

CIT 342: FORMAL LANGUAGES AND AUTOMATA THEORY

 NATIONAL OPEN UNIVERSITY OF NIGERIA

 FACULTY OF SCIENCE

 COURSE CODE: CIT 342

 COURSE TITLE: Formal Languages and Automata Theory

COURSE

GUIDE

CIT 342

Formal Languages and Automata Theory

Course Developer

Course Co-ordinator

Afolorunso, A. A.

National Open University of Nigeria

Lagos

Afolorunso, A. A.

National Open University of Nigeria

Lagos

Course Editor

Programme Leader Prof. Kehinde Obidairo

NATIONAL OPEN UNIVERSITY OF NIGERIA

National Open University of Nigeria

Headquarters

14/16 Ahmadu Bello Way

Victoria Island

Lagos

Abuja Annex

1

245 Samuel Adesujo Ademulegun Street

Central Business District

Opposite Arewa Suites

Abuja

e-mail: centralinfo@nou.edu.ng

URL: www.nou.edu.ng

National Open University of Nigeria 2011

First Printed 2011

ISBN

All Rights Reserved

Printed by ……………..

For

National Open University of Nigeria

TABLE OF CONTENTS PAGE

Introduction... 3

What you will learn in this Course............................ 4

Course Aims.. 4

2

Course Objectives………………………………….. 4

Related Courses 5

Working through this Course..................................... 5

Course Materials... 5

Study Units .. 5-6

Textbooks and References ... 6-9

Assignment File.. 10

Presentation Schedule... 10

Assessment.. 10

Tutor Marked Assignments (TMAs) 11

Examination and Grading.. 11

Course Marking Scheme... 12

Course Overview…………………………………… 12-13

How to Get the Best from This Course 13-15

Tutors and Tutorials ... 15

Summary……………………………………............. 15

3

CIT 342 Formal Languages and Automata Theory

Introduction

CIT 342 – Formal Languages and Automata Theory is a two (2) credit unit course

of 16 units. The course will cover the important formal languages in the Chomsky

hierarchy -- the regular sets, the context-free languages, and the recursively

enumerable sets -- as well as the formalisms that generate these languages and the

machines that recognize them. The course will also introduce the basic concepts of

computability and complexity theory by focusing on the question, "What are the

fundamental capabilities and limitations of computers?"

The concepts covered in this course will be amply illustrated by applications to

current programming languages, algorithms, natural language processing, and

hardware and software design.

Also, in this course we shall investigate whether it is possible at all for a given

language to find out if a given word belongs to it or not, and if it is possible how hard

it will be. These constitute the fields of decidability theory and complexity theory,

respectively.

What we really want to do is to find out which problems can be solved in general, and

for those problems that can be solved, how hard it is to solve them. In order to make

these questions more precise, we encode problems as languages.

Although the idea of automaton is quite old (for example a simple pendulum), it was

Post's work, contemporary with Turing, that made possible a general characterization

of machines that has been so helpful in the development of ideas ranging from

combinational circuits to finite-state languages. Although not as powerful as the

machines associated with Chomsky and Turing automata remain a very important tool

in the elucidation of the inner workings of machines and provide an excellent starting

point in understanding the basic ideas underlying contemporary science.

It is a course for B. Sc. Computer science major students, and is normally taken in a

student's third year. It should appeal to anyone who is interested in the design and

implementation of programming languages. Anyone who does a substantial amount of

programming should find the material valuable.

This course is divided into four modules. The first module deals with the general

concepts of formal languages

The second module treats, extensively, regular languages and the class of automata,

finite state automata, that recognises strings generated by regular grammar.

The third module deals with context-free languages and pushdown automata

The fourth module which is the concluding module of the course discusses Turing

machines and the rest of the language classes

4

CIT 342 Formal Languages and Automata Theory

This Course Guide gives you a brief overview of the course contents, course duration,

and course materials.

What you will learn in this course

The main purpose of this course is to acquaint students with the fact that languages

fall into various classes, according to their complexity. Some languages can be

parsed, i.e. interpreted, by a very simple state machine. Others require the human

brain, or something comparable.

Languages also have many representations: machines that recognize them, expressions

that describe them and grammars that generate them.

Thus, we intend to achieve this through the following:

Course Aims

First, students will learn the key techniques in modern compiler construction, getting

prepared for industry demands for compiler engineers.

Second, students will understand the rationale of various computational methods and

analysis.

The third goal is to build the foundation for students to pursue the research in the areas

of automata theory, formal languages, and computational power of machines

Course Objectives

Certain objectives have been set out to ensure that the course achieves its aims. Apart

from the course objectives, every unit of this course has set objectives. In the course

of the study, you will need to confirm, at the end of each unit, if you have met the

objectives set at the beginning of each unit. Upon completing this course you should

be able to:

 Discover computational thinking

 Understand the fundamental models of computation that underlie modern

computer hardware, software, and programming languages.

 Discover that there are problems computer can solve.

 Discover that there are limits as to how fast a computer can solve a problem.

 Learning the foundations of automata theory, computability theory, and

complexity theory.

 Learn about applications of theory to other areas of computer science such as

algorithms, programming languages, compilers, natural language translation,

operating systems, and software verification.

Related Courses

Prerequisites: CIT 331; Computer Science students only

Working through This Course

5

CIT 342 Formal Languages and Automata Theory

This course centres around three concepts: Languages, grammars, and

automata. In order to have a thorough understanding of the course units, you will

need to read and understand the contents, practise the steps by designing a compiler

of your own for a known language, and be committed to learning and

implementing your knowledge. You might need to listen to a short video cliques in

some aspects of discussion for further explanation. For example, this 8 minutes video

summarizes theory of computation. https://www.youtube.com/watch?v=dCiZZiqVv9w

This course is designed to cover approximately seventeen weeks, and it will require

your devoted attention. You should do the exercises in the Tutor-Marked Assignments

and submit to your tutors.

Course Materials
These include:

1. Course Guide

2. Study Units

3. Recommended Texts

4. A file for your assignments and for records to monitor your progress.

Study Units

There are 16 study units in this course:

Module 1: General Concepts

Unit 1: Alphabets, Strings, and Representations

Unit 2: Formal Grammars

Unit 3: Formal Languages

Unit 4: Automata Theory

Module 2: Regular Languages

Unit 1: Finite State Automata

Unit 2: Regular Expressions

Unit 3: Regular Grammars

Unit 4: Closure Properties of Regular Languages

Unit 5: The Pumping Lemma

Module 3: Context-Free Languages

Unit 1: Context-Free Grammars

Unit 2: Properties of Context-Free Languages

Unit 3: Pushdown Automata

Unit 4: CFGs and PDAs

Module 4: Turing Machines

Unit 1: Turing Machines and the rest

Unit 2: Turing Machines and Context-Sensitive Grammars

Unit 3: Unrestricted Grammars

Make use of the course materials, do the exercises to enhance your learning.

https://www.youtube.com/watch?v=dCiZZiqVv9w

Textbooks and References

 Alfred V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D. Ullmann (2007)

Compilers Principles, Techniques, & Tools Second Edition

 Crespi R.S., Breveglieri L. and Morzenti A.(2019) Formal Languages and

Compilation, Third Edition, Sprinwger, 2019.

 Daniel I.A. Cohen, () Introduction to Computer Theory, John Wiley Publisher

 GeeksforGeeks (2020). Closure Properties of Regular Languages.

 Goswami D., Krishna K. V. (2010). Formal Languages and Automata Theory.

 Hopcroft H.E. and Ullman J. D. ―Introduction to Automata Theory Languages and

Computation‖. Pearson Education

 John C Martin Introduction to languages and the Theory of Computation, John C

Martin, TMH.

 Kamala K. & Rama R () Introduction to Formal Languages , Automata Theory and

Computation –

 Kavi M. () Theory of Computation : A Problem – Solving Approach-, Wiley India

Pvt. Ltd.

 Lewis H.P. & Papadimition C.H. () Elements of Theory of Computation, Pearson

/PHI Publisher

 Linz P. (2012) An Introduction to formal languages and automata, Jones and Barlet

Learning Publishing

 Michael Sipser (2006). Introduction to the Theory of Computation. Thomson

Course Technology, 2nd edition Thomson Publishing

 Mishra K. L.P. and Chandrashekaran N. (2008) Theory of Computer Science –

Automata languages and computation -, 3rd edition, Prentice-Hall, India

 Moorthy D. S. R & Acharyulu G.V.S. (2015) Formal Languages and Automata

Theory

 Nielson F, Nielson HR & Hankin C. (2010) Principles of program analysis. Springer,

Berlin

 Stefano C. R., Luca B. &Angelo M. (2019) Formal Languages and Compilation. 3
rd

Edition, Springer Nature Switzerland AG 2019

 Torben A. M. (2010). Basics of Compiler Design (3rd Edition). Lulu Publishing.

 See relevant video on - https://www.youtube.com/watch?v=J-fcaXYkU9o m2u4

 See relevant video on - https://www.youtube.com/watch?v=KSczX111n3U m2u4

 See https://en.m.wkipedia.org/wiki/Automata_theory

 : https://www.youtube.com/watch?v=mAmZvn9lKYk m1 u1
 https://www.youtube.com/watch?v=PooQrbFrd_U m1 u2

 https://www.youtube.com/watch?v=ejXgLRSIxsA m1 u2

 https://www.youtube.com/watch?v=_ecle_FC6AE m1 u2

 https://www.youtube.com/watch?v=wQjppolFdas m2 u4

 https://www.youtube.com/watch?v=__vX2sjlpXU) m1 u2

 https://youtu.be/APRPT4KrzMA] m1 u3

 https://en.m.wkipedia.org/wiki/Automata_theory m1 u4

 https://youtu.be/EtYsnFGIUkA m1 u4

 https://www.youtube.com/watch?v=M84oEgYgw6U m2 u1

 https://www.youtube.com/watch?v=rtAy-CDYJeo m2u1 m2 u2

 https://www.youtube.com/watch?v=IcyDv1bWR1k m2u1
 https://www.youtube.com/watch?v=2aFXJhL8BYU m2 u1
 https://www.youtube.com/watch?v=rKCAPVaU0Qk m2 u1
 https://www.youtube.com/watch?v=WVv5OAR4Nik m2 u1

https://www.youtube.com/watch?v=J-fcaXYkU9o
https://www.youtube.com/watch?v=KSczX111n3U
https://www.youtube.com/watch?v=mAmZvn9lKYk
https://www.youtube.com/watch?v=PooQrbFrd_U
https://www.youtube.com/watch?v=ejXgLRSIxsA
https://www.youtube.com/watch?v=_ecle_FC6AE
https://www.youtube.com/watch?v=wQjppolFdas
https://www.youtube.com/watch?v=__vX2sjlpXU
https://youtu.be/APRPT4KrzMA
https://en.m.wkipedia.org/wiki/Automata_theory
https://youtu.be/EtYsnFGIUkA
https://www.youtube.com/watch?v=M84oEgYgw6U
https://www.youtube.com/watch?v=rtAy-CDYJeo
https://www.youtube.com/watch?v=IcyDv1bWR1k
https://www.youtube.com/watch?v=2aFXJhL8BYU
https://www.youtube.com/watch?v=rKCAPVaU0Qk
https://www.youtube.com/watch?v=WVv5OAR4Nik

 https://www.youtube.com/watch?v=quBzmvsxzkw m2 u1
 https://www.youtube.com/watch?v=efKSarb5oxM m2 u2
 . https://www.youtube.com/watch?v=nNMD1wE3TDM m2 u2

 https://www.youtube.com/watch?v=5_KRbXPCGWg

 https://www.youtube.com/watch?v=1PmfoAE8cdc m2 u3

 https://www.youtube.com/watch?v=Ob60IirEm4s m2 u3
 https://www.youtube.com/watch?v=MdI2TI7zefY m2u4
 https://www.youtube.com/watch?v=ntrF_KxHn18 m3 u1
 https://www.youtube.com/watch?v=mX9lULtwO0s m3 u3

7

https://www.youtube.com/watch?v=quBzmvsxzkw
https://www.youtube.com/watch?v=efKSarb5oxM
https://www.youtube.com/watch?v=nNMD1wE3TDM
https://www.youtube.com/watch?v=5_KRbXPCGWg
https://www.youtube.com/watch?v=1PmfoAE8cdc
https://www.youtube.com/watch?v=Ob60IirEm4s
https://www.youtube.com/watch?v=MdI2TI7zefY
https://www.youtube.com/watch?v=ntrF_KxHn18
https://www.youtube.com/watch?v=mX9lULtwO0s

CIT 342 Formal Languages and Automata Theory

Assignments File

These are of two types: the self-assessment exercises and the Tutor-Marked

Assignments. The self-assessment exercises will enable you monitor your

performance by yourself, while the Tutor-Marked Assignment is a supervised

assignment. The assignments take a certain percentage of your total score in this

course. The Tutor-Marked Assignments will be assessed by your tutor within a

specified period. The examination at the end of this course will aim at determining the

level of mastery of the subject matter. This course includes sixteen Tutor-Marked

Assignments and each must be done and submitted accordingly. Your best scores

however, will be recorded for you. Be sure to send these assignments to your tutor

before the deadline to avoid loss of marks.

Presentation Schedule

The Presentation Schedule included in your course materials gives you the important

dates for the completion of tutor marked assignments and attending tutorials.

Remember, you are required to submit all your assignments by the due date. You

should guard against lagging behind in your work.

Assessment

There are two aspects to the assessment of the course. First are the tutor marked

assignments; second, is a written examination.

In tackling the assignments, you are expected to apply information and knowledge

acquired during this course. The assignments must be submitted to your tutor for

formal assessment in accordance with the deadlines stated in the Assignment File. The

work you submit to your tutor for assessment will count for 30% of your total course

mark.

At the end of the course, you will need to sit for a final three-hour examination. This

will also count for 70% of your total course mark.

Tutor Marked Assignments (TMAS)

There are twenty-two tutor marked assignments in this course. You need to submit all

the assignments. The total marks for the best three (3) assignments will be 30% of

your total course mark.

Assignment questions for the units in this course are contained in the Assignment File.

You should be able to complete your assignments from the information and materials

contained in your set textbooks, reading and study units. However, you may wish to

use other references to broaden your viewpoint and provide a deeper understanding of

the subject.

8

CIT 342 Formal Languages and Automata Theory

When you have completed each assignment, send it together with form to your tutor.

Make sure that each assignment reaches your tutor on or before the deadline given. If,

however, you cannot complete your work on time, contact your tutor before the

assignment is done to discuss the possibility of an extension.

Examination and Grading

The final examination for the course will carry 70% percentage of the total marks

available for this course. The examination will cover every aspect of the course, so

you are advised to revise all your corrected assignments before the examination.

This course endows you with the status of a teacher and that of a learner. This means

that you teach yourself and that you learn, as your learning capabilities would allow. It

also means that you are in a better position to determine and to ascertain the what, the

how, and the when of your language learning. No teacher imposes any method of

learning on you.

The course units are similarly designed with the introduction following the table of

contents, then a set of objectives and then the dialogue and so on.

The objectives guide you as you go through the units to ascertain your knowledge of

the required terms and expressions.

Course Marking Scheme

This table shows how the actual course marking is broken down.

Assessment Marks

Assignment 1- 4 Four assignments, best three marks of the four

count at 30% of course marks

Final Examination 70% of overall course marks

Total 100% of course marks

Table 1: Course Marking Scheme

Course Overview

Unit Title of Work Weeks

Activity

Assessment

(End of Unit)

 Course Guide Week 1

 Module 1: General Concepts

1 Unit 1: Alphabets, Strings, and Representations Week 1 Assignment 1

9

CIT 342 Formal Languages and Automata Theory

2 Unit 2: Formal Grammars Week 2 Assignment 2

3 Unit 3: Formal Languages Week 2 Assignment 3

4 Unit 4: Automata Theory

 Module 2: Regular Languages

1 Unit 1: Finite State Automata Week 3 Assignment 5

2 Unit 2: Regular Expressions Week 3 Assignment 6

3 Unit 3: Regular Grammars Week 4 Assignment 7

4 Unit 4: Closure Properties of Regular

Languages

Week 4

5 Unit 5: The Pumping Lemma

 Module 3: Context-Free Languages

1 Unit 1: Context-Free Grammars Week 5 Assignment 8

2 Unit 2: Properties of Context-Free Languages Week 6 Assignment 9

3 Unit 3: Pushdown Automata Week 7 - 8 Assignment 10

4 Unit 4: CFGs and PDAs Week 8 - 9 Assignment 11

Module 4: Turing Machines

1 Unit 1: Turing Machines and the rest Week 12 Assignment 13

2 Unit 2: Turing Machines and Context-Sensitive

Grammars
Week 13 Assignment 14

3 Unit 3: Unrestricted Grammars Week 14 Assignment 15

 Revision Week 16

 Examination Week 17

Total 17 weeks

How to get the best from this course

In distance learning the study units replace the university lecturer. This is one of the

great advantages of distance learning; you can read and work through specially

designed study materials at your own pace, and at a time and place that suit you best.

Think of it as reading the lecture instead of listening to a lecturer. In the same way

that a lecturer might set you some reading to do, the study units tell you when to read

your set books or other material. Just as a lecturer might give you an in-class exercise,

your study units provide exercises for you to do at appropriate points.

Each of the study units follows a common format. The first item is an introduction to

the subject matter of the unit and how a particular unit is integrated with the other

10

CIT 342 Formal Languages and Automata Theory

units and the course as a whole. Next is a set of learning objectives. These objectives

enable you know what you should be able to do by the time you have completed the

unit. You should use these objectives to guide your study. When you have finished

the units you must go back and check whether you have achieved the objectives. If

you make a habit of doing this you will significantly improve your chances of passing

the course.

Remember that your tutor‘s job is to assist you. When you need help, don‘t hesitate to

call and ask your tutor to provide it.

1. Read this Course Guide thoroughly.

2. Organize a study schedule. Refer to the ‗Course Overview‘ for more details.

Note the time you are expected to spend on each unit and how the assignments

relate to the units. Whatever method you chose to use, you should decide on it

and write in your own dates for working on each unit.

3. Once you have created your own study schedule, do everything you can to stick

to it. The major reason that students fail is that they lag behind in their course

work.

4. Turn to Unit 1 and read the introduction and the objectives for the unit.

5. Assemble the study materials. Information about what you need for a unit is

given in the ‗Overview‘ at the beginning of each unit. You will almost always

need both the study unit you are working on and one of your set of books on

your desk at the same time.

6. Work through the unit. The content of the unit itself has been arranged to

provide a sequence for you to follow. As you work through the unit you will be

instructed to read sections from your set books or other articles. Use the unit to

guide your reading.

7. Review the objectives for each study unit to confirm that you have achieved

them. If you feel unsure about any of the objectives, review the study material

or consult your tutor.

8. When you are confident that you have achieved a unit‘s objectives, you can

then start on the next unit. Proceed unit by unit through the course and try to

pace your study so that you keep yourself on schedule.

9. When you have submitted an assignment to your tutor for marking, do not wait

for its return before starting on the next unit. Keep to your schedule. When

the assignment is returned, pay particular attention to your tutor‘s comments,

both on the tutor-marked assignment form and also written on the assignment.

Consult your tutor as soon as possible if you have any questions or problems.

11

CIT 342 Formal Languages and Automata Theory

10. After completing the last unit, review the course and prepare yourself for the

final examination. Check that you have achieved the unit objectives (listed at

the beginning of each unit) and the course objectives (listed in this Course

Guide).

Tutors and Tutorials

There are 8 hours of tutorials provided in support of this course. You will be notified

of the dates, times and location of these tutorials, together with the name and phone

number of your tutor, as soon as you are allocated a tutorial group.

Your tutor will mark and comment on your assignments, keep a close watch on your

progress and on any difficulties you might encounter and provide assistance to you

during the course. You must mail or submit your tutor-marked assignments to your

tutor well before the due date (at least two working days are required). They will be

marked by your tutor and returned to you as soon as possible.

Do not hesitate to contact your tutor by telephone, or e-mail if you need help. The

following might be circumstances in which you would find help necessary. Contact

your tutor if:

 you do not understand any part of the study units or the assigned readings,

 you have difficulty with the self-tests or exercises,

 you have a question or problem with an assignment, with your tutor‘s

comments on an assignment or with the grading of an assignment.

You should try your best to attend the tutorials. This is the only chance to have face

to face contact with your tutor and to ask questions which are answered instantly. You

can raise any problem encountered in the course of your study. To gain the maximum

benefit from course tutorials, prepare a question list before attending them. You will

learn a lot from participating in discussions actively.

Summary

Formal Languages and Automata Theory introduces you to the concepts associated

languages, computation and machines. It uses mathematical structure, and certain axiomatic rules

(formal grammar) to describe translation of programs written in computer languages. The notions
and methods of formal language are analogous to those used in number theory and in logic. This review brought
in latest developments in computer technology such as the recognition neurons in artificial intelligence and

robotic programming.The content of the course material was planned and written to ensure that

you acquire the proper knowledge and skills, which you will find useful in a later course

(CIT 445: Principles and Techniques of Compilers) in you fourth year and also for the

appropriate situations later in life. Real-life situations have been created to enable you

identify with and create some of your own. The essence is to help you in acquiring

the necessary knowledge and competence by equipping you with the necessary tools to

accomplish this.

We hope that by the end of this course you would have acquired the required

knowledge to view computation, machines, and programming languages in a new

way.

We wish you success with the course and hope that you will find it both interesting

and useful.

Module 1: General Concepts

Unit 1: Alphabets, Strings, and Representations

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content

3.1 Alphabets

3.2 String

3.2.1 Formal Theory

3.2.2 Strings and Sets of Strings

3.2.3 Alphabet of a string

3.2.4 String substitution

3.2.5 Concatenation and Substrings

3.2.6 String length

3.2.7 Character String Functions

3.3 Representations

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

The ability to represent information is crucial to communicating and processing

information. Human societies created spoken languages to communicate on a basic

level, and developed writing to reach a more sophisticated level.

The English language, for instance, in its spoken form relies on some finite set of

basic sounds as a set of primitives. The words are defined in term of finite sequences

of such sounds. Sentences are derived from finite sequences of words. Conversations

are achieved from finite sequences of sentences, and so forth.

Written English uses some finite set of symbols as a set of primitives. The words are

defined by finite sequences of symbols. Sentences are derived from finite sequences

of words. Paragraphs are obtained from finite sequences of sentences, and so forth.

Similar approaches have been developed also for representing elements of other sets.

For instance, the natural number can be represented by finite sequences of decimal

digits.

Computations, like natural languages, are expected to deal with information in its

most general form. Consequently, computations function as manipulators of integers,

14

CIT 342 Formal Languages and Automata Theory

graphs, programs, and many other kinds of entities. However, in reality computations

only manipulate strings of symbols that represent the objects. The subsequent

discussions in this course necessitate the following definitions.

In this introductory unit of this course, you will be taken through some of these

definitions.

Now let us go through your study objectives for this unit.

2.0 OBJECTIVES

At the end of this unit, you should be able to:
 o define alphabet, words and strings

o state the basic relation relationship among these terms

o state and describe the various operations that can be carried out on this
structures

o describe how they can be represented

3.0 MAIN CONTENT

3.1 Alphabets

In computer science and formal language, an alphabet or vocabulary is a finite set of

symbols or letters, e.g. characters or digits. The most common alphabet is {0,1}, the

binary alphabet. A finite string is a finite sequence of letters from an alphabet; for

instance a binary string is a string drawn from the alphabet {0,1}. An infinite

sequence of letters may be constructed from elements of an alphabet as well.

Given an alphabet Σ, we write Σ
*

to denote the set of all finite strings over the

alphabet Σ. Here, the
*

denotes the Kleene star operator. We write (or occasionally,

or Σ
ω
) to denote the set of all infinite sequences over the alphabet Σ.

For example, if we use the binary alphabet {0,1}, the strings (ε, 0, 1, 00, 01, 10, 11,

000, etc.) would all be in the Kleene closure of the alphabet (where ε represents the

empty string)

Please note that alphabets are important in the use of formal languages, automata and

semi-automata. In most cases, for defining instances of automata, such as

deterministic finite automata (DFAs), it is required to specify an alphabet from which

the input strings for the automaton are built.

3.2 String

In formal languages, which are used in mathematical logic and theoretical computer

science, a string is a finite sequence of symbols that are chosen from a set or alphabet.

CIT 342 Formal Languages and Automata Theory

In computer programming, a string is, essentially, a sequence of characters. A string is

generally understood as a data type storing a sequence of data values, usually bytes, in

which elements usually stand for characters according to a character encoding, which

differentiates it from the more general array data type. In this context, the terms

binary string and byte string are used to suggest strings in which the stored data

does not (necessarily) represent text.

A variable declared to have a string data type usually causes storage to be allocated in

memory that is capable of holding some predetermined number of symbols. When a

string appears literally in source code, it is known as a string literal and has a

representation that denotes it as such. Before, we start the lecture, let us have a watch of this

video: https://www.youtube.com/watch?v=mAmZvn9lKYk

3.2.1 Formal Theory

Let Σ be an alphabet, a non-empty finite set. Elements of Σ are called symbols or

characters. A string (or word) over Σ is any finite sequence of characters from Σ. For

example, if Σ = {0, 1}, then 0101 is a string over Σ.

The length of a string is the number of characters in the string (the length of the

sequence) and can be any non-negative integer. The empty string is the unique string

over Σ of length 0, and is denoted ε or λ.

The set of all strings over Σ of length n is denoted Σ
n
. For example, if Σ = {0, 1}, then

Σ
2

= {00, 01, 10, 11}. Note that Σ
0

= {ε} for any alphabet Σ.

The set of all strings over Σ of any length is the Kleene closure of Σ and is denoted Σ*.

In terms of Σ
n
,

For example, if Σ = {0, 1}, Σ* = {ε, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, …}.

Although Σ* itself is countably infinite, all elements of Σ* have finite length.

A set of strings over Σ (i.e. any subset of Σ*) is called a formal language over Σ. For

example, if Σ = {0, 1}, the set of strings with an even number of zeros ({ε, 1, 00, 11,

001, 010, 100, 111, 0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111, …}) is a formal

language over Σ.

3.2.2 Strings and Sets of Strings

If V is a set, then V* denotes the set of all finite

including the empty string which will be denoted by ε. e.g.

10, 11, 000, 001,... }

strings of elements of V

{0,1}* = {ε, 0, 1, 00, 01,

https://www.youtube.com/watch?v=mAmZvn9lKYk

+

n 0

3

CIT 342 Formal Languages and Automata Theory

The set of all non empty strings of elements of V is denoted by V+.

Usually, V+ = V* \ {ε}, but when ε ∈ V, V+ = V*. e.g.

}
{0,1} = {0, 1, 00, 01, 10, 11, 000, 001,...

but {ε, 0, 1}+ = {0,1}* = {ε, 0, 1, 00, 01, 10, 11, 000, 001,... }

If x ∈ V* and y ∈ V* then xy will denote their concatenation, that is, the string
consisting of x followed by y.

If x ∈ V* then x
n

= xxx.....x n≥0
n-times

We assume x
0

= ε the empty string.

e.g. {a}* = {ε, a, a
2

, a
3
, ...a

n
,.....} = { a

n
: n ≥ 0}

{a}+

= {a, a2, a3,an,} = { an: n ≥ 1}

Similarly, if X, Y are sets of strings, then their concatenation is also denoted

by XY. Of course XY={xy: x∈X and y∈Y}.

Also, X = XXX.....X n≥0. Of course X = {ε}.

n-times

e.g. {0, 1} {a, b, c} = {0a, 0b, 0c, 1a ,1b, 1c}

{0, 1} = {000, 001, 010, 011, 100, 101, 110, 111}

If x is a string, then |x| denotes the length of x, and this is the number of
indivisible symbols in x. Of course |ε| = 0.

Self Assessment Exercise I

1. State the differences if any between an alphabet and string
2. If Σ = {0, 1}, what is Σ

n
when n=4

3) Determine the following sets.

(a) {0,1} {ε, a, ba} (b) {b, aa}*

4. Let V be a set of strings. Does V+ = V V* ?

3.2.3 Alphabet of a string

The alphabet of a string is a list of all of the letters that occur in a particular string. If

s is a string, its alphabet is denoted by

Alph(s)

3.2.4 String substitution

CIT 342 Formal Languages and Automata Theory

Let L be a language, and let Σ be its alphabet. A string substitution or simply a

substitution is a mapping f that maps letters in Σ to languages (possibly in a different

alphabet). Thus, for example, given a letter a ∈ Σ , one has f(a) = La where La ⊂ Δ*
is some language whose alphabet is Δ. This mapping may be extended to strings as

f(ε) = ε

for the empty string ε, and

f(sa) = f(s)f(a)

for string a ∈ L. String substitution may be extended to the entire language as

f(L) =

An example of string substitution occurs in regular languages, which are closed under

string substitution. That is, if the letters of a regular language are substituted by other

regular languages, the result is still a regular language.

Another example is the conversion of an EBCDIC-encoded string to ASCII.

3.2.5 Concatenation and Substrings

Concatenation is an important binary operation on Σ*. For any two strings s and t in

Σ*, their concatenation is defined as the sequence of characters in s followed by the

sequence of characters in t, and is denoted st. For example, if Σ = {a, b, …, z}, s =

bear, and t = hug, then st = bearhug and ts = hugbear.

String concatenation is an associative, but non-commutative operation. The empty

string serves as the identity element; for any string s, εs = sε = s. Therefore, the set Σ*

and the concatenation operation form a monoid, the free monoid generated by Σ. In

addition, the length function defines a monoid homomorphism from Σ* to the non-

negative integers.

A string s is said to be a substring or factor of t if there exist (possibly empty) strings

u and v such that t = usv. The relation "is a substring of" defines a partial order on Σ*,

the least element of which is the empty string.

3.2.6 String length

Although formal strings can have an arbitrary (but finite) length, the length of strings

in real languages is often constrained to an artificial maximum. In general, there are

two types of string datatypes: fixed length strings which have a fixed maximum length

and which use the same amount of memory whether this maximum is reached or not,

and variable length strings whose length is not arbitrarily fixed and which use varying

CIT 342 Formal Languages and Automata Theory

amounts of memory depending on their actual size. Most strings in modern

programming languages are variable length strings. Despite the name, even variable

length strings are limited in length; although, generally, the limit depends only on the

amount of memory available.

3.2.7 Character String Functions

String functions are used to manipulate a string or change or edit the contents of a

string. They also are used to query information about a string. They are usually used

within the context of a computer programming language.

The most basic example of a string function is the length(string) function,

which returns the length of a string (not counting any terminator characters or any of

the string's internal structural information) and does not modify the string. For

example, length("hello world") returns 11.

There are many string functions which exist in other languages with similar or exactly

the same syntax or parameters. For example in many languages the length function is

usually represented as len(string). Even though string functions are very useful

to a computer programmer, a computer programmer using these functions should be

mindful that a string function in one language could in another language behave

differently or have a similar or completely different function name, parameters,

syntax, and results.

3.3 Representations

Given the preceding definitions of alphabets and strings, representations of
information can be viewed as the mapping of objects into strings in accordance with
some rules. That is, formally speaking, a representation or encoding over an alphabet

Σ of a set D is a function f from D to 2Σ* that satisfies the following condition: f(e1)

and f(e2) are disjoint nonempty sets for each pair of distinct elements e1 and e2 in D.

If Σ is a unary alphabet, then the representation is said to be a unary representation. If

Σ is a binary alphabet, then the representation is said to be a binary representation.

In what follows each element in f(e) will be referred to as a representation, or

encoding, of e.

Example 1

f1 is a binary representation over {0, 1} of the natural numbers if f1(0) = {0, 00, 000,

0000, . . . }, f1(1) = {1, 01, 001, 0001, . . . }, f1(2) = {10, 010, 0010, 00010, . . . }, f1(3)

= {11, 011, 0011, 00011, . . . }, and f1(4) = {100, 0100, 00100, 000100, . . . }, etc.

Similarly, f2 is a binary representation over {0, 1} of the natural numbers if it assigns
to the ith natural number the set consisting of the ith canonically smallest binary

CIT 342 Formal Languages and Automata Theory

string. In such a case, f2(0) = { }, f2(1) = {0}, f2(2) = {1}, f2(3) = {00}, f2(4) = {01},

f2(5) = {10}, f2(6) = {11}, f2(7) = {000}, f2(8) = {1000}, f2(9) = {1001}, . . .

On the other hand, f3 is a unary representation over {1} of the natural numbers if it

assigns to the ith natural number the set consisting of the ith alphabetically (=
canonically) smallest unary string. In such a case, f3(0) = { }, f3(1) = {1}, f3(2) = {11},

f3(3) = {111}, f3(4) = {1111}, . . . , f3(i) = {1 }, . . .

The three representations f1, f2, and f3 are illustrated in Figure 1

Figure 1. Representations for the natural numbers

4.0 CONCLUSION

In this unit you have been taken through some fundamental concepts in formal

language. It is advised you master this concepts as a solid knowledge of these

foundational concepts will aid your mastery and understanding of this course.

5.0 SUMMARY

In this unit, you learnt that:

 an alphabet or vocabulary is a finite set of symbols or letters

 a string is a finite sequence of symbols that are chosen from a set or alphabet

 String functions are used to manipulate a string or change or edit the contents

of a string

 For any two strings s and t in Σ*, their concatenation is defined as the sequence

of characters in s followed by the sequence of characters in t, and is denoted st

 String concatenation is an associative, but non-commutative operation

 A string s is said to be a substring or factor of t if there exist (possibly empty)

strings u and v such that t = usv

20

CIT 342 Formal Languages and Automata Theory

 a representation or encoding over an alphabet Σ of a set D is a function f from

D to 2
Σ*

that satisfies the following condition: f(e1) and f(e2) are disjoint
nonempty sets for each pair of distinct elements e1 and e2 in D.

6.0 TUTOR-MARKED ASSIGNMENT

1) Define the following terms:

 Strings

 Alphabets

 Vocabulary

2) If Σ = {a, b, …, z}, s = bear, and t = hug, then find

i) st ii) ts

3) Briefly describe the following:

i) unary representation

ii) binary representation

7.0 REFERENCES/FURTHER READING

 Alfred V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D. Ullmann (2007)

Compilers Principles, Techniques, & Tools Second Edition

 Crespi R.S., Breveglieri L. and Morzenti A.(2019) Formal Languages and

Compilation, Third Edition, Sprinwger, 2019.

 Daniel I.A. Cohen, () Introduction to Computer Theory, John Wiley Publisher

 GeeksforGeeks (2020). Closure Properties of Regular Languages.

 Goswami D., Krishna K. V. (2010). Formal Languages and Automata Theory.

 Hopcroft H.E. and Ullman J. D. ―Introduction to Automata Theory Languages and

Computation‖. Pearson Education

 John C Martin Introduction to languages and the Theory of Computation, John C

Martin, TMH.

 Kamala K. & Rama R () Introduction to Formal Languages , Automata Theory and

Computation –

 Kavi M. () Theory of Computation : A Problem – Solving Approach-, Wiley India

Pvt. Ltd.

 Lewis H.P. & Papadimition C.H. () Elements of Theory of Computation, Pearson

/PHI Publisher

 Linz P. (2012) An Introduction to formal languages and automata, Jones and Barlet

Learning Publishing

 Michael Sipser (2006). Introduction to the Theory of Computation. Thomson

Course Technology, 2nd edition Thomson Publishing

 Mishra K. L.P. and Chandrashekaran N. (2008) Theory of Computer Science –

Automata languages and computation -, 3rd edition, Prentice-Hall, India

 Moorthy D. S. R & Acharyulu G.V.S. (2015) Formal Languages and Automata

Theory

 Nielson F, Nielson HR & Hankin C. (2010) Principles of program analysis. Springer,

Berlin

 Stefano C. R., Luca B. &Angelo M. (2019) Formal Languages and Compilation. 3
rd

Edition, Springer Nature Switzerland AG 2019

 Torben A. M. (2010). Basics of Compiler Design (3rd Edition). Lulu Publishing.
Used videos:

 See https://en.m.wkipedia.org/wiki/Automata_theory

 : https://www.youtube.com/watch?v=mAmZvn9lKYk m1 u1

https://www.youtube.com/watch?v=mAmZvn9lKYk

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content
 1.1 Formal Grammar

Module 1: General Concepts

Unit 2: Formal Grammars

3.1.1 Introductory Example

3.2 Formal Definition

3.2.1 The Syntax of Grammars

3.2.2 The Semantics of Grammars

3.3 The Chomsky Hierarchy

3.4 Context-Free Grammars

3.5 Regular Grammars

3.6 Other Forms of Generative Grammars

3.7 Analytic Grammars

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

Having learnt about strings and alphabets in the previous unit, you will be taken

through another important concept in formal language and automata theory, which is

grammar. This is because it is often convenient to specify languages in terms of

grammars. The advantage in doing so arises mainly from the usage of a small number of

rules for describing a language with a large number of sentences. As the norm, watch this

description of grammar https://www.youtube.com/watch?v=PooQrbFrd_U

From the video, you could see the possibility of breaking down an English sentence

to consists of a subject phrase followed by a predicate phrase and is expressed by a

grammatical rule of the form:

<sentence> <subject><predicate>.

(The names in angular brackets are assumed to belong to the grammar

metalanguage)

Similarly, the possibility that the subject phrase consists of a noun phrase can be

expressed by a grammatical rule of the form:

<subject> <noun>.

You may, therefore, think of a grammar as a set of rules for your native language.

Subject, predicate, prepositional phrase, past participle, and so on. This is a

reasonably accurate, or at least helpful, description of a human language, but it is not

https://www.youtube.com/watch?v=PooQrbFrd_U

entirely rigorous. Chomski formalized the concept of a grammar, and made important

observations regarding the complexity of the grammar, which in turn establishes the

complexity of the language.

In this unit, you will be taken through some basic concepts of formal grammar

Now let us go through your study objectives for this Unit.

2.0 OBJECTIVES

At the end of this unit, you should be able to:
 o define formal grammar

o define alphabet, words and strings

o state the types of formal grammars we have in the field of Computer
Science

o describe the class of automata that can recognise strings generated by each
grammar

o identify strings that are generated by a particular grammar

o describe the Chomsky hierarchy

o explain the relevance of formal grammar and language to computer
programming

3.0 MAIN CONTENT

3.1 Formal Grammar

A formal grammar (sometimes simply called a grammar) is a set of rules for

forming strings in a formal language. The rules describe how to form strings from the

language's alphabet that are valid according to the language's syntax. A grammar does

not describe the meaning of the strings or what can be done with them in whatever

context – only their form.

Formal language theory, the discipline which studies formal grammars and languages,

is a branch of applied mathematics. Its applications are found in theoretical computer

science, theoretical linguistics, formal semantics, mathematical logic, and other areas.

A formal grammar is a set of rules for rewriting strings, along with a "start symbol"

from which rewriting must start. Therefore, a grammar is usually thought of as a

language generator. However, it can also sometimes be used as the basis for a

"recognizer"—a function in computing that determines whether a given string belongs

to the language or is grammatically incorrect. To describe such recognizers, formal

language theory uses separate formalisms, known as automata theory. One of the

interesting results of automata theory is that it is not possible to design a recognizer

for certain formal languages.

23

CIT 342 Formal Languages and Automata Theory

Parsing is the process of recognizing an utterance (a string in natural languages)

by breaking it down to a set of symbols and analyzing each one against the

grammar of the language. Most languages have the meanings of their

utterances structured according to their syntax—a practice known as compositional

semantics. As a result, the first step to describing the meaning of an utterance in

language is to break it down part by part and look at its analyzed form (known as its

parse tree in computer science, and as its deep structure in generative grammar).

3.1.1 Introductory Example

A grammar mainly consists of a set of rules for transforming strings. (If it only

consisted of these rules, it would be a semi-Thue system demonstrated in this link)

To generate a string in the language, one begins with a string consisting of only

a single start symbol. The production rules are then applied in any order, until a

string that contains neither the start symbol nor designated nonterminal symbols is

produced. The language formed by the grammar consists of all distinct strings that

can be generated in this manner. Any particular sequence of production rules on the

start symbol yields a distinct string in the language. If there are multiple ways of

generating the same single string, the grammar is said to be ambiguous.

For example, assume the alphabet consists of a and b, the start symbol is S, and we

have the following production rules:

1.

2.

then we start with S, and can choose a rule to apply to it. If we choose rule 1, we

obtain the string aSb. If we choose rule 1 again, we replace S with aSb and obtain the

string aaSbb. If we now choose rule 2, we replace S with ba and obtain the string

aababb, and are done. We can write this series of choices more briefly, using

symbols: . The language of the grammar is then the

infinite set , where a
k

is a

repeated k times (and n in particular represents the number of times production rule 1

has been applied).

3.2 Formal Definition

3.2.1 The Syntax of Grammars

In the classic formalization of generative grammars first proposed by Noam Chomsky

in the 1950s, a grammar G consists of the following components:

 A finite set N of nonterminal symbols, none of which appear in strings formed

from G.

 A finite set Σ of terminal symbols that is disjoint from N.

 A finite set P of production rules, each rule of the form

where * is the Kleene star operator and denotes set union. That is, each

production rule maps from one string of symbols to another, where the first

string (the "head") contains an arbitrary number of symbols provided at least

one of them is a nonterminal. In the case that the second string (the "body")

consists solely of the empty string – i.e., that it contains no symbols at all – it

may be denoted with a special notation (often Λ, e or ε) in order to avoid

confusion.

 A distinguished symbol that is the start symbol.

A grammar is formally defined as the 4-tuple (N,Σ,P,S). Such a formal grammar is

often called a rewriting system or a phrase structure grammar in the literature.

3.2.2 The Semantics of Grammars

The operation of a grammar can be defined in terms of relations on strings:

 Given a grammar G = (N,Σ,P,S), the binary relation (pronounced as "G

derives in one step") on strings in is defined by:

 the relation (pronounced as G derives in zero or more steps) is defined as

the reflexive transitive closure of

a sentential form is a member of that can be derived in a finite

number of steps from the start symbol S; that is, a sentential form is a member

of . A sentential form that contains no

nonterminal symbols (i.e. is a member of Σ
*
) is called a sentence.

the language of G, denoted as L(G), is defined as all those sentences that can

be derived in a finite number of steps from the start symbol S; that is, the set

.

Note that the grammar G = (N,Σ,P,S) is effectively the semi-Thue system

, rewriting strings in exactly the same way; the only difference is in that we distinguish

specific nonterminal symbols which must be rewritten in rewrite rules, and are only

interested in rewritings from the designated start symbol S to strings without

nonterminal symbols.

You could listen to this before you go ahead https://www.youtube.com/watch?v=ejXgLRSIxsA

Example 1

Please note that for these examples, formal languages are specified using set-builder

notation.

https://www.youtube.com/watch?v=ejXgLRSIxsA

Consider the grammar G where , , S is the start symbol,

and P consists of the following production rules:

1.

2.

3.

4.

This grammar defines the language

L(G) = {anbncn|n ≥ 1}

where a
n

denotes a string of n consecutive a's. Thus, the language is the set of strings

that consist of 1 or more a's, followed by the same number of b's, followed by the

same number of c's.

Some examples of the derivation of strings in L(G) are:

(Note on notation: reads "String P generates string Q by means of

production i", and the generated part is each time indicated in bold type.)

3.3 The Chomsky Hierarchy

When Noam Chomsky first formalized generative grammars in 1956, he classified

them into types now known as the Chomsky hierarchy. The difference between these

types is that they have increasingly strict production rules and can express fewer

formal languages. Two important types are context-free grammars (Type 2) and

regular grammars (Type 3). The languages that can be described with such a grammar are

called context-free languages and regular languages, respectively. Although much less

powerful than unrestricted grammars (Type 0), which can in fact express any language

that can be accepted by a Turing machine, these two restricted types of grammars are

most often used because parsers for them can be efficiently implemented. For

example, all regular languages can be recognized by a finite state machine, and for

useful subsets of context-free grammars there are well-known algorithms to generate

efficient LL parsers and LR parsers to recognize the corresponding languages those

grammars generate. This video may help at your leisure time.

https://www.youtube.com/watch?v=_ecle_FC6AE

3.4 Context-Free Grammars

A context-free grammar is a grammar in which the left-hand side of each production

https://www.youtube.com/watch?v=_ecle_FC6AE

rule consists of only a single nonterminal symbol. This restriction is non-trivial; not

all languages can be generated by context-free grammars. Those that can are called

context-free languages.

The language defined above is not a context-free language, and this can be strictly
proven using the pumping lemma for context-free languages, but for example the

language L(G) = {a
n
b

n
|n ≥ 1} (at least 1 a followed by the same number of b's) is

context-free, as it can be defined by the grammar G2 with N = {S}, Σ = {a, b}, S the

start symbol, and the following production rules:

1.

2.

A context-free language can be recognized in O(n3) time (see Big O notation in

https://www.youtube.com/watch?v=__vX2sjlpXU) by an algorithm such as Earley's
algorithm. That is, for every context-free language, a machine can be built that

takes a string as input and determines in O(n
3
) time whether the string is a member

of the language, where n is the length of the string. Further, some important subsets
of the context-free languages can be recognized in linear time using other algorithms.

3.5 Regular Grammars

In regular grammars, the left hand side is again only a single nonterminal symbol, but

now the right-hand side is also restricted. The right side may be the empty string, or a

single terminal symbol, or a single terminal symbol followed by a nonterminal

symbol, but nothing else. (Sometimes a broader definition is used: one can allow

longer strings of terminals or single nonterminals without anything else, making

languages easier to denote while still defining the same class of languages.)

The language defined above is not regular, but the language {a
n
b

m
| m, n ≥ 1} is (at

least 1 a followed by at least 1 b, where the numbers may be different), as it can
be defined by the grammar G3 with N = {S, A, B}, Σ = {a, b}, S the start symbol, and

the following production rules:

1.

2.

3.

4.

5.

All languages generated by a regular grammar can be recognized in linear time by a

finite state machine. Although, in practice, regular grammars are commonly expressed

using regular expressions, some forms of regular expression used in practice do not

strictly generate the regular languages and do not show linear recognitional

performance due to those deviations.

3.6 Other Forms of Generative Grammars

https://www.youtube.com/watch?v=__vX2sjlpXU

27

CIT 342 Formal Languages and Automata Theory

Many extensions and variations on Chomsky's original hierarchy of formal grammars

have been developed, both by linguists and by computer scientists, usually either in

order to increase their expressive power or in order to make them easier to analyze or

parse. Some forms of grammars developed include:

 Tree-adjoining grammars increase the expressiveness of conventional

generative grammars by allowing rewrite rules to operate on parse trees instead

of just strings.

 Affix grammars and attribute grammars allow rewrite rules to be augmented

with semantic attributes and operations, both useful for increasing grammar

expressiveness and for constructing practical language translation tools.

3.7 Analytic Grammars

Though there is a tremendous body of literature on parsing algorithms, most of these

algorithms assume that the language to be parsed is initially described by means of a

generative formal grammar, and that the goal is to transform this generative grammar

into a working parser. Strictly speaking, a generative grammar does not in any way

correspond to the algorithm used to parse a language, and various algorithms have

different restrictions on the form of production rules that are considered well-formed.

An alternative approach is to formalize the language in terms of an analytic grammar

in the first place, which more directly corresponds to the structure and semantics of a

parser for the language. Examples of analytic grammar formalisms include the

following:

 The Language Machine directly implements unrestricted analytic grammars.

Substitution rules are used to transform an input to produce outputs and

behaviour. The system can also produce the lm-diagram which shows what

happens when the rules of an unrestricted analytic grammar are being applied.

 Top-down parsing language (TDPL): a highly minimalist analytic grammar

formalism developed in the early 1970s to study the behavior of top-down

parsers.

 Link grammars: a form of analytic grammar designed for linguistics, which

derives syntactic structure by examining the positional relationships between

pairs of words.

 Parsing expression grammars (PEGs): a more recent generalization of TDPL

designed around the practical expressiveness needs of programming language

and compiler writers.

4.0 CONCLUSION

In this unit you have been introduced to the concept of formal grammars. Grammars

are very important in the field of automata theory since they are the building blocks of

languages. In the next unit we will be discussing formal languages.

5.0 SUMMARY

28

CIT 342 Formal Languages and Automata Theory

In this unit, you learnt that a formal grammar is a set of rules of a specific kind, for

forming strings in a formal language. It has four components that form its syntax and a

set of operations that can be performed on it, which form its semantic.

Each type of grammars is recognised by a particular type of automata. For example,

type-2 grammars are recognised by pushdown automata while type-3 grammars are

recognised by finite state automata.

According to Chomsky hierarchy, there are four types of grammars. The difference

between these types is that they have increasingly strict production rules and can

express fewer formal languages.

6.0 TUTOR-MARKED ASSIGNMENT

1. With illustration, describe the concept of formal grammar.

2. Why is the production considered as a major component of grammar?

3. Briefly describe the following:

 operations on a grammar

 semantics of a grammar

4. Distinguish among the following grammar types:

 Regular grammars

 Context-free grammars

 Analytical grammars

5. Briefly discuss the Chomsky hierarchy. What is the relationship among the

various types of grammars described in the Chomsky hierarchy?

7.0 REFERENCES/FURTHER READING

 Alfred V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D. Ullmann (2007)

Compilers Principles, Techniques, & Tools Second Edition

 Crespi R.S., Breveglieri L. and Morzenti A.(2019) Formal Languages and

Compilation, Third Edition, Sprinwger, 2019.

 Daniel I.A. Cohen, () Introduction to Computer Theory, John Wiley Publisher

 GeeksforGeeks (2020). Closure Properties of Regular Languages.

 Goswami D., Krishna K. V. (2010). Formal Languages and Automata Theory.

 Hopcroft H.E. and Ullman J. D. ―Introduction to Automata Theory Languages and

Computation‖. Pearson Education

 John C Martin Introduction to languages and the Theory of Computation, John C

Martin, TMH.

 Kamala K. & Rama R () Introduction to Formal Languages , Automata Theory and

Computation –

 Kavi M. () Theory of Computation : A Problem – Solving Approach-, Wiley India

Pvt. Ltd.

 Lewis H.P. & Papadimition C.H. () Elements of Theory of Computation, Pearson

/PHI Publisher

 Linz P. (2012) An Introduction to formal languages and automata, Jones and Barlet

Learning Publishing

 Michael Sipser (2006). Introduction to the Theory of Computation. Thomson

Course Technology, 2nd edition Thomson Publishing

 Mishra K. L.P. and Chandrashekaran N. (2008) Theory of Computer Science –

Automata languages and computation -, 3rd edition, Prentice-Hall, India

 Moorthy D. S. R & Acharyulu G.V.S. (2015) Formal Languages and Automata

Theory

 Nielson F, Nielson HR & Hankin C. (2010) Principles of program analysis. Springer,

Berlin

 Stefano C. R., Luca B. &Angelo M. (2019) Formal Languages and Compilation. 3
rd

Edition, Springer Nature Switzerland AG 2019

 Torben A. M. (2010). Basics of Compiler Design (3rd Edition). Lulu Publishing.

 https://www.youtube.com/watch?v=PooQrbFrd_U m1 u2

 https://www.youtube.com/watch?v=ejXgLRSIxsA m1 u2

 https://www.youtube.com/watch?v=_ecle_FC6AE m1 u2

https://www.youtube.com/watch?v=PooQrbFrd_U
https://www.youtube.com/watch?v=ejXgLRSIxsA
https://www.youtube.com/watch?v=_ecle_FC6AE

4.0 Conclusion

5.0 Summary

6.0 Tutor-MarkedAssignment

7.0 References/FurtherReading

1.0 INTRODUCTION

Module1: General Concepts

Unit3: Formal Languages

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content

3.1 Formal Language

3.2 Words over an Alphabet

 3.2.1 Formal Definition

 3.2.2 Vocabulary and Language

3.3 Language-Specification Formalisms

 3.4 Operations on Languages

3.5 Other Operations on Languages

3.6 Derivations and Language of a Grammar

You may think of a language as English or French, or perhaps perl or java, but there is

a formal definition that is much more general. It encompasses these languages, and

other, abstract languages such as the prime numbers, or the valid proofs of the 4 colour

theorem.

Start with a finite set, which is called the alphabet. Consider all finite ordered strings,

i.e. finite tuples, drawn from this alphabet. A language is any well defined subset of

these strings. Each finite string in the language is called a word.

Since you have learnt about strings, alphabets, word and grammars in the

preceding units, it will be easier for you to understand the topic of discussion in

this unit, which is formal language.

You will see that languages fall into various classes, according to their complexity.

Some languages can be parsed, i.e. interpreted, by a very simple state machine. Others

require the human brain, or something comparable.

Languages also have many representations: machines that recognize them, expressions

that describe them and grammars that generate them.

Now let us go through your study objectives for this unit.

31

CIT 342 Formal Languages and Automata Theory

2.0 OBJECTIVES

At the end of this unit, you should be able to:

 O define formal languages
O state the rules that define a formal language
o define word over an alphabet
O give examples of formal languages
O perform basic operations on languages
O explain the relevance of formal language to computer programming

3.0 MAIN CONTENT

3.1 Formal Language

A formal language is a set of words, i.e. finite strings of letters, or symbols. The

inventory from which these letters are taken is called the alphabet over which the

language is defined. A formal language is often defined by means of a formal

grammar. Formal languages are a purely syntactical notion, so there is not necessarily

any meaning associated with them. To distinguish the words that belong to a language

from arbitrary words over its alphabet, the former are sometimes called well-formed

words (or, in their application in logic, well-formed formulas).

Formal languages are studied in the fields of logic, computer science and linguistics.

Their most important practical application is for the precise definition of syntactically

correct programs for a programming language. The branch of mathematics and

computer science that is concerned only with the purely syntactical aspects of such

languages, i.e. their internal structural patterns, is known as formal language theory.

Although it is not formally part of the language, the words of a formal language often

have a semantical dimension as well. In practice this is always tied very closely to the

structure of the language, and a formal grammar (a set of formation rules that

recursively defines the language) can help to deal with the meaning of (well-formed)

words. Well-known examples for this are "Tarski's definition of truth" in terms of a T-

schema for first-order logic, and compiler generators like lex and yacc.(Crespi et al.

2019, pages 5-6)

Self-Assessment I

1. What is a formal language? State areas of its application

2. How relevant is formal language to computer programming?

3. Differentiate between formal language and formal language theory

4. Explain with examples the semantical dimensions of the words of a formal

language

3.2 Words over an Alphabet

An alphabet, in the context of formal languages can be any set, although it often 32

CIT 342 Formal Languages and Automata Theory

makes sense to use an alphabet in the usual sense of the word, or more generally a

character set such as ASCII. Alphabets can also be infinite; e.g. first-order logic is

often expressed using an alphabet which, besides symbols such as ∧, ¬, ∀ and
parentheses, contains infinitely many elements x0, x1, x2, …that play the role of

variables. The elements of an alphabet are called its letters.

A word over an alphabet can be any finite sequence, or string, of letters. The set of all

words over an alphabet Σ is usually denoted by Σ
*

(using the Kleene star). For any
alphabet there is only one word of length 0, the empty word, which is often denoted by

e, ε or Λ. By concatenation one can combine two words to form a new word, whose

length is the sum of the lengths of the original words. The result of concatenating a

word with the empty word is the original word.

As you learnt in the first unit of this course, in some applications, especially in logic,

the alphabet is also known as the vocabulary and words are known as formulas or

sentences; this breaks the letter/word metaphor and replaces it by a word/sentence

metaphor. (Goswani & Krishna, 2010,page 5)

3.2.1 Formal Definition

A formal language L over an alphabet Σ is just a subset of Σ
*
, that is, a set of words

over that alphabet. For example, three sample languages over the same alphabet Σ = {

a, b }:

 L1 = {a a, a a a }

 L2 = {a ba, a a b}

 L3 = {a b, b a, a a bb, a ba b, . . . , a a a bbb, . . . }

In computer science and mathematics, which do not deal with natural languages, the

adjective "formal" is usually omitted as redundant.

While formal language theory usually concerns itself with formal languages that are

defined by some syntactical rules, the actual definition of a formal language is only as

above: a (possibly infinite) set of finite-length strings, no more nor less. In practice,

there are many languages that can be defined by rules, such as regular languages or

context-free languages. The notion of a formal grammar may be closer to the intuitive

concept of a "language," one defined by syntactic rules. By an abuse of the definition,

a particular formal language is often thought of as being equipped with a formal

grammar that defines it.

Example1

The following rules define a formal language L over the alphabet Σ=

{0,1,2,3,4,5,6,7,8,9,+,=}:

 Every non empty string that does not contain + or = and does not start with 0 is

in L.

 The string 0 is in L.

 A string containing=is in L if and only if there is exactly one =, and it separates

two strings in L.

 A string containing + is in L if and only if every + in the string separates two

valid strings in L.

 No string is in L other than those implied by the previous rules.

Under these rules, the string "23+4=555" is in L, but the string "=234=+" is not. This

formal language expresses natural numbers, well-formed addition statements, and

well-formed addition equalities, but it expresses only what they look like (their

syntax), not what they mean (semantics). For instance, nowhere in these rules is there

any indication that 0 means the number zero, or that + means addition.

For finite languages one can simply enumerate all well-formed words. For example,

we can define a language L as just L= {"a", "b","ab","cba"}.

However, even over a finite (non-empty) alphabet such as Σ ={a, b} there are infinitely

many words: "a", "abb", "ababba", "aaababbbbaab", ….Therefore formal languages

are typically infinite, and defining an infinite formal language is not as simple as

writing L ={"a", "b", "ab", "cba"}. Here are some examples of formal languages:

 L=Σ
*
, the set of all words over Σ;

 L={a}
*
={a

n
},where n ranges over the natural numbers and a

n
means "a"

repeated n times (this is the set of words consisting only of the symbol "a");

 the set of syntactically correct programs in a given programming language (the

syntax of which is usually defined by a context-free grammar;

 the set of inputs upon which a certain Turing machine halts; or

 the set of maximal strings of alphanumeric ASCII characters on this line, (i.e.,

the set{"the", "set", "of", "maximal", "strings", "alphanumeric", "ASCII",

"characters", "on", "this", "line", "i", "e"}).

3.2.2 Vocabulary and Language

A vocabulary (or alphabet or character set or word list) is a finite non empty set of

indivisible symbols (letters, digits, punctuation marks, operators, etc.).

A language over a vocabulary V is any subset L of V* which has a finite description.
There are two approaches for making this mathematically precise. One is to use a
grammar–a form of inductive definition of L. The other is to describe a method for

recognizing whether an element x∈L is in the language L and Automata theory is
based on this approach.(Crespi et al, 2019, page 8)

Self-Assessment Questions

1. Define the following:

a. Alphabet

b. Letters

c. Word over an alphabet

2. Is formal language finite or infinite? Discuss with examples
3. Write examples of formal languages you know.
4. Define the following:

a. Vocabulary

b. Language over vocabulary. What are the two approaches to make it
mathematically precise?

3.3 Language-Specification Formalisms

Formal language theory rarely concerns itself with particular languages (except as

examples), but is mainly concerned with the study of various types of formalisms to

describe languages. For instance, a language can be given as

 those strings generated by some formal grammar (see Chomsky hierarchy);

 those strings described or matched by a particular regular expression;

 those strings accepted by some automaton, such as a Turing machine or finite

state automaton;

 those strings for which some decision procedure (an algorithm that asks a

sequence of related YES/NO questions) produces the answer YES.

Typical questions asked about such formalisms include:

 What is their expressive power? (Can formalism X describe every language that

formalism Y can describe? Can it describe other languages?)

 What is the irrecognizability? (How difficult is it to decide whether a given

word belongs to a language described by formalism X?)

 What is their comparability? (How difficult is it to decide whether two

languages, one described in formalism X and one in formalism Y, or in X again,

are actually the same language?).

Surprisingly often, the answer to these decision problems is "it cannot be done at all",

or" it is extremely expensive" (with a precise characterization of how expensive

exactly).Therefore, formal language theory is a major application area of

computability theory and complexity theory.

Self-Assessment Questions

1. Give examples of formalisms used to describe a language

2. What are some of the typical questions asked about such formalisms

3.4 Operations on Languages

Certain operations on languages are common. This includes the standard set

operations, such as union, intersection, and complementation. Another class of

operation is the element-wise application of string operations.

Example2:

Suppose L1 and L2 are languages over some common alphabet.

 The concatenation L1L2 consists of all strings of the form vw where v is a string

from L1 and w is a string from L2.

R

R R

 Example: for a pair of languages L1, L2

 If L1 = {0, 1, 01} and L2 = {1, 00}, then the concatenation of a pair of

languages L1, L2 is: L1L2 = {01, 11, 011, 000, 100, 0100}

 The intersection L1∩L2 of L1 and L2 consists of all strings which are contained

in both languages.

 Example: for a pair of languages L1, L2

 If L1 = {0, 1, 01} and L2 = {1, 00, 01}, then the intersection of L1 and L2

 given as L1∩L2 = {1,01}

 The complement ¬L of a language with respect to a given alphabet consists of

all strings over the alphabet that are not in the language.

 Example: for a language L = {a,b}
2

 ¬L = ¬ ({a,b}
2
) = {ε, {a,b}, {a,b}

3
,.......}

Such operations are used to investigate closure properties of classes of languages. A class of

languages is closed under a particular operation when the operation, applied to languages in

the class, always produces a language in the same class again. For instance, the context-free

languages are known to be closed under union, concatenation, and intersection with regular

languages, but not closed under intersection or complementation.

3.5 Other Operations on Languages

Some other operations frequently used in the study of formal languages are the

following:

 The Kleene star: the language consisting of all words that are concatenations of

0 or more words in the original language;

Example: for Language L = {ab, ba}

 The kleene star of L denoted as L* = {ε,ab,ba,abab,abba,baab,baba......}

 Reversal: This is reversing the order of a language.

O Let e be the empty word, then eR= e, and

o for each non-empty word w = x1…xn over some alphabet, let w =

xn…x1,

o then for a formal language L,L= {w|w∈ L}.

 Example 1: for Language L = {ab}

 The reversal of L denoted as L
R
={ba}

Example 2: for Language L={0,11,01,011}, then LR={0,11,10,110}

 String homomorphism: A homomorphism is a mapping

+

u=pxqandv=pyq.(Heretherulex→yisusedtoreplacexbyyinuto

 h with domain Σ * for some alphabet Σ which preserves
 concatenation: h(v.w)=h(v).h(w)

o Simply, in homomorphism we replace each
letter in a language with another letter in
some other language.

o Example: string SHIVA can be converted to
corresponding ASCII language by replacing
each letter with corresponding ASCII value
as 8372728665.
(Crespi et al, 2019, pages 9-15)

Self-Assessment Questions

1. State with examples some operations performed on languages.

2. What is the importance of such operations to languages.

3.6 Derivations and Language of a Grammar

Let G = (N,T,P,S) be any phrase structure grammar and let u, v∈(N∪T)*. We

write u ⇒ v and say v is derived in one step from u by the rule x→y, providing

that produce v. Note that p, q∈(N∪T)*.)

If u1⇒u2⇒u3......⇒ un we say un is derived from u1in G and write u1⇒
+

un. Also

if u1 =un or u1⇒
+

un we write u1⇒*
un

L(G) the language of G is defined by:

L(G)={t∈T*:
Z⇒*t

f
or some Z∈S} = {t∈T*:t∈S or Z⇒+

t for some Z∈S}.

So, the elements of L(G) are those elements of T* which are elements of S or which

are derivable from elements of S.

4.0 CONCLUSION

In this unit you have been introduced to the concept of formal languages. Languages

are very important in the field of automata theory since automata recognize languages,

which is very important in computer programming. In the next unit we will be

introducing you to automata.

5.0 SUMMARY

In this unit, you learnt that:

a formal language is a set of words, i.e. finite strings of letters, or symbols and

the inventory from which these letters are taken is called the alphabet over

which the language is defined.

a formal language is often defined by means of a formal grammar.

a vocabulary (or alphabet or character set or word list) is a finite non empty set

of indivisible symbols

common operations on languages are the standard set operations, such as union,

intersection, and complementation.

another class of operation that can be performed on languages is the element-

wise application of string operations

[Video links for further explanation: https://youtu.be/APRPT4KrzMA]

6.0 TUTOR-MARKED ASSIGNMENT

1. Explain formal language as a purely syntactical notion

2. Is formal language finite or infinite? Discuss

3. Formal language theory is mainly concerned with the study of various types of

formalisms to describe languages. Give examples of such formalisms and state

typical questions asked about such formalisms.

4. Describe with examples common operations performed on languages. What are

the relevance of such operations on languages.

7.0 REFERENCES/FURTHER READING

1. A. G. Hamilton, Logic for Mathematicians, Cambridge University Press, 1978.

2. Seymour Ginsburg, Algebraic and automata theoretic properties of formal

languages, North-Holland, 1975.

3. Michael A. Harrison, Introduction to Formal Language Theory, Addison-

Wesley, 1978.

4. John E. Hopcroft and Jeffrey D. Ullman, Introduction to Automata Theory,

Languages and Computation, Addison-Wesley Publishing, Reading

Massachusetts, 1979.

5. Grzegorz Rozenberg, Arto Salomaa, Handbook of Formal Languages: Volume

I-III, Springer, 1997

6. Patrick Suppes, Introduction to Logic, D. Van Nostrand, 1957,

Source: http://en.wikipedia.org/wiki/Formal_language

7. Goswani D. and Krishna K.V. Formal Languages and Automata Theory, 2010.

Source: http://www.google.com/Flat-Notes.pdf

8. Crespi R.S., Breveglieri L. and Morzenti A. Formal Languages and

Compilation, Third Edition, Springer, 2019. Pages 5-9

http://en.wikipedia.org/wiki/Formal_language
http://www.google.com/Flat-Notes.pdf

Module1: General Concepts

Unit4: Automata Theory

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content

3.1 Automata Theory

3.2 Automata

3.2.1 Informal Description of Automaton

3.2.2 Formal Definitions

3.2.2.1 Automaton

3.2.2.2 Input Word

3.2.2.3 Run

3.2.2.4 Accepting Word

3.2.2.5 Recognized Language

3.2.2.6 Recognizable languages

3.2.3 Variations in Definition of Automata

3.2.3.1 Input

3.2.3.2 States

3.2.3.3 Transition Function

3.2.3.4 Acceptance Condition

3.3 Classes of automata

3.3.1 Discrete, Continuous, and Hybrid Automata

3.4 Applications of Automata Theory

4.0

 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

After learning about formal grammars and languages as you have done in the

previous units, it is now time to introduce you to the concept of automata theory.

Now let us go through your study objectives for this unit.

2.0 OBJECTIVES 40

38

CIT342 Formal Languages and Automata Theory

At the end of this unit, you should be able to:

 define an automaton

explain automata theory

state and describe types/classes of automata

describe the operation of an automaton

3.0 MAIN CONTENT

3.1 Automata Theory

In theoretical computer science, automata theory is the study of abstract machines

(or more appropriately, abstract 'mathematical' machines or systems) and the

computational problems that can be solved using these machines. These abstract

machines are called automata.

Figure1: An Example of Automata

Figure1 above illustrates a finite state machine, which is one well-known variety of

automata. This automaton consists of states (represented in the figure by circles), and

transitions (represented by arrows). As the automaton sees a symbol of input, it makes

a transition (or jump) to another state, according to its transition function (which takes

the current state and the recent symbol as its inputs).

Automata theory is also closely related to formal language theory, as the automata are

often classified by the class of formal languages they are able to recognize. An

automaton can be a finite representation of a formal language that may be an infinite

set.

In other words, automata theory is a subject matter which studies properties of various

types of automata. For example, following questions are studied about a given type of

automata.

 Which class of formal languages is recognizable by some type of automata?

(Recognizable languages)

 41

CIT 342 Formal Languages and Automata Theory

CIT 342 Formal Languages and Automata Theory

 Is certain automata closed under union, intersection, or complementation of

formal languages? (Closure properties)

 How much is a type of automata expressive in terms of recognizing class of

formal languages? And, their relative expressive power? (Language Hierarchy)

Automata theory also studies if there exist any effective algorithm or not to solve

problems similar to the following list:

 Does an automaton accept any input word? (emptiness checking)

 Is it possible to transform a given non-deterministic automaton into

deterministic automaton without changing the recognizing language?

(Determinization)

 For a given formal language, what is the smallest automaton that recognizes it?

(Minimization).

Automata play a major role in compiler design and parsing.

Self-Assessment Questions

1. Explain the concept of Automata theory.

2. What is the relationship between automata theory and formal language theory.

3.2 Automata

In the following sections you will be presented an introductory definition of one type

of automata, which attempts to help one grasp the essential concepts involved in

automata theory.

3.2.1 Informal Description of Automaton

An automaton is supposed to run on some given sequence or string of inputs in

discrete timesteps. At each timestep, an automaton gets one input that is picked up

from a set of symbols or letters, which is called an alphabet. At any time, the symbols

so far fed to the automaton as input form a finite sequence of symbols, which is called

a word. An automaton contains a finite set of states. At each instance in time of some

run, automaton is in one of its states. At each timestep when the automaton reads a

symbol, it jumps or transits to next state depending on its current state and on the

symbol currently read. This function in terms of the current state and input symbol is

called transition function. The automaton reads the input word one symbol after

another in the sequence and transits from state to state according to the transition

function, until the word is read completely. Once the input word has been read, the

automaton is said to have been stopped and the state at which automaton has stopped

is called final state. Depending on the final state, it is said that the automaton either

accepts or rejects an input word. There is a subset of states of the automaton, which is

CIT 342 Formal Languages and Automata Theory

defined as the set of accepting states. If the final state is an accepting state, then the

automaton accepts the word. Otherwise, the word is rejected.

 42

CIT 342 Formal Languages and Automata Theory

The set of all the words accepted by an automaton is called the language recognized by

the automaton.

3.2.2 Formal Definitions

3.2.2.1 Automaton

An automaton is represented formally by the 5-tuple ⟨Q, Σ, δ, q0, F⟩, where:

 Q is a finite set of states.

 Σ is a finite set of symbols, called the alphabet of the automaton.

 δ is the transition function, that is, δ: Q ×Σ→ Q.
 q0 is the start state, that is, the state which the automaton is in when no

input has been processed yet, where q0∈Q.

 F is a set of states of Q (i.e. F⊆Q) called accept states.

3.2.2.2 Input Word
An automaton reads a finite string of symbols a1, a2,...., an, where ai∈Σ, which

is called a input word. Set of all words is denoted by Σ*.

3.2.2.3 Run
A run of the automaton on an input word w=a1,a2,....,an∈Σ*, is a sequence of

states q0,q1,q2,....,qn, where qi∈Q such that q0 is a start state and qi= δ(qi-1,ai)

for 0 < i ≤n. In words, at first the automaton is at the start state q0 and then

automaton reads symbols of the input word in sequence. When automaton reads
symbol ai then it jumps to state qi= δ(qi-1,ai).qn said to be the final state of the

run.

3.2.2.4 Accepting Word

A word w∈Σ* is accepted by the automaton if qn∈F.

3.2.2.5 Recognized Language

An automaton can recognize a formal language. The recognized language

L⊂Σ* by an automaton is the set of all the words that are accepted by the

automaton.

3.2.2.6 Recognizable languages

The recognizable languages is the set of languages that are recognized by some

automaton. For above definition of automata, the recognizable languages are

regular languages. For different definitions of automata, the recognizable

languages are different.

CIT 342 Formal Languages and Automata Theory

3.2.3 Variations in Definition of Automata

Automata are defined to study useful machines under mathematical formalism. So, the

definition of an automaton is open to variations according to the "real world machine",

which we want to model using the automaton. People have studied many variations of

automata. 43

CIT 342 Formal Languages and Automata Theory

Above, the most standard variant is described, which is called deterministic finite

automaton. The following are some popular variations in the definition of different

components of automata.

3.2.3.1 Input

 Finite input: An automaton that accepts only finite sequence of words. The

above introductory definition only accepts finite words.

 Infinite input: An automaton that accepts infinite words (ω-words). Such

automata are called ω-automata.

 Tree word input: The input may be a tree of symbols instead of sequence of

symbols. In this case after reading each symbol, the automaton reads all the

successor symbols in the input tree. It is said that the automaton makes one

copy of itself for each successor and each such copy starts running on one of

the successor symbol from the state according to the transition relation of the

automaton. Such an automaton is called tree automaton.

3.2.3.2 States

 Finite states: An automaton that contains only a finite number of states. The

above introductory definition describes automata with finite numbers of states.

 Infinite states: An automaton that may not have a finite number of states, or

even a countable number of states. For example, the quantum finite automaton

or topological automaton has uncountable infinity of states.

 Stack memory: An automaton may also contain some extra memory in the form

of a stack in which symbols can be pushed and popped. This kind of automaton

is called a push down automaton

3.2.3.3 Transition Function

Deterministic: For a given current state and an input symbol, if an automaton can

only jump to one and only one state then it is a deterministic automaton.

 Non deterministic: An automaton that, after reading an input symbol, may jump

into any of a number of states, as licensed by its transition relation. Notice that

the term transition function is replaced by transition relation: The automaton

non-deterministically decides to jump into one of the allowed choices. Such

automaton are called non deterministic automaton.

 Alternation: This idea is quite similar to tree automaton, but orthogonal. The

automaton may run its multiple copies on the same next read symbol. Such

automata are called alternating automaton. Acceptance condition must satisfy

CIT 342 Formal Languages and Automata Theory

all runs of such copies to accept the input.

3.2.3.4 Acceptance Condition

Acceptance of finite words: Same as described in the informal definition

above.

Acceptance of infinite words: an omega automaton cannot have final

states, as

Infinite words never terminate. Rather, acceptance of the word is decided by

looking at the infinite sequence of visited states during the run. 44

CIT 342 Formal Languages and Automata Theory

 Probabilistic acceptance: An automaton need not strictly accept or reject an

input. It may accept the input with some probability between zero and one. For

example, quantum finite automaton, geometric automaton and metric

automaton has probabilistic acceptance.

Different combinations of the above variations produce many varieties of automata.

Self-Assessment Questions

1. Give the formal definition of an automaton.

2. Define the following terms of an automaton:

i. Input word

ii. Run

iii. Accepting word

iv. Recognized Language

v. Recognizable languages

3. Define the following variations under each component of an automata

A. INPUT

i. Finite input

ii. Infinite input

iii. Tree word input

B. STATES

i. Finite states

ii. Infinite states

iii. Stack memory

C. TRANSITION FUNCTION

i. Deterministic

ii. Non Deterministic

iii. Alternation

D. ACCEPTANCE CONDITION

i. Acceptance of finite words

ii. Acceptance of infinite words

iii. Probabilistic acceptance.

CIT 342 Formal Languages and Automata Theory

[Further reading: ‗Formal Languages and Compilation‘ (2019) by Crespi R.S. & Co,

pages 115-121]

3.3 Classes of automata

In the following table is an incomplete list of some types of automata.

 45

CIT 342 Formal Languages and Automata Theory

Table1: Types of Automata

Automata Recognizable language

Deterministic finite automata (DFA) regular languages

Nondeterministic finiteautomata (NFA) regular languages

Nondeterministic finite automata with ε transitions

(FND-εor ε-NFA)

regular languages

Pushdown automata (PDA) context-free languages

Linear bounded automata (LBA) context-sensitive language

Turingmachines

Recursively enumerable

languages

Timed automata

Deterministic Büchi automata omega limit languages

NondeterministicBüchi automata omega regular languages

Nondeterministic/Deterministic Rabin automata omega regular languages

Nondeterministic/Deterministic Streett automata omega regular languages

Nondeterministic/Deterministic parityautomata omega regular languages

Nondeterministic/DeterministicMuller automata omega regular languages

3.3.1 Discrete, Continuous, and Hybrid Automata

Normally automata theory describes the states of abstract machines but there are

analog automata or continuous automata or hybrid discrete-continuous automata,

using analog data, continuous time, or both. An automaton that computes a Boolean

(yes-no) function is called an acceptor. Acceptors may be used as the membership

criterion of a language. An automaton that produces more general output (typically a

string) is called a transducer.

CIT 342 Formal Languages and Automata Theory

Self-Assessment Questions

1. In a tabular form, list the types of automata and their respective recognizable

languages.

2. Differentiate between discrete, continuous and hybrid automata

3. Differentiate between acceptor and transducer.

3.4 Applications of Automata Theory

Each model in automata theory play varied roles in several applied areas. Finite

automata are used in text processing, compilers, and hardware design. Context-free

grammar (CFG) is used in programming languages and artificial intelligence.

Originally, CFG were used in the study of the human languages. Cellular automata are

used in the field of biology, the most common example being John Conway's Game of

Life. Some other examples which could be explained using automata theory in

biology include mollusk and pinecones growth and pigmentation patterns. Going

further, Stephen Wolfram claims that the entire universe could be explained by

machines with a finite set of states and rules with a single initial condition. Other

areas of interest which he has related to automata theory include: fluid flow,

snowflake and crystal formation, chaos theory, cosmology, and financial analysis.

Self-Assessment II

1. List out the various application areas of automata theory.

A clue to answer: https://en.m.wkipedia.org/wiki/Automata_theory]

4.0 CONCLUSION

In this unit you have been taken through the concept of automata theory. In the next

unit you will be learning more specifically about each type of automata, their

operations and the class of language they recognise.

5.0 SUMMARY

In this unit, you learnt that:

an automaton is a simple model of a computer.

there is no formal definition for "automaton"--instead, there are various kinds

of automata, each with its own formal definition.

generally, an automaton

O has some form of input,
O has some form of output,
 O has internal states,
O may or may not have some form of storage,
 O is hard-wired rather than programmable.

CIT 342 Formal Languages and Automata Theory

an automaton can recognize a formal language

the recognizable languages is the set of languages that are recognized by some

automaton.

[Video links for further explanation: https://youtu.be/EtYsnFGIUkA

6.0 TUTOR-MARKED ASSIGNMENT

1.What do you understand by automata theory?

2. What are the roles of automata theory to the study of automata?

3. Describe the operation of an automaton to either accept or reject a word

4. State any four classes of automata and their respective recognizable languages

5. In the context of automata theory, differentiate between the following terms:

Recognized language and Recognizable languages

Finite states and Infinite states

Finite input and Infinite input

Deterministic and Nondeterministic transition function

Acceptor and transducer

7.0 REFERENCES/FURTHER READING

 Alfred V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D. Ullmann (2007)

Compilers Principles, Techniques, & Tools Second Edition

 Crespi R.S., Breveglieri L. and Morzenti A.(2019) Formal Languages and

Compilation, Third Edition, Sprinwger, 2019.

 Daniel I.A. Cohen, () Introduction to Computer Theory, John Wiley Publisher

 GeeksforGeeks (2020). Closure Properties of Regular Languages.

 Goswami D., Krishna K. V. (2010). Formal Languages and Automata Theory.

 Hopcroft H.E. and Ullman J. D. ―Introduction to Automata Theory Languages and

Computation‖. Pearson Education

 John C Martin Introduction to languages and the Theory of Computation, John C

Martin, TMH.

 Kamala K. & Rama R () Introduction to Formal Languages , Automata Theory and

Computation –

 Kavi M. () Theory of Computation : A Problem – Solving Approach-, Wiley India

Pvt. Ltd.

 Lewis H.P. & Papadimition C.H. () Elements of Theory of Computation, Pearson

/PHI Publisher

 Linz P. (2012) An Introduction to formal languages and automata, Jones and Barlet

Learning Publishing

 Michael Sipser (2006). Introduction to the Theory of Computation. Thomson

https://youtu.be/EtYsnFGIUkA

CIT 342 Formal Languages and Automata Theory

Course Technology, 2nd edition Thomson Publishing

 Mishra K. L.P. and Chandrashekaran N. (2008) Theory of Computer Science –

Automata languages and computation -, 3rd edition, Prentice-Hall, India

 Moorthy D. S. R & Acharyulu G.V.S. (2015) Formal Languages and Automata

Theory

 Nielson F, Nielson HR & Hankin C. (2010) Principles of program analysis. Springer,

Berlin

 Stefano C. R., Luca B. &Angelo M. (2019) Formal Languages and Compilation. 3
rd

Edition, Springer Nature Switzerland AG 2019

 Torben A. M. (2010). Basics of Compiler Design (3rd Edition). Lulu Publishing.

 See relevant video on - https://www.youtube.com/watch?v=J-fcaXYkU9o m2u4

 See relevant video on - https://www.youtube.com/watch?v=KSczX111n3U m2u4

 https://www.youtube.com/watch?v=wQjppolFdas m2 u4

 https://www.youtube.com/watch?v=__vX2sjlpXU) m1 u2

 https://youtu.be/APRPT4KrzMA] m1 u3

 https://en.m.wkipedia.org/wiki/Automata_theory m1 u4

 https://youtu.be/EtYsnFGIUkA m1 u4

https://www.youtube.com/watch?v=J-fcaXYkU9o
https://www.youtube.com/watch?v=KSczX111n3U
https://www.youtube.com/watch?v=wQjppolFdas
https://www.youtube.com/watch?v=__vX2sjlpXU
https://youtu.be/APRPT4KrzMA
https://en.m.wkipedia.org/wiki/Automata_theory
https://youtu.be/EtYsnFGIUkA

CIT 342 Formal Languages and Automata Theory

Module 2: Regular Languages

Unit 1: Finite State Automata

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content

3.1 Finite State Automata

3.2 Deterministic Finite Acceptors/Automata (DFA)

3.2.1 Algorithm for the Operation of a DFA

3.2.2 Implementing a DFA

3.2.2.1 Using a GO TO Statement

3.2.3 Formal Definition of a DFA

3.3 Acceptor for Ada identifiers

3.3.1 Abbreviated Acceptor for Ada Identifiers

3.4 Nondeterministic Finite Automata/Acceptors (NFA)

3.4.1 Implementing an NFA

3.4.1.1 Recursive Implementation of NFAs

3.4.1.2 State-Set Implementation of NFAs

3.4.1.3 Formal Definition of NFAs

3.5 Equivalence of FAs

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

You have learnt the general concepts of automata theory in the previous module. In this

introductory unit of this module, you will be learning about the basis of all automata,

which is the finite state automaton (FSA).

FSA is characterized by not having a temporary storage compare to pushdown automata or

Turing Machines to be considered in the next two Modules. The FSAs have a little capacity

to remember its computation since its input cannot be rewritten into memory. Thus, the term

―finite ― means an explicit amount of information can be retained in the Control Unit by

placing the Unit into a specific state. But since the number of such states is finite, a finite

automaton can only deal with situations in which the information to be stored at any time is

strictly bounded

 The finite-state automata (FSA) or finite state machine (FSM) enjoy a special place in

computer science. The FSA has proven to be a very useful model for many practical tasks

and deserves to be among the tools of every practicing computer scientist. Many simple

CIT 342 Formal Languages and Automata Theory

tasks, such as interpreting the commands typed into a keyboard or running a calculator, can

be modelled by finite-state automata.

In this unit we examine the language recognition capability of FSA. We show that FSA

recognize exactly the regular languages, languages defined by regular expressions and

generated by regular grammars. We also provide an algorithm to find a FSA that is

equivalent to a given FSA but has the fewest states. The two different types of FSA,

deterministic and nondeterministic, are also discussed in this unit.

Now let us go through your study objectives for this unit.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

 describe FSA

 formally define deterministic and nondeterministic Finite State Automata

 give an algorithm for the operations of a DFA

 describe ways of implementing DFAs and NFAs

3.0 MAIN CONTENT

3.1 Finite State Automata

Like grammars, finite state automata define languages. The finite state automata is often

abbreviated FSA or FA (for finite automata); however, some texts use the term finite state

machine, or FSM to correlate with Turing machines that will be discussed in module 4 of

this course.

An FSA is a virtual device that manipulates a candidate string, one character at a time, and

determines whether that string is in the language implemented by the machine. The

simplest state machine reads the string exactly once, and has no memory, only registers. It

is therefore a finite state automaton.

An FSA is defined by a set of states and a transition function that maps state/input pairs into

states. In this state, reading this character, move to that state and advance to the next

character.

The transition function δ specifies the moves: the meaning of δ (q, a) = r is that the machine

M, in the current state q, reads an input symbol a and moves to the next state r . If the value

δ (q, a) is undefined, automaton M stops, and we assume it enters the error state (more on

that later). As an alternative notation, we indicate the move from state q to state r reading

character a, as , i.e., by the corresponding arc of the state-transition graph.

CIT 342 Formal Languages and Automata Theory

Automaton M processes a non-empty string x by a series of moves. Take x = a b: on reading

the first character, the first step δ (q0, a) = q1 leads to state q1, and then to state q2 by the

second step δ (q1, b) = q2. In short, instead of writing

δ _δ (q0, a), b_ = q2,we combine the two steps into one δ (q0, a b) = q2, to say that on

reading string a b the machine M moves to state q2. Notice that now the second argument of

function δ is a string. A special case is the empty string, for which we assume no change of

state:

∀ q ∈ Q δ (q, ε) = q

Some states are designated "final" states, and strings that leave the FSA in one of these final

states are, by definition, in the language or accepted in the language..

One state is designated the start state. When the start state is also a final state, ε is

necessarily in the language.

Illustration 1: Watch this 1 minute introduction showing the link between computer system

and FSA. https://www.youtube.com/watch?v=y28CcwJ2CZY

Example 1:

The following 4-state machine defines binary strings with an even number of 1's and

0's. States are a, b, c, d, and input characters are 0 1. State a is both the start state and the

final state

 0 1

 a → b c

 b → a d

 c → d a

 d → c b

3.2 Deterministic Finite Acceptors/Automata (DFA)

DFAs are:

 Deterministic i.e. there is no element of choice

 Finite i.e. only a finite number of states and arcs

 Acceptors i.e. produce only a yes/no answer

A DFA is drawn as a graph, with each state represented by a circle.

One designated state is the start state.

https://www.youtube.com/watch?v=y28CcwJ2CZY

CIT 342 Formal Languages and Automata Theory

Some states (possibly including the start state) can be designated as final states.

Arcs between states represent state transitions. Each such arc is labelled with the symbol

that triggers the transition.

Figure 1: Example of DFA

3.2.1 Algorithm for the Operation of a DFA

 Start with the "current state" set to the start state and a "read head" at the beginning

of the input string;

 while there are still characters in the string:

o Read the next character and advance the read head;

o From the current state, follow the arc that is labelled with the character just

read; the state that the arc points to becomes the next current state;

 When all characters have been read, accept the string if the current state is a final

state, otherwise reject the string.

Watch this Video for illustration (7-minutes)

https://www.youtube.com/watch?v=M84oEgYgw6U

Example 2

https://www.youtube.com/watch?v=M84oEgYgw6U

CIT 342 Formal Languages and Automata Theory

Consider the following input string: 1 0 0 1 1 1 0 0. Using the DFA in Figure 1 above, a

sample trace will be as follows:

q0 1 q1 0 q3 0 q1 1 q0 1 q1 1 q0 0 q2 0 q0

Since q0 is a final state, the string is accepted.

Self-Assessment I

1. From the above video, state two properties of FSA.
2. What is a transition in an automaton?

3.2.2 Implementing a DFA

3.2.2.1 Using a GO TO Statement

If you do not object to the go to statement, below is an easy way to implement a DFA:

q0 : read char;

 if eof then accept string;

 if char = 0 then go to q2;

 if char = 1 then go to q1;

q1 : read char;

 if eof then reject string;

 if char = 0 then go to q3;

 if char = 1 then go to q0;

q2 : read char;

 if eof then reject string;

 if char = 0 then go to q0;

 if char = 1 then go to q3;

q3 : read char;

 if eof then reject string;

 if char = 0 then go to q1;

 if char = 1 then go to q2;

CIT 342 Formal Languages and Automata Theory

3.2.2.2 Using a CASE Statement

If you are not allowed to use a go to statement, you can as well use a combination of a loop

and a case statement:

state := q0;

loop

 case state of

 q0 : read char;

 if eof then accept string;

 if char = 0 then state := q2;

 if char = 1 then state := q1;

 q1 : read char;

 if eof then reject string;

 if char = 0 then state := q3;

 if char = 1 then state := q0;

 q2 : read char;

 if eof then reject string;

 if char = 0 then state := q0;

 if char = 1 then state := q3;

 q3 : read char;

 if eof then reject string;

 if char = 0 then state := q1;

 if char = 1 then state := q2;

 end case;

end loop;

3.2.3 Formal Definition of a DFA

A deterministic finite acceptor/automaton or DFA is a quintuple:

M = (Q, , , q0, F)

where

 Q is a finite set of states,

 is a finite set of symbols, the input alphabet,

 : Q Q is a transition function,

 q0 Q is the initial state,

 F Q is a set of final states.

CIT 342 Formal Languages and Automata Theory

Note: The fact that is a function implies that every vertex has an outgoing arc for each

member of .

We can also define an extended transition function as

: Q Q.

If a DFA M = (Q, , , q0, F) is used as a membership criterion, then the set of strings

accepted by M is a language. That is,

L(M) = {w : (q0, w) F}.

Languages that can be defined by DFAs are called regular languages. Watch this video:

https://www.youtube.com/watch?v=rtAy-CDYJeo

3.3 Acceptor for Ada identifiers

In Ada, an identifier consists of a letter followed by any number of letters, digits, and

underlines. However, the identifier may not end in an underline or have two underlines in a

row.

Here is an automaton to recognize Ada identifiers.

M = (Q, , , q0, F), where

 Q is {q0, q1, q2, q3},

 is {letter, digit, underline},

 is given by

 (q0, letter) = q1 (q1, letter) = q1

 (q0, digit) = q3 (q1, digit) = q1

 (q0, underline) = q3 (q1, underline) = q2

Figure 2:

https://www.youtube.com/watch?v=rtAy-CDYJeo

CIT 342 Formal Languages and Automata Theory

 (q2, letter) = q1 (q3, letter) = q3

 (q2, digit) = q1 (q3, digit) = q3

 (q2, underline) = q3 (q3, underline) = q3

 q0 Q is the initial state,

 {q1} Q is a set of final states.

3.3.1 Abbreviated Acceptor for Ada Identifiers

The following is an abbreviated automaton (my terminology) to recognize Ada identifiers.

You might use something like this in a course on compiler construction.

The difference is that, in this automaton, does not appear to be a function. It looks like a

partial function, that is, it is not defined for all values of Q .

We can complete the definition of by assuming the existence of an "invisible" state and

some "invisible" arcs. Specifically,

 There is exactly one implicit error state;

 If there is no path shown from a state for a given symbol in , there is an implicit

path for that symbol to the error state;

 The error state is a trap state: once you get into it, all arcs (one for each symbol in)

lead back to it; and

 The error state is not a final state.

The automaton represented in Figure 3 above is really exactly the same as the automaton in

Figure 2; we just have not bothered to draw one state and a whole bunch of arcs that we

know must be there.

I do not think you will find abbreviated automata in the textbook. They are not usually

allowed in a formal course. However, if you ever use an automaton to design a lexical

scanner, putting in an explicit error state just clutters up the diagram.

3.4 Nondeterministic Finite Automata/Acceptors (NFA)

An FSA is nondeterministic if it is confronted with several choices when processing each

character. Thus the transition function of a nondeterministic FSA maps state/input pairs

into sets of states. The machine somehow traverses all possible paths in parallel. In

Figure 3:

CIT 342 Formal Languages and Automata Theory

addition, E transitions are permitted, allowing the machine to change states without reading

an input character. A string is accepted by an NFA if one of its parallel transition sequences

leads to a final state.

Watch this and identify what makes the automaton an NFA? (3 minutes)

https://www.youtube.com/watch?v=IcyDv1bWR1k

This seems to add a great deal of power, but in fact it does not. Any NFA can be emulated

by an FSA with more states. Start with an NFA containing n states x1 x2 x3 etc, and

construct a deterministic FSA with 2
n
 states as follows. Each state in the new FSA

corresponds to a unique combination of states in the original NFA. The initial state y0

corresponds to the union of the initial state x0 and all other xj states that are accessible from

x0 via E transitions. The state yi in the FSA is a final state if any of the corresponding xj

states, represented by yi, is a final state in the original NFA. To determine the transition

function f(yi, c), apply c to each corresponding xj state, and bring in any new states that are

accessible via E transitions. The combination of all these states determines a particular

yk. Thus state yi, reading character c, moves to state yk.

By induction on string length, any string that leaves the constructed FSA in state yi also

leaves the original FSA in any of the corresponding states xj. One machine says yes to the

input word if and only if the other one does. Therefore nondeterministic FSAs are no more

powerful than their deterministic counterparts.

A finite-state automaton can be nondeterministic in either or both of two ways:

Figure 4: Nondeterministic Finite Acceptor

A state may have two or more arcs emanating from it labelled with the same symbol. When

the symbol occurs in the input, either arc may be followed.

A state may have one or more arcs emanating from it labelled with (the empty string) .

These arcs may optionally be followed without looking at the input or consuming an input

symbol.

Due to nondeterminism, the same string may cause an NFA to end up in one of several

different states, some of which may be final while others are not. The string is accepted if

any possible ending state is a final state.

https://www.youtube.com/watch?v=IcyDv1bWR1k

CIT 342 Formal Languages and Automata Theory

Figure 5: Examples of NFAs

Watch these video for more explanation:1)
https://www.youtube.com/watch?v=2aFXJhL8BYU
2) https://www.youtube.com/watch?v=rKCAPVaU0Qk

3.4.1 Implementing an NFA

If you think of an automaton as a computer, how does it handle nondeterminism?

There are two ways that this could, in theory, be done:

1. When the automaton is faced with a choice, it always (magically) chooses correctly.

We sometimes think of the automaton as consulting an oracle which advises it as to

the correct choice.

2. When the automaton is faced with a choice, it spawns a new process, so that all

possible paths are followed simultaneously.

The first of these alternatives, using an oracle, is sometimes attractive mathematically. But

if we want to write a program to implement an NFA, that is not feasible.

There are three ways, two feasible and one not yet feasible, to simulate the second

alternative:

1. Use a recursive backtracking algorithm. Whenever the automaton has to make a

choice, cycle through all the alternatives and make a recursive call to determine

whether any of the alternatives leads to a solution (final state).

2. Maintain a state set or a state vector, keeping track of all the states that the NFA

could be in at any given point in the string.

3. Use a quantum computer. Quantum computers explore literally all possibilities

simultaneously. They are theoretically possible, but are at the cutting edge of physics.

It may (or may not) be feasible to build such a device.

View this to have an idea of how modern day quantum computing manages

many transitions with same input (3 minutes)

https://www.youtube.com/watch?v=2aFXJhL8BYU

CIT 342 Formal Languages and Automata Theory

https://www.youtube.com/watch?v=WVv5OAR4Nik

3.4.1.1 Recursive Implementation of NFAs

An NFA can be implemented by means of a recursive search from the start state for a path

(directed by the symbols of the input string) to a final state.

Here is a rough outline of such an implementation:

function NFA (state A) returns Boolean:

 local state B, symbol x;

 for each transition from state A to some state B do

 if NFA (B) then return True;

 if there is a next symbol then

 { read next symbol (x);

 for each x transition from state A to

 some state B do

 if NFA (B) then

 return True;

 return False;

 }

 else

 { if A is a final state then return True;

 else return False;

 }

One problem with this implementation is that it could get into an infinite loop if there is a

cycle of transitions. This could be prevented by maintaining a simple counter.

3.4.1.2 State-Set Implementation of NFAs

Another way to implement an NFA is to keep either a state set or a bit vector of all the

states that the NFA could be in at any given time. Implementation is easier if you use a bit-

vector approach (v[i] is True if and only if state i is a possible state), since most languages

provide vectors, but not sets, as a built-in datatype. However, it is a bit easier to describe the

algorithm if you use a state-set approach, so that is what we will do. The logic is the same in

either case.

function NFA (state set A) returns Boolean:

 local state set B, state a, state b, state c, symbol x;

 for each a in A do

 for each transition from a

 to some state b do

 add b to B;

CIT 342 Formal Languages and Automata Theory

 while there is a next symbol do

 { read next symbol (x);

 B := ;

 for each a in A do

 { for each transition from a to some state b do

 add b to B;

 for each x transition from a to some state b do

 add b to B;

 }

 for each transition from

 some state b in B to some state c not in B do

 add c to B;

 A := B;

 }

 if any element of A is a final state then

 return True;

 else

 return False;

3.4.1.3 Formal Definition of NFAs

It would be appropriate to give a formal definition of the nondeterministic finite automaton.

A nondeterministic finite acceptor/automaton or NFA is defined by the quintuple

M = (Q, , , q0, F)

where

 Q is a finite set of states,

 is a finite set of symbols, the input alphabet,

 : Q ({ }) 2 is a transition function,

 q0 Q is the initial state,

 F Q is a set of final states.

These are all the same as for a DFA except for the definition of :

 Transitions on are allowed in addition to transitions on elements of , and

 The range of is 2 rather than Q. This means that the values of are not elements of

Q, but rather are sets of elements of Q.

The language defined by NFA M is defined as

L(M) = {w : (q0, w) F }

3.5 Equivalence of FAs

CIT 342 Formal Languages and Automata Theory

Two acceptors are equivalent if they accept the same language.

A DFA is just a special case of an NFA that happens not to have any null transitions or

multiple transitions on the same symbol. So DFAs are not more powerful than NFAs.

For any NFA, we can construct an equivalent DFA (see below). So NFAs are not more

powerful than DFAs. DFAs and NFAs define the same class of languages – the regular

languages.

To translate an NFA into a DFA, the trick is to label each state in the DFA with a set of

states from the NFA. Each state in the DFA summarizes all the states that the NFA might be

in. If the NFA contains |Q| states, the resultant DFA could contain as many as |2 | states.

(Usually far fewer states will be needed.) See this 8-minutes video for more explanation:

https://www.youtube.com/watch?v=quBzmvsxzkw

4.0 CONCLUSION

In this unit you have been taken through a class of automata called finite automata, its

various types and ways of implementing each type.

5.0 SUMMARY

In this unit you learnt that:

 finite state automata define languages

 An FSA is nondeterministic if it is confronted with several choices when processing

each character

 A finite-state automaton can be nondeterministic in either or both of two ways

 Two acceptors are equivalent if they accept the same language

 A DFA is just a special case of an NFA that happens not to have any null transitions

or multiple transitions on the same symbol

 For any NFA, we can construct an equivalent DFA

 In Ada, an identifier consists of a letter followed by any number of letters, digits, and

underlines

6.0 TUTOR-MARKED ASSIGNMENT

1) Give the formal definition of the following:

 FSA

 DFA

 NFA

2) How is a DFA different from an NFA? How are they similar?

3) Is an NFA more powerful than a DFA? Discuss.

4) Construct DFA which accepts strings having odd number of

a's and even number of b's

5) Briefly describe the various ways that an NFA can be implemented.

CIT 342 Formal Languages and Automata Theory

6) Describe an algorithm for the Operation of a DFA

7.0 REFERENCES/FURTHER READING

 John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman (2000). Introduction to

Automata Theory, Languages, and Computation (2nd Edition). Pearson Education.

ISBN 0-201-44124-1.

 Michael Sipser (1997). Introduction to the Theory of Computation. PWS Publishing.

ISBN 0-534-94728-X. Part One: Automata and Languages, chapters 1–2, pp.29–122.

Section 4.1: Decidable Languages, pp.152–159. Section 5.1: Undecidable Problems

from Language Theory, pp.172–183.

 James P. Schmeiser, David T. Barnard (1995). Producing a top-down parse order

with bottom-up parsing. Elsevier North-Holland.

 Linz P. (2012) An Introduction to formal languages and automata, Jones and Barlet

Learning Publishing

 Moorthy D. S. R & Acharyulu G.V.S. (2015) formal languages and automata theory

 Stefano C. R., Luca B. &Angelo M. (2019) Formal Languages and Compilation. 3
rd

Edition, Springer Nature Switzerland AG 2019

 Nielson F, Nielson HR, Hankin C (2010) Principles of program analysis. Springer,

Berlin

 Alfred V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D. Ullmann (2007)

Compilers Principles, Techniques, & Tools Second Edition

 Crespi R.S., Breveglieri L. and Morzenti A.(2019) Formal Languages and

Compilation, Third Edition, Sprinwger, 2019.

 Daniel I.A. Cohen, () Introduction to Computer Theory, John Wiley Publisher

 GeeksforGeeks (2020). Closure Properties of Regular Languages.

 Goswami D., Krishna K. V. (2010). Formal Languages and Automata Theory.

 Hopcroft H.E. and Ullman J. D. ―Introduction to Automata Theory Languages and

Computation‖. Pearson Education

 John C Martin Introduction to languages and the Theory of Computation, John C

Martin, TMH.

 Kamala K. & Rama R () Introduction to Formal Languages , Automata Theory and

Computation –

 Kavi M. () Theory of Computation : A Problem – Solving Approach-, Wiley India

Pvt. Ltd.

 Lewis H.P. & Papadimition C.H. () Elements of Theory of Computation, Pearson

/PHI Publisher

 Linz P. (2012) An Introduction to formal languages and automata, Jones and Barlet

Learning Publishing

 Michael Sipser (2006). Introduction to the Theory of Computation. Thomson

Course Technology, 2nd edition Thomson Publishing

 Mishra K. L.P. and Chandrashekaran N. (2008) Theory of Computer Science –

Automata languages and computation -, 3rd edition, Prentice-Hall, India

 Moorthy D. S. R & Acharyulu G.V.S. (2015) Formal Languages and Automata

Theory

http://en.wikipedia.org/wiki/John_E._Hopcroft
http://en.wikipedia.org/wiki/Rajeev_Motwani
http://en.wikipedia.org/wiki/Jeffrey_D._Ullman
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-201-44124-1
http://en.wikipedia.org/wiki/Michael_Sipser
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-534-94728-X
http://en.wikipedia.org/w/index.php?title=James_P._Schmeiser,_David_T._Barnard&action=edit&redlink=1

CIT 342 Formal Languages and Automata Theory

 Nielson F, Nielson HR & Hankin C. (2010) Principles of program analysis. Springer,

Berlin

 Stefano C. R., Luca B. &Angelo M. (2019) Formal Languages and Compilation. 3
rd

Edition, Springer Nature Switzerland AG 2019

 Torben A. M. (2010). Basics of Compiler Design (3rd Edition). Lulu Publishing.

 https://www.youtube.com/watch?v=M84oEgYgw6U m2 u1

 https://www.youtube.com/watch?v=rtAy-CDYJeo m2u1 m2 u2

 https://www.youtube.com/watch?v=IcyDv1bWR1k m2u1
 https://www.youtube.com/watch?v=2aFXJhL8BYU m2 u1
 https://www.youtube.com/watch?v=rKCAPVaU0Qk m2 u1
 https://www.youtube.com/watch?v=WVv5OAR4Nik m2 u1

 https://www.youtube.com/watch?v=quBzmvsxzkw m2 u1

https://www.youtube.com/watch?v=M84oEgYgw6U
https://www.youtube.com/watch?v=rtAy-CDYJeo
https://www.youtube.com/watch?v=IcyDv1bWR1k
https://www.youtube.com/watch?v=2aFXJhL8BYU
https://www.youtube.com/watch?v=rKCAPVaU0Qk
https://www.youtube.com/watch?v=WVv5OAR4Nik
https://www.youtube.com/watch?v=quBzmvsxzkw

CIT 342 Formal Languages and Automata Theory

Module 2: Regular Languages

Unit 2: Regular Expressions

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content

3.1 Primitive Regular Expressions

3.2 Regular Expressions

3.3 Languages Defined by Regular Expressions

3.4 Building Regular Expressions

3.4.1 Example Regular Expressions

3.5 Regular Expressions and Automata

3.5.1 From Primitive Regular Expressions to NFAs

3.5.2 From Regular Expressions to NFAs

3.5.3 From NFAs to Regular Expressions

3.6 Three Ways of Defining a Language

3.6.1 Definition by Grammar

3.6.2 Definition by NFA

3.6.3 Definition by Regular Expression

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

In the previous unit, you learnt about finite state automata (which is a way of

characterizing regular languages), the different types and the various ways of

implementing them. In this unit we will be discussing regular expressions, which is

another way characterizing regular languages.

Now let us go through your study objectives for this unit.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

 define regular expressions

CIT 342 Formal Languages and Automata Theory

 state the rules that can be applied to primitive regular expressions to create more

regular expressions

 state the precedence of the rules

 describe the three ways of defining a language

 demonstrate how to convert regular expressions to DFAs and NFAs and vice

versa

3.0 MAIN CONTENT

3.1 Primitive Regular Expressions

A regular expression can be used to define a language. A regular expression represents a

"pattern;" strings that match the pattern that are in the language, strings that do not match

the pattern are not in the language.

As usual, the strings are over some alphabet .

The following are primitive regular expressions:

 x, for each x ,

 , the empty string, and

 , indicating no strings at all.

Thus, if | | = n, then there are n+2 primitive regular expressions defined over .

Here are the languages defined by the primitive regular expressions:

 For each x , the primitive regular expression x denotes the language {x}. That is,

the only string in the language is the string "x".

 The primitive regular expression denotes the language { }. The only string in this

language is the empty string.

 The primitive regular expression denotes the language {}. There are no strings in

this language.

3.2 Regular Expressions

Every primitive regular expression is a regular expression.

We can compose additional regular expressions by applying the following rules a finite

number of times:

 If r1 is a regular expression, then so is (r1).

 If r1 is a regular expression, then so is r1*.

 If r1 and r2 are regular expressions, then so is r1r2 (Concatenation)

 If r1 and r2 are regular expressions, then so is r1+r2 or r1/r2 (Union)

Here is what the above notation means:

CIT 342 Formal Languages and Automata Theory

 Parentheses are just used for grouping.

 The postfix star (Kleene closure) indicates zero or more repetitions of the preceding

regular expression. Thus, if x , then the regular expression x* denotes the

language { , x, xx, xxx, ...}.

 Juxtaposition/concatenation of r1 and r2 indicates any string described by r1

immediately followed by any string described by r2. For example, if x, y , then the

regular expression xy describes the language {xy}.

 The plus (+) or | sign, read as "or," denotes the language containing strings described

by either of the component regular expressions i.e. the union of the component

regular expressions. For example, if x, y , then the regular expression x+y or x|y

describes the language {x, y}.

Precedence

1) The unary operator * (kleene closure) has the highest precedence and is left

associative. For example, a+bc* or a|bc* denotes the language {a, b, bc, bcc, bccc,

bcccc, ...}.

2) Concatenation has a second highest precedence and is left associative.

3) Union has lowest precedence and is left associative

4) Parentheses override operator precedence as usual. For example, (0|1)* stands for all

possible binary strings, 0|1* stands for either a 0 or an arbitrarily long string of 1's,

and 01* stands for 0 followed by an arbitrarily long string of 1's.

The symbol ε represents the null string, and can be used like any other alphabetic

character. Thus, (0| ε)(1(0| ε))* stands for all binary strings without adjacent zeros.

Computer languages such as ed, sed, grep, and perl employ regular expressions, but there

are many more features for your convenience. For instance, s+ = ss*, s? = (s| ε), s{7,} =

sssssss+, and so on. Check out `man perlre' for more details.

3.3 Languages Defined by Regular Expressions

There is a simple correspondence between regular expressions and the languages they

denote:

Regular expression L(regular expression)

x, for each x {x}

{ }

{ }

(r1) L(r1)

r1* (L(r1))*

r1 r2 L(r1) L(r2)

r1 + r2 L(r1) L(r2)

CIT 342 Formal Languages and Automata Theory

Watch this 3 minutes video on axioms and sample multiple choice question on a regular
language: https://www.youtube.com/watch?v=efKSarb5oxM

3.4 Building Regular Expressions

Here are some hints on building regular expressions. We will assume = {a, b, c}.

Zero or more.

a* means "zero or more a's." To say "zero or more ab's," that is, { , ab, abab,

ababab, ...}, you need to say (ab)*. Don't say ab*, because that denotes the language

{a, ab, abb, abbb, abbbb, ...}.

One or more.

Since a* means "zero or more a's", you can use aa* (or equivalently, a*a) to mean

"one or more a's." Similarly, to describe "one or more ab's," that is, {ab, abab,

ababab, ...}, you can use ab(ab)*.

Zero or one.

You can describe an optional a with (a+).

Any string at all.

To describe any string at all (with = {a, b, c}), you can use (a+b+c)*.

Any nonempty string.

This can be written as any character from followed by any string at all:

(a+b+c)(a+b+c)*.

Any string not containing....

To describe any string at all that does not contain an a (with = {a, b, c}), you can

use (b+c)*.

Any string containing exactly one...

To describe any string that contains exactly one a, put "any string not containing an

a," on either side of the a, like this: (b+c)*a(b+c)*.

3.4.1 Example Regular Expressions

Give regular expressions for the following languages on = {a, b, c}.

All strings containing exactly one a.

(b+c)*a(b+c)*

All strings containing no more than three a's.

We can describe the string containing zero, one, two, or three a's (and nothing else)

as

(+a)(+a)(+a)

Now we want to allow arbitrary strings not containing a's at the places marked by

X's:

X(+a)X(+a)X(+a)X

https://www.youtube.com/watch?v=efKSarb5oxM

CIT 342 Formal Languages and Automata Theory

so we put in (b+c)* for each X:

(b+c)*(+a)(b+c)*(+a)(b+c)*(+a)(b+c)*

All strings which contain at least one occurrence of each symbol in .

The problem here is that we cannot assume the symbols are in any particular order.

We have no way of saying "in any order", so we have to list the possible orders:

abc+acb+bac+bca+cab+cba

To make it easier to see what's happening, let's put an X in every place we want to

allow an arbitrary string:

XaXbXcX + XaXcXbX + XbXaXcX + XbXcXaX + XcXaXbX + XcXbXaX

Finally, replacing the X's with (a+b+c)* gives the final (unwieldy) answer:

(a+b+c)*a(a+b+c)*b(a+b+c)*c(a+b+c)* +

(a+b+c)*a(a+b+c)*c(a+b+c)*b(a+b+c)* +

(a+b+c)*b(a+b+c)*a(a+b+c)*c(a+b+c)* +

(a+b+c)*b(a+b+c)*c(a+b+c)*a(a+b+c)* +

(a+b+c)*c(a+b+c)*a(a+b+c)*b(a+b+c)* +

(a+b+c)*c(a+b+c)*b(a+b+c)*a(a+b+c)*

All strings which contain no runs of a's of length greater than two.

We can fairly easily build an expression containing no a, one a, or one aa:

(b+c)*(+a+aa)(b+c)*

but if we want to repeat this, we need to be sure to have at least one non-a between

repetitions:

(b+c)*(+a+aa)(b+c)*((b+c)(b+c)*(+a+aa)(b+c)*)*

All strings in which all runs of a's have lengths that are multiples of three.

(aaa+b+c)*

3.5 Regular Expressions and Automata

Languages described by deterministic finite acceptors (DFAs) are called regular languages.

For any nondeterministic finite acceptor (NFA) we can find an equivalent DFA. Thus NFAs

also describe regular languages.

Regular expressions also describe regular languages. We will show that regular expressions

are equivalent to NFAs by doing two things:

CIT 342 Formal Languages and Automata Theory

1. For any given regular expression, we will show how to build an NFA that accepts the

same language. (This is the easy part.)

2. For any given NFA, we will show how to construct a regular expression that

describes the same language. (This is the hard part.)

3.5.1 From Primitive Regular Expressions to NFAs

Every NFA we construct will have a single start state and a single final state. We will build

more complex NFAs out of simpler NFAs, each with a single start state and a single final

state. The simplest NFAs will be those for the primitive regular expressions.

For any x in , the regular expression x denotes the language {x}. This NFA represents

exactly that language.

Note that if this were a NFA, we would have to include arcs for all the other elements

of . This 4 minutes video will definitely show you more examples of regular

grammar: https://www.youtube.com/watch?v=nNMD1wE3TDM

The regular expression denotes the language { }, that is, the language containing only

the empty string.

The regular expression denotes the language ; no strings belong to this language, not

even the empty string.

Since the final state is unreachable, why bother to have it at all? The answer is that it

simplifies the construction if every NFA has exactly one start state and one final state. We

could do without this final state, but we would have more special cases to consider, and it

does not hurt anything to include it.

Figure 1:

Figure 2:

Figure 3:

CIT 342 Formal Languages and Automata Theory

3.5.2 From Regular Expressions to NFAs

We will build more complex NFAs out of simpler NFAs, each with a single start state and a

single final state. Since we have NFAs for primitive regular expressions, we need to

compose them for the operations of grouping, juxtaposition, union, and Kleene star (*).

For grouping (parentheses), we don't really need to do anything. The NFA that represents

the regular expression (r1) is the same as the NFA that represents r1.

For juxtaposition (strings in L(r1) followed by strings in L(r2), we simply chain the NFAs

together, as shown. The initial and final states of the original NFAs (boxed) stop being

initial and final states; we include new initial and final states. (We could make do with

fewer states and fewer transitions here, but we aren't trying for the best construction; we're

just trying to show that a construction is possible.)

The + denotes "or" in a regular expression, so it makes sense that we would use an NFA

with a choice of paths. (This is one of the reasons that it's easier to build an NFA than a

DFA.)

The star denotes zero or more applications of the regular expression, so we need to set up a

loop in the NFA. We can do this with a backward-pointing arc. Since we might want to

traverse the regular expression zero times (thus matching the null string), we also need a

forward-pointing arc to bypass the NFA entirely.

Figure 4:

Figure 5:

Figure 6:

CIT 342 Formal Languages and Automata Theory

3.5.3 From NFAs to Regular Expressions

Creating a regular expression to recognize the same strings as an NFA is trickier than you

might expect, because the NFA may have arbitrary loops and cycles. Here's the basic

approach (details supplied later):

1. If the NFA has more than one final state, convert it to an NFA with only one final

state. Make the original final states nonfinal, and add a transition from each to the

new (single) final state.

2. Consider the NFA to be a generalized transition graph, which is just like an NFA

except that the edges may be labeled with arbitrary regular expressions. Since the

labels on the edges of an NFA may be either or members of , each of these can

be considered to be a regular expression.

3. Remove states one by one from the NFA, relabeling edges as you go, until only the

initial and the final state remain.

4. Read the final regular expression from the two-state automaton that results.

The regular expression derived in the final step accepts the same language as the original

NFA.

Since we can convert an NFA to a regular expression, and we can convert a regular

expression to an NFA, the two are equivalent formalisms--that is, they both describe the

same class of languages, the regular languages.

There are two complicated parts to extracting a regular expression from an NFA: removing

states, and reading the regular expression off the resultant two-state generalized transition

graph.

Here is how to delete a state:

To delete state Q, where Q is neither the initial state nor the final state,

 replace with .

Figure 7: Deleting a State

CIT 342 Formal Languages and Automata Theory

You should convince yourself that this transformation is "correct", in the sense that paths

which leave you in Qi in the original will leave you in Qi in the replacement, and similarly

for Qj.

 What if state Q has connections to more than two other states, say, Qi, Qj, and Qk?

Then you have to consider these states pairwise: Qi with Qj, Qj with Qk, and Qi with

Qk.

 What if some of the arcs in the original state are missing? There are too many cases

to work this out in detail, but you should be able to figure it out for any specific case,

using the above as a model.

You will end up with an NFA that looks like this, where r1, r2, r3, and r4 are (probably very

complex) regular expressions. The resultant NFA in figure 8 below represents the regular

expression r1*r2(r4 + r3r1*r2)*

(you should verify that this is indeed the correct regular expression). All you have to do is

plug in the correct values for r1, r2, r3, and r4.

This video might help you to understand further (11 minutes):

https://www.youtube.com/watch?v=rtAy-CDYJeo

Self Assessment I

1. Write the regular expression for the language over e={0] having even length of the
string

2. Write the regular expression for a language accepting all strings containing any
number of as and bs

Watch this video for the answer

3.6 Three Ways of Defining a Language

The following presents an example solved in three different ways. No new information is

presented.

Problem: Define a language containing all strings over = {a, b, c} where no symbol ever

follows itself; that is, no string contains any of the substrings aa, bb, or cc.

3.6.1 Definition by Grammar

Define the grammar G = (V, T, S, P) where

Figure 8: NFA for r1*r2(r4 + r3r1*r2)*

https://www.youtube.com/watch?v=rtAy-CDYJeo

CIT 342 Formal Languages and Automata Theory

 V = {S, ...some other variables...}.

 T = = {a, b, c}.

 The start symbol is S.

 P is given below.

These should be pretty obvious except for the set V, which we generally make up as we

construct P.

Since the empty string belongs to the language, we need the production

S

Some strings belonging to the language begin with the symbol a. The a can be followed by

any other string in the language, so long as this other string does not begin with a. So we

make up a variable, call it NOTA, to produce these other strings, and add the production

S a NOTA

By similar logic, we add the variables NOTB and NOTC and the productions

S b NOTB

S c NOTc

Now, NOTA is either the empty string, or some string that begins with b, or some string that

begins with c. If it begins with b, then it must be followed by a (possibly empty) string that

does not begin with b--and we already have a variable for that case, NOTB. Similarly, if

NOTA is some string beginning with c, the c must be followed by NOTC. This gives the

productions

NOTA

NOTA b NOTB

NOTA c NOTC

Similar logic gives the following productions for NOTB and NOTC:

NOTB

NOTB a NOTA

NOTB c NOTC

NOTC

NOTC a NOTA

NOTC b NOTB

We add NOTA, NOTB, and NOTC to set V, and we're done.

Example derivation:

S a NOTA a b NOTB a b a NOTA a b a c NOTC a b a c.

3.6.2 Definition by NFA

Defining the language by an NFA follows almost exactly the same logic as defining the

language by a grammar. Whenever an input symbol is read, go to a state that will accept any

CIT 342 Formal Languages and Automata Theory

symbol other than the one read. To emphasize the similarity with the preceding grammar,

we will name our states to correspond to variables in the grammar.

Figure 9: Definition of Language by NFA

3.6.3 Definition by Regular Expression

As usual, it is more difficult to find a suitable regular expression to define this language, and

the regular expression we do find bears little resemblance to the grammar or to the NFA.

The key insight is that strings of the language can be viewed as consisting of zero or more

repetitions of the symbol a, and between them must be strings of the form bcbcbc... or

cbcbcb.... So we can start with

X a Y a Y a Y a ... Y a Z

where we have to find suitable expressions for X, Y, and Z. But first, let's get the above

expression in a proper form, by getting rid of the "...". This gives

X a (Y a)* Z

and, since we might not have any as at all,

(X a (Y a)* Z) + X

Now X can be empty, a single b, a single c, or can consist of an alternating sequence of bs

and cs. This gives

X = (+ b + c + (bc)* + (cb)*)

This isn't quite right, because it does not allow (bc)*b or (cb)*c. When we include these, we

get

X = (+ b + c + (bc)* + (cb)* + (bc)*b + (cb)*c)

This is now correct, but could be simplified. The last four terms include the +b+c cases,

so we can drop those three terms. Then we can combine the last four terms into

X = (bc)*(b +) + (cb)*(c +)

Now, what about Z? As it happens, there isn't any difference between what we need for Z

and what we need for X, so we can also use the above expression for Z.

Finally, what about Y? This is just like the others, except that Y cannot be empty. Luckily,

it's easy to adjust the above expression for X and Z so that it can't be empty:

Y = ((bc)*b + (cb)*c)

CIT 342 Formal Languages and Automata Theory

Substituting into (X a (Y a)* Z) + X, we get

((bc)*(b +) + (cb)*(c +) a (((bc)*b + (cb)*c) a)* (bc)*(b +) + (cb)*(c +)) +

(bc)*(b +) + (cb)*(c +)

4.0 CONCLUSION

In this unit you have been taken through regular expressions and the important role it plays

in the definition of languages. In the next unit you will be learning about regular grammars

5.0 SUMMARY

In this unit, you learnt that:

 A regular expression can be used to define a language.

 A regular expression represents a "pattern;" strings that match the pattern that are in

the language, strings that do not match the pattern are not in the language

 There is a simple correspondence between regular expressions and the languages

they denote

 Languages described by deterministic finite acceptors (DFAs) are called regular

languages

 Regular expressions also describe regular languages

6.0 TUTOR-MARKED ASSIGNMENT

1. Define primitive regular expressions

2. State the rules for creating addition regular expressions from any given regular

expression(s)

3. How do regular expressions relate to automata?

4. Describe how to convert regular expressions to DFA. Is the reverse possible? Explain

See examples:https://www.youtube.com/watch?v=5_KRbXPCGWg

and : https://www.youtube.com/watch?v=rtAy-CDYJeo

5. With the aid of illustrative examples, briefly describe the three ways of defining a

language

7.0 REFERENCES/FURTHER READING

 Alfred V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D. Ullmann (2007)

Compilers Principles, Techniques, & Tools Second Edition

 Crespi R.S., Breveglieri L. and Morzenti A.(2019) Formal Languages and

Compilation, Third Edition, Sprinwger, 2019.

 Daniel I.A. Cohen, () Introduction to Computer Theory, John Wiley Publisher

 GeeksforGeeks (2020). Closure Properties of Regular Languages.

 Goswami D., Krishna K. V. (2010). Formal Languages and Automata Theory.

https://www.youtube.com/watch?v=5_KRbXPCGWg
https://www.youtube.com/watch?v=rtAy-CDYJeo

CIT 342 Formal Languages and Automata Theory

 Hopcroft H.E. and Ullman J. D. ―Introduction to Automata Theory Languages and

Computation‖. Pearson Education

 John C Martin Introduction to languages and the Theory of Computation, John C

Martin, TMH.

 Kamala K. & Rama R () Introduction to Formal Languages , Automata Theory and

Computation –

 Kavi M. () Theory of Computation : A Problem – Solving Approach-, Wiley India

Pvt. Ltd.

 Lewis H.P. & Papadimition C.H. () Elements of Theory of Computation, Pearson

/PHI Publisher

 Linz P. (2012) An Introduction to formal languages and automata, Jones and Barlet

Learning Publishing

 Michael Sipser (2006). Introduction to the Theory of Computation. Thomson

Course Technology, 2nd edition Thomson Publishing

 Mishra K. L.P. and Chandrashekaran N. (2008) Theory of Computer Science –

Automata languages and computation -, 3rd edition, Prentice-Hall, India

 Moorthy D. S. R & Acharyulu G.V.S. (2015) Formal Languages and Automata

Theory

 Nielson F, Nielson HR & Hankin C. (2010) Principles of program analysis. Springer,

Berlin

 Stefano C. R., Luca B. &Angelo M. (2019) Formal Languages and Compilation. 3
rd

Edition, Springer Nature Switzerland AG 2019

 Torben A. M. (2010). Basics of Compiler Design (3rd Edition). Lulu Publishing.

 See relevant video on - https://www.youtube.com/watch?v=J-fcaXYkU9o m2u4

 See relevant video on - https://www.youtube.com/watch?v=KSczX111n3U m2u4

 See https://en.m.wkipedia.org/wiki/Automata_theory

 https://www.youtube.com/watch?v=rtAy-CDYJeo m2u1 m2 u2
 https://www.youtube.com/watch?v=efKSarb5oxM m2 u2
 . https://www.youtube.com/watch?v=nNMD1wE3TDM m2 u2

https://www.youtube.com/watch?v=J-fcaXYkU9o
https://www.youtube.com/watch?v=KSczX111n3U
https://www.youtube.com/watch?v=rtAy-CDYJeo
https://www.youtube.com/watch?v=efKSarb5oxM
https://www.youtube.com/watch?v=nNMD1wE3TDM

CIT 342 Formal Languages and Automata Theory

Module 2: Regular Languages

Unit 3: Regular Grammars

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content

3.1 Grammars for Regular Languages

3.2 Classifying Grammars

3.2.1 Right-Linear Grammars

3.2.1.1 Right-Linear Grammars and NFAs

3.2.2 Left-Linear Grammars

3.3 Regular Grammars

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

In the preceding unit you learnt about regular expressions and how they can be used to

define a language. In this unit, you will be learning about regular grammars, which is

another way of defining languages.

Now let us go through your study objectives for this unit.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

 Define regular grammars

 Classify grammars

 Show the connection between right-linear grammars and NFAs

 Construct a right-linear grammar from a left-linear grammar

 Distinguish between right-linear grammars from left-linear grammars

 With the aid of illustrative examples, state the relationship between regular
grammars and each of the following:

o DFAs
o NFAs
o Regular expressions

CIT 342 Formal Languages and Automata Theory

3.0 MAIN CONTENT

3.1 Grammars for Regular Languages

From the previous unit, you already know that:

 A language defined by a DFA is a regular language.
 Any DFA can be regarded as a special case of an NFA.
 Any NFA can be converted to an equivalent DFA; thus, a language defined by an NFA

is a regular language.
 A regular expression can be converted to an equivalent NFA; thus, a language

defined by a regular expression is a regular language.
 An NFA can (with some effort!) be converted to a regular expression.

So DFAs, NFAs, and regular expressions are all "equivalent," in the sense that any language

you define with one of these could be defined by the others as well.

We also know that languages can be defined by grammars. Now we will begin to classify

grammars; and the first kinds of grammars we will look at are the regular grammars. As

you might expect, regular grammars will turn out to be equivalent to DFAs, NFAs, and

regular expressions.

3.2 Classifying Grammars

Recall that a grammar G is a quadruple G = (V, T, S, P)

where:

 V is a finite set of (meta)symbols, or variables.
 T is a finite set of terminal symbols.
 S V is a distinguished element of V called the start symbol.
 P is a finite set of productions.

The above is true for all grammars. We will distinguish among different kinds of grammars

based on the form of the productions. If the productions of a grammar all follow a certain

pattern, we have one kind of grammar. If the productions all fit a different pattern, we

have a different kind of grammar.

Productions have the form:

(V T) (V T) .

Different types of grammars can be defined by putting additional restrictions on the left-

hand side of productions, the right-hand side of productions, or both.

3.2.1 Right-Linear Grammars

These are grammars whose productions have the form:

CIT 342 Formal Languages and Automata Theory

(V T) (V T) .

In a right-linear grammar, all productions have one of the two forms:

V T*V

or

V T*

That is, the left-hand side must consist of a single variable, and the right-hand side consists

of any number of terminals (members of) optionally followed by a single variable. (The

"right" in "right-linear grammar" refers to the fact that, following the arrow, a variable can

occur only as the rightmost symbol of the production.) This video clarifies differences

between right-linear and left-linear regular grammar.

https://www.youtube.com/watch?v=1PmfoAE8cdc and

https://www.youtube.com/watch?v=Ob60IirEm4s

3.2.1.1 Right-Linear Grammars and NFAs

There is a simple connection between right-linear grammars and NFAs, as suggested by the

following diagrams:

A x B

A x y z B

A B

A x

Figure 1: Connection between right-linear grammars and NFAs

As an example of the correspondence between an NFA and a right-linear grammar, the

following automaton and grammar both recognize the set of strings consisting of an even

number of 0's and an even number of 1's.

https://www.youtube.com/watch?v=1PmfoAE8cdc

CIT 342 Formal Languages and Automata Theory

S

S 0 B

S 1 A

A 0 C

A 1 S

B 0 S

B 1 C

C 0 A

C 1 B

Figure 2: automaton and grammar for the set of strings consisting of an even number of

0's and an even number of 1's

3.2.2 Left-Linear Grammars

In a left-linear grammar, all productions have one of the two forms:

V VT*

or

V T*

That is, the left-hand side must consist of a single variable, and the right-hand side consists

of an optional single variable followed by any number of terminals. This is just like a right-

linear grammar except that, following the arrow, a variable can occur only on the left of the

terminals, rather than only on the right.

We will not pay much attention to left-linear grammars, because they turn out to be

equivalent to right-linear grammars. Given a left-linear grammar for language L, we can

construct a right-linear grammar for the same language, as follows:

Table 1: Construction of right-linear grammar for any given left-linear grammar

Step Method

Construct a right-linear

grammar for the (different)

language L .

Replace each production A x of L with a production A x

, and replace each production A Bx with a production A

x B.

Construct an NFA for L

from the right-linear

grammar. This NFA should

have just one final state.

We talked about deriving an NFA from a right-linear grammar

in section 3.2.1.1. If the NFA has more than one final state,

we can make those states nonfinal, add a new final state, and

put transitions from each previously final state to the new

CIT 342 Formal Languages and Automata Theory

final state.

Reverse the NFA for L to

obtain an NFA for L.

1. Construct an NFA to recognize language L.

2. Ensure the NFA has only a single final state.

3. Reverse the direction of the arcs.

4. Make the initial state final and the final state initial.

Construct a right-linear

grammar for L from the NFA

for L.

This is the technique we just talked about on in section

3.2.1.1

3.3 Regular Grammars

You have learned three ways of characterising regular languages: regular expressions,

finite automata and construction from simple languages using simple operations. There is

yet another way of characterizing them; that is by something called grammar.

A grammar is a set of rewrite rules which are used to generate strings by successively

rewriting symbols. For example consider the language represented by a+, which is {a, aa,

aaa, . . . }. One can generate the strings of this language by the following procedure: Let S

be a symbol to start the process with. Rewrite S using one of the following two rules: S → a

, and S → aS . These rules mean that S is rewritten as a or as aS. To generate the string aa

for example, start with S and apply the second rule to replace S with the right hand side of

the rule, i.e. aS, to obtain aS. Then apply the first rule to aS to rewrite S as a. That gives us

aa. We write S aS to express that aS is obtained from S by applying a single production.

Thus the process of obtaining aa from S is written as S aS aa . If we are not

interested in the intermediate steps, the fact that aa is obtained from S is written as S *

aa , In general if a string is obtained from a string by applying productions of a

grammar G, we write =>*
G and say that is derived from . If there is no ambiguity

about the grammar G that is referred to, then we simply write *
.

Formally, a grammar consists of a set of nonterminals (or variables) V, a set of terminals

(the alphabet of the language), a start symbol S, which is a nonterminal, and a set of

rewrite rules (productions) P. A production has in general the form → , where is a

string of terminals and nonterminals with at least one nonterminal in it and is a string of

terminals and nonterminals. A grammar is regular if and only if is a single nonterminal

and is a single terminal or a single terminal followed by a single nonterminal, that is a

production is of the form X → a or X → aY, where X and Y are nonterminals and a is a

terminal.

For example, = {a, b}, V = {S} and P = { S → aS, S → bS, S → } is a regular grammar and

it generates all the strings consisting of a's and b's including the empty string.

CIT 342 Formal Languages and Automata Theory

The following theorem holds for regular grammars.

Theorem 1: A language L is accepted by an FSA i.e. regular, if L - { } can be generated by a

regular grammar.

This can be proven by constructing an FSA for the given grammar as follows: For each

nonterminal create a state. S corresponds to the initial state. Add another state as the

accepting state Z. Then for every production X → aY, add the transition (X, a) = Y and for

every production X → a add the transition (X, a) = Z.

For example = {a, b}, V = {S} and P = { S → aS, S → bS, S → a, S → b } form a regular

grammar which generates the language (a + b)+. An NFA that recognizes this language can

be obtained by creating two states S and Z, and adding transitions (S, a) = { S, Z } and

(S, b) = {S, Z} , where S is the initial state and Z is the accepting state of the NFA.

The NFA thus obtained is shown below.

Thus L - { } is regular. If L contains as its member, then since { } is regular , L = (L -{

}) { } is also regular.

Conversely, from any NFA < Q, , , q0, A > a regular grammar < Q, , P, q0 > is obtained

as follows:

for any a in , and nonterminals X and Y, X → aY is in P if and only if (X, a) = Y , and for

any a in and any nonterminal X, X → a is in P if and only if (X, a) = Y for some

accepting state Y.

Thus the following converse of Theorem 1 is obtained.

Theorem 2: If L is regular i.e. accepted by an NFA, then L - { } is generated by a regular

grammar.

CIT 342 Formal Languages and Automata Theory

For example, a regular grammar corresponding to the NFA given below is < Q, { a, b }, P, S >

, where Q = { S, X, Y } , P = { S → aS, S → aX, X → bS, X → aY, Y → bS, S → a }.

As you have learnt in the previous module, in addition to regular languages there are three

other types of languages in Chomsky hierarchy: context-free languages, context-sensitive

languages and phrase structure languages. They are characterized by context-free

grammars, context-sensitive grammars and phrase structure grammars, respectively.

These grammars are distinguished by the kind of productions they have but they also form

a hierarchy, that is the set of regular languages is a subset of the set of context-free

languages which is in turn a subset of the set of context-sensitive languages and the set of

context-sensitive languages is a subset of the set of phrase structure languages.

A regular grammar is either a right-linear grammar or a left-linear grammar.

To be a right-linear grammar, every production of the grammar must have one of the two

forms V T*V or V T*.

To be a left-linear grammar, every production of the grammar must have one of the two

forms V VT* or V T*.

You do not get to mix the two. For example, consider a grammar with the following

productions:

S

S a X

X S b

CIT 342 Formal Languages and Automata Theory

This grammar is neither right-linear nor left-linear, hence it is not a regular grammar. We

have no reason to suppose that the language it generates is a regular language (one that is

generated by a DFA).

In fact, the grammar generates a language whose strings are of the form a b . This

language cannot be recognized by a DFA.

4.0 CONCLUSION

In this unit you have been taken through regular grammars, which is another way of

defining regular languages. You have also learnt that any regular grammar can be classified

as either a right-linear or left-linear grammar.

In the next unit you will be learning about some of the properties of regular languages.

5.0 SUMMARY

In this unit, you learnt that:

 You can distinguish among different kinds of grammars based on the form of the

productions

 In a right-linear grammar, all productions have one of the two forms viz: V T*V

or

 V T*

 In a left-linear grammar, all productions have one of the two forms viz: V VT* or

V T*

 A grammar is a set of rewrite rules which are used to generate strings by

successively rewriting symbols

 A language L is accepted by an FSA can be generated by a regular grammar

 If L is regular then L - { } is generated by a regular grammar.

 A regular grammar is either a right-linear grammar or a left-linear grammar

6.0 TUTOR-MARKED ASSIGNMENT

1. Define regular grammars

2. With an illustrative example, show that if L is regular then L - { } is generated by

a regular grammar

3. Distinguish between right-linear grammar and left-linear grammar

CIT 342 Formal Languages and Automata Theory

4. Outline the steps involved in constructing a right-linear grammar from a left-

linear grammar. Hence or otherwise, given the left-linear grammar below,

construct an equivalent right-linear grammar:

 S → Xab

 X → c

5. Construct an NFA for the right-linear grammar derived from the grammar in

question (3) above

7.0 REFERENCES/FURTHER READING

 Alfred V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D. Ullmann (2007)

Compilers Principles, Techniques, & Tools Second Edition

 Crespi R.S., Breveglieri L. and Morzenti A.(2019) Formal Languages and

Compilation, Third Edition, Sprinwger, 2019.

 Daniel I.A. Cohen, () Introduction to Computer Theory, John Wiley Publisher

 GeeksforGeeks (2020). Closure Properties of Regular Languages.

 Goswami D., Krishna K. V. (2010). Formal Languages and Automata Theory.

 Hopcroft H.E. and Ullman J. D. ―Introduction to Automata Theory Languages and

Computation‖. Pearson Education

 John C Martin Introduction to languages and the Theory of Computation, John C

Martin, TMH.

 Kamala K. & Rama R () Introduction to Formal Languages , Automata Theory and

Computation –

 Kavi M. () Theory of Computation : A Problem – Solving Approach-, Wiley India

Pvt. Ltd.

 Lewis H.P. & Papadimition C.H. () Elements of Theory of Computation, Pearson

/PHI Publisher

 Linz P. (2012) An Introduction to formal languages and automata, Jones and Barlet

Learning Publishing

 Michael Sipser (2006). Introduction to the Theory of Computation. Thomson

Course Technology, 2nd edition Thomson Publishing

 Mishra K. L.P. and Chandrashekaran N. (2008) Theory of Computer Science –

Automata languages and computation -, 3rd edition, Prentice-Hall, India

 Moorthy D. S. R & Acharyulu G.V.S. (2015) Formal Languages and Automata

Theory

 Nielson F, Nielson HR & Hankin C. (2010) Principles of program analysis. Springer,

Berlin

 Stefano C. R., Luca B. &Angelo M. (2019) Formal Languages and Compilation. 3
rd

Edition, Springer Nature Switzerland AG 2019

 Torben A. M. (2010). Basics of Compiler Design (3rd Edition). Lulu Publishing.

 See relevant video on - https://www.youtube.com/watch?v=J-fcaXYkU9o m2u4

 See relevant video on - https://www.youtube.com/watch?v=KSczX111n3U m2u4

 https://www.youtube.com/watch?v=5_KRbXPCGWg

https://www.youtube.com/watch?v=J-fcaXYkU9o
https://www.youtube.com/watch?v=KSczX111n3U
https://www.youtube.com/watch?v=5_KRbXPCGWg

CIT 342 Formal Languages and Automata Theory

 https://www.youtube.com/watch?v=1PmfoAE8cdc m2 u3

 https://www.youtube.com/watch?v=Ob60IirEm4s m2 u3
 https://www.youtube.com/watch?v=MdI2TI7zefY m2u4

https://www.youtube.com/watch?v=1PmfoAE8cdc
https://www.youtube.com/watch?v=Ob60IirEm4s
https://www.youtube.com/watch?v=MdI2TI7zefY

CIT 342 Formal Languages and Automata Theory

Module 2: Regular Languages

Unit 4: Closure Properties of Regular Languages

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content

3.1 Closure I

3.2 Closure II: Union, Concatenation, Negation, Kleene Star, Reverse

3.2.1 General Approach

3.3 Closure III: Intersection and Set Difference

3.3.1 Intersection

3.3.2 Set difference

3.4 Closure IV: Homomorphism

3.5 Closure V: Right Quotient

3.6 Standard Representations

3.7 Membership.

3.8 Finiteness.

3.9 Equivalence.

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

INTRODUCTION

In the last three units you started learning about regular languages and how they

can be defined. In this unit, you will learn about some of the useful properties of

regular languages and how each of these properties can be used to show that a

language is regular.

Now let us go through your study objectives for this unit.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

 Enumerate the closure properties of regular languages

 Describe the steps to follow in applying each of these properties

 State the standard ways in which regular languages can be represented

 Prove the finiteness or otherwise of a language L

 Prove that a string belong to a language

81

CIT 342 Formal Languages and Automata Theory

1

1

1

 Prove the equivalence of two languages

3.0 MAIN CONTENT

3.1 Closure I

A set is closed under an operation if, whenever the operation is applied to members of

the set, the result is also a member of the set.

For example, the set of integers is closed under addition, because x+y is an integer

whenever x and y are integers. However, integers are not closed under division: if x

and y are integers, x/y may or may not be an integer.

We have defined several operations on languages:

L1 L2 Strings in either L1 or L2

L1 L2 Strings in both L1 and L2

L1L2 Strings composed of one string from L1 followed by one string from L2

-L1 All strings (over the same alphabet) not in L1

L1* Zero or more strings from L1 concatenated together

L1 - L2 Strings in L1 that are not in L2

L1
R
 Strings in L1 reversed

In mathematical notations (especially set theory), the above can be written as:

L = {x | x is in Σ* and x is not in L}

L L2 = {x | x is in L1 or L2}

L L2 = {x | x is in L1 and L2}

L - L2 = {x | x is in L1 but not in L2}

L1L2 = {xy | x is in L1 and y is in L2}

L* = Li = L0 U L1 U L2 U…

L
+

= L
i
= L

1
U L

2
U…

L1 = {x| x is reversed}

Closure properties on regular languages are defined as certain operations on regular

language which are guaranteed to produce regular language. Closure refers to some

operation on a language, resulting in a new language that is of same ―type‖ as originally

operated on i.e. regular. (Geeks for Geeks, 2020)

We will show that the set of regular languages is closed under each of these

CIT 342 Formal Languages and Automata Theory

operations. We will also define the operations of "homomorphism" and "right

quotient" and show that the set of regular languages is also closed under these

operations.

3.2 Closure II: Union, Concatenation, Negation, Kleene Star, Reverse

3.2.1 General Approach

1) Build automata (DFAs or NFAs) for each of the languages involved.

2) Show how to combine the automata to create a new automaton that recognizes the

desired language.

3) Since the language is represented by an NFA or DFA, conclude that the

language is regular.

Two languages L1 and L2 are considered in this section. L1 = {0x | x ∈ {0, 1}*} i.e. strings

that start with 0 and L2 = {x0 | x ∈ {0, 1}*} i.e. strings that end with 0.

The automata for the languages are

L1

q2

q0

q1

0

0,1

0,1

1

L2

r1
r0

0
0

1

1

They will be used to understand the properties mentioned in this section.

3.2.2 Union of L1 and L2

1) Create a new start state (n0).

2) Make a transition from the new start state (n0) to each of the original start states i.e.

q0 and r0.

The automaton below shows the result of the union of L1 and L2 i.e. L1 L2.

CIT 342 Formal Languages and Automata Theory

q2

q0

q1

0

λ

0,1

0,1

1

r1
r0

0λ
0

1

1

n0

3.2.3 Concatenation of L1 and L2

1) Put a transition from each final state of L1 to the initial state of L2

2) Make the original final states of L1 non-final

The diagram below shows the result of the concatenation of L1 and L2 i.e. L1 L2.

3.2.4 Negation of L1

1) Start with a (complete) DFA, not with an NFA.

2) Make every final state non-final and every non-final state final.

To find the complement of L1, qo and q1 will be made final, while q2 will be made non-final.

 ̅1 would therefore become

CIT 342 Formal Languages and Automata Theory

q2

q1

0

0,1

0,1

1

q0

q1

3.2.5 Kleene Star of L1

1) Make a new start state; connect it to the original start state with a transition.

2) Make a new final state; connect the original final states (which become non-

final) to it with transitions.

3) Connect the new start state and new final state with a pair of transitions.

The automaton below shows the Kleene star of L1 i.e. L1*

3.2.6 Reverse of L1

1) Start with an automaton with just one final state.

2) Make the initial state final and the final state initial.

3) Reverse the direction of every arc.

The reversal of a string is the string read backwards. The reversal of the string ―abc‖

is hence ―cba‖. The automaton below shows the reverse of L1

CIT 342 Formal Languages and Automata Theory

q0

q1

0,1

1

q2

0,1

0

3.3`Closure III: Intersection and Set Difference

Just as with the other operations, you prove that regular languages are closed under

intersection and set difference by starting with automata for the initial languages, and

constructing a new automaton that represents the operation applied to the initial

languages. However, the constructions are somewhat trickier.

In these constructions you form a completely new machine, whose states are each

labelled with an ordered pair of state names: the first element of each pair is a state from

L1, and the second element of each pair is a state from L2. (Usually you will not need a

state for every such pair, just some of them.)

1. Begin by creating a start state whose label is (start state of L1, start state of L2).

2. Repeat the following until no new arcs can be added:

i. Find a state (A, B) that lacks a transition for some x in .

ii. Add a transition on x from state (A, B) to state ((A, x), (B, x)). (If this

state doesn't already exist, create it.)

The same construction is used for both intersection and set difference. The distinction is in

how the final states are selected.

3.3.1 Intersection

Mark a state (A, B) as final if both

(i) A is a final state in L1, and

(ii) B is a final state in L2.

The intersection i.e. L1 L2 becomes

CIT 342 Formal Languages and Automata Theory

q2,r0

1

0

1

q1,r1q1,r0
01

0

1

q0,r0

0
q2,r1q2,r1

0

1

3.3.2 Set difference

Mark a state (A, B) as final if A is a final state in L1, but B is not a final state in L2.

3.4 Closure IV: Homomorphism

You should note that "homomorphism" is a term borrowed from group theory. What we

refer to as a "homomorphism" is really a special case.

Suppose ∑ and Γ are alphabets (not necessarily distinct). Then a homomorphism h is a

function from ∑ to Γ*.

If w is a string in ∑, then we define h(w) to be the string obtained by replacing each

symbol x ϵ ∑ by the corresponding string h(x) ϵ Γ*.

If L is a language on ∑, then its homomorphic image is a language on Γ. Formally,

h(L) = {h(w): w L}

Theorem. If L is a regular language on ∑, then its homomorphic image h(L) is a

regular language on Γ. That is, if you replaced every string w in L with h(w), the

resultant set of strings would be a regular language on Γ .

Proof.

1) Construct a DFA representing L. This is possible because L is regular.

2) For each arc in the DFA, replace its label x with h(x) .

3) If an arc is labelled with a string w of length greater than one, replace the arc with

a series of arcs and (new) states, so that each arc is labeled with a single element

of Γ. The result is an NFA that recognizes exactly the language h(L).

4) Since the language h(L) can be specified by an NFA, the language is regular.

Q.E.D.

3.5 Closure V: Right Quotient

Let L1 and L2 be languages on the same alphabet. The right quotient of L1 with L2 is L1/L2 =

{w: wx ϵ L1 and x ϵ L2}

That is, the strings in L1/L2 are strings from L1 "with their tails cut off." If some string of

L1 can be broken into two parts, w and x, where x is in language L2, then w is in

CIT 342 Formal Languages and Automata Theory

language L1/L2.

Theorem. If L1 and L2 are both regular languages, then L1/L2 is a regular language.

Proof: Again, the proof is by construction. We start with a DFA M(L1) for L1; the

DFA we construct is exactly like the DFA for L1, except that (in general) different

states will be marked as final.

For each state Qi in M(L1), determine if it should be final in M(L1/L2) as follows:

 Starting in state Qi as if it were the initial state, determine if any of the strings in

language L2 are accepted by M(L1). If there are any, then state Qi should be marked

as final in M(L1/L2). (Why?)

That is the basic algorithm. However, one of the steps in it is problematical: since

language L2 may have an infinite number of strings, how do we determine whether

some unknown string in the language is accepted by M(L1) when starting at Qi? We

cannot try all the strings, because we insist on a finite algorithm.

The trick is to construct a new DFA that recognizes the intersection of two languages: (1)

L2, and (2) the language that would be accepted by DFA M(L1) if Qi were its initial state.

We already know we can build this machine. Now, if this machine recognizes any string

whatever (we can check this easily), then the two machines have a nonempty

intersection, and Qi should be a final state.

We have to go through this same process for every state Qi in M(L1), so the algorithm is

too lengthy to step through by hand. However, it is enough for our purposes that the

algorithm exists.

Finally, since we can construct a DFA that recognizes L1/L2, this language is therefore

regular, and we have shown that the regular languages are closed under right quotient.

3.6 Standard Representations

A regular language is given in a standard representation if it is specified by one of:

 A finite automaton (DFA or NFA).

 A regular expression.

 A regular grammar.

(The importance of these particular representations is simply that they are precise and

unambiguous; thus, we can prove things about languages when they are expressed in a

standard representation.)

3.7 Membership.

If L is a language on alphabet , L is in a standard representation, and w *, then

CIT 342 Formal Languages and Automata Theory

there is an algorithm for determining w ϵ L.

Proof. Build the automation and use it to test w.

3.8 Finiteness.

If language L is specified by a standard representation, there is an algorithm to

determine whether the set L is empty, finite, or infinite.

Proof. Build the automaton.

 If there is no path from the initial state to a final state, then the language is

empty (and finite).

 If there is a path containing a cycle from the initial state to some final state, then

the language is infinite.

 If no path from the initial state to a final state contains a cycle, then the

language is finite.

3.9 Equivalence.

If languages L1 and L2 are each given in a standard representation, then there is an

algorithm to determine whether the languages are identical.

Proof. Construct the language

(L1 -L2) (-L1 L2)

If this language is empty, then L1 = L2.

4.0 CONCLUSION

In this unit you have been taken through the closure properties of regular languages and

how they can be useful in generating regular languages and also showing that a language

is regular. In the next unit, you will be learning about the pumping lemma for regular

languages.

5.0 SUMMARY

In this unit, you learnt that:

 A set is closed under an operation if, whenever the operation is applied to members

of the set, the result is also a member of the set

 To prove that regular languages are closed under the various operations, you start

with constructing automata for the initial languages

 A regular language is given in a standard representation if it is specified by one

of the following:

 A finite automaton (DFA or NFA).

 A regular expression.

 A regular grammar

CIT 342 Formal Languages and Automata Theory

6.0 TUTOR-MARKED ASSIGNMENT

1. When is a regular language said to be in a standard representation?

2. Describe an algorithm to show the equivalence of two languages

3. Describe how you will show that the set of regular languages is closed under each of

the following operations:

 Set difference

 Union

 Negation

 Intersection

4. Given language L(M1) = {w:w ends in a 1} and L(M2) = {x1 | x ∈ {0, 1}*} i.e. strings

that end with 0. Using the FA diagram, what is

i) L(M1) ∩ L(M2)

ii) L(M1) ∪ L(M2)

iii) L(M2) L(M1)

iv) L(M2)
R

5. Prove that the two regular expressions (a+b)* and (a*b*)* generate the same language.

 6. Consider the function on languages noprefix(L) = { w in L | no proper prefix of w is a

member of L}. Show that the regular languages are closed under the noprefix

function.

7. Describe the algorithm to prove the finiteness of a regular language L.

7.0 REFERENCES/FURTHER READING

 GeeksforGeeks (2020). Closure Properties of Regular Languages.

 Michael Sipser (2006). Introduction to the Theory of Computation. Thomson

Course Technology.

 Goswami D., Krishna K. V. (2010). Formal Languages and Automata Theory.

 Torben Ægidius Mogensen (2010). Basics of Compiler Design (3rd Edition). Lulu

Publishing.

 See relevant video on - https://www.youtube.com/watch?v=J-fcaXYkU9o

 See relevant video on - https://www.youtube.com/watch?v=KSczX111n3U

https://www.youtube.com/watch?v=J-fcaXYkU9o
https://www.youtube.com/watch?v=KSczX111n3U

CIT 342 Formal Languages and Automata Theory

Module 2: Regular Languages

Unit 5: The Pumping Lemma

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content

3.1 The Pigeonhole Principle

3.1.1 Pigeonhole

 3.1.2 Pigeonhole Principle

 3.2 The Pumping Lemma

3.2.1 Applying the Pumping Lemma

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

In this concluding unit of module 2, you will be taken through the pumping lemma

for regular languages. You will also learn about how to apply the pumping lemma.

Now let us go through your study objectives for this unit.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

 o Define pigeon hole

o Explain the pigeon hole principle

o State the pumping lemma

o State the use of the pumping lemma

o Apply the pumping lemma to regular languages

3.0 MAIN CONTENT

3.1 The Pigeonhole Principle

3.1.1 Pigeonhole

1. a hole or small recess for pigeons to nest in.

2. a small open compartment (as in a desk or cabinet) for keeping letters or documents

3. a neat category which usually fails to reflect actual complexities.

CIT 342 Formal Languages and Automata Theory

3.1.2 Pigeonhole Principle

If n objects are put into m containers, where n > m, then at least one container must hold

more than one object.

The pigeonhole can be used to prove that certain infinite languages are not regular.

(Remember, any finite language is regular.)

As we have informally observed, DFAs "can't count." This can be shown formally using the

pigeonhole principle. As an example, we show that L = {a
n
b

n
: n > 0} is not regular. The

proof is by contradiction.

Suppose L is regular. There are an infinite number of values of n but M(L) has only a finite

number of states. By the pigeonhole principle, there must be distinct values of i and j such

that a
i
and a

j
end in the same state. From this state,

 b
i
must end in a final state, because a

i
b

i
is in L; and

 b
i
must end in a nonfinal state, because a

j
b

i
is not in L.

Since the state reached cannot be both final and non-final, we have a contradiction. Thus

our assumption, that L is regular, must be incorrect. Q.E.D.

3.2 The Pumping Lemma

Pumping Lemma relates the size of string accepted with the number of states in a DFA.

Here is what the pumping lemma says:

 If an infinite language is regular, it can be defined by a DFA.

 The DFA has some finite number of states (say, n).

 Since the language is infinite, some strings of the language must have length >

n.

 For a string of length > n accepted by the DFA, the walk through the DFA must

contain a cycle.

 Repeating the cycle an arbitrary number of times must yield another string accepted

by the DFA.

The pumping lemma for regular languages is another way of proving that a given (infinite)

language is not regular. (The pumping lemma cannot be used to prove that a given language

is regular.)

The proof is always by contradiction. A brief outline of the technique is as follows:

 Assume the language L is regular.

 By the pigeonhole principle, any sufficiently long string in L must repeat some state

in the DFA; thus, the walk contains a cycle.

 Show that repeating the cycle some number of times ("pumping" the cycle) yields a

CIT 342 Formal Languages and Automata Theory

string that is not in L.

 Conclude that L is not regular.

This is hard because:

 We do not know the DFA (if we did, the language would be regular!). Thus, we

have do the proof for an arbitrary DFA that accepts L.

 Since we do not know the DFA, we certainly do not know the cycle.

But we can sometimes pull it off for the following reasons:

 We get to choose the string (but it must be in L).

 We get to choose the number of times to "pump."

3.2.1 Applying the Pumping Lemma

Here is a more formal definition of the pumping lemma:

If L is an infinite regular language, then there exists some positive integer m such that any

string w L whose length is m or greater can be decomposed into three parts, xyz, where

 |xy| is less than or equal to m,

 |y| > 0,

 wi = xy
i
z is also in L for all i = 0, 1, 2, 3,

Here is what it all means:

 m is a (finite) number chosen so that strings of length m or greater must contain a

cycle. Hence, m must be equal to or greater than the number of states in the DFA.

Remember that we do not know the DFA, so we can't actually choose m; we just

know that such an m must exist.

 Since string w has length greater than or equal to m, we can break it into two parts,

xy and z, such that xy must contain a cycle. We do not know the DFA, so we do not

know exactly where to make this break, but we know that |xy| can be less than or

equal to m.

 We let x be the part before the cycle, y be the cycle, and z the part after the cycle. (It

is possible that x and z contain cycles, but we do not care about that.) Again, we do

not know exactly where to make this break.

 Since y is the cycle we are interested in, we must have |y| > 0, otherwise it is not a

cycle.

 By repeating y an arbitrary number of times, xy*z, we must get other strings in L.

 If, despite all the above uncertainties, we can show that the DFA has to accept some

string that we know is not in the language, then we can conclude that the language is

not regular.

To use this lemma, we need to show:

CIT 342 Formal Languages and Automata Theory

1. For any choice of m,

2. for some w L that we get to choose (and we will choose one of length at least m),

3. for any way of decomposing w into xyz, so long as |xy| is not greater than m

and y is not ,

4. we can choose an i such that xy
i
z is not in L.

We can view this as a game wherein our opponent makes moves 1 and 3 (choosing m and

choosing xyz) and we make moves 2 and 4 (choosing w and choosing i). Our goal is to

show that we can always beat our opponent. If we can show this, we have proved that L is

not regular.

Example 1

Prove that L = {anbn: n 0} is not a regular language.

1. We do not know m, but assume there is one.

2. Choose a string w = a
n
b

n
where n > m, so that any prefix of length m consists

entirely of a's.

3. We do not know the decomposition of w into xyz, but since |xy| ≤ m, xy must consist

entirely of a's. Moreover, y cannot be empty.

4. Choose i = 0. This has the effect of dropping |y| a's out of the string, without

affecting the number of b's. The resultant string has fewer a's than b's, hence does not

belong to L. Therefore L is not regular.

Example 2

Prove that L = {a
n
b

k
: n > k and n 0} is not regular.

1. We do not know m, but assume there is one.

2. Choose a string w = a
n
b

k
where n > m, so that any prefix of length m consists

entirely of a's, and k = n-1, so that there is just one more a than b.

3. We do not know the decomposition of w into xyz, but since | xy must consist entirely

of a's. Moreover, y cannot be empty.

4. Choose i = 0. This has the effect of dropping |y| a's out of the string, without

affecting the number of b's. The resultant string has fewer a's than before, so it has

either fewer a's than b's, or the same number of each. Either way, the string does not

belong to L, so L is not regular.

Example 3

Prove that L = {a
n
: n is a prime number} is not regular.

1. We do not know m, but assume there is one.

2. Choose a string w = a
n

where n is a prime number and |xyz| = n > m+1. (This can

always be done because there is no largest prime number.) Any prefix of w consists

entirely of a's.

3. We do not know the decomposition of w into xyz, but since |xy| ≤ m, it follows that

CIT 342 Formal Languages and Automata Theory

|z| > 1. As usual, |y| > 0,

4. Since |z| > 1, |xz| > 1. Choose i = |xz|. Then |xy
i
z| = |xz| + |y||xz| = (1 + |y|)|xz|. Since

(1 + |y|) and |xz| are each greater than 1, the product must be a composite number.

Thus |xy
i
z| is a composite number.

Self-Assessment Exercise

1. Construct a PDA for F = {a
i
b

j
 | i ≠ j}} by final state.

2. Construct a PDA that accepts { wwR | w is any string of a's and b's } by final state.

3. Construct a PDA that accepts { wwR | w is any string of a's and b's } by empty stack.

4. Construct a PDA for F = {a
2n

b
3n

 | n ≥ 0} by final state.

4.0 CONCLUSION

In this unit you have learnt about the pumping lemma for regular languages. The

pumping lemma is based on the pigeonhole principle and it can be used to prove that an

infinite language is not regular. It can never be used to show that a language is regular.

In the next module, you will be learning about another type of languages that is next to

regular languages in the Chomsky hierarchy.

5.0 SUMMARY

In this unit, you learnt:

 The pigeonhole can be used to prove that certain infinite languages are not regular

 the pigeonhole principle can be used to formally show that DFAs "cannot count."

 Pumping Lemma relates the size of string accepted with the number of states in a

DFA

 The pumping lemma for regular languages is another way of proving that a given

(infinite) language is not regular

 The pumping lemma cannot be used to prove that a given language is regular

6.0 TUTOR-MARKED ASSIGNMENT

1. What is a pigeon hole?

2. Briefly describe the pigeonhole principle and its relationship with the pumping

lemma for regular languages?

3. What does the pumping lemma say?

4. Describe the general methodology of the application of pumping lemma.

5. Prove that the language containing strings of balanced parentheses is not regular.

6. Use the pumping lemma to show that the language A = {0
n
1

n
2

n
} is not regular.

7.0 REFERENCES/FURTHER READING

 Alfred V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D. Ullmann (2007)

CIT 342 Formal Languages and Automata Theory

Compilers Principles, Techniques, & Tools Second Edition

 Crespi R.S., Breveglieri L. and Morzenti A.(2019) Formal Languages and

Compilation, Third Edition, Sprinwger, 2019.

 Daniel I.A. Cohen, () Introduction to Computer Theory, John Wiley Publisher

 GeeksforGeeks (2020). Closure Properties of Regular Languages.

 Goswami D., Krishna K. V. (2010). Formal Languages and Automata Theory.

 Hopcroft H.E. and Ullman J. D. ―Introduction to Automata Theory Languages and

Computation‖. Pearson Education

 John C Martin Introduction to languages and the Theory of Computation, John C

Martin, TMH.

 Kamala K. & Rama R () Introduction to Formal Languages , Automata Theory and

Computation –

 Kavi M. () Theory of Computation : A Problem – Solving Approach-, Wiley India

Pvt. Ltd.

 Lewis H.P. & Papadimition C.H. () Elements of Theory of Computation, Pearson

/PHI Publisher

 Linz P. (2012) An Introduction to formal languages and automata, Jones and Barlet

Learning Publishing

 Michael Sipser (2006). Introduction to the Theory of Computation. Thomson

Course Technology, 2nd edition Thomson Publishing

 Mishra K. L.P. and Chandrashekaran N. (2008) Theory of Computer Science –

Automata languages and computation -, 3rd edition, Prentice-Hall, India

 Moorthy D. S. R & Acharyulu G.V.S. (2015) Formal Languages and Automata

Theory

 Nielson F, Nielson HR & Hankin C. (2010) Principles of program analysis. Springer,

Berlin

 Stefano C. R., Luca B. &Angelo M. (2019) Formal Languages and Compilation. 3
rd

Edition, Springer Nature Switzerland AG 2019

 Torben A. M. (2010). Basics of Compiler Design (3rd Edition). Lulu Publishing.

 See relevant video on - https://www.youtube.com/watch?v=J-fcaXYkU9o m2u4

 See relevant video on - https://www.youtube.com/watch?v=KSczX111n3U m2u4

 https://www.youtube.com/watch?v=MdI2TI7zefY m2u4

https://www.youtube.com/watch?v=J-fcaXYkU9o
https://www.youtube.com/watch?v=KSczX111n3U
https://www.youtube.com/watch?v=MdI2TI7zefY

CIT 342 Formal Languages and Automata Theory

CONTENTS

1.0 Introd

2.0 Objec

3.0 Main

uction

tives

Content

Module 3: Context-Free Languages

Unit 1: Context-Free Grammars

3.1 Context-Free Grammars (CFG)

3.2 Regular Grammars are Context Free

3.2.1 Notes on Terminology

3.3 Languages and Grammars

3.4 Sentential Forms

3.5 Leftmost and Rightmost Derivations:

3.6 Derivation Trees

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

In the previous module, you learnt about regular languages. In this module you

will be learning about context-free languages and the automata that accepts strings

generated by context-free languages. But in this introductory unit of the module,

let‘s take you through the basic definitions of context-free grammar.

Now let us go through your study objectives for this unit.

2.0 OBJECTIVES

At the end of this unit, you should be able to:
 Define context-free grammars

 Distinguish between regular grammars and context-free grammars

 Determine strings generated by a context-free grammar

3.0 MAIN CONTENT

3.1 Context-Free Grammars (CFG)

Definition

A context-free grammar (CFG) consisting of a finite set of grammar rules is a quadruple (X, T, P,

S) where

 X represents a set of nonterminal symbols.

Comment [s1]: Change the but and
the general statement

CIT 342 Formal Languages and Automata Theory

 T represents a set of terminals where X ∩ T = NULL.

 P represents a set of rules, P: X → (X ∪ T)*, i.e., the left-hand side of the production

rule P can contain the combination of nonterminal and terminal symbols.

 S is the start symbol.

Further explanation on nonterminal, terminal, production and start symbols from (Aho et al., 2007. page

197)

 Terminals are the basic symbols from which strings are formed.

 Nonterminals represent syntactic variables denoting sets of strings. The sets of strings

denoted by nonterminals help define the language generated by the grammar.

 start symbol. One nonterminal is denoted as the start symbol, and the set of strings it

denotes is the language generated by the grammar. Conventionally, the productions for the

start symbol are listed first.

 The productions of a grammar specify how the terminals and nonterminals can be combined

to form strings. Each production consists of:

o A nonterminal called the head or left side of the production; this production defines

some of the strings denoted by the head.

o A body or right side consisting of zero or more terminals and nonterminals.

The following are examples of context-free grammar:

a. The grammar ({A}, {a, b, c}, P, A), P : A → aA, A → abc.

b. The grammar ({S, a, b}, {a, b}, P, S), P: S → aSa, S → bSb, S → ε

c. The grammar ({S, F}, {0, 1}, P, S), P: S → 00S | 11F, F → 00F | ε

Example a. has two production rules which are A → aA,and A → abc. The nonterminal

symbols is A which also serves has the start symbol. The terminal symbols are T = {a, b, c, ε}.

In the second example we have

X = { S}, T = {a, b, ε} and the production rules are three. The third example is left has an

exercise for you.

For more understanding on context-free grammar, you may watch the following these

youtube videos : https://www.youtube.com/watch?v=5_tfVe7ED3g (7:51 Minutes)
https://www.youtube.com/watch?v=nyjB5xW0tQc (5:23 Minutes)
https://www.youtube.com/watch?v=d9LrKPZsu40 (8:06 Minutes)

Example 1

Consider G= (X, T, P, S) with T = {a, b} and X = {S, a, b, }. The productions, or

grammar rules, are: S aSb|. Then it is clear that L(G) = {anbn| n ≥0}. From the

previous module it is known that this language is not regular.

Example 2: A Grammar for Arithmetic Expressions

Let X = {E, T, F, id, + , - ,*,/,(,), a, b, c} and T = {a, b, c, + , - ,*,/,(,)}. The start

symbol S is E and the productions are as follows:

https://www.youtube.com/watch?v=5_tfVe7ED3g
https://www.youtube.com/watch?v=nyjB5xW0tQc
https://www.youtube.com/watch?v=d9LrKPZsu40

CIT 342 Formal Languages and Automata Theory

E E + T | E - T | T

T T*F | T/F | F

F (E) | id

id a | b | c

Then the string (a + b)*c belongs to L(G). Indeed, it is easy to write down a

derivation of this string:

E T T*F F*F (E)*F (E + T)*F

 (T + T)*F (F + T)*F (id + T)*F (a + T)*F

 (a + F)*F (a + id)*F (a + b)*F (a + b)*id (a + b)*c

The derivation just adduced is leftmost in the sense that the leftmost nonterminal was

always substituted. Although derivations are in general by no means unique, the

leftmost one is. The entire derivation can also be nicely represented in a tree form, as

Figure. 1 suggests.

Figure 1: Derivation Tree for the Expression (a + b)*c

The internal nodes of the derivation, or syntax, tree are nonterminal symbols and the

frontier of the tree consists of terminal symbols. The start symbol is the root and the

derived symbols are nodes. The order of the tree is the maximal number of successor

nodes for any given node. In this case, the tree has order 3. Finally, the height of the

tree is the length of the longest path from the root to a leaf node, i.e. a node that has no

successor. The string (a + b)*c obtained from the concatenation of the leaf nodes

together from left to right is called the yield of the tree.

3.2 Regular Grammars are Context Free

Recall that productions of a right-linear grammar must have one of the two forms

A x

or A xB

where A, B X, and x T*.

Since T* (X T)* and T*X (V T)*, it follows that every right-linear

grammar is also a context-free grammar.

CIT 342 Formal Languages and Automata Theory

Similarly, right-linear grammars and linear grammars are also context-free grammars.

A context-free language (CFL) is a language that can be defined by a context-free

grammar.

3.2.1 Notes on Terminology

Every regular grammar is a context-free grammar, in the same way that every dog is

an animal.

In normal speech we try to be as specific as possible. If we know that, say, Fido is a

dog; we generally refer to Fido as a dog. We do not refer to Fido as an animal (unless

we are trying to be deliberately vague). But if asked whether Fido is an animal, the

correct answer is certainly "yes."

In the same way, if language L is a regular language, we generally refer to L as a

regular language. We do not refer to L as a context-free language unless we are being

deliberately vague. But if asked whether L is a context-free language, the correct

answer is "yes."

The usual convention of being as specific as possible sometimes leads to confusion. If

I say language L is a context-free language, I probably mean either (a) L is not regular,

or (b) I do not know whether L is regular. If I do know that L is a regular language, I

should call it a regular language, not a context-free language.

3.3 Languages and Grammars

A regular language is a language that can be defined by a regular grammar.

A context-free language is a language that can be defined by a context-free grammar.

If grammar G is context free but not regular, we know the language L(G) is context

free. We do not know that L(G) is not regular. It might be possible to find a regular

grammar G2 that also defines L.

Example 3

Consider the following grammar:

G = ({S, A, B}, {a, b}, S, {S→AB, A→aA, A→, B→Bb, B→})

Is G a context-free grammar? Yes.

Is G a regular grammar? No.

Is L(G) a context-free language? Yes.

Is L(G) a regular language? Yes - the language L(G) is regular because it can be

defined by the regular grammar:

CIT 342 Formal Languages and Automata Theory

G = ({S, A, B}, {a, b}, S, {S→A, A→aA, A→B, B→bB, B→})

Example 4

We have shown that L = {a
n
b

n
: n 0} is not regular. Here is a context-free grammar

for this language.

G = ({S}, {a, b}, S, {S→aSb, S→}

Example 5

We have shown that L = {a
n
b

k
: k > n 0} is not regular. Here is a context-free

grammar for this language.

G = ({S, B}, {a, b}, S, {S→aSb, S→B, B→bB, B→b}).

Example 6

The language L = {ww
R
: w {a, b}*}, where each string in L is a palindrome, is not

regular. Here is a context-free grammar for this language.

G = ({S}, {a, b}, S, {S→aSa, S→bSb, S→}).

Example 7

The language L = {w: w {a, b}*, na(w) = nb(w)}, where each string in L has an equal

number of a's and b's, is not regular. Consider the following grammar:

G = ({S}, {a, b}, S, {S→aSb, S→bSa, S→SS, S→}).

1. Does every string recognized by this grammar have an equal number of a's and

b's?

2. Is every string consisting of an equal number of a's and b's recognized by this

grammar?

Example 8

The language L, consisting of balanced strings of parentheses, is context-free but not

regular. The grammar is simple, but we have to be careful to keep our symbols ‗(’

and ‗)’ separate from our metasymbols (and).

G = ({S}, {(,)}, S, {S→ (S), S→SS, S→}).

3.4 Sentential Forms

A sentential form is the start symbol S of a grammar or any string in (X T)* that

can be derived from S.

CIT 342 Formal Languages and Automata Theory

Consider the linear grammar

({S, B}, {a, b}, S, {S →aS, S→B, B→bB, B→}).

A derivation using this grammar might look like this:

S aS aB abB abbB abb

Each of {S, aS, aB, abB, abbB, abb} is a sentential form.

Because this grammar is linear, each sentential form has at most one variable. Hence

there is never any choice about which variable to expand next.

3.5 Leftmost and Rightmost Derivations:

Now consider the grammar

G = ({S, A, B, C}, {a, b, c}, S, P)

where

P = {S→ABC, A→aA, A→, B→bB, B→, C→cC, C→}.

With this grammar, there is a choice of variables to expand. Here is a sample

derivation:

S ABC aABC aABcC aBcC abBcC abBc abbBc abbc

If we always expanded the leftmost variable first, we would have a leftmost

derivation:

S ABC aABC aBC abBC abbBC abbC abbcC abbc

Conversely, if we always expanded the rightmost variable first, we would have a

rightmost derivation:

S ABC ABcC ABc AbBc AbbBc Abbc aAbbc abbc

There are two things to notice here:

1. Different derivations result in quite different sentential forms, but

2. For a context-free grammar, it really does not make much difference in what

order we expand the variables.

Self Assessment Exercise

1. Give a CFG for all strings of a‘s and b‘s with twice as many a‘s as b‘s. Show

leftmost derivations for the four shortest strings generated by your grammar.

CIT 342 Formal Languages and Automata Theory

3.6 Derivation Trees

Since the order in which we expand the variables in a sentential form does not seem to

make any difference, it would be nice to show a derivation in some way that is

independent of the order. A derivation tree is a way of presenting a derivation in an

order-independent fashion.

For example, for the following derivation:

S ABC aABC aABcC aBcC abBcC abBc abbBc abbc

we would have the derivation tree:

This tree represents not just the given derivation, but all the different orders in which

the same productions could be applied to produce the string abbc.

A partial derivation tree is any subtree of a derivation tree such that, for any node of

the subtree, either all of its children are also in the subtree, or none of them are.

The yield of the tree is the final string obtained by reading the leaves of the tree from

left to right, ignoring the s (unless all the leaves are , in which case the yield is).

The yield of the above tree is the string abbc, as expected.

The yield of a partial derivation tree that contains the root is a sentential form.

4.0 CONCLUSION

In this unit you have been taken through context-free grammars and their relationship

to regular grammars. You were also introduced to the concept of derivations and parse

101

CIT 342 Formal Languages and Automata Theory

CIT 342 Formal Languages and Automata Theory

tree. In the next unit, you will be learning more about context-free languages by

learning about some properties of context-free grammars.

5.0 SUMMARY

In this unit, you learnt that:

 every regular language is context-free but the reverse is not true

 A context-free language is a language that can be defined by a context-free

grammar

 A sentential form is the start symbol S of a grammar or any string in (X T)*

that can be derived from S

 If we always expanded the leftmost variable of a sentential form first, we

would have a leftmost derivation and if we always expanded the rightmost

variable first, we would have a rightmost derivation

 A derivation tree is a way of presenting a derivation in an order-independent

fashion

 A partial derivation tree is any subtree of a derivation tree such that, for any

node of the subtree, either all of its children are also in the subtree, or none of

them are.

6.0 TUTOR-MARKED ASSIGNMENT

1. Define context-free grammars

2. Given the grammar G:

E E + T | E - T | T

T T*F | T/F | F

F (E) | id

id a | b | c

find the

i. rightmost derivation

ii. leftmost derivation

for the following strings

a) a+a+a

b) a(c/b)

CIT 342 Formal Languages and Automata Theory

7.0 REFERENCES/FURTHER READING

 Alfred V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D. Ullmann (2007)

Compilers Principles, Techniques, & Tools Second Edition

 Crespi R.S., Breveglieri L. and Morzenti A.(2019) Formal Languages and

Compilation, Third Edition, Sprinwger, 2019.

 Daniel I.A. Cohen, () Introduction to Computer Theory, John Wiley Publisher

 GeeksforGeeks (2020). Closure Properties of Regular Languages.

 Goswami D., Krishna K. V. (2010). Formal Languages and Automata Theory.

 Hopcroft H.E. and Ullman J. D. ―Introduction to Automata Theory Languages and

Computation‖. Pearson Education

 John C Martin Introduction to languages and the Theory of Computation, John C

Martin, TMH.

 Kamala K. & Rama R () Introduction to Formal Languages , Automata Theory and

Computation –

 Kavi M. () Theory of Computation : A Problem – Solving Approach-, Wiley India

Pvt. Ltd.

 Lewis H.P. & Papadimition C.H. () Elements of Theory of Computation, Pearson

/PHI Publisher

 Linz P. (2012) An Introduction to formal languages and automata, Jones and Barlet

Learning Publishing

 Michael Sipser (2006). Introduction to the Theory of Computation. Thomson

Course Technology, 2nd edition Thomson Publishing

 Mishra K. L.P. and Chandrashekaran N. (2008) Theory of Computer Science –

Automata languages and computation -, 3rd edition, Prentice-Hall, India

 Moorthy D. S. R & Acharyulu G.V.S. (2015) Formal Languages and Automata

Theory

 Nielson F, Nielson HR & Hankin C. (2010) Principles of program analysis. Springer,

Berlin

 Stefano C. R., Luca B. &Angelo M. (2019) Formal Languages and Compilation. 3
rd

Edition, Springer Nature Switzerland AG 2019

 Torben A. M. (2010). Basics of Compiler Design (3rd Edition). Lulu Publishing.

 See relevant video on - https://www.youtube.com/watch?v=J-fcaXYkU9o m2u4

 See relevant video on - https://www.youtube.com/watch?v=KSczX111n3U m2u4

 See https://en.m.wkipedia.org/wiki/Automata_theory

 : https://www.youtube.com/watch?v=mAmZvn9lKYk m1 u1
 https://www.youtube.com/watch?v=PooQrbFrd_U m1 u2

 https://www.youtube.com/watch?v=ntrF_KxHn18 m3 u1
 https://www.youtube.com/watch?v=mX9lULtwO0s m3 u3

 Tutorial Point
:https://www.tutorialspoint.com/automata_theory/context_free_grammar_introduction.ht
m

https://www.youtube.com/watch?v=J-fcaXYkU9o
https://www.youtube.com/watch?v=KSczX111n3U
https://www.youtube.com/watch?v=mAmZvn9lKYk
https://www.youtube.com/watch?v=PooQrbFrd_U
https://www.youtube.com/watch?v=ntrF_KxHn18
https://www.youtube.com/watch?v=mX9lULtwO0s
https://www.tutorialspoint.com/automata_theory/context_free_grammar_introduction.htm
https://www.tutorialspoint.com/automata_theory/context_free_grammar_introduction.htm

CIT 342 Formal Languages and Automata Theory

Module 3: Context-Free Languages

Unit 2: Properties of Context-Free Languages

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content

3.1 Syntax Trees

3.1.1 Definition of Syntax Tree

3.1.2 Ambiguity
3.1.2.1 Ambiguous Grammars, Ambiguous Languages

3.2 Chomsky Normal Form

3.2.1 Definition of Chomsky Normal Form

3.2.2 Putting a CFG into Chomsky Normal Form

 3.3 Non Context-Free Languages: Ogden's Lemma (The Pumping Lemma for

CFL)

3.3.1 Using the Pumping Lemma

3.4 Closure Properties of Context Free Languages
3.5 Parsing

3.5.1 Exhaustive Search Parsing

3.5.2 Grammars for Exhaustive Parsing

3.5.3 Efficient Parsing

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

In the previous unit you learnt about context-free grammars and the type of language

that is generated by them. In this unit you will be taken through the properties of

context-free languages.

It is desirable not only to classify languages by the architecture of machines that recognize

them but also to have tests to show that a language is not of a particular type. For this

reason we establish so-called pumping lemmas whose purpose is to show how strings in one

language can be elongated or ``pumped up.'' Pumping up may reveal that a language does

not fall into a presumed language category. We also develop other properties of languages

that provide mechanisms for distinguishing among language types. Because of the

importance of context-free languages, we examine how they are parsed, a key step in

programming language translation.

CIT 342 Formal Languages and Automata Theory

Now let us go through your study objectives for this unit.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

 State the properties of CFL

 State the pumping lemma for CFL

 Use the pumping lemma for CFL

 Determine when a grammar is ambiguous

 Define syntax tree

3.0 MAIN CONTENT

3.1 Syntax Trees

Tree representations of derivations, also known as syntax trees, were briefly introduced in

the preceding unit to promote intuition of derivations. Since these are such important

tools for the investigation of context-free languages, they will be dealt with a little more

systematically here.

3.1.1 Definition of Syntax Tree

Let G = (X, T, P, S) be a context-free grammar. A syntax tree for this grammar consists of

one of the following:

1) A single node x for an x ∈T. This x is both root and leaf node.
2) An edge

corresponding to a production A ∈P.

3) A tree

where the A1, A2, ... , An are the root nodes of syntax trees. Their yields are read

from left to right.

CIT 342 Formal Languages and Automata Theory

3.1.2 Ambiguity
Definition of Ambiguity:

A grammar is said to ambiguous if there exists two or more left derivation trees for a string.
An ambiguous grammar produces more than one leftmost derivation or more than one rightmost

derivation for the same sentence.

Until now the syntax trees were uniquely determined – even if the sequence of direct

derivations were not. Separating the productions corresponding to the operator hierarchy,

from weakest to strongest, in the expression grammar +, -,*, /, () preserves this natural

hierarchy. If this is not done, then syntax trees with a false evaluation sequence are often

the result. Suppose, for instance, that the rules of the expression grammar were written E

E + E | E*E | id, then two different syntax trees as in Figure 2 below are the result. If

the first production E E + E were chosen then the result would be the tree in Figure

1(i).

(i) (ii)

Figure 1: Syntax trees for string a + b*c.

On the other hand, choosing the production E E*E first results in a syntax tree of an

entirely different ilk (Figure 1(ii)).

Thus this grammar is ambiguous, because it is possible to generate two different syntax

trees for the expression a + b*c.

Example 1:

The following grammar generates strings having an equal number of a's and b's.

G = ({S}, {a, b}, S, S →aSb | bSa | SS |)

CIT 342 Formal Languages and Automata Theory

The string "abab" can be generated from this grammar in two distinct ways, as shown by the

following derivation trees:

Similarly, abab has two distinct leftmost derivations:

S aSb abSab abab

S SS aSbS abS abaSb abab

Likewise, abab has two distinct rightmost derivations:

S aSb abSab abab

S SS SaSb Sab aSbab abab

Each derivation tree can be turned into a unique rightmost derivation, or into a unique

leftmost derivation. Each leftmost or rightmost derivation can be turned into a unique

derivation tree. So these representations are largely interchangeable.

3.1.2.1 Ambiguous Grammars, Ambiguous Languages

Since derivation trees, leftmost derivations, and rightmost derivations are equivalent

notations, the following definitions are equivalent:

A grammar G is ambiguous if there exists some string w ∈L(G) for which

 there are two or more distinct derivation trees, or
 there are two or more distinct leftmost derivations, or
 there are two or more distinct rightmost derivations.

Grammars are used in compiler construction. Ambiguous grammars are undesirable

because the derivation tree provides considerable information about the semantics of a

program; conflicting derivation trees provide conflicting information.

Ambiguity is a property of a grammar, and it is usually (but not always) possible to find an

equivalent unambiguous grammar.

An inherently ambiguous language is a language for which no unambiguous grammar

exists.
For more information, please check

https://www.youtube.com/watch?v=wQjppolFdas 5:43 Min

https://www.youtube.com/watch?v=wQjppolFdas

CIT 342 Formal Languages and Automata Theory

https://www.youtube.com/watch?v=MdI2TI7zefY

Self Assessment Exercise I

1. Describe in words the language generated by G below.

S → SS | AB | AC

A → a

B → b

C → SB

b) Is G ambiguous?

3.2 Chomsky Normal Form

Work with a given context-free grammar is greatly facilitated by putting it into a so-called

normal form. This provides some kind of regularity in the appearance of the right-hand

sides of grammar rules. One of the most important normal forms is the Chomsky normal

form.

3.2.1 Definition of Chomsky Normal Form

The context-free Grammar G = (X, T, P, S) is said to be in Chomsky normal form if all

grammar rules have the form

A a | BC, (1)

for a ∈ T and B, C ∈X - T. There is one exception. If ∈L(G), then the single extra rule

S (2)

is permitted. If ∉L(G) then production rule 2 is not allowed.

Theorem 1: Any context-free grammar G = (X, T, P, S) can be rewritten in Chomsky

normal form.

Proof :

To facilitate rewriting the grammar rules it is first a good idea to eliminate unnecessary

pathology in the original grammar. Although a CFG always defines its grammar rules with

single nonterminal symbols on the left-hand side of every production, it can easily happen

that there are nonterminal symbols that never appear on the left-hand side of any

production. It is then seen that they cannot generate any sequence of terminal symbols

https://www.youtube.com/watch?v=MdI2TI7zefY

CIT 342 Formal Languages and Automata Theory

and, moreover, may never appear in the right-hand side of any production to help produce

a sentence in the associated language. It can even happen that there are nonterminal

symbols that appear in no sentential form 1 derivable from the start symbol. These

symbols are called useless and are to be expurgated at the outset. It should be abundantly

clear that no part of any rule containing one of these symbols has the least influence of

L(G). Consider, for example, the grammar

S AB | CA | AD

B BC | AB

A aA | a

C b | aB | bC

No terminal symbol is derivable from B and D never appears in the right-hand side of any

rule. Thus, the grammar simplifies to:

S CA

A aA | a

C b | bC

Now that the grammar has been stripped of extraneous elements, the grammatical

transformation can begin. The rules for G can be rewritten as follows:

 Purge P of rules of the form A . If there is another rule with A occupying the

left-hand side, then proceed as follows. For every rule in which A appears on the

right-hand side, add another rule to P without this occurrence of A. If A occurs

more than once, then add rules with each individual occurrence of A elided, while
retaining the other occurrences of that nonterminal symbol. Finally, add rules with

pairs of individual occurrences of A eliminated, etc. until all combinations have

been expunged. For example, the rules A a | and A ABAC could be

replaced by A a and A BAC | ABC | BC| ABAC.

 Replace any rule of the form A 1, 2,... , n, by the n - 1 rules A1 1A2, A2

2A3, ... An-1 n-1n,.

 Eliminate ``useless'' rules A B, where A and B are nonterminal symbols. Indeed,

if there is a rule B *, where consists of more than one symbol, then reduce to

A .

3.2.2 Putting a CFG into Chomsky Normal Form

Recall that a grammar G is in Chomsky Normal Form if each production in G is one of two

forms:

1. A → BC where A, B, and C are nonterminals, or
2. A → a where a is a terminal.

CIT 342 Formal Languages and Automata Theory

We will further assume G has no useless symbols. Every context-free language without ε

can be generated by a Chomsky Normal Form grammar.

Let us assume we have a CFG G with no useless symbols, ε-productions, or unit

productions. We can transform G into an equivalent Chomsky Normal Form grammar as

follows:

 Arrange that all bodies of length two or more consist only of nonterminals.
 Replace bodies of length three or more with a cascade of productions, each

with a body of two nonterminals.

Applying these two transformations to the grammar H in 3.2.3 above, we get:

E → EA | TB | LC | a

A → PT

P → +

B → MF

M → *

L → (

C → ER

R →)

T → TB | LC | a

F → LC | a

Example 2:

Consider again the expression grammar G:

E E + T | E - T | T

T T*F | T/F | F

F (E) | id

id a | b | c

Then the rule E E + T | E - T, is replaced by E EE , E POPT, POP

+ | -. Similar replacements hold for T T*F | T/F and F (E). Finally the

productions E T, T F and F id are reduced to E a | b | c, T a | b | c

and F a | b | c respectively.
https://www.youtube.com/watch?v=_uNRMAU8t4I 6.57m

Self Assessment Exercise 1:

1) Put the following grammar into Chomsky Normal Form:

https://www.youtube.com/watch?v=_uNRMAU8t4I

CIT 342 Formal Languages and Automata Theory

S → ASB | ε

A → aAS | a

B → BbS | A | bb

C → aB | b

3.3 Non Context-Free Languages: Ogden's Lemma (The Pumping Lemma for

CFL)

A pumping lemma is a theorem used to show that, if certain strings belong to a language,

then certain other strings must also belong to the language. In this section we discuss a

pumping lemma for context-free languages

As with finite automata there is a version of the pumping lemma that demonstrates

certain languages are not context free. This theorem is often called Ogden's lemma after

its discoverer.

Theorem 2: Let G = (X, T, R, S) be a context-free language. Then there is an integer n =

n(G) for which every string x ∈L(G) having a length | x| greater than n can be written

x = uvwyz, (3)

and

1. vy (that is, v or y).

2. The length of vwy satisfies | vwy| n.

3. For each integer k ≥ 0, it follows that uvkwykz VL(G).

Proof:

Assume that G is in Chomsky normal form. For x VL(G) consider the (binary) syntax tree

for the derivation of x. Assume the height of this tree is h as illustrated in Figure 2.

Figure 2: Derivation Tree for the string x VL(G)

CIT 342 Formal Languages and Automata Theory

Then it follows that | x| 2h-2 + 2h-2 = 2h-1, i.e. the yield of the tree with height h is at

most 2h-1. If G has k nonterminal symbols, let n = 2k. Then let x VL(G) be a string with |

x| ≥ n. Thus the syntax tree for x has height at least k + 1, thus on the path from the root

downwards that defines the height of the tree there are at least k + 2 nodes, i.e. at least k +

1 nonterminal symbols. It then follows that there is some nonterminal symbol A that

appears at least twice. Consulting Figure 3, it is seen that the partial derivation S * uAz

* uvAyz obtains.

Figure 3: Nonterminal A appears twice in the derivation of x

If, now, both u and z were empty, then derivations of the form S uAz A would be

possible, contrary to the assumption of Chomsky normal form. For the same reason either v

or y are nonempty. If | vwy| > n then apply the procedure anew until the condition |

vwy| n holds. Finally, since the derivation A vAy can be repeated as often as one

pleases, it follows that S uAz *uvAyz *uv2Ay2z uv2wy2zi, etc. can be

generated. This completes the proof.

3.3.1 Using the Pumping Lemma

As mentioned earlier, the pumping lemma can be used to show that certain languages are

not context free. As an example, we will show that the language L = {aibici: i > 0} is not

context-free.

Example 3:

The language L = {aibici | i ≥ 1} is not context free.

Proof:

Assume L were context-free. Then let n be the n from the preceding theorem and put x =

anbncn. Ogden's lemma then provides the decomposition x = uvwyz with the stated

properties. There are several cases to consider.

Case 1: The string vy contains only a's. But then the string uwz ∈ L, which is impossible,

because it contains fewer a's than b's and c's.

Case 2,3: vy contains only b's or c's. This case is similar to case 1.

CIT 342 Formal Languages and Automata Theory

Case 4,5: vy contains only a's and b's or only b's or c's. Then it follows that uwz contains

more c's than a's and b's or more a's than b's and c's. This is again a contradiction.

Since | vwy| n it is not possible that vy contain a's and c's.

Example 4:

In this example the power of Ogden's lemma will be extended. The language L =

{aibjck | i < j < k} is not context-free.

Proof:

The pumping properties of Ogden's lemma are of little use here. Hence we return to the

syntax tree in the proof of the theorem. If, now, L were context-free then consider the

path in its syntax tree from the root to the leaf node containing the rightmost a. For

sufficiently large i there is likewise a nonterminal symbol A appearing twice on this path.

Then x = uamwyz for some m ≥ 0. There are 2 cases to be considered here.

Case 1: m = 0. Then the matching substring y cannot be empty. On the other hand the

theorem guarantees that |wy| i, hence all c's must be contained in z. But then y

contains at least one b, so for sufficiently large n the string uwynz belongs to L, which is

impossible, because for large enough n, this string will contain more b's than c's – contrary

to assumption.

Case 2: m ≥ 1. It then follows that

S * uAz * uamAyz * ua2mAy2z ...
 uanmwynz.

Now obviously y cannot contain more than one letter kind and this letter is either b or c. If

y contained only b's then the string uanmwynz would contain more a's than c's for n

sufficiently large. As similar argument holds if y contained only c's. In any case, a

contradiction is derived and thus the assumption that L is context-free is false.

3.4 Closure Properties of Context Free Languages

Proceeding by analogy, one would expect the closure theorems for regular languages to

generalize to CFLs. Surprisingly, not everything carries over. The following theorem,

however, articulates a property of context-free languages analogous to finite automata.

Theorem 3: The context-free languages are closed under the formation of:

 Union
 Concatenation
 Kleene star.

Proof:

Let G1 = (X1, T1, P1, S1) and G2 = (X2, T2, P2, S2) be context-free grammars. Without

loss of generality, it can be supposed that (X1 - T1) (X2 - T2) = . If not, then rewrite

the grammar rules of one with new nonterminal symbols. Let S be another nonterminal

CIT 342 Formal Languages and Automata Theory

symbol. Then set P = P1 ∪ P2 ∪ {S S1, S S2} and G= (X1 ∪X2 ∪{S}, T1 ∪T2, P, S).

It then follows that L(G) = L(G1) ∪ L(G2). Verifying the closure under concatenation and

Kleene star in a similar manner is left to you as an exercise.

The closure under intersection property is not quite exact.

Theorem 4: The intersection of a context-free language L1 and a regular language L2 is

context-free.

Proof:

If L1 is context-free then it is recognized by some pushdown automaton P = (X, Z1,S1, R1,

S1, F1). If L2 is a regular language, then it is recognized by a deterministic automaton A=

(X, Z2, f, S2, F2). Define a new PDA P’= (X, Z, S, R, SA, F) as follows: Z = Z1×Z2, S= S1,

SA = (S1, S2) and, finally, F = F1×F2. The transition relation R is obtained directly from

the transition relation of P and the transition function of A, viz. for every transition of Pof

the form ((a1, z1, S
’),(z1

’, S1
’)) ∈R1 and for each state z2 ∈Z2, put

((a1,(z1, z2), S1),((z1 , f (a, z2), S1)) ∈R

and for each -move of P of the form ((, z1, S1),(z1 , S1)) ∈R and z2 ∈Z2 put

((,(z1, z2), S1),((z1 , z2), S1)) ∈R,

or, stated in words, P’ passes from state (z1, z2) into state (z1 , z2) if and only if Ppasses

from z1 to z2 and A passes from z2 to z2 , i.e. x ∈L(P’)) if and only if x ∈L(P) L(A).

Theorem 5: The class of context-free languages is not closed under intersection and

complement.

Proof:

It is easy to see that the two languages

L1 = {anbncm | m.n ≥ 0}

and

L2 = {ambncn | m, n ≥ 0}

are context free. The intersection, however, L1 L2 = {anbncn | n ≥ 0} is not context-

free. From the complement identity

L1 L2 = L1 ∪ L2,

it is seen that the complements L1 and L2 are not in general context-free.

CIT 342 Formal Languages and Automata Theory

Self Assessment Exercise 2:

1. Show that { anbncn | n ≥ 0 } is not context free.
2. Show that { anbnci | i ≤ n } is not context free.
3. Show that { ssRs | s is a string of a's and b's } is not context free.

3.5 Parsing

There are two ways to use a grammar:

 Use the grammar to generate strings of the language. This is easy -- start with the
start symbol, and apply derivation steps until you get a string composed entirely of
terminals.

 Use the grammar to recognize strings; that is, test whether they belong to the
language. For CFGs, this is usually much harder.

A language is a set of strings, and any well-defined set must have a membership criterion.

A context-free grammar can be used as a membership criterion – if we can find a general

algorithm for using the grammar to recognize strings.

Parsing a string is finding a derivation (or a derivation tree) for that string.

Parsing a string is like recognizing a string. An algorithm to recognize a string will give us

only a yes/no answer; an algorithm to parse a string will give us additional information

about how the string can be formed from the grammar.

Generally speaking, the only realistic way to recognize a string of a context-free grammar is

to parse it.

3.5.1 Exhaustive Search Parsing

The basic idea of exhaustive search parsing is this: to parse a string w, generate all strings

in L and see if w is among them.

Problem: L may be an infinite language.

We need two things:

1. A systematic approach, so that we know we have not overlooked any strings, and
2. A way to stop after generating only a finite number of strings – knowing that, if we

have not generated w by now, we never will.

Systematic approaches are easy to find. Almost any exhaustive search technique will do.

We can (almost) make the search finite by terminating every search path at the point that it

generates a sentential form containing more than |w| terminals.

CIT 342 Formal Languages and Automata Theory

3.5.2 Grammars for Exhaustive Parsing

The idea of exhaustive search parsing for a string w is to generate all strings of length not

greater than |w|, and see whether w is among them. To ensure that the search is finite,

we need to make sure that we cannot get into an infinite loop applying productions that

don't increase the length of the generated string.

Note: for the time being, we will ignore the possibility that is in the language.

Suppose we make the following restrictions on the grammar:

 Every variable expands to at least one terminal. We can enforce this by disallowing

productions of the form A→.
 Every production either has at least one terminal on its right hand side (thus

directly increasing the number of terminals), or it has at least two variables (thus
indirectly increasing the number of terminals). In other words, we disallow
productions of the form A→B, where A and B are both variables.

With these restrictions,

 A sentential form of length n yields a sentence of length at least n.
 Every derivation step increases either the length of the sentential form or the

number of terminals in it.

 Hence, any string w ∈ L can be generated in at most 2|w|-1 derivation steps.
 We have shown that exhaustive search parsing is a finite process, provided that

there are no productions of the form A→ or A→B in the grammar. As discussed in
section 3.2 such productions can be removed from a grammar without altering the
language recognized by the grammar. There is, however, one special case we need
to consider.

 If belongs to the language, we need to keep the production S → . This creates a

problem if S occurs on the right hand side of some production, because then we have

a way of decreasing the length of a sentential form. All we need to do in this case is

to add a new start symbol, say S0, and to replace the production S→ with the pair of

productions

S0 →

S0→S

3.5.3 Efficient Parsing

Exhaustive search parsing is, of course, extremely inefficient. It requires time exponential

in |w|.

For any context-free grammar G, there are algorithms for parsing strings w ∈L(G) in time

proportional to the cube of |w|. This is still unsatisfactory for practical purposes.

CIT 342 Formal Languages and Automata Theory

There are ways to further restrict context-free grammars so that strings may be parsed in

linear or near-linear time. These restricted grammars are covered in courses in compiler

construction, but will not be considered here. All such methods do reduce the power of the

grammar, thus limiting the languages that can be recognized. There is no known linear or

near-linear algorithm for parsing strings of a general context-free grammar.

 4.0 CONCLUSION

In this unit you have been taken through some of the properties of CFL. It is expected that

with the knowledge you have gained in this unit, you will be able to determine if a

grammar is context-free or not and generate other strings that might belong to the

grammar. In the next unit, you will be learning about the class of automata that recognises

this class of grammars.

5.0 SUMMARY

In this unit, you learnt that:

 syntax trees are tree representations of derivations

 A grammar G is ambiguous if there exists some string w ∈L(G) for which there are

two or more distinct derivation trees

 An inherently ambiguous language is a language for which no unambiguous

grammar exists

 The context-free languages are closed under the formation of union, concatenation,
Kleene star.

 The class of context-free languages is not closed under intersection and
complement

 Parsing a string is finding a derivation (or a derivation tree) for that string

6.0 TUTOR-MARKED ASSIGNMENT

1) State the pumping lemma for CFL

b) With the aid of illustrative example, demonstrate how to use the pumping lemma to

show that a certain grammar is not context-free

2) Briefly explain the concept of ambiguity in grammars

3) Construct a CFG that generates the language { anbn | n ≥ 0 }.
4) Prove that the language generated by the grammar G below:

S ⇒ S (S)

 ⇒ S (S) (S)

 ⇒ (S) (S)

 ⇒ () (S)

CIT 342 Formal Languages and Automata Theory

 ⇒ () ()

 consists of all strings of balanced parentheses.

5) Construct a CFG that generates ELP = { wwR | w is any string of a's and b's }. This is the

language of even-length palindromes over the alphabet {a, b}. A palindrome is a string

that reads the same in both directions.
6) Prove that ELP is not a regular language.
7) Construct a CFG for all regular expressions over the alphabet {a, b}.

7.0 REFERENCES/FURTHER READING

 Alfred V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D. Ullmann (2007)

Compilers Principles, Techniques, & Tools Second Edition

 Crespi R.S., Breveglieri L. and Morzenti A.(2019) Formal Languages and

Compilation, Third Edition, Sprinwger, 2019.

 Daniel I.A. Cohen, () Introduction to Computer Theory, John Wiley Publisher

 GeeksforGeeks (2020). Closure Properties of Regular Languages.

 Goswami D., Krishna K. V. (2010). Formal Languages and Automata Theory.

 Hopcroft H.E. and Ullman J. D. ―Introduction to Automata Theory Languages and

Computation‖. Pearson Education

 John C Martin Introduction to languages and the Theory of Computation, John C

Martin, TMH.

 Kamala K. & Rama R () Introduction to Formal Languages , Automata Theory and

Computation –

 Kavi M. () Theory of Computation : A Problem – Solving Approach-, Wiley India

Pvt. Ltd.

 Lewis H.P. & Papadimition C.H. () Elements of Theory of Computation, Pearson

/PHI Publisher

 Linz P. (2012) An Introduction to formal languages and automata, Jones and Barlet

Learning Publishing

 Michael Sipser (2006). Introduction to the Theory of Computation. Thomson

Course Technology, 2nd edition Thomson Publishing

 Mishra K. L.P. and Chandrashekaran N. (2008) Theory of Computer Science –

Automata languages and computation -, 3rd edition, Prentice-Hall, India

 Moorthy D. S. R & Acharyulu G.V.S. (2015) Formal Languages and Automata

Theory

 Nielson F, Nielson HR & Hankin C. (2010) Principles of program analysis. Springer,

Berlin

 Stefano C. R., Luca B. &Angelo M. (2019) Formal Languages and Compilation. 3
rd

Edition, Springer Nature Switzerland AG 2019

 Torben A. M. (2010). Basics of Compiler Design (3rd Edition). Lulu Publishing.

 See https://en.m.wkipedia.org/wiki/Automata_theory

 See also: https://www.youtube.com/watch?v=ntrF_KxHn18 m3 u1
 https://www.youtube.com/watch?v=mX9lULtwO0s m3 u3

https://www.youtube.com/watch?v=ntrF_KxHn18
https://www.youtube.com/watch?v=mX9lULtwO0s

CIT 342 Formal Languages and Automata Theory

Module 3: Context-Free Languages

Unit 3: Pushdown Automata

CONTENTS

2.0 Introduction

3.0 Objectives

4.0 Main Content

3.1 Pushdown Automata

3.2.1 Nondeterministic Pushdown Automata (NPDA)

3.2.1.1 Transition Functions for NPDAs

3.2.1.2 Drawing NPDAs

3.2.1.3 NPDA Execution

3.2.1.4 Accepting Strings with an NPDA

3.2.1.5 Accepting Strings with an NPDA (Formal Version)

3.2.2 Deterministic Pushdown Automata

3.2.2.1 From a CFG to an equivalent PDA

3.2.2.2 From a PDA to an equivalent CFG

5.0 Conclusion

6.0 Summary

7.0 Tutor-Marked Assignment

8.0 References/Further Reading

2.0 INTRODUCTION

Having learnt about context-free languages and their properties in the previous

units of this module, in this unit you will be studying the machine that accepts

context-free languages, the pushdown automaton or PDA.

The finite-state automaton (FSA) and the pushdown automaton (PDA) enjoy a special

place in computer science. The FSA has proven to be a very useful model for many

practical tasks and deserves to be among the tools of every practicing computer

scientist. Many simple tasks, such as interpreting the commands typed into a keyboard

or running a calculator, can be modelled by finite-state machines. The PDA is a model

to which one appeals when writing compilers because it captures the essential

architectural features needed to parse context-free languages, languages whose

structure most closely resembles that of many programming languages.

A DFA (or NFA) is not powerful enough to recognize many context-free languages

because a DFA cannot count. But counting is not enough. Consider a language of

120

CIT 342 Formal Languages and Automata Theory

CIT 342 Formal Languages and Automata Theory

palindromes, containing strings of the form ww
R
. Such a language requires more than

an ability to count; it requires a stack.

A pushdown automaton (PDA) is basically an NFA with a stack added to it.

Now let us go through your study objectives for this unit.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

 Describe a pushdown automata

 Distinguish PDAs from FSAs

 Formally define a PDA

 Compare a DPDA and an NPDA

3.0 MAIN CONTENT

3.1 Pushdown Automata

This machine is fed input just as a finite automaton is. Some texts speak of the

input coming in on a read-only tape with a tape head that moves left to right until it

comes to the end of the input. At that point it reads a special character that marks a

blank tape cell. We will use the character or as a "blank". When the tape

head reads a blank the machine halts, or begins the process of halting (which will be

explained later.) The tape head may not reverse directions, nor may it be used to write

to the tape. The input tape is infinitely long in the rightward direction, which allows a

PDA to accept a finite input of any length. The cells of the tape are numbered, with

the first input character occurring in cell 1 where the tape head is set initially.

Figure 1: Conceptual Model of a Pushdown Automaton

CIT 342 Formal Languages and Automata Theory

CIT 342 Formal Languages and Automata Theory

In addition to the input tape, a PDA has an associated stack onto which it can push

characters to remember them. This stack has no limit to its size so the PDA can push

as many characters as it likes. The machine begins processing with an empty stack.

Typically the first thing the machine does is push a "bottom-of-the-stack marker" onto

the stack. We shall use the as that marker. Note that a PDA has two associated

alphabets, one containing characters that may appear on the input tape, the other

containing characters that may be pushed onto the stack. The two alphabets may be

the same but they do not have to be. We usually name the input alphabet and the

stack alphabet .

Basically, the input tape consists of a linear configuration of cells each of which

contains a character from an alphabet. This tape can be moved one cell at a time to the

left. The stack is also a sequential structure that has a first element and grows in either

direction from the other end. Contrary to the tape head associated with the input tape,

the head positioned over the current stack element can read and write special stack

characters from that position. The current stack element is always the top element of

the stack, hence the name ``stack''. The control unit contains both tape heads and finds

itself at any moment in a particular state.

Initially, we will not draw PDAs the way they are drawn in our textbook (but later we

will). Instead we will draw them much like finite automata, except for the labels we

use on the transitions. Each label will consist of three parts: the input character, the

character popped off of the top of the stack, and the characters that need to be pushed

onto the stack. For example, suppose we find the following transition in a PDA:

Figure 2: Transition in a PDA

This transition says that if we are in state 1 and there is an a in the current cell of the

input tape and we pop an A off the top of the stack, then we may go to state 2 and

must push the string AB onto the stack, pushing the A first and then the B. We may

use a in any of the three parts of the transition label. It always means that we do not

do the task that part of the label involves. In other words, a in place of an input

character means that we do not read from the tape. A in place of the character

popped off the stack means that we do not pop anything off the stack, and a in place

of the string to be pushed means that we do not push anything. We will discuss when

these ‘s make the machine nondeterministic later.

Here is a machine that accepts the language {a
n
b

n
| n 0}. The machine begins with its

input on the input tape and an empty stack. The first thing the machine does is go from

CIT 342 Formal Languages and Automata Theory

state 0 to state 1, pushing the bottom-of-the-stack marker onto the stack. In state 1, if

the machine reads an a from the input and pops the blank off the stack, then that is the

first a found in the input and the machine pushes the blank back onto the stack

followed by an A. The machine counts the a's in the input by pushing an A onto the

stack for each a that it reads off the tape. From this point on, if the PDA is in state 1

and it finds an a in the input, there will be an A to pop off the stack. The machine then

pushes two A's back on the stack, one to make up for the A that was popped and one

to count the a just found in the input. As soon as the machine sees a b in the input it

changes to state 2 and pops an A off the stack. It continues popping an A for each b

that it finds. If the input was a correctly formatted string, the machine will read a

blank off the input tape at the same time that it pops a blank off the stack and go to

state 3, an accept state. Since the language includes the empty string, we also have a

transition from state 1 to state 3 that is used if the machine reads a blank from the

input at the same time as it pops the marker off the stack at the very beginning of

processing.

Figure 3: Machine that accepts the language {a
n
b

n
| n 0}

https://www.youtube.com/watch?v=ntrF_KxHn18

The previous machine shows that PDAs have more power than FSAs because that

machine accepts a nonregular language, something that an FSA cannot do.

3.2 Types of PDAs

Like FSA, there are two types of PDAs:

 A deterministic PDA (DPDA) is one in which every input string has a unique

path through the machine.

 A nondeterministic PDA (NPDA) is one in which we may have to choose

among several paths for an input string.

We say that an input string is accepted if there is at least one path that leads to an

accept state. We shall see that a nondeterministic PDA is more powerful than a

deterministic one, unlike the situation with DFAs and NFAs. In other words, there are

languages that can be accepted by an NPDA that cannot be accepted by a DPDA. We

have this arrangement among languages accepted by the machines we have studied:

CIT 342 Formal Languages and Automata Theory

CIT 342 Formal Languages and Automata Theory

Here is a PDA that accepts the language PALINDROMEX over the alphabet {a,b,x}.

PALINDROMEX = {sxs
R
} where s is a string over {a,b} and s

R
is the reverse of s.

Figure 4: PDA that accepts the language {sxs
R
} over the alphabet {a,b,x}.

Note that the lambdas in the above machine do not make the machine

nondeterministic. There is only one path through the machine for any string, although

there is an implied trap state in the machine and a string's path may take it to that

implied trap state. For example, the string abxab will cause the machine to enter the

trap state when it reads the second a and pops a b off the stack. Some authors would

say that the machine "crashes" when such an event occurs, but regardless of how we

describe the situation, it results in the same thing, nonacceptance of the string.

The x's in the strings of PALINDROMEX are essential to our ability to recognize the

language with a deterministic machine. Without the x we would not know when to

change states. Consider the language ODDPALINDROME which contains all odd

length palindromes over {a,b}. By changing the label (x, ;) to the two labels

(a, ;) and (b, ;), we have an NPDA that recognizes ODDPALINDROME.

Figure 5: NPDA that recognizes ODDPALINDROME

CIT 342 Formal Languages and Automata Theory

This machine is nondeterministic because from state 1, when there is an a in the input,

the machine can either stay in state 1 and not pop the stack or it can go to state 2 and

not pop the stack. Similarly, the machine has two choices if it reads a b and it is in

state 1.

Now consider a machine for EVENPALINDROME = {ssR}. There is no middle

character in an even-length palindrome, so the label on the transition from the first

state to the second is labeled with (, ;). This is like a -transition in an FA, in that

the machine does not read any input or pop the stack when it takes this transition.

Figure 6: NPDA that recognizes EVENPALINDROME {ss

R
}

Formally, a PDA is defined as a 7-tuple or collection of seven things:

 an alphabet of input letters

 an input tape containing an input string followed by

 an alphabet of stack letters

 a pushdown stack, initially empty

 one start state

a set of accept states

a transition function

From now on, the default type of PDA is a nondeterministic PDA, so the acronym

PDA implies that the machine may be nondeterministic. If we want to say that the

machine definitely is nondeterministic we will affix the N and label it an NPDA.

Here is a theorem whose proof should seem rather obvious to you.

Theorem 1: For any regular language there is a DPDA that accepts it.

Proof: A finite state machine is simply a PDA that does not make use of its stack.

Given a regular language we can create a DPDA to accept it as follows: First create a

DFA for the regular language, then change its transition labels so that instead of

125

Comment [GO2]: added by me

CIT 342 Formal Languages and Automata Theory

simply an input character, each transition is labelled with an input character and two

lambdas in place of the pop and push characters. QED

You should note that henceforth in this course, PDAs will be drawn as they are drawn

in the texts.

3.2.1 Nondeterministic Pushdown Automata (NPDA)

As stated earlier, a nondeterministic pushdown automaton (NPDA) is basically an

NFA with a stack added to it.

We therefore start the formal definition of NPDA with the formal definition of an

NFA, which is a 5-tuple, and add two things to it:

 is a finite set of symbols called the stack alphabet, and

z is the stack start symbol.

We also need to modify , the transition function, so that it manipulates the stack.

A nondeterministic pushdown automaton or NPDA is, therefore, a 7-tuple

M = (Q, , , , q0, z, F)
where

 Q is a finite set of states,

is a the input alphabet,

is the stack alphabet,

 is a transition function,
 q0 Q is the initial state,

 z is the stack start symbol, and

 F Q is a set of final states.

3.2.1.1 Transition Functions for NPDAs

The transition function for an NPDA has the form

: Q ({ }) finite subsets of Q *

is now a function of three arguments. The first two are the same as before: the state,

and either or a symbol from the input alphabet. The third argument is the symbol on

top of the stack. Just as the input symbol is "consumed" when the function is applied,

the stack symbol is also "consumed" (removed from the stack).

Note that while the second argument may be rather than a member of the input

alphabet (so that no input symbol is consumed), there is no such option for the third

argument. always consumes a symbol from the stack; no move is possible if the

stack is empty.

CIT 342 Formal Languages and Automata Theory

In the deterministic case, when the function i s applied, the automaton moves to a

new state q Q and pushes a new string of symbols x * onto the stack. Since we are

dealing with a nondeterministic pushdown automaton, the result of applying is a

finite set of (q, x) pairs. If we were to draw the automaton, each such pair would be

represented by a single arc.

As with an NFA, we do not need to specify f or every possible combination of

arguments. For any case where is not specified, the transition is to Q, the empty

set of states.

3.2.1.2 Drawing NPDAs

NPDAs are not usually drawn. However, with a few minor extensions, we can draw

an NPDA similar to the way we draw an NFA.

Instead of labelling an arc with an element of , we can label arcs with a/x,y where

a , x , and y *.

Example 1:

Consider the following NPDA

(Q={q0,q1,q2,q3}, ={a,b}, ={0,1}, , q0, z=0, F={q3})

Where

(q0, a, 0) = {(q1, 10), (q3,)}

(q0, , 0) = {(q3,)}

(q1, a, 1) = {(q1, 11)}

(q1, b, 1) = {(q2,)}

(q2, b, 1) = {(q2,)}

(q2, , 0) = {(q3,)}

This NPDA can be drawn as

CIT 342 Formal Languages and Automata Theory

Note: the top of the stack is considered to be to the left, so that, for example, if we get

an a from the starting position, the stack changes from to .

3.2.1.3 NPDA Execution

Suppose someone is in the middle of stepping through a string with a DFA, and we

need to take over and finish the job. We will need to know two things:

(1) the state the DFA is in, and

(2) what the remaining input is.

But if the automaton is an NPDA instead of a DFA, we also need to know

(3) the contents of the stack.

An instantaneous description of a pushdown automaton is a triplet (q, w, u), where

 q is the current state of the automaton,

 w is the unread part of the input string, and

 u is the stack contents (written as a string, with the leftmost symbol at the top

of the stack).

Let the symbol " " indicate a move of the NPDA, and suppose that (q1, a, x) = {(q2,
y), ...}. Then the following move is possible:

(q1, aW, xZ) (q2, W, yZ)

where W indicates the rest of the string following the a, and Z indicates the rest of the
stack contents underneath the x. This notation says that in moving from state q1 to

state q2, an a is consumed from the input string aW, and the x at the top (left) of the

stack xZ is replaced with y, leaving yZ on the stack.

3.2.1.4 Accepting Strings with an NPDA

Suppose you have the NPDA M = (Q, , , , q0, z, F). How do you use this NPDA
to recognize strings?

To recognize string w, begin with the instantaneous description

(q0, w, z)

where

 q0 is the start state,
 w is the entire string to be processed, and

 z is the start stack symbol.

Starting with this instantaneous description, make zero or more moves, just as you

would with an NFA. There are two kinds of moves that you can make:

CIT 342 Formal Languages and Automata Theory

 -transitions. If you are in state q1, x is the top (leftmost) symbol in the stack,

and (q1, , x) = {(q2, w2), ...}, then you can replace the symbol x with the

string w2 and move to state q2.

 Nonempty transitions. If you are in state q1, a is the next unconsumed input

symbol, x is the top (leftmost) symbol in the stack, and (q1, a, x) = {(q2, w2),

...}, then you can remove the a from the input string, replace the symbol x with

the string w2, and move to state q2.

If you are in a final state when you reach the end of the string (and maybe make some

transitions after reaching the end), then the string is accepted by the NPDA. It does

not matter what is on the stack.

As usual with nondeterministic machines, the string is accepted if there is any way it

could be accepted. We can take a guess. Every time we have to make a choice, our
guess might result into a right choice that will make us to end in a final state.

Example 2: (NPDA Execution)

Consider the following NPDA:

(q0, a, 0) = {(q1, 10), (q3,)}

(q0, , 0) = {(q3,)}

(q1, a, 1) = {(q1, 11)}

(q1, b, 1) = {(q2,)}

(q2, b, 1) = {(q2,)}

(q2, , 0) = {(q3,)}

We can recognize the string aaabbb by the following sequence of moves:

(q0, aaabbb, 0)

(q1, aabbb, 10)

(q1, abbb, 110)

(q1, bbb, 1110)

(q2, bb, 110)

(q2, b, 10)

(q2, , 0)

(q3, ,).

129

CIT 342 Formal Languages and Automata Theory

CIT 342

Since q3

3.2.1.5

Formal Languages and Automata Theory

 F, the string is accepted.

Accepting Strings with an NPDA (Formal Version)

We have the notation " " to indicate a single move of an NPDA. We will also use

" " to indicate a sequence of zero or more moves, and we will use " " to indicate a

sequence of one or more moves.

If M = (Q, , , , q0, z, F) is an NPDA, then the language accepted by M, L(M), is

given by

L(M) = {w *: (q0, w, z) (p, , u), p F, u *}.

You should understand this notation.

3.2.2 Deterministic Pushdown Automata

A nondeterministic finite acceptor differs from a deterministic finite acceptor in two

ways:

 The transition function is single-valued for a DFA, multi-valued for an NFA.

 An NFA may have -transitions.

A nondeterministic pushdown automaton differs from a deterministic pushdown

automaton (DPDA) in almost the same ways:

 The transition function is at most single-valued for a DPDA, multi-valued for

an NPDA.

Formally: | (q, a, b)| = 0 or 1,

for every q Q, a { }, and b .

 Both NPDAs and DPDAs may have -transitions; but a DPDA may have a -

transition only if no other transition is possible.

Formally: If (q, , b) ,

then (q, c, b) = for every c .

A deterministic context-free language is a language that can be recognized by a

DPDA.

The deterministic context-free languages are a proper subset of the context-free

languages.

CIT 342 Formal Languages and Automata Theory

3.2.2.1

From a CFG to an equivalent PDA

Given a CFG G, we can construct a PDA P such that N(P) = L(G). The PDA will

simulate leftmost derivations of G.

Algorithm to construct a PDA for a CFG

Input: a CFG G = (V, T, Q, S).

Output: a PDA P such that N(P) = L(G).

Method: Let P = ({q}, T, V ∪ T, δ, q, S) where:

1. δ(q, ε, A) = {(q, β) | A → β is in Q } for each nonterminal A in V.

2. δ(q, a, a) = {(q, ε)} for each terminal a in T.

For a given input string w, the PDA simulates a leftmost derivation for w in G.

We can prove that N(P) = L(G) by showing that w is in N(P) iff w is in L(G):

 If part: If w is in L(G), then there is a leftmost derivation

 S = γ1 ⇒ γ2 ⇒ ... ⇒ γn = w

We show by induction on i that P simulates this leftmost derivation by

the sequence of moves
(q, w, S) |–* (q, yi, αi)

such that if γi = xiαi, then xiyi = w.

 Only-if part: If (q, x, A) |–* (q, ε, ε), then A ⇒* x.

We can prove this statement by induction on the number of moves made

by P.

3.2.2.2 From a PDA to an equivalent CFG

Given a PDA P, we can construct a CFG G such that L(G) = N(P). The basic idea of

the proof is to generate the strings that cause P to go from state q to state p, popping a

symbol X off the stack, by a nonterminal of the form [qXp].

Algorithm to construct a CFG for a PDA

Input: a PDA P = (Q, Σ, Γ, δ, q0, Z0, F).

Output: a CFG G = (V, Σ, R, S) such that L(G) = N(P).

Method:

CIT 342 Formal Languages and Automata Theory

1. Let the nonterminal S be the start symbol of G. The other nonterminals in V

will be symbols of the form [pXq] where p and q are states in Q, and X is a

stack symbol in Γ.

2. The set of productions R is constructed as follows:
 For all states p, R has the production S → [q0Z0p].

 If δ(q, a, X) contains (r, Y1Y2 … Yk), then R has the productions

[qXrk] → a[rY1r1] [r1Y2r2] … [rk-1Ykrk]

for all lists of states r1, r2, … , rk.

We can prove that [qXp] ⇒* w iff (q, w, X) |–* (p, ε, ε).

From this, we have [q0Z0p] ⇒* w iff (q0, w, Z0) |–* (p, ε, ε), so we can conclude
L(G) = N(P).

Self Assessment II

1) Construct a PDA P from G below such that N(P) = L(G). Show how your PDA

accepts ababab.

G: S → SS | AB | AC
A → a

B → b

C → SB

2) Let L be the set of palindromes over {a, b} containing an equal number a‘s

and b‘s. Is L context free? If yes, give a CFG for L. If no, prove L is not

context free.

4.0 CONCLUSION

In this unit you have been taken through PDAs, the class of automata that recognises

context-free languages, the different types and how these types differ. In the next unit,

which is the concluding unit of this module, you will be learning more about CFGs

and NPDAs.

5.0 SUMMARY

In this unit, you learnt that:

 PDAs have more power than FSAs

 a PDA is basically an NFA with a stack added to it

 An instantaneous description of a pushdown automaton is a triplet

 there are two types of PDAs

132

CIT 342 Formal Languages and Automata Theory

CIT 342 Formal Languages and Automata Theory

 A deterministic PDA (DPDA) is one in which every input string has a unique

path through the machine.

 A nondeterministic PDA (NPDA) is one in which we may have to choose

among several paths for an input string.

 an input string is accepted if there is at least one path that leads to an accept

state

 A nondeterministic finite acceptor differs from a deterministic finite acceptor in

two ways

 A deterministic context-free language is a language that can be recognized by a

DPDA.

 The deterministic context-free languages are a proper subset of the context-free

languages

6.0 TUTOR-MARKED ASSIGNMENT

1. Formally define a PDA.

2. Briefly describe the operations and features of a PDA. How is it different from

an FSA?

3. Distinguish between DPDA and NPDA. Which is more powerful

4. Construct a PDA that accepts { wcwR | w is any string of a's and b's } by final

state.

5. Construct a PDA that accepts { wcwR | w is any string of a's and b's } by empty

stack.

6. Construct a PDA that accepts { wwR | w is any string of a's and b's } by final

state.

7. Construct a PDA that accepts { wwR | w is any string of a's and b's } by empty

stack.

8. Construct a PDA P such that N(P) = L(G) where G is S → (S)S | ε.

7.0 REFERENCES/FURTHER READING

 Alfred V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D. Ullmann (2007)

Compilers Principles, Techniques, & Tools Second Edition

 Crespi R.S., Breveglieri L. and Morzenti A.(2019) Formal Languages and

Compilation, Third Edition, Sprinwger, 2019.

 Daniel I.A. Cohen, () Introduction to Computer Theory, John Wiley Publisher

 GeeksforGeeks (2020). Closure Properties of Regular Languages.

 Goswami D., Krishna K. V. (2010). Formal Languages and Automata Theory.

 Hopcroft H.E. and Ullman J. D. ―Introduction to Automata Theory Languages and

Computation‖. Pearson Education

 John C Martin Introduction to languages and the Theory of Computation, John C

Martin, TMH.

CIT 342 Formal Languages and Automata Theory

 Kamala K. & Rama R () Introduction to Formal Languages , Automata Theory and

Computation –

 Kavi M. () Theory of Computation : A Problem – Solving Approach-, Wiley India

Pvt. Ltd.

 Lewis H.P. & Papadimition C.H. () Elements of Theory of Computation, Pearson

/PHI Publisher

 Linz P. (2012) An Introduction to formal languages and automata, Jones and Barlet

Learning Publishing

 Michael Sipser (2006). Introduction to the Theory of Computation. Thomson

Course Technology, 2nd edition Thomson Publishing

 Mishra K. L.P. and Chandrashekaran N. (2008) Theory of Computer Science –

Automata languages and computation -, 3rd edition, Prentice-Hall, India

 Moorthy D. S. R & Acharyulu G.V.S. (2015) Formal Languages and Automata

Theory

 Nielson F, Nielson HR & Hankin C. (2010) Principles of program analysis. Springer,

Berlin

 Stefano C. R., Luca B. &Angelo M. (2019) Formal Languages and Compilation. 3
rd

Edition, Springer Nature Switzerland AG 2019

 Torben A. M. (2010). Basics of Compiler Design (3rd Edition). Lulu Publishing.
 https://www.youtube.com/watch?v=ntrF_KxHn18 m3 u1
 https://www.youtube.com/watch?v=mX9lULtwO0s m3 u3

https://www.youtube.com/watch?v=ntrF_KxHn18
https://www.youtube.com/watch?v=mX9lULtwO0s

CIT 342 Formal Languages and Automata Theory

Module 4: Turing Machines

Unit 1: Turing Machines and the rest

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content

3.1 Turing Machines and the rest

3.2 What is a Turing machine?
3.3 Universal Turing Machine

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

This is the concluding module of this course and here you will be learning about the

Turing machine; the machine for decidable languages.

A basic Turing machine is a model for studying computation. Turing machines can solve

decision problems and compute results based on inputs. When studying computation we

usually restrict our attention to integers. Since a real number has infinitely many fraction

digits we cannot compute a real number in a finite time. Rational numbers are

approximations to real numbers are equivalent and can be put in one-to-one correspondence

with the integers.

Programming a Turing machine is tedious and thus much work at higher levels of

abstraction make the reasonable assumption that any completely defined algorithm or

computer program could be implemented by a Turing machine.

Now let us go through your study objectives for this unit.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

 Define a Turing machine

 Distinguish between Turing machine and other classes of machines for language
recognition discussed so far in this course

CIT 342 Formal Languages and Automata Theory

 Describe the best way to code a Turing machine

3.0 MAIN CONTENT

3.1 Turing Machines and the Rest

A Turing machine (TM) is a generalization of a PDA which uses a tape instead of a stack.

Turing machines are an abstract version of a computer - they have been used to define

formally what is computable. There are a number of alternative approaches to formalize the

concept of computability (e.g. called the -calculus, or -recursive functions, ...) but they

can all be shown to be equivalent. That this is the case for any reasonable notion of

computation is called the Church-Turing Thesis.

On the other side there is a generalization of context-free grammars called phrase
structure grammars or just grammars. Here we allow several symbols on the left
hand side of a production, e.g. we may define the context in which a rule is
applicable. Languages definable by grammars correspond precisely to the ones which
may be accepted by a Turing machine and those are called Type-0-languages or the
recursively enumerable languages.
(see https://www.youtube.com/watch?v=mX9lULtwO0s (3 minutes))

Turing machines behave different from the previous machine classes we have

seen/discussed: they may run forever, without stopping. To say that a language is accepted

by a Turing machine means that the TM will stop in an accepting state for each word which

is in the language. However, if the word is not in the language the Turing machine may stop

in a non-accepting state or loop forever. In this case we can never be sure whether the given

word is in the language – i.e. the Turing machine does not decide the word problem.

We say a language is decidable, if there is a TM which will always stop. There are type-0-

languages which are not decidable – the most famous one is the halting problem (this will

be fully discussed in the next unit). This is the language of encodings of Turing machines

which will always stop.

There is no type of grammars which captures all decidable languages (and for theoretical

reasons there cannot be one). However there is a subset of decidable languages which are

called context-sensitive languages which are given by context-sensitive grammars, these are

grammars where the left hand side of a production is always shorter than the right hand

side. Context-sensitive languages on the other hand correspond to linear bounded TMs,

these are TMs which use only a tape whose length can be given by a linear function over

the length of the input.

3.2 What is a Turing machine?

A Turing machine M = (Q, , , , q0, B, F) is given by the following data

 A finite set Q of states,

 A finite set of symbols (the alphabet),

https://www.youtube.com/watch?v=mX9lULtwO0s

CIT 342 Formal Languages and Automata Theory

 A finite set of tape symbols s.t. . This is the case because we use the tape
also for the input.

 A transition function: ∈ Q× → {stop} ∪ Q × × {L,R}

The transition function defines how the function behaves if is in state q and the symbol on

the tape is x. If (q, x) = stop then the machine stops otherwise if (q,x) = (q’, y, d) the

machines gets into state q’, writes y on the tape (replacing x) and moves left if d = L or

right, if d = R.

 An initial state q0 ∈ Q,

 The blank symbol B∈ but B ∉ . In the beginning only a finite section of the tape
containing the input is not blank.

 A set of final states F Q.

In most texts the transition function is defined without the stop option as

 ∈ Q× → {stop}Q × × {L,R}.

However they allow to be undefined which correspond to our function returning stop.

This defines deterministic Turing machines. For non-deterministic TMs we change the

transition function to

 ∈ Q× → P(Q × × {L,R})

Here stop corresponds to returning an empty string. As for finite automata (and unlike

for PDAs) there is no difference in the strength of deterministic or non-deterministic TMs.

As for PDAs we define instantaneous descriptions ID for Turing machines. We have ID =

* × Q × * where (, q, r) means that the TM is in state q and left from the head the

non-blank part of the tape is and starting with the head itself and all the non-blank

symbols to the right is r.

We define the next state relation M similar as for PDAs:

1. if

2. if

3. if

4. if

The cases 3. and 4. are only needed to deal with the situation if we have reached the end

of the (non-blank part of) the tape.

CIT 342 Formal Languages and Automata Theory

We say that a TM M accepts a word if it goes into an accepting state, i.e. the language of a

TM is defined as

i.e. the TM stops automatically if it goes into an accepting state. However, it may also stop

in a non-accepting state if returns stop – in this case the word is rejected.

A TM decides a language if it accepts it and it never loops (in the negative case).

To illustrate this we define a TM which accepts the language L = a
n
b

n
c

n
 |n ∈ℕ– this is a

language which cannot be recognized by a PDA or be defined by a CFG.

We define M = (Q, , , , q0, B, F) by

is given by

CIT 342 Formal Languages and Automata Theory

The machine replaces an a by X(q0) and then looks for the first b replaces it by Y(q1) and

looks for the first c and replaces it by a Z(q2). If there are more cs left it moves left to the

next a (q4) and repeats the cycle. Otherwise it checks whether there are no as and bs left

(q5) and if so goes in an accepting state (q6).

E.g. consider the sequence of IDs on aabbcc:

CIT 342 Formal Languages and Automata Theory

We see that accepts aabbcc. Since never loops it does actually decide .

There are a lot of possible Turing machines and a useful technique is to code Turing

machines as binary integers. A trivial coding is to use the 8 bit ASCII for each character in

the written description of a Turing machine concatenated into one long bit stream.

Having encoded a specific Turing machine as a binary integer, we can talk about TMi as the

Turing machine encoded as the number "i".

It turns out that the set of all Turing machines is countable and enumerable.

3.3. Universal Turing Machine

Now we can construct a Universal Turing Machine (UTM) that takes an encoded Turing

machine on its input tape followed by normal Turing machine input data on that same input

tape. The Universal Turing Machine first reads the description of the Turing machine on the

input tape and uses this description to simulate the Turing machines actions on the

following input data. Of course a UTM is a TM and can thus be encoded as a binary integer,

so a UTM can read a UTM from the input tape, read a TM from the input tape, then read the

input data from the input tape and proceed to simulate the UTM that is simulating the TM.

etc.

Since a UTM can be represented as an integer and can thus also be the input data on the

input tape of itself or another Turing machine. This will be used in the next unit in the

Halting Problem

4.0 CONCLUSION

In this unit you have been introduced to Turing machines. This is the class of machines that

can recognise any string from any language. They can recognise strings that the earlier

CIT 342 Formal Languages and Automata Theory

machines/automata discussed in this course so far cannot recognise. In the next unit you

will be learning more about the class of languages recognised by this machine.

5.0 SUMMARY

In this unit, you learnt that:

 A TM decides a language if it accepts it and it never loops

 A language is decidable, if there is a TM which will always stop

 A Turing machine (TM) is a generalization of a PDA which uses a tape instead of a
stack.

 Turing machines are an abstract version of a computer

 A language is accepted by a Turing machine means that the TM will stop in an
accepting state for each word which is in the language

 There is no type of grammars which captures all decidable languages

 the set of all Turing machines is countable and enumerable

6.0 TUTOR-MARKED ASSIGNMENT

1. Define Turing machine
2. How is a Turing machine different from the other machines discussed so far in this

course?
3. What does it mean to say a language is accepted by a Turing machine?
4. Design a Turing machine that accepts all strings of a's and b's with an equal number of a's and b's.

Show the sequence of moves your Turing machine makes on the input aabb

7.0 REFERENCES/FURTHER READING

 Alfred V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D. Ullmann (2007)

Compilers Principles, Techniques, & Tools Second Edition

 Crespi R.S., Breveglieri L. and Morzenti A.(2019) Formal Languages and

Compilation, Third Edition, Sprinwger, 2019.

 Daniel I.A. Cohen, () Introduction to Computer Theory, John Wiley Publisher

 GeeksforGeeks (2020). Closure Properties of Regular Languages.

 Goswami D., Krishna K. V. (2010). Formal Languages and Automata Theory.

 Hopcroft H.E. and Ullman J. D. ―Introduction to Automata Theory Languages and

Computation‖. Pearson Education

 John C Martin Introduction to languages and the Theory of Computation, John C

Martin, TMH.

CIT 342 Formal Languages and Automata Theory

 Kamala K. & Rama R () Introduction to Formal Languages , Automata Theory and

Computation –

 Kavi M. () Theory of Computation : A Problem – Solving Approach-, Wiley India

Pvt. Ltd.

 Lewis H.P. & Papadimition C.H. () Elements of Theory of Computation, Pearson

/PHI Publisher

 Linz P. (2012) An Introduction to formal languages and automata, Jones and Barlet

Learning Publishing

 Michael Sipser (2006). Introduction to the Theory of Computation. Thomson

Course Technology, 2nd edition Thomson Publishing

 Mishra K. L.P. and Chandrashekaran N. (2008) Theory of Computer Science –

Automata languages and computation -, 3rd edition, Prentice-Hall, India

 Moorthy D. S. R & Acharyulu G.V.S. (2015) Formal Languages and Automata

Theory

 Nielson F, Nielson HR & Hankin C. (2010) Principles of program analysis. Springer,

Berlin

 Stefano C. R., Luca B. &Angelo M. (2019) Formal Languages and Compilation. 3
rd

Edition, Springer Nature Switzerland AG 2019

 Torben A. M. (2010). Basics of Compiler Design (3rd Edition). Lulu Publishing.

 https://www.youtube.com/watch?v=mX9lULtwO0s m3 u3

https://www.youtube.com/watch?v=mX9lULtwO0s

CIT 342 Formal Languages and Automata Theory

Module 4: Turing Machines

Unit 2: Turing Machines and Context-Sensitive Grammars

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content

3.1 Grammars and Context-Sensitivity

3.2 The Halting Problem
 3.2.1 The Halting Problem for Turing machines.

3.3 Decision Problems

3.4 Godel Incompleteness Theorem

3.5 Unsolvable

3.6 Undecidable
4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

In this unit you will be learning about the Turing machine. The machine for decidable

languages.

A basic Turing machine is a model for studying computation. Turing machines can solve

decision problems and compute results based on inputs. When studying computation we

usually restrict our attention to integers. Since a real number has infinitely many fraction

digits we cannot compute a real number in a finite time. Rational numbers are

approximations to real numbers are equivalent and can be put in one-to-one correspondence

with the integers.

Programming a Turing machine is tedious and thus much work at higher levels of

abstraction make the reasonable assumption that any completely defined algorithm or

computer program could be implemented by a Turing machine.

Now let us go through your study objectives for this unit.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

 Define context-sensitive grammars

CIT 342 Formal Languages and Automata Theory

 Distinguish context-sensitive grammars from others that have been discussed so
far in this course

 Briefly explain the halting problem

 State Godel’s incompleteness theorem

 Define the following with respect to TM:
o Unsolvable
o Undecidabled

3.0 MAIN CONTENT

3.1 Grammars and Context-Sensitivity

Grammars G = (V, , S, P) are defined as context-free grammars before with the only

difference that there may be several symbols on the left-hand side of a production, i.e. P

(V∪T)
+
 × (V∪T)*. Here (V∪T)

+
 means that at least one symbol has to be present. The

relation derives G(and *G) is defined as before :

G (V∪T)* × (V∪T)*

 G ’ : → ’ ∈ P

and as before the language of P is defined as:

L(G) = {w ∈ * | S *G w}

We say that a grammar is context-sensitive (or type 1) if the left hand side of a production is

at least as long as the right hand side. That is for each → ∈ P we have || | |

Here is an example of a context-sensitive grammar G = (V, , S, P): with L(G) = {{a
n
b

n
c

n
 |

n ∈ ℕ ∧ n ≥ 1}. where

V = {S, B, C}

 = {a, b, c}

P = { S → aSBC

 S → aBC

 aB → ab

 CB → BC

 bB → bB

CIT 342 Formal Languages and Automata Theory

 bC → bc

 cC → cc}

We present without proof:

Theorem 1: For a language L * the following is equivalent:

1. L is accepted by a Turing machine M, i.e. L = L(M)
2. L is given by a grammar G, i.e. L = L(G)

Theorem 2: For a language L * the following is equivalent:

1. L is accepted by a Turing machine M, i.e. L = L(M) such that the length of the tape is
bounded by a linear function in the length of the input, i.e.

|| + |r| (x) where (x) = ax + b with a, b ∈ N.

2. L is given by a context sensitive grammar G, i.e. L = L(G)

3.2 The Halting Problem

Turing showed that there are languages which are accepted by a TM (i.e. type 0 languages)

but which are undecidable. The technical details of this construction are quite involved but

the basic idea is quite simple and is closely related to Russell's paradox, which we have

seen in MCS.

The "Halting Problem" is a very strong, provably correct, statement that no one will ever be

able to write a computer program or design a Turing machine that can determine if a

arbitrary program will halt (stop, exit) for a given input.

This is NOT saying that some programs or some Turing machines cannot be analyzed to

determine that they, for example, always halt.

The Halting Problem says that no computer program or Turing machine can determine if

ALL computer programs or Turing machines will halt or not halt on ALL inputs. To prove

the Halting Problem is unsolvable we will construct one program and one input for which

there is no computer program or Turing machine.

We will use very powerful mathematical concepts and do the proofs for both a computer

program and a Turing machine. The mathematical concepts we need are:

1. Proof by contradiction: Assume a statement is true, show that the assumption

leads to a contradiction. Thus the statement is proven false.

2. Self referral: Have a computer program or a Turing machine operate on itself,

well, a copy of itself, as input data. Specifically we will use diagonalization, taking

the enumeration of Turing machines and using TMi as input to TMi.

CIT 342 Formal Languages and Automata Theory

3. Logical negation: Take a black box that accepts input and outputs true or false, put

that black box in a bigger black box that switches the output so it is false or true

respectively.

The simplest demonstration of how to use these mathematical concepts to get an unsolvable

problem is to write on the front and back of a piece of paper "The statement on the back of

this paper is false."

Starting on side 1, you could choose "True" and thus deduce side 2 is "False". But starting

on side 2, which is exactly the same as side 1, you get that side 2 is "True" and side 1 is

"False."

Since side 1, and side 2, can be both "True" and "False" there is a contradiction. The

problem of determining if sides 1 and 2 are "True" or "False" is unsolvable.

The Halting Problem for a programming language. We will use the "C" programming

language, yet any language will work.

 Assumption: There exists a way to write a function named Halts such that:

 int Halts(char * P, char * I)

 {

 /* code that reads the source code for a "C" program,

P,

 determines that P is a legal program, then

determines if P

 eventually halts (or exits) when P reads the input

string I,

 and finally sets a variable "halt" to 1 if P halts

on input I,

 else sets "halt" to 0 */

 return halt;

 }

 Construct a program called Diagonal.c as follows:

 int main()

 {

 char I[100000000]; /* make as big as you want or

use malloc */

 read_a_C_program_into(I);

 if (Halts(I,I)) { while(1){} } /* loop forever,means

does not halt */

 else return 1;

 }

 Compile and link Diagonal.c into the executable program Diagonal.

 Now execute

CIT 342 Formal Languages and Automata Theory

 Diagonal < Diagonal.c

 Consider two mutually exclusive cases:

 Case 1: Halts(I,I) returns a value 1.

 This means, by the definition of Halts, that Diagonal.c halts when given the input

Diagonal.c.

BUT! we are running Diagonal.c (having been compiled and linked) and so we

see that Halts(I,I) returns a value 1 causes the "if" statement to be true and the

"while(1){}" statement to be executed, which never halts, thus our executing

Diagonal.c does NOT halt.

This is a contradiction because this case says that Diagonal.c does halt when given

input Diagonal.c. We will try the other case.

 Case 2: Halts(I,I) returns a value 0.

 This means, by the definition of halts, that Diagonal.c does NOT halt when given

the input Diagonal.c.

BUT! we are running Diagonal.c (having been compiled and linked) and so we

see that Halts(I,I) returns a value 0 causes the "else" to be executed and the main

function halts (stops, exits).

This is a contradiction because this case says that Diagonal.c does NOT halt when

given input Diagonal.c. There are no other cases, Halts can only return 1 or 0.

Thus what must be wrong is our assumption "there exists a way to write a function

named Halts..."

3.2.1 The Halting Problem for Turing machines.

Assumption: There exists a Turing machine, TMh, such that: When the input tape contains

the encoding of a Turing machine, TMj followed by input data k, TMh accepts if TMj halts

with input k and TMh rejects if TMj is not a Turing machine or TMj does not halt with input

k.

Note that TMh always halts and either accepts or rejects.

Pictorially TMh is:

 +----------------------------

 | encoded TMj B k BBBBB ...

 +----------------------------

 ^ read and write, move left and right

 |

 | +-----+

 | | |--> accept

 +--+ FSM | always halts

CIT 342 Formal Languages and Automata Theory

 | |--> reject

 +-----+

Figure 1: Pictorial representation of TMh

We now use the machine TMh to construct another Turing machine TMi.

 We take the Finite State Machine, FSM, from TMh and

 1) make none of its states be final states

 2) add a non-final state ql that on all inputs goes to ql

 3) add a final state qf that is the accepting state

 Pictorially TMi is:

 +---

 | encoded TMj B k BBBBB ...

 +---

 ^ read and write, move left and right

 |

 | +----------------------------------+

 | | __ |

 | | / \ 0,1 |

 | | +-| ql |--+ |

 | | +-----+ | ___/ | |

 | | | |--> accept-+ ^ | |

 +--+-+ FSM | |_____| | may

not halt

 | | |--> reject-+ _ |

 | +-----+ | // \\ |

 | +-||qf ||------|--> accept

 | _// |

 +----------------------------------+

Figure 2: Pictorial representation of TMi

We now have Turing machine TMi operate on a tape that has TMi as the input machine and

TMi as the input data.

 +---

 | encoded TMi B encoded TMi BBBBB ...

 +---

 ^ read and write, move left and right

 |

 | +----------------------------------+

 | | __ |

 | | / \ 0,1 |

CIT 342 Formal Languages and Automata Theory

 | | +-| ql |--+ |

 | | +-----+ | ___/ | |

 | | | |--> accept-+ ^ | |

 +--+-+ FSM | |_____| | may

not halt

 | | |--> reject-+ _ |

 | +-----+ | // \\ |

 | +-||qf ||------|--> accept

 | _// |

 +----------------------------------+

Consider two mutually exclusive cases:

Case 1: The FSM accepts thus TMi enters the state ql.

 This means, by the definition of TMh that TMi halts with input TMi.

BUT! we are running TMi on input TMi with input TMi and so we see that the

FSM accepting causes TMi to loop forever thus NOT halting.

 This is a contradiction because this case says that TMi does halt when given input

TMi with input TMi.

We will try the other case.

Case 2: The FSM rejects thus TMi enters the state qf.

 This means, by the definition of TMh that TMi does NOT halt with input TMi.

BUT! we are running TMi on input TMi with input TMi and so we see that the

FSM rejecting cause TMi to accept and halt.

 This is a contradiction because this case says that TMi does NOT halt when given

input TMi with input TMi. There are no other cases, FSM either accepts or rejects.

Thus what must be wrong is our assumption "there exists a Turing machine, TMh,

such that..." QED.

Thus we have proved that no Turing machine TMh can ever be created that can be given the

encoding of any Turing machine, TMj, and any input, k, and always determine if TMj halts

on input k.

3.3 Decision Problems

 Decision problems are stated as questions where the answer is binary, 0 or 1, False or True,

No or yes, Reject or Accept and so forth.

Generally a decision problem states a problem and gives a candidate solution, asking if the

solution solves the problem.

CIT 342 Formal Languages and Automata Theory

 Examples:

 Given the math expression 2+2 is the answer 4?

 Given a formal language and a string, is the string in the language?

 Given a grammar and a string, is the string accepted by the grammar?

3.4 Godel Incompleteness Theorem

Any formal system powerful enough to express arithmetic must have true theorems that

cannot be proven within the formal system.

Basically Godel proved that when trying to add axioms to a formal system in order to prove

all true theorems within the formal system, eventually the system will become inconsistent

before it becomes complete.

A complete formal system is a formal system where all true theorems can be proved.

An inconsistent formal system is a formal system where at least one false statement can be

proved within the formal system.

Due to the computational equivalence of formal systems to other computational capability,

we get the Halting problem, the uncomputable numbers and other unsolvable problems.

3.5 Unsolvable

A formally stated problem is Unsolvable if no Turing machine exists to compute the

solution.

A formally stated problem is provably unsolvable if it can be proved no Turing machine

exists to compute the solution.

3.6 Undecidable

A formally stated problem is Undecidable if no total recursive function and thus, no Turing

machine that always halts can be constructed to decide the problem, usually true or false.

Let us fix a simple alphabet = {0,1}. As computer scientists we are well aware that

everything can be coded up in bits and hence we accept that there is an encoding of TMs in

binary. i.e. given a TM M we write ⌈M⌉∈ {0, 1}* for its binary encoding. We assume that

the encoding contains its length such that we know when subsequent input on the tape

starts.

Now we define the following language:

Lhalt = {⌈M⌉w | ⌈M holds on input w}

CIT 342 Formal Languages and Automata Theory

It is easy to define a TM which accepts this language: we just simulate M and accept if M

stops.

However, Turing showed that there is no TM which decides this language. To see this let us

assume that there is a TM H which decides L. Now using H we construct a new TM F

which is a bit obnoxious: F on input x runs H on xx. If H says yes then F goes into a loop

otherwise (H says no) F stops.

The question is what happens if we run F on ⌈F⌉? Let us assume it terminates, then H

applied to ⌈F⌉⌈F⌉ returns yes and hence we must conclude that F on ⌈F⌉ loops??? On the

other hand if F with input ⌈F⌉ loops then H applied to ⌈F⌉⌈F⌉ will stop and reject and

hence we have to conclude that F on ⌈F⌉ will stop?????

This is a contradiction and hence we must conclude that our assumption that there is a TM

H which decides Lhalt is false. We say Lhalt is undecidable.

4.0 CONCLUSION

In this unit you have been introduced to Turing machines and the context-sensitive

grammars. In the next unit you will be learning about the last class of grammars,

unrestricted grammars and the machines that can recognise them.

5.0 SUMMARY

In this unit, you learnt that:

 a grammar is context-sensitive (or type 1) if the left hand side of a production is at

least as long as the right hand side. That is for each → ∈ P we have || | |

 The Halting Problem says that no computer program or Turing machine can
determine if ALL computer programs or Turing machines will halt or not halt on ALL
inputs

 Decision problems are stated as questions where the answer is binary, 0 or 1, False
or True, No or yes, Reject or Accept and so forth

 Basically Godel proved that when trying to add axioms to a formal system in order
to prove all true theorems within the formal system, eventually the system will
become inconsistent before it becomes complete

 A complete formal system is a formal system where all true theorems can be
proved

 An inconsistent formal system is a formal system where at least one false statement
can be proved within the formal system

CIT 342 Formal Languages and Automata Theory

6.0 TUTOR-MARKED ASSIGNMENT

1) State Godel incompleteness theorem
2) What do you understand by halting problem?
3) What mathematical concepts will you use in proving that the halting problem is

unsolvable?
4) Define context-sensitive grammars
5) What do you understand by decision problems?
6) What does it mean to say a formally stated problem is

a) Unsolvable
b) undecidable

7.0 REFERENCES/FURTHER READING

 Alfred V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D. Ullmann (2007)

Compilers Principles, Techniques, & Tools Second Edition

 Crespi R.S., Breveglieri L. and Morzenti A.(2019) Formal Languages and

Compilation, Third Edition, Sprinwger, 2019.

 Daniel I.A. Cohen, () Introduction to Computer Theory, John Wiley Publisher

 GeeksforGeeks (2020). Closure Properties of Regular Languages.

 Goswami D., Krishna K. V. (2010). Formal Languages and Automata Theory.

 Hopcroft H.E. and Ullman J. D. ―Introduction to Automata Theory Languages and

Computation‖. Pearson Education

 John C Martin Introduction to languages and the Theory of Computation, John C

Martin, TMH.

 Kamala K. & Rama R () Introduction to Formal Languages , Automata Theory and

Computation –

 Kavi M. () Theory of Computation : A Problem – Solving Approach-, Wiley India

Pvt. Ltd.

 Lewis H.P. & Papadimition C.H. () Elements of Theory of Computation, Pearson

/PHI Publisher

 Linz P. (2012) An Introduction to formal languages and automata, Jones and Barlet

Learning Publishing

 Michael Sipser (2006). Introduction to the Theory of Computation. Thomson

Course Technology, 2nd edition Thomson Publishing

 Mishra K. L.P. and Chandrashekaran N. (2008) Theory of Computer Science –

Automata languages and computation -, 3rd edition, Prentice-Hall, India

 Moorthy D. S. R & Acharyulu G.V.S. (2015) Formal Languages and Automata

Theory

 Nielson F, Nielson HR & Hankin C. (2010) Principles of program analysis. Springer,

Berlin

 Stefano C. R., Luca B. &Angelo M. (2019) Formal Languages and Compilation. 3
rd

Edition, Springer Nature Switzerland AG 2019

 Torben A. M. (2010). Basics of Compiler Design (3rd Edition). Lulu Publishing.

CIT 342 Formal Languages and Automata Theory

Module 4: Turing Machines

Unit 3: Unrestricted Grammars

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content

3.1 Unrestricted Grammars

3.2 From Grammars to Turing Machines

3.3 From Turing Machines to Grammars

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

In this the previous unit you learnt about Turing machines and context-sensitive grammars.

In this unit, which is the concluding unit of this course, you will learn about Turing

machines and the last class of grammars referred to as unrestricted grammars. It will be

shown that Turing machines and unrestricted grammars are equivalent.

Now let us go through your study objectives for this unit.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

 Define unrestricted grammars

 Demonstrate the relationship between Turing machines and unrestricted
grammars

3.0 MAIN CONTENT

3.1 Unrestricted Grammars

The productions of an unrestricted grammar have the form:

(V T)+ (V T) *

The other grammar types we have considered (left linear, right linear, linear, context free)

restrict the form of productions in one way or another. An unrestricted grammar does not.

CIT 342 Formal Languages and Automata Theory

In what follows, we will attempt to show that unrestricted grammars are equivalent to

Turing machines. Bear in mind that:

 A language is recursively enumerable if there exists a Turing machine that accepts
every string of the language, and does not accept strings that are not in the
language.

 "Does not accept" is not the same as "reject" – the Turing machine could go into an
infinite loop instead, and never get around to either accepting or rejecting the
string.

Our plan of attack is to show that the languages generated by unrestricted grammars are

precisely the recursively enumerable languages.

3.2 From Grammars to Turing Machines

Theorem 1: Any language generated by an unrestricted grammar is recursively

enumerable.

This can be proven as follows:

1. If a procedure exists for enumerating the strings of a language, then the language is
recursively enumerable. (We proved this earlier in unit 2 of this module.)

2. There exists a procedure for enumerating all the strings in any language generated
by an unrestricted grammar. (We will demonstrate the procedure shortly in this
unit.)

3. Therefore, any language generated by an unrestricted grammar is recursively
enumerable.

Here is a review of the argument for (1) above. We prove the language is recursively

enumerable by constructing a Turing machine to accept any string w of the language.

 Build one Turing machine that generates the strings of the language in some
systematic order.

 Build a second Turing machine that compares its input to w and accepts its input if
the two strings are identical.

 Build a composite Turing machine that incorporates the two machines above, using
the output of the first as input to the second.

Now we have to systematically generate all the strings of the language. For other types of

grammars it worked to generate shortest strings first; we do not know how to do that with

an unrestricted grammar, because some productions could make the sentential form shorter.

It might take a million steps to derive .

Instead, we order the strings shortest derivation first. First we consider all the strings that

can be generated from S in one derivation step, and see if any of them are composed

entirely of terminals. (We can do this because there are only a finite number of

productions.) Then we consider all the strings that can be derived in two steps, and so on.

Q.E.D.

CIT 342 Formal Languages and Automata Theory

3.3 From Turing Machines to Grammars

We have shown that a Turing machine can do anything that an unrestricted grammar can

do. Now we have to show that an unrestricted grammar can do anything a Turing machine

can do. This can be done by using an unrestricted grammar to emulate a Turing machine.

We will give only the barest outline of the proof.

Recall that a configuration of a Turing machine can be written as a string

xi...xjqmxk...xl

where the x's are the symbols on the tape, qm is the current state, and the tape head is on the

square containing xk (the symbol immediately following qm). It makes sense that a

grammar, which is a system for rewriting strings, can be used to manipulate configurations,

which can easily be written as strings.

A Turing machine accepts a string w if :

q0w xqfy

for some strings x and y and some final state qf, whereas a grammar produces a string if:

S w.

Because the Turing machine starts with w while the grammatical derivation ends with w, the

grammar we build will run "in reverse" as compared to the Turing machine.

Recall that a Turing machine accepts a string w if

q0w xqfy

and that our grammar will run "backwards" compared to the Turing machine.

The productions of the grammar we will construct can be logically grouped into three sets:

1. Initialization: These productions construct the string ... B$xqfyB... where B indicates
a blank and $ is a special variable used for termination.

2. Execution: For each transition rule of we need a corresponding production.
3. Cleanup: Our derivation will leave some excess symbols q0, B, and $ in the string

(along with the desired w), so we need a few more productions to clean these up.

For the terminals T of the grammar we will use the input alphabet of the Turing machine.

For the variables V of the grammar we will use

 - , the tape alphabet minus the symbols we took for T.
 A symbol qi for each state of the Turing machine.
 B (blank) and $ (used for termination).

CIT 342 Formal Languages and Automata Theory

 S (for a start symbol) and A (used for initialization).

Initialization: We need to be able to generate any string of the form

 B...B$xqfyB...B

Since we need an arbitrary number of "blanks" on either side, we use the productions

 S BS | SB | $A

(The $ is a marker we will use later.) Next we use the A to generate the strings x, y ,

with a state qf somewhere in the middle:

 A sA | As | qf, for all s .

Execution: For each transition rule of we need a corresponding production. For each rule

of the form:

 (qi, a) = (qj, b, R)

we use a production:

 bqj qia

and for each rule of the form:

 (qi, a) = (qj, b, L)

we use a production:

 qjcb cqia

for every c (the asymmetry is because the symbol to the right of q is the one under the

Turing machine's tape head.)

Cleanup: We end up with a string that looks like B...B$q0wB...B, so we need productions

to get rid of everything but the w:

 B

 $q0

4.0 CONCLUSION

CIT 342 Formal Languages and Automata Theory

In this last unit of this course, you have been introduced to unrestricted grammars and the

machines that can recognise them. It has been shown that a Turing machine can do

anything that an unrestricted grammar can do and vice versa. Any other thing you need to

know about computation will be discussed in another course on computation. If you are

interested it is advisable you take the course on Theory of Computation.

5.0 SUMMARY

In this unit, you learnt that:

 The productions of an unrestricted grammar have the form:

(V T)+ (V T) *

 An unrestricted grammar does not restrict the form of productions

 a Turing machine can do anything that an unrestricted grammar can do and vice
versa i.e. unrestricted grammars are equivalent to Turing machines

6.0 TUTOR-MARKED ASSIGNMENT

1) Define unrestricted grammars

2) When is a grammar recursively enumerable?

3) Prove that any language generated by an unrestricted grammar is recursively

enumerable.

7.0 REFERENCES/FURTHER READING

 Alfred V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D. Ullmann (2007)

Compilers Principles, Techniques, & Tools Second Edition

 Crespi R.S., Breveglieri L. and Morzenti A.(2019) Formal Languages and

Compilation, Third Edition, Sprinwger, 2019.

 Daniel I.A. Cohen, () Introduction to Computer Theory, John Wiley Publisher

 GeeksforGeeks (2020). Closure Properties of Regular Languages.

 Goswami D., Krishna K. V. (2010). Formal Languages and Automata Theory.

 Hopcroft H.E. and Ullman J. D. ―Introduction to Automata Theory Languages and

Computation‖. Pearson Education

 John C Martin Introduction to languages and the Theory of Computation, John C

Martin, TMH.

 Kamala K. & Rama R () Introduction to Formal Languages , Automata Theory and

Computation –

 Kavi M. () Theory of Computation : A Problem – Solving Approach-, Wiley India

Pvt. Ltd.

 Lewis H.P. & Papadimition C.H. () Elements of Theory of Computation, Pearson

/PHI Publisher

 Linz P. (2012) An Introduction to formal languages and automata, Jones and Barlet

CIT 342 Formal Languages and Automata Theory

Learning Publishing

 Michael Sipser (2006). Introduction to the Theory of Computation. Thomson

Course Technology, 2nd edition Thomson Publishing

 Mishra K. L.P. and Chandrashekaran N. (2008) Theory of Computer Science –

Automata languages and computation -, 3rd edition, Prentice-Hall, India

 Moorthy D. S. R & Acharyulu G.V.S. (2015) Formal Languages and Automata

Theory

 Nielson F, Nielson HR & Hankin C. (2010) Principles of program analysis. Springer,

Berlin

 Stefano C. R., Luca B. &Angelo M. (2019) Formal Languages and Compilation. 3
rd

Edition, Springer Nature Switzerland AG 2019

 Torben A. M. (2010). Basics of Compiler Design (3rd Edition). Lulu Publishing.

