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INTRODUCTION 

 

In writing the Algorithms and Complexity Analysis course, emphasis 

will be placed on understanding the concept of computer algorithms, 

how to develop algorithms; test them before translating into viable and 

workable programs. This course is specifically tailored towards those 

students who are actually studying computing and interested in 

developing and testing computer algorithms and in applying them 

towards developing programs in any programming language. 

 

WHAT YOU WILL LEARN IN THIS COURSE 
 

This is a course with theoretical and self-exercises content. Throughout 

the semester, students will complete 3 modules of 15 units, self-

assessment exercises and workable assignments expected to meet 

specific course criteria. 

 

COURSE AIMS 

 

The aim of the course is to guide learners of Computing and Computer 

Programs on how to design and test algorithms and also help them in 

identifying different types of algorithm design paradigms. It is also to 

help them simplify the task of understanding the theory behind computer 

algorithms. 

 

COURSE OBJECTIVES 
 

Below are the objectives of the course which are to: 

 

1.  Provide sound understanding of computer algorithms. 

2.  Provide an understanding of algorithm design paradigms. 

3.   Provide suitable examples of different types of algorithms and 

 why algorithms are very important in computing. 

 

WORKING THROUGH THIS COURSE 
 

To complete this course you are required to read each study unit and 

other materials which may be provided by the National Open University 

of Nigeria. Each unit contains self-assessment exercises and some units 

with real-life problems to solve. At the end of every unit, you may be 

required to submit tutor marked assignments for assessment and 

grading. At the end of the course there is a final examination. 

 

To be abreast of this course, you are advised to avail yourself the 

opportunity of attending the tutorial or online facilitation sessions where 
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you have opportunity of comparing your knowledge with those of your 

colleagues.  

 

THE COURSE MATERIALS 

 

The main components of the course are: 

 

1.0  The Course Guide 

2.0  Study Units 

3.0  References/Further Readings 

4.0  Assignments  

5.0  Presentation Schedule 

 

STUDY UNITS 
 

The study units in this course are as follows: 

 

Module 1 Basic Algorithm Analysis 

 

Unit 1  Basic Algorithm Concepts 

Unit 2  Analysis and Complexity of Algorithms 

Unit 3  Algorithm Design Techniques 

Unit 4  Recursion and Recursive Algorithms 

Unit 5  Recurrence Relations  

 

Module 2  Searching and Sorting Algorithms 

 

Unit 1  Bubble Sort and Selection Sort Algorithm 

Unit 2  Insertion Sort and Linear Search Algorithms 

Unit 3  Radix Sort and Stability in Sorting 

Unit 4  Divide-and-Conquer Strategies I: Binary Search 

Unit 5  Divide-and-Conquer Strategies II: MergeSort and  

  Quicksort Algorithms 

 

Module 3  Other Algorithm Techniques 

 

Unit 1 Binary Search Trees 

Unit 2 Dynamic Programming 

Unit 3 Computational Complexity  

Unit 4 Approximate Algorithms I 

Unit 5 Approximate Algorithms II 
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PRESENTATION SCHEDULE 
 

The course materials assignments have important deadlines for 

submission. The learners should guide against falling behind stipulated 

deadlines. 

 

ASSESSMENT 
 

There are three ways of carrying out assessment of the course. First 

assessment is made up of self-assessment exercises, second consists of 

the tutor marked assignments and the last is the written examination/end 

of course examination. 

 

You are expected to do all the self-assessment exercises by applying 

what you have read in the units. The tutor marked assignments should be 

submitted to your facilitators for formal assessment in accordance with 

the deadlines stated in the presentation schedule and the assignment 

files. The total assessment will carry 30% of the total course score. At 

the end of the course, the final examination will not be more than three 

hours and will carry 70% of the total marks. 

 

TUTOR MARKED ASSIGNMENTS 
 

Tutor Marked Assignments (TMA) is a very important component of the 

course. You are to attempt three TMAs out four given before sitting for 

final examination. The TMA will be given to you by your facilitator and 

return same after the assignment is completed. Make sure the TMA 

reach the facilitator before the deadline given in the presentation 

schedule. 

 

FINAL EXAMINATION AND GRADING 

 

The final course examination will not exceed 3 hours which will total 

70% of the final score. The examination questions will reflect the self-

assessment exercises, tutor marked assignments that are previously 

encountered in the course units. 

 

COURSE MARKING SCHEME 

 

Your grade will be based on assignments and end of course 

examination. The assignments submitted will be weighted equally. 
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Marks 

Assignments  

 

30% 

  

Examination 70% 

 

 

 

Total 100% 

 

FACILITATORS/TUTOR AND TUTORIALS 
 

There are 16 hours of tutorials provided in support of this course. You 

will be notified of the dates, times and location of these tutorials as well 

as the name and phone number of your facilitator, as soon as you are 

allocated a tutorial group. 

 

You facilitator will mark and comment on your assignments, keep a 

close watch on your progress and any difficulties you might face and 

provide assistance to you during the course. You are expected to mail 

you Tutor Marked Assignments to your facilitator before the schedule 

date (at least two working days are required). The assignments will be 

marked by your tutor and returned to you as soon as possible. 

 

Do not delay in contacting your facilitator on telephone or e-mail if you 

need assistance. Such assistance could be as a result of the followings: 

 

 Having difficulties in understanding any part of the study unit or 

assigned readings 

 Difficulties in the self assessment exercises 

 Questions or problems with assignment or grading of 

assignments 

 

The only way to have face to face contact and to ask questions from 

your facilitator is to attend tutorials. To gain from the tutorials prepare 

lists of questions and participate actively in discussions. 

 

SUMMARY 

 

This course is to provide overview of computer algorithms and analysis 

of its complexity. In particular, we will see know more about the nature 

and design of algorithms, why they are so important in the field of 

computing and the several algorithm design paradigms that would be 

explained.. In fact, the learners will actually learn how do basic run-time 

and space-complexity analysis of computer algorithms. Some examples 

of algorithms applied in the fields of Searching and Sorting would also 

be examined.. 
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I wish you success in the course and I hope you will find the course both 

interesting and useful. 
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MODULE 1  BASIC ALGORITHMIC ANALYSIS 

 

UNIT 1  BASIC ALGORITHM CONCEPTS 
 

1.0 Introduction         

2.0 Objectives         

3.0 What is an Algorithm?       

3.1 Characteristics of an Algorithm    

  3.1.1 Advantages of Algorithms    

  3.1.2 Disadvantages of Algorithms   

 3.2 Pseudocode       

  3.2.1 Advantages of Pseudocode    

  3.2.2 Disadvantages of Pseudocode   

  3.2.3 Differences between Algorithm and Pseudocode

  3.2.4 Problem Case/ Example    

 3.3 Need of Algorithms       

4.0  Conclusion         

5.0  Summary          

6.0  Tutor Marked Assignments       

7.0  Further Reading and Other Resources    

 

1.0 INTRODUCTION 
 

The word algorithm literarily means “a step-by-step procedure used in 

solving a problem” and is a type of effective method in which a finite 

list of well-defined instructions for completing a task; that given an 

initial state, will proceed through a well-defined series of successive 

states, eventually terminating in an end-state. The concept of an 

algorithm originated as a means of recording procedures for solving 

mathematical problems such as finding the common divisor of two 

numbers or multiplying two numbers. 

 

2.0  OBJECTIVES 
 

By the end of this unit, you should be able to: 

 

 Define and describe what an algorithm is 

 Enumerate the different characteristics of an algorithm 

 Examine some of the advantages of algorithms 

 Identify some shortcomings or disadvantages of algorithms 

 Look at the the concept of a pseudocode 

 Examine some benefits and shortcomings of a pseudocode 

 Make a comparison between and algorithm and a pseudocode 

 Look at the various reasons why an algorithm is needed 
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3.0  WHAT IS AN ALGORITHM? 
 

An algorithm can be defined as a finite set of steps, which has to be 

followed while carrying out a particular problem. It is nothing but a 

process of executing actions step by step. 

 

An algorithm is a distinct computational procedure that takes input as a 

set of values and results in the output as a set of values by solving the 

problem. More precisely, an algorithm is correct, if, for each input 

instance, it gets the correct output and gets terminated. 

 

An algorithm unravels the computational problems to output the desired 

result. An algorithm can be described by incorporating a natural 

language such as English, Computer language, or a hardware language. 

Algorithms are named after the 9th century Persian mathematician Al-

Khowarizmi. He wrote a treatise in Arabic in 825 AD, On Calculation 

with Hindu Numerals. It was translated into Latin in the 12th century as 

Algoritmi de numero Indorum, which title was likely intended to mean 

"[Book by] Algoritmus on the numbers of the Indians", where 

"Algoritmi" was the translator's rendition of the author's name in the 

genitive case; but people misunderstanding the title treated Algoritmi as 

a Latin plural and this led to the word "algorithm" (Latin algorismus) 

coming to mean "calculation method". 

 

3.1  Characteristics of Algorithms 
 

The main Characteristics or features of Algorithms are; 
 

 Input: It should externally supply zero or more quantities or data. 

 Output: It results in at least one quantity or result. 

 Definiteness: Each instruction should be clear and ambiguous. 

 Finiteness: An algorithm should terminate after executing a 

finite number of steps. 

 Effectiveness: Every instruction should be fundamental to be 

carried out, in principle, by a person using only pen and paper. 

 Feasible: It must be feasible enough to produce each instruction. 

 Flexibility: It must be flexible enough to carry out desired 

changes with no efforts. 

 Efficient: The term efficiency is measured in terms of time and 

space required by an algorithm to implement. Thus, an algorithm 

must ensure that it takes little time and less memory space 

meeting the acceptable limit of development time. 

 Independent: An algorithm must be language independent, 

which means that it should mainly focus on the input and the 

procedure required to derive the output instead of depending 

upon the language. 
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3.1.1  Advantages of Algorithms 

 

 Effective Communication: Since it is written in a natural 

language like English, it becomes easy to understand the step-by-

step delineation of a solution to any particular problem. 

 Easy Debugging: A well-designed algorithm facilitates easy 

debugging to detect the logical errors that occurred inside the 

program. 

 Easy and Efficient Coding: An algorithm is nothing but a 

blueprint of a program that helps develop a program. 

 Independent of Programming Language: Since it is a 

language-independent, it can be easily coded by incorporating 

any high-level language. 

 

3.1.2 Disadvantages of Algorithms 

 

 Developing algorithms for complex problems would be time-

consuming and difficult to understand. 

 It is a challenging task to understand complex logic through 

algorithms. 

 

3.2 Pseudocode 

 

Pseudocode refers to an informal high-level description of the operating 

principle of a computer program or algorithm. It uses structural 

conventions of a standard programming language intended for human 

reading rather than the machine reading. 

 

3.2.1 Advantages of Pseudocode 
 

 It can be quickly transformed into an actual programming 

language than a flowchart since it is similar to a programming 

language. 

 The layman or user can easily understand it. 

 It can be easily modified as compared to flowcharts. 

 Its implementation is beneficial for structured, designed elements. 

 It can easily detect an error before transforming it into a code. 

 

3.2.2 Disadvantages of Pseudocode 
 

 Since it does not incorporate any standardized style or format, it 

can vary from one user or programmer to another. 

 Error possibility is higher while transforming into a code. 
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 It may require a tool for extracting out the Pseudocode and 

facilitate the drawing flowcharts. 

 It does not depict the design.  

 

3.2.3 Difference between Algorithm and Pseudocode 
 

i. An algorithm is simply a problem-solving process, which is used 

not only in computer science to write a program but also in our 

day to day life. It is nothing but a series of instructions to solve a 

problem or get to the problem's solution. It not only helps in 

simplifying the problem but also to have a better understanding 

of it. 

ii. However, Pseudocode is a way of writing an algorithm. 

Programmers can use informal, simple language to write 

pseudocode without following any strict syntax. It encompasses 

semi-mathematical statements.  

 

3.2.4 Problem Case/ Example:  

 
Suppose there are 60 students in a class. How will you calculate 

the number of absentees in the class? 

 

i. Pseudocode Approach: 

 

1. Initialize a variable called Count to zero, absent to 

 zero, total to 60 

2. FOR EACH Student PRESENT DO the following: 

 Increase the Count by One 

3. Then Subtract Count from total and store the result 

 in absent 

4. Display the number of absent students 

 

ii. Algorithmic Approach: 

 

1. Count <- 0, absent <- 0, total <- 60 

2. REPEAT till all students counted 

 Count <- Count + 1 

3. absent <- total - Count 

4. Print "Number absent is:" , absent  

 

3.3   Need of Algorithms (Why do we need Algorithms?) 

 

1.  To understand the basic idea of the problem. 

2.  To find an approach to solve the problem. 

3.  To improve the efficiency of existing techniques. 

4.  To understand the basic principles of designing the algorithms. 
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5.  To compare the performance of the algorithm with respect to 

other techniques. 

6.  It is the best method of description without describing the 

implementation detail. 

7.  The Algorithm gives a clear description of requirements and goal 

of the problem to the designer. 

8.  A good design can produce a good solution. 

9.  To understand the flow of the problem. 

10.  To measure the behavior (or performance) of the methods in all 

cases (best cases, worst cases, average cases) 

11.  With the help of an algorithm, we can also identify the resources 

(memory, input-output) cycles required by the algorithm. 

12.  With the help of algorithm, we convert art into a science. 

13.  To understand the principle of designing. 

14.  We can measure and analyze the complexity (time and space) of 

the problems concerning input size without implementing and 

running it; it will reduce the cost of design. 

 

Self-Assessment Exercise 

 

1.  What is an algorithm? 

2.  Differentiate between an algorithm and a pseudocode 

3.  Highlight some of the basic reasons why algorithms are needed? 

4.  How is an algorithm similar to and different from a program? 

5.  Why must every good computer programmer understand an 

 algorithm first? 

6.  State an algorithm for adding three numbers A, B, and C 

 

4.0  CONCLUSION 

 

The concept of understanding and writing computer algorithms is very 

essential to understanding the task of programming and every computing 

student has to imbibe the concepts of algorithms. In fact, algorithms are 

the basic key to understanding the theory and practice of computing. 

 

5.0  SUMMARY 

 

In this unit we have considered an overview of algorithms and their 

basic characteristics. In addition, we looked at some of the benefits and 

shortcomings of algorithms and also examined the concept of a 

pseudocode as well as some of its benefits and shortcomings. We also 

made a brief comparison between a pseudocode and an algorithm and 

finally looked at some of the reasons why an algorithm is needed 
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6.0  TUTOR MARKED ASSIGNMENT 

 

1.  Explain the following terms; (a) Algorithms   (b) 

 Pseudocode  

(c)  Computer Programs 

 

2.  State five properties or features of an algorithm. 

3.  State some basic differences between an algorithm and a 

 pseudocode and also between an algorithm and a computer 

 program 

4.  Give four benefits each of an algorithm and a pseudocode 

 

7.0  FURTHER READING AND OTHER RESOURCES 

 

Jena, S. R. and Patro, S. (2018) – Design and Analysis of Algorithms, 

 ISBN 978-93-935274-311-7 

 

Baase, S. and Van Gelder, A. (2008). Computer Algorithms: 

 Introduction to Design and Analysis, Pearson Education.  
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MODULE 1  BASIC ALGORITHM ANALYSIS 

 

UNIT 2   ANALYSIS AND COMPLEXITY OF   

   ALGORITHMS 

 

1.0  Introduction          

2.0  Objectives          

3.0  Analysis of Algorithms       

 3.1 Types of Time Complexity Analysis   

  3.1.1 Worst-case Time Complexity     

 3.1.2 Average-case Time Complexity    

 3.1.3 Best-case Time Complexity     

 3.2 Complexity of Algorithms      

 3.3 Typical Complexities of an Algorithm    

  3.3.1 Constant complexity     

  3.3.2 Logarithmic complexity     

  3.3.3 Linear complexity      

  3.3.4 Quadratic complexity     

  3.3.5 Cubic complexity      

  3.3.6 Exponential complexity     

 3.4 How to approximate the Time taken by an Algorithm  

  3.4.1 Some Examples      

 4.0 Conclusion         

5.0 Summary          

6.0 Tutor Marked Assignments       

7.0 Further Reading/ References  

 

1.0  INTRODUCTION 
 

Analysis of an algorithm is the same thing as estimating the efficiency 

of the algorithm. There are two fundamental parameters based on which 

we can analyze the algorithm and they are Space and Time Complexity. 

There is also the concept in Time Complexity of estimating the running 

time of an algorithm and we have the Best-case, Average-case and 

Worst-case 

 

2.0  OBJECTIVES 
 

By the end of this unit, you will be able to 

 

 Understand runtime and space analysis or complexity of 

algorithms 

 Know the different types of analysis 

 Understand the typical complexities of an algorithm 

 Learn how to approximate the time taken by an algorithm 
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3.0  Analysis of Algorithm 
 

The analysis is a process of estimating the efficiency of an algorithm 

and that is, trying to know how good or how bad an algorithm could be. 

There are two main parameters based on which we can analyze the 

algorithm: 

 

 Space Complexity: The space complexity can be understood as 

the amount of space required by an algorithm to run to 

completion. 

 Time Complexity: Time complexity is a function of input 

size n that refers to the amount of time needed by an algorithm to 

run to completion. 

 

Let's understand it with an example. 

 

Suppose there is a problem to solve in Computer Science, and in 

general, we solve a problem by writing a program. If you want to write a 

program in some programming language like C, then before writing a 

program, it is necessary to write a blueprint in an informal language. 

Or in other words, you should describe what you want to include in your 

code in an English-like language for it to be more readable and 

understandable before implementing it, which is nothing but the concept 

of Algorithm. 

 

In general, if there is a problem P1, then it may have many solutions, 

such that each of these solutions is regarded as an algorithm. So, there 

may be many algorithms such as A1, A2, A3, …, An. 

 

Before you implement any algorithm as a program, it is better to find out 

which among these algorithms are good in terms of time and memory. 

It would be best to analyze every algorithm in terms of Time that relates 

to which one could execute faster and Memory or Space corresponding 

to which one will take less memory. 

 

So, the Design and Analysis of Algorithm talks about how to design 

various algorithms and how to analyze them. After designing and 

analyzing, choose the best algorithm that takes the least time and the 

least memory and then implement it as a program in C or any preferable 

language. 

 

We will be looking more on time rather than space because time is 

instead a more limiting parameter in terms of the hardware. It is not easy 

to take a computer and change its speed. So, if we are running an 

algorithm on a particular platform, we are more or less stuck with the 

performance that platform can give us in terms of speed. 

https://www.javatpoint.com/c-programs
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However, on the other hand, memory is relatively more flexible. We can 

increase the memory as when required by simply adding a memory card. 

So, we will focus on time than that of the space. 

 

The running time is measured in terms of a particular piece of hardware, 

not a robust measure. When we run the same algorithm on a different 

computer which might be faster or use different programming languages 

which may be designed to compile faster, we will find out that the same 

algorithm takes a different time. 

 

3.1 Types of Time Complexity Analysis 
 

We have three types of analysis related to time complexity, which are: 

 

3.1.1 Worst-case time complexity: For 'n' input size, the worst-case 

time complexity can be defined as the maximum amount of time 

needed by an algorithm to complete its execution. Thus, it is 

nothing but a function defined by the maximum number of steps 

performed on an instance having an input size of n. Computer 

Scientists are more interested in this. 

 

3.1.2 Average case time complexity: For 'n' input size, the average-

case time complexity can be defined as the average amount of 

time needed by an algorithm to complete its execution. Thus, it is 

nothing but a function defined by the average number of steps 

performed on an instance having an input size of n. 

 

3.1.3 Best case time complexity: For 'n' input size, the best-case time 

complexity can be defined as the minimum amount of time 

needed by an algorithm to complete its execution. Thus, it is 

nothing but a function defined by the minimum number of steps 

performed on an instance having an input size of n. 

 

3.2  Complexity of Algorithms 
 

The term algorithm complexity measures how many steps are required 

by the algorithm to solve the given problem. It evaluates the order of 

count of operations executed by an algorithm as a function of input data 

size. 

 

To assess the complexity, the order (approximation) of the count of 

operation is always considered instead of counting the exact steps. 

 

O(f) notation represents the complexity of an algorithm, which is also 

termed as an Asymptotic notation or "Big O" notation. Here the f 

corresponds to the function whose size is the same as that of the input 
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data. The complexity of the asymptotic computation O(f) determines in 

which order the resources such as CPU time, memory, etc. are 

consumed by the algorithm that is articulated as a function of the size of 

the input data. 

 

The complexity can be found in any form such as constant, logarithmic, 

linear, n*log(n), quadratic, cubic, exponential, etc. It is nothing but the 

order of constant, logarithmic, linear and so on, the number of steps 

encountered for the completion of a particular algorithm. To make it 

even more precise, we often call the complexity of an algorithm as 

"running time". 

 

3.3   Typical Complexities of an Algorithm 

 

We take a look at the different types of complexities of an algorithm and 

one or more of our algorithm or program will fall into any of the 

following categories; 

 

3.3.1 Constant  Complexity 

 

Imposes a complexity of O (1). It undergoes an execution of a constant 

number of steps like 1, 5, 10, etc. for solving a given problem. The count 

of operations is independent of the input data size. 

 

3.3.2 Logarithmic Complexity 

 

Imposes a complexity of O (log(N)). It undergoes the execution of the 

order of log (N) steps. To perform operations on N elements, it often 

takes the logarithmic base as 2. 

 

For N = 1,000,000, an algorithm that has a complexity of O(log(N)) 

would undergo 20 steps (with a constant precision). Here, the 

logarithmic base does not hold a necessary consequence for the 

operation count order, so it is usually omitted. 

 

3.3.3 Linear Complexity 

 

Imposes a complexity of O (N). It encompasses the same number of 

steps as that of the total number of elements to implement an operation 

on N elements. 

 

For example, if there exist 500 elements, then it will take about 500 

steps. Basically, in linear complexity, the number of elements linearly 

depends on the number of steps. For example, the number of steps for N 

elements can be N/2 or 3*N. 
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It also imposes a run time of O(n*log(n)). It undergoes the 

execution of the order N*log(N) on N number of elements to 

solve the given problem. 

For a given 1000 elements, the linear complexity will execute 

10,000 steps for solving a given problem. 

 

3.3.4 Quadratic Complexity  

 

It imposes a complexity of O (n2). For N input data size, it undergoes 

the order of N2 count of operations on N number of elements for solving 

a given problem. 

 

If N = 100, it will endure 10,000 steps. In other words, whenever the 

order of operation tends to have a quadratic relation with the input data 

size, it results in quadratic complexity.  

 

For example, for N number of elements, the steps are found to be in the 

order of 3*N2/2. 

 

3.3.5 Cubic Complexity  

 

It imposes a complexity of O (n3). For N input data size, it executes the 

order of N3 steps on N elements to solve a given problem. 

 

For example, if there exist 100 elements, it is going to execute 1,000,000 

steps. 

 

3.3.6 Exponential Complexity  

 

It imposes a complexity of O(2n), O(N!), O(nk), …. For N elements, it 

will execute the order of count of operations that is exponentially 

dependable on the input data size. 

 

For example, if N = 10, then the exponential function 2N will result in 

1024. Similarly, if N = 20, it will result in 1048 576, and if N = 100, it 

will result in a number having 30 digits.  

 

The exponential function N! grows even faster; for example, if N = 5 

will result in 120. Likewise, if N = 10, it will result in 3,628,800 and so 

on. 

 

Since the constants do not hold a significant effect on the order of count 

of operation, so it is better to ignore them.  
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Thus, to consider an algorithm to be linear and equally efficient, it must 

undergo N, N/2 or 3*N count of operation, respectively, on the same 

number of elements to solve a particular problem 

 

A summary of these complexities is given below: 

 
 

Self Assessment Exercises 

  

1. Compare the Worst-case and the Best-case analysis of an 

algorithm 

2. Why is the Worst-case analysis the most important in algorithm 

analysis? 

3. Among the different complexity types of an algorithm, which do 

you consider as the worst? 

4. Presently we can solve problem instances of size 30 in 1 minute 

using algorithm A, which is a Θ(2n) algorithm. On the other 

hand, we will soon have to solve problem instances twice this 

large in 1 minute. Do you think it would help to buy a faster (and 

more expensive) computer? 

 

3.4 How to approximate the time taken by the Algorithm? 

  

So, to find it out, we shall first understand the types of the algorithm we 

have. There are two types of algorithms: 

 

1. Iterative Algorithm: In the iterative approach, the function 

repeatedly runs until the condition is met or it fails. It involves 

the looping construct. 

2. Recursive Algorithm: In the recursive approach, the function 

calls itself until the condition is met. It integrates the branching 

structure. 
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However, it is worth noting that any program that is written in iteration 

could be written as recursion. Likewise, a recursive program can be 

converted to iteration, making both of these algorithms equivalent to 

each other. 

 

But to analyze the iterative program, we have to count the number of 

times the loop is going to execute, whereas in the recursive program, we 

use recursive equations, i.e., we write a function of F(n) in terms of 

F(n/2). 

 

Suppose the program is neither iterative nor recursive. In that case, it 

can be concluded that there is no dependency of the running time on the 

input data size, i.e., whatever is the input size, the running time is going 

to be a constant value. Thus, for such programs, the complexity will 

be O(1). 

 

3.4.1 Some Examples to Consider 

a. For Iterative Programs 

 

Consider the following programs written in simple English and does not 

correspond to any syntax. 

 

Example1 

 

In the first example, we have an integer i and a for loop running from i 

equals 1 to n. Now the question arises, how many times does the name 

get printed? 

 

A()   

{   

int i;   

for (i=1 to n)   

printf("Abdullahi");   

}   

 

Since i equals 1 to n, so the above program will print Abdullahi, n 

number of times. Thus, the complexity will be O(n). 

Example2: 

A()   

{   

int i, j:   

for (i=1 to n)   

for (j=1 to n)   

printf("Abdullahi");   

}   
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In this case, firstly, the outer loop will run n times, such that for each 

time, the inner loop will also run n times. Thus, the time complexity will 

be O(n2). 

 

Example3: 

 

A()   

{   

i = 1; S = 1;   

while (S<=n)   

{   

i++;   

SS = S + i;   

printf("Abdullahi");   

}   

}   

As we can see from the above example, we have two variables; i, S and 

then we have while S<=n, which means S will start at 1, and the entire 

loop will stop whenever S value reaches a point where S becomes 

greater than n. 

 

Here i is incrementing in steps of one, and S will increment by the value 

of i, i.e., the increment in i is linear. However, the increment in S 

depends on the i. 

 

Initially; 

i=1, S=1 

After 1st iteration; 

i=2, S=3 

After 2nd iteration; 

i=3, S=6 

After 3rd iteration; 

i=4, S=10             … and so on. 

 

Since we don't know the value of n, so let's suppose it to be k. Now, if 

we notice the value of S in the above case is increasing; for i=1, S=1; 

i=2, S=3; i=3, S=6; i=4, S=10; … 

 

Thus, it is nothing but a series of the sum of first n natural numbers, i.e., 

by the time i reaches k, the value of S will be  
𝑘 (𝑘+1)

2
  . 

 

To stop the loop,  
𝑘 (𝑘+1)

2
  has to be greater than n, and when we solve 

this equation,  
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we will get    > n.  

Hence, it can be concluded that we get a complexity of O(√n) in this 

case. 

 

b. For Recursive Program 

 

Consider the following recursive programs. 

 

Example1 

 

A(n)   

{   

if (n>1)   

return (A(n-1))   

}    

 

Solution; 

 

Here we will see the simple Back Substitution method to solve the 

above problem. 

 

T(n) = 1 + T(n-1)             …     Eqn. (1) 

 

Step1: Substitute n-1 at the place of n in Eqn. (1)  

 

T(n-1) = 1 + T(n-2)             ..     .Eqn. (2) 

 

Step2: Substitute n-2 at the place of n in Eqn. (1) 

 

T(n-2) = 1 + T(n-3)             …     Eqn. (3) 

 

Step3: Substitute Eqn. (2) in Eqn. (1) 

 

T(n)= 1 + 1+ T(n-2) = 2 + T(n-2)             …   Eqn. (4) 

 

Step4: Substitute eqn. (3) in Eqn. (4) 

 

T(n) = 2 + 1 + T(n-3) = 3 + T(n-3) = …... = k + T(n-k)  …Eqn. (5) 

 

Now, according to Eqn. (1), i.e. T(n) = 1 + T(n-1), the algorithm will run  

 

until n>1. Basically, n will start from a very large number, and it will 

decrease gradually. So, when T(n) = 1, the algorithm eventually stops, 

and such a terminating condition is called anchor condition, base 

condition or stopping condition. 
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Thus, for k = n-1, the T(n) will become. 

 

Step5: Substitute k = n-1 in eqn. (5) 

T(n) = (n-1) + T(n-(n-1)) = (n-1) + T(1) = n-1+1 

Hence, T(n) = n or O(n). 

 

4.0  CONCLUSION 
 

Analysis of algorithms helps us to determine how good or how bad they 

are in terms of speed or time taken and memory or space utilized. 

Designing good programs is dependent on how good or how bad the 

algorithm is and the analysis helps us to determine the efficiency of such 

algorithms. 

 

5.0  SUMMARY 
 

In the unit, we have learnt the meaning of algorithm analysis and the 

different types of analysis. We also examined the complexity of 

algorithms and the different types of complexities. 

 

6.0  TUTOR MARKED ASSIGNMENT 

 
1.  Between the Worst-case and the Best-case analysis, which is 

 more important to a computer programmer and why?. 

2.  Why must we avoid exponential complexity at all costs? 

3.  What do we gain by the analysis of algorithms? 

4.  Assuming you have a computer that requires 1 minute to solve 

 problem instances of size n = 1,000. Suppose you buy a new 

 computer that runs 1,000 times faster than the old one. What 

 instance sizes can be run in 1 minute, assuming the following 

 time complexities T(n) for our algorithm? 

 

(a)  T(n) = n  (b) T(n) = n3  (c) T(n) = 10n 

 

 

7.0  FURTHER READING AND OTHER RESOURCES 

 

Berman, K.A. and Paul, J.L.(2005). Algorithms: Sequential, Parallel, 

 and Distributed. Course Technology. 

 

Cormen, T.H., Leiserson, C.E., Rivest, R.L., and Stein, C. (2009). 

 Introduction to Algorithms, 3rd ed. MIT Press. 

 

Jena, S. R. and Patro, S. (2018) – Design and Analysis of Algorithms, 

 ISBN 978-93-935274-311-7 
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1.0  INTRODUCTION 

 

The design of any algorithm follows some planning as there are different 

design techniques, strategies or paradigms that could be adopted 

depending on the problem domain and a better understanding by the 

designer. Some of these techniques could be combined also while the 

limiting behaviour of the algorithm can be represented with asymptotic 

analysis of which we shall be looking at examples of algorithm design 

techniques and asymptotic notations. 

 

2.0  OBJECTIVES 

 

By the end of this unit, you will be able to 

 

 Understand several design techniques or paradigms of algorithms 

 Know the meaning of Asymptotic notations 

 Understand some popular Asymptotic notations 

 Learn how to apply some of the Asymptotic notations learnt 

  



CIT 310       ALGORITHMS AND COMPLEXITY ANALYSIS   

 

18 
 

 

3.0  Algorithm Design Techniques 
 

An algorithm design technique (or “strategy” or “paradigm”) is a 

general approach to solving problems algorithmically that is applicable 

to a variety of problems from different areas of computing. Learning 

these techniques is of utmost importance for the following reasons. 

 

 First, they provide guidance for designing algorithms for new 

problems, i.e., problems for which there is no known satisfactory 

algorithm. 

 Second, algorithms are the cornerstone of computer science. 

Every science is interested in classifying its principal subject, and 

computer science is no exception. Algorithm design techniques 

make it possible to classify algorithms according to an underlying 

design idea; therefore, they can serve as a natural way to both 

categorize and study algorithms. 

 

While the algorithm design techniques do provide a powerful set of 

general approaches to algorithmic problem solving, designing an 

algorithm for a particular problem may still be a challenging task. Some 

design techniques can be simply inapplicable to the problem in question. 

Sometimes, several techniques need to be combined, and there are 

algorithms that are hard to pinpoint as applications of the known design 

techniques.  

 

3.1   Popular Algorithm Design Techniques 

 

The following is a list of several popular design approaches: 

 

3.1.1  Divide and Conquer Approach:  

 

The divide-and-conquer paradigm often helps in the discovery of 

efficient algorithms. It is a top-down approach. The algorithms which 

follow the divide & conquer techniques involve three steps: 

 

 Divide the original problem into a set of sub-problems. 

 Solve every sub-problem individually, recursively. 

 Combine the solution of the sub-problems (top level) into a 

solution of the whole original problem. 

 

Following are some standard algorithms that are of the Divide and 

Conquer algorithms variety. 

 

 Binary Search is a searching algorithm. ... 

 Quicksort is a sorting algorithm. ... 
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 Merge Sort is also a sorting algorithm. ... 

 Closest Pair of Points The problem is to find the closest pair of 

points in a set of points in x-y plane. 

 

3.1.2. Greedy Technique 

 

Greedy method or technique is an algorithmic paradigm that builds 

up a solution piece by piece, always choosing the next piece that offers 

the most obvious and immediate benefit. So the problems where 

choosing locally optimal also leads to global solution are best fit for 

Greedy. The Greedy method is used to solve the optimization problem. 

An optimization problem is one in which we are given a set of input 

values, which are required either to be maximized or minimized (known 

as objective), i.e. some constraints or conditions. 

 

 Greedy Algorithm always makes the choice (greedy criteria) 

looks best at the moment, to optimize a given objective. 

 The greedy algorithm doesn't always guarantee the optimal 

solution however it generally produces a solution that is very 

close in value to the optimal. 

 

Examples of Greedy Algorithms 

 

 Prim's Minimal Spanning Tree Algorithm. 

 Travelling Salesman Problem. 

 Graph – Map Coloring. 

 Kruskal's Minimal Spanning Tree Algorithm. 

 Dijkstra's Minimal Spanning Tree Algorithm. 

 Graph – Vertex Cover. 

 Knapsack Problem. 

 Job Scheduling Problem. 

 

3.1.3  Dynamic Programming  

 

Dynamic Programming (DP) is an algorithmic technique for solving 

an optimization problem by breaking it down into simpler sub-

problems and utilizing the fact that the optimal solution to the overall 

problem depends upon the optimal solution to its sub-problems. 

 

Dynamic programming is both a mathematical optimization method and 

a computer programming method. The method was developed by 

Richard Bellman in the 1950s and has found applications in numerous 

fields, from aerospace engineering to economics 
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Dynamic programming is used where we have problems, which can be 

divided into similar sub-problems, so that their results can be re-used. 

Mostly, these algorithms are used for optimization. Before solving the 

in-hand sub-problem, dynamic algorithm will try to examine the results 

of the previously solved sub-problems. 

 

Some examples of Dynamic Programming are; 

 

 Tower of Hanoi 

 Dijkstra Shortest Path 

 Fibonacci sequence 

 Matrix chain multiplication 

 Egg-dropping puzzle, etc 

 

3.1.4 Branch and Bound  
 

The branch and bound method is a solution approach that partitions 

the feasible solution space into smaller subsets of solutions. , can 

assume any integer value greater than or equal to zero is what gives this 

model its designation as a total integer model. 

 

It is used for solving the optimization problems and minimization 

problems. If we have given a maximization problem then we can 

convert it using the Branch and bound technique by simply converting 

the problem into a maximization problem. 

 

An important advantage of branch-and-bound algorithms is that we can 

control the quality of the solution to be expected, even if it is not yet 

found. The cost of an optimal solution is only up to smaller than the cost 

of the best computed one. 

 

Branch and bound is an algorithm design paradigm which is generally 

used for solving combinatorial optimization problems. 

 

Some examples of Branch-and-Bound Problems are: 

 

 Knapsack problems 

 Traveling Salesman Problem 

 Job Assignment Problem, etc 

 

3.1.5.  Backtracking Algorithm  
 

A backtracking algorithm is a problem-solving algorithm that uses a 

brute force approach for finding the desired output. The Brute force 

approach tries out all the possible solutions and chooses the desired/best 

solutions. 
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Backtracking is a general algorithm for finding solutions to some 

computational problems, notably constraint satisfaction problems, 

that incrementally builds candidates to the solutions, and abandons a 

candidate ("backtracks") as soon as it determines that the candidate 

cannot possibly be completed to a valid solution. 

 

The algorithm works as follows: 

 

Given a problem: 

 

\Backtrack(s) 

if is not a solution  return false  if is a new solution   add to list of 

solutions    backtrack(expand s) 

 

It finds a solution by building a solution step by step, increasing levels 

over time, using recursive calling. A search tree known as the state-

space tree is used to find these solutions. Each branch in a state-space 

tree represents a variable, and each level represents a solution. 

 

A backtracking algorithm uses the depth-first search method. When the 

algorithm begins to explore the solutions, the abounding function is 

applied so that the algorithm can determine whether the proposed 

solution satisfies the constraints. If it does, it will keep looking. If it does 

not, the branch is removed, and the algorithm returns to the previous 

level. 

 

In any backtracking algorithm, the algorithm seeks a path to a feasible 

solution that includes some intermediate checkpoints. If the checkpoints 

do not lead to a viable solution, the problem can return to the 

checkpoints and take another path to find a solution 

 

There are the following scenarios in which you can use the 

backtracking: 

 

 It is used to solve a variety of problems. You can use it, for 

example, to find a feasible solution to a decision problem. 

 Backtracking algorithms were also discovered to be very effective 

for solving optimization problems. 

 In some cases, it is used to find all feasible solutions to 

the enumeration problem. 

 Backtracking, on the other hand, is not regarded as an optimal 

problem-solving technique. It is useful when the solution to a 

problem does not have a time limit. 

 Backtracking algorithms are used in; 

 Finding all Hamiltonian paths present in a graph 

 Solving the N-Queen problem 
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 Knights Tour problem, etc 

 

3.1.6  Randomized Algorithm  
 

A randomized algorithm is an algorithm that employs a degree of 

randomness as part of its logic or procedure. ... In some cases, 

probabilistic algorithms are the only practical means of solving a 

problem. 

 

The output of a randomized algorithm on a given input is a random 

variable. Thus, there may be a positive probability that the outcome is 

incorrect. As long as the probability of error is small for every possible 

input to the algorithm, this is not a problem. 

 

There are two main types of randomized algorithms: Las Vegas 

algorithms and Monte-Carlo algorithms. 

 

Example 1: In Quick Sort, using a random number to choose a pivot. 

Example 2: Trying to factor a large number by choosing a random 

number as possible divisors. 

 

Self-Assessment Exercise 

 

1.  What do you understand by an Algorithm design paradigm? 

2.  How does the Greedy Technique work and give an example? 

3,  Give a difference between the Backtracking and Randomized 

algorithm techniques  

 

3.2  Asymptotic Analysis of algorithms (Growth of function) 

 

Resources for an algorithm are usually expressed as a function regarding 

input. Often this function is messy and complicated to work. To study 

Function growth efficiently, we reduce the function down to the 

important part. 

   

Let f (n) = an2+bn+c 

 

In this function, the n2 term dominates the function that is when n gets 

sufficiently large. 

 

Dominate terms are what we are interested in reducing a function, in 

this; we ignore all constants and coefficient and look at the highest order 

term concerning n. 
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3.2.1 Asymptotic analysis 
 

It is a technique of representing limiting behavior. The methodology has 

the applications across science. It can be used to analyze the 

performance of an algorithm for some large data set. 

 

In computer science in the analysis of algorithms, considering the 

performance of algorithms when applied to very large input datasets 

The simplest example is a function ƒ (n) = n2+3n, the term 3n becomes 

insignificant compared to n2 when n is very large. The function "ƒ (n) is 

said to be asymptotically equivalent to n2 as n → ∞", and here is 

written symbolically as  

 

ƒ (n) ~ n2. 

Asymptotic notations are used to write fastest and slowest possible 

running time for an algorithm. These are also referred to as 'best case' 

and 'worst case' scenarios respectively. 

 

"In asymptotic notations, we derive the complexity concerning the size 

of the input. (Example in terms of n)" 

 

"These notations are important because without expanding the cost of 

running the algorithm, we can estimate the complexity of the 

algorithms." 

 

3.2.2  Why is Asymptotic Notation Important? 
 

1.  They give simple characteristics of an algorithm's efficiency. 

2.  They allow the comparisons of the performances of various 

 algorithms. 

 

3.3 Asymptotic Notations: 
 

Asymptotic Notation is a way of comparing function that ignores 

constant factors and small input sizes. Three notations are used to 

calculate the running time complexity of an algorithm: 

 

3.3.1. Big-oh notation:  
 

Big-oh is the formal method of expressing the upper bound of an 

algorithm's running time. It is the measure of the longest amount of 

time. The function f (n) = O (g (n)) [read as "f of n is big-oh of g of n"] 

if and only if exist positive constant c and such that 

 

 f (n) ⩽ k.g (n)f(n)⩽k.g(n) for n>n0n>n0 in all case 
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Hence, function g (n) is an upper bound for function f (n), as g (n) grows 

faster than f (n) 

 

 

 

Examples: 

 

1.  3n+2=O(n) as 3n+2≤4n for all n≥2 

2.  3n+3=O(n) as 3n+3≤4n for all n≥3 

Hence, the complexity of f(n) can be represented as O (g (n)) 

 

3.3.2.  Big Omega () Notation  

 

The function f (n) = Ω (g (n)) [read as "f of n is omega of g of n"] if and 

only if there exists positive constant c and n0 such that 

F (n) ≥ k* g (n) for all n, n≥ n0 
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Example: 
 

  f (n) =8n2+2n-3≥8n2-3 

        =7n2+(n2-3)≥7n2 (g(n)) 

Thus, k1=7 

Hence, the complexity of f (n) can be represented as Ω (g (n)) 

 

3.3.3. Big Theta (θ)  
 

The function f (n) = θ (g (n)) [read as "f is the theta of g of n"] if and 

only if there exists positive constant k1, k2 and k0 such that 

  k1 * g (n) ≤ f(n)≤ k2 g(n)for all n, n≥ n0 

 

 
 

For Example: 
 

3n+2= θ (n) as 3n+2≥3n and 3n+2≤ 4n, for n 

    k1=3,k2=4, and n0=2 

 

Hence, the complexity of f (n) can be represented as θ (g(n)). 

The Theta Notation is more precise than both the big-oh and Omega 

notation. The function f (n) = θ (g (n)) if g(n) is both an upper and lower 

bound. 

 

Self-Assessment Exercise 

 

1.  Which of the Asymptotic notations do you consider more 

 important and why? 

2.  What do you understand by a Backtracking algorithm? 

3.      What do you understand by the Upper and Lower bound of an 

 algorithm? 
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4.0  CONCLUSION 
 

Algorithm design techniques presents us with different paradigms or 

methods of representing or designing computer algorithms and as the 

algorithm executes and grows in bounds (upper or lower), the 

Asymptotic notations helps us to determine the levels of growth. 

 

5.0  SUMMARY 
 

Several design techniques or paradigms are available for specifying 

algorithms and they range from the popular Divide-and-Conquer, 

Greedy techniques and Randomized algorithms amongst others. In the 

same vein, we have three main notations for carrying out the Asymptotic 

analysis of algorithms and they are the Big O, Big Omega and Big Theta 

notations.  

 

6.0  TUTOR MARKED ASSIGNMENT 

 
1.  Give two examples each of functions that can be represented as

  

a. O(f(n))  b. ϴ(f(n))  c. Ω(f(n)) 

2. Mention two types of problems each that can be solved with  

a. Dynamic Programming b. Divide-and-Conquer 

 technique 

3. Why is Asymptotic notation considered important? 

4. The function f(x) = n + n2 + 2n + n4 belongs in which of the 

 following complexity categories: (a) θ(n) (b) θ(n2)

 (c) θ(n3)  

(d) θ(n lg n)  (e) θ(n4) (f) None of these 

 

7.0  FURTHER READING AND OTHER RESOURCES 
 

Dave, P. H. and Dave, H. B. (2008). Design and Analysis of Algorithms, 

 Pearson Education. 

 

Jena, S. R. and  Swain, S. K, (2017). Theory of Computation and 

 Application, 1st Edition, University Science Press, Laxmi 

 Publications. 

 

Levitin, A. (2012). Introduction to the Design and Analysis of 

 Algorithms, 3rd Ed. Pearson Education, ISBN 10-0132316811 
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1.0  INTRODUCTION 

 

Recursion is a method of solving problems that involves breaking a 

problem down into smaller and smaller sub-problems until you get to a 

small enough problem that it can be solved trivially. In computer 

science, recursion involves a function calling itself. While it may not 

seem like much on the surface, recursion allows us to write elegant 

solutions to problems that may otherwise be very difficult to program. 

 

2.0  OBJECTIVES 
 

By the end of this unit, you will be able to 

 

 Know the meaning of Recursion and a Recursive algorithm 

 Understand the different types of recursive algorithms 

 See some examples of recursive algorithms 

 Understand how the recursive algorithm works 

 Know the difference between recursion and iteration 

 Know the reasons why recursion is preferred in programming 

 Know the runtime and space complexity of different recursive 

algorithms 
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3.0 Recursion and Recursive Algorithms (Definitions)  
 

The Merriam-Webster describes recursion as: 

 

“a computer programming technique involving the use of a procedure, 

subroutine, function, or algorithm that calls itself one or more times until 

a specified condition is met at which time the rest of each repetition is 

processed from the last one called to the first.” 

 

Recursion is the process of defining something in terms of itself. A 

physical world example would be to place two parallel mirrors facing 

each other. Any object in between them would be reflected recursively. 

A recursive algorithm is an algorithm which calls itself with "smaller (or 

simpler)" input values, and which obtains the result for the current input 

by applying simple operations to the returned value for the smaller (or 

simpler) input. 

 

There are two main instances of recursion. The first is when recursion is 

used as a technique in which a function makes one or more calls to itself. 

The second is when a data structure uses smaller instances of the exact 

same type of data structure when it represents itself. 

 

3.1 Why use recursion? 
 

Recursion provides an alternative for performing repetitions of the task 

in which a loop is not ideal. Most modern programming languages 

support recursion. Recursion serves as a great tool for building out 

particular data structures. 

So now let’s start with an example exercise of creating a factorial 

function. 

 

3.1.1 Factorial Example 
 

The factorial function is denoted with an exclamation point and is 

defined as the product of the integers from 1 to n. Formally, we can state 

this as: 

 

n! = n ⋅ (n−1) ⋅ (n−2) … 3 ⋅ 2 ⋅ 1 

Note, if n = 0, then n! = 1. This is important to take into account, 

because it will serve as our base case. 

Take this example: 

 

4! = 4 ⋅ 3 ⋅ 2 ⋅ 1 = 24. 

So how can we state this in a recursive manner? This is where the 

concept of base case comes in. 
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Base case is a key part of understanding recursion, especially when it 

comes to having to solve interview problems dealing with recursion. 

Let’s rewrite the above equation of 4! so it looks like this: 

 

4! = 4 ⋅ (3 ⋅ 2 ⋅ 1) = 24 

Notice that this is the same as: 

4! = 4 ⋅ 3! = 24 

Meaning we can rewrite the formal recursion definition in terms of 

recursion like so: 

 

n! = n ⋅ (n−1) ! 

 

Note, if n = 0, then n! = 1. This means the base case occurs once n=0, 

the recursive cases are defined in the equation above. Whenever you are 

trying to develop a recursive solution it is very important to think about 

the base case, as your solution will need to return the base case once all 

the recursive cases have been worked through. Let’s look at how we can 

create the factorial function in Python: 

 

def fact(n): 

    ''' 

    Returns factorial of n (n!). 

    Note use of recursion 

    ''' 

    # BASE CASE! 

    if n == 0: 

        return 1 

     

    # Recursion! 

    else: 

        return n * fact(n-1) 

 

Let’s see it in action! Fact (5) = 120 

 

Note how we had an if statement to check if a base case occurred. 

Without it this function would not have successfully completed running. 

We can visualize the recursion with the following figure: 

 

We can follow this flow chart from the top, reaching the base case, and 

then working our way back up. 

 

Recursion is a powerful tool, but it can be a tricky concept to implement. 
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3.1.2 Purpose of Recursions 

 

Recursive functions have many uses, but like any other kind of code, 

their necessity should be considered. As discussed above, consider the 

differences between recursions and loops, and use the one that best fits 

your needs. If you decide to go with recursions, decide what you want 

the function to do before you start to compose the actual code. 

 

3.1.3 Conditionals to Start, Continue, and Stop the Recursion 

 

It’s important to look at any arguments or conditions that would start the 

recursion in the first place. For example, the function could have an 

argument that might be a string or array. The function itself may have to 

recognize the datatype versus it being recognized before this point (such 

as by a parent function). In simpler scenarios, starting conditions may 

often be the exact same conditions that force the recursion to continue. 

More importantly, you want to establish a condition where the recursive 

action stops. These conditionals, known as base cases, produce an actual 

value rather than another call to the function. However, in the case of 

tail-end recursion, the return value still calls a function but gets the value 

of that function right away.  

 

The establishment of base cases is commonly achieved by having a 

conditional observe some quality, such as the length of an array or the 
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amount of a number, just like loops. However, there are multiple ways to 

go about it, so feel free to alter the complexity as needed. 

 

3.1.4 The Three Laws of Recursion 

 

All recursive algorithms must obey three important laws: 

 

1. A recursive algorithm must have a base case, which denotes the 

point when it should stop. 

2. A recursive algorithm must change its state and move toward the 

base case which enables it to store and accumulate values that 

end up becoming the answer. 

3. A recursive algorithm must call itself, recursively with smaller 

and smaller values. 

 

Self-Assessment Exercises 

 

1. What do you understand by the term “base case”? 

2. Why must a stopping criterion be specified in a recursive 

algorithm? 

3. What happens when a recursive algorithm calls itself recursively? 

 

3.2 Types of Recursion 
 

Recursion are mainly of two types depending on whether a function 

calls itself from within itself or more than one function call one another 

mutually. The first one is called direct recursion and another one is 

called indirect recursion.  

 

Thus, the two types of recursion are: 

 

3.2.1. Direct Recursion  

 

These can be further categorized into four types: 

 

a. Tail Recursion:  

 

If a recursive function calling itself and that recursive call is the last 

statement in the function then it’s known as Tail Recursion. After that 

call the recursive function performs nothing. The function has to 

process or perform any operation at the time of calling and it does 

nothing at returning time. 
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Example: 

// Code Showing Tail Recursion 

#include <iostream> 

using namespace std; 

  

// Recursion function 

void fun(int n) 

{ 

    if (n > 0) { 

        cout << n << " "; 

  

        // Last statement in the function 

        fun(n - 1); 

    } 

} 

  

// Driver Code 

int main() 

{ 

    int x = 3; 

    fun(x); 

    return 0; 

} 

 

Output: 

 

3 2 1 

 

Time Complexity For Tail Recursion : O(n)  

Space Complexity For Tail Recursion : O(n) 

 

Lets us convert Tail Recursion into Loop and compare each other in 

terms of Time & Space Complexity and decide which is more efficient. 

 

// Converting Tail Recursion into Loop 

#include <iostream> 

using namespace std; 

  

void fun(int y) 

{ 

    while (y > 0) { 

        cout << y << " "; 

        y--;    }} 
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// Driver code 

int main() 

{ 

    int x = 3; 

    fun(x); 

    return 0; 

} 

  

Output 

3 2 1 

Time Complexity:  O(n)  

 

Space Complexity:  O(1) 

 

So it was seen that in case of loop the Space Complexity is O(1) so it  

was better to write code in loop instead of tail recursion in terms of 

Space Complexity which is more efficient than tail recursion. 

 

b. Head Recursion:  

 

If a recursive function calling itself and that recursive call is the first 

statement in the function then it’s known as Head Recursion. There’s 

no statement, no operation before the call. The function doesn’t have to 

process or perform any operation at the time of calling and all 

operations are done at returning time. 

 

Example: 

 

// C++ program showing Head Recursion 

  

#include <bits/stdc++.h> 

using namespace std; 

  

// Recursive function 

void fun(int n) 

{ 

    if (n > 0) { 

  

        // First statement in the function 

        fun(n - 1); 

  

        cout << " "<< n; 

    } 

} 

// Driver code 
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int main() 

{ 

    int x = 3; 

    fun(x); 

    return 0; 

} 

  

Output: 

1 2 3 

 

Time Complexity For Head Recursion:   O(n)  

Space Complexity For Head Recursion:   O(n) 

 

Let’s convert the above code into the loop. 

 

// Converting Head Recursion into Loop 

#include <iostream> 

using namespace std; 

  

// Recursive function 

void fun(int n) 

{ 

    int i = 1; 

    while (i <= n) { 

        cout <<" "<< i; 

        i++; 

    } 

} 

  

// Driver code 

int main() 

{ 

    int x = 3; 

    fun(x); 

    return 0; 

} 

 

 

Output: 

1 2 3 

 

c. Tree Recursion:  

To understand Tree Recursion let’s first understand Linear 

Recursion. If a recursive function calling itself for one time then 

it’s known as Linear Recursion. Otherwise if a recursive 
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function calling itself for more than one time then it’s known as 

Tree Recursion. 

 

Example: Pseudo Code for linear recursion 

 

fun(n) 

{ 

    // some code 

    if(n>0) 

    { 

        fun(n-1); // Calling itself only once 

    } 

    // some code 

} 

 

Program for tree recursion 

// C++ program to show Tree Recursion 

#include <iostream> 

using namespace std; 

  

// Recursive function 

void fun(int n) 

{ 

    if (n > 0) 

    { 

        cout << " " << n; 

          

        // Calling once 

        fun(n - 1); 

          

        // Calling twice 

        fun(n - 1); 

    } 

} 

  

// Driver code 

int main() 

{ 

    fun(3); 

    return 0; 

} 
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Output:  

3 2 1 1 2 1 1  

 

Time Complexity For Tree Recursion:  O(2n)  

Space Complexity For Tree Recursion:  O(n) 
. 

d. Nested Recursion:  

 

In this recursion, a recursive function will pass the parameter as a 

recursive call. That means “recursion inside recursion”. Let see the 

example to understand this recursion. 

 

Example: 

// C++ program to show Nested Recursion 

#include <iostream> 

using namespace std; 

int fun(int n) 

{ 

    if (n > 100) 

        return n - 10; 

    // A recursive function passing parameter 

    // as a recursive call or recursion inside  

    // the recursion 

    return fun(fun(n + 11)); 

} 

 // Driver code 

int main() 

{ 

    int r; 

    r = fun(95); 

     cout << " " << r; 

     return 0; 

} 

 

Output:  

9  1 

 

3.2.2. Indirect Recursion:  

 

In this recursion, there may be more than one functions and they are 

calling one another in a circular manner. 
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From the above diagram fun(A) is calling for fun(B), fun(B) is calling 

for fun(C) and fun(C) is calling for fun(A) and thus it makes a cycle. 

Example: 

// C++ program to show Indirect Recursion 

#include <iostream> 

using namespace std; 

void funB(int n); 

void funA(int n) 

{ 

    if (n > 0) { 

        cout <<" "<< n; 

        // Fun(A) is calling fun(B) 

        funB(n - 1); 

    } 

} 

void funB(int n) 

{ 

    if (n > 1) { 

        cout <<" "<< n; 

        // Fun(B) is calling fun(A) 

        funA(n / 2); 

    } 

} 

  

// Driver code 

int main() 

{ 

    funA(20); 

    return 0; 

} 

  

Output:  

20  19  9  8  4  3  1 
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3.3 Recursion versus Iteration 

 

The Recursion and Iteration both repeatedly execute the set of 

instructions. Recursion is when a statement in a function calls itself 

repeatedly. The iteration is when a loop repeatedly executes until the 

controlling condition becomes false. The primary difference between 

recursion and iteration is that recursion is a process, always applied to a 

function and iteration is applied to the set of instructions which we want 

to get repeatedly executed. 

 

Recursion 

 

 Recursion uses selection structure. 

 Infinite recursion occurs if the recursion step does not reduce 

the problem in a manner that converges on some condition 

(base case) and Infinite recursion can crash the system. 

 Recursion terminates when a base case is recognized. 

 Recursion is usually slower than iteration due to the overhead 

of maintaining the stack. 

 Recursion uses more memory than iteration. 

 Recursion makes the code smaller. 

 

Iteration 

 

 Iteration uses repetition structure. 

 An infinite loop occurs with iteration if the loop condition test 

never becomes false and Infinite looping uses CPU cycles 

repeatedly. 

 An iteration terminates when the loop condition fails. 

 An iteration does not use the stack so it's faster than recursion. 

 Iteration consumes less memory. 

 Iteration makes the code longer. 

 

Self-Assessment Exercises 

 

1. Try and find the Sum of the elements of an array recursively 

2. Find the maximum number of elements in an array A 

of n elements using recursion 

3.  How is recursion different from iteration? 
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3.4 Some Recursive Algorithms (Examples) 

 

3.4.1    Reversing an Array 

 

Let us consider the problem of reversing the n elements of an array, A, 

so that the first element becomes the last, the second element becomes 

the second to the last, and so on. We can solve this problem using the 

linear recursion, by observing that the reversal of an array can be 

achieved by swapping the first and last elements and then recursively 

reversing the remaining elements in the array. 

 

Algorithm ReverseArray(A, i, j): 

 

    Input: An array A and nonnegative integer indices i and j 

    Output: The reversal of the elements in A starting at index i and 

ending at j 

    if i < j then 

        Swap A[i] and A[j] 

        ReverseArray(A, i+1, j-1) 

    return 

 

3.4.2   Fibonacci Sequence 

 

Fibonacci sequence is the sequence of numbers 1, 1, 2, 3, 5, 8, 13, 21, 

34, 55, .... The first two numbers of the sequence are both 1, while each 

succeeding number is the sum of the two numbers before it. We can 

define a function F(n) that calculates the nth Fibonacci number. 

First, the base cases are: F(0) = 1 and F(1) = 1. 

Now, the recursive case: F(n) = F(n-1) + F(n-2).  

Write the recursive function and the call tree for F(5). 

Algorithm Fib(n) { 

    if (n < 2) return 1 

    else return Fib(n-1) + Fib(n-2) 

} 

The above recursion is called binary recursion since it makes two 

recursive calls instead of one. How many number of calls are needed to 

compute the kth Fibonacci number? Let nk denote the number of calls 

performed in the execution. 

 

n0 = 1 

n1 = 1 

n2 = n1 + n0 + 1  = 3 > 21 

n3 = n2 + n1  + 1 = 5 > 22 

n4 = n3 + n2 + 1 = 9 > 23 
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n5 = n4 + n3 + 1 = 15 > 23 

... 

nk  > 2k/2 

 

This means that the Fibonacci recursion makes a number of calls that are 

exponential in k. In other words, using binary recursion to compute 

Fibonacci numbers is very inefficient.  Compare this problem with 

binary search, which is very efficient in searching items, why is this 

binary recursion inefficient? The main problem with the approach 

above, is that there are multiple overlapping recursive calls. 

We can compute F(n) much more efficiently using linear recursion. One 

way to accomplish this conversion is to define a recursive function that 

computes a pair of consecutive Fibonacci numbers F(n) and F(n-1) using 

the convention F(-1) = 0. 

 

Algorithm LinearFib(n) { 

    Input: A nonnegative integer n 

    Output: Pair of Fibonacci numbers (Fn, Fn-1) 

    if (n <= 1) then 

        return (n, 0) 

    else  

        (i, j) <-- LinearFib(n-1) 

        return (i + j, i) 

} 

Since each recursive call to LinearFib decreases the argument n by 1, 

the original call results in a series of n-1 additional calls. This 

performance is significantly faster than the exponential time needed by 

the binary recursion. Therefore, when using binary recursion, we should 

first try to fully partition the problem in two or, we should be sure that 

overlapping recursive calls are really necessary.  

Let's use iteration to generate the Fibonacci numbers. What's the 

complexity of this algorithm? 

 

public static int IterationFib(int n) { 

    if (n < 2) return n; 

    int f0 = 0, f1 = 1, f2 = 1; 

    for (int i = 2; i < n; i++) { 

        f0 = f1; 

        f1 = f2; 

        f2 = f0 + f1; 

    } 

    return f2;  

} 
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Self-Assessment Exercises 

 

1. Either write the pseudo-code or the Java code for the following 

problems. Draw the recursion trace of a simple case. What is the 

running time and space requirement?. 

 

 Recursively searching a linked list 

 Forward printing a linked list 

 Reverse printing a linked list  

 

4.0  CONCLUSION 
 

Recursive algorithms are very important in programming as they help us 

write very good programs and also allow us to understand the concept of 

computing well. So many programs are naturally recursive and many 

others can be turned into a recursive algorithm. 

 

5.0  SUMMARY 
 

In computer science, recursion is a method of solving a problem where 

the solution depends on solutions to smaller instances of the same 

problem. Such problems can generally be solved by iteration, but this 

needs to identify and index the smaller instances at programming time. 

There exist several natural examples of recursive algorithms while other 

programming algorithms that are iterative can be turned into recursive 

algorithms.  

 

The concept of recursion is very important to developers of algorithms 

and also to programmers. 

 

6.0  TUTOR MARKED ASSIGNMENT 

 
1  Given the following recursive algorithm: 

 F0 =1,  F1 = 1 

 Fn = Fn-1 + Fn-2  for n≥2 

 Find F10 and F15 by simulating it manually 

2. Mathematically, the greatest common divisor, gcd is given as: 

 

              gcd(p, q) = 

 

          

   

 Compute; i.  gcd (48, 12) ii.  gcd (1035, 759) 

3. What makes recursion better than iteration and what makes 

iteration better than recursion. 

P,         if q = 0 

gcd (q, remainder (p, q)),  if p ≥ q and q > 0 
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4. Give a vital difference between Head recursion and Tail 

recursion. 

 

7.0 FURTHER READING AND OTHER REFERENCES  

 

Cormen, T. H., Leiserson, C., Rivest, R. and Stein, C. (2009). 

 Introduction to Algorithms. Third Edition. MIT Press. 

 

Jena, S. R. and  Swain, S. K, (2017). Theory of Computation and 

 Application, 1st Edition, University Science Press, Laxmi 

 Publications. 
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UNIT 5  RECURRENCE RELATIONS 

 

1.0  Introduction          

2.0  Objectives          

3.0  Recurrence Relations       

 3.1  Methods for Resolving Recurrence Relations   

 3.1.1  Guess-and-Verify Method    

 3.1.2  Iteration Method      

 3.1.3  Recursion Tree method    

 3.1.4 Master Method     

  

 3.2 Example of Recurrence relation: Tower of Hanoi 

  3.2.1 Program for Tower of Hanoi   

  3.2.2 Applications of Tower of Hanoi Problem  

  3.2.3 Finding a Recurrence    

  3.2.4 Closed-form Solution    

4.0  Conclusion          

5.0  Summary          

6.0  Tutor Marked Assignment        

7.0 Further Reading and Other References  

 

1.0  INTRODUCTION 

 

A recurrence or recurrence relation on the other hand defines an 

infinite sequence by describing how to calculate the n-th element of the 

sequence given the values of smaller elements, as in: 

 

T(n) = T(n/2) + n, T(0) = T(1) = 1. 

 

In principle such a relation allows us to calculate T(n) for any n by 

applying the first equation until we reach the base case. To solve a 

recurrence, we will find a formula that calculates T(n) directly from n, 

without this recursive computation. 

 

2.0  OBJECTIVES 

 

By the end of this unit, you will be able to 

 

 Know more about Recurrences and Recurrence relations 

 Understand the different methods for resolving recurrence 

relations 

 Know the areas of applications of recurrence relations 
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3.0  Recurrence Relations 

 

A recurrence is an equation or inequality that describes a function in 

terms of its values on smaller inputs. To solve a Recurrence Relation 

means to obtain a function defined on the natural numbers that satisfy 

the recurrence. 

 

For Example, the Worst Case Running Time T(n) of the MERGE 

SORT Procedures is described by the recurrence. 

 

T (n) = θ (1) if n=1 

 2T  + θ (n) if n>1 

 

3.1 Methods for Resolving Recurrence Relations 

 

Recurrence relations can be resolved with any of the following four 

methods: 

 

1.  Substitution Method (Guess-and-Verify) 

2.  Iteration Method. 

3.  Recursion Tree Method. 

4.  Master Method. 

 

3.1.1. Guess-and-Verify Method: 

 

As when solving any other mathematical problem, we are not required 

to explain where our solution came from as long as we can prove that it 

is correct. So the most general method for solving recurrences can be 

called "guess but verify". Naturally, unless you are very good friends 

with the existential quantifier you may find it had to come up with good 

guesses. But sometimes it is possible to make a good guess by iterating 

the recurrence a few times and seeing what happens. 

 

The Guess-and-Verify Method consists of two main steps: 

 

1. Guess the Solution. 

2. Use the mathematical induction to find the boundary condition 

and shows that the guess is correct. 
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For Example1 Solve the equation by Substitution Method. 

 T (n) = T  + n 

We have to show that it is asymptotically bound by O (log n). 

Solution: 

 

For T (n) = O (log n)  We have to show that for some constant c 

T (n) ≤c log n.   

Put this in given Recurrence Equation. 

T (n) ≤c log + 1 

≤c log + 1 = c logn-clog2 2+1 

≤c logn for c≥1 

Thus T (n) =O logn. 

 

Example2 Consider the Recurrence 

T (n) = 2T + n n>1 

Find an Asymptotic bound on T. 

Solution: 

We guess the solution is O (n (logn)).Thus for constant 'c'. 

  T (n) ≤c n logn 

Put this in given Recurrence Equation. 

 

Now, 

  T (n) ≤2c log +n 

      ≤cnlogn-cnlog2+n 

      =cn logn-n (clog2-1) 

      ≤cn logn for (c≥1) 

Thus T (n) = O (n logn). 

 

3.1.2.  Iteration Methods 

 

It means to expand the recurrence and express it as a summation of 

terms of n and initial condition. 

 

Example1: Consider the Recurrence 
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T (n) = 1  if n=1 

= 2T (n-1) if n>1 

Solution: 

   T (n) = 2T (n-1) 

       = 2[2T (n-2)] = 22T (n-2) 

       = 4[2T (n-3)] = 23T (n-3) 

       = 8[2T (n-4)] = 24T (n-4)   (Eq.1) 

 

Repeat the procedure for i times 

 

 T (n) = 2i T (n-i) 

 Put n-i=1 or i= n-1 in    (Eq.1) 

 T (n) = 2n-1 T (1) 

        = 2n-1 .1    {T (1) =1 .....given} 

       = 2n-1  

Example2: Consider the Recurrence 

T (n) = T (n-1) +1 and T (1) =  θ (1).   

Solution: 

T (n) = T (n-1) +1 

       = (T (n-2) +1) +1 = (T (n-3) +1) +1+1 

       = T (n-4) +4 = T (n-5) +1+4 

       = T (n-5) +5= T (n-k) + k 

Where k = n-1 

   T (n-k) = T (1) = θ (1) 

   T (n) = θ (1) + (n-1) = 1+n-1=n= θ (n). 

 

3.1.3 Recursion Tree Method 
 

Recursion Tree Method is a pictorial representation of an iteration 

method which is in the form of a tree where at each level nodes are 

expanded. 

 

In general, we consider the second term in recurrence as root. It is useful 

when the divide & Conquer algorithm is used. 

 

It is sometimes difficult to come up with a good guess. In Recursion 

tree, each root and child represents the cost of a single sub-problem. We 

sum the costs within each of the levels of the tree to obtain a set of pre-

level costs and then sum all pre-level costs to determine the total cost of 

all levels of the recursion. 

 

A Recursion Tree is best used to generate a good guess, which can be 

verified by the Substitution Method. 
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Example 1 

 Consider T (n) = 2T  + n2 

We have to obtain the asymptotic bound using recursion tree method. 

Solution: The Recursion tree for the above recurrence is 

 

 

 

 
 

Example 2: Consider the following recurrence 

 T (n) = 4T  +n  

Obtain the asymptotic bound using recursion tree method. 

Solution: The recursion trees for the above recurrence 
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Example 3: Consider the following recurrence 

 
 

Obtain the asymptotic bound using recursion tree method. 

Solution: The given Recurrence has the following recursion tree 
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When we add the values across the levels of the recursion trees, we get a 

value of n for every level. The longest path from the root to leaf is 

 

 

3.1.5    Master Method 

 

The Master Method is used for solving the following types of recurrence 

T (n) = a T + f (n) with a≥1 and b≥1 be constant & f(n) be a function 

and can be interpreted as 

Let T (n) is defined on non-negative integers by the recurrence. 

 T (n) = a T + f (n) 
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In the function to the analysis of a recursive algorithm, the constants and 

function take on the following significance: 

 

 n is the size of the problem. 

 a is the number of sub-problems in the recursion. 

 n/b is the size of each sub-problem. (Here it is assumed that all 

sub-problems are essentially the same size.) 

 f (n) is the sum of the work done outside the recursive calls, 

which includes the sum of dividing the problem and the sum of 

combining the solutions to the sub-problems. 

 It is not possible always bound the function according to the 

requirement, so we make three cases which will tell us what kind 

of bound we can apply on the function. 

 

Master Theorem: 
 

It is possible to complete an asymptotic tight bound in these three cases: 

 

Case1: If f (n) =  for some constant ε >0, then it follows 

that: 

T (n) = Θ  

Example: 

T (n) = 8 T  apply master theorem on it. 

Solution: 

Compare T (n) = 8 T  with  

 T (n) = a T  

 a = 8, b=2, f (n) = 1000 n2, logba = log28 = 3 

 

 Put all the values in: f (n) =  
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     1000 n2 = O (n3-ε )  

 

If we choose ε=1, we get: 1000 n2 = O (n3-1) = O (n2) 

Since this equation holds, the first case of the master theorem applies to 

the given recurrence relation, thus resulting in the conclusion: 

T (n) = Θ  

   Therefore: T (n) = Θ (n3)  

 

Case 2: If it is true, for some constant k ≥ 0 that: 

F (n) = Θ   

then it follows that: T (n) = Θ  

 

Example: 

T (n) = 2 , solve the recurrence by using the master 

method. 

As compare the given problem with T (n) = a T

 a = 2, b=2, k=0, f (n) = 10n, logba = 

log22 =1  

Put all the values in f (n) =Θ , we will get  

 10n = Θ (n1) = Θ (n) which is true. 

Therefore: T (n) = Θ  

      = Θ (n log n) 

Case 3: If it is true f(n) = Ω  for some constant ε >0 and it 

also true that: a f  for some constant c<1 for large value of n 

,then : 

T (n) = Θ((f (n))    

 

Example: Solve the recurrence relation: 
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T (n) = 2  

 

Solution: 
 

Compare the given problem with  

T (n) = a T  

a= 2, b =2, f (n) = n2, logba = log22 =1  

Put all the values in f (n) = Ω  ..... (Eq. 1) 

 

If we insert all the value in (Eq.1), we will get  

 

n2 = Ω(n1+ε) put ε =1, then the equality will hold. 

n2 = Ω(n1+1) = Ω(n2) 

 

Now we will also check the second condition: 

  2  

 

If we will choose c =1/2, it is true: 

    ∀ n ≥1  

So it follows: T (n) = Θ ((f (n)) 

    T (n) = Θ(n2) 

 

Self-Assessment Exercises 

 

1. How is the Guess-and-Verify method better than the Iteration 

method 

2. Is a recurrence relation similar to a recursive algorithm? Discuss. 

3. What is the essence of the base case in every recurrence relation? 

 

3.2 Example of Recurrence Relation: Tower of Hanoi 
 

It was invented in 1883 by mathematician Edouard Lucas. He wanted to 

sell his 8-disk puzzle, and he created the name and the story to make the 

puzzle more intriguing. The pegs are of diamond, and the 64 disks are of 

gold. They were put there in an ancient temple at Hanoi, Vietnam by the 

Creator who gave the Monks the following divine conditions: 

1. The disks must all be moved one at a time from one peg to another 

peg using only three pegs. 
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2. No larger disk should be placed on top of a smaller disk  

3. Only one disk can be transferred at a time.  

 

Once all the disks have been moved, the World will end !!! This 

problem can be easily solved by Divide & Conquer algorithm 

 

 
In the above 7 step all the disks from peg A will be transferred to C 

given Condition: 

 

1. Only one disk will be shifted at a time. 

2. Smaller disk can be placed on larger disk. 

 

Let T (n) be the total time taken to move n disks from peg A to peg C 

 

1. Moving n-1 disks from the first peg to the second peg. This can 

be done in T (n-1) steps. 

2. Moving larger disks from the first peg to the third peg will 

require first one step. 

3. Recursively moving n-1 disks from the second peg to the third 

peg will require again T (n-1) step. 
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So, total time taken T (n) = T (n-1)+1+ T(n-1) 

 

Relation formula for Tower of Hanoi is: 

 

 

 

We get, 

 

It is a Geometric Progression Series with common ratio, r=2.   

First term, a=1(20) 
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B equation is the required complexity of technique tower of Hanoi when 

we have to move n disks from one peg to another. 

T (3) = 23- 1 

          = 8 - 1  

= 7 Ans 

 

[As in concept we have proved that there will be 7 steps now proved by 

general equation] 

 

3.2.1 Program for Tower of Hanoi: 

 

#include<stdio.h>   

void towers(int, char, char, char);   

 int main()   

 {   

       int num;   

       printf ("Enter the number of disks : ");   

        scanf ("%d", &num);   

printf("The sequence of moves involved in the Tower of Hanoi are:\n"); 

  

      towers (num, 'A', 'C', 'B');   

      return 0;   

    

}   

     void towers( int num, char from peg, char topeg, char auxpe

g)   

 {   

           if (num == 1)   

 {   
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     printf ("\n Move disk 1 from peg %c to peg %c", from peg, to

peg);   

           return;   

 }   

   Towers (num - 1, from peg, auxpeg, topeg);   

Printf ("\n Move disk %d from peg %c to peg %c", num, from pe

g, topeg);   

   Towers (num - 1, auxpeg, topeg, from peg);   

 }   

 

 

3.2.2   Applications of Tower of Hanoi problem 
 

It has been used to determine the extent of brain injuries and helps to 

build/rebuild neural pathways in the brain as attempting to solve, Tower 

of Hanoi uses parts of the brain that involve managing time, foresight of 

whether the next move will lead us closer to the solution or not. 

The Tower of Hanoi is a simple puzzle game that is used to amuse 

children. It is also often used as programming challenge when 

discussing recursion, 

 

3.2.3   Finding a Recurrence (Tower of Hanoi) 
 

To answer how long it will take our friendly monks to destroy the world, 

we write a recurrence (let's call it M(n)) for the number of 

moves MoveTower takes for an n-disk tower. 

 

The base case - when n is 1 - is easy: The monks just move the single 

disk directly. 

 

M(1) = 1 

 

In the other cases, the monks follow our three-step procedure. First they 

move the (n-1)-disk tower to the spare peg; this takes M(n-1) moves. 

Then the monks move the nth disk, taking 1 move. And finally they 

move the (n-1)-disk tower again, this time on top of the nth disk, 

taking M(n-1) moves. This gives us our recurrence relation, 

 

M(n) = 2 M(n-1) + 1. 

 

Since the monks are handling a 64-disk tower, all we need to do is to 

compute M(64), and that tells us how many moves they will have to 

make. 

 

This would be more convenient if we had M(n) into a closed-form 

solution - that is, if we could write a formula for M(n) without using 
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recursion. Do you see what it should be? (It may be helpful if you go 

ahead and compute the first few values, like M(2), M(3), and M(4).) 

 

3.2.4  Closed-form solution 
 

Let's figure out values of M for the first few numbers. 

 

M(1) =1 

M(2)=2M(1) + 1 =3 

M(3)=2M(2) + 1 =7 

M(4)=2M(3) + 1 =15 

M(5)=2M(4) + 1 =31 

 

By looking at this, we can guess that M(n) = 2n - 1. 

We can verify this easily by plugging it into our recurrence. 

M(1) = 1 = 21 - 1 

M(n) = 2 M(n - 1) + 1 = 2 (2n - 1 + 1) - 1 = 2n + 1 

Since our expression 2n+1 is consistent with all the recurrence's cases, 

this is the closed-form solution. 

 

So the monks will move 264+1 (about 18.45x1018) disks. If they are 

really good and can move one disk a millisecond, then they'll have to 

work for 584.6 million years. It looks like we're safe. 

 

Self-Assessment Exercise 

 

1. Simulate the Tower-of-Hanoi problem for N = 7 disks and N = 12 

disks. 

2. Can we solve the Tower of Hanoi problem for any value of Tn 

without using a Recurrence relation? Discuss. 

3. What are the application areas for the Tower of Hanoi problem? 

 

4.0  CONCLUSION 
 

Recurrence relation permits us to compute the members of a sequence 

one after the other starting from one or more initial values. 

Recurrence relations apply recursion completely and there exist one or 

more base cases to help determine the stopping criterion. 

 

5.0  SUMMARY 

 

In mathematics and computer science, a recurrence relation is an 

equation that expresses the nth term of a sequence as a function of the k 

preceding terms, for some fixed k, which is called the order of the 

relation. Recurrence relations can be solved by several methods ranging 
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from the popular Guess-and-Verify method to the Master method and 

they help us understand the workings of algorithms better. 

 

6.0  TUTOR MARKED ASSIGNMENT 

 

1.  A new employee at an exciting new software company starts 

with a salary of N50,000 and is promised that at the end of each 

year her salary will be double her salary of the previous year, 

with an extra increment of N10,000 for each year she has been 

with the company. 

a) Construct a recurrence relation for her salary for her n-th year 

of employment. 

b) Solve this recurrence relation to find her salary for her n-th 

year of employment. 

2.   Suppose that there are two goats on an island initially. The 

number of goats on the island doubles every year by natural 

reproduction, and some goats are either added or removed each 

year. 

a)  Construct a recurrence relation for the number of goats on the 

island at the start of the n-th year, assuming that during each 

year an extra 100 goats are put on the island. 

b)  Solve the recurrence relation from part (a) to find the number 

of goats on the island at the start of the n-th year. 

c)  Construct a recurrence relation for the number of goats on 

the island at the start of the n-th year, assuming that n goats 

are removed during the n-th year for each n≥3n≥3 . 

    d)  Solve the recurrence relation in part (c) for the number of 

goats on the island at the start of the n-th year. 

3.   a) Find all solutions of the recurrence  

 relation an=2an−1+2n2.an=2an−1+2n2. 

 b) Find the solution of the recurrence relation in part (a) with 

 initial condition a1=4 
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7.0 FURTHER READING AND OTHER RESOURCES 

 

Jena, S. R. and  Swain, S. K, (2017). Theory of Computation and 

 Application, 1st Edition, University Science Press, Laxmi 

 Publications. 

 

Michalewicz, Z. and Fogel, D. (2004). How to Solve It: Modern 

 Heuristics. Second Edition. Springer.  

 

Pearl, J. (1984). Heuristics: Intelligent Search Strategies for Computer 

 Problem Solving. Addison-Wesley, 1984.  
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MODULE 2  SEARCHING AND SORTING   

   ALGORITHMS 
 

 

Unit 1  Bubble Sort and Selection Sort Algorithm 

Unit 2  Insertion Sort and Radix Sort Algorithms 

Unit 3  Linear Search and Stability in Sorting 

Unit 4  Divide-and-Conquer Strategies I: Binary Search 

Unit 5  Divide-and-Conquer Strategies II: Merge Sort and  

  Quicksort Algorithms  

 

UNIT 1  BUBBLE SORT AND SELECTION SORT  

  ALGORITHM 

 

1.0  Introduction          

2.0  Objectives          

3.0   Bubble Sort Algorithm        

 3.1  How Bubble sort works      

 3.2  Complexity Analysis of Bubble Sort   

  3.2.1 Time Complexities     

  3.2.2 Advantages of Bubble Sort     

  3.2.3 Disadvantages of Bubble Sort    

 3.3 Selection Sort Algorithm     

  3.3.1 Algorithm Selection Sort    

  3.3.2 How Selection Sort works    

  3.3.3 Complexity of Selection sort   

  3.3.4 Time Complexity     

  3.3.5 Advantages of Selection Sort   

  3.3.6 Disadvantages of Selection Sort    

4.0  Conclusion          

5.0  Summary          

6.0  Tutor Marked Assignment        

7.0  Further Reading and other Resources  

 

1.0  INTRODUCTION 

 

Sorting and searching are two of the most frequently needed algorithms 

in program design. Common algorithms have evolved to take account of 

this need. 

 

Since computers were created, users have devised programs, many of 

which have needed to do the same thing. As a result, 

common algorithms have evolved and been adopted in many programs. 

Two algorithms often used are searches and sorts: 

 searches allow a set of data to be examined and for a specific item 

to be found 
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 sorts allow a data set to be sorted into order 

  Methods of searching include: 

 linear search 

 binary search 

  

Methods of sorting include: 

 

 bubble sort 

 merge sort 

 insertion sort 

 quicksort 

 radix sort 

 selection sort 

 

2.0  OBJECTIVES 

 

By the end of this unit, you should be able to: 

 

 Know some of the techniques for sorting a list containing 

numbers or texts 

 Identify how the bubble sort and Selection sort algorithm works 

 Know some benefits and disadvantages of Bubble sort and 

Selection sort 

 Identify the worst case and best case of Bubble sort and selection 

sort 

 Know where the bubble sort and selection sort algorithms are 

applied  

 

3.0  Bubble Sort 

 

Bubble Sort, also known as Exchange Sort, is a simple sorting 

algorithm. It works by repeatedly stepping throughout the list to be 

sorted, comparing two items at a time and swapping them if they are in 

the wrong order. The pass through the list is duplicated until no swaps 

are desired, which means the list is sorted. 

 

This is the easiest method among all sorting algorithms. 
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Algorithm 

Step 1 ➤ Initialization 

set 1 ← n, p ← 1    

Step 2 ➤ loop, 

Repeat through step 4 while (p ≤ n-1)    

set E ← 0 ➤ Initializing exchange variable.    

Step 3 ➤ comparison, loop. 

Repeat for i ← 1, 1, …... l-1.   

if (A [i] > A [i + 1]) then   

set A [i] ↔ A [i + 1] ➤ Exchanging values.  

  

Set E ← E + 1   

Step 4 ➤ Finish, or reduce the size. 

if (E = 0) then    

exit    

else    

set l ← l - 1.   

 

3.1 How Bubble Sort Works 
 

1. The bubble sort starts with the very first index and makes it a 

bubble element. Then it compares the bubble element, which is 

currently our first index element, with the next element. If the 

bubble element is greater and the second element is smaller, then 

both of them will swap. 

After swapping, the second element will become the bubble 

element. Now we will compare the second element with the third 

as we did in the earlier step and swap them if required. The same 

process is followed until the last element. 

2. We will follow the same process for the rest of the iterations. 

After each of the iteration, we will notice that the largest element 

present in the unsorted array has reached the last index. 

  

 For each iteration, the bubble sort will compare up to the last  unsorted 

element. 

 

Once all the elements get sorted in the ascending order, the algorithm 

will get terminated. 

 

Consider the following example of an unsorted array that we will sort 

with the help of the Bubble Sort algorithm. 
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Initially, 

 

16 36 24 37 15 

Pass 1: 

o Compare a0 and a1 

16 30 24 37 15 

 

As a0 < a1 so the array will remain as it is. 

o Compare a1 and a2 

16 36 24 37 15 

Now a1 > a2, so we will swap both of them. 

      16 24 36 37 15 

o Compare a2 and a3 

16 24 36 37 15 

As a2 < a3 so the array will remain as it is. 

o Compare a3 and a4 

16 24 36 37 15 

Here a3 > a4, so we will again swap both of them. 

 

16 24 36 15 37 

Pass 2: 

o Compare a0 and a1 

16 24 36 15 37 

As a0 < a1 so the array will remain as it is. 

o Compare a1 and a2 

16 24 36 15 37 

Here a1 < a2, so the array will remain as it is. 

o Compare a2 and a3 

16 24 36 15 37 

In this case, a2 > a3, so both of them will get swapped. 

 

16 24 15 36 37 

Pass 3: 

o Compare a0 and a1 

16 24 15 36 37 

As a0 < a1 so the array will remain as it is. 

o Compare a1 and a2 

16 24 15 36 37 

Now a1 > a2, so both of them will get swapped. 

  

16 15 24 36 37 

Pass 4: 

o Compare a0 and a1 

16 15 24 36 37 

Here a0 > a1, so we will swap both of them. 
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15 16 24 36 37 

 

Hence the array is sorted as no more swapping is required. 

 

3.2.1 Complexity Analysis of Bubble Sort 
 

Input:  Given n input elements. 

Output:  Number of steps incurred to sort a list. 

Logic: If we are given n elements, then in the first pass, it 

will do n-1 comparisons; in the second pass, it will 

do n-2; in the third pass, it will do n-3 and so on. 

Thus, the total number of comparisons can be found 

by; 

 
 

Therefore, the bubble sort algorithm encompasses a time complexity 

of O(n2) and a space complexity of O(1) because it necessitates some 

extra memory space for temp variable for swapping. 

 

3.2.2 Time Complexities: 

 

 Best Case Complexity: The bubble sort algorithm has a best-

case time complexity of O(n) for the already sorted array. 

 Average Case Complexity: The average-case time complexity 

for the bubble sort algorithm is O(n2), which happens when 2 or 

more elements are in jumbled, i.e., neither in the ascending order 

nor in the descending order. 

 Worst Case Complexity: The worst-case time complexity is 

also O(n2), which occurs when we sort the descending order of 

an array into the ascending order. 

 

3.2.3 Advantages of Bubble Sort 

1. Easily understandable. 

2. Does not necessitate any extra memory. 

3. The code can be written easily for this algorithm. 

4. Minimal space requirement than that of other sorting algorithms. 
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3.2.4 Disadvantages of Bubble Sort 
 

1. It does not work well when we have large unsorted lists, and it 

necessitates more resources that end up taking so much of time. 

2. It is only meant for academic purposes, not for practical 

implementations. 

3. It involves the n2 order of steps to sort an algorithm. 

 

Self-Assessment Exercise 

 

1.  What exactly do we mean by the concept of “Sorting” 

2.  Explain the terms “Sorting in Ascending order” and “Sorting in 

 Descending order”. 

3.  Why do we prefer using the Bubble sort algorithm in teaching 

 Sorting and in sorting small list of numbers? 

 

3.3    Selection Sort Algorithm 
 

The selection sort enhances the bubble sort by making only a single 

swap for each pass through the rundown. In order to do this, a selection 

sort searches for the biggest value as it makes a pass and, after finishing 

the pass, places it in the best possible area. Similarly, as with a bubble 

sort, after the first pass, the biggest item is in the right place. After the 

second pass, the following biggest is set up. This procedure proceeds 

and requires n-1 goes to sort n item since the last item must be set up 

after the (n-1) th pass. 

 

3.3.1 Algorithm: Selection Sort (A) 
 

k ← length [A]   

for j ←1 to n-1   

smallest ←  j   

for I ← j + 1 to k   

if A [i] < A [ smallest]   

then smallest ←  i   

exchange (A [j], A [smallest])   

 

3.3.2 How Selection Sort works 
 

1. In the selection sort, first of all, we set the initial element as 

a minimum. 

2. Now we will compare the minimum with the second element. If 

the second element turns out to be smaller than the minimum, we 
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will swap them, followed by assigning to a minimum to the third 

element. 

3. Else if the second element is greater than the minimum, which is 

our first element, then we will do nothing and move on to the 

third element and then compare it with the minimum. We will 

repeat this process until we reach the last element. 

4. After the completion of each iteration, we will notice that our 

minimum has reached the start of the unsorted list. 

5. For each iteration, we will start the indexing from the first 

element of the unsorted list. We will repeat the Steps from 1 to 4 

until the list gets sorted or all the elements get correctly 

positioned. 

6. Consider the following example of an unsorted array that we will 

sort with the help of the Selection Sort algorithm. 

 

A[] = (7,  4,  3,  6,  5). 

A [] = 

 
1st Iteration: 

Set minimum = 7 

o Compare a0 and a1 

 
As, a0 > a1, set minimum = 4. 

o Compare a1 and a2 

 
As, a1 > a2, set minimum = 3. 

o Compare a2 and a3 

 
As, a2 < a3, set minimum= 3. 

o Compare a2 and a4 
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As, a2 < a4, set minimum =3. 

Since 3 is the smallest element, so we will swap a0 and a2. 

 
2nd Iteration: 

Set minimum = 4 

o Compare a1 and a2 

 
As, a1 < a2, set minimum = 4. 

o Compare a1 and a3 

 
As, A[1] < A[3], set minimum = 4. 

o Compare a1 and a4 

 
Again, a1 < a4, set minimum = 4. 

Since the minimum is already placed in the correct position, so there 

will be no swapping. 

 
3rd Iteration: 

Set minimum = 7 

o Compare a2 and a3 

 
As, a2 > a3, set minimum = 6. 

o Compare a3 and a4 
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As, a3 > a4, set minimum = 5. 

Since 5 is the smallest element among the leftover unsorted elements, so 

we will swap 7 and 5. 

 
4th Iteration: 

Set minimum = 6 

o Compare a3 and a4 

 
As a3 < a4, set minimum = 6. 

Since the minimum is already placed in the correct position, so there 

will be no swapping. 

 
3.3.3 Complexity Analysis of Selection Sort 
 

Input:  Given n input elements. 

Output:  Number of steps incurred to sort a list. 

Logic:  If we are given n elements, then in the first pass, it will  

 

do n-1 comparisons; in the second pass, it will do n-2; in the third pass, 

it will do n-3 and so on. Thus, the total number of comparisons can be 

found by; 
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Therefore, the selection sort algorithm encompasses a time complexity 

of O(n2) and a space complexity of O(1) because it necessitates some 

extra memory space for temp variable for swapping. 

 

3.3.4 Time Complexities: 
 

 Best Case Complexity: The selection sort algorithm has a best-

case time complexity of O(n2) for the already sorted array. 

 Average Case Complexity: The average-case time complexity 

for the selection sort algorithm is O(n2), in which the existing 

elements are in jumbled ordered, i.e., neither in the ascending 

order nor in the descending order. 

 Worst Case Complexity: The worst-case time complexity is 

also O(n2), which occurs when we sort the descending order of 

an array into the ascending order. 

 

3.3.5 Advantages of Selection Sort 

 

 It is an in-place algorithm. It does not require a lot of space for 

sorting. Only one extra space is required for holding the temporal 

variable.  

 It performs well on items that have already been sorted 

 

3.3.6 Disadvantage of selection sort  

 

 As the input size increases, the performance of selection sort 

decreases. 

 

Self-Assessment Exercise 

 

1.  How does the Selection sort algorithm work? 

2.  What is the Average case and Worst case complexity of the 

 Selection Sort algorithm? 

 

4.0  CONCLUSION 

 

The sorting problem enables us to find better algorithms that would help 

arrange the numbers in a list or sequence in any order. Ascending order 

is when it is arranged from Smallest to Biggest while Descending order 

is when the list is arranged from biggest item to the smallest item. We 

looked at the case of the bubble sort and the Selection sort algorithms 

which are well suited for sorting a small-sized list efficiently. 
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5.0  SUMMARY 

 

In simple terms, the Sorting algorithm arranges a list from either 

smallest item consecutively to the biggest item (Ascending order) or 

from the biggest item consecutively to the smallest item (Descending 

order). 

 

Two methods of Sorting small-sized lists (Bubble sort and Selection 

Sort) were introduced and incidentally, they both have the same Worst 

case runnung time of O(n2). 

 

 

6.0  TUTOR MARKED ASSIGNMENT 

 

1.  Sort the following list [76, 23, 65, 2, 8, 43, 88, 2, 4, 7, 23, 8, 65] 

 in ascending order using Selection Sort. 

2.  Sort the list given in Question 1 above in descending order using 

 Bubble sort? 

3.  What are two benefits each of Bubble Sort and Selection Sort 

 algorithms? 

 

7.0  FURTHER READING AND OTHER RESOURCES 

 

Baase, S. and Van Gelder, A. (2008). Computer Algorithms: 

 Introduction to Design and Analysis, Pearson Education.  

 

Jena, S. R. and Patro, S. (2018) – Design and Analysis of Algorithms, 

 ISBN 978-93-935274-311-7 

 

Karumanchi, N. (2016). Data Structures and Algorithms, CareerMonk 

 Publications. ISBN-13  :  978-8193245279 
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UNIT 2  INSERTION SORT AND LINEAR SEARCH  

  ALGORITHM 

 

1.0  Introduction          

2.0  Objectives          

3.0  Insertion Sort          

 3.1  How Insertion sort works     

 3.2   Complexity of Insertion sort     

  3.2.1 Time Complexities     

  3.2.2 Space Complexity      

  3.2.3 Insertion sort Applications      

 3.2.4 Advantages of Insertion sort   

  3.2.5 Disadvantages of Insertion sort   

 3.3 Linear Search Algorithm     

 3.4 Complexity of Linear Search    

  3.4.1 Advantages of Linear Search   

  3.4.2 Disadvantages of Linear Search    

4.0  Conclusion          

5.0  Summary          

6.0  Tutor Marked Assignments       

7.0 Further Reading and Other Resources  

 

1.0  INTRODUCTION 

 

Insertion sort is one of the simplest sorting algorithms for the reason that 

it sorts a single element at a particular instance. It is not the best sorting 

algorithm in terms of performance, but it's slightly more efficient 

than selection sort and bubble sort in practical scenarios. It is an intuitive 

sorting technique. 

 

2.0  OBJECTIVES 

 

By the end of this unit, you will be able to: 

 

 Know how Insertion sort and Linear search works 

 Understand the complexities of both Linear search and Insertion 

sort 

 Know the advantages and disadvantages of Linear search 

 Know the advantages and disadvantages of Insertion sort 

 Use the Linear Search and Insertion sort algorithms to write good 

programs in any programming language of your choice. 

  

https://www.javatpoint.com/daa-selection-sort
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3.0  INSERTION SORT 

 

Insertion sort is one of the simplest sorting algorithms for the reason that 

it sorts a single element at a particular instance. It is not the best sorting 

algorithm in terms of performance, but it's slightly more efficient 

than selection sort and bubble sort in practical scenarios. It is an intuitive 

sorting technique. 

 

Let's consider the example of cards to have a better understanding of the 

logic behind the insertion sort. 

 

Suppose we have a set of cards in our hand, such that we want to 

arrange these cards in ascending order. To sort these cards, we have a 

number of intuitive ways. 

 

One such thing we can do is initially we can hold all of the cards in our 

left hand, and we can start taking cards one after other from the left 

hand, followed by building a sorted arrangement in the right hand. 

 

Assuming the first card to be already sorted, we will select the next 

unsorted card. If the unsorted card is found to be greater than the 

selected card, we will simply place it on the right side, else to the left 

side. At any stage during this whole process, the left hand will be 

unsorted, and the right hand will be sorted. 

 

In the same way, we will sort the rest of the unsorted cards by placing 

them in the correct position. At each iteration, the insertion algorithm 

places an unsorted element at its right place. 

 

Algorithm: Insertion Sort (A) 
 

1. for j = 2 to A.length    

2.  key = A[j]   

3. // Insert A[j] into the sorted sequence A[1.. j - 1]   

4.  i = j - 1   

5.  while i > 0 and A[i] > key   

6.      A[i + 1] = A[i]   

7.      ii = i -1   

8.  A[i + 1] = key   

 

3.1 How Insertion Sort Works 
 

1. We will start by assuming the very first element of the array is already 

sorted. Inside the key, we will store the second element. 
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Next, we will compare our first element with the key, such that if the 

key is found to be smaller than the first element, we will interchange 

their indexes or place the key at the first index. After doing this, we will 

notice that the first two elements are sorted. 

 

2. Now, we will move on to the third element and compare it with the 

left-hand side elements. If it is the smallest element, then we will place 

the third element at the first index. 

 

Else if it is greater than the first element and smaller than the second 

element, then we will interchange its position with the third element and 

place it after the first element. After doing this, we will have our first 

three elements in a sorted manner. 

 

3. Similarly, we will sort the rest of the elements and place them in their 

correct position. 

 

Consider the following example of an unsorted array that we will sort 

with the help of the Insertion Sort algorithm. 

 

A = (41, 22, 63, 14, 55, 36) 

Initially, 

 

1st Iteration: 

Set key = 22 

Compare a1 with a0 

 
Since a0 > a1, swap both of them. 

 
2nd Iteration: 

Set key = 63 

Compare a2 with a1 and a0 

 
Since a2 > a1 > a0, keep the array as it is. 
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3rd Iteration: 

Set key = 14 

Compare a3 with a2, a1 and a0 

 
Since a3 is the smallest among all the elements on the left-hand side, 

place a3 at the beginning of the array. 

 
4th Iteration: 

Set key = 55 

Compare a4 with a3, a2, a1 and a0. 

 
As a4 < a3, swap both of them. 

 
5th Iteration: 

Set key = 36 

Compare a5 with a4, a3, a2, a1 and a0. 

 
Since a5 < a2, so we will place the elements in their correct positions. 
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Hence the array is arranged in ascending order, so no more swapping is 

required. 

 

3.2 Complexity Analysis of Insertion Sort 
 

Input:  Given n input elements. 

Output:  Number of steps incurred to sort a list. 

Logic:  If we are given n elements, then in the first pass, it will 

make n-1 comparisons; in the second pass, it will do n-2; 

in the third pass, it will do n-3 and so on. Thus, the total 

number of comparisons can be found by; 

Output: 

(n-1) + (n-2) + (n-3) + (n-4) = …… +1 

 
Sum = i.e…. O(n2) 

 

Therefore, the insertion sort algorithm encompasses a time complexity 

of O(n2) and a space complexity of O(1) because it necessitates some 

extra memory space for a key variable to perform swaps. 

 

3.2.1 Time Complexities 
 

 Best Case Complexity: The insertion sort algorithm has a best-

case time complexity of O(n) for the already sorted array because 

here, only the outer loop is running n times, and the inner loop is 

kept still. 

 Average Case Complexity: The average-case time complexity 

for the insertion sort algorithm is O(n2), which is incurred when 

the existing elements are in jumbled order, i.e., neither in the 

ascending order nor in the descending order. 

 Worst Case Complexity: The worst-case time complexity is 

also O(n2), which occurs when we sort the ascending order of an 

array into the descending order. 

In this algorithm, every individual element is compared with the 

rest of the elements, due to which n-1 comparisons are made for 

every nth element. 
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The insertion sort algorithm is highly recommended, especially when a 

few elements are left for sorting or in case the array encompasses few 

elements. 

 

3.2.2  Space Complexity 
 

The insertion sort encompasses a space complexity of O(1) due to the 

usage of an extra variable key. 

 

3.2.3  Insertion Sort Applications 
 

The insertion sort algorithm is used in the following cases: 

 

 When the array contains only a few elements. 

 When there exist few elements to sort. 

 

3.2.4 Advantages of Insertion Sort 
 

1. It is simple to implement. 

2. It is efficient on small datasets. 

3. It is stable (does not change the relative order of elements with 

equal keys) 

4. It is in-place (only requires a constant amount O (1) of extra 

memory space). 

5. It is an online algorithm, which can sort a list when it is received. 

 

3.2.5 Disadvantages of Insertion Sort 

 
1. Insertion sort is inefficient against more extensive data sets. 

2. The insertion sort exhibits the worst-case time complexity of 

O(n2) 

3. It does not perform well than other, more advanced sorting 

algorithms 

 

Self-Assessment Exercise: 

 

1. What is the worst case time complexity of insertion sort where 

position of the data to be inserted is calculated using binary 

search? 

2. Consider an array of elements arr[5]= {5,4,3,2,1} , what are the 

steps of insertions done while doing insertion sort in the array.  

3. How many passes does an insertion sort algorithm consist of? 

4. What is the average case running time of an insertion sort 

  algorithm? 
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5. What is the running time of an insertion sort algorithm if the 

input is pre-sorted? 

 

3.3 Linear Search 

 

A linear search is the simplest method of searching a data set. 

Starting at the beginning of the data set, each item of data is examined 

until a match is made. Once the item is found, the search ends. 

A way to describe a linear search would be: 

 

1. Find out the length of the data set. 

2. Set counter to 0. 

3. Examine value held in the list at the counter position. 

4. Check to see if the value at that position matches the value 

searched for. 

5. If it matches, the value is found. End the search. 

6. If not, increment the counter by 1 and go back to step 3 until there 

are no more items to search. 

Consider this list of unordered numbers: 

 

 
 

Suppose we were to search for the value 2. The search would start at 

position 0 and check the value held there, in this case 3. 

3 does not match 2, so we move on to the next position. 

The value at position 1 is 5. 

5 does not match 2, so we move on to the next position. 

The value at position 2 is 2 - a match. The search ends. 

A linear search in pseudocode might look like this: 

 

find = 2  

found = False 

length = list.length  

counter = 0  

while found == False and counter < length  

if list[counter] == find then found = True  

print ('Found at position', counter)  

else:  

counter = counter + 1  

endif  

endwhile  

if found == False then  

print('Item not found')  

endif  
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A linear search, although simple, can be quite inefficient. Suppose the 

data set contained 100 items of data, and the item searched for happens 

to be the last item in the set? All of the previous 99 items would have to 

be searched through first. 

 

However, linear searches have the advantage that they will work on any 

data set, whether it is ordered or unordered. 

 

3.4 Complexity of Linear Search 
 

The worst case complexity of linear search is O(n).  

If the element to be searched lived on the the first memory block then 

the best case complexity would be: O(1). 

 

3.4.1 Advantages of Linear Search 

 
a. Will perform fast searches of small to medium lists. With today's 

powerful computers, small to medium arrays can be searched 

relatively quickly. 

b. The list does not need to sorted. ... 

c. Not affected by insertions and deletions. 

 

3.4.2 Disadvantages of Linear Search 

 
a. It is less efficient in the case of large-size data sets. 

b. The worst- case scenario for finding the element is O(n). 

 

Self-Assessment Exercises 

 

1. Given a list of numbers 12, 45, 23, 7, 9, 10, 22, 87, 45, 23, 34, 56 

a. Use the linear search algorithm to search for the number 10 

b. Comment on the worst-case running time of your algorithm 

2. When do we consider the linear search algorithm a better 

alternative? 

3. What is the best case for linear search? 

 

4.0  CONCLUSION 
 

The Insertion sort is a simple sorting algorithm that builds the final 

sorted array one item at a time. It is much less efficient on large lists 

than more advanced algorithms such as quicksort, or merge sort while a 

linear search or sequential search is a method for finding an element 

within a list. It sequentially checks each element of the list until a match 

is found or the whole list has been searched 
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5.0  SUMMARY 

 

We examined the Insertion sort algorithm and how it can be used to sort 

or arrange a list in any order while at the same time noting its 

complexity, advantages and disadvantages. A Linear Search algorithm 

which is also known as Sequential search is used in finding a given 

element in a list and returns a positive answer once the element is 

located else it returns a negative answer. Linear search is very efficient 

for searching an item within a small-sized list’ 

 

6.0  TUTOR MARKED ASSIGNMENT 

 

1.  How many linear searches will it take to find the value 7 in the list 

[1,4,8,7,10,28]? 

2. Consider the following lists of partially sorted numbers. The 

double bars represent the sort marker. How many comparisons 

and swaps are needed to sort the next number. [1 3 4 8 9 || 5 2] 

using Insertion sort? 

3. What is an advantage of the Linear search algorithm? 

4. If all the elements in an input array is equal for example 

{1,1,1,1,1,1}, what would be the running time of the Insertion 

sort Algorithm? 

5. For linear search, describe the "worst case scenario" and the “best 

case scenario. 

 

7.0 FURTHER READING AND OTHER RESOURCES 

 

Berman, K. and Paul,J. (2004). Algorithms: Sequential, Parallel, and 

 Distributed. Course Technology. 

 

Cormen, T. H., Leiserson,C, Rivest,R. and Stein,C. (2009). Introduction 

 to Algorithms. Third Edition. MIT Press. 

 

Trivedi, K. S.(2001). Probability and Statistics with Reliability, 

 Queueing, and Computer Science Applications. Second Edition. 

 Wiley-Blackwell Publishing. 
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UNIT 3  RADIX SORT AND STABILITY IN SORTING 
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 3.1.2 Disadvantages of Radix Sort    
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1.0  INTRODUCTION 

 

Radix sort is one of the simplest sorting algorithms for the reason that it 

sorts a single element at a particular instance. It is not the best sorting 

algorithm in terms of performance, but it's slightly more efficient 

than selection sort and bubble sort in practical scenarios. It is an intuitive 

sorting technique. 

 

2.0  OBJECTIVES 

 

By the end of this unit, you will be able to: 

 

 Know how to calculate with various data types 

 Specify input and output statements 

 Differentiate between formatted and unformatted I/O statements. 

 

3.0 Radix Sort 

 

Radix Sort is a Sorting algorithm that is useful when there is a constant 

'd' such that all keys are d digit numbers. To execute Radix Sort, for p 

=1 towards 'd' sort the numbers with respect to the Pth digits from the 

right using any linear time stable sort. 

 

Radix sort is a sorting technique that sorts the elements digit to digit 

based on radix. It works on integer numbers. To sort the elements of the 

string type, we can use their hash value. This sorting algorithm makes 

no comparison. 

 

https://www.javatpoint.com/daa-selection-sort
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The Code for Radix Sort is straightforward. The following procedure 

assumes that each element in the n-element array A has d digits, where 

digit 1 is the lowest order digit and digit d is the highest-order digit. 

Here is the algorithm that sorts A [1.n] where each number is d digits 

long. 

 

Radix-Sort (array A, int n, int d)  

 1 for i ← 1 to d  

 2 do stably sort A to sort array A on digit i 

 

Example: The first Column is the input. The remaining Column shows 

the list after successive sorts on increasingly significant digit position. 

The vertical arrows indicate the digits position sorted on to produce each 

list from the previous one. 

 

576     49[4]     9[5]4     [1]76     176   

494     19[4]     5[7]6     [1]94     194   

194     95[4]     1[7]6     [2]78     278   

296   → 57[6]  →  2[7]8   → [2]96   → 296   

278     29[6]     4[9]4     [4]94     494   

176     17[6]     1[9]4     [5]76     576   

954     27[8]     2[9]6     [9]54     954   

 

3.1 Complexity of the Radix sort algorithm 

 

Worst case time complexity 

 

The worst case in radix sort occurs when all elements have the same 

number of digits except one element which has significantly large 

number of digits. If the number of digits in the largest element is equal 

to n, then the runtime becomes O(n2). The worst case running time of 

Counting sort is O(n+b). If b=O(n), then the worst case running time is 

O(n). Here,the countingSort function is called for d times, where d 

= ⌊logb(mx)+1⌋⌊logb(mx)+1⌋. 
Total worst case complexity of radix sort is O(logb(mx)(n+b)). 

 

Best case time complexity 
 

The best case occurs when all elements have the same number of digits. 

The best case time complexity is O(d(n+b)). If b = O(n), then time 

complexity is O(dn). 

 

Average case time complexity 
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In the average case, we have considered the distribution of the number 

of digits. There are D passes and each digit can take on up to b possible 

values. Radix sort doesn't depend on the input sequence, so we may 

keep n as a constant. 

The running time of radix sort is, T(n) = d(n+b). Taking expectations of 

both sides and using linearity of expectation, 

 

The average case time complexity of radix sort is O(D*(n+b)). 

 

Space Complexity 
 

In this algorithm, we have two auxiliary arrays cnt of size b (base) 

and tempArray of size n (number of elements), and an input 

array arr of size n. 

 

Space complexity: O(n+b) 

 

The base of the radix sort doesn't depend upon the number of elements. 

In some cases, the base may be larger than the number of elements. 

 

Radix sort becomes slow when the element size is large but the radix is 

small. We can't always use a large radix cause it requires large memory 

in counting sort. It is good to use the radix sort when d is small. 

 

3.1.1 Advantages of Radix Sort: 
 

 Fast when the keys are short i.e. when the range of the array 

elements is less. 

 Used in suffix array construction algorithms like Manber's 

algorithm and DC3 algorithm. 

 Radix Sort is stable sort as relative order of elements with equal 

values is maintained. 

 

3.1.2 Disadvantages of Radix Sort: 

 

 Since Radix Sort depends on digits or letters, Radix Sort is much 

less flexible than other sorts. ... 

 The constant for Radix sort is greater compared to other sorting 

algorithms. 

 It takes more space compared to Quicksort which is in-place 

sorting. 

 

3.1.3 Applications of Radix Sort  
 

Here are a few applications of the radix sort algorithm: 
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 Radix sort can be applied to data that can be sorted 

lexicographically, such as words and integers. It is also used for 

stably sorting strings.  

 It is a good option when the algorithm runs on parallel machines, 

making the sorting faster. To use parallelization, we divide the 

input into several buckets, enabling us to sort the buckets in 

parallel, as they are independent of each other.  

 It is used for constructing a suffix array. (An array that contains 

all the possible suffixes of a string in sorted order is called a 

suffix array.  

 

Self-Assessment Exercises 

 

1. If we use Radix Sort to sort n integers in the range (nk/2,nk], for 

some k>0 which is independent of n, the time taken would be? 

2. The maximum number of comparisons needed to sort 9 items 

using radix sort is? (assume each item is 5 digit octal number): 

3. Sort the following list in descending order using the Radix sort 

algorithm 

 

3.2 Stability in Sorting 
 

Stable sort algorithms sort equal elements in the same order that they 

appear in the input. For example, in the card sorting example to the 

right, the cards are being sorted by their rank, and their suit is being 

ignored. This allows the possibility of multiple different correctly sorted 

versions of the original list. Stable sorting algorithms choose one of 

these, according to the following rule: if two items compare as equal 

(like the two 5 cards), then their relative order will be preserved, i.e. if 

one comes before the other in the input, it will come before the other in 

the output. 

 

Stability is important to preserve order over multiple sorts on the 

same data set. For example, say that student records consisting of name 

and class section are sorted dynamically, first by name, then by class 

section. If a stable sorting algorithm is used in both cases, the sort-by-

class-section operation will not change the name order; with an unstable 

sort, it could be that sorting by section shuffles the name order, resulting 

in a nonalphabetical list of students. 

 

More formally, the data being sorted can be represented as a record or 

tuple of values, and the part of the data that is used for sorting is called 

the key. In the card example, cards are represented as a record (rank, 

suit), and the key is the rank. A sorting algorithm is stable if whenever 

there are two records R and S with the same key, and R appears before S 

in the original list, then R will always appear before S in the sorted list. 
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When equal elements are indistinguishable, such as with integers, or 

more generally, any data where the entire element is the key, stability is 

not an issue. Stability is also not an issue if all keys are different. 

 

 

 

An example of stable sort on playing cards. When the cards are sorted 

by rank with a stable sort, the two 5s must remain in the same order in 

the sorted output that they were originally in. When they are sorted with 

a non-stable sort, the 5s may end up in the opposite order in the sorted 

output. 

 

Unstable sorting algorithms can be specially implemented to be stable. 

One way of doing this is to artificially extend the key comparison, so 

that comparisons between two objects with otherwise equal keys are 

decided using the order of the entries in the original input list as a tie-

breaker. Remembering this order, however, may require additional time 

and space. 

 

One application for stable sorting algorithms is sorting a list using a 

primary and secondary key. For example, suppose we wish to sort a 

hand of cards such that the suits are in the order clubs (♣), diamonds (♦), 

hearts (♥), spades (♠), and within each suit, the cards are sorted by rank. 

This can be done by first sorting the cards by rank (using any sort), and 

then doing a stable sort by suit: 

 

https://en.wikipedia.org/wiki/File:Sorting_stability_playing_cards.svg
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Within each suit, the stable sort preserves the ordering by rank that was 

already done. This idea can be extended to any number of keys and is 

utilized by radix sort. The same effect can be achieved with an unstable 

sort by using a lexicographic key comparison, which, e.g., compares 

first by suit, and then compares by rank if the suits are the same. 

 

3.2.1 Why is stable sort useful? 

 

A stable sorting algorithm maintains the relative order of the items 

with equal sort keys. An unstable sorting algorithm does not. In other 

words, when a collection is sorted with a stable sorting algorithm, items 

with the same sort keys preserve their order after the collection is sorted. 

Suppose you need to sort following key-value pairs in the increasing 

order of keys: 

 

 
INPUT: (4,5), (3, 2) (4, 3) (5,4) (6,4) 

 

Now, there is two possible solution for the two pairs where the key is 

same i.e. (4,5) and (4,3) as shown below: 

 

 

 

 

OUTPUT1: (3, 2),  (4, 5),  (4,3),  (5,4),  (6,4) 

OUTPUT2: (3, 2),  (4, 3),  (4,5),  (5,4),  (6,4) 

The sorting algorithm which will produce the first output will be known 

as stable sorting algorithm because the original order of equal keys are 

maintained, you can see that (4, 5) comes before (4,3) in the sorted 

order, which was the original order i.e. in the given input, (4, 5) comes 

before (4,3) . 

 

On the other hand, the algorithm which produces second output will 

know as an unstable sorting algorithm because the order of objects with 

the same key is not maintained in the sorted order. You can see that in 

https://en.wikipedia.org/wiki/File:Sorting_playing_cards_using_stable_sort.svg
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the second output, the (4,3) comes before (4,5) which was not the case 

in the original input. 

 

Self-Assessment Exercise 

 

1. Can any unstable sorting algorithm be altered to become stable? 

If so, how? 

2. What is the use of differentiating algorithms on the basis of 

stability? 

3. When is it definitely unnecessary to look at the nature of stability 

of a sorting algorithm? 

4. What are some stable sorting techniques?  

5. What properties of sorting algorithms are most likely to get 

affected when a typically unstable sorting algorithm is 

implemented to be stable? 

 

4.0  CONCLUSION 
 

In computer science, radix sort is a non-comparative sorting algorithm. 

It avoids comparison by creating and distributing elements into buckets 

according to their radix. Stable sorting algorithms on the other hand 

maintain the relative order of records with equal keys (i.e. values). That 

is, a sorting algorithm is stable if whenever there are two records R and 

S with the same key and with R appearing before S in the original list, R 

will appear before S in the sorted list. 

 

5.0  SUMMARY 
 

We considered another good example of a sorting algorithm known as 

Radix sort which unconsciously, is the commonest method we use in 

sorting some items in a list. On the other hand, we looked at stability in 

sorting algorithms and how to identify stable and unstable sorting 

algorithms. 

 

6.0  TUTOR MARKED ASSIGNMENT 

 

1.  In what cases should we prefer using stable sorting algorithms? 

2. Assuming that the number of digits used is not excessive, the 

worst-case cost for Radix Sort when sorting nn keys with distinct 

key values is: 

3. If an unstable sorting algorithm happens to preserve the relative 

order in a particular example, is it said to be stable? 

4. The running time of radix sort on an array of n integers in the 

range [0……..n5 -1] when using base 10 representation is? 

5. How can you convert an unstable sorting algorithm into a stable 

sorting algorithm? 
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7.0  FURTHER READING AND OTHER RESOURCES 
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 Pearson Education. 

 

Jena, S. R. and  Swain, S. K, (2017). Theory of Computation and 

 Application, 1st Edition, University Science Press, Laxmi 

 Publications. 

 

Levitin, A. (2012). Introduction to the Design and Analysis of 

 Algorithms, 3rd Ed. Pearson Education, ISBN 10-0132316811 

 

Michalewicz, Z. and Fogel, D. (2004). How to Solve It: Modern 

 Heuristics. Second Edition. Springer.  
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1.0  INTRODUCTION 
 

Divide-and-Conquer is a useful problem-solving technique that divides a 

large instance of a problem sixe into smaller and smaller instances and 

then solves these smaller instances to give a complete solution of the 

bigger problem. There are several strategies for implementing the 

Divide-and-Conquer approach and we shall first examine the Binary 

Search algorithm which first requires that a list be sorted and then 

proceeds to find any requested item on the list and is very efficient for 

large lists since it uses logarithmic time. 

 

2.0  OBJECTIVES 

 

By the end of this unit, you should be able to: 

 

 Know the meaning of a Divide-and-Conquer Algorithm 

 Know how to use a Divide-and-Conquer algorithm 

 Know the different applications of Divide-and-Conquer 

algorithms 

 Understand the Binary Search algorithm, 

 Know why the Binary Search algorithm is useful 

 Understand the benefits and shortcomings of Binary search 

 Know the different application areas of Binary Search 
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3.0  Divide and Conquer Algorithms 

 

Divide and Conquer is an algorithmic pattern. In algorithmic methods, 

the design is to take a dispute on a huge input, break the input into minor 

pieces, decide the problem on each of the small pieces, and then merge 

the piecewise solutions into a global solution. This mechanism of 

solving the problem is called the Divide & Conquer Strategy. 

Divide and Conquer algorithm consists of a dispute using the following 

three steps. 

 

1. Divide the original problem into a set of sub-problems. 

2. Conquer: Solve every sub-problem individually, recursively. 

3. Combine: Put together the solutions of the sub-problems to get 

the solution to the whole problem. 

 

 
 

Generally, we can follow the divide-and-conquer approach in a three-

step process. 

 

Examples: The specific computer algorithms are based on the Divide & 

Conquer approach: 

 

1. Maximum and Minimum Problem 

2. Binary Search 

3. Sorting (merge sort, quick sort) 

4. Tower of Hanoi. 
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3.1 Fundamental of Divide & Conquer Strategy: 

 

There are two fundamental of Divide & Conquer Strategy: 

 

1. Relational Formula 

2. Stopping Condition 

 

1.  Relational Formula: It is the formula that we generate from the 

 given technique. After generation of Formula we apply D&C 

 Strategy, i.e. we break the problem recursively & solve the 

 broken sub-problems. 

2.  Stopping Condition: When we break the problem using Divide 

 & Conquer Strategy, then we need to know that for how much 

 time, we need to apply divide & Conquer. So the condition where 

 the need to stop our recursion steps of Divide & Conquer is 

 called as Stopping Condition. 

 

3.1.1 Applications of Divide and Conquer Approach: 

 

Following algorithms are based on the concept of the Divide and 

Conquer Technique: 

 

1. Binary Search: The binary search algorithm is a searching 

algorithm, which is also called a half-interval search or 

logarithmic search. It works by comparing the target value with 

the middle element existing in a sorted array. After making the 

comparison, if the value differs, then the half that cannot contain 

the target will eventually eliminate, followed by continuing the 

search on the other half. We will again consider the middle 

element and compare it with the target value. The process keeps 

on repeating until the target value is met. If we found the other 

half to be empty after ending the search, then it can be concluded 

that the target is not present in the array. 

 

2. Quicksort: It is the most efficient sorting algorithm, which is 

also known as partition-exchange sort. It starts by selecting a 

pivot value from an array followed by dividing the rest of the 

array elements into two sub-arrays. The partition is made by 

comparing each of the elements with the pivot value. It compares 

whether the element holds a greater value or lesser value than the 

pivot and then sort the arrays recursively. 

 

3. Merge Sort: It is a sorting algorithm that sorts an array by 

making comparisons. It starts by dividing an array into sub-array 
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and then recursively sorts each of them. After the sorting is done, 

it merges them back. 

 

4. Closest Pair of Points: It is a problem of computational 

geometry. This algorithm emphasizes finding out the closest pair 

of points in a metric space, given n points, such that the distance 

between the pair of points should be minimal. 

 

5. Strassen's Algorithm: It is an algorithm for matrix 

multiplication, which is named after Volker Strassen. It has 

proven to be much faster than the traditional algorithm when 

works on large matrices. 

 

6. Cooley-Tukey Fast Fourier Transform (FFT) algorithm: The 

Fast Fourier Transform algorithm is named after J. W. Cooley 

and John Turkey. It follows the Divide and Conquer Approach 

and imposes a complexity of O(nlogn). 

 

7. Karatsuba algorithm for fast multiplication: It is one of the 

fastest multiplication algorithms of the traditional time, invented 

by Anatoly Karatsuba in late 1960 and got published in 1962. It 

multiplies two n-digit numbers in such a way by reducing it to at 

most single-digit. 

 

3.1.2 Advantages of Divide and Conquer 

 

a. Divide and Conquer tend to successfully solve one of the biggest 

problems, such as the Tower of Hanoi, a mathematical puzzle. It 

is challenging to solve complicated problems for which you have 

no basic idea, but with the help of the divide and conquer 

approach, it has lessened the effort as it works on dividing the 

main problem into two halves and then solve them recursively. 

This algorithm is much faster than other algorithms. 

b. It efficiently uses cache memory without occupying much space 

because it solves simple sub-problems within the cache memory 

instead of accessing the slower main memory. 

c. It is more proficient than that of its counterpart Brute Force 

technique. 

d. Since these algorithms inhibit parallelism, it does not involve any 

modification and is handled by systems incorporating parallel 

processing. 

 

3.1.3 Disadvantages of Divide and Conquer 

 

a. Since most of its algorithms are designed by incorporating 

recursion, so it necessitates high memory management. 
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b. An explicit stack may overuse the space. 

c. It may even crash the system if the recursion is performed 

rigorously greater than the stack present in the CPU. 

 

3.1.4 Properties of Divide-and-Conquer Algorithms 
 

Divide-and-Conquer has several important properties. 

 

a. It follows the structure of an inductive proof, and therefore 

usually leads to relatively simple proofs of correctness. To prove 

a divide-and-conquer algorithm correct, we first prove that the 

base case is correct. Then, we assume by strong (or structural) 

induction that the recursive solutions are correct, and show that, 

given correct solutions to smaller instances, the combined 

solution is correct. 

b. Divide-and-conquer algorithms can be work efficient. To ensure 

efficiency, we need to make sure that the divide and combine 

steps are efficient, and that they do not create too many sub-

instances. 

c. The work and span for a divide-and-conquer algorithm can be 

expressed as a mathematical equation called recurrence, which 

can be usually be solved without too much difficulty. 

d. Divide-and-conquer algorithms are naturally parallel, because the 

sub-instances can be solved in parallel. This can lead to 

significant amount of parallelism, because each inductive step 

can create more independent instances. For example, even if the 

algorithm divides the problem instance into two subinstances, 

each of those subinstances could themselves generate two more 

subinstances, leading to a geometric progression, which can 

quickly produce abundant parallelism.  

 

Self-Assessment Exercise 

 

1. The steps in the Divide-and-Conquer process that takes a 

recursive approach is said to be? 

2. Given the recurrence f(n) = 4 f(n/2) + 1, how many sub-problems 

will a divide-and-conquer algorithm divide the original problem 

into, and what will be the size of those sub-problems? 

3. Design a divide-and-conquer algorithm to compute kn for k > 0 

and integer n >= 0. 

4. Define divide and conquer approach to algorithm design 

 

3.2 Binary Search 

 
In computer science, binary search, also known as half-interval search, 

logarithmic search, or binary chop, is a search algorithm that finds the 
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position of a target value within a sorted array. Binary search compares 

the target value to the middle element of the array. 

 

A binary search is an efficient method of searching an ordered list. A 

binary search works like this: 

 

1. Start by setting the counter to the middle position in the list. 

2. If the value held there is a match, the search ends. 

3. If the value at the midpoint is less than the value to be found, the 

list is divided in half. The lower half of the list is ignored and the 

search keeps to the upper half of the list. 

4. Otherwise, if the value at the midpoint is greater than the value to 

be found, the upper half of the list is ignored and the search keeps 

to the lower half of the list. 

5. The search moves to the midpoint of the remaining items. Steps 2 

through 4 continue until a match is made or there are no more 

items to be found. 

 

Consider this list of ordered numbers: 

 

 
 

Suppose we were to search for the value 11. 

The midpoint is found by adding the lowest position to the highest 

position and dividing by 2. 

 

Highest position (8) + lowest position (0) = 8     8/2 = 4 

NOTE - if the answer is a decimal, round up. For example, 3.5 becomes 

4. We can round down as an alternative, as long as we are consistent. 

Check at position 4, which has the value 7. 

 

7 is less than 11, so the bottom half of the list (including the midpoint) is 

discarded. 

 

 
The new lowest position is 5. 

  

Highest position (8) + lowest position (5) = 13 

13/2 = 6.5, which rounds up to 7 

Check at position 7, which has the value 14. 
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14 is greater than 11, so the top half of the list (including the midpoint) 

is discarded. 

 

 
The new highest position is 6. 

 

Highest position (6) + lowest position (5) = 11 

11/2 = 5.5, which rounds up to 6 Check at position 6. 

The value held at position 6 is 11, a match. The search ends. 

 

A binary search in pseudocode might look like this: 

find = 11  

found = False  

length = list.length  

lowerBound = 0  

upperBound = length  

while found == False  

midpoint = int((upperBound + lowerBound))/2  

if list[midPoint] == find then  

print('Found at' , midPoint)  

found = True  

else  

if list[midPoint]> item then  

upperBound = midpoint-1  

else  

lowerBound = midpoint+1  

endif  

endif  

endwhile  

 

if found == False then  

print('Not found')  

endif  

 

A binary search is a much more efficient algorithm than a linear search. 

In an ordered list of every number from 0 to 100, a linear search would 

take 99 steps to find the value 99. A binary search would only require 

seven steps. 

 

However, a binary search can only work if a list is ordered. 

 

  



CIT 310       ALGORITHMS AND COMPLEXITY ANALYSIS   

 

96 

 

 

3.2.1 Complexity of Binary Search 

 

The time complexity of the binary search algorithm is O(log n). The 

best-case time complexity would be O(1) when the central index would 

directly match the desired value. The worst-case scenario could be the 

values at either extremity of the list or values not in the list.  

The space complexity of the binary search algorithm depends on the 

implementation of the algorithm. There are two ways of implementing 

it: 

 

 Iterative method 

 Recursive method 

 

Both methods are quite the same, with two differences in 

implementation. First, there is no loop in the recursive method. Second, 

rather than passing the new values to the next iteration of the loop, it 

passes them to the next recursion. In the iterative method, the iterations 

can be controlled through the looping conditions, while in the recursive 

method, the maximum and minimum are used as the boundary 

condition.  

 

In the iterative method, the space complexity would be O(1). While in 

the recursive method, the space complexity would be O(log n).  

 

3.2.2 Advantages of Binary Search 

 

a. A binary search algorithm is a fairly simple search algorithm to 

implement.  

b. It is a significant improvement over linear search and performs 

almost the same in comparison to some of the harder to 

implement search algorithms. 

c. The binary search algorithm breaks the list down in half on 

every iteration, rather than sequentially combing through the list. 

On large lists, this method can be really useful. 

 

3.2.3 Disadvantages of Binary Search 

 

a. It employs recursive approach which requires more stack space. 

b. Programming binary search algorithm is error prone and difficult. 

c. The interaction of binary search with memory hierarchy i.e. 

caching is poor. 
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3.2.4 Applications of Binary Search 

 

a. This algorithm is used to search element in a given sorted array 

with more efficiency. 

b. It could also be used for few other additional operations like- to 

find the smallest element in the array or to find the largest 

element in the array. 

 

Self-Assessment Exercise 

 

1. Which type of lists or data sets are binary searching algorithms 

used for? 

2. A binary search is to be performed on the list: 

[3  5  9  10  23]. How many comparisons would it take to find 

number 9? 

3. How many binary searches will it take to find the value 7 in the list 

[1,4,7,8,10,28]? 

4.  Given an array arr = {45,77,89,90,94,99,100} and key = 100; 

What are the mid values(corresponding array elements) generated 

in the first and second iterations? 

 

4.0  CONCLUSION 

 

In computer science, divide and conquer is an algorithm design 

paradigm. A divide-and-conquer algorithm recursively breaks down a 

problem into two or more sub-problems of the same or related type, until 

these become simple enough to be solved directly. 

 

A binary search algorithm is a widely used algorithm in the 

computational domain. It is a fat and accurate search algorithm that can 

work well on both big and small datasets. A binary search algorithm is a 

simple and reliable algorithm to implement. With time and space 

analysis, the benefits of using this particular technique are evident.  

 

5.0  SUMMARY 

 

We looked at the meaning of Divide-and-Conquer algorithms and how 

they work and then considered a very good example of a Divide-and-

Conquer algorithm called Binary Search which is very efficient for large 

lists as its worst case complexity is given in logarithmic time. 
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6.0  TUTOR MARKED ASSIGNMENT 

 

1.  Make a brief comparison between Binary Search and Linear 

Search algorithms. 

2.  Explain why the complexity of binary search is O (log n) 

3. Suppose you have an array, A, containing n numbers sorted into 

increasing order. You want to construct a balanced binary tree 

containing the numbers in A. Give a divide-and-conquer 

algorithm to do so. 

 

4. How many binary searches will it take to find the value 10 in the 

list [1,4,9,10,11]? 

5. Given a real number, x, and a natural number n, xn can be defined 

by the following recursive function: 

 

xn = 1 if n = 0 

xn = (xn/2)2 if n > 0 and n is even 

xn = x (x(n-1)/2)2 if n > 0 and n is odd 

 

Use this recursion to give a divide-and-conquer algorithm for 

computing xn. Explain how your algorithm meets the definition of 

“divide and conquer.” 

6. What is the maximum number of comparisons required to find a 

value in a list of 20 items using a binary search? 

 

7.0  FURTHER READING AND OTHER RESOURCES 

 

Cormen, T. H., Leiserson, C., Rivest, R. and Stein, C. (2009). 

 Introduction to Algorithms. Third Edition. MIT Press. 

 

Jena, S. R. and  Swain, S. K, (2017). Theory of Computation and 

 Application, 1st Edition, University Science Press, Laxmi 

 Publications. 

 

Karumanchi, N. (2016). Data Structures and Algorithms, CareerMonk 

 Publications. ISBN-13  :  978-8193245279 
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1.0  INTRODUCTION 
 

We continue with two more examples of Divide-and-Conquer 

algorithms which incidentally, are sorting algorithms. The Merge sort 

(also spelled mergesort) is an efficient sorting algorithm that uses a 

divide-and-conquer approach to order elements in an array. It repeatedly 

breaks down a list into several sublists until each sublist consists of a 

single element and merging those sublists in a manner that results into a 

sorted list. 

 

Like mergesort, Quick Sort (also spelled QuickSort) is a Divide and 

Conquer algorithm. It picks an element as pivot and partitions the 

given array around the picked pivot. 

 

2.0  OBJECTIVES 

 

At the end of this unit, you will be able to: 

 

 Understand the Mergesort algorithm 

 Know when and where we can apply mergesort 

 Understand the complexity of the mergesort approach 

 Know the benefits and shortcomings of mergesort 

 Know more about the Quicksort algorithm 

 Understand how Quicksort works 

 Be able to write codes for mergesort and quicksort 
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 Be able to perform simple sorting of any list using quicksort and 

mergesort. 

 

 

3.0  Merge Sort 
 

Merge sort is yet another sorting algorithm that falls under the category 

of Divide and Conquer technique. It is one of the best sorting techniques 

that successfully build a recursive algorithm. 

 

Divide and Conquer Strategy 

 

In this technique, we segment a problem into two halves and solve them 

individually. After finding the solution of each half, we merge them 

back to represent the solution of the main problem. 

 

Suppose we have an array A, such that our main concern will be to sort 

the subsection, which starts at index p and ends at index r, represented 

by A[p..r]. 

 

Divide 

 

If assumed q to be the central point somewhere in between p and r, then 

we will fragment the subarray A[p..r] into two 

arrays A[p..q] and A[q+1, r]. 

 

Conquer 

 

After splitting the arrays into two halves, the next step is to conquer. In 

this step, we individually sort both of the subarrays A[p..q] and A[q+1, 

r]. In case if we did not reach the base situation, then we again follow 

the same procedure, i.e., we further segment these subarrays followed by 

sorting them separately. 

 

Combine 

 

As when the base step is acquired by the conquer step, we successfully 

get our sorted subarrays A[p..q] and A[q+1, r], after which we merge 

them back to form a new sorted array [p..r]. 

 

3.1 Merge Sort algorithm 

 

The MergeSort function keeps on splitting an array into two halves until 

a condition is met where we try to perform MergeSort on a subarray of 

size 1, i.e., p == r. 
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And then, it combines the individually sorted subarrays into larger 

arrays until the whole array is merged. 

 

ALGORITHM-MERGE SORT   

1. If p<r   

2. Then q → ( p+ r)/2   

3. MERGE-SORT (A, p, q)   

4. MERGE-SORT ( A, q+1,r)   

5. MERGE ( A, p, q, r)   

 

Here we called MergeSort(A, 0, length(A)-1) to sort the complete 

array. 

 

As you can see in the image given below, the merge sort algorithm 

recursively divides the array into halves until the base condition is met, 

where we are left with only 1 element in the array. And then, the merge 

function picks up the sorted sub-arrays and merge them back to sort the 

entire array. 

 

The following figure illustrates the dividing (splitting) procedure. 

 

 
 

FUNCTIONS: MERGE (A, p, q, r)   

   

1. n 1 = q-p+1   

2. n 2= r-q   

3. create arrays [1.....n 1 + 1] and R [ 1.....n 2 +1 ]   

4. for i ← 1 to n 1   

5. do [i] ← A [ p+ i-1]   

6. for j ← 1 to n2   
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7. do R[j] ← A[ q + j]   

8. L [n 1+ 1] ← ∞   

9. R[n 2+ 1] ← ∞    

10. I ← 1   

11. J ← 1   

12. For k ← p to r   

13. Do if L [i] ≤ R[j]   

14. then A[k] ← L[ i]   

15. i ← i +1   

16. else A[k] ← R[j]   

17. j ← j+1   

 

 
 

The merge step of Merge Sort 

 

Mainly the recursive algorithm depends on a base case as well as its 

ability to merge back the results derived from the base cases. Merge sort 

is no different algorithm, just the fact here the merge step possesses 

more importance. 

 

To any given problem, the merge step is one such solution that 

combines the two individually sorted lists(arrays) to build one large 

sorted list(array). 

 

The merge sort algorithm upholds three pointers, i.e., one for both of the 

two arrays and the other one to preserve the final sorted array's current 

index. 

 

Did you reach the end of the array?  No:   

Firstly, start with comparing the current elements of both the arrays.    

Next, copy the smaller element into the sorted array.  Lastly, move the p

ointer of the element containing a smaller element.   
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    Yes:   

    Simply copy the rest of the elements of the non-empty array   

 

 

Merge( ) Function Explained Step-By-Step 

 

Consider the following example of an unsorted array, which we are 

going to sort with the help of the Merge Sort algorithm. 

 

A= (36,25,40,2,7,80,15) 

 

Step1: The merge sort algorithm iteratively divides an array into equal 

halves until we achieve an atomic value. In case if there are an odd 

number of elements in an array, then one of the halves will have more 

elements than the other half. 

 

Step2: After dividing an array into two subarrays, we will notice that it 

did not hamper the order of elements as they were in the original array. 

After now, we will further divide these two arrays into other halves. 

 

Step3: Again, we will divide these arrays until we achieve an atomic 

value, i.e., a value that cannot be further divided. 

 

Step4: Next, we will merge them back in the same way as they were 

broken down. 

 

Step5: For each list, we will first compare the element and then combine 

them to form a new sorted list. 

 

Step6: In the next iteration, we will compare the lists of two data values 

and merge them back into a list of found data values, all placed in a 

sorted manner. 
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Hence the array is sorted. 

 

3.1.1 Complexity Analysis of Merge Sort: 

 

Best Case Complexity: The merge sort algorithm has a best-case time 

complexity of O(n*log n) for the already sorted array. 

 

Average Case Complexity: The average-case time complexity for the 

merge sort algorithm is O(n*log n), which happens when 2 or more 

elements are jumbled, i.e., neither in the ascending order nor in the 

descending order. 

 

Worst Case Complexity: The worst-case time complexity is 

also O(n*log n), which occurs when we sort the descending order of an 

array into the ascending order. 

 

Space Complexity: The space complexity of merge sort is O(n). 
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3.1.2 Merge Sort Applications 
 

The concept of merge sort is applicable in the following areas: 

 

 Inversion count problem 

 External sorting 

 E-commerce applications 

 

3.1.3 Advantages of Merge Sort 

 
a. Merge sort can efficiently sort a list in O(n*log(n)) time. 

b. Merge sort can be used with linked lists without taking up any 

more space. 

c. A merge sort algorithm is used to count the number of inversions 

in the list. 

d. Merge sort is employed in external sorting. 

 

3.1.4 Disadvantages of Merge Sort 

 
a. For small datasets, merge sort is slower than other sorting 

algorithms. 

b. For the temporary array, mergesort requires an additional space 

of O(n). 

c. Even if the array is sorted, the merge sort goes through the entire 

process. 

 

Self-Assessment Exercise 

 

1. A list of n string, each of length n, is sorted into lexicographic 

order using the merge-sort algorithm. The worst case running 

time of this computation is? 

2. What is the average case time complexity of merge sort? 

3. A mergesort works by first breaking a sequence in half a number 

of times so it is working with smaller pieces. When does it stop 

breaking the list into sublists (in its simplest version)? 

 

3.2 Quick Sort 
 

A sorting technique developed by British computer scientist Tony Hoare 

in 1959 and published in 1961, that sequences a list by continuously 

dividing the list into two parts and moving the lower items to one side 

and the higher items to the other. It starts by picking one item in the 

entire list to serve as a pivot point. The entire process takes place in the 

following three steps: 
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Divide: Rearrange the elements and split arrays into two sub-arrays and 

an element in between search that each element in left sub array is less 

than or equal to the average element and each element in the right sub- 

array is larger than the middle element. 

 

Conquer: Recursively, sort two sub arrays. 

Combine: Combine the already sorted array. 

 

Algorithm: 

 

QUICKSORT (array A, int m, int n)    

 1 if (n > m)    

 2 then    

 3 i ← a random index from [m,n]    

 4 swap A [i] with A[m]    

 5 o ← PARTITION (A, m, n)    

 6 QUICKSORT (A, m, o - 1)   

 7 QUICKSORT (A, o + 1, n)   

 

Partition Algorithm: 

 

Partition algorithm rearranges the sub arrays in a place. 

 

PARTITION (array A, int m, int n)    

 1 x ← A[m]    

 2 o ← m    

 3 for p ← m + 1 to n   

 4 do if (A[p] < x)    

 5 then o ← o + 1    

 6 swap A[o] with A[p]   

 7 swap A[m] with A[o]    

 8 return o   

 

Example of Quick Sort. Given the following list; 

44  33  11  55  77  90  40  60  99  22  88     

 

Let 44 be the Pivot element and scanning done from right to left 

Comparing 44 to the right-side elements, and if right-side elements 

are smaller than 44, then swap it. As 22 is smaller than 44 so swap 

them. 

 

22   33   11   55   77   90   40   60   99   44   88  

Now comparing 44 to the left side element and the element must 

be greater than 44 then swap them. As 55 are greater than 44 so swap 

them. 
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22   33   11   44   77   90   40   60   99   55   88 

 

Recursively, repeating steps 1 and steps 2 until we get two lists one left 

from pivot element 44 & one right from pivot element. 

 

22   33   40   77   90   44   60   99   55    88 

 

Swap with 77: 

 

22   33   11   40   44   90   77   60   99   55   88 

 

Now, the element on the right side and left side are greater than and 

smaller than 44 respectively. 

 

Now we get two sorted lists: 

 
And these sublists are sorted under the same process as above done. 

These two sorted sublists side by side. 

 
 

 
 

Merging Sublists: 
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 SORTED LISTS 

 

3.2.1 Complexity of Quicksort 

 

Worst Case Analysis: The worst case occurs when the partition 

process always picks greatest or smallest element as pivot. If we 

consider above partition strategy where last element is always picked 

as pivot, the worst case would occur when the array is already sorted in 

increasing or decreasing order. Following is recurrence for worst case.  

Worst Case Complexity of Quick Sort is T (n) =O (n2) 

 

Average Case Analysis: T(n) = O(n log n) is the average case 

complexity of quick sort for sorting n elements. 

 

Best Case Analysis: In any sorting, best case is the only case in which 

we don't make any comparison between elements that is only done when 

we have only one element to sort. 

 

T(n) = O(n log n) 

 

3.2.2 Advantages of Quick Sort 

 

a. It is in-place since it uses only a small auxiliary stack. 

b. It requires only n (log n) time to sort n items. 

c. It has an extremely short inner loop. 

d. This algorithm has been subjected to a thorough mathematical 

analysis, a very precise statement can be made about performance 

issues. 

 

3.2.3 Disadvantages of Quick Sort 

 

a. It is recursive. Especially, if recursion is not available, the 

implementation is extremely complicated. 

b. It requires quadratic (i.e., n2) time in the worst-case. 

c. It is fragile, i.e. a simple mistake in the implementation can go 

unnoticed and cause it to perform badly. 

 

3.2.4 Applications of QuickSort 

 

a. It is used for information searching since it is the fastest and is 

widely used as a better way of searching.  

b. It is used everywhere where a stable sort is not needed.  

c. Quicksort is a cache-friendly algorithm as it has a good locality 

of reference when used for arrays. 
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Self-Assessment Exercises 

 

1. What is recurrence for worst case of QuickSort and what is the 

time complexity in Worst case? 

2. Sort the following list in descending order of magnitude using  

QuickSort [23, 65, 8, 78, 3, 65, 21, 9, 4, 43, 76, 1, 6, 4, 8, 56]. 

You can pick any element as your pivot. 

3. Apply Quick sort on a given sequence 7 11 14 6 9 4 3 12. What is 

the sequence after first phase, pivot is first element? 

 

4.0  CONCLUSION 
 

Merge sort is a sorting technique based on divide and conquer 

technique. With worst-case time complexity being Ο(n log n), it is one 

of the most respected algorithms. 

 

Merge sort first divides the array into equal halves and then combines 

them in a sorted manner. 

 

Quicksort, is a sorting algorithm that makes n log n comparisons in 

average case for sorting an array of n elements. It is a fast and highly 

efficient sorting algorithm and follows the divide-and-conquer approach. 

 

5.0  SUMMARY 
 

In this Unit, we examined two sorting algorithm examples of Divide-

and-Conquer algorithms. The Mergesort which is also and external 

sorting algorithm was considered with its complexity analysis explained 

as well as its benefits and shortcomings. 

 

The QuickSort algorithm which is another example of a Divide-and-

Conquer algorithm was also looked at as well as its advantages and 

disadvantages. 

 

6.0  TUTOR MARKED ASSIGNMENT 

 
1.  Quicksort works by choosing a pivot value and moving list 

elements around. Each element less than the pivot will be closer 

to the beginning of the list than the pivot, and each element 

greater than the pivot will be closer to the end of the list. By 

doing this operation many times with different pivots, the list will 

become sorted. For the fastest operation, which would be the best 

pivot value? 

2. Sort the following list in ascending order. [8, 1, 4, 9, 6, 3, 5, 2, 7, 

 0] using  
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 a. MergeSort  b. Quicksort 

3. To sort the array [5, 4, 3, 2, 1, 0] in ascending order, the first 

merge in MergeSort will result in? 

4. Write a program in any language of your choice to implement the 

Quick Sort and the Mergesort Algorithms. 

 

 

7.0  FURTHER READING AND OTHER RESOURCES 

 

Karumanchi, N. (2016). Data Structures and Algorithms, CareerMonk 

 Publications. ISBN-13  :  978-8193245279 

 

Sen, S. and Kumar, A, (2019). Design and Analysis of Algorithms. A 

 Contemporary Perspective. Cambridge University Press. ISBN: 

 1108496822, 9781108496827 

 

Vermani, L. R. and Vermani, S.(2019). An Elementary Approach To 

 Design And Analysis Of Algorithms. World Scientific. ISBN: 

 178634677X, 9781786346773 



CIT 310          MODULE 3 

 

111 

 

MODULE 3 OTHER ALGORITHM TECHNIQUES 
 

Unit 1  Binary Search Trees 

Unit 2  Dynamic Programming 

Unit 3  Computational Complexity 

Unit 4  Approximate Algorithms I 

Unit 5  Approximate Algorithms II  

 

1.0  Introduction          

2.0  Objectives          

3.0  Binary Search Trees         

3.0.1  Binary Search Tree Property      

 3.1  Traversal In Binary Search Treess    

  3.1.1  Inorder Tree Walk      

  3.1.2  Preorder Tree Walk     

  3.1.3  Postorder Tree Walk     

  

 3.2  Querying a Binary Search Tree     

  3.2.1 Searching       

  3.2.2 Minimum and Maximum    

  3.2.3 Successor and Predeccessor     

 3.2.4 Insertion in Binary Search Trees    

 3.2.5 Deletion in Binary Search Trees    

3.3  Red Black Trees       

 3.3.1 Properties of Red Black Trees    

3.4  Operations on Red Black Trees    

 3.4.1  Rotation       

 3.4.2  Insertion       

3.4.3  Deletion        

4.0  Conclusion          

5.0  Summary          

6.0  Tutor Marked Assignment        

7.0  Further Reading and Other Resources  

 

1.0 INTRODUCTION 

 

We introduce here a special search tree called the Binary Search Tree 

and a derivative of it known as the Red Black Tree.  

 

A binary search tree, also known as ordered binary tree is a binary tree 

wherein the nodes are arranged in a order. The order is : a) All the 

values in the left sub-tree has a value less than that of the root node. b) 

All the values in the right node have a value greater than the value of the 

root node. 
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On the other hand, a red-black tree is a Binary tree where a particular 

node has color as an extra attribute, either red or black. By check the 

node colors on any simple path from the root to a leaf, red-black trees 

secure that no such path is higher than twice as long as any other so that 

the tree is generally balanced. 

 

2.0 OBJECTIVES 

 

At the end of this unit, you will be able to: 

 

 Understand the meaning of a Binary Search Tree. 

 Know the different methods of traversing a Binary Search Tree 

 List and explain the different ways a Binary Search Tree can be 

queried 

 Understand the Red Black Trees 

 Learn the different properties of Red Black Trees 

 Know the different operations done on Red Black Trees 

 

3.0 Binary Search Trees 
 

A Binary Search tree is organized in a Binary Tree. Such a tree can be 

defined by a linked data structure in which a particular node is an object. 

In addition to a key field, each node contains field left, right, and p that 

point to the nodes corresponding to its left child, its right child, and its 

parent, respectively. If a child or parent is missing, the appropriate field 

contains the value Nil. The root node is the only node in the tree whose 

parent field is Nil. 

 

3.0.1 Binary Search Tree Property 

 

Let x be a node in a binary search tree. 

 

 If y is a node in the left subtree of x, then key [y] ≤key [k]. 

 If z is a node in the right subtree of x, then key [x] ≤ key [y]. 

 
 

In this tree key [x] = 15 
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If y is a node in the left subtree of x, then key [y] = 5. 

i.e. key [y] ≤ key[x].   

If y is a node in the right subtree of x, then key [y] = 20. 

i.e. key [x] ≤ key[y].   

 

3.1 Traversal in Binary Search Trees: 

 
1.1.1 In-Order-Tree-Walk (x):  

  

In Inorder Tree walk, we always print the keys in the binary search tree 

in a sorted order. 

 

INORDER-TREE-WALK (x) - Running time is θ(n) 

1. If x ≠ NIL. 

2. then INORDER-TREE-WALK (left [x]) 

3. print key [x] 

4. INORDER-TREE-WALK (right [x]) 

 

3.1.2. PREORDER-TREE-WALK (x):  

 

In Preorder Tree walk, we visit the root node before the nodes in either 

subtree. 

 

PREORDER-TREE-WALK (x):  
 

1.  If x ≠ NIL. 

2.  then print key [x] 

3.  PREORDER-TREE-WALK (left [x]). 

4.  PREORDER-TREE-WALK (right [x]). 

 

3.1.3. POSTORDER-TREE-WALK (x):  

 

In Postorder Tree walk, we visit the root node after the nodes in its 

subtree. 

 

POSTORDER-TREE-WALK (x):  
 

1.  If x ≠ NIL. 

2.  then POSTORDER-TREE-WALK (left [x]). 

3.  POSTORDER-TREE-WALK (right [x]). 

4.  print key [x] 
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3.2 Querying a Binary Search Trees: 
 

3.2.1. Searching:  
 

The TREE-SEARCH (x, k) algorithm searches the tree node at x for a 

node whose key value equal to k. It returns a pointer to the node if it 

exist otherwise NIL. 

 

TREE-SEARCH (x, k) 
 1. If x = NIL or k = key [x]. 

 2. then return x. 

 3. If k < key [x]. 

 4. then return TREE-SEARCH (left [x], k) 

 5. else return TREE-SEARCH (right [x], k) 

 

Clearly, this algorithm runs in O (h) time where h is the height of the 

tree. The iterative version of the above algorithm is very easy to 

implement 

 

ITERATIVE-TREE- SEARCH (x, k) 
 1. while x ≠ NIL and k ≠ key [k]. 

 2. do if k < key [x]. 

 3. then x ← left [x]. 

 4. else x ← right [x]. 

 5. return x. 

 

3.2.2. Minimum and Maximum:  

An item in a binary search tree whose key is a minimum can always be 

found by following left child pointers from the root until a NIL is 

encountered. The following procedure returns a pointer to the minimum 

element in the subtree rooted at a given node x. 

TREE- MINIMUM (x) 
 1. While left [x] ≠ NIL. 

 2. do x←left [x]. 

 3. return x. 

 

TREE-MAXIMUM (x) 
 1. While left [x] ≠ NIL 

 2. do x←right [x]. 

 3. return x. 
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3.2.3. Successor and predecessor:  
 

Given a node in a binary search tree, sometimes we used to find its 

successor in the sorted form determined by an in order tree walk. If 

all keys are specific, the successor of a node x is the node with the 

smallest key greater than key[x]. The structure of a binary search tree 

allows us to rule the successor of a node without ever comparing 

keys. The following action returns the successor of a node x in a 

binary search tree if it exists, and NIL if x has the greatest key in the 

tree: 

 

TREE SUCCESSOR (x) 

 

 1. If right [x] ≠ NIL. 

 2. Then return TREE-MINIMUM (right [x])) 

 3. y←p [x] 

 4. While y ≠ NIL and x = right [y] 

 5. do x←y 

 6. y←p[y] 

 7. return y. 

 

The code for TREE-SUCCESSOR is broken into two cases. If the right 

subtree of node x is nonempty, then the successor of x is just the 

leftmost node in the right subtree, which we find in line 2 by calling 

TREE-MINIMUM (right [x]). On the other hand, if the right subtree of 

node x is empty and x has a successor y, then y is the lowest ancestor of 

x whose left child is also an ancestor of x. To find y, we quickly go up 

the tree from x until we encounter a node that is the left child of its 

parent; lines 3-7 of TREE-SUCCESSOR handle this case. 

 

The running time of TREE-SUCCESSOR on a tree of height h is O (h) 

since we either follow a simple path up the tree or follow a simple path 

down the tree. The procedure TREE-PREDECESSOR, which is 

symmetric to TREE-SUCCESSOR, also runs in time O (h).  

 

3.2.4. Insertion in Binary Search Tree:  
 

To insert a new value into a binary search tree T, we use the procedure 

TREE-INSERT. The procedure takes a node ´ for which key [z] = v, left 

[z] NIL, and right [z] = NIL. It modifies T and some of the attributes of 

z in such a way that it inserts into an appropriate position in the tree. 
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TREE-INSERT (T, z) 

 

 1. y ←NIL. 

 2. x←root [T] 

 3. while x ≠ NIL. 

 4. do y←x 

 5. if key [z]< key [x] 

 6. then x←left [x]. 

 7. else x←right [x]. 

 8. p [z]←y 

 9. if y = NIL. 

 10. then root [T]←z 

 11. else if key [z] < key [y] 

 12. then left [y]←z 

For Example: 

 
Working of TREE-INSERT 

 

Suppose we want to insert an item with key 13 into a Binary Search 

Tree. 

  x = 1   

  y = 1 as x ≠ NIL.   

  Key [z] < key [x]   

      13 < not equal to 12.   

  x ←right [x].   

  x ←3   

Again x ≠ NIL   

  y ←3   

  key [z] < key [x]   

      13 < 18   

  x←left [x]   

  x←6   

Again x ≠ NIL, y←6   
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  13 < 15   

  x←left [x]   

  x←NIL   

  p [z]←6   

Now our node z will be either left or right child of its parent (y). 

key [z] < key [y]   

   13 < 15   

Left [y] ← z   

Left [6] ← z   

So, insert a node in the left of node index at 6. 

 

3.2.5. Deletion in Binary Search Tree:  
 

When Deleting a node from a tree it is essential that any relationships, 

implicit in the tree can be maintained. The deletion of nodes from a 

binary search tree will be considered: 

 

There are three distinct cases: 

 

1. Nodes with no children: This case is trivial. Simply set the 

parent's pointer to the node to be deleted to nil and delete the 

node. 

2. Nodes with one child: When z has no left child then we replace z 

by its right child which may or may not be NIL. And when z has 

no right child, then we replace z with its right child. 

3. Nodes with both Childs: When z has both left and right child. 

We find z's successor y, which lies in right z's right subtree and 

has no left child (the successor of z will be a node with minimum 

value its right subtree and so it has no left child). 

 

 If y is z's right child, then we replace z. 

 Otherwise, y lies within z's right subtree but not z's right child. In 

this case, we first replace z by its own right child and the replace 

z by y. 

 

TREE-DELETE (T, z) 
If left [z] = NIL or right [z] = NIL. 

Then y ← z 

Else y  ← TREE- SUCCESSOR (z) 

If left [y] ≠ NIL. 

Then x ← left [y] 

Else x ← right [y] 

If x ≠NIL 

Then p[x] ← p [y] 

If p[y] = NIL. 

Then root [T] ← x 
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Else if y = left [p[y]] 

Then left [p[y]] ← x 

Else right [p[y]] ← y 

If y ≠ z. 

Then key [z] ← key [y] 

If y has other fields, copy them, too. 

Return y 

 

The Procedure runs in O (h) time on a tree of height h. 

For Example: Deleting a node z from a binary search tree. Node z may 

be the root, a left child of node q, or a right child of q. 

 

 
Z has the only right child. 

 
Z has the only left child. We replace z by l. 

 
Node z has two children; its left child is node l, its right child is its 

successor y, and y's right child is node x. We replace z by y, updating y's 

left child to become l, but leaving x as y's right child. 
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Node z has two children (left child l and right child r), and its successor 

y ≠ r lies within the subtree rooted at r. We replace y with its own right 

child x, and we set y to be r's parent. Then, we set y to be q's child and 

the parent of l. 

 

Self-Assessment Exercises 
 

1. What is the worst case time complexity for search, insert and 

delete operations in a general Binary Search Tree? 

2. We are given a set of n distinct elements and an unlabelled binary 

tree with n nodes. In how many ways can we populate the tree 

with the given set so that it becomes a binary search tree? 

3. How many distinct binary search trees can be created out of 4 

distinct keys? 

4. Suppose the numbers 7, 5, 1, 8, 3, 6, 0, 9, 4, 2 are inserted in that 

order into an initially empty binary search tree. The binary search 

tree uses the usual ordering on natural numbers. What is the in-

order traversal sequence of the resultant tree? 

 

3.3 Red Black Tree 
 

A Red Black Tree is a category of the self-balancing binary search tree. 

It was created in 1972 by Rudolf Bayer who termed them "symmetric 

binary B-trees." 

 

A red-black tree is a Binary tree where a particular node has color as an 

extra attribute, either red or black. By check the node colors on any 

simple path from the root to a leaf, red-black trees secure that no such 

path is higher than twice as long as any other so that the tree is generally 

balanced. 
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3.3.1 Properties of Red-Black Trees 

 

A red-black tree must satisfy these properties: 

 

1. The root is always black. 

2. A nil is recognized to be black. This factor that every non-NIL 

node has two children. 

3. Black Children Rule: The children of any red node are black. 

4. Black Height Rule: For particular node v, there exists an integer 

bh (v) such that specific downward path from v to a nil has 

correctly bh (v) black real (i.e. non-nil) nodes. Call this portion 

the black height of v. We determine the black height of an RB 

tree to be the black height of its root. 

 

A tree T is an almost red-black tree (ARB tree) if the root is red, but 

other conditions above hold. 

 
 

3.4 Operations on RB Trees: 
 

The search-tree operations TREE-INSERT and TREE-DELETE, when 

runs on a red-black tree with n keys, take O (log n) time. Because they 

customize the tree, the conclusion may violate the red-black properties. 

To restore these properties, we must change the color of some of the 

nodes in the tree and also change the pointer structure. 

 

3.4.1. Rotation: 
 

Restructuring operations on red-black trees can generally be expressed 

more clearly in details of the rotation operation. 
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Clearly, the order (Ax By C) is preserved by the rotation operation. 

Therefore, if we start with a BST and only restructure using rotation, 

then we will still have a BST i.e. rotation do not break the BST-

Property. 

LEFT ROTATE (T, x) 

 

 1. y ← right [x] 

 1. y ← right [x] 

 2. right [x] ← left [y] 

 3. p [left[y]] ← x 

 4. p[y] ← p[x] 

 5. If p[x] = nil [T] 

   then root [T] ← y 

    else if x = left [p[x]]   

     then left [p[x]] ← y 

    else right [p[x]] ← y 

 6. left [y] ← x. 

 7. p [x] ← y.  

 

Example: Draw the complete binary tree of height 3 on the keys {1, 2, 

3... 15}. Add the NIL leaves and color the nodes in three different ways 

such that the black heights of the resulting trees are: 2, 3 and 4. 

Solution: 

 
Tree with black-height-2 
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Tree with black-height-3 

 
Tree with black-height-4 

 

3.4.2. Insertion: 
 

 Insert the new node the way it is done in Binary Search Trees. 

 Color the node red 

 If an inconsistency arises for the red-black tree, fix the tree 

according to the type of discrepancy. 

 

A discrepancy can be a decision from a parent and a child both having a 

red color. This type of discrepancy is determined by the location of the 

node concerning grandparent, and the color of the sibling of the parent. 
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RB-INSERT (T, z) 

 

y ← nil [T] 

x ← root [T] 

while x ≠ NIL [T] 

do y ← x 

if key [z] < key [x] 

then x  ← left [x] 

else x ←  right [x] 

p [z] ← y 

if y = nil [T] 

then root [T] ← z 

else if key [z] < key [y] 

then left [y] ← z 

else right [y] ← z 

left [z] ← nil [T] 

right [z] ← nil [T] 

color [z] ← RED 

RB-INSERT-FIXUP (T, z) 

 

After the insert new node, Coloring this new node into black may violate 

the black-height conditions and coloring this new node into red may 

violate coloring conditions i.e. root is black and red node has no red 

children. We know the black-height violations are hard. So we color the 

node red. After this, if there is any color violation, then we have to 

correct them by an RB-INSERT-FIXUP procedure. 

 

RB-INSERT-FIXUP (T, z) 

 

while color [p[z]] = RED 

do if p [z] = left [p[p[z]]] 

then y ← right [p[p[z]]] 

If color [y] = RED 

5. then color [p[z]] ← BLACK    //Case 1 

6. color [y] ← BLACK            //Case 1 

7. color [p[z]] ← RED           //Case 1 

8. z  ← p[p[z]]                 //Case 1 

else if z= right [p[z]] 

10. then z ← p [z]              //Case 2 

11. LEFT-ROTATE (T, z)          //Case 2 

12. color [p[z]] ← BLACK        //Case 3 

13. color [p [p[z]]] ← RED      //Case 3 

14. RIGHT-ROTATE  (T,p [p[z]])  //Case 3 

15. else (same as then clause) 

With "right" and "left" exchanged 

16. color [root[T]] ← BLACK 
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Example: Show the red-black trees that result after successively 

inserting the keys 41,38,31,12,19,8 into an initially empty red-black tree. 

Solution:  
Insert 41 
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Insert 19 

 
 

 
Thus the final tree is 

 
 

3.4.3. Deletion: 
 

First, search for an element to be deleted 

 

 If the element to be deleted is in a node with only left child, swap 

this node with one containing the largest element in the left 

subtree. (This node has no right child). 
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 If the element to be deleted is in a node with only right child, 

swap this node with the one containing the smallest element in 

the right subtree (This node has no left child). 

 If the element to be deleted is in a node with both a left child and 

a right child, then swap in any of the above two ways. While 

swapping, swap only the keys but not the colors. 

 The item to be deleted is now having only a left child or only a 

right child. Replace this node with its sole child. This may violate 

red constraints or black constraint. Violation of red constraints 

can be easily fixed. 

 If the deleted node is black, the black constraint is violated. The 

elimination of a black node y causes any path that contained y to 

have one fewer black node. 

 Two cases arise: 

 The replacing node is red, in which case we merely color it black 

to make up for the loss of one black node. 

 The replacing node is black. 

 

The strategy RB-DELETE is a minor change of the TREE-DELETE 

procedure. After splicing out a node, it calls an auxiliary procedure RB-

DELETE-FIXUP that changes colors and performs rotation to restore 

the red-black properties. 

 

RB-DELETE (T, z) 

 

 1. if left [z] = nil [T] or right [z] = nil [T] 

 2. then y ← z 

 3. else y ← TREE-SUCCESSOR (z) 

 4. if left [y] ≠ nil [T] 

 5. then x ← left [y] 

 6. else x ← right [y] 

 7. p [x] ←  p [y] 

 8. if p[y] = nil [T] 

 9. then root [T]  ← x 

 10. else if y = left [p[y]] 

 11. then left [p[y]] ← x 

 12. else right [p[y]] ← x 

 13. if y≠ z 

 14. then key [z] ← key [y] 

 15. copy y's satellite data into z 

 16. if color [y] = BLACK 

 17. then RB-delete-FIXUP (T, x) 

 18. return y 
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RB-DELETE-FIXUP (T, x) 

 

 1. while x ≠ root [T] and color [x] = BLACK 

 2. do if x = left [p[x]] 

 3. then w ← right [p[x]] 

 4. if color [w] = RED 

 5. then color [w] ← BLACK        //Case 1 

 6. color [p[x]] ← RED            //Case 1 

 7. LEFT-ROTATE (T, p [x])        //Case 1 

 8. w ← right [p[x]]              //Case 1 

 9. If color [left [w]] = BLACK and color [right[w]] = BLACK 

 10. then color [w] ← RED         //Case 2 

 11. x ← p[x]                     //Case 2 

 12. else if color [right [w]] = BLACK 

 13. then color [left[w]] ← BLACK //Case 3 

 14. color [w] ← RED              //Case 3 

 15. RIGHT-ROTATE (T, w)          //Case 3 

 16. w ← right [p[x]]             //Case 3 

 17. color [w] ← color [p[x]]     //Case 4 

 18. color p[x] ← BLACK           //Case 4 

 19. color [right [w]] ← BLACK    //Case 4 

 20. LEFT-ROTATE (T, p [x])       //Case 4 

 21. x ← root [T]                 //Case 4 

 22. else (same as then clause with "right" and "left" exchanged) 

 23. color [x] ← BLACK 

 

Example: In a previous example, we found that the red-black tree that 

results from successively inserting the keys 41,38,31,12,19,8 into an 

initially empty tree. Now show the red-black trees that result from the 

successful deletion of the keys in the order 8, 12, 19,31,38,41. 

 

Solution: 
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Delete 38 

 
Delete 41 
No Tree. 

 

Self-Assessment Exercises 
 

1. When deleting a node from a red-black tree, what condition might 

happen? 

2. What is the maximum height of a Red-Black Tree with 14 nodes? 

(Hint: The black depth of each external node in this tree is 2.) 

Draw an example of a tree with 14 nodes that achieves this 

maximum height. 

3. Why can't a Red-Black tree have a black node with exactly one 

black child and no red child? 
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4.0 CONCLUSION 
 

A binary search tree, also called an ordered or sorted binary tree, is a 

rooted binary tree data structure whose internal nodes each store a key 

greater than all the keys in the node’s left subtree and less than those in 

its right subtree. On the other hand, a red–black tree is a kind of self-

balancing binary search tree. Each node stores an extra bit representing 

"color", used to ensure that the tree remains balanced during insertions 

and deletions 

 

5.0 SUMMARY 

 

In this unit, we considered the Binary Search Tree and looked at how 

such trees could be traversed while also examining the various methods 

of querying or accessing information from a Binary Search Tree. In 

addition, we looked at a special derivative of the Binary Search Tree 

called Red Black Trees, its properties and also some operations that 

could be carried out on Red Black Tress. 

 

6.0 TUTOR-MARKED ASSIGNMENTS 
 

1. What is the special property of red-black trees and what root 

should always be? 

a) a color which is either red or black and root should always be 

black color only 

2. The following numbers are inserted into an empty binary search 

tree in the given order: 10, 1, 3, 5, 15, 12, 16. What is the height of 

the binary search tree (the height is the maximum distance of a 

leaf node from the root)? 

3. What are the operations that could be performed in O(logn) time 

complexity by red-black tree? 

4. The preorder traversal sequence of a binary search tree is 30, 20, 

10, 15, 25, 23, 39, 35, 42. Give the postorder and inorder traversal 

sequence of the same tree. 

5. How can you save memory when storing color information in 

Red-Black tree? 

6. Which of the following traversals is sufficient to construct BST 

from given traversals 1) Inorder 2) Preorder 3) Postorder 
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UNIT 2  DYNAMIC PROGRAMMING 

 
1.0  Introduction          

2.0  Objectives          

3.0  Dynamic Programming       

 3.1  How Dynamic Programming Works   

 3.2  Approaches of Dynamic Programming    

  3.2.1  Top-down approach      

  3.2.2  Bottom-up approach      

 3.3  Divide-and-Conquer Method vs Dynamic Programmming

 3.4  Techniques for Solving Dynamic Programming Problems 

4.0  Conclusion          

5.0  Summary          

6.0  Tutor Marked Assignment        

7.0  Further Reading and Other Resources  

 

1.0 INTRODUCTION 
 

Dynamic programming is both a mathematical optimization method and 

a computer programming method. The method was developed by 

Richard Bellman in the 1950s and has found applications in numerous 

fields, from aerospace engineering to economics. We look at some of the 

techniques of Dynamic Programming in this unit as well as some 

benefits and applications of Dynamic Programming 

 

1.0  OBJECTIVES 

 
At the end of this unit, you should be able to 

 

 Explain better the concept of Dynamic Programming 

 Know the different methods for resolving a Dynamic 

Programming problem 

 Know when to use either of the methodologies learnt 

 Understand the different areas of applications of Dynamic 

Programming 

 Evaluate the basic differences between Dynamic Programming 

and the Divide-and-Conquer paradigm. 

 

3.0 Dynamic Programming 
 

Dynamic programming is a technique that breaks the problems into sub-

problems, and saves the result for future purposes so that we do not need 

to compute the result again. The sub-problems are optimized to optimize 

the overall solution is known as optimal substructure property. The main 
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use of dynamic programming is to solve optimization problems. Here, 

optimization problems mean that when we are trying to find out the 

minimum or the maximum solution of a problem. The dynamic 

programming guarantees to find the optimal solution of a problem if the 

solution exists. 

 

From the definition of dynamic programming, it is a technique for 

solving a complex problem by first breaking it into a collection of 

simpler sub-problems, solving each sub-problem just once, and then 

storing their solutions to avoid repetitive computations. 

Let's understand this approach through an example. 

 

Consider an example of the Fibonacci series. The following series is the 

Fibonacci series: 

 

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ,… 

 

The numbers in the above series are not randomly calculated. 

Mathematically, we could write each of the terms using the below 

formula: 

 

F(n) = F(n-1) + F(n-2), 

 

With the base values F(0) = 0, and F(1) = 1.  

To calculate the other numbers, we follow the above relationship. For 

example, F(2) is the sum f(0) and f(1), which is equal to 1. 

 

How can we calculate F(20)? 

The F(20) term will be calculated using the nth formula of the Fibonacci 

series. The below figure shows that how F(20) is calculated. 
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As we can observe in the above figure that F(20) is calculated as the 

sum of F(19) and F(18).  

 

In the dynamic programming approach, we try to divide the problem 

into the similar sub-problems. We are following this approach in the 

above case where F(20) into the similar sub-problems, i.e., F(19) and 

F(18). If we revisit the definition of dynamic programming that it says 

the similar sub-problem should not be computed more than once. Still, 

in the above case, the sub-problem is calculated twice. F(18) is 

calculated two times; similarly, F(17) is also calculated twice. However, 

this technique is quite useful as it solves the similar sub-problems, but 

we need to be cautious while storing the results because we are not 

particular about storing the result that we have computed once, as it can 

lead to a wastage of resources. 

 

In the above example, if we calculate the F(18) in the right subtree, then 

it leads to the tremendous usage of resources and decreases the overall 

performance. 

 

The solution to the above problem is to save the computed results in an 

array. First, we calculate F(16) and F(17) and save their values in an 

array. The F(18) is calculated by summing the values of F(17) and 

F(16), which are already saved in an array. The computed value of F(18) 

is saved in an array. The value of F(19) is calculated using the sum of 

F(18), and F(17), and their values are already saved in an array. The 

computed value of F(19) is stored in an array. The value of F(20) can be 

calculated by adding the values of F(19) and F(18), and the values of 

both F(19) and F(18) are stored in an array. The final computed value of 

F(20) is stored in an array. 

 

3.1 How Dynamic Programming Works 
 

The following are the steps that the dynamic programming follows: 

 

 It breaks down the complex problem into simpler sub-problems. 

 It finds the optimal solution to these sub-problems. 

 It stores the results of sub-problems (memoization). The process 

of storing the results of sub-problems is known as memorization. 

 It reuses them so that same sub-problem is calculated more than 

once. 

 Finally, calculate the result of the complex problem. 

 

The above five steps are the basic steps for dynamic programming. The 

dynamic programming is applicable that are having properties such as: 
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 Those problems that are having overlapping sub-problems and 

optimal substructures. Here, optimal substructure means that the 

solution of optimization problems can be obtained by simply 

combining the optimal solution of all the sub-problems. 

 

In the case of dynamic programming, the space complexity would be 

increased as we are storing the intermediate results, but the time 

complexity would be decreased. 

 

3.2 Approaches of dynamic programming 
 

There are two approaches to dynamic programming: 

 

 Top-down approach 

 Bottom-up approach 

 

3.2.1 Top-down approach 
 

The top-down approach follows the memorization technique, while 

bottom-up approach follows the tabulation method. Here memorization 

is equal to the sum of recursion and caching. Recursion means calling 

the function itself, while caching means storing the intermediate results. 

 

Advantages of Top-down approach 

 

 It is very easy to understand and implement. 

 It solves the sub-problems only when it is required. 

 It is easy to debug. 

 

Disadvantages of Top-down approach 

 

 It uses the recursion technique that occupies more memory in the 

call stack. Sometimes when the recursion is too deep, the stack 

overflow condition will occur. 

 It occupies more memory that degrades the overall performance. 

 

Let's understand dynamic programming through an example. 

 

int fib(int n)   

{   

   if(n<0)   

   error;   

 if(n==0)   

 return 0;   

 if(n==1)   
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return 1;   

sum = fib(n-1) + fib(n-2);   

}   

 

In the above code, we have used the recursive approach to find out the 

Fibonacci series. When the value of 'n' increases, the function calls will 

also increase, and computations will also increase. In this case, the time 

complexity increases exponentially, and it becomes O(2n). 

 

Another solution to this problem is to use the dynamic programming 

approach. Rather than generating the recursive tree again and again, we 

can reuse the previously calculated value. If we use the dynamic 

programming approach, then the time complexity would be O(n). 

When we apply the dynamic programming approach in the 

implementation of the Fibonacci series, then the code would look like: 

 

static int count = 0;    

int fib(int n)   

{   

if(memo[n]!= NULL)   

return memo[n];   

count++;   

if(n<0)   

error;   

if(n==0)   

return 0;   

if(n==1)   

return 1;   

sum = fib(n-1) + fib(n-2);   

memo[n] = sum;   

}   

In the above code, we have used the memorization technique in which 

we store the results in an array to reuse the values. This is also known as 

a top-down approach in which we move from the top and break the 

problem into sub-problems. 

 

3.2.2 Bottom-Up approach 
 

The bottom-up approach uses the tabulation technique to implement the 

dynamic programming approach. It solves the same kind of problems 

but it removes the recursion. If we remove the recursion, there is no 

stack overflow issue and no overhead of the recursive functions. In this 

tabulation technique, we solve the problems and store the results in a 

matrix. 
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The bottom-up is the approach used to avoid the recursion, thus saving 

the memory space. The bottom-up is an algorithm that starts from the 

beginning, whereas the recursive algorithm starts from the end and 

works backward. In the bottom-up approach, we start from the base case 

to find the answer for the end. As we know, the base cases in the 

Fibonacci series are 0 and 1. Since the bottom approach starts from the 

base cases, so we will start from 0 and 1. 

 

Key points of Bottom-up approach 

 

 We solve all the smaller sub-problems that will be needed to 

solve the larger sub-problems then move to the larger problems 

using smaller sub-problems. 

 We use for loop to iterate over the sub-problems. 

 The bottom-up approach is also known as the tabulation or table 

filling method. 

 

Let's understand through an example. 

 

Suppose we have an array that has 0 and 1 values at a[0] and a[1] 

positions, respectively shown as below: 

 
 

Since the bottom-up approach starts from the lower values, so the values 

at a[0] and a[1] are added to find the value of a[2] shown as below: 

 
 

The value of a[3] will be calculated by adding a[1] and a[2], and it 

becomes 2 shown as below: 

 
 

The value of a[4] will be calculated by adding a[2] and a[3], and it 

becomes 3 shown as below: 
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The value of a[5] will be calculated by adding the values of a[4] and 

a[3], and it becomes 5 shown as below: 

 
 

The code for implementing the Fibonacci series using the bottom-up 

approach is given below: 

int fib(int n)   

{   

    int A[];   

    A[0] = 0, A[1] = 1;   

    for( i=2; i<=n; i++)   

    {   

         A[i] = A[i-1] + A[i-2]   

    }   

    return A[n];   

}   

In the above code, base cases are 0 and 1 and then we have used for loop 

to find other values of Fibonacci series. 

 

Let's explain better using the following diagrammatic representation: 
Initially, the first two values, i.e., 0 and 1 can be represented as: 

 
 

When i=2 then the values 0 and 1 are added shown as below: 

 
When i=3 then the values 1and 1 are added shown as below: 
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When i=4 then the values 2 and 1 are added shown as below: 

 
When i=5, then the values 3 and 2 are added shown as below: 

 
In the above case, we are starting from the bottom and reaching to the 

top 

  



CIT 310          MODULE 3 

 

139 

 

 

3.3 Divide and Conquer Method versus Dynamic Programming: 

 

We highlight some of the differences between Divide-and-Conquer 

approach and Dynamic Programming. 

 

Divide and Conquer Method Dynamic Programming 

1.It deals (involves) three steps at 

each level of recursion: 

Divide the problem into a number of 

sub-problems. 

Conquer the sub-problems by 

solving them recursively. 

Combine the solution to the sub-

problems into the solution for 

original sub-problems. 

1.It involves the sequence of four steps: 

 Characterize the structure of 

optimal solutions. 

 Recursively defines the 

values of optimal solutions. 

 Compute the value of 

optimal solutions in a 

Bottom-up minimum. 

 Construct an Optimal 

Solution from computed 

information. 

2. It is Recursive. 2. It is non Recursive. 

3. It does more work on sub-

problems and hence has more time 

consumption. 

3. It solves sub-problems only once and 

then stores in the table. 

4. It is a top-down approach. 4. It is a Bottom-up approach. 

5. In this sub-problems are 

independent of each other. 

5. In this sub-problems are 

interdependent. 

6. For example: Merge Sort & 

Binary Search etc. 

6. For example: Matrix Multiplication. 

 

3.4 Techniques for Solving Dynamic Programming Problems 
 

To solve any dynamic programming problem, we can use the FAST 

method. 

 

Here, FAST stands for: 

 

 'F' stands for Find the recursive solution: Whenever we find 

any DP problem, we have to find the recursive solution. 
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 'A' stands for Analyse the solution: Once we find the recursive 

solution then we have to analyse the solution and look for the 

overlapping problems. 

 'S' stands for Save the results for future use: Once we find the 

overlapping problems, we store the solutions of these sub-

problems. To store the solutions, we use the n-dimensional array 

for caching purpose. 

 

The above three steps are used for the top-down approach if we use 'F', 

'A' and 'S', which means that we are achieving the Top-down approach 

and since it is not purely because we are using the recursive technique. 

 

 'T' stands for Tweak the solution to make it more powerful by 

eliminating recursion overhead which is known as a Bottom-up 

approach. Here we remove the recursion technique and use the 

iterative approach to achieve the same results, so it's a pure 

approach. Recursion is always an overhead as there are chances 

of getting a stack overflow error, so we should use the bottom-up 

approach to avoid this problem. 

 

Above are the four steps to solve a complex problem. 

Problem Statement: Write an efficient program to find the nth Fibonacci 

number? 
 

As we know that Fibonacci series looks like: 

0, 1, 1, 2, 3, 5, 8, 13, 21,... 

First, we find the recursive solution, 

 
The below is the code of the above recursive solution: 

Fib(n)   

{   

    if(n<2)   

    return n;   

   return fib(n-1) + fib(n-2);   

}   

The above recursive solution is also the solution for the above problem 

but the time complexity in this case is O(2n). So, dynamic programming 

is used to reduce the time complexity from the exponential time to the 

linear time. 
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Second step is to Analyse the solution 

Suppose we want to calculate the fib(4). 

 

Fib(4)= fib(3) + fib(2) 

Fib(3) = fib(2) + fib(1) 

Fib(2) = fib(1) + fib(0) 

 

As we can observe in the above figure that fib(2) is calculated two times 

while fib(1) is calculated three times. So, here overlapping problem 

occurs. In this step, we have analysed the solution. 

 

Third step is to save the result. 

 

The process of saving the result is known as memoization. In this step, 

we will follow the same approach, i.e., recursive approach but with a 

small different that we have used the cache to store the solutions so that 

it can be re-used whenever required. 

 

Below is the code of memorization. 

 

Fib(n)   

{   

     int cache = new int[n+1];   

     if(n<2)   

     return n;   

    if(cache[n]!= 0)   

    return cache[n];   

  return cache[n] =  fib(n-1) + fib(n-2);    

}   

 

In the above code, we have used a cache array of size n+1. If cache[n] is 

not equal to zero then we return the result from the cache else we will 

calculate the value of cache and then return the cache. The technique 

that we have used here is top-down approach as it follows the recursive 

approach. Here, we always look for the cache so cache will be populated 

on the demand basis. Suppose we want to calculate the fib(4), first we 

look into cache, and if the value is not in the cache then the value is 

calculated and stored in the cache. 
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Visual representation of the above code is: 

 
 

Fourth step is to Tweak the solution 

 

In this step, we will remove the recursion completely and make it an 

iterative approach. So, this technique is known as a bottom-up approach. 

Fib(n)   

{   

    int cache[] = new int[n+1];   

    // base cases   

    cache[0] = 0;   

    cache[1] = 1;   

    for(int i=2; i<=n; i++)   

    {   

      cache[i] = cache[i-1] + cache[i-2];   

    }   

return cache[n];   

}   

 

In the above code, we have followed the bottom-up approach. We have 

declared a cache array of size n+1. The base cases are cache[0] and 

cache[1] with their values 0 and 1 respectively. In the above code, we 

have removed the recursion completely. We have used an iterative 

approach. We have defined a for loop in which we populate the cache 

with the values from the index i=2 to n, and from the cache, we will 

return the result. Suppose we want to calculate f(4), first we will 

calculate f(2), then we will calculate f(3) and finally, we we calculate 

the value of f(4). Here we are going from down to up so this approach is 

known as a bottom-up approach. 
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We can visualize this approach diagrammatically: 

 
As we can observe in the above figure that we are populating the cache 

from bottom to up so it is known as bottom-up approach. This approach 

is much more efficient than the previous one as it is not using recursion 

but both the approaches have the same time and space complexity, i.e., 

O(n). 

 

In this case, we have used the FAST method to obtain the optimal 

solution. The above is the optimal solution that we have got so far but 

this is not the purely an optimal solution. 

 

Efficient solution: 

 

fib(n)   

{   

    int first=0, second=1, sum=0;   

    if(n<2)   

   {   

      return 0;   

 }   

for(int i =2; i<=n; i++)   

{   

    sum = first + second;   

    first = second;   

    second = sum;   

}   

return sum;   

}   
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The above solution is the efficient solution as we do not use the cache. 

The Following are the top 10 problems that can easily be solved using 

Dynamic programming: 

 

a. Longest Common Subsequence. 

b. Shortest Common Supersequence. 

c. Longest Increasing Subsequence problem. 

d. The Levenshtein distance (Edit distance) problem. 

e. Matrix Chain Multiplication. 

f. 0–1 Knapsack problem. 

g. Partition problem. 

h. Rod Cutting. 

 

Self-Assessment Exercises 

 

1. When do we consider using the dynamic programming approach? 

2. Four matrices M1, M2, M3 and M4 of dimensions pxq, qxr, rxs 

and sxt respectively can be multiplied is several ways with 

different number of total scalar multiplications. For example, 

when multiplied as ((M1 X M2) X (M3 X M4)), the total number 

of multiplications is pqr + rst + prt. When multiplied as (((M1 X 

M2) X M3) X M4), the total number of scalar multiplications is 

pqr + prs + pst. If p = 10, q = 100, r = 20, s = 5 and t = 80, then 

the number of scalar multiplications needed is? 

3. Consider two strings A = "qpqrr" and B = "pqprqrp". Let x be the 

length of the longest common subsequence (not necessarily 

contiguous) between A and B and let y be the number of such 

longest common subsequences between A and B. Then x + 10y 

=? 

4.  In dynamic programming, the technique of storing the previously 

calculated values is called? 

5. What happens when a top-down approach of dynamic 

programming is applied to a problem? 

 

4.0 CONCLUSION 

 

Dynamic programming is nothing but recursion with memoization i.e. 

calculating and storing values that can be later accessed to solve sub-

problems that occur again, hence making your code faster and reducing 

the time complexity (computing CPU cycles are reduced). Dynamic 

programming is used where we have problems, which can be divided 

into similar sub-problems, so that their results can be re-used. Mostly, 

these algorithms are used for optimization. Before solving the in-hand 

sub-problem, dynamic algorithm will try to examine the results of the 

previously solved sub-problems. 
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5.0 SUMMARY 
 

In this Unit, we considered a very important algorithm design paradigm 

known as Dynamic programming and compared it with another useful 

method known as Divide-and-Conquer technique. Several ways for 

resolving the Dynamic Programming problem were considered. 

 

6.0 TUTOR MARKED ASSIGNMENTS 

 
1. For each of the following problems, explain whether they could 

be solved or not using dynamic programming? 

  A : Mergesort B : Binary search   

  C : Longest common  subsequence D : Quicksort 

2. Give at least three properties of a dynamic programming problem 

3. You are given infinite coins of denominations 1, 3, 4. What is the 

total number of ways in which a sum of 7 can be achieved using 

these coins if the order of the coins is not important? 

4. What is the main difference between the Top-down and Bottom-

up approach for solving Dynamic Programming problems? 
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UNIT 3  COMPUTATIONAL COMPLEXITY 

 
1.0  Introduction          

2.0  Objectives          

3.0  Computational Complexity Theory     

 3.0.1 Notations Used       

 3.1  Deterministic Algorithms     

 3.1.1  Facts about Deterministic Algorithms   

 3.2  Non Deterministic Algorithms     

  3.2.1  What makes and Algorithm Non-Deterministic?  

 3.2.2  Facts about Non-Deterministic Algorithms  

 3.2.3 Deterministic versus Non-Deterministic Algorithms 

 3.3 NP Problems        

  3.3.1 Definition of P Problems    

 3.4 Decision-Based Problems      

  3.4.1 NP-Hard Problems     

  3.4.2 NP-Complete Problems    

  3.4.3 Representation of NP Classes   

 3.5 Tractable and Intractable Problems   

  3.5.1 Tractable Problems      

  3.5.2 Intractable Problems     

  3.5.3 Is P = NP?       

4.0  Conclusion          

5.0  Summary          

6.0  Tutor Marked Assignment        

7.0  Further Reading and Other Resources   

 

1.0  INTRODUCTION 
 

In general, the amount of resources (or cost) that an algorithm requires 

in order to return the expected result is called computational complexity 

or just complexity. ... The complexity of an algorithm can be measured 

in terms of time complexity and/or space complexity. 

 

Computational complexity theory focuses on classifying computational 

problems according to their resource usage, and relating these classes to 

each other. A computational problem is a task solved by a computer. A 

computation problem is solvable by mechanical application of 

mathematical steps, such as an algorithm. 

 

A problem is regarded as inherently difficult if its solution requires 

significant resources, whatever the algorithm used. 

 

We shall be looking at the famous P (Polynomial Time) and NP (Non 

Polynomial Time) as well as NP-complete problems. 
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2.0  OBJECTIVES 

 
By the end of this unit, you should be able to: 

 

 Know the meaning and focus of Computational Complexity 

theory 

 Identify the different cases of P and NP problems 

 Differentiate between Tractable and Intractable problems 

 Know what we mean by Deterministic and Non-Deterministic 

problems 

 Understand the differences between Deterministic and Non 

Deterministic algorithms 

 

3.0 Computational Complexity Theory 
 

An algorithm’s performance is always important when you try to solve a 

problem. An algorithm won’t do you much good if it takes too long or 

requires too much memory or other resources to actually run on a 

computer. 

 

Computational complexity theory, or just complexity theory, is the study 

of the difficulty of computational problems. Rather than focusing on 

specific algorithms, complexity theory focuses on problems. 

 

For example, the mergesort algorithm can sort a list of N numbers in 

O(N log N) time. Complexity theory asks what you can learn about the 

task of sorting in general, not what you can learn about a specific 

algorithm. It turns out that you can show that any sorting algorithm that 

sorts by using comparisons must use at least N × log(N) time in the 

worst case. 

 

Complexity theory is a large and difficult topic, so there’s no room here 

to cover it fully. However, every programmer who studies algorithms 

should know at least something about complexity theory in general and 

the two sets P and NP in particular. This module introduces complexity 

theory and describes what these important classes of problems are. 

 

3.0.1 Notations Used 
 

The Big O notation describes how an algorithm’s worst-case 

performance increases as the problem’s size increases. 

 

For most purposes, that definition is good enough to be useful, but in 

complexity theory Big O notation has a more technical definition.  

If an algorithm’s run time is f (N) , then the algorithm has Big O 

performance of g(N) if f(N) < g(N) x k for some constant k and for N 
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large enough. In other words, the function g(N) is an upper bound for 

the actual run-time function f(N). . 

Two other notations similar to Big O notations are sometimes useful 

when discussing algorithmic complexity.  

 

Big Omega notation, written Ω(g(N)), means that the run-time function 

is bounded below by the function g(N) . For example, as explained a 

moment ago, N log(N) is a lower bound for algorithms that sort by using 

comparisons, so those algorithms are Ω(N logN) . 

 

Big Theta notation, written ϴ(g(N)) , means that the run-time function 

is bounded both above and below by the function g(N) . For example, 

the mergesort algorithm’s run time is bounded above by O(N log N), 

and the run time of any algorithm that sorts by using comparisons is 

bounded below by Ω(N log N), so mergesort has performance ϴ(N log 

N). 

 

In summary,  

 

Big O notation gives an upper bound,  

Big Omega gives a lower bound, and  

Big Theta gives an upper and lower bound. 

 

Some algorithms however, have different upper and lower bounds.  

For example, like all algorithms that sort by using comparisons, 

quicksort has a lower bound of Ω(N log N).   

 

In the best and expected cases, quicksort’s performance actually is Ω(N 

log N). In the worst case, however, quicksort’s performance is O(N2). 

The algorithm’s lower and upper bounds are different, so no function 

gives quicksort a Big Theta notation.  

 

In practice, however, quicksort is often faster than algorithms such as 

mergesort that are tightly bounded by ϴ(N log N), so it is still a popular 

algorithm. 

 

1.0 Deterministic Algorithms 
 

A Deterministic algorithm is an algorithm which, given a particular 

input will always produce the same output, with the underlying machine 

always passing through the same sequence of states.   

 

In other words, Deterministic algorithm will always come up with the 

same result given the same inputs. 
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Deterministic algorithms are by far the most studied and familiar kind of 

algorithm as well as one of the most practical, since they can be run on 

real machines efficiently.  

 

Formally, a deterministic algorithm computes a mathematics function; a 

function has a unique value for any input in its domain, and the 

algorithm is a process that produces this particular value as output. 

 

Deterministic algorithms can be defined in terms of a state machine: 

a state describes what a machine is doing at a particular instant in time. 

State machines pass in a discrete manner from one state to another. Just 

after we enter the input, the machine is in its initial state or start state. If 

the machine is deterministic, this means that from this point onwards, its 

current state determines what its next state will be; its course through the 

set of states is predetermined. Note that a machine can be deterministic 

and still never stop or finish, and therefore fail to deliver a result. 

Examples of particular abstract machines which are deterministic  

 

include the deterministic Turing machine and deterministic finite 

automat 

 

3.1.1 Facts about Deterministic Algorithms 
 

i. Deterministic algorithm is the algorithm which, given a particular 

input will always produce the same output, with the underlying 

machine always passing through the same sequence of states.   

ii. In deterministic algorithm the path of execution for algorithm is 

same in every execution. 

iii. On the basis of execution and outcome in case of Deterministic 

algorithm, they are also classified as reliable algorithms as for a 

particular input instructions the machine will give always the 

same output. 

iv. In Deterministic Algorithms execution, the target machine 

executes the same instruction and results same outcome which is 

not dependent on the way or process in which instruction get 

executed. 

v. As outcome is known and is consistent on different executions so 

deterministic algorithm takes polynomial time for their execution. 

 

3.2 Non-deterministic Algorithms 
 

A nondeterministic algorithm is an algorithm that, even for same input, 

can exhibit different behaviors on different runs.  

In other words, it is an algorithm in which the result of every algorithm 

is not uniquely defined and result could be random. 
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An algorithm that solves a problem in nondeterministic polynomial time 

can run in polynomial time or exponential time depending on the 

choices it makes during. The nondeterministic algorithms are often used 

to find an approximation to a solution, when the exact solution would be 

too costly using a deterministic one. 

 

A nondeterministic algorithm is different from its more familiar 

deterministic counterpart in its ability to arrive at outcomes using 

various routes. If a deterministic algorithm represents a single path from 

an input to an outcome, a nondeterministic algorithm represents a single 

path stemming into many paths, some of which may arrive at the same 

output and some of which may arrive at unique outputs.  

 

3.2.1 What Makes An Algorithm Non-deterministic? 
 

A variety of factors can cause an algorithm to behave in a way which is 

not deterministic, or non-deterministic: 

 

i. If it uses external state other than the input, such as user input, a 

global variable, a hardware timer value, a random value, or stored 

disk data. 

ii. If it operates in a way that is timing-sensitive, for example if it 

has multiple processors writing to the same data at the same time. 

In this case, the precise order in which each processor writes its 

data will affect the result. 

iii. If a hardware error causes its state to change in an unexpected 

way. 

 

3.2.2 Facts About Non-deterministic Algorithms 
 

i. A Non-deterministic algorithm is the algorithms in which the 

result of every algorithm is not uniquely defined and result could 

be random. 

ii. In a Non-Deterministic algorithm the path of execution is not 

same for algorithm in every execution and could take any random 

path for its execution. 

iii. Non deterministic algorithms are classified as non-reliable 

algorithms for a particular input the machine will give different 

output on different executions. 

iv. In Non-Deterministic Algorithms, the machine executing each 

operation is allowed to choose any one of these outcomes 

subjects to a determination condition to be defined later. 

v. As outcome is not known and is non-consistent on different 

executions so Non-Deterministic algorithm could not get 

executed in polynomial time. 
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3.2.3 Deterministic versus Non-deterministic Algorithms 
 

The following table gives some vital differences between a 

Deterministic and a Non Deterministic algorithm. 

 

 

BASIS OF 

COMPARISON 

DETERMINISTIC 

ALGORITHM 

NON-DETERMINISTIC 

ALGORITHM 

Description. 

Deterministic algorithm is the 

algorithm which, given a 

particular input will always 

produce the same output, with the 

underlying machine always 

passing through the same 

sequence of states.     

Non-deterministic algorithm is 

the algorithms in which the 

result of every algorithm is not 

uniquely defined and result 

could be random.   

Path Of 

Execution 

In deterministic algorithm the 

path of execution for algorithm is 

same in every execution.   

In Non-Deterministic algorithm 

the path of execution is not 

same for algorithm in every 

execution and could take any 

random path for its execution.   

Basis Of 

Comparison 

On the basis of execution and 

outcome in case of Deterministic 

algorithm, they are also classified 

as reliable algorithms as for a 

particular input instructions the 

machine will give always the 

same output.   

Non deterministic algorithms 

are classified as non-reliable 

algorithms for a particular input 

the machine will give different 

output on different executions.   

Operation 

In Deterministic Algorithms 

execution, the target machine 

executes the same instruction and 

results same outcome which is not 

dependent on the way or process 

in which instruction get 

executed.   

In Non-Deterministic 

Algorithms, the machine 

executing each operation is 

allowed to choose any one of 

these outcomes subjects to a 

determination condition to be 

defined later.   

Output 

As outcome is known and is 

consistent on different executions 

so deterministic algorithm takes 

polynomial time for their 

execution.   

As outcome is not known and is 

non-consistent on different 

executions so Non-

Deterministic algorithm could 

not get executed in polynomial 

time.   
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3.3 NP (Non-Deterministic Polynomial) Problem 

 

The set of all decision-based problems came into the division of NP 

Problems who can't be solved or produced an output within polynomial 

time but verified in the polynomial time. NP class contains P class as a 

subset. NP problems are very hard to solve. 

Note: The term “NP” does not mean “Not Polynomial”. Originally, the 

term meant “Non-Deterministic Polynomial. It means according to the 

one input number of output will be produced. 

 

3.3.1 Definition of P Problems 
 

Definition of P class Problem: - The set of decision-based problems 

come into the division of P Problems who can be solved or produced an 

output within polynomial time. P problems being easy to solve 

 

Definition of Polynomial time: - If we produce an output according to 

the given input within a specific amount of time such as within a minute, 

hours. This is known as Polynomial time. 

 

Definition of Non-Polynomial time: - If we produce an output 

according to the given input but there are no time constraints is known 

as Non-Polynomial time. But yes output will produce but time is not 

fixed yet. 

 

3.2 Decision Based Problems  
 

A problem is called a decision problem if its output is a simple "yes" or 

"no" (or you may need to represent it as true/false, 0/1, accept/reject.) 

We will phrase many optimization problems as decision problems.  

For example, Greedy method, D.P., given a graph G= (V, E) if there 

exists any Hamiltonian cycle. 

 

3.4.1 NP-hard Problems 

 

A problem is NP-hard if an algorithm for solving it can be translated 

into one for solving any NP- problem (nondeterministic polynomial 

time) problem. NP-hard therefore means "at least as hard as any NP-

problem," although it might, in fact, be harder. 

 

A problem must satisfy the following points to be classified as NP-hard 

 

1. If we can solve this problem in polynomial time, then we can 

solve all NP problems in polynomial time 
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2. If you convert the issue into one form to another form within the 

polynomial time 

 

3.4.2 NP-complete Problems:  
 

A problem is NP-complete when: it is a problem for which the 

correctness of each solution can be verified quickly and a brute-force 

search algorithm can find a solution by trying all possible solutions. 

A problem is in the class NP-complete if it is in NP and is as hard as any 

problem in NP. A problem is NP-hard if all problems in NP are 

polynomial time reducible to it, even though it may not be in NP itself. 

These problems are called NP-complete. 

 

Many significant computer-science problems belong to this class—e.g., 

the traveling salesman problem, satisfiability problems, and graph-

covering problems. 

 

3.4.3  Pictorial representation of all NP classes 
 

 
 

3.5 Tractable and Intractable Problems 
 

3.5.1 Tractable Problem:  

 

A problem that is solvable by a polynomial-time algorithm. The upper 

bound is polynomial. 

Here are examples of tractable problems (ones with known polynomial-

time algorithms): 

– Searching an unordered list 

– Searching an ordered list 

– Sorting a list 

– Multiplication of integers (even though there’s a gap) 
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– Finding a minimum spanning tree in a graph (even though there’s a 

gap) 

 

 

3.5.2 Intractable Problem:  
 

A problem that cannot be solved by a polynomial-time algorithm. The 

lower bound is exponential. 

 

From a computational complexity stance, intractable problems are 

problems for which there exist no efficient algorithms to solve them. 

Most intractable problems have an algorithm that provides a solution, 

and that algorithm is the brute-force search. 

 

This algorithm, however, does not provide an efficient solution and is, 

therefore, not feasible for computation with anything more than the 

smallest input. 

 

Examples 

 

Towers of Hanoi: we can prove that any algorithm that solves this 

problem must have a worst-case running time that is at least 2n − 1. 

* List all permutations (all possible orderings) of n numbers. 

 

3.5.3 IS P = NP? 

 

The P versus NP problem is a major unsolved problem in computer 

science. It asks whether every problem whose solution can be quickly 

verified can also be solved quickly. 

 

An answer to the P versus NP question would determine whether 

problems that can be verified in polynomial time can also be solved in 

polynomial time.  

 

If it turns out that P ≠ NP, which is widely believed, it would mean that 

there are problems in NP that are harder to compute than to verify: they 

could not be solved in polynomial time, but the answer could be verified 

in polynomial time. 

 

If P=NP, then all of the NP problems can be solved deterministically in 

Polynomial time. 

 

The Clay Mathematics Institute has offered a $1,000,000 prize to 

anyone who proves or disproves P = NP. 
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Self Assessment Exercise 

 

1.  Differentiate between a P problem and an NP problem 

2. What are NP-hard problems? 

3. Give three examples of Tractable problems 

4. What are the features of Deterministic problems? 

 

4.0 CONCLUSION 

 

Computational complexity theory focuses on classifying computational 

problems according to their resource usage, and relating these classes to 

each other. A computational problem is a task solved by a computer. A 

computation problem is solvable by mechanical application of 

mathematical steps, such as an algorithm. Several areas considered in 

this Unit were P and NP problems, Deterministic versus Non 

Deterministic problems as well as Tractable versus Intractable problems. 

 

5.0  SUMMARY 
 

In this Unit we looked at the meaning and nature of Computational 

Complexity theory and also examined the notion of Deterministic as 

well as Non Deterministic algorithms. Several examples of the 

algorithms were listed and we also treated P, NP, NP-hard and NP-

complete problems while also mentioning Tractable and Intractable 

problems. On a final note, we also looked at the unsolvable problem of P 

= NP.  

 

6.0  TUTOR MARKED ASSIGNMENT 

 
1. What would be the implication of having P = NP? 

2. What again would happen if P≠NP? 

3. What makes exponential time and algorithms with factorials 

more difficult to solve? 

4. How many stages of procedure does a Non deterministic 

algorithm consist of? 

 

7.0 FURTHER READING AND OTHER RESOURCES 
 

Baase, S. and Van Gelder, A. (2020). Computer Algorithms: 

 Introduction to Design and Analysis. Addison-Wesley. ISBN: 

 0201612445, 9780201612448 

 

Bhasin, H. (2015). Algorithms: Design and Analysis. Oxford University 

 Press. ISBN: 0199456666, 9780199456666 
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Sen, S. and Kumar, A, (2019). Design and Analysis of Algorithms. A 

 Contemporary Perspective. Cambridge University Press. ISBN: 

 1108496822, 9781108496827 

 

Vermani, L. R. and Vermani, S.(2019). An Elementary Approach To 

 Design And Analysis Of Algorithms. World Scientific. ISBN: 

 178634677X, 9781786346773 
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UNIT 4  APPROXIMATE ALGORITHMS I 
 

1.0  Introduction         

2.0  Objectives          

3.0  Pascal Programming Basics      

 3.1  Character Set and Identifiers     

 3.2  Numbers and Strings       

3.3  Variable, Constant and Assignment Statements   

3.4  Data Types        

3.5  Reserved Words       

3.6  Standard Functions and Operator Precedence   

4.0  Conclusion         

5.0  Summary         

6.0  Tutor Marked Assignment       

7.0  Further Reading and Other Resources  

 

1.0 INTRODUCTION 

 

In computer science and operations research, approximation algorithms 

are efficient algorithms that find approximate solutions to optimization 

problems (in particular NP-hard problems) with provable guarantees on 

the distance of the returned solution to the optimal one. Approximation 

algorithms are typically used when finding an optimal solution is 

intractable, but can also be used in some situations where a near-optimal 

solution can be found quickly and an exact solution is not needed. 

 

2.0 OBJECTIVES 
 

At the end of this Unit, you should be able to; 
 

 Know the meaning of an Approximate algorithm 

 Understand the performance ratio of approximate algorithms 

 Learn more about the Vertex Cover and Traveling Salesman 

problems 

 Understand the concept of Minimal Spanning Trees 

 Understand more of the concept of Performance Ratios 

 

3.0 Approximate Algorithms 
 

An Approximate Algorithm is a way of approach NP-

COMPLETENESS for the optimization problem. This technique does 

not guarantee the best solution. The goal of an approximation algorithm 

is to come as close as possible to the optimum value in a reasonable 

amount of time which is at the most polynomial time. Such algorithms 

are called approximation algorithm or heuristic algorithm. 
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 For the traveling salesperson problem, the optimization problem 

is to find the shortest cycle, and the approximation problem is to 

find a short cycle. 

 For the vertex cover problem, the optimization problem is to find 

the vertex cover with fewest vertices, and the approximation 

problem is to find the vertex cover with few vertices. 

 

3.0.1 Performance Ratios 
 

Suppose we work on an optimization problem where every solution 

carries a cost. An Approximate Algorithm returns a legal solution, but 

the cost of that legal solution may not be optimal. 

 

For Example, suppose we are considering for a minimum size vertex-

cover (VC). An approximate algorithm returns a VC for us, but the size 

(cost) may not be minimized. 

 

Another Example is we are considering for a maximum size 

Independent set (IS). An approximate Algorithm returns an IS for us, 

but the size (cost) may not be maximum. Let C be the cost of the 

solution returned by an approximate algorithm, and C* is the cost of the 

optimal solution. 

 

We say the approximate algorithm has an approximate ratio P (n) for an 

input size n, where 

 

 
 

Intuitively, the approximation ratio measures how bad the approximate 

solution is distinguished with the optimal solution. A large (small) 

approximation ratio measures the solution is much worse than (more or 

less the same as) an optimal solution. 

 

Observe that P (n) is always ≥ 1, if the ratio does not depend on n, we 

may write P. Therefore, a 1-approximation algorithm gives an optimal 

solution. Some problems have polynomial-time approximation 

algorithm with small constant approximate ratios, while others have 

best-known polynomial time approximation algorithms whose 

approximate ratios grow with n. 



CIT 310          MODULE 3 

 

159 

 

3.1 Vertex Cover 

 

A Vertex Cover of a graph G is a set of vertices such that each edge in G 

is incident to at least one of these vertices. 

The decision vertex-cover problem was proven NPC. Now, we want to 

solve the optimal version of the vertex cover problem, i.e., we want to 

find a minimum size vertex cover of a given graph. We call such vertex 

cover an optimal vertex cover C*. 

 

 
 

An approximate algorithm for vertex cover: 

Approx-Vertex-Cover (G = (V, E))   

{              

       C = empty-set;   

    E'= E;   

    While E' is not empty do   

      {   

    Let (u, v) be any edge in E': (*)   

    Add u and v to C;   

    Remove from E' all edges incident to   

       u or v;   

      }   

    Return C;   

}   

 

The idea is to take an edge (u, v) one by one, put both vertices to C, and 

remove all the edges incident to u or v. We carry on until all edges have 

been removed. C is a VC. But how good is C? 

 
VC = {b, c, d, e, f, g} 
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3.2 Traveling-salesman Problem 
 

In the traveling salesman Problem, a salesman must visits n cities. We 

can say that salesman wishes to make a tour or Hamiltonian cycle, 

visiting each city exactly once and finishing at the city he starts from. 

There is a non-negative cost c (i, j) to travel from the city i to city j. The 

goal is to find a tour of minimum cost. We assume that every two cities 

are connected. Such problems are called Traveling-salesman problem 

(TSP). 

 

We can model the cities as a complete graph of n vertices, where each 

vertex represents a city. 

 

It can be shown that TSP is NPC. 

 

If we assume the cost function c satisfies the triangle inequality, then we 

can use the following approximate algorithm. 

 

Triangle inequality 

Let u, v, w be any three vertices, we have 

 

 
 

One important observation to develop an approximate solution is if we 

remove an edge from H*, the tour becomes a spanning tree. 

Approx-TSP (G= (V, E))    

{   

  1. Compute a MST T of G;   

  2. Select any vertex r is the root of the tree;   

  3. Let L be the list of vertices visited in a preorder tree walk of 

T;   

  4. Return the Hamiltonian cycle H that visits the vertices in the 

order L;   

}   

 

The Traveling-salesman Problem 
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Intuitively, Approx-TSP first makes a full walk of MST T, which visits 

each edge exactly two times. To create a Hamiltonian cycle from the full 

walk, it bypasses some vertices (which corresponds to making a 

shortcut) 

 

3.3 Minimum Spanning Tree 
 

Before knowing about the minimum spanning tree, we should know 

about the spanning tree. 

 

To understand the concept of spanning tree, consider the graph below: 

 
 

The above graph can be represented as G(V, E), where 'V' is the number 

of vertices, and 'E' is the number of edges. The spanning tree of the 

above graph would be represented as G`(V`, E`). In this case, V` = V 

means that the number of vertices in the spanning tree would be the 

same as the number of vertices in the graph, but the number of edges 

would be different. The number of edges in the spanning tree is the 
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subset of the number of edges in the original graph. Therefore, the 

number of edges can be written as: 

 

E` € E 

 

It can also be written as: 

 

E` = |V| - 1 

 

Two conditions exist in the spanning tree, which is as follows: 

 

 The number of vertices in the spanning tree would be the same as 

the number of vertices in the original graph. 

 V` = V 

 The number of edges in the spanning tree would be equal to the 

number of edges minus 1. 

 E` = |V| - 1 

 The spanning tree should not contain any cycle. 

 The spanning tree should not be disconnected. 

 

Note: A graph can have more than one spanning tree. 

 

Consider the graph below: 

The above graph contains 5 vertices. As we know, the vertices in the 

spanning tree would be the same as the graph; therefore, V` is equal 5. 

The number of edges in the spanning tree would be equal to (5 - 1), i.e., 

4. The following are the possible spanning trees: 
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3.3.1 What is a minimum spanning tree? 

 

The minimum spanning tree is a spanning tree whose sum of the edges 

is minimum. Consider the below graph that contains the edge weight: 

The following are the spanning trees that we can make from the above 

graph. 

i. The first spanning tree is a tree in which we have removed the 

edge between the vertices 1 and 5 shown as below: 

The sum of the edges of the above tree is (1 + 4 + 5 + 2): 12 

ii. The second spanning tree is a tree in which we have removed 

the edge between the vertices 1 and 2 shown as below: 

The sum of the edges of the above tree is (3 + 2 + 5 + 4) : 14 

iii. The third spanning tree is a tree in which we have removed 

the edge between the vertices 2 and 3 shown as below: 

The sum of the edges of the above tree is (1 + 3 + 2 + 5) : 11 

iv. The fourth spanning tree is a tree in which we have removed 

the edge between the vertices 3 and 4 shown as below: 

The sum of the edges of the above tree is (1 + 3 + 2 + 4) : 10. 

The edge cost 10 is minimum so it is a minimum spanning 

tree. 

 

3.3.2 General properties of minimum spanning tree: 
 

i. If we remove any edge from the spanning tree, then it becomes 

disconnected. Therefore, we cannot remove any edge from the 

spanning tree. 

ii. If we add an edge to the spanning tree then it creates a loop. 

Therefore, we cannot add any edge to the spanning tree. 

iii. In a graph, each edge has a distinct weight, then there exists only 

a single and unique minimum spanning tree. If the edge weight is 

not distinct, then there can be more than one minimum spanning 

tree. 

iv. A complete undirected graph can have an nn-2 number of 

spanning trees. 

v. Every connected and undirected graph contains atleast one 

spanning tree. 

vi. The disconnected graph does not have any spanning tree. 

vii. In a complete graph, we can remove maximum (e-n+1) edges to 

construct a spanning tree. 

 

Let us understand the last property through an example. 

Consider the complete graph which is given below: 
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The number of spanning trees that can be made from the above complete 

graph equals to nn-2 = 44-2 = 16. 

 

Therefore, 16 spanning trees can be created from the above graph. 

The maximum number of edges that can be removed to construct a 

spanning tree equals to e-n+1 = 6 - 4 + 1 = 3. 

 

3.3.3 Application of Minimum Spanning Tree 

 

1. Consider n stations are to be linked using a communication 

network and laying of communication links between any two 

stations involves a cost. 

The ideal solution would be to extract a subgraph termed as 

minimum cost spanning tree. 

2. Suppose you want to construct highways or railroads spanning 

several cities then we can use the concept of minimum spanning 

trees. 

3. Designing Local Area Networks. 

4. Laying pipelines connecting offshore drilling sites, refineries and 

consumer markets. 

5. Suppose you want to apply a set of houses with 

 Electric Power 

 Water 

 Telephone lines 

 Sewage lines 

To reduce cost, you can connect houses with minimum cost spanning 

trees. 

 

For Example, Problem laying Telephone Wire. 
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Self-Assessment Exercises 

 

1. The traveling salesman problem involves visiting each city how 

many times? 

2. What do you understand by the term MINIMUM SPANNING 

TREE? 

3. An undirected graph G(V, E) contains n ( n > 2 ) nodes named v1 

, v2 ,….vn. Two nodes vi , vj are connected if and only if 0 < |i – 

j| <= 2. Each edge (vi, vj ) is assigned a weight i + j. A sample 

graph with n = 4 is shown below. What will be the cost of the 

minimum spanning tree (MST) of such a graph with n nodes? 

 
 

4. What does and approximation ratio measures? 

 

4.0 CONCLUSION 
 

An approximation or approximate algorithm is a way of dealing 

with NP-completeness for an optimization problem. The goal of the 

approximation algorithm is to come close as much as possible to the 

optimal solution in polynomial time. Examples of Approximation 

algorithms are the Minimal Spanning tree, Vertex cover and Traveling 

Salesman problem. 

 

5.0 SUMMARY 
 

In this Unit we considered the meaning of approximate or 

approximation algorithms and areas of applications like vertex cover, 

minimum spanning tree and traveling salesman problem amongst others. 

We also looked at the issue of performance ratios. 

 

6.0 TUTOR MARKED ASSIGNMENTS 

 
1.  How does the practical Traveling Salesman problem differ from 

the Classical Traveling salesman problem? 

2. Consider a complete undirected graph with vertex set {0, 1, 2, 3, 

4}. Entry Wij in the matrix W below is the weight of the edge {i, 
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j}. What is the minimum possible weight of a spanning tree T in 

this graph such that vertex 0 is a leaf node in the tree T? 

 

 
4. In the graph given in question (2) above, what is the minimum 

possible weight of a path P from vertex 1 to vertex 2 in this graph 

such that P contains at most 3 edges? 

5. Consider a weighted complete graph G on the vertex set {v1,v2 

,v} such that the weight of the edge (v,,v) is 2|i-j|. The weight of a 

minimum spanning tree of G is? 

 

7.0 FURTHER READING AND OTHER RESOURCES 
 

Dave, P. H. (2007). Design and Analysis of Algorithms. Pearson 

 Education, India. ISBN: 8177585959, 9788177585957 

 

Greenbaum, A. and Chartier, T. P. (2012). Numerical Methods: Design, 

 Analysis, and Computer Implementation of Algorithms. 

 Princeton University Press. ISBN: 1400842670, 9781400842674. 

 

Heineman, G. T., Pollice, G. and Selkow, S. (2016). Algorithms in a 

 Nutshell. O’Reilly Media, Inc. USA. 

 

Karamagi, R. (2020). Design and Analysis of Algorithms. Lulu.com, 

 ISBN: 1716498155, 9781716498152 
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1.0 INTRODUCTION 
 

An approximation algorithm is a way of dealing with NP-

completeness for an optimization problem. The goal of the 

approximation algorithm is to come close as much as possible to the 

optimal solution in polynomial time. 

 

We continue our class on Approximate algorithms by looking at some 

methods of the Minimal Spanning Tree given as Kruskal’s algorithm 

and the Prim’s algorithm. 

 

2.0 OBJECTIVES 
 

At the end of this Unit, you should be able to: 

 

 Understand the methods of the Minimal Spanning Tree (MST) 

 Know more about the Kruskal and the Prim algorithms 

 

3.0 Methods of Minimum Spanning Tree 
 

There are two methods to find Minimum Spanning Tree 

 

1. Kruskal's Algorithm 

2. Prim's Algorithm 

 

3.1 Kruskal's Algorithm: 
 

An algorithm to construct a Minimum Spanning Tree for a connected 

weighted graph. It is a Greedy Algorithm. The Greedy Choice is to put 

the smallest weight edge that does not because a cycle in the MST 

constructed so far. 
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If the graph is not linked, then it finds a Minimum Spanning Tree. 

 

3.1.1 Steps for finding MST using Kruskal's Algorithm: 

 

1. Arrange the edge of G in order of increasing weight. 

2. Starting only with the vertices of G and proceeding sequentially 

add each edge which does not result in a cycle, until (n - 1) edges 

are used. 

3. EXIT. 

 

MST- KRUSKAL (G, w) 

 

A ← ∅ 

for each vertex v ∈ V [G] 

do MAKE - SET (v) 

sort the edges of E into non decreasing order by weight w 

for each edge (u, v) ∈ E, taken in non decreasing order by 

weight 

do if FIND-SET (μ) ≠ if FIND-SET (v) 

then A  ←  A ∪ {(u, v)} 

UNION (u, v) 

return A 

 

Analysis:  

 

Where E is the number of edges in the graph and V is the number of 

vertices, Kruskal's Algorithm can be shown to run in O (E log E) time, 

or simply, O (E log V) time, all with simple data structures. These 

running times are equivalent because: 

 

 E is at most V2 and log V2= 2 x log V is O (log V). 

 If we ignore isolated vertices, which will each their components 

of the minimum spanning tree, V ≤ 2 E, so log V is O (log E). 

 

Thus the total time is 

 

O (E log E) = O (E log V).   

 

Example:  

 

Find the Minimum Spanning Tree of the following graph using 

Kruskal's algorithm. 
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Solution:  

 

First we initialize the set A to the empty set and create |v| trees, one 

containing each vertex with MAKE-SET procedure. Then sort the edges 

in E into order by non-decreasing weight. 

 

There are 9 vertices and 12 edges. So MST formed (9-1) = 8 edges 

 

 
 

Now, check for each edge (u, v) whether the endpoints u and v belong to 

the same tree. If they do then the edge (u, v) cannot be supplementary. 

Otherwise, the two vertices belong to different trees, and the edge (u, v) 

is added to A, and the vertices in two trees are merged in by union 

procedure. 

 

Step1: So, first take (h, g) edge 
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Step 2: then (g, f) edge. 

 
 

Step 3: then (a, b) and (i, g) edges are considered, and the forest 

becomes 

 
 

Step 4: Now, edge (h, i). Both h and i vertices are in the same set. Thus 

it creates a cycle. So this edge is discarded. 

 

Then edge (c, d), (b, c), (a, h), (d, e), (e, f) are considered, and the forest 

becomes. 

 

 
 

Step 5: In (e, f) edge both endpoints e and f exist in the same tree so 

discarded this edge. Then (b, h) edge, it also creates a cycle. 

 

Step 6: After that edge (d, f) and the final spanning tree is shown as in 

dark lines. 
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Step 7: This step will be required Minimum Spanning Tree because it 

contains all the 9 vertices and (9 - 1) = 8 edges 

 

e → f,  b → h,  d → f [cycle will be formed]   

 
 

Minimum Cost MST 

 

3.2 Prim's Algorithm 
 

It is a greedy algorithm. It starts with an empty spanning tree. The idea 

is to maintain two sets of vertices: 

 

 Contain vertices already included in MST. 

 Contain vertices not yet included. 

 

At every step, it considers all the edges and picks the minimum weight 

edge. After picking the edge, it moves the other endpoint of edge to set 

containing MST. 

 

3.2.1 Steps for finding MST using Prim's Algorithm: 
 

1. Create MST set that keeps track of vertices already included in 

MST. 

2. Assign key values to all vertices in the input graph. Initialize all 

key values as INFINITE (∞). Assign key values like 0 for the 

first vertex so that it is picked first. 

3. While MST set doesn't include all vertices. 
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a. Pick vertex u which is not is MST set and has minimum 

key value. Include 'u'to MST set. 

b. Update the key value of all adjacent vertices of u. To 

update, iterate through all adjacent vertices. For every 

adjacent vertex v, if the weight of edge u.v less than the 

previous key value of v, update key value as a weight of 

u.v. 

 

MST-PRIM (G, w, r) 

 

for each u ∈ V [G] 

do key [u] ← ∞ 

π [u] ← NIL 

key [r] ← 0 

Q ← V [G] 

While Q ? ∅ 

do u ← EXTRACT - MIN (Q) 

for each v ∈ Adj [u] 

do if v ∈ Q and w (u, v) < key [v] 

then π [v] ← u 

key [v] ← w (u, v) 

 

Example:  

 

Generate minimum cost spanning tree for the following graph using 

Prim's algorithm. 

 

 
 

Solution:  

 

In Prim's algorithm, first we initialize the priority Queue Q. to contain 

all the vertices and the key of each vertex to ∞ except for the root, 
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whose key is set to 0. Suppose 0 vertex is the root, i.e., r. By EXTRACT 

- MIN (Q) procure, now u = r and Adj [u] = {5, 1}. 

Removing u from set Q and adds it to set V - Q of vertices in the tree. 

Now, update the key and π fields of every vertex v adjacent to u but not 

in a tree. 

 

 
 

Taking 0 as starting vertex   

  Root = 0   

    Adj [0] = 5, 1   

  Parent, π [5] = 0 and π [1] = 0   

      Key [5] = ∞ and key [1] = ∞   

  w [0, 5) = 10  and w (0,1) = 28   

   w (u, v) < key [5] , w (u, v) < key [1]   

        Key [5] = 10 and key [1] = 28   

So update key value of 5 and 1 is:   

 

 

 
 

Now by EXTRACT_MIN (Q) Removes 5 because key [5] = 10 which is 

minimum so u = 5. 

 

Adj [5] = {0, 4} and 0 is already in heap   

Taking 4, key [4] = ∞      π [4] = 5   

(u, v) < key [v] then key [4] = 25   

w (5,4) = 25   
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w (5,4) < key [4]   

date key value and parent of 4.   

 

 

 
 

Now remove 4 because key [4] = 25 which is minimum, so u =4 

 

Adj [4] = {6, 3}   

Key [3] = ∞         key [6] = ∞   

w (4,3) = 22        w (4,6) = 24   

w (u, v) < key [v]    w (u, v) < key [v]   

w (4,3) < key [3]      w (4,6) < key [6]   

 

Update key value of key [3] as 22 and key [6] as 24. 

And the parent of 3, 6 as 4. 

π[3]= 4       π[6]= 4    

 

 
 

u = EXTRACT_MIN (3, 6)            [key [3] < key [6]]   

u = 3              i.e.  22 < 24   

Now remove 3 because key [3] = 22 is minimum so u =3. 
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Adj [3] = {4, 6, 2}   

  4 is already in heap 

   

  4 ≠ Q key [6] = 24 now becomes key [6] = 18   

  Key [2] = ∞            key [6] = 24   

  w (3, 2) = 12          w (3, 6) = 18   

  w (3, 2) < key [2]         w (3, 6) < key [6]   

 

Now in Q, key [2] = 12, key [6] = 18, key [1] = 28 and parent of 2 and 6 

is 3. 

 

π [2] = 3      π[6]=3   

 

Now by EXTRACT_MIN (Q) Removes 2, because key [2] = 12 is 

minimum. 

 
 

u = EXTRACT_MIN (2, 6)   

u = 2          [key [2] < key [6]]   

        12 < 18   

Now the root is 2    

Adj [2] = {3, 1}   

   3 is already in a heap   

Taking 1, key [1] = 28   

   w (2,1) = 16   

   w (2,1) < key [1]   

So update key value of key [1] as 16 and its parent as 2. 

π[1]= 2   
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Now by EXTRACT_MIN (Q) Removes 1 because key [1] = 16 is 

minimum. 

 

Adj [1] = {0, 6, 2}   

    0 and 2 are already in heap.   

Taking 6, key [6] = 18   

   w [1, 6] = 14   

   w [1, 6] < key [6]   

Update key value of 6 as 14 and its parent as 1. 

Π [6] = 1   

 

 
 

Now all the vertices have been spanned, Using above the table we get 

Minimum Spanning Tree. 

0 → 5 → 4 → 3 → 2 → 1 → 6   

[Because Π [5] = 0, Π [4] = 5, Π [3] = 4, Π [2] = 3, Π [1] =2, Π [6] =1]   

 

Thus the final spanning Tree is 
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Total Cost = 10 + 25 + 22 + 12 + 16 + 14 = 99 

 

Self-Assessment Exercises 

 

1. The number of distinct minimum spanning trees for the weighted 

graph below is? 

 
2. What is the weight of a minimum spanning tree of the following 

graph? 

3.  

 
4. Let G be connected undirected graph of 100 vertices and 300 

edges. The weight of a minimum spanning tree of G is 500. 

When the weight of each edge of G is increased by five, the 

weight of a minimum spanning tree becomes? 
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4.0 CONCLUSION 
 

An approximation algorithm returns a solution to a combinatorial 

optimization problem that is provably close to optimal (as opposed to 

a heuristic that may or may not find a good solution). Approximation 

algorithms are typically used when finding an optimal solution is 

intractable, but can also be used in some situations where a near-optimal 

solution can be found quickly and an exact solution is not needed. 

Many problems that are NP-hard are also non-approximable assuming 

P≠NP.  

 

5.0 SUMMARY 
 

In this Unit, we concluded our class on Approximate or Approximation 

algorithms by looking again at the Minimal Spanning Tree and methods 

for resolving MST problems, we looked at the Prim’s and Kruskal’s 

algorithms as well as steps for finding MST using either of the 

algorithms sonsidered. 

 

6.0 TUTOR MARKED ASSIGNMENTS 

 
1. Let G be a weighted connected undirected graph with distinct 

positive edge weights. If every edge weight is increased by the 

same value, then which of the following statements is/are TRUE? 

 P: Minimum spanning tree of G does not change 

 Q: Shortest path between any pair of vertices does not change 

2.  G = (V, E) is an undirected simple graph in which each edge has 

a distinct weight, and e is a particular edge of G. Which of the 

following statements about the minimum spanning trees (MSTs) 

of G is/are TRUE 

I.   If e is the lightest edge of some cycle in G,  

     then every MST of G includes e 

II.  If e is the heaviest edge of some cycle in G,  

     then every MST of G excludes e 

3. What is the largest integer m such that every simple connected 

graph with n vertices and n edges contains at least m different 

spanning trees? 

 

7.0 FURTHER READING AND OTHER RESOURCES  
 

Dave, P. H. (2007). Design and Analysis of Algorithms. Pearson 

 Education, India. ISBN: 8177585959, 9788177585957 

 



CIT 310          MODULE 3 

 

181 

 

Greenbaum, A. and Chartier, T. P. (2012). Numerical Methods: Design, 

 Analysis, and Computer Implementation of Algorithms. 

 Princeton University Press. ISBN: 1400842670, 9781400842674. 

 

Heineman, G. T., Pollice, G. and Selkow, S. (2016). Algorithms in a 

 Nutshell. O’Reilly Media, Inc. USA. 

 

Karamagi, R. (2020). Design and Analysis of Algorithms. Lulu.com, 

 ISBN: 1716498155, 9781716498152 

 

 
 


	CIT 310 COURSE GUIDE.pdf
	CIT 310 MAIN COURSE.pdf
	CIT 310 MODULE 1 BASIC ALGORITHMIC ANALYSIS.pdf
	Algorithms are named after the 9th century Persian mathematician Al-Khowarizmi. He wrote a treatise in Arabic in 825 AD, On Calculation with Hindu Numerals. It was translated into Latin in the 12th century as Algoritmi de numero Indorum, which title w...
	The main Characteristics or features of Algorithms are;
	3.2.1 Advantages of Pseudocode
	3.2.2 Disadvantages of Pseudocode

	UNIT 2   ANALYSIS AND COMPLEXITY OF      ALGORITHMS
	3.3   Typical Complexities of an Algorithm
	3.4 How to approximate the time taken by the Algorithm?
	3.4.1 Some Examples to Consider
	a. For Iterative Programs
	b. For Recursive Program
	3.2.1 Asymptotic analysis

	3.2.2  Why is Asymptotic Notation Important?
	3.3 Asymptotic Notations:
	Examples:
	Example:
	For Example:

	3.0 Recursion and Recursive Algorithms (Definitions)
	3.1 Why use recursion?
	3.1.1 Factorial Example
	3.1.2 Purpose of Recursions
	3.1.3 Conditionals to Start, Continue, and Stop the Recursion
	3.1.4 The Three Laws of Recursion
	Recursion
	Iteration
	3.1.1. Guess-and-Verify Method:
	3.1.2.  Iteration Methods
	Master Theorem:

	3.2.4  Closed-form solution

	CIT 310 MODULE 2 SEARCHING AND SORTING ALGORITHMS.pdf
	Algorithm
	3.1 How Bubble Sort Works
	3.2.1 Complexity Analysis of Bubble Sort
	3.2.3 Advantages of Bubble Sort
	3.2.4 Disadvantages of Bubble Sort
	3.3.1 Algorithm: Selection Sort (A)
	3.3.2 How Selection Sort works
	3.3.3 Complexity Analysis of Selection Sort
	3.3.4 Time Complexities:

	Algorithm: Insertion Sort (A)
	3.1 How Insertion Sort Works
	3.2 Complexity Analysis of Insertion Sort
	3.2.1 Time Complexities
	3.2.2  Space Complexity

	3.2.3  Insertion Sort Applications
	3.2.4 Advantages of Insertion Sort
	3.3 Linear Search
	3.0 Radix Sort
	Worst case time complexity
	Best case time complexity
	Average case time complexity
	Space Complexity
	3.1.3 Applications of Radix Sort
	3.2 Stability in Sorting

	3.1 Fundamental of Divide & Conquer Strategy:
	3.1.1 Applications of Divide and Conquer Approach:
	3.1.2 Advantages of Divide and Conquer
	3.1.3 Disadvantages of Divide and Conquer
	Divide and Conquer Strategy
	3.1 Merge Sort algorithm
	The merge step of Merge Sort

	Merge( ) Function Explained Step-By-Step
	3.1.1 Complexity Analysis of Merge Sort:
	3.1.2 Merge Sort Applications
	Algorithm:
	Partition Algorithm:
	Example of Quick Sort. Given the following list;
	Merging Sublists:



	CIT 310 MODULE 3OTHER ALGORITHM TECHNIQUES.pdf
	We introduce here a special search tree called the Binary Search Tree and a derivative of it known as the Red Black Tree.
	A binary search tree, also known as ordered binary tree is a binary tree wherein the nodes are arranged in a order. The order is : a) All the values in the left sub-tree has a value less than that of the root node. b) All the values in the right node ...
	On the other hand, a red-black tree is a Binary tree where a particular node has color as an extra attribute, either red or black. By check the node colors on any simple path from the root to a leaf, red-black trees secure that no such path is higher ...
	2.0 OBJECTIVES
	 Understand the meaning of a Binary Search Tree.
	 Know the different methods of traversing a Binary Search Tree
	 List and explain the different ways a Binary Search Tree can be queried
	 Understand the Red Black Trees
	 Learn the different properties of Red Black Trees
	 Know the different operations done on Red Black Trees
	3.0 Binary Search Trees
	3.0.1 Binary Search Tree Property
	3.1 Traversal in Binary Search Trees:
	3.2 Querying a Binary Search Trees:

	Self-Assessment Exercises
	1. What is the worst case time complexity for search, insert and delete operations in a general Binary Search Tree?
	2. We are given a set of n distinct elements and an unlabelled binary tree with n nodes. In how many ways can we populate the tree with the given set so that it becomes a binary search tree?
	3. How many distinct binary search trees can be created out of 4 distinct keys?
	4. Suppose the numbers 7, 5, 1, 8, 3, 6, 0, 9, 4, 2 are inserted in that order into an initially empty binary search tree. The binary search tree uses the usual ordering on natural numbers. What is the in-order traversal sequence of the resultant tree?
	3.3 Red Black Tree
	3.3.1 Properties of Red-Black Trees
	3.4 Operations on RB Trees:
	3.4.1. Rotation:
	3.4.2. Insertion:
	3.4.3. Deletion:


	Self-Assessment Exercises
	1. When deleting a node from a red-black tree, what condition might happen?
	2. What is the maximum height of a Red-Black Tree with 14 nodes? (Hint: The black depth of each external node in this tree is 2.) Draw an example of a tree with 14 nodes that achieves this maximum height.
	3. Why can't a Red-Black tree have a black node with exactly one black child and no red child?
	4.0 CONCLUSION
	A binary search tree, also called an ordered or sorted binary tree, is a rooted binary tree data structure whose internal nodes each store a key greater than all the keys in the node’s left subtree and less than those in its right subtree. On the othe...
	5.0 SUMMARY
	In this unit, we considered the Binary Search Tree and looked at how such trees could be traversed while also examining the various methods of querying or accessing information from a Binary Search Tree. In addition, we looked at a special derivative ...
	6.0 TUTOR-MARKED ASSIGNMENTS
	1. What is the special property of red-black trees and what root should always be? a) a color which is either red or black and root should always be black color only
	2. The following numbers are inserted into an empty binary search tree in the given order: 10, 1, 3, 5, 15, 12, 16. What is the height of the binary search tree (the height is the maximum distance of a leaf node from the root)?
	3. What are the operations that could be performed in O(logn) time complexity by red-black tree?
	4. The preorder traversal sequence of a binary search tree is 30, 20, 10, 15, 25, 23, 39, 35, 42. Give the postorder and inorder traversal sequence of the same tree.
	5. How can you save memory when storing color information in Red-Black tree?
	6. Which of the following traversals is sufficient to construct BST from given traversals 1) Inorder 2) Preorder 3) Postorder
	3.0 Dynamic Programming
	How can we calculate F(20)?
	3.1 How Dynamic Programming Works
	3.2 Approaches of dynamic programming
	3.2.1 Top-down approach
	3.2.2 Bottom-Up approach


	3.4 Techniques for Solving Dynamic Programming Problems
	Problem Statement: Write an efficient program to find the nth Fibonacci number?
	5. What happens when a top-down approach of dynamic programming is applied to a problem?
	1. For each of the following problems, explain whether they could be solved or not using dynamic programming?
	3.1.1 Facts about Deterministic Algorithms
	3.2 Non-deterministic Algorithms
	3.2.1 What Makes An Algorithm Non-deterministic?
	3.2.2 Facts About Non-deterministic Algorithms

	3.2.3 Deterministic versus Non-deterministic Algorithms

	At the end of this Unit, you should be able to;
	3.0 Approximate Algorithms
	3.0.1 Performance Ratios

	3.1 Vertex Cover
	3.2 Traveling-salesman Problem
	Triangle inequality

	3.3 Minimum Spanning Tree
	3.3.1 What is a minimum spanning tree?
	The minimum spanning tree is a spanning tree whose sum of the edges is minimum. Consider the below graph that contains the edge weight:

	3.3.3 Application of Minimum Spanning Tree
	3.1 Kruskal's Algorithm:

	3.2 Prim's Algorithm
	3.2.1 Steps for finding MST using Prim's Algorithm:





