Quick sort on a given sequence 7 11 14 6 9 4 3 12. What is

the sequence after first phase, pivot is first element?

4.0 CONCLUSION

Merge sort is a sorting technique based on divide and conquer

technique. With worst-case time complexity being Ο(n log n), it is one

of the most respected algorithms.

Merge sort first divides the array into equal halves and then combines

them in a sorted manner.

Quicksort, is a sorting algorithm that makes n log n comparisons in

average case for sorting an array of n elements. It is a fast and highly

efficient sorting algorithm and follows the divide-and-conquer approach.

5.0 SUMMARY

In this Unit, we examined two sorting algorithm examples of Divide-

and-Conquer algorithms. The Mergesort which is also and external

sorting algorithm was considered with its complexity analysis explained

as well as its benefits and shortcomings.

The QuickSort algorithm which is another example of a Divide-and-

Conquer algorithm was also looked at as well as its advantages and

disadvantages.

6.0 TUTOR MARKED ASSIGNMENT

1. Quicksort works by choosing a pivot value and moving list

elements around. Each element less than the pivot will be closer

to the beginning of the list than the pivot, and each element

greater than the pivot will be closer to the end of the list. By

doing this operation many times with different pivots, the list will

become sorted. For the fastest operation, which would be the best

pivot value?

2. Sort the following list in ascending order. [8, 1, 4, 9, 6, 3, 5, 2, 7,

 0] using

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

110

 a. MergeSort b. Quicksort

3. To sort the array [5, 4, 3, 2, 1, 0] in ascending order, the first

merge in MergeSort will result in?

4. Write a program in any language of your choice to implement the

Quick Sort and the Mergesort Algorithms.

7.0 FURTHER READING AND OTHER RESOURCES

Karumanchi, N. (2016). Data Structures and Algorithms, CareerMonk

 Publications. ISBN-13 : 978-8193245279

Sen, S. and Kumar, A, (2019). Design and Analysis of Algorithms. A

 Contemporary Perspective. Cambridge University Press. ISBN:

 1108496822, 9781108496827

Vermani, L. R. and Vermani, S.(2019). An Elementary Approach To

 Design And Analysis Of Algorithms. World Scientific. ISBN:

 178634677X, 9781786346773

CIT 310 MODULE 3

111

MODULE 3 OTHER ALGORITHM TECHNIQUES

Unit 1 Binary Search Trees

Unit 2 Dynamic Programming

Unit 3 Computational Complexity

Unit 4 Approximate Algorithms I

Unit 5 Approximate Algorithms II

1.0 Introduction

2.0 Objectives

3.0 Binary Search Trees

3.0.1 Binary Search Tree Property

 3.1 Traversal In Binary Search Treess

 3.1.1 Inorder Tree Walk

 3.1.2 Preorder Tree Walk

 3.1.3 Postorder Tree Walk

 3.2 Querying a Binary Search Tree

 3.2.1 Searching

 3.2.2 Minimum and Maximum

 3.2.3 Successor and Predeccessor

 3.2.4 Insertion in Binary Search Trees

 3.2.5 Deletion in Binary Search Trees

3.3 Red Black Trees

 3.3.1 Properties of Red Black Trees

3.4 Operations on Red Black Trees

 3.4.1 Rotation

 3.4.2 Insertion

3.4.3 Deletion

4.0 Conclusion

5.0 Summary

6.0 Tutor Marked Assignment

7.0 Further Reading and Other Resources

1.0 INTRODUCTION

We introduce here a special search tree called the Binary Search Tree

and a derivative of it known as the Red Black Tree.

A binary search tree, also known as ordered binary tree is a binary tree

wherein the nodes are arranged in a order. The order is : a) All the

values in the left sub-tree has a value less than that of the root node. b)

All the values in the right node have a value greater than the value of the

root node.

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

112

On the other hand, a red-black tree is a Binary tree where a particular

node has color as an extra attribute, either red or black. By check the

node colors on any simple path from the root to a leaf, red-black trees

secure that no such path is higher than twice as long as any other so that

the tree is generally balanced.

2.0 OBJECTIVES

At the end of this unit, you will be able to:

 Understand the meaning of a Binary Search Tree.

 Know the different methods of traversing a Binary Search Tree

 List and explain the different ways a Binary Search Tree can be

queried

 Understand the Red Black Trees

 Learn the different properties of Red Black Trees

 Know the different operations done on Red Black Trees

3.0 Binary Search Trees

A Binary Search tree is organized in a Binary Tree. Such a tree can be

defined by a linked data structure in which a particular node is an object.

In addition to a key field, each node contains field left, right, and p that

point to the nodes corresponding to its left child, its right child, and its

parent, respectively. If a child or parent is missing, the appropriate field

contains the value Nil. The root node is the only node in the tree whose

parent field is Nil.

3.0.1 Binary Search Tree Property

Let x be a node in a binary search tree.

 If y is a node in the left subtree of x, then key [y] ≤key [k].

 If z is a node in the right subtree of x, then key [x] ≤ key [y].

In this tree key [x] = 15

CIT 310 MODULE 3

113

If y is a node in the left subtree of x, then key [y] = 5.

i.e. key [y] ≤ key[x].

If y is a node in the right subtree of x, then key [y] = 20.

i.e. key [x] ≤ key[y].

3.1 Traversal in Binary Search Trees:

1.1.1 In-Order-Tree-Walk (x):

In Inorder Tree walk, we always print the keys in the binary search tree

in a sorted order.

INORDER-TREE-WALK (x) - Running time is θ(n)

1. If x ≠ NIL.

2. then INORDER-TREE-WALK (left [x])

3. print key [x]

4. INORDER-TREE-WALK (right [x])

3.1.2. PREORDER-TREE-WALK (x):

In Preorder Tree walk, we visit the root node before the nodes in either

subtree.

PREORDER-TREE-WALK (x):

1. If x ≠ NIL.

2. then print key [x]

3. PREORDER-TREE-WALK (left [x]).

4. PREORDER-TREE-WALK (right [x]).

3.1.3. POSTORDER-TREE-WALK (x):

In Postorder Tree walk, we visit the root node after the nodes in its

subtree.

POSTORDER-TREE-WALK (x):

1. If x ≠ NIL.

2. then POSTORDER-TREE-WALK (left [x]).

3. POSTORDER-TREE-WALK (right [x]).

4. print key [x]

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

114

3.2 Querying a Binary Search Trees:

3.2.1. Searching:

The TREE-SEARCH (x, k) algorithm searches the tree node at x for a

node whose key value equal to k. It returns a pointer to the node if it

exist otherwise NIL.

TREE-SEARCH (x, k)
 1. If x = NIL or k = key [x].

 2. then return x.

 3. If k < key [x].

 4. then return TREE-SEARCH (left [x], k)

 5. else return TREE-SEARCH (right [x], k)

Clearly, this algorithm runs in O (h) time where h is the height of the

tree. The iterative version of the above algorithm is very easy to

implement

ITERATIVE-TREE- SEARCH (x, k)
 1. while x ≠ NIL and k ≠ key [k].

 2. do if k < key [x].

 3. then x ← left [x].

 4. else x ← right [x].

 5. return x.

3.2.2. Minimum and Maximum:

An item in a binary search tree whose key is a minimum can always be

found by following left child pointers from the root until a NIL is

encountered. The following procedure returns a pointer to the minimum

element in the subtree rooted at a given node x.

TREE- MINIMUM (x)
 1. While left [x] ≠ NIL.

 2. do x←left [x].

 3. return x.

TREE-MAXIMUM (x)
 1. While left [x] ≠ NIL

 2. do x←right [x].

 3. return x.

CIT 310 MODULE 3

115

3.2.3. Successor and predecessor:

Given a node in a binary search tree, sometimes we used to find its

successor in the sorted form determined by an in order tree walk. If

all keys are specific, the successor of a node x is the node with the

smallest key greater than key[x]. The structure of a binary search tree

allows us to rule the successor of a node without ever comparing

keys. The following action returns the successor of a node x in a

binary search tree if it exists, and NIL if x has the greatest key in the

tree:

TREE SUCCESSOR (x)

 1. If right [x] ≠ NIL.

 2. Then return TREE-MINIMUM (right [x]))

 3. y←p [x]

 4. While y ≠ NIL and x = right [y]

 5. do x←y

 6. y←p[y]

 7. return y.

The code for TREE-SUCCESSOR is broken into two cases. If the right

subtree of node x is nonempty, then the successor of x is just the

leftmost node in the right subtree, which we find in line 2 by calling

TREE-MINIMUM (right [x]). On the other hand, if the right subtree of

node x is empty and x has a successor y, then y is the lowest ancestor of

x whose left child is also an ancestor of x. To find y, we quickly go up

the tree from x until we encounter a node that is the left child of its

parent; lines 3-7 of TREE-SUCCESSOR handle this case.

The running time of TREE-SUCCESSOR on a tree of height h is O (h)

since we either follow a simple path up the tree or follow a simple path

down the tree. The procedure TREE-PREDECESSOR, which is

symmetric to TREE-SUCCESSOR, also runs in time O (h).

3.2.4. Insertion in Binary Search Tree:

To insert a new value into a binary search tree T, we use the procedure

TREE-INSERT. The procedure takes a node ´ for which key [z] = v, left

[z] NIL, and right [z] = NIL. It modifies T and some of the attributes of

z in such a way that it inserts into an appropriate position in the tree.

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

116

TREE-INSERT (T, z)

 1. y ←NIL.

 2. x←root [T]

 3. while x ≠ NIL.

 4. do y←x

 5. if key [z]< key [x]

 6. then x←left [x].

 7. else x←right [x].

 8. p [z]←y

 9. if y = NIL.

 10. then root [T]←z

 11. else if key [z] < key [y]

 12. then left [y]←z

For Example:

Working of TREE-INSERT

Suppose we want to insert an item with key 13 into a Binary Search

Tree.

 x = 1

 y = 1 as x ≠ NIL.

 Key [z] < key [x]

 13 < not equal to 12.

 x ←right [x].

 x ←3

Again x ≠ NIL

 y ←3

 key [z] < key [x]

 13 < 18

 x←left [x]

 x←6

Again x ≠ NIL, y←6

CIT 310 MODULE 3

117

 13 < 15

 x←left [x]

 x←NIL

 p [z]←6

Now our node z will be either left or right child of its parent (y).

key [z] < key [y]

 13 < 15

Left [y] ← z

Left [6] ← z

So, insert a node in the left of node index at 6.

3.2.5. Deletion in Binary Search Tree:

When Deleting a node from a tree it is essential that any relationships,

implicit in the tree can be maintained. The deletion of nodes from a

binary search tree will be considered:

There are three distinct cases:

1. Nodes with no children: This case is trivial. Simply set the

parent's pointer to the node to be deleted to nil and delete the

node.

2. Nodes with one child: When z has no left child then we replace z

by its right child which may or may not be NIL. And when z has

no right child, then we replace z with its right child.

3. Nodes with both Childs: When z has both left and right child.

We find z's successor y, which lies in right z's right subtree and

has no left child (the successor of z will be a node with minimum

value its right subtree and so it has no left child).

 If y is z's right child, then we replace z.

 Otherwise, y lies within z's right subtree but not z's right child. In

this case, we first replace z by its own right child and the replace

z by y.

TREE-DELETE (T, z)
If left [z] = NIL or right [z] = NIL.

Then y ← z

Else y ← TREE- SUCCESSOR (z)

If left [y] ≠ NIL.

Then x ← left [y]

Else x ← right [y]

If x ≠NIL

Then p[x] ← p [y]

If p[y] = NIL.

Then root [T] ← x

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

118

Else if y = left [p[y]]

Then left [p[y]] ← x

Else right [p[y]] ← y

If y ≠ z.

Then key [z] ← key [y]

If y has other fields, copy them, too.

Return y

The Procedure runs in O (h) time on a tree of height h.

For Example: Deleting a node z from a binary search tree. Node z may

be the root, a left child of node q, or a right child of q.

Z has the only right child.

Z has the only left child. We replace z by l.

Node z has two children; its left child is node l, its right child is its

successor y, and y's right child is node x. We replace z by y, updating y's

left child to become l, but leaving x as y's right child.

CIT 310 MODULE 3

119

Node z has two children (left child l and right child r), and its successor

y ≠ r lies within the subtree rooted at r. We replace y with its own right

child x, and we set y to be r's parent. Then, we set y to be q's child and

the parent of l.

Self-Assessment Exercises

1. What is the worst case time complexity for search, insert and

delete operations in a general Binary Search Tree?

2. We are given a set of n distinct elements and an unlabelled binary

tree with n nodes. In how many ways can we populate the tree

with the given set so that it becomes a binary search tree?

3. How many distinct binary search trees can be created out of 4

distinct keys?

4. Suppose the numbers 7, 5, 1, 8, 3, 6, 0, 9, 4, 2 are inserted in that

order into an initially empty binary search tree. The binary search

tree uses the usual ordering on natural numbers. What is the in-

order traversal sequence of the resultant tree?

3.3 Red Black Tree

A Red Black Tree is a category of the self-balancing binary search tree.

It was created in 1972 by Rudolf Bayer who termed them "symmetric

binary B-trees."

A red-black tree is a Binary tree where a particular node has color as an

extra attribute, either red or black. By check the node colors on any

simple path from the root to a leaf, red-black trees secure that no such

path is higher than twice as long as any other so that the tree is generally

balanced.

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

120

3.3.1 Properties of Red-Black Trees

A red-black tree must satisfy these properties:

1. The root is always black.

2. A nil is recognized to be black. This factor that every non-NIL

node has two children.

3. Black Children Rule: The children of any red node are black.

4. Black Height Rule: For particular node v, there exists an integer

bh (v) such that specific downward path from v to a nil has

correctly bh (v) black real (i.e. non-nil) nodes. Call this portion

the black height of v. We determine the black height of an RB

tree to be the black height of its root.

A tree T is an almost red-black tree (ARB tree) if the root is red, but

other conditions above hold.

3.4 Operations on RB Trees:

The search-tree operations TREE-INSERT and TREE-DELETE, when

runs on a red-black tree with n keys, take O (log n) time. Because they

customize the tree, the conclusion may violate the red-black properties.

To restore these properties, we must change the color of some of the

nodes in the tree and also change the pointer structure.

3.4.1. Rotation:

Restructuring operations on red-black trees can generally be expressed

more clearly in details of the rotation operation.

CIT 310 MODULE 3

121

Clearly, the order (Ax By C) is preserved by the rotation operation.

Therefore, if we start with a BST and only restructure using rotation,

then we will still have a BST i.e. rotation do not break the BST-

Property.

LEFT ROTATE (T, x)

 1. y ← right [x]

 1. y ← right [x]

 2. right [x] ← left [y]

 3. p [left[y]] ← x

 4. p[y] ← p[x]

 5. If p[x] = nil [T]

 then root [T] ← y

 else if x = left [p[x]]

 then left [p[x]] ← y

 else right [p[x]] ← y

 6. left [y] ← x.

 7. p [x] ← y.

Example: Draw the complete binary tree of height 3 on the keys {1, 2,

3... 15}. Add the NIL leaves and color the nodes in three different ways

such that the black heights of the resulting trees are: 2, 3 and 4.

Solution:

Tree with black-height-2

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

122

Tree with black-height-3

Tree with black-height-4

3.4.2. Insertion:

 Insert the new node the way it is done in Binary Search Trees.

 Color the node red

 If an inconsistency arises for the red-black tree, fix the tree

according to the type of discrepancy.

A discrepancy can be a decision from a parent and a child both having a

red color. This type of discrepancy is determined by the location of the

node concerning grandparent, and the color of the sibling of the parent.

CIT 310 MODULE 3

123

RB-INSERT (T, z)

y ← nil [T]

x ← root [T]

while x ≠ NIL [T]

do y ← x

if key [z] < key [x]

then x ← left [x]

else x ← right [x]

p [z] ← y

if y = nil [T]

then root [T] ← z

else if key [z] < key [y]

then left [y] ← z

else right [y] ← z

left [z] ← nil [T]

right [z] ← nil [T]

color [z] ← RED

RB-INSERT-FIXUP (T, z)

After the insert new node, Coloring this new node into black may violate

the black-height conditions and coloring this new node into red may

violate coloring conditions i.e. root is black and red node has no red

children. We know the black-height violations are hard. So we color the

node red. After this, if there is any color violation, then we have to

correct them by an RB-INSERT-FIXUP procedure.

RB-INSERT-FIXUP (T, z)

while color [p[z]] = RED

do if p [z] = left [p[p[z]]]

then y ← right [p[p[z]]]

If color [y] = RED

5. then color [p[z]] ← BLACK //Case 1

6. color [y] ← BLACK //Case 1

7. color [p[z]] ← RED //Case 1

8. z ← p[p[z]] //Case 1

else if z= right [p[z]]

10. then z ← p [z] //Case 2

11. LEFT-ROTATE (T, z) //Case 2

12. color [p[z]] ← BLACK //Case 3

13. color [p [p[z]]] ← RED //Case 3

14. RIGHT-ROTATE (T,p [p[z]]) //Case 3

15. else (same as then clause)

With "right" and "left" exchanged

16. color [root[T]] ← BLACK

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

124

Example: Show the red-black trees that result after successively

inserting the keys 41,38,31,12,19,8 into an initially empty red-black tree.

Solution:
Insert 41

CIT 310 MODULE 3

125

Insert 19

Thus the final tree is

3.4.3. Deletion:

First, search for an element to be deleted

 If the element to be deleted is in a node with only left child, swap

this node with one containing the largest element in the left

subtree. (This node has no right child).

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

126

 If the element to be deleted is in a node with only right child,

swap this node with the one containing the smallest element in

the right subtree (This node has no left child).

 If the element to be deleted is in a node with both a left child and

a right child, then swap in any of the above two ways. While

swapping, swap only the keys but not the colors.

 The item to be deleted is now having only a left child or only a

right child. Replace this node with its sole child. This may violate

red constraints or black constraint. Violation of red constraints

can be easily fixed.

 If the deleted node is black, the black constraint is violated. The

elimination of a black node y causes any path that contained y to

have one fewer black node.

 Two cases arise:

 The replacing node is red, in which case we merely color it black

to make up for the loss of one black node.

 The replacing node is black.

The strategy RB-DELETE is a minor change of the TREE-DELETE

procedure. After splicing out a node, it calls an auxiliary procedure RB-

DELETE-FIXUP that changes colors and performs rotation to restore

the red-black properties.

RB-DELETE (T, z)

 1. if left [z] = nil [T] or right [z] = nil [T]

 2. then y ← z

 3. else y ← TREE-SUCCESSOR (z)

 4. if left [y] ≠ nil [T]

 5. then x ← left [y]

 6. else x ← right [y]

 7. p [x] ← p [y]

 8. if p[y] = nil [T]

 9. then root [T] ← x

 10. else if y = left [p[y]]

 11. then left [p[y]] ← x

 12. else right [p[y]] ← x

 13. if y≠ z

 14. then key [z] ← key [y]

 15. copy y's satellite data into z

 16. if color [y] = BLACK

 17. then RB-delete-FIXUP (T, x)

 18. return y

CIT 310 MODULE 3

127

RB-DELETE-FIXUP (T, x)

 1. while x ≠ root [T] and color [x] = BLACK

 2. do if x = left [p[x]]

 3. then w ← right [p[x]]

 4. if color [w] = RED

 5. then color [w] ← BLACK //Case 1

 6. color [p[x]] ← RED //Case 1

 7. LEFT-ROTATE (T, p [x]) //Case 1

 8. w ← right [p[x]] //Case 1

 9. If color [left [w]] = BLACK and color [right[w]] = BLACK

 10. then color [w] ← RED //Case 2

 11. x ← p[x] //Case 2

 12. else if color [right [w]] = BLACK

 13. then color [left[w]] ← BLACK //Case 3

 14. color [w] ← RED //Case 3

 15. RIGHT-ROTATE (T, w) //Case 3

 16. w ← right [p[x]] //Case 3

 17. color [w] ← color [p[x]] //Case 4

 18. color p[x] ← BLACK //Case 4

 19. color [right [w]] ← BLACK //Case 4

 20. LEFT-ROTATE (T, p [x]) //Case 4

 21. x ← root [T] //Case 4

 22. else (same as then clause with "right" and "left" exchanged)

 23. color [x] ← BLACK

Example: In a previous example, we found that the red-black tree that

results from successively inserting the keys 41,38,31,12,19,8 into an

initially empty tree. Now show the red-black trees that result from the

successful deletion of the keys in the order 8, 12, 19,31,38,41.

Solution:

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

128

Delete 38

Delete 41
No Tree.

Self-Assessment Exercises

1. When deleting a node from a red-black tree, what condition might

happen?

2. What is the maximum height of a Red-Black Tree with 14 nodes?

(Hint: The black depth of each external node in this tree is 2.)

Draw an example of a tree with 14 nodes that achieves this

maximum height.

3. Why can't a Red-Black tree have a black node with exactly one

black child and no red child?

CIT 310 MODULE 3

129

4.0 CONCLUSION

A binary search tree, also called an ordered or sorted binary tree, is a

rooted binary tree data structure whose internal nodes each store a key

greater than all the keys in the node’s left subtree and less than those in

its right subtree. On the other hand, a red–black tree is a kind of self-

balancing binary search tree. Each node stores an extra bit representing

"color", used to ensure that the tree remains balanced during insertions

and deletions

5.0 SUMMARY

In this unit, we considered the Binary Search Tree and looked at how

such trees could be traversed while also examining the various methods

of querying or accessing information from a Binary Search Tree. In

addition, we looked at a special derivative of the Binary Search Tree

called Red Black Trees, its properties and also some operations that

could be carried out on Red Black Tress.

6.0 TUTOR-MARKED ASSIGNMENTS

1. What is the special property of red-black trees and what root

should always be?

a) a color which is either red or black and root should always be

black color only

2. The following numbers are inserted into an empty binary search

tree in the given order: 10, 1, 3, 5, 15, 12, 16. What is the height of

the binary search tree (the height is the maximum distance of a

leaf node from the root)?

3. What are the operations that could be performed in O(logn) time

complexity by red-black tree?

4. The preorder traversal sequence of a binary search tree is 30, 20,

10, 15, 25, 23, 39, 35, 42. Give the postorder and inorder traversal

sequence of the same tree.

5. How can you save memory when storing color information in

Red-Black tree?

6. Which of the following traversals is sufficient to construct BST

from given traversals 1) Inorder 2) Preorder 3) Postorder

7.0 FURTHER READING AND OTHER RESOURCES

Baase, S. and Van Gelder, A. (2020). Computer Algorithms:

 Introduction to Design and Analysis. Addison-Wesley. ISBN:

 0201612445, 9780201612448

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

130

Bhasin, H. (2015). Algorithms: Design and Analysis. Oxford University

 Press. ISBN: 0199456666, 9780199456666

Sen, S. and Kumar, A, (2019). Design and Analysis of Algorithms. A

 Contemporary Perspective. Cambridge University Press. ISBN:

 1108496822, 9781108496827

Vermani, L. R. and Vermani, S.(2019). An Elementary Approach To

 Design And Analysis Of Algorithms. World Scientific. ISBN:

 178634677X, 9781786346773

CIT 310 MODULE 3

131

UNIT 2 DYNAMIC PROGRAMMING

1.0 Introduction

2.0 Objectives

3.0 Dynamic Programming

 3.1 How Dynamic Programming Works

 3.2 Approaches of Dynamic Programming

 3.2.1 Top-down approach

 3.2.2 Bottom-up approach

 3.3 Divide-and-Conquer Method vs Dynamic Programmming

 3.4 Techniques for Solving Dynamic Programming Problems

4.0 Conclusion

5.0 Summary

6.0 Tutor Marked Assignment

7.0 Further Reading and Other Resources

1.0 INTRODUCTION

Dynamic programming is both a mathematical optimization method and

a computer programming method. The method was developed by

Richard Bellman in the 1950s and has found applications in numerous

fields, from aerospace engineering to economics. We look at some of the

techniques of Dynamic Programming in this unit as well as some

benefits and applications of Dynamic Programming

1.0 OBJECTIVES

At the end of this unit, you should be able to

 Explain better the concept of Dynamic Programming

 Know the different methods for resolving a Dynamic

Programming problem

 Know when to use either of the methodologies learnt

 Understand the different areas of applications of Dynamic

Programming

 Evaluate the basic differences between Dynamic Programming

and the Divide-and-Conquer paradigm.

3.0 Dynamic Programming

Dynamic programming is a technique that breaks the problems into sub-

problems, and saves the result for future purposes so that we do not need

to compute the result again. The sub-problems are optimized to optimize

the overall solution is known as optimal substructure property. The main

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

132

use of dynamic programming is to solve optimization problems. Here,

optimization problems mean that when we are trying to find out the

minimum or the maximum solution of a problem. The dynamic

programming guarantees to find the optimal solution of a problem if the

solution exists.

From the definition of dynamic programming, it is a technique for

solving a complex problem by first breaking it into a collection of

simpler sub-problems, solving each sub-problem just once, and then

storing their solutions to avoid repetitive computations.

Let's understand this approach through an example.

Consider an example of the Fibonacci series. The following series is the

Fibonacci series:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ,…

The numbers in the above series are not randomly calculated.

Mathematically, we could write each of the terms using the below

formula:

F(n) = F(n-1) + F(n-2),

With the base values F(0) = 0, and F(1) = 1.

To calculate the other numbers, we follow the above relationship. For

example, F(2) is the sum f(0) and f(1), which is equal to 1.

How can we calculate F(20)?

The F(20) term will be calculated using the nth formula of the Fibonacci

series. The below figure shows that how F(20) is calculated.

CIT 310 MODULE 3

133

As we can observe in the above figure that F(20) is calculated as the

sum of F(19) and F(18).

In the dynamic programming approach, we try to divide the problem

into the similar sub-problems. We are following this approach in the

above case where F(20) into the similar sub-problems, i.e., F(19) and

F(18). If we revisit the definition of dynamic programming that it says

the similar sub-problem should not be computed more than once. Still,

in the above case, the sub-problem is calculated twice. F(18) is

calculated two times; similarly, F(17) is also calculated twice. However,

this technique is quite useful as it solves the similar sub-problems, but

we need to be cautious while storing the results because we are not

particular about storing the result that we have computed once, as it can

lead to a wastage of resources.

In the above example, if we calculate the F(18) in the right subtree, then

it leads to the tremendous usage of resources and decreases the overall

performance.

The solution to the above problem is to save the computed results in an

array. First, we calculate F(16) and F(17) and save their values in an

array. The F(18) is calculated by summing the values of F(17) and

F(16), which are already saved in an array. The computed value of F(18)

is saved in an array. The value of F(19) is calculated using the sum of

F(18), and F(17), and their values are already saved in an array. The

computed value of F(19) is stored in an array. The value of F(20) can be

calculated by adding the values of F(19) and F(18), and the values of

both F(19) and F(18) are stored in an array. The final computed value of

F(20) is stored in an array.

3.1 How Dynamic Programming Works

The following are the steps that the dynamic programming follows:

 It breaks down the complex problem into simpler sub-problems.

 It finds the optimal solution to these sub-problems.

 It stores the results of sub-problems (memoization). The process

of storing the results of sub-problems is known as memorization.

 It reuses them so that same sub-problem is calculated more than

once.

 Finally, calculate the result of the complex problem.

The above five steps are the basic steps for dynamic programming. The

dynamic programming is applicable that are having properties such as:

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

134

 Those problems that are having overlapping sub-problems and

optimal substructures. Here, optimal substructure means that the

solution of optimization problems can be obtained by simply

combining the optimal solution of all the sub-problems.

In the case of dynamic programming, the space complexity would be

increased as we are storing the intermediate results, but the time

complexity would be decreased.

3.2 Approaches of dynamic programming

There are two approaches to dynamic programming:

 Top-down approach

 Bottom-up approach

3.2.1 Top-down approach

The top-down approach follows the memorization technique, while

bottom-up approach follows the tabulation method. Here memorization

is equal to the sum of recursion and caching. Recursion means calling

the function itself, while caching means storing the intermediate results.

Advantages of Top-down approach

 It is very easy to understand and implement.

 It solves the sub-problems only when it is required.

 It is easy to debug.

Disadvantages of Top-down approach

 It uses the recursion technique that occupies more memory in the

call stack. Sometimes when the recursion is too deep, the stack

overflow condition will occur.

 It occupies more memory that degrades the overall performance.

Let's understand dynamic programming through an example.

int fib(int n)

{

 if(n<0)

 error;

 if(n==0)

 return 0;

 if(n==1)

CIT 310 MODULE 3

135

return 1;

sum = fib(n-1) + fib(n-2);

}

In the above code, we have used the recursive approach to find out the

Fibonacci series. When the value of 'n' increases, the function calls will

also increase, and computations will also increase. In this case, the time

complexity increases exponentially, and it becomes O(2n).

Another solution to this problem is to use the dynamic programming

approach. Rather than generating the recursive tree again and again, we

can reuse the previously calculated value. If we use the dynamic

programming approach, then the time complexity would be O(n).

When we apply the dynamic programming approach in the

implementation of the Fibonacci series, then the code would look like:

static int count = 0;

int fib(int n)

{

if(memo[n]!= NULL)

return memo[n];

count++;

if(n<0)

error;

if(n==0)

return 0;

if(n==1)

return 1;

sum = fib(n-1) + fib(n-2);

memo[n] = sum;

}

In the above code, we have used the memorization technique in which

we store the results in an array to reuse the values. This is also known as

a top-down approach in which we move from the top and break the

problem into sub-problems.

3.2.2 Bottom-Up approach

The bottom-up approach uses the tabulation technique to implement the

dynamic programming approach. It solves the same kind of problems

but it removes the recursion. If we remove the recursion, there is no

stack overflow issue and no overhead of the recursive functions. In this

tabulation technique, we solve the problems and store the results in a

matrix.

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

136

The bottom-up is the approach used to avoid the recursion, thus saving

the memory space. The bottom-up is an algorithm that starts from the

beginning, whereas the recursive algorithm starts from the end and

works backward. In the bottom-up approach, we start from the base case

to find the answer for the end. As we know, the base cases in the

Fibonacci series are 0 and 1. Since the bottom approach starts from the

base cases, so we will start from 0 and 1.

Key points of Bottom-up approach

 We solve all the smaller sub-problems that will be needed to

solve the larger sub-problems then move to the larger problems

using smaller sub-problems.

 We use for loop to iterate over the sub-problems.

 The bottom-up approach is also known as the tabulation or table

filling method.

Let's understand through an example.

Suppose we have an array that has 0 and 1 values at a[0] and a[1]

positions, respectively shown as below:

Since the bottom-up approach starts from the lower values, so the values

at a[0] and a[1] are added to find the value of a[2] shown as below:

The value of a[3] will be calculated by adding a[1] and a[2], and it

becomes 2 shown as below:

The value of a[4] will be calculated by adding a[2] and a[3], and it

becomes 3 shown as below:

CIT 310 MODULE 3

137

The value of a[5] will be calculated by adding the values of a[4] and

a[3], and it becomes 5 shown as below:

The code for implementing the Fibonacci series using the bottom-up

approach is given below:

int fib(int n)

{

 int A[];

 A[0] = 0, A[1] = 1;

 for(i=2; i<=n; i++)

 {

 A[i] = A[i-1] + A[i-2]

 }

 return A[n];

}

In the above code, base cases are 0 and 1 and then we have used for loop

to find other values of Fibonacci series.

Let's explain better using the following diagrammatic representation:
Initially, the first two values, i.e., 0 and 1 can be represented as:

When i=2 then the values 0 and 1 are added shown as below:

When i=3 then the values 1and 1 are added shown as below:

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

138

When i=4 then the values 2 and 1 are added shown as below:

When i=5, then the values 3 and 2 are added shown as below:

In the above case, we are starting from the bottom and reaching to the

top

CIT 310 MODULE 3

139

3.3 Divide and Conquer Method versus Dynamic Programming:

We highlight some of the differences between Divide-and-Conquer

approach and Dynamic Programming.

Divide and Conquer Method Dynamic Programming

1.It deals (involves) three steps at

each level of recursion:

Divide the problem into a number of

sub-problems.

Conquer the sub-problems by

solving them recursively.

Combine the solution to the sub-

problems into the solution for

original sub-problems.

1.It involves the sequence of four steps:

 Characterize the structure of

optimal solutions.

 Recursively defines the

values of optimal solutions.

 Compute the value of

optimal solutions in a

Bottom-up minimum.

 Construct an Optimal

Solution from computed

information.

2. It is Recursive. 2. It is non Recursive.

3. It does more work on sub-

problems and hence has more time

consumption.

3. It solves sub-problems only once and

then stores in the table.

4. It is a top-down approach. 4. It is a Bottom-up approach.

5. In this sub-problems are

independent of each other.

5. In this sub-problems are

interdependent.

6. For example: Merge Sort &

Binary Search etc.

6. For example: Matrix Multiplication.

3.4 Techniques for Solving Dynamic Programming Problems

To solve any dynamic programming problem, we can use the FAST

method.

Here, FAST stands for:

 'F' stands for Find the recursive solution: Whenever we find

any DP problem, we have to find the recursive solution.

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

140

 'A' stands for Analyse the solution: Once we find the recursive

solution then we have to analyse the solution and look for the

overlapping problems.

 'S' stands for Save the results for future use: Once we find the

overlapping problems, we store the solutions of these sub-

problems. To store the solutions, we use the n-dimensional array

for caching purpose.

The above three steps are used for the top-down approach if we use 'F',

'A' and 'S', which means that we are achieving the Top-down approach

and since it is not purely because we are using the recursive technique.

 'T' stands for Tweak the solution to make it more powerful by

eliminating recursion overhead which is known as a Bottom-up

approach. Here we remove the recursion technique and use the

iterative approach to achieve the same results, so it's a pure

approach. Recursion is always an overhead as there are chances

of getting a stack overflow error, so we should use the bottom-up

approach to avoid this problem.

Above are the four steps to solve a complex problem.

Problem Statement: Write an efficient program to find the nth Fibonacci

number?

As we know that Fibonacci series looks like:

0, 1, 1, 2, 3, 5, 8, 13, 21,...

First, we find the recursive solution,

The below is the code of the above recursive solution:

Fib(n)

{

 if(n<2)

 return n;

 return fib(n-1) + fib(n-2);

}

The above recursive solution is also the solution for the above problem

but the time complexity in this case is O(2n). So, dynamic programming

is used to reduce the time complexity from the exponential time to the

linear time.

CIT 310 MODULE 3

141

Second step is to Analyse the solution

Suppose we want to calculate the fib(4).

Fib(4)= fib(3) + fib(2)

Fib(3) = fib(2) + fib(1)

Fib(2) = fib(1) + fib(0)

As we can observe in the above figure that fib(2) is calculated two times

while fib(1) is calculated three times. So, here overlapping problem

occurs. In this step, we have analysed the solution.

Third step is to save the result.

The process of saving the result is known as memoization. In this step,

we will follow the same approach, i.e., recursive approach but with a

small different that we have used the cache to store the solutions so that

it can be re-used whenever required.

Below is the code of memorization.

Fib(n)

{

 int cache = new int[n+1];

 if(n<2)

 return n;

 if(cache[n]!= 0)

 return cache[n];

 return cache[n] = fib(n-1) + fib(n-2);

}

In the above code, we have used a cache array of size n+1. If cache[n] is

not equal to zero then we return the result from the cache else we will

calculate the value of cache and then return the cache. The technique

that we have used here is top-down approach as it follows the recursive

approach. Here, we always look for the cache so cache will be populated

on the demand basis. Suppose we want to calculate the fib(4), first we

look into cache, and if the value is not in the cache then the value is

calculated and stored in the cache.

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

142

Visual representation of the above code is:

Fourth step is to Tweak the solution

In this step, we will remove the recursion completely and make it an

iterative approach. So, this technique is known as a bottom-up approach.

Fib(n)

{

 int cache[] = new int[n+1];

 // base cases

 cache[0] = 0;

 cache[1] = 1;

 for(int i=2; i<=n; i++)

 {

 cache[i] = cache[i-1] + cache[i-2];

 }

return cache[n];

}

In the above code, we have followed the bottom-up approach. We have

declared a cache array of size n+1. The base cases are cache[0] and

cache[1] with their values 0 and 1 respectively. In the above code, we

have removed the recursion completely. We have used an iterative

approach. We have defined a for loop in which we populate the cache

with the values from the index i=2 to n, and from the cache, we will

return the result. Suppose we want to calculate f(4), first we will

calculate f(2), then we will calculate f(3) and finally, we we calculate

the value of f(4). Here we are going from down to up so this approach is

known as a bottom-up approach.

CIT 310 MODULE 3

143

We can visualize this approach diagrammatically:

As we can observe in the above figure that we are populating the cache

from bottom to up so it is known as bottom-up approach. This approach

is much more efficient than the previous one as it is not using recursion

but both the approaches have the same time and space complexity, i.e.,

O(n).

In this case, we have used the FAST method to obtain the optimal

solution. The above is the optimal solution that we have got so far but

this is not the purely an optimal solution.

Efficient solution:

fib(n)

{

 int first=0, second=1, sum=0;

 if(n<2)

 {

 return 0;

 }

for(int i =2; i<=n; i++)

{

 sum = first + second;

 first = second;

 second = sum;

}

return sum;

}

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

144

The above solution is the efficient solution as we do not use the cache.

The Following are the top 10 problems that can easily be solved using

Dynamic programming:

a. Longest Common Subsequence.

b. Shortest Common Supersequence.

c. Longest Increasing Subsequence problem.

d. The Levenshtein distance (Edit distance) problem.

e. Matrix Chain Multiplication.

f. 0–1 Knapsack problem.

g. Partition problem.

h. Rod Cutting.

Self-Assessment Exercises

1. When do we consider using the dynamic programming approach?

2. Four matrices M1, M2, M3 and M4 of dimensions pxq, qxr, rxs

and sxt respectively can be multiplied is several ways with

different number of total scalar multiplications. For example,

when multiplied as ((M1 X M2) X (M3 X M4)), the total number

of multiplications is pqr + rst + prt. When multiplied as (((M1 X

M2) X M3) X M4), the total number of scalar multiplications is

pqr + prs + pst. If p = 10, q = 100, r = 20, s = 5 and t = 80, then

the number of scalar multiplications needed is?

3. Consider two strings A = "qpqrr" and B = "pqprqrp". Let x be the

length of the longest common subsequence (not necessarily

contiguous) between A and B and let y be the number of such

longest common subsequences between A and B. Then x + 10y

=?

4. In dynamic programming, the technique of storing the previously

calculated values is called?

5. What happens when a top-down approach of dynamic

programming is applied to a problem?

4.0 CONCLUSION

Dynamic programming is nothing but recursion with memoization i.e.

calculating and storing values that can be later accessed to solve sub-

problems that occur again, hence making your code faster and reducing

the time complexity (computing CPU cycles are reduced). Dynamic

programming is used where we have problems, which can be divided

into similar sub-problems, so that their results can be re-used. Mostly,

these algorithms are used for optimization. Before solving the in-hand

sub-problem, dynamic algorithm will try to examine the results of the

previously solved sub-problems.

CIT 310 MODULE 3

145

5.0 SUMMARY

In this Unit, we considered a very important algorithm design paradigm

known as Dynamic programming and compared it with another useful

method known as Divide-and-Conquer technique. Several ways for

resolving the Dynamic Programming problem were considered.

6.0 TUTOR MARKED ASSIGNMENTS

1. For each of the following problems, explain whether they could

be solved or not using dynamic programming?

 A : Mergesort B : Binary search

 C : Longest common subsequence D : Quicksort

2. Give at least three properties of a dynamic programming problem

3. You are given infinite coins of denominations 1, 3, 4. What is the

total number of ways in which a sum of 7 can be achieved using

these coins if the order of the coins is not important?

4. What is the main difference between the Top-down and Bottom-

up approach for solving Dynamic Programming problems?

7.0 FURTHER READING AND OTHER RESOURCES

Baase, S. and Van Gelder, A. (2020). Computer Algorithms:

 Introduction to Design and Analysis. Addison-Wesley. ISBN:

 0201612445, 9780201612448

Bhasin, H. (2015). Algorithms: Design and Analysis. Oxford University

 Press. ISBN: 0199456666, 9780199456666

Sen, S. and Kumar, A, (2019). Design and Analysis of Algorithms. A

 Contemporary Perspective. Cambridge University Press. ISBN:

 1108496822, 9781108496827

Vermani, L. R. and Vermani, S.(2019). An Elementary Approach To

 Design And Analysis Of Algorithms. World Scientific. ISBN:

 178634677X, 9781786346773

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

146

UNIT 3 COMPUTATIONAL COMPLEXITY

1.0 Introduction

2.0 Objectives

3.0 Computational Complexity Theory

 3.0.1 Notations Used

 3.1 Deterministic Algorithms

 3.1.1 Facts about Deterministic Algorithms

 3.2 Non Deterministic Algorithms

 3.2.1 What makes and Algorithm Non-Deterministic?

 3.2.2 Facts about Non-Deterministic Algorithms

 3.2.3 Deterministic versus Non-Deterministic Algorithms

 3.3 NP Problems

 3.3.1 Definition of P Problems

 3.4 Decision-Based Problems

 3.4.1 NP-Hard Problems

 3.4.2 NP-Complete Problems

 3.4.3 Representation of NP Classes

 3.5 Tractable and Intractable Problems

 3.5.1 Tractable Problems

 3.5.2 Intractable Problems

 3.5.3 Is P = NP?

4.0 Conclusion

5.0 Summary

6.0 Tutor Marked Assignment

7.0 Further Reading and Other Resources

1.0 INTRODUCTION

In general, the amount of resources (or cost) that an algorithm requires

in order to return the expected result is called computational complexity

or just complexity. ... The complexity of an algorithm can be measured

in terms of time complexity and/or space complexity.

Computational complexity theory focuses on classifying computational

problems according to their resource usage, and relating these classes to

each other. A computational problem is a task solved by a computer. A

computation problem is solvable by mechanical application of

mathematical steps, such as an algorithm.

A problem is regarded as inherently difficult if its solution requires

significant resources, whatever the algorithm used.

We shall be looking at the famous P (Polynomial Time) and NP (Non

Polynomial Time) as well as NP-complete problems.

CIT 310 MODULE 3

147

2.0 OBJECTIVES

By the end of this unit, you should be able to:

 Know the meaning and focus of Computational Complexity

theory

 Identify the different cases of P and NP problems

 Differentiate between Tractable and Intractable problems

 Know what we mean by Deterministic and Non-Deterministic

problems

 Understand the differences between Deterministic and Non

Deterministic algorithms

3.0 Computational Complexity Theory

An algorithm’s performance is always important when you try to solve a

problem. An algorithm won’t do you much good if it takes too long or

requires too much memory or other resources to actually run on a

computer.

Computational complexity theory, or just complexity theory, is the study

of the difficulty of computational problems. Rather than focusing on

specific algorithms, complexity theory focuses on problems.

For example, the mergesort algorithm can sort a list of N numbers in

O(N log N) time. Complexity theory asks what you can learn about the

task of sorting in general, not what you can learn about a specific

algorithm. It turns out that you can show that any sorting algorithm that

sorts by using comparisons must use at least N × log(N) time in the

worst case.

Complexity theory is a large and difficult topic, so there’s no room here

to cover it fully. However, every programmer who studies algorithms

should know at least something about complexity theory in general and

the two sets P and NP in particular. This module introduces complexity

theory and describes what these important classes of problems are.

3.0.1 Notations Used

The Big O notation describes how an algorithm’s worst-case

performance increases as the problem’s size increases.

For most purposes, that definition is good enough to be useful, but in

complexity theory Big O notation has a more technical definition.

If an algorithm’s run time is f (N) , then the algorithm has Big O

performance of g(N) if f(N) < g(N) x k for some constant k and for N

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

148

large enough. In other words, the function g(N) is an upper bound for

the actual run-time function f(N). .

Two other notations similar to Big O notations are sometimes useful

when discussing algorithmic complexity.

Big Omega notation, written Ω(g(N)), means that the run-time function

is bounded below by the function g(N) . For example, as explained a

moment ago, N log(N) is a lower bound for algorithms that sort by using

comparisons, so those algorithms are Ω(N logN) .

Big Theta notation, written ϴ(g(N)) , means that the run-time function

is bounded both above and below by the function g(N) . For example,

the mergesort algorithm’s run time is bounded above by O(N log N),

and the run time of any algorithm that sorts by using comparisons is

bounded below by Ω(N log N), so mergesort has performance ϴ(N log

N).

In summary,

Big O notation gives an upper bound,

Big Omega gives a lower bound, and

Big Theta gives an upper and lower bound.

Some algorithms however, have different upper and lower bounds.

For example, like all algorithms that sort by using comparisons,

quicksort has a lower bound of Ω(N log N).

In the best and expected cases, quicksort’s performance actually is Ω(N

log N). In the worst case, however, quicksort’s performance is O(N2).

The algorithm’s lower and upper bounds are different, so no function

gives quicksort a Big Theta notation.

In practice, however, quicksort is often faster than algorithms such as

mergesort that are tightly bounded by ϴ(N log N), so it is still a popular

algorithm.

1.0 Deterministic Algorithms

A Deterministic algorithm is an algorithm which, given a particular

input will always produce the same output, with the underlying machine

always passing through the same sequence of states.

In other words, Deterministic algorithm will always come up with the

same result given the same inputs.

CIT 310 MODULE 3

149

Deterministic algorithms are by far the most studied and familiar kind of

algorithm as well as one of the most practical, since they can be run on

real machines efficiently.

Formally, a deterministic algorithm computes a mathematics function; a

function has a unique value for any input in its domain, and the

algorithm is a process that produces this particular value as output.

Deterministic algorithms can be defined in terms of a state machine:

a state describes what a machine is doing at a particular instant in time.

State machines pass in a discrete manner from one state to another. Just

after we enter the input, the machine is in its initial state or start state. If

the machine is deterministic, this means that from this point onwards, its

current state determines what its next state will be; its course through the

set of states is predetermined. Note that a machine can be deterministic

and still never stop or finish, and therefore fail to deliver a result.

Examples of particular abstract machines which are deterministic

include the deterministic Turing machine and deterministic finite

automat

3.1.1 Facts about Deterministic Algorithms

i. Deterministic algorithm is the algorithm which, given a particular

input will always produce the same output, with the underlying

machine always passing through the same sequence of states.

ii. In deterministic algorithm the path of execution for algorithm is

same in every execution.

iii. On the basis of execution and outcome in case of Deterministic

algorithm, they are also classified as reliable algorithms as for a

particular input instructions the machine will give always the

same output.

iv. In Deterministic Algorithms execution, the target machine

executes the same instruction and results same outcome which is

not dependent on the way or process in which instruction get

executed.

v. As outcome is known and is consistent on different executions so

deterministic algorithm takes polynomial time for their execution.

3.2 Non-deterministic Algorithms

A nondeterministic algorithm is an algorithm that, even for same input,

can exhibit different behaviors on different runs.

In other words, it is an algorithm in which the result of every algorithm

is not uniquely defined and result could be random.

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

150

An algorithm that solves a problem in nondeterministic polynomial time

can run in polynomial time or exponential time depending on the

choices it makes during. The nondeterministic algorithms are often used

to find an approximation to a solution, when the exact solution would be

too costly using a deterministic one.

A nondeterministic algorithm is different from its more familiar

deterministic counterpart in its ability to arrive at outcomes using

various routes. If a deterministic algorithm represents a single path from

an input to an outcome, a nondeterministic algorithm represents a single

path stemming into many paths, some of which may arrive at the same

output and some of which may arrive at unique outputs.

3.2.1 What Makes An Algorithm Non-deterministic?

A variety of factors can cause an algorithm to behave in a way which is

not deterministic, or non-deterministic:

i. If it uses external state other than the input, such as user input, a

global variable, a hardware timer value, a random value, or stored

disk data.

ii. If it operates in a way that is timing-sensitive, for example if it

has multiple processors writing to the same data at the same time.

In this case, the precise order in which each processor writes its

data will affect the result.

iii. If a hardware error causes its state to change in an unexpected

way.

3.2.2 Facts About Non-deterministic Algorithms

i. A Non-deterministic algorithm is the algorithms in which the

result of every algorithm is not uniquely defined and result could

be random.

ii. In a Non-Deterministic algorithm the path of execution is not

same for algorithm in every execution and could take any random

path for its execution.

iii. Non deterministic algorithms are classified as non-reliable

algorithms for a particular input the machine will give different

output on different executions.

iv. In Non-Deterministic Algorithms, the machine executing each

operation is allowed to choose any one of these outcomes

subjects to a determination condition to be defined later.

v. As outcome is not known and is non-consistent on different

executions so Non-Deterministic algorithm could not get

executed in polynomial time.

CIT 310 MODULE 3

151

3.2.3 Deterministic versus Non-deterministic Algorithms

The following table gives some vital differences between a

Deterministic and a Non Deterministic algorithm.

BASIS OF

COMPARISON

DETERMINISTIC

ALGORITHM

NON-DETERMINISTIC

ALGORITHM

Description.

Deterministic algorithm is the

algorithm which, given a

particular input will always

produce the same output, with the

underlying machine always

passing through the same

sequence of states.

Non-deterministic algorithm is

the algorithms in which the

result of every algorithm is not

uniquely defined and result

could be random.

Path Of

Execution

In deterministic algorithm the

path of execution for algorithm is

same in every execution.

In Non-Deterministic algorithm

the path of execution is not

same for algorithm in every

execution and could take any

random path for its execution.

Basis Of

Comparison

On the basis of execution and

outcome in case of Deterministic

algorithm, they are also classified

as reliable algorithms as for a

particular input instructions the

machine will give always the

same output.

Non deterministic algorithms

are classified as non-reliable

algorithms for a particular input

the machine will give different

output on different executions.

Operation

In Deterministic Algorithms

execution, the target machine

executes the same instruction and

results same outcome which is not

dependent on the way or process

in which instruction get

executed.

In Non-Deterministic

Algorithms, the machine

executing each operation is

allowed to choose any one of

these outcomes subjects to a

determination condition to be

defined later.

Output

As outcome is known and is

consistent on different executions

so deterministic algorithm takes

polynomial time for their

execution.

As outcome is not known and is

non-consistent on different

executions so Non-

Deterministic algorithm could

not get executed in polynomial

time.

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

152

3.3 NP (Non-Deterministic Polynomial) Problem

The set of all decision-based problems came into the division of NP

Problems who can't be solved or produced an output within polynomial

time but verified in the polynomial time. NP class contains P class as a

subset. NP problems are very hard to solve.

Note: The term “NP” does not mean “Not Polynomial”. Originally, the

term meant “Non-Deterministic Polynomial. It means according to the

one input number of output will be produced.

3.3.1 Definition of P Problems

Definition of P class Problem: - The set of decision-based problems

come into the division of P Problems who can be solved or produced an

output within polynomial time. P problems being easy to solve

Definition of Polynomial time: - If we produce an output according to

the given input within a specific amount of time such as within a minute,

hours. This is known as Polynomial time.

Definition of Non-Polynomial time: - If we produce an output

according to the given input but there are no time constraints is known

as Non-Polynomial time. But yes output will produce but time is not

fixed yet.

3.2 Decision Based Problems

A problem is called a decision problem if its output is a simple "yes" or

"no" (or you may need to represent it as true/false, 0/1, accept/reject.)

We will phrase many optimization problems as decision problems.

For example, Greedy method, D.P., given a graph G= (V, E) if there

exists any Hamiltonian cycle.

3.4.1 NP-hard Problems

A problem is NP-hard if an algorithm for solving it can be translated

into one for solving any NP- problem (nondeterministic polynomial

time) problem. NP-hard therefore means "at least as hard as any NP-

problem," although it might, in fact, be harder.

A problem must satisfy the following points to be classified as NP-hard

1. If we can solve this problem in polynomial time, then we can

solve all NP problems in polynomial time

CIT 310 MODULE 3

153

2. If you convert the issue into one form to another form within the

polynomial time

3.4.2 NP-complete Problems:

A problem is NP-complete when: it is a problem for which the

correctness of each solution can be verified quickly and a brute-force

search algorithm can find a solution by trying all possible solutions.

A problem is in the class NP-complete if it is in NP and is as hard as any

problem in NP. A problem is NP-hard if all problems in NP are

polynomial time reducible to it, even though it may not be in NP itself.

These problems are called NP-complete.

Many significant computer-science problems belong to this class—e.g.,

the traveling salesman problem, satisfiability problems, and graph-

covering problems.

3.4.3 Pictorial representation of all NP classes

3.5 Tractable and Intractable Problems

3.5.1 Tractable Problem:

A problem that is solvable by a polynomial-time algorithm. The upper

bound is polynomial.

Here are examples of tractable problems (ones with known polynomial-

time algorithms):

– Searching an unordered list

– Searching an ordered list

– Sorting a list

– Multiplication of integers (even though there’s a gap)

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

154

– Finding a minimum spanning tree in a graph (even though there’s a

gap)

3.5.2 Intractable Problem:

A problem that cannot be solved by a polynomial-time algorithm. The

lower bound is exponential.

From a computational complexity stance, intractable problems are

problems for which there exist no efficient algorithms to solve them.

Most intractable problems have an algorithm that provides a solution,

and that algorithm is the brute-force search.

This algorithm, however, does not provide an efficient solution and is,

therefore, not feasible for computation with anything more than the

smallest input.

Examples

Towers of Hanoi: we can prove that any algorithm that solves this

problem must have a worst-case running time that is at least 2n − 1.

* List all permutations (all possible orderings) of n numbers.

3.5.3 IS P = NP?

The P versus NP problem is a major unsolved problem in computer

science. It asks whether every problem whose solution can be quickly

verified can also be solved quickly.

An answer to the P versus NP question would determine whether

problems that can be verified in polynomial time can also be solved in

polynomial time.

If it turns out that P ≠ NP, which is widely believed, it would mean that

there are problems in NP that are harder to compute than to verify: they

could not be solved in polynomial time, but the answer could be verified

in polynomial time.

If P=NP, then all of the NP problems can be solved deterministically in

Polynomial time.

The Clay Mathematics Institute has offered a $1,000,000 prize to

anyone who proves or disproves P = NP.

CIT 310 MODULE 3

155

Self Assessment Exercise

1. Differentiate between a P problem and an NP problem

2. What are NP-hard problems?

3. Give three examples of Tractable problems

4. What are the features of Deterministic problems?

4.0 CONCLUSION

Computational complexity theory focuses on classifying computational

problems according to their resource usage, and relating these classes to

each other. A computational problem is a task solved by a computer. A

computation problem is solvable by mechanical application of

mathematical steps, such as an algorithm. Several areas considered in

this Unit were P and NP problems, Deterministic versus Non

Deterministic problems as well as Tractable versus Intractable problems.

5.0 SUMMARY

In this Unit we looked at the meaning and nature of Computational

Complexity theory and also examined the notion of Deterministic as

well as Non Deterministic algorithms. Several examples of the

algorithms were listed and we also treated P, NP, NP-hard and NP-

complete problems while also mentioning Tractable and Intractable

problems. On a final note, we also looked at the unsolvable problem of P

= NP.

6.0 TUTOR MARKED ASSIGNMENT

1. What would be the implication of having P = NP?

2. What again would happen if P≠NP?

3. What makes exponential time and algorithms with factorials

more difficult to solve?

4. How many stages of procedure does a Non deterministic

algorithm consist of?

7.0 FURTHER READING AND OTHER RESOURCES

Baase, S. and Van Gelder, A. (2020). Computer Algorithms:

 Introduction to Design and Analysis. Addison-Wesley. ISBN:

 0201612445, 9780201612448

Bhasin, H. (2015). Algorithms: Design and Analysis. Oxford University

 Press. ISBN: 0199456666, 9780199456666

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

156

Sen, S. and Kumar, A, (2019). Design and Analysis of Algorithms. A

 Contemporary Perspective. Cambridge University Press. ISBN:

 1108496822, 9781108496827

Vermani, L. R. and Vermani, S.(2019). An Elementary Approach To

 Design And Analysis Of Algorithms. World Scientific. ISBN:

 178634677X, 9781786346773

CIT 310 MODULE 3

157

UNIT 4 APPROXIMATE ALGORITHMS I

1.0 Introduction

2.0 Objectives

3.0 Pascal Programming Basics

 3.1 Character Set and Identifiers

 3.2 Numbers and Strings

3.3 Variable, Constant and Assignment Statements

3.4 Data Types

3.5 Reserved Words

3.6 Standard Functions and Operator Precedence

4.0 Conclusion

5.0 Summary

6.0 Tutor Marked Assignment

7.0 Further Reading and Other Resources

1.0 INTRODUCTION

In computer science and operations research, approximation algorithms

are efficient algorithms that find approximate solutions to optimization

problems (in particular NP-hard problems) with provable guarantees on

the distance of the returned solution to the optimal one. Approximation

algorithms are typically used when finding an optimal solution is

intractable, but can also be used in some situations where a near-optimal

solution can be found quickly and an exact solution is not needed.

2.0 OBJECTIVES

At the end of this Unit, you should be able to;

 Know the meaning of an Approximate algorithm

 Understand the performance ratio of approximate algorithms

 Learn more about the Vertex Cover and Traveling Salesman

problems

 Understand the concept of Minimal Spanning Trees

 Understand more of the concept of Performance Ratios

3.0 Approximate Algorithms

An Approximate Algorithm is a way of approach NP-

COMPLETENESS for the optimization problem. This technique does

not guarantee the best solution. The goal of an approximation algorithm

is to come as close as possible to the optimum value in a reasonable

amount of time which is at the most polynomial time. Such algorithms

are called approximation algorithm or heuristic algorithm.

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

158

 For the traveling salesperson problem, the optimization problem

is to find the shortest cycle, and the approximation problem is to

find a short cycle.

 For the vertex cover problem, the optimization problem is to find

the vertex cover with fewest vertices, and the approximation

problem is to find the vertex cover with few vertices.

3.0.1 Performance Ratios

Suppose we work on an optimization problem where every solution

carries a cost. An Approximate Algorithm returns a legal solution, but

the cost of that legal solution may not be optimal.

For Example, suppose we are considering for a minimum size vertex-

cover (VC). An approximate algorithm returns a VC for us, but the size

(cost) may not be minimized.

Another Example is we are considering for a maximum size

Independent set (IS). An approximate Algorithm returns an IS for us,

but the size (cost) may not be maximum. Let C be the cost of the

solution returned by an approximate algorithm, and C* is the cost of the

optimal solution.

We say the approximate algorithm has an approximate ratio P (n) for an

input size n, where

Intuitively, the approximation ratio measures how bad the approximate

solution is distinguished with the optimal solution. A large (small)

approximation ratio measures the solution is much worse than (more or

less the same as) an optimal solution.

Observe that P (n) is always ≥ 1, if the ratio does not depend on n, we

may write P. Therefore, a 1-approximation algorithm gives an optimal

solution. Some problems have polynomial-time approximation

algorithm with small constant approximate ratios, while others have

best-known polynomial time approximation algorithms whose

approximate ratios grow with n.

CIT 310 MODULE 3

159

3.1 Vertex Cover

A Vertex Cover of a graph G is a set of vertices such that each edge in G

is incident to at least one of these vertices.

The decision vertex-cover problem was proven NPC. Now, we want to

solve the optimal version of the vertex cover problem, i.e., we want to

find a minimum size vertex cover of a given graph. We call such vertex

cover an optimal vertex cover C*.

An approximate algorithm for vertex cover:

Approx-Vertex-Cover (G = (V, E))

{

 C = empty-set;

 E'= E;

 While E' is not empty do

 {

 Let (u, v) be any edge in E': (*)

 Add u and v to C;

 Remove from E' all edges incident to

 u or v;

 }

 Return C;

}

The idea is to take an edge (u, v) one by one, put both vertices to C, and

remove all the edges incident to u or v. We carry on until all edges have

been removed. C is a VC. But how good is C?

VC = {b, c, d, e, f, g}

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

160

3.2 Traveling-salesman Problem

In the traveling salesman Problem, a salesman must visits n cities. We

can say that salesman wishes to make a tour or Hamiltonian cycle,

visiting each city exactly once and finishing at the city he starts from.

There is a non-negative cost c (i, j) to travel from the city i to city j. The

goal is to find a tour of minimum cost. We assume that every two cities

are connected. Such problems are called Traveling-salesman problem

(TSP).

We can model the cities as a complete graph of n vertices, where each

vertex represents a city.

It can be shown that TSP is NPC.

If we assume the cost function c satisfies the triangle inequality, then we

can use the following approximate algorithm.

Triangle inequality

Let u, v, w be any three vertices, we have

One important observation to develop an approximate solution is if we

remove an edge from H*, the tour becomes a spanning tree.

Approx-TSP (G= (V, E))

{

 1. Compute a MST T of G;

 2. Select any vertex r is the root of the tree;

 3. Let L be the list of vertices visited in a preorder tree walk of

T;

 4. Return the Hamiltonian cycle H that visits the vertices in the

order L;

}

The Traveling-salesman Problem

CIT 310 MODULE 3

161

Intuitively, Approx-TSP first makes a full walk of MST T, which visits

each edge exactly two times. To create a Hamiltonian cycle from the full

walk, it bypasses some vertices (which corresponds to making a

shortcut)

3.3 Minimum Spanning Tree

Before knowing about the minimum spanning tree, we should know

about the spanning tree.

To understand the concept of spanning tree, consider the graph below:

The above graph can be represented as G(V, E), where 'V' is the number

of vertices, and 'E' is the number of edges. The spanning tree of the

above graph would be represented as G`(V`, E`). In this case, V` = V

means that the number of vertices in the spanning tree would be the

same as the number of vertices in the graph, but the number of edges

would be different. The number of edges in the spanning tree is the

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

162

subset of the number of edges in the original graph. Therefore, the

number of edges can be written as:

E` € E

It can also be written as:

E` = |V| - 1

Two conditions exist in the spanning tree, which is as follows:

 The number of vertices in the spanning tree would be the same as

the number of vertices in the original graph.

 V` = V

 The number of edges in the spanning tree would be equal to the

number of edges minus 1.

 E` = |V| - 1

 The spanning tree should not contain any cycle.

 The spanning tree should not be disconnected.

Note: A graph can have more than one spanning tree.

Consider the graph below:

The above graph contains 5 vertices. As we know, the vertices in the

spanning tree would be the same as the graph; therefore, V` is equal 5.

The number of edges in the spanning tree would be equal to (5 - 1), i.e.,

4. The following are the possible spanning trees:

CIT 310 MODULE 3

163

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

164

3.3.1 What is a minimum spanning tree?

The minimum spanning tree is a spanning tree whose sum of the edges

is minimum. Consider the below graph that contains the edge weight:

The following are the spanning trees that we can make from the above

graph.

i. The first spanning tree is a tree in which we have removed the

edge between the vertices 1 and 5 shown as below:

The sum of the edges of the above tree is (1 + 4 + 5 + 2): 12

ii. The second spanning tree is a tree in which we have removed

the edge between the vertices 1 and 2 shown as below:

The sum of the edges of the above tree is (3 + 2 + 5 + 4) : 14

iii. The third spanning tree is a tree in which we have removed

the edge between the vertices 2 and 3 shown as below:

The sum of the edges of the above tree is (1 + 3 + 2 + 5) : 11

iv. The fourth spanning tree is a tree in which we have removed

the edge between the vertices 3 and 4 shown as below:

The sum of the edges of the above tree is (1 + 3 + 2 + 4) : 10.

The edge cost 10 is minimum so it is a minimum spanning

tree.

3.3.2 General properties of minimum spanning tree:

i. If we remove any edge from the spanning tree, then it becomes

disconnected. Therefore, we cannot remove any edge from the

spanning tree.

ii. If we add an edge to the spanning tree then it creates a loop.

Therefore, we cannot add any edge to the spanning tree.

iii. In a graph, each edge has a distinct weight, then there exists only

a single and unique minimum spanning tree. If the edge weight is

not distinct, then there can be more than one minimum spanning

tree.

iv. A complete undirected graph can have an nn-2 number of

spanning trees.

v. Every connected and undirected graph contains atleast one

spanning tree.

vi. The disconnected graph does not have any spanning tree.

vii. In a complete graph, we can remove maximum (e-n+1) edges to

construct a spanning tree.

Let us understand the last property through an example.

Consider the complete graph which is given below:

CIT 310 MODULE 3

165

The number of spanning trees that can be made from the above complete

graph equals to nn-2 = 44-2 = 16.

Therefore, 16 spanning trees can be created from the above graph.

The maximum number of edges that can be removed to construct a

spanning tree equals to e-n+1 = 6 - 4 + 1 = 3.

3.3.3 Application of Minimum Spanning Tree

1. Consider n stations are to be linked using a communication

network and laying of communication links between any two

stations involves a cost.

The ideal solution would be to extract a subgraph termed as

minimum cost spanning tree.

2. Suppose you want to construct highways or railroads spanning

several cities then we can use the concept of minimum spanning

trees.

3. Designing Local Area Networks.

4. Laying pipelines connecting offshore drilling sites, refineries and

consumer markets.

5. Suppose you want to apply a set of houses with

 Electric Power

 Water

 Telephone lines

 Sewage lines

To reduce cost, you can connect houses with minimum cost spanning

trees.

For Example, Problem laying Telephone Wire.

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

166

CIT 310 MODULE 3

167

Self-Assessment Exercises

1. The traveling salesman problem involves visiting each city how

many times?

2. What do you understand by the term MINIMUM SPANNING

TREE?

3. An undirected graph G(V, E) contains n (n > 2) nodes named v1

, v2 ,….vn. Two nodes vi , vj are connected if and only if 0 < |i –

j| <= 2. Each edge (vi, vj) is assigned a weight i + j. A sample

graph with n = 4 is shown below. What will be the cost of the

minimum spanning tree (MST) of such a graph with n nodes?

4. What does and approximation ratio measures?

4.0 CONCLUSION

An approximation or approximate algorithm is a way of dealing

with NP-completeness for an optimization problem. The goal of the

approximation algorithm is to come close as much as possible to the

optimal solution in polynomial time. Examples of Approximation

algorithms are the Minimal Spanning tree, Vertex cover and Traveling

Salesman problem.

5.0 SUMMARY

In this Unit we considered the meaning of approximate or

approximation algorithms and areas of applications like vertex cover,

minimum spanning tree and traveling salesman problem amongst others.

We also looked at the issue of performance ratios.

6.0 TUTOR MARKED ASSIGNMENTS

1. How does the practical Traveling Salesman problem differ from

the Classical Traveling salesman problem?

2. Consider a complete undirected graph with vertex set {0, 1, 2, 3,

4}. Entry Wij in the matrix W below is the weight of the edge {i,

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

168

j}. What is the minimum possible weight of a spanning tree T in

this graph such that vertex 0 is a leaf node in the tree T?

4. In the graph given in question (2) above, what is the minimum

possible weight of a path P from vertex 1 to vertex 2 in this graph

such that P contains at most 3 edges?

5. Consider a weighted complete graph G on the vertex set {v1,v2

,v} such that the weight of the edge (v,,v) is 2|i-j|. The weight of a

minimum spanning tree of G is?

7.0 FURTHER READING AND OTHER RESOURCES

Dave, P. H. (2007). Design and Analysis of Algorithms. Pearson

 Education, India. ISBN: 8177585959, 9788177585957

Greenbaum, A. and Chartier, T. P. (2012). Numerical Methods: Design,

 Analysis, and Computer Implementation of Algorithms.

 Princeton University Press. ISBN: 1400842670, 9781400842674.

Heineman, G. T., Pollice, G. and Selkow, S. (2016). Algorithms in a

 Nutshell. O’Reilly Media, Inc. USA.

Karamagi, R. (2020). Design and Analysis of Algorithms. Lulu.com,

 ISBN: 1716498155, 9781716498152

CIT 310 MODULE 3

169

UNIT 5 APPROXIMATE ALGORITHMS II

1.0 Introduction

2.0 Objectives

3.0 Methods of Minimum Spanning Tree (MST)

 3.1 Kruskal’s Algorithms

 3.1.1 Steps for Finding MST using Kruskal’s Algorithm

 3.2 Prim’s Algorithm

3.2.1 Steps for Finding MST using Prim’s Algorithm

4.0 Conclusion

5.0 Summary

6.0 Tutor Marked Assignment

7.0 Further Reading and Other Resources

1.0 INTRODUCTION

An approximation algorithm is a way of dealing with NP-

completeness for an optimization problem. The goal of the

approximation algorithm is to come close as much as possible to the

optimal solution in polynomial time.

We continue our class on Approximate algorithms by looking at some

methods of the Minimal Spanning Tree given as Kruskal’s algorithm

and the Prim’s algorithm.

2.0 OBJECTIVES

At the end of this Unit, you should be able to:

 Understand the methods of the Minimal Spanning Tree (MST)

 Know more about the Kruskal and the Prim algorithms

3.0 Methods of Minimum Spanning Tree

There are two methods to find Minimum Spanning Tree

1. Kruskal's Algorithm

2. Prim's Algorithm

3.1 Kruskal's Algorithm:

An algorithm to construct a Minimum Spanning Tree for a connected

weighted graph. It is a Greedy Algorithm. The Greedy Choice is to put

the smallest weight edge that does not because a cycle in the MST

constructed so far.

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

170

If the graph is not linked, then it finds a Minimum Spanning Tree.

3.1.1 Steps for finding MST using Kruskal's Algorithm:

1. Arrange the edge of G in order of increasing weight.

2. Starting only with the vertices of G and proceeding sequentially

add each edge which does not result in a cycle, until (n - 1) edges

are used.

3. EXIT.

MST- KRUSKAL (G, w)

A ← ∅

for each vertex v ∈ V [G]

do MAKE - SET (v)

sort the edges of E into non decreasing order by weight w

for each edge (u, v) ∈ E, taken in non decreasing order by

weight

do if FIND-SET (μ) ≠ if FIND-SET (v)

then A ← A ∪ {(u, v)}

UNION (u, v)

return A

Analysis:

Where E is the number of edges in the graph and V is the number of

vertices, Kruskal's Algorithm can be shown to run in O (E log E) time,

or simply, O (E log V) time, all with simple data structures. These

running times are equivalent because:

 E is at most V2 and log V2= 2 x log V is O (log V).

 If we ignore isolated vertices, which will each their components

of the minimum spanning tree, V ≤ 2 E, so log V is O (log E).

Thus the total time is

O (E log E) = O (E log V).

Example:

Find the Minimum Spanning Tree of the following graph using

Kruskal's algorithm.

CIT 310 MODULE 3

171

Solution:

First we initialize the set A to the empty set and create |v| trees, one

containing each vertex with MAKE-SET procedure. Then sort the edges

in E into order by non-decreasing weight.

There are 9 vertices and 12 edges. So MST formed (9-1) = 8 edges

Now, check for each edge (u, v) whether the endpoints u and v belong to

the same tree. If they do then the edge (u, v) cannot be supplementary.

Otherwise, the two vertices belong to different trees, and the edge (u, v)

is added to A, and the vertices in two trees are merged in by union

procedure.

Step1: So, first take (h, g) edge

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

172

Step 2: then (g, f) edge.

Step 3: then (a, b) and (i, g) edges are considered, and the forest

becomes

Step 4: Now, edge (h, i). Both h and i vertices are in the same set. Thus

it creates a cycle. So this edge is discarded.

Then edge (c, d), (b, c), (a, h), (d, e), (e, f) are considered, and the forest

becomes.

Step 5: In (e, f) edge both endpoints e and f exist in the same tree so

discarded this edge. Then (b, h) edge, it also creates a cycle.

Step 6: After that edge (d, f) and the final spanning tree is shown as in

dark lines.

CIT 310 MODULE 3

173

Step 7: This step will be required Minimum Spanning Tree because it

contains all the 9 vertices and (9 - 1) = 8 edges

e → f, b → h, d → f [cycle will be formed]

Minimum Cost MST

3.2 Prim's Algorithm

It is a greedy algorithm. It starts with an empty spanning tree. The idea

is to maintain two sets of vertices:

 Contain vertices already included in MST.

 Contain vertices not yet included.

At every step, it considers all the edges and picks the minimum weight

edge. After picking the edge, it moves the other endpoint of edge to set

containing MST.

3.2.1 Steps for finding MST using Prim's Algorithm:

1. Create MST set that keeps track of vertices already included in

MST.

2. Assign key values to all vertices in the input graph. Initialize all

key values as INFINITE (∞). Assign key values like 0 for the

first vertex so that it is picked first.

3. While MST set doesn't include all vertices.

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

174

a. Pick vertex u which is not is MST set and has minimum

key value. Include 'u'to MST set.

b. Update the key value of all adjacent vertices of u. To

update, iterate through all adjacent vertices. For every

adjacent vertex v, if the weight of edge u.v less than the

previous key value of v, update key value as a weight of

u.v.

MST-PRIM (G, w, r)

for each u ∈ V [G]

do key [u] ← ∞

π [u] ← NIL

key [r] ← 0

Q ← V [G]

While Q ? ∅

do u ← EXTRACT - MIN (Q)

for each v ∈ Adj [u]

do if v ∈ Q and w (u, v) < key [v]

then π [v] ← u

key [v] ← w (u, v)

Example:

Generate minimum cost spanning tree for the following graph using

Prim's algorithm.

Solution:

In Prim's algorithm, first we initialize the priority Queue Q. to contain

all the vertices and the key of each vertex to ∞ except for the root,

CIT 310 MODULE 3

175

whose key is set to 0. Suppose 0 vertex is the root, i.e., r. By EXTRACT

- MIN (Q) procure, now u = r and Adj [u] = {5, 1}.

Removing u from set Q and adds it to set V - Q of vertices in the tree.

Now, update the key and π fields of every vertex v adjacent to u but not

in a tree.

Taking 0 as starting vertex

 Root = 0

 Adj [0] = 5, 1

 Parent, π [5] = 0 and π [1] = 0

 Key [5] = ∞ and key [1] = ∞

 w [0, 5) = 10 and w (0,1) = 28

 w (u, v) < key [5] , w (u, v) < key [1]

 Key [5] = 10 and key [1] = 28

So update key value of 5 and 1 is:

Now by EXTRACT_MIN (Q) Removes 5 because key [5] = 10 which is

minimum so u = 5.

Adj [5] = {0, 4} and 0 is already in heap

Taking 4, key [4] = ∞ π [4] = 5

(u, v) < key [v] then key [4] = 25

w (5,4) = 25

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

176

w (5,4) < key [4]

date key value and parent of 4.

Now remove 4 because key [4] = 25 which is minimum, so u =4

Adj [4] = {6, 3}

Key [3] = ∞ key [6] = ∞

w (4,3) = 22 w (4,6) = 24

w (u, v) < key [v] w (u, v) < key [v]

w (4,3) < key [3] w (4,6) < key [6]

Update key value of key [3] as 22 and key [6] as 24.

And the parent of 3, 6 as 4.

π[3]= 4 π[6]= 4

u = EXTRACT_MIN (3, 6) [key [3] < key [6]]

u = 3 i.e. 22 < 24

Now remove 3 because key [3] = 22 is minimum so u =3.

CIT 310 MODULE 3

177

Adj [3] = {4, 6, 2}

 4 is already in heap

 4 ≠ Q key [6] = 24 now becomes key [6] = 18

 Key [2] = ∞ key [6] = 24

 w (3, 2) = 12 w (3, 6) = 18

 w (3, 2) < key [2] w (3, 6) < key [6]

Now in Q, key [2] = 12, key [6] = 18, key [1] = 28 and parent of 2 and 6

is 3.

π [2] = 3 π[6]=3

Now by EXTRACT_MIN (Q) Removes 2, because key [2] = 12 is

minimum.

u = EXTRACT_MIN (2, 6)

u = 2 [key [2] < key [6]]

 12 < 18

Now the root is 2

Adj [2] = {3, 1}

 3 is already in a heap

Taking 1, key [1] = 28

 w (2,1) = 16

 w (2,1) < key [1]

So update key value of key [1] as 16 and its parent as 2.

π[1]= 2

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

178

Now by EXTRACT_MIN (Q) Removes 1 because key [1] = 16 is

minimum.

Adj [1] = {0, 6, 2}

 0 and 2 are already in heap.

Taking 6, key [6] = 18

 w [1, 6] = 14

 w [1, 6] < key [6]

Update key value of 6 as 14 and its parent as 1.

Π [6] = 1

Now all the vertices have been spanned, Using above the table we get

Minimum Spanning Tree.

0 → 5 → 4 → 3 → 2 → 1 → 6

[Because Π [5] = 0, Π [4] = 5, Π [3] = 4, Π [2] = 3, Π [1] =2, Π [6] =1]

Thus the final spanning Tree is

CIT 310 MODULE 3

179

Total Cost = 10 + 25 + 22 + 12 + 16 + 14 = 99

Self-Assessment Exercises

1. The number of distinct minimum spanning trees for the weighted

graph below is?

2. What is the weight of a minimum spanning tree of the following

graph?

3.

4. Let G be connected undirected graph of 100 vertices and 300

edges. The weight of a minimum spanning tree of G is 500.

When the weight of each edge of G is increased by five, the

weight of a minimum spanning tree becomes?

CIT 310 ALGORITHMS AND COMPLEXITY ANALYSIS

180

4.0 CONCLUSION

An approximation algorithm returns a solution to a combinatorial

optimization problem that is provably close to optimal (as opposed to

a heuristic that may or may not find a good solution). Approximation

algorithms are typically used when finding an optimal solution is

intractable, but can also be used in some situations where a near-optimal

solution can be found quickly and an exact solution is not needed.

Many problems that are NP-hard are also non-approximable assuming

P≠NP.

5.0 SUMMARY

In this Unit, we concluded our class on Approximate or Approximation

algorithms by looking again at the Minimal Spanning Tree and methods

for resolving MST problems, we looked at the Prim’s and Kruskal’s

algorithms as well as steps for finding MST using either of the

algorithms sonsidered.

6.0 TUTOR MARKED ASSIGNMENTS

1. Let G be a weighted connected undirected graph with distinct

positive edge weights. If every edge weight is increased by the

same value, then which of the following statements is/are TRUE?

 P: Minimum spanning tree of G does not change

 Q: Shortest path between any pair of vertices does not change

2. G = (V, E) is an undirected simple graph in which each edge has

a distinct weight, and e is a particular edge of G. Which of the

following statements about the minimum spanning trees (MSTs)

of G is/are TRUE

I. If e is the lightest edge of some cycle in G,

 then every MST of G includes e

II. If e is the heaviest edge of some cycle in G,

 then every MST of G excludes e

3. What is the largest integer m such that every simple connected

graph with n vertices and n edges contains at least m different

spanning trees?

7.0 FURTHER READING AND OTHER RESOURCES

Dave, P. H. (2007). Design and Analysis of Algorithms. Pearson

 Education, India. ISBN: 8177585959, 9788177585957

CIT 310 MODULE 3

181

Greenbaum, A. and Chartier, T. P. (2012). Numerical Methods: Design,

 Analysis, and Computer Implementation of Algorithms.

 Princeton University Press. ISBN: 1400842670, 9781400842674.

Heineman, G. T., Pollice, G. and Selkow, S. (2016). Algorithms in a

 Nutshell. O’Reilly Media, Inc. USA.

Karamagi, R. (2020). Design and Analysis of Algorithms. Lulu.com,

 ISBN: 1716498155, 9781716498152

	CIT 310 COURSE GUIDE.pdf
	CIT 310 MAIN COURSE.pdf
	CIT 310 MODULE 1 BASIC ALGORITHMIC ANALYSIS.pdf
	Algorithms are named after the 9th century Persian mathematician Al-Khowarizmi. He wrote a treatise in Arabic in 825 AD, On Calculation with Hindu Numerals. It was translated into Latin in the 12th century as Algoritmi de numero Indorum, which title w...
	The main Characteristics or features of Algorithms are;
	3.2.1 Advantages of Pseudocode
	3.2.2 Disadvantages of Pseudocode

	UNIT 2 ANALYSIS AND COMPLEXITY OF ALGORITHMS
	3.3 Typical Complexities of an Algorithm
	3.4 How to approximate the time taken by the Algorithm?
	3.4.1 Some Examples to Consider
	a. For Iterative Programs
	b. For Recursive Program
	3.2.1 Asymptotic analysis

	3.2.2 Why is Asymptotic Notation Important?
	3.3 Asymptotic Notations:
	Examples:
	Example:
	For Example:

	3.0 Recursion and Recursive Algorithms (Definitions)
	3.1 Why use recursion?
	3.1.1 Factorial Example
	3.1.2 Purpose of Recursions
	3.1.3 Conditionals to Start, Continue, and Stop the Recursion
	3.1.4 The Three Laws of Recursion
	Recursion
	Iteration
	3.1.1. Guess-and-Verify Method:
	3.1.2. Iteration Methods
	Master Theorem:

	3.2.4 Closed-form solution

	CIT 310 MODULE 2 SEARCHING AND SORTING ALGORITHMS.pdf
	Algorithm
	3.1 How Bubble Sort Works
	3.2.1 Complexity Analysis of Bubble Sort
	3.2.3 Advantages of Bubble Sort
	3.2.4 Disadvantages of Bubble Sort
	3.3.1 Algorithm: Selection Sort (A)
	3.3.2 How Selection Sort works
	3.3.3 Complexity Analysis of Selection Sort
	3.3.4 Time Complexities:

	Algorithm: Insertion Sort (A)
	3.1 How Insertion Sort Works
	3.2 Complexity Analysis of Insertion Sort
	3.2.1 Time Complexities
	3.2.2 Space Complexity

	3.2.3 Insertion Sort Applications
	3.2.4 Advantages of Insertion Sort
	3.3 Linear Search
	3.0 Radix Sort
	Worst case time complexity
	Best case time complexity
	Average case time complexity
	Space Complexity
	3.1.3 Applications of Radix Sort
	3.2 Stability in Sorting

	3.1 Fundamental of Divide & Conquer Strategy:
	3.1.1 Applications of Divide and Conquer Approach:
	3.1.2 Advantages of Divide and Conquer
	3.1.3 Disadvantages of Divide and Conquer
	Divide and Conquer Strategy
	3.1 Merge Sort algorithm
	The merge step of Merge Sort

	Merge() Function Explained Step-By-Step
	3.1.1 Complexity Analysis of Merge Sort:
	3.1.2 Merge Sort Applications
	Algorithm:
	Partition Algorithm:
	Example of Quick Sort. Given the following list;
	Merging Sublists:

	CIT 310 MODULE 3OTHER ALGORITHM TECHNIQUES.pdf
	We introduce here a special search tree called the Binary Search Tree and a derivative of it known as the Red Black Tree.
	A binary search tree, also known as ordered binary tree is a binary tree wherein the nodes are arranged in a order. The order is : a) All the values in the left sub-tree has a value less than that of the root node. b) All the values in the right node ...
	On the other hand, a red-black tree is a Binary tree where a particular node has color as an extra attribute, either red or black. By check the node colors on any simple path from the root to a leaf, red-black trees secure that no such path is higher ...
	2.0 OBJECTIVES
	 Understand the meaning of a Binary Search Tree.
	 Know the different methods of traversing a Binary Search Tree
	 List and explain the different ways a Binary Search Tree can be queried
	 Understand the Red Black Trees
	 Learn the different properties of Red Black Trees
	 Know the different operations done on Red Black Trees
	3.0 Binary Search Trees
	3.0.1 Binary Search Tree Property
	3.1 Traversal in Binary Search Trees:
	3.2 Querying a Binary Search Trees:

	Self-Assessment Exercises
	1. What is the worst case time complexity for search, insert and delete operations in a general Binary Search Tree?
	2. We are given a set of n distinct elements and an unlabelled binary tree with n nodes. In how many ways can we populate the tree with the given set so that it becomes a binary search tree?
	3. How many distinct binary search trees can be created out of 4 distinct keys?
	4. Suppose the numbers 7, 5, 1, 8, 3, 6, 0, 9, 4, 2 are inserted in that order into an initially empty binary search tree. The binary search tree uses the usual ordering on natural numbers. What is the in-order traversal sequence of the resultant tree?
	3.3 Red Black Tree
	3.3.1 Properties of Red-Black Trees
	3.4 Operations on RB Trees:
	3.4.1. Rotation:
	3.4.2. Insertion:
	3.4.3. Deletion:

	Self-Assessment Exercises
	1. When deleting a node from a red-black tree, what condition might happen?
	2. What is the maximum height of a Red-Black Tree with 14 nodes? (Hint: The black depth of each external node in this tree is 2.) Draw an example of a tree with 14 nodes that achieves this maximum height.
	3. Why can't a Red-Black tree have a black node with exactly one black child and no red child?
	4.0 CONCLUSION
	A binary search tree, also called an ordered or sorted binary tree, is a rooted binary tree data structure whose internal nodes each store a key greater than all the keys in the node’s left subtree and less than those in its right subtree. On the othe...
	5.0 SUMMARY
	In this unit, we considered the Binary Search Tree and looked at how such trees could be traversed while also examining the various methods of querying or accessing information from a Binary Search Tree. In addition, we looked at a special derivative ...
	6.0 TUTOR-MARKED ASSIGNMENTS
	1. What is the special property of red-black trees and what root should always be? a) a color which is either red or black and root should always be black color only
	2. The following numbers are inserted into an empty binary search tree in the given order: 10, 1, 3, 5, 15, 12, 16. What is the height of the binary search tree (the height is the maximum distance of a leaf node from the root)?
	3. What are the operations that could be performed in O(logn) time complexity by red-black tree?
	4. The preorder traversal sequence of a binary search tree is 30, 20, 10, 15, 25, 23, 39, 35, 42. Give the postorder and inorder traversal sequence of the same tree.
	5. How can you save memory when storing color information in Red-Black tree?
	6. Which of the following traversals is sufficient to construct BST from given traversals 1) Inorder 2) Preorder 3) Postorder
	3.0 Dynamic Programming
	How can we calculate F(20)?
	3.1 How Dynamic Programming Works
	3.2 Approaches of dynamic programming
	3.2.1 Top-down approach
	3.2.2 Bottom-Up approach

	3.4 Techniques for Solving Dynamic Programming Problems
	Problem Statement: Write an efficient program to find the nth Fibonacci number?
	5. What happens when a top-down approach of dynamic programming is applied to a problem?
	1. For each of the following problems, explain whether they could be solved or not using dynamic programming?
	3.1.1 Facts about Deterministic Algorithms
	3.2 Non-deterministic Algorithms
	3.2.1 What Makes An Algorithm Non-deterministic?
	3.2.2 Facts About Non-deterministic Algorithms

	3.2.3 Deterministic versus Non-deterministic Algorithms

	At the end of this Unit, you should be able to;
	3.0 Approximate Algorithms
	3.0.1 Performance Ratios

	3.1 Vertex Cover
	3.2 Traveling-salesman Problem
	Triangle inequality

	3.3 Minimum Spanning Tree
	3.3.1 What is a minimum spanning tree?
	The minimum spanning tree is a spanning tree whose sum of the edges is minimum. Consider the below graph that contains the edge weight:

	3.3.3 Application of Minimum Spanning Tree
	3.1 Kruskal's Algorithm:

	3.2 Prim's Algorithm
	3.2.1 Steps for finding MST using Prim's Algorithm:

