

CIT314

COMPUTER ARCHITECTURE AND ORGANIZATION II

Course Team: Dr. Godwin Udoinyang - (Developer/Writer)

Prof. Steve Adeshina - Content Editor

Dr. Francis B. Osang – HOD/Internal Quality

Control Expert

NATIONAL OPEN UNIVERSITY OF NIGERIA

COURSE

GUIDE

CIT 314 COURSE GUIDE

ii

National Open University of Nigeria

University Village, Plot 91

Jabi Cadastral Zone

Nnamdi Azikiwe Expressway

Jabi, Abuja

Lagos Office

14/16 Ahmadu Bello Way

Victoria Island, Lagos

Departmental email: computersciencedepartment@noun.edu.ng

NOUN e-mail: centralinfo@noun.edu.ng

URL: www.nou.edu.ng

First Printed 2022

ISBN: 978-058-557-5

All Rights Reserved

Printed by: NOUN PRESS

January 2022

CIT 314 COURSE GUIDE

iii

CONTENTS PAGE

Introduction…………………………………………………iv

What You Will Learn in This Course …………………........v

Course Aims .. v

Course Objectives ... v

Working through This Course ...v

Course Materials .. vi

Study Units ..vi

Textbooks and References ... vii

Assignment File ... viii

Presentation Schedule ... xi

Assessment ... xii

Tutor-Marked Assignments (TMAs) xii

Final Examination and Grading .. xiii

Course Marking Scheme ... xiv

Course Overview .. xv

How to Get the Most from This Course xv

Facilitators/Tutors and Tutorials .. xv

Summary ..xvi

CIT 314 COURSE GUIDE

iv

COURSE GUIDE

INTRODUCTION

CIT314 –Computer Architecture and Organization II – is a 3- credit unit

course. Keeping pace with technological change is an issue for all

computing courses and texts. Systems which seemed capable of holding

their advanced position within the market-place for several years, are

now overtaken within months of launch. Software tools are being

developed and adopted by commercial programmers long before

universities have had a chance. We all learn differently, but the ability to

use text effectively has been at the core of modern civilization for a long

time. We all benefit so much from people’s experience recorded on

paper for others to read. Ignoring this vast resource is deliberately

handicapping yourself. Life is difficult enough without conceding an

unnecessary penalty! If anything, the introduction of the World Wide

Web has placed even greater literacy demands on everyone. Most Web

pages presenting useful information still depend heavily on text. A

picture may be worth a thousand words, but it is often the accompanying

text that gives you the first glimmer of understanding.

This book is about the structure and function of Computers. Its purpose

is to present as clearly and completely as possible, the nature and

characteristics of modern-day computer systems.

This task is challenging for several reason, first, there is a tremendous

variety of products that can rightly claim the name of computer, from

single-chip microprocessors costing a lot of dollars to supercomputers

costing tens of millions of dollars. Variety is exhibited not only in cost,

but in size, performance, and application. Second, the rapid pace of

change that has always characterized computer technology continues

with no letup. These changes cover all aspects of computer technology,

from the underlying integrated circuit technology used to construct

computer components, to the increasing use of parallel organization

concepts in combining those components.

In spite of the variety, and pace of change in the computer field, certain

fundamental concepts apply consistently throughout. The application of

these concepts depends on the current state of the technology and the

price, performance, objectives of the designer. The intent of this book is

to provide a thorough discussion of the fundamentals of computer

organization and architecture and to relate these to contemporary design

issues.

It is a course for B.Sc. Computer Science major students, and is

normally taken in the third year of the programme duration. It should

CIT 314 COURSE GUIDE

v

therefore appeal to whosoever is concerned with the understanding of

the basic computer architecture and its organization.

This course is divided into four modules. The first module deals with an

overview of the memory system. The second module covers, memory

addressing, elements of memory hierarchy, and virtual memory control

systems. The third module discusses various forms of control including

hardware, asynchronous, microprogrammed and asynchronous forms.

The fourth and last module takes on fault tolerant computing and

methods for fault-tolerant computing.

This course guide gives you a brief overview of the course contents,

course duration, and course materials.

COURSE COMPETENCIES

First, students will learn about the basics of computers and what they are

made up of. Second, they will be able to judge certain functionalities in

computer systems dependent on the type of architectures they are

operating on. This in turn will give them a deeper understanding on how

to manage computer faults.

In general, this course is designed to aid them take on a path involving

how a computer system is built to operate.

COURSE OBJECTIVES

Certain objectives have been set out for the achievement of the course

aims. And apart from the course objectives, each unit of this course has

its objectives, which you need to confirm if are met, at the end of each

unit. So, upon the completion of this course, you should be able to:

 Describe how computer memories function and how they can be

optimized

 Explain major functions and techniques involving architecture

designing and study

 Explain methods to tolerate faults in computer architectures

 Explain methods to optimize control in computer systems

WORKING THROUGH THIS COURSE

In order to have a thorough understanding of the course units, you will

need to read and understand the contents, and practice the steps and

techniques involved in the task of computer architecture and

organization and its involvement in the development of various

segments of computer systems.

CIT 314 COURSE GUIDE

vi

This course is designed to cover approximately seventeen (17) weeks,

and requires your devoted attention, answering the exercises tutor-

marked marked assignments and gets them submitted to your tutors.

STUDY UNITS

There are 10 units in this course:

MODULE ONE

UNIT ONE: Memory system

1.1 Main Memories

1.2 Auxiliary Memories

1.3 Memory Access Methods

1.4 Memory Mapping and Virtual Memories

1.5 Replacement Algorithms

1.6 Data Transfer Modes

1.7 Parallel Processing

1.8 Pipelining

MODULE TWO

UNIT ONE: Memory Addressing

1.1 What is a Memory address mode?

1.2 Modes of addressing

1.3 Number of addressing modes

1.4 Advantages of addressing modes

1.5 Uses of addressing modes

UNIT TWO: Elements of Memory Hierarchy

2.1 What is Memory Hierarchy?

2.2 Memory Hierarchy Diagram

2.3 Characteristics of Memory Hierarchy

2.4 Memory Hierarchy Design

2.5 Advantages of Memory Hierarchy

UNIT THREE: Virtual Memory control systems

3.1 Memory Management Systems

3.2 Paging

3.3 Address mapping using Paging

3.4 Address Mapping using Segments

CIT 314 COURSE GUIDE

vii

3.5 Address Mapping using Segmented Paging

3.6 Multi-Programming

3.7 Virtual Machines/Memory and Protection

3.8 Hierarchical Memory systems

3.9 Drawbacks that occur in Virtual Memories

MODULE THREE

UNIT ONE: Hardware control

3.1.1 Hardwired Control Unit

3.1.2 Design of a hardwired Control Unit

UNIT TWO: Micro-Programmed Control

3.2.1 Design of a Micro-Programmed Control Unit

3.2.2 Differences between Hardwired and Microprogrammed Control

3.2.3 Organization of Micro-Programmed Control Unit

3.2.4 Types of Micro-programmed Control Unit

UNIT THREE: Asynchronous Control

3.3.1 Clock limitations

3.3.2 Basic Concepts

3.3.3 Benefits of Asynchronous Control

3.3.4 Asynchronous Communication

3.3.5 Asynchronous Transmission

3.3.6 Synchronous vs. Asynchronous Transmission

3.3.7 Emerging application areas

3.3.8 Asynchronous Data paths and Data Transfer

3.3.9 Handshaking

MODULE FOUR

UNIT ONE: Fault Tolerant Computing

3.0.1.1 What is Fault Tolerance

3.0.1.2 Fault Tolerant Systems

3.0.1.3 Hardware and Software Fault Tolerant Issues

3.0.1.4 Fault Tolerance VS High Availability

3.0.1.5 Redundancy

3.0.1.6 Relationship Between Security and Fault Tolerance

CIT 314 COURSE GUIDE

viii

UNIT TWO: Methods for Fault Tolerant Computing

3.0.2.0 Fault Tree Analysis

3.0.2.1 Fault Detection Methods

3.0.2.2 Fault Tolerance Architecture

3.0.2.3 Fault Models

3.0.2.4 Fault Tolerance Methods

3.0.2.5 Major Issues in Modelling and Evaluation

3.0.2.6 Fault Tolerance for Web Applications

You should make use of the course materials, and do the exercises to

enhance your learning.

REFERENCES AND FURTHER READINGS

Adamski, M., Barkalov, A.: Architectural and Sequential Synthesis of

Digital Devices. University of Zielona Góra Press, Zielona Góra

(2006). URL:

https://www.sciencedirect.com/science/article/pii/S147466701632

3667

Agerwala, T.: Microprogram optimization: A survey. IEEE Transactions

of Computers (10), 962–973 (1976). URL:

https://ieeexplore.ieee.org/document/1674537

Ailamaki AG, DeWitt DJ., Hill MD, Wood DA. DBMSs on a modern

processor: where does time go? In: Proceedings of the 25th

International Conference on Very Large Data Bases; 1999. p. 266–

77. URL: https://www.semanticscholar.org/paper/DBMSs-on-a-

Modern-Processor%3A-Where-Does-Time-Go-Ailamaki-

DeWitt/54b92179ede08158e2cf605f5e9f264ca06c01ff

Amma A. D. T., Pramod V. R and N. Radhika, (2012) “ISM for

Analyzing the Interrelationship between the Inhibitors of Cloud

Computing”, vol. 2, No. 3. URL:

https://www.academia.edu/12392163/Revisiting_Software_Securit

y_Durability_Perspective

Anderson T. and Knight J. C. (1983), “A Framework for software Fault

tolerance in Real time System”, IEEE Transaction on software

Engineering, Vol. 9, No.3. URL:

https://www.cse.cuhk.edu.hk/~lyu/book/sft/pdf/chap8.pdf

Asanovic, Krste (2017). The RISC V Instruction Set

Manual (PDF) (2.2 ed.). Berkeley: RISC-V Foundation.

https://www.sciencedirect.com/science/article/pii/S1474667016323667
https://www.sciencedirect.com/science/article/pii/S1474667016323667
https://ieeexplore.ieee.org/document/1674537
https://www.semanticscholar.org/paper/DBMSs-on-a-Modern-Processor%3A-Where-Does-Time-Go-Ailamaki-DeWitt/54b92179ede08158e2cf605f5e9f264ca06c01ff
https://www.semanticscholar.org/paper/DBMSs-on-a-Modern-Processor%3A-Where-Does-Time-Go-Ailamaki-DeWitt/54b92179ede08158e2cf605f5e9f264ca06c01ff
https://www.semanticscholar.org/paper/DBMSs-on-a-Modern-Processor%3A-Where-Does-Time-Go-Ailamaki-DeWitt/54b92179ede08158e2cf605f5e9f264ca06c01ff
https://www.academia.edu/12392163/Revisiting_Software_Security_Durability_Perspective
https://www.academia.edu/12392163/Revisiting_Software_Security_Durability_Perspective
https://www.cse.cuhk.edu.hk/~lyu/book/sft/pdf/chap8.pdf
https://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf

CIT 314 COURSE GUIDE

ix

Astha Singh. "Computer Organization - Control Unit and

design". GeeksforGeeks. Retrieved 25 May 2019.

Balaji E. and Krishnamurthy P. (1996). “Modeling ASIC memories in

VHDL”. In: Design Automation Conference, with EURO-VHDL

’96 and Exhibition, Proceedings EURODAC ’96, European, pp.

502–508. DOI: 10.1109/EURDAC.1996.558250.

Chattopadhyay, S.: Area conscious state assignment with flip-flop and

output polarity selection for finite state machines synthesis – a

genetic algorithm. The Computer Journal 48(4), 443–450 (2005).

URL:

https://www.researchgate.net/publication/220459930_Area_Consci

ous_State_Assignment_with_Flip-

Flop_and_Output_Polarity_Selection_for_Finite_State_Machine_S

ynthesis--A_Genetic_Algorithm_Approach

CLARE. C. R.: Designing Logic Systems Using State Machines.

McGraw-Hill Book Company. 1973. URL: http://bitsavers.trailing-

edge.com/pdf/hp/tutorial/Clare_-

_Designing_Logic_Systems_Using_State_Machines_1973.pdf

Denning PJ. The working set model for program behaviour. Commun

ACM. 1968;11(5):323–33. URL:

https://denninginstitute.com/pjd/PUBS/WSModel_1968.pdf

Engineering Safety Requirements, Safety Constraints, and Safety

Critical Requirements, Available at:

http://www.jot.fm/issues/issue_2004_03/column3/ last visit

November 17, 2021.

Fred B. Schneider (1990). Implementing fault-tolerant services using the

state machine approach: A tutorial. A.C.M. Computing Surveys,

22(4):299–319. URL: https://dl.acm.org/doi/10.1145/98163.98167

Fred B. Schneider. (1997) Towards fault-tolerant and secure agentry.

Technical report, Cornell University, Department of Computer

Science. URL:

https://link.springer.com/chapter/10.1007/BFb0030670

Fundamentals of Computer Organization and Architecture, by M. Abd-

El-Barr and H. El-Rewini ISBN 0-471-46741-3 Copyright # 2005

John Wiley & Sons, Inc. URL:

https://engineering.futureuniversity.com/BOOKS%20FOR%20IT/

%5BMostafa_Abd-El-Barr__Hesham_El-

Rewini%5D_Fundamenta(BookZZ.org).pdf

https://www.geeksforgeeks.org/computer-organization-control-unit-and-design/
https://www.geeksforgeeks.org/computer-organization-control-unit-and-design/
https://www.researchgate.net/publication/220459930_Area_Conscious_State_Assignment_with_Flip-Flop_and_Output_Polarity_Selection_for_Finite_State_Machine_Synthesis--A_Genetic_Algorithm_Approach
https://www.researchgate.net/publication/220459930_Area_Conscious_State_Assignment_with_Flip-Flop_and_Output_Polarity_Selection_for_Finite_State_Machine_Synthesis--A_Genetic_Algorithm_Approach
https://www.researchgate.net/publication/220459930_Area_Conscious_State_Assignment_with_Flip-Flop_and_Output_Polarity_Selection_for_Finite_State_Machine_Synthesis--A_Genetic_Algorithm_Approach
https://www.researchgate.net/publication/220459930_Area_Conscious_State_Assignment_with_Flip-Flop_and_Output_Polarity_Selection_for_Finite_State_Machine_Synthesis--A_Genetic_Algorithm_Approach
http://bitsavers.trailing-edge.com/pdf/hp/tutorial/Clare_-_Designing_Logic_Systems_Using_State_Machines_1973.pdf
http://bitsavers.trailing-edge.com/pdf/hp/tutorial/Clare_-_Designing_Logic_Systems_Using_State_Machines_1973.pdf
http://bitsavers.trailing-edge.com/pdf/hp/tutorial/Clare_-_Designing_Logic_Systems_Using_State_Machines_1973.pdf
https://denninginstitute.com/pjd/PUBS/WSModel_1968.pdf
http://www.jot.fm/issues/issue_2004_03/column3/
https://dl.acm.org/doi/10.1145/98163.98167
https://link.springer.com/chapter/10.1007/BFb0030670
https://engineering.futureuniversity.com/BOOKS%20FOR%20IT/%5BMostafa_Abd-El-Barr__Hesham_El-Rewini%5D_Fundamenta(BookZZ.org).pdf
https://engineering.futureuniversity.com/BOOKS%20FOR%20IT/%5BMostafa_Abd-El-Barr__Hesham_El-Rewini%5D_Fundamenta(BookZZ.org).pdf
https://engineering.futureuniversity.com/BOOKS%20FOR%20IT/%5BMostafa_Abd-El-Barr__Hesham_El-Rewini%5D_Fundamenta(BookZZ.org).pdf

CIT 314 COURSE GUIDE

x

IEEE Trans. Computers, journal published by IEEE Computer Society;

has occasional special issues on parallel and distributed processing

(April 1987, December 1988, August 1989, December 1991, April

1997, April 1998).

http://link.springer.com/content/pdf/bfm%3A978-0-306-46964-

0%2F1.pdf

John L. Hennessy and David A. Patterson (2012) Computer

Architecture; A Qualitative Approach. Fifth (Ed.), Library of

Congress Cataloging in Publication Data. URL:

https://www.academia.edu/22618699/Computer_Architecture_A_

Quantitative_Approach_5th_edition_

Johnson, B. W. (1996). An introduction to the design and analysis of

fault-tolerant systems. Fault-tolerant computer system design, 1, 1-

84. URL:

https://www.researchgate.net/publication/234812893_An_introduc

tion_to_the_design_and_analysis_of_fault-tolerant_systems

Keith R. Mobley (2004) Maintenance Fundamentals. 2nd (Ed.), Elsevier

Butterworth Heinemann. URL:

https://www.elsevier.com/books/maintenance-

fundamentals/mobley/978-0-7506-7798-1

Kim, E. P., & Shanbhag, N. R. (2012). Soft N-modular redundancy.

IEEE Transactions on Computers, 61(3), 323–336. URL:

https://dl.acm.org/doi/abs/10.1109/TC.2010.253

Leighton, Luke. "Libre RISC-V M-Class". Crowd Supply. Retrieved 16

January 2020.

Lyu, M. and Mendiratta V, (1999) “Software Fault Tolerance in a

Clustered Architecture: Techniques and Reliability Modeling,” In

Proceedings' of IEEE Aerospace Conference, Snowmass,

Colorado, vol.5, pp.141-150, 6-13. URL:

https://dl.acm.org/doi/10.1007/11955498_4

Manegold S. Understanding, modeling, and improving main-memory

database performance. PhD thesis, Universiteit van Amsterdam,

Amsterdam, The Netherlands; 2002. URL:

https://ir.cwi.nl/pub/14301/14301B.pdf

Mostafa Abd-El-Barr and Hesham El-Rewini (2005) Fundamentals of

Computer Organization and Architecture. A John Wiley and Sons,

Inc Publication. URL:

http://link.springer.com/content/pdf/bfm%3A978-0-306-46964-0%2F1.pdf
http://link.springer.com/content/pdf/bfm%3A978-0-306-46964-0%2F1.pdf
https://www.academia.edu/22618699/Computer_Architecture_A_Quantitative_Approach_5th_edition_
https://www.academia.edu/22618699/Computer_Architecture_A_Quantitative_Approach_5th_edition_
https://www.researchgate.net/publication/234812893_An_introduction_to_the_design_and_analysis_of_fault-tolerant_systems
https://www.researchgate.net/publication/234812893_An_introduction_to_the_design_and_analysis_of_fault-tolerant_systems
https://www.elsevier.com/books/maintenance-fundamentals/mobley/978-0-7506-7798-1
https://www.elsevier.com/books/maintenance-fundamentals/mobley/978-0-7506-7798-1
https://dl.acm.org/doi/abs/10.1109/TC.2010.253
https://www.crowdsupply.com/libre-risc-v/m-class/updates/modernising-1960s-computer-technology-learning-from-the-cdc-6600
https://dl.acm.org/doi/10.1007/11955498_4
https://ir.cwi.nl/pub/14301/14301B.pdf

CIT 314 COURSE GUIDE

xi

https://books.google.com/books/about/Fundamentals_of_Computer

_Organization_an.html?id=m6uFlL41TlIC

Neuman, P (2000) “Practical Architecture for survivable system and

networks”, Phase Two Project 1688, SRI International, Menlo

Park, California. URL:

http://www.csl.sri.com/users/neumann/survivability.html

Patton, R. J. (2015). Fault-tolerant control. Encyclopedia of systems

and control, 422–428. URL: https://encyclopedia.pub/3028

Power ISA(tm) (3.0B ed.). Austin: IBM. 2017. Retrieved 26

December 2019.

Richard D. Schlichting and Fred B. Schneider. (1983) Fail-stop

processors: An approach to designing fault-tolerant computing

systems. A.C.M. Transactions on Computer Systems, 1(3):222–

238.

Rob Williams (2006) Computer System Architecture; ANetwork

Approach. 2 (Ed.), Prentice Hall. URL:

https://dokumen.pub/computer-systems-architecture-a-networking-

approach-with-cd-rom-2nd-ed-9780321340795-0321340795-

9781405890588-1405890584.html

Shatdal A, Kant C, Naughton J. Cache conscious algorithms for

relational query processing. In: Proceedings of the 20th

International Conference on Very Large Data Bases; 1994. p. 510–

2. URL https://www.semanticscholar.org/paper/Cache-Conscious-

Algorithms-for-Relational-Query-Shatdal-

Kant/12c2693c5e27a301a030933822c1c6da1558c267

Stallings, W. (2015). Computer Organization and Architecture. Pearson

Education. URL:

https://docs.google.com/viewer?a=v&pid=sites&srcid=aGNtdWF

mLmVkdS52bnxuZ3V5ZW54dWFudmluaHxneDo1YzAxMWY0

N2QxMGViZTRl

Stone, H. S., High-Performance Computer Architecture, Addison–

Wesley, 1993. URL: https://www.abebooks.com/book-

search/title/high-performance-computer-architecture/author/harold-

stone/

Varma, A., and C. S. Raghavendra, Interconnection Networks for

Multiprocessors and Multicomputers: Theory and Practice, IEEE

Computer Society Press, 1994. URL:

https://books.google.com/books/about/Fundamentals_of_Computer_Organization_an.html?id=m6uFlL41TlIC
https://books.google.com/books/about/Fundamentals_of_Computer_Organization_an.html?id=m6uFlL41TlIC
http://www.csl.sri.com/users/neumann/survivability.html
https://encyclopedia.pub/3028
https://ibm.ent.box.com/s/1hzcwkwf8rbju5h9iyf44wm94amnlcrv
https://dokumen.pub/computer-systems-architecture-a-networking-approach-with-cd-rom-2nd-ed-9780321340795-0321340795-9781405890588-1405890584.html
https://dokumen.pub/computer-systems-architecture-a-networking-approach-with-cd-rom-2nd-ed-9780321340795-0321340795-9781405890588-1405890584.html
https://dokumen.pub/computer-systems-architecture-a-networking-approach-with-cd-rom-2nd-ed-9780321340795-0321340795-9781405890588-1405890584.html
https://www.semanticscholar.org/paper/Cache-Conscious-Algorithms-for-Relational-Query-Shatdal-Kant/12c2693c5e27a301a030933822c1c6da1558c267
https://www.semanticscholar.org/paper/Cache-Conscious-Algorithms-for-Relational-Query-Shatdal-Kant/12c2693c5e27a301a030933822c1c6da1558c267
https://www.semanticscholar.org/paper/Cache-Conscious-Algorithms-for-Relational-Query-Shatdal-Kant/12c2693c5e27a301a030933822c1c6da1558c267
https://docs.google.com/viewer?a=v&pid=sites&srcid=aGNtdWFmLmVkdS52bnxuZ3V5ZW54dWFudmluaHxneDo1YzAxMWY0N2QxMGViZTRl
https://docs.google.com/viewer?a=v&pid=sites&srcid=aGNtdWFmLmVkdS52bnxuZ3V5ZW54dWFudmluaHxneDo1YzAxMWY0N2QxMGViZTRl
https://docs.google.com/viewer?a=v&pid=sites&srcid=aGNtdWFmLmVkdS52bnxuZ3V5ZW54dWFudmluaHxneDo1YzAxMWY0N2QxMGViZTRl
https://www.abebooks.com/book-search/title/high-performance-computer-architecture/author/harold-stone/
https://www.abebooks.com/book-search/title/high-performance-computer-architecture/author/harold-stone/
https://www.abebooks.com/book-search/title/high-performance-computer-architecture/author/harold-stone/

CIT 314 COURSE GUIDE

xii

https://books.google.com/books/about/Interconnection_Networks_

for_Multiproces.html?id=-1u7QgAACAAJ

Walton G. H., Long Taff T.A. and R. C. Linder, (1997) “Computational

Evaluation of Software Security attributes”, IEEE.

Webb, C., Liptay, J.: A high-frequency custom cmos s/390

microprocessor. IBM Journal of research and

Development 41(4/5), 463–473 (1997)

WENDT. S.: Entwurf komplexer Schaltvierke. Springer Verlag. 1974.

URL: https://www.springer.com/de/book/9783642474552

William Stallings (2003) Computer Organization Architecture;

Designing for Performance Six Ed. Prentice Hall. URL

http://williamstallings.com/ComputerOrganization/

William Stallings (2019) Computer Organization and Architecture;

Designing for Performance. 11 (Ed.), Pearson. URL:

https://www.pearson.com/us/higher-education/program/Stallings-

Pearson-e-Text-for-Computer-Organization-and-Architecture-

Access-Code-Card-11th-Edition/PGM2043621.html

William, S. (2010). Computer organization and architecture: designing

for performance. URL:

https://www.academia.edu/44827616/Computer_organization_and

_arChiteCture_Designing_for_Performance_tenth_edition

Zomaya, A. Y. (ed.), Parallel and Distributed Computing Handbook,

McGraw-Hill, 1996. URL: https://research-

repository.uwa.edu.au/en/publications/parallel-and-distributed-

computing-handbook

PRESENTATION SCHEDULE

The Presentation Schedule included in your course materials gives you

the important dates for the completion of tutor marked assignments and

attending tutorials. Remember, you are required to submit all your

assignments by the due date. You should guard against lagging behind

in your work.

ASSESSMENT

There are two aspects to the assessment of the course. First are the tutor

–marked assignments; second, is a written examination. In tackling the

assignments, you are expected to apply the information and knowledge

you acquired during this course. The assignments must be submitted to

https://books.google.com/books/about/Interconnection_Networks_for_Multiproces.html?id=-1u7QgAACAAJ
https://books.google.com/books/about/Interconnection_Networks_for_Multiproces.html?id=-1u7QgAACAAJ
https://www.springer.com/de/book/9783642474552
http://williamstallings.com/ComputerOrganization/
https://www.pearson.com/us/higher-education/program/Stallings-Pearson-e-Text-for-Computer-Organization-and-Architecture-Access-Code-Card-11th-Edition/PGM2043621.html
https://www.pearson.com/us/higher-education/program/Stallings-Pearson-e-Text-for-Computer-Organization-and-Architecture-Access-Code-Card-11th-Edition/PGM2043621.html
https://www.pearson.com/us/higher-education/program/Stallings-Pearson-e-Text-for-Computer-Organization-and-Architecture-Access-Code-Card-11th-Edition/PGM2043621.html
https://www.academia.edu/44827616/Computer_organization_and_arChiteCture_Designing_for_Performance_tenth_edition
https://www.academia.edu/44827616/Computer_organization_and_arChiteCture_Designing_for_Performance_tenth_edition
https://research-repository.uwa.edu.au/en/publications/parallel-and-distributed-computing-handbook
https://research-repository.uwa.edu.au/en/publications/parallel-and-distributed-computing-handbook
https://research-repository.uwa.edu.au/en/publications/parallel-and-distributed-computing-handbook

CIT 314 COURSE GUIDE

xiii

your tutor for formal assessment in accordance with the deadlines stated

in the Assignment File. The work you submit to your tutor for

assessment will count for 30% of your total course mark. At the end of

the course, you will need to sit for a final three-hour examination.

This will also count for 70% of your total course mark.

TUTOR-MARKED ASSIGNMENT

There are eight tutor- marked assignments in this course. You need to

submit all the assignments. The total marks for the best four (4)

assignments will be 30% of your total course mark.

Assignment questions for the units in this course are contained in the

Assignment

File. You should be able to complete your assignments from the

information and materials contained in your set textbooks and study

units. However, you may wish to use other references to broaden your

viewpoint and provide a deeper understanding of the subject.

When you have completed each assignment, send it together with a form

to your tutor. Make sure that each assignment reaches your tutor on or

before the deadline given. If, however you cannot complete your work

on time, contact your tutor before the assignment is done to discuss the

possibility of an extension.

FINAL EXAMINATIONS AND GRADING

The final examination for the course will carry 70% percentage of the

total mark available for this course. The examination will cover every

aspect of the course, so you are advised to revise all your corrected

assignments before the examination.

This course endows you with the status of a teacher and that of a learner.

This means that you teach yourself and that you learn, as your learning

capabilities would allow. It also means that you are in a better position

to determine and to ascertain the what, the how, and the when of your

language learning. No teacher imposes any method of learning on you.

The course units are similarly designed with the introduction following

the table of contents, then a set of objectives and then the discourse and

so on. The objectives guide you as you go through the units to ascertain

your knowledge of the required terms and expressions.

CIT 314 COURSE GUIDE

xiv

COURSE MARKING SCHEME

This table shows how the actual course marking is broken down.

Assessment Marks

Assignment 1- 4 Four assignments, best three marks of the four count at

30% of course marks

Final Examination 70% of overall course marks

Total 100% of course marks

HOW TO GET THE BEST FROM THIS COURSE

In distance learning the study units replace the university lecturer. This is

one of the great advantages of distance learning; you can read and work

through specially designed study materials at your own pace, and at a time

and place that suit you best. Think of it as reading the lecture instead of

listening to a lecturer. In the same way that a lecturer might set you some

reading to do, the study units tell you when to read your set books or other

material. Just as a lecturer might give you an in-class exercise, your study

units provide exercises for you to do at appropriate points.

Each of the study units follows a common format. The first item is an

introduction to the subject matter of the unit and how a particular unit is

integrated with the other units and the course as a whole. Next is a set of

learning objectives. These objectives enable you know what you should be

able to do by the time you have completed the unit. You should use these

objectives to guide your study. When you have finished the units you

must go back and check whether you have achieved the objectives. If you

make a habit of doing this, you will significantly improve your chances of

passing the course.

Remember that your tutor’s job is to assist you. When you need help, don’t

hesitate to call and ask your tutor to provide it.

1. Read this Course Guide thoroughly.

2. Organize a study schedule. Refer to the Course Overview for more

details. Note the time you are expected to spend on each unit and

how the assignments relate to the units. Whatever method you chose

to use, you should decide on it and write in your own dates for

working on each unit.

3. Once you have created your own study schedule, do everything you

can to stick to it. The major reason that students fail is that they lag

behind in their course work.

4. Turn to Unit 1 and read the introduction and the objectives for the

unit.

CIT 314 COURSE GUIDE

xv

5. Assemble the study materials. Information about what you need for

a unit is given in the overview at the beginning of each unit. You

will almost always need both the study unit you are working on and

one of your set of books on your desk at the same time.

6. Work through the unit. The content of the unit itself has been

arranged to provide a sequence for you to follow. As you work

through the unit you will be instructed to read sections from your

set books or other articles. Use the unit to guide your reading.

7. Review the objectives for each study unit to confirm that you have

achieved them. If you feel unsure about any of the objectives,

review the study material or consult your tutor.

8. When you are confident that you have achieved a unit’s

objectives, you can then start on the next unit. Proceed unit by

unit through the course and try to pace your study so that you

keep yourself on schedule.

9. When you have submitted an assignment to your tutor for marking,

do not wait for its return before starting on the next unit. Keep to

your schedule. When the assignment is returned, pay particular

attention to your tutor’s comments, both on the tutor-marked

assignment form and on the assignment. Consult your tutor as

soon as possible if you have any questions or problems.

10. After completing the last unit, review the course and prepare

yourself for the final examination. Check that you have achieved

the unit objectives (listed at the beginning of each unit) and the

course objectives (listed in this Course Guide).

FACILITATORS/TUTORS AND TUTORIALS

There are 15 hours of tutorials provided in support of this course. You

will be notified of the dates, times and location of these tutorials, together

with the name and phone number of your tutor, as soon as you are

allocated a tutorial group.

Your tutor will mark and comment on your assignments, keep a close

watch on your progress and on any difficulties you might encounter and

provide assistance for you during the course. You must mail or submit

your tutor-marked assignments to your tutor well before the due date (at

least two working days are required). They will be marked by your tutor

and returned to you as soon as possible.

Do not hesitate to contact your tutor by telephone, or e-mail if you need

help. The following might be circumstances in which you would find help

necessary. Contact your tutor if:

• you do not understand any part of the study units or the assigned

readings,

CIT 314 COURSE GUIDE

xvi

• you have difficulty with the self-tests or exercises,

• you have a question or problem with an assignment, with your

tutor’s comments on an assignment or with the grading of an

assignment.

You should try your best to attend the tutorials. This is the only chance to

a have face to face contact with your tutor and to ask questions which are

answered instantly. You can raise any problem encountered in the course

of your study. To gain the maximum benefit from course tutorials, prepare

a question list before attending them. You will learn a lot from

participating in discussions actively.

SUMMARY

Introduction to Computer Organization, as the title implies, introduces

you to the fundamental concepts of how the computer system operates

internally to perform the basic tasks required of it by the end-users.

Therefore, you should acquire the basic knowledge of the internal

workings of the components of the computer system in this course. The

content of the course material was planned and written to ensure that you

acquire the proper knowledge and skills in order to be able to programme

the computer to do your bidding. The essence is to get you to acquire the

necessary knowledge and competence and equip you with the necessary

tools.

We wish you success with the course and hope that you will find it

interesting and useful.

CONTENT PAGE

MODULE 1………………………………………. 1

UNIT 1 MEMORY SYSTEM…………….. 2

1.1 Main Memories

1.2 Auxiliary Memories

1.3 Memory Access Methods

1.4 Memory Mapping and Virtual Memories

1.5 Replacement Algorithms

1.6 Data Transfer Modes

1.7 Parallel Processing

1.8 Pipelining

MODULE 2………………………………………… 41

UNIT 1 MEMORY ADDRESSING………………. 41

1.1 What is a Memory address mode?

1.2 Modes of addressing

1.3 Number of addressing modes

1.4 Advantages of addressing modes

1.5 Uses of addressing modes

UNIT 2 ELEMENTS OF MEMORY

HIERARCHY………………………………. 49

2.1 What is Memory Hierarchy?

2.2 Memory Hierarchy Diagram

2.3 Characteristics of Memory Hierarchy

2.4 Memory Hierarchy Design

2.5 Advantages of Memory Hierarchy

MAIN

COURSE

UNIT 3 VIRTUAL MEMORY

 CONTROL SYSTEMS…………………… 56

3.1 Memory Management Systems

3.2 Paging

3.3 Address mapping using Paging

3.4 Address Mapping using Segments

3.5 Address Mapping using Segmented Paging

3.6 Multi-Programming

3.7 Virtual Machines/Memory and Protection

3.8 Hierarchical Memory systems

3.9 Drawbacks that occur in Virtual Memories

MODULE 3………………………………………………. 69

UNIT 1 HARDWARE CONTROL………………… 69

3.1.1 Hardwired Control Unit

3.1.2 Design of a hardwired Control Unit

UNIT 2 MICRO-PROGRAMMED CONTROL…. 75

3.2.1 Design of a Micro-Programmed Control Unit

3.2.2 Differences between Hardwired and Microprogrammed Control

3.2.3 Organization of Micro-Programmed Control Unit

3.2.4 Types of Micro-programmed Control Unit

UNIT 3 ASYNCHRONOUS CONTROL…………. 83

3.3.1 Clock limitations

3.3.2 Basic Concepts

3.3.3 Benefits of Asynchronous Control

3.3.4 Asynchronous Communication

3.3.5 Asynchronous Transmission

3.3.6 Synchronous vs. Asynchronous Transmission

3.3.7 Emerging application areas

3.3.8 Asynchronous Data paths and Data Transfer

3.3.9 Handshaking

MODULE 4……………………………………………. 102

UNIT 1 FAULT TOLERANT COMPUTING….. 102

3.0.1.1 What is Fault Tolerance

3.0.1.2 Fault Tolerant Systems

3.0.1.3 Hardware and Software Fault Tolerant Issues

3.0.1.4 Fault Tolerance VS High Availability

3.0.1.5 Redundancy

3.0.1.6 Relationship Between Security and Fault Tolerance

UNIT 2 METHODS FOR FAULT TOLERANT

COMPUTING…………………………………… 129

3.0.2.0 Fault Tree Analysis

3.0.2.1 Fault Detection Methods

3.0.2.2 Fault Tolerance Architecture

3.0.2.3 Fault Models

3.0.2.4 Fault Tolerance Methods

3.0.2.5 Major Issues in Modelling and Evaluation

3.0.2.6 Fault Tolerance for Web Applications

CIT 314 MODULE 1

1

MODULE 1 INTRODUCTION TO COMPUTER

ARCHITECTURE AND ORGANIZATION

INTRODUCTION

Computer Organization is concerned with the structure and behavior of

a computer system as seen by the user. It acts as the interface between

hardware and software. Computer architecture refers to those attributes

of a system visible to a programmer, or put another way, those attributes

that have a direct impact on the logical execution of a program.

Computer organization refers to the operational units and their

interconnection that realize the architecture specification.

Examples of architecture attributes include the instruction set, the

number of bit to represent various data types (e.g.., numbers, and

characters), I/O mechanisms, and technique for addressing memory.

Examples of organization attributes include those hardware details

transparent to the programmer, such as control signals, interfaces

between the computer and peripherals, and the memory technology

used.

As an example, it is an architectural design issue whether a computer

will have a multiply instruction. It is an organizational issue whether

that instruction will be implemented by a special multiply unit or by a

mechanism that makes repeated use of the add unit of the system. The

organization decision may be bases on the anticipated frequency of use

of the multiply instruction, the relative speed of the two approaches, and

the cost and physical size of a special multiply unit.

This module is an introductory module. Having one unit, the unit

explains memory systems and basic functionalities related to it. This is

shown below.

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

2

UNIT ONE: MEMORY SYSTEMS

CONTENTS

1.0 Introduction

2.0 Intended Learning Outcomes (ILOS)

3.0 Main Contents

 UNIT ONE: Memory Systems

3.1 Main Memories

3.2 Auxiliary Memories

3.3 Memory Access Methods

3.4 Memory Mapping and Virtual Memories

3.5 Replacement Algorithms

3.6 Data Transfer Modes

3.7 Parallel Processing

3.8 Pipelining

4.0 Self-Assessment Exercises

5.0 Conclusion

6.0 Summary

7.0 References/Further Reading

1.0 INTRODUCTION

Although seemingly simple in concept, computer memory exhibits

perhaps the: widest range of type. Technology, organization.

Performance, and cost of any feature of a computer system. No one

technology is optimal in satisfying the memory requirements for a

computer system. As a consequence, the typical computer system is

equipped with a hierarchy of memory subsystems, some internal to the

system (directly accessible by the processor) and some external

(accessible by the processor via a 110 module).

The memory unit is an essential component in any digital ccomputer

since it is needed for storing programs and data. A very small computer

with an unlimited application may be able to fulill its intended task

without the need of additional storage capacity. Most general purpose

computers would run more efficiently if they were equipped with

additional storage beyond the capacity of the main memory. There is

just not enough space in one memory unit to accommodate all the

progams used in a typical computer. The memory unit that

communicates directly with the CPU is called the main memory.

Devices that provide backup storage are called auxiliary memory. The

most common auxiliary memory devices used in computer systems are

magnetic disks and tapes. They are used for storing system, programs,

large data, and other backup information. Only programs and data

CIT 314 MODULE 1

3

currently needed by the processor reside in main memory. A special

very-high speed memory called a Cache is sometimes used to increase

the speed of processing by making current programs and data available

to the CPU at a rapid rate. The cache memory is employed in computer

systems to compensate for the speed differential between main memory

access time and processor logic.

The complex subject of computer memory is made more manageable if

we classify memory systems according to their key characteristics.

Internal memory is often equated with main memory. But there are other

forms of internal memory. The processor requires its own local memory,

in the form of registers. The control unit portion of the processor may

also require its own internal memory. Cache is another form of internal

memory. External memory consists of peripheral storage devices, such

as disk and tape, that arc accessible to the processor via I/O. An obvious

characteristic of memory is its capacity. For internal memory, this is

typically expressed in terms of bytes (1 byte- = 1024 bits) or words.

Common word lengths are 8, 16, and 32 bits. External memory capacity

is typically expressed in terms of bytes.

A related concept is the unit of transfer, for internal memory, the unit

of transfer is equal to the number of data lines into and out of the

memory module. This may be equal to the word length, but is often

larger. such as 64. 128, or 256 bits. From a user's point of view, the two

most important characteristics of memory are capacity and

performance. Three performance parameters arc used: a. second access

can commence. This additional time may be required for transients to

die out on signal lines or to regenerate data if they are read destructively.

Now that memory cycle time is concerned with the system bus, not the

processor.

 Transfer rate: This is the rate at which data can be transferred

into or out of a memory unit.

 Access time (latency): For random-access memory, this is the

time it takes to perform a read or write operation. That is, the

time from the instant that an address is presented to the memory

to the instant that data have been stored or made available for use.

For non-random-access memory, access time is the time it takes

to position the read—write mechanism at the desired location.

Memory cycle time: This concept is primarily applied to random-access

memory and consists of the access time plus any additional time

required before

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

4

2.0 INTENDED LEARNING OUTCOMES (ILOs)

At the end of this module, the user should be able to discuss elaborately

on;

 Memory types and their functionalities

 The history of memory devices

 Modes to augment processing

 Access methods

 Pipelining

3.1 MAIN MEMORIES

The main memory is the central storage unit in a computer system. It is a

relatively large and fast memory used to store programs and data during

the computer operation. The principal technology used for the main

memory is based on semiconductor integrated circuits. Integrated circuit

RAM chips are available in two possible operating modes, static and

dynamic. The static RAM consists essentially of internal flip-flops that

store the binary information. The stored information remains valid as

long as power is applied to the unit. The dynamic RAM stores the binary

information in the form of electric charges that are applied to capacitors.

The capacitors are provided inside the chip by MOS transistors. The

stored charge on the capacitors tend to discharge with time and the

capacitors must be periodically recharged by refreshing the dynamic

memory. Refreshing is done by cycling through the words every few

milliseconds to restore the decaying charge. The dynamic RAM offers

reduced power consumption and larger storage capacity in a single

memory chip. The static RAM is easier to use and has shorter read and

write cycles. Most of the main memory in a general-purpose computer is

made up of RAM integrated circuit chips, but a portion of the memory

may be constructed with ROM chips. Originally, RAM was used to refer

to a random-access memory, but now it is used to designate a read/write

memory to distinguish it from a read-only memory, although ROM is

also random access. RAM is used for storing the bulk of the programs

and data that are subject to change. ROM is used for storing programs

that are permanently resident in the computer and for tables of constants

that do not change in value once the production of the computer is

completed. Among other things, the ROM portion of main memory is

needed for storing an initial program called a bootstrap loader. The

bootstrap loader is a program whose function is to start the computer

software operating when power is turned on. Since RAM is volatile, its

contents are destroyed when power is turned off. The contents of ROM

remain unchanged after power is turned off and on again. The startup of

CIT 314 MODULE 1

5

a computer consists of turning the power on and starting the execution

of an initial program. Thus when power is turned on, the hardware of the

computer sets the program counter to the first address of the bootstrap

loader. The bootstrap program loads a portion of the operating system

from disk to main memory and control is then transferred to the

operating system, which prepares the computer for general use.

3.2 AUXILIARY MEMORIES

The primary types of Auxiliary Storage Devices are:

 Magnetic tape

 Magnetic Disks

 Floppy Disks

 Hard Disks and Drives

These high-speed storage devices are very expensive and hence the cost

per bit of storage is also very high. Again, the storage capacity of the

main memory is also very limited. Often it is necessary to store

hundreds of millions of bytes of data for the CPU to process. Therefore,

additional memory is required in all the computer systems. This memory

is called auxiliary memory or secondary storage. In this type of memory,

the cost per bit of storage is low. However, the operating speed is slower

than that of the primary memory. Most widely used secondary storage

devices are magnetic tapes, magnetic disks and floppy disks.

 It is not directly accessible by the CPU.

 Computer usually uses its input / output channels to access

secondary storage and transfers the desired data using an

intermediate in primary storage.

3.2.1 Magnetic Tapes

Magnetic tape is a medium for magnetic recording, made of a thin,

magnetisable coating on a long, narrow strip of plastic film. It was

developed in Germany, based on magnetic wire recording. Devices that

record and play back audio and video using magnetic tape are tape

recorders and video tape recorders. Magnetic tape an information

storage medium consisting of a magnetic coating on a flexible backing

in tape form. Data is recorded by magnetic encoding of tracks on the

coating according to a particular tape format.

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

6

Figure 1.0: Magnetic Tape

Characteristics of Magnetic Tapes

 No direct access, but very fast sequential access.

 Resistant to different environmental conditions.

 Easy to transport, store, cheaper than disk.

 Before, it was widely used to store application data; nowadays,

 it's mostly used for backups or archives (tertiary storage).

Magnetic tape is wound on reels (or spools). These may be used on their

own, as open-reel tape, or they may be contained in some sort of

magnetic tape cartridge for protection and ease of handling. Early

computers used open-reel tape, and this is still sometimes used on large

computer systems although it has been widely superseded by cartridge

tape. On smaller systems, if tape is used at all it is normally cartridge

tape.

Figure 1.2: Magnetic Tape

Magnetic tape is used in a tape transport (also called a tape drive, tape

deck, tape unit, or MTU), a device that moves the tape over one or more

magnetic heads. An electrical signal is applied to the write head to

record data as a magnetic pattern on the tape; as the recorded tape passes

over the read head it generates an electrical signal from which the stored

CIT 314 MODULE 1

7

data can be reconstructed. The two heads may be combined into a single

read/write head. There may also be a separate erase head to erase the

magnetic pattern remaining from previous use of the tape. Most

magnetic-tape formats have several separate data tracks running the

length of the tape. These may be recorded simultaneously, in which

case, for example, a byte of data may be recorded with one bit in each

track (parallel recording); alternatively, tracks may be recorded one at a

time (serial recording) with the byte written serially along one track.

 Magnetic tape has been used for offline data storage, backup,

archiving, data interchange, and software distribution, and in the

early days (before disk storage was available) also as online

backing store. For many of these purposes it has been superseded

by magnetic or optical disk or by online communications. For

example, although tape is a non-volatile medium, it tends to

deteriorate in long-term storage and so needs regular attention

(typically an annual rewinding and inspection) as well as a

controlled environment. It is therefore being superseded for

archival purposes by optical disk.

 Magnetic tape is still extensively used for backup; for this

purpose, interchange standards are of minor importance, so

proprietary cartridge-tape formats are widely used.

 Magnetic tapes are used for large computers like mainframe

computers where large volume of data is stored for a longer time.

In PCs also you can use tapes in the form of cassettes.

 The cost of storing data in tapes is inexpensive. Tapes consist of

magnetic materials that store data permanently. It can be 12.5

mm to 25 mm wide plastic film-type and 500 meter to 1200-

meter-long which is coated with magnetic material. The deck is

connected to the central processor and information is fed into or

read from the tape through the processor. It is similar to cassette

tape recorder.

Advantages of Magnetic Tape

 Compact: A 10-inch diameter reel of tape is 2400 feet long and is

able to hold 800, 1600 or 6250 characters in each inch of its

length. The maximum capacity of such type is 180 million

characters. Thus data are stored much more compact on tape

 Economical: The cost of storing characters on tape is very less as

compared to other storage devices.

 Fast: Copying of data is easier and fast.

 Long term Storage and Re-usability: Magnetic tapes can be

used for long term storage and a tape can be used repeatedly

without loss of data.

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

8

3.2.2 Magnetic Disks

You might have seen the gramophone record, which is circular like a

disk and coated with magnetic material. Magnetic disks used in

computer are made on the same principle. It rotates with very high speed

inside the disk drive. Data are stored on both the surface of the disk.

Magnetic disks are most popular for direct access storage. Each disk

consists of a number of invisible concentric circles called tracks.

Information is recorded on tracks of a disk surface in the form of tiny

magnetic sports. The presence of a magnetic sport represents one bit (1)

and its absence represents zero bit (0). The information stored in a disk

can be read many times without affecting the stored data. So the reading

operation is non-destructive. But if you want to write a new data, then

the existing data is erased from the disk and new data is recorded.

A digital computer memory in which the data carrier is a thin aluminium

or plastic disk coated with a layer of magnetic material. Magnetic disks

are 180-1,200 mm in diameter and 2.5-5.0 mm thick; Ni-Co or CoW

alloys are used for the magnetic coating. A magnetic disk memory

usually contains several dozen disks mounted on a comm on axle, which

is turned by an electric motor. One or more disks (a packet) may be

replaced, creating disk index files. There may be as many as 100 disks in

a memory and 64- 5,000 data tracks on each operating surface of a disk;

the recording density is 20 130 impulses per millimeter.

The data capacity of magnetic disk memories ranges from several tens

of thousands up to several billion bits, and the average access time is 10-

100 milliseconds. The two main types are the hard disk and the floppy

disk.

Data is stored on either or both surfaces of discs in concentric rings

called "tracks". Each track is divided into a whole number of "sectors".

Where multiple (rigid) discs are mounted on the same axle the set of

tracks at the same radius on all their surfaces is known as a" cylinder".

Data is read and written by a disk drive which rotates the discs and

positions the read/write heads over the desired track(s). The latter radial

movement is known as "seeking”. There is usually one head for each

surface that stores data. The head writes binary data by magnetising

small areas or "zones" of the disk in one of two opposing orientations. It

reads data by detecting current pulses induced in a coil as zones with

different magnetic alignment pass underneath it.

In theory, bits could be read back as a time sequence of pulse (one) or

no pulse (zero). However, a run of zeros would give a prolonged

absence of signal, making it hard to accurately divide the signal into

CIT 314 MODULE 1

9

individual bits due to the variability of motor speed. High speed disks

have an access time of 28 milliseconds or less, and low speed disk s,

65milliseconds or more. The higher

speed disks also transfer their data faster than the slower speed units.

The disks are usually aluminum with a magnetic coating. The heads

"float" just above the disk's surface on a current of air, sometimes at

lower than atmospheric pressure in an air tight enclosure. The head has

an aerodynamic shape so the current pushes it away from the disk. A

small spring pushes the head towards the disk at the same time keeping

the he a data constant distance from the disk (about two microns). Disk

drives are commonly characterized by the kind of interface used to

connect to the computer

3.2.3 Floppy Disks

These are small removable disks that are plastic coated with magnetic

recording material. Floppy disks are typically 3.5″ in size (diameter) and

can hold 1.44 MB of data. This portable storage device is a rewritable

media and can be reused a number of times. Floppy disks are commonly

used to move files between different computers. The main disadvantage

of floppy disks is that they can be damaged easily and, therefore, are not

very reliable. The following figure shows an example of the floppy disk.

It is similar to magnetic

Figure 1.3: Magnetic Disks

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

10

Figure 1.4: Floppy Disks

disk. It is 3.5 inch in diameter. The capacity of a 3.5-inch floppy is 1.44

megabytes. It is cheaper than any other storage devices and is portable.

The floppy is a low-cost device particularly suitable for personal

computer system.

 Read/Write head: A floppy disk drive normally has two-

read/write heads making Modern floppy disk drives as double-

sided drives. A head exists for each side of disk and Both heads

are used for reading and writing on the respective disk side.

 Head 0 and Head 1: Many people do not realize that the first

head (head 0) is bottom one and top head is head 1. The top head

is located either four or eight tracks inward from the bottom head

depending upon the drive type.

 Head Movement: A motor called head actuator moves the head

mechanism. The heads can move in and out over the surface of

the disk in a straight line to position themselves over various

tracks. The heads move in and out tangentially to the tracks that

they record on the disk.

 Head: The heads are made of soft ferrous (iron) compound with

electromagnetic coils. Each head is a composite design with a

R/W head centered within two tunnel erasure heads in the same

physical assembly. PC compatible floppy disk drive spin at 300

or 360r.p.m. The two heads are spring loaded and physically grip

the disk with small pressure, this pressure does not present

excessive friction.

3.2.3.1 Recording Method

 Tunnel Erasure: As the track is laid down by the R/W heads, the

trailing tunnel erasure heads force the data to be present only

within a specified narrow tunnel on each track. This process

prevents the signals from reaching adjacent track and making

cross talk.

CIT 314 MODULE 1

11

 Straddle Erasure: In this method, the R/W and the erasure heads

do recording and erasing at the same time. The erasure head is

not used to erase data stored in the diskette. It trims the top and

bottom fringes of recorded flux reversals. The erasure heads

reduce the effect of cross-talk between tracks and minimize the

errors induced by minor run out problems on the diskette or

diskette drive.

 Head alignment: Alignment is the process of placement of the

heads with respect to the track that they must read and write.

Head alignment can be checked only against some sort of

reference- standard disk recorded by perfectly aligned machine.

These types of disks are available and one can use one to check

the drive alignment.

3.2.4 Hard Disks and Drives

A hard disk drive (HDD), hard disk, hard drive or fixed disk is a data

storage device that uses magnetic storage to store and retrieve digital

information using one or more rigid rapidly rotating disks (platters)

coated with magnetic material. The platters are paired with magnetic

heads, usually arranged on a moving actuator arm, which read and write

data to the platter surfaces. Data is accessed in a random-access manner,

meaning that individual blocks of data can be stored or retrieved in any

order and not only sequentially.

HDDs are a type of non-volatile storage, retaining stored data even

when powered off. A hard drive can be used to store any data, including

pictures, music, videos, text documents, and any files created or

downloaded. Also, hard drives store files for the operating and software

programs that run on the computer. All primary computer hard drives

are found inside a computer case and are attached to the computer

motherboard using an ATA, SCSI, or SATA cable, and are powered by

a connection to the PSU (power supply unit). The hard drive is typically

capable of storing more data than any other drive, but its size can vary

depending on the type of drive and its age. Older hard drives had a

storage size of several hundred megabytes (MB) to several gigabytes

(GB). Newer hard drives have a storage size of several hundred

gigabytes to several terabytes (TB). Each year, new and improved

technology allows for increasing hard drive storage sizes.

3.2.4.1 Hard Drive Components

As can be seen in the picture below, the desktop hard drive consists of

the following components: the head actuator, read/write actuator arm,

read/write head, spindle, and platter. On the back of a hard drive is a

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

12

circuit board called the disk controller or interface board and is what

allows the hard drive to communicate with the computer.

3.2.4.2 External and Internal Hard drives

Although most hard drives are internal, there are also stand-alone

devices called external hard drives, which can backup data on computers

and expand the available disk space. External drives are often stored in

an enclosure that helps protect the drive and allows it to interface with

the computer, usually over USB or eSATA.

Figure 1.6: Hard Drive

3.2.4.3 History of the hard drive

The first hard drive was introduced to the market by IBM on September

13, 1956. The hard drive was first used in the RAMAC 305 system, with

a storage capacity of 5 MB and a cost of about $50,000 ($10,000 per

megabyte). The hard drive was built-in to the computer and was not

removable. The first hard drive to have a storage capacity of one

gigabyte was also developed by IBM in 1980. It weighed 550 pounds

Figure 1.5: Hard Drive Components

CIT 314 MODULE 1

13

and cost $40,000. 1983 marked the introduction of the first 3.5-inch size

hard drive, developed by Rodime. It had a storage capacity of 10 MB.

Seagate was the first company to introduce a 7200 RPM hard drive in

1992. Seagate also introduced the first 10,000 RPM hard drive in 1996

and the first 15,000 RPM hard drive in 2000. The first solid-state drive

(SSD) as we know them today was developed by SanDisk Corporation

in 1991, with a storage capacity of 20 MB. However, this was not a

flash-based SSD, which were introduced later in 1995 by M-Systems.

These drives did not require a battery to keep data stored on the memory

chips, making them a non-volatile storage medium.

3.2.5 CD-ROM Compact Disk/Read Only Memory (CD-ROM)

CD-ROM disks are made of reflective metals. CD-ROM is written

during the process of manufacturing by high power laser beam. Here the

storage density is very high, storage cost is very low and access time is

relatively fast. Each disk is approximately 4 1/2 inches in diameter and

can hold over 600 MB of data. As the CD-ROM can be read only we

cannot write or make changes into the data contained in it.

3.2.5.1 Characteristics of the CD-ROM

 In PCs, the most commonly used optical storage technology is

called Compact Disk Read-Only Memory (CD-ROM).

 A standard CD-ROM disk can store up to 650 MB of data, or

about 70 minutes of audio.

 Once data is written to a standard CD-ROM disk, the data cannot

be altered or overwritten. CD‐ROM SPEEDS AND USES

Storage capacity 1 CD can store about 600 to 700 MB = 600 000

to 700 000 KB. For comparison, we should realize that a common

A4 sheet of paper can store an amount of information in the form

of printed characters that would require about 2 kB of space on a

Figure 1.7: CD-Rom

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

14

computer. So one CD can store about the same amount of text

information equivalent as 300 000 of such A4 sheets. Yellow

Book standard

 The basic technology of CD-ROM remains the same as that for

CD audio, but CD-ROM requires greater data integrity, because a

corrupt bit that is not noticeable during audio playback becomes

intolerable with computer data.

 So CD-ROM (Yellow Book) dedicates more bits to error

detection and correction than CD audio (Red Book).

 Data is laid out in a format known as ISO 960. Advantages in

comparison with other information carriers

 The information density is high.

 The cost of information storage per information unit is low.

 The disks are easy to store, to transport and to mail.

 Random access to information is possible.

Advantages

 Easier access to a range of CD-ROMs.

 Ideally, access from the user’s own workstation in the office or at

home.

 Simultaneous access by several users to the same data.

 Better security avoids damage to discs and equipment.

 Less personnel time needed to provide disks to users.

 Automated, detailed registration of usage statistics to support the

management

Disadvantages

 Costs of the network software and computer hardware.

 Increased charges imposed by the information suppliers.

 Need for expensive, technical expertise to select, set up, manage,

and maintain the network system.

 Technical problems when the CD-ROM product is not designed

for use in the network.

 The network software component for the workstation side must

be installed on each microcomputer before this can be applied to

access the CD-ROM’s.

3.2.6 Other Optical Devices

An optical disk is made up of a rotating disk which is coated with a thin

reflective metal. To record data on the optical disk, a laser beam is

focused on the surface of the spinning disk. The laser beam is turned on

and off at varying rates! Due to this, tiny holes (pits) are burnt into the

CIT 314 MODULE 1

15

metal coating along the tracks. When data stored on the optical disk is to

be read, a less powerful laser beam is focused on the disk surface. The

storage capacity of these devices is tremendous; the Optical disk access

time is relatively fast. The biggest drawback of the optical disk is that it

is a permanent storage device. Data once written cannot be erased.

Therefore it is a read only storage medium. A typical example of the

optical disk is the CD-ROM.

1. Read-only memory (ROM) disks, like the audio CD, are used

for the distribution of standard program and data files. These are

mass-produced by mechanical pressing from a master die. The

information is actually stored as physical indentations on the

surface of the CD. Recently low-cost equipment has been

introduced in the market to make one-off CD-ROMs, putting

them into the next category.

2. Write-once read-many (WORM) disks: Some optical disks can

be recorded once. The information stored on the disk cannot be

changed or erased. Generally the disk has a thin reflective film

deposited on the surface. A strong laser beam is focused on

selected spots on the surface and pulsed. The energy melts the

film at that point, producing a nonreflective void. In the read

mode, a low power laser is directed at the disk and the bit

information is recovered by sensing the presence or absence of a

reflected beam from the disk.

3. Re-writeable, write-many read-many (WMRM) disks, just like

the magnetic storage disks, allows information to be recorded and

erased many times. Usually, there is a separate erase cycle

although this may be transparent to the user. Some modern

devices have this accomplished with one over-write cycle. These

devices are also called direct read-after-write (DRAW) disks.

4. WORM (write once, read many) is a data storage technology

that allows information to be written to a disc a single time and

prevents the drive from erasing the data. The discs are

intentionally not rewritable, because they are especially intended

to store data that the user does not want to erase accidentally.

Because of this feature, WORM devices have long been used for

the archival purposes of organizations such as government

agencies or large enterprises. A type of optical media, WORM

devices were developed in the late 1970s and have been adapted

to a number of different media. The discs have varied in size

from 5.25 to 14 inches wide, in varying formats ranging from

140MB to more than 3 GB per side of the (usually) double-sided

medium. Data is written to a WORM disc with a low- powered

laser that makes permanent marks on the surface. WORM (Write

Once, Read Many) storage had emerged in the late 1980s and

was popular with large institutions for the archiving of high

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

16

volume, sensitive data. When data is written to a WORM drive,

physical marks are made on the media surface by a low- powered

laser and since these marks are permanent, they cannot be erased.

Rewritable, or erasable, optical disk drives followed, providing

the same high capacities as those provided by WORM or CD-

ROM devices.

5. Erasable Optical Disk: An erasable optical disk is the one which

can be erased and then loaded with new data content all over

again. These generally come with a RW label. These are based on

a technology popularly known as Magnetic Optical which

involves the application of heat on a precise point on the disk

surface and magnetizing it using a laser. Magnetizing alters the

polarity of the point indicating data value ‘1’. Erasing too is

achieved by heating it with a high energy laser to a certain critical

level where the crystal polarity is reset to all 0’s. A variety of

optical disc, or type of external storage media, that allows the

deletion and rewriting of information, unlike a CD or CD-ROM,

which are read-only optical discs. An erasable optical disc allows

high-capacity storage (600 MB or more) and their durability has

made them useful for archival storage.

6. Touchscreen Optical Device: A touchscreen is an input and

output device normally layered on the top of an electronic visual

display of an information processing system. A user can give

input or control the information processing system through

simple or multi-touch gestures by touching the screen with a

special stylus or one or more fingers. Some touchscreens use

ordinary or specially coated gloves to work while others may

only work using a special stylus or pen. The user can use the

touchscreen to react to what is displayed and, if the software

allows, to control how it is displayed; for example, zooming to

increase the text size. The touchscreen enables the user to interact

directly with what is displayed, rather than using a mouse,

touchpad, or other such devices (other than a stylus, which is

optional for most modern touchscreens). Touchscreens are

common in devices such as game consoles, personal computers,

electronic voting machines, and point-of-sale (POS) systems.

They can also be attached to computers or, as terminals, to

networks. They play a prominent role in the design of digital

appliances such as personal digital assistants (PDAs) and some e-

readers.

There are two types of overlay-based touch screens:

 Capacitive Touch Technology – Capacitive touch screens take

advantage of the conductivity of the object to detect location of

touch. While they are durable and last for a long time, they can

CIT 314 MODULE 1

17

malfunction if they get wet. Their performance is also

compromised if a nonconductor like a gloved finger presses on

the screen. Most smart phones and tablets have capacitive touch

screens.

 Resistive Touch Technology – Resistive touch screens have

moving parts. There is an air gap between two layers of

transparent material. When the user applies pressure to the outer

layer, it touches the inner layer at specific locations. An electric

circuit is completed and the location can be determined. Though

they are cheaper to build compared to capacitive touch screens,

they are also less sensitive and can wear out quickly.

There are mainly three types of perimeter-based technologies:

 Infrared Touch Technology – This technology uses beams of

infrared lights to detect touch events.

 Surface Acoustic Wave Touch Technology – This type of touch

screen uses ultrasonic waves to detect touch events.

 Optical Touch Technology – This type of perimeter-based

technology uses optical sensors, mainly CMOS sensors to detect

touch events. All of these touch screen technologies can also be

integrated on top of a non-touch-based system like an ordinary

LCD and converted into Open Frame Touch Monitors.

3.3 MEMORY ACCESS METHODS

Data need to be accessed from the memory for various purposes. There

are several methods to access memory as listed below:

 Sequential access

 Direct access

 Random access

 Associative access

We will study about each of the access method one by one.

3.3.1 Sequential Access Method

In sequential memory access method, the memory is accessed in linear

sequential way. The time to access data in this type of method depends

on the location of the data.

Figure 1.8: Sequential Access Method

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

18

3.3.2 Random Access Method

In random access method, data from any location of the memory can be

accessed randomly.

The access to any location is not related with its physical location and is

independent of other locations. There is a separate access mechanism

for each location.

 3.3.3 Direct Access Method

Direct access method can be seen as combination of sequential access

method and random access method. Magnetic hard disks contain many

rotating storage tracks. Here each tracks has its own read or write head

and the tracks can be accessed randomly. But access within each track is

sequential.

Example of direct access: Memory devices such as magnetic hard disks.

Figure 1.9: Random Access Method

CIT 314 MODULE 1

19

1.3.4 Associative Access Method

Associative access method is a special type of random access method. It

enables comparison of desired bit locations within a word for a specific

match and to do this for all words simultaneously. Thus, based on

portion of word's content, word is retrieved rather than its address.

Example of associative access: Cache memory uses associative access

method.

3.4 MEMORY MAPPING AND VIRTUAL MEMORIES

Memory-mapping is a mechanism that maps a portion of a file, or an

entire file, on disk to a range of addresses within an application's address

space. The application can then access files on disk in the same way it

accesses dynamic memory. This makes file reads and writes faster in

comparison with using functions such as fread and fwrite.

3.4.1 Benefits of Memory-Mapping

The principal benefits of memory-mapping are efficiency, faster file

access, the ability to share memory between applications, and more

efficient coding.

3.4.1.1 Faster File Access

Accessing files via memory map is faster than using I/O functions such

as fread and fwrite. Data are read and written using the virtual memory

capabilities that are built in to the operating system rather than having to

allocate, copy into, and then deallocate data buffers owned by the

process does not access data from the disk when the map is first

constructed. It only reads or writes the file on disk when a specified part

of the memory map is accessed, and then it only reads that specific part.

This provides faster random access to the mapped data.

Figure 1.10: Direct Access Method

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

20

3.4.1.2 Efficiency

Mapping a file into memory allows access to data in the file as if that

data had been read into an array in the application's address space.

Initially, MATLAB only allocates address space for the array; it

does not actually read data from the file until you access the mapped region. As

a result, memory-mapped files provide a mechanism by which

applications can access data segments in an extremely large file without

having toread the entire file into memory first. Efficient Coding Style

Memory-mapping in your MATLAB application enables you to access file

data using standard MATLAB indexing operations.

3.4.2 VIRTUAL MEMORIES

Processes in a system share the CPU and main memory with other

processes. However, sharing the main memory poses some special

challenges. As demand on the CPU increases, processes slowdown in

some reasonably smooth way. But if too many processes need too much

memory, then some of them will simply not be able to run. When a

program is out of space, it is out of luck. Memory is also vulnerable to

corruption. If some process inadvertently writes to the memory used by

another process, that process might fail in some bewildering fashion

totally unrelated to the program logic. In order to manage memory more

efficiently and with fewer errors, modern systems provide an abstraction

of main memory known as virtual memory (VM). Virtual memory is an

elegant interaction of hardware exceptions, hardware address translation,

main memory, disk files, and kernel software that provides each process

with a large, uniform, and private address space. With one clean

mechanism, virtual memory provides three important capabilities.

 It uses main memory efficiently by treating it as a cache for an

address space stored on disk, keeping only the active areas in

main memory, and transferring data back and forth between disk

and memory as needed.

 It simplifies memory management by providing each process

with a uniform address space.

 It protects the address space of each process from corruption by

other processes.

Virtual memory is one of the great ideas in computer systems. A major

reason for its success is that it works silently and automatically, without

any intervention from the application programmer. Since virtual

memory works so well behind the scenes, why would a programmer

need to understand it? There are several reasons.

CIT 314 MODULE 1

21

• Virtual memory is central. Virtual memory pervades all levels of

computer systems, playing key roles in the design of hardware

exceptions, assemblers, linkers, loaders, shared objects, files, and

processes. Understanding virtual memory will help you better

understand how systems work in general.

• Virtual memory is powerful. Virtual memory gives applications

powerful capabilities to create and destroy chunks of memory, map

chunks of memory to portions of disk files, and share memory with

other processes. For example, did you know that you can read or

modify the contents of a disk file by reading and writing memory

locations? Or that you can load the contents of a file into memory

without doing any explicit copying? Understanding virtual memory

will help you harness its powerful capabilities in your applications.

3.4.2.1 VM as a Tool for Caching

Conceptually, a virtual memory is organized as an array of N contiguous

byte-sized cells stored on disk. Each byte has a unique virtual address

that serves as an index into the array. The contents of the array on disk

are cached in main memory. As with any other cache in the memory

hierarchy, the data on disk (the lower level) is partitioned into blocks

that serve as the transfer units between the disk and the main memory

(the upper level). VM systems handle this by partitioning the virtual

memory into fixed-sized blocks called virtual pages (VPs). Each virtual

page is P = 2p bytes in size. Similarly, physical memory is partitioned

into physical pages (PPs), also P bytes in size. (Physical pages are also

referred to as page frames.)

Figure 1.12: Memory as a Cache

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

22

3.4.2.2 Page Tables

As with any cache, the VM system must have some way to determine if

a virtual page is cached somewhere in DRAM. If so, the system must

determine which physical page it is cached in. If there is a miss, the

system must determine where the virtual page is stored on disk, select a

victim page in physical memory, and copy the virtual page from disk to

DRAM, replacing the victim page. These capabilities are provided by a

combination of operating system software, address translation hardware

in the MMU (memory management unit), and a data structure stored in

physical memory known as a page table that maps virtual pages to

physical pages. The address translation hardware reads the page table

each time it converts a virtual address to a physical address. The

operating system is responsible for maintaining the contents of the page

table and transferring pages back and forth between disk and DRAM

Virtual memory was invented in the early 1960s, long before the

widening CPU-memory gap spawned SRAM caches. As a result, virtual

memory systems use a different terminology from SRAM caches, even

though many of the ideas are similar. In virtual memory parlance, blocks

are known as pages. The activity of transferring a page between disk and

memory is known as swapping or paging. Pages are swapped in (paged

in) from disk to DRAM, and swapped out (paged out) from DRAM to

disk. The strategy of waiting until the last moment to swap in a page,

when a miss occurs, is known as demand paging. Other approaches,

such as trying to predict misses and swap pages in before they are

actually referenced, are possible. However, all modern systems use

demand paging.

Figure 1.13: Page Table

CIT 314 MODULE 1

23

3.4.2.3 VM as a Tool for Memory Protection

Any modern computer system must provide the means for the operating

system to control access to the memory system. A user process should

not be allowed to modify its read-only text section. Nor should it be

allowed to read or modify any of the code and data structures in the

kernel. It should not be allowed to read or write the private memory of

other processes, and it should not be allowed to modify any virtual pages

that are shared with other processes, unless all parties explicitly allow it

(via calls to explicit inter-process communication system calls).

3.4.2.4 Integrating Caches and VM

In any system that uses both virtual memory and SRAM caches, there is

the issue of whether to use virtual or physical addresses to access the

SRAM cache. Although a detailed discussion of the trade-offs is beyond

our scope here, most systems opt for physical addressing. With physical

addressing, it is straightforward for multiple processes to have blocks in

the cache at the same time and to share blocks from the same virtual

pages. Further, the cache does not have to deal with protection issues

because access rights are checked as part of the address translation

process.

3.4.2.5 Speeding up Address Translation with a TLB

As we have seen, every time the CPU generates a virtual address, the

MMU must refer to a PTE in order to translate the virtual address into a

physical address. In the worst case, this requires an additional fetch from

memory, at a cost of tens to hundreds of cycles. If the PTE happens to

be cached in L1, then the cost goes down to one or two cycles. However,

many systems try to eliminate even this cost by including a small cache

of PTEs in the MMU called a translation lookaside buffer (TLB). A

TLB is a small, virtually addressed cache where each line holds a block

consisting of a single PTE. A TLB usually has a high degree of

associativity

3.5 Replacement Algorithms

When a page fault occurs, the operating system has to choose a page to

remove from memory to make room for the page that has to be brought

in. If the page to be removed has been modified while in memory, it

must be rewritten to the disk to bring the disk copy up to date. If,

however, the page has not been changed (e.g., it contains program text),

the disk copy is already up to date, so no rewrite is needed. The page to

be read in just overwrites the page being evicted. While it would be

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

24

possible to pick a random page to evict at each page fault, system

performance is much better if a page that is not heavily used is chosen.

If a heavily used page is removed, it will probably have to be brought

back in quickly, resulting in extra overhead. Much work has been done

on the subject of page replacement algorithms, both theoretical and

experimental. Below we will describe some of the most important

algorithms. It is worth noting that the problem of ‘‘page replacement’’

occurs in other areas of computer design as well. For example, most

computers have one or more memory caches consisting of recently used

32-byte or 64-byte memory blocks. When the cache is full, some block

has to be chosen for removal. This problem is precisely the same as page

replacement except on a shorter time scale (it has to be done in a few

nanoseconds, not milliseconds as with page replacement). The reason

for the shorter time scale is that cache block misses are satisfied from

main memory, which has no seek time and no rotational latency. To

select the particular algorithm, the algorithm with lowest page fault rate

is considered.

 Optimal page replacement algorithm

 Not recently used page replacement

 First-In, First-Out page replacement

 Second chance page replacement

 Clock page replacement

 Least recently used page replacement

3.5.1 The Optimal Page Replacement Algorithm

The best possible page replacement algorithm is easy to describe but

impossible to implement. It goes like this. At the moment that a page

fault occurs, some set of pages is in memory. One of these pages will be

referenced on the very next instruction (the page containing that

instruction). Other pages may not be referenced until 10, 100, or perhaps

1000 instructions later. Each page can be labeled with the number of

instructions that will be executed before that page is first referenced.

The optimal page algorithm simply says that the page with the highest

label should be removed. If one page will not be used for 8 million

instructions and another page will not be used for 6 million instructions,

removing the former pushes the page fault that will fetch it back as far

into the future as possible.

3.5.2 The Not Recently Used Page Replacement

 Algorithm

In order to allow the operating system to collect useful statistics about

which pages are being used and which ones are not, most computers

CIT 314 MODULE 1

25

with virtual memory have two status bits associated with each page. R is

set whenever the page is referenced (read or written). M is set when the

page is written to (i.e., modified). The bits are contained in each page

table entry. It is important to realize that these bits must be updated on

every memory reference, so it is essential that they be set by the

hardware. Once a bit has been set to 1, it stays 1 until the operating

system resets it to 0 in software. If the hardware does not have these

bits, they can be simulated as follows. When a process is started up, all

of its page table entries are marked as not in memory. As soon as any

page is referenced, a page fault will occur. The operating system then

sets the R bit (in its internal tables), changes the page table entry to point

to the correct page, with mode READ ONLY, and restarts the

instruction. If the page is subsequently written on, another page fault

will occur, allowing the operating system to set the M bit and change the

page’s mode to READ/WRITE. The R and M bits can be used to build a

simple paging algorithm as follows. When a process is started up, both

page bits for all its pages are set to 0 by the operating system.

Periodically (e.g., on each clock interrupt), the R bit is cleared, to

distinguish pages that have not been referenced recently from those that

have been. When a page fault occurs, the operating system inspects all

the pages and divides them into four categories based on the current

values of their R and M bits:

• Class 0: not referenced, not modified.

• Class 1: not referenced, modified.

• Class 2: referenced, not modified.

• Class 3: referenced, modified.

3.5.3 The First-In, First-Out (FIFO) Page Replacement

 Algorithm

Another low-overhead paging algorithm is the First-In, First-Out (FIFO)

algorithm. To illustrate how this works, consider a supermarket that has

enough shelves to display exactly k different products. One day, some

company introduces a new convenience food—instant, freeze-dried,

organic yogurt that can be reconstituted in a microwave oven. It is an

immediate success, so our finite supermarket has to get rid of one old

product in order to stock it. One possibility is to find the product that the

supermarket has been stocking the longest (i.e., something it began

selling 120 years ago) and get rid of it on the grounds that no one is

interested any more. In effect, the supermarket maintains a linked list of

all the products it currently sells in the order they were introduced. The

new one goes on the back of the list; the one at the front of the list is

dropped. As a page replacement algorithm, the same idea is applicable.

The operating system maintains a list of all pages currently in memory,

with the page at the head of the list the oldest one and the page at the tail

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

26

the most recent arrival. On a page fault, the page at the head is removed

and the new page added to the tail of the list. When applied to stores,

FIFO might remove mustache wax, but it might also remove flour, salt,

or butter. When applied to computers the same problem arises. For this

reason, FIFO in its pure form is rarely used.

3.5.4 The Second Chance Page Replacement Algorithm

A simple modification to FIFO that avoids the problem of throwing out

a heavily used page is to inspect the R bit of the oldest page. If it is 0,

the page is both old and unused, so it is replaced immediately. If the R

bit is 1, the bit is cleared, the page is put onto the end of the list of pages,

and its load time is updated as though it had just arrived in memory.

Then the search continues.

3.5.5 The Clock Page Replacement Algorithm

Although second chance is a reasonable algorithm, it is unnecessarily

inefficient because it is constantly moving pages around on its list. A

better approach is to keep all the page frames on a circular list in the

form of a clock.

When a page fault occurs, the page being pointed to by the hand is

inspected. If its R bit is 0, the page is evicted, the new page is inserted

into the clock in its place, and the hand is advanced one position. If R is

1, it is cleared and the hand is advanced to the next page. This process is

repeated until a page is found with R = 0. Not surprisingly, this

algorithm is called clock. It differs from second chance only in the

implementation.

Figure 1.14: The Clock Replacement Algorithm

CIT 314 MODULE 1

27

3.5.6 The Least Recently Used (LRU) Page Replacement

 Algorithm

A good approximation to the optimal algorithm is based on the

observation that pages that have been heavily used in the last few

instructions will probably be heavily used again in the next few.

Conversely, pages that have not been used for ages will probably remain

unused for a long time. This idea suggests a realizable algorithm: when a

page fault occurs, throw out the page that has been unused for the

longest time. This strategy is called LRU (Least Recently Used) paging.

Although LRU is theoretically realizable, it is not cheap. To fully

implement LRU, it is necessary to maintain a linked list of all pages in

memory, with the most recently used page at the front and the least

recently used page at the rear. The difficulty is that the list must be

updated on every memory reference. Finding a page in the list, deleting

it, and then moving it to the front is a very time-consuming operation,

even in hardware (assuming that such hardware could be built).

3.6 DATA TRANSFER MODES

The DMA mode of data transfer reduces CPU’s overhead in handling

I/O operations. It also allows parallelism in CPU and I/O operations.

Such parallelism is necessary to avoid wastage of valuable CPU time

while handling I/O devices whose speeds are much slower as compared

to CPU. The concept of DMA operation can be extended to relieve the

CPU further from getting involved with the execution of I/O operations.

This gives rises to the development of special purpose processor called

Input-Output Processor (IOP) or IO channel. The Input Output

Processor (IOP) is just like a CPU that handles the details of I/O

operations. It is more equipped with facilities than those are available in

typical DMA controller.

Figure 1.15: The Block Diagram

The IOP can fetch and execute its own instructions that are specifically

designed to characterize I/O transfers. In addition to the I/O – related

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

28

tasks, it can perform other processing tasks like arithmetic, logic, and

branching and code translation. The main memory unit takes the pivotal

role. It communicates with processor by the means of DMA.

The Input Output Processor is a specialized processor which loads and

stores data into memory along with the execution of I/O instructions. It

acts as an interface between system and devices. It involves a sequence

of events to executing I/O operations and then store the results into the

memory.

3.6.1 Advantages

• The I/O devices can directly access the main memory without the

intervention by the processor in I/O processor-based systems.

• It is used to address the problems that are arises in Direct memory

access method.

3.6.2 Modes of Transfer

The binary information that is received from an external device is

usually stored in the memory unit. The information that is transferred

from the CPU to the external device is originated from the memory unit.

CPU merely processes the information but the source and target is

always the memory unit. Data transfer between CPU and the I/O devices

may be done in different modes.

Data transfer to and from the peripherals may be done in any of the

three possible ways.

 Programmed I/O.

 Interrupt- initiated I/O.

 Direct memory access (DMA).

1. Programmed I/O: It is due to the result of the I/O instructions

that are written in the computer program. Each data item transfer

is initiated by an instruction in the program. Usually, the transfer

is from a CPU register and memory. In this case it requires

constant monitoring by the CPU of the peripheral devices.

Example of Programmed I/O: In this case, the I/O device does not

have direct access to the memory unit. A transfer from I/O device to

memory requires the execution of several instructions by the CPU,

including an input instruction to transfer the data from device to the CPU

and store instruction to transfer the data from CPU to memory. In

programmed I/O, the CPU stays in the program loop until the I/O unit

CIT 314 MODULE 1

29

indicates that it is ready for data transfer. This is a time consuming

process since it needlessly keeps the CPU busy. This situation can be

avoided by using an interrupt facility. This is discussed below.

2. Interrupt- initiated I/O: Since in the above case we saw the

CPU is kept busy unnecessarily. This situation can very well be

avoided by using an interrupt driven method for data transfer. By

using interrupt facility and special commands to inform the

interface to issue an interrupt request signal whenever data is

available from any device. In the meantime the CPU can proceed

for any other program execution. The interface meanwhile keeps

monitoring the device. Whenever it is determined that the device

is ready for data transfer it initiates an interrupt request signal to

the computer. Upon detection of an external interrupt signal the

CPU stops momentarily the task that it was already performing,

branches to the service program to process the I/O transfer, and

then return to the task it was originally performing.

Note:Both the methods programmed I/O and Interrupt-driven I/O

require the active intervention of the processor to transfer

data between memory and the I/O module, and any data

transfer must transverse a path through the processor. Thus,

both these forms of I/O suffer from two inherent drawbacks.

• The I/O transfer rate is limited by the speed with which the

processor can test and service a device.

• The processor is tied up in managing an I/O transfer; a

number of instructions must be executed for each I/O

transfer.

3. Direct Memory Access: The data transfer between a fast storage

media such as magnetic disk and memory unit is limited by the

speed of the CPU. Thus we can allow the peripherals directly

communicate with each other using the memory buses, removing

the intervention of the CPU. This type of data transfer technique is

known as DMA or direct memory access. During DMA the CPU is

idle and it has no control over the memory buses. The DMA

controller takes over the buses to manage the transfer directly

between the I/O devices and the memory unit.

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

30

 Bus Request: It is used by the DMA controller to request the

CPU to relinquish the control of the buses.

 Bus Grant: It is activated by the CPU to Inform the external

DMA controller that the buses are in high impedance state and the

requesting DMA can take control of the buses. Once the DMA

has taken the control of the buses it transfers the data. This

transfer can take place in many ways.

3.7 PARALLEL PROCESSING

The quest for higher-performance digital computers seems unending. In

the past two decades, the performance of microprocessors has enjoyed

an exponential growth. The growth of microprocessor

speed/performance by a factor of 2 every 18 months (or about 60% per

year) is known as Moore’s law.

This growth is the result of a combination of two factors:

 Increase in complexity (related both to higher device density and to

larger size) of VLSI chips, projected to rise to around 10 M

transistors per chip for microprocessors, and 1B for dynamic

random-access memories (DRAMs), by the year 2000

 Introduction of, and improvements in, architectural features such as

on-chip cache memories, large instruction buffers, multiple

instruction issue per cycle, multithreading, deep pipelines, out-of-

order instruction execution, and branch prediction.

The motivations for parallel processing can be summarized as follows:

1. Higher speed, or solving problems faster. This is important when

applications have “hard” or “soft” deadlines. For example, we

have at most a few hours of computation time to do 24-hour

weather forecasting or to produce timely tornado warnings.

Figure 1.16: Control lines for DMA

CIT 314 MODULE 1

31

2. Higher throughput, or solving more instances of given problems.

This is important when many similar tasks must be performed.

For example, banks and airlines, among others, use transaction

processing systems that handle large volumes of data.

3. Higher computational power, or solving larger problems. This

would allow us to use very detailed, and thus more accurate,

models or to carry out simulation runs for longer periods of time

(e.g., 5-day, as opposed to 24-hour, weather forecasting).

All three aspects above are captured by a figure-of-merit often used in

connection with parallel processors: the computation speed-up factor

with respect to a uniprocessor. The ultimate efficiency in parallel

systems is to achieve a computation speed-up factor of p with p

processors. Although in many cases this ideal cannot be achieved, some

speed-up is generally possible. The actual gain in speed depends on the

architecture used for the system and the algorithm run on it. Of course,

for a task that is (virtually) impossible to perform on a single processor

in view of its excessive running time, the computation speed-up factor

can rightly be taken to be larger than p or even infinite. This situation,

which is the analogue of several men moving a heavy piece of

machinery or furniture in a few minutes, whereas one of them could not

move it at all, is sometimes referred to as parallel synergy.

A major issue in devising a parallel algorithm for a given problem is the

way in which the computational load is divided between the multiple

processors. The most efficient scheme often depends both on the

problem and on the parallel machine’s architecture.

Example

Consider the problem of constructing the list of all prime numbers in the

interval [1, n] for a given integer n > 0. A simple algorithm that can be

used for this computation is the sieve of Eratosthenes. Start with the list

of numbers 1, 2, 3, 4, ... , n represented as a “mark” bit-vector initialized

to 1000 . . . 00. In each step, the next unmarked number m (associated

with a 0 in element m of the mark bit-vector) is a prime. Find this

element m and mark all multiples of m beginning with m². When m² > n,

the computation stops and all unmarked elements are prime numbers.

The computation steps for n = 30 are shown in the figure below

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

32

Figure 3.17: The Block Diagram

3.7.1 PARALLEL PROCESSING UPS AND DOWNS

L. F. Richardson, a British meteorologist, was the first person to attempt

to forecast the weather using numerical computations. He started to

formulate his method during the First World War while serving in the

army ambulance corps. He estimated that predicting the weather for a

24-hour period would require 64,000 slow “computers” (humans +

mechanical calculators) and even then, the forecast would take 12 hours

to complete. He had the following idea or dream:

Imagine a large hall like a theater. The walls of this chamber are

painted to form a map of the globe. A myriad of computers at work upon

the weather on the part of the map where each sits, but each computer

attends to only one equation or part of an equation. The work of each

region is coordinated by an official of higher rank. Numerous little

‘night signs’ display the instantaneous values so that neighbouring

computers can read them. One of [the conductor’s] duties is to maintain

a uniform speed of progress in all parts of the globe. But instead of

waving a baton, he turns a beam of rosy light upon any region that is

running ahead of the rest, and a beam of blue light upon those that are

behindhand.

3.7.2 Types of Parallelism: A Taxonomy

Parallel computers can be divided into two main categories of control

flow and data flow. Control-flow parallel computers are essentially

based on the same principles as the sequential or von Neumann

computer, except that multiple instructions can be executed at any given

time. Data-flow parallel computers, sometimes referred to as “non-von

Neumann,” are completely different in that they have no pointer to

active instruction(s) or a locus of control. The control is totally

distributed, with the availability of operands triggering the activation of

instructions.

CIT 314 MODULE 1

33

In 1966, M. J. Flynn proposed a four-way classification of computer

systems based on the notions of instruction streams and data streams.

Flynn’s classification has become standard and is widely used. Flynn

coined the abbreviations SISD, SIMD, MISD, and MIMD (pronounced

“sis-dee,” “sim-dee,” and so forth) for the four classes of computers

shown in Fig. 1.7.3, based on the number of instruction streams (single

or multiple) and data streams (single or multiple). The SISD class

represents ordinary “uniprocessor” machines. Computers in the SIMD

class, with several processors directed by instructions issued from a

central control unit, are sometimes characterized as “array processors.”

Machines in the MISD category have not found widespread application,

but one can view them as generalized pipelines in which each stage

performs a relatively complex operation (as opposed to ordinary

pipelines found in modern processors where each stage does a very

simple instruction-level operation).

The MIMD category includes a wide class of computers. For this reason,

in 1988, E. E. Johnson proposed a further classification of such

machines based on their memory structure (global or distributed) and the

mechanism used for communication/synchronization (shared variables

or message passing). Again, one of the four categories (GMMP) is not

widely used. The GMSV class is what is loosely referred to as (shared-

memory) multiprocessors.

Figure 3.18: Pictorial Representation of Richardsons example

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

34

Figure 1.19: Classes of Computer according to Flynn

At the other extreme, the DMMP class is known as (distributed-

memory) multi-computers. Finally, the DMSV class, which is becoming

popular in view of combining the implementation ease of distributed

memory with the programming ease of the shared-variable scheme, is

sometimes called distributed shared memory. When all processors in a

MIMD-type machine execute the same program, the result is sometimes

referred to as single-program multipledata [SPMD (spim-dee)].

Although the Figigure lumps all SIMD machines together, there are in

fact variations similar to those suggested above for MIMD machines. At

least conceptually, there can be shared-memory and distributed-memory

SIMD machines in which the processors communicate by means of

shared variables or explicit message passing. Anecdote. The Flynn–

Johnson classification of Figure contains eight four-letter abbreviations.

There are many other such abbreviations and acronyms in parallel

processing, examples being CISC, NUMA, PRAM, RISC, and VLIW.

Even our journals (JPDC, TPDS) and conferences (ICPP, IPPS, SPDP,

SPAA) have not escaped this fascination with four-letter abbreviations.

The author has a theory that an individual cannot be considered a

successful computer architect until she or he has coined at least one, and

preferably a group of two or four, such abbreviations! Toward this end,

the author coined the acronyms SINC and FINC (Scant/Full Interaction

Network Cell) as the communication network counterparts to the

popular RISC/CISC dichotomy. Alas, the use of these acronyms is not

yet as widespread as that of RISC/CISC. In fact, they are not used at all.

3.7.3 Roadblocks to Parallel Computing

Over the years, the enthusiasm of parallel computer designers and

researchers has been counteracted by many objections and cautionary

statements. The list begins with the less serious, or obsolete, objections

and ends with Amdahl’s law, which perhaps constitutes the most

important challenge facing parallel computer designers and users.

CIT 314 MODULE 1

35

1. Grosch’s law (economy of scale applies, or computing power is

proportional to the square of cost). If this law did in fact hold,

investing money in p processors would be foolish as a single

computer with the same total cost could offer p² times the

performance of one such processor. Grosch’s law was formulated

in the days of giant mainframes and actually did hold for those

machines. In the early days of parallel processing, it was offered

as an argument against the cost-effectiveness of parallel

machines. However, we can now safely retire this law, as we can

buy more MFLOPS computing power per dollar by spending on

micros rather than on supers. Note that even if this law did hold,

one could counter that there is only one “fastest” single-processor

computer and it has a certain price; you cannot get a more

powerful one by spending more.

2. Minsky’s conjecture (speed-up is proportional to the logarithm of

the number p of processors). This conjecture has its roots in an

analysis of data access conflicts assuming random distribution of

addresses. These conflicts will slow everything down to the point

that quadrupling the number of processors only doubles the

performance. However, data access patterns in real applications

are far from random. Most applications have a pleasant amount of

data access regularity and locality that help improve the

performance. One might say that the log p speed-up rule is one

side of the coin that has the perfect speed-up p on the flip side.

Depending on the application, real speed-up can range from log p

to p (p/log p being a reasonable middle ground).

3. The tyranny of IC technology (because hardware becomes about

10 times faster every 5 years, by the time a parallel machine with

10-fold performance is designed and implemented, uniprocessors

will be just as fast). This objection might be valid for some

special-purpose systems that must be built from scratch with

“old” technology. Recent experience in parallel machine design

has shown that off-theshelf components can be used in

synthesizing massively parallel computers. If the design of the

parallel processor is such that faster microprocessors can simply

be plugged in as they become available, they too benefit from

advancements in IC technology. Besides, why restrict our

attention to parallel systems that are designed to be only 10 times

faster rather than 100 or 1000 times?

4. The tyranny of vector supercomputers (vector supercomputers,

built by Cray, Fujitsu, and other companies, are rapidly

improving in performance and additionally offer a familiar

programming model and excellent vectorizing compilers; why

bother with parallel processors?). Besides, not all

computationally intensive applications deal with vectors or

matrices; some are in fact quite irregular. Note, also, that vector

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

36

and parallel processing are complementary approaches. Most

current vector supercomputers do in fact come in multiprocessor

configurations for increased performance.

5. The software inertia (billions of dollars’ worth of existing

software makes it hard to switch to parallel systems; the cost of

converting the “dusty decks” to parallel programs and retraining

the programmers is prohibitive). This objection is valid in the

short term; however, not all programs needed in the future have

already been written. New applications will be developed and

many new problems will become solvable with increased

performance. Students are already being trained to think parallel.

Additionally, tools are being developed to transform sequential

code into parallel code automatically. In fact, it has been argued

that it might be prudent to develop programs in parallel languages

even if they are to be run on sequential computers. The added

information about concurrency and data dependencies would

allow the sequential computer to improve its performance by

instruction prefetching, data caching, and so forth.

3.8 PIPELINING

There exist two basic techniques to increase the instruction execution

rate of a processor. These are to increase the clock rate, thus decreasing

the instruction execution time, or alternatively to increase the number of

instructions that can be executed simultaneously. Pipelining and

instruction-level parallelism are examples of the latter technique.

Pipelining owes its origin to car assembly lines. The idea is to have

more than one instruction being processed by the processor at the same

time. Similar to the assembly line, the success of a pipeline depends

upon dividing the execution of an instruction among a number of

subunits (stages), each performing part of the required operations. A

possible division is to consider instruction fetch (F), instruction decode

(D), operand fetch (F), instruction execution (E), and store of results (S)

as the subtasks needed for the execution of an instruction. In this case, it

is possible to have up to five instructions in the pipeline at the same

time, thus reducing instruction execution latency.

Pipeline system is like the modern day assembly line setup in factories.

For example in a car manufacturing industry, huge assembly lines are

setup and at each point, there are robotic arms to perform a certain task,

and then the car moves on ahead to the next arm.

CIT 314 MODULE 1

37

Types of Pipeline:

It is divided into 2 categories:

 Arithmetic Pipeline- Arithmetic pipelines are usually found in

most of the computers. They are used for floating point

operations, multiplication of fixed point numbers etc.

 Instruction Pipeline- In this a stream of instructions can be

executed by overlapping fetch, decode and execute phases of an

instruction cycle. This type of technique is used to increase the

throughput of the computer system. An instruction pipeline reads

instruction from the memory while previous instructions are

being executed in other segments of the pipeline. Thus we can

execute multiple instructions simultaneously. The pipeline will be

more efficient if the instruction cycle is divided into segments of

equal duration.

 Pipeline Conflicts

There are some factors that cause the pipeline to deviate its normal

performance. Some of these factors are given below:

 Timing Variations: All stages cannot take same amount of time.

This problem generally occurs in instruction processing where

different instructions have different operand requirements and

thus different processing time.

 Data Hazards: When several instructions are in partial

execution, and if they reference same data then the problem

arises. We must ensure that next instruction does not attempt to

access data before the current instruction, because this will lead

to incorrect results. Branching In order to fetch and execute the

next instruction, we must know what that instruction is. If the

present instruction is a conditional branch, and its result will lead

us to the next instruction, then the next instruction may not be

known until the current one is processed.

 Interrupts: Interrupts set unwanted instruction into the

instruction stream. Interrupts effect the execution of instruction.

 Data Dependency: It arises when an instruction depends upon

the result of a previous instruction but this result is not yet

available.

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

38

Advantages of Pipelining

 The cycle time of the processor is reduced.

 It increases the throughput of the system

 It makes the system reliable.

Disadvantages of Pipelining

 The design of pipelined processor is complex and costly to

manufacture.

 The instruction latency is more.

Pipelining refers to the technique in which a given task is divided into a

number of subtasks that need to be performed in sequence. Each subtask

is performed by a given functional unit. The units are connected in a

serial fashion and all of them operate simultaneously. The use of

pipelining improves the performance compared to the traditional

sequential execution of tasks. Figure 3.20 shows an illustration of the

basic difference between executing four subtasks of a given instruction

(in this case fetching F, decoding D, execution E, and writing the results

W) using pipelining and sequential processing.

Figure 3.20: Pictorial Representation of a simple Pipelining Example

It is clear from the figure that the total time required to process three

instructions (I1, I2, I3) is only six time units if four-stage pipelining is

used as compared to 12 time units if sequential processing is used. A

possible saving of up to 50% in the execution time of these three

instructions is obtained. In order to formulate some performance

measures for the goodness of a pipeline in processing a series of tasks, a

space time chart (called the Gantt’s chart) is used.

As can be seen from the figure 3.20, 13 time units are needed to finish

executing 10 instructions (I1 to I10). This is to be compared to 40 time

units if sequential processing is used (ten instructions each requiring

four time units).

CIT 314 MODULE 1

39

4.0 SELF-ASSESSMENT EXERCISES

1. Differentiate between the types of pipelines available.

2. What are the types of parallel computing?

3. Consider the execution of 500 instructions on a five-stage

pipeline machine. Compute the speed-up due to the use of

pipelining given that the probability of an instruction being a

branch is p = 0.3? What must be the value of p and the expected

number of branch instructions such that a speed-up of at least 4 is

possible? What must be the value of p such that a speed-up of at

least 5 is possible? Assume that each stage takes one cycle to

perform its task.

4. What is the average instruction processing time of a five-stage

instruction pipeline for 36 instructions if conditional branch

instructions occur as follows: I5, I7, I10, I25, I27. Use both the

space–time chart and the analytical model.

TUTOR MARKED ASSIGNMENTS

1. Parallelism in everyday life. Discuss the various forms of

parallelism used to speed up the following processes:

 Student registration at a university.

 Shopping at a supermarket.

 Taking an elevator in a high-rise building

2. A computer system has a three-stage pipeline consisting of a

Fetch unit (F), a Decode unit (D), and an Execute (E) unit.

Determine (using the space–time chart) the time required to

execute 20 sequential instructions using two-way interleaved

memory if all three units require the use of the memory

simultaneously.

3. List and explain various pipeline conflicts that exist.

4. What are the roadblocks to parallel processing?

5. Show understanding by explaining the types of replacement

algorithms available.

4.0 CONCLUSION

Computer memory is central to the operation of a modern computer

system; it stores data or program instructions on a temporary or

permanent basis for use in a computer. However, there is an increasing

gap between the speed of memory and the speed of microprocessors. In

this paper, various memory management and optimization techniques

are reviewed to reduce the gap, including the hardware designs of the

memory organization such as memory hierarchical structure and cache

design; the memory management techniques varying from replacement

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

40

algorithms to optimization techniques; and virtual memory strategies

from a primitive bare-machine approach to paging and segmentation

strategies.

5.0 SUMMARY

This unit studied the memory system of a computer, starting with the

organisation of its main memory, which, in some simple systems, is the

only form of data storage to the understanding of more complex systems

and the additional components they carry. Cache systems, which aim at

speeding up access to the primary storage were also studied, and there

was a greater focus on virtual memory systems, which make possible the

transparent use of secondary storage as if it was main memory, by the

processor.

7.0 REFERENCES/FURTHER READING

Fundamentals of Computer Organization and Architecture, by M. Abd-

El-Barr and H. El-Rewini ISBN 0-471-46741-3 Copyright # 2005

John Wiley & Sons, Inc. URL:

https://engineering.futureuniversity.com/BOOKS%20FOR%20IT/

%5BMostafa_Abd-El-Barr__Hesham_El-

Rewini%5D_Fundamenta(BookZZ.org).pdf.

Stone, H. S., High-Performance Computer Architecture, Addison–

Wesley, 1993. URL: https://www.abebooks.com/book-

search/title/high-performance-computer-architecture/author/harold-

stone/

IEEE Trans. Computers, journal published by IEEE Computer Society;

has occasional special issues on parallel and distributed processing

(April 1987, December 1988, August 1989, December 1991, April

1997, April 1998).

http://link.springer.com/content/pdf/bfm%3A978-0-306-46964-

0%2F1.pdf

Varma, A., and C. S. Raghavendra, Interconnection Networks for

Multiprocessors and Multicomputers: Theory and Practice, IEEE

Computer Society Press, 1994. URL:

https://books.google.com/books/about/Interconnection_Networks_

for_Multiproces.html?id=-1u7QgAACAAJ

Zomaya, A. Y. (ed.), Parallel and Distributed Computing Handbook,

 McGraw-Hill, 1996. URL: https://research-

 repository.uwa.edu.au/en/publications/parallel-and-distributed-

 computing-handbook

https://engineering.futureuniversity.com/BOOKS%20FOR%20IT/%5BMostafa_Abd-El-Barr__Hesham_El-Rewini%5D_Fundamenta(BookZZ.org).pdf
https://engineering.futureuniversity.com/BOOKS%20FOR%20IT/%5BMostafa_Abd-El-Barr__Hesham_El-Rewini%5D_Fundamenta(BookZZ.org).pdf
https://engineering.futureuniversity.com/BOOKS%20FOR%20IT/%5BMostafa_Abd-El-Barr__Hesham_El-Rewini%5D_Fundamenta(BookZZ.org).pdf
https://www.abebooks.com/book-search/title/high-performance-computer-architecture/author/harold-stone/
https://www.abebooks.com/book-search/title/high-performance-computer-architecture/author/harold-stone/
https://www.abebooks.com/book-search/title/high-performance-computer-architecture/author/harold-stone/
http://link.springer.com/content/pdf/bfm%3A978-0-306-46964-0%2F1.pdf
http://link.springer.com/content/pdf/bfm%3A978-0-306-46964-0%2F1.pdf
https://books.google.com/books/about/Interconnection_Networks_for_Multiproces.html?id=-1u7QgAACAAJ
https://books.google.com/books/about/Interconnection_Networks_for_Multiproces.html?id=-1u7QgAACAAJ

CIT 314 MODULE 2

41

MODULE 2 MEMORY ADDRESSING AND

 HIERARCHY SYSTEMS

2.1 INTRODUCTION

A memory address is a unique identifier used by a device or CPU for

data tracking. This binary address is defined by an ordered and finite

sequence allowing the CPU to track the location of each memory byte.

Addressing modes are an aspect of the instruction set architecture in

most central processing unit (CPU) designs. The various addressing

modes that are defined in a given instruction set architecture define how

the machine language instructions in that architecture identify

the operand(s) of each instruction. An addressing mode specifies how to

calculate the effective memory address of an operand by using

information held in registers and/or constants contained within a

machine instruction or elsewhere.

In computer programming, addressing modes are primarily of interest to

those who write in assembly languages and to compiler writers. For a

related concept see orthogonal instruction set which deals with the

ability of any instruction to use any addressing mode.

This module is divided into three units. The first unit explains memory

addressing and the various modes available. Unit two explains the

elements of memory hierarchy while the last unit takes on virtual

memory control systems. All these are given below.

UNIT ONE: Memory Addressing

UNIT TWO: Elements of Memory Hierarchy

UNIT THREE: Virtual Memory Control System

UNIT 1 MEMORY ADDRESSING

CONTENTS

1.0 Introduction

2.0 Intended Learning Outcomes (ILOS)

3.0 Main Contents

3.1.1 What is memory addressing mode?

3.1.2 Modes of addressing

3.1.3 Number of addressing modes

3.1.4 Advantages of addressing modes

3.1.5 Uses of addressing modes

4.0 Self-Assessment Exercises

5.0 Conclusion

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

42

6.0 Summary

7.0 References/Further Reading

1.0 INTRODUCTION

In computing, a memory address is a reference to a specific memory

location used at various levels by software and hardware. Memory

addresses are fixed-length sequences of digits conventionally displayed

and manipulated as unsigned integers. Such numerical semantic bases

itself upon features of CPU, as well upon use of the memory like an

array endorsed by various programming languages. There are many

ways to locate data and instructions in primary memory and these

methods are called “memory address modes”.

Memory address modes determine the method used within the program

to access data either from the Cache or the RAM.

2.0 INTENDED LEARNING OUTCOMES (ILOs)

The objectives of this module include;

 To ensure students have adequate knowledge of memory addressing

systems

 To aid students know how to deal with various modes of addressing

 To help students understand basic calculations involving memory

addresses

3.1.1 What is memory addressing mode?

Memory addressing mode is the method by which an instruction

operand is specified. One of the functions of a microprocessor is to

execute a sequence of instructions or programs stored in a computer

memory (register) in order to perform a particular task. The way the

operands are chosen during program execution is dependent on the

addressing mode of the instruction. The addressing mode specifies a rule

for interpreting or modifying the address field of the instruction before

the operand is actually referenced. This technique is used by the

computers to give programming versatility to the user by providing such

facilities as pointers to memory, counters for loop control, indexing of

data, and program relocation. And as well reduce the number of bits in

the addressing field of the instruction.

However, there are basic requirement for the operation to take effect.

First, the must be an operator to indicate what action to take and

secondly, there must be an operand that portray the data to be executed.

For instance; if the numbers 5 and 2 are to be added to have a result, it

CIT 314 MODULE 2

43

could be expressed numerically as 5 + 2. In this expression, our operator

is (+), or expansion, and the numbers 5 and 2 are our operands. It is

important to tell the machine in a microprocessor how to get the

operands to perform the task. The data stored in the operation code is the

operand value or the result. A word that defines the address of an

operand that is stored in memory is the effective address. The

availability of the addressing modes gives the experienced assembly

language programmer flexibility for writing programs that are more

efficient with respect to the number of instructions and execution time.

3.1.2 Modes of addressing

There are many methods for defining or obtaining the effective address

of an operators directly from the register. Such approaches are known as

modes of addressing. The programmes are usually written in a high-

level language, as it is a simple way to describe the variables and

operations to be performed on the variables by the programmer. The

following are the modes of addressing;

ADDRESSING

MODES

EXAMPLE

INSTRUCTION

MEANING WHEN TO

USED

Register ADD R4, R3 R4 <- R4 + R3 When a value

is in a register

Immediate ADD R4, #3 R4 <- R4 + R3 For constants

indexed ADD R3, (R1 +

R2)

R3 <- R3 + M

[R1 + R2]

When

addressing

array;

R1 = base of

array

R2 = index

amount

Register Indirect

ADD R4, (R1) R4 <- R4 + M

[R1]

Accessing

using a

pointer or a

computed

address

Auto Increment

ADD R1, (R2)+ R1 <- R1 + M

[R2]

R2 <- R2 + d

Use for

stopping

through array

in a loop.

R2 = start of

array

D = size of an

element

Auto Decrement ADD R1, - (R2) R2 <- R2 – d

R1 <- R1 + M

Same as auto

increment.

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

44

[R2]

Both can also

be used to

implement a

stack push

and pop

Direct ADD R1, (1001) R1 <- R1 + M

[1001]

Useful in

accessing

static data

Note :

< - = assignment

M = the name for memory: M[R1] refers to contents of memory location

whose address is given by the contents of R1

3.1.3 Number of addressing modes

The number of addressing modes are as follow;

a. Register Addressing Mode

 In this mode the operands are in registers that reside within the

CPU. The particular register is selected from a register field in

the instruction. A k-bit field can specify any one of 2' registers.

b. Direct Addressing Mode and Indirect Address mode

 In Direct Address Mode, the effective address is equal to the

address part of the instruction. The operand resides in memory

and its address is given directly by the address field of the

instruction. In a branch-type instruction the address field specifies

the actual branch address. But in the Indirect Address Mode, the

address field of the instruction gives the address where the

effective address is stored in memory. Control fetches the

instruction from memory and uses its address part to access

memory again to read the effective address. A few addressing

modes require that the address field of the instruction be added to

the content of a specific register in the CPU. The effective

address in these modes is obtained from the following

computation:

 Effective address = address part of instruction + content of

CPU register.

 The CPU register used in the computation may be the program

counter, an index register, or a base register. In either case we

have a different addressing mode which is used for a different

application.

CIT 314 MODULE 2

45

c. Immediate Addressing Mode

 In this mode the operand is specified in the instruction itself. In

other words, an immediate-mode instruction has an operand field

rather than an address field. The operand field contains the actual

operand to be used in conjunction with the operation specified in

the instruction. Immediate-mode instructions are useful for

initializing registers to a constant value. It was mentioned

previously that the address field of an instruction may specify

either a memory word or a processor register. When the address

field specifies a processor register, the instruction is said to be in

the register mode.

d. Register Indirect Addressing Mode

 In this mode the instruction specifies a register in the CPU whose

contents give the address of the operand in memory. In other

words, the selected register contains the address of the operand

rather than the operand itself. Before using a register indirect

mode instruction, the programmer must ensure that the memory

address of the operand is placed in the processor register with a

previous instruction. A reference to the register is then equivalent

to specifying a memory address. The advantage of a register

indirect mode instruction is that the address field of the

instruction uses fewer bits to select a register than would have

been required to specify a memory address directly.

e. Indexed Addressing Mode

 In this mode the content of an index register is added to the

address part of the instruction to obtain the effective address. The

index register is a special CPU register that contains an index

value. The address field of the instruction defines the beginning

address of a data array in memory. Each operand in the array is

stored in memory relative to the beginning address. The distance

between the beginning address and the address of the operand is

the index value stored in the index register. Any operand in the

array can be accessed with the same instruction provided that the

index register contains the correct index value. The index register

can be incremented to facilitate access to consecutive operands.

Note that if an index type instruction does not include an address

field in its format, the instruction converts to the register indirect

mode of operation. Some computers dedicate one CPU register to

function solely as an index register. This register is involved

implicitly when the index-mode instruction is used. In computers

with many processor registers, any one of the CPU registers can

contain the index number. In such a case the register must be

specified explicitly in a register field within the instruction

format.

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

46

f. Auto Increment Mode and Auto Decrement Mode

 This is similar to the register indirect mode except that the

register is incremented or decremented after (or before) its value

is used to access memory. When the address stored in the register

refers to a table of data in memory, it is necessary to increment or

decrement the register after every access to the table. This can be

achieved by using the increment or decrement instruction.

However, because it is such a common requirement, some

computers incorporate a special mode that automatically

increments or decrements the content of the register after data

access. The address field of an instruction is used by the control

unit in the CPU to obtain the operand from memory. Sometimes

the value given in the address field is the address of the operand,

but sometimes it is just an address from which the address of the

operand is calculated. To differentiate among the various

addressing modes it is necessary to distinguish between the

address part of the instruction and the effective address used by

the control when executing the instruction. The effective address

is defined to be the memory address obtained from the

computation dictated by the given addressing mode. The effective

address is the address of the operand in a computational type

instruction. It is the address where control branches in response to

a branch-type instruction.

g. Relative Addressing Mode:

 In this mode the content of the program counter is added to the

address part of the instruction in order to obtain the effective

address. The address part of the instruction is usually a signed

number which can be either positive or negative. When this

number is added to the content of the program counter, the result

produces an effective address whose position in memory is

relative to the address of the next instruction. For instance, let’s

assume that the program counter contains the number 682 and the

address part of the instruction contains the number 21. The

instruction at location 682 is read from memory during the fetch

phase and the program counter is then incremented by one to 683.

The effective address computation for the relative address mode

is 683 + 21 = 704. This is 21 memory locations forward from the

address of the next instruction. Relative addressing is often used

with branch-type instructions when the branch address is in the

area surrounding the instruction word itself. It results in a shorter

address field in the instruction format since the relative address

can be specified with a smaller number of bits compared to the

number of bits required to designate the entire memory address.

CIT 314 MODULE 2

47

3.1.4 Advantages of addressing modes

The advantages of using the addressing mode are as follow;

a. To provide the user with programming flexibility by offering

such facilities as memory pointers, loop control counters, data

indexing, and programme displacement.

b. To decrease the counting of bits in the instruction pointing area.

3.1.5 Uses of addressing modes

Some direction set models, for instance, Intel x86 and its substitutions,

had a pile ground-breaking area direction. This plays out an assessment

of the fruitful operand location, anyway rather following up on that

memory territory, it stacks the area that might have been gotten in the

register. This may be significant during passing the area of a display part

to a browse mode. It can similarly be a fairly precarious strategy for

achieving a greater number of includes than average in one direction; for

example, using such a direction with the keeping an eye on mode “base+

index+ balance” (unequivocal underneath) licenses one to assemble two

registers and a consistent into a solitary unit in one direction.

4.0 Self-Assessment Exercises

1. Why do you need memory addressing?

2. What are the existent modes for memory addressing?

3. Using a tabular format, show various addressing modes, meaning

and their meanings.

4.0 CONCLUSION

The computer register is defined as the small subset of the data that has

fast accessible memory in the central processing unit. For the execution

of different computer instructions and programs type of registers are

used. There are numerous categories of computer registers that are

available for the execution of instructions. The registers can be

categorized by their size, functions, or names. These registers are used

to store the data temporarily and perform the execution of computer

instructions and can be also used to store results in it. The processing

speed of registers is the fastest to another data set.

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

48

6.0 SUMMARY

In this unit, you learnt that;

For the central processing unit, there are various type of computer

registers defined that has some specific role during the execution of the

instruction. All these registers have some particular role like data-related

operations, fetching or storing of data, and many more operations. And

the instructions stored in the register are executed by the processor of

the central processing unit.

7.0 REFERENCES/FURTHER READING

John L. Hennessy and David A. Patterson (2012) Computer

Architecture; A Qualitative Approach. Fifth (Ed.), Library of

Congress Cataloging in Publication Data. URL:

https://www.academia.edu/22618699/Computer_Architecture_A_

Quantitative_Approach_5th_edition_

Keith R. Mobley (2004) Maintenance Fundamentals. 2nd (Ed.), Elsevier

Butterworth Heinemann. URL:

https://www.elsevier.com/books/maintenance-

fundamentals/mobley/978-0-7506-7798-1

Mostafa Abd-El-Barr and Hesham El-Rewini (2005) Fundamentals of

Computer Organization and Architecture. A John Wiley and Sons,

Inc Publication. URL:

https://books.google.com/books/about/Fundamentals_of_Computer

_Organization_an.html?id=m6uFlL41TlIC

https://www.academia.edu/22618699/Computer_Architecture_A_Quantitative_Approach_5th_edition_
https://www.academia.edu/22618699/Computer_Architecture_A_Quantitative_Approach_5th_edition_
https://www.elsevier.com/books/maintenance-fundamentals/mobley/978-0-7506-7798-1
https://www.elsevier.com/books/maintenance-fundamentals/mobley/978-0-7506-7798-1
https://books.google.com/books/about/Fundamentals_of_Computer_Organization_an.html?id=m6uFlL41TlIC
https://books.google.com/books/about/Fundamentals_of_Computer_Organization_an.html?id=m6uFlL41TlIC

CIT 314 MODULE 2

49

UNIT 2 ELEMENTS OF MEMORY HIERARCHY

CONTENTS

1.0 Introduction

2.0 Intended Learning Outcomes (ILOS)

3.0 Main ContentsWhat is memory hierarchy

3.2.1 Memory hierarchy diagram

3.2.2 Characteristics of memory diagram

3.2.3 Memory hierarchy design

3.2.4 Advantages of memory hierarchy

4.0 Self-Assessment Exercises

5.0 Conclusion

6.0 Summary

7.0 References/Further Reading

1.0 INTRODUCTION

In the design of the computer system, a processor, as well as a large

amount of memory devices, has been used. However, the main problem

is, these parts are expensive. So the memory organization of the system

can be done by memory hierarchy. It has several levels of memory with

different performance rates. But all these can supply an exact purpose,

such that the access time can be reduced. The memory hierarchy was

developed depending upon the behavior of the program.

2.0 INTENDED LEARNING OUTCOMES (ILOs)

 To carefully study through the elements of memory hierarchy

 To guide students on how to understand basic memory issues in

computing based on the hierarchies learnt

3.2.1 What is memory hierarchy?

Memory is one of the important units in any computer system. Its serves

as a storage for all the processed and the unprocessed data or programs

in a computer system. However, due to the fact that most computer users

often stored large amount of files in their computer memory devices, the

use of one memory device in a computer system has become inefficient

and unsatisfactory. This is because only one memory cannot contain all

the files needed by the computer users and when the memory is large, it

decreases the speed of the processor and the general performance of the

computer system.

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

50

Therefore, to curb this challenges, memory unit must be divided into

smaller memories for more storage, speedy program executions and the

enhancement of the processor performance. The recently accessed files

or programs must be placed in the fastest memory. Since the memory

with large capacity is cheap and slow and the memory with smaller

capacity is fast and costly. The organization of smaller memories to hold

the recently accessed files or programs closer to the CPU is term

memory hierarchy. These memories are successively larger as they

move away from the CPU.

The strength and performance of memory hierarchy can be measured

using the model below;

Memory_Stall_Cycles = IC*Mem_Refs * Miss_Rate * Miss_Penalty

Where,

IC = Instruction Count

Mem_Refs = Memory References per Instruction

Miss_Rate = Fraction of Accesses that are not in the

 cache

Miss_Penalty = Additional time to service the Miss

The memory hierarchy system encompasses all the storage devices used

in a computer system. Its ranges from the cache memory, which is

smaller in size but faster in speed to a relatively auxiliary memory which

is larger in size but slower in speed. The smaller the size of the memory

the costlier it becomes.

The element of the memory hierarchy includes

a. Cache memory,

b. Main memory and

c. Auxiliary memory

 The cache memory is the fastest and smallest memory. It is

easily accessible by the CPU because it closer to the CPU. Cache

memory is very costly compare to the main memory and the

auxiliary memory.

 The main memory also known as primary memory,

communicates directly to the CPU. Its also communicates to the

auxiliary memory through the I/O processor. During program

execution, the files that are not currently needed by the CPU are

often moved to the auxiliary storage devices in order to create

space in the main memory for the currently needed files to be

CIT 314 MODULE 2

51

stored. The main memory is made up of Random Access Memory

(RAM) and Read Only Memory (ROM).

 The auxiliary memory is very large in size and relatively slow

in speed. Its includes the magnetic tapes and the magnetic disks

which are used for the storage and backup of removable files.

The auxiliary memories store programs that are not currently

needed by the CPU. They are very cheap when compare to the

both cache and main memories.

3.2.2 Memory hierarchy diagram

The memory hierarchy system encompasses all the storage devices used

in a computer system. Its ranges from fastest but smaller in size (cache

memory) to a relatively fast but small in size (main memory) and more

slowly but larger in size (auxiliary memory). The cache memory is the

smallest and fastest storage device, it is place closer to the CPU for easy

accessed by the processor logic. More so, cache memory is helps to

enhance the processing speed of the system by making available

currently needed programs and data to the CPU at a very high speed. Its

stores segment of programs currently processed by the CPU as well as

the temporary data frequently needed in the current calculation

The main memory communicates directly to the CPU. It also very fast in

speed and small in size. Its communicates to the auxiliary memories

through the input/ output processor. The main memory provides a

communication link between other storage devices. It contains the

currently accessed data or programs. The unwanted data are transferred

to the auxiliary memories to create more space in the main memory for

the currently needed data to be stored. If the CPU needs a program that

is outside the main memory, the main memory will call in the program

from the auxiliary memories via the input/output processor. The main

difference between cache and main memories is the access time and

processing logic. The processor logic is often faster than that of the main

memory access time.

The auxiliary memory is made up of the magnetic tape and the magnetic

disk. They are employ in the system to store and backup large volume of

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

52

data or programs that are not currently needed by the processor. In

summary, the essence of dividing this memory into different levels of

memory hierarchy is to make storage more efficient, reliable and

economical for the users. As the storage capacity of the memory

increases, the cost per bit for storing binary information decreases and

the access time of the memory becomes longer. The diagram of a

memory hierarchy in presented in Figure 2.1

2.3 Characteristics of Memory Hierarchy

There are numbers of parameters that characterized memory hierarchy.

They stand as the principle on which all the levels of the memory

hierarchy operate. These characteristics are;

a. Access type,

b. Capacity,

c. Cycle time,

d. Latency,

e. Bandwidth, and

f. Cost

a. Access Time: refers to the action that physically takes place

during a read or write operation. When a data or program is

moved from the top of the memory hierarchy to the bottom , the

access time automatically increases. Hence, the interval of time at

which the data are request to read or write is called Access time.

b. Capacity: the capacity of a memory hierarchy often increased

when a data is moved from the top of the memory hierarchy to

the bottom. The capacity of a memory hierarchy is the total

amount of data a memory can store. The capacity of a memory

level is usually measured in bytes.

I/O

Processo

Cache

Memor

CPU

Main

Memor

CIT 314 MODULE 2

53

c. Cycle time: is defined as the time elapsed from the start of a read

operation to the start of a subsequent read.

d. Latency: is defined as the time interval between the request for

information and the access to the first bit of that information.

e. Bandwidth: this measures the number of bits that can be

accessed per second.

f. Cost: the cost of a memory level is usually specified as dollars

per megabytes. When the data is moved from bottom of the

memory hierarchy to top, the cost for each bit increases

automatically. This means that an internal memory is expensive

compared to external memory.

3.2.4 Memory Hierarchy Design

The memory in a computer can be divided into five hierarchies based on

the speed as well as use. The processor can move from one level to

another based on its requirements. The five hierarchies in the memory

are registers, cache, main memory, magnetic discs, and magnetic tapes.

The first three hierarchies are the primary memory (volatile memories)

which mean when there is no power, and then automatically they lose

their stored data. The last two hierarchies are the secondary memories

(nonvolatile) which means they store the data permanently. Generally, a

memory element is a set of storage devices that stores binary in bits.

This set of storage devices can be classified into two categories such as;

the primary memory and the secondary memory. The primary memory

is directly accessible by the processor, it is also known as internal

memory. This memory includes main, cache, as well as CPU registers.

Furthermore, the secondary memory can only be accessed by the

processor through an input/output module, and it is also known as

external memory. This memory includes an optical disk, magnetic disk,

and magnetic tape. The memory hierarchy design is presented in Figure

2.2 below.

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

54

1. operation. Normally, a complex instruction set computer uses

many registers to accept main memory.

2. Cache Memory: Cache memory can also be found in the

processor, however rarely it may be another integrated circuit

(IC) which is separated into levels. The cache holds the chunk of

data which are frequently used from main memory. When the

processor has a single core then it will have two (or) more cache

levels rarely. Present multi-core processors will be having three,

2-levels for each one core, and one level is shared.

3. Main Memory: This is the memory unit that communicate

directly to the CPU. It is the primary storage unit in a computer

system. the main stores data or program currently used by the

CPU during operation. It is very fast in terms of access time and

it is made up of RAM and ROM.

4. Magnetic Disks: The magnetic disks is a circular plates

fabricated of plastic or metal by magnetized material. Frequently,

two faces of the disk are utilized as well as many disks may be

stacked on one spindle by read or write heads obtainable on every

plane. All the disks in computer turn jointly at high speed. The

tracks in the computer are nothing but bits which are stored

within the magnetized plane in spots next to concentric circles.

These are usually separated into sections which are named as

sectors.

5. Magnetic Tape: This tape is a normal magnetic recording which

is designed with a slender magnetizable covering on an extended,

plastic film of the thin strip. This is mainly used to back up huge

data. Whenever the computer requires to access a strip, first it

CPU

Register

Cache Memory

(SRAM)

Magnetic Tape

In
cr

ea
se

 i
n
 c

ap
ac

it
y

 &
 a

cc
es

s
ti

m
e

Main Memory

(DRAM)

Magnetic Disk

(Disk storage)

In
cr

ea
se

 i
n
 c

o
st

 p
er

 b
it

Optical Disk

Level 0

Level 4

Level 1

Level 2

Level 3

Figure 2.2.2: Memory hierarchy design

CIT 314 MODULE 2

55

will mount to access the data. Once the data is allowed, then it

will be unmounted. The access time of memory will be slower

within magnetic strip as well as it will take a few minutes for

accessing a strip.

3.2.5 Advantages of Memory Hierarchy

The advantages of a memory hierarchy include the following.

a. Memory distributing is simple and economical

b. Removes external destruction

c. Data can be spread all over

d. Permits demand paging & pre-paging

e. Swapping will be more proficient

4.0 CONCLUSION

In the design of the computer system, a processor, as well as a large

amount of memory devices, has been used. However, the main problem

is, these parts are expensive. So, the memory organization of the system

can be done by memory hierarchy. It has several levels of memory with

different performance rates. But all these can supply an exact purpose,

such that the access time can be reduced. The memory hierarchy was

developed depending upon the behavior of the program.

5.0 SUMMARY

In this unit, you learnt that;

Memory hierarchy is a multi-level structure that as the distance from the

processor increases, the size of the memories and the access time both

increase. Performance is the key reason for having a memory hierarchy.

The faster memories are more expensive per bit and thus tend to be

smaller. The goal is to present the user with as much memory as is

Computer Architecture 2019/2020 #8 : Memory Hierarchy 2 available in

the cheapest technology, while providing access at the speed offered by

the fastest memory. The data is similarly hierarchical – a level closer to

the processor is generally a subset of any level further away, and all the

data is stored at the lowest memory level.

6.0 SELF-ASSESSMENT EXERCISES

1. What is a memory hierarchy?

2. Give the design, characteristics and advantages of a memory

hierarchy

3. Give the difference between cache memory and main memory

https://www.elprocus.com/8085-microprocessor-architecture/
https://www.elprocus.com/ram-memory-organization-types/

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

56

7.0 REFERENCES/FURTHER READING

Ailamaki AG, DeWitt DJ., Hill MD, Wood DA. DBMSs on a modern

 processor: where does time go? In: Proceedings of the 25th

 International Conference on Very Large Data Bases; 1999. p.

 266–77. URL: https://www.semanticscholar.org/paper/DBMSs-

 on-a-Modern-Processor%3A-Where-Does-Time-Go-Ailamaki-

 DeWitt/54b92179ede08158e2cf605f5e9f264ca06c01ff

Denning PJ. The working set model for program behaviour. Commun

ACM. 1968;11(5):323–33. URL:

https://denninginstitute.com/pjd/PUBS/WSModel_1968.pdf

Manegold S. Understanding, modeling, and improving main-memory

database performance. PhD thesis, Universiteit van Amsterdam,

Amsterdam, The Netherlands; 2002. URL:

https://ir.cwi.nl/pub/14301/14301B.pdf

Shatdal A, Kant C, Naughton J. Cache conscious algorithms for

 relational query processing. In: Proceedings of the 20th

 International Conference on Very Large Data Bases; 1994. p.

 510–2. URL https://www.semanticscholar.org/paper/Cache-

 Conscious-Algorithms-for-Relational-Query-Shatdal-

 Kant/12c2693c5e27a301a030933822c1c6da1558c267

https://www.semanticscholar.org/paper/DBMSs-%09on-a-Modern-Processor%3A-Where-Does-Time-Go-Ailamaki-%09DeWitt/54b92179ede08158e2cf605f5e9f264ca06c01ff
https://www.semanticscholar.org/paper/DBMSs-%09on-a-Modern-Processor%3A-Where-Does-Time-Go-Ailamaki-%09DeWitt/54b92179ede08158e2cf605f5e9f264ca06c01ff
https://www.semanticscholar.org/paper/DBMSs-%09on-a-Modern-Processor%3A-Where-Does-Time-Go-Ailamaki-%09DeWitt/54b92179ede08158e2cf605f5e9f264ca06c01ff
https://denninginstitute.com/pjd/PUBS/WSModel_1968.pdf
https://ir.cwi.nl/pub/14301/14301B.pdf
https://www.semanticscholar.org/paper/Cache-%09Conscious-Algorithms-for-Relational-Query-Shatdal-%09Kant/12c2693c5e27a301a030933822c1c6da1558c267
https://www.semanticscholar.org/paper/Cache-%09Conscious-Algorithms-for-Relational-Query-Shatdal-%09Kant/12c2693c5e27a301a030933822c1c6da1558c267
https://www.semanticscholar.org/paper/Cache-%09Conscious-Algorithms-for-Relational-Query-Shatdal-%09Kant/12c2693c5e27a301a030933822c1c6da1558c267

CIT 314 MODULE 2

57

UNIT 3 VIRTUAL MEMORY CONTROL SYSTEMS

CONTENTS

1.0 Introduction

2.0 Intended Learning Outcomes (ILOS)

3.0 Main Contents

3.3.1 Memory management systems

3.3.2 Paging

3.3.3 Address mapping using paging

3.3.4 Address mapping using segments

3.3.5 Address mapping using segmented paging

3.3.6 Multi-programming

3.3.7 Virtual machines/memory and protection

3.3.8 Hierarchical memory systems

3.3.9 Drawbacks that occur in virtual memories

4.0 Self-Assessment Exercises

5.0 Conclusion

6.0 Summary

7.0 References/Further Reading

1.0 INTRODUCTION

Virtual memory is a memory management technique where secondary

memory can be used as if it were a part of the main memory. Virtual

memory is a common technique used in a computer's operating system

(OS). Virtual memory uses both hardware and software to enable a

computer to compensate for physical memory shortages, temporarily

transferring data from random access memory (RAM) to disk storage.

Mapping chunks of memory to disk files enables a computer to treat

secondary memory as though it were main memory.

2.0 INTENDED LEARNING OUTCOMES (ILOs)

 To analyze virtual control systems

 To understand system pagination and memory protection

methods

3.3.1 Memory management systems

In a multiprogramming system, there is a need for a high capacity

memory. This is because most of the programs are often stored in the

memory. The programs must be moved around the memory to change

the space of memory used by a particular program and as well prevent a

program from altering other programs during read and write. Hence, the

memory management system becomes necessary. The movement of

https://www.techtarget.com/searchstorage/definition/RAM-random-access-memory

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

58

these programs from one level of memory hierarchy to another is known

as memory management. Memory management system encompasses

both the hardware and the software in its operations. It is the collection

of hardware and software procedures for managing all the programs

stored in the memory. The memory management software is part of the

main operating system available in many computers. In this study, we

are concerned with the hardware unit of the memory management

system.

Components of memory management system:

The principal components of the memory management system are;

a. A facility for dynamic storage relocation that maps logical

memory references into physical memory addresses.

b. A provision for sharing common programs stored in memory by

different users.

c. Protection of information against unauthorized access between

users and preventing users from changing operating system

functions. The dynamic storage relocation hardware is a mapping

process similar to the paging system

3.3.2 Paging

In memory management, paging can be described as a storage

mechanism that allows operating system (OS) to retrieve processes from

the secondary storage into the main memory in the form of pages. It is a

function of memory management where a computer will store and

retrieve data from a device’s secondary storage to the primary storage.

Memory management is a crucial aspect of any computing device, and

paging specifically is important to the implementation of virtual

memory. In the Paging method, the main memory is divided into small

fixed-size blocks of physical memory, which is called frames. The size

of a frame should be kept the same as that of a page to have maximum

utilization of the main memory and to avoid external fragmentation.

Paging is used for faster access to data, and it is a logical concept. For

instance, if the main memory size is 16 KB and Frame size is 1 KB.

Here, the main memory will be divided into the collection of 16 frames

of 1 KB each. There are 4 separate processes in the system that is A1,

A2, A3, and A4 of 4 KB each. Here, all the processes are divided into

pages of 1 KB each so that operating system can store one page in one

frame. At the beginning of the process, all the frames remain empty so

that all the pages of the processes will get stored in a contiguous way. A

typical paging process is presented in Figure 2.3.1.

CIT 314 MODULE 2

59

Figure 2.3.1: Paging process

From the above diagram you can see that A2 and A4 are moved to the

waiting state after some time. Therefore, eight frames become empty,

and so other pages can be loaded in that empty blocks. The process A5

of size 8 pages (8 KB) are waiting in the ready queue.

In conclusion, paging is a function of memory management where a

computer will store and retrieve data from a device’s secondary storage

to the primary storage. Memory management is a crucial aspect of any

computing device, and paging specifically is important to the

implementation of virtual memory.

3.3.2.1 Paging Protection

The paging process should be protected by using the concept of insertion

of an additional bit called Valid/Invalid bit. Paging Memory protection

in paging is achieved by associating protection bits with each page.

These bits are associated with each page table entry and specify

protection on the corresponding page.

3.3.2.2 Advantages and Disadvantages of Paging

Advantages

The following are the advantages of using Paging method:

a. No need for external Fragmentation

b. Swapping is easy between equal-sized pages and page frames.

c. Easy to use memory management algorithm

A 1 A 1

Process A 1 16KB

A 1

A 1 A 2

A 2 A 2 A 2

A 3 A 3

A 3 A 3 A 4

A 4 A 4

A 4

A 1

A 1

A 1

A 1

A 2

A 2

A 2

A 2
A 3

A 3

A 3

A 3

A 4

A 4

A 4

A 4

Main memory

(Collection of frames)

Paging

Paging

1 Frame = 1KB

Frame size = Page size

Process A 2

Process A 3

Process A 4

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

60

Disadvantages

The following are the disadvantages of using Paging method

a. May cause Internal fragmentation

b. Page tables consume additional memory.

c. Multi-level paging may lead to memory reference overhead.

3.3.3 Address mapping using paging

The table implementation of the address mapping is simplified if the

information in the address space and the memory space are each divided

into groups of fixed size. The physical memory is broken down into

groups of equal size called blocks, which may range from 64 to 4096

words each. The term page refers to groups of address space of the same

size. For example, if a page or block consists of 1K words, address

space is divided into 1024 pages and main memory is divided into 32

blocks. Although both a page and a block are split into groups of 1K

words, a page refers to the organization of address space, while a block

refers to the organization of memory space. The programs are also

considered to be split into pages. Portions of programs are moved from

auxiliary memory to main memory in records equal to the size of a page.

The term page frame is sometimes used to denote a block.

For instance, if a computer has an address space of 8K and a memory

space of 4K. If we split each into groups of 1K words we obtain eight

pages and four blocks. At any given time, up to four pages of address

space may reside in main memory in any one of the four blocks. The

mapping from address space to memory space is facilitated if each

virtual address is considered to be represented by two numbers: a page

number address and a line within the page. In a computer with '1! words

per page, p bits are used to specify a line address and the remaining

high-order bits of the virtual address specify the page number. a virtual

address has 13 bits. Since each page consists of 210 = 1024 words, the

high order three bits of a virtual address will specify one of the eight

pages and the low-order 10 bits give the line address within the page.

Note that the line address in address space and memory space is the

same; the only mapping required is from a page number to a block

number. The organization of the memory mapping table in a paged

system is shown in Figure 3.1. The memory-page table consists of eight

words, one for each page. The address in the page table denotes the page

number and the content of the word gives the block number where that

page is stored in main memory. The table shows that pages 1, 2, 5, and 6

are now available in main memory in blocks 3, 0, 1, and 2, respectively.

A presence bit in each location indicates whether the page has been

CIT 314 MODULE 2

61

transferred from auxiliary memory into main memory. A 0 in the

presence bit indicates that this page is not available in main memory.

The CPU references a word in memory with a virtual address of 13 bits.

The three high-order bits of the virtual address specify a page number

and also an address for the memory-page table. The content of the word

in the memory page table at the page number address is read out into the

memory table buffer register. If the presence bit is a 1, the block number

thus read is transferred to the two high-order bits of the main memory

address register. The line number from the virtual address is transferred

into the 10 low-order bits of the memory address register. A read signal

to main memory transfers the content of the word to the main memory

buffer register ready to be used by the CPU. If the presence bit in the

word read from the page table is 0, it signifies that the content of the

word referenced by the virtual address does not reside in main memory.

A call to the operating system is then generated to fetch the required

page from auxiliary memory and place it into main memory before

resuming computation.

3.3.4 Address mapping using segments

Another mapping process similar to paging system is the dynamic

storage relocation hardware. Due to the large size of program and its

logical structures, the fixed page size employ in the virtual memory

system has really pose a lot of challenges in memory management.

During program execution, the speed of the processor is usually

affected. However, it is very appropriate to disintegrate these programs

and data into segments for effective management and execution. A

segment is a set of logically related instructions or data elements

associated with a given name. Its can be generated by the operating

system or by the programmer. Examples of segments include an array of

data, a subroutine, a table of symbols, or a user's program.

000 0

010 00 1 001 11 1

011 0 100 0

111 0 110 10 1

 01 1

101 01 1

1 0 1 0 1 0 1 0 1 0 0 1 1

Block 0

Block 1

Block 2

Block 3

MBR

0 1 0 1 0 1 0 1 0 0 1 1

Presence bit

Memory Page Table

Main Memory

Address Register

Virtual Address

 Table

Address

Line No. Page no.

Figure 2.3.2. Memory Table in Paged System

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

62

The address generated by a segmented program is called a logical

address. This is similar to a virtual address except that logical address

space is associated with variable-length segments rather than fixed-

length pages. The logical address may be larger than the physical

memory address as in virtual memory, but it may also be equal, and

sometimes even smaller than the length of the physical memory address.

In addition to relocation information, each segment has protection

information associated with it. Shared programs are placed in a unique

segment in each user's logical address space so that a single physical

copy can be shared. The function of the memory management unit is to

map logical addresses into physical addresses similar to the virtual

memory mapping concept.

3.3.5 Address mapping using segmented paging

One of the properties of logical space is that it uses variable-length

segments. The length of each segment is allowed to grow and contract

according to the needs of the program being executed. One way of

specifying the length of a segment is by associating with it a number of

equal-size pages. To see how this is done, consider the logical address

shown in Figure2.3.3. The logical address is partitioned into three fields.

The segment field specifies a segment number. The page field specifies

the page within the segment and the word field gives the specific word

within the page. A page field of k bits can specify up to 2' pages. A

segment number may be associated with just one page or with as many

as 1!-pages. Thus the length of a segment would vary according to the

number of pages that are assigned to it.

Segment Page Word

Segment Table

+

Block Word

Logical Address

Figure 2.3.3 Address mapping using segmented paging

CIT 314 MODULE 2

63

The mapping of the logical address into a physical address is done by

means of two tables, as shown in Figure 3.3. The segment number of the

logical address specifies the address for the segment table. The entry in

the segment table is a pointer address for a page table base. The page

table base is added to the page number given in the logical address. The

sum produces a pointer address to an entry in the page table. The value

found in the page table provides the block number in physical memory.

The concatenation of the block field with the word field produces the

final physical mapped address. The two mapping tables may be stored in

two separate small memories or in main memory. In either case, a

memory reference from the CPU will require three accesses to memory:

one from the segment table, one from the page table, and the third from

main memory. This would slow the system significantly when compared

to a conventional system that requires only one reference to memory. To

avoid this speed penalty, a fast associative memory is used to hold the

most recently referenced table entries. This type of memory is

sometimes called a translation look aside buffer, abbreviated TLB. Thus

the mapping process is first attempted by associative search with the

given segment and page numbers. If it succeeds, the mapping delay is

only that of the associative memory. If no match occurs, the slower table

mapping of Figure 3.3 is used and the result transformed into the

associative memory for future reference.

3.3.6 Multi-programming

Multiprogramming is the basic form of parallel processing in which

several programs are run at the same time on a single processor. Since

there is only one processor, there can be no true simultaneous execution

of different programs. Instead, the operating system executes part of one

program, then part of another, and so on. To the user it appears that all

programs are executing at the same time. More so, if the machine has

the capability of causing an interrupt after a specified time interval, then

the operating system will execute each program for a given length of

time, regain control, and then execute another program for a given

length of time, and so on. When this mechanism is not in place, the

operating system has no choice but to begin to execute a program with

the expectation, but not the certainty, that the program will eventually

return control to the operating system.

If the machine has the capability of protecting memory, then a bug in

one program may interfere with the execution of other programs. In a

system without memory protection, one program can change the

contents of storage assigned to other programs or even the storage

assigned to the operating system. The resulting system crashes are not

only disruptive, they may be very difficult to debug since it may not be

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

64

obvious which of several programs is at fault. Multiprogramming

operating system has the ability to execute multiple programs using one

processor machine. For example, a user can use MS-Excel , download

apps, transfer data from one point to another point, Firefox or Google

Chrome browser, and more at a same time. Multiprogramming operating

system allows to execute multiple processes by monitoring their process

states and switching in between processes. It executes multiple programs

to avoid CPU and memory underutilization. It is also called as

Multiprogram Task System. It is faster in processing than Batch

Processing system

3.3.6.1. Advantages and Disadvantages of Multiprogramming

Below are the Advantages and disadvantages of Multiprogramming

Advantages of Multiprogramming:

a. CPU never becomes idle

b. Efficient resources utilization

c. Response time is shorter

d. Short time jobs completed faster than long time jobs

e. Increased Throughput

Disadvantages of Multiprogramming:

a. Long time jobs have to wait long

b. Tracking all processes sometimes difficult

c. CPU scheduling is required

d. Requires efficient memory management

e. User interaction not possible during program execution

3.3.7 Virtual machines/memory and protection

Memory protection can be assigned to the physical address or the logical

address. The protection of memory through the physical address can be

done by assigning to each block in memory a number of protection bits

that indicate the type of access allowed to its corresponding block.

Every time a page is moved from one block to another it would be

necessary to update the block protection bits. A much better place to

apply protection is in the logical address space rather than the physical

address space. This can be done by including protection information

within the segment table or segment register of the memory

management hardware. The content of each entry in the segment table or

a segment register is called a descriptor. A typical descriptor would

contain, in addition to a base address field, one or two additional fields

for protection purposes. A typical format for a segment descriptor is

shown in Figure 3.2. The base address field gives the base of the page

CIT 314 MODULE 2

65

table address in a segmented-page organization or the block base

address in a segment register organization. This is the address used in

mapping from a logical to the physical address. The length field gives

the segment size by specifying the maximum number of pages assigned

to the segment. The length field is compared against the page number in

the logical address. A size violation occurs if the page number falls

outside the segment length boundary. Thus a given program and its data

cannot access memory not assigned to it by the operating system.

The protection field in a segment descriptor specifies the access rights

available to the particular segment. In a segmented-page organization,

each entry in the page table may have its own protection field to

describe the access rights of each page. The protection information is set

into the descriptor by the master control program of the operating

system. Some of the access rights of interest that are used for protecting

the programs residing in memory are:

 Full read and write privileges

 Read only (write protection)

 Execute only (program protection)

 System only (operating system protection)

Full read and write privileges are given to a program when it is

executing its own instructions. Write protection is useful for sharing

system programs such as utility programs and other library routines.

These system programs are stored in an area of memory where they can

be shared by many users. They can be read by all programs, but no

writing is allowed. This protects them from being changed by other

programs. The execute-only condition protects programs from being

copied. It re­stricts the segment to be referenced only during the

instruction fetch phase but not during the execute phase. Thus it allows

the users to execute the segment program instructions but prevents them

from reading the instructions as data for the purpose of copying their

content. Portions of the operating system will reside in memory at any

given time. These system programs must be protected by making them

inaccessible to unauthorized users. The operating system protection

condition is placed in the descriptors of all operating system programs to

prevent the occasional user from accessing operating system segments.

Base address Length Protection

Figure 2.3.4: Format of a typical segment description

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

66

3.3.8 Hierarchical memory systems

In the Computer System Design, Memory Hierarchy is used to enhance

the organization of memory such that it can minimize the access time. It

was developed based on a program behavior known as locality of

references. Hierarchical memory system is the collection of storage units

or devices together. The memory unit stores the binary information in

the form of bits. Generally, memory/storage is classified into 2

categories:

 External Memory or Secondary Memory: This is a permanent

storage (non-volatile) and does not lose any data when power is

switched off. It is made up of Magnetic Disk, Optical Disk,

Magnetic Tape i.e. peripheral storage devices which are

accessible by the processor via I/O Module.

 Internal Memory or Primary Memory: This memory is

volatile in nature. it loses its data, when power is switched off. It

is made up of Main Memory, Cache Memory & CPU registers.

This is directly accessible by the processor.

Properties of Hierarchical Memory Organization

There are three important properties for maintaining consistency in the

memory hierarchy these three properties are;

 Inclusion

 Coherence and

 Locality.

3.3.9 Drawbacks that occur in virtual memories

The following are the drawbacks of using virtual memory:

 Applications may run slower if the system is using virtual

memory.

 Likely takes more time to switch between applications.

 Offers lesser hard drive space for your use.

 It reduces system stability.

SELF-ASSESSMENT EXERCISE

1. What are the properties of hierarchical memory organization?

2. Explain the concept of memory protection

3. How do you perform address mapping using segments?

CIT 314 MODULE 2

67

4.0 CONCLUSION

The memory hierarchy system encompasses all the storage devices used

in a computer system. Its ranges from fastest but smaller in size (cache

memory) to a relatively fast but small in size (main memory) and slower

but larger in size (auxiliary memory). A memory element is a set of

storage devices that stores binary in bits. They include; register, cache

memory, main memory, magnetic disk and magnetic tape. This set of

storage devices can be classified into two categories such as; the primary

memory and the secondary memory.

5.0 SUMMARY

In this unit, you learnt that;

 Memory addresses act just like the indexes of a normal array. The

computer can access any address in memory at any time (hence

the name "random access memory").

 It can also group bytes together as it needs to form larger

variables, arrays, and structures.

 Memory hierarchy is the hierarchy of memory and storage

devices found in a computer system.

 It ranges from the slowest but high capacity auxiliary memory to

the fastest but low capacity cache memory.

 Memory hierarchy is employed to balance this trade-off.

6.0 TUTOR MARKED ASSIGNMENT

1. What is an effective address?

2. Explain Auto increment and decrement modes as related to

memory addressing

3. Give concise explanations of the modes of addressing available

4. Explain memory hierarchy with the aid of a diagram

5. Explain on the parameters that characterize memory hierarchy

6. Explain address mapping using paging

7. What is multi-programming?

7.0 REFERENCES/FURTHER READING

Rob Williams (2006) Computer System Architecture; ANetwork

Approach. 2 (Ed.), Prentice Hall. URL:

https://dokumen.pub/computer-systems-architecture-a-

networking-approach-with-cd-rom-2nd-ed-9780321340795-

0321340795-9781405890588-1405890584.html

https://dokumen.pub/computer-systems-architecture-a-networking-approach-with-cd-rom-2nd-ed-9780321340795-0321340795-9781405890588-1405890584.html
https://dokumen.pub/computer-systems-architecture-a-networking-approach-with-cd-rom-2nd-ed-9780321340795-0321340795-9781405890588-1405890584.html
https://dokumen.pub/computer-systems-architecture-a-networking-approach-with-cd-rom-2nd-ed-9780321340795-0321340795-9781405890588-1405890584.html

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

68

William Stallings (2003) Computer Organization Architecture;

Designing for Performance Six Ed. Prentice Hall. URL

http://williamstallings.com/ComputerOrganization/

William Stallings (2019) Computer Organization and Architecture;

Designing for Performance. 11 (Ed.), Pearson. URL:

https://www.pearson.com/us/higher-education/program/Stallings-

Pearson-e-Text-for-Computer-Organization-and-Architecture-Access-

Code-Card-11th-Edition/PGM2043621.html.

http://williamstallings.com/ComputerOrganization/
https://www.pearson.com/us/higher-education/program/Stallings-Pearson-e-Text-for-Computer-Organization-and-Architecture-Access-Code-Card-11th-Edition/PGM2043621.html
https://www.pearson.com/us/higher-education/program/Stallings-Pearson-e-Text-for-Computer-Organization-and-Architecture-Access-Code-Card-11th-Edition/PGM2043621.html
https://www.pearson.com/us/higher-education/program/Stallings-Pearson-e-Text-for-Computer-Organization-and-Architecture-Access-Code-Card-11th-Edition/PGM2043621.html

CIT 314 MODULE 3

69

MODULE 3 CONTROL UNIT METHODS

1.0 INTRODUCTION

The control unit is the main component of a central processing unit

(CPU) in computers that can direct the operations during the execution

of a program by the processor/computer. The main function of the

control unit is to fetch and execute instructions from the memory of a

computer. It receives the input instruction/information from the user and

converts it into control signals, which are then given to the CPU for

further execution. It is included as a part of Von Neumann architecture

developed by John Neumann. It is responsible for providing the timing

signals, and control signals and directs the execution of a program by the

CPU. It is included as an internal part of the CPU in modern computers.

This module describes complete information about the control unit.

This module is divided into three units. Units one, two and three take on

Hardware control, Micro-programmed control and Asynchronous

control units as shown below.

UNIT ONE: Hardware control

UNIT TWO: Micro-Programmed Control

UNIT THREE: Asynchronous Control

UNIT 1 HARDWARE CONTROL

CONTENTS

1.0 Introduction

2.0 Intended Learning Outcomes (ILOS)

3.0 Main Contents

 3.1.1 Hardwired Control Unit

 3.1.2 Design of a hardwired Control Unit

4.0 Self-Assessment Exercises

5.0 Conclusion

6.0 Summary

7.0 References/Further Reading

1.0 INTRODUCTION

Control Unit is the part of the computer’s central processing unit (CPU),

which directs the operation of the processor. It was included as part of

the Von Neumann Architecture by John von Neumann. It is the

responsibility of the Control Unit to tell the computer’s memory,

arithmetic/logic unit and input and output devices how to respond to the

instructions that have been sent to the processor. It fetches internal

https://www.elprocus.com/microprocessor-generations-and-its-types/
https://www.elprocus.com/dynamic-road-traffic-signal-control/

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

70

instructions of the programs from the main memory to the processor

instruction register, and based on this register contents, the control unit

generates a control signal that supervises the execution of these

instructions. A control unit works by receiving input information to

which it converts into control signals, which are then sent to the central

processor. The computer’s processor then tells the attached hardware

what operations to perform. The functions that a control unit performs

are dependent on the type of CPU because the architecture of CPU

varies from manufacturer to manufacturer. Examples of devices that

require a CU are:

 Control Processing Units (CPUs)

 Graphics Processing Units (GPUs)

Figure 3.1: Stucture of Control Unit

Major functions of the Control Unit –

 It coordinates the sequence of data movements into, out of, and

between a processor’s many sub-units.

 It interprets instructions.

 It controls data flow inside the processor.

 It receives external instructions or commands to which it converts to

sequence of control signals.

 It controls many execution units (i.e. ALU, data buffers and

registers) contained within a CPU.

 It also handles multiple tasks, such as fetching, decoding, execution

handling and storing results.

2.0 INTENDED LEARNING OUTCOMES (ILOs)

 Understand how Hardware control unit works

 Students should be able to give concise explanations on

Hardware control units by the end of this unit

CIT 314 MODULE 3

71

3.1.1 Hardwired Control Unit

A hardwired control is a mechanism of producing control signals using

Finite State Machines (FSM) appropriately. It is designed as a sequential

logic circuit. The final circuit is constructed by physically connecting

the components such as gates, flip flops, and drums. Hence, it is named

a hardwired controller. In the Hardwired control unit, the control signals

that are important for instruction execution control are generated by

specially designed hardware logical circuits, in which we cannot modify

the signal generation method without physical change of the circuit

structure. The operation code of an instruction contains the basic data

for control signal generation. In the instruction decoder, the operation

code is decoded. The instruction decoder constitutes a set of many

decoders that decode different fields of the instruction opcode. As a

result, few output lines going out from the instruction decoder obtains

active signal values. These output lines are connected to the inputs of the

matrix that generates control signals for executive units of the computer.

This matrix implements logical combinations of the decoded signals

from the instruction opcode with the outputs from the matrix that

generates signals representing consecutive control unit states and with

signals coming from the outside of the processor, e.g. interrupt signals.

The matrices are built in a similar way as a programmable logic arrays.

3.1.2 Design of a hardwired Control Unit
Control signals for an instruction execution have to be generated not in a

single time point but during the entire time interval that corresponds to

the instruction execution cycle. Following the structure of this cycle, the

suitable sequence of internal states is organized in the control unit. A

Figure 3.2.1: Hardwired Control Unit

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

72

number of signals generated by the control signal generator matrix are

sent back to inputs of the next control state generator matrix. This matrix

combines these signals with the timing signals, which are generated by

the timing unit based on the rectangular patterns usually supplied by the

quartz generator. When a new instruction arrives at the control unit, the

control units is in the initial state of new instruction fetching. Instruction

decoding allows the control unit enters the first state relating execution

of the new instruction, which lasts as long as the timing signals and

other input signals as flags and state information of the computer remain

unaltered. A change of any of the earlier mentioned signals stimulates

the change of the control unit state. This causes that a new respective

input is generated for the control signal generator matrix. When an

external signal appears, (e.g. an interrupt) the control unit takes entry

into a next control state that is the state concerned with the reaction to

this external signal (e.g. interrupt processing). The values of flags and

state variables of the computer are used to select suitable states for the

instruction execution cycle. The last states in the cycle are control states

that commence fetching the next instruction of the program: sending the

program counter content to the main memory address buffer register and

next, reading the instruction word to the instruction register of computer.

When the ongoing instruction is the stop instruction that ends program

execution, the control unit enters an operating system state, in which it

waits for a next user directive.

Advantages of Hardwired Control Unit:

1. Because of the use of combinational circuits to generate signals,

Hardwired Control Unit is fast.

2. It depends on number of gates, how much delay can occur in

generation of control signals.

3. It can be optimized to produce the fast mode of operation.

4. Faster than micro- programmed control unit.

Disadvantages of Hardwired Control Unit:

1. The complexity of the design increases as we require more control

signals to be generated (need of more encoders & decoders)

2. Modifications in the control signals are very difficult because it

requires rearranging of wires in the hardware circuit.

3. Adding a new feature is difficult & complex.

4. Difficult to test & correct mistakes in the original design.

5. It is Expensive.

CIT 314 MODULE 3

73

4.0 CONCLUSION

In this unit, we have discussed in detail the implementation of control

units. We started with an implementation of the hardwired, The logic

micro-operation implementation has also been discussed. Thus, leading

to a logical construction of a simple arithmetic– logic –shift unit. The

unit revolves around the basic ALU with the help of the units that are

constructed for the implementation of micro-operations.

5.0 SUMMARY

Control Unit is the part of the computer’s central processing unit

(CPU), which directs the operation of the processor. It was included

as part of the Von Neumann Architecture by John von Neumann. It is

the responsibility of the Control Unit to tell the computer’s memory,

arithmetic/logic unit and input and output devices how to respond to

the instructions that have been sent to the processor. It fetches internal

instructions of the programs from the main memory to the processor

instruction register, and based on this register contents, the control unit

generates a control signal that supervises the execution of these

instructions.

6.0 SELF-ASSESSMENT EXERCISES

1. What is control unit?

2. Explain functional requirement of control unit.

3. What are the inputs to control unit?

4. Describe different types of control unit with diagram.

5. Why is Hardwired Control needed?

7.0 REFERENCES/FURTHER READING

Adamski, M., Barkalov, A.: Architectural and Sequential Synthesis of

 Digital Devices. University of Zielona Góra Press, Zielona Góra

 (2006). URL:

 https://www.sciencedirect.com/science/article/pii/S14746670163

 23667

Agerwala, T.: Microprogram optimization: A survey. IEEE Transactions

of Computers (10), 962–973 (1976). URL:

https://ieeexplore.ieee.org/document/1674537

 Chattopadhyay, S.: Area conscious state assignment with flip-

 flop and output polarity selection for finite state machines

 synthesis – a genetic algorithm. The Computer Journal 48(4),

https://www.sciencedirect.com/science/article/pii/S14746670163%0923667
https://www.sciencedirect.com/science/article/pii/S14746670163%0923667
https://ieeexplore.ieee.org/document/1674537

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

74

443–450 (2005). URL:

https://www.researchgate.net/publication/220459930_Area_Conscious_

State_Assignment_with_Flip-

Flop_and_Output_Polarity_Selection_for_Finite_State_Machine_Synth

esis--A_Genetic_Algorithm_Approach

Webb, C., Liptay, J.: A high-frequency custom cmos s/390

microprocessor. IBM Journal of research and Development 41(4/5),

463–473 (1997)

https://www.researchgate.net/publication/220459930_Area_Conscious_State_Assignment_with_Flip-Flop_and_Output_Polarity_Selection_for_Finite_State_Machine_Synthesis--A_Genetic_Algorithm_Approach
https://www.researchgate.net/publication/220459930_Area_Conscious_State_Assignment_with_Flip-Flop_and_Output_Polarity_Selection_for_Finite_State_Machine_Synthesis--A_Genetic_Algorithm_Approach
https://www.researchgate.net/publication/220459930_Area_Conscious_State_Assignment_with_Flip-Flop_and_Output_Polarity_Selection_for_Finite_State_Machine_Synthesis--A_Genetic_Algorithm_Approach
https://www.researchgate.net/publication/220459930_Area_Conscious_State_Assignment_with_Flip-Flop_and_Output_Polarity_Selection_for_Finite_State_Machine_Synthesis--A_Genetic_Algorithm_Approach

CIT 314 MODULE 3

75

UNIT 2 MICRO-PROGRAMMED CONTROL

CONTENTS

1.0 Introduction

2.0 Intended Learning Outcomes (ILOS)

3.0 Main Contents

3.2.1 Design of a Micro-Programmed Control Unit

3.2.2 Differences between Hardwired and Microprogrammed

 Control

3.2.3 Organization of Micro-Programmed Control Unit

3.2.4 Types of Micro-programmed Control Unit

4.0 Self-Assessment Exercises

5.0 Conclusion

6.0 Summary

7.0 References/Further Reading

1.0 INTRODUCTION

A control unit whose binary control values are saved as words in

memory is called a micro-programmed control unit. A controller results

in the instructions to be implemented by constructing a definite

collection of signals at each system clock beat. Each of these output

signals generates one micro-operation including register transfer. Thus,

the sets of control signals are generated definite micro-operations that

can be saved in the memory.

Each bit that forms the microinstruction is linked to one control signal.

When the bit is set, the control signal is active. When it is cleared the

control signal turns inactive. These microinstructions in a sequence can

be saved in the internal ’control’ memory. The control unit of a

microprogram-controlled computer is a computer inside a computer.

2.0 INTENDED LEARNING OUTCOMES (ILOs)

 Understand how Hardware control unit works

 Students should be able to give explain the design of a Micro-

programmed control unit by the end of the unit.

 Students should be able to explain the types of MCUs by the end

of the unit.

3.2.1 Design of a Micro-Programmed Control Unit

The fundamental difference between these unit structures and the

structure of the hardwired control unit is the existence of the control

store that is used for storing words containing encoded control signals

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

76

mandatory for instruction execution. In microprogrammed control units,

subsequent instruction words are fetched into the instruction register in a

normal way. However, the operation code of each instruction is not

directly decoded to enable immediate control signal generation but it

comprises the initial address of a microprogram contained in the control

store.

Figure 3.2.2: Single level control store

 With a single-level control store: In this, the instruction opcode

from the instruction register is sent to the control store address

register. Based on this address, the first microinstruction of a

microprogram that interprets execution of this instruction is read

to the microinstruction register. This microinstruction contains in

its operation part encoded control signals, normally as few bit

fields. In a set microinstruction field decoders, the fields are

decoded. The microinstruction also contains the address of the

next microinstruction of the given instruction microprogram and a

control field used to control activities of the microinstruction

address generator.

The last mentioned field decides the addressing mode (addressing

operation) to be applied to the address embedded in the ongoing

microinstruction. In microinstructions along with conditional

addressing mode, this address is refined by using the processor

condition flags that represent the status of computations in the

current program. The last microinstruction in the instruction of the

given microprogram is the microinstruction that fetches the next

instruction from the main memory to the instruction register.

CIT 314 MODULE 3

77

 With a two-level control store: In this, in a control unit with a

two-level control store, besides the control memory for

microinstructions, a Nano-instruction memory is included. In

such a control unit, microinstructions do not contain encoded

control signals. The operation part of microinstructions contains

the address of the word in the Nano-instruction memory, which

contains encoded control signals. The Nano-instruction memory

contains all combinations of control signals that appear in

microprograms that interpret the complete instruction set of a

given computer, written once in the form of Nano-instructions

In this way, unnecessary storing of the same operation parts of

microinstructions is avoided. In this case, microinstruction word can be

much shorter than with the single level control store. It gives a much

smaller size in bits of the microinstruction memory and, as a result, a

much smaller size of the entire control memory. The microinstruction

memory contains the control for selection of consecutive

microinstructions, while those control signals are generated at the basis

of Nano-instructions. In Nano-instructions, control signals are frequently

encoded using 1 bit/ 1 signal method that eliminates decoding.

Figure 3.2.3: Two-level control store

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

78

3.2.2 Differences Between Hardwired and Microprogrammed

Control

Advantages of Micro programmed Control Unit

There are the following advantages of microprogrammed control are as

follows:

 It can more systematic design of the control unit.

 It is simpler to debug and change.

 It can retain the underlying structure of the control function.

CIT 314 MODULE 3

79

 It can make the design of the control unit much simpler. Hence, it

is inexpensive and less error-prone.

 It can orderly and systematic design process.

 It is used to control functions implemented in software and not

hardware.

 It is more flexible.

 It is used to complex function is carried out easily.

Disadvantages of Microprogrammed Control Unit

There are the following disadvantages of microprogrammed control are

as follows;

 Adaptability is obtained at more cost.

 It is slower than a hardwired control unit.

3.2.3 Organization of micro programmed control unit

 The control memory is assumed to be a ROM, within which all

control information is permanently stored

• The control memory address register specifies the address of the

microinstruction, and the control data register holds the

microinstruction read from memory.

• The microinstruction contains a control word that specifies one or

more microoperations for the data processor. Once these

operations are executed, the control must determine the next

address.

• The location of the next microinstruction may be the one next in

sequence, or it may be located somewhere else in the control

memory.

• While the microoperations are being executed, the next address is

computed in the next address generator circuit and then

transferred into the control address register to read the next

microinstruction.

• Thus a microinstruction contains bits for initiating

microoperations in the data processor part and bits that determine

the address sequence for the control memory.

• The next address generator is sometimes called a micro-program

sequencer, as it determines the address sequence that is read from

control memory.

• Typical functions of a micro-program sequencer are incrementing

the control address register by one, loading into the control

address register an address from control memory, transferring an

external address, or loading an initial address to start the control

operations.

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

80

• The control data register holds the present microinstruction while

the next address is computed and read from memory.

• The data register is sometimes called a pipeline register.

• It allows the execution of the microoperations specified by the

control word simultaneously with the generation of the next

microinstruction.

• This configuration requires a two-phase clock, with one clock

applied to the address register and the other to the data register.

• The main advantage of the micro programmed control is the fact

that once the hardware configuration is established; there should

be no need for further hardware or wiring changes.

• If we want to establish a different control sequence for the

system, all we need to do is specify a different set of

microinstructions for control memory.

3.2.4 Types of Micro-programmed Control Unit

Based on the type of Control Word stored in the Control Memory

(CM), it is classified into two types:

 Horizontal Micro-programmed control Unit:

The control signals are represented in the decoded binary format

that is 1 bit/CS. Example: If 53 Control signals are present in the

processor than 53 bits are required. More than 1 control signal

can be enabled at a time.

 It supports longer control word.

 It is used in parallel processing applications.

 It allows higher degree of parallelism. If degree is n, n CS are

enabled at a time.

 It requires no additional hardware(decoders). It means it is faster

than Vertical Microprogrammed.

 It is more flexible than vertical microprogrammed

Vertical Micro-programmed control Unit:

The control signals re represented in the encoded binary format. For N

control signals- Log2 (N) bits are required.

 It supports shorter control words.

 It supports easy implementation of new control signals therefore

it is more flexible.

 It allows low degree of parallelism i.e., degree of parallelism is

either 0 or 1.

 Requires an additional hardware (decoders) to generate control

signals, it implies it is slower than horizontal microprogrammed.

CIT 314 MODULE 3

81

 It is less flexible than horizontal but more flexible than that of

hardwired control unit.

4.0 CONCLUSION

We have discussed the arithmetic processors and the organization of

control units. The key to such control units are micro-instruction, which

are briefly (that is types and formats) described in this unit. Finally the

function of a micro-programmed unit, that is, micro-programmed

execution, has also been discussed. The control unit is the key for the

optimized performance of a computer. More detail study can be done by

going through suggested readings.

5.0 SUMMARY

A microprogrammed control unit is a control unit that saves binary

control values as words in memory. By creating a certain collection of

signals at every system clock beat, a controller generates the instructions

to be executed. Each one of these output signals causes a single micro-

operation, such as register transfer. As a result, defined micro-operations

that can be preserved in memory are formed from the sets of control

signals

6.0 SELF-ASSESSMENT EXERCISES

1. What is Microprogrammed control

2. Using diagrams explain the input flow of micro-programmed

control units

3. Differentiate between Micro-programmed control unit and

Hardware control unit

7.0 REFERENCES/FURTHER READING

CLARE. C. R.: Designing Logic Systems Using State Machines.

McGraw-Hill Book Company. 1973. URL: http://bitsavers.trailing-

edge.com/pdf/hp/tutorial/Clare_-

_Designing_Logic_Systems_Using_State_Machines_1973.pdf

Stallings, W. (2015). Computer Organization and Architecture. Pearson

Education. URL:

https://docs.google.com/viewer?a=v&pid=sites&srcid=aGNtdWF

mLmVkdS52bnxuZ3V5ZW54dWFudmluaHxneDo1YzAxMWY0

N2QxMGViZTRl

http://bitsavers.trailing-edge.com/pdf/hp/tutorial/Clare_-_Designing_Logic_Systems_Using_State_Machines_1973.pdf
http://bitsavers.trailing-edge.com/pdf/hp/tutorial/Clare_-_Designing_Logic_Systems_Using_State_Machines_1973.pdf
http://bitsavers.trailing-edge.com/pdf/hp/tutorial/Clare_-_Designing_Logic_Systems_Using_State_Machines_1973.pdf
https://docs.google.com/viewer?a=v&pid=sites&srcid=aGNtdWFmLmVkdS52bnxuZ3V5ZW54dWFudmluaHxneDo1YzAxMWY0N2QxMGViZTRl
https://docs.google.com/viewer?a=v&pid=sites&srcid=aGNtdWFmLmVkdS52bnxuZ3V5ZW54dWFudmluaHxneDo1YzAxMWY0N2QxMGViZTRl
https://docs.google.com/viewer?a=v&pid=sites&srcid=aGNtdWFmLmVkdS52bnxuZ3V5ZW54dWFudmluaHxneDo1YzAxMWY0N2QxMGViZTRl

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

82

WENDT. S.: Entwurf komplexer Schaltvierke. Springer Verlag. 1974.

URL: https://www.springer.com/de/book/9783642474552

https://www.springer.com/de/book/9783642474552

CIT 314 MODULE 3

83

UNIT 3 ASYNCHRONOUS CONTROL

CONTENTS

1.0 Introduction

2.0 Intended Learning Outcomes (ILOS)

3.0 Main Contents

3.3.1 Clock limitations

3.3.2 Basic Concepts

3.3.3 Benefits of Asynchronous Control

3.3.4 Asynchronous Communication

3.3.5 Asynchronous Transmission

3.3.6 Synchronous vs. Asynchronous Transmission

3.3.7 Emerging application areas

3.3.8 Asynchronous Datapaths and Data Transfer

3.3.9 Handshaking

4.0 Self-Assessment Exercises

5.0 Conclusion

6.0 Summary

7.0 References/Further Reading

1.0 INTRODUCTION

Asynchronous (clockless) control is a method of control in which the

time allotted for performing an operation depends on the time actually

required for the operation, rather than on a predetermined fraction of a

fixed machine cycle. Virtually all digital design today is based on

asynchronous approach. The total system is designed as the composition

of one or more subsystems where each subsystem is a clocked finite

state machine; the subsystem changes from one state to the next on the

edges of a regular clock. The state is held in a set of flip-flops

(registers), and combinatorial logic is used to derive the new state and

outputs from the old state and inputs. The new state is copied through

the flip-flops on every rising edge of the clock signal. Special techniques

are required whenever a signal crosses into the domain of a particular

clock (either from outside the system or from the domain of a different

clock within the same system), but otherwise the system behaves in a

discrete and deterministic way provided a few rules are followed; these

rules include managing the delays of the combinatorial logic so that the

flip-flop set up and hold times are met under all conditions.

Asynchronous design does not follow this methodology; in general there

is no clock to govern the timing of state changes. Subsystems exchange

information at mutually negotiated times with no external timing

regulation.

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

84

2.0 INTENDED LEARNING OUTCOMES (ILOs)

 Understand how Asynchronous control unit works

 Give concise explanations on clock limitations, and basic

concepts of Asynchronous control units.

3.3.1 Clock limitations

Though synchronous design has enabled great strides to be taken in the

design and performance of computers, there is evidence that it is

beginning to hit some fundamental limitations. A circuit can only

operate synchronously if all parts of it see the clock at the same time, at

least to a reasonable approximation. However clocks are electrical

signals, and when they propagate down wires they are subject to the

same delays as other signals. If the delay to particular part of the circuit

takes a significant part of a clock cycle-time, that part of the circuit

cannot be viewed as being in step with other parts.

For some time now it has been difficult to sustain the synchronous

framework from chip to chip at maximum clock rates. On-chip phase-

locked loops help compensate for chip-to-chip tolerances, but above

about 50MHz even this is not enough. Building the complete CPU on a

single chip avoids inter-chip skew, as the highest clock rates are only

used for processor-MMU-cache transactions. However, even on a single

chip, clock skew is becoming a problem. High-performance processors

must dedicate increasing proportions of their silicon area to the clock

drivers to achieve acceptable skew, and clearly there is a limit to how

much further this proportion can increase. Electrical signals travel on

chips at a fraction of the speed of light; as the tracks get thinner, the

chips get bigger and the clocks get faster, the skew problem gets worse.

Perhaps the clock could be injected optically to avoid the wire delays,

but the signals which are issued as a result of the clock still have to

propagate along wires in time for the next pulse, so a similar problem

remains.

Even more urgent than the physical limitation of clock distribution is the

problem of heat. CMOS is a good technology for low power as gates

only dissipate energy when they are switching. Normally this should

correspond to the gate doing useful work, but unfortunately in a

synchronous circuit this is not always the case. Many gates switch

because they are connected to the clock, not because they have new

inputs to process. The biggest gate of all is the clock driver, and it must

switch all the time to provide the timing reference even if only a small

part of the chip has anything useful to do. Often it will switch when

CIT 314 MODULE 3

85

none of the chip has anything to do, because stopping and starting a

high-speed clock is not easy.

Early CMOS devices were very low power, but as process rules have

shrunk CMOS has become faster and denser, and today's high-

performance CMOS processors can dissipate 20 or 30 watts.

Furthermore there is evidence that the trend towards higher power will

continue. Process rules have at least another order of magnitude to

shrink, leading directly to two orders of magnitude increase in

dissipation for a maximum performance chip. Whilst a reduction in the

power supply voltage helps reduce the dissipation (by a factor of 3 for 3

Volt operation and a factor of 6 for 2 Volt operation, relative to a 5 Volt

norm in both cases), the end result is still a chip with an increasing

thermal problem. Processors which dissipate several hundred watts are

clearly no use in battery powered equipment, and even on the desktop

they impose difficulties because they require water cooling or similar

costly heat-removal technology.

As feature sizes reduce and chips encompass more functionality it is

likely that the average proportion of the chip which is doing something

useful at any time will shrink. Therefore the global clock is becoming

increasingly inefficient.

3.3.2 Basic Concepts

There are a few key concepts fundamental to the understanding of

asynchronous circuits:

the timing models used, the mode of operation and the signaling

conventions.

3.3.2.1 Timing model

Asynchronous circuits are classified according to their behaviour with

respect to circuit delays. If a circuit functions correctly irrespective of

the delays in the logic gates and the delays in the wiring it is known as

delay-insensitive. A restricted form of this circuit known as speed

independent allows arbitrary delays in logic elements but assumes zero

delays in the interconnect (i.e. all interconnect wires are equi-potential).

Finally, if the circuit only functions when the delays are below some

predefined limit the circuit is known as bounded delay.

3.3.2.2 Mode

Asynchronous circuits can operate in one of two modes. The first is

called fundamental mode and assumes no further input changes can be

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

86

applied until all outputs have settled in response to a previous input. The

second, input/output mode, allows

3.3.2.3 Asynchronous signaling conventions

A communication between two elements in an asynchronous system can

be considered as having two or four phases of operation and a single bit

of information can be conveyed on either a single wire or a pair or wires

(known as dual-rail encoding).

Two-phase

In a two-phase communication the information is transmitted by a single

transition or change in voltage level on a wire. Figure 4.1(a) shows an

example of two-phase communication.

Figure 3.3.1: Two-phase communication protocol

The sender initiates the communication by making a single transition on

the request wire; the receiver responds by making a single transition on

the acknowledge wire completing the two phases of the communication.

The electrical level of the wires contains no information, only a

transition is important and rising or falling transitions are equivalent (see

figure 4.1(b)) There is no intermediate recovery stage, so that if the first

communication resulted in a transition from Low to High the new

communication starts with a transition High to Low (figure 4.1(a), 2nd

communication).

CIT 314 MODULE 3

87

Four-phase

With four-phase communication two phases are active communication

while the other two permit recovery to a predefined state. Figure 4.2

shows an example of four-phase communication; in this example all

wires are initialized to a logical Low level.

Figure 3.3.2: Four Phase Communication protocol

Four-phase

With four-phase communication two phases are active communication

while the other two permit recovery to a predefined state. Figure 4.2

shows an example of four-phase communication; in this example all

wires are initialized to a logical Low level. The communication is

initiated by the sender changing the request wire to a High level

toindicate that it is active. The receiver responds by changing the

acknowledge wire to a High level also. The sender observes this change,

indicating that the communication has been successful, and then changes

the request wire back to Low to indicate it is no longer active.

The receiver completes the fourth phase of the operation by changing

the acknowledge wire back to a Low level to indicate that it too has

become inactive. After completing the four phases of a single

communication, the voltage levels on the wires have returned to their

initial value

Single-rail encoding

A single-rail circuit encodes information in a conventional level encoded

manner. One wire is required for each bit of information. If the

information is a data value, then a typical encoding would use a High

(Vdd) level to correspond to a logic ‘1’ and a Low level (Vss) to

represent a logic ‘0’.

Dual-rail encoding

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

88

A dual-rail circuit requires two wires to encode every bit of information.

Of the two wires, one represents a logic ‘0’ and the other represents a

logic ‘1’. In any communication an event occurs on either the logic ‘0’

wire or the logic ‘1’ wire. There cannot be an event on both wires during

any single communication (a value cannot be ‘0’ and ‘1’ at the same

time in a digital system). Similarly, in every communication there is

always an event on one of the two wires of each bit (a value has to be ‘0’

or ‘1’). It is therefore possible to determine when the entire data word is

valid because an event has been detected on one of the dual rails of

every bit in the data word. Thus timing information is implicit with the

data to indicate its validity. The event that is transmitted on one of the

dual rails can either be two phase or four-phase.

There are various combinations of two-/four-phase and single-/dual-rail

protocols that can be used. Four-phase, dual-rail is popular for delay-

insensitive asynchronous design styles. The research described in this

thesis employs a combination of styles. The control circuitry is

predominately two-phase, single-rail, although four-phase is used where

it is more efficient to do so. Dual-rail is also used but only in a few

specialized applications. The datapath part of the design uses standard

single-rail logic to implement the functional units.

Overall the design adheres to the bounded-delay timing model (although

some parts may be considered delay-insensitive) and its pipeline stages

operate in fundamental mode.

3.3.3 Benefits of Asynchronous Control

Two major assumptions guide the design of today’s logic; all signals

are binary, and time is discrete. Both of these assumptions are made in

order to simplify logic design. By assuming binary values on signals,

simple Boolean logic can be used to describe and manipulate logic

constructs. By assuming time is discrete, hazards and feedback can

largely be ignored. However, as with many simplifying assumptions, a

system that can operate without these assumptions has the potential to

generate better results.

Asynchronous circuits keep the assumption that signals are binary, but

remove the assumption that time is discrete.

Clockless or asynchronous control design is receiving renewed

attention, due to its potential benefits of modularity, low power, low

electromagnetic interference and average-case performance.

This has several possible benefits:

CIT 314 MODULE 3

89

 No clock skew - Clock skew is the difference in arrival times of

the clock signal at different parts of the circuit. Since

asynchronous circuits by definition have no globally distributed

clock, there is no need to worry about clock skew. In contrast,

synchronous systems often slow down their circuits to

accommodate the skew. As feature sizes decrease, clock skew

becomes a much greater concern.

 Lower power - Standard synchronous circuits have to toggle

clock lines, and possibly pre-charge and discharge signals, in

portions of a circuit unused in the current computation. For

example, even though a floating point unit on a processor might

not be used in a given instruction stream, the unit still must be

operated by the clock. Although asynchronous circuits often

require more transitions on the computation path than

synchronous circuits, they generally have transitions only in areas

involved in the current computation. Note that there are some

techniques in synchronous design that addresses this issue as

well.

 Average-case instead of worst-case performance -

Synchronous circuits must wait until all possible computations

have completed before latching the results, yielding worst-case

performance. Many asynchronous systems sense when a

computation has completed, allowing them to exhibit average-

case performance. For circuits such as ripple-carry adders where

the worst-case delay is significantly worse than the average-case

delay, this can result in a substantial savings.

 Easing of global timing issues: In systems such as a

synchronous microprocessor, the system clock, and thus system

performance, is dictated by the slowest (critical) path. Thus, most

portions of a circuit must be carefully optimized to achieve the

highest clock rate, including rarely used portions of the system.

Since many asynchronous systems operate at the speed of the

circuit path currently in operation, rarely used portions of the

circuit can be left un-optimized without adversely affecting

system performance.

 Better technology migration potential - Integrated circuits will

often be implemented in several different technologies during

their lifetime. Early systems may be implemented with gate

arrays, while later production runs may migrate to semi-custom

or custom ICs. Greater performance for synchronous systems can

often only be achieved by migrating all system components to a

new technology, since again the overall system performance is

based on the longest path. In many asynchronous systems,

migration of only the more critical system components can

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

90

improve system performance on average, since performance is

dependent on only the currently active path. Also, since many

asynchronous systems sense computation completion,

components with different delays may often be substituted into a

system without altering other elements or structures.

 Automatic adaptation to physical properties - The delay

through a circuit can change with variations in fabrication,

temperature, and power-supply voltage. Synchronous circuits

must assume that the worst possible combination of factors is

present and clock the system accordingly. Many asynchronous

circuits sense computation completion, and will run as quickly as

the current physical properties allow.

 Robust mutual exclusion and external input handling -

Elements that guarantee correct mutual exclusion of independent

signals and synchronization of external signals to a clock are

subject to meta-Stability. A metastable state is an unstable

equilibrium state, such as a pair of cross-coupled CMOS inverters

at 2.5V, which a system can remain in for an unbounded amount

of time [2]. Synchronous circuits require all elements to exhibit

bounded response time. Thus, there is some chance that mutual

exclusion circuits will fail in a synchronous system. Most

asynchronous systems can wait an arbitrarily long time for such

an element to complete, allowing robust mutual exclusion. Also,

since there is no clock with which signals must be synchronized,

asynchronous circuits more gracefully accommodate inputs from

the outside world, which are by nature asynchronous.

3.3.3.1 Limitations of Asynchronous Controllers

With all of the potential advantages of asynchronous circuits, one might

wonder why synchronous systems predominate. The reason is that

asynchronous circuits have several difficulties as well:

 Asynchronous circuits are more difficult to design in an ad hoc

fashion than synchronous circuits. In a synchronous system, a

designer can simply define the combinational logic necessary to

compute the given function, and surround it with latches.

 By setting the clock rate to a long enough period, all worries about

hazards (undesired signal transitions) and the dynamic state of the

circuit are removed. In contrast, designers of asynchronous systems

must pay a great deal of attention to the dynamic state of the circuit.

Hazards must also be removed from the circuit, or not introduced in

the first place, to avoid incorrect results.

 The ordering of operations, which was fixed by the placement of

latches in a synchronous system, must be carefully ensured by the

asynchronous control logic. For complex systems, these issues

CIT 314 MODULE 3

91

become too difficult to handle by hand. Unfortunately,

asynchronous circuits in general cannot leverage off of existing

CAD tools and implementation alternatives for synchronous

systems.

 For example, some asynchronous methodologies allow only

algebraic manipulations (associative, commutative, and De-

Morgan's Law) for logic decomposition, and many do not even

allow these.

 Placement, routing, partitioning, logic synthesis, and most other

CAD tools either need modifications for asynchronous circuits, or

are not applicable at all.

 Finally, even though most of the advantages of asynchronous

circuits are towards higher performance, it isn't clear that

asynchronous circuits are actually any faster in practice.

 Asynchronous circuits generally require extra time due to their

signaling policies, thus increasing average-case delay.

At the end of this this unit; students should be able to;

 Explain the properties of asynchronous Controllers

 Describe hardwired Control

 State the methodologies for Asynchronous Communications

 Understand the Datapaths and Data Transfer modalities of

Clockless Controls

3.3.4 Asynchronous Communication

Concurrent and distributed systems use communication as a means to

exchange information. Communication can be of two kinds:

synchronous and asynchronous. A communication is synchronous when

sending and receiving information between a sender and a receiver are

simultaneous events. Microcontrollers have the ability to

communication asynchronously and synchronously. With Synchronous

communication, there is a wire between two communicating agents

carrying the clock pulse so both microcontrollers can communicate

using the same pulse. With asynchronous communication, there is no

wire between the two microcontrollers, so each microcontroller is

essentially blind to the pulse rate. Each microcontroller is told, using a

baud rate, what speed to execute the communication.

That means the two devices do not share a dedicated clock signal (a

unique clock exists on each device). Each device must setup ahead of

time a matching bit rate and how many bits to expect in a given

transaction.

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

92

3.3.5 Asynchronous Transmission

In asynchronous transmission, data moves in a half-paired approach, 1

byte or 1 character at a time. It sends the data in a constant current of

bytes. The size of a character transmitted is 8 bits, with a parity bit

added both at the beginning and at the end, making it a total of 10

bits. It doesn’t need a clock for integration—rather, it utilizes the parity

bits to tell the receiver how to translate the data. It is straightforward,

quick, cost-effective, and doesnot need two-way communication to

function.

Characteristics of Asynchronous Communication

 Each character is headed by a beginning bit and concluded with

one or more end bits.

 There may be gaps or spaces in between characters.

Examples of Asynchronous Communication

 Emails

 Forums

 Letters

 Radios

 Televisions

3.3.6 Synchronous vs. Asynchronous Transmission

1. In synchronous transmission data is transmitted in the form of

chunks, while in asynchronous transmission data is transmitted one

byte at a time.

2. Synchronous transmission needs a clock signal between the source

and target to let the target know of the new byte. In comparison,

with asynchronous transmission, a clock signal is not needed

because of the parity bits that are attached to the data being

transmitted, which serves as a start indicator of the new byte.

3. The data transfer rate of synchronous transmission is faster since it

transmits in chunks of data, compared to asynchronous

transmission which transmits one byte at a time.

4. Asynchronous transmission is straightforward and cost-effective,

while synchronous transmission is complicated and relatively

pricey.

5. Synchronous transmission is systematic and necessitates lower

overhead figures compared to asynchronous transmission.

Both synchronous and asynchronous transmission have their benefits

and limitations. Asynchronous transmission is used for sending a small

CIT 314 MODULE 3

93

amount of data while the synchronous transmission is used for sending

bulk amounts of data. Thus, we can say that both synchronous and

asynchronous transmission are essential for the overall process of data

transmission.

3.3.7 Emerging application areas

Beyond more classical design targets, a number of novel application

areas have recently emerged where asynchronous design is poised to

make an impact.

 Large-scale heterogenous system integration. In multi- and

many-core processors and systems-onchip (SoC’s), some level of

asynchrony is inevitable in the integration of heterogeneous

components.

 Typically, there are several distinct timing domains, which are

glued together using an asynchronous communication fabric.

There has been much recent work on asynchronous and mixed

synchronous asynchronous systems

 Ultra-low-energy systems and energy harvesting.

 Asynchronous design is also playing a crucial role in the design

of systems that operate in regimes where energy availability is

extremely limited. In one application, such fine-grain adaptation,

in which the datapath latency can vary subtly for each input

sample, is not possible in a fixed-rate synchronous design. In a

recent in-depth case study by Chang et al., focusing on ultra-low-

energy 8051 microcontroller cores with voltage scaling, it was

shown that under extreme process, voltage, and temperature

(PVT) variations, a synchronous core requires its delay margins

to be increased by a factor of 12_, while a comparable

asynchronous core can operate at actual speed.

Continuous-time digital signal processors (CTDSP’s).

Another intriguing direction is the development of continuous-time

digital signal processors, where input samples are generated at irregular

rates by a level-crossing analog-to-digital converter, depending on the

actual rate of change of the input’s waveform.

An early specialized approach, using finel discretized sampling,

demonstrated a 10_ power reduction

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

94

Alternative computing paradigms.

Finally, there is increasing interest in asynchronous circuits as the

organizing backbone of systems based on emerging computing

technologies, such as cellular nano-array and nano magnetics, where

highly-robust asynchronous approaches are crucial to mitigating timing

irregularities.

3.3.8 Asynchronous Datapaths and Data Transfer

The internal operations in an individual unit of a digital system are

synchronized using clock pulse. It means clock pulse is given to all

registers within a unit. And all data transfer among internal registers

occurs simultaneously during the occurrence of the clock pulse. Now,

suppose any two units of a digital system are designed independently,

such as CPU and I/O interface. If the registers in the I/O interface share

a common clock with CPU registers, then transfer between the two units

is said to be synchronous. But in most cases, the internal timing in each

unit is independent of each other, so each uses its private clock for its

internal registers. In this case, the two units are said to be asynchronous

to each other, and if data transfer occurs between them, this data transfer

is called Asynchronous Data Transfer. In other words, the two units

are said to be asynchronous to each other. CPU and I/O device must

coordinate for data transfers.

But, the Asynchronous Data Transfer between two independent units

requires that control signals be transmitted between the communicating

units so that the time can be indicated at which they send data.

These two methods can achieve this asynchronous way of data transfer:

 Strobe Control: This is one way of transfer i.e. by means of strobe

pulse supplied by one of the units to indicate to the other unit when

the transfer has to occur.

 Handshaking: This method is used to accompany each data item

being transferred with a control signal that indicates the presence of

data in the bus. The unit receiving the data item responds with

another control signal to acknowledge receipt of the data.

The strobe pulse and handshaking method of asynchronous data transfer

is not restricted to I/O transfer. They are used extensively on numerous

occasions requiring the transfer of data between two independent units.

So, here we consider the transmitting unit as a source and receiving unit

as a destination.

CIT 314 MODULE 3

95

Strobe control method of data transfer uses a single control signal for

each transfer. The strobe may be activated by either the source unit or

the destination unit. This control line is also known as a strobe, and it

may be achieved either by source or destination, depending on which

initiate the transfer.

 Source Initiated Strobe

 Destination Initiated Strobe

SOURCE INITIATED STROBE: The data bus carries the binary

information from source unit to the destination unit as shown below.

The strobe is a single line that informs the destination unit when a valid

data word is available in the bus.

Figure 3.3.4: Source Initiated Strobe

 The source unit first places the data on the bus.

 After a brief delay to ensure that the data settle to a steady value,

the source activities the strobe pulse.

 The information of the data bus and the strobe signal remain in the

active state for a sufficient time period to allow the destination unit

to receive the data.

 The source removes the data from the bus for a brief period of time

after it disables its strobe pulse.

DESTINATION INITIATED STROBE

 First, the destination unit activates the strobe pulse, informing the

source to provide the data.

 The source unit responds by placing the requested binary

information on the unit to accept it.

Figure 3.3.3: Strobe control method

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

96

 The data must be valid and remain in the bus long enough for the

destination unit to accept it.

 The falling edge of the strobe pulse can be used again to trigger a

destination register.

 The destination unit then disables the strobe.

 The source removes the data from the bus after a predetermined

time interval.

Figure 3.3.5: Destination Initiated Strobe

3.3.9 HANDSHAKING

The strobe method has the disadvantage that the source unit that initiates

the transfer has no way of knowing whether the destination has received

the data that was placed in the bus. Similarly, a destination unit that

initiates the transfer has no way of knowing whether the source unit has

placed data on the bus.

 In case of source initiated data transfer under strobe control

method, the source unit has no way of knowing whether

destination unit has received the data or not.

 Similarly, destination initiated transfer has no method of knowing

whether the source unit has placed the data on the data bus.

 Handshaking mechanism solves this problem by introducing a

second control signal that provides a reply to the unit that initiate

the transfer.

There are two control lines in handshaking technique:

 Source to destination unit

 Destination to source unit

CIT 314 MODULE 3

97

3.3.9.1 SOURCE INITIATED TRANSFER

 Handshaking signals are used to synchronize the bus activities.

 The two handshaking lines are data valid, which is generated by

the source unit, and data accepted, generated by the destination

unit.

 The timing diagram shows exchange of signals between two

units.

3.3.9.2 SOURCE INITIATED TRANSFER USING

 HANDSHAKING

The sequence of events:

 The source unit initiates the transfer by placing the data on the

bus and enabling its data valid signal.

 The data accepted signals is activated by the destination unit after

it accepts the data from the bus.

 The source unit then disables its data valid signal, which

invalidates the data on the bus.

 The destination unit the disables its data accepted signal and the

system goes into its initial state.

Figure 3.3.6: Source Initiated Transfer

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

98

3.3.9.3 DESTINATION INITIATED TRANSFER USING

HANDSHAKING

 In this case the name of the signal generated by the destination unit

is ready for data.

 The source unit does not place the data on the bus until it receives

the ready for data signal from the destination unit.

 The handshaking procedure follows the same pattern as in source

initiated case. The sequence of events in both the cases is almost

same except the ready for signal has been converted from data

accepted in case of source initiated.

Figure 3.3.7: Destination IT

Advantages of Asynchronous Data Transfer

Figure 3.3.7: Source IT using Handshake

CIT 314 MODULE 3

99

Asynchronous Data Transfer in computer organization has the following

advantages, such as:It is more flexible, and devices can exchange

information at their own pace. In addition, individual data characters can

complete themselves so that even if one packet is corrupted, its

predecessors and successors will not be affected.

 It does not require complex processes by the receiving device.

Furthermore, it means that inconsistency in data transfer does not

result in a big crisis since the device can keep up with the data

stream. It also makes asynchronous transfers suitable for

applications where character data is generated irregularly.

Disadvantages of Asynchronous Data Transfer

There are also some disadvantages of using asynchronous data for

transfer in computer organization, such as:

 The success of these transmissions depends on the start bits and

their recognition. Unfortunately, this can be easily susceptible to

line interference, causing these bits to be corrupted or distorted.

 A large portion of the transmitted data is used to control and

identify header bits and thus carries no helpful information

related to the transmitted data. This invariably means that more

data packets need to be sent.

4.0 SELF-ASSESSMENT EXERCISES

1. Give 5 advantages and disadvantages each of Asynchronous

Control

2. Differentiate between Destination initiated and Source Initiated

Transfer using diagrams

Figure 3.3.7: Destination IT using Handshake

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

100

4.0 CONCLUSION

Asynchronous input output is a form of input output processing that

allows others devices to do processing before the transmission or data

transfer is done.

In asynchronous input output synchronization, it is not sure that the data

on the data bus is fresh or not as their no time slot for sending or

receiving data.

This problem is solved by following mechanism:

1. Strobe

2. Handshaking

5.0 SUMMARY

The internal operations in an individual unit of a digital system are

synchronized using clock pulse. It means clock pulse is given to all

registers within a unit. And all data transfer among internal registers

occurs simultaneously during the occurrence of the clock pulse. Now,

suppose any two units of a digital system are designed independently,

such as CPU and I/O interface.

If the registers in the I/O interface share a common clock with CPU

registers, then transfer between the two units is said to be synchronous.

But in most cases, the internal timing in each unit is independent of each

other, so each uses its private clock for its internal registers. In this case,

the two units are said to be asynchronous to each other, and if data

transfer occurs between them, this data transfer is called Asynchronous

Data Transfer.

6.0 TUTOR MARKED ASSIGNMENTS

1. What are the major functions of the control unit?

2. Using their designs, differentiate between a Hardwired circuit and

a Microprogrammed Circuit

3. Give the differences between Vertical and Horizontal Micro-

programmed circuits

4. Explain the Asynchronous signaling conventions available

5. How does the single rail encoding work?

6. What are the limitations to asynchronous controllers?

7. Compare between Synchronous and Asynchronous transmissions

CIT 314 MODULE 3

101

7.0 REFERENCES/FURTHER READING

Asanovic, Krste (2017). The RISC V Instruction Set

Manual (PDF) (2.2 ed.). Berkeley: RISC-V Foundation.

Astha Singh. "Computer Organization - Control Unit and

design". GeeksforGeeks. Retrieved 25 May 2019.

Leighton, Luke. "Libre RISC-V M-Class". Crowd Supply. Retrieved 16

January 2020.

Power ISA(tm) (3.0B ed.). Austin: IBM. 2017. Retrieved 26

December 2019.

William, S. (2010). Computer organization and architecture: designing

for performance. URL:

https://www.academia.edu/44827616/Computer_organization_and_arCh

iteCture_Designing_for_Performance_tenth_edition

https://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://www.geeksforgeeks.org/computer-organization-control-unit-and-design/
https://www.geeksforgeeks.org/computer-organization-control-unit-and-design/
https://www.crowdsupply.com/libre-risc-v/m-class/updates/modernising-1960s-computer-technology-learning-from-the-cdc-6600
https://ibm.ent.box.com/s/1hzcwkwf8rbju5h9iyf44wm94amnlcrv
https://www.academia.edu/44827616/Computer_organization_and_arChiteCture_Designing_for_Performance_tenth_edition
https://www.academia.edu/44827616/Computer_organization_and_arChiteCture_Designing_for_Performance_tenth_edition

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

102

MODULE 4 FAULT TOLERANCE COMPUTING

INTRODUCTION

Fault tolerance refers to the property that enables the system to continue

to function correctly even when some of its components fail. In other

words, fault tolerance means how an operating system (OS) responds

and allows hardware or software malfunctions and fails.

The ability of OS to recover and tolerate faults can be handled through

software, hardware, or a combination solution that leverages load

balancers. Some computer systems use multiple duplicate fault tolerance

systems to handle faults gracefully, which is called a fault-tolerant

network.

Fault-tolerant systems use backup components that automatically

replace failed components to ensure that no break occurs in service.

This module is split into two units. The first unit explains fault

tolerance, its issues, and relationships with security while the second

unit takes on methods for fault tolerance computing. These units are

shown thus.

UNIT 1 FAULT TOLERANT COMPUTING

CONTENTS

1.0 Introduction

2.0 Intended Learning Outcomes (ILOS)

3.0 Main Contents

 3.0.1.1 What is Fault Tolerance

 3.0.1.2 Fault Tolerant Systems

 3.0.1.3 Hardware and Software Fault Tolerant Issues

 3.0.1.4 Fault Tolerance VS High Availability

 3.0.1.5 Redundancy

 3.0.1.6 Relationship Between Security and Fault Tolerance

4.0 Self-Assessment Exercises

5.0 Conclusion

6.0 Summary

7.0 References/Further Reading

INTRODUCTION

Technology scaling allows realization of more and more complex

system on a single chip. This high level of integration leads to increased

current and power densities and causes early device and interconnect

CIT 314 MODULE 4

103

wear-out. In addition, there are failures not caused by wear-out nor

escaped manufacturing defects, but due to increased susceptibility of

transistors to high energy particles from atmosphere or from within the

packaging. Devices operating at reduced supply voltages are more prone

to charge related phenomenon caused by high-energy particle strikes

referred to as Single Event Effect (SEE). They experience particle-

induced voltage transients called Single Event Transient (SET) or

particle-induced bit-flips in memory elements also known as Single

Event Upset (SEU). Selecting the ideal trade-off between reliability and

cost associated with a fault tolerant architecture generally involves an

extensive design space exploration. Employing state-of-the-art reliability

estimation methods makes this exploration un-scalable with the design

complexity.

Fault Tolerance in software is a phenomenon where the software is

capable of fixing itself or continuing the normal operations in the

occurrence of any glitches or error in the system, provided that full

coverage on the functionality is maintained as specified in the required

documentation. The reasons behind these faults in the software system

can be a fault from within, from other integrated systems, from the

downstream application, or from any other external aspects like the

system hardware, network, etc. This is one of the factors based on which

software is estimated to be a quality one or not. Hence it is important

that every software program consists of fault tolerance. Fault-tolerant

computing is the art and science of building computing systems that

continue to operate satisfactorily in the presence of faults. A fault-

tolerant system may be able to tolerate one or more fault-types including

-- i) transient, intermittent or permanent hardware faults, ii) software and

hardware design errors, iii) operator errors, or iv) externally induced

upsets or physical damage. An extensive methodology has been

developed in this field over the past thirty years, and a number of fault-

tolerant machines have been developed - most dealing with random

hardware faults, while a smaller number deal with software, design and

operator faults to varying degrees.

2.0 INTENDED LEARNING OUTCOMES (ILOs)

 Explain fault tolerant in computing.

 Explain redundancy and identify Hardware and Software Fault

Tolerant Issues

 Explain the Relationship Between Security and Fault Tolerance

 Identify different Fault Tolerance Architectures

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

104

3.0.1.1 What is Fault Tolerance

Fault Tolerance has been part of the computing community for quite a

long time, to clarify the building of our understanding of fault tolerance,

then we should know that fault tolerance is the art and science of

building computing systems that continue to operate satisfactorily in the

presence of faults. An operating system that offers a solid definition for

faults cannot be disrupted by a single point of failure. It ensures business

continuity and the high availability of crucial applications and systems

regardless of any failures.

Fault tolerance and dependable systems research covers a wide spectrum

of applications ranging across embedded real-time systems, commercial

transaction systems, transportation systems, military and space systems

to name a few. The supporting research includes system architecture,

design techniques, coding theory, testing, validation, proof of

correctness, modeling, software reliability, operating systems, parallel

processing, and real-time processing. These areas often involve widely

diverse core expertise ranging from formal logic, mathematics of

stochastic modeling, graph theory, hardware design and software

engineering.

Basic Terms of fault Tolerance Computing

Fault tolerance can be built into a system to remove the risk of it having

a single point of failure. To do so, the system must have no single

component that, if it were to stop working effectively, would result in

the entire system failing. Fault tolerance is reliant on aspects like load

balancing and failover, which remove the risk of a single point of

failure. It will typically be part of the operating system’s interface,

which enables programmers to check the performance of data

throughout a transaction.

Three central terms in fault-tolerant design are fault, error, and failure.

There is a cause effect relationship between faults, errors, and failures.

Specifically, faults are the cause of errors, and errors are the cause of

failures. Often the term failure is used interchangeably with the term

malfunction, however, the term failure is rapidly becoming the more

commonly accepted one. A fault is a physical defect, imperfection, or

flaw that occurs within some hardware or software component.

Essentially, the definition of a fault, as used in the fault tolerance

community, agrees with the definition found in the dictionary. A fault is

a blemish, weakness, or shortcoming of a particular hardware or

software component. An error is the manifestation of a fault.

Specifically, an error is a deviation from accuracy or correctness.

Finally, if the error results in the system performing one of its functions

https://www.fortinet.com/content/dam/fortinet/assets/white-papers/FortiADC-ABCs.pdf
https://www.fortinet.com/content/dam/fortinet/assets/white-papers/FortiADC-ABCs.pdf
https://www.fortinet.com/resources/cyberglossary/failover

CIT 314 MODULE 4

105

incorrectly then a system failure has occurred. Essentially, a failure is

the nonperformance of some action that is due or expected. A failure is

also the performance of some function in a subnormal quantity or

quality.

The concepts of faults, errors, and failures can be best presented by the

use of a three-universe model that is an adaptation of the four-universe

models;

 first universe is the physical universe in which faults occur. The

physical universe contains the semiconductor devices,

mechanical elements, displays, printers, power supplies, and

other physical entities that make up a system. A fault is a physical

defect or alteration of some component within the physical

universe.

 The second universe is the informational universe. The

informational universe is where the error occurs. Errors affect

units of information such as data words within a computer or

digital voice or image information. An error has occurred when

some unit of information becomes incorrect.

 The final universe is the external or user’s universe. The external

universe is where the user of a system ultimately sees the effect

of faults and errors. The external universe is where failures occur.

The failure is any deviation that occurs from the desired or

expected behavior of a system. In summary, faults are physical

events that occur in the physical universe. Faults can result in

errors in the informational universe, and errors can ultimately

lead to failures that are witnessed in the external universe of the

system.

The cause-effect relationship implied in the three-universe model leads

to the definition of two important parameters; fault latency and error

latency.

 Fault latency is the length of time between the occurrence of a

fault and the appearance of an error due to that fault.

 Error latency is the length of time between the occurrence of an

error and the appearance of the resulting failure. Based on the

three-universe model, the total time between the occurrence of a

physical fault and the appearance of a failure will be the sum of

the fault latency and the error latency.

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

106

Characteristics of Faults

Faults could be classified based on the following parameters

a) Causes/Source of Faults

b) Nature of Faults

c) Fault Duration

d) Extent of Faults

e) Value of faults

Sources of faults: Faults can be the result of a variety of things that

occur within electronic components, external to the components, or

during the component or system design process. Problems at any of

several points within the design process can result in faults within the

system.

 Specification mistakes, which include incorrect algorithms,

architectures, or hardware and software design specifications.

 Implementation mistakes. Implementation, as defined here, is the

process of transforming hardware and software specifications into

the physical hardware and the actual software. The

implementation can introduce faults because of poor design, poor

component selection, poor construction, or software coding

mistakes.

 Component defects. Manufacturing imperfections, random

device defects, and component wear-out are typical examples of

component defects. Electronic components simply become

defective sometimes. The defect can be the result of bonds

breaking within the circuit or corrosion of the metal. Component

defects are the most commonly considered cause of faults.

 External disturbance; for example, radiation, electromagnetic

interference, battle damage, operator mistakes, and environmental

extremes.

Nature of a faults: specifies the type of fault; for example, whether it is

a hardware fault, a software fault, a fault in the analog circuitry, or a

fault in the digital circuitry.

Fault Duration. The duration specifies the length of time that a fault is

active.

 Permanent fault, that remains in existence indefinitely if no

corrective action is taken.

 Transient fault, which can appear and disappear within a very

short period of time.

CIT 314 MODULE 4

107

 Intermittent fault that appears, disappears, and then reappears

repeatedly.

Fault Extent. The extent of a fault specifies whether the fault is

localized to a given hardware or software module or globally affects the

hardware, the software, or both.

Fault value of a fault can be either determinate or indeterminate. A

determinate fault is one whose status remains unchanged throughout

time unless externally acted upon. An indeterminate fault is one whose

status at some time, T, may be different from its status at some

increment of time greater than or less than T.

Three primary techniques for maintaining a system’s normal

performance in an environment where faults are of concern; fault

avoidance, fault masking, and fault tolerance.

 Fault avoidance is a technique that is used in an attempt to

prevent the occurrence of faults. Fault avoidance can include

such things as design reviews, component screening, testing, and

other quality control methods.

 Fault masking is any process that prevents faults in a system

from introducing errors into the informational structure of that

system.

 Fault tolerance is the ability of a system to continue to perform

its tasks after the occurrence of faults. The ultimate goal of fault

tolerance is to prevent system failures from occurring. Since

failures are directly caused by errors, the terms fault tolerance

and error tolerance are often used interchangeably.

Approaches for Fault Tolerance.

 Fault masking is one approach to tolerating faults.

 Reconfiguration is the process of eliminating a faulty entity from

a system and restoring the system to some operational condition

or state. If the reconfiguration technique is used then the designer

must be concerned with fault detection, fault location, fault

containment, and fault recovery.

 Fault detection is the process of recognizing that a fault has

occurred. Fault detection is often required before any recovery

procedure can be implemented.

 Fault location is the process of determining where a fault has

occurred so that an appropriate recovery can be implemented.

 Fault containment is the process of isolating a fault and

preventing the effects of that fault from propagating throughout a

system. Fault containment is required in all fault-tolerant designs.

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

108

 Fault recovery is the process of remaining operational or

regaining operational status via reconfiguration even in the

presence of faults.

Goals of Fault Tolerance

Fault tolerance is an attribute that is designed into a system to achieve

some design goals such as; dependability, reliability, availability, safety,

performability, maintainability, and testability; fault tolerance is one

stem attribute capable of fulfilling such requirements.

Dependability. The term dependability is used to encapsulate the

concepts of reliability, availability, safety, maintainability,

performability, and testability. Dependability is simply the quality of

service provided by a particular system. Reliability, availability, safety,

maintainability, performability, and testability, are examples of

measures used to quantify the dependability of a system.

Reliability. The reliability of a system is a function of time, R(t),

defined as the conditional probability that the system performs correctly

throughout the interval of time, [t0,t], given that the system was

performing correctly at time t0. In other words, the reliability is the

probability that the system operates correctly throughout a complete

interval of time. The reliability is a conditional probability in that it

depends on the system being operational at the beginning of the chosen

time interval. The unreliability of a system is a function of time, F(t),

defined as the conditional probability that a system begins to perform

incorrectly during the interval of time, [t0,t], given that the system was

performing correctly at time t0. The unreliability is often referred to as

the probability of failure.

Reliability is most often used to characterize systems in which even

momentary periods of incorrect performance are unacceptable, or it is

impossible to repair the system. If repair is impossible, such as in many

space applications, the time intervals being considered can be extremely

long, perhaps as many as ten years. In other applications, such as aircraft

flight control, the time intervals of concern may be no more than several

hours, but the probability of working correctly throughout that interval

may be 0.9999999 or higher. It is a common convention when reporting

reliability numbers to use 0.9i to represent the fraction that has i nines to

the right of the decimal point. For example, 0.9999999 is written as

0.97.

Availability. Availability is a function of time, A(t), defined as the

probability that a system is operating correctly and is available to

perform its functions at the instant of time, t. Availability differs from

CIT 314 MODULE 4

109

reliability in that reliability involves an interval of time, while

availability is taken at an instant of time. A system can be highly

available yet experience frequent periods of inoperability as long as the

length of each period is extremely short. In other words, the availability

of a system depends not only on how frequently it becomes inoperable

but also how quickly it can be repaired. Examples of high-availability

applications include time-shared computing systems and certain

transactions processing applications, such as airline reservation systems.

Safety. Safety is the probability, S(t), that a system will either perform

its functions correctly or will discontinue its functions in a manner that

does not disrupt the operation of other systems or compromise the safety

of any people associated with the system. Safety is a measure of the

failsafe capability of a system; if the system does not operate correctly,

it is desired to have the system fail in a safe manner. Safety and

reliability differ because reliability is the probability that a system will

perform its functions correctly, while safety is the probability that a

system will either perform its functions correctly or will discontinue the

functions in a manner that causes no harm.

Performability. In many cases, it is possible to design systems that can

continue to perform correctly after the occurrence of hardware and

software faults, but the level of performance is somehow diminished.

The performability of a system is a function of time, P(L,t), defined as

the probability that the system performance will be at, or above, some

level, L, at the instant of time, t Performability differs from reliability in

that reliability is a measure of the likelihood that all of the functions are

performed correctly, while performability is a measure of the likelihood

that some subset of the functions is performed correctly.

Graceful degradation is an important feature that is closely related to

performability. Graceful degradation is simply the ability of a system to

automatically decrease its level of performance to compensate for

hardware and software faults. Fault tolerance can certainly support

graceful degradation and performability by providing the ability to

eliminate the effects of hardware and software faults from a system,

therefore allowing performance at some reduced level.

Maintainability. Maintainability is a measure of the ease with which a

system can be repaired, once it has failed. In more quantitative terms,

maintainability is the probability, M(t), that a failed system will be

restored to an operational state within a period of time t. The restoration

process includes locating the problem, physically repairing the system,

and bringing the system back to its operational condition. Many of the

techniques that are so vital to the achievement of fault tolerance can be

used to detect and locate problems in a system for the purpose of

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

110

maintenance. Automatic diagnostics can significantly improve the

maintainability of a system because a majority of the time used to repair

a system is often devoted to determining the source of the problem.

Testability. Testability is simply the ability to test for certain attributes

within a system. Measures of testability allow one to assess the ease

with which certain tests can be performed. Certain tests can be

automated and provided as an integral part of the system to improve the

testability. Many of the techniques that are so vital to the achievement of

fault tolerance can be used to detect and locate problems in a system for

the purpose of improving testability. Testability is clearly related to

maintainability because of the importance of minimizing the time

required to identify and locate specific problems.

3.0.1.2 Fault Tolerant Systems

Fault tolerance is a process that enables an operating system to respond

to a failure in hardware or software. This fault-tolerance definition refers

to the system's ability to continue operating despite failures or

malfunctions. A fault-tolerant system may be able to tolerate one or

more fault-types including

 Transient, Intermittent or Permanent Hardware Faults,

 Software and Hardware Design Errors,

 Operator Errors

 Externally Induced Upsets or Physical Damage.

An extensive methodology has been developed in this field over the past

thirty years, and a number of fault-tolerant machines have been

developed most dealing with random hardware faults, while a smaller

number deal with software, design and operator faults to varying

degrees. A large amount of supporting research has been reported and

efforts to attain software that can tolerate software design faults

(programming errors) have made use of static and dynamic redundancy

approaches similar to those used for hardware faults. One such

approach, N-version programming, uses static redundancy in the form of

independently written programs (versions) that perform the same

functions, and their outputs are voted at special checkpoints. Here, of

course, the data being voted may not be exactly the same, and a criterion

must be used to identify and reject faulty versions and to determine a

consistent value (through inexact voting) that all good versions can use.

An alternative dynamic approach is based on the concept of recovery

blocks. Programs are partitioned into blocks and acceptance tests are

executed after each block. If an acceptance test fails, a redundant code

block is executed.

CIT 314 MODULE 4

111

An approach called design diversity combines hardware and software

fault-tolerance by implementing a fault-tolerant computer system using

different hardware and software in redundant channels. Each channel is

designed to provide the same function, and a method is provided to

identify if one channel deviates unacceptably from the others. The goal

is to tolerate both hardware and software design faults. This is a very

expensive technique, but it is used in very critical aircraft control

applications.

Major building blocks of a Fault-tolerance System

The key benefit of fault tolerance is to minimize or avoid the risk of

systems becoming unavailable due to a component error(s). This is

particularly important in critical systems that are relied on to ensure

people’s safety, such as air traffic control, and systems that protect and

secure critical data and high-value transactions The core components

to improving fault tolerance include:

Diversity: If a system’s main electricity supply fails, potentially due to a

storm that causes a power outage or affects a power station, it will not be

possible to access alternative electricity sources. In this event, fault

tolerance can be sourced through diversity, which provides electricity

from sources like backup generators that take over when a main power

failure occurs.

 Some diverse fault-tolerance options result in the backup not

having the same level of capacity as the primary source. This

may, in some cases, require the system to ensure graceful

degradation until the primary power source is restored.

 Redundancy

 Fault-tolerant systems use redundancy to remove the single point

of failure. The system is equipped with one or more power supply

units (PSUs), which do not need to power the system when the

primary PSU functions as normal. In the event the primary PSU

fails or suffers a fault, it can be removed from service and

replaced by a redundant PSU, which takes over system function

and performance.

 Alternatively, redundancy can be imposed at a system level,

which means an entire alternate computer system is in place in

case a failure occurs.

Replication: Replication is a more complex approach to achieving

fault tolerance. It involves using multiple identical versions of

systems and subsystems and ensuring their functions always provide

identical results. If the results are not identical, then a democratic

procedure is used to identify the faulty system. Alternatively, a

https://docs.fortinet.com/document/fortiweb/6.1.1/administration-guide/188550/improving-fault-tolerance#:~:text=To%20enhance%20availability%2C%20set%20up,with%20only%20a%20minor%20interruption

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

112

procedure can be used to check for a system that shows a different

result, which indicates it is faulty.

 Replication can either take place at the component level, which

involves multiple processors running simultaneously, or at the

system level, which involves identical computer systems running

simultaneously

Basic Characteristics of Fault Tolerant Systems

A fault tolerant system may have one or more of the following

characteristics:

 No Single Point of Failure: This means if a capacitor, block of

software code, a motor, or any single item fails, then the system

does not fail. As an example, many hospitals have backup power

systems in case the grid power fails, thus keeping critical systems

within the hospital operational. Critical systems may have

multiple redundant schemes to maintain a high level of fault

tolerance and resilience.

 No Single Point Repair Takes the System Down: Extending the

single point failure idea, effecting a repair of a failed component

does not require powering down the system, for example. It also

means the system remains online and operational during repair.

This may pose challenges for both the design and the maintenance

of a system. Hot swappable power supplies is an example of a

repair action that keeps the system operating while replacing a

faulty power supply.

 Fault isolation or identification: The system is able to identify

when a fault occurs within the system and does not permit the

faulty element to adversely influence to functional capability (i.e.

Losing data or making logic errors in a banking system). The

faulty elements are identified and isolated. Portions of the system

may have the sole purpose of detecting faults, built-in self-test

(BIST) is an example.

Fault containment to prevent propagation of failure

 When a failure occurs it may result in damage to other elements

within the system, thus creating a second or third fault and

system failure.

 For example, if an analog circuit fails it may increase the current

across the system damaging logic circuits unable to withstand

CIT 314 MODULE 4

113

high current conditions. The idea of fault containment is to avoid

or minimize collateral damage caused by a single point failure.

Robustness or Variability Control

 When a system experiences a single point failure, the system

changes.

 The change may cause transient or permanent changes affecting

how the working elements of the system response and function.

Variation occurs, and when a failure occurs there often is an

increase in variability. For example, when one of two power

supplies fails, the remaining power supply takes on the full load

of the power demand. This transition should occur without

impacting the performance of the system. The ability to design

and manufacture a robust system may involve design for six

sigma, design of experiment optimization, and other tools to

create a system able to operate when a failure occurs.

Availability of Reversion Mode

 There are many ways a system may alter it performance when a

failure occurs, enabling the system to continue to function in some

fashion.

 For example, if part of a computer’s cooling system fails, the

central processor unit (CPU) may reduce its speed or command

execution rate, effectively reducing the heat the CPU generates.

The fail failure causes a loss of cooling capacity and the CPU

adjusts to accommodate and avoids overheating and failing. Other

reversion schemes may include a roll back to a prior working state,

or a switch to a prior or safe mode software set.

 In some cases, the system may be able to operators with no or only

minimal loss of functional capability, or the reversion operation

significantly restricts the system operation to a critical few

functions.

3.0.1.3 Hardware and Software Fault Tolerant Issues

In everyday language, the terms fault, failure, and error are used

interchangeably. In fault-tolerant computing parlance, however, they

have distinctive meanings. A fault (or failure) can be either a hardware

defect or a software i.e. programming mistake (bug). In contrast, an

error is a manifestation of the fault, failure and bug. As an example,

consider an adder circuit, with an output line stuck at 1; it always carries

the value 1 independently of the values of the input operands. This is a

fault, but not (yet) an error. This fault causes an error when the adder is

used and the result on that line is supposed to have been a 0, rather than

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

114

a 1. A similar distinction exists between programming mistakes and

execution errors. Consider, for example, a subroutine that is supposed to

compute sin(x) but owing to a programming mistake calculates the

absolute value of sin(x) instead. This mistake will result in an execution

error only if that particular subroutine is used and the correct result is

negative.

Both faults and errors can spread through the system. For example, if a

chip shorts out power to ground, it may cause nearby chips to fail as

well. Errors can spread because the output of one unit is used as input by

other units. To return to our previous examples, the erroneous results of

either the faulty adder or the sin(x) subroutine can be fed into further

calculations, thus propagating the error.

To limit such contagion, designers incorporate containment zones into

systems. These are barriers that reduce the chance that a fault or error in

one zone will propagate to another. For example, a fault-containment

zone can be created by ensuring that the maximum possible voltage

swings in one zone are insulated from the other zones, and by providing

an independent power supply to each zone. In other words, the designer

tries to electrically isolate one zone from another. An error-containment

zone can be created, as we will see in some detail later on, by using

redundant units, programs and voting on their output.

Hardware faults can be classified according to several aspects.

Regarding their duration, hardware faults can be classified into

permanent, transient, or intermittent. A permanent fault is just that: it

reflects the permanent going out of commission of a component. As an

example of a permanent fault think of a burned-out light bulb.

A transient fault is one that causes a component to malfunction for some

time; it goes away after that time and the functionality of the component

is fully restored. As an example, think of a random noise interference

during a telephone conversation. Another example is a memory cell with

contents that are changed spuriously due to some electromagnetic

interference. The cell itself is undamaged: it is just that its contents are

wrong for the time being, and overwriting the memory cell will make

the fault go away.

An intermittent fault never quite goes away entirely; it oscillates

between being quiescent and active. When the fault is quiescent, the

component functions normally; when the fault is active, the component

malfunctions. An example for an intermittent fault is a loose electrical

connection. Another classification of hardware fault is into benign and

malicious faults.

CIT 314 MODULE 4

115

A fault that just causes a unit to go dead is called benign. Such faults are

the easiest to deal with. Far more insidious are the faults that cause a unit

to produce reasonable-looking, but incorrect, output, or that make a

component “act maliciously” and send differently valued outputs to

different receivers. Think of an altitude sensor in an airplane that reports

a 1000-foot altitude to one unit and an 8000-foot altitude to another unit.

These are called malicious (or Byzantine) faults.

3.0.1.4 Fault Tolerance VS High Availability

Why is it that we see industry-standard servers advertising five 9s of

availability while Nonstop servers acknowledge four 9s? Are these high-

availability industry-standard servers really ten times more reliable than

fault-tolerant NonStop servers? Of course not.

To understand this marketing discrepancy, let’s take a look at the factors

which differentiate fault-tolerant systems from high-availability systems.

To start with, there is no reason to assume that a single NonStop

processor is any more or less reliable than an industry-standard

processor. In fact, a reasonable assumption is that a processor will be up

about 99.5% of the time (that is, it will have almost three 9s availability)

whether it be a NonStop processor or an industry-standard processor.

So how do we get four or five 9s out of components that offer less than

three 9s of availability? Through redundancy, of course. NonStop

servers are inherently redundant and are fault tolerant (FT) in that they

can survive any single fault. In the high-availability (HA) world,

industry-standard servers are configured in clusters of two or more

processors that allow for re-configuration around faults. FT systems

tolerate faults; HA clusters re-configure around faults.

If you provide a backup, you double your 9s. Thus, in a two-processor

configuration, each of which has an availability of .995, you can be

dreaming of five 9s of hardware availability. But dreams they are. True,

you will have at least one processor up 99.999% of the time; but that

does not mean that your system will be available for that proportion of

time. This is because most system outages are not caused by hardware

failures.

The causes of outages have been studied by many (Standish Group,

IEEE Computer, Grey, among others), and they all come up with

amazingly similar breakdowns:

- Hardware 10% – 20%

- Software 30% – 40 %

- People 20% – 40%

- Environment 10% – 20%

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

116

- Planned 20% – 30%

These results are for single processor systems. However, we are

considering redundant systems which will suffer a hardware failure only

if both systems fail. Given a 10-20% chance that a single system will

fail due to a hardware failure, an outage due to a dual hardware failure is

only 1% to 4%. Thus, we can pretty much ignore hardware failures as a

source of failure in redundant systems. (This is a gross understatement

for the new Nonstop Advanced Architecture, which is reaching toward

six or seven 9s for hardware availability.)

So, what is left that can be an FT/HA differentiator? Environmental

factors (air conditioning, earthquakes, etc.) and people factors (assuming

good system management tools) are pretty much independent of the

system. Planned downtime is a millstone around everyone’s neck, and

much is being done about this across all systems. This leaves software

as the differentiator.

Software faults are going to happen, no matter what. In a single system,

30-40% of all single-system outages will be caused by software faults.

The resultant availability of a redundant system is going to depend on

how software faults are handled. Here is the distinction between fault-

tolerant systems and high-availability systems. A fault-tolerant system

will automatically recover from a software fault almost instantly

(typically in seconds) as failed processes switch over to their

synchronized backups. The state of incomplete transactions remains in

the backup disk process and processing goes on with virtually no delay.

On the other hand, a high-availability (HA) cluster will typically require

that the applications be restarted on a surviving system and that in-doubt

transactions in process be recovered from the transaction log.

Furthermore, users must be switched over before the applications are

once again available to the users. This can all take several minutes. In

addition, an HA switchover must often be managed manually.

If an FT system and an HA cluster have the same fault rate, but the FT

system can recover in 3 seconds and the HA cluster takes 5 minutes (300

seconds) to recover from the same fault, then the HA cluster will be

down 100 times as long as the FT system and will have an availability

which is two 9s less. That glorious five 9s claim becomes three 9s (as

reported in several industry studies), at least so far as software faults are

concerned.

So, the secret to high availability is in the recovery time. This is what

the Tandem folks worked so hard on for two decades before becoming

the Nonstop people. Nobody else has done it. Today, Nonstop servers

CIT 314 MODULE 4

117

are the only fault-tolerant systems out-of-the-box in the marketplace,

and they hold the high ground for availability.

3.0.1.5 Redundancy

All of fault tolerance is an exercise in exploiting and managing

redundancy. Redundancy is the property of having more of a resource

than is minimally necessary to do the job at hand. As failures happen,

redundancy is exploited to mask or otherwise work around these

failures, thus maintaining the desired level of functionality.

There are four forms of redundancy that we will study: hardware,

software, information, and time. Hardware faults are usually dealt with

by using hardware, information, or time redundancy, whereas software

faults are protected against by software redundancy.

Hardware redundancy is provided by incorporating extra hardware into

the design to either detect or override the effects of a failed component.

For example, instead of having a single processor, we can use two or

three processors, each performing the same function. By having two

processors, we can detect the failure of a single processor; by having

three, we can use the majority output to override the wrong output of a

single faulty processor. This is an example of static hardware

redundancy, the main objective of which is the immediate masking of a

failure. A different form of hardware redundancy is dynamic

redundancy, where spare components are activated upon the failure of a

currently active component. A combination of static and dynamic

redundancy techniques is also possible, leading to hybrid hardware

redundancy.

Hardware redundancy can thus range from a simple duplication to

complicated structures that switch in spare units when active ones

become faulty. These forms of hardware redundancy incur high

overheads, and their use is therefore normally reserved for critical

systems where such overheads can be justified. In particular, substantial

amounts of redundancy are required to protect against malicious faults.

The best-known form of information redundancy is error detection and

correction coding. Here, extra bits (called check bits) are added to the

original data bits so that an error in the data bits can be detected or even

corrected. The resulting error-detecting and error-correcting codes are

widely used today in memory units and various storage devices to protect

against benign failures. Note that these error codes (like any other form

of information redundancy) require extra hardware to process the

redundant data (the check bits).

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

118

Error-detecting and error-correcting codes are also used to protect data

communicated over noisy channels, which are channels that are subject

to many transient failures. These channels can be either the

communication links among widely separated processors (e.g., the

Internet) or among locally connected processors that form a local

network. If the code used for data communication is capable of only

detecting the faults that have occurred (but not correcting them), we can

retransmit as necessary, thus employing time redundancy.

In addition to transient data communication failures due to noise, local

and wide-area networks may experience permanent link failures. These

failures may disconnect one or more existing communication paths,

resulting in a longer communication delay between certain nodes in the

network, a lower data bandwidth between certain node pairs, or even a

complete disconnection of certain nodes from the rest of the network.

Redundant communication links (i.e., hardware redundancy) can

alleviate most of these problems.

Computing nodes can also exploit time redundancy through re-execution

of the same program on the same hardware. As before, time redundancy

is effective mainly against transient faults. Because the majority of

hardware faults are transient, it is unlikely that the separate executions

will experience the same fault.

Time redundancy can thus be used to detect transient faults in situations

in which such faults may otherwise go undetected. Time redundancy can

also be used when other means for detecting errors are in place and the

system is capable of recovering from the effects of the fault and

repeating the computation. Compared with the other forms of

redundancy, time redundancy has much lower hardware and software

overhead but incurs a high-performance penalty.

Software redundancy is used mainly against software failures. It is a

reasonable guess that every large piece of software that has ever been

produced has contained faults (bugs). Dealing with such faults can be

expensive: one way is to independently produce two or more versions of

that software (preferably by disjoint teams of programmers) in the hope

that the different versions will not fail on the same input. The secondary

version(s) can be based on simpler and less accurate algorithms (and,

consequently, less likely to have faults) to be used only upon the failure

of the primary software to produce acceptable results. Just as for

hardware redundancy, the multiple versions of the program can be

executed either concurrently (requiring redundant hardware as well) or

sequentially (requiring extra time, i.e., time redundancy) upon a failure

detection.

CIT 314 MODULE 4

119

Techniques of Redundancy

The concept of redundancy implies the addition of information,

resources, or time beyond what is needed for normal system operation.

The redundancy can take one of several forms, including hardware

redundancy, software redundancy, information redundancy, and time

redundancy. The use of redundancy can provide additional capabilities

within a system. In fact, if fault tolerance or fault detection is required

then some form of redundancy is also required. But, it must be

understood that redundancy can have a very important impact on a

system in the areas of performance, size, weight, power consumption,

reliability, and others

Hardware Redundancy

The physical replication of hardware is perhaps the most common form

of redundancy used in systems. As semiconductor components have

become smaller and less expensive, the concept of hardware redundancy

has become more common and more practical. The costs of replicating

hardware within a system are decreasing simply because the costs of

hardware are decreasing.

There are three basic forms of hardware redundancy. First, passive

techniques use the concept of fault masking to hide the occurrence of

faults and prevent the faults from resulting in errors. Passive approaches

are designed to achieve fault tolerance without requiring any action on

the part of the system or an operator. Passive techniques, in their most

basic form, do not provide for the detection of faults but simply mask

the faults.

The second form of hardware redundancy is the active approach, which

is sometimes called the dynamic method. Active methods achieve fault

tolerance by detecting the existence of faults and performing some

action to remove the faulty hardware from the system. In other words,

active techniques require that the system perform reconfiguration to

tolerate faults. Active hardware redundancy uses fault detection, fault

location, and fault recovery in an attempt to achieve fault tolerance. The

final form of hardware redundancy is the hybrid approach. Hybrid

techniques combine the attractive features of both the passive and active

approaches. Fault masking is used in hybrid systems to prevent

erroneous results from being generated. Fault detection, fault location,

and fault recovery are also used in the hybrid approaches to improve

fault tolerance by removing faulty hardware and replacing it with spares.

Providing spares is one form of providing redundancy in a system.

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

120

Hybrid methods are most often used in the critical-computation

applications where fault masking is required to prevent momentary

errors, and high reliability must be achieved. Hybrid hardware

redundancy is usually a very expensive form of redundancy to

implement.

Passive Hardware Redundancy. Passive hardware redundancy relies

upon voting mechanisms to mask the occurrence of faults. Most passive

approaches are developed around the concept of majority voting. As

previously mentioned, the passive approaches achieve fault tolerance

without the need for fault detection or system reconfiguration; the

passive designs inherently tolerate the faults. The most common form of

passive hardware redundancy is called triple modular redundancy

(TMR). The basic concept of TMR is to triplicate the hardware and

perform a majority vote to determine the output of the system. If one of

the modules becomes faulty, the two remaining fault free modules mask

the results of the faulty module when the majority vote is performed.

The basic concept of TMR is illustrated in Figure 3.1. In typical

applications, the replicated modules are processors, memories, or any

hardware entity. A simple example of TMR is shown in Figure 4.1

where data from three independent processors is voted upon before

being written to memory. The majority vote provides a mechanism for

ensuring that each memory contains the correct data, even if a single

faulty processor exists. A similar voting process is provided at the

output of the memories, so that a single memory failure will not corrupt

the data provided to any one processor. Note that in Figure 4.2 there are

three separate voters so that the failure of a single voter cannot corrupt

more than one memory or more than one processor.

The primary challenge with TMR is obviously the voter; if the voter

fails, the complete system fails. In other words, the reliability of the

simplest form of TMR, as shown in Figure 4.1, can be no better than the

reliability of the voter. Any single component within a system whose

failure will lead to a failure of the system is called a single-point-of-

failure. Several techniques can be used to overcome the effects of voter

failure. One approach is to triplicate the voters and provide three

independent outputs, as illustrated in Figure 4.2. In Figure 4.2, each of

three memories receives

CIT 314 MODULE 4

121

Figure 4.1: Basic TMR Model

data from a voter which has received its inputs from the three separate

processors. If one processor fails, each memory will continue to receive

a correct value because its voter will correct the corrupted value. A

TMR system with triplicated voters is commonly called a restoring

organ because the configuration will produce three correct outputs even

if one input is faulty. In essence, the TMR with triplicated voters

restores the error-free signal. A generalization of the TMR approach is

the N-modular redundancy (NMR) technique. NMR applies the same

principle as TMR but uses N of a given module as opposed to only

three. In most cases, N is selected as an odd number so that a majority

voting arrangement can be used. The advantage of using N modules

rather than three is that more module faults can often be tolerated.

For example, a 5MR system contains five replicated modules and a

voter. A majority voting arrangement allows the 5MR system to produce

correct results in the face of as many as two module faults. In many

critical-computation applications, two faults must be tolerated to allow

the required reliability and fault tolerance capabilities to be achieved.

The primary tradeoff in NMR is the fault tolerance achieved versus the

hardware required. Clearly, there must be some limit in practical

applications on the amount of redundancy that can be employed. Power,

weight, cost, and size limitations very often determine the value of N in

an NMR system.

Voting within NMR systems can occur at several points. For example,

an industrial controller can sample the temperature of a chemical

process from three independent sensors, perform a vote to determine

which of the three sensor values to use, calculate the amount of heat or

cooling to provide to the process (the calculations being performed by

three or more separate modules), and then vote on the calculations to

determine a result. The voting can be performed on both analog and

digital data. The alternative, in this example, might be to sample the

temperature from three independent sensors, perform the calculations,

and then provide a single vote on the final result. The primary difference

between the two approaches is fault containment. If voting is not

performed on the temperature values from the sensors, then the effect of

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

122

a sensor fault is allowed to propagate beyond the sensors and into the

primary calculations. Voting at the sensors, however, will mask, and

contain, the effects of a sensor fault. Providing several levels of voting,

however, does require additional redundancy, and the benefits of fault

containment must be compared to the cost of the extra redundancy.

Figure 4.2: Triplicated voters in a TMR configuration

In addition to a number of design tradeoffs on voting, there are several

problems with the voting procedure, as well. The first is deciding

whether a hardware voter will be used, or whether the voting process

will be implemented in software. A software voter takes advantage of

the computational capabilities available in a processor to perform the

voting process with a minimum amount of additional hardware. Also,

the software voter provides the ability to modify the manner in which

the voting is performed by simply modifying the software. The

disadvantage of the software voter is that the voting can require more

time to perform simply because the processor cannot execute

instructions and process data as rapidly as a dedicated hardware voter.

The decision to use hardware or software voting will typically depend

upon:

 the availability of a processor to perform the voting,

 the speed at which voting must be performed,

 the criticality of space, power, and weight limitations,

 the number of different voters that must be provided, and

 the flexibility required of the voter with respect to future changes

in the system.

The concept of software voting is shown in Figure 4.3. Each processor

executes its own version of task A. Upon completion of the tasks, each

processor shares its results with processor 2, who then votes on the

results before using them as input to task B. If necessary, each processor

might also execute its version of the voting routine and receive data

from the other processors.

CIT 314 MODULE 4

123

A second major problem with the practical application of voting is that

the three results in a TMR system, for example, may not completely

agree, even in a fault-free environment. The sensors that are used in

many control systems can seldom be manufactured such that their values

agree exactly. Also, an analog-to-digital converter can produce

quantities that disagree in the least-significant bits, even if the exact

signal is passed through the same converter multiple times. When values

that disagree slightly are processed, the disagreement can propagate into

larger discrepancies. In other words, small differences in inputs can

produce large differences in outputs that can significantly affect the

voting process. Consequently, a majority voter may find that no two

results agree exactly in a TMR system, even though the system may be

functioning perfectly.

One approach that alleviates the problem of the previous paragraph is

called the mid-value select technique. Basically, the mid-value select

approach chooses a value from the three available in a TMR system by

selecting the value that lies between the remaining two. If three signals

are available, and two of those signals are uncorrupted and the third is

corrupted, one of the uncorrupted results should lie between the other

uncorrupted result and the corrupted result. The mid-value select

technique can be applied to any system that uses an odd number of

modules such that one signal must lie in the middle of the others. The

major difficulty with most techniques that use some form of voting is

that a single result must ultimately be produced, thus creating a potential

point where one failure can cause a system failure. Clearly, single-

points-of-failure are to be avoided if a system is to be truly fault-

tolerant.

Active Hardware Redundancy. Active hardware redundancy

techniques attempt to achieve fault tolerance by fault detection, fault

location, and fault recovery. In many designs faults can be detected

because of the errors they produce, so in many instances error detection,

error location and error recovery are the appropriate terms to use. The

property of fault masking, however, is not obtained in the active

redundancy approach. In other words, there is no attempt to prevent

faults from producing errors within the system. Consequently, active

approaches are most common in applications where temporary,

erroneous results are acceptable as long as the system reconfigures and

regains its operational status in a satisfactory length of time. Satellite

systems are good examples of applications of active redundancy.

Typically, it is not catastrophic if satellites have infrequent, temporary

failures. In fact, it is usually preferable to have temporary failures than

to provide the large quantities of redundancy necessary to achieve fault

masking.

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

124

The basic operation of an active approach to fault tolerance is shown in

Figure 4.3. During the normal operation of a system a fault can

obviously occur. After the fault latency period, the

Figure 4.3: A model of active approach to fault tolerance.

fault will produce an error which is either detected or it is not detected.

If the error remains undetected, the result will be a system failure. The

failure will occur after a latency period has expired. If the error is

detected, the source of the error must be located, and the faulty

component removed from operation. Next, a spare component must be

enabled, and the system brought back to an operational state. It is

important to note that the new operational state may be identical to the

original operational state of the system or it may be a degraded mode of

operation. The processes of fault location, fault containment, and fault

recovery are normally referred to simply as reconfiguration.

It is clear from this description that active approaches to fault tolerance

require fault detection and location capabilities.

Information Redundancy

Information redundancy is the addition of redundant information to data

to allow fault detection fault masking, or possibly fault tolerance. Good

examples of information redundancy are error detecting and error

correcting codes, formed by the addition of redundant information to

data words, or by the mapping of data words into new representations

containing redundant information.

Before beginning the discussions of various codes, we will define

several basic terms that will appear throughout this section. In general, a

code is a means of representing information, or data, using a well-

CIT 314 MODULE 4

125

defined set of rules. A code word is a collection of symbols, often called

digits if the symbols are numbers, used to represent a particular piece of

data based upon a specified code. A binary code is one in which the

symbols forming each code word consist of only the digits 0 and 1. For

example, a Binary Coded Decimal (BCD) code defines a 4-bit code

word for each decimal digit. The BCD code, for example, is clearly a

binary code. A code word is said to be valid if the code word adheres to

all of the rules that define the code; otherwise, the code word is said to

be invalid.

The encoding operation is the process of determining the corresponding

code word for a particular data item. In other words, the encoding

process takes an original data item and represents it as a code word

using the rules of the code. The decoding operation is the process of

recovering the original data from the code word. In other words, the

decoding process takes a code word and determines the data that it

represents. Of primary interest here are binary codes. In many binary

code words, a single error in one of the binary digits will cause the

resulting code word to no longer be correct, but, at the same time, the

code word will be valid. Consequently, the user of the information has

no means of determining the correctness of the information. It is

possible, however, to create a binary code for which the valid code

words are a subset of the total number of possible combinations of 1s

and 0s. If the code words are formed correctly, errors introduced into a

code word will force it to lie in the range of illegal, or invalid code

words, and the error can be detected.

This is the basic concept of the error detecting codes. The basic concept

of the error correcting code is that the code word is structured such that

it is possible to determine the correct code word from the corrupted, or

erroneous, code word. Typically, the code is described by the number of

bit errors that can be corrected. For example, a code that can correct

single-bit errors is called a single error correcting code. A code that can

correct two-bit errors is called a double-error correcting code, and so

on.

3.0.1.6 Relationship Between Security and Fault Tolerance

Security plays an increasingly important role for software system.

Security concern must inform every phase of software development

from problem domain to solution domain. Software security estimates

provides the help for degree of protection and assess the impact.

Microsoft has stated that above 50% of the security related problem for

any firm has been found at design level of software development

process. Software security touch points are based on good software

engineering and involve explicitly pondering security throughout the

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

126

software lifecycle. Security estimation of software may heavily affect to

security of the final product. The experts tried in this regard to develop

the security estimation guidelines, view and concept. There are some

probabilities that original code segment may have some security flaws,

anomalies that may influence security at different phase.

The security assessment is helpful for software developers, risk

management team and executives of the company It definitely needs

thoughtful subtle of security including security measurements,

classifications and security attributes. Security attributes may decrease

the cost and impinge between problem domains to solution domain at

each phase of development life cycle. A level-2 heading must be in

Italic, left-justified and numbered using an uppercase alphabetic letter

followed by a period. Software Security is an external software attribute

that reduces faults and effort required for secured software. Security

must encompass dependable protection and secured the software system

against all relevant concerns including confidentiality, integrity,

availability, non-repudiation, survivability, accessibility despite

attempted compromises, preventing, misuse and reducing the

consequences of unforeseen threats. Fault tolerance is direct associated

to security attributes such as confidentiality, integrity, availability, non-

repudiations, and survivability. Fault tolerance thought will efficiently

improve the security. Fault tolerance is frequently essential, but it can be

riskily error-prone because of the added efforts that must be involved in

the programme procedure. A consistent quantitative estimate of security

is highly enviable at an early stage of software development life cycle.

Fault tolerance is direct associated to reliability and security. Fault

prevention and fault tolerance intend to present the ability to deliver an

accurate service. Controlling and Monitoring can work mutually to

enforce the security policy. Fault tolerance is the ability of a system to

continue secures the software module and presence of software faults.

Fault tolerance attributes as a fault masking, fault detection and fault

consideration effective to security policy. Fault tolerance implies a

savings in development time, cost and efforts; also, it reduces the

number of components that must be originally developed.

4.0 SELF-ASSESSMENT EXERCISES

1. What Is Fault Tolerance? Explain the relationship between

security and fault tolerance

2. Explain the different Fault Tolerance Architecture that know?

3. What are the goals of Fault Tolerance?

CIT 314 MODULE 4

127

4.0 CONCLUSION

Fault tolerance is a process that enables an operating system to respond

to a failure in hardware or software. This fault-tolerance definition refers

to the system’s ability to continue operating despite failures or

malfunctions.

An operating system that offers a solid definition for faults cannot be

disrupted by a single point of failure. It ensures business continuity and

the high availability of crucial applications and systems regardless of

any failures.

Fault tolerance must necessarily be taken into consideration and dealt

carefully since the probability of bad functioning increases with the

complexity of operations, with execution time and number of processors

involved in computation; faults can moreover occur both in the

hardware and in the software, according to different modes and with

various kinds of consequences.

5.0 SUMMARY

The ability of a system to continue operation despite a failure of any

single element within the system implies the system is not in a series

configuration. There is some set of redundancy or set of alternative

means to continue operation. The system may use multiple redundancy

elements, or be resilient to changes in the system’s configuration. The

appropriate solution to create a fault tolerant system often requires

careful planning, understanding of how elements fail and the impact of

surrounding elements of the failure.

7.0 REFERENCES/FURTHER READING

Anderson T. and Knight J. C. (1983), “A Framework for software Fault

tolerance in Real time System”, IEEE Transaction on software

Engineering, Vol. 9, No.3. URL:

https://www.cse.cuhk.edu.hk/~lyu/book/sft/pdf/chap8.pdf

Balaji E. and Krishnamurthy P. (1996). “Modeling ASIC memories in

VHDL”. In: Design Automation Conference, with EURO-VHDL

’96 and Exhibition, Proceedings EURODAC ’96, European, pp.

502–508. DOI: 10.1109/EURDAC.1996.558250

Lyu, M. and Mendiratta V, (1999) “Software Fault Tolerance in a

Clustered Architecture: Techniques and Reliability Modeling,” In

Proceedings' of IEEE Aerospace Conference, Snowmass, Colorado,

vol.5, pp.141-150, 6-13. URL:

https://dl.acm.org/doi/10.1007/11955498_4.

https://www.cse.cuhk.edu.hk/~lyu/book/sft/pdf/chap8.pdf
https://dl.acm.org/doi/10.1007/11955498_4

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

128

Neuman, P (2000) “Practical Architecture for survivable system and

networks”, Phase Two Project 1688, SRI International, Menlo

Park, California. URL:

http://www.csl.sri.com/users/neumann/survivability.html

http://www.csl.sri.com/users/neumann/survivability.html

CIT 314 MODULE 4

129

UNIT 2 METHODS FOR FAULT TOLERANT

 COMPUTING

CONTENTS

1.0 Introduction

2.0 Intended Learning Outcomes (ILOS)

3.0 Main Contents

 3.0.2.0 Fault Tree Analysis

 3.0.2.1 Fault Detection Methods

 3.0.2.2 Fault Tolerance Architecture

 3.0.2.3 Fault Models

 3.0.2.4 Fault Tolerance Methods

 3.0.2.5 Major Issues in Modelling and Evaluation

 3.0.2.6 Fault Tolerance for Web Applications

4.0 Self-Assessment Exercises

5.0 Conclusion

6.0 Summary

7.0 References/Further Reading

1.0 INTRODUCTION

The objective of creating a fault-tolerant system is to prevent disruptions

arising from a single point of failure, ensuring the high

availability and business continuity of mission-critical applications or

systems. Fault-tolerant systems use backup components that

automatically take the place of failed components, ensuring no loss of

service. These include:

 Hardware systems that are backed up by identical or equivalent

systems. For example, a server can be made fault tolerant by

using an identical server running in parallel, with all operations

mirrored to the backup server.

 Software systems that are backed up by other software instances.

For example, a database with customer information can be

continuously replicated to another machine. If the primary

database goes down, operations can be automatically redirected

to the second database.

 Power sources that are made fault tolerant using alternative

sources. For example, many organizations have power generators

that can take over in case main line electricity fails.

In similar fashion, any system or component which is a single point of

failure can be made fault tolerant using redundancy.

https://www.imperva.com/learn/availability/high-availability/
https://www.imperva.com/learn/availability/high-availability/
https://www.imperva.com/learn/availability/business-continuity-planning/

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

130

2.0 INTENDED LEARNING OUTCOMES (ILOs)

 Students should be able to handle fault tree analysis and explain

its benefits

 Students should be able to explain and apply basic fault detection

methods to computing problems

3.0.2.0 FAULT TREE ANALYSIS

Fault Tree Analysis (FTA) is a convent means to logically think through

the many ways a failure may occur. It provides insights that may lead to

product improvements or process controls. FTA provides a means to

logically and graphically display the paths to failure for a system or

component. One way to manage a complex system is to start with

a reliability block diagram (RBD). Then create a fault tree for each

block in the RBD. Whether a single block or a top level fault for a

system the basic process to create a fault tree follows a basic pattern.

This is comprises eight steps

 Define the system. This includes the scope of the analysis

including defining what is considered a failure. This becomes

important when a system may have an element fail or a single

function fails and the remainder of the system still operates.

 Define top-level faults. Whether for a system or single block

define the starting point for the analysis by detailing the failure of

interest for the analysis.

 Identify causes for top-level fault. What events could cause the

top level fault to occur? Use the logic gate symbols to organize

which causes can cause the failure alone (or), or require multiple

events to occur before the failure occurs (and).

 Identify next level of events. Each event leading to the top level

failure may also have precipitating events.

 Identify root causes. For each event above continue to identify

precipitating events or causes to identify the root or basic cause

of the sequence of events leading to failure.

 Add probabilities to events. When possible add the actual or

relative probability of occurrence of each event.

 Analysis the fault tree. Look for the most likely events that lead

to failure, for single events the initiate multiple paths to failure, or

patterns related to stresses, use, or operating conditions. Identify

means to resolve or mitigate paths to failure.

 Document the FTA. Beyond the fault tree, graphics include

salient notes from the discussion and action items.

CIT 314 MODULE 4

131

Benefits of FTA

FTA is a convent means to logically think through the many ways a

failure may occur. It provides insights that may lead to product

improvements or process controls. It is a logical, graphical diagram that

organizes the possible element failures and combination of failures that

lead to the top level fault being studied. The converse, the success tree

analysis, starts with the successful operation of a system, for example,

and examines in a logical, graphical manner all the elements and

combinations that have to work successfully.

With every product, there are numerous ways it can fail. Some more

likely and possible than others. The FTA permits a team to think

through and organize the sequences or patterns of faults that have to

occur to cause a specific top level fault. The top level fault may be a

specific type of failure, say the car will not start. Or it may be focused

on a serious safety related failure, such as the starter motor overheats

starting a fire. A complex system may have numerous FTA that each

explore a different failure mode.

The primary benefit of FTA is the analysis provides a unique insight

into the operation and potential failure of a system. This allows the

development team to explore ways to eliminate or minimize the

occurrence of product failure. By exploring the ways a failure mode can

occur by exploring the individual failure causes and mechanisms, the

changes impact the root cause of the potential failures.

The benefits include:

 Identify failures deductively. Using the logic of a detailed failure

analysis and tools like ‘5 whys’, FTA helps the team focus on the

causes of each event in a logical sequence that leads to the

failure.

 Highlight the important elements of system related to system

failure. The FTA process may lead to a single component or

material that causes many paths to failure, thus improving that

one element may minimize the possibly of many failures.

 Create a graphical aid for system analysis and management.

 Apparently managers like graphics, and for complex system, it

helps to focus the team on critical elements.

 Provides an alternatively way to analysis the system. FMEA,

RBD and other tools permit a way to explore system reliability,

FTA provide a tool that focuses on failure modes one at a time.

Sometimes a shift in the frame of reference illuminates new and

important elements of the system.

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

132

 Focus on one fault at a time. The FTA can start with an overall

failure mode, like the car not starting, or it can focus on one

element of the vehicle failing, like the airbag not inflating as

expected within a vehicle. The team chooses the area for focus at

the start of the analysis.

 Expose system behavior and possible interactions. FTA allows

the examination of the many ways a fault may occur and may

expose non-obvious paths to failure that other analysis

approaches miss.

 Account for human error. FTA includes hardware, software, and

human factors in the analysis as needed. The FTA approach

includes the full range of causes for a failure.

 Just another tool in the reliability engineering toolbox. For

complex systems and with many possible ways that a significant

fault may occur, FTA provides a great way to organize and

manage the exploration of the causes. The value comes from the

insights created that lead to design changes to avoid or minimize

the fault.

3.0.2.1 Fault Detection Methods

Fault detection plays an important role in high cost and safety-critical

processes. Early detection of process faults can help avoid abnormal

event progression. Fault detection determines the occurrence of fault in

the monitored system. It consists of detection of faults in the processes,

actuators and sensors by using dependencies between different

measurable signals. Related tasks are also fault isolation and fault

identification. Fault isolation determines the location and the type of

fault whereas fault identification determines the magnitude (size) of the

fault. Fault isolation and fault identification are together referred as fault

diagnosis. The task of fault diagnosis consists of the determination of

the type of the fault, with as many details as possible such as the fault

size, location and time of detection.

There exist several overlapping taxonomies of the field. Some are more

oriented toward control engineering approach, other to mathematical,

Statistical and AI approach. Interesting divisions are described in the

following division of fault detection methods Below:

A. Data Methods and Signal Models

 Limit checking and trend checking

 Data analysis (PCA)

 Spectrum analysis and parametric models

 Pattern recognition (neural nets)

CIT 314 MODULE 4

133

B. Process Model Based Methods

 Parity equations

 State observers

 Parameter estimation

 Nonlinear models (neural nets)

C. Knowledge Based Methods

 Expert systems

 Fuzzy logic

3.0.2.2 Fault Tolerance Architecture

Several fault-tolerant architectures have been proposed in the literature

in the past to address the circuit reliability concerns. A few of these

relevant solutions include; Partial-TMR, Full-TMR, DARA-TMR , PaS ,

CPipe , STEM and Razor , which are discussed . We select this set of

architectures because it includes a representative of each class of the

broad spectrum of fault tolerant architectures.

PAIR-AND-A-SPARE

Pair-and-A-Spare (PaS) Redundancy was first introduced in as an

approach that combines Duplication with Comparison and standby-

sparing. In this scheme each module copy is coupled with a Fault-

Detection (FD) unit to detect hardware anomalies within the scope of

individual module. A comparator is used to detect inequalities in the

results from two active modules. In the case of inequality, a switch

decides which one of the two active modules is faulty by analyzing the

reports from FD units and replaces it with a spare one. This scheme was

intended to prevent hardware faults from causing system failures. The

scheme fundamentally lacks protection against transient faults and it

incurs a large hardware overhead to accomplish the identification of

faulty modules.

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

134

Figure 4.4: Pair-and-A-Spare

RAZOR

Razor is a well-known solution to achieve timing error resilience by

using the technique called timing speculation. The principle idea behind

this architecture is to employ temporally separated double-sampling of

input data using Razor FFs, placed on critical paths. The main FF takes

input sample on the rising edge of the clock, while a time-shifted clock

(clk-del) to the shadow latch is used to take a second sample. By

comparing the data of the main FF and the shadow latch, an error signal

is generated. The timing diagram of how the architecture detects timing

errors. In this example a timing fault in CL A causes the data to arrive

late enough that the main FF captures wrong data but the shadow always

latches the input data correctly. The error is signaled by the XOR gate

which propagates through the OR-tree for correction action to be taken.

Error recovery in Razor is possible either by clock-gating or by rollback

recovery. Razor also uses Dynamic Voltage Scaling (DVS) scheme to

optimize the energy vs. error rate trade-off.

Figure 4.5: RAZOR Architecture

CIT 314 MODULE 4

135

STEM

STEM cell architecture takes Razor a step further by incorporating

capability to deal with transient faults as well. STEM cell architecture

presented in incorporates power saving and performance enhancement

mechanisms like Dynamic Frequency Scaling (DFS) to operate circuits

beyond their worst-case limits. Similar to Razor FFs, a STEM cells

replace the FF on the circuit critical paths, but instead of taking two

temporally separated samples, A STEM cell takes three samples using

two delayed clocks. Mismatches are detected by the comparators and the

error signals is used to select a sample which is most likely to be correct

for rollback.

Figure 4.6: STEM Architecture

CPipe

The CPipe or Conjoined Pipeline architecture proposed uses spatial and

temporal redundancy to detect and recover from timing and transient

errors. It duplicates CL blocks and the FFs as well to from two pipelines

interlinked together. The primary or leading pipeline is overclocked to

speedup execution while the replicated of shadow pipeline has sufficient

speed margin to be free from timing errors. Comparators placed across

the leading pipeline register in somewhat similar way as the scheme,

detects any metastable state of leading pipeline register and SETs

reaching the registers during the latching window. The error recovery is

achieved by stalling the pipelines and using data from the shadow

pipeline registers for rollback and it takes 3 cycles to complete.

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

136

Figure 4.7: CPipe Architecture

TMR

TMR is one of the most p5opular fault tolerant architectures. In a basic

TMR scheme called Partial-TMR, we have three implementation of

same logic function and their outputs are voted by a voter circuit. This

architecture can tolerate all the single-faults occurring in the CL block

but faults in voter or pipeline registers cause the system to fail. Full-

TMR on the other hand, triplicates the entire circuit including the FFs

and can tolerate all single-faults in any part of the circuit except voter

and the signals to the input pipeline register, which may result in

common-mode failure.

Figure 4.8: TMR Architecture

DARA-TMR

DARA-TMR triplicates entire pipeline but uses only two pipeline copies

to run identical process threads in Dual Modular Redundancy (DMR)

mode. The third pipeline copy is disabled using power gating and is only

engaged for diagnosis purposes in case of very frequent errors reported

CIT 314 MODULE 4

137

by the detection circuitry. Once the defective pipeline is identified the

system returns back to DMR redundancy mode by putting the defected

pipeline in off mode. The error recovery follows the same mechanism as

pipeline branch misprediction, making use of architectural components

for error recovery. DARA-TMR treats permanent fault occurrence as a

very rare phenomenon and undergo a lengthy reconfiguration

mechanism to isolate them.

Figure 4.9: TMR Architecture

Hybrid Fault-Tolerant Architecture

HyFT architecture employs information redundancy (as duplication with

comparison) for error detection, timing redundancy (in the form of re-

computation/rollback) for transient and timing error correction and

hardware redundancy (to support reconfiguration) for permanent error

correction. the HyFT architecture employs triplication of CL blocks. A

set of multiplexers and demultiplexer is used to select two primary CL

copies and to put the third CL copy in standby mode during normal

operation. HyFT architecture is driven by a control logic module that

generates the necessary control signals. HyFT architecture uses the

pseudo-dynamic comparator for error detection to achieve better glitch

detection capability and to reduce the power consumption. The HyFT

architecture uses a concurrent error detection mechanism. A pseudo-

dynamic comparator compares the outputs of two active CL copies. It

can be seen that the comparator is placed across the output register such

that it gets to compare the output of the output register Sout, which is a

synchronous signal with the output of the secondary running copy Aout,

which is an asynchronous signal. This orientation of the pseudo-

dynamic comparator also offers marginal protection against the errors

due to faults in the output register and allows it to remain off the critical

path. Thus, it does not impact the temporal performance of the circuit.

The error recovery scheme uses stage-level granularity reconfigurations

and single-cycle deep rollbacks. The shadow latches incorporated in

pipeline registers keep one clock cycle preceding state of the pipeline

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

138

register FFs. The comparison takes place after every clock cycle. Thus,

error detection can invoke a reconfiguration and a rollback cycle,

confining the error and preventing it from effecting the computation in

the following cycles. The comparison takes place only during brief

intervals of time referred to as comparison window. The timing of

comparison window is defined by the high phase of a delayed clock

signal DC, which is generated from CLK using a delay element. These

brief comparisons allow keeping the switching activity in OR-tree of the

comparator to a minimum, offering a 30% power reduction compared

with a static comparator. The functioning of the pseudo-dynamic

comparator requires specific timing constraints to be applied during

synthesis of CL blocks, as defined below. Timing Constraints: In typical

pipeline circuits the contamination delay of CL should respect hold-time

of the pipeline register latches. However, in the HyFT architecture, as

CL also feeds to the pseudo-dynamic comparator, CL outputs need to

remain stable during the comparison. And since the comparison takes

place just after a clock edge, any short paths in the CL can cause the

input signals of the comparator to start changing before the lapse of the

comparison-window. Thus, the CL copies have to be synthesized with

minimum delay constraints governed by:

tcd > δt −tccq −tcdm −tcm

where:

 tcd = CL contamination delay

 δt = the amount of time between CLK capture edge and the

lapse of the comparison-window

tccq = FF clk-to-output delay

 tcdm = demultiplexer contamination delay

tcm = multiplexer contamination delay

with the help of a timing diagram we explain the associated timing

constraints. Besides CLK and DC the timing diagram shows the signals

at the two inputs of the comparator labeled as Aout and Sout also

CIT 314 MODULE 4

139

Figure 4.10: HyFT Architecture

indicated. The remaining two signals are the inputs of CL labeled as

CLin and the outputs of CL labeled as CLout. The grey shaded regions

allow margins of the corresponding signals. The timing allowance for

the start of the comparison-window depends on the clk-to-output delay

of the output register. This implies that the comparison should not begin

until the output of the output register stabilizes.

3.0.2.3 Fault Models

A fault model attempts to identify and categorize the faults that may

occur in a system, in order to provide clues as to how to fine-tune the

software development environment and how to improve error detection

and recovery. A question that needs to be asked is: is the traditional

distributed systems fault model appropriate for Grid computing, or are

refinements necessary?

The development of fault models is an essential part of the process in

determining the reliability of a system. A fault model describes the types

of faults that a system can develop, specifying where and how they will

occur in it. However, faults become more difficult to formulate sensibly

as a system is viewed at an increasingly more abstract level, especially

the definition of how a fault manifests itself. The entities listed in a fault

model need not necessarily physically exist, but may be abstractions of

real-world objects. In general, a fault model is an abstracted

representation of the physical defects which can occur in a system, such

that it can be employed to usefully, and reasonably accurately, simulate

the behaviour of the system over its intended lifetime with respect to its

reliability. Four major goals exist when devising a fault model:

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

140

1. The abstract faults described in the model should adequately

cover the effects of the physical faults which occur in the real-

world system.

2. The computational requirements for simulation should be

satisfiable.

3. The fault model should be conceptually simple and easy to use.

4. It should provide an insight into introducing fault tolerance in a

design

3.0.2.4 Fault Tolerance Methods

A Fault in any software system, usually, happens due to the gaps left

unnoticed during the design phase. Based on this, the fault tolerance

techniques are identified into two different groups, that is, the Single

Version Technique and the Multi-Version Technique. There can be

plenty of techniques implemented under each of these categories, and a

few of the techniques often used by the programmers are,

1. Software Structure and Actions

When the software system is one single block of code, it is logically

more vulnerable to failure. Because, when one tiny error occurs in the

program, the whole system will be brought down. Hence, it is crucial for

the software system should be structured in a modular form, where the

functionality is covered in separate modules. In the case of failure, each

module should hold specific instructions on how to handle it and let the

other modules run as usual, instead of passing on the failure from

module to module.

2. Error Detection

Error Detection is a fault tolerance technique where the program locates

every incidence of error in the system. This technique is practically

implemented using two attributes, namely, self-protection and self-

checking. The Self-Protection attribute of error detection is used for

spotting the errors in the external modules, whereas the Self-Checking

attribute of error detection is used for spotting the errors in the internal

module.

3. Exception Handling

Exception Handling is a technique used for redirecting the execution

flow towards the route to recovery whenever an error occurs in the

normal functional flow. As a part of fault tolerance, this activity is

performed under three different software components, such as the

Interface Exception, the Local Exception and the Failure Exception.

CIT 314 MODULE 4

141

4. Checkpoint and Restart

This is one of the commonly used recuperation methods for single

version software systems. The Checkpoint and Restart fault tolerance

technique can be used for the events like run-time exceptions, that is, a

malfunction takes place during the run-time and when the execution is

complete there is no record of the error happening. For this case, the

programmer can place checkpoints in the program and instruct the

program to restart immediately right from the occurrence of the error.

5. Process Pairs

Process Pair technique is a method of using the same software in two

different hardware units and validating the functional differences in

order to capture the faulty areas. This technique functions on top of the

checkpoint and restart technique, as similar checkpoints and restart

instructions are placed in both systems.

6. Data Diversity

Data Diversity technique is typically a process where the programmer

passes a set of input data, and places checkpoints for detecting the

slippage. The commonly used Data Diversity models are ‘Input Data

Re-Expression’ model, ‘Input Data Re-Expression with Post-Execution

Adjustment’ model, and ‘Re-Expression via Decomposition and

Recombination’ model.

7. Recovery Blocks

Recovery Block technique for multiple version software Fault Tolerance

involves the checkpoint and restart method, where the checkpoints are

placed before the fault occurrence, and the system is instructed to move

on to next version to continue the flow. It is carried out in three areas,

that is, the main module, the acceptance tests, and the swap module.

8. N – Version Programming

The N – Version programming technique for the multi – version fault

tolerance is the commonly used method when the there is a provision for

testing multiple code editions. The recovery is made from executing all

the versions and comparing the outputs from each of the versions. This

technique also involves the acceptance test flow.

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

142

9. N Self–Checking Programming

N Self – Checking Programming is a combination technique of both the

Recovery block and the N – version Programming techniques, which

also calls for the acceptance test execution. It is performed by the

sequential and the parallel execution of various versions of the software.

10. Consensus Recovery Blocks

 This method combines the Recovery Block and the N- Version

Programming techniques where the decision algorithm technique is

combined for handling and recovering the inaccuracy in the system. This

combination of all the efficient fault tolerance techniques gives a much

more consistent method of Fault tolerance.

3.0.2.5 Major Issues in Modelling and Evaluation

 Interference with fault detection in the same component. In

passenger vehicle example, with either of the fault-tolerant

systems it may not be obvious to the driver when a tire has been

punctured. This is usually handled with a separate "automated

fault-detection system". In the case of the tire, an air pressure

monitor detects the loss of pressure and notifies the driver. The

alternative is a "manual fault-detection system", such as manually

inspecting all tires at each stop.

 Interference with fault detection in another

component. Another variation of this problem is when fault

tolerance in one component prevents fault detection in a different

component. For example, if component B performs some

operation based on the output from component A, then fault

tolerance in B can hide a problem with A. If component B is later

changed (to a less fault-tolerant design) the system may fail

suddenly, making it appear that the new component B is the

problem. Only after the system has been carefully scrutinized will

it become clear that the root problem is actually with component

A.

 Reduction of priority of fault correction. Even if the operator is

aware of the fault, having a fault-tolerant system is likely to

reduce the importance of repairing the fault. If the faults are not

corrected, this will eventually lead to system failure, when the

fault-tolerant component fails completely or when all redundant

components have also failed.

 Test difficulty. For certain critical fault-tolerant systems, such as

a nuclear reactor, there is no easy way to verify that the backup

components are functional. The most infamous example of this

is Chernobyl, where operators tested the emergency backup

https://en.wikipedia.org/wiki/Nuclear_reactor
https://en.wikipedia.org/wiki/Chernobyl_disaster

CIT 314 MODULE 4

143

cooling by disabling primary and secondary cooling. The backup

failed, resulting in a core meltdown and massive release of

radiation.

 Cost. Both fault-tolerant components and redundant components

tend to increase cost. This can be a purely economic cost or can

include other measures, such as weight. Manned spaceships, for

example, have so many redundant and fault-tolerant components

that their weight is increased dramatically over unmanned

systems, which don't require the same level of safety.

 Inferior components. A fault-tolerant design may allow for the

use of inferior components, which would have otherwise made

the system inoperable. While this practice has the potential to

mitigate the cost increase, use of multiple inferior components

may lower the reliability of the system to a level equal to, or even

worse than, a comparable non-fault-tolerant system.

3.0.2.6 Fault Tolerance for Web Applications

In web services when a fault occurs, it goes into various stages. When an

error occurs in web services, it should make sure the error or faults

through various fault detection mechanism to know the failure causes so

that failed components can be repaired of recovered from an error. The

flow of web service failure responses shown in figure 4.11.

Figure 4.11: Failure Stages of Web services

A) Error Confinement: Error confinement stage prevents an error

 effect on web services. It can be gain with the help of error

 detection within a service by multiple checks.

https://en.wikipedia.org/wiki/Human_spaceflight

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

144

B) Error Detection: Error detection stage helps in identifying

unexpected error in a web service.

C) Error Diagnosis: Error diagnosis stage helps to diagnose the

fault that has been traced in error detection stage. Error diagnosis

stage comes into picture when error detection doesn't provide

enough information about fault location.

D) Reconfiguration: Reconfiguration comes into picture when and

error is detected and located in the error detection and error

diagnosis stage.

E) Recovery: Recovery is used to recover fault from web service

using retry and rollback approaches.

F) Restart: Restart comes into picture after the recovery of web

service. Restart can be done either using hot start or cold start.

G) Repair: In Repair, failed component has to be changed in order

to work properly.

H) Reintegration: In the reintegration stage repaired component has

to be integrating.

In web services, there are many fault tolerant techniques that can be

applied such as replication. Replication is a more efficient technique for

handling exception in a distributed application. Services can resume

more effectively by maintaining the global state of the application. For

instance, let's assume if one service needs the assistance of another

service to provide the desired result to the customer then service needs

to communicate with other service. Suppose, while communicating with

other service, at certain point of time if a fault occurs in a service, then

there is no need to continue service with faults. Then the state manager

has to roll back the state of the application at that point where the fault

occurred so that service can resume without fault and response can be

given to the consumer more effectively.

Fault Tolerance Implementation in Cloud Computing

A cloud is a type of parallel and distributed system containing a set of

interconnected and virtualized computers that are dynamically

provisioned and presented as one or more unified computing resources

based on service-level agreements established through negotiation

between the service provider and consumers. It is a style of computing

where service is provided across the Internet using different models and

layers of abstraction, It refers to the applications delivered as services to

the mass, ranging from the end-users hosting their personal documents

on the Internet to enterprises outsourcing their entire IT infrastructure to

external data centers. A simple example of cloud computing service is

Yahoo email or Gmail etc. Although cloud computing has been widely

adopted by the industry, still there are many research issues to be fully

addressed like fault tolerance, workflow scheduling, workflow

CIT 314 MODULE 4

145

management, security etc. Fault tolerance is one of the key issues

amongst all. It is concerned with all the techniques necessary to enable a

system to tolerate software faults remaining in the system after its

development. When a fault occurs, these techniques provide

mechanisms to the software system to prevent system failure

occurrence. The main benefits of implementing fault tolerance in cloud

computing include failure recovery, lower cost, improved performance

metrics etc. A cloud infrastructure consist of the following broad

components:

 Servers – The physical machines that act as host machines for one

or more e virtual machines.

 Virtualization – Technology that abstracts physical components

such as servers, storage, and networking and provides these as

logical resources.

 Storage – In the form of Storage Area Networks (SAN), network

attached storage (NAS), disk drives etc. Along with facilities as

archiving and backup.

 Network – To provide interconnections between physical servers

and storage.

 Management – Various software for configuring, management and

monitoring of cloud infrastructure including servers, network, and

storage devices.

 Security – Components that provide integrity, availability, and

confidentiality of data and security of information, in general.

 Backup and recovery services.

The cloud computing, as a fast advancing technology, is increasingly

being used to host many business or enterprise applications. However,

the extensive use of the cloud-based services for hosting business or

enterprise applications leads to service reliability and availability issues

for both service providers and users. These issues are intrinsic to cloud

computing because of its highly distributed nature, heterogeneity of

resources and the massive scale of operation. Consequently, several

types of faults may occur in the cloud environment leading to failures

and performance degradation. The major types of faults are listed as

follows:

 Network fault: Since cloud computing resources are accessed

over a network (Internet), a predominant cause of failures in

cloud computing are the network faults. These faults may occur

due to partitions in the network, packet loss or corruption,

congestion, failure of the destination node or link, etc.

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

146

 Physical faults: These are faults that mainly occur in hardware

resources, such as faults in CPUs, in memory, in storage, failure

of power etc.

 Process faults: faults may occur in processes because of resource

shortage, bugs in software, incompetent processing capabilities,

etc.

 Service expiry fault: If a resource’s service time expires while an

application that leased it is using it, it leads to service failures.

The Fault Tolerance methods can be applied to cloud computing in three

levels:

 At hardware level: if the attack on a hardware resource causes the

system failure, then its effect can be compensated by using

additional hardware resources.

 At software (s/w) level: Fault tolerance techniques such as

checkpoint restart and recovery methods can be used to progress

system execution in the event of failures due to security attacks.

 At system level: At this level, fault tolerance measures can

compensate failure in system amenities and guarantee the

availability of network and other resources.

Challenges of Implementing Fault Tolerance in Cloud Computing

Providing fault tolerance requires careful consideration and analysis

because of their complexity, inter-dependability and the following

reasons.

 There is a need to implement autonomic fault tolerance technique

for multiple instances of an application running on several virtual

machines

 Different technologies from competing vendors of cloud

infrastructure need to be integrated for establishing a reliable

system

 The new approach needs to be developed that integrate these fault

tolerance techniques with existing workflow scheduling

algorithms

 A benchmark based method can be developed in cloud

environment for evaluating the performances of fault tolerance

component in comparison with similar ones

 To ensure high reliability and availability multiple clouds

computing providers with

 independent software stacks should be used

 Autonomic fault tolerance must react to synchronization among

various clouds

CIT 314 MODULE 4

147

4.0 SELF-ASSESSMENT EXERCISES

1. Explain the Methods for Fault Tolerant Computing

2. Describe the different forms of hardware Redundancy

3. Explain the properties of Fault Tolerant Systems

TUTOR MARKED ASSIGNMENTS

1. What are the characteristics of faults?

2. What are the approaches available for fault tolerance?

3. What are the major building blocks of a fault tolerant system?

4. Compare between fault tolerance and high availability

5. What is fault tree analysis?

6. Compare the RAZOR and PAIR-and-A-SPARE Architectures

7. Explain any seven fault tolerance methods available

4.0 CONCLUSION

Fault-tolerance is achieved by applying a set of analysis and design

techniques to create systems with dramatically improved dependability.

As new technologies are developed and new applications arise, new

fault-tolerance approaches are also needed. In the early days of fault-

tolerant computing, it was possible to craft specific hardware and

software solutions from the ground up, but now chips contain complex,

highly-integrated functions, and hardware and software must be crafted

to meet a variety of standards to be economically viable. Thus, a great

deal of current research focuses on implementing fault tolerance using

Commercial-Off-The-Shelf (COTs) technology.

Recent developments include the adaptation of existing fault-tolerance

techniques to RAID disks where information is striped across several

disks to improve bandwidth and a redundant disk is used to hold

encoded information so that data can be reconstructed if a disk fails.

Another area is the use of application-based fault-tolerance techniques

to detect errors in high performance parallel processors. Fault-tolerance

techniques are expected to become increasingly important in deep sub-

micron VLSI devices to combat increasing noise problems and improve

yield by tolerating defects that are likely to occur on very large,

complex chips.

5.0 SUMMARY

Fault-tolerance techniques will become even more important the next

years. The ideal, from an application writer’s point of view, is total

hardware fault-tolerance. Trends in the market, e.g. Stratus and Sun

Netra, shows that this is the way systems go at the moment. There is

CIT314 COMPUTER ARCHITECTURE AND ORGANIZATION II

148

also, fortunately, reason to believe that such systems will become

considerable cheaper than today. Technology in general, and

miniaturization in particular (which leads to physically smaller and in

general cheaper systems) contributes to this. Much research is also being

done with clusters of commercial general-purpose computers connected

with redundant buses. In that case, the software has to handle the

failures. However, as shown with the HA Cluster and Sun Netra, that

could also be done without affecting the user programs and applications.

7.0 REFERENCES/FURTHER READING

Amma A. D. T., Pramod V. R and N. Radhika, (2012) “ISM for

Analyzing the Interrelationship between the Inhibitors of Cloud

Computing”, vol. 2, No. 3. URL:

https://www.academia.edu/12392163/Revisiting_Software_Security

_Durability_Perspective

Engineering Safety Requirements, Safety Constraints, and Safety

Critical Requirements, Available at:

http://www.jot.fm/issues/issue_2004_03/column3/ last visit

November 17, 2021.

Fred B. Schneider (1990). Implementing fault-tolerant services using the

state machine approach: A tutorial. A.C.M. Computing Surveys,

22(4):299–319. URL: https://dl.acm.org/doi/10.1145/98163.98167

Fred B. Schneider. (1997) Towards fault-tolerant and secure agentry.

Technical report, Cornell University, Department of Computer

Science. URL:

https://link.springer.com/chapter/10.1007/BFb0030670

Johnson, B. W. (1996). An introduction to the design and analysis of

fault-tolerant systems. Fault-tolerant computer system design, 1, 1-

84. URL:

https://www.researchgate.net/publication/234812893_An_introducti

on_to_the_design_and_analysis_of_fault-tolerant_systems

Kim, E. P., & Shanbhag, N. R. (2012). Soft N-modular redundancy.

IEEE Transactions on Computers, 61(3), 323–336. URL:

https://dl.acm.org/doi/abs/10.1109/TC.2010.253

Patton, R. J. (2015). Fault-tolerant control. Encyclopedia of systems

and control, 422–428. URL: https://encyclopedia.pub/3028

Richard D. Schlichting and Fred B. Schneider. (1983) Fail-stop

processors: An approach to designing fault-tolerant computing

systems. A.C.M. Transactions on Computer Systems, 1(3):222–

238.

Walton G. H., Long Taff T.A. and R. C. Linder, (1997) “Computational

Evaluation of Software Security attributes”, IEEE.

https://www.academia.edu/12392163/Revisiting_Software_Security_Durability_Perspective
https://www.academia.edu/12392163/Revisiting_Software_Security_Durability_Perspective
http://www.jot.fm/issues/issue_2004_03/column3/
https://dl.acm.org/doi/10.1145/98163.98167
https://link.springer.com/chapter/10.1007/BFb0030670
https://www.researchgate.net/publication/234812893_An_introduction_to_the_design_and_analysis_of_fault-tolerant_systems
https://www.researchgate.net/publication/234812893_An_introduction_to_the_design_and_analysis_of_fault-tolerant_systems
https://dl.acm.org/doi/abs/10.1109/TC.2010.253
https://encyclopedia.pub/3028

	CIT 314 COURSE GUIDE.pdf
	HOW TO GET THE BEST FROM THIS COURSE
	SUMMARY

	CIT 314 MAIN COURSE.pdf
	CIT 314 MODULE 1.pdf
	CIT 314 MODULE 2.pdf
	3.2.4 Memory Hierarchy Design
	The memory in a computer can be divided into five hierarchies based on the speed as well as use. The processor can move from one level to another based on its requirements. The five hierarchies in the memory are registers, cache, main memory, magnetic...

	CIT 314 MODULE 3.pdf
	Disadvantages of Microprogrammed Control Unit
	3.3.5 Asynchronous Transmission
	Characteristics of Asynchronous Communication
	Examples of Asynchronous Communication

	3.3.6 Synchronous vs. Asynchronous Transmission
	Disadvantages of Asynchronous Data Transfer

	CIT 314 MODULE 4.pdf

