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Introduction 
 

CIT 342 – Formal Languages and Automata Theory is a two (2) credit unit course 

of 16 units. The course will cover the important formal languages in the Chomsky 

hierarchy -- the regular sets, the context-free languages, and the recursively 

enumerable sets -- as well as the formalisms that generate these languages and the 

machines that recognize them. The course will also introduce the basic concepts of 

computability and complexity theory by focusing on the question, "What are the 

fundamental capabilities and limitations of computers?" 
 

The concepts covered in this course will be amply illustrated by applications to 

current programming languages, algorithms, natural language processing, and 

hardware and software design. 
 

Also, in this course we shall investigate whether it is possible at all for a given 

language to find out if a given word belongs to it or not, and if it is possible how hard 

it will be. These constitute the fields of decidability theory and complexity theory, 

respectively. 
 

What we really want to do is to find out which problems can be solved in general, and 

for those problems that can be solved, how hard it is to solve them. In order to make 

these questions more precise, we encode problems as languages. 
 

Although the idea of automaton is quite old (for example a simple pendulum), it was 

Post's work, contemporary with Turing, that made possible a general characterization 

of machines that has been so helpful in the development of ideas ranging from 

combinational circuits to finite-state languages. Although not as powerful as the 

machines associated with Chomsky and Turing automata remain a very important tool 

in the elucidation of the inner workings of machines and provide an excellent starting 

point in understanding the basic ideas underlying contemporary science. 
 

It is a course for B. Sc. Computer science major students, and is normally taken in a 

student's third year. It should appeal to anyone who is interested in the design and 

implementation of programming languages. Anyone who does a substantial amount of 

programming should find the material valuable. 

This course is divided into four modules. The first module deals with the general 

concepts of formal languages 
 

The second module treats, extensively, regular languages and the class of automata, 

finite state automata, that recognises strings generated by regular grammar. 
 

The third module deals with context-free languages and pushdown automata 
 

The fourth module which is the concluding module of the course discusses Turing 

machines and the rest of the language classes 
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This Course Guide gives you a brief overview of the course contents, course duration, 

and course materials. 
 

What you will learn in this course 
 

The main purpose of this course is to acquaint students with the fact that languages 

fall into various classes, according to their complexity. Some languages can be 

parsed, i.e. interpreted, by a very simple state machine. Others require the human 

brain, or something comparable. 
 

Languages also have many representations: machines that recognize them, expressions 

that describe them and grammars that generate them. 
 

Thus, we intend to achieve this through the following: 

Course Aims 

First, students will learn the key techniques in modern compiler construction, getting 

prepared for industry demands for compiler engineers. 

Second, students will understand the rationale of various computational methods and 

analysis. 

The third goal is to build the foundation for students to pursue the research in the areas 

of automata theory, formal languages, and computational power of machines 
 

Course Objectives 

Certain objectives have been set out to ensure that the course achieves its aims. Apart 

from the course objectives, every unit of this course has set objectives. In the course 

of the study, you will need to confirm, at the end of each unit, if you have met the 

objectives set at the beginning of each unit. Upon completing this course you should 

be able to: 
 

 Discover computational thinking 

 Understand the fundamental models of computation that underlie modern 

computer hardware, software, and programming languages. 

 Discover that there are problems computer can solve. 

 Discover that there are limits as to how fast a computer can solve a problem. 

 Learning the foundations of automata theory, computability theory, and 

complexity theory. 

 Learn about applications of theory to other areas of computer science such as 

algorithms, programming languages, compilers, natural language translation, 

operating systems, and software verification. 
 

Related Courses 
 

Prerequisites: CIT 331; Computer Science students only 
 

Working through This Course 
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This course centres around three concepts: Languages, grammars, and 

automata. In order to have a thorough understanding of the course units, you will 

need to read and understand the contents, practise the steps by designing a compiler 

of your own for a known language, and be committed to learning and 

implementing your knowledge. You might need to listen to a short video cliques in 

some aspects of discussion for further explanation. For example, this 8 minutes video 

summarizes theory of computation. https://www.youtube.com/watch?v=dCiZZiqVv9w 
 

This course is designed to cover approximately seventeen weeks, and it will require 

your devoted attention. You should do the exercises in the Tutor-Marked Assignments 

and submit to your tutors. 
 

Course Materials 
These include: 

1. Course Guide 

2. Study Units 

3. Recommended Texts 

4. A file for your assignments and for records to monitor your progress. 
 

Study Units 

There are 16 study units in this course: 

Module 1: General Concepts 

Unit 1: Alphabets, Strings, and Representations 

Unit 2: Formal Grammars 

Unit 3: Formal Languages 

Unit 4: Automata Theory 
 

Module 2: Regular Languages 

Unit 1: Finite State Automata 

Unit 2: Regular Expressions 

Unit 3: Regular Grammars 

Unit 4: Closure Properties of Regular Languages 

Unit 5: The Pumping Lemma 
 

Module 3: Context-Free Languages 

Unit 1: Context-Free Grammars 

Unit 2: Properties of Context-Free Languages 

Unit 3: Pushdown Automata 

Unit 4: CFGs and PDAs 
 
 

Module 4: Turing Machines 

Unit 1: Turing Machines and the rest 

Unit 2: Turing Machines and Context-Sensitive Grammars 

Unit 3: Unrestricted Grammars 
 

Make use of the course materials, do the exercises to enhance your learning. 
 

https://www.youtube.com/watch?v=dCiZZiqVv9w


Textbooks and References 
 

 Alfred V. Aho, Monica S. Lam, Ravi Sethi and Jeffrey D. Ullmann (2007) 

Compilers Principles, Techniques, & Tools Second Edition 

 Crespi R.S., Breveglieri L. and Morzenti A.(2019)  Formal Languages and 

Compilation, Third Edition, Sprinwger, 2019. 

 Daniel I.A. Cohen, ( ) Introduction to Computer Theory, John Wiley Publisher 

 GeeksforGeeks (2020). Closure Properties of Regular Languages. 

 Goswami D., Krishna K. V. (2010). Formal Languages and Automata Theory.  

 Hopcroft H.E. and Ullman J. D. ―Introduction to Automata Theory Languages and 

Computation‖. Pearson Education 

 John C Martin Introduction to languages and the Theory of Computation, John C 

Martin, TMH.  

 Kamala K. & Rama R ( ) Introduction to Formal Languages , Automata Theory and 

Computation –  

 Kavi M. ( ) Theory of Computation : A Problem – Solving Approach-, Wiley India 

Pvt. Ltd.  

 Lewis H.P. & Papadimition C.H. ( ) Elements of Theory of Computation, Pearson 

/PHI Publisher 

 Linz P. (2012) An Introduction to formal languages and automata, Jones and Barlet 

Learning Publishing 

 Michael Sipser (2006). Introduction to the Theory of Computation. Thomson 

Course Technology, 2nd edition Thomson Publishing 

 Mishra  K. L.P. and Chandrashekaran N. (2008 ) Theory of Computer Science – 

Automata languages and computation -, 3rd edition, Prentice-Hall, India 

 Moorthy D. S. R & Acharyulu G.V.S. (2015) Formal Languages and Automata 

Theory  

 Nielson F, Nielson HR & Hankin C. (2010) Principles of program analysis. Springer, 

Berlin 

 Stefano C. R., Luca B. &Angelo M. (2019) Formal Languages and Compilation. 3
rd

 

Edition, Springer Nature Switzerland AG 2019 

 Torben A. M. (2010). Basics of Compiler Design (3rd Edition). Lulu Publishing. 

 See relevant video on - https://www.youtube.com/watch?v=J-fcaXYkU9o  m2u4 

 See relevant video on - https://www.youtube.com/watch?v=KSczX111n3U  m2u4 

 See https://en.m.wkipedia.org/wiki/Automata_theory 

 : https://www.youtube.com/watch?v=mAmZvn9lKYk  m1 u1 
 https://www.youtube.com/watch?v=PooQrbFrd_U     m1 u2 

 https://www.youtube.com/watch?v=ejXgLRSIxsA   m1 u2 

 https://www.youtube.com/watch?v=_ecle_FC6AE     m1 u2 

 https://www.youtube.com/watch?v=wQjppolFdas m2 u4 

 https://www.youtube.com/watch?v=__vX2sjlpXU)   m1 u2 

 https://youtu.be/APRPT4KrzMA]   m1 u3 

 https://en.m.wkipedia.org/wiki/Automata_theory  m1 u4 

 https://youtu.be/EtYsnFGIUkA    m1 u4 

 https://www.youtube.com/watch?v=M84oEgYgw6U  m2 u1 

 https://www.youtube.com/watch?v=rtAy-CDYJeo  m2u1  m2 u2 

 https://www.youtube.com/watch?v=IcyDv1bWR1k   m2u1 
 https://www.youtube.com/watch?v=2aFXJhL8BYU m2 u1 
  https://www.youtube.com/watch?v=rKCAPVaU0Qk   m2 u1 
 https://www.youtube.com/watch?v=WVv5OAR4Nik   m2 u1 

https://www.youtube.com/watch?v=J-fcaXYkU9o
https://www.youtube.com/watch?v=KSczX111n3U
https://www.youtube.com/watch?v=mAmZvn9lKYk
https://www.youtube.com/watch?v=PooQrbFrd_U
https://www.youtube.com/watch?v=ejXgLRSIxsA
https://www.youtube.com/watch?v=_ecle_FC6AE
https://www.youtube.com/watch?v=wQjppolFdas
https://www.youtube.com/watch?v=__vX2sjlpXU
https://youtu.be/APRPT4KrzMA
https://en.m.wkipedia.org/wiki/Automata_theory
https://youtu.be/EtYsnFGIUkA
https://www.youtube.com/watch?v=M84oEgYgw6U
https://www.youtube.com/watch?v=rtAy-CDYJeo
https://www.youtube.com/watch?v=IcyDv1bWR1k
https://www.youtube.com/watch?v=2aFXJhL8BYU
https://www.youtube.com/watch?v=rKCAPVaU0Qk
https://www.youtube.com/watch?v=WVv5OAR4Nik


 https://www.youtube.com/watch?v=quBzmvsxzkw    m2 u1 
 https://www.youtube.com/watch?v=efKSarb5oxM    m2 u2 
 . https://www.youtube.com/watch?v=nNMD1wE3TDM  m2 u2 

 https://www.youtube.com/watch?v=5_KRbXPCGWg 

 https://www.youtube.com/watch?v=1PmfoAE8cdc   m2 u3 

 https://www.youtube.com/watch?v=Ob60IirEm4s  m2 u3 
 https://www.youtube.com/watch?v=MdI2TI7zefY  m2u4 
   https://www.youtube.com/watch?v=ntrF_KxHn18   m3 u1 
 https://www.youtube.com/watch?v=mX9lULtwO0s  m3 u3 
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Assignments File 

These are of two types: the self-assessment exercises and the Tutor-Marked 

Assignments. The self-assessment exercises will enable you monitor your 

performance by yourself, while the Tutor-Marked Assignment is a supervised 

assignment. The assignments take a certain percentage of your total score in this 

course. The Tutor-Marked Assignments will be assessed by your tutor within a 

specified period. The examination at the end of this course will aim at determining the 

level of mastery of the subject matter. This course includes sixteen Tutor-Marked 

Assignments and each must be done and submitted accordingly. Your best scores 

however, will be recorded for you. Be sure to send these assignments to your tutor 

before the deadline to avoid loss of marks. 
 
 

Presentation Schedule 
 

The Presentation Schedule included in your course materials gives you the important 

dates for the completion of tutor marked assignments and attending tutorials. 

Remember, you are required to submit all your assignments by the due date. You 

should guard against lagging behind in your work. 
 
 

Assessment 
 

There are two aspects to the assessment of the course. First are the tutor marked 

assignments; second, is a written examination. 
 

In tackling the assignments, you are expected to apply information and knowledge 

acquired during this course. The assignments must be submitted to your tutor for 

formal assessment in accordance with the deadlines stated in the Assignment File. The 

work you submit to your tutor for assessment will count for 30% of your total course 

mark. 
 

At the end of the course, you will need to sit for a final three-hour examination. This 

will also count for 70% of your total course mark. 
 

Tutor Marked Assignments (TMAS) 

There are twenty-two tutor marked assignments in this course. You need to submit all 

the assignments. The total marks for the best three (3) assignments will be 30% of 

your total course mark. 

Assignment questions for the units in this course are contained in the Assignment File. 

You should be able to complete your assignments from the information and materials 

contained in your set textbooks, reading and study units. However, you may wish to 

use other references to broaden your viewpoint and provide a deeper understanding of 

the subject. 
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When you have completed each assignment, send it together with form to your tutor. 

Make sure that each assignment reaches your tutor on or before the deadline given. If, 

however, you cannot complete your work on time, contact your tutor before the 

assignment is done to discuss the possibility of an extension. 
 

Examination and Grading 

The final examination for the course will carry 70% percentage of the total marks 

available for this course. The examination will cover every aspect of the course, so 

you are advised to revise all your corrected assignments before the examination. 

This course endows you with the status of a teacher and that of a learner. This means 

that you teach yourself and that you learn, as your learning capabilities would allow. It 

also means that you are in a better position to determine and to ascertain the what, the 

how, and the when of your language learning. No teacher imposes any method of 

learning on you. 
 

The course units are similarly designed with the introduction following the table of 

contents, then a set of objectives and then the dialogue and so on. 
 

The objectives guide you as you go through the units to ascertain your knowledge of 

the required terms and expressions. 
 

Course Marking Scheme 
 

This table shows how the actual course marking is broken down. 
 

Assessment Marks 

Assignment 1- 4 Four assignments, best three marks of the four 

count at 30% of course marks 

Final Examination 70% of overall course marks 

Total 100% of course marks 

 

Table 1: Course Marking Scheme 
 
 
 

Course Overview 
 
 

Unit Title of Work Weeks 

Activity 

Assessment 

(End of Unit) 

 Course Guide Week 1  

 Module 1: General Concepts   

1 Unit 1: Alphabets, Strings, and Representations Week 1 Assignment 1 
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2 Unit 2: Formal Grammars Week 2 Assignment 2 

3 Unit 3: Formal Languages Week 2 Assignment 3 

4 Unit 4: Automata Theory   

 Module 2: Regular Languages   

1 Unit 1: Finite State Automata Week 3 Assignment 5 

2 Unit 2: Regular Expressions Week 3 Assignment 6 

3 Unit 3: Regular Grammars Week 4 Assignment 7 

4 Unit 4: Closure Properties of Regular 

Languages 

Week 4  

5 Unit 5: The Pumping Lemma   

 Module 3: Context-Free Languages   

1 Unit 1: Context-Free Grammars Week 5 Assignment 8 

2 Unit 2: Properties of Context-Free Languages Week 6 Assignment 9 

3 Unit 3: Pushdown Automata Week 7 - 8 Assignment 10 

4 Unit 4: CFGs and PDAs Week 8 - 9 Assignment 11 

 
 

Module 4: Turing Machines 
  

1 Unit 1: Turing Machines and the rest Week 12 Assignment 13 

2 Unit 2: Turing Machines and Context-Sensitive 

Grammars 
Week 13 Assignment 14 

3  Unit 3: Unrestricted Grammars Week 14 Assignment 15 
 

 Revision Week 16  

 Examination Week 17  

Total  17 weeks  

 
 
 

How to get the best from this course 
 

In distance learning the study units replace the university lecturer. This is one of the 

great advantages of distance learning; you can read and work through specially 

designed study materials at your own pace, and at a time and place that suit you best. 

Think of it as reading the lecture instead of listening to a lecturer. In the same way 

that a lecturer might set you some reading to do, the study units tell you when to read 

your set books or other material. Just as a lecturer might give you an in-class exercise, 

your study units provide exercises for you to do at appropriate points. 
 
 

Each of the study units follows a common format. The first item is an introduction to 

the subject matter of the unit and how a particular unit is integrated with the other 
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units and the course as a whole. Next is a set of learning objectives. These objectives 

enable you know what you should be able to do by the time you have completed the 

unit. You should use these objectives to guide your study. When you have finished 

the units you must go back and check whether you have achieved the objectives. If 

you make a habit of doing this you will significantly improve your chances of passing 

the course. 
 

Remember that your tutor‘s job is to assist you. When you need help, don‘t hesitate to 

call and ask your tutor to provide it. 
 

1. Read this Course Guide thoroughly. 
 

2. Organize a study schedule. Refer to the ‗Course Overview‘ for more details. 

Note the time you are expected to spend on each unit and how the assignments 

relate to the units. Whatever method you chose to use, you should decide on it 

and write in your own dates for working on each unit. 
 

3. Once you have created your own study schedule, do everything you can to stick 

to it. The major reason that students fail is that they lag behind in their course 

work. 
 

4. Turn to Unit 1 and read the introduction and the objectives for the unit. 
 

5. Assemble the study materials. Information about what you need for a unit is 

given in the ‗Overview‘ at the beginning of each unit. You will almost always 

need both the study unit you are working on and one of your set of books on 

your desk at the same time. 
 

6. Work through the unit. The content of the unit itself has been arranged to 

provide a sequence for you to follow. As you work through the unit you will be 

instructed to read sections from your set books or other articles. Use the unit to 

guide your reading. 
 

7. Review the objectives for each study unit to confirm that you have achieved 

them. If you feel unsure about any of the objectives, review the study material 

or consult your tutor. 
 

8. When you are confident that you have achieved a unit‘s objectives, you can 

then start on the next unit. Proceed unit by unit through the course and try to 

pace your study so that you keep yourself on schedule. 
 

9. When you have submitted an assignment to your tutor for marking, do not wait 

for its return before starting on the next unit. Keep to your schedule. When 

the assignment is returned, pay particular attention to your tutor‘s comments, 

both on the tutor-marked assignment form and also written on the assignment. 

Consult your tutor as soon as possible if you have any questions or problems. 
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10.  After completing the last unit, review the course and prepare yourself for the 

final examination. Check that you have achieved the unit objectives (listed at 

the beginning of each unit) and the course objectives (listed in this Course 

Guide). 
 
 

Tutors and Tutorials 
 

There are 8 hours of tutorials provided in support of this course. You will be notified 

of the dates, times and location of these tutorials, together with the name and phone 

number of your tutor, as soon as you are allocated a tutorial group. 
 

Your tutor will mark and comment on your assignments, keep a close watch on your 

progress and on any difficulties you might encounter and provide assistance to you 

during the course. You must mail or submit your tutor-marked assignments to your 

tutor well before the due date (at least two working days are required). They will be 

marked by your tutor and returned to you as soon as possible. 
 

Do not hesitate to contact your tutor by telephone, or e-mail if you need help. The 

following might be circumstances in which you would find help necessary. Contact 

your tutor if: 
 

 you do not understand any part of the study units or the assigned readings, 

 you have difficulty with the self-tests or exercises, 

 you have a question or problem with an assignment, with your tutor‘s 

comments on an assignment or with the grading of an assignment. 
 

You should try your best to attend the tutorials. This is the only chance to have face 

to face contact with your tutor and to ask questions which are answered instantly. You 

can raise any problem encountered in the course of your study. To gain the maximum 

benefit from course tutorials, prepare a question list before attending them. You will 

learn a lot from participating in discussions actively. 
 

Summary 

Formal Languages and Automata Theory introduces you to the concepts associated 

languages, computation and machines. It uses mathematical structure, and certain axiomatic rules 

(formal grammar) to describe translation of programs written in computer languages.  The notions 
and methods of formal language are analogous to those used in number theory and in logic. This review brought 
in latest developments in computer technology such as the recognition neurons in artificial intelligence and 

robotic programming.The content of the course material was planned and written to ensure that 

you acquire the proper knowledge and skills, which you will find useful in a later course 

(CIT 445: Principles and Techniques of Compilers) in you fourth year and also for the 

appropriate situations later in life. Real-life situations have been created to enable you 

identify with and create some of your own. The essence is to help you in acquiring 

the necessary knowledge and competence by equipping you with the necessary tools to 

accomplish this. 

We hope that by the end of this course you would have acquired the required 



knowledge to view computation, machines, and programming languages in a new 

way. 
 

We wish you success with the course and hope that you will find it both interesting 

and useful. 

  



 

Module 1: General Concepts 
 

Unit 1: Alphabets, Strings, and Representations 
 

CONTENTS 
 

1.0 Introduction 

2.0 Objectives 

3.0 Main Content 

3.1 Alphabets 

3.2 String 

3.2.1 Formal Theory 

3.2.2 Strings and Sets of Strings 

3.2.3 Alphabet of a string 

3.2.4 String substitution 

3.2.5 Concatenation and Substrings 

3.2.6 String length 

3.2.7 Character String Functions 

3.3 Representations 

4.0 Conclusion 

5.0 Summary 

6.0 Tutor-Marked Assignment 

7.0 References/Further Reading 
 
 
 

1.0 INTRODUCTION 
 
 

The ability to represent information is crucial to communicating and processing 

information. Human societies created spoken languages to communicate on a basic 

level, and developed writing to reach a more sophisticated level. 
 

The English language, for instance, in its spoken form relies on some finite set of 

basic sounds as a set of primitives. The words are defined in term of finite sequences 

of such sounds. Sentences are derived from finite sequences of words. Conversations 

are achieved from finite sequences of sentences, and so forth. 
 

Written English uses some finite set of symbols as a set of primitives. The words are 

defined by finite sequences of symbols. Sentences are derived from finite sequences 

of words. Paragraphs are obtained from finite sequences of sentences, and so forth. 
 

Similar approaches have been developed also for representing elements of other sets. 

For instance, the natural number can be represented by finite sequences of decimal 

digits. 
 

Computations, like natural languages, are expected to deal with information in its 

most general form. Consequently, computations function as manipulators of integers, 
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graphs, programs, and many other kinds of entities. However, in reality computations 

only manipulate strings of symbols that represent the objects. The subsequent 

discussions in this course necessitate the following definitions. 
 

In this introductory unit of this course, you will be taken through some of these 

definitions.  
 

Now let us go through your study objectives for this unit. 
 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 
 o define alphabet, words and strings 

o state the basic relation relationship among these terms 

o state and describe the various operations that can be carried out on this 
structures 

o describe how they can be represented 
 
 

3.0 MAIN CONTENT 
 

3.1 Alphabets 
 

In computer science and formal language, an alphabet or vocabulary is a finite set of 

symbols or letters, e.g. characters or digits. The most common alphabet is {0,1}, the 

binary alphabet. A finite string is a finite sequence of letters from an alphabet; for 

instance a binary string is a string drawn from the alphabet {0,1}. An infinite 

sequence of letters may be constructed from elements of an alphabet as well. 
 

Given an alphabet Σ, we write Σ
* 

to denote the set of all finite strings over the 

alphabet Σ. Here, the 
* 

denotes the Kleene star operator. We write        (or occasionally, 

or Σ
ω
) to denote the set of all infinite sequences over the alphabet Σ. 

 

For example, if we use the binary alphabet {0,1}, the strings (ε, 0, 1, 00, 01, 10, 11, 

000, etc.) would all be in the Kleene closure of the alphabet (where ε represents the 

empty string) 
 

Please note that alphabets are important in the use of formal languages, automata and 

semi-automata. In most cases, for defining instances of automata, such as 

deterministic finite automata (DFAs), it is required to specify an alphabet from which 

the input strings for the automaton are built. 
 

3.2 String 

  
 

In formal languages, which are used in mathematical logic and theoretical computer 

science, a string is a finite sequence of symbols that are chosen from a set or alphabet. 
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In computer programming, a string is, essentially, a sequence of characters. A string is 

generally understood as a data type storing a sequence of data values, usually bytes, in 

which elements usually stand for characters according to a character encoding, which 

differentiates it from the more general array data type. In this context, the terms 

binary string and byte string are used to suggest strings in which the stored data 

does not (necessarily) represent text.  
 

A variable declared to have a string data type usually causes storage to be allocated in 

memory that is capable of holding some predetermined number of symbols. When a 

string appears literally in source code, it is known as a string literal and has a 

representation that denotes it as such. Before, we start the lecture, let us have a watch of this 

video: https://www.youtube.com/watch?v=mAmZvn9lKYk 
 
 
 
 

3.2.1 Formal Theory 
 

Let Σ be an alphabet, a non-empty finite set. Elements of Σ are called symbols or 

characters. A string (or word) over Σ is any finite sequence of characters from Σ. For 

example, if Σ = {0, 1}, then 0101 is a string over Σ. 
 

The length of a string is the number of characters in the string (the length of the 

sequence) and can be any non-negative integer. The empty string is the unique string 

over Σ of length 0, and is denoted ε or λ. 
 

The set of all strings over Σ of length n is denoted Σ
n
. For example, if Σ = {0, 1}, then 

Σ
2 

= {00, 01, 10, 11}. Note that Σ
0 

= {ε} for any alphabet Σ. 
 

The set of all strings over Σ of any length is the Kleene closure of Σ and is denoted Σ*. 

In terms of Σ
n
, 

 
 
 
 
 

For example, if Σ = {0, 1}, Σ* = {ε, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, …}. 

Although Σ* itself is countably infinite, all elements of Σ* have finite length. 
 

A set of strings over Σ (i.e. any subset of Σ*) is called a formal language over Σ. For 

example, if Σ = {0, 1}, the set of strings with an even number of zeros ({ε, 1, 00, 11, 

001, 010, 100, 111, 0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111, …}) is a formal 

language over Σ. 
 

3.2.2 Strings and Sets of Strings 
 

If V is a set, then V* denotes the set of all finite 

including the empty string which will be denoted by ε. e.g. 

10, 11, 000, 001,... } 

strings of elements of V 

{0,1}* = {ε, 0, 1, 00, 01, 

https://www.youtube.com/watch?v=mAmZvn9lKYk


+ 

n 0 

3 
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The set of all non empty strings of elements of V is denoted by V+. 

Usually, V+ = V* \ {ε}, but when ε ∈ V, V+ = V*. e.g. 

} 
{0,1} = {0, 1, 00, 01, 10, 11, 000, 001,... 

but {ε, 0, 1}+ = {0,1}* = {ε, 0, 1, 00, 01, 10, 11, 000, 001,... } 
 
 

If x ∈ V* and y ∈ V* then xy will denote their concatenation, that is, the string 
consisting of x followed by y. 
 

If x ∈ V* then x
n 

= xxx.....x n≥0 
n-times 

 

We assume x
0 

= ε the empty string. 
 

e.g. {a}* = {ε, a, a
2

, a
3
, ...a

n
,.....} = { a

n
: n ≥ 0} 

 

{a}+
 
= {a, a2, a3, ....an, ....} = { an: n ≥ 1} 

 
Similarly, if X, Y are sets of strings, then their concatenation is also denoted 

by XY. Of course XY={xy: x∈X and y∈Y}. 

Also, X = XXX.....X n≥0. Of course X = {ε}. 

n-times 
 

e.g. {0, 1} {a, b, c} = {0a, 0b, 0c, 1a ,1b, 1c} 

{0, 1} = {000, 001, 010, 011, 100, 101, 110, 111} 
 

If x is a string, then |x| denotes the length of x, and this is the number of 
indivisible symbols in x. Of course |ε| = 0. 

 
Self Assessment Exercise I 

1. State the differences if any between an alphabet and string 
2. If Σ = {0, 1}, what is Σ

n 
when n=4 

3)  Determine the following sets. 

(a) {0,1} {ε, a, ba} (b) {b, aa}* 

4. Let V be a set of strings. Does V+ = V V* ? 
 

3.2.3 Alphabet of a string 
 

The alphabet of a string is a list of all of the letters that occur in a particular string. If 

s is a string, its alphabet is denoted by 
 

Alph(s) 
 

3.2.4 String substitution 
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Let L be a language, and let Σ be its alphabet. A string substitution or simply a 

substitution is a mapping f that maps letters in Σ to languages (possibly in a different 

alphabet). Thus, for example, given a letter a ∈ Σ , one has f(a) = La where La ⊂ Δ* 
is some language whose alphabet is Δ. This mapping may be extended to strings as 
 

f(ε) = ε 
 

for the empty string ε, and 
 

f(sa) = f(s)f(a) 
 

for string a ∈ L. String substitution may be extended to the entire language as 
 

f(L) = 
 
 

An example of string substitution occurs in regular languages, which are closed under 

string substitution. That is, if the letters of a regular language are substituted by other 

regular languages, the result is still a regular language. 
 

Another example is the conversion of an EBCDIC-encoded string to ASCII. 
 

3.2.5 Concatenation and Substrings 
 

Concatenation is an important binary operation on Σ*. For any two strings s and t in 

Σ*, their concatenation is defined as the sequence of characters in s followed by the 

sequence of characters in t, and is denoted st. For example, if Σ = {a, b, …, z}, s = 

bear, and t = hug, then st = bearhug and ts = hugbear. 
 

String concatenation is an associative, but non-commutative operation. The empty 

string serves as the identity element; for any string s, εs = sε = s. Therefore, the set Σ* 

and the concatenation operation form a monoid, the free monoid generated by Σ. In 

addition, the length function defines a monoid homomorphism from Σ* to the non-

negative integers. 
 

A string s is said to be a substring or factor of t if there exist (possibly empty) strings 

u and v such that t = usv. The relation "is a substring of" defines a partial order on Σ*, 

the least element of which is the empty string. 
 

3.2.6 String length 
 

Although formal strings can have an arbitrary (but finite) length, the length of strings 

in real languages is often constrained to an artificial maximum. In general, there are 

two types of string datatypes: fixed length strings which have a fixed maximum length 

and which use the same amount of memory whether this maximum is reached or not, 

and variable length strings whose length is not arbitrarily fixed and which use varying 
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amounts of memory depending on their actual size. Most strings in modern 

programming languages are variable length strings. Despite the name, even variable 

length strings are limited in length; although, generally, the limit depends only on the 

amount of memory available. 
 

3.2.7 Character String Functions 
 

String functions are used to manipulate a string or change or edit the contents of a 

string. They also are used to query information about a string. They are usually used 

within the context of a computer programming language. 
 

The most basic example of a string function is the length(string) function, 

which returns the length of a string (not counting any terminator characters or any of 

the string's internal structural information) and does not modify the string. For 

example, length("hello world") returns  11. 
 

There are many string functions which exist in other languages with similar or exactly 

the same syntax or parameters. For example in many languages the length function is 

usually represented as len(string). Even though string functions are very useful 

to a computer programmer, a computer programmer using these functions should be 

mindful that a string function in one language could in another language behave 

differently or have a similar or completely different function name, parameters, 

syntax, and results. 
 

3.3 Representations 
 

Given the preceding definitions of alphabets and strings, representations of 
information can be viewed as the mapping of objects into strings in accordance with 
some rules. That is, formally speaking, a representation or encoding over an alphabet 

Σ of a set D is a function f from D to 2Σ* that satisfies the following condition: f(e1) 

and f(e2) are disjoint nonempty sets for each pair of distinct elements e1 and e2 in D. 
 

If Σ is a unary alphabet, then the representation is said to be a unary representation. If 

Σ is a binary alphabet, then the representation is said to be a binary representation. 
 

In what follows each element in f(e) will be referred to as a representation, or 

encoding, of e. 
 

Example 1 
 

f1 is a binary representation over {0, 1} of the natural numbers if f1(0) = {0, 00, 000, 

0000, . . . }, f1(1) = {1, 01, 001, 0001, . . . }, f1(2) = {10, 010, 0010, 00010, . . . }, f1(3) 

= {11, 011, 0011, 00011, . . . }, and f1(4) = {100, 0100, 00100, 000100, . . . }, etc. 
 

Similarly, f2 is a binary representation over {0, 1} of the natural numbers if it assigns 
to the ith natural number the set consisting of the ith canonically smallest binary 
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string. In such a case, f2(0) = { }, f2(1) = {0}, f2(2) = {1}, f2(3) = {00}, f2(4) = {01}, 

f2(5) = {10}, f2(6) = {11}, f2(7) = {000}, f2(8) = {1000}, f2(9) = {1001}, . . . 
 

On the other hand, f3 is a unary representation over {1} of the natural numbers if it 

assigns to the ith natural number the set consisting of the ith alphabetically (= 
canonically) smallest unary string. In such a case, f3(0) = { }, f3(1) = {1}, f3(2) = {11}, 

f3(3) = {111}, f3(4) = {1111}, . . . , f3(i) = {1 }, . . . 
 

The three representations f1, f2, and f3 are illustrated in Figure 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Representations for the natural numbers 
 
 

4.0 CONCLUSION 
 

In this unit you have been taken through some fundamental concepts in formal 

language. It is advised you master this concepts as a solid knowledge of these 

foundational concepts will aid your mastery and understanding of this course. 
 

5.0 SUMMARY 
 

In this unit, you learnt that: 
 

 an alphabet or vocabulary is a finite set of symbols or letters 

 a string is a finite sequence of symbols that are chosen from a set or alphabet 

 String functions are used to manipulate a string or change or edit the contents 

of a string 

 For any two strings s and t in Σ*, their concatenation is defined as the sequence 

of characters in s followed by the sequence of characters in t, and is denoted st 

 String concatenation is an associative, but non-commutative operation 

 A string s is said to be a substring or factor of t if there exist (possibly empty) 

strings u and v such that t = usv 
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 a representation or encoding over an alphabet Σ of a set D is a function f from 

D to 2
Σ* 

that satisfies the following condition: f(e1) and f(e2) are disjoint 
nonempty sets for each pair of distinct elements e1 and e2 in D. 

 
 
 
 

6.0 TUTOR-MARKED ASSIGNMENT 
 

1) Define the following terms: 

 Strings 

 Alphabets 

 Vocabulary 

2) If Σ = {a, b, …, z}, s = bear, and t = hug, then find 

i) st ii) ts 
 

3) Briefly describe the following: 
 

i) unary representation 
 

ii) binary representation 
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1.0 INTRODUCTION 
 

Having learnt about strings and alphabets in the previous unit, you will be taken 

through another important concept in formal language and automata theory, which is 

grammar. This is because it is often convenient to specify languages in terms of 

grammars. The advantage in doing so arises mainly from the usage of a small number of 

rules for describing a language with a large number of sentences. As the norm, watch this 

description of grammar https://www.youtube.com/watch?v=PooQrbFrd_U 

 
 

From the video, you could see the possibility of breaking down an English sentence 

to consists of a subject phrase followed by a predicate phrase and is expressed by a 

grammatical rule of the form: 
 

<sentence> <subject><predicate>.  

(The names in angular brackets are assumed to belong to the grammar 

metalanguage) 
 

Similarly, the possibility that the subject phrase consists of a noun phrase can be 

expressed by a grammatical rule of the form: 
 

<subject> <noun>. 
 

You may, therefore, think of a grammar as a set of rules for your native language. 

Subject, predicate, prepositional phrase, past participle, and so on. This is a 

reasonably accurate, or at least helpful, description of a human language, but it is not 

https://www.youtube.com/watch?v=PooQrbFrd_U


entirely rigorous. Chomski formalized the concept of a grammar, and made important 
 

observations regarding the complexity of the grammar, which in turn establishes the 

complexity of the language. 
 
 

In this unit, you will be taken through some basic concepts of formal grammar 
 

 

Now let us go through your study objectives for this Unit. 
 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 
 o define formal grammar 

o define alphabet, words and strings 

o state the types of formal grammars we have in the field of Computer 
Science 

o describe the class of automata that can recognise strings generated by each 
grammar 

o identify strings that are generated by a particular grammar 

o describe the Chomsky hierarchy 

o explain the relevance of formal grammar and language to computer 
programming 

 
 

3.0 MAIN CONTENT 
 

3.1 Formal Grammar 
 

A formal grammar (sometimes simply called a grammar) is a set of rules for 

forming strings in a formal language. The rules describe how to form strings from the 

language's alphabet that are valid according to the language's syntax. A grammar does 

not describe the meaning of the strings or what can be done with them in whatever 

context – only their form. 
 

Formal language theory, the discipline which studies formal grammars and languages, 

is a branch of applied mathematics. Its applications are found in theoretical computer 

science, theoretical linguistics, formal semantics, mathematical logic, and other areas. 

A formal grammar is a set of rules for rewriting strings, along with a "start symbol" 

from which rewriting must start. Therefore, a grammar is usually thought of as a 

language generator. However, it can also sometimes be used as the basis for a 

"recognizer"—a function in computing that determines whether a given string belongs 

to the language or is grammatically incorrect. To describe such recognizers, formal 

language theory uses separate formalisms, known as automata theory. One of the 

interesting results of automata theory is that it is not possible to design a recognizer 

for certain formal languages. 
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Parsing is the process of recognizing an utterance (a string in natural languages) 

by breaking it down to a set of symbols and analyzing each one against the 

grammar of the language. Most languages have the meanings of their 

utterances structured according to their syntax—a practice known as compositional 

semantics. As a result, the first step to describing the meaning of an utterance in 

language is to break it down part by part and look at its analyzed form (known as its 

parse tree in computer science, and as its deep structure in generative grammar). 
 

3.1.1 Introductory Example 
 

A grammar mainly consists of a set of rules for transforming strings. (If it only 

consisted of these rules, it would be a semi-Thue system demonstrated in this link)  

 

To generate a string in the language, one begins with a string consisting of only 

a single start symbol. The production rules are then applied in any order, until a 

string that contains neither the start symbol nor designated nonterminal symbols is 

produced. The language formed by the grammar consists of all distinct strings that 

can be generated in this manner. Any particular sequence of production rules on the 

start symbol yields a distinct string in the language. If there are multiple ways of 

generating the same single string, the grammar is said to be ambiguous. 
 

For example, assume the alphabet consists of a and b, the start symbol is S, and we 

have the following production rules: 
 

1. 

2. 
 

then we start with S, and can choose a rule to apply to it. If we choose rule 1, we 

obtain the string aSb. If we choose rule 1 again, we replace S with aSb and obtain the 

string aaSbb. If we now choose rule 2, we replace S with ba and obtain the string 

aababb, and are done. We can write this series of choices more briefly, using 

symbols: . The language of the grammar is then the 

infinite set                                                                                                , where a
k 

is a 

repeated k times (and n in particular represents the number of times production rule 1 

has been applied). 
 

3.2 Formal Definition 
 

3.2.1 The Syntax of Grammars 
 

In the classic formalization of generative grammars first proposed by Noam Chomsky 

in the 1950s, a grammar G consists of the following components: 
 

 A finite set N of nonterminal symbols, none of which appear in strings formed 

from G. 

 A finite set Σ of terminal symbols that is disjoint from N. 



 A finite set P of production rules, each rule of the form 
 
 
 
 
 

where * is the Kleene star operator and denotes set union. That is, each 

production rule maps from one string of symbols to another, where the first 

string (the "head") contains an arbitrary number of symbols provided at least 

one of them is a nonterminal. In the case that the second string (the "body") 

consists solely of the empty string – i.e., that it contains no symbols at all – it 

may be denoted with a special notation (often Λ, e or ε) in order to avoid 

confusion. 
 

 A distinguished symbol that is the start symbol. 
 

A grammar is formally defined as the 4-tuple (N,Σ,P,S). Such a formal grammar is 

often called a rewriting system or a phrase structure grammar in the literature. 
 

3.2.2 The Semantics of Grammars 
 

The operation of a grammar can be defined in terms of relations on strings: 
 

 Given a grammar G = (N,Σ,P,S), the binary relation (pronounced as "G 

derives in one step") on strings in is defined by: 

 
 
 
 

 the relation (pronounced as G derives in zero or more steps) is defined as 

the reflexive transitive closure of 

a sentential form is a member of                    that can be derived in a finite 

number of steps from the start symbol S; that is, a sentential form is a member 

of . A sentential form that contains no 

nonterminal symbols (i.e. is a member of Σ
*
) is called a sentence. 

the language of G, denoted as L(G), is defined as all those sentences that can 

be derived in a finite number of steps from the start symbol S; that is, the set 

. 
 

Note that the grammar G = (N,Σ,P,S) is effectively the semi-Thue system 

, rewriting strings in exactly the same way; the only difference is in that we distinguish 

specific nonterminal symbols which must be rewritten in rewrite rules, and are only 

interested in rewritings from the designated start symbol S to strings without 

nonterminal symbols.  

You could listen to this before you go ahead https://www.youtube.com/watch?v=ejXgLRSIxsA 

 

Example 1 
 

Please note that for these examples, formal languages are specified using set-builder 

notation. 
 

https://www.youtube.com/watch?v=ejXgLRSIxsA


 
 

Consider the grammar G where , , S is the start symbol, 

and P consists of the following production rules: 
 

1. 

2. 

3. 

4. 
 

This grammar defines the language 
 

L(G) = {anbncn|n ≥ 1} 
 

where a
n 

denotes a string of n consecutive a's. Thus, the language is the set of strings 

that consist of 1 or more a's, followed by the same number of b's, followed by the 

same number of c's. 
 

Some examples of the derivation of strings in L(G) are: 
 














(Note on notation: reads "String P generates string Q by means of 

production i", and the generated part is each time indicated in bold type.) 
 

3.3 The Chomsky Hierarchy 
 

When Noam Chomsky first formalized generative grammars in 1956, he classified 

them into types now known as the Chomsky hierarchy. The difference between these 

types is that they have increasingly strict production rules and can express fewer 

formal languages. Two important types are context-free grammars (Type 2) and 

regular grammars (Type 3). The languages that can be described with such a grammar are 

called context-free languages and regular languages, respectively. Although much less 

powerful than unrestricted grammars (Type 0), which can in fact express any language 

that can be accepted by a Turing machine, these two restricted types of grammars are 

most often used because parsers for them can be efficiently implemented. For 

example, all regular languages can be recognized by a finite state machine, and for 

useful subsets of context-free grammars there are well-known algorithms to generate 

efficient LL parsers and LR parsers to recognize the corresponding languages those 

grammars generate. This video may help at your leisure time. 

https://www.youtube.com/watch?v=_ecle_FC6AE 

 
 

3.4 Context-Free Grammars 
 

A context-free grammar is a grammar in which the left-hand side of each production 

https://www.youtube.com/watch?v=_ecle_FC6AE


rule consists of only a single nonterminal symbol. This restriction is non-trivial; not 
 
 

all languages can be generated by context-free grammars. Those that can are called 

context-free languages. 
 

The language defined above is not a context-free language, and this can be strictly 
proven using the pumping lemma for context-free languages, but for example the 

language L(G) = {a
n
b

n
|n ≥ 1} (at least 1 a followed by the same number of b's) is 

context-free, as it can be defined by the grammar G2 with N = {S}, Σ = {a, b}, S the 

start symbol, and the following production rules: 
 

1. 

2. 
 

A context-free language can be recognized in O(n3) time (see Big O notation in 

https://www.youtube.com/watch?v=__vX2sjlpXU) by an algorithm such as Earley's 
algorithm. That is, for every context-free language, a machine can be built that 

takes a string as input and determines in O(n
3
) time whether the string is a member 

of the language, where n is the length of the string. Further, some important subsets 
of the context-free languages can be recognized in linear time using other algorithms. 
 

3.5 Regular Grammars 
 

In regular grammars, the left hand side is again only a single nonterminal symbol, but 

now the right-hand side is also restricted. The right side may be the empty string, or a 

single terminal symbol, or a single terminal symbol followed by a nonterminal 

symbol, but nothing else. (Sometimes a broader definition is used: one can allow 

longer strings of terminals or single nonterminals without anything else, making 

languages easier to denote while still defining the same class of languages.) 
 

The language defined above is not regular, but the language {a
n
b

m 
| m, n ≥ 1} is (at 

least 1 a followed by at least 1 b, where the numbers may be different), as it can 
be defined by the grammar G3 with N = {S, A, B}, Σ = {a, b}, S the start symbol, and 

the following production rules: 
 

1. 

2. 

3. 

4. 

5. 
 

All languages generated by a regular grammar can be recognized in linear time by a 

finite state machine. Although, in practice, regular grammars are commonly expressed 

using regular expressions, some forms of regular expression used in practice do not 

strictly generate the regular languages and do not show linear recognitional 

performance due to those deviations. 
 

3.6 Other Forms of Generative Grammars 
 
 

https://www.youtube.com/watch?v=__vX2sjlpXU
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Many extensions and variations on Chomsky's original hierarchy of formal grammars 

have been developed, both by linguists and by computer scientists, usually either in 

order to increase their expressive power or in order to make them easier to analyze or 

parse. Some forms of grammars developed include: 
 

 Tree-adjoining grammars increase the expressiveness of conventional 

generative grammars by allowing rewrite rules to operate on parse trees instead 

of just strings. 

 Affix grammars and attribute grammars allow rewrite rules to be augmented 

with semantic attributes and operations, both useful for increasing grammar 

expressiveness and for constructing practical language translation tools. 
 

3.7 Analytic Grammars 
 

Though there is a tremendous body of literature on parsing algorithms, most of these 

algorithms assume that the language to be parsed is initially described by means of a 

generative formal grammar, and that the goal is to transform this generative grammar 

into a working parser. Strictly speaking, a generative grammar does not in any way 

correspond to the algorithm used to parse a language, and various algorithms have 

different restrictions on the form of production rules that are considered well-formed. 
 

An alternative approach is to formalize the language in terms of an analytic grammar 

in the first place, which more directly corresponds to the structure and semantics of a 

parser for the language. Examples of analytic grammar formalisms include the 

following: 
 

 The Language Machine directly implements unrestricted analytic grammars. 

Substitution rules are used to transform an input to produce outputs and 

behaviour. The system can also produce the lm-diagram which shows what 

happens when the rules of an unrestricted analytic grammar are being applied. 

 Top-down parsing language (TDPL): a highly minimalist analytic grammar 

formalism developed in the early 1970s to study the behavior of top-down 

parsers. 

 Link grammars: a form of analytic grammar designed for linguistics, which 

derives syntactic structure by examining the positional relationships between 

pairs of words. 

 Parsing expression grammars (PEGs): a more recent generalization of TDPL 

designed around the practical expressiveness needs of programming language 

and compiler writers. 
 

4.0 CONCLUSION 
 

In this unit you have been introduced to the concept of formal grammars. Grammars 

are very important in the field of automata theory since they are the building blocks of 

languages. In the next unit we will be discussing formal languages. 
 

5.0 SUMMARY 
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In this unit, you learnt that a formal grammar is a set of rules of a specific kind, for 

forming strings in a formal language. It has four components that form its syntax and a 

set of operations that can be performed on it, which form its semantic. 
 

Each type of grammars is recognised by a particular type of automata. For example, 

type-2 grammars are recognised by pushdown automata while type-3 grammars are 

recognised by finite state automata. 
 

According to Chomsky hierarchy, there are four types of grammars. The difference 

between these types is that they have increasingly strict production rules and can 

express fewer formal languages. 
 

6.0 TUTOR-MARKED ASSIGNMENT 
 

1. With illustration, describe the concept of formal grammar. 

2. Why is the production considered as a major component of grammar? 
 

3. Briefly describe the following: 
 

 operations on a grammar 

 semantics of a grammar 
 

4. Distinguish among the following grammar types: 
 

 Regular grammars 

 Context-free grammars 

 Analytical grammars 
 

5. Briefly discuss the Chomsky hierarchy. What is the relationship among the 

various types of grammars described in the Chomsky hierarchy? 
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You may think of a language as English or French, or perhaps perl or java, but there is 

a formal definition that is much more general. It encompasses these languages, and 

other, abstract languages such as the prime numbers, or the valid proofs of the 4 colour 

theorem. 
 

Start with a finite set, which is called the alphabet. Consider all finite ordered strings, 

i.e. finite tuples, drawn from this alphabet. A language is any well defined subset of 

these strings. Each finite string in the language is called a word. 
 

Since you have learnt about strings, alphabets, word and grammars in the 

preceding units, it will be easier for you to understand the topic of discussion in 

this unit, which is formal language. 
 

You will see that languages fall into various classes, according to their complexity. 

Some languages can be parsed, i.e. interpreted, by a very simple state machine. Others 

require the human brain, or something comparable. 
 

Languages also have many representations: machines that recognize them, expressions 

that describe them and grammars that generate them. 
 

Now let us go through your study objectives for this unit. 
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2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 

 O define formal languages 
O state the rules that define a formal language 
o define word over an alphabet 
O give examples of formal languages 
O perform basic operations on languages 
O explain the relevance of formal language to computer programming 

 
 

3.0 MAIN CONTENT 

3.1 Formal Language 
 

A formal language is a set of words, i.e. finite strings of letters, or symbols. The 

inventory from which these letters are taken is called the alphabet over which the 

language is defined. A formal language is often defined by means of a formal 

grammar. Formal languages are a purely syntactical notion, so there is not necessarily 

any meaning associated with them. To distinguish the words that belong to a language 

from arbitrary words over its alphabet, the former are sometimes called well-formed 

words (or, in their application in logic, well-formed formulas). 
 

Formal languages are studied in the fields of logic, computer science and linguistics. 

Their most important practical application is for the precise definition of syntactically 

correct programs for a programming language. The branch of mathematics and 

computer science that is concerned only with the purely syntactical aspects of such 

languages, i.e. their internal structural patterns, is known as formal language theory. 
 

Although it is not formally part of the language, the words of a formal language often 

have a semantical dimension as well. In practice this is always tied very closely to the 

structure of the language, and a formal grammar (a set of formation rules that 

recursively defines the language) can help to deal with the meaning of (well-formed) 

words. Well-known examples for this are "Tarski's definition of truth" in terms of a T-

schema for first-order logic, and compiler generators like lex and yacc.(Crespi  et al. 

2019, pages 5-6 ) 

 

Self-Assessment I 

 

1. What is a formal language? State areas of its application 

2. How relevant is formal language to computer programming? 

3. Differentiate between formal language and formal language theory 

4. Explain with examples the semantical dimensions of the words of a formal 

language 
 

3.2 Words over an Alphabet 
 

An alphabet, in the context of formal languages can be any set, although it often     32 
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makes sense to use an alphabet in the usual sense of the word, or more generally a  



character set such as ASCII. Alphabets can also be infinite; e.g. first-order logic is 

often expressed using an alphabet which, besides symbols such as ∧, ¬, ∀ and 
parentheses, contains infinitely many elements x0, x1, x2, …that play the role of 

variables. The elements of an alphabet are called its letters. 

 

A word over an alphabet can be any finite sequence, or string, of letters. The set of all 

words over an alphabet Σ is usually denoted by Σ
* 

(using the Kleene star). For any 
alphabet there is only one word of length 0, the empty word, which is often denoted by 

e, ε or Λ. By concatenation one can combine two words to form a new word, whose 

length is the sum of the lengths of the original words. The result of concatenating a 

word with the empty word is the original word. 
 

As you learnt in the first unit of this course, in some applications, especially in logic, 

the alphabet is also known as the vocabulary and words are known as formulas or 

sentences; this breaks the letter/word metaphor and replaces it by a word/sentence 

metaphor. (Goswani & Krishna, 2010,page 5) 
 
 

3.2.1 Formal Definition 
 

A formal language L over an alphabet Σ is just a subset of Σ
*
, that is, a set of words 

over that alphabet. For example, three sample languages over the same alphabet  Σ = { 

a, b }: 

 

               L1 = {a a, a a a } 

              L2 = {a ba, a a b} 

              L3 = {a b, b a, a a bb, a ba b, . . . , a a a bbb, . . . } 

 
 

In computer science and mathematics, which do not deal with natural languages, the 

adjective "formal" is usually omitted as redundant. 
 

While formal language theory usually concerns itself with formal languages that are 

defined by some syntactical rules, the actual definition of a formal language is only as 

above: a (possibly infinite) set of finite-length strings, no more nor less. In practice, 

there are many languages that can be defined by rules, such as regular languages or 

context-free languages. The notion of a formal grammar may be closer to the intuitive 

concept of a "language," one defined by syntactic rules. By an abuse of the definition, 

a particular formal language is often thought of as being equipped with a formal 

grammar that defines it. 
 

Example1 
 

The following rules define a formal language L over the alphabet Σ= 

{0,1,2,3,4,5,6,7,8,9,+,=}:                                                                                               
 

 Every non empty string that does not contain + or = and does not start with 0 is 

in L. 

 The string 0 is in L. 

 A string containing=is in L if and only if there is exactly one =, and it separates 



two strings in L. 

 A string containing + is in L if and only if every + in the string separates two 

valid strings in L. 

 No string is in L other than those implied by the previous rules.                                

 

Under these rules, the string "23+4=555" is in L, but the string "=234=+" is not. This 

formal language expresses natural numbers, well-formed addition statements, and 

well-formed addition equalities, but it expresses only what they look like (their 

syntax), not what they mean (semantics). For instance, nowhere in these rules is there 

any indication that 0 means the number zero, or that + means addition. 
 
For finite languages one can simply enumerate all well-formed words. For example, 

we can define a language L as just L= {"a", "b","ab","cba"}. 
 

However, even over a finite (non-empty) alphabet such as Σ ={a, b} there are infinitely 

many words: "a", "abb", "ababba", "aaababbbbaab", ….Therefore formal languages 

are typically infinite, and defining an infinite formal language is not as simple as 

writing L ={"a", "b", "ab", "cba"}. Here are some examples of formal languages: 
 

 L=Σ
*
, the set of all words over Σ; 

 L={a}
*
={a

n
},where n ranges over the natural numbers and a

n 
means "a" 

repeated n times (this is the set of words consisting only of the symbol "a"); 

 the set of syntactically correct programs in a given programming language (the 

syntax of which is usually defined by a context-free grammar; 

 the set of inputs upon which a certain Turing machine halts; or 

 the set of maximal strings of alphanumeric ASCII characters on this line, (i.e., 

the set{"the", "set", "of", "maximal", "strings", "alphanumeric", "ASCII", 

"characters", "on", "this", "line", "i", "e"}). 
 

3.2.2 Vocabulary and Language 
 

A vocabulary (or alphabet or character set or word list) is a finite non empty set of 

indivisible symbols (letters, digits, punctuation marks, operators, etc.). 
 

A language over a vocabulary V is any subset L of V* which has a finite description. 
There are two approaches for making this mathematically precise. One is to use a 
grammar–a form of inductive definition of L. The other is to describe a method for 

recognizing whether an element x∈L is in the language L and Automata theory is 
based on this approach.(Crespi et al, 2019, page 8) 

 

Self-Assessment Questions 

 

1. Define the following: 

a. Alphabet 

b. Letters 

c. Word over an alphabet 
 

2. Is formal language finite or infinite? Discuss with examples 
3. Write examples of formal languages you know. 
4. Define the following: 

a. Vocabulary 



b. Language over vocabulary. What are the two approaches to make it 
mathematically precise? 

 
 

3.3 Language-Specification Formalisms 
 

Formal language theory rarely concerns itself with particular languages (except as 

examples), but is mainly concerned with the study of various types of formalisms to 

describe languages. For instance, a language can be given as 
 

 those strings generated by some formal grammar (see Chomsky hierarchy); 

 those strings described or matched by a particular regular expression; 

 those strings accepted by some automaton, such as a Turing machine or finite 

state automaton; 

 those strings for which some decision procedure (an algorithm that asks a 

sequence of related YES/NO questions) produces the answer YES.                  

 

Typical questions asked about such formalisms include: 
 

 What is their expressive power? (Can formalism X describe every language that 

formalism Y can describe? Can it describe other languages?) 

 What is the irrecognizability? (How difficult is it to decide whether a given 

word belongs to a language described by formalism X?) 

 What is their comparability? (How difficult is it to decide whether two 

languages, one described in formalism X and one in formalism Y, or in X again, 

are actually the same language?). 
 

Surprisingly often, the answer to these decision problems is "it cannot be done at all", 

or" it is extremely expensive" (with a precise characterization of how expensive 

exactly).Therefore, formal language theory is a major application area of 

computability theory and complexity theory. 

 

Self-Assessment Questions 

1. Give examples of formalisms used to describe a language  

2. What are some of the typical questions asked about such formalisms 
 
 

3.4 Operations on Languages 
 

Certain operations on languages are common. This includes the standard set 

operations, such as union, intersection, and complementation. Another class of 

operation is the element-wise application of string operations. 

 
 

Example2: 
 

Suppose L1 and L2 are languages over some common alphabet. 
 

 The concatenation L1L2 consists of all strings of the form vw where v is a string 

from L1 and w is a string from L2. 

 



R 

R R 

      Example: for a pair of languages L1, L2 
 
      If L1 = {0, 1, 01} and L2 = {1, 00}, then the concatenation of a pair of 

languages L1, L2 is:  L1L2 = {01, 11, 011, 000, 100, 0100} 
       

 The intersection L1∩L2 of L1 and L2 consists of all strings which are contained 

in both languages. 
 
      Example: for a pair of languages L1, L2 
 
      If L1 = {0, 1, 01} and L2 = {1, 00, 01}, then the intersection of  L1 and L2  

      given as  L1∩L2 = {1,01} 

 
 

 The complement ¬L of a language with respect to a given alphabet consists of 

all strings over the alphabet that are not in the language. 

 

      Example: for a language L = {a,b}
2
 

      ¬L = ¬ ({a,b}
2
) = {ε, {a,b}, {a,b}

3
,.......} 

 

                                                                                                                                                             

Such operations are used to investigate closure properties of classes of languages. A class of 

languages is closed under a particular operation when the operation, applied to languages in 

the class, always produces a language in the same class again. For instance, the context-free 

languages are known to be closed under union, concatenation, and intersection with regular 

languages, but not closed under intersection or complementation. 
 

3.5 Other Operations on Languages 
 

Some other operations frequently used in the study of formal languages are the 

following: 
 

 The Kleene star: the language consisting of all words that are concatenations of 

0 or more words in the original language;  

       

Example: for Language L = {ab, ba} 

      The kleene star of L denoted as L* = {ε,ab,ba,abab,abba,baab,baba......} 

       

 
 Reversal: This is reversing the order of a language. 

O Let e be the empty word, then eR= e, and 
 

o for each non-empty word w = x1…xn over some alphabet, let w = 

xn…x1, 

o then for a formal language L,L= {w|w∈ L}. 
 

 Example 1: for Language L = {ab} 

           The reversal of  L denoted as L
R
={ba} 

Example 2: for Language L={0,11,01,011}, then LR={0,11,10,110} 

 
 String  homomorphism: A homomorphism is a mapping  



+ 

u=pxqandv=pyq.(Heretherulex→yisusedtoreplacexbyyinuto 

           h with domain Σ * for some alphabet Σ which preserves    
           concatenation: h(v.w)=h(v).h(w) 

o Simply, in homomorphism we replace each 
letter in a language with another letter in 
some other language. 

o Example: string SHIVA can be converted to 
corresponding ASCII language by replacing 
each letter with corresponding ASCII value 
as 8372728665. 
(Crespi et al, 2019, pages 9-15 ) 

 

Self-Assessment Questions 

1. State with examples some operations performed on languages. 

2. What is the importance of such operations to languages. 

 
 

3.6         Derivations  and Language of a Grammar 
 

Let G = (N,T,P,S) be any phrase structure grammar and let u, v∈(N∪T)*. We 

write u ⇒ v and say v is derived in one step from u by the rule x→y, providing  

that  produce v. Note that p, q∈(N∪T)*.) 

If u1⇒u2⇒u3......⇒ un we say un is derived from u1in G and write u1⇒
+

un. Also 

if u1 =un or u1⇒
+

un we write u1⇒*
un                                                                                                                                           

 

L(G) the language of G is defined by: 

L(G)={t∈T*:
Z⇒*t

f 
or some Z∈S} = {t∈T*:t∈S or Z⇒+

t for some Z∈S}. 
 
So, the elements of L(G) are those elements of T* which are elements of S or which 

are derivable from elements of S. 

 

                                                                                                                                                                                                                                                                                               

 

4.0 CONCLUSION 
 

In this unit you have been introduced to the concept of formal languages. Languages 

are very important in the field of automata theory since automata recognize languages,  

which is very important in computer programming. In the next unit we will be 

introducing you to automata. 

 

 

 

5.0 SUMMARY 
 

In this unit, you learnt that: 
 

a formal language is a set of words, i.e. finite strings of letters, or symbols and 

the inventory from which these letters are taken is called the alphabet over 

which the language is defined. 

a formal language is often defined by means of a formal grammar. 



a vocabulary (or alphabet or character set or word list) is a finite non empty set 

of indivisible symbols 

common operations on languages are the standard set operations, such as union, 

intersection, and complementation. 

another class of operation that can be performed on languages is the element-

wise application of string operations 

 

[Video links for further explanation: https://youtu.be/APRPT4KrzMA] 

 
 
 
6.0 TUTOR-MARKED ASSIGNMENT 
 

1. Explain formal language as a purely syntactical notion 

2. Is formal language finite or infinite? Discuss 

3. Formal language theory is mainly concerned with the study of various types of 

formalisms to describe languages. Give examples of such formalisms and state 

typical questions asked about such formalisms. 

4. Describe with examples common operations performed on languages. What are 

the relevance of such operations on languages. 
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1.0 INTRODUCTION 
 

After learning about formal grammars and languages as you have done in the 

previous units, it is now time to introduce you to the concept of automata theory. 
 

Now let us go through your study objectives for this unit. 
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At the end of this unit, you should be able to: 

 define an automaton 

explain automata theory 

state and describe types/classes of automata 

describe the operation of an automaton 

 

 

3.0 MAIN CONTENT 
 

3.1 Automata Theory 
 

In theoretical computer science, automata theory is the study of abstract machines 

(or more appropriately, abstract 'mathematical' machines or systems) and the 

computational problems that can be solved using these machines. These abstract 

machines are called automata. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure1: An Example of Automata 
 
 
 
Figure1 above illustrates a finite state machine, which is one well-known variety of 

automata. This automaton consists of states (represented in the figure by circles), and 

transitions (represented by arrows). As the automaton sees a symbol of input, it makes 

a transition (or jump) to another state, according to its transition function (which takes 

the current state and the recent symbol as its inputs). 
 

Automata theory is also closely related to formal language theory, as the automata are 

often classified by the class of formal languages they are able to recognize. An 

automaton can be a finite representation of a formal language that may be an infinite 

set. 
 

In other words, automata theory is a subject matter which studies properties of various 

types of automata. For example, following questions are studied about a given type of 

automata. 
 

 Which class of formal languages is recognizable by some type of automata? 

(Recognizable languages)                                                                                    
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 Is certain automata closed under union, intersection, or complementation of 

formal languages? (Closure properties) 

 How much is a type of automata expressive in terms of recognizing class of 

formal languages? And, their relative expressive power? (Language Hierarchy) 
 
 

Automata theory also studies if there exist any effective algorithm or not to solve 

problems similar to the following list: 
 

 Does an automaton accept any input word? (emptiness checking) 

 Is it possible to transform a given non-deterministic automaton into 

deterministic automaton without changing the recognizing language? 

(Determinization) 

 For a given formal language, what is the smallest automaton that recognizes it? 

(Minimization). 
 

Automata play a major role in compiler design and parsing. 

 

Self-Assessment Questions 

1. Explain the concept of Automata theory. 

2. What is the relationship between automata theory and formal language theory. 

 

 
 

3.2 Automata 
 

In the following sections you will be presented an introductory definition of one type 

of automata, which attempts to help one grasp the essential concepts involved in 

automata theory. 
 

3.2.1  Informal Description of Automaton 
 

An automaton is supposed to run on some given sequence or string of inputs in 

discrete timesteps. At each timestep, an automaton gets one input that is picked up 

from a set of symbols or letters, which is called an alphabet. At any time, the symbols 

so far fed to the automaton as input form a finite sequence of symbols, which is called 

a word. An automaton contains a finite set of states. At each instance in time of some 

run, automaton is in one of its states. At each timestep when the automaton reads a 

symbol, it jumps or transits to next state depending on its current state and on the 

symbol currently read. This function in terms of the current state and input symbol is 

called transition function. The automaton reads the input word one symbol after 

another in the sequence and transits from state to state according to the transition 

function, until the word is read completely. Once the  input word has been read, the 

automaton is said to have been stopped and  the state at which automaton has stopped 

is called final state. Depending on the final state, it is said that the automaton either 

accepts or rejects an input word. There is a subset of states of the automaton, which is 



  
 

CIT 342   Formal Languages and Automata Theory 
 
 

 

defined as the set of accepting states. If the final state is an accepting state, then the 

automaton accepts the word. Otherwise, the word is rejected.                                      
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The set of all the words accepted by an automaton is called the language recognized by 

the automaton. 
 

3.2.2  Formal Definitions 

 

3.2.2.1 Automaton 

An automaton is represented formally by the 5-tuple ⟨Q, Σ, δ, q0, F⟩, where: 
 

 Q is a finite set of states. 

 Σ is a finite set of symbols, called the alphabet of the automaton. 

 δ is the transition function, that is, δ: Q ×Σ→ Q. 
 q0 is the start state, that is, the state which the automaton is in when no 

input has been processed yet, where q0∈Q. 

 F is a set of states of Q (i.e. F⊆Q) called accept states. 
 

3.2.2.2 Input Word 
An automaton reads a finite string of symbols a1, a2,...., an, where ai∈Σ, which 

is called a input word. Set of all words is denoted by Σ*. 
 

3.2.2.3 Run 
A run of the automaton on an input word w=a1,a2,....,an∈Σ*, is a sequence of 

states q0,q1,q2,....,qn, where qi∈Q such that q0 is a start state and qi= δ(qi-1,ai) 

for 0 < i ≤n. In words, at first the automaton is at the start state q0 and then 

automaton reads symbols of the input word in sequence. When automaton reads 
symbol ai then it jumps to state qi= δ(qi-1,ai).qn said to be the final state of the 

run. 
 

3.2.2.4 Accepting Word 

A word w∈Σ* is accepted by the automaton if qn∈F. 
 

3.2.2.5 Recognized Language 

An automaton can recognize a formal language. The recognized language 

L⊂Σ* by an automaton is the set of all the words that are accepted by the 

automaton. 
 

3.2.2.6 Recognizable languages 

The recognizable languages is the set of languages that are recognized by some 

automaton. For above definition of automata, the recognizable languages are 

regular languages. For different definitions of automata, the recognizable 

languages are different. 
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3.2.3 Variations in Definition of Automata 
 

Automata are defined to study useful machines under mathematical formalism. So, the 

definition of an automaton is open to variations according to the "real world machine", 

which we want to model using the automaton. People have studied many variations of 

automata.                                                                                                                       43                                                                                                                
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Above, the most standard variant is described, which is called deterministic finite 

automaton. The following are some popular variations in the definition of different 

components of automata. 

 

3.2.3.1 Input 

 Finite input: An automaton that accepts only finite sequence of words. The 

above introductory definition only accepts finite words. 

 Infinite input: An automaton that accepts infinite words (ω-words). Such 

automata are called ω-automata. 

 Tree word input: The input may be a tree of symbols instead of sequence of 

symbols. In this case after reading each symbol, the automaton reads all the 

successor symbols in the input tree. It is said that the automaton makes one 

copy of itself for each successor and each such copy starts running on one of 

the successor symbol from the state according to the transition relation of the 

automaton. Such an automaton is called tree automaton. 
 

3.2.3.2 States 
 

 Finite states: An automaton that contains only a finite number of states. The 

above introductory definition describes automata with finite numbers of states. 

 Infinite states: An automaton that may not have a finite number of states, or 

even a countable number of states. For example, the quantum finite automaton 

or topological automaton has uncountable infinity of states. 

 Stack memory: An automaton may also contain some extra memory in the form 

of a stack in which symbols can be pushed and popped. This kind of automaton 

is called a push down automaton 
 

3.2.3.3 Transition Function 
 

Deterministic: For a given current state and an input symbol, if an automaton can 

only jump to one and only one state then it is a deterministic automaton. 

 Non deterministic: An automaton that, after reading an input symbol, may jump 

into any of a number of states, as licensed by its transition relation. Notice that 

the term transition function is replaced by transition relation: The automaton 

non-deterministically decides to jump into one of the allowed choices. Such 

automaton are called non deterministic automaton. 
 

 Alternation: This idea is quite similar to tree automaton, but orthogonal. The 

automaton may run its multiple copies on the same next read symbol. Such 

automata are called alternating automaton. Acceptance condition must satisfy 
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all runs of such copies to accept the input. 
 

3.2.3.4 Acceptance Condition 
 

Acceptance of finite words: Same as described in the informal definition 

above. 

Acceptance of infinite words: an omega automaton cannot have final 

states, as 

Infinite words never terminate. Rather, acceptance of the word is decided by 

looking at the infinite sequence of visited states during the run.                       44 
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 Probabilistic acceptance: An automaton need not strictly accept or reject an 

input. It may accept the input with some probability between zero and one. For 

example, quantum finite automaton, geometric automaton and metric 

automaton has probabilistic acceptance. 

 

Different combinations of the above variations produce many varieties of automata. 

 

 

Self-Assessment Questions 

1. Give the formal definition of an automaton. 

2. Define the following terms of an automaton: 

i. Input word 

ii. Run 

iii. Accepting word 

iv. Recognized Language 

v. Recognizable languages 

3. Define the following variations under each component of an automata 

A. INPUT 

i. Finite input 

ii. Infinite input 

iii. Tree word input 

B. STATES 

i. Finite states 

ii. Infinite states 

iii. Stack memory 

C. TRANSITION FUNCTION 

i. Deterministic 

ii. Non Deterministic 

iii. Alternation 

D. ACCEPTANCE CONDITION 

i. Acceptance of finite words 

ii. Acceptance of infinite words 

iii. Probabilistic acceptance. 
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[Further reading: ‗Formal Languages and Compilation‘ (2019) by Crespi R.S. & Co, 

pages 115-121 ] 

 

 
 

3.3 Classes of automata 
 

In the following table is an incomplete list of some types of automata. 

 

 

 

                                                                                                                                                45 
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Table1: Types of Automata 
 

Automata Recognizable language 

Deterministic finite automata (DFA) regular languages 

Nondeterministic finiteautomata (NFA) regular languages 

Nondeterministic finite automata with ε transitions 

(FND-εor ε-NFA) 

 
regular languages 

Pushdown automata (PDA) context-free languages 

Linear bounded automata (LBA) context-sensitive language 
 
Turingmachines 

Recursively enumerable 

languages 

Timed automata  

Deterministic Büchi automata omega limit languages 

NondeterministicBüchi automata omega regular languages 

Nondeterministic/Deterministic Rabin automata omega regular languages 

Nondeterministic/Deterministic Streett automata omega regular languages 

Nondeterministic/Deterministic parityautomata omega regular languages 

Nondeterministic/DeterministicMuller automata omega regular languages 
 
 
 
 
3.3.1  Discrete, Continuous, and Hybrid Automata 
 

Normally automata theory describes the states of abstract machines but there are 

analog automata or continuous automata or hybrid discrete-continuous automata, 

using analog data, continuous time, or both. An automaton that computes a Boolean 

(yes-no) function is called an acceptor. Acceptors may be used as the membership 

criterion of a language. An automaton that produces more general output (typically a 

string) is called a transducer. 
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Self-Assessment Questions 

1. In a tabular form, list the types of automata and their respective recognizable 

languages. 

2. Differentiate between discrete, continuous and hybrid automata 

3. Differentiate between acceptor and transducer. 

 

                                  

3.4 Applications of Automata Theory 
 

Each model in automata theory play varied roles in several applied areas. Finite 

automata are used in text processing, compilers, and hardware design. Context-free 

grammar (CFG) is used in programming languages and artificial intelligence. 

Originally, CFG were used in the study of the human languages. Cellular automata are 

used in the field of biology, the most common example being John Conway's Game of 

Life. Some other examples which could be explained using automata theory in 

biology include mollusk and pinecones growth and pigmentation patterns. Going 

further, Stephen Wolfram claims that the entire universe could be explained by 

machines with a finite set of states and rules with a single initial condition. Other 

areas of interest which he has related to automata theory include: fluid flow, 

snowflake and crystal formation, chaos theory, cosmology, and financial analysis. 

 

Self-Assessment II 

 

1. List out the various application areas of automata theory. 

 

A clue to answer: https://en.m.wkipedia.org/wiki/Automata_theory] 

 
 

4.0 CONCLUSION 
 

In this unit you have been taken through the concept of automata theory. In the next 

unit you will be learning more specifically about each type of automata, their 

operations and the class of language they recognise. 
 

5.0 SUMMARY 
 

In this unit, you learnt that: 

an automaton is a simple model of a computer. 

there is no formal definition for "automaton"--instead, there are various kinds 

of automata, each with its own formal definition. 

generally, an automaton 
 

O has some form of input, 
O has some form of output, 
 O has internal states, 
O may or may not have some form of storage, 
 O is hard-wired rather than programmable. 
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an automaton can recognize a formal language 

the  recognizable languages is the set of languages that are recognized by some 

automaton. 

 

[Video links for further explanation: https://youtu.be/EtYsnFGIUkA 
 

6.0 TUTOR-MARKED ASSIGNMENT 
 

1.What  do you understand by automata theory? 

  

2. What are the roles of automata theory to the study of automata? 

 

3. Describe the operation of an automaton to either accept or reject a word 
 

4. State any four classes of automata and their respective recognizable languages 
 

5. In the context of automata theory, differentiate between the following terms: 
 

Recognized language and Recognizable languages 

Finite states and Infinite states 

Finite input and Infinite input 

Deterministic and Nondeterministic transition function 

Acceptor and transducer 
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Module 2: Regular Languages 

 

Unit 1: Finite State Automata   

  

CONTENTS 

1.0 Introduction 

2.0 Objectives 

3.0 Main Content 

3.1 Finite State Automata  

3.2 Deterministic Finite Acceptors/Automata (DFA) 

3.2.1 Algorithm for the Operation of a DFA 

3.2.2 Implementing a DFA 

3.2.2.1   Using a GO TO Statement 

3.2.3 Formal Definition of a DFA 

3.3 Acceptor for Ada identifiers 

3.3.1 Abbreviated Acceptor for Ada Identifiers 

3.4 Nondeterministic Finite Automata/Acceptors (NFA) 

3.4.1 Implementing an NFA 

3.4.1.1  Recursive Implementation of NFAs 

3.4.1.2  State-Set Implementation of NFAs 

3.4.1.3  Formal Definition of NFAs 

3.5 Equivalence of FAs 

4.0 Conclusion 

5.0 Summary 

6.0 Tutor-Marked Assignment 

7.0 References/Further Reading 

1.0 INTRODUCTION 

 

You have learnt the general concepts of automata theory in the previous module. In this 

introductory unit of this module, you will be learning about the basis of all automata, 

which is the finite state automaton (FSA).  

 

FSA is characterized by not having a temporary storage compare to pushdown automata or 

Turing Machines to be considered in the next two Modules. The FSAs have a little capacity 

to remember its computation since its input cannot be rewritten into memory. Thus, the term 

―finite ― means an explicit amount of information can be retained in the Control Unit by 

placing the Unit into a specific state. But since the number of such states is finite, a finite 

automaton can only deal with situations in which the information to be stored at any time is 

strictly bounded 

 

 

 The finite-state automata (FSA) or finite state machine (FSM) enjoy a special place in 

computer science. The FSA has proven to be a very useful model for many practical tasks 

and deserves to be among the tools of every practicing computer scientist. Many simple 
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tasks, such as interpreting the commands typed into a keyboard or running a calculator, can 

be modelled by finite-state automata.  

In this unit we examine the language recognition capability of FSA. We show that FSA 

recognize exactly the regular languages, languages defined by regular expressions and 

generated by regular grammars. We also provide an algorithm to find a FSA that is 

equivalent to a given FSA but has the fewest states. The two different types of FSA, 

deterministic and nondeterministic, are also discussed in this unit. 

 

Now let us go through your study objectives for this unit. 

 

2.0 OBJECTIVES 

 

At the end of this unit, you should be able to: 

 describe FSA 

 formally define deterministic and nondeterministic Finite State Automata 

 give an algorithm for the operations of a DFA 

 describe ways of implementing  DFAs and NFAs 

 

3.0 MAIN CONTENT 

3.1 Finite State Automata  

Like grammars, finite state automata define languages.  The finite state automata is often 

abbreviated FSA or FA (for finite automata); however, some texts use the term finite state 

machine, or FSM to correlate with Turing machines that will be discussed in module 4 of 

this course.   

An FSA is a virtual device that manipulates a candidate string, one character at a time, and 

determines whether that string is in the language implemented by the machine.  The 

simplest state machine reads the string exactly once, and has no memory, only registers.  It 

is therefore a finite state automaton.  

An FSA is defined by a set of states and a transition function that maps state/input pairs into 

states.  In this state, reading this character, move to that state and advance to the next 

character.  

The transition function δ specifies the moves: the meaning of δ (q, a) = r is that the machine 

M, in the current state q, reads an input symbol a and moves to the next state r . If the value 

δ (q, a) is undefined, automaton M stops, and we assume it enters the error state (more on 

that later). As an alternative notation, we indicate the move from state q to state r reading 

character a, as ,  i.e., by the corresponding arc of the state-transition graph. 
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Automaton M processes a non-empty string x by a series of moves. Take x = a b: on reading 

the first character, the first step δ (q0, a) = q1 leads to state q1, and then to state q2 by the 

second step δ (q1, b) = q2. In short, instead of writing 

δ _δ (q0, a), b_ = q2,we combine the two steps into one δ (q0, a b) = q2, to say that on 

reading string a b the machine M moves to state q2. Notice that now the second argument of 

function δ is a string. A special case is the empty string, for which we assume no change of 

state: 

∀ q ∈ Q δ (q, ε) = q 

Some states are designated "final" states, and strings that leave the FSA in one of these final 

states are, by definition, in the language or accepted in the language..  

One state is designated the start state.  When the start state is also a final state, ε is 

necessarily in the language.  

Illustration 1: Watch this 1 minute introduction showing the link between computer system 

and FSA. https://www.youtube.com/watch?v=y28CcwJ2CZY 

 

Example 1:  

The following 4-state machine defines binary strings with an even number of 1's and 

0's.  States are a, b, c, d, and input characters are 0 1.  State a is both the start state and the 

final state  

            0 1  

        a → b c 

        b → a d 

        c → d a 

        d → c b 

 

3.2 Deterministic Finite Acceptors/Automata (DFA) 

DFAs are:  

 Deterministic i.e. there is no element of choice  

 Finite i.e. only a finite number of states and arcs  

 Acceptors i.e. produce only a yes/no answer  

A DFA is drawn as a graph, with each state represented by a circle.  

 

 
One designated state is the start state.  

https://www.youtube.com/watch?v=y28CcwJ2CZY
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Some states (possibly including the start state) can be designated as final states.  

 

 
 

Arcs between states represent state transitions. Each such arc is labelled with the symbol 

that triggers the transition. 

 

 

Figure 1: Example of DFA 

 

3.2.1 Algorithm for the Operation of a DFA 

 Start with the "current state" set to the start state and a "read head" at the beginning 

of the input string;  

 while there are still characters in the string:  

o Read the next character and advance the read head;  

o From the current state, follow the arc that is labelled with the character just 

read; the state that the arc points to becomes the next current state;  

 When all characters have been read, accept the string if the current state is a final 

state, otherwise reject the string.  

Watch this Video for illustration (7-minutes) 

https://www.youtube.com/watch?v=M84oEgYgw6U 

 

Example 2 

https://www.youtube.com/watch?v=M84oEgYgw6U
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Consider the following input string: 1 0 0 1 1 1 0 0. Using the DFA in Figure 1 above, a 

sample trace will be as follows:  

 

q0 1 q1 0 q3 0 q1 1 q0 1 q1 1 q0 0 q2 0 q0  

 

Since q0 is a final state, the string is accepted. 
 
Self-Assessment I 

1. From the above video, state two properties of FSA. 
2.  What is a transition in an automaton? 

 

3.2.2 Implementing a DFA 

 
 

3.2.2.1   Using a GO TO Statement 

 

If you do not object to the go to statement, below is an easy way to implement a DFA:  

 

q0 :  read char; 

      if eof then accept string; 

      if char = 0 then go to q2; 

      if char = 1 then go to q1; 

       

q1 :  read char; 

      if eof then reject string; 

      if char = 0 then go to q3; 

      if char = 1 then go to q0; 

       

q2 :  read char; 

      if eof then reject string; 

      if char = 0 then go to q0; 

      if char = 1 then go to q3; 

       

q3 :  read char; 

      if eof then reject string; 

      if char = 0 then go to q1; 

      if char = 1 then go to q2; 
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3.2.2.2  Using a CASE Statement  

If you are not allowed to use a go to statement, you can as well use a combination of a loop 

and a case statement:  

 

state := q0; 

loop 

   case state of 

      q0 :  read char; 

            if eof then accept string; 

            if char = 0 then state := q2; 

            if char = 1 then state := q1; 

       

      q1 :  read char; 

            if eof then reject string; 

            if char = 0 then state := q3; 

            if char = 1 then state := q0; 

       

      q2 :  read char; 

            if eof then reject string; 

            if char = 0 then state := q0; 

            if char = 1 then state := q3; 

       

      q3 :  read char; 

            if eof then reject string; 

            if char = 0 then state := q1; 

            if char = 1 then state := q2; 

   end case; 

end loop; 

 

3.2.3 Formal Definition of a DFA 

A deterministic finite acceptor/automaton  or DFA is a quintuple: 

 

M = (Q, , , q0, F)  

 

where  

 Q is a finite set of states,  

 is a finite set of symbols, the input alphabet,  

 : Q Q is a transition function,  

 q0 Q is the initial state,  

 F Q is a set of final states.  
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Note: The fact that  is a function implies that every vertex has an outgoing arc for each 

member of .  

We can also define an extended transition function as  

: Q Q.  

 

If a DFA M = (Q, , , q0, F) is used as a membership criterion, then the set of strings 

accepted by M is a language. That is, 

 

L(M) = {w : (q0, w) F}.  

Languages that can be defined by DFAs are called regular languages. Watch this video: 

https://www.youtube.com/watch?v=rtAy-CDYJeo 

 

3.3 Acceptor for Ada identifiers 

In Ada, an identifier consists of a letter followed by any number of letters, digits, and 

underlines. However, the identifier may not end in an underline or have two underlines in a 

row.  

Here is an automaton to recognize Ada identifiers.  

 

M = (Q, , , q0, F), where  

 Q is {q0, q1, q2, q3},  

  is {letter, digit, underline},  

  is given by  

 (q0, letter)    = q1        (q1, letter)    = q1 

 (q0, digit)     = q3        (q1, digit)     = q1 

 (q0, underline) = q3        (q1, underline) = q2 

Figure 2: 

https://www.youtube.com/watch?v=rtAy-CDYJeo
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 (q2, letter)    = q1        (q3, letter)    = q3 

 (q2, digit)     = q1        (q3, digit)     = q3 

 (q2, underline) = q3        (q3, underline) = q3 

 q0 Q is the initial state,  

 {q1} Q is a set of final states.  

3.3.1 Abbreviated Acceptor for Ada Identifiers 

The following is an abbreviated automaton (my terminology) to recognize Ada identifiers. 

You might use something like this in a course on compiler construction.  

 

The difference is that, in this automaton,  does not appear to be a function. It looks like a 

partial function, that is, it is not defined for all values of Q .  

We can complete the definition of  by assuming the existence of an "invisible" state and 

some "invisible" arcs. Specifically,  

 There is exactly one implicit error state;  

 If there is no path shown from a state for a given symbol in , there is an implicit 

path for that symbol to the error state;  

 The error state is a trap state: once you get into it, all arcs (one for each symbol in ) 

lead back to it; and  

 The error state is not a final state.  

The automaton represented in Figure 3 above is really exactly the same as the automaton in 

Figure 2; we just have not bothered to draw one state and a whole bunch of arcs that we 

know must be there.  

I do not think you will find abbreviated automata in the textbook. They are not usually 

allowed in a formal course. However, if you ever use an automaton to design a lexical 

scanner, putting in an explicit error state just clutters up the diagram.  

 

3.4 Nondeterministic Finite Automata/Acceptors (NFA) 

An FSA is nondeterministic if it is confronted with several choices when processing each 

character.  Thus the transition function of a nondeterministic FSA maps state/input pairs 

into sets of states.  The machine somehow traverses all possible paths in parallel.  In 

Figure 3: 
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addition, E transitions are permitted, allowing the machine to change states without reading 

an input character.  A string is accepted by an NFA if one of its parallel transition sequences 

leads to a final state.  

Watch this and identify what makes the automaton an NFA? (3 minutes) 

https://www.youtube.com/watch?v=IcyDv1bWR1k 

 

This seems to add a great deal of power, but in fact it does not.  Any NFA can be emulated 

by an FSA with more states.  Start with an NFA containing n states x1 x2 x3 etc, and 

construct a deterministic FSA with 2
n
 states as follows.  Each state in the new FSA 

corresponds to a unique combination of states in the original NFA.  The initial state y0 

corresponds to the union of the initial state x0 and all other xj states that are accessible from 

x0 via E transitions.  The state yi in the FSA is a final state if any of the corresponding xj 

states, represented by yi, is a final state in the original NFA.  To determine the transition 

function f(yi, c), apply c to each corresponding xj state, and bring in any new states that are 

accessible via E transitions.  The combination of all these states determines a particular 

yk.  Thus state yi, reading character c, moves to state yk.  

By induction on string length, any string that leaves the constructed FSA in state yi also 

leaves the original FSA in any of the corresponding states xj.  One machine says yes to the 

input word if and only if the other one does.  Therefore nondeterministic FSAs are no more 

powerful than their deterministic counterparts.  

A finite-state automaton can be nondeterministic in either or both of two ways:  

 

 

 

 

Figure 4: Nondeterministic Finite Acceptor 

A state may have two or more arcs emanating from it labelled with the same symbol. When 

the symbol occurs in the input, either arc may be followed.  

A state may have one or more arcs emanating from it labelled with  (the empty string) . 

These arcs may optionally be followed without looking at the input or consuming an input 

symbol.  

Due to nondeterminism, the same string may cause an NFA to end up in one of several 

different states, some of which may be final while others are not. The string is accepted if 

any possible ending state is a final state.  

https://www.youtube.com/watch?v=IcyDv1bWR1k
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Figure 5: Examples of NFAs 
 
Watch these video for more explanation:1) 
https://www.youtube.com/watch?v=2aFXJhL8BYU 
2) https://www.youtube.com/watch?v=rKCAPVaU0Qk 

 

3.4.1 Implementing an NFA 

If you think of an automaton as a computer, how does it handle nondeterminism?  

 

There are two ways that this could, in theory, be done:  

1. When the automaton is faced with a choice, it always (magically) chooses correctly. 

We sometimes think of the automaton as consulting an oracle which advises it as to 

the correct choice.  

2. When the automaton is faced with a choice, it spawns a new process, so that all 

possible paths are followed simultaneously.  

The first of these alternatives, using an oracle, is sometimes attractive mathematically. But 

if we want to write a program to implement an NFA, that is not feasible.  

There are three ways, two feasible and one not yet feasible, to simulate the second 

alternative:  

1. Use a recursive backtracking algorithm. Whenever the automaton has to make a 

choice, cycle through all the alternatives and make a recursive call to determine 

whether any of the alternatives leads to a solution (final state).  

2. Maintain a state set or a state vector, keeping track of all the states that the NFA 

could be in at any given point in the string.  

3. Use a quantum computer. Quantum computers explore literally all possibilities 

simultaneously. They are theoretically possible, but are at the cutting edge of physics. 

It may (or may not) be feasible to build such a device.  

View this to have an idea of how modern day quantum computing manages 

many transitions with same input (3 minutes) 

https://www.youtube.com/watch?v=2aFXJhL8BYU
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https://www.youtube.com/watch?v=WVv5OAR4Nik 

3.4.1.1  Recursive Implementation of NFAs 

An NFA can be implemented by means of a recursive search from the start state for a path 

(directed by the symbols of the input string) to a final state.  

Here is a rough outline of such an implementation:  

function NFA (state A) returns Boolean: 

    local state B, symbol x; 

    for each  transition from state A to some state B do 

        if NFA (B) then return True; 

    if there is a next symbol then 

        { read next symbol (x); 

          for each x transition from state A to 

            some state B do 

                if NFA (B) then 

                    return True; 

          return False; 

        } 

    else 

        { if A is a final state then return True; 

          else return False; 

        } 

One problem with this implementation is that it could get into an infinite loop if there is a 

cycle of transitions. This could be prevented by maintaining a simple counter. 

 

3.4.1.2  State-Set Implementation of NFAs 

Another way to implement an NFA is to keep either a state set or a bit vector of all the 

states that the NFA could be in at any given time. Implementation is easier if you use a bit-

vector approach (v[i] is True if and only if state i is a possible state), since most languages 

provide vectors, but not sets, as a built-in datatype. However, it is a bit easier to describe the 

algorithm if you use a state-set approach, so that is what we will do. The logic is the same in 

either case.  

 

function NFA (state set A) returns Boolean: 

   local state set B, state a, state b, state c, symbol x; 

 

   for each a in A do 

      for each  transition from a 

        to some state b do 

           add b to B; 
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   while there is a next symbol do 

      { read next symbol (x); 

        B := ; 

        for each a in A do 

          { for each  transition from a to some state b do 

                 add b to B; 

            for each x transition from a to some state b do 

               add b to B; 

          } 

        for each  transition from 

           some state b in B to some state c not in B do 

              add c to B; 

        A := B; 

      } 

   if any element of A is a final state then 

      return True; 

   else 

      return False; 

3.4.1.3  Formal Definition of NFAs 

It would be appropriate to give a formal definition of the nondeterministic finite automaton.  

A nondeterministic finite acceptor/automaton or NFA is defined by the quintuple  

M = (Q, , , q0, F)  

where  

 Q is a finite set of states,  

 is a finite set of symbols, the input alphabet,  

 : Q ( { } ) 2  is a transition function,  

 q0 Q is the initial state,  

 F Q is a set of final states.  

These are all the same as for a DFA except for the definition of :  

 Transitions on are allowed in addition to transitions on elements of , and  

 The range of is 2  rather than Q. This means that the values of are not elements of 

Q, but rather are sets of elements of Q.  

The language defined by NFA M is defined as  

L(M) = {w : (q0, w) F }  

 

3.5 Equivalence of FAs 
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Two acceptors are equivalent if they accept the same language.  

A DFA is just a special case of an NFA that happens not to have any null transitions or 

multiple transitions on the same symbol. So DFAs are not more powerful than NFAs.  

For any NFA, we can construct an equivalent DFA (see below). So NFAs are not more 

powerful than DFAs. DFAs and NFAs define the same class of languages – the regular 

languages.  

To translate an NFA into a DFA, the trick is to label each state in the DFA with a set of 

states from the NFA. Each state in the DFA summarizes all the states that the NFA might be 

in. If the NFA contains |Q| states, the resultant DFA could contain as many as |2 | states. 

(Usually far fewer states will be needed.)  See this 8-minutes video for more explanation:  

https://www.youtube.com/watch?v=quBzmvsxzkw 

 

4.0  CONCLUSION  

In this unit you have been taken through a class of automata called finite automata, its 

various types and ways of implementing each type. 

5.0 SUMMARY  

In this unit you learnt that: 

 finite state automata define languages 

 An FSA is nondeterministic if it is confronted with several choices when processing 

each character 

 A finite-state automaton can be nondeterministic in either or both of two ways 

 Two acceptors are equivalent if they accept the same language 

 A DFA is just a special case of an NFA that happens not to have any null transitions 

or multiple transitions on the same symbol 

 For any NFA, we can construct an equivalent DFA 

 In Ada, an identifier consists of a letter followed by any number of letters, digits, and 

underlines 

6.0 TUTOR-MARKED ASSIGNMENT 

1) Give the formal definition of the following: 

 FSA 

 DFA 

 NFA 

2) How is a DFA different from an NFA? How are they similar? 

3) Is an NFA more powerful than a DFA? Discuss. 

4) Construct DFA which accepts strings having odd number of 

a's and even number of b's 

5) Briefly describe the various ways that an NFA can be implemented. 
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6) Describe an algorithm for the Operation of a DFA 
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1.0 INTRODUCTION 

 

In the previous unit, you learnt about finite state automata (which is a way of 

characterizing regular languages), the different types and the various ways of 

implementing them. In this unit we will be discussing regular expressions, which is 

another way characterizing regular languages. 

 

Now let us go through your study objectives for this unit. 

 

2.0 OBJECTIVES 

 

At the end of this unit, you should be able to: 

 define regular expressions 



  
 

CIT 342   Formal Languages and Automata Theory 
 
 

 

 state the rules that can be applied to primitive regular expressions to create more 

regular expressions 

 state the precedence of the rules 

 describe the three ways of defining a language 

 demonstrate how to convert regular expressions to DFAs and NFAs and vice 

versa 

3.0 MAIN CONTENT 

3.1 Primitive Regular Expressions 

A regular expression can be used to define a language. A regular expression represents a 

"pattern;" strings that match the pattern that are in the language, strings that do not match 

the pattern are not in the language.  

As usual, the strings are over some alphabet .  

The following are primitive regular expressions:  

 x, for each x ,  

 , the empty string, and  

 , indicating no strings at all.  

Thus, if | | = n, then there are n+2 primitive regular expressions defined over .  

Here are the languages defined by the primitive regular expressions:  

 For each x , the primitive regular expression x denotes the language {x}. That is, 

the only string in the language is the string "x".  

 The primitive regular expression  denotes the language { }. The only string in this 

language is the empty string.  

 The primitive regular expression  denotes the language {}. There are no strings in 

this language.  

3.2 Regular Expressions 

Every primitive regular expression is a regular expression.  

We can compose additional regular expressions by applying the following rules a finite 

number of times:  

 If r1 is a regular expression, then so is (r1).  

 If r1 is a regular expression, then so is r1*.  

 If r1 and r2 are regular expressions, then so is r1r2 (Concatenation) 

 If r1 and r2 are regular expressions, then so is r1+r2  or r1/r2 (Union) 

Here is what the above notation means:  
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 Parentheses are just used for grouping.  

 The postfix star (Kleene closure) indicates zero or more repetitions of the preceding 

regular expression. Thus, if x , then the regular expression x* denotes the 

language { , x, xx, xxx, ...}.  

 Juxtaposition/concatenation of r1 and r2 indicates any string described by r1 

immediately followed by any string described by r2. For example, if x, y , then the 

regular expression xy describes the language {xy}.  

 The plus (+) or | sign, read as "or," denotes the language containing strings described 

by either of the component regular expressions i.e. the union of the component 

regular expressions. For example, if x, y , then the regular expression x+y or x|y 

describes the language {x, y}.  

Precedence 

1) The unary operator * (kleene closure) has the highest precedence and is left 

associative. For example, a+bc* or a|bc* denotes the language {a, b, bc, bcc, bccc, 

bcccc, ...}. 

2) Concatenation has a second highest precedence and is left associative.  

3) Union has lowest precedence and is left associative 

4) Parentheses override operator precedence as usual.  For example, (0|1)* stands for all 

possible binary strings, 0|1* stands for either a 0 or an arbitrarily long string of 1's, 

and 01* stands for 0 followed by an arbitrarily long string of 1's.  

The symbol ε represents the null string, and can be used like any other alphabetic 

character.  Thus, (0| ε)(1(0| ε))* stands for all binary strings without adjacent zeros.  

Computer languages such as ed, sed, grep, and perl employ regular expressions, but there 

are many more features for your convenience.  For instance, s+ = ss*, s? = (s| ε), s{7,} = 

sssssss+, and so on.  Check out `man perlre' for more details.  

3.3 Languages Defined by Regular Expressions 

There is a simple correspondence between regular expressions and the languages they 

denote:  

Regular expression L(regular expression) 

x, for each x  {x} 

 

{ } 

 

{ } 

(r1) L(r1) 

r1* (L(r1))* 

r1 r2 L(r1) L(r2) 

r1 + r2 L(r1) L(r2) 
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Watch this 3 minutes video on axioms and sample multiple choice question on a regular 
language: https://www.youtube.com/watch?v=efKSarb5oxM 

 

3.4 Building Regular Expressions 

Here are some hints on building regular expressions. We will assume = {a, b, c}.  

Zero or more.  

a* means "zero or more a's." To say "zero or more ab's," that is, { , ab, abab, 

ababab, ...}, you need to say (ab)*. Don't say ab*, because that denotes the language 

{a, ab, abb, abbb, abbbb, ...}.  

One or more.  

Since a* means "zero or more a's", you can use aa* (or equivalently, a*a) to mean 

"one or more a's." Similarly, to describe "one or more ab's," that is, {ab, abab, 

ababab, ...}, you can use ab(ab)*.  

Zero or one.  

You can describe an optional a with (a+ ).  

Any string at all.  

To describe any string at all (with = {a, b, c}), you can use (a+b+c)*.  

Any nonempty string.  

This can be written as any character from  followed by any string at all: 

(a+b+c)(a+b+c)*.  

Any string not containing....  

To describe any string at all that does not contain an a (with = {a, b, c}), you can 

use (b+c)*.  

Any string containing exactly one...  

To describe any string that contains exactly one a, put "any string not containing an 

a," on either side of the a, like this: (b+c)*a(b+c)*.  

3.4.1 Example Regular Expressions 

Give regular expressions for the following languages on = {a, b, c}.  

 

All strings containing exactly one a.  

(b+c)*a(b+c)* 

 

All strings containing no more than three a's.  

We can describe the string containing zero, one, two, or three a's (and nothing else) 

as 

( +a)( +a)( +a)  

 

Now we want to allow arbitrary strings not containing a's at the places marked by 

X's: 

X( +a)X( +a)X( +a)X  

https://www.youtube.com/watch?v=efKSarb5oxM
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so we put in (b+c)* for each X: 

(b+c)*( +a)(b+c)*( +a)(b+c)*( +a)(b+c)*  

 

All strings which contain at least one occurrence of each symbol in .  

The problem here is that we cannot assume the symbols are in any particular order. 

We have no way of saying "in any order", so we have to list the possible orders: 

abc+acb+bac+bca+cab+cba 

 

To make it easier to see what's happening, let's put an X in every place we want to 

allow an arbitrary string: 

XaXbXcX + XaXcXbX + XbXaXcX + XbXcXaX + XcXaXbX + XcXbXaX 

 

Finally, replacing the X's with (a+b+c)* gives the final (unwieldy) answer: 

(a+b+c)*a(a+b+c)*b(a+b+c)*c(a+b+c)* +  

(a+b+c)*a(a+b+c)*c(a+b+c)*b(a+b+c)* +  

(a+b+c)*b(a+b+c)*a(a+b+c)*c(a+b+c)* +  

(a+b+c)*b(a+b+c)*c(a+b+c)*a(a+b+c)* +  

(a+b+c)*c(a+b+c)*a(a+b+c)*b(a+b+c)* +  

(a+b+c)*c(a+b+c)*b(a+b+c)*a(a+b+c)* 

 

All strings which contain no runs of a's of length greater than two.  

We can fairly easily build an expression containing no a, one a, or one aa: 

 

(b+c)*( +a+aa)(b+c)*  

 

but if we want to repeat this, we need to be sure to have at least one non-a between 

repetitions: 

 

(b+c)*( +a+aa)(b+c)*((b+c)(b+c)*( +a+aa)(b+c)*)*  

 

All strings in which all runs of a's have lengths that are multiples of three.  

(aaa+b+c)* 

3.5 Regular Expressions and Automata 

Languages described by deterministic finite acceptors (DFAs) are called regular languages.  

For any nondeterministic finite acceptor (NFA) we can find an equivalent DFA. Thus NFAs 

also describe regular languages.  

Regular expressions also describe regular languages. We will show that regular expressions 

are equivalent to NFAs by doing two things:  
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1. For any given regular expression, we will show how to build an NFA that accepts the 

same language. (This is the easy part.)  

2. For any given NFA, we will show how to construct a regular expression that 

describes the same language. (This is the hard part.)  

3.5.1 From Primitive Regular Expressions to NFAs 

Every NFA we construct will have a single start state and a single final state. We will build 

more complex NFAs out of simpler NFAs, each with a single start state and a single final 

state. The simplest NFAs will be those for the primitive regular expressions.  

For any x in , the regular expression x denotes the language {x}. This NFA represents 

exactly that language.  

 

 

 

Note that if this were a NFA, we would have to include arcs for all the other elements 

of .  This 4 minutes video will definitely show you more examples of regular 

grammar: https://www.youtube.com/watch?v=nNMD1wE3TDM 

 

 

 

 

 

The regular expression  denotes the language { }, that is, the language containing only 

the empty string.  

 

 

 

The regular expression  denotes the language ; no strings belong to this language, not 

even the empty string.  

Since the final state is unreachable, why bother to have it at all? The answer is that it 

simplifies the construction if every NFA has exactly one start state and one final state. We 

could do without this final state, but we would have more special cases to consider, and it 

does not hurt anything to include it.  

Figure 1: 

 

Figure 2: 

 

Figure 3: 

 



  
 

CIT 342   Formal Languages and Automata Theory 
 
 

 

3.5.2 From Regular Expressions to NFAs 

We will build more complex NFAs out of simpler NFAs, each with a single start state and a 

single final state. Since we have NFAs for primitive regular expressions, we need to 

compose them for the operations of grouping, juxtaposition, union, and Kleene star (*).  

For grouping (parentheses), we don't really need to do anything. The NFA that represents 

the regular expression (r1) is the same as the NFA that represents r1.  

For juxtaposition (strings in L(r1) followed by strings in L(r2), we simply chain the NFAs 

together, as shown. The initial and final states of the original NFAs (boxed) stop being 

initial and final states; we include new initial and final states. (We could make do with 

fewer states and fewer transitions here, but we aren't trying for the best construction; we're 

just trying to show that a construction is possible.)  

 

 

 

 

The + denotes "or" in a regular expression, so it makes sense that we would use an NFA 

with a choice of paths. (This is one of the reasons that it's easier to build an NFA than a 

DFA.)  

 

 

 

 

 

 

The star denotes zero or more applications of the regular expression, so we need to set up a 

loop in the NFA. We can do this with a backward-pointing arc. Since we might want to 

traverse the regular expression zero times (thus matching the null string), we also need a 

forward-pointing arc to bypass the NFA entirely.  

 

 

 

 

Figure 4: 

 

Figure 5: 

Figure 6: 
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3.5.3 From NFAs to Regular Expressions  

Creating a regular expression to recognize the same strings as an NFA is trickier than you 

might expect, because the NFA may have arbitrary loops and cycles. Here's the basic 

approach (details supplied later):  

1. If the NFA has more than one final state, convert it to an NFA with only one final 

state. Make the original final states nonfinal, and add a transition from each to the 

new (single) final state.  

2. Consider the NFA to be a generalized transition graph, which is just like an NFA 

except that the edges may be labeled with arbitrary regular expressions. Since the 

labels on the edges of an NFA may be either  or members of , each of these can 

be considered to be a regular expression.  

3. Remove states one by one from the NFA, relabeling edges as you go, until only the 

initial and the final state remain.  

4. Read the final regular expression from the two-state automaton that results.  

The regular expression derived in the final step accepts the same language as the original 

NFA.  

Since we can convert an NFA to a regular expression, and we can convert a regular 

expression to an NFA, the two are equivalent formalisms--that is, they both describe the 

same class of languages, the regular languages.  

There are two complicated parts to extracting a regular expression from an NFA: removing 

states, and reading the regular expression off the resultant two-state generalized transition 

graph.  

 

Here is how to delete a state: 

 

To delete state Q, where Q is neither the initial state nor the final state,  

 

 

 

 replace with .  

 

 

 

 

Figure 7: Deleting a State 
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You should convince yourself that this transformation is "correct", in the sense that paths 

which leave you in Qi in the original will leave you in Qi in the replacement, and similarly 

for Qj.  

 What if state Q has connections to more than two other states, say, Qi, Qj, and Qk? 

Then you have to consider these states pairwise: Qi with Qj, Qj with Qk, and Qi with 

Qk.  

 What if some of the arcs in the original state are missing? There are too many cases 

to work this out in detail, but you should be able to figure it out for any specific case, 

using the above as a model.  

 

You will end up with an NFA that looks like this, where r1, r2, r3, and r4 are (probably very 

complex) regular expressions. The resultant NFA in figure 8 below represents the regular 

expression  r1*r2(r4 + r3r1*r2)* 

 

 

 

 

 

(you should verify that this is indeed the correct regular expression). All you have to do is 

plug in the correct values for r1, r2, r3, and r4. 

This video might help you to understand further (11 minutes): 

https://www.youtube.com/watch?v=rtAy-CDYJeo 

 
Self Assessment I 

1. Write the regular expression for the language over e={0] having even length of the 
string 

2. Write the regular expression  for a language accepting all strings containing any 
number of as and bs 

Watch this video for the answer  

3.6 Three Ways of Defining a Language 

The following  presents an example solved in  three different ways. No new information is 

presented.  

 

Problem: Define a language containing all strings over = {a, b, c} where no symbol ever 

follows itself; that is, no string contains any of the substrings aa, bb, or cc.  

3.6.1 Definition by Grammar 

Define the grammar G = (V, T, S, P) where  

Figure 8: NFA for r1*r2(r4 + r3r1*r2)* 

https://www.youtube.com/watch?v=rtAy-CDYJeo
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 V = {S, ...some other variables...}.  

 T = = {a, b, c}.  

 The start symbol is S.  

 P is given below.  

These should be pretty obvious except for the set V, which we generally make up as we 

construct P.  

Since the empty string belongs to the language, we need the production  

S  

Some strings belonging to the language begin with the symbol a. The a can be followed by 

any other string in the language, so long as this other string does not begin with a. So we 

make up a variable, call it NOTA, to produce these other strings, and add the production  

S a NOTA  

By similar logic, we add the variables NOTB and NOTC and the productions  

S b NOTB  

S c NOTc  

Now, NOTA is either the empty string, or some string that begins with b, or some string that 

begins with c. If it begins with b, then it must be followed by a (possibly empty) string that 

does not begin with b--and we already have a variable for that case, NOTB. Similarly, if 

NOTA is some string beginning with c, the c must be followed by NOTC. This gives the 

productions  

NOTA  

NOTA b NOTB  

NOTA c NOTC  

Similar logic gives the following productions for NOTB and NOTC:  

NOTB  

NOTB a NOTA  

NOTB c NOTC  

NOTC  

NOTC a NOTA  

NOTC b NOTB  

We add NOTA, NOTB, and NOTC to set V, and we're done.  

Example derivation:  

S a NOTA a b NOTB a b a NOTA a b a c NOTC a b a c.  

3.6.2 Definition by NFA 

Defining the language by an NFA follows almost exactly the same logic as defining the 

language by a grammar. Whenever an input symbol is read, go to a state that will accept any 
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symbol other than the one read. To emphasize the similarity with the preceding grammar, 

we will name our states to correspond to variables in the grammar.  

 

Figure 9: Definition of Language by NFA 

 

3.6.3 Definition by Regular Expression 

As usual, it is more difficult to find a suitable regular expression to define this language, and 

the regular expression we do find bears little resemblance to the grammar or to the NFA.  

The key insight is that strings of the language can be viewed as consisting of zero or more 

repetitions of the symbol a, and between them must be strings of the form bcbcbc... or 

cbcbcb.... So we can start with  

X a Y a Y a Y a ... Y a Z 

where we have to find suitable expressions for X, Y, and Z. But first, let's get the above 

expression in a proper form, by getting rid of the "...". This gives  

X a (Y a)* Z 

and, since we might not have any as at all,  

(X a (Y a)* Z) + X 

Now X can be empty, a single b, a single c, or can consist of an alternating sequence of bs 

and cs. This gives  

X = (  + b + c + (bc)* + (cb)*)  

This isn't quite right, because it does not allow (bc)*b or (cb)*c. When we include these, we 

get  

X = (  + b + c + (bc)* + (cb)* + (bc)*b + (cb)*c)  

This is now correct, but could be simplified. The last four terms include the +b+c cases, 

so we can drop those three terms. Then we can combine the last four terms into  

X = (bc)*(b + ) + (cb)*(c + )  

Now, what about Z? As it happens, there isn't any difference between what we need for Z 

and what we need for X, so we can also use the above expression for Z.  

Finally, what about Y? This is just like the others, except that Y cannot be empty. Luckily, 

it's easy to adjust the above expression for X and Z so that it can't be empty:  

Y = ((bc)*b + (cb)*c) 
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Substituting into (X a (Y a)* Z) + X, we get  

((bc)*(b + ) + (cb)*(c + ) a (((bc)*b + (cb)*c) a)* (bc)*(b + ) + (cb)*(c + )) + 

(bc)*(b + ) + (cb)*(c + )  

 

4.0  CONCLUSION  

In this unit you have been taken through regular expressions and the important role it plays 

in the definition of languages. In the next unit you will be learning about regular grammars 

5.0 SUMMARY  

In this unit, you learnt that:  

 A regular expression can be used to define a language.  

 A regular expression represents a "pattern;" strings that match the pattern that are in 

the language, strings that do not match the pattern are not in the language 

 There is a simple correspondence between regular expressions and the languages 

they denote 

 Languages described by deterministic finite acceptors (DFAs) are called regular 

languages 

 Regular expressions also describe regular languages 

6.0 TUTOR-MARKED ASSIGNMENT 

1. Define primitive regular expressions 

2. State the rules for creating addition regular expressions from any given regular 

expression(s) 

3. How do regular expressions relate to automata? 

4. Describe how to convert regular expressions to DFA. Is the reverse possible? Explain 

See examples:https://www.youtube.com/watch?v=5_KRbXPCGWg 

and : https://www.youtube.com/watch?v=rtAy-CDYJeo 

5. With the aid of illustrative examples, briefly describe the three ways of defining a 

language 
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1.0 INTRODUCTION 

 

In the preceding unit you learnt about regular expressions and how they can be used to 

define a language. In this unit, you will be learning about regular grammars, which is 

another way of defining languages. 

 

Now let us go through your study objectives for this unit. 

 

2.0 OBJECTIVES 

 

At the end of this unit, you should be able to: 

 Define regular grammars 

 Classify grammars 

 Show the connection between right-linear grammars and NFAs 

 Construct a right-linear grammar from a left-linear grammar 

 Distinguish between right-linear grammars from left-linear grammars 

 With the aid of illustrative examples, state the relationship between regular 
grammars and each of the following: 

o DFAs 
o NFAs 
o Regular expressions 
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3.0 MAIN CONTENT 

3.1 Grammars for Regular Languages 

From the previous unit, you already know that:  

 A language defined by a DFA is a regular language.  
 Any DFA can be regarded as a special case of an NFA.  
 Any NFA can be converted to an equivalent DFA; thus, a language defined by an NFA 

is a regular language.  
 A regular expression can be converted to an equivalent NFA; thus, a language 

defined by a regular expression is a regular language.  
 An NFA can (with some effort!) be converted to a regular expression.  

So DFAs, NFAs, and regular expressions are all "equivalent," in the sense that any language 

you define with one of these could be defined by the others as well.  

We also know that languages can be defined by grammars. Now we will begin to classify 

grammars; and the first kinds of grammars we will look at are the regular grammars. As 

you might expect, regular grammars will turn out to be equivalent to DFAs, NFAs, and 

regular expressions.  

3.2 Classifying Grammars 

Recall that a grammar G is a quadruple G = (V, T, S, P) 

where: 

 V is a finite set of (meta)symbols, or variables.  
 T is a finite set of terminal symbols.  
 S V is a distinguished element of V called the start symbol.  
 P is a finite set of productions.  

The above is true for all grammars. We will distinguish among different kinds of grammars 

based on the form of the productions. If the productions of a grammar all follow a certain 

pattern, we have one kind of grammar. If the productions all fit a different pattern, we 

have a different kind of grammar.  

Productions have the form:  

(V T)  (V T) .  

Different types of grammars can be defined by putting additional restrictions on the left-

hand side of productions, the right-hand side of productions, or both.  

3.2.1 Right-Linear Grammars 

These are grammars whose productions have the form:  
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(V T)  (V T) .  

In a right-linear grammar, all productions have one of the two forms:  

V T*V  

or  

V T*  

That is, the left-hand side must consist of a single variable, and the right-hand side consists 

of any number of terminals (members of ) optionally followed by a single variable. (The 

"right" in "right-linear grammar" refers to the fact that, following the arrow, a variable can 

occur only as the rightmost symbol of the production.) This video clarifies differences 

between right-linear and left-linear regular grammar. 

https://www.youtube.com/watch?v=1PmfoAE8cdc  and 

https://www.youtube.com/watch?v=Ob60IirEm4s 

 

3.2.1.1  Right-Linear Grammars and NFAs 

There is a simple connection between right-linear grammars and NFAs, as suggested by the 

following diagrams:  

 

A x B  
 

A x y z B  
 

A B  
 

A x  
 

Figure 1: Connection between right-linear grammars and NFAs 

As an example of the correspondence between an NFA and a right-linear grammar, the 

following automaton and grammar both recognize the set of strings consisting of an even 

number of 0's and an even number of 1's.  

https://www.youtube.com/watch?v=1PmfoAE8cdc


  
 

CIT 342   Formal Languages and Automata Theory 
 
 

 

S  

S 0 B 

S 1 A 

 

A 0 C 

A 1 S 

 

B 0 S 

B 1 C 

 

C 0 A 

C 1 B 

 

Figure 2: automaton and grammar for the set of strings consisting of an even number of 

0's and an even number of 1's 

3.2.2 Left-Linear Grammars 

In a left-linear grammar, all productions have one of the two forms:  

V VT*  

or  

V T*  

That is, the left-hand side must consist of a single variable, and the right-hand side consists 

of an optional single variable followed by any number of terminals. This is just like a right-

linear grammar except that, following the arrow, a variable can occur only on the left of the 

terminals, rather than only on the right.  

We will not pay much attention to left-linear grammars, because they turn out to be 

equivalent to right-linear grammars. Given a left-linear grammar for language L, we can 

construct a right-linear grammar for the same language, as follows:  

Table 1: Construction of right-linear grammar for any given left-linear grammar 

Step Method 

Construct a right-linear 

grammar for the (different) 

language L .  

Replace each production A x of L with a production A x

, and replace each production A Bx with a production A 

x  B.  

Construct an NFA for L  

from the right-linear 

grammar. This NFA should 

have just one final state.  

We talked about deriving an NFA from a right-linear grammar 

in section 3.2.1.1. If the NFA has more than one final state, 

we can make those states nonfinal, add a new final state, and 

put transitions from each previously final state to the new 
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final state.  

Reverse the NFA for L  to 

obtain an NFA for L.  

1. Construct an NFA to recognize language L. 

2.  Ensure the NFA has only a single final state. 

3. Reverse the direction of the arcs. 

4.   Make the initial state final and the final state initial. 

Construct a right-linear 

grammar for L from the NFA 

for L.  

This is the technique we just talked about on in section 

3.2.1.1 

3.3 Regular Grammars 

You have learned three ways of characterising regular languages: regular expressions, 

finite automata and construction from simple languages using simple operations. There is 

yet another way of characterizing them; that is by something called grammar.  

 

A grammar is a set of rewrite rules which are used to generate strings by successively 

rewriting symbols. For example consider the language represented by a+, which is {a, aa, 

aaa, . . . }. One can generate the strings of this language by the following procedure: Let S 

be a symbol to start the process with. Rewrite S using one of the following two rules: S → a 

, and S → aS . These rules mean that S is rewritten as a or as aS. To generate the string aa 

for example, start with S and apply the second rule to replace S with the right hand side of 

the rule, i.e. aS, to obtain aS. Then apply the first rule to aS to rewrite S as a. That gives us 

aa. We write S  aS to express that aS is obtained from S by applying a single production. 

Thus the process of obtaining aa from S is written as S  aS  aa . If we are not 

interested in the intermediate steps, the fact that aa is obtained from S is written as S * 

aa , In general if a string  is obtained from a string  by applying productions of a 

grammar G, we write =>*
G  and say that  is derived from . If there is no ambiguity 

about the grammar G that is referred to, then we simply write *
. 

 

Formally, a grammar consists of a set of nonterminals (or variables) V, a set of terminals  

(the alphabet of the language), a start symbol S, which is a nonterminal, and a set of 

rewrite rules (productions) P. A production has in general the form → , where  is a 

string of terminals and nonterminals with at least one nonterminal in it and  is a string of 

terminals and nonterminals. A grammar is regular if and only if  is a single nonterminal 

and  is a single terminal or a single terminal followed by a single nonterminal, that is a 

production is of the form X → a or X → aY, where X and Y are nonterminals and a is a 

terminal. 

 

For example, = {a, b}, V = {S} and P = { S → aS, S → bS, S → } is a regular grammar and 

it generates all the strings consisting of a's and b's including the empty string.  
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The following theorem holds for regular grammars.  

 

Theorem 1: A language L is accepted by an FSA i.e. regular, if L - { } can be generated by a 

regular grammar. 

 

This can be proven by constructing an FSA for the given grammar as follows: For each 

nonterminal create a state. S corresponds to the initial state. Add another state as the 

accepting state Z. Then for every production X → aY, add the transition ( X, a ) = Y and for 

every production X → a add the transition ( X, a ) = Z. 

 

For example = {a, b}, V = {S} and P = { S → aS, S → bS, S → a, S → b } form a regular 

grammar which generates the language ( a + b )+. An NFA that recognizes this language can 

be obtained by creating two states S and Z, and adding transitions (S, a) = { S, Z } and 

(S, b) = {S, Z} , where S is the initial state and Z is the accepting state of the NFA.  

 

The NFA thus obtained is shown below.  

 

 

 
           

 

Thus L - { } is regular. If L contains as its member, then since { } is regular , L = ( L -{ 

} ) { } is also regular.  

 

Conversely, from any NFA < Q, , , q0, A > a regular grammar < Q, , P, q0 > is obtained 

as follows:  

for any a in , and nonterminals X and Y, X → aY is in P if and only if (X, a) = Y , and for 

any a in  and any nonterminal X, X → a is in P if and only if (X, a) = Y for some 

accepting state Y. 

 

 

Thus the following converse of Theorem 1 is obtained. 

 

Theorem 2: If L is regular i.e. accepted by an NFA, then L - { } is generated by a regular 

grammar.  
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For example, a regular grammar corresponding to the NFA given below is < Q, { a, b }, P, S > 

, where Q = { S, X, Y } , P = { S → aS, S → aX, X → bS, X → aY, Y → bS, S → a }. 

 

 

            

 

 

 

As you have learnt in the previous module, in addition to regular languages there are three 

other types of languages in Chomsky hierarchy: context-free languages, context-sensitive 

languages and phrase structure languages. They are characterized by context-free 

grammars, context-sensitive grammars and phrase structure grammars, respectively. 

  

These grammars are distinguished by the kind of productions they have but they also form 

a hierarchy, that is the set of regular languages is a subset of the set of context-free 

languages which is in turn a subset of the set of context-sensitive languages and the set of 

context-sensitive languages is a subset of the set of phrase structure languages.  

 

A regular grammar is either a right-linear grammar or a left-linear grammar.  

To be a right-linear grammar, every production of the grammar must have one of the two 

forms V T*V or V T*.  

To be a left-linear grammar, every production of the grammar must have one of the two 

forms V VT* or V T*.  

You do not get to mix the two. For example, consider a grammar with the following 

productions:  

S  

S a X  

X S b  
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This grammar is neither right-linear nor left-linear, hence it is not a regular grammar. We 

have no reason to suppose that the language it generates is a regular language (one that is 

generated by a DFA).  

In fact, the grammar generates a language whose strings are of the form a b . This 

language cannot be recognized by a DFA.  

 

4.0  CONCLUSION  

In this unit you have been taken through regular grammars, which is another way of 

defining regular languages. You have also learnt that any regular grammar can be classified 

as either a right-linear or left-linear grammar.  

In the next unit you will be learning about some of the properties of regular languages. 

 

5.0 SUMMARY  

In this unit, you learnt that: 

 You can distinguish among different kinds of grammars based on the form of the 

productions 

 In a right-linear grammar, all productions have one of the two forms viz: V T*V 

or  

 V T*  

 In a left-linear grammar, all productions have one of the two forms viz: V VT* or 

V T* 

 A grammar is a set of rewrite rules which are used to generate strings by 

successively rewriting symbols 

 A language L is accepted by an FSA can be generated by a regular grammar 

 If L is regular then L - { } is generated by a regular grammar. 

 A regular grammar is either a right-linear grammar or a left-linear grammar 

6.0 TUTOR-MARKED ASSIGNMENT 

1. Define regular grammars 

2. With an illustrative example, show that if L is regular then L - { } is generated by 

a regular grammar 

3. Distinguish between right-linear grammar and left-linear grammar 
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4. Outline the steps involved in constructing a right-linear grammar from a left-

linear grammar. Hence or otherwise, given the left-linear grammar below, 

construct an equivalent right-linear grammar: 

  S → Xab 

  X → c 

5. Construct an NFA for the right-linear grammar derived from the grammar in 

question (3) above 
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INTRODUCTION 
 

In the last three units you started learning about regular languages and how they 

can be defined. In this unit, you will learn about some of the useful properties of 

regular languages and how each of these properties can be used to show that a 

language is regular. 
 

Now let us go through your study objectives for this unit. 
 

2.0 OBJECTIVES 

At the end of this unit, you should be able to: 

  Enumerate the closure properties of regular languages 

 Describe the steps to follow in applying each of these properties 

 State the standard ways in which regular languages can be represented 

 Prove the finiteness or otherwise of a language L 

 Prove that a string belong to a language 
 

81
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1 

1 

1 

 Prove the equivalence of two languages 
 

3.0 MAIN CONTENT 
 

3.1 Closure I 
 

A set is closed under an operation if, whenever the operation is applied to members of 

the set, the result is also a member of the set. 
 

For example, the set of integers is closed under addition, because x+y is an integer 

whenever x and y are integers. However, integers are not closed under division: if x 

and y are integers, x/y may or may not be an integer. 
 

We have defined several operations on languages: 

L1  L2     Strings in either L1 or L2 

L1  L2     Strings in both L1 and L2 

L1L2         Strings composed of one string from L1 followed by one string from L2  

-L1         All strings (over the same alphabet) not in L1 

L1*      Zero or more strings from L1 concatenated together  

L1 - L2        Strings in L1 that are not in L2 

L1
R
      Strings in L1 reversed 

 

In mathematical notations (especially set theory), the above can be written as: 
 

L = {x | x is in Σ* and x is not in L}  
 

L  L2 = {x | x is in L1 or L2} 

 

L  L2 = {x | x is in L1 and L2} 
 

L  -  L2     = {x | x is in L1 but not in L2} 

 

L1L2 = {xy | x is in L1 and y is in L2} 
 

L* =  Li = L0 U L1 U L2 U… 
 

L
+ 

=  L
i 
= L

1 
U L

2 
U… 

 
 

L1 = {x| x is reversed} 

 

Closure properties on regular languages are defined as certain operations on regular 

language which are guaranteed to produce regular language. Closure refers to some 

operation on a language, resulting in a new language that is of same ―type‖ as originally 

operated on i.e. regular. (Geeks for Geeks, 2020) 

 

We will show that the set of regular languages is closed under each of these 
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operations. We will also define the operations of "homomorphism" and "right 

quotient" and show that the set of regular languages is also closed under these 

operations. 

 
 

3.2 Closure II: Union, Concatenation, Negation, Kleene Star, Reverse 
 

3.2.1 General Approach 
 

1) Build automata (DFAs or NFAs) for each of the languages involved. 

2) Show how to combine the automata to create a new automaton that recognizes the 

desired language. 

3) Since the language is represented by an NFA or DFA, conclude that the 

language is regular. 
 

Two languages L1 and L2 are considered in this section. L1 = {0x | x ∈ {0, 1}*} i.e. strings 

that start with 0 and L2 = {x0 | x ∈ {0, 1}*} i.e. strings that end with 0. 

The automata for the languages are  

 

L1   

q2

q0

q1

0

0,1

0,1

1

 
L2 

r1
r0

0
0

1

1

 

They will be used to understand the properties mentioned in this section. 
 

3.2.2 Union of L1 and L2 

 

1) Create a new start state (n0). 

2) Make a   transition from the new start state (n0) to each of the original start states i.e. 

q0 and r0. 

The automaton below shows the result of the union of L1 and L2 i.e. L1  L2. 
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q2

q0

q1

0

λ

0,1

0,1

1

r1
r0

0λ 
0

1

1

n0

 
 

3.2.3 Concatenation of L1 and L2 

 

1) Put a   transition from each final state of L1 to the initial state of L2  

2) Make the original final states of L1 non-final 

The diagram below shows the result of the concatenation of L1 and L2 i.e. L1 L2. 

 
 

3.2.4 Negation of L1 
 

1) Start with a (complete) DFA, not with an NFA. 

2) Make every final state non-final and every non-final state final. 

To find the complement of L1, qo and q1 will be made final, while q2 will be made non-final. 

 ̅1 would therefore become 
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q2

q1

0

0,1

0,1

1

q0

q1

 
3.2.5 Kleene Star of L1 
 

1) Make a new start state; connect it to the original start state with a   transition.  

2) Make a new final state; connect the original final states (which become non-

final) to it with    transitions.  

3) Connect the new start state and new final state with a pair of   transitions. 

The automaton below shows the Kleene star of L1 i.e. L1* 

 
 
 

3.2.6 Reverse of L1 
 

1) Start with an automaton with just one final state. 

2) Make the initial state final and the final state initial.  

3) Reverse the direction of every arc. 

 

The reversal of a string is the string read backwards. The reversal of the string ―abc‖ 

is hence ―cba‖. The automaton below shows the reverse of L1 
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q0

q1

0,1

1

q2

0,1

0

 
3.3`Closure III: Intersection and Set Difference 
 

Just as with the other operations, you prove that regular languages are closed under 

intersection and set difference by starting with automata for the initial languages, and 

constructing a new automaton that represents the operation applied to the initial 

languages. However, the constructions are somewhat trickier. 

In these constructions you form a completely new machine, whose states are each 

labelled with an ordered pair of state names: the first element of each pair is a state from 

L1, and the second element of each pair is a state from L2. (Usually you will not need a 

state for every such pair, just some of them.) 
 

1. Begin by creating a start state whose label is (start state of L1, start state of L2).  

2. Repeat the following until no new arcs can be added: 

i. Find a state (A, B) that lacks a transition for some x in . 

ii. Add a transition on x from state (A, B) to state ( (A, x), (B, x)). (If this 

state doesn't already exist, create it.) 
 

The same construction is used for both intersection and set difference. The distinction is in 

how the final states are selected. 
 

3.3.1 Intersection 
 

Mark a state (A, B) as final if both 
 

(i) A is a final state in L1, and 

(ii) B is a final state in L2. 

 

The intersection i.e. L1 L2 becomes 
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q2,r0

1

0

1

q1,r1q1,r0
01

0

1

q0,r0

0
q2,r1q2,r1

0

1
 

 

3.3.2 Set difference 
 

Mark a state (A, B) as final if A is a final state in L1, but B is not a final state in L2. 

 

3.4 Closure IV: Homomorphism 
 

You should note that "homomorphism" is a term borrowed from group theory. What we 

refer to as a "homomorphism" is really a special case.  

Suppose ∑ and Γ are alphabets (not necessarily distinct). Then a homomorphism h is a 

function from ∑ to Γ*. 

If w is a string in ∑, then we define h(w) to be the string obtained by replacing each 

symbol x ϵ ∑ by the corresponding string h(x) ϵ Γ*. 

If L is a language on ∑, then its homomorphic image is a language on Γ. Formally, 

h(L) = {h(w): w L}  

  

Theorem. If L is a regular language on ∑, then its homomorphic image h(L) is a 

regular language on Γ. That is, if you replaced every string w in L with h(w), the 

resultant set of strings would be a regular language on Γ . 

Proof. 
 

1) Construct a DFA representing L. This is possible because L is regular. 

2) For each arc in the DFA, replace its label x with h(x) . 

3) If an arc is labelled with a string w of length greater than one, replace the arc with 

a series of arcs and (new) states, so that each arc is labeled with a single element 

of Γ. The result is an NFA that recognizes exactly the language h(L). 

4) Since the language h(L) can be specified by an NFA, the language is regular. 

Q.E.D. 
 

3.5 Closure V: Right Quotient 
 

Let L1 and L2 be languages on the same alphabet. The right quotient of L1 with L2 is L1/L2 = 

{w: wx ϵ L1 and x ϵ L2} 
 

That is, the strings in L1/L2 are strings from L1 "with their tails cut off." If some string of 

L1 can be broken into two parts, w and x, where x is in language L2, then w is in 
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language L1/L2. 

 

Theorem. If L1 and L2 are both regular languages, then L1/L2 is a regular language. 

 

Proof: Again, the proof is by construction. We start with a DFA M(L1) for L1; the 

DFA we construct is exactly like the DFA for L1, except that (in general) different 

states will be marked as final. 
 

For each state Qi in M(L1), determine if it should be final in M(L1/L2) as follows: 

 

 Starting in state Qi as if it were the initial state, determine if any of the strings in 

language L2 are accepted by M(L1). If there are any, then state Qi should be marked 

as final in M(L1/L2). (Why?) 

 

That is the basic algorithm. However, one of the steps in it is problematical: since 

language L2 may have an infinite number of strings, how do we determine whether 

some unknown string in the language is accepted by M(L1) when starting at Qi? We 

cannot try all the strings, because we insist on a finite algorithm. 
 

The trick is to construct a new DFA that recognizes the intersection of two languages: (1) 

L2, and (2) the language that would be accepted by DFA M(L1) if Qi were its initial state. 

We already know we can build this machine. Now, if this machine recognizes any string 

whatever (we can check this easily), then the two machines have a nonempty 

intersection, and Qi should be a final state. 

 

We have to go through this same process for every state Qi in M(L1), so the algorithm is 

too lengthy to step through by hand. However, it is enough for our purposes that the 

algorithm exists. 
 

Finally, since we can construct a DFA that recognizes L1/L2, this language is therefore 

regular, and we have shown that the regular languages are closed under right quotient. 
 

3.6 Standard Representations 
 

A regular language is given in a standard representation if it is specified by one of: 
 

 A finite automaton (DFA or NFA).  

 A regular expression. 

 A regular grammar. 
 

(The importance of these particular representations is simply that they are precise and 

unambiguous; thus, we can prove things about languages when they are expressed in a 

standard representation.) 
 

3.7 Membership. 
 

If L is a language on alphabet , L is in a standard representation, and w *, then 
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there is an algorithm for determining w ϵ L. 
 

Proof. Build the automation and use it to test w. 
 

3.8 Finiteness. 
 

If language L is specified by a standard representation, there is an algorithm to 

determine whether the set L is empty, finite, or infinite. 
 

Proof. Build the automaton. 
 

 If there is no path from the initial state to a final state, then the language is 

empty (and finite). 

 If there is a path containing a cycle from the initial state to some final state, then 

the language is infinite. 

 If no path from the initial state to a final state contains a cycle, then the 

language is finite. 
 

3.9 Equivalence. 

If languages L1 and L2 are each given in a standard representation, then there is an 

algorithm to determine whether the languages are identical. 
 

Proof. Construct the language 
 

(L1 -L2) (-L1 L2) 

If this language is empty, then L1 = L2. 

 
 

4.0 CONCLUSION 
 

In this unit you have been taken through the closure properties of regular languages and 

how they can be useful in generating regular languages and also showing that a language 

is regular. In the next unit, you will be learning about the pumping lemma for regular 

languages. 
 

5.0 SUMMARY 
 

In this unit, you learnt that: 
 

 A set is closed under an operation if, whenever the operation is applied to members 

of the set, the result is also a member of the set 

 To prove that regular languages are closed under the various operations, you start 

with constructing automata for the initial languages 

 A regular language is given in a standard representation if it is specified by one 

of the following: 

 A finite automaton (DFA or NFA).  

 A regular expression. 

 A regular grammar 
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6.0 TUTOR-MARKED ASSIGNMENT 
 

1. When is a regular language said to be in a standard representation?  

2. Describe an algorithm to show the equivalence of two languages 

3. Describe how you will show that the set of regular languages is closed under each of 

the following operations: 

 Set difference  

 Union 

 Negation 

 Intersection 

4. Given language L(M1) = {w:w ends in a 1} and L(M2) = {x1 | x ∈ {0, 1}*} i.e. strings 

that end with 0. Using the FA diagram, what is  

i) L(M1) ∩ L(M2) 

ii) L(M1)  ∪ L(M2) 

iii) L(M2) L(M1) 

iv) L(M2)
R

 

5.   Prove that the two regular expressions (a+b)* and (a*b*)* generate the same language. 

 6.  Consider the function on languages noprefix(L) = { w in L | no proper prefix of w is a 

member of L}. Show that the regular languages are closed under the noprefix 

function. 

7. Describe the algorithm to prove the finiteness of a regular language L. 
 

 

7.0 REFERENCES/FURTHER READING 

 GeeksforGeeks (2020). Closure Properties of Regular Languages.  

 Michael Sipser (2006). Introduction to the Theory of Computation. Thomson 

Course Technology. 

 Goswami D., Krishna K. V. (2010). Formal Languages and Automata Theory.  

 Torben Ægidius Mogensen (2010). Basics of Compiler Design (3rd Edition). Lulu 

Publishing. 

 See relevant video on - https://www.youtube.com/watch?v=J-fcaXYkU9o 

 See relevant video on - https://www.youtube.com/watch?v=KSczX111n3U 

 

 

https://www.youtube.com/watch?v=J-fcaXYkU9o
https://www.youtube.com/watch?v=KSczX111n3U
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1.0 INTRODUCTION 
 

In this concluding unit of module 2, you will be taken through the pumping lemma 

for regular languages. You will also learn about how to apply the pumping lemma. 
 

Now let us go through your study objectives for this unit. 
 

2.0 OBJECTIVES 

At the end of this unit, you should be able to: 

 o Define pigeon hole 

o Explain the pigeon hole principle 

o State the pumping lemma 

o State the use of the pumping lemma 

o Apply the pumping lemma to regular languages 

 

 

3.0 MAIN CONTENT 
 

3.1 The Pigeonhole Principle 
 

3.1.1 Pigeonhole 
 

1. a hole or small recess for pigeons to nest in. 

2. a small open compartment (as in a desk or cabinet) for keeping letters or documents 

3. a neat category which usually fails to reflect actual complexities. 
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3.1.2 Pigeonhole Principle 
 

If n objects are put into m containers, where n > m, then at least one container must hold 

more than one object. 
 

The pigeonhole can be used to prove that certain infinite languages are not regular. 

(Remember, any finite language is regular.) 
 

As we have informally observed, DFAs "can't count." This can be shown formally using the 

pigeonhole principle. As an example, we show that L = {a
n
b

n
: n > 0} is not regular. The 

proof is by contradiction. 
 

Suppose L is regular. There are an infinite number of values of n but M(L) has only a finite 

number of states. By the pigeonhole principle, there must be distinct values of i and j such 

that a
i 
and a

j 
end in the same state. From this state, 

 

 b
i 
must end in a final state, because a

i
b

i 
is in L; and 

 b
i 
must end in a nonfinal state, because a

j
b

i 
is not in L. 

 

Since the state reached cannot be both final and non-final, we have a contradiction. Thus 

our assumption, that L is regular, must be incorrect. Q.E.D. 
 

3.2 The Pumping Lemma 
 

Pumping Lemma relates the size of string accepted with the number of states in a DFA. 

Here is what the pumping lemma says: 
 

 If an infinite language is regular, it can be defined by a DFA. 

 The DFA has some finite number of states (say, n). 

 Since the language is infinite, some strings of the language must have length > 

n. 

 For a string of length > n accepted by the DFA, the walk through the DFA must 

contain a cycle. 

 Repeating the cycle an arbitrary number of times must yield another string accepted 

by the DFA. 
 

The pumping lemma for regular languages is another way of proving that a given (infinite) 

language is not regular. (The pumping lemma cannot be used to prove that a given language 

is regular.) 
 

The proof is always by contradiction. A brief outline of the technique is as follows: 
 

 Assume the language L is regular. 

 By the pigeonhole principle, any sufficiently long string in L must repeat some state 

in the DFA; thus, the walk contains a cycle. 

 Show that repeating the cycle some number of times ("pumping" the cycle) yields a 
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string that is not in L. 

 Conclude that L is not regular. 
 

This is hard because: 
 

 We do not know the DFA (if we did, the language would be regular!). Thus, we 

have do the proof for an arbitrary DFA that accepts L. 

 Since we do not know the DFA, we certainly do not know the cycle. 
 

But we can sometimes pull it off for the following reasons: 
 

 We get to choose the string (but it must be in L).  

 We get to choose the number of times to "pump." 
 

3.2.1 Applying the Pumping Lemma 
 

Here is a more formal definition of the pumping lemma: 
 

If L is an infinite regular language, then there exists some positive integer m such that any 

string w L whose length is m or greater can be decomposed into three parts, xyz, where 
 

 |xy| is less than or equal to m,  

 |y| > 0, 

 wi = xy
i
z is also in L for all i = 0, 1, 2, 3, .... 

 

Here is what it all means: 
 

 m is a (finite) number chosen so that strings of length m or greater must contain a 

cycle. Hence, m must be equal to or greater than the number of states in the DFA. 

Remember that we do not know the DFA, so we can't actually choose m; we just 

know that such an m must exist. 

 Since string w has length greater than or equal to m, we can break it into two parts, 

xy and z, such that xy must contain a cycle. We do not know the DFA, so we do not 

know exactly where to make this break, but we know that |xy| can be less than or 

equal to m. 

 We let x be the part before the cycle, y be the cycle, and z the part after the cycle. (It 

is possible that x and z contain cycles, but we do not care about that.) Again, we do 

not know exactly where to make this break. 

 Since y is the cycle we are interested in, we must have |y| > 0, otherwise it is not a 

cycle. 

 By repeating y an arbitrary number of times, xy*z, we must get other strings in L. 

 If, despite all the above uncertainties, we can show that the DFA has to accept some 

string that we know is not in the language, then we can conclude that the language is 

not regular. 
 

To use this lemma, we need to show: 
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1. For any choice of m, 

2. for some w L that we get to choose (and we will choose one of length at least m), 

3. for any way of decomposing w into xyz, so long as |xy| is not greater than m 

and y is not , 

4. we can choose an i such that xy
i
z is not in L. 

 

We can view this as a game wherein our opponent makes moves 1 and 3 (choosing m and 

choosing xyz) and we make moves 2 and 4 (choosing w and choosing i). Our goal is to 

show that we can always beat our opponent. If we can show this, we have proved that L is 

not regular. 
 

Example 1 
 

Prove that L = {anbn: n 0} is not a regular language. 
 

1. We do not know m, but assume there is one. 

2. Choose a string w = a
n
b

n 
where n > m, so that any prefix of length m consists 

entirely of a's. 

3.  We do not know the decomposition of w into xyz, but since |xy| ≤ m, xy must consist 

entirely of a's. Moreover, y cannot be empty. 

4. Choose i = 0. This has the effect of dropping |y| a's out of the string, without 

affecting the number of b's. The resultant string has fewer a's than b's, hence does not 

belong to L. Therefore L is not regular. 
 

Example 2 
 

Prove that L = {a
n
b

k
: n > k and n 0} is not regular. 

 

1. We do not know m, but assume there is one. 

2. Choose a string w = a
n
b

k 
where n > m, so that any prefix of length m consists 

entirely of a's, and k = n-1, so that there is just one more a than b. 

3. We do not know the decomposition of w into xyz, but since | xy must consist entirely 

of a's. Moreover, y cannot be empty. 

4. Choose i = 0. This has the effect of dropping |y| a's out of the string, without 

affecting the number of b's. The resultant string has fewer a's than before, so it has 

either fewer a's than b's, or the same number of each. Either way, the string does not 

belong to L, so L is not regular. 
 

Example 3 
 

Prove that L = {a
n
: n is a prime number} is not regular. 

 

1. We do not know m, but assume there is one. 

2. Choose a string w = a
n 

where n is a prime number and |xyz| = n > m+1. (This can 

always be done because there is no largest prime number.) Any prefix of w consists 

entirely of a's. 

3. We do not know the decomposition of w into xyz, but since |xy| ≤ m, it follows that 
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|z| > 1. As usual, |y| > 0, 

4. Since |z| > 1, |xz| > 1. Choose i = |xz|. Then |xy
i
z| = |xz| + |y||xz| = (1 + |y|)|xz|. Since 

(1 + |y|) and |xz| are each greater than 1, the product must be a composite number. 

Thus |xy
i
z| is a composite number. 

 

Self-Assessment Exercise 
 

1. Construct a PDA for F = {a
i
b

j
 | i ≠ j}} by final state. 

2. Construct a PDA that accepts { wwR | w is any string of a's and b's } by final state. 

3. Construct a PDA that accepts { wwR | w is any string of a's and b's } by empty stack. 

4. Construct a PDA for F = {a
2n

b
3n

 | n ≥ 0} by final state. 
 

4.0 CONCLUSION 
 

In this unit you have learnt about the pumping lemma for regular languages. The 

pumping lemma is based on the pigeonhole principle and it can be used to prove that an 

infinite language is not regular. It can never be used to show that a language is regular. 
 

In the next module, you will be learning about another type of languages that is next to 

regular languages in the Chomsky hierarchy. 
 
 

5.0 SUMMARY 
 

In this unit, you learnt: 
 

 The pigeonhole can be used to prove that certain infinite languages are not regular 

 the pigeonhole principle can be used to formally show that DFAs "cannot count." 

 Pumping Lemma relates the size of string accepted with the number of states in a 

DFA 

 The pumping lemma for regular languages is another way of proving that a given 

(infinite) language is not regular 

 The pumping lemma cannot be used to prove that a given language is regular 
 

6.0 TUTOR-MARKED ASSIGNMENT 
 

1. What is a pigeon hole? 

2. Briefly describe the pigeonhole principle and its relationship with the pumping 

lemma for regular languages? 

3. What does the pumping lemma say? 

4.  Describe the general methodology of the application of pumping lemma. 

5.  Prove that the language containing strings of balanced parentheses is not regular. 

6.  Use the pumping lemma to show that the language A = {0
n
1

n
2

n
} is not regular. 
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1.0 INTRODUCTION 
 

In the previous module, you learnt about regular languages. In this module you 

will be learning about context-free languages and the automata that accepts strings 

generated by context-free languages. But in this introductory unit of the module, 

let‘s take you through the basic definitions of context-free grammar. 
 

Now let us go through your study objectives for this unit. 
 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 
  Define context-free grammars 

 Distinguish between regular grammars and context-free grammars 

 Determine strings generated by a context-free grammar 
 
 

3.0 MAIN CONTENT 
 

3.1 Context-Free Grammars (CFG) 

 

Definition 

A context-free grammar (CFG) consisting of a finite set of grammar rules is a quadruple (X, T, P, 

S) where 

 X represents a set of nonterminal symbols. 

Comment [s1]: Change the but and 
the general statement 
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 T represents a set of terminals where X ∩ T = NULL. 

 P represents a set of rules, P: X → (X ∪ T)*, i.e., the left-hand side of the production 

rule P can contain the combination of nonterminal and terminal symbols. 

 S is the start symbol. 

 

Further explanation on nonterminal, terminal, production and start symbols from  (Aho et al., 2007. page 

197) 

 Terminals are the basic symbols from which strings are formed.  

 Nonterminals represent syntactic variables denoting sets of strings. The sets of strings 

denoted by nonterminals help define the language generated by the grammar.  

 start symbol. One nonterminal is denoted as the start symbol, and the set of strings it 

denotes is the language generated by the grammar. Conventionally, the productions for the 

start symbol are listed first. 

 The productions of a grammar specify how the terminals and nonterminals can be combined 

to form strings. Each production consists of: 

o A nonterminal called the head or left side of the production; this production defines 

some of the strings denoted by the head. 

o A body or right side consisting of zero or more terminals and nonterminals. 

 

 
The following are examples of context-free grammar: 

a. The grammar ({A}, {a, b, c}, P, A), P : A → aA, A → abc. 

b. The grammar ({S, a, b}, {a, b}, P, S), P: S → aSa, S → bSb, S → ε 

c. The grammar ({S, F}, {0, 1}, P, S), P: S → 00S | 11F, F → 00F | ε 

Example a. has two production rules which are A → aA,and  A → abc. The nonterminal 

symbols is A which also serves has the start symbol. The terminal symbols are T = {a, b, c, ε}. 

In the second example we have 

X = { S}, T = {a, b, ε} and the production rules are three. The third example is left has an 

exercise for you. 

 

For more understanding on context-free grammar, you may watch the following these 

youtube videos : https://www.youtube.com/watch?v=5_tfVe7ED3g (7:51 Minutes) 
https://www.youtube.com/watch?v=nyjB5xW0tQc (5:23 Minutes) 
https://www.youtube.com/watch?v=d9LrKPZsu40 (8:06 Minutes) 

 

Example 1 
 

Consider G= (X, T, P, S) with T = {a, b} and X = {S, a, b, }. The productions, or 

grammar rules, are: S aSb|. Then it is clear that L(G) = {anbn| n ≥0}. From the 

previous module it is known that this language is not regular. 
 

Example 2: A Grammar for Arithmetic Expressions 
 

Let X = {E, T, F, id, + , - ,*,/,(,), a, b, c} and T = {a, b, c, + , - ,*,/,(,)}. The start 

symbol S is E and the productions are as follows: 

https://www.youtube.com/watch?v=5_tfVe7ED3g
https://www.youtube.com/watch?v=nyjB5xW0tQc
https://www.youtube.com/watch?v=d9LrKPZsu40
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E E + T | E - T | T 

T T*F | T/F | F 

F  (E) | id 

id a | b | c 
 

Then the string (a + b)*c belongs to L(G). Indeed, it is easy to write down a 

derivation of this string: 

E T T*F F*F (E)*F (E + T)*F 

 (T + T)*F (F + T)*F (id + T)*F (a + T)*F 

 (a + F)*F (a + id )*F (a + b)*F (a + b)*id (a + b)*c 
 

The derivation just adduced is leftmost in the sense that the leftmost nonterminal was 

always substituted. Although derivations are in general by no means unique, the 

leftmost one is. The entire derivation can also be nicely represented in a tree form, as 

Figure. 1 suggests. 
 

 
Figure 1: Derivation Tree for the Expression (a + b)*c 

 

The internal nodes of the derivation, or syntax, tree are nonterminal symbols and the 

frontier of the tree consists of terminal symbols. The start symbol is the root and the 

derived symbols are nodes. The order of the tree is the maximal number of successor 

nodes for any given node. In this case, the tree has order 3. Finally, the height of the 

tree is the length of the longest path from the root to a leaf node, i.e. a node that has no 

successor. The string (a + b)*c obtained from the concatenation of the leaf nodes 

together from left to right is called the yield of the tree. 
 

3.2 Regular Grammars are Context Free 
 

Recall that productions of a right-linear grammar must have one of the two forms 

A x 
 

or A xB 
 

where A, B X, and x T*. 
 

Since T* (X T)* and T*X (V T)*, it follows that every right-linear 

grammar is also a context-free grammar. 
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Similarly, right-linear grammars and linear grammars are also context-free grammars. 
 

A context-free language (CFL) is a language that can be defined by a context-free 

grammar. 
 

3.2.1 Notes on Terminology 
 

Every regular grammar is a context-free grammar, in the same way that every dog is 

an animal. 
 

In normal speech we try to be as specific as possible. If we know that, say, Fido is a 

dog; we generally refer to Fido as a dog. We do not refer to Fido as an animal (unless 

we are trying to be deliberately vague). But if asked whether Fido is an animal, the 

correct answer is certainly "yes." 
 

In the same way, if language L is a regular language, we generally refer to L as a 

regular language. We do not refer to L as a context-free language unless we are being 

deliberately vague. But if asked whether L is a context-free language, the correct 

answer is "yes." 
 

The usual convention of being as specific as possible sometimes leads to confusion. If 

I say language L is a context-free language, I probably mean either (a) L is not regular, 

or (b) I do not know whether L is regular. If I do know that L is a regular language, I 

should call it a regular language, not a context-free language. 
 

3.3 Languages and Grammars 
 

A regular language is a language that can be defined by a regular grammar. 
 

A context-free language is a language that can be defined by a context-free grammar. 
 

If grammar G is context free but not regular, we know the language L(G) is context 

free. We do not know that L(G) is not regular. It might be possible to find a regular 

grammar G2 that also defines L. 
 

Example 3 
 

Consider the following grammar: 
 

G = ({S, A, B}, {a, b}, S, {S→AB, A→aA, A→, B→Bb, B→}) 
 

Is G a context-free grammar? Yes. 
 

Is G a regular grammar? No. 
 

Is L(G) a context-free language? Yes. 
 

Is L(G) a regular language? Yes - the language L(G) is regular because it can be 

defined by the regular grammar: 
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G = ({S, A, B}, {a, b}, S, {S→A, A→aA, A→B, B→bB, B→}) 
 
 

Example 4 
 

We have shown that L = {a
n
b

n
: n 0} is not regular. Here is a context-free grammar 

for this language. 
 

G = ({S}, {a, b}, S, {S→aSb, S→} 
 

Example 5 
 

We have shown that L = {a
n
b

k
: k > n 0} is not regular. Here is a context-free 

grammar for this language. 
 

G = ({S, B}, {a, b}, S, {S→aSb, S→B, B→bB, B→b}). 
 

Example 6 
 

The language L = {ww
R
: w {a, b}*}, where each string in L is a palindrome, is not 

regular. Here is a context-free grammar for this language. 
 

G = ({S}, {a, b}, S, {S→aSa, S→bSb, S→}). 
 

Example 7 
 

The language L = {w: w {a, b}*, na(w) = nb(w)}, where each string in L has an equal 

number of a's and b's, is not regular. Consider the following grammar: 
 

G = ({S}, {a, b}, S, {S→aSb, S→bSa, S→SS, S→}). 
 

1. Does every string recognized by this grammar have an equal number of a's and 

b's? 

2. Is every string consisting of an equal number of a's and b's recognized by this 

grammar? 
 

Example 8 
 

The language L, consisting of balanced strings of parentheses, is context-free but not 

regular. The grammar is simple, but we have to be careful to keep our symbols ‗(’ 

and ‗)’ separate from our metasymbols ( and ). 
 

G = ({S}, {(, )}, S, {S→ (S), S→SS, S→}). 
 

3.4 Sentential Forms 
 

A sentential form is the start symbol S of a grammar or any string in (X T)* that 

can be derived from S. 
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Consider the linear grammar 
 

({S, B}, {a, b}, S, {S →aS, S→B, B→bB, B→}). 
 

A derivation using this grammar might look like this: 
 

S aS aB abB abbB abb 
 

Each of {S, aS, aB, abB, abbB, abb} is a sentential form. 
 

Because this grammar is linear, each sentential form has at most one variable. Hence 

there is never any choice about which variable to expand next. 
 
 
 
 

3.5 Leftmost and Rightmost Derivations: 
 

Now consider the grammar 
 

G = ({S, A, B, C}, {a, b, c}, S, P) 
 

where 

P = {S→ABC, A→aA, A→, B→bB, B→, C→cC, C→}. 
 

With this grammar, there is a choice of variables to expand. Here is a sample 

derivation: 
 

S ABC aABC aABcC aBcC abBcC abBc abbBc abbc 
 

If we always expanded the leftmost variable first, we would have a leftmost 

derivation: 
 

S ABC aABC aBC abBC abbBC abbC abbcC abbc 
 

Conversely, if we always expanded the rightmost variable first, we would have a 

rightmost derivation: 
 

S ABC ABcC ABc AbBc AbbBc Abbc aAbbc abbc 
 

There are two things to notice here: 
 

1. Different derivations result in quite different sentential forms, but 

2. For a context-free grammar, it really does not make much difference in what 

order we expand the variables. 
 

Self Assessment Exercise 
 

1. Give a CFG for all strings of a‘s and b‘s with twice as many a‘s as b‘s. Show 

leftmost derivations for the four shortest strings generated by your grammar. 
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3.6 Derivation Trees 
 

Since the order in which we expand the variables in a sentential form does not seem to 

make any difference, it would be nice to show a derivation in some way that is 

independent of the order. A derivation tree is a way of presenting a derivation in an 

order-independent fashion. 
 

For example, for the following derivation: 
 

S ABC aABC aABcC aBcC abBcC abBc abbBc abbc 
 

we would have the derivation tree: 

 

  
This tree represents not just the given derivation, but all the different orders in which 

the same productions could be applied to produce the string abbc. 
 

A partial derivation tree is any subtree of a derivation tree such that, for any node of 

the subtree, either all of its children are also in the subtree, or none of them are. 
 

The yield of the tree is the final string obtained by reading the leaves of the tree from 

left to right, ignoring the s (unless all the leaves are , in which case the yield is ). 

The yield of the above tree is the string abbc, as expected. 
 

The yield of a partial derivation tree that contains the root is a sentential form. 
 

4.0 CONCLUSION 
 

In this unit you have been taken through context-free grammars and their relationship 

to regular grammars. You were also introduced to the concept of derivations and parse 
 
 

101
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tree. In the next unit, you will be learning more about context-free languages by 

learning about some properties of context-free grammars. 
 

5.0 SUMMARY 
 

In this unit, you learnt that: 
 

 every regular language is context-free but the reverse is not true 

 A context-free language is a language that can be defined by a context-free 

grammar 

 A sentential form is the start symbol S of a grammar or any string in (X T)* 

that can be derived from S 

 If we always expanded the leftmost variable of a sentential form first, we 

would have a leftmost derivation and if we always expanded the rightmost 

variable first, we would have a rightmost derivation 

 A derivation tree is a way of presenting a derivation in an order-independent 

fashion 

 A partial derivation tree is any subtree of a derivation tree such that, for any 

node of the subtree, either all of its children are also in the subtree, or none of 

them are. 
 

6.0 TUTOR-MARKED ASSIGNMENT 
 

1. Define context-free grammars 
 

2. Given the grammar G: 
 

E E + T | E - T | T 

T T*F | T/F | F 

F  (E) | id 

id a | b | c 
 

find the 
 

i. rightmost derivation 

ii. leftmost derivation 
 

for the following strings 

a) a+a+a 

b) a(c/b) 
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1.0 INTRODUCTION 

 

In the previous unit you learnt about context-free grammars and the type of language 

that is generated by them. In this unit you will be taken through the properties of 

context-free languages. 

It is desirable not only to classify languages by the architecture of machines that recognize 

them but also to have tests to show that a language is not of a particular type. For this 

reason we establish so-called pumping lemmas whose purpose is to show how strings in one 

language can be elongated or ``pumped up.'' Pumping up may reveal that a language does 

not fall into a presumed language category. We also develop other properties of languages 

that provide mechanisms for distinguishing among language types. Because of the 

importance of context-free languages, we examine how they are parsed, a key step in 

programming language translation.  
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Now let us go through your study objectives for this unit. 

 

2.0 OBJECTIVES 

 

At the end of this unit, you should be able to: 

 

 State the properties of CFL 

 State the pumping lemma for CFL 

 Use the pumping lemma for CFL 

 Determine when a grammar is ambiguous 

 Define syntax tree 

3.0 MAIN CONTENT 

3.1  Syntax Trees  

Tree representations of derivations, also known as syntax trees, were briefly introduced in 

the preceding unit to promote intuition of derivations. Since these are such important 

tools for the investigation of context-free languages, they will be dealt with a little more 

systematically here.  

3.1.1 Definition of Syntax Tree 

Let G = (X, T, P, S) be a context-free grammar. A syntax tree for this grammar consists of 

one of the following: 

1) A single node x for an x ∈T. This x is both root and leaf node.  
2) An edge  

 

corresponding to a production A  ∈P.  

3) A tree  

 

where the A1, A2, ... , An are the root nodes of syntax trees. Their yields are read 

from left to right.  
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3.1.2 Ambiguity  
Definition of Ambiguity:  

 

A grammar is said to ambiguous if there exists two or more left derivation trees for a string. 
An ambiguous grammar produces more than one leftmost derivation or more than one rightmost 

derivation for the same sentence. 

 

Until now the syntax trees were uniquely determined – even if the sequence of direct 

derivations were not. Separating the productions corresponding to the operator hierarchy, 

from weakest to strongest, in the expression grammar +, -,*, /, () preserves this natural 

hierarchy. If this is not done, then syntax trees with a false evaluation sequence are often 

the result. Suppose, for instance,  that the rules of the expression grammar were written E 

E + E | E*E | id, then two different syntax trees as in Figure 2 below are the result. If 

the first production E  E + E were chosen then the result would be the tree in Figure 

1(i). 

  

     
 

(i)                                              (ii) 

 

Figure 1: Syntax trees for string a + b*c. 

On the other hand, choosing the production E E*E first results in a syntax tree of an 

entirely different ilk (Figure 1(ii)). 

Thus this grammar is ambiguous, because it is possible to generate two different syntax 

trees for the expression a + b*c.  

Example 1: 

 

The following grammar generates strings having an equal number of a's and b's.  

G = ({S}, {a, b}, S, S →aSb | bSa | SS | )  
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The string "abab" can be generated from this grammar in two distinct ways, as shown by the 

following derivation trees:  

 
 

Similarly, abab has two distinct leftmost derivations:  

S aSb abSab abab  

S SS aSbS abS abaSb abab  

Likewise, abab has two distinct rightmost derivations:  

S aSb abSab abab  

S SS SaSb Sab aSbab abab  

Each derivation tree can be turned into a unique rightmost derivation, or into a unique 

leftmost derivation. Each leftmost or rightmost derivation can be turned into a unique 

derivation tree. So these representations are largely interchangeable.  

3.1.2.1  Ambiguous Grammars, Ambiguous Languages 

Since derivation trees, leftmost derivations, and rightmost derivations are equivalent 

notations, the following definitions are equivalent:  

A grammar G is ambiguous if there exists some string w ∈L(G) for which  

 there are two or more distinct derivation trees, or  
 there are two or more distinct leftmost derivations, or  
 there are two or more distinct rightmost derivations.  

Grammars are used in compiler construction. Ambiguous grammars are undesirable 

because the derivation tree provides considerable information about the semantics of a 

program; conflicting derivation trees provide conflicting information.  

Ambiguity is a property of a grammar, and it is usually (but not always) possible to find an 

equivalent unambiguous grammar.  

An inherently ambiguous language is a language for which no unambiguous grammar 

exists. 
For more information, please check 

https://www.youtube.com/watch?v=wQjppolFdas 5:43 Min 

https://www.youtube.com/watch?v=wQjppolFdas
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https://www.youtube.com/watch?v=MdI2TI7zefY 

 

Self Assessment Exercise I 

1. Describe in words the language generated by G below.  

S → SS | AB | AC 

A → a 

B → b 

C → SB 

b) Is G ambiguous? 

 

3.2  Chomsky Normal Form  

Work with a given context-free grammar is greatly facilitated by putting it into a so-called 

normal form. This provides some kind of regularity in the appearance of the right-hand 

sides of grammar rules. One of the most important normal forms is the Chomsky normal 

form.  

 

3.2.1 Definition of Chomsky Normal Form 

The context-free Grammar G = (X, T, P, S) is said to be in Chomsky normal form if all 

grammar rules have the form  

 

A  a  |  BC, (1) 

 

for a ∈ T and B, C ∈X - T. There is one exception. If ∈L(G), then the single extra rule  

 

S  (2) 

  

is permitted. If ∉L(G) then production rule 2 is not allowed.  

 

Theorem 1: Any context-free grammar G = (X, T, P, S) can be rewritten in Chomsky 

normal form. 

Proof : 

To facilitate rewriting the grammar rules it is first a good idea to eliminate unnecessary 

pathology in the original grammar. Although a CFG always defines its grammar rules with 

single nonterminal symbols on the left-hand side of every production, it can easily happen 

that there are nonterminal symbols that never appear on the left-hand side of any 

production. It is then seen that they cannot generate any sequence of terminal symbols 

https://www.youtube.com/watch?v=MdI2TI7zefY
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and, moreover, may never appear in the right-hand side of any production to help produce 

a sentence in the associated language. It can even happen that there are nonterminal 

symbols that appear in no sentential form 1 derivable from the start symbol. These 

symbols are called useless and are to be expurgated at the outset. It should be abundantly 

clear that no part of any rule containing one of these symbols has the least influence of 

L(G). Consider, for example, the grammar  

S  AB  |  CA |  AD 

B  BC  |  AB 

A  aA  |  a 

C  b  |  aB |  bC 

No terminal symbol is derivable from B and D never appears in the right-hand side of any 

rule. Thus, the grammar simplifies to:  

S  CA 

A  aA  |  a 

C  b  |  bC 

Now that the grammar has been stripped of extraneous elements, the grammatical 

transformation can begin. The rules for G can be rewritten as follows:  

 Purge P of rules of the form A  . If there is another rule with A occupying the 

left-hand side, then proceed as follows. For every rule in which A appears on the 

right-hand side, add another rule to P without this occurrence of A. If A occurs 

more than once, then add rules with each individual occurrence of A elided, while 
retaining the other occurrences of that nonterminal symbol. Finally, add rules with 

pairs of individual occurrences of A eliminated, etc. until all combinations have 

been expunged. For example, the rules A  a |   and A ABAC could be 

replaced by A a and A BAC  |  ABC  |  BC|  ABAC.  

 Replace any rule of the form A  1, 2,... , n, by the n - 1 rules A1 1A2, A2 

2A3, ... An-1 n-1n,.  

 Eliminate ``useless'' rules A B, where A and B are nonterminal symbols. Indeed, 

if there is a rule B *, where  consists of more than one symbol, then reduce to 

A .  

3.2.2 Putting a CFG into Chomsky Normal Form 

Recall that a  grammar G is in Chomsky Normal Form if each production in G is one of two 

forms:  

1. A → BC where A, B, and C are nonterminals, or  
2. A → a where a is a terminal.  
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We will further assume G has no useless symbols.  Every context-free language without ε 

can be generated by a Chomsky Normal Form grammar.  

Let us assume we have a CFG G with no useless symbols, ε-productions, or unit 

productions. We can transform G into an equivalent Chomsky Normal Form grammar as 

follows:  

 Arrange that all bodies of length two or more consist only of nonterminals.  
 Replace bodies of length three or more with a cascade of productions, each 

with a body of two nonterminals.  

Applying these two transformations to the grammar H in 3.2.3 above, we get:  

E → EA | TB | LC | a 

A → PT 

P → + 

B → MF 

M → * 

L → ( 

C → ER 

R → ) 

T → TB | LC | a 

F → LC | a 

 

Example 2: 

Consider again the expression grammar G: 

E  E + T  |  E - T  |  T 

T  T*F  |  T/F  |  F 

F  (E)  |  id 

id  a  |  b  |  c 

 

Then the rule E E + T  |  E - T, is replaced by E EE , E  POPT, POP 

+  |   -. Similar replacements hold for T T*F  |  T/F and F  (E). Finally the 

productions E T, T F and F id are reduced to E a  |  b  |  c, T a  |  b  |  c 

and F a  |  b  |  c respectively.  
https://www.youtube.com/watch?v=_uNRMAU8t4I  6.57m 

 

Self Assessment Exercise 1: 

 

1) Put the following grammar into Chomsky Normal Form:  

https://www.youtube.com/watch?v=_uNRMAU8t4I
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S → ASB | ε 

A → aAS | a 

B → BbS | A | bb 

C → aB | b 

 

3.3  Non Context-Free Languages: Ogden's Lemma (The Pumping Lemma for 

CFL) 

A pumping lemma is a theorem used to show that, if certain strings belong to a language, 

then certain other strings must also belong to the language. In this section we discuss a 

pumping lemma for context-free languages 

 

As with finite automata there is a version of the pumping lemma that demonstrates 

certain languages are not context free. This theorem is often called Ogden's lemma after 

its discoverer.  

 

Theorem 2:   Let G = (X, T, R, S) be a context-free language. Then there is an integer n = 

n(G) for which every string x ∈L(G) having a length | x| greater than n can be written  

x = uvwyz, (3) 

 

 

and  

1. vy  (that is, v   or y  ).  

2. The length of vwy satisfies | vwy| n.  

3. For each integer k ≥ 0, it follows that uvkwykz VL(G).  

Proof: 

Assume that G is in Chomsky normal form. For x VL(G) consider the (binary) syntax tree 

for the derivation of x. Assume the height of this tree is h as illustrated in Figure 2.  

 

Figure 2: Derivation Tree for the string x VL(G) 
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Then it follows that | x|  2h-2 + 2h-2 = 2h-1, i.e. the yield of the tree with height h is at 

most 2h-1. If G has k nonterminal symbols, let n = 2k. Then let x VL(G) be a string with | 

x| ≥ n. Thus the syntax tree for x has height at least k + 1, thus on the path from the root 

downwards that defines the height of the tree there are at least k + 2 nodes, i.e. at least k + 

1 nonterminal symbols. It then follows that there is some nonterminal symbol A that 

appears at least twice. Consulting Figure 3, it is seen that the partial derivation S * uAz 

* uvAyz obtains.  

 

Figure 3: Nonterminal A appears twice in the derivation of x 

If, now, both u and z were empty, then derivations of the form S uAz A would be 

possible, contrary to the assumption of Chomsky normal form. For the same reason either v 

or y are nonempty. If | vwy| > n then apply the procedure anew until the condition | 

vwy|  n holds. Finally, since the derivation A vAy can be repeated as often as one 

pleases, it follows that S uAz *uvAyz *uv2Ay2z uv2wy2zi, etc. can be 

generated. This completes the proof.  

3.3.1 Using the Pumping Lemma  

As mentioned earlier, the pumping lemma can be used to show that certain languages are 

not context free. As an example, we will show that the language L = {aibici: i > 0} is not 

context-free.  

Example 3:  

The language L = {aibici  |  i ≥ 1} is not context free.  

Proof:  

Assume L were context-free. Then let n be the n from the preceding theorem and put x = 

anbncn. Ogden's lemma then provides the decomposition x = uvwyz with the stated 

properties. There are several cases to consider. 

Case 1: The string vy contains only a's. But then the string uwz ∈ L, which is impossible, 

because it contains fewer a's than b's and c's. 

Case 2,3: vy contains only b's or c's. This case is similar to case 1.  
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Case 4,5: vy contains only a's and b's or only b's or c's. Then it follows that uwz contains 

more c's than a's and b's or more a's than b's and c's. This is again a contradiction.  

Since | vwy|  n it is not possible that vy contain a's and c's.  

Example 4:  

In this example the power of Ogden's lemma will be extended. The language L = 

{aibjck  |  i < j < k} is not context-free.  

Proof:  

The pumping properties of Ogden's lemma are of little use here. Hence we return to the 

syntax tree in the proof of the theorem. If, now, L were context-free then consider the 

path in its syntax tree from the root to the leaf node containing the rightmost a. For 

sufficiently large i there is likewise a nonterminal symbol A appearing twice on this path. 

Then x = uamwyz for some m ≥ 0. There are 2 cases to be considered here.  

 

Case 1: m = 0. Then the matching substring y cannot be empty. On the other hand the 

theorem guarantees that |wy|  i, hence all c's must be contained in z. But then y 

contains at least one b, so for sufficiently large n the string uwynz belongs to L, which is 

impossible, because for large enough n, this string will contain more b's than c's – contrary 

to assumption. 

 

Case 2:  m ≥ 1. It then follows that  

S * uAz * uamAyz * ua2mAy2z ... 
 uanmwynz.  

Now obviously y cannot contain more than one letter kind and this letter is either b or c. If 

y contained only b's then the string uanmwynz would contain more a's than c's for n 

sufficiently large. As similar argument holds if y contained only c's. In any case, a 

contradiction is derived and thus the assumption that L is context-free is false.  

3.4  Closure Properties of Context Free Languages  

Proceeding by analogy, one would expect the closure theorems for regular languages to 

generalize to CFLs. Surprisingly, not everything carries over. The following theorem, 

however, articulates a property of context-free languages analogous to finite automata.  

 

Theorem 3:   The context-free languages are closed under the formation of: 

 Union  
 Concatenation  
 Kleene star.  

Proof: 

Let G1 = (X1, T1, P1, S1) and G2 = (X2, T2, P2, S2) be context-free grammars. Without 

loss of generality, it can be supposed that (X1 - T1)  (X2 - T2) = . If not, then rewrite 

the grammar rules of one with new nonterminal symbols. Let S be another nonterminal 
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symbol. Then set P = P1 ∪ P2 ∪ {S S1, S S2} and G= (X1 ∪X2 ∪{S}, T1 ∪T2, P, S). 

It then follows that L(G) = L(G1) ∪ L(G2). Verifying the closure under concatenation and 

Kleene star in a similar manner is left to you as an exercise. 

  

The closure under intersection property is not quite exact.  

Theorem 4:   The intersection of a context-free language L1 and a regular language L2 is 

context-free. 

Proof:  

If L1 is context-free then it is recognized by some pushdown automaton P = (X, Z1,S1, R1, 

S1, F1). If L2 is a regular language, then it is recognized by a deterministic automaton A= 

(X, Z2, f, S2, F2). Define a new PDA P’= (X, Z, S, R, SA, F) as follows: Z = Z1×Z2, S= S1, 

SA = (S1, S2) and, finally, F = F1×F2. The transition relation R is obtained directly from 

the transition relation of P and the transition function of A, viz. for every transition of Pof 

the form ((a1, z1, S
’),(z1

’, S1
’)) ∈R1 and for each state z2 ∈Z2, put  

 

((a1,(z1, z2), S1 ),((z1 , f (a, z2), S1 )) ∈R  

 

and for each -move of P of the form ((, z1, S1 ),(z1 , S1 )) ∈R and z2 ∈Z2 put  

((,(z1, z2), S1 ),((z1 , z2), S1 )) ∈R,  

or, stated in words, P’ passes from state (z1, z2) into state (z1 , z2 ) if and only if Ppasses 

from z1 to z2 and A passes from z2 to z2 , i.e. x ∈L(P’)) if and only if x ∈L(P)  L(A).  

 

Theorem 5:   The class of context-free languages is not closed under intersection and 

complement. 

Proof:  

It is easy to see that the two languages  

L1 = {anbncm  |  m.n ≥ 0}  

 

and  

 

L2 = {ambncn  |  m, n ≥ 0}  

 

are context free. The intersection, however, L1  L2 = {anbncn  |  n ≥ 0} is not context-

free. From the complement identity  

L1  L2 =  L1 ∪ L2,  

 

it is seen that the complements  L1 and L2 are not in general context-free.  
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Self Assessment Exercise 2: 

1. Show that { anbncn | n ≥ 0 } is not context free.  
2. Show that { anbnci | i ≤ n } is not context free.  
3. Show that { ssRs | s is a string of a's and b's } is not context free. 

3.5 Parsing 

There are two ways to use a grammar:  

 Use the grammar to generate strings of the language. This is easy -- start with the 
start symbol, and apply derivation steps until you get a string composed entirely of 
terminals.  

 Use the grammar to recognize strings; that is, test whether they belong to the 
language. For CFGs, this is usually much harder.  

A language is a set of strings, and any well-defined set must have a membership criterion. 

A context-free grammar can be used as a membership criterion – if we can find a general 

algorithm for using the grammar to recognize strings.  

Parsing a string is finding a derivation (or a derivation tree) for that string.  

Parsing a string is like recognizing a string. An algorithm to recognize a string will give us 

only a yes/no answer; an algorithm to parse a string will give us additional information 

about how the string can be formed from the grammar.  

Generally speaking, the only realistic way to recognize a string of a context-free grammar is 

to parse it.  

3.5.1 Exhaustive Search Parsing 

The basic idea of exhaustive search parsing is this: to parse a string w, generate all strings 

in L and see if w is among them.  

Problem: L may be an infinite language.  

We need two things:  

1. A systematic approach, so that we know we have not overlooked any strings, and  
2. A way to stop after generating only a finite number of strings – knowing that, if we 

have not generated w by now, we never will.  

Systematic approaches are easy to find. Almost any exhaustive search technique will do.  

We can (almost) make the search finite by terminating every search path at the point that it 

generates a sentential form containing more than |w| terminals.  
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3.5.2 Grammars for Exhaustive Parsing 

The idea of exhaustive search parsing for a string w is to generate all strings of length not 

greater than |w|, and see whether w is among them. To ensure that the search is finite, 

we need to make sure that we cannot get into an infinite loop applying productions that 

don't increase the length of the generated string.  

Note: for the time being, we will ignore the possibility that  is in the language.  

Suppose we make the following restrictions on the grammar:  

 Every variable expands to at least one terminal. We can enforce this by disallowing 

productions of the form A→.  
 Every production either has at least one terminal on its right hand side (thus 

directly increasing the number of terminals), or it has at least two variables (thus 
indirectly increasing the number of terminals). In other words, we disallow 
productions of the form A→B, where A and B are both variables.  

With these restrictions,  

 A sentential form of length n yields a sentence of length at least n.  
 Every derivation step increases either the length of the sentential form or the 

number of terminals in it.  

 Hence, any string w ∈ L can be generated in at most 2|w|-1 derivation steps.  
 We have shown that exhaustive search parsing is a finite process, provided that 

there are no productions of the form A→ or A→B in the grammar. As discussed in 
section 3.2 such productions can be removed from a grammar without altering the 
language recognized by the grammar. There is, however, one special case we need 
to consider.  

 If  belongs to the language, we need to keep the production S → . This creates a 

problem if S occurs on the right hand side of some production, because then we have 

a way of decreasing the length of a sentential form. All we need to do in this case is 

to add a new start symbol, say S0, and to replace the production S→ with the pair of 

productions  

S0 →   

S0→S  

3.5.3 Efficient Parsing 

Exhaustive search parsing is, of course, extremely inefficient. It requires time exponential 

in |w|.  

For any context-free grammar G, there are algorithms for parsing strings w ∈L(G) in time 

proportional to the cube of |w|. This is still unsatisfactory for practical purposes.  
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There are ways to further restrict context-free grammars so that strings may be parsed in 

linear or near-linear time. These restricted grammars are covered in courses in compiler 

construction, but will not be considered here. All such methods do reduce the power of the 

grammar, thus limiting the languages that can be recognized. There is no known linear or 

near-linear algorithm for parsing strings of a general context-free grammar.  

 4.0  CONCLUSION  

In this unit you have been taken through some of the properties of CFL. It is expected that 

with the knowledge you have gained in this unit, you will be able to determine if a 

grammar is context-free or not and generate other strings that might belong to the 

grammar. In the next unit, you will be learning about the class of automata that recognises 

this class of grammars. 

5.0 SUMMARY  

In this unit, you learnt that: 

 syntax trees are tree representations of derivations  

 A grammar G is ambiguous if there exists some string w ∈L(G) for which there are 

two or more distinct derivation trees 

 An inherently ambiguous language is a language for which no unambiguous 

grammar exists 

 The context-free languages are closed under the formation of union, concatenation, 
Kleene star. 

 The class of context-free languages is not closed under intersection and 
complement 

 Parsing a string is finding a derivation (or a derivation tree) for that string 
 

6.0 TUTOR-MARKED ASSIGNMENT 

1) State the pumping lemma for CFL 

b) With the aid of illustrative example, demonstrate how to use the pumping lemma to 

show that a certain grammar is not context-free 

2) Briefly explain the concept of ambiguity in grammars 

3) Construct a CFG that generates the language { anbn | n ≥ 0 }.  
4) Prove that the language generated by the grammar G below: 

S ⇒ S ( S ) 

  ⇒ S ( S ) ( S ) 

  ⇒ ( S ) ( S ) 

  ⇒ ( ) ( S ) 
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  ⇒ ( ) ( ) 

 

 consists of all strings of balanced parentheses.  

5) Construct a CFG that generates ELP = { wwR | w is any string of a's and b's }. This is the 

language of even-length palindromes over the alphabet {a, b}. A palindrome is a string 

that reads the same in both directions.  
6) Prove that ELP is not a regular language.  
7) Construct a CFG for all regular expressions over the alphabet {a, b}.  
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Module 3: Context-Free Languages 
 

Unit 3: Pushdown Automata 
 

CONTENTS 
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5.0 Conclusion 

6.0 Summary 

7.0 Tutor-Marked Assignment 

8.0 References/Further Reading 
 

2.0 INTRODUCTION 
 

Having learnt about context-free languages and their properties in the previous 

units of this module, in this unit you will be studying the machine that accepts 

context-free languages, the pushdown automaton or PDA. 
 

The finite-state automaton (FSA) and the pushdown automaton (PDA) enjoy a special 

place in computer science. The FSA has proven to be a very useful model for many 

practical tasks and deserves to be among the tools of every practicing computer 

scientist. Many simple tasks, such as interpreting the commands typed into a keyboard 

or running a calculator, can be modelled by finite-state machines. The PDA is a model 

to which one appeals when writing compilers because it captures the essential 

architectural features needed to parse context-free languages, languages whose 

structure most closely resembles that of many programming languages. 
 

A DFA (or NFA) is not powerful enough to recognize many context-free languages 

because a DFA cannot count. But counting is not enough. Consider a language of 
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palindromes, containing strings of the form ww
R
. Such a language requires more than 

an ability to count; it requires a stack. 
 

A pushdown automaton (PDA) is basically an NFA with a stack added to it. 
 

Now let us go through your study objectives for this unit. 
 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 

  Describe a pushdown automata 

 Distinguish PDAs from FSAs 

 Formally define a PDA 

 Compare a DPDA and an NPDA 
 

3.0 MAIN CONTENT 
 

3.1 Pushdown Automata 
 

This machine is fed input just as a finite automaton is. Some texts speak of the 

input coming in on a read-only tape with a tape head that moves left to right until it 

comes to the end of the input. At that point it reads a special character that marks a 

blank tape cell. We will use the character or as a "blank". When the tape 

head reads a blank the machine halts, or begins the process of halting (which will be 

explained later.) The tape head may not reverse directions, nor may it be used to write 

to the tape. The input tape is infinitely long in the rightward direction, which allows a 

PDA to accept a finite input of any length. The cells of the tape are numbered, with 

the first input character occurring in cell 1 where the tape head is set initially. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Conceptual Model of a Pushdown Automaton 
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In addition to the input tape, a PDA has an associated stack onto which it can push 

characters to remember them. This stack has no limit to its size so the PDA can push 

as many characters as it likes. The machine begins processing with an empty stack. 

Typically the first thing the machine does is push a "bottom-of-the-stack marker" onto 

the stack. We shall use the       as that marker. Note that a PDA has two associated 

alphabets, one containing characters that may appear on the input tape, the other 

containing characters that may be pushed onto the stack. The two alphabets may be 

the same but they do not have to be. We usually name the input alphabet and the 

stack alphabet . 
 

Basically, the input tape consists of a linear configuration of cells each of which 

contains a character from an alphabet. This tape can be moved one cell at a time to the 

left. The stack is also a sequential structure that has a first element and grows in either 

direction from the other end. Contrary to the tape head associated with the input tape, 

the head positioned over the current stack element can read and write special stack 

characters from that position. The current stack element is always the top element of 

the stack, hence the name ``stack''. The control unit contains both tape heads and finds 

itself at any moment in a particular state. 
 

Initially, we will not draw PDAs the way they are drawn in our textbook (but later we 

will). Instead we will draw them much like finite automata, except for the labels we 

use on the transitions. Each label will consist of three parts: the input character, the 

character popped off of the top of the stack, and the characters that need to be pushed 

onto the stack. For example, suppose we find the following transition in a PDA: 
 
 
 
 
 
 
 
 

Figure 2: Transition in a PDA 
 

This transition says that if we are in state 1 and there is an a in the current cell of the 

input tape and we pop an A off the top of the stack, then we may go to state 2 and 

must push the string AB onto the stack, pushing the A first and then the B. We may 

use a in any of the three parts of the transition label. It always means that we do not 

do the task that part of the label involves. In other words, a in place of an input 

character means that we do not read from the tape. A in place of the character 

popped off the stack means that we do not pop anything off the stack, and a in place 

of the string to be pushed means that we do not push anything. We will discuss when 

these ‘s make the machine nondeterministic later. 
 

Here is a machine that accepts the language {a
n
b

n 
| n 0}. The machine begins with its 

input on the input tape and an empty stack. The first thing the machine does is go from 
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state 0 to state 1, pushing the bottom-of-the-stack marker onto the stack. In state 1, if 

the machine reads an a from the input and pops the blank off the stack, then that is the 

first a found in the input and the machine pushes the blank back onto the stack 

followed by an A. The machine counts the a's in the input by pushing an A onto the 

stack for each a that it reads off the tape. From this point on, if the PDA is in state 1 

and it finds an a in the input, there will be an A to pop off the stack. The machine then 

pushes two A's back on the stack, one to make up for the A that was popped and one 

to count the a just found in the input. As soon as the machine sees a b in the input it 

changes to state 2 and pops an A off the stack. It continues popping an A for each b 

that it finds. If the input was a correctly formatted string, the machine will read a 

blank off the input tape at the same time that it pops a blank off the stack and go to 

state 3, an accept state. Since the language includes the empty string, we also have a 

transition from state 1 to state 3 that is used if the machine reads a blank from the 

input at the same time as it pops the marker off the stack at the very beginning of 

processing. 
 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 3: Machine that accepts the language {a
n
b

n 
| n 0} 

https://www.youtube.com/watch?v=ntrF_KxHn18 
 

The previous machine shows that PDAs have more power than FSAs because that 

machine accepts a nonregular language, something that an FSA cannot do. 
 

3.2 Types of PDAs 
 

Like FSA, there are two types of PDAs: 
 

 A deterministic PDA (DPDA) is one in which every input string has a unique 

path through the machine. 

 A nondeterministic PDA (NPDA) is one in which we may have to choose 

among several paths for an input string. 
 

We say that an input string is accepted if there is at least one path that leads to an 

accept state. We shall see that a nondeterministic PDA is more powerful than a 

deterministic one, unlike the situation with DFAs and NFAs. In other words, there are 

languages that can be accepted by an NPDA that cannot be accepted by a DPDA. We 

have this arrangement among languages accepted by the machines we have studied: 
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Here is a PDA that accepts the language PALINDROMEX over the alphabet {a,b,x}. 

PALINDROMEX = {sxs
R
} where s is a string over {a,b} and s

R 
is the reverse of s. 

 
 
 
 
 
 
 
 
 
 
 

Figure 4: PDA that accepts the language {sxs
R
} over the alphabet {a,b,x}. 

 

Note that the lambdas in the above machine do not make the machine 

nondeterministic. There is only one path through the machine for any string, although 

there is an implied trap state in the machine and a string's path may take it to that 

implied trap state. For example, the string abxab will cause the machine to enter the 

trap state when it reads the second a and pops a b off the stack. Some authors would 

say that the machine "crashes" when such an event occurs, but regardless of how we 

describe the situation, it results in the same thing, nonacceptance of the string. 
 

The x's in the strings of PALINDROMEX are essential to our ability to recognize the 

language with a deterministic machine. Without the x we would not know when to 

change states. Consider the language ODDPALINDROME which contains all odd 

length palindromes over {a,b}. By changing the label (x, ; ) to the two labels 

(a, ; ) and (b, ; ), we have an NPDA that recognizes ODDPALINDROME. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: NPDA that recognizes ODDPALINDROME 
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This machine is nondeterministic because from state 1, when there is an a in the input, 

the machine can either stay in state 1 and not pop the stack or it can go to state 2 and 

not pop the stack. Similarly, the machine has two choices if it reads a b and it is in 

state 1. 
 

Now consider a machine for EVENPALINDROME = {ssR}. There is no middle 

character in an even-length palindrome, so the label on the transition from the first 

state to the second is labeled with ( , ; ). This is like a -transition in an FA, in that 

the machine does not read any input or pop the stack when it takes this transition. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: NPDA that recognizes EVENPALINDROME {ss

R
} 

 
 
 
 

Formally, a PDA is defined as a 7-tuple or collection of seven things: 
 

 an alphabet of input letters 

 an input tape containing an input string followed by 

 an alphabet of stack letters 

 a pushdown stack, initially empty 

 one start state 

a set of accept states 

a transition function 
 

From now on, the default type of PDA is a nondeterministic PDA, so the acronym 

PDA implies that the machine may be nondeterministic. If we want to say that the 

machine definitely is nondeterministic we will affix the N and label it an NPDA. 
 

Here is a theorem whose proof should seem rather obvious to you. 
 

Theorem 1: For any regular language there is a DPDA that accepts it. 
 
 

Proof: A finite state machine is simply a PDA that does not make use of its stack. 

Given a regular language we can create a DPDA to accept it as follows: First create a 

DFA for the regular language, then change its transition labels so that instead of 
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simply an input character, each transition is labelled with an input character and two 

lambdas in place of the pop and push characters. QED 
 

You should note that henceforth in this course, PDAs will be drawn as they are drawn 

in the texts. 
 

3.2.1 Nondeterministic Pushdown Automata (NPDA) 
 

As stated earlier, a nondeterministic pushdown automaton (NPDA) is basically an 

NFA with a stack added to it. 
 

We therefore start the formal definition of NPDA with the formal definition of an 

NFA, which is a 5-tuple, and add two things to it: 
 

 is a finite set of symbols called the stack alphabet, and 

z       is the stack start symbol. 
 

We also need to modify , the transition function, so that it manipulates the stack. 
 

A nondeterministic pushdown automaton or NPDA is, therefore, a 7-tuple 
 

M = (Q, , , , q0, z, F) 
where 
 

 Q is a finite set of states, 

is a the input alphabet, 

is the stack alphabet, 

 is a transition function, 
 q0 Q is the initial state, 

 z is the stack start symbol, and 

 F     Q is a set of final states. 
 

3.2.1.1 Transition Functions for NPDAs 
 

The transition function for an NPDA has the form 

: Q ( { }) finite subsets of Q * 
 

is now a function of three arguments. The first two are the same as before: the state, 

and either or a symbol from the input alphabet. The third argument is the symbol on 

top of the stack. Just as the input symbol is "consumed" when the function is applied, 

the stack symbol is also "consumed" (removed from the stack). 
 

Note that while the second argument may be rather than a member of the input 

alphabet (so that no input symbol is consumed), there is no such option for the third 

argument. always consumes a symbol from the stack; no move is possible if the 

stack is empty. 
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In the deterministic case, when the function i s applied, the automaton moves to a 

new state q Q and pushes a new string of symbols x * onto the stack. Since we are 

dealing with a nondeterministic pushdown automaton, the result of applying is a 

finite set of (q, x) pairs. If we were to draw the automaton, each such pair would be 

represented by a single arc. 
 

As with an NFA, we do not need to specify f or every possible combination of 

arguments. For any case where is not specified, the transition is to Q, the empty 

set of states. 
 

3.2.1.2 Drawing NPDAs 
 

NPDAs are not usually drawn. However, with a few minor extensions, we can draw 

an NPDA similar to the way we draw an NFA. 
 

Instead of labelling an arc with an element of , we can label arcs with a/x,y where 

a , x , and y *. 
 
 
 
 

Example 1: 
 

Consider the following NPDA 
 

(Q={q0,q1,q2,q3}, ={a,b}, ={0,1}, , q0, z=0, F={q3}) 
 

Where 
 

(q0, a, 0) = {(q1, 10), (q3, )} 

(q0, , 0) = {(q3, )} 

(q1, a, 1) = {(q1, 11)} 

(q1, b, 1) = {(q2, )} 

(q2, b, 1) = {(q2, )} 

(q2, , 0) = {(q3,     )} 
 

This NPDA can be drawn as 
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Note: the top of the stack is considered to be to the left, so that, for example, if we get 

an a from the starting position, the stack changes from to . 

 
 

3.2.1.3 NPDA Execution 
 

Suppose someone is in the middle of stepping through a string with a DFA, and we 

need to take over and finish the job. We will need to know two things: 

(1) the state the DFA is in, and 

(2) what the remaining input is. 
 

But if the automaton is an NPDA instead of a DFA, we also need to know 

(3) the contents of the stack. 
 

An instantaneous description of a pushdown automaton is a triplet (q, w, u), where 
 

 q is the current state of the automaton, 

 w is the unread part of the input string, and 

 u is the stack contents (written as a string, with the leftmost symbol at the top 

of the stack). 
 

Let the symbol " " indicate a move of the NPDA, and suppose that (q1, a, x) = {(q2, 
y), ...}. Then the following move is possible: 
 

(q1, aW, xZ) (q2, W, yZ) 
 

where W indicates the rest of the string following the a, and Z indicates the rest of the 
stack contents underneath the x. This notation says that in moving from state q1 to 

state q2, an a is consumed from the input string aW, and the x at the top (left) of the 

stack xZ is replaced with y, leaving yZ on the stack. 
 

3.2.1.4 Accepting Strings with an NPDA 
 

Suppose you have the NPDA M = (Q, , , , q0, z, F). How do you use this NPDA 
to recognize strings? 
 

To recognize string w, begin with the instantaneous description 
 

(q0, w, z) 

where 
 

 q0 is the start state, 
 w is the entire string to be processed, and 

 z is the start stack symbol. 
 

Starting with this instantaneous description, make zero or more moves, just as you 

would with an NFA. There are two kinds of moves that you can make: 
 



  
 

CIT 342   Formal Languages and Automata Theory 
 
 

 

  -transitions. If you are in state q1, x is the top (leftmost) symbol in the stack, 

and (q1, , x) = {(q2, w2), ...}, then you can replace the symbol x with the 

string w2 and move to state q2. 

 Nonempty transitions. If you are in state q1, a is the next unconsumed input 

symbol, x is the top (leftmost) symbol in the stack, and (q1, a, x) = {(q2, w2), 

...}, then you can remove the a from the input string, replace the symbol x with 

the string w2, and move to state q2. 
 

If you are in a final state when you reach the end of the string (and maybe make some 

transitions after reaching the end), then the string is accepted by the NPDA. It does 

not matter what is on the stack. 
 

As usual with nondeterministic machines, the string is accepted if there is any way it 

could be accepted. We can take a guess. Every time we have to make a choice, our 
guess might result into a right choice that will make us to end in a final state. 
 

Example 2: (NPDA Execution) 
 

Consider the following NPDA: 

(q0, a, 0) = {(q1, 10), (q3, )} 

(q0, , 0) = {(q3, )} 

(q1, a, 1) = {(q1, 11)} 

(q1, b, 1) = {(q2, )} 

(q2, b, 1) = {(q2, )} 

(q2, , 0) = {(q3,     )} 
 
 
 
 
 

We can recognize the string aaabbb by the following sequence of moves: 
 

(q0, aaabbb, 0) 

(q1, aabbb, 10) 

(q1, abbb, 110) 

(q1, bbb, 1110) 

(q2, bb, 110) 

(q2, b, 10) 

(q2, , 0) 

(q3, , ). 
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Since q3  

 

3.2.1.5 

Formal Languages and Automata Theory 
 
 

 F, the string is accepted. 
 

Accepting Strings with an NPDA (Formal Version) 
 

We have the notation " " to indicate a single move of an NPDA. We will also use 

" " to indicate a sequence of zero or more moves, and we will use " " to indicate a 

sequence of one or more moves. 
 

If M = (Q, , , , q0, z, F) is an NPDA, then the language accepted by M, L(M), is 

given by 
 

L(M) = {w *: (q0, w, z) (p, , u), p F, u *}. 
 

You should understand this notation. 
 
 
 
 

3.2.2 Deterministic Pushdown Automata 
 

A nondeterministic finite acceptor differs from a deterministic finite acceptor in two 

ways: 
 

 The transition function is single-valued for a DFA, multi-valued for an NFA. 

 An NFA may have -transitions. 
 

A nondeterministic pushdown automaton differs from a deterministic pushdown 

automaton (DPDA) in almost the same ways: 
 

 The transition function is at most single-valued for a DPDA, multi-valued for 

an NPDA. 
 

Formally: | (q, a, b)| = 0 or 1, 

for every q Q, a { }, and b . 
 

 Both NPDAs and DPDAs may have -transitions; but a DPDA may have a -

transition only if no other transition is possible. 
 

Formally: If (q, , b) , 

then (q, c, b) = for every c . 
 

A deterministic context-free language is a language that can be recognized by a 

DPDA. 
 

The deterministic context-free languages are a proper subset of the context-free 

languages.
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3.2.2.1 

 
 
 

From a CFG to an equivalent PDA 
 

Given a CFG G, we can construct a PDA P such that N(P) = L(G). The PDA will 

simulate leftmost derivations of G. 
 
 
 

Algorithm to construct a PDA for a CFG 
 

Input: a CFG G = (V, T, Q, S). 
 

Output: a PDA P such that N(P) = L(G). 
 

Method: Let P = ({q}, T, V ∪ T, δ, q, S) where: 
 

1. δ(q, ε, A) = {(q, β) | A → β is in Q } for each nonterminal A in V. 

2. δ(q, a, a) = {(q, ε)} for each terminal a in T. 
 

For a given input string w, the PDA simulates a leftmost derivation for w in G. 
 

We can prove that N(P) = L(G) by showing that w is in N(P) iff w is in L(G): 
 

 If part: If w is in L(G), then there is a leftmost derivation 

 S = γ1 ⇒ γ2 ⇒ ... ⇒ γn = w 

We show by induction on i that P simulates this leftmost derivation by 

the sequence of moves 
(q, w, S) |–* (q, yi, αi) 

such that if γi = xiαi, then xiyi = w. 
 

 Only-if part: If (q, x, A) |–* (q, ε, ε), then A ⇒* x. 
 

We can prove this statement by induction on the number of moves made 

by P. 
 

3.2.2.2 From a PDA to an equivalent CFG 
 

Given a PDA P, we can construct a CFG G such that L(G) = N(P). The basic idea of 

the proof is to generate the strings that cause P to go from state q to state p, popping a 

symbol X off the stack, by a nonterminal of the form [qXp]. 
 

Algorithm to construct a CFG for a PDA 
 

Input: a PDA P = (Q, Σ, Γ, δ, q0, Z0, F). 
 

Output: a CFG G = (V, Σ, R, S) such that L(G) = N(P). 
 

Method: 
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1.  Let the nonterminal S be the start symbol of G. The other nonterminals in V 

will be symbols of the form [pXq] where p and q are states in Q, and X is a 

stack symbol in Γ. 

2. The set of productions R is constructed as follows: 
 For all states p, R has the production S → [q0Z0p]. 

 If δ(q, a, X) contains (r, Y1Y2 … Yk), then R has the productions 
 

[qXrk] → a[rY1r1] [r1Y2r2] … [rk-1Ykrk] 

for all lists of states r1, r2, … , rk. 
 

We can prove that [qXp] ⇒* w iff (q, w, X) |–* (p, ε, ε). 
 

From this, we have [q0Z0p] ⇒* w iff (q0, w, Z0) |–* (p, ε, ε), so we can conclude 
L(G) = N(P). 

 

Self Assessment II 
 

1)  Construct a PDA P from G below such that N(P) = L(G). Show how your PDA 

accepts ababab. 
 

G:  S → SS | AB | AC 
A → a 

B → b 

C → SB 

 

2) Let L be the set of palindromes over {a, b} containing an equal number a‘s 

and b‘s. Is L context free? If yes, give a CFG for L. If no, prove L is not 

context free. 
 
 
 
 

4.0 CONCLUSION 
 

In this unit you have been taken through PDAs, the class of automata that recognises 

context-free languages, the different types and how these types differ. In the next unit, 

which is the concluding unit of this module, you will be learning more about CFGs 

and NPDAs. 
 

5.0 SUMMARY 
 

In this unit, you learnt that: 
 

 PDAs have more power than FSAs 

 a PDA is basically an NFA with a stack added to it 

 An instantaneous description of a pushdown automaton is a triplet 

 there are two types of PDAs 
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 A deterministic PDA (DPDA) is one in which every input string has a unique 

path through the machine. 

 A nondeterministic PDA (NPDA) is one in which we may have to choose 

among several paths for an input string. 

 an input string is accepted if there is at least one path that leads to an accept 

state 

 A nondeterministic finite acceptor differs from a deterministic finite acceptor in 

two ways 

 A deterministic context-free language is a language that can be recognized by a 

DPDA. 

 The deterministic context-free languages are a proper subset of the context-free 

languages 

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

1. Formally define a PDA. 

2. Briefly describe the operations and features of a PDA. How is it different from 

an FSA? 

3. Distinguish between DPDA and NPDA. Which is more powerful 

4. Construct a PDA that accepts { wcwR | w is any string of a's and b's } by final 

state. 

5. Construct a PDA that accepts { wcwR | w is any string of a's and b's } by empty 

stack. 

6. Construct a PDA that accepts { wwR | w is any string of a's and b's } by final 

state. 

7. Construct a PDA that accepts { wwR | w is any string of a's and b's } by empty 

stack. 

8. Construct a PDA P such that N(P) = L(G) where G is S → (S)S | ε. 
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1.0 INTRODUCTION 

 

This is the concluding module of this course and here you will be learning about the 

Turing machine; the machine for decidable languages. 

 

A basic Turing machine is a model for studying computation. Turing machines can solve 

decision problems and compute results based on inputs.  When studying computation we 

usually restrict our attention to integers.  Since a real number has infinitely many fraction 

digits we cannot compute a real number in a finite time.  Rational numbers are 

approximations to real numbers are equivalent and can be put in one-to-one correspondence 

with the integers. 

 

Programming a Turing machine is tedious and thus much work at higher levels of 

abstraction make the reasonable assumption that any completely defined algorithm or 

computer program could be implemented by a Turing machine. 

 

Now let us go through your study objectives for this unit. 

 

2.0 OBJECTIVES 

 

At the end of this unit, you should be able to: 

 

 Define a Turing machine 

 Distinguish between Turing machine and other classes of machines for language 
recognition discussed so far in this course 
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 Describe the best way to code a Turing machine 

3.0 MAIN CONTENT 

3.1 Turing Machines and the Rest  

A Turing machine (TM) is a generalization of a PDA which uses a tape instead of a stack. 

Turing machines are an abstract version of a computer - they have been used to define 

formally what is computable. There are a number of alternative approaches to formalize the 

concept of computability (e.g. called the -calculus, or -recursive functions, ...) but they 

can all be shown to be equivalent. That this is the case for any reasonable notion of 

computation is called the Church-Turing Thesis.  

On the other side there is a generalization of context-free grammars called phrase 
structure grammars or just grammars. Here we allow several symbols on the left 
hand side of a production, e.g. we may define the context in which a rule is 
applicable. Languages definable by grammars correspond precisely to the ones which 
may be accepted by a Turing machine and those are called Type-0-languages or the 
recursively enumerable languages.  
(see  https://www.youtube.com/watch?v=mX9lULtwO0s (3 minutes)) 

Turing machines behave different from the previous machine classes we have 

seen/discussed: they may run forever, without stopping. To say that a language is accepted 

by a Turing machine means that the TM will stop in an accepting state for each word which 

is in the language. However, if the word is not in the language the Turing machine may stop 

in a non-accepting state or loop forever. In this case we can never be sure whether the given 

word is in the language – i.e. the Turing machine does not decide the word problem.  

We say a language is decidable, if there is a TM which will always stop. There are type-0-

languages which are not decidable – the most famous one is the halting problem (this will 

be fully discussed in the next unit). This is the language of encodings of Turing machines 

which will always stop.  

There is no type of grammars which captures all decidable languages (and for theoretical 

reasons there cannot be one). However there is a subset of decidable languages which are 

called context-sensitive languages which are given by context-sensitive grammars, these are 

grammars where the left hand side of a production is always shorter than the right hand 

side. Context-sensitive languages on the other hand correspond to linear bounded TMs, 

these are TMs which use only a tape whose length can be given by a linear function over 

the length of the input.  

3.2 What is a Turing machine?  

A Turing machine M = (Q, , , , q0, B, F) is given by the following data  

 A finite set Q of states,  

 A finite set  of symbols (the alphabet),  

https://www.youtube.com/watch?v=mX9lULtwO0s
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 A finite set  of tape symbols s.t.   . This is the case because we use the tape 
also for the input.  

 A transition function:  ∈ Q×  → {stop} ∪ Q ×  × {L,R} 

The transition function defines how the function behaves if is in state q and the symbol on 

the tape is x. If (q, x) = stop then the machine stops otherwise if (q,x) = (q’, y, d) the 

machines gets into state q’, writes y on the tape (replacing x) and moves left if d = L or 

right, if d = R. 

 An initial state q0 ∈ Q,  

 The blank symbol B∈  but B ∉  . In the beginning only a finite section of the tape 
containing the input is not blank.  

 A set of final states F  Q.  

In most texts the transition function is defined without the stop option as  

 ∈ Q×  → {stop}Q ×  × {L,R}.  

However they allow   to be undefined which correspond to our function returning stop.  

This defines deterministic Turing machines. For non-deterministic TMs we change the 

transition function to  

 ∈ Q×  → P(Q ×  × {L,R}) 

Here stop corresponds to  returning an empty string. As for finite automata (and unlike 

for PDAs) there is no difference in the strength of deterministic or non-deterministic TMs.  

As for PDAs we define instantaneous descriptions ID for Turing machines. We have ID = 

* × Q × * where (, q, r) means that the TM is in state q and left from the head the 

non-blank part of the tape is  and starting with the head itself and all the non-blank 

symbols to the right is r.  

We define the next state relation M similar as for PDAs:  

1. if  

2. if  

3. if  

4. if  

The cases 3. and 4. are only needed to deal with the situation if we have reached the end 

of the (non-blank part of) the tape.  
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We say that a TM M accepts a word if it goes into an accepting state, i.e. the language of a 

TM is defined as  

 
 

i.e. the TM stops automatically if it goes into an accepting state. However, it may also stop 

in a non-accepting state if  returns stop – in this case the word is rejected.  

A TM decides a language if it accepts it and it never loops (in the negative case).  

To illustrate this we define a TM which accepts the language L = a
n
b

n
c

n
 |n ∈ℕ– this is a 

language which cannot be recognized by a PDA or be defined by a CFG.  

We define M = (Q, , , , q0, B, F) by  

 

 

 

is given by  
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The machine replaces an a by X(q0) and then looks for the first b replaces it by Y(q1) and 

looks for the first c and replaces it by a Z(q2). If there are more cs left it moves left to the 

next a (q4) and repeats the cycle. Otherwise it checks whether there are no as and bs left 

(q5) and if so goes in an accepting state (q6).  

E.g. consider the sequence of IDs on aabbcc:  
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We see that  accepts aabbcc. Since  never loops it does actually decide . 

There are a lot of possible Turing machines and a useful technique is to code Turing 

machines as binary integers. A trivial coding is to use the 8 bit ASCII for each character in 

the written description of a Turing machine concatenated into one long bit stream. 

 

Having encoded a specific Turing machine as a binary integer, we can talk about TMi as the 

Turing machine encoded as the number "i". 

 

It turns out that the set of all Turing machines is countable and enumerable. 

 

3.3. Universal Turing Machine 

 

Now we can construct a Universal Turing Machine (UTM) that takes an encoded Turing 

machine on its input tape followed by normal Turing machine input data on that same input 

tape. The Universal Turing Machine first reads the description of the Turing machine on the 

input tape and uses this description to simulate the Turing machines actions on the 

following input data. Of course a UTM is a TM and can thus be encoded as a binary integer, 

so a UTM can read a UTM from the input tape, read a TM from the input tape, then read the 

input data from the input tape and proceed to simulate the UTM that is simulating the TM. 

etc. 

 

Since a UTM can be represented as an integer and can thus also be the input data on the 

input tape of itself or another Turing machine. This will be used in the next unit in the 

Halting Problem 

 

4.0  CONCLUSION  

In this unit you have been introduced to Turing machines. This is the class of machines that 

can recognise any string from any language. They can recognise strings that the earlier 
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machines/automata discussed in this course so far cannot recognise. In the next unit you 

will be learning more about the class of languages recognised by this machine. 

 

5.0 SUMMARY  

In this unit, you learnt that: 

 A TM decides a language if it accepts it and it never loops 

 A language is decidable, if there is a TM which will always stop 

 A Turing machine (TM) is a generalization of a PDA which uses a tape instead of a 
stack.  

 Turing machines are an abstract version of a computer 

 A language is accepted by a Turing machine means that the TM will stop in an 
accepting state for each word which is in the language 

 There is no type of grammars which captures all decidable languages 

 the set of all Turing machines is countable and enumerable  
 

 

6.0 TUTOR-MARKED ASSIGNMENT 

1. Define Turing machine 
2. How is a Turing machine different from the other machines discussed so far in this 

course? 
3. What does it mean to say a language is accepted by a Turing machine? 
4. Design a Turing machine that accepts all strings of a's and b's with an equal number of a's and b's. 

Show the sequence of moves your Turing machine makes on the input aabb 
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1.0 INTRODUCTION 

 

In this unit you will be learning about the Turing machine. The machine for decidable 

languages. 

 

A basic Turing machine is a model for studying computation. Turing machines can solve 

decision problems and compute results based on inputs.  When studying computation we 

usually restrict our attention to integers.  Since a real number has infinitely many fraction 

digits we cannot compute a real number in a finite time.  Rational numbers are 

approximations to real numbers are equivalent and can be put in one-to-one correspondence 

with the integers. 

 

Programming a Turing machine is tedious and thus much work at higher levels of 

abstraction make the reasonable assumption that any completely defined algorithm or 

computer program could be implemented by a Turing machine. 

 

Now let us go through your study objectives for this unit. 

 

2.0 OBJECTIVES 

 

At the end of this unit, you should be able to: 

 

 Define context-sensitive grammars 
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 Distinguish context-sensitive grammars from others that have been discussed so 
far in this course 

 Briefly explain the halting problem 

 State Godel’s incompleteness theorem 

 Define the following with respect to TM: 
o Unsolvable 
o Undecidabled 

 

3.0 MAIN CONTENT 

3.1 Grammars and Context-Sensitivity  

Grammars G = (V, , S, P) are defined as context-free grammars before with the only 

difference that there may be several symbols on the left-hand side of a production, i.e. P  

(V∪T)
+
 × (V∪T)*. Here (V∪T)

+
 means that at least one symbol has to be present. The 

relation derives G(and *G) is defined as before : 

G    (V∪T)* × (V∪T)* 

 G ’  :  → ’ ∈ P 

and as before the language of P is defined as:  

L(G) = {w ∈ * | S *G w} 

We say that a grammar is context-sensitive (or type 1) if the left hand side of a production is 

at least as long as the right hand side. That is for each  →  ∈ P we have ||  | |  

Here is an example of a context-sensitive grammar G = (V, , S, P): with L(G) = {{a
n
b

n
c

n
 | 

n ∈ ℕ ∧ n ≥ 1}. where  

V = {S, B, C} 

 = {a, b, c} 

P = {   S → aSBC 

   S → aBC 

   aB → ab 

   CB → BC 

   bB → bB 
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   bC → bc 

   cC → cc} 

We present without proof:  

Theorem 1:   For a language L  * the following is equivalent:  

1. L is accepted by a Turing machine M, i.e. L  = L(M) 
2. L is given by a grammar G, i.e. L  = L(G) 

Theorem 2:   For a language L  * the following is equivalent:  

1. L is accepted by a Turing machine M, i.e. L  = L(M) such that the length of the tape is 
bounded by a linear function in the length of the input, i.e.    

|| + |r|  (x) where (x) = ax + b with a, b ∈ N.  

2. L is given by a context sensitive grammar G, i.e. L  = L(G) 

3.2 The Halting Problem  

Turing showed that there are languages which are accepted by a TM (i.e. type 0 languages) 

but which are undecidable. The technical details of this construction are quite involved but 

the basic idea is quite simple and is closely related to Russell's paradox, which we have 

seen in MCS.  

The "Halting Problem" is a very strong, provably correct, statement that no one will ever be 

able to write a computer program or design a Turing machine that can determine if a 

arbitrary program will halt (stop, exit) for a given input. 

 

This is NOT saying that some programs or some Turing machines cannot be analyzed to 

determine that they, for example, always halt. 

 

The Halting Problem says that no computer program or Turing machine can determine if 

ALL computer programs or Turing machines will halt or not halt on ALL inputs. To prove 

the Halting Problem is unsolvable we will construct one program and one input for which 

there is no computer program or Turing machine. 

 

We will use very powerful mathematical concepts and do the proofs for both a computer 

program and a Turing machine. The mathematical concepts we need are: 

 

1. Proof by contradiction: Assume a statement is true, show that the assumption 

leads to a contradiction. Thus the statement is proven false. 

 

2. Self referral: Have a computer program or a Turing machine operate on itself, 

well, a copy of itself, as input data. Specifically we will use diagonalization, taking 

the enumeration of Turing machines and using TMi as input to TMi. 
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3. Logical negation: Take a black box that accepts input and outputs true or false, put 

that black box in a bigger black box that switches the output so it is false or true 

respectively. 

 

The simplest demonstration of how to use these mathematical concepts to get an unsolvable 

problem is to write on the front and back of a piece of paper "The statement on the back of 

this paper is false." 

 

Starting on side 1, you could choose "True" and thus deduce side 2 is "False". But starting 

on side 2, which is exactly the same as side 1, you get that side 2 is "True" and side 1 is 

"False."   

 

Since side 1, and side 2, can be both "True" and "False" there is a contradiction. The 

problem of determining if sides 1 and 2 are "True" or "False" is unsolvable. 

 

The Halting Problem for a programming language. We will use the "C"   programming 

language, yet any language will work. 
 

  Assumption: There exists a way to write a function named Halts such that: 
 

    int Halts(char * P, char * I) 

    { 

      /* code that reads the source code for a "C" program, 

P, 

         determines that P is a legal program, then 

determines if P 

         eventually halts (or exits) when P reads the input 

string I, 

         and finally sets a variable "halt" to 1 if P halts 

on input I, 

         else sets "halt" to 0 */ 

      return halt; 

    } 

 

  Construct a program called Diagonal.c as follows: 

 

  int main() 

  { 

    char I[100000000];          /* make as big as you want or 

use malloc */ 

    read_a_C_program_into( I );  

    if ( Halts(I,I) )  { while(1){} } /* loop forever,means 

does not halt */ 

    else return 1; 

  } 

 

  Compile and link Diagonal.c into the executable program Diagonal. 

  Now execute 
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      Diagonal < Diagonal.c 

 

  Consider two mutually exclusive cases: 

  Case 1: Halts(I,I) returns a value 1. 

 This means, by the definition of Halts, that Diagonal.c halts when given the input 

Diagonal.c.  

 

BUT! we are running Diagonal.c (having been compiled and linked) and so we 

see that Halts(I,I) returns a value 1 causes the "if" statement to be true and the  

"while(1){}" statement to be executed, which never halts, thus our executing 

Diagonal.c does NOT halt. 

 

This is a contradiction because this case says that Diagonal.c does halt when given 

input Diagonal.c. We will try the other case. 

 

  Case 2: Halts(I,I) returns a value 0. 

 This means, by the definition of halts, that Diagonal.c does NOT halt when given 

the input Diagonal.c. 

 

BUT! we are running Diagonal.c (having been compiled and linked) and so we 

see that Halts(I,I) returns a value 0 causes the "else" to be executed and the main 

function halts (stops, exits).  

 

This is a contradiction because this case says that Diagonal.c does NOT halt when 

given input Diagonal.c. There are no other cases, Halts can only return 1 or 0. 

Thus what must be wrong is our assumption "there exists a way to write a function 

named Halts..." 

 

3.2.1 The Halting Problem for Turing machines. 

 

Assumption: There exists a Turing machine, TMh, such that: When the input tape contains 

the encoding of a Turing machine, TMj followed by input data k, TMh accepts if TMj halts 

with input k and TMh rejects if TMj is not a Turing machine or TMj does not halt with input 

k. 

 

Note that TMh always halts and either accepts or rejects. 

   

Pictorially TMh is: 

 

 
 +----------------------------  

 | encoded TMj B k BBBBB ...  

 +----------------------------  

    ^ read and write, move left and right 

    | 

    |  +-----+ 

    |  |     |--> accept 

    +--+ FSM |                     always halts 



  
 

CIT 342   Formal Languages and Automata Theory 
 
 

 

       |     |--> reject 

       +-----+ 

 

Figure 1: Pictorial representation of TMh 

   

We now use the machine TMh to construct another Turing machine TMi. 

  We take the Finite State Machine, FSM, from TMh and 

    1) make none of its states be final states 

    2) add a non-final state ql that on all inputs goes to ql 

    3) add a final state qf that is the accepting state 

 

  Pictorially  TMi is: 

 

 
 +-------------------------------------------  

 | encoded TMj B k BBBBB ...  

 +-------------------------------------------  

    ^ read and write, move left and right 

    | 

    |  +----------------------------------+ 

    |  |                      __          | 

    |  |                     /   \ 0,1    | 

    |  |                   +-| ql |--+    | 

    |  | +-----+           | \___/   |    | 

    |  | |     |--> accept-+   ^     |    | 

    +--+-+ FSM |               |_____|    |            may 

not halt 

       | |     |--> reject-+    _         | 

       | +-----+           |  // \\       | 

       |                   +-||qf ||------|--> accept 

       |                      \\_//       | 

       +----------------------------------+ 

 

Figure 2: Pictorial representation of TMi 

   

We now have Turing machine TMi operate on a tape that has TMi as the input machine and 

TMi as the input data. 

 

 

 

 
 +-------------------------------------------  

 | encoded TMi B encoded TMi BBBBB ...  

 +-------------------------------------------  

    ^ read and write, move left and right 

    | 

    |  +----------------------------------+ 

    |  |                      __          | 

    |  |                     /   \ 0,1    | 
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    |  |                   +-| ql |--+    | 

    |  | +-----+           | \___/   |    | 

    |  | |     |--> accept-+   ^     |    | 

    +--+-+ FSM |               |_____|    |            may 

not halt 

       | |     |--> reject-+    _         | 

       | +-----+           |  // \\       | 

       |                   +-||qf ||------|--> accept 

       |                      \\_//       | 

       +----------------------------------+ 

 

Consider two mutually exclusive cases: 

  

Case 1: The FSM accepts thus TMi enters the state ql.  

           This means, by the definition of TMh that TMi halts with input TMi.            

 

BUT! we are running TMi on input TMi with input TMi and so we see that the 

FSM accepting causes TMi to loop forever thus NOT halting.  

           

 This is a contradiction because this case says that TMi does halt when given input 

TMi with input TMi. 

           

We will try the other case. 

 

Case 2: The FSM rejects thus TMi enters the state qf. 

           

 This means, by the definition of TMh that TMi does NOT halt with input TMi.  

 

BUT! we are running TMi on input TMi with input TMi and so we see that the 

FSM rejecting cause TMi to accept and halt. 

 

 This is a contradiction because this case says that TMi does NOT halt when given 

input TMi with input TMi. There are no other cases, FSM either accepts or rejects. 

Thus what must be wrong is our assumption "there exists a Turing machine, TMh, 

such that..." QED. 

 

Thus we have proved that no Turing machine TMh can ever be created that can be given the 

encoding of any Turing machine, TMj, and any input, k, and always determine if TMj halts 

on input k. 

   

3.3 Decision Problems  

 Decision problems are stated as questions where the answer is binary, 0 or 1, False or True, 

No or yes, Reject or Accept and so forth. 

 

Generally a decision problem states a problem and gives a candidate solution, asking if the 

solution solves the problem. 
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  Examples: 

     Given the math expression  2+2  is the answer 4? 

     Given a formal language and a string, is the string in the language? 

     Given a grammar and a string, is the string accepted by the grammar? 

3.4 Godel Incompleteness Theorem  

Any formal system powerful enough to express arithmetic must have true theorems that 

cannot be proven within the formal system. 

 

Basically Godel proved that when trying to add axioms to a formal system in order to prove 

all true theorems within the formal system, eventually the system will become inconsistent 

before it becomes complete. 

 

A complete formal system is a formal system where all true theorems can be proved. 

 

An inconsistent formal system is a formal system where at least one false statement can be 

proved within the formal system. 

 

Due to the computational equivalence of formal systems to other computational capability, 

we get the Halting problem, the uncomputable numbers and other unsolvable problems. 

3.5 Unsolvable  

A formally stated problem is Unsolvable if no Turing machine exists to compute the 

solution. 

 

A formally stated problem is provably unsolvable if it can be proved no Turing machine 

exists to compute the solution. 

3.6 Undecidable  

A formally stated problem is Undecidable if no total recursive function and thus, no Turing 

machine that always halts can be constructed to decide the problem, usually true or false. 

 

Let us fix a simple alphabet  = {0,1}. As computer scientists we are well aware that 

everything can be coded up in bits and hence we accept that there is an encoding of TMs in 

binary. i.e. given a TM M we write ⌈M⌉∈ {0, 1}* for its binary encoding. We assume that 

the encoding contains its length such that we know when subsequent input on the tape 

starts.  

Now we define the following language:  

Lhalt = {⌈M⌉w | ⌈M holds on input w} 
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It is easy to define a TM which accepts this language: we just simulate M and accept if M 

stops.  

However, Turing showed that there is no TM which decides this language. To see this let us 

assume that there is a TM H which decides L. Now using H we construct a new TM F 

which is a bit obnoxious: F on input x runs H on xx. If H says yes then F goes into a loop 

otherwise (H says no) F stops.  

The question is what happens if we run F on ⌈F⌉? Let us assume it terminates, then H 

applied to ⌈F⌉⌈F⌉ returns yes and hence we must conclude that F on ⌈F⌉ loops??? On the 

other hand if F with input ⌈F⌉ loops then H applied to ⌈F⌉⌈F⌉ will stop and reject and 

hence we have to conclude that F on ⌈F⌉ will stop?????  

This is a contradiction and hence we must conclude that our assumption that there is a TM 

H which decides Lhalt is false. We say Lhalt is undecidable.  

 

4.0  CONCLUSION  

In this unit you have been introduced to Turing machines and the context-sensitive 

grammars. In the next unit you will be learning about the last class of grammars, 

unrestricted grammars and the machines that can recognise them. 

 

5.0 SUMMARY  

In this unit, you learnt that: 

 a grammar is context-sensitive (or type 1) if the left hand side of a production is at 

least as long as the right hand side. That is for each  →  ∈ P we have ||  | | 

 The Halting Problem says that no computer program or Turing machine can 
determine if ALL computer programs or Turing machines will halt or not halt on ALL 
inputs  

 Decision problems are stated as questions where the answer is binary, 0 or 1, False 
or True, No or yes, Reject or Accept and so forth  

 Basically Godel proved that when trying to add axioms to a formal system in order 
to prove all true theorems within the formal system, eventually the system will 
become inconsistent before it becomes complete 

 A complete formal system is a formal system where all true theorems can be 
proved 

 An inconsistent formal system is a formal system where at least one false statement 
can be proved within the formal system 
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6.0 TUTOR-MARKED ASSIGNMENT 

1) State Godel incompleteness theorem 
2) What do you understand by halting problem? 
3) What mathematical concepts will you use in proving that the halting problem is 

unsolvable? 
4) Define context-sensitive grammars 
5) What do you understand by decision problems? 
6) What does it mean to say a formally stated problem is  

a) Unsolvable 
b) undecidable 
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1.0 INTRODUCTION 

 

In this the previous unit you learnt about Turing machines and context-sensitive grammars. 

In this unit, which is the concluding unit of this course, you will learn about Turing 

machines and the last class of grammars referred to as unrestricted grammars. It will be 

shown that Turing machines and unrestricted grammars are equivalent. 

 

Now let us go through your study objectives for this unit. 

 

2.0 OBJECTIVES 

 

At the end of this unit, you should be able to: 

 

 Define unrestricted grammars 

 Demonstrate the relationship between Turing machines and unrestricted 
grammars 

 

3.0 MAIN CONTENT 

3.1 Unrestricted Grammars 

The productions of an unrestricted grammar have the form: 

(V T)+ (V T) *  

The other grammar types we have considered (left linear, right linear, linear, context free) 

restrict the form of productions in one way or another. An unrestricted grammar does not.  
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In what follows, we will attempt to show that unrestricted grammars are equivalent to 

Turing machines. Bear in mind that:  

 A language is recursively enumerable if there exists a Turing machine that accepts 
every string of the language, and does not accept strings that are not in the 
language.  

 "Does not accept" is not the same as "reject" – the Turing machine could go into an 
infinite loop instead, and never get around to either accepting or rejecting the 
string.  

Our plan of attack is to show that the languages generated by unrestricted grammars are 

precisely the recursively enumerable languages.  

3.2 From Grammars to Turing Machines 

Theorem 1: Any language generated by an unrestricted grammar is recursively 

enumerable.  

This can be proven as follows:  

1. If a procedure exists for enumerating the strings of a language, then the language is 
recursively enumerable. (We proved this earlier in unit 2 of this module.)  

2. There exists a procedure for enumerating all the strings in any language generated 
by an unrestricted grammar. (We will demonstrate the procedure shortly in this 
unit.)  

3. Therefore, any language generated by an unrestricted grammar is recursively 
enumerable.  

Here is a review of the argument for (1) above. We prove the language is recursively 

enumerable by constructing a Turing machine to accept any string w of the language.  

 Build one Turing machine that generates the strings of the language in some 
systematic order.  

 Build a second Turing machine that compares its input to w and accepts its input if 
the two strings are identical.  

 Build a composite Turing machine that incorporates the two machines above, using 
the output of the first as input to the second.  

Now we have to systematically generate all the strings of the language. For other types of 

grammars it worked to generate shortest strings first; we do not know how to do that with 

an unrestricted grammar, because some productions could make the sentential form shorter. 

It might take a million steps to derive .  

Instead, we order the strings shortest derivation first. First we consider all the strings that 

can be generated from S in one derivation step, and see if any of them are composed 

entirely of terminals. (We can do this because there are only a finite number of 

productions.) Then we consider all the strings that can be derived in two steps, and so on. 

Q.E.D.  
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3.3 From Turing Machines to Grammars  

We have shown that a Turing machine can do anything that an unrestricted grammar can 

do. Now we have to show that an unrestricted grammar can do anything a Turing machine 

can do. This can be done by using an unrestricted grammar to emulate a Turing machine. 

We will give only the barest outline of the proof.  

Recall that a configuration of a Turing machine can be written as a string  

xi...xjqmxk...xl  

where the x's are the symbols on the tape, qm is the current state, and the tape head is on the 

square containing xk (the symbol immediately following qm). It makes sense that a 

grammar, which is a system for rewriting strings, can be used to manipulate configurations, 

which can easily be written as strings.  

A Turing machine accepts a string w if : 

q0w xqfy  

for some strings x and y and some final state qf, whereas a grammar produces a string if: 

S w.  

Because the Turing machine starts with w while the grammatical derivation ends with w, the 

grammar we build will run "in reverse" as compared to the Turing machine.  

Recall that a Turing machine accepts a string w if  

q0w xqfy  

and that our grammar will run "backwards" compared to the Turing machine.  

The productions of the grammar we will construct can be logically grouped into three sets:  

1. Initialization: These productions construct the string ... B$xqfyB... where B indicates 
a blank and $ is a special variable used for termination.  

2. Execution: For each transition rule of we need a corresponding production.  
3. Cleanup: Our derivation will leave some excess symbols q0, B, and $ in the string 

(along with the desired w), so we need a few more productions to clean these up.  

For the terminals T of the grammar we will use the input alphabet  of the Turing machine.  

For the variables V of the grammar we will use  

 - , the tape alphabet minus the symbols we took for T.  
 A symbol qi for each state of the Turing machine.  
 B (blank) and $ (used for termination).  



  
 

CIT 342   Formal Languages and Automata Theory 
 
 

 

 S (for a start symbol) and A (used for initialization).  

 

Initialization: We need to be able to generate any string of the form 

    B...B$xqfyB...B 

Since we need an arbitrary number of "blanks" on either side, we use the productions 

   S BS | SB | $A 

 

(The $ is a marker we will use later.) Next we use the A to generate the strings x, y  , 

with a state qf somewhere in the middle: 

     A sA | As | qf, for all s .  

Execution: For each transition rule of we need a corresponding production. For each rule 

of the form: 

     (qi, a) = (qj, b, R) 

we use a production: 

     bqj qia 

and for each rule of the form: 

     (qi, a) = (qj, b, L) 

we use a production: 

     qjcb cqia 

for every c (the asymmetry is because the symbol to the right of q is the one under the 

Turing machine's tape head.)  

Cleanup: We end up with a string that looks like B...B$q0wB...B, so we need productions 

to get rid of everything but the w: 

     B  

     $q0  

 

4.0  CONCLUSION  
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In this last unit of this course, you have been introduced to unrestricted grammars and the 

machines that can recognise them. It has been shown that a Turing machine can do 

anything that an unrestricted grammar can do and vice versa. Any other thing you need to 

know about computation will be discussed in another course on computation. If you are 

interested it is advisable you take the course on Theory of Computation. 

5.0 SUMMARY  

In this unit, you learnt that: 

 The productions of an unrestricted grammar have the form: 

(V T)+ (V T) *  

 An unrestricted grammar does not restrict the form of productions 

 a Turing machine can do anything that an unrestricted grammar can do and vice 
versa i.e. unrestricted grammars are equivalent to Turing machines 

6.0 TUTOR-MARKED ASSIGNMENT 

1)  Define unrestricted grammars 

2)  When is a grammar recursively enumerable? 

3) Prove that any language generated by an unrestricted grammar is recursively 

enumerable.  
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