

CIT421

NET-CENTRIC COMPUTING

Course Team Dr. Toyin Oguntunde (Developer/Writer)

Prof. Olatunji Okesola (Content Editor)

Dr. Francis B. Osang – HOD/Internal Quality

Control Expert

NATIONAL OPEN UNIVERSITY OF NIGERIA

COURSE

GUIDE

CIT 421 COURSE GUIDE

ii

National Open University of Nigeria

University Village, Plot 91

Jabi Cadastral Zone

Nnamdi Azikiwe Expressway

Jabi, Abuja

Lagos Office

14/16 Ahmadu Bello Way

Victoria Island, Lagos

Departmental email: computersciencedepartment@noun.edu.ng

NOUN e-mail: centralinfo@noun.edu.ng

URL: www.nou.edu.ng

First Printed 2022

ISBN: 978-058-557-5

All Rights Reserved

Printed by: NOUN PRESS

January 2022

CIT 421 COURSE GUIDE

iii

Contents

Introduction ... iv

What You Will Be Learning in this Course .. iv

Course Aim ... v

Course Objectives ... v

Working through this course ... vi

Course Material ... vi

Study Units ... vii

Presentation Schedule ... viii

Assessment ... viii

Tutor-Marked Assignment (TMAs) .. ix

Final Examination and Grading ... ix

Course Marking Scheme .. x

Facilitators/Tutors and Tutorials .. x

Summary ... x

CIT 421 COURSE GUIDE

iv

Introduction

Net-Centric or network centered computing is an ongoing area in the

twenty-first century with a great interest among software engineers as it

is an enabling technology for modern distributed computing systems and

applications. Today, Net-Centric applications have invaded the lives of

people in many ways. Net-Centric Computing (NCC) is a distributed

environment where applications and data are downloaded from servers

and exchanged with peers across a network. Net-centric Computing

focuses on large-scale distributed computing systems and applications that

communicate through open, wide-area networks like the Internet. General

examples of large-scale network-centric systems are the World-Wide Web

and Computational Grids. For several years, major changes are being

brought to the world by universal networking capabilities, such as the

Internet. Today’s technology solutions represent the convergence of

computing power, networking capability and the information, data or

knowledge that forms the content of these solutions. Net-centric

computing refers to an emerging technology architecture and an

evolutionary stage of client/server computing. It is a common architecture

built on open standards that supports in different ways for different people

to collaborate and to reach different information sources. The evolutionary

nature of net-centric computing links technological capabilities and

strategic opportunities, helping people in facing today’s new problems and

providing the flexibility to meet tomorrow’s challenges.

What You Will Be Learning in this Course

This course consists of units and a course guide. This course guide tells

you briefly what the course is about, what course material you will be

using and how you can work through these materials. In addition, it

advocates some general guidelines for the amount of time you are likely

to spend on each unit of the course in order to complete it successfully. It

gives you guidance in respect of your Tutor-Marked Assignments which

will be made available in the assignment file. There will be regular tutorial

classes that are related to the course. It is advisable for you to attend these

tutorial sessions.

This course teaches the technology on which everything in the world,

ranging from education, commerce, communication to even the home,

runs which is inter-network.

CIT 421 COURSE GUIDE

v

Course Aim

The aim of the course is to furnish you with full knowledge on inter-

networking. It teaches how systems connect one with the other,

communication modes, two or more systems processing, a single but

divided large tasks executed together simultaneously, transmission

technologies and much more.

Course Objectives

To achieve the aims set out, the course has a set of objectives. Each unit

has specific objectives which are included at the beginning of the unit.

You may wish to refer to them during your study to check on your

progress. You should always look at the unit objectives after completion

of each unit. By doing so, you would know whether you have followed

the instruction in the unit.

Below are the comprehensive objectives of the course as a whole. By

meeting these objectives, you should have achieved the aims of the course

as a whole. In addition to the aims earlier stated, this course sets to achieve

some objectives. Thus, after going through the course, you should be able

to:

 Identify the configurations of Distributed systems

 Describe the standards of wireless technology

 Implement security schemes or ciphers on the network

 Explain the categories of networks

 Define the concept of Parallel Systems

 Classify parallel Programming Models

 Describe Message Passing Programming

 Explain the concept of:

o Dependence Analysis

o Open MP Programming

o Evaluation of Programs

o Optimizations for Scalar Architectures and Models for Parallel

Computing

 Dependence Analysis, Open MP Programming, Evaluation of

Programs, Optimizations for Scalar Architectures and Models for

Parallel Computing.

 Explain the concepts of Distributed systems:

o Characterization of Distributed systems

o system models

o distributed objects and

o remote method invocation

 Implement the concept of Distributed transactions:

o Explain flat & nested distributed transactions and concurrency

CIT 421 COURSE GUIDE

vi

 Explain Service-oriented architectures:

o Identify the characteristics of SOAs, Hadoop and Spark

 Define Mobile and wireless computing

o Enumerate the Technologies for Wireless Communication

o Explain wireless cellular systems

o Appreciate wireless network technologies

 Discuss Wireless Application Protocols: Mobile IP, WAP, SMS,

Bluetooth

 Implement the Frameworks for mobile application development

(e.g Ionic, React Native, Xamarin, Adobe PhoneGap, J2ME)

 Define Cloud computing:

o Explain the cloud computing technologies, infrastructure, and

architecture

 Discuss Cloud computing development models (public, private,

community and hybrid cloud), service models (SaaS, PaaS,

IaaS).Improve their data privacy through hardware protection

Working through this course

To complete this course, you are required to read each study unit, read the

textbooks and read other materials which may be provided by the National

Open University of Nigeria.

Each unit contains self-assessment exercises and at certain point in the

course, you would be required to submit assignments for assessment

purposes. At the end of the course there is a final examination. The course

should take you about a total of 17 weeks to complete. Below, you will

find listed all the components of the course, what you have to do and how

you should allocate your time to each unit in order to complete the course

on time and successfully.

This course entails that you spend a lot time reading. I would advise that

you avail yourself the opportunity of comparing your knowledge with that

of other learners.

Course Material

The major components of the course are:

1. Course Guide

2. Study Units

3. Presentation Schedule

4. Tutor-Marked Assignments

5. References/Further Reading

CIT 421 COURSE GUIDE

vii

Study Units

The study units in this course are as follows:

Module 1 Net-Centric Computing Fundamentals

Unit 1 Introduction to Distributed Computing

Unit 2 Mobile and Wireless Computing

Unit 3 Network Security

Unit 4 Client/ Server Computing (Using the web)

Unit 5 Building Web Application

Module 2 Parallel Systems

Unit 1 Introduction to Parallel Systems

Unit 2 Parallel Programming Models

Unit 3 Message Passing Programming

Unit 4 Dependence Analysis

Unit 5 Open MP Programming

Unit 6 Evaluation of Programs

Module 3 Distributed Systems

Unit 1 Introduction to Distributed Systems

Unit 2 Systems Models

Unit 3 Distributed Objects

Unit 4 Remote Methods Invocation

Unit 5 Using UML for Component Based Designs

Module 4 Distributed Transactions
Unit 1 Introduction to Distributed Transactions

Unit 2 Flat and Nested Distributed Transactions

Unit 3 Concurrency

Unit 4 Characteristics of Service Oriented Architecture- Hadoop

& Spark

Module 5 Mobile & Cloud Computing

Unit 1 Introduction to Mobile and Cloud Computing

Unit 2 Technologies for Wireless Communications

Unit 3 Wireless Cellular Systems

Unit 4 Overview of Wireless LAN, IEEE 802.11, Personal Area

 Network, Bluetooth

Unit 5 High Speed Wireless Network: HiperLAN

The first module introduces Distributed Computing, dynamic devices and

mode of transmission, security of connected and communicating systems

CIT 421 COURSE GUIDE

viii

using ciphers, Client and Servers communication and building of web

applications.

Module Two explains parallel systems and parallel programming models.

Other issues treated are Message passing Programming, Dependence

Analysis, Open MP Programming, Program Evaluation using Algorithms,

Optimizations for Scalar Architectures and Models for Parallel

Computing.

In module Three, we have discussed connected Systems, its models and

characteristics, Distributed Objects, Remote Method Invocation and

using UML for Component Based Design. Module Four treated

Transactions on Connected Systems, Flat and Nested Distributed

Transactions, Simultaneity or Concurrency. Module Five introduces

Mobile devices and the Internet, Wireless Communications

Technologies, Wireless Cellular Systems, Wireless Local Area Networks,

Personal Area Networks, IEEE 802.11 and Bluetooth and High-speed

Wireless Networks

Each unit consists of one or two weeks’ work and include an introduction,

objectives, reading materials, exercises, conclusion, summary, tutor-

marked assignments (TMAs), references and other resources. The units

direct you to work on exercises related to the required reading. In general,

these exercises test you on the materials you have just covered or require

you to apply it in some way to assist you in evaluating your progress and

to reinforce your comprehension of the material. Together with TMAs,

these exercises will help you in achieving the stated learning objectives

of the individual units and of the course as a whole.

Presentation Schedule

Your course materials have important dates for early, timely completion

and submission of your TMAs and attending tutorials. You should

remember that you are required to submit all your assignments by the

stipulated time and date. You should guide against working behind

deadlines.

Assessment

There are three aspects to the assessment of the course. First is made up

of self-assessment exercises. Second, consists of the tutor-marked

assignments and third is the written examination/end of course

examination.

You are advised to do the exercises. In tackling the assignments, you are

expected to apply information, knowledge and techniques you have

CIT 421 COURSE GUIDE

ix

gathered during the course. The assignments must be submitted to your

facilitator for formal assessment in accordance with the deadline stated in

the presentation schedule and the assessment file. The work you submit

to your tutor for assessment will count for 30% of your total course mark.

At the end of the course, you will need to sit for a final or end of course

examination of about three hours duration. This examination will count

for 70% of your total course mark.

Tutor-Marked Assignment (TMAs)

The TMA is a continuous assessment component of your course. It

accounts for 30% of the total score. You will be given four TMAs to

answer. Three of these must be answered before you are allowed to sit for

end of course examination. The TMAs would be given to you by your

facilitator and should be returned after you have done the assignment.

Assignment questions for the units in this course are contained in the

assignment file. You will be able to complete your assignments from the

information and material contained in your reading, references and study

units. However, it is desirable in all degree level of education to

demonstrate that you have read and researched more into your references,

which will give a wider view point and may provide you with a deeper

understanding of the subject.

Make sure that each assignment reaches your facilitator on or before the

deadline given in the presentation schedule and assignment file. If for any

reason you cannot complete your work on time, contact your facilitator

before the assignment is due to discuss the possibility of an extension.

Extension will not be granted after the due date unless in exceptional

circumstances.

Final Examination and Grading

The end of course examination for Net-centric Computing (CIT412) will

be for three (3) hours and it has a value of 70% of the total course score.

The examination will consist of questions, which will reflect the type of

self-testing, practice exercise and tutor-marked assignment problems you

have previously encountered. All areas of the course will be assessed.

Use the time between finishing the last unit and sitting for the examination

to revise the whole course. You might find it useful to review your self-

test, TMAs and comments on them before the examination. The end of

course examination covers information from all parts of the course.

CIT 421 COURSE GUIDE

x

Course Marking Scheme

Assignment Marks

Assignment 1 – 4 For assignment, best three marks of the four

counts at 10% each, i.e., 30% of Course

Marks.

End of Course

Examination

70% 0f the overall Course Marks.

Total 100% of Course Material.

Facilitators/Tutors and Tutorials

There are 16 hours of tutorials provided in support of this course. You

will be notified of the dates, time, and location of these tutorials as well

as the name and phone number of your facilitator, as soon as you are

allocated to a tutorial group.

Your facilitator will mark and comment on your assignments, keep a close

watch on your progress and any difficulties you might face and provide

assistance to you during the course. You are expected to mail your Tutor-

Marked Assignments to your facilitator before the scheduled date (at least

two working days are required). They will be marked by your tutor and

returned to you as soon as possible.

Do not delay to contact your facilitator by telephone or e-mail if you need

assistance. However, the following might however be the circumstances

in which you would find assistance necessary, hence you would have to

contact your facilitator if:

 You do not understand any part of the study or assigned readings

 You have difficulty with self-tests

 You have question or problem with an assignment or with the

grading of an assignment.

You should endeavor to attend the tutorials. This is the only chance to

have face to face contact with your course facilitator and to ask questions

which may be answered instantly. You can raise any problem encountered

in the course of your study.

To have more benefits from course tutorials, you are advised to prepare a

list of questions before attending them. You will learn a lot from

participating actively in discussions.

Summary

Net-centric Computing is a course that intends to intimate the learner with

basic facts on computer networks, network types and categories,

CIT 421 COURSE GUIDE

xi

distributed systems, distributed systems models, parallel systems,

concurrency, wireless networks and standards, cloud computing and

wireless application protocols. Upon completing this course, you would

have been equipped with the knowledge of Net-centric computing

fundamentals, what network is all about and wireless technologies, cloud

computing and service models.

I wish you success in the course and I hope you find it very interesting.

CONTENTS PAGE

Module 1 Net-Centric Computing Fundamentals…. 1

Unit 1 Introduction to Distributed Computing…… 1

Unit 2 Mobile and Wireless Computing …………. 2

Unit 3 Network Security ….……………………… 22

Unit 4 Client/ Server Computing (Web Application)… 28

Unit 5 Building Web Application…………………... 33

Module 2 Parallel Systems …………..……………….. 49

Unit 1 Introduction to Parallel Systems ……………. 49

Unit 2 Parallel Programming Models ……………… 64

Unit 3 Message Passing Programming …………….. 71

Unit 4 Dependence Analysis ……………………….. 77

Unit 5 OpenMP Programming …………..…………. 82

Unit 6 Evaluation of Programs …………………….. 89

Module 3 Distributed Systems ………………………. 96

Unit 1 Introduction to Distributed Transactions…… 96

Unit 2 Systems Models……...…………………….. 104

Unit 3 Distributed Objects……………………….… 116

Unit 4 Remote Method Invocation ………………… 121

Unit 5 Using UML for Component Based Design … 131

Module 4 Distributed Transactions …………….…… 140
Unit 1 Introduction to Distributed Transactions……. 140

Unit 2 Flat & Nested Distributed Transactions ……. 160

Unit 3 Concurrency………….……………………… 169

Unit 4 Characteristics of Service Oriented

Architecture (Hadoop & Spark)……………… 180

Module 5 Mobile & Cloud Computing ………………. 184

Unit 1 Introduction to Mobile & Cloud Computing … 184

Unit 2 Technologies for Wireless Communications … 193

Unit 3 Wireless Cellular Systems …………………… 199

Unit 4 Overview of Wireless LAN, IEEE 802.11,

Personal Area Network & Bluetooth………… 207

Unit 5 High Speed Wireless Networks: HiperLAN … 218

MAIN

COURSE

CIT 421 MODULE 1

1

MODULE 1: NET-CENTRIC COMPUTING

 FUNDAMENTALS

UNIT 1: INTRODUCTION TO DISTRIBUTED

 COMPUTING

CONTENTS

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content

3.1 Distributed Computing

3.2 Web 2.0 Technologies

3.3 Service Orientation

3.4 Virtualization

4.0 Self-Assessment Exercises

5.0 Conclusion

6.0 Summary

7.0 References/Further Reading

INTRODUCTION TO MODULE

Module 1 presents the essentials of Net-centric computing. Here, we are

going to discuss the concepts of established networks in different location

and job running on each simultaneously (distributed computing) the

output of which are to be combined after completion, mobility issues and

the security of resources running on different autonomous systems as well

as when being transmitted from one point to the other. Others include

client/server concepts and web building.

1.0 INTRODUCTION

A Distributed System is a system whose components are located on

different networked computers, which communicate and coordinate their

actions by passing messages to one another from any system in order to

appear as a single system to the end-user. The computers that are in a

distributed system can be physically together and connected by a local

network, or they can be geographically distant and connected by a wide

area network. A distributed system can consist of any number of possible

components such as mainframes, personal computers, workstations,

minicomputers, and so on. Common use cases of a distributed systems are

electronic banking systems, massive multiplayer online games, and

sensor networks.

CIT 421 NET-CENTRIC COMPUTING

2

1.1 Functionality

There are two general ways that distributed systems function:

a. Each component of the system works to achieve a common goal

and the end-user views results as one combined unit.

b. Each component has its own end-user and the distributed system

facilitates sharing resources or communication services.

1.2 Architectural models

Distributed systems generally consist of four different basic architectural

models:

a. Client-server — Clients contact the server for data, then format it

and display it to the end-user.

b. Three-tier — Information about the client is stored in a middle tier

rather than on the client, to simplify application deployment.

c. n-tier — Generally used when the server needs to forward requests

to additional enterprise services on the network.

d. Peer-to-peer — There are no additional nodes used to provide

services or manage resources. Responsibilities are uniformly

distributed among components in the system, known as peers,

which can serve as either client or server.

2.0 INTENDED LEARNING OUTCOMES (ILOS)

By the end of this unit, you will be able to:

 Explain the concept of distributed systems

 Describe the Architectural Models of Distributing Computing

 Explain the term, Service Orientation

 Describe the concept, Virtualization

3.0 MAIN CONTENT

3.1 Distributed computing

Distributed Computing is a much broader technology that has been

around for more than three decades now. Distributed computing is

computing over distributed autonomous computers that communicate

only over a network. Distributed computing systems are usually treated

differently from parallel computing systems or shared-memory systems

where multiple computers share a common memory pool that is used for

communication between the processors. Distributed memory systems use

multiple computers to solve a common problem, with computation

https://www.sciencedirect.com/topics/computer-science/distributed-computing-systems
https://www.sciencedirect.com/topics/computer-science/shared-memory-system

CIT 421 MODULE 1

3

distributed among the connected computers (nodes) and using message-

passing to communicate between the nodes.

Example of distributed computing is the grid computing where the nodes

may belong to different administrative domains. Another example is the

network-based storage virtualization solution which uses distributed

computing between data and metadata servers.

Figure 1.1.1: Distributed Computing Systems

Distributed computing, however, can include heterogeneous

computations where some nodes may perform a lot more computation,

some perform very little computation and a few others may perform

specialized functionality (like processing visual graphics).

One of the main advantages of using distributed computing is that

efficient scalable programs can be designed so that independent processes

are scheduled on different nodes and they communicate only occasionally

to exchange results – as opposed to working out of a shared memory with

multiple simultaneous accesses to a common memory.

It is obvious that cloud computing is also a specialized form of distributed

computing, where distributed Software as a Service (SaaS)

applications utilize thin clients (such as browsers) which offload

computation to cloud-hosted servers (and services).

Distributed computing, virtualization, service orientation, and Web 2.0

form the core technologies enabling the provisioning of cloud services

from anywhere on the globe.

Distributed computing is a foundational model for cloud computing

because cloud systems are distributed systems. Besides administrative

tasks mostly connected to the accessibility of resources in the cloud, the

https://www.sciencedirect.com/topics/computer-science/grid-computing
https://www.sciencedirect.com/topics/computer-science/storage-virtualization
https://www.sciencedirect.com/topics/computer-science/saas-application
https://www.sciencedirect.com/topics/computer-science/saas-application

CIT 421 NET-CENTRIC COMPUTING

4

extreme dynamism of cloud systems—where new nodes and services are

provisioned on demand—constitutes the major challenge for engineers

and developers.

3.2 Web 2.0 technologies

Web 2.0 technologies constitute the interface through which cloud

computing services are delivered, managed, and provisioned. Besides the

interaction with rich interfaces through the Web browser, Web services

have become the primary access point to cloud computing systems from

a programmatic standpoint.

3.3 Service Orientations

Service orientation is the underlying paradigm that defines the

architecture of a cloud computing system. Cloud computing is often

summarized with the acronym XaaS meaning, Everything-as-a-

Service—that clearly underlines the central role of service orientation.

Infrastructure-as-a-Service solutions provide the capabilities to add and

remove resources, but it is up to those who deploy systems on this scalable

infrastructure to make use of such opportunities with wisdom and

effectiveness.

Platform-as-a-Service solutions embed into their core offering algorithms

and rules that control the provisioning process and the lease of resources.

These can be either completely transparent to developers or subject to fine

control. Integration between cloud resources and existing system

deployment is another element of concern.

3.4 Virtualization

Virtualization is another element that plays a fundamental role in cloud

computing. This technology is a core feature of the infrastructure used by

cloud providers. Virtualization concept is more than 40 years old but

cloud computing introduces new challenges, especially in the

management of virtual environments, whether they are abstractions of

virtual hardware or a runtime environment

Discussion

Which of the security infrastructure is most critical and why?

4.0 Self-Assessment Exercises

1. Describe two Service Orientations

2. What is Virtualization?

https://www.sciencedirect.com/topics/computer-science/cloud-computing-service
https://www.sciencedirect.com/topics/computer-science/cloud-computing-service
https://www.sciencedirect.com/topics/computer-science/cloud-computing-system

CIT 421 MODULE 1

5

3. Give an advantage of Distributed Computing.

Answer

1. Infrastructure-as-a-Service solutions provide the capabilities to

add and remove resources, but it is up to those who deploy systems

on this scalable infrastructure to make use of such opportunities

with wisdom and effectiveness.

Platform-as-a-Service solutions embed into their core offering

algorithms and rules that control the provisioning process and the

lease of resources. These can be either completely transparent to

developers or subject to fine control. Integration between cloud

resources and existing system deployment is another element of

concern.

2. Virtualization is the core feature of the infrastructure used by cloud

providers. but cloud computing introduces new challenges,

especially in the management of virtual environments. Virtual

environments could be abstractions of virtual hardware or a

runtime environment.

3. One of the main advantages of using distributed computing is that

efficient scalable programs can be designed so that independent

processes are scheduled on different nodes and they communicate

only occasionally to exchange results

5.0 CONCLUSION

Distributed computing is computing over distributed autonomous

computers that communicate only over a network. Distributed computing

systems are usually treated differently from parallel computing systems

or shared-memory systems, where multiple computers share a common

memory pool that is used for communication between the processors

6.0 SUMMARY

Virtualization is another element that plays a fundamental role in cloud

computing. Platform-as-a-Service solutions embed into their core

offering algorithms and rules that control the provisioning process and the

lease of resources. Infrastructure-as-a-Service solutions provide the

capabilities to add and remove resources, but it is up to those who deploy

systems on this scalable infrastructure to make use of such opportunities

with wisdom and effectiveness. One of the main advantages of using

distributed computing is that efficient scalable programs can be designed

so that independent processes are scheduled on different nodes and they

communicate only occasionally to exchange results.

https://www.sciencedirect.com/topics/computer-science/distributed-computing-systems
https://www.sciencedirect.com/topics/computer-science/distributed-computing-systems
https://www.sciencedirect.com/topics/computer-science/shared-memory-system

CIT 421 NET-CENTRIC COMPUTING

6

7.0 REFERENCES/FURTHER READING

Moving To The Cloud | ScienceDirect

https://www.sciencedirect.com/book/9781597497251/moving-to-the-cloud

CIT 421 MODULE 1

7

UNIT 2: MOBILE & WIRELESS COMPUTING

CONTENTS

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content

 3.1 Mobile and Wireless Computing

 3.1.1 Mobile Computing

 3.2 Mobile Communications

 3.3 Mobile Hardware

 3.4 Mobile Software

 3.5 Mobile Classification

 3.6 Advantages

 3.7 Security Issues

 3.8 Current Trends

4.0 Self-Assessment Exercises

5.0 Conclusion

6.0 Summary

7.0 References/Further Reading

 1.0 INTRODUCTION

Mobile and wireless computing is a human–computer interaction concept

in which a computer could be in motion during normal usage. Mobile and

wireless computing involves mobile communication, mobile hardware

and mobile software, does involve the use of physical cable but devices

are connected through electromagnetic waves. The farther the usage

location to the network source the less the intensity of the cloud and speed

of connection and vice versa.

2.0 INTENDED LEARNING OUTCOMES (ILOS)

By the end of this unit, you will be able to:

 Define Wireless Communication

 Classify Mobile and Cloud Computing

 Mention 5 mobile hardware

3.0 MAIN CONTENT

3.1 Mobile & Wireless Computing

Mobile and wireless Computing is a technology that allows transmission

of data, voice and video via a computer or any other wireless enabled

device without having to be connected to a fixed physical link.

CIT 421 NET-CENTRIC COMPUTING

8

Computing Technologies are the technologies that are used to manage,

process, and communicate the data. Wireless simply means without any

wire i.e. connecting with other devices without any physical connection.

Wireless computing is transferring the data or information between

computers or devices that are not physically connected to each other and

having a “wireless network connection”. For example, mobile devices,

Wi-Fi, wireless printers and scanners, etc. Mobiles are not physically

connected but then too we can transfer data.

Mobile is a computing device that not require any network connection

or any connection to transfer data or information between devices. For

example laptops, tablets, smartphones, etc. Mobile computing allows

transferring of the data/information, audio, video, or any other document

without any connection to the base or central network. These computing

devices are the most widely used technologies nowadays.

There are some wireless/mobile computing technologies given below:

1. Global System for Mobile Communications (GSM) :

GSM is a Current circuit-switched wireless data communication

technology. It is established in Europe by ETSI (European

Telecommunications Standards Institute) in the mid-1980s. GSM

network has 4 different parks that who’s functions are different: Mobile

Station, BSS (Base Station Subsystem), NSS (Network Switching

Subsystem), OSS (Operation and Support Subsystem).

As the name suggests, GSM is widely used for the mobile

communication system. It operates in the frequency band 900-MHz,

1800-MHz, and 1900-MHz. GSM is developed using TDMA (Time

Division Multiple Access) for better communication using mobile. It is

the most widely used mobile communication system and is mostly

required nowadays. It can achieve maximum data transmission speed or

data transmission rate up to 9.6Kbps (Kilobits per second).

2. Code-Division Multiple Access (CDMA) :

CDMA is a type of wireless computing technology. It is developed

during World War II. This technology is mostly used as it provides better

network quality, more storage capacity for voice and data

communications than TDMA, decreases system noise and interference

using power control, provides more security by encoding the user

transmission data into a unique code.

CDMA does not provide any user with a specific frequency instead

utilizes the entire frequency spectrum available for transmission. It

CIT 421 MODULE 1

9

operates in the frequency range of 800 MHz to 1.9 GHz. It uses Soft

Handoff that reduces signal breaks.

3. Wireless in Local Loop (WLL) :

WLL is a widely used technology for wireless communication systems.

It is also called a Fixed Wireless Loop. WLL is very easy to develop and

less time is required to install, very cost-effective as wireless systems

are less expensive because the cost of cable installation is not added.

WLL allows users to connect to the local telephone station using a

wireless link and provides advanced features of customer service. It

provides high-quality data transmission and a high data rate. Generally,

two types of WLL techniques are available: Local Multipoint

Distribution Service (LMDS) and Multichannel Multipoint Distribution

Service (MMDS).

4. General Packet Radio Service (GPRS) :

GPRS is a type of Packet-based Wireless communication technology. It

is established by ETSI (European Telecommunications Standards

Institute). GPRS can achieve a data transfer rate of up to 114Kbps. It is

very cost-effective, highly stable, can achieve a maximum data rate of

up to 114Kbps (Kilobits per second). It supports Internet Protocol (IP),

X.25 (standard protocol for packet-switched data

communication), Point-to-Point protocol (PPP), and based on Gaussian

minimum-shift keying (GMSK) which is a modulation technique.

The Gateway GPRS Service Node (GGSN) and the Serving GPRS

Service Node (SGSN) are the two core modules required to enable

GPRS on GSM network or TDMA network.

5. Short Message Service (SMS) :

SMS is originally created for a phone/mobile that uses GSM Global

System for Mobile communication). This service is used to send text

messages even without the Internet connection between two or more

mobile devices. This technique is very easy, user-friendly, comfortable

and the most effective means of wireless communication.

In this service, less time is required for communication. It does not

require any Internet connection for sending text messages. It allows the

transmission of short messages i.e. up to 160 characters in length. SMS

uses standardized communication protocols. SMS is received by Short

Message Service Center (SMSC).

https://www.geeksforgeeks.org/mobile-internet-protocol-or-mobile-ip/
https://www.geeksforgeeks.org/difference-between-high-level-data-link-control-hdlc-and-point-to-point-protocol-ppp/

CIT 421 NET-CENTRIC COMPUTING

10

Figure 3.1 below shows the Internet and various devices connected to it

wirelessly for communication all over the world.

Figure 1.2.1: Internet with Mobile Devices connected

3.2 Mobile communication

• The mobile communication refers to the infrastructure put in

place to ensure that seamless and reliable communication goes on

• These would include devices such as protocols, services,

bandwidth, and portals necessary to facilitate and support the

stated services

• The data format is also defined at this stage

• This ensures that there is no collision with other existing systems

which offer the same service.

• the media is unguided/unbounded, the overlaying infrastructure is

basically radio wave-oriented

That is, the signals are carried over the air to intended devices that are

capable of receiving and sending similar kinds of signals.

3.3 Mobile hardware

• mobile devices or device components that receive or access the

service of mobility

• They would range from portable laptops, smartphones, tablet

Pc's, Personal Digital Assistants

CIT 421 MODULE 1

11

Figure 1.2.2: Mobile Hardware

3.4 Mobile Software

• Mobile software is the actual program that runs on the mobile

hardware

• It deals with the characteristics and requirements of mobile

applications

• This is the engine of the mobile device

• It is the operating system of the appliance

• Its the essential component that operates the mobile device

• Since portability is the main factor, this type of computing

ensures that users are not tied or pinned to a single physical

location, but are able to operate from anywhere. It incorporates

all aspects of wireless communications

Figure 1.2.3: Mobile Software

CIT 421 NET-CENTRIC COMPUTING

12

3.5 Mobile Classification

• Mobile computing is not only limited to mobile phones, but there

are various gadgets available in the market that are built on a

platform to support mobile computing

• They are usually classified in the following categories:

3.5.1. Personal Digital Assistant (PDA)

• The main purpose of this device is to act as

an electronic organizer or day planner that is

portable, easy to use and capable of sharing

information with your computer systems.

• PDA is an extension of the PC, not a

replacement

• These systems are capable of sharing

information with a computer system through

a process or service known as

synchronization

• Both devices will access each other to check

for changes or updates in the individual

devices

• The use of infrared and Bluetooth

connections enables these devices to always

be synchronized.

• With PDA devices, a user can browse the

internet, listen to audio clips, watch video

clips, edit and modify office documents, and

many more services

• The device has a stylus and a touch sensitive

screen for input and output purposes

3.5.2 Smartphones

 It combines the features of a PDA with that of a mobile phone or

camera phone

 It has a superior edge over other kinds of mobile phones.

 Smartphones have the capability to run multiple programs

concurrently

Figure 1.2.4: Personal Data Assistant

CIT 421 MODULE 1

13

 These phones include high-resolution touch screens, web

browsers that can:

 access and properly display standard web pages rather than just

mobile-optimized sites

 high-speed data access via Wi-Fi and high speed cellular

broadband.

 The most common mobile Operating Systems (OS) used by

modern smartphones include:

a. Google's Android

b. Apple's iOS

c. Nokia's Symbian

d. RIM's BlackBerry OS

e. Samsung's Bada

f. Microsoft's Windows Phone, and embedded Linux

distributions such as Maemo and MeeGo. Such operating

systems can be installed on different phone models, and

typically each device can receive multiple OS software

updates over its lifetime.

Figure 1.2.5: Smart Phones

3.5.3 Tablet PC and iPads

• This mobile device is larger than a mobile phone or a PDA and

integrates into a touch screen and is operated using touch

sensitive motions on the screen They are often controlled by a

pen or by the touch of a finger

• They are usually in slate form and are light in weight. Examples

would include ipads, Galaxy Tabs, Blackberry Playbooks etc.

• They offer the same functionality as portable computers

CIT 421 NET-CENTRIC COMPUTING

14

• They support mobile computing in a far superior way and have

enormous processing horsepower

• Users can edit and modify document files, access high speed

internet, stream video and audio data, receive and send e-mails,

attend/give lectures and presentations among its very many other

functions

• They have excellent screen resolution and clarity

3.6 Advantages of Mobile Computing

• Location Flexibility

• This has enabled users to work from anywhere as long as

there is a network connection established

• A user can work without being in a fixed position

• Their mobility ensures that they are able to carry out

numerous tasks at the same time and perform their stated

jobs.

• Saves Time

• The time consumed or wasted while travelling from

different locations or to the office and back, has been

slashed

• One can now access all the important documents and files

over a secure channel or portal and work as if they were

on their computer

• It has enhanced telecommuting in many companies

• It has also reduced unnecessary incurred expenses

Figure 1.2.6: Ipads & PCs

CIT 421 MODULE 1

15

• Enhanced Productivity

• Users can work efficiently and effectively from whichever

location they find comfortable

• This in turn enhances their productivity level

• Ease of Research

• Research has been made easier, since users earlier were

required to go to the field and search for facts and feed

them back into the system

• It has also made it easier for field officers and researchers

to collect and feed data from wherever they are without

making unnecessary trips to and from the office to the

field

• Entertainment

• Video and audio recordings can now be streamed on-the-

go using mobile computing

• It's easy to access a wide variety of movies, educational

and informative material

• With the improvement and availability of high speed data

connections at considerable cost, one is able to get all the

entertainment they want as they browse the internet for

streamed data

• One is able to watch news, movies, and documentaries

among other entertainment offers over the internet

• This was not possible before mobile computing dawned on

the computing world.

• Streamlining of Business Processes

• Business processes are now easily available through

secured connections

• Looking into security issues, adequate measures have been

put in place to ensure authentication and authorization of

the user accessing the services

• Some business functions can be run over secure links and

sharing of information between business partners can also

take place

CIT 421 NET-CENTRIC COMPUTING

16

• Meetings, seminars and other informative services can be

conducted using video and voice conferencing

• Travel time and expenditure is also considerably reduced

3.7 Security Issues

• Mobile computing has its fair share of security concerns as any

other technology

• Due to its nomadic nature, it's not easy to monitor the proper

usage

• Users might have different intentions on how to utilize this

privilege

• Improper and unethical practices such as hacking, industrial

espionage, pirating, online fraud and malicious destruction are

some but few of the problems experienced by mobile computing

• Another big problem plaguing mobile computing is credential

verification

• As other users share username and passwords, it poses as a major

threat to security

• This being a very sensitive issue, most companies are very

reluctant to implement mobile computing to the dangers of

misrepresentation

• The problem of identity theft is very difficult to contain or

eradicate

• Issues with unauthorized access to data and information by

hackers, is also an enormous problem

• Outsiders gain access to steal vital data from companies, which is

a major hindrance in rolling out mobile computing services.

• No company wants to lay open their secrets to hackers and other

intruders, who will in turn sell the valuable information to their

competitors

• It's also important to take the necessary precautions to minimize

these threats from taking place

• Some of those measures include:

• Hiring qualified personnel.

• Installing security hardware and software

• Educating the users on proper mobile computing ethics

CIT 421 MODULE 1

17

• Auditing and developing sound, effective policies to govern

mobile computing

• Enforcing proper access rights and permissions

• In the absence of such measures, it's possible for exploits and

other unknown threats to infiltrate and cause irrefutable harm

• These may be in terms of reputation or financial penalties

• In such cases, it's very easy to be misused in different unethical

practices.

• If these factors aren’t properly worked on, it might be an avenue

for constant threat

• Various threats still exist in implementing this kind of technology

3.8 Current Trends

• These are the list of the current mobile technologies starting from

5G technologies which is the hottest mobile technology available

in the market.

3.8.1. 5G

• In telecommunications, 5G is the fifth generation technology

standard for broadband cellular networks. Telecoms company

began to deploy it in 2019, and is the planned successor to

the 4G networks providing connectivity to most

current cellphones. 5G networks are predicted to have more than

1.7 billion subscribers worldwide by 2025. 5G networks cellular

networks’ service area is divided into small geographical areas

called cells. All 5G wireless devices in a cell are connected to

the Internet and telephone network by radio waves through a

local antenna in the cell. It has an advantage of having

greater bandwidth and download speeds up to 10 gigabits per

second (Gbit/s). 5G is not only faster than existing networks, 5G

can connect more different devices. Due to the increased

bandwidth, the networks will increasingly be used as

general internet service providers (ISPs) for laptops and desktop

computers, competing with existing ISPs such as cable internet,

and also will make possible new applications in internet-of-

things (IoT) and machine-to-machine areas

3.8.2 4G

• 4G is the fourth generation of broadband cellular

network technology that precedes 5G. A 4G system must provide

capabilities defined by ITU in IMT Advanced. Recent

applications include amended mobile web access, IP telephony,

https://en.wikipedia.org/wiki/Telecommunications
https://en.wikipedia.org/wiki/Technical_standard
https://en.wikipedia.org/wiki/Technical_standard
https://en.wikipedia.org/wiki/Broadband
https://en.wikipedia.org/wiki/Cellular_network
https://en.wikipedia.org/wiki/4G
https://en.wikipedia.org/wiki/Cellphone
https://en.wikipedia.org/wiki/Cellular_network
https://en.wikipedia.org/wiki/Cellular_network
https://en.wikipedia.org/wiki/Internet
https://en.wikipedia.org/wiki/Telephone_network
https://en.wikipedia.org/wiki/Radio_wave
https://en.wikipedia.org/wiki/Antenna_(radio)
https://en.wikipedia.org/wiki/Bandwidth_(signal_processing)
https://en.wikipedia.org/wiki/Download_speed
https://en.wikipedia.org/wiki/Gigabits_per_second
https://en.wikipedia.org/wiki/Gigabits_per_second
https://en.wikipedia.org/wiki/Internet_service_provider
https://en.wikipedia.org/wiki/Cable_internet
https://en.wikipedia.org/wiki/Internet_of_things
https://en.wikipedia.org/wiki/Internet_of_things
https://en.wikipedia.org/wiki/Machine_to_machine
https://en.wikipedia.org/wiki/Broadband
https://en.wikipedia.org/wiki/Cellular_network
https://en.wikipedia.org/wiki/Cellular_network
https://en.wikipedia.org/wiki/5G
https://en.wikipedia.org/wiki/ITU
https://en.wikipedia.org/wiki/IMT_Advanced
https://en.wikipedia.org/wiki/Mobile_web
https://en.wikipedia.org/wiki/IP_telephony

CIT 421 NET-CENTRIC COMPUTING

18

gaming services, high-definition mobile TV, video conferencing,

and 3D television.

• WIMAX standard was first-released commercially and deployed

in South Korea in 2006 and has since been deployed in most parts

of the world.

• Long Term Evolution (LTE) standard was first-released

commercially and deployed in Oslo, Norway, and Stockholm,

Sweden in 2009, and has since been deployed throughout most

parts of the world. It was to be considered as 4G LTE. The 4G

wireless cellular standard was defined by the International

Telecommunication Union (ITU) and specifies the key

characteristics of the standard, including transmission technology

and data speeds.

3.8.3. 3G or third generation

• 3G mobile telecommunications is a generation of standards for

mobile phones and mobile telecommunication services fulfilling

the International Mobile Telecommunications-2000 (IMT-2000)

specifications by the International Telecommunication Union.

Application services include wide-area wireless voice telephone,

mobile Internet access, video calls and mobile TV, all in a mobile

environment.

3.8.4. Global Positioning System (GPS)

• The Global Positioning System (GPS) is a space-based satellite

navigation system that provides location and time information in

all weather, anywhere on or near the Earth, where there is an

unobstructed line of sight to four or more GPS satellites

• The GPS program empowers the military, civil and commercial

users around the world

• It (GPS) is the backbone for modernizing the global air traffic

system, weather, and location services.

3.8.5. Long Term Evolution (LTE)

• LTE is a standard for wireless communication of high-speed data

for mobile phones and data terminals

• It is based on the GSM/EDGE and UMTS/HSPA network

technologies, increasing the capacity and speed using new

modulation techniques

• It is related with the implementation of fourth Generation (4G)

technology

https://en.wikipedia.org/wiki/HDTV
https://en.wikipedia.org/wiki/Mobile_TV
https://en.wikipedia.org/wiki/Video_conferencing
https://en.wikipedia.org/wiki/3D_television
https://en.wikipedia.org/wiki/WIMAX
https://en.wikipedia.org/wiki/LTE_(telecommunication)
https://en.wikipedia.org/wiki/Oslo,_Norway
https://en.wikipedia.org/wiki/Stockholm,_Sweden
https://en.wikipedia.org/wiki/Stockholm,_Sweden

CIT 421 MODULE 1

19

3.8.6. WiMAX

• WiMAX (Worldwide Interoperability for Microwave Access) is a

wireless communications standard designed to provide 30 to 40

megabit-per-second data rates, with the latest update providing

up to 1 Gbit/s for fixed stations

• It is a part of a fourth generation or 4G wireless-communication

technology

• WiMAX far surpasses the 30-metre wireless range of a

conventional Wi-Fi Local Area Network (LAN), offering a

metropolitan area network with a signal radius of about 50 km

• WiMAX offers data transfer rates that can be superior to

conventional cable-modem and DSL connections, however, the

bandwidth must be shared among multiple users and thus yields

lower speed in practice

3.8.7. Near Field Communication

• Near Field Communication (NFC) is a set of standards for

smartphones and similar devices to establish radio

communication with each other by touching them together or

bringing them into close proximity, usually no more than a few

centimeters

• Present and anticipated applications include contactless

transactions, data exchange, and simplified setup of more

complex communications such as Wi-Fi. Communication is also

possible between an NFC device and an unpowered NFC chip,

called a "tag"

3.9 Conclusion

• Today's computing has rapidly grown from being confined to a

single location

• With mobile computing, people can work from the comfort of

any location they wish to as long as the connection and the

security concerns are properly factored

• In the same light, the presence of high-speed connections has also

promoted the use of mobile computing

• Being an ever growing and emerging technology, mobile

computing will continue to be a core service in computing, and

Information and Communications Technology

Discussion

Why is the Mobile Software important in Mobile and Cloud Computing?

CIT 421 NET-CENTRIC COMPUTING

20

4.0 Self-Assessment Exercise

1. Define Mobile Computing.

Answer

Mobile computing is a human–computer interaction in which

a computer could be in motion during normal usage.

2. Explain Near Field Communication as one of the current trends in

Mobile Computing

Answer

• Near Field Communication

• Near Field Communication (NFC) is a set of standards for

smartphones and similar devices to establish radio

communication with each other by touching them together or

bringing them into close proximity, usually no more than a few

centimeters

• Present and anticipated applications include contactless

transactions, data exchange, and simplified setup of more

complex communications such as Wi-Fi. Communication is also

possible between an NFC device and an unpowered NFC chip,

called a "tag"

5.0 CONCLUSION

Mobile and Wireless Computing has come to stay in every of our life

endeavors ranging from homes, commerce, education as well as finance.

I doubt if we can recover from it.

6.0 SUMMARY

Mobile and wireless Computing is a technology that allows transmission

of data, voice and video via a computer or any other wireless enabled

device without having to be connected to a fixed physical link. Being an

ever growing and emerging technology, mobile computing will continue

to be a core service in computing, and Information and Communications

Technology. Mobile classification are usually classified into personal

digital assistant (PDA), smartphones and tablet PC and iPads. The

advantages of mobile computing are location flexibility, time savings,

enhanced productivity, ease of research, entertainment and streamlining

of business processes. Mobile computing has its fair share of security

concerns as any other technology. Current Trends in mobile technology

include 5G, 4G, 3G or third generation, Global Positioning System (GPS),

Long Term Evolution (LTE), WiMAX and Near Field Communication.

CIT 421 MODULE 1

21

7.0 REFERENCES/FURTHER READING

file:///C:/Tech-U%20Issues/CSC%20412-

%20Netcetric%20Computing/CSC%20412-

Content/MOBILE%20AND%20WIRELESS%20COMPUTING.

pdf

https://www.geeksforgeeks.org/wireless-mobile-computing-

technologies/

file:///C:/Tech-U%20Issues/CSC%20412-%20Netcetric%20Computing/CSC%20412-Content/MOBILE%20AND%20WIRELESS%20COMPUTING.pdf
file:///C:/Tech-U%20Issues/CSC%20412-%20Netcetric%20Computing/CSC%20412-Content/MOBILE%20AND%20WIRELESS%20COMPUTING.pdf
file:///C:/Tech-U%20Issues/CSC%20412-%20Netcetric%20Computing/CSC%20412-Content/MOBILE%20AND%20WIRELESS%20COMPUTING.pdf
file:///C:/Tech-U%20Issues/CSC%20412-%20Netcetric%20Computing/CSC%20412-Content/MOBILE%20AND%20WIRELESS%20COMPUTING.pdf
https://www.geeksforgeeks.org/wireless-mobile-computing-technologies/
https://www.geeksforgeeks.org/wireless-mobile-computing-technologies/

CIT 421 NET-CENTRIC COMPUTING

22

UNIT 3 NETWORK SECURITY

CONTENTS

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Fundamentals of Network Security

3.1 Network Security

3.2 Data as the Life-Blood of Business

3.3 Three Keys Focuses of Network Security

3.4 Benefits of Network Security

3.5 Network Security Tools and Techniques

4.0 Self-Assessment Exercises

5.0 Conclusion

6.0 Summary

7.0 References/Further Reading

1.0 INTRODUCTION

The transmission of data from one point A on the network to the other

point, B is a great concern and therefore, there is the need to deploy

measure that can secure the transmission of data away from unauthorized

individuals. Hence, the need for network security.

2.0 INTENDED LEARNING OUTCOMES (ILOS)

At the end of this unit, students will be able to:

 Explain the concept of network

 Understand the importance of network security

 Identify and explain the network security tools and techniques.

3.0 Main Content

3.1 Network Security

Network security is a term that describes the security tools, tactics and

security policies designed to monitor, prevent and respond to unauthorized

network intrusion, while also protecting digital assets, including network

traffic. Network security includes hardware and software technologies

(including resources such as savvy security analysts, hunters, and incident

responders) and is designed to respond to the full range of potential threats

targeting your network.

Network security is the defense you use to protect yourself against ever-

increasing cybercrime.

CIT 421 MODULE 1

23

3.3 The Three Key Focuses of Network Security

There are three key focuses that should serve as a foundation of any network

security strategy: protection, detection and response.

 Protection entails any tools or policies designed to prevent network

security intrusion.

 Detection refers to the resources that allow you to analyze network

traffic and quickly identify problems before they can do harm.

 Response is the ability to react to identified network security threats

and resolve them as quickly as possible.

3.4 Benefits of Network Security

Network security tools and devices enable organizations to protect its

sensitive information, overall performance, reputation and its continuity in

business. Secure and reliable networks protect not just organizational

interests and operations, but also any client or customer who exchanges

information with the organization, in addition to the general public. The

benefits of network security are:

1. Builds trust

Security for large systems translates to security for everyone. Network

security boosts client and consumer confidence, and it protects your

business from the reputational and legal fallout of a security breach.

2. Mitigates risk

The right network security solution will help your business stay compliant

with business and government regulations, and it will minimize the

business and financial impact of a breach if it does occur.

3. Protects proprietary information

Your clients and customers rely on you to protect their sensitive

information. Your business relies on that same protection, too. Network

security ensures the protection of information and data shared across the

network.

4. Enables a more modern workplace

From allowing employees to work securely from any location using VPN

to encouraging collaboration with secure network access, network

security provides options to enable the future of work. Effective network

security also provides many levels of security to scale with your growing

business.

CIT 421 NET-CENTRIC COMPUTING

24

3.5 Network Security Tools and Techniques

Enterprises’ network encounter varying degrees of threats, and therefore

should be prepared to defend, identify and respond to a full range of attacks.

However, the reality is that the biggest danger to most companies are not fly-

by-night threat actors, but the attackers that are well-funded and are targeting

specific organizations for specific reasons. Hence, network security strategy

needs to be able to address the various methods these actors might employ.

Here are 14 different network security tools and techniques designed to help

you do just that:

1. Access control: If threat actors cannot access your network, the

amount of damage they will be able to do will be extremely limited.

But in addition to preventing unauthorized access, be aware that

even authorized users can be potential threats. Access control allows

you to increase your network security by limiting user access and

resources to only the parts of the network that directly apply to

individual users’ responsibilities.

2. Anti-malware software: Malware, in the form of viruses, trojans,

worms, keyloggers, spyware, etc. are designed to spread through

computer systems and infect networks. Anti-malware tools are a kind

of network security software designed to identify dangerous programs

and prevent them from spreading. Anti-malware and antivirus

software may also be able to help resolve malware infections,

minimizing the damage to the network.

3. Anomaly detection: It can be difficult to identify anomalies in your

network without a baseline understanding of how that

network should be operating. Network anomaly detection engines

(ADE) allow you to analyze your network, so that when breaches

occur, you will be alerted to them quickly enough to be able to

respond.

4. Application security: For many attackers, applications are a

defensive vulnerability that can be exploited. Application security

helps establish security parameters for any applications that may be

relevant to your network security.

5. Data Loss Prevention (DLP): Often, the weakest link in network

security is the human element. DLP technologies and policies help

protect staff and other users from misusing and possibly

compromising sensitive data or allowing said data out of the network.

6. Email security: As with DLP, email security is focused on shoring

up human-related security weaknesses. Via phishing strategies

(which are often very complex and convincing), attackers persuade

email recipients to share sensitive information via desktop or mobile

device, or inadvertently download malware into the targeted

network. Email security helps identify dangerous emails and can also

be used to block attacks and prevent the sharing of vital data.

CIT 421 MODULE 1

25

7. Endpoint security: The business world is becoming

increasingly, “bring your own device” (BYOD), to the point where

the distinction between personal and business computer devices is

almost non-existent. Unfortunately, sometimes the personal devices

become targets when users rely on them to access business networks.

Endpoint security adds a layer of defense between remote devices and

business networks.

8. Firewalls: Firewalls function much like gates that can be used to

secure the borders between your network and the internet. Firewalls

are used to manage network traffic, allowing authorized traffic

through while blocking access to non-authorized traffic.

9. Intrusion prevention systems: Intrusion prevention systems (also

called intrusion detection) constantly scan and analyze network

traffic/packets, so that different types of attacks can be identified and

responded to quickly. These systems often keep a database of known

attack methods, so as to be able to recognize threats immediately.

10. Network segmentation: There are many kinds of network traffic,

each associated with different security risks. Network segmentation

allows you to grant the right access to the right traffic, while restricting

traffic from suspicious sources.

11. Security information and event management (SIEM): Sometimes

simply pulling together the right information from so many different

tools and resources can be prohibitively difficult — particularly when

time is an issue. SIEM tools and software give responders the data

they need to act quickly.

12. Virtual private network (VPN): VPN tools are used to authenticate

communication between secure networks and an endpoint device.

Remote-access VPNs generally use IPsec or Secure Sockets Layer

(SSL) for authentication, creating an encrypted line to block other

parties from eavesdropping.

13. Web security: Including tools, hardware, policies and more, web

security is a blanket term to describe the network security measures

businesses take to ensure safe web use when connected to an internal

network. This helps prevent web-based threats from using browsers

as access points to get into the network.

14. Wireless security: Generally speaking, wireless networks are less

secure than traditional networks. Thus, strict wireless security

measures are necessary to ensure that threat actors are not gaining

access.

Discussion

What tools can be used to secure the network? Discuss

CIT 421 NET-CENTRIC COMPUTING

26

4.0 Self-Assessment/Exercise

1. Identify and explain the benefits of network security?

Answer:

The benefits of network security are the following:

1. Builds trust

Security for large systems translates to security for everyone. Network

security boosts client and consumer confidence, and it protects your

business from the reputational and legal fallout of a security breach.

2. Mitigates risk

The right network security solution will help your business stay compliant

with business and government regulations, and it will minimize the

business and financial impact of a breach if it does occur.

3. Protects proprietary information

Your clients and customers rely on you to protect their sensitive

information. Your business relies on that same protection, too. Network

security ensures the protection of information and data shared across the

network.

4. Enables a more modern workplace

From allowing employees to work securely from any location using VPN

to encouraging collaboration with secure network access, network

security provides options to enable the future of work. Effective network

security also provides many levels of security to scale with your growing

business.

5.0 CONCLUSION

Network security tools and devices exist to help your organization protect not

only its sensitive information, but also its overall performance, reputation and

even its ability to stay in business.

6.0 SUMMARY

Three key focuses that should serve as a foundation of any network security

strategy are protection, detection and response Protection entails any tools or

policies designed to prevent network security intrusion. Detection refers to

the resources that allow you to analyze network traffic and quickly identify

problems before they can do harm. Response is the ability to react to

identified network security threats and resolve them as quickly as possible.

The network security tools and techniques are access control, anti-malware,

anomaly detection, application security, data loss prevention (DLP), endpoint

security, firewalls and email security. Others are intrusion prevention

CIT 421 MODULE 1

27

systems, network segmentation, Security information and event management

(SIEM), virtual private network (VPN), web security and wireless security.

7.0 REFERENCES/FURTHER READING

Application Intelligence |Application Visibility | Gigamon

https://www.gigamon.com/products/optimize-traffic/application-intelligence.html?utm_medium=ppc&utm_source=googleads&utm_campaign=ApplicationIntelligence&utm_term=%2Bapplication%20%2Bintelligence&b&gclid=EAIaIQobChMIu5j0lbfk4gIVltlkCh0Oegd4EAAYASAAEgL5d_D_BwE

CIT 421 NET-CENTRIC COMPUTING

28

UNIT 4 CLIENT-SERVER COMPUTING

CONTENTS

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Fundamentals of Client Server Computing

3.1 Client Server Computing

3.2 Characteristics of Client Server Computing

3.3 Difference Between Client Server and Peer-to-Peer

Computing

3.4 Advantages of Client Server Computing

3.5 Disadvantages of Client Server Computing

4.0 Self-Assessment Exercises

5.0 Conclusion

6.0 Summary

7.0 References/Further Reading

1.0 INTRODUCTION

There are two configurations of networks: Client-Server and Peer-to-Peer

networks. In client server, the client requests resources while the server

serves same. In Peer-to-peer configuration, each node is free to

communicate with others or not. The nodes under this configuration are

not over-seen by any node or the other, they relate in a workgroup.

2.0 INTENDED LEARNING OUTCOMES (ILOS)

At the end of this unit, students will able to:

 Explain the concept of Client Server category of networks.

 Describe a client

 Identify the differences between the Client-Server and the Peer-to-

peer configuration of networks

3.0 MAIN CONTENT

3.1 Client Server Computing

In client-server computing, the client requests a resource and the server

provides that resource. A server may serve multiple clients at the same

time while a client is in contact with only one server. Both the client and

server usually communicate via a computer network, as pictured in figure

1.4.1, but sometimes they may reside in the same system.

CIT 421 MODULE 1

29

Figure 1.4.1: Client-Server Computing

3.2 Characteristics of Client Server Computing

The salient points for client server computing are as follows:

 The client server computing works with a system of request and

response. The client sends a request to the server and the server

responds with the desired information.

 The client and server should follow a common communication

protocol so they can easily interact with each other. All the

communication protocols are available at the application layer.

 A server can only accommodate a limited number of client

requests at a time. So it uses a system based to priority to respond

to the requests.

 Denial of Service (DoS) attacks hinders servers’ ability to respond

to authentic client requests by inundating it with false requests.

 An example of a client server computing system is a web server. It

returns the web pages to the clients that requested them.

3.3 Differences between Client-Server and Peer-to-Peer

Computing

The major differences between client-server computing and peer-to-peer

computing are as follows:

 In client server computing, a server is a central node that services

many client nodes. On the other hand, in a peer-to-peer system, the

nodes collectively use their resources and communicate with each

other.

CIT 421 NET-CENTRIC COMPUTING

30

 In client server computing, the server is the one that communicates

with the other nodes. In peer-to-peer computing, all the nodes are

equal and share data with each other directly.

 Client-Server computing is believed to be a sub-category of the

peer-to-peer computing.

3.4 Advantages of Client-Server Computing

 All the required data is concentrated in a single place i.e.

the server. So it is easy to protect the data and provide

authorisation and authentication.

 The server need not be located physically close to the

clients yet, the data can be accessed efficiently.

 It is easy to replace, upgrade or relocate the nodes in the

client-server model because all the nodes are independent

and request data only from the server.

 All the nodes i.e clients and server may not be built on

similar platforms yet, they can easily facilitate the transfer

of data.

3.5 Disadvantages of Client Server Computing

 If all the clients simultaneously request data from the server, it may

get overloaded. This may lead to congestion in the network.

 If the server fails for any reason, then none of the requests of the

clients can be fulfilled. This leads to failure of the client-server

network.

 The cost of setting and maintaining a client-server model are quite

high.

Discussion

What makes the Client Server configuration peculiar from the Peer-to-

peer? Discuss

4.0 SELF-ASSESSMENT/EXERCISE

1. Discuss the advantages of client Server computing

Answer:

Advantages of Client-Server Computing

 All the required data is concentrated in a single place i.e. the server.

So it is easy to protect the data and provide authorisation and

authentication.

 The server need not be located physically close to the clients yet,

the data can be accessed efficiently.

CIT 421 MODULE 1

31

 It is easy to replace, upgrade or relocate the nodes in the client-

server model because all the nodes are independent and request

data only from the server.

 All the nodes i.e clients and server may not be built on similar

platforms yet, they can easily facilitate the transfer of data.

2. Identify the characteristics of client server computing?

Answer:

Characteristics of Client Server Computing

The characteristics of the client-server computing are as follows:

 The client server computing works with a system of request and

response. The client sends a request to the server and the server

responds with the desired information.

 The client and server should follow a common communication

protocol so they can easily interact with each other. All the

communication protocols are available at the application layer.

 A server can only accommodate a limited number of client

requests at a time. So it uses a system based to priority to respond

to the requests.

 Denial of Service (DoS) attacks hinders servers’ ability to respond

to authentic client requests by inundating it with false requests.

 An example of a client server computing system is a web server. It

returns the web pages to the clients that requested them.

5.0 CONCLUSION

Client server and peer-to-peer computing are unique one from the other

and so, have their merits and demerits. The choice of either is dependent

on the intention of creating your network.

6.0 SUMMARY

In client server computing the server is the one that communicates with

the other nodes. In peer to peer to computing, all the nodes are equal and

share data with each other directly. A server can only accommodate a

limited number of client requests at a time. So it uses a system based to

priority to respond to the requests. The characteristics of the client-server

computing are as follows: the client server computing works with a

system of request and response, client and server should follow a common

communication protocol so they can easily interact with each other, a

server can only accommodate a limited number of client requests at a time

and that Denial of Service (DoS) attacks hinders servers’ ability to

respond to authentic client requests by inundating it with false requests.

CIT 421 NET-CENTRIC COMPUTING

32

7.0 REFERENCES/FURTHER READING

Andrew S., T., & David J., W. (2011). COMPUTER NETWORKS (M.

Horton, H. Michael, D. Tracy, & H. Melinda (eds.); fifth). Pearson

Education.

Joseph, M. K. (2007). Computer Network Security and Cyber Ethics

(review). In portal: Libraries and the Academy (fourth, Vol. 7, Issue

2). McFarland & Company, Inc.

https://doi.org/10.1353/pla.2007.0017

Pande, J. (2017). Introduction to Cyber Security (FCS). http://uou.ac.in

Stewart, J. M., Tittel, E., & Chapple, M. (2011). CISSP: Certified

Information Systems Security Professional Study Guide. Wiley.

CIT 421 MODULE 1

33

UNIT 5 BUILDING WEB APPLICATIONS

CONTENTS

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Fundamentals Building a Web Applications

3.1 Building a Web Application

3.1.1 A Web app

3.2 Prerequisites for Building a Web Application

3.3 Steps to Building a Web Application

 3.3.1 Source an Idea

 3.3.2 Do Market Research

3.3.3 Define your Web App Functionality

3.3.4 Sketch Your Web Application

3.3.5 Plan Your Web App Workflow

3.3.6 Wire-framing/ Prototyping Your Web Application

3.3.7 Seek Early Validation

3.3.8 Before Starting the Development Stage

3.3.9 Architect and Build Your Database

3.3.10 Build the Front End

3.3.11 Build Your Back-End

3.3.12 Host Your Web Application

3.3.13 Deploy Your Web Application

4.0 Self-Assessment Exercises

5.0 Conclusion

6.0 Summary

7.0 References/Further Reading

1.0 INTRODUCTION

A Web app

An interactive computer program, built with web technologies (HTML,

CSS, JS), which stores (Database, Files) and manipulates data (CRUD),

and is used by a team or single user to perform tasks over the internet.

The HTML and the CSS serves as the front-end to receive data from the

user while the database, programming like Javascript and PHP serves as

the back-end.

2.0 INTENDED LEARNING OUTCOMES (ILOS)

At the end of this unit, students will able to:

 Explain the concept of an App

 Enumerate the prerequisite for building a web application

 Describe the steps for building a web application

CIT 421 NET-CENTRIC COMPUTING

34

3.0 MAIN CONTENT

3.1 Building a Web Application (app)-Prerequisites for

Building a Web Application

To make a data-centric web app from the bottom-up, it is advantageous

to understand:

 Backend language (e.g. Python, Ruby) - control how your web

app works

 Web front end (HTML, CSS, Javascript) - for the look and feel of

your web app

 DevOps (Github, Jenkins) - Deploying / hosting your web app

If you do not have any experience with the points above, you need not

worry. You have two options:

1. Learn the points above - there are lots of resources online to help

you. Codecademy is recommend .

2. Use a web app builder like Budibase - As a builder, Budibase will

remove the need to learn a backend language. On top of that,

Budibase will also take care of a lot of your DevOps tasks such as

hosting.

3.2 Building a Web Application

3.2.1 Step 1 – Source an idea

Before making a web app, you must first understand what you intend to

build and more importantly, the reason for it.

Your idea should stem from solving someone’s problem. Ideally, your

own problem.

It is important that developer choose an idea which interests him /her. Ask

yourself:

 How much time do I have to build this app?

 What am I interested in?

 What apps do I enjoy using?

 What do I like about these apps?

 How much time/money will this app save or generate for me (as a

user)?

 How much will it improve my life

3.2.2 Step 2 – Market Research

Once you have chosen your idea(s), it is important to research the market

to see:

1. If a similar product exists

CIT 421 MODULE 1

35

2. If a market exists

The number 1 reason start-ups fail, is the failure to achieve product-

market fit. “Product/market fit means being in a good market with a

product that can satisfy that market.” To quickly find out if a similar web

app exists, use the following tools to search for your idea:

 Google

 Patent and trademark search

 Betalist

 Product hunt

If a similar product exists, do not worry. This can be a sign a market for

your new idea exists. Your future competitors have laid the groundwork,

educated the market. It is time for you to swoop in and steal the thunder.

If a similar product does not exist, it is a possibility you have struck lucky.

On the other hand, it is a possibility someone before has ventured down

this path and hit a dead-end.

Nobody wants to experience that, so it is important to dive deep into the

market and source the wisdom of:

1. Your Web App’s target market - Share your web app idea on

forums related to your target market. If you know anyone who

works within your target market, explain your idea to them. The

more you talk and receive validation from your target market, the

better.

2. Google Trends - A quick search of your web app idea will reveal

relating trends.

3. SEO tool – MOZ/Ahrefs is recommended. Google’s keyword

planner will suffice. Write a list of keywords relating to your web

app. If it is an ‘OKR tool’, use the tools to search ‘OKR tool’,

‘OKR app’, and ‘objectives and key results software’. If the SEO

tool indicates there are lots of people searching for your keyword

terms, this is a small indicator you have a target market.

4. Social Media - Jump over to Twitter/Facebook groups and present

your idea to your target market.

5. Events - If there is a local event in your area attracting people from

your target market, go to it. Share your idea and record the

feedback.

After completing the above steps, you should have enough information to

understand if there is a market for your product. If there is a market for

your product, and there is also established competition, it is important to

research them.

https://www.google.com/
https://www.uspto.gov/trademarks-application-process/search-trademark-database
https://betalist.com/
https://www.uspto.gov/trademarks-application-process/search-trademark-database

CIT 421 NET-CENTRIC COMPUTING

36

3.2.3 Step 3 - Define your web apps functionality

You have got your idea, you have validated the market, it is now time to

list everything you want your app to do. A common mistake here is to get

carried away. The more functionality you add, the longer it will take to

build your web app. Quite often, the longer a web app takes to build, the

more frustration you will experience.

Only define functionality which solves your target markets problems.

Remember, your web app is a work in progress and the first goal is version

1. It will still have cool features and delight your users, but you must keep

things simple.

For direction, I have included a list of basic functions required for a

simple CRM app.

 Users can create an account

 Users can retrieve lost passwords

 Users can change their passwords

 Users can create new contacts

 Users can upload new contacts

 Users can assign a value to contacts

 Users can write notes under contacts

 Users can label a contact as a lead, customer, or associate

 Users can filter contacts by lead, customer, or associate

 Users can view the total value of leads, customers and associates

The above list will help you define your features. Once you are done, roll

up your sleeves. It is time to get creative! Moving from the Ideation

stage, to design stage.

3.2.4 Step 4 - Sketch your web app

There are multiple stages of designing a web app. The first stage is

sketching using a notebook (with no lines) and pen/pencil. After step 1, 2

and 3, you should have an idea of what your web app is, who your users

are, and the features it will have. Sketch out the wireframe of your web

apps UI (User Interface) - it does not have to be exact - this is just a sketch.

When sketching, consider the following:

 Navigation

 Branding

 Forms

 Buttons

 Any other interactive elements

Sketch different versions of your web app. Consider how your web app’s

functionality will affect the overall design. Annotate your sketch and

CIT 421 MODULE 1

37

outline how your app should work. Taking notes will help you clarify and

understand why you have designed certain elements at a later stage.

Overcomplicating the design at this stage will only lead to frustration.

3.2.5 Step 5 – Plan your web apps workflow

It is time to put yourself in the shoes of your user. Here, we are going to

plan your web apps workflow. Now is the time to go back to step 2 and

look at your market research. Take your list of competitors and sign up to

their free trials. Have a quick play around with their product. Write notes

on what you thought was good and what you thought was bad. Pay

particular attention to the workflow.

After you have finished analysing your competitor’s web apps, it is time

to write down different workflows for your app. Consider the following

points:

 How does a user signup

 Do they receive a verification email

 How does a user log in

 How does a user change their password

 How does a user navigate through the app

 How does a user change their user settings

 How does a user pay for the app

 How does a user cancel their subscription

All of a sudden our one-page web app turns into a 10-page web app. Write

a list of all the different pages your web application will have. Consider

the different states of pages. For example, the homepage will have two

states; logged in and logged out. Logged in users will see a different page

than logged out users.

3.2.6 Step 6 – Wireframing / Prototyping Your Web Application

Ok, it is time to turn those sketches and that new-found understanding of

your web application into a wireframe/prototype.

Wireframing is the process of designing a blueprint of your web

application while Prototyping is taking wireframing a step further, adding

an interactive display.

The decision to wireframe or prototype is up to you. If you have the time,

I would have recommended prototyping as it will make it easier to

communicate your web app when seeking validation.

You can prototype/wireframe using the following tools:

 Sketch (macOS)

 InVision Studio (macOs)

 Adobe XD (macOS, Windows)

https://www.sketch.com/
https://www.invisionapp.com/studio
https://www.adobe.com/products/xd.html

CIT 421 NET-CENTRIC COMPUTING

38

 Figma (Web, macOS, Windows, Linux)

 Balsamiq (macOS, Windows, Web)

I recommend you create a design system / style guide first. You can find

inspiration at UXPin. Design systems improve design consistency. But

it’s not required.

3.2.7 Step 7 – Seek early validation

You have now got a beautiful wireframe/prototype which visually

describes your web app. It is time to show your beautiful wireframe to the

world. At this stage we want constructive feedback.

Simply asking your friends would they use your new web app is not

enough. You should start with a small number of representative users. Go

to your target market’s forums, watering holes, their places of work and

verify the problem with them, and present your solution. Try to build a

rapport with these representatives as they could become your customers.

I like to use this stage to test my sales pitch - the ultimate tokens of

validation are pre-launch sales. Takes notes and document all feedback.

The learning from these meetings will help direct the development of your

MEP (Minimal Excellent Product).

Ok, now you have got great feedback and product validation. It is time to

start building your web app.

3.2.8 Before Starting the development stage.

Before we make our web app, I would like to share the following tips:

1. Attempt to get a small section of your app fully working. What we

would call a “Complete Vertical”.

o Building the smallest possible section will allow you to

piece all the bits together, and iron out those creases early.

o You will get great satisfaction early by having something

working - great motivation.

o Create things that you know you will throw away later - if

it gets you something working now.

2. At the start - expect things to change a lot as you learn and discover

what you have not thought about.

o Have faith that your app will stabilise.

o Do not be afraid to make big changes.

3. Spend time learning your tools.

o You may feel like you are wasting your time, reading, or

experimenting with “hello world”. Learning the correct way

to do things will have a huge positive, cumulative effect on

your productivity over time.

https://www.figma.com/
https://balsamiq.com/

CIT 421 MODULE 1

39

o Where possible, “Go with the grain” of your tools. Realise

that as soon as you step out of the normal flow / usage of

your toolset, you are on your own and could be in a deep

time sink. There are always exceptions to this of course!

4. Do not avoid issues that need to be fixed.

o Face your issues head on - they will never go away and

will only grow in stature.

o However, If things are still likely to change - its best to

spend as little time as possible on things… It’s a tricky

balance!

3.2.9 Step 8 – Architect and build your database

So, we know roughly our web application’s functionality, what it looks

like, and the pages required. Now it is time to determine what information

we will store in our database.

A Database

A database is simply a collection of data! Data can be stored to disk, or in

memory on a server, or both. You could create a folder on your hard drive,

store a few documents, and call it a database. A Database Management

System (DBMS) is a system that provides you with consistent APIs to

(most commonly):

 Create databases, update and delete databases

 Read and write data to databases

 Secure access to a database by providing levelled access to

different areas and functions

What data you need to store and what your users need to do, will

determine the type of database required to run your web app.

Database Types

There are many types of database for many different purposes. A web app

will most commonly use one of the following:

a. SQL

You should use a SQL database if your data is very relational. Your data

is relational if you have multiple, well defined record types that have

relationships between them. For example, a “Customer” may have many

“Invoices” stored against their record. Typically, you would create a

Customer table and an Invoice table - which could be linked together by

“Foreign Key” columns. E.g. Customer.Id = Invoice.CustomerId.

SQL databases have an extremely powerful query language that allows

you to present your data in all sorts of useful ways. They have been around

CIT 421 NET-CENTRIC COMPUTING

40

for decades, are very well understood, and usually a safe choice. MySQL,

Postgresql, Microsoft SQLServer are some of the most common - along

with many more modern offerings.

The downside of SQL databases is that you must declare all your tables

and columns up front. There can be a lot of overhead to manage. If you

have never used one before – you are in for a pretty steep learning curve.

However, there are plenty of learning resources available, and it is always

a great skill to have.

b. Document Database

You should use a document database if your data is not very relational.

Document databases store “documents”. Each record in your database is

simply a big blob of structured data - often in JSON format. If you need

to store relationships between your records, you will have to write code

to manage this yourself. However, many other aspects of using document

databases are much simpler. Your database can be “schemaless” -

meaning that you do not have to declare your records’ definitions up front.

Generally speaking, the bar to entry to a document database is much

lower. They also tend to be much more scalable than SQL databases. They

usually offer some querying capabilities, although sometimes not as

powerful as SQL. Examples of document databases are: MongoDb,

CouchDb, Firebase (serverless), Dynamo Db (AWS).

Decide how to segregate your data

Each of your clients has their own, private dataset. One of the worst things

that can happen to your app is for one client’s data to be seen by another

client.

Even if there is only a small amount of non-sensitive leaked data, and no

damage is done, an event like this will massively erode trust in the

security of your app. You must architect a solid strategy for segregating

your clients’ data to make sure that this never happens. Broadly speaking,

you have two options - Physical Separation and Logical Separation.

Physical separation

Every one of your clients has a separate database (although could share a

database server with others). This makes it much more difficult to make

a mistake that leads to data leakage.

Pros:

 Most secure

 More scalable

Cons:

 Managing, maintaining and upgrading is more complex

 Query all your clients’ data together is more difficult

CIT 421 MODULE 1

41

For example, listing all Invoices in a database will only return Invoices

for one of your clients. In order to get another Client’s invoices, you need

to connect to another database.

Since each of your client’s data is in its own database, you can easily

spread them all across many database servers, without the need for

“sharding”. Your app will be much easier to scale this way.

The code you will need to write:

 When creating a new client, you need to create a new database and

populate with any seed data.

 You need to keep a record somewhere of all your clients, and how

to connect to each client’s database.

 If you need to upgrade your database (e.g. add a new table), you

need to code to upgrade each separately.

 If you need to query all your client’s data into one, you need to pull

the data out of each and aggregate it.

Logical separation

All of your clients are stored in one giant database. Every time you need

to get data for a single client, you must remember to include a filter for

the client. E.g. ‘select’ from customers where customerClientId = “1234”

Pros:

 Easier to get started

 Easier to maintain and upgrade

 Can easily query all your clients’ data with one query

Cons:

 Easy to make a mistake that will result in a data breach

 More difficult to scale

You now only have one database to manage. Setting this up and

connecting to your database is easy. Your speed to market increases.

When you need to upgrade your database, you can do so with a few clicks,

or by typing a few commands. It is very easy to add new features. As you

gain more users, your database will grow to millions of rows. Put some

effort into how your database handles this extra volume and load. You

will have to start tuning your queries.

When you’re under pressure, it is so easy to forget to include that “where

clientId = 1234” filter. Doing so could result in a business ending data

breach.

Ensure your database is secured. You should look into best practices

for securing your particular database. Some databases come with a default

administrator login, which people often forget to change. This could leave

your data open to the world.

CIT 421 NET-CENTRIC COMPUTING

42

From the start, you should create a login with “Just Enough” access. If

your app only reads and writes data, then it should authenticate to your

database using a login with only data reading and writing access.

3.2.10 Step 9 - Build the frontend

Note: In reality, you will build your backend and frontend at the same

time. But for this post, we’ll keep it simple.

A frontend

The Frontend is the visual element of your web application. It defines

what you see and interact with. The frontend is developed with HTML,

CSS, and JavaScript.

If using server pages, getting started is super easy. Your backend

framework is all set up and ready to start building. This is where the huge

benefit lies with server pages.

With SPA, it’s a little trickier.

First, you need to set up your development environment. The components

of this will be:

1. A code editor, such as VS Code, Sublime Text

2. A compilation, and packaging framework:

 Webpack

 Gulp

 Grunt

This is also used for serving and “Hot Loading” your application at

development time, on a nodejs web server, running on localhost.

3. A frontend framework (strictly not necessary, but highly advised

unless you are an experienced frontend developer):

 React

 Ember

 Vue

 Svelte

The list is endless!

4. Configuring your packaging tool to talk to your backend - which

is most likely running on a different port on localhost. Usually, this

is done using Node’s HTTP proxy. Most packaging solutions have

this option built-in, or available as plugins. This point commonly

gets people stuck, and may need a diagram. Remember - if you

write your backend API in C Sharp (for example) then at

development time, you will be running it on a local web server,

through your code editor. i.e. your frontend and backend are

running on 2 different web servers, in development. However, in

production, your frontend should (probably) be running on the

https://webpack.js.org/
https://gulpjs.com/
https://gruntjs.com/
https://reactjs.org/
https://emberjs.com/
https://vuejs.org/
https://svelte.dev/

CIT 421 MODULE 1

43

SAME web server as your backend - mainly because you want

them to run under the same domain.

This means a few things:

 At dev (development) time, your frontend should make API

requests to its own (Nodejs server - e.g. Webpack dev server). This

Nodejs server should then proxy all “/api” request to your backend

server.

 When building for production, you need to get your compiled

frontend files into your backend server - so they can be served as

static files. You can copy and paste the files in when you deploy,

but you will want to set up some sort of script to do this.

There is always a significant time required to set up your dev

(development) environment for a SPA. There are plenty of boilerplate

templates out there for your frameworks of choice. However, I have never

written an app that has not eventually needed some custom code on top

of the boilerplate.

Still, I always choose a SPA.

 The end product for a web app is a much more usable application.

 When you are up and running with your dev environment, I find

SPAs much more productive to work with - which is more likely

to do with the capabilities of modern javascript frameworks than

anything else.

 Writing a SPA is really the only way to make a Progressive Web

Application.

You should now have a better idea of how to setup your frontend and

define the look and feel of your web app. In most cases, I build the

frontend and backend together.

3.2.11 Step 10 - Build your backend

The backend is typically what manages your data. This refers to

databases, servers, and everything the user cannot see within a web

application. Building your backend is one of the toughest parts of web

app development. If you feel overwhelmed, a tool like Budibase can take

away many of the complexities - including the following tasks. If you feel

confident, continue.

When building your web app, you need to choose between:

 Server Pages (Multiple Page Application) and

 Single Page Application

“But is not this the frontend?” - I hear you say. Yes! But your choice will

affect how you develop your backend.

CIT 421 NET-CENTRIC COMPUTING

44

The primary jobs of the backend will be to:

 Provide HTTP endpoints for your frontend, which allow it to

operate on your data. E.g. Create, Read, Update and Delete

(“CRUD”) records.

 Authenticate users (verify they are who they say they are: a.k.a log

them in).

 Authorization. When a logged in user makes a request, the backend

will determine whether they are allowed (authorized) to perform

the requested action.

 Serve the frontend

If you have chosen Server Pages, your backend will also be generating

your frontend and serving it to your user.

With a single page app, the backend will simply serve your static frontend

files (i.e. your “Single Page” and it is related assets).

When choosing your backend:

 Go with what is familiar.

 Try Budibase

 Server Pages / SPA should inform your decision of framework

choices within your chosen language. For example, a SPA will

only require an API only framework. Server pages need their own

framework.

o Django

o Express

o Flask

Login/User & Session Management

 How will users authenticate?

o Username and password?

o Open ID (i.e. sign in as Google, FB, etc)

 Be sure to read up on security best practices. I highly

recommend: OWASP

 What user levels will you create in the system?

Environments. You will usually need to create multiple environments.

For example:

 Testing - for all the latest development features.

 Beta - to give early releases to clients.

 Production - Your live system.

3.2.12 Step 11 - Host your web application

Hosting involves running your web app on a particular server. When

using Budibase, this step can be automated with Budibase hosting . With

Budibase, you are still required to buy a domain. If you are not using

Budibase to host your web application, follow these quick steps:\

https://www.budibase.com/
https://www.djangoproject.com/
https://expressjs.com/
http://flask.pocoo.org/
https://www.budibase.com/host-a-web-app/

CIT 421 MODULE 1

45

1. Buy a domain - Namecheap

2. Buy/Setup an SSL certificate - Let’s Encrypt

3. Choose a cloud provider:

 Amazon

 MS Azure

 Google Cloud Platform

 Lower cost: Digital Ocean / Linode - if you are happy

managing your own VMs

 Zeit Now, Heroku, Firebase are interesting alternatives that

aim to be faster and easier to get things done - you should

read about what they offer.

Choosing one of these hosting options will almost certainly provide you

with everything you need. They have ample documentation and

community supports, and are generally reliable options.

3.2.13 Step 12 - Deploy your web app

You have sourced your idea, validated it, designed and developed your

web app, and chosen your hosting provider. You are now at the last step.

Well done!

The deployment step includes is how your web application gets from your

source control on your computer to your cloud hosting from step 11. How

does your application get from Source Control / Your computer to your

cloud hosting provider?

The following development tools provide continuous integration and will

help you with deploying your web app to your cloud hosting:

 GitLab

 Bitbucket

 Jenkins

To start with, you can just deploy directly from your machine of course.

You have made a web application. Well done. You should take some time

to celebrate this achievement. You are the proud owner of a new web app.

Discussion

How can cybercrime be mitigated? Discuss

4.0 SELF-ASSESSMENT/EXERCISE

1. Mention and explain the Database types.

There are many types of database for many different purposes. A web app

will most commonly use one of the following:

https://www.namecheap.com/
https://letsencrypt.org/
https://aws.amazon.com/
https://azure.microsoft.com/en-gb/
https://cloud.google.com/
https://about.gitlab.com/
https://bitbucket.org/
https://jenkins.io/

CIT 421 NET-CENTRIC COMPUTING

46

a. SQL

You should use a SQL database if your data is very relational. Your

data is relational if you have multiple, well defined record types

that have relationships between them. For example, a “Customer”

may have many “Invoices” stored against their record. Typically,

you would create a Customer table and an Invoice table - which

could be linked together by “Foreign Key” columns. E.g.

Customer.Id = Invoice.CustomerId.

SQL databases have an extremely powerful query language that

allows you to present your data in all sorts of useful ways. They

have been around for decades, are very well understood, and

usually a safe choice. MySQL, Postgresql, Microsoft SQLServer

are some of the most common - along with many more modern

offerings.

The downside of SQL databases is that you must declare all your

tables and columns up front. There can be a lot of overhead to

manage. If you have never used one before – you are in for a pretty

steep learning curve. However, there are plenty of learning

resources available, and it is always a great skill to have.

b. Document Database

You should use a document database if your data is not very

relational. Document databases store “documents”. Each record in

your database is simply a big blob of structured data - often in

JSON format. If you need to store relationships between your

records, you will have to write code to manage this yourself.

However, many other aspects of using document databases are

much simpler. Your database can be “schemaless” - meaning that

you do not have to declare your records’ definitions up front.

Generally speaking, the bar to entry to a document database is

much lower. They also tend to be much more scalable than SQL

databases. They usually offer some querying capabilities, although

sometimes not as powerful as SQL. Examples of document

databases are: MongoDb, CouchDb, Firebase (serverless),

Dynamo Db (AWS).

2. What do we mean by the backend, the types and what determine

your backend choice? Explain.

The backend is typically what manages your data. This refers to

databases, servers, and everything the user cannot see within a web

application. Building your backend is one of the toughest parts of

web app development. If you feel overwhelmed, a tool

CIT 421 MODULE 1

47

like Budibase can take away many of the complexities - including

the following tasks. If you feel confident, continue.

When building your web app, you need to choose between:

 Server Pages (Multiple Page Application) and

 Single Page Application

“But is not this the frontend?” - I hear you say. Yes! But your choice will

affect how you develop your backend.

The primary jobs of the backend will be to:

o Provide HTTP endpoints for your frontend, which allow it to

operate on your data. E.g. Create, Read, Update and Delete

(“CRUD”) records.

o Authenticate users (verify they are who they say they are: a.k.a log

them in).

o Authorization. When a logged in user makes a request, the backend

will determine whether they are allowed (authorized) to perform

the requested action.

o Serve the frontend

If you have chosen Server Pages, your backend will also be

generating your frontend and serving it to your user.

With a single page app, the backend will simply serve your static frontend

files (i.e. your “Single Page” and it is related assets).

When choosing your backend:

o Go with what is familiar.

o Try Budibase

o Server Pages / SPA should inform your decision of framework

choices within your chosen language. For example, a SPA will

only require an API only framework. Server pages need their own

framework.

 Django

 Express

 Flask

5.0 CONCLUSION

There are many types of database for many different purposes. A web app

will most commonly use one of SQL or Document database. You should

look into best practices for securing your particular database. Some

databases come with a default administrator login, which people often

forget to change. This could leave your data open to the world.

From the start, you should create a login with “Just Enough” access. If

your app only reads and writes data, then it should authenticate to your

database using a login with only data reading and writing access.

https://www.budibase.com/
https://www.djangoproject.com/
https://expressjs.com/
http://flask.pocoo.org/

CIT 421 NET-CENTRIC COMPUTING

48

6.0 SUMMARY

Building a Web Application steps include: Source an idea, Market Research,

Define your web apps functionality, Sketch your web app, Plan your web

apps workflow, Wireframing / Prototyping Your Web Application, Seek

early validation, Architect and build your database, Build the frontend, Build

your backend, Host your web application and Deploy your web app. To

make a data-centric web app from the bottom-up, it is advantageous to

understand: Backend language (e.g. Python, Ruby) - control how your

web app works; Web front end (HTML, CSS, Javascript) - for the look

and feel of your web app; and DevOps (Github, Jenkins) - Deploying /

hosting your web app. There are many types of database for many

different purposes but a web app will most commonly use one of SQL

and Document database. The backend is typically what manages your

data. This refers to databases, servers, and everything the user cannot see

within a web application.

Building your backend is one of the toughest parts of web app

development. If you feel overwhelmed, a tool like Budibase can take

away many of the complexities - including the follow tasks.

7.0 REFERENCES/FURTHER READING

The web framework for perfectionists with deadlines | Django

(djangoproject.com)

Studio | InVision (invisionapp.com)

https://www.djangoproject.com/
https://www.djangoproject.com/
https://www.invisionapp.com/studio

 CIT 421 MODULE 2

49

MODULE 2: PARALLEL SYSTEMS

UNIT 1: INTRODUCTION TO PARALLEL SYSTEMS

CONTENTS

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main content

3.1 Parallel Processing Systems

 3.2 Flynn’s Classification of Parallel Systems

3.3 Relevance of Flynn’s Classification to Parallel Systems

3.4 Parallel Computers and Applications

4.0 Self-Assessment Exercises

5.0 Conclusion

6.0 Summary

7.0 References/Further Reading

Introduction of Module

Parallel computing is a type of computation in which many calculations

or processes are carried out simultaneously. Large problems can often be

divided into smaller ones, which can then be solved at the same time.

There are several different forms of parallel computing: bit-

level, instruction-level, data, and task parallelism. Parallelism has long

been employed in high-performance computing, but has gained broader

interest due to the physical constraints preventing frequency scaling. As

power consumption (and consequently heat generation) by computers has

become a concern in recent years, parallel computing has become the

dominant paradigm in computer architecture, mainly in the form of multi-

core processors.

This module will consist of four units are follows

Unit 1: Introduction to Parallel Systems

Unit 2: Parallel Programming Models

Unit 3: Message Passing Programming

Unit 4: Dependence Analysis

Unit 5: OpenMP Programming

Unit 6: Evaluation of Programs

CIT 421 NET-CENTRIC COMPUTING

50

1.0 INTRODUCTION

Parallel systems deal with the simultaneous use of multiple computer

resources that can include a single computer with multiple processors, a

number of computers connected by a network to form a parallel

processing cluster or a combination of both.

2.0 INTENDED LEARNING OUTCOMES (ILOS)

At the end of this unit, students will able to:

 Define the concept of Parallel Systems

 Explore the Parallel Systems types

 Differentiate between the two Single Instruction, Multiple Data

stream (SIMD) schemes

3.0 MAIN CONTENT

3.1 Parallel Processing Systems

Parallel Processing Systems are designed to speed up the execution of

programs by dividing the program into multiple fragments and processing

these fragments simultaneously. Such systems are multiprocessor systems

also known as tightly coupled systems. Parallel systems deal with the

simultaneous use of multiple computer resources that can include a

single computer with multiple processors, a number of computers

connected by a network to form a parallel processing cluster or a

combination of both. Parallel computing is an evolution of serial

computing where the jobs are broken into discrete parts that can be

executed concurrently.

Each part is further broken down to a series of instructions. Instructions

from each part execute simultaneously on different CPUs. Parallel

systems are more difficult to program than computers with a single

processor because the architecture of parallel computers varies

accordingly and the processes of multiple CPUs must be coordinated and

synchronized. Several models for connecting processors

and memory modules exist, and each topology requires a different

programming model. The three models that are most commonly used in

building parallel computers include synchronous processors each with its

own memory, asynchronous processors each with its own memory and

asynchronous processors with a common, shared memory.

https://ecomputernotes.com/fundamental/introduction-to-computer/what-is-computer
https://ecomputernotes.com/fundamental/introduction-to-computer/what-is-computer
https://ecomputernotes.com/fundamental/input-output-and-memory/memory
https://ecomputernotes.com/fundamental/input-output-and-memory/memory

 CIT 421 MODULE 2

51

3.2 Flynn’s Classification of Parallel Systems

Flynn has classified the computer systems based on parallelism in the

instructions and in the data streams. These are:

1. Single Instruction, Single Data stream (SISD):

An SISD computing system is a uniprocessor machine capable of

executing a single instruction, which operates on a single data stream

(see Figure 2.1.1 below). In SISD, machine instructions are processed

sequentially; hence computers adopting this model are popularly

called sequential computers. Most conventional computers are built using

the SISD model. All the instructions and data to be processed have to be

stored in primary memory. The speed of the processing element in the

SISD model is limited by the rate at which the computer can transfer

information internally. Dominant representative SISD systems are IBM

PC, Macintosh, and workstations.

Figure 1.1.1: Single Instruction, Single Data stream (SISD)

2. Single Instruction, Multiple Data stream (SIMD):

SIMD represents single-instruction multiple-data streams. The SIMD

model of parallel computing includes two parts such as a front-end

computer of the usual von Neumann style, and a processor array as

displayed in the figure 2.1.2.

The processor array is a collection of identical synchronized processing

elements adequate for simultaneously implementing the same operation

on various data. Each processor in the array has a small amount of local

memory where the distributed data resides while it is being processed in

parallel. The processor array is linked to the memory bus of the front end

so that the front end can randomly create the local processor memories as

if it were another memory.

CIT 421 NET-CENTRIC COMPUTING

52

Figure 2.1.2: Single instruction stream, multiple data stream (SIMD)

A program can be developed and performed on the front end using a

traditional serial programming language. The application program is

performed by the front end in the usual serial method, but problem

command to the processor array to carry out SIMD operations in parallel.

The similarity between serial and data-parallel programming is one of the

valid points of data parallelism. Synchronization is created irrelevant by

the lock-step synchronization of the processors. Processors either do

nothing or similar operations at the same time.

In SIMD architecture, parallelism is exploited by using simultaneous

operations across huge sets of data. This paradigm is most beneficial for

solving issues that have several data that require to be upgraded on a

wholesale basis. It is dynamically powerful in many regular scientific

calculations.

Two main configurations have been applied in SIMD machines. In the

first scheme, each processor has its local memory. Processors can interact

with each other through the interconnection network. If the

interconnection network does not support a direct connection between

given groups of processors, then this group can exchange information via

an intermediate processor.

In the second SIMD scheme, processors and memory modules

communicate with each other via the interconnection network. Two

processors can send information between each other via intermediate

memory module(s) or possibly via intermediate processor(s). The BSP

(Burroughs’ Scientific Processor) used the second SIMD scheme.

 CIT 421 MODULE 2

53

Figure 2.1.2a: Single instruction stream, multiple data stream (SIMD)

Scheme-1

Figure 2.1.2b: Single Instruction, Multiple Data stream (SIMD) Scheme-

2

3. Multiple Instruction, Single Data stream (MISD).

In this association, multiple processing elements are structured under the

control of multiple control units. Each control unit is handling single

instruction stream and processed through its corresponding processing

element. But single processing element is processing only a one data

stream at a time. Hence, for handling single data stream and multiple

instruction streams, multiple processing elements and multiple control

units are organised in this classification. All processing elements are

relate with the common shared memory for the organisation of one data

stream as given in Figure 2.1.3. The only identified instance of a computer

capable of MISD operation is the C.mmp built by Carnegie-Mellon

University.

CIT 421 NET-CENTRIC COMPUTING

54

This type of computer organisation is denoted as:

Is > 1
Ds = 1

Figure 2.1.3: Multiple-Instruction Single-Data streams (MISD)

This classification is not popular in commercial machines as the thought

of single data streams implementing on multiple processors is rarely

functional. But for the particular applications, MISD organisation can be

very useful. For example, Real time computers need to be fault tolerant

where several processors implement the same data for producing the

redundant data. This is also called as N- version programming. All these

redundant data are measured to as results which should be similar;

otherwise faulty unit is returned. Thus MISD machines can be useful to

fault tolerant real time computers.

4. Multiple Instruction, Multiple Data stream (MIMD).

MIMD stands for Multiple-instruction multiple-data streams. It includes

parallel architectures are made of multiple processors and multiple

memory modules linked via some interconnection network. They fall into

two broad types including shared memory or message passing.

A shared memory system generally accomplishes interprocessor

coordination through a global memory shared by all processors. These are

frequently server systems that communicate through a bus and cache

memory controller.

The bus/ cache architecture alleviates the need for expensive multi-ported

memories and interface circuitry as well as the need to adopt a message-

passing paradigm when developing application software. Because access

to shared memory is balanced, these systems are also called SMP

(symmetric multiprocessor) systems. Each processor has an equal

opportunity to read/write to memory, including equal access speed.

 CIT 421 MODULE 2

55

Figure 2.1.4: Multiple-Instruction Multiple-Data streams (MIMD)

The above classification of parallel computing system is focused in terms

of two independent factors: the number of data streams that can be

simultaneously processed, and the number of instruction streams that can

be simultaneously processed. Here, by ‘instruction stream’ we mean an

algorithm that instructs the computer what to do whereas ‘data stream’

(i.e. input to an algorithm) means the data that are being operated upon.

3.3 Relevance of Flynn’s Classification to Parallel Systems

Even though Flynn has classified the computer ‘systems into four types

based on parallelism but only two of them are relevant to parallel

computers. These are SIMD and MIMD computers.

CIT 421 NET-CENTRIC COMPUTING

56

SIMD computers are consisting of ‘n’ processing units receiving a single

stream of instruction from a central control unit and each processing unit

operates on a different piece of data. Most SIMD computers operate

synchronously using a single global clock. The block diagram of SIMD

computer is shown below:

Figure 2.1.5: Single Instruction, Multiple Data stream (SIMD) Block

Diagram

MIMD computers are consisting of ‘n’ processing units; each with its own

stream of instruction and each processing unit operate on unit operates on

a different piece of data. MIMD is the most powerful computer system

that covers the range of multiprocessor systems. The block diagram of

MIMD computer is shown.

Figure 2.1.6: Multiple Instruction, Multiple Data stream (MIMD) Block

Diagram

The SIMD systems are easier to program because it deals with single

thread of execution. On the hand, the MIMD machines are more efficient

because you can utilize the full machine power.

3.4 Parallel Computers and Applications

Parallel operating systems are primarily concerned with managing the

resources of parallel machines. A parallel computer is a set of processors

that are able to work cooperatively to solve a computational problem. So,

 CIT 421 MODULE 2

57

a parallel computer may be a supercomputer with hundreds or thousands

of processors or may be a network of workstations.

A few years ago, parallel computers could be found only in research

laboratories and they were used mainly for computation intensive

applications like numerical simulations of complex systems. Today, there

are a lot of parallel computers available in the market; used to execute

both data intensive applications in commerce and computation intensive

applications in science and engineering.

Today, new applications arise and demand faster computers. Commercial

applications are the most used on parallel computers. A computer that

runs such an application should be able to process large amount of data in

sophisticated ways. These applications include graphics, virtual reality,

and decision support, parallel databases, medicine diagnosis and so on.

We can say with no doubt that commercial applications will define future

parallel computers architecture but scientific applications will remain

important users of parallel computing technology.

Concurrency becomes a fundamental requirement for algorithms and

programs. A program has to be able to use a variable number of

processors and also has to be able to run on multiple processors computer

architecture. According to Tanenbaum, a distributed system is a set of

independent computers that appear to the user like a single one. So, the

computers have to be independent and the software has to hide individual

computers to the users. MIMD computers and workstations connected

through LAN and WAN are examples of distributed systems. The main

difference between parallel systems and distributed systems is the way in

which these systems are used. A parallel system uses a set of processing

units to solve a single problem A distributed system is used by many users

together.

Discussion

What is the difference of firewalls at Application security and internet

security?

4.0 SELF-ASSESSMENT/EXERCISES

1. What is Parallel Systems

Answer:

Parallel Processing Systems are designed to speed up the execution of

programs by dividing the program into multiple fragments and processing

these fragments simultaneously. Such systems are multiprocessor systems

also known as tightly coupled systems. Parallel systems deal with the

simultaneous use of multiple computer resources that can include a

single computer with multiple processors, a number of computers

https://ecomputernotes.com/fundamental/introduction-to-computer/what-is-computer
https://ecomputernotes.com/fundamental/introduction-to-computer/what-is-computer

CIT 421 NET-CENTRIC COMPUTING

58

connected by a network to form a parallel processing cluster or a

combination of both. Parallel computing is an evolution of serial

computing where the jobs are broken into discrete parts that can be

executed concurrently.

2. What are the Flynn’s Classification of Parallel Systems?

Answer:

1. Single instruction stream, single data stream (SISD):

An SISD computing system is a uniprocessor machine capable of

executing a single instruction, which operates on a single data stream

(see Figure 2.1.1 below). In SISD, machine instructions are processed

sequentially; hence computers adopting this model are popularly

called sequential computers. Most conventional computers are built using

the SISD model. All the instructions and data to be processed have to be

stored in primary memory. The speed of the processing element in the

SISD model is limited by the rate at which the computer can transfer

information internally. Dominant representative SISD systems are IBM

PC, Macintosh, and workstations.

Figure 2.1.1: Single Instruction, Single Data stream (SISD)

2. Single Instruction, Multiple Data stream (SIMD):

SIMD represents single-instruction multiple-data streams. The SIMD

model of parallel computing includes two parts such as a front-end

computer of the usual von Neumann style, and a processor array as

displayed in the figure 2.1.2.

The processor array is a collection of identical synchronized processing

elements adequate for simultaneously implementing the same operation

on various data. Each processor in the array has a small amount of local

memory where the distributed data resides while it is being processed in

parallel. The processor array is linked to the memory bus of the front end

 CIT 421 MODULE 2

59

so that the front end can randomly create the local processor memories as

if it were another memory.

Figure 2.1.2: Single instruction stream, multiple data stream (SIMD)

A program can be developed and performed on the front end using a

traditional serial programming language. The application program is

performed by the front end in the usual serial method, but problem

command to the processor array to carry out SIMD operations in parallel.

The similarity between serial and data-parallel programming is one of the

valid points of data parallelism. Synchronization is created irrelevant by

the lock-step synchronization of the processors. Processors either do

nothing or similar operations at the same time.

In SIMD architecture, parallelism is exploited by using simultaneous

operations across huge sets of data. This paradigm is most beneficial for

solving issues that have several data that require to be upgraded on a

wholesale basis. It is dynamically powerful in many regular scientific

calculations.

Two main configurations have been applied in SIMD machines. In the

first scheme, each processor has its local memory. Processors can interact

with each other through the interconnection network. If the

interconnection network does not support a direct connection between

given groups of processors, then this group can exchange information via

an intermediate processor.

In the second SIMD scheme, processors and memory modules

communicate with each other via the interconnection network. Two

processors can send information between each other via intermediate

memory module(s) or possibly via intermediate processor(s). The BSP

(Burroughs’ Scientific Processor) used the second SIMD scheme.

CIT 421 NET-CENTRIC COMPUTING

60

Figure 2.1.2a: Single instruction stream, multiple data stream (SIMD)

Scheme-1

Figure 2.1.2b: Single Instruction, Multiple Data stream (SIMD) Scheme-

2

3. Multiple Instruction, Single Data stream (MISD).

In this association, multiple processing elements are structured under the

control of multiple control units. Each control unit is handling single

instruction stream and processed through its corresponding processing

element. But single processing element is processing only a one data

stream at a time. Hence, for handling single data stream and multiple

instruction streams, multiple processing elements and multiple control

units are organised in this classification. All processing elements are

relate with the common shared memory for the organisation of one data

stream as given in Figure 2.1.3. The only identified instance of a computer

capable of MISD operation is the C.mmp built by Carnegie-Mellon

University.

 CIT 421 MODULE 2

61

This type of computer organisation is denoted as:

Is > 1
Ds = 1

Figure 2.1.3: Multiple-Instruction Single-Data streams (MISD)

This classification is not popular in commercial machines as the thought

of single data streams implementing on multiple processors is rarely

functional. But for the particular applications, MISD organisation can be

very useful. For example, Real time computers need to be fault tolerant

where several processors implement the same data for producing the

redundant data. This is also called as N- version programming. All these

redundant data are measured to as results which should be similar;

otherwise faulty unit is returned. Thus MISD machines can be useful to

fault tolerant real time computers.

4. Multiple Instruction, Multiple Data stream (MIMD).

MIMD stands for Multiple-instruction multiple-data streams. It includes

parallel architectures are made of multiple processors and multiple

memory modules linked via some interconnection network. They fall into

two broad types including shared memory or message passing.

A shared memory system generally accomplishes interprocessor

coordination through a global memory shared by all processors. These are

frequently server systems that communicate through a bus and cache

memory controller.

The bus/ cache architecture alleviates the need for expensive multi-ported

memories and interface circuitry as well as the need to adopt a message-

passing paradigm when developing application software. Because access

to shared memory is balanced, these systems are also called SMP

(symmetric multiprocessor) systems. Each processor has an equal

opportunity to read/write to memory, including equal access speed.

CIT 421 NET-CENTRIC COMPUTING

62

Figure 2.1.4: Multiple-Instruction Multiple-Data streams (MIMD)

The above classification of parallel computing system is focused in terms

of two independent factors: the number of data streams that can be

simultaneously processed, and the number of instruction streams that can

be simultaneously processed. Here, by ‘instruction stream’ we mean an

algorithm that instructs the computer what to do whereas ‘data stream’

(i.e. input to an algorithm) means the data that are being operated upon.

 CIT 421 MODULE 2

63

5.0 CONCLUSION

There seem to be no system that functions serially even, the human system

works in parallel. For example, the respiratory system, circulatory system

and locomotive system are all functioning simultaneously. The parallel

computers run a number of job chunks simultaneously.

6.0 SUMMARY

Parallel Processing Systems are designed to speed up the execution of

programs by dividing the program into multiple fragments and processing

these fragments simultaneously. Flynn’s Classification of Parallel

Systems are Single Instruction, Single Data stream (SISD); Single

instruction stream, multiple data stream (SIMD); Multiple-Instruction

Single-Data streams (MISD) and Multiple-Instruction Multiple-Data

streams (MIMD). The above classification of parallel computing system

is focused in terms of two independent factors: the number of data and the

number of instruction streams that can be simultaneously processed.

Parallel operating systems are primarily concerned with managing the

resources of parallel machines. A parallel computer is a set of processors

that are able to work cooperatively to solve a computational problem.

7.0 REFERENCES/FURTHER READING

https://ecomputernotes.com/fundamental/disk-operating-system/parallel-

processing-systems

https://www.tutorialspoint.com/what-is-mimd-architecture

https://ecomputernotes.com/fundamental/disk-operating-system/parallel-processing-systems
https://ecomputernotes.com/fundamental/disk-operating-system/parallel-processing-systems
https://www.tutorialspoint.com/what-is-mimd-architecture

CIT 421 NET-CENTRIC COMPUTING

64

UNIT 2 PARALLEL PROGRAMMING MODELS

CONTENTS

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main content

3.1 Parallel Programming Models

3.2 MPI

3.3 OpenMP

3.4 MapReduce

3.5 OpenCL

3.6 CUDA

4.0 Self-Assessment Exercises

5.0 Conclusion

6.0 Summary

7.0 References/Further Reading

1.0 INTRODUCTION

In computing, a parallel programming model is

an abstraction of parallel computer architecture, with which it is

convenient to express algorithms and their composition in programs. The

value of a programming model can be judged on its generality: how well

a range of different problems can be expressed for a variety of different

architectures, and its performance: how efficiently the compiled

programs can execute. The implementation of a parallel programming

model can take the form of a library invoked from a sequential language,

as an extension to an existing language, or as an entirely new language.

Consensus around a particular programming model is important because

it leads to different parallel computers being built with support for the

model, thereby facilitating portability of software. In this sense,

programming models are referred to as bridging between hardware and

software.

2.0 Intended Learning Outcomes (ILOs)

At the end of this unit, students will able to:

 Explain the concept of Parallel programming

 Enumerate and explain 4 of the parallel programming models

 CIT 421 MODULE 2

65

3.0 MAIN CONTENT

3.1 Parallel Programming Models

A parallel programming model is a set of program abstractions for fitting

parallel activities from the application to the underlying parallel

hardware. It spans over different layers: applications, programming

languages, compilers, libraries, network communication, and I/O

systems. Two widely known parallel programming models are:

a. shared memory and

b. message passing

There are also different:

c. combinations of both.

a. In the shared-memory programming model, tasks share a common

address space, which they read and write in an asynchronous

manner. The communication between tasks is implicit. If more

than one task accesses the same variable, the semaphores or locks

can be used for synchronization. By keeping data local to the

processor and making private copies, expensive memory accesses

are avoided, but some mechanism of coherence maintenance is

needed when multiple processors share the same data with the

possibility of writing.

b. In the message-passing programming model, tasks have private

memories, and they communicate explicitly via message

exchange. To exchange a message, each sends operation needs to

have a corresponding receive operation. Tasks are not constrained

to exist on the same physical machine.

c. A suitable combination of two previous models is sometimes

appropriate. Processors can directly access memory on another

processor. This is achieved via message passing, but what the

programmer actually sees is shared-memory model.

Mainstream parallel programming environments are based on

augmenting traditional sequential programming languages with low-level

parallel constructs (library function calls and/or compiler directives).

3.1 The Programming Models

3.1.1 Message Passing Interface (MPI)

The MPI is a library of routines with the bindings in Fortran, C, and C++

and it is an example of an explicitly parallel API that implements the

message-passing model via library function calls. The set of processes

with separate address spaces coordinate the computation by explicitly

sending and receiving messages. Each process has a separate address

CIT 421 NET-CENTRIC COMPUTING

66

space, its own program counter, and its own call stack. However, high-

level constructs such as synchronization, communication, and mapping

data to processes are left to a programmer to implement. MPI supports

point-to-point communication between any two processes. It also enables

the collective communication operations where a group of processes

perform global/collective operations, such as gather, scatter, reduce, and

scan.

In an heterogeneous environment, in order to optimize the performance,

an MPI implementation may map processes to processors in a particular

way. Similarly, an MPI implementation may optimize the way processes

communicate during a global operation. For example, in case of

MPI_Reduce, the communicating nodes do not have to form a tree

structure, if an alternative structure brings better performance for the

underlying parallel machine.

3.2.2. OpenMP (Open Multi-Processing)

On the other side, OpenMP is an example of mainly implicit parallel API

intended for shared-memory multiprocessors. It exploits parallelism

through compiler directives and the library function calls. Unlike MPI,

where all threads are spawned at the beginning of the execution and are

active until the program terminates, in OpenMP, a single master thread

starts execution, and additional threads are active only during the

execution of a parallel region. To reduce the overheads, these threads are

spawned when the program enters a parallel region for the first time, and

they are blocked while the program is executing a nonparallel region.

Sections work-sharing construct breaks work into multiple distinct

sections, such that each section is entirely executed by a single thread. It

is an example of task parallelism paradigm. Its general form is presented

in figure 2.2.1.

 CIT 421 MODULE 2

67

Figure 2.2.1: OpenMP Session Construct

For work-sharing construct splits iterations of a loop among different

threads, such that each iteration is entirely executed by a single thread. It

is an example of data-parallelism paradigm. Its general form is shown

in figure 2.2.2.

Figure 2.2.2: OpenMP For Constrauct

Cilk is a language extension for C programming language with parallel

constructs, resembling to OpenMP. Both OpenMP and Cilk can

automatically choose parallelism to achieve good performance. Cilk++

brings the same for C++ language.

Nesting OpenMP is unfortunately not fully composable, which can be a

serious limitation when compared with the other abstract parallel

programming models. Nesting of OpenMP can create explosive numbers

of threads in recursive situations, which rapidly exhaust system resources,

especially stack space, and require that the program be shut down. To

prevent this, the maximum number of levels of parallel nesting that will

CIT 421 NET-CENTRIC COMPUTING

68

be activated when using OpenMP is set to one by default. While this is

somewhat limiting (nested parallelism as supported by TBB and Cilk Plus

is incredibly useful), it avoids a generally intolerable condition. With the

continued popularity of OpenMP being so strong, we can expect

additional proposals to refine OpenMP into a better ability to

exploit nested parallelism opportunities when they exist. Without such

solutions, programs are best to avoid relying on nesting of parallelism in

order to get performance if using OpenMP.

3.2.3. MapReduce

One of the most widely used parallel programming models today

is MapReduce. MapReduce is easy both to learn and use, and is especially

useful in analyzing large datasets. While it is not suitable for several

classes of scientific computing operations that are better served

by message-passing interface or OpenMP, such as numerical linear

algebra or finite element and finite difference computations,

MapReduce's utility in workflows frequently called “big data” has made

it a mainstay in high performance computing. MapReduce programming

model and the Hadoop open-source framework supports it.

3.2.4. OpenCL (Open Computing Language)

OpenCL has some advantages over other parallel programming models.

First of all, it is the only one of the “open” standards for which there,

actually, are implementations by all major vendors—unlike for OpenMP

or OpenACC. The level of vendor support, however, is a different story.

OpenCL is a library that can be used with any C/C++ compiler, which

makes it independent of additional tools. The kernels are written

separately in a C-like language and compiled at runtime for the present

hardware. The kernel compiler comes with the OpenCL

implementation provided by the hardware vendor. A kernel written in

OpenCL will run everywhere, including conventional CPUs, Intel Xeon

Phi coprocessors, GPGPUs, some FPGAs, and even mobile devices.

OpenCL programs are divided into host and kernel code. Only the latter

is executed on the compute device. In the host program, kernels and

memory movements are queued into command queues associated with a

device. The kernel language provides features like vector types and

additional memory qualifiers. A computation must be mapped to work-

groups of work-items that can be executed in parallel on the compute units

(CUs) and processing elements (PEs) of a compute device. A work-item

is a single instance of a kernel function. For each kernel-call, an NDRange

(n-dimensional range) specifies the dimension, number, and shape of the

work-groups. Global synchronization during the execution of a kernel is

https://www.sciencedirect.com/topics/computer-science/parallelism
https://www.sciencedirect.com/topics/computer-science/nested-parallelism
https://www.sciencedirect.com/science/article/pii/B9780124201583000198
https://www.sciencedirect.com/topics/computer-science/high-performance-computing
https://www.sciencedirect.com/topics/computer-science/hadoop
https://www.sciencedirect.com/topics/computer-science/opencl
https://www.sciencedirect.com/topics/computer-science/opencl-implementation
https://www.sciencedirect.com/topics/computer-science/opencl-implementation
https://www.sciencedirect.com/topics/computer-science/intel-xeon-phi
https://www.sciencedirect.com/topics/computer-science/intel-xeon-phi
https://www.sciencedirect.com/topics/computer-science/kernel-function

 CIT 421 MODULE 2

69

unavailable. Work-items inside a work-group can be synchronized.

OpenCL provides a complex memory model with a relaxed consistency.

3.2.5. The CUDA (Compute Unified Device Architecture)

programming model

The CUDA programming model is a parallel programming model that

provides an abstract view of how processes can be run on underlying GPU

architectures. The evolution of GPU architecture and the CUDA

programming language have been quite parallel and interdependent.

Although the CUDA programming model has stabilized over time, the

architecture is still evolving in its capabilities and functionality. GPU

architecture has also grown in terms of the number of transistors and

number of computing units over years, while still supporting the CUDA

programming model.

Until 2000 GPU architectures supported fixed pipeline functionality

tightly coupled with graphics pipeline. Separate silicon real estate was

dedicated to each state of the pipeline. Around 2001 programmability for

2D operations (pixel shaders) and 3D operations (vertex shaders) were

introduced. Then from approximately 2006 through 2008 all these

operations were combined to be executed by a shared and common

computational unit using a much higher-level programmable feature. This

programmability was introduced as the CUDA programming model.

Since then the CUDA programming model has been used to implement

many algorithms and applications other than graphics, and this explosion

of use and permeability of CUDA with hitherto unknown applications has

catapulted the GPU’s near ubiquitous use in many domains of science and

technology. Since then all the GPUs designed are CUDA-capable. It

should be noted that before CUDA was released, there were attempts to

create high-level languages and template libraries But such efforts tapered

down with the introduction of CUDA, and more effort was spent on

refining CUDA and building libraries using its constructs.

Discussion

Explain the peculiarities of the CUDA programming model.

4.0 SELF-ASSESSMENT/EXERCISES

Mention and explain two widely known parallel programming models:

Answer

a. shared memory and

b. message passing

a. In the shared-memory programming model, tasks share a common

address space, which they read and write in an asynchronous

manner. The communication between tasks is implicit. If more

https://www.sciencedirect.com/topics/computer-science/transistors
https://www.sciencedirect.com/topics/computer-science/computing-units
https://www.sciencedirect.com/topics/computer-science/graphic-pipeline
https://www.sciencedirect.com/topics/computer-science/programmability

CIT 421 NET-CENTRIC COMPUTING

70

than one task accesses the same variable, the semaphores or locks

can be used for synchronization. By keeping data local to the

processor and making private copies, expensive memory accesses

are avoided, but some mechanism of coherence maintenance is

needed when multiple processors share the same data with the

possibility of writing.

b. In the message-passing programming model, tasks have private

memories, and they communicate explicitly via message

exchange. To exchange a message, each sends operation needs to

have a corresponding receive operation. Tasks are not constrained

to exist on the same physical machine.

2. Define the term, Parallel Programming

Answer:

A parallel programming model is a set of program abstractions for fitting

parallel activities from the application to the underlying parallel

hardware. It spans over different layers: applications, programming

languages, compilers, libraries, network communication, and I/O

systems.

5.0 CONCLUSION

A suitable combination of two previous parallel programming models is

sometimes appropriate. Processors can directly access memory on

another processor. This is achieved via message passing, but what the

programmer actually sees is shared-memory model

6.0 SUMMARY

In computing, a parallel programming model is

an abstraction of parallel computer architecture, with which it is

convenient to express algorithms and their composition in programs. Two

widely known parallel programming models are: shared

memory and message passing. Some of the Parallel Programming models

are Message Passing Interface(MPI), Open Multi-processing (OpenMP),

MapReduce, Open Computing Language(OpenCL) and Compute Unified

Device Architecture (CUDA)

7.0 REFERENCES/FURTHER READING

Linköping University Electronic Press

ttp://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-40734

High-Performance Computing - an overview | ScienceDirect Topics

https://en.wikipedia.org/wiki/Parallel_programming_model

https://www.sciencedirect.com/topics/computer-science/high-performance-computing
https://en.wikipedia.org/wiki/Parallel_programming_model

 CIT 421 MODULE 2

71

UNIT 3 MESSAGE PASSING PROGRAMMING

CONTENTS

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main content

3.1 Messages and Message-Passing Programming

3.2 Message-Passing Programming Model

3.4 Single-Program-Multiple-Data (SPMD)

4.0 Self-Assessment Exercises

5.0 Conclusion

6.0 Summary

7.0 References/Further Reading

1.0 INTRODUCTION

In computer science, message passing is a technique for invoking

behavior (i.e., running a program) on a computer. The invoking program

sends a message to a process (which may be an actor or object) and relies

on that process and its supporting infrastructure to then select and run

some appropriate code. Message passing differs from conventional

programming where a process, subroutine, or function is directly invoked

by name. Message passing is key to some models of

concurrency and object-oriented programming.

Message passing is ubiquitous in modern computer software. It is used as

a way for the objects that make up a program to work with each other and

as a means for objects and systems running on different computers (e.g.,

the Internet) to interact. Message passing may be implemented by various

mechanisms, including channels.

2.0 Intended Learning Outcomes (ILOs)

At the end of this unit, students will able to:

 Define what a Message is

 Explain the concept of Message Passing

 Itemize and explain the different Message Passing Programming

models

CIT 421 NET-CENTRIC COMPUTING

72

3.0 MAIN CONTENT

3.1 The message-passing

A message transfer is when data moves from variables in one sub-

program to variables in another sub-program. The message consists of the

data being sent. The message passing system has no interest in the value

of this data. It is only concerned with moving it. In general the following

information has to be provided to the message passing system to specify

the message transfer.

 Which processor is sending the message?

 Where is the data on the sending processor?

 What kind of data is being sent?

 How much data is there?

 Which processor(s) are receiving the message?

 Where should the data be left on the receiving processor?

 How much data is the receiving processor prepared to accept?

In general, the sending and receiving processors will cooperate in

providing this information. Some of this information provided by the

sending processor will be attached to the message as it travels through the

system and the message passing system may make some of this

information available to the receiving processor.

As well as delivering data, the message passing system has to provide

some information about progress of communications. A receiving

processor will be unable to use incoming data if it is unaware of its arrival.

Similarly, a sending processor may wish to find out if its message has

been delivered. A message transfer therefore provides synchronisation

information in addition to the data in the message.

The essence of message passing is communication and many of the

important concepts can be understood by analogy with the methods that

people use to communicate, phone, fax, letter, radio etc. Just as phones

and radio provide different kinds of service different message passing

systems can also take very different approaches. For the time being we

are only interested in general concepts rather than the details of particular

implementations.

3.2 The message-passing programming model

The sequential paradigm for programming is a familiar one. The

programmer has a simplified view of the target machine as a single

processor which can access a certain amount of memory. He or she

 CIT 421 MODULE 2

73

therefore writes a single program to run on that processor. The paradigm

may, in fact, be implemented in various ways, perhaps in a time-sharing

environment where other processes share the processor and memory, but

the programmer wants to remain above such implementation-dependent

details, in the sense that the program or the underlying algorithm could in

principle be ported to any sequential architecture -- that is after all the

point of a paradigm.

Figure 2.3.1: The sequential programming paradigm

The message-passing paradigm is a development of this idea for the

purposes of parallel programming. Several instances of the sequential

paradigm are considered together. That is, the programmer imagines

several processors, each with its own memory space, and writes a program

to run on each processor. So far, so good, Parallel programming by

definition requires co-operation between the processors to solve a task,

which requires some means of communication. The main point of the

message-passing paradigm is that the processes communicate by sending

each other messages. Thus the message-passing model has no concept of

a shared memory space or of processors accessing each other's memory

directly -- anything other than message-passing is out with the scope of

the paradigm. As far as the programs running on the individual processors

are concerned, the message passing operations are just subroutine calls.

Those with experience of using networks of workstations, client-server

systems or even object-oriented programs will recognise the message-

passing paradigm as nothing novel.

3.3 Single Program Multiple Data Streams (SPMD)

SPMD mode is a method of parallel computing, its processors run the

same program, but execute different data. SPMD could get better

computing performance through increasing the number of processors.

This also increased power consumption, and had problems of heat

dissipation at high clock speeds. Previously, computing performance was

increased through clock speed scaling. Parallel computing allow more

instructions to complete in a given time through parallel execution.

Nowadays, parallel computing has entered main stream use, following the

introduction of multi-core processors.

CIT 421 NET-CENTRIC COMPUTING

74

3.3.1 SPMD operation mechanism

The same program code is loaded to all the processors. Data is distributed

to each processor. The barrier is like a control signal generated by all

processors. It could synchronize the execution of processors at some

point.

The first example of SPMD: Titanium

Titanium is a Java-based language for writing high performance scientific

applications on large scale multiprocessors.

public static void main(String[] args) {

System.out.println("Hello from thread " + Ti.thisProc()) ;

Ti.barrier() ;

if (Ti.thisProc() == 0)

System.out.println("Done.") ; }

Data locality: No communication between processors.

The second example of SPMD: MPI

MPI is a standard interface for message passing parallel programs written

in C, C++, or Fortran.

begin program

x = 0z = 2b = 7

if (rank == 0) then

x = x + 1b=x* 3

send(x)

else

receive(y)

z=b* y (10)

endif

f = reduce(SUM,z)

end program

we can see that the variable y will be assigned the constant value 1 due to

the send of x and the corresponding receive into y. SPMD has a local view

of execution.

3.3.2 Advantages of SPMD

1. Locality

Data locality is essential to achieving good performance on large-scale

machines, where communication across the network is very expensive.

 CIT 421 MODULE 2

75

2. Structured Parallelism

The set of threads is fixed throughout computation. It is easier for

compilers to reason about SPMD code, resulting in more efficient

program analyses than in other models.

3. Simple runtime implementation

SPMD belongs to MIMD, it has a local view of execution and parallelism

is exposed directly to the user, compilers and runtime systems require less

effort to implement than many other MIMD models.

3.3.3 Disadvantages of SPMD

1. SPMD is a flat model, which makes it difficult to write hierarchical

code, such as divide-and-conquer algorithms, as well as programs

optimized for hierarchical machines.

2. The second disadvantage may be that it seems hard to get the

desired speedup using SPMD.

The advantages of SPMD are very obvious, and SPMD is still a common

use on many large-scale machines. Many scientists have done researches

to improve SPMD, such as the recursive SPMD, which provides

hierarchical teams. So, SPMD will still be a good method for parallel

computing in the future.

Discussion

Discuss Single Program multiple Data (SPMD).

4.0 SELF-ASSESSMENT/EXERCISES

1. What actually is the interest of a Message-passing System?

Answer

The message passing system has no interest in the value of this data. It is

only concerned with moving it. In general the following information has

to be provided to the message passing system to specify the message

transfer. Which processor is sending the message:

o Where is the data on the sending processor.

o What kind of data is being sent.

o How much data is there.

o Which processor(s) are receiving the message.

5.0 CONCLUSION

The message-passing paradigm is a development of this idea for the

purposes of parallel programming. Several instances of the sequential

paradigm are considered together. That is, the programmer imagines

CIT 421 NET-CENTRIC COMPUTING

76

several processors, each with its own memory space, and writes a program

to run on each processor. So far, so good, but parallel programming by

definition requires co-operation between the processors to solve a task,

which requires some means of communication

6.0 SUMMARY

Message-passing paradigm involves a set of sequential programs, one for

each processor. In reality, it is rare for a parallel programmer to make full

use of this generality and to write a different executable for each

processor. Indeed, for most problems this would be perverse -- usually a

problem can naturally be divided into sub-problems each of which is

solved in broadly the same way. Single Program Multiple Data Streams

(SPMD) mode is a method of parallel computing, its processors run the

same program, but execute different data. The advantages of SPMD are

data locality, structured parallelism and simple runtime implementation

while the disadvantages are that SPMD is a flat model, which makes it

difficult to write hierarchical code and that it seems hard to get the desired

speedup using SPMD.

7.0 REFERENCES/FURTHER READING

Neil MacDonald, Elspeth Minty, Tim Harding, Simon Brown, Edinburgh

Parallel Computing Centre, The University of Edinburgh. (Course

Notes)

Advances in GPU Research and Practice | ScienceDirect

https://slideplayer.com/slide/7559656/

https://www.sciencedirect.com/book/9780128037386/advances-in-gpu-research-and-practice
https://slideplayer.com/slide/7559656/

 CIT 421 MODULE 2

77

UNIT 4 DEPENDENCE ANALYSIS

CONTENTS

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main content

3.1 Dependency Analysis

3.2 How Dependencies are Found

 3.3 Why Do We use Dependency Analysis

 3.4 How Dependency Analysis Works

4.0 Self-Assessment Exercises

5.0 Conclusion

6.0 Summary

7.0 References/Further Reading

1.0 INTRODUCTION

Dependencies are the relationships that exist between the constituent

parts, or entities, of a complete system. A single dependency represents a

directional relationship, and therefore a sequence, between a pair of

system entities.

For example, if the system were a journey, there might be a walking

dependency from a flight to a taxi. If this is applied to a software context,

in a codebase, a function may depend on (invoke) another function. As

you can infer, dependencies can have types, or behaviour, as well as a

direction, indicating how the transition occurs and in what order.

Dependency analysis is the process of extracting the set of entities, their

dependencies and their types and direction, from the system so that the

system structure can be analysed, understood and improved.

3.0 MAIN CONTENT

3.1 Dependency analysis

When examining an artifact for re-use you might want to understand what

it depends on. Developing a service that has a dependency on a large

number of other distinct systems is likely to result in something that has

to be revalidated every time each of those dependencies changes (which

might therefore be quite often). To undertake a typical dependency

analysis, perform the following steps:

1. Identify the artefact with dependencies you want to analyze.

2. Trace through any relationships defined on that artefact and

identify the targets of the relationships. This impact analysis thus

CIT 421 NET-CENTRIC COMPUTING

78

results in a list of "dependencies" that the selected artefact

depends on.

3. If these "dependencies" also depend on other artefacts, then the

selected artefact will also have an indirect dependency. The

impact analysis must therefore act recursively looking for

relationships from any of the "dependencies".

This process continues until a complete graph is obtained starting at the

selected artefact and finishing with artefacts that have no further

dependencies. The selected artefact might have a dependency on any

artefact in the graph. Kindly note that an object can exist multiple times

in the graph if it can be reached in different ways.

3.2 How dependencies are found

When impact analysis is started, it does not change the direction of

processing through the graph. For example, an object, B, has a

dependency on object C, and object B is depended on by objects A and

D, as shown in Figure 1 below.

If object A is selected for analysis, the results list includes object B and

object C. Despite object D also having a dependency on objects B and

C, the analysis keeps tracing down through the dependencies and will

not find any objects which are backwards in the dependency hierarchy

that are not directly linked to the selected object, so object D will not be

in the results list.

Figure 2.4.1. Dependency analysis graph

3.3 Why use dependency analysis

A codebase may have been initially designed with a modular or layered

architecture, but over time, that clean structure could have been eroded,

introducing unexpected coupling between elements, which can damage

or even destroy the architectural intent. This can lead to ongoing

development or maintenance of the codebase becoming more complex

and time consuming to do, which can result in additional errors and

complications creeping into the code. The longer these problems go

unchecked, the more the problems can be compounded into the codebase

https://www.ibm.com/docs/de/wsr-and-r/8.5.6?topic=analysis-dependency#twsr_mansrvce_governanceuserguide-gen4__depanalysis

 CIT 421 MODULE 2

79

and therefore more expensive in time and money to address. Beyond

dependency analysis tools providing a way for you to address such

problems, they may also offer the ability to enforce structural rules

dictating how the different modules/layers or external entities such as

third party libraries may interact with and within the system respectively.

Once in place these rules typically allow the codebase to be automatically

checked for adherence and where violations are detected, notifications of

said problems can be immediately brought to the attention of team

members so the problems can be more quickly identified and addressed

before the issues become too embedded.

3.3.1 Improve Refactoring

Software architecture evaluation and refactoring should be a standard

activity in any development process because it is a way to reduce risk. It

is relatively inexpensive, and it pays for itself in the reduction of costly

errors or schedule delays. As software teams grow and/or become more

distributed, understanding software architecture becomes even more vital.

Dependency analysis allows everyone on the team to have a clear

understanding of the architecture (what components depend on other

components, etc.).

3.3.2 Reduce Technical Debt

Technical debt is a common concept in modern software development

practices that happens when there is no core set of well-defined and

enforceable design rules for a code base combined with a culture that does

not value creating technical wealth. By establishing and iteratively

improving design rules, using dependency analysis, technical debt is paid

down and the code base is easier to understand and maintain.

Development accelerates and this establishes technical wealth.

3.3.3 Understand Impact of Change

Automatic impact analysis, a feature of dependency analysis, will

highlight which parts of the application will be affected by planned

codebase changes, such as replacement of modules or third party libraries.

Understanding the impact of changes enables teams to quickly and

accurately respond to change requests. With impact analysis, teams can

be responsive while maintaining control over scope and customer

expectations. Impact analysis helps developers calculate the impact of

change.

CIT 421 NET-CENTRIC COMPUTING

80

3.4 How dependency analysis works

From the perspective of software dependency analysis, there must be an

initial parsing phase to gather all the data. There can be different qualities

of parsing depending on the approach taken. Some approaches rely on a

scan of directories containing the codebase in question whilst other

mechanisms exist where the codebase is compiled, resulting in a more

complete and precise picture. Once the “database” of information exists,

it is loaded into some tool that provides a suitable way of visualising the

structure of the codebase, and functionality to assist the user in

understanding and improving the architecture.

 Extract

Dependencies can be extracted using a variety of tools and techniques

depending on the language or software that is being analysed. This can be

as simple as scanning directories for languages such as C# or Java, to

using static analysis tools for languages such as C and C++.

 Import

Most enterprise class dependency analysis tools have more than one

import mechanism for dependencies. This will generally include a

number of different supported languages, possibly with the ability for the

definition of custom import processes.

 Interact

Once you have the data imported dependency analysis tools allow you to

interact with the dependencies to visualise the implementation against a

‘reference’ architecture. Features such as impact analysis and change logs

can be used to help ensure there is no ‘architecture creep’ in the

implementation.

 Discussion

What is dependency Analysis and how are dependencies found?

4.0 SELF-ASSESSMENT EXERCISE

How dependency analysis works?

From the perspective of software dependency analysis, there must be an

initial parsing phase to gather all the data. There can be different qualities

of parsing depending on the approach taken. Some approaches rely on a

scan of directories containing the codebase in question whilst other

mechanisms exist where the codebase is compiled, resulting in a more

complete and precise picture. Once the “database” of information exists,

it is loaded into some tool that provides a suitable way of visualising the

structure of the codebase, and functionality to assist the user in

understanding and improving the architecture.

 CIT 421 MODULE 2

81

 Extract

Dependencies can be extracted using a variety of tools and techniques

depending on the language or software that is being analysed. This can be

as simple as scanning directories for languages such as C# or Java, to

using static analysis tools for languages such as C and C++.

 Import

Most enterprise class dependency analysis tools have more than one

import mechanism for dependencies. This will generally include a

number of different supported languages, possibly with the ability for the

definition of custom import processes.

 Interact

Once you have the data imported dependency analysis tools allow you to

interact with the dependencies to visualise the implementation against a

‘reference’ architecture. Features such as impact analysis and change logs

can be used to help ensure there is no ‘architecture creep’ in the

implementation.

5.0 CONCLUSION

Computer systems face a number of security threats. One of the basic

threats is data loss, which means that parts of a database can no longer be

retrieved. This could be the result of physical damage to the storage

medium (like fire or water damage), human error or hardware failures.

Another security threat is unauthorized access. Many computer systems

contain sensitive information, and it could be very harmful if it were to

fall in the wrong hands. Imagine someone getting a hold of your social

security number, date of birth, address and bank information. Getting

unauthorized access to computer systems is known as cracking.

6.0 SUMMARY

To undertake a typical dependency analysis, perform the following steps:

1. Identify the artefact with dependencies you want to analyze.

2. Trace through any relationships defined on that artefact and

identify the targets of the relationships. This impact analysis thus

results in a list of "dependencies" that the selected artefact

depends on.

3. If these "dependencies" also depend on other artefacts, then the

selected artefact will also have an indirect dependency. The

impact analysis must therefore act recursively looking for

relationships from any of the "dependencies".

7.0 REFERENCES/FURTHER READING

WebSphere Service Registry and Repository /8.5.6/

https://www.ibm.com/docs/de/wsr-and-r
https://www.ibm.com/docs/de/wsr-and-r/8.5.6

CIT 421 NET-CENTRIC COMPUTING

82

UNIT 5 OPENMP PROGRAMMING

CONTENTS

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main content

3.1 Introduction to Open Specification for Multi-Processing

(OpenMP)

3.2 Brief History to OpenMP

3.3 A Thread

3.4 A Process

3.5 Differences between Threads and Processes

3.6 OpenMP Programming Model

3.6.1 Explicit Parallelism

3.6.2 Compiler Directive Based

3.6.3 Fork-Join Parallelism

3.6.4 Join

3.7 A Program

3.8 OpenMP/ Hello World

3.8.1 Steps to Create a Parallel Program

4.0 Self-Assessment Exercises

5.0 Conclusion

6.0 Summary

7.0 References/Further Reading

1.0 INTRODUCTION

OpenMP is a library for parallel programming in the SMP (symmetric

multi-processors, or shared-memory processors) model. When

programming with OpenMP, all threads share memory and data. OpenMP

supports C, C++ and Fortran. The OpenMP functions are included in a

header file called omp.h .

OpenMP program structure: An OpenMP program has sections that

are sequential and sections that are parallel. In general an OpenMP

program starts with a sequential section in which it sets up the

environment and initializes the variables.

When run, an OpenMP program will use one thread (in the sequential

sections), and several threads (in the parallel sections).

There is one thread that runs from the beginning to the end, and it's called

the master thread. The parallel sections of the program will cause

additional threads to fork. These are called the slave threads.

A section of code that is to be executed in parallel is marked by a special

directive (omp pragma). When the execution reaches a parallel section

 CIT 421 MODULE 2

83

(marked by omp pragma), this directive will cause slave threads to form.

Each thread executes the parallel section of the code independently. When

a thread finishes, it joins the master. When all threads finish, the master

continues with code following the parallel section.

Each thread has an ID attached to it that can be obtained using a runtime

library function (called omp_get_thread_num()). The ID of the master

thread is 0.

2.0 INTENDED LEARNING OUTCOMES (ILOS)

At the end of this unit, students will able to:

 Explain the concept of OpenMP programming

 Define the concept of thread, process and differentiate between

threads and processes

 Identify and explain the OpenMP programming models

3.0 MAIN CONTENT

3.1 Introduction to Open Specification for Multi-Processing

(OpenMP)

Open MP means Open specifications for MultiProcessing via

collaborative work between interested parties from the hardware and

software industry, government and academia. It is an Application

Program Interface (API) that is used to explicitly direct multi-threaded,

shared memory parallelism. API components include Compiler

directives, Runtime library routines and Environment variables. Portable

because API is specified for C/C++ and Fortran & Implementations on

almost all platforms including Unix/Linux and Windows. Standardization

is ensured by Jointly defined and endorsed by major computer hardware

and software vendors and it is possible to become ANSI standard.

3.2 Brief History of OpenMP

In 1991, Parallel Computing Forum (PCF) group invented a set of

directives for specifying loop parallelism in Fortran programs. X3H5, an

ANSI subcommittee developed an ANSI standard based on PCF. In 1997,

the first version of OpenMP for Fortran was defined by OpenMP

Architecture Review Board. Binding for C/C++ was introduced later.

Version 3.1 of it was available since 2011.

CIT 421 NET-CENTRIC COMPUTING

84

Figure 3: Open Specification for MultiProcessing (OpenMP)

3.3 Thread

A process is an instance of a computer program that is being executed. It

contains the program code and its current activity. A thread of execution

is the smallest unit of a process that can be scheduled by an operating

system. Thread model is an extension of the process model where each

process consists of multiple independent instruction streams (or threads)

that are assigned computer resources by some scheduling procedures.

Threads of a process share the address space of this process. Global

variables and all dynamically allocated data objects are accessible by all

threads of a process. Each thread has its own run-time stack, register,

program counter. Threads can communicate by reading/writing variables

in the common address space.

3.4 A Process

A process contains all the information needed to execute the program.

 Process ID

 Program code

 Data on run time stack

 Global data

 Data on heap

Each process has its own address space. In multitasking, processes are

given time slices in a round robin fashion. If computer resources are

assigned to another process, the status of the present process has to be

saved, in order that the execution of the suspended process can be

resumed at a later time.

 CIT 421 MODULE 2

85

3.5 Differences between threads and processes

A thread is contained inside a process. Multiple threads can exist within

the same process and share resources such as memory. The threads of a

process share the latter’s instructions (code) and its context (values that

its variables reference at any given moment). Different processes do not

share these resources.

3.6 OpenMP Programming Model

OpenMP is based on the existence of multiple threads in the shared

memory programming paradigm. A shared memory process consists of

multiple threads.

3.6.1 Explicit Parallelism

In Explicit Parallelism, a Programmer has full control over

parallelization. OpenMP is not an automatic parallel programming model.

3.6.2 Compiler Directive Based

Most OpenMP parallelism is specified through the use of compiler

directives which are embedded in the source code. OpenMP is not

necessarily implemented identically by all vendors. It is meant for

distributed-memory parallel systems (it is designed for shared address

spaced machines) but guaranteed to make the most efficient use of shared

memory. Required to check for data dependencies, data conflicts, race

conditions, or deadlocks. Required to check for code sequences, meant to

cover compiler-generated automatic parallelization and directives to the

compiler to assist such parallelization. Designed to guarantee that input

or output to the same file is synchronous when executed in parallel.

3.6.3 Fork-Join Parallelism

OpenMP program begin as a single process: the master thread. The master

thread executes sequentially until the first parallel region construct is

encountered. When a parallel region is encountered, master thread create

a group of threads by FORK and becomes the master of this group of

threads, and is assigned the thread id 0 within the group. The statement in

the program that are enclosed by the parallel region construct are then

executed in parallel among these threads.

Discussion

Is there a difference among the OpenMP programming models, discuss.

CIT 421 NET-CENTRIC COMPUTING

86

4.0 SELF-ASSESSMENT EXERCISES

a. Enumerate and explain the OpenMP programming models

OpenMP Programming Model

OpenMP is based on the existence of multiple threads in the shared

memory programming paradigm. A shared memory process consists of

multiple threads.

Explicit Parallelism

In Explicit Parallelism, a Programmer has full control over

parallelization. OpenMP is not an automatic parallel programming model.

Compiler Directive Based

Most OpenMP parallelism is specified through the use of compiler

directives which are embedded in the source code. OpenMP is not

necessarily implemented identically by all vendors. It is meant for

distributed-memory parallel systems (it is designed for shared address

spaced machines) but guaranteed to make the most efficient use of shared

memory. Required to check for data dependencies, data conflicts, race

conditions, or deadlocks. Required to check for code sequences, meant to

cover compiler-generated automatic parallelization and directives to the

compiler to assist such parallelization. Designed to guarantee that input

or output to the same file is synchronous when executed in parallel.

Fork-Join Parallelism.

OpenMP program begin as a single process: the master thread. The master

thread executes sequentially until the first parallel region construct is

encountered. When a parallel region is encountered, master thread create.

a. group of threads by FORK and becomes the master of this group

of threads, and is assigned the thread id 0 within the group. The

statement in the program that are enclosed by the parallel region

construct are then executed in parallel among these threads.

 b. Explain the concept of a thread, process and explain the differences

between the two

A Thread

A process is an instance of a computer program that is being executed. It

contains the program code and its current activity. A thread of execution

is the smallest unit of a process that can be scheduled by an operating

system. Thread model is an extension of the process model where each

process consists of multiple independent instruction streams (or threads)

that are assigned computer resources by some scheduling procedures.

Threads of a process share the address space of this process. Global

variables and all dynamically allocated data objects are accessible by all

 CIT 421 MODULE 2

87

threads of a process. Each thread has its own run-time stack, register,

program counter. Threads can communicate by reading/writing variables

in the common address space.

A Process
A process contains all the information needed to execute the program.

 Process ID

 Program code

 Data on run time stack

 Global data

 Data on heap

Each process has its own address space. In multitasking, processes are

given time slices in a round robin fashion. If computer resources are

assigned to another process, the status of the present process has to be

saved, in order that the execution of the suspended process can be

resumed at a later time.

Differences between threads and processes

A thread is contained inside a process. Multiple threads can exist within

the same process and share resources such as memory. The threads of a

process share the latter’s instructions (code) and its context (values that

its variables reference at any given moment). Different processes do not

share these resources.

5.0 CONCLUSION

More efficient, and lower-level parallel code is possible, however

OpenMP hides the low-level details and allows the programmer to

describe the parallel code with high-level constructs, which is as simple

as it can get.

OpenMP has directives that allow the programmer to:

 specify the parallel region

 specify whether the variables in the parallel section are private or

shared

 specify how/if the threads are synchronized

 specify how to parallelize loops

 specify how the works is divided between threads (scheduling)

6.0 SUMMARY

Open MP means Open specifications for MultiProcessing via

collaborative work between interested parties from the hardware and

software industry, government and academia. It is an Application

CIT 421 NET-CENTRIC COMPUTING

88

Program Interface (API) that is used to explicitly direct multi-threaded,

shared memory parallelism. A thread of execution is the smallest unit of

a process that can be scheduled by an operating system. Thread model is

an extension of the process model where each process consists of multiple

independent instruction streams (or threads) that are assigned computer

resources by some scheduling procedures. Threads of a process share the

address space of this process. Global variables and all dynamically

allocated data objects are accessible by all threads of a process. Each

thread has its own run-time stack, register, program counter. Threads can

communicate by reading/writing variables in the common address space.

A process contains all the information needed to execute the program vis-

à-vis the Process ID, Program code, Data on run time stack, Global data

and Data on heap.

7.0 REFERENCES/FURTHER READING

OpenMP | Introduction with Installation Guide

In C/C++/Fortran, parallel programming can be achieved

using OpenMP.

http://en.wikipedia.org/wiki/Process_(computing)

https://www.geeksforgeeks.org/openmp-introduction-with-installation-guide/
https://www.geeksforgeeks.org/introduction-to-parallel-computing/
https://www.geeksforgeeks.org/openmp-introduction-with-installation-guide/
http://en.wikipedia.org/wiki/Process_(computing)

 CIT 421 MODULE 2

89

UNIT 6 EVALUATION OF PROGRAMS

CONTENTS

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main content

3.1 Program Evaluation

3.2 Definition of Program Evaluation

3.2.1 Purposes for Program Evaluation

3.3 Barriers

3.3.1 Overcoming Barriers

3.4 Types of Evaluations

3.4.1 Current Evaluation

3.4.2 Formative Evaluation

3.4.3 Process Evaluation

3.4.4 Impact Evaluation

3.4.5 Outcome Evaluation

3.5 Performance or Program Monitoring

3.6 Evaluation Standards and Designs

3.7 Logic Models

3.8 Communicating Evaluation Findings

4.0 Self-Assessment Exercises

5.0 Conclusion

6.0 Summary

7.0 References/Further Reading

1.0 INTRODUCTION

Program evaluation is a systematic method for collecting, analyzing, and

using information to answer questions about projects, policies

and programs, particularly about their effectiveness and efficiency. In

both the public and private sectors, stakeholders often want to know

whether the programs they are funding, implementing, voting for,

receiving or objecting to are producing the intended effect.

While program evaluation first focuses around this definition, important

considerations often include how much the program costs per participant,

how the program could be improved, whether the program is worthwhile,

whether there are better alternatives, if there are unintended outcomes,

and whether the program goals are appropriate and useful. Evaluators help

to answer these questions, but the best way to answer the questions is for

the evaluation to be a joint project between evaluators and stakeholders.

CIT 421 NET-CENTRIC COMPUTING

90

2.0 INTENDED LEARNING OUTCOMES (ILOS)

At the end of this unit, students will be able to:

 Define the term, Program Evaluation

 identify and explain 5 types of Program evaluation

 Identify the barriers to Program evaluation and ways of

overcoming such

3.0 MAIN CONTENT

3.1 Programs Evaluation

Evaluation is the systematic application of scientific methods to assess

the design, implementation, improvement or outcomes of a program

(Rossi & Freeman, 1993; Short, Hennessy, & Campbell, 1996). The term

"program" may include any organized action such as media campaigns,

service provision, educational services, public policies, research projects,

etc. (Center for Disease Control and Prevention [CDC], 1999). The

purpose of Programming Evaluation includes:

 Demonstrate program effectiveness to funders

 Improve the implementation and effectiveness of programs

 Better manage limited resources

 Document program accomplishments

 Justify current program funding

 Support the need for increased levels of funding

 Satisfy ethical responsibility to clients to demonstrate positive and

negative effects of program participation.

 Document program development and activities to help ensure

successful replication

3.3 Barriers

Program evaluations require funding, time and technical skills:

requirements that are often perceived as diverting limited program

resources from clients. Program staff are often concerned that evaluation

activities will inhibit timely accessibility to services or compromise the

safety of clients. Evaluation can necessitate alliances between historically

separate community groups (e.g. academia, advocacy groups, service

providers. Mutual misperceptions regarding the goals and process of

evaluation can result in adverse attitudes.

 CIT 421 MODULE 2

91

3.3.1 Overcoming Barriers

Collaboration is the key to successful program evaluation. In evaluation

terminology, stakeholders are defined as entities or individuals that are

affected by the program and its evaluation. Involvement of these

stakeholders is an integral part of program evaluation. Stakeholders

include but are not limited to program staff, program clients, decision

makers, and evaluators. A participatory approach to evaluation based on

respect for one another's roles and equal partnership in the process

overcomes barriers to a mutually beneficial evaluation. Identifying an

evaluator with the necessary technical skills as well as a collaborative

approach to the process is integral. Programs have several options for

identifying an evaluator. Health departments, other state agencies, local

universities, evaluation associations and other programs can provide

recommendations. Additionally, several companies and university

departments providing these services can be located on the internet.

Selecting an evaluator entails finding an individual who has an

understanding of the program and funding requirements for evaluations,

demonstrated experience, and knowledge of the issue that the program is

targeting.

3.4 Types of Evaluation

Various types of evaluation can be used to assess different aspects or

stages of program development. As terminology and definitions of

evaluation types are not uniform, an effort has been made to briefly

introduce a number of types here.

3.4.1 Context Evaluation

Investigating how the program operates or will operate in a particular

social, political, physical and economic environment. This type of

evaluation could include a community needs or organizational

assessment.

3.4.2 Formative Evaluation

Assessing needs that a new program should fulfill (Short, Hennessy, &

Campbell, 1996), examining the early stages of a program's development

(Rossi & Freeman, 1993), or testing a program on a small scale before

broad dissemination (Coyle, Boruch, & Turner, 1991). Sample question:

Who is the intended audience for the program?

CIT 421 NET-CENTRIC COMPUTING

92

3.4.3 Process Evaluation

Examining the implementation and operation of program components.

Sample question: Was the program administered as planned?

3.4.4 Impact Evaluation

Investigating the magnitude of both positive and negative changes

produced by a program (Rossi & Freeman, 1993). Some evaluators limit

these changes to those occurring immediately (Green & Kreuter,

1991). Sample question: Did participant knowledge change after

attending the program?

3.4.5 Outcome Evaluation

Assessing the short and long-term results of a program. Sample question:

What are the long-term positive effects of program participation?

3.5 Performance or Program Monitoring

Similar to process evaluation, differing only by providing regular updates

of evaluation results to stakeholders rather than summarizing results at

the evaluation's conclusion (Rossi & Freeman, 1993; Burt, Harrell,

Newmark, Aron, & Jacobs, 1997).

3.6 Evaluation Standards and Designs

Evaluation should be incorporated during the initial stages of program

development. An initial step of the evaluation process is to describe the

program in detail. This collaborative activity can create a mutual

understanding of the program, the evaluation process, and program and

evaluation terminology. Developing a program description also helps

ensure that program activities and objectives are clearly defined and that

the objectives can be measured. In general, the evaluation should be

feasible, useful, culturally competent, ethical and accurate. Data should

be collected over time using multiple instruments that are valid, meaning

they measure what they are supposed to measure, and reliable, meaning

they produce similar results consistently. The use of qualitative as well as

quantitative data can provide a more comprehensive picture of the

program. Evaluations of programs aimed at violence prevention should

also be particularly sensitive to issues of safety and confidentiality.

Experimental designs are defined by the random assignment of

individuals to a group participating in the program or to a control group

not receiving the program. These ideal experimental conditions are not

 CIT 421 MODULE 2

93

always practical or ethical in "real world" constraints of program delivery.

A possible solution to blending the need for a comparison group with

feasibility is the quasi-experimental design in which an equivalent group

(i.e. individuals receiving standard services) is compared to the group

participating in the target program. However, the use of this design may

introduce difficulties in attributing the causation of effects to the target

program. While non-experimental designs may be easiest to implement

in a program setting and provide a large quantity of data, drawing

conclusions of program effects are difficult.

3.7 Logic Models

Logic models are flowcharts that depict program components. These

models can include any number of program elements, showing the

development of a program from theory to activities and outcomes.

Infrastructure, inputs, processes, and outputs are often included. The

process of developing logic models can serve to clarify program elements

and expectations for the stakeholders. By depicting the sequence and logic

of inputs, processes and outputs, logic models can help ensure that the

necessary data are collected to make credible statements of causality.

3.8 Communicating Evaluation Findings

Preparation, effective communication and timeliness in order to ensure

the utility of evaluation findings. Questions that should be answered at

the evaluation's inception include: what will be communicated? to whom?

by whom? and how? The target audience must be identified and the report

written to address their needs including the use of non-technical language

and a user-friendly format (National Committee for Injury Prevention and

Control, 1989). Policy makers, current and potential funders, the media,

current and potential clients, and members of the community at large

should be considered as possible audiences. Evaluation reports describe

the process as well as findings based on the data

Discussion

How do you communicate Program evaluation findings.

4.0 SELF-ASSESSMENT EXERCISES

1. What is Logic Models?

Answer:

Logic models are flowcharts that depict program components. These

models can include any number of program elements, showing the

development of a program from theory to activities and outcomes.

Infrastructure, inputs, processes, and outputs are often included. The

CIT 421 NET-CENTRIC COMPUTING

94

process of developing logic models can serve to clarify program elements

and expectations for the stakeholders. By depicting the sequence and logic

of inputs, processes and outputs, logic models can help ensure that the

necessary data are collected to make credible statements of causality.

2. What is Context Evaluation?

Answer:

Investigating how the program operates or will operate in a particular

social, political, physical and economic environment. This type of

evaluation could include a community needs or organizational assessment

5.0 CONCLUSION

Program evaluation is a necessity although there are certain barriers to it

which could be surmounted by collaborative efforts from all the

stakeholders and appropriate evaluator.

6.0 SUMMARY

Program evaluation is a systematic method for collecting, analyzing, and

using information to answer questions about projects, policies

and programs, particularly about their effectiveness and efficiency. The

purpose of Programming Evaluation includes: Demonstrate program

effectiveness to funders, Improve the implementation and effectiveness

of programs, Better manage limited resources, Document program

accomplishments, Justify current program funding, Support the need for

increased levels of funding, Satisfy ethical responsibility to clients to

demonstrate positive and negative effects of program participation and

Document program development and activities to help ensure successful

replication. Evaluation should be incorporated during the initial stages of

program development. An initial step of the evaluation process is to

describe the program in detail. Logic models are flowcharts that depict

program components. These models can include any number of program

elements, showing the development of a program from theory to activities

and outcomes.

7.0 REFERENCES/FURTHER READING

Burt, M. R., Harrell, A. V., Newmark, L. C., Aron, L. Y., & Jacobs, L. K.

(1997). Evaluation guidebook: Projects funded by S.T.O.P.

formula grants under the Violence Against Women Act. The Urban

Institute. http://www.urban.org/crime/evalguide.html

http://www.urban.org/crime/evalguide.html

 CIT 421 MODULE 2

95

Centers for Disease Control and Prevention. (1992). Handbook for

evaluating HIV education. Division of Adolescent and School

Health, Atlanta.

CDC. Framework for program evaluation in public health. MMWR

Recommendations and Reports 1999;48(RR11):1-40.

Chalk, R., & King, P. A. (Eds.). (1998). Violence in Families: Assessing

prevention and treatment programs. Washington DC: National

Academy Press.

Coyle, S. L., Boruch, R. F., & Turner, C. F. (Eds.). (1991). Evaluating

AIDS prevention programs: Expanded edition. Washington DC:

National Academy Press.

Green, L.W., & Kreuter, M. W. (1991). Health promotion planning: An

educational and environmental approach (2nd ed.). Mountain

View, CA: Mayfield Publishing Company.

National Committee for Injury Prevention and Control. (1989). Injury

prevention: Meeting the challenge. American Journal of

Preventive Medicine, 5(Suppl. 3).

Rossi, P. H., & Freeman, H. E. (1993). Evaluation: A systematic

approach (5th ed.). Newbury Park, CA: Sage Publications, Inc.

Short, L., Hennessy, M., & Campbell, J. (1996). Tracking the work.

In Family violence: Building a coordinated community response:

A guide for communities.

Witwer, M. (Ed.) American Medical Association. Chapter 5.

W.K. Kellogg Foundation. W.K. Kellogg evaluation handbook.

http://www.wkkf.org/Publications/evalhdbk/default.htm

(http://www.wkkf.org/Publications/evalhdbk/default.htm).

https://en.wikipedia.org/wiki/Program_evaluation

http://www.wkkf.org/Publications/evalhdbk/default.htm
http://www.wkkf.org/Publications/evalhdbk/default.htm
https://en.wikipedia.org/wiki/Program_evaluation

CIT 421 MODULE 3

96

MODULE 3: DISTRIBUTED SYSTEMS

UNIT 1: INTRODUCTION TO DISTRIBUTED SYSTEMS

CONTENTS

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content

3.1 Distributed Systems

3.2 How a Distributed Systems Works

3.3 Key Characteristics of a Distributed Systems

3.4 Distributed Tracing

3.5 Benefits of Distributed Systems

3.6 Challenges of Distributed Systems

3.7 Risks of Distributed Systems

4.0 Self-Assessment Exercises

5.0 Conclusion

6.0 Summary

7.0 References/Further Reading

1.0 INTRODUCTION

Distributed systems are an important development for IT and computer

science as an increasing number of related jobs are so massive and

complex that it would be impossible for a single computer to handle them

alone. Distributed computing offers additional advantages over traditional

computing environments.

2.0 INTENDED LEARNING OUTCOMES (ILOS)

By the end of this unit, you will be able to:

 Explain the concept of Distributed Systems

 Describe How a Distributed Systems work

 List and explain the Key Characteristics of a Distributed Systems

 Explain the term, Distributed Tracing

 Mention 5 benefits of Distributed Systems

 Challenges of Distributed Systems

 Risks of Distributed Systems

CIT 421 NET-CENTRIC COMPUTING

97

3.0 MAIN CONTENT

3.1 Distributed Systems

A Distributed system is a computing environment in which various

components are spread across multiple computers (or other computing

devices) on a network. These devices split up the work, coordinating their

efforts to complete the job more efficiently than if a single device had

been responsible for the task. Distributed systems reduce the risks

involved with having a single point of failure, bolstering reliability and

fault tolerance. Modern distributed systems are generally designed to be

scalable in near real-time and additional computing resources can be

added on the fly to increasing performance and further reducing time to

completion.

Earlier, distributed computing was expensive, complex to configure and

difficult to manage

But, Software as a Service (SaaS) platforms has offered expanded

functionality, distributed computing has become more streamlined and

affordable for businesses, large and small, all types of computing jobs be

it database management, video games or Softwares cryptocurrency

systems, scientific simulations, blockchain technologies and AI platforms

all use Distributed Systems platforms.

3.2 How a distributed system works

Distributed systems have evolved over time but today’s most common

implementations are largely designed to operate via the internet and, more

specifically, the cloud

For Example:

• A distributed system begins with a task, such as rendering a video

to create a finished product ready for release.

• The web application, or distributed applications, managing this

task — like a video editor on a client computer:

• splits the job into pieces

• An algorithm gives one frame of the video to each of a dozen

different computers (or nodes) to complete the rendering

• Once the frame is complete, the managing application gives the

node a new frame to work on

• This process continues until the video is finished and all the pieces

are put back together

Distributed Systems turns a task that might have taken days for a single

computer to complete into one that is finished in a matter of minutes.

CIT 421 MODULE 3

98

Figure 3.1.1: Distributed Operating Systems

There are many models and architectures of distributed systems in use

today.

Client-server systems, the most traditional and simple type of distributed

system, involve a multitude of networked computers that interact with a

central server for data storage, processing or other common goal. Cell

phone networks are an advanced type of distributed system that share

workloads among handsets, switching systems and internet-based

devices. Peer-to-peer networks, in which workloads are distributed

among hundreds or thousands of computers all running the same software,

are another example of a distributed system architecture. The most

common forms of distributed systems in the enterprise today are those

that operate over the web, handing off workloads to dozens of cloud-

based virtual server instances that are created as needed, then terminated

when the task is complete.

3.3 Key Characteristics of a Distributed System

Distributed systems are commonly defined by the following key

characteristics and features:

 Scalability: The ability to grow as the size of the workload

increases is an essential feature of distributed systems,

accomplished by adding additional processing units or nodes to the

network as needed.

 Concurrency: Distributed system components run

simultaneously. They are also characterized by the lack of a

“global clock,” when tasks occur out of sequence and at different

rates.

CIT 421 NET-CENTRIC COMPUTING

99

 Availability/fault tolerance: If one node fails, the remaining

nodes can continue to operate without disrupting the overall

computation.

 Transparency: An external programmer or end user sees a

distributed system as a single computational unit rather than as its

underlying parts, allowing users to interact with a single logical

device rather than being concerned with the system’s architecture.

 Heterogeneity: In most distributed systems, the nodes and

components are often asynchronous, with different hardware,

middleware, software and operating systems. This allows the

distributed systems to be extended with the addition of new

components.

 Replication: Distributed systems enable shared information and

messaging, ensuring consistency between redundant resources,

such as software or hardware components, improving fault

tolerance, reliability and accessibility.

3.4 Distributed Tracing

Distributed tracing, sometimes called distributed request tracing, is a

method for monitoring applications — typically those built on a

microservices architecture — which are commonly deployed on

distributed systems. Distributed tracing is essentially a form of distributed

computing in that it is commonly used to monitor the operations of

applications running on distributed systems.

In software development and operations, tracing is used to follow the

course of a transaction as it travels through an application — an online

credit card transaction as it winds its way from a customer’s initial

purchase to the verification and approval process to the completion of the

transaction, for example. A tracing system monitors this process step by

step, helping a developer to uncover bugs, bottlenecks, latency or other

problems with the application.

Distributed tracing is necessary because of the considerable complexity

of modern software architectures. A distributed tracing system is designed

to operate on a distributed services infrastructure, where it can track

multiple applications and processes simultaneously across numerous

concurrent nodes and computing environments. Without distributed

tracing, an application built on a microservices architecture and running

on a system as large and complex as a globally distributed system

environment would be impossible to monitor effectively.

CIT 421 MODULE 3

100

3.5 Benefits of Distributed Systems

Distributed systems offer a number of advantages over monolithic, or

single, systems, including:

 Greater flexibility: It is easier to add computing power as the

need for services grows. In most cases today, you can add servers

to a distributed system on the fly.

 Reliability: A well-designed distributed system can withstand

failures in one or more of its nodes without severely impacting

performance. In a monolithic system, the entire application goes

down if the server goes down.

 Enhanced speed: Heavy traffic can bog down single servers when

traffic gets heavy, impacting performance for everyone. The

scalability of distributed databases and other distributed systems

makes them easier to maintain and also sustain high-performance

levels.

 Geo-distribution: Distributed content delivery is both intuitive

for any internet user, and vital for global organizations.

3.6 What are some challenges of distributed systems?

Distributed systems are considerably more complex than monolithic

computing environments, and raise a number of challenges around

design, operations and maintenance. These include:

 Increased opportunities for failure: The more systems added to

a computing environment, the more opportunity there is for failure.

If a system is not carefully designed and a single node crashes, the

entire system can go down. While distributed systems are designed

to be fault tolerant, that fault tolerance isn’t automatic or

foolproof.

 Synchronization process challenges: Distributed systems work

without a global clock, requiring careful programming to ensure

that processes are properly synchronized to avoid transmission

delays that result in errors and data corruption. In a complex

system — such as a multiplayer video game — synchronization

can be challenging, especially on a public network that carries data

traffic.

 Imperfect scalability: Doubling the number of nodes in a

distributed system doesn’t necessarily double performance.

Architecting an effective distributed system that maximizes

scalability is a complex undertaking that needs to take into account

load balancing, bandwidth management and other issues.

 More complex security: Managing a large number of nodes in a

heterogeneous or globally distributed environment creates

CIT 421 NET-CENTRIC COMPUTING

101

numerous security challenges. A single weak link in a file system

or larger distributed system network can expose the entire system

to attack.

 Increased complexity: Distributed systems are more complex to

design, manage and understand than traditional computing

environments.

3.7 The risks of distributed systems

The challenges of distributed systems as outlined above create a number

of correlating risks. These include:

 Security: Distributed systems are as vulnerable to attack as any

other system, but their distributed nature creates a much larger

attack surface that exposes organizations to threats.

 Risk of network failure: Distributed systems are beholden to

public networks in order to transmit and receive data. If one

segment of the internet becomes unavailable or overloaded,

distributed system performance may decline.

 Governance and control issues: Distributed systems lack the

governability of monolithic, single-server-based systems, creating

auditing and adherence issues around global privacy laws such as

GDPR. Globally distributed environments can impose barriers to

providing certain levels of assurance and impair visibility into

where data resides.

 Cost control: Unlike centralized systems, the scalability of

distributed systems allows administrators to easily add additional

capacity as needed, which can also increase costs. Pricing for

cloud-based distributed computing systems are based on usage

(such as the number of memory resources and CPU power

consumed over time). If demand suddenly spikes, organizations

can face a massive bill.

4.0 SELF-ASSESSMENT EXERCISES

1. Define Distributed Systems

Answer:

A Distributed system is a computing environment in which various

components are spread across multiple computers (or other computing

devices) on a network. These devices split up the work, coordinating their

efforts to complete the job more efficiently than if a single device had

been responsible for the task

CIT 421 MODULE 3

102

2. What are Benefits of Distributed Systems

Answer:

Distributed systems offer a number of advantages over monolithic, or

single, systems, including:

 Greater flexibility: It is easier to add computing power as the

need for services grows. In most cases today, you can add servers

to a distributed system on the fly.

 Reliability: A well-designed distributed system can withstand

failures in one or more of its nodes without severely impacting

performance. In a monolithic system, the entire application goes

down if the server goes down.

 Enhanced speed: Heavy traffic can bog down single servers when

traffic gets heavy, impacting performance for everyone. The

scalability of distributed databases and other distributed systems

makes them easier to maintain and also sustain high-performance

levels.

 Geo-distribution: Distributed content delivery is both intuitive

for any internet user, and vital for global organizations.

3. Identify the risks of Distributed Systems

Answer:

The challenges of distributed systems as outlined above create a number

of correlating risks. These include:

 Security: Distributed systems are as vulnerable to attack as any

other system, but their distributed nature creates a much larger

attack surface that exposes organizations to threats.

 Risk of network failure: Distributed systems are beholden to

public networks in order to transmit and receive data. If one

segment of the internet becomes unavailable or overloaded,

distributed system performance may decline.

 Governance and control issues: Distributed systems lack the

governability of monolithic, single-server-based systems, creating

auditing and adherence issues around global privacy laws such as

GDPR. Globally distributed environments can impose barriers to

providing certain levels of assurance and impair visibility into

where data resides.

 Cost control: Unlike centralized systems, the scalability of

distributed systems allows administrators to easily add additional

capacity as needed, which can also increase costs. Pricing for

cloud-based distributed computing systems are based on usage

(such as the number of memory resources and CPU power

consumed over time). If demand suddenly spikes, organizations

can face a massive bill.

CIT 421 NET-CENTRIC COMPUTING

103

5.0 CONCLUSION

Distributed Systems is integral part of the world today because everything

in the world runs on inter-networking ranging from education, e-

commerce, entertainments, agriculture and even the kitchen.

6.0 SUMMARY

Distributed systems offer a number of advantages over monolithic, or

single, systems, including Greater flexibility, Reliability, Enhanced speed

and Geo-distribution. Distributed systems raise a number of challenges

around design, operations and maintenance. These include Increased

opportunities for failure, Synchronization process challenges, Imperfect

scalability, More complex security and Increased complexity. The

challenges of distributed systems as outlined above create a number of

correlating risks. These include Security, Risk of network failure,

Governance and control issues and Cost control.

7.0 REFERENCES/FURTHER READING

https://www.splunk.com/en_us/data-insider/what-are-distributed-

systems.html#elements-of-distributed-systems

https://www.splunk.com/en_us/data-insider/what-are-distributed-systems.html#elements-of-distributed-systems
https://www.splunk.com/en_us/data-insider/what-are-distributed-systems.html#elements-of-distributed-systems

CIT 421 MODULE 3

104

UNIT 2 SYSTEMS MODELS

CONTENTS

1.0 Introduction

1.0 Intended Learning Outcomes (ILOs)

3.0 Main Content

3.1 A Systems

3.2 A Model and Systems Models

3.3 Systems Model Types

4.0 Self-Assessment Exercises

4.0 Conclusion

5.0 Summary

6.0 References/Further Reading

1.0 INTRODUCTION

Systems modeling is the interdisciplinary study of the use of models to

conceptualize and construct systems in business and IT development.

A common type of systems modeling is function modeling, with specific

techniques such as the Functional Flow Block Diagram and IDEF0.

These models can be extended using functional decomposition, and can

be linked to requirements models for further systems partition.

Contrasting the functional modeling, another type of systems modeling

is architectural modeling which uses the systems architecture to

conceptually model the structure, behavior, and more views of a system.

2.0 Intended Learning Outcomes (ILOs)

By the end of this unit, you will be able to:

 Explain the terms, Systems and Models

 Identify the Systems’ different perspective

 Describe the 5 types of UML diagrams

3.1 A system is a simplified representation of reality. "System" is a

common word, often used with loose meaning. Whereas in the real world,

a "system" may seem at times an endless series of connected elements,

we refer here to a system as a series of selected, chosen elements with

specified boundaries and pre-determined time characteristics.

A 'simple' system could for instance be a nearby coffee shop. This coffee

shop has customers who place orders and staff who process them. There

may be at times very few customers, whereas at others, the place is very

busy (say, because the coffee shop is just nearby the University, and has

https://en.wikipedia.org/wiki/Interdisciplinarity
https://en.wikipedia.org/wiki/Scientific_modeling
https://en.wikipedia.org/wiki/System
https://en.wikipedia.org/wiki/Business
https://en.wikipedia.org/wiki/Information_technology
https://en.wikipedia.org/wiki/Function_model
https://en.wikipedia.org/wiki/Functional_Flow_Block_Diagram
https://en.wikipedia.org/wiki/IDEF0
https://en.wikipedia.org/wiki/Functional_decomposition
https://en.wikipedia.org/wiki/Requirement
https://en.wikipedia.org/wiki/Systems_architecture
https://en.wikipedia.org/wiki/Systems_architecture
https://en.wikipedia.org/wiki/Structure
https://en.wikipedia.org/wiki/Behavior
https://en.wikipedia.org/wiki/View_model

CIT 421 NET-CENTRIC COMPUTING

105

free wi-fi, which the students use while enjoying a coffee and chat with

their friends). So, for the customers, and the staff too, time is not neutral.

It is then useful to look at our coffee-shop-system over a series of sections

of time (time steps) that make a day. Perhaps an appropriate time step of

one hour is adequate: it is more than enough to encapsulate long hours

when little really happens, but is just enough to capture events at peak

time. So much, though, may happen in one hour over a cup of coffee,

when the place is busy, people meet, many orders are placed, many

messages received. Perhaps, a time step of 30 minutes, or even 15 minutes

might then be better. So, although many near-empty 15-minute segments

might be a waste of computing time, and lead to outputs that may be

boring for some parts of the day, these might ensure that important events

are not lost at peak time. Yet - so many things may still happen over a

period of 15 minutes. Might a time step of 5 minutes be safer? This is

obviously not an easy question.

At any rate, a decision must be made, and it is up to the modeler to make

it. Each system, such as the coffee-shop-system, has a time constant,

which we can simply define for the time being as the delay over which

the system may strongly change, or, in systems analysis phrasing: over

which the state of the system may change. One way to empirically choose

a time constant is based on experience and knowledge of the system at

hand. Note that in the coffee-shop-system, not all the elements are

enclosed within the coffee shop itself, which are important for the coffee-

shop-system: for instance, it has free wi-fi. We therefore can call it a semi-

open system. Biological systems, phytopathological systems in particular,

are semi-open: they receive and transmit information, components,

biomass, or energy from and to their environment.

3.2 A model & Systems Models

3.2.1 A model is a computer program that describes the mechanics of

the considered system. The encoding of a model can be made in many

ways.

3.2.2 Systems Models

A system is a set of elements that relate to each other in some manner.

The elements of a system can be objects, people, organizations, processes,

descriptions or even ideas. The relationships between these elements can

include different kinds of influence, flows of information, resources,

associations, temporal relationships, or origins.

Models of systems therefore try to capture these relationships in a way

that gives a perspective on how the system as a whole interacts.

CIT 421 MODULE 3

106

3.2.3 System modeling is the process of developing abstract models of

a system, with each model presenting a different view or perspective of

that system. It is about representing a system using some kind of graphical

notation, which is now almost always based on notations in the Unified

Modeling Language (UML). Models help the analyst to understand the

functionality of the system; they are used to communicate with customers.

3.2.4 Models’ Different perspectives:

 An external perspective, where you model the context or

environment of the system.

 An interaction perspective, where you model the interactions

between a system and its environment, or between the components

of a system.

 A structural perspective, where you model the organization of a

system or the structure of the data that is processed by the system.

 A behavioral perspective, where you model the dynamic behavior

of the system and how it responds to events.

3.2.5 UML diagrams

Five types of UML diagrams that are the most useful for system

modeling:

 Activity diagrams, which show the activities involved in a process

or in data processing.

 Use case diagrams, which show the interactions between a system

and its environment.

 Sequence diagrams, which show interactions between actors and

the system and between system components.

 Class diagrams, which show the object classes in the system and

the associations between these classes.

 State diagrams, which show how the system reacts to internal and

external events.

Models of both new and existing system are used during requirements

engineering. Models of the existing systems help clarify what the

existing system does and can be used as a basis for discussing its strengths

and weaknesses. These then lead to requirements for the new system.

Models of the new system are used during requirements engineering to

help explain the proposed requirements to other system stakeholders.

Engineers use these models to discuss design proposals and to document

the system for implementation.

CIT 421 NET-CENTRIC COMPUTING

107

3.3 Systems Models Types

3.3.1 Context and process models

Context models are used to illustrate the operational context of a system

- they show what lies outside the system boundaries. Social and

organizational concerns may affect the decision on where to position

system boundaries. Architectural models show the system and its

relationship with other systems.

System boundaries are established to define what is inside and what is

outside the system. They show other systems that are used or depend on

the system being developed. The position of the system boundary has a

profound effect on the system requirements. Defining a system boundary

is a political judgment since there may be pressures to develop system

boundaries that increase/decrease the influence or workload of different

parts of an organization.

Context models simply show the other systems in the environment, not

how the system being developed is used in that environment. Process

models reveal how the system being developed is used in broader

business processes. UML activity diagrams may be used to define

business process models.

The example below shows a UML activity diagram describing the

process of involuntary detention and the role of MHC-PMS (mental

healthcare patient management system) in it.

Figure 3.2.1: UML activity diagram for involuntary detention and the

role of MHC-PMS

CIT 421 MODULE 3

108

3.3.2 Interaction models

Types of interactions that can be represented in a model:

 Modeling user interaction is important as it helps to identify user

requirements.

 Modeling system-to-system interaction highlights the

communication problems that may arise.

 Modeling component interaction helps us understand if a

proposed system structure is likely to deliver the required system

performance and dependability.

1. Use cases were developed originally to support requirements

elicitation and now incorporated into the UML, . Each use case

represents a discrete task (figure 3.3.3) that involves external

interaction with a system. Actors in a use case may be people or

other systems. Use cases can be represented using a UML use case

diagram and in a more detailed textual/tabular format.

Figure 3.3.3: Simple Sample of Use-cases

Use case description in a tabular format:

Use case title Transfer data

Description

A receptionist may transfer data from the MHC-PMS to

a general patient record database that is maintained by a

health authority. The information transferred may either

be updated personal information (address, phone

number, etc.) or a summary of the patient's diagnosis

and treatment.

Actor(s) Medical receptionist, patient records system (PRS)

Preconditions

Patient data has been collected (personal information,

treatment summary);

The receptionist must have appropriate security

permissions to access the patient information and the

PRS.

Postconditions PRS has been updated

Main success

scenario

1. Receptionist selects the "Transfer data" option from

the menu.

2. PRS verifies the security credentials of the

receptionist.

CIT 421 NET-CENTRIC COMPUTING

109

3. Data is transferred.

4. PRS has been updated.

Extensions

2a. The receptionist does not have the necessary security

credentials.

2a.1. An error message is displayed.

2a.2. The receptionist backs out of the use case.

2. UML sequence diagrams are used to model the interactions

between the actors and the objects within a system. A sequence

diagram shows (figure 3.3.4) the sequence of interactions that take

place during a particular use case or use case instance. The objects

and actors involved are listed along the top of the diagram, with a

dotted line drawn vertically from these. Interactions between

objects are indicated by annotated arrows.

Figure 3.3.4: UML sequence diagrams

3.3.3 Structural models

Structural models of software display the organization of a system in

terms of the components that make up that system and their relationships.

Structural models may be static models, which show the structure of the

system design, or dynamic models, which show the organization of the

system when it is executing. You create structural models of a system

when you are discussing and designing the system architecture.

CIT 421 MODULE 3

110

1. UML class diagrams are used when developing an object-

oriented system model to show the classes in a system and the

associations between these classes as in figure 3.3.5. An object

class can be thought of as a general definition of one kind of system

object. An association is a link between classes that indicates that

there is some relationship between these classes. When you are

developing models during the early stages of the software

engineering process, objects represent something in the real world,

such as a patient, a prescription, doctor, etc.

Figure 3.3.5: UML Class Diagrams

2. Generalization is an everyday technique (figure 3.3.6) that we use

to manage complexity. In modeling systems, it is often useful to

examine the classes in a system to see if there is scope for

generalization. In object-oriented languages, such as Java,

generalization is implemented using the

class inheritance mechanisms built into the language. In a

generalization, the attributes and operations associated with

higher-level classes are also associated with the lower-level

CIT 421 NET-CENTRIC COMPUTING

111

classes. The lower-level classes are subclasses inherit the attributes

and operations from their superclasses. These lower-level classes

then add more specific attributes and operations.

Figure 3.3.6: Generalization implemented using class inheritance

mechanisms

An aggregation model shows (figure 3.3.7) how classes that are

collections are composed of other classes. Aggregation models are similar

to the part-of relationship in semantic data models.

Figure 3.3.7: Aggregation Models

3.3.4 Behavioral models

Behavioral models are models of the dynamic behavior of a system as it

is executing. They show what happens or what is supposed to happen

when a system responds to a stimulus from its environment. Two types of

stimuli:

 Some data arrives that has to be processed by the system

CIT 421 MODULE 3

112

 Some event happens that triggers system processing. Events may

have associated data, although this is not always the case.

Many business systems are data-processing systems that are primarily

driven by data. They are controlled by the data input to the system, with

relatively little external event processing.

Data-driven models show the sequence of actions involved in processing

input data and generating an associated output. They are particularly

useful during the analysis of requirements as they can be used to show

end-to-end processing in a system.

Data-driven models can be created using UML activity diagrams:

Figure 3.3.8: Data-driven models using UML activity diagrams

Data-driven models can also be created using UML sequence diagrams:

Figure 3.3.9: Data-driven models using UML sequence diagrams

CIT 421 NET-CENTRIC COMPUTING

113

Real-time systems are often event-driven, with minimal data processing.

For example, a landline phone switching system responds to events such

as 'receiver off hook' by generating a dial tone.

Event-driven models shows how a system responds to external and

internal events. It is based on the assumption that a system has a finite

number of states and that events (stimuli) may cause a transition from one

state to another.

Event-driven models can be created using UML state diagrams:

Figure 3.3.10: Event-driven models using UML state diagrams

4.0 SELF-ASSESSMENT EXERCISES

i. Define a Systems, Models and Systems models

Answer:

A system is a simplified representation of reality. "System" is a common

word, often used with loose meaning. Whereas in the real world, a

"system" may seem at times an endless series of connected elements, we

refer here to a system as (1) a series of selected, chosen elements (this is

a first simplification, and thus an implicit assumption), with (2) specified

boundaries (a second simplification and implicit assumption), and (3) pre-

determined time characteristics (with a third simplification and implicit

assumption).

A model is a computer program that describes the mechanics of the

considered system. The encoding of a model can be made in many ways.

Systems Models: A system is a set of elements that relate to each other

in some manner. The elements of a system can be objects, people,

organizations, processes, descriptions or even ideas. The relationships

CIT 421 MODULE 3

114

between these elements can include different kinds of influence, flows of

information, resources, associations, temporal relationships, or origins

ii. State and explain the 5 types of UML diagrams for system

modeling.

Answer:

 Activity diagrams, which show the activities involved in a process

or in data processing.

 Use case diagrams, which show the interactions between a system

and its environment.

 Sequence diagrams, which show interactions between actors and

the system and between system components.

 Class diagrams, which show the object classes in the system and

the associations between these classes.

 State diagrams, which show how the system reacts to internal and

external events

iii. Identify the types of interactions that can be represented in a

model.

 User interaction: Modeling user interaction is important as it

helps to identify user requirements.

 System-to-system interaction: Modeling system-to-system

interaction highlights the communication problems that may arise.

 Component interaction: Modeling component interaction helps

us understand if a proposed system structure is likely to deliver the

required system performance and dependability.

5.0 CONCLUSION

Systems modeling is essential to be able to represent a real life entity. A

model enables stakeholders to experience or monitor the elements of a

systems and the relationships amongst them. In computing, it is modeling

that enables a systems analyst to isolate sub-systems by the single task

that each should perform.

6.0 SUMMARY

A system is a simplified representation of reality. A model is a computer

program that describes the mechanics of the considered system. The

encoding of a model can be made in many ways.

Systems Models: A system is a set of elements that relate to each other in

some manner. The elements of a system can be objects, people,

organizations, processes, descriptions or even ideas. Systems Models

types are Context and process models, Interaction models, Structural

models and Behavioral models.

CIT 421 NET-CENTRIC COMPUTING

115

7.0 REFERENCES/FURTHERREADING

https://en.wikipedia.org/wiki/Systemsmodeling

https://en.wikipedia.org/wiki/Systemsmodeling

CIT 421 MODULE 3

116

UNIT 3 DISTRIBUTED OBJECTS

CONTENTS

2.0 Introduction

3.3 Intended Learning Outcomes (ILOs)

3.0 Main Content

3.1 Distributed Objects Introduction

3.2 Local Objects Vs. Distributed Objects

3.3 The Distributed Objects Paradigm

3.3 Distributed Objects

3.4 Distributed Objects Systems/ Protocols

3.5 Remote procedure Call & Remote Method Invocation

3.6.1 Remote procedure Call

3.6.2 Remote Procedure Call Model

3.7 Local Procedure Call and Remote Procedure Call

1.7.1 Remote Procedure Calls (RPC)

4.0 Self-Assessment Exercises

5.0 Conclusion

6.0 Summary

7.0 References/Further Reading

1.0 INTRODUCTION

A distributed object is an object that can be accessed remotely. This

means that a distributed object can be used like a regular object, but from

anywhere on the network. An object is typically considered to encapsulate

data and behavior. The location of the distributed object is not critical to

the user of the object. A distributed object might provide its user with a

set of related capabilities. The application that provides a set of

capabilities is often referred to as a service. A Business Object might be

a local object or a distributed object. The term business object refers to an

object that performs a set of tasks associated with a particular business

process.

2.0 INTENDED LEARNING OUTCOMES (ILOS)

By the end of this unit, you will be able to:

 Explain the concept of Distributed Objects

 Differentiate between the Local and Distributed objects

 Identify and explain the distributed object paradigm mechanisms

CIT 421 NET-CENTRIC COMPUTING

117

3.1 Distributed Objects

The distributed object paradigm
It provides abstractions beyond those of the message-passing model. In

object-oriented programming, objects are used to represent an entity

significant to an application.

Each object encapsulates:

 The state or data of the entity: in Java, such data is contained in

the instance variables of each object;

 The operations of the entity, through which the state of the entity

can be accessed or updated.

3.2 Local Objects vs. Distributed Objects

 Local objects are those whose methods can only be invoked by

a local process, a process that runs on the same computer on which

the object exists.

 A distributed object is one whose methods can be invoked by

a remote process, a process running on a computer connected via

a network to the computer on which the object exists.

3.3 The Distributed Object Paradigm

 In a distributed object paradigm, network resources are represented

by distributed objects.

 To request service from a network resource, a process invokes one

of its operations or methods, passing data as parameters to the

method.

 The method is executed on the remote host, and the response is

sent back to the requesting process as a return value.

 Message-passing paradigm is data-oriented while Distributed

objects paradigm is action-oriented: the focus is on the

invocation of the operations, while the data passed takes on a

secondary role.

 Although less intuitive to human-beings, the distributed-object

paradigm is more natural to object-oriented software development.

3.4 Distributed Objects

A distributed object is provided, or exported, by a process called

the object server. A facility, here called an object registry, must be

present in the system architecture for the distributed object to be

registered. To access a distributed object, a process –an object client –

CIT 421 MODULE 3

118

looks up the object registry for a reference to the object. This reference

is used by the object client to make calls to the methods.

Logically, the object client makes a call directly to a remote

method. In reality, the call is handled by a software component, called

a client proxy, which interacts which the software on the client host that

provides the runtime support for the distributed object system. The

runtime support is responsible for the inter-process communication

needed to transmit the call to the remote host, including the marshalling

of the argument data that needs to be transmitted to the remote object.

A similar architecture is required on the server side, runtime support for

the distributed object system handles the receiving of messages and

the un-marshalling of data, and forwards the call to a software component

called the server proxy. The server proxy interfaces with the distributed

object to invoke the method call locally, passing in the un-marshalled data

for the arguments. The method call results in the performance of some

tasks on the server host. The outcome of the execution of the method,

including the marshalled data for the return value, is forwarded by the

server proxy to the client proxy, via the runtime support and network

support on both sides.

3.5 Distributed Object Systems/Protocols

The distributed object paradigm has been widely adopted in distributed

applications, for which a large number of mechanisms based on the

paradigm are available. Among the most well-known of such mechanisms

are:

 Java Remote Method Invocation (RMI),

 The Common Object Request Broker Architecture (CORBA)

systems,

 The Distributed Component Object Model (DCOM),

 Mechanisms that support the Simple Object Access

Protocol (SOAP).

Of these, the most straightforward is the Java RMI.

3.6 Remote Procedure Call & Remote Method Invocation

3.6.1 Remote Procedure Calls (RPC)

Remote Method Invocation has its origin in a paradigm called Remote

Procedure Call

\

CIT 421 NET-CENTRIC COMPUTING

119

3.6.2 Remote procedure call model:

A procedure call is made by one process to another, with data passed as

arguments.

Upon receiving a call:

1. The actions encoded in the procedure are executed

2. The caller is notified of the completion of the call and

3. A return value, if any, is transmitted from the callee to the caller

3.7 Local Procedure Call and Remote Procedure Call

3.7.1 Remote Procedure Calls (RPC)

Since its introduction in the early 1980s, the Remote Procedure Call

model has been widely in use in network applications.

There are two prevalent APIs for this paradigm.

 The Open Network Computing Remote Procedure Call, evolved

from the RPC API originated from Sun Microsystems in the early

1980s.

 The other well-known API is the Open Group Distributed

Computing Environment (DCE) RPC.

Both APIs provide a tool, rpcgen, for transforming remote procedure

calls to local procedure calls to the stub.

4.0 SELF-ASSESSMENT EXERCISES

i. Define Distributed Objects

Answer:

A distributed object is an object that can be accessed remotely. This

means that a distributed object can be used like a regular object, but from

anywhere on the network. An object is typically considered to encapsulate

data and behavior. The location of the distributed object is not critical to

the user of the object.

ii. A procedure call is made by one process to another, with data

passed as arguments. What are the three things that happen upon

the callee receiving a call:

Answer:

1. The actions encoded in the procedure are executed

2. The caller is notified of the completion of the call and

3. A return value, if any, is transmitted from the callee to the caller

CIT 421 MODULE 3

120

iii. What are the prevalent Remote Procedure Calls (RPC) APIs

widely in use in network applications?

Answer:

There are two prevalent RPC APIs for this paradigm.

 The Open Network Computing Remote Procedure Call, evolved

from the RPC API originated from Sun Microsystems in the early

1980s.

 The other well-known API is the Open Group Distributed

Computing Environment (DCE) RPC.

5.0 CONCLUSION

In Object Oriented Programming, we deal with data and functions. There

exists communications amongst the objects through parameters and every

response is communicated back to the caller. This makes modular

programming easily implemented.

6.0 SUMMARY

A distributed object is an object that can be accessed remotely. A

distributed object is provided, or exported, by a process called the object

server. A facility, here called an object registry, must be present in the

system architecture for the distributed object to be registered. To access a

distributed object, a process –an object client – looks up the object

registry for a reference to the object. Among the most well-known

distributed object paradigm mechanisms are: Java Remote Method

Invocation (RMI), the Common Object Request Broker

Architecture (CORBA) systems, the Distributed Component Object

Model (DCOM) and mechanisms that support the Simple Object Access

Protocol (SOAP). There are two prevalent RPC APIs for this paradigm

vis-à-vis the Open Network Computing Remote Procedure Call, evolved

from the RPC API originated from Sun Microsystems in the early 1980s

and the Open Group Distributed Computing Environment (DCE) RPC.

7.0 REFERENCES/FURTHER READING

https://www4.cs.fau.de/~geier/corba-faq/why-distrib-objs.html

https://www4.cs.fau.de/~geier/corba-faq/why-distrib-objs.html

CIT 421 NET-CENTRIC COMPUTING

121

UNIT 4 REMOTE METHOD INVOCATION

CONTENTS

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content

3.1 Java Remote Method Invocation

3.1.1 Remote Method Invocation

3.2 The Java RMI Architecture

3.2.1 Object Registry

3.3 The Interaction between the Stub and the Skeleton

3.4 The Remote Interface

3.4.1 A Sample Remote Interface

3.5 The Server-Side Software

3.6 The Remote Interface Implementation

3.7 UML Diagram for the SomeImpl class

3.7.1 Stub and Skeleton Generations

3.7.2 The Stub File for the Object

3.8 The Object Server

3.9 The RMI Registry

3.10 The Client-Side Software

3.11 Looking up the Remote Object

3.12 Invoking the Remote Method

4.0 Self-Assessment Exercises

5.0 Conclusion

6.0 Summary

7.0 References/Further Reading

1.0 INTRODUCTION

In computing, the Java Remote Method Invocation (Java RMI) is

a Java API that performs remote method invocation, the object-oriented

equivalent of remote procedure calls (RPC), with support for direct

transfer of serialized Java classes and distributed garbage-collection.

The original implementation depends on Java Virtual Machine (JVM)

class-representation mechanisms and it thus only supports making calls

from one JVM to another. The protocol underlying this Java-only

implementation is known as Java Remote Method Protocol (JRMP). In

order to support code running in a non-JVM context, programmers later

developed a CORBA version.

Usage of the term RMI may denote solely the programming interface or

may signify both the API and JRMP, IIOP, or another implementation,

whereas the term RMI-IIOP (read: RMI over IIOP) specifically denotes

https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Remote_method_invocation
https://en.wikipedia.org/wiki/Remote_procedure_call
https://en.wikipedia.org/wiki/Serialization#Java
https://en.wikipedia.org/wiki/Distributed_Garbage_Collection
https://en.wikipedia.org/wiki/Java_virtual_machine
https://en.wikipedia.org/wiki/Common_Object_Request_Broker_Architecture
https://en.wikipedia.org/wiki/IIOP
https://en.wikipedia.org/wiki/RMI-IIOP
https://en.wikipedia.org/wiki/IIOP

CIT 421 MODULE 3

122

the RMI interface delegating most of the functionality to the

supporting CORBA implementation.

2.0 INTENDED LEARNING OUTCOMES (ILOS)

By the end of this unit, you will be able to:

 Explain the concept of Remote Method Invocation

 Explain the Interaction between the Stub and the Skeleton

 Identify and explain the API for the Java RMI

 Describe an Object Server and how it works

3.1 Java Remote Method Invocation

3.1.1 Remote Method Invocation

Remote Method Invocation (RMI) is an object-oriented implementation

of the Remote Procedure Call model. It is an API for Java programs only.

Using RMI, an object server exports a remote object and registers it with

a directory service. The object provides remote methods, which can be

invoked in client programs.

Syntactically:

1. A remote object is declared with a remote interface, an extension

of the Java interface.

2. The remote interface is implemented by the object server.

3. An object client accesses the object by invoking the remote

methods associated with the objects using syntax provided for

remote method invocations.

3.2 The Java RMI Architecture

3.2.1 Object Registry

 The RMI API allows a number of directory services to be used for

registering a distributed object.

 A simple directory service called the RMI registry, rmiregistry,

which is provided with the Java Software Development Kit

 The RMI Registry is a service whose server, when active, runs on

the object server’s host machine, by convention and by default

on the TCP port 1099.

https://en.wikipedia.org/wiki/CORBA

CIT 421 NET-CENTRIC COMPUTING

123

3.1 The Interaction between the Stub and the Skeleton

A time-event diagram describing the interaction between the stub and the

skeleton:

The API for the Java RMI

 The Remote Interface

 The Server-side Software

 The Remote Interface Implementation

 Stub and Skeleton Generations

 The Object Server

 The Client-side Software

3.4 The Remote Interface

A Java interface is a class that serves as a template for other classes:

 It contains declarations or signatures of methods whose

implementations are to be supplied by classes that implements the

interface.

 A java remote interface is an interface that inherits from the

Java Remote class, which allows the interface to be implemented

using RMI syntax.

 Other than the Remote extension and the Remote exception that

must be specified with each method signature, a remote interface

has the same syntax as a regular or local Java interface.

 3.4.1 A sample remote Interface

// file: SomeInterface.java

// to be implemented by a Java RMI server class.

import java.rmi.*

public interface SomeInterface extends Remote {

 // signature of first remote method

 public String someMethod1()

 throws java.rmi.RemoteException;

 // signature of second remote method

 public int someMethod2(float)

throws java.rmi.RemoteException;

 // signature of other remote methods may follow

} // end interface

CIT 421 MODULE 3

124

 A sample remote interface

The java.rmi.Remote Exception must be listed in the throw clause of

each method signature.

 This exception is raised when errors occur during the processing

of a remote method call, and the exception is required to be caught

in the method caller’s program.

 Causes of such exceptions include exceptions that may occur

during inter-process communications, such as access failures and

connection failures, as well as problems unique to remote method

invocations, including errors resulting from the object, the stub, or

the skeleton not being found.

3.5 The Server-side Software

An object server is an object that provides the methods of and the

interface to a distributed object.

Each object server must

 Implement each of the remote methods specified in the interface,

 Register an object which contains the implementation with a

directory service.

It is recommended that the two parts be provided as separate classes.

3.5.3 The Remote Interface Implementation

 A class which implements the remote interface should be

provided.

 The syntax is similar to a class that implements a local interface.

CIT 421 NET-CENTRIC COMPUTING

125

import java.rmi.*;

import java.rmi.server.*;

/**

 * This class implements the remote interface SomeInterface.

 */

public class SomeImpl extends UnicastRemoteObject

 implements SomeInterface {

 public SomeImpl() throws RemoteException {

 super();

 }

 public String someMethod1() throws RemoteException {

 // code to be supplied

 }

 public int someMethod2() throws RemoteException {

 // code to be supplied

 }

} // end class

3.7 UML diagram for the SomeImpl class

3.7.1 Stub and Skeleton Generations

 In RMI, each distributed object requires a proxy each for the object

server and the object client, known as the object’s skeleton and

stub, respectively.

 These proxies are generated from the implementation of a remote

interface using a tool provided with the Java SDK:

 the RMI compiler rmic.

o rmic <class name of the remote interface

implementation>

 For example:

o rmic SomeImpl

 As a result of the compilation, two proxy files will be generated,

each prefixed with the implementation class name:

SomeImpl_skel.class
SomeImpl_stub.class.

CIT 421 MODULE 3

126

3.7.2 The stub file for the object

 The stub file for the object, as well as the remote interface file,

must be shared with each object client – these file are required for

the client program to compile.

 A copy of each file may be provided to the object client by hand.

 In addition, the Java RMI has a feature called “stub downloading”

which allows a stub file to be obtained by a client dynamically.

3.8 The Object Server

 The object server class is a class whose code instantiates and

exports an object of the remote interface implementation.

A template for the object server class.

import java.rmi.*;

……

public class SomeServer {

 public static void main(String args[]) {

 try{

 // code for port number value to be supplied

 SomeImpl exportedObj = new SomeImpl();

 startRegistry(RMIPortNum);

 // register the object under the name “some”

 registryURL = "rmi://localhost:" + portNum +

"/some";

 Naming.rebind(registryURL, exportedObj);

 System.out.println("Some Server ready.");

 }// end try

} // end main

// This method starts a RMI registry on the local host, if it

// does not already exists at the specified port number.

private static void startRegistry(int RMIPortNum)

 throws RemoteException{

 try {

 Registry registry= LocateRegistry.getRegistry(RMIPortNu

m);

 registry.list();

 // The above call will throw an exception

 // if the registry does not already exist

 }

 catch (RemoteException ex) {

 // No valid registry at that port.

CIT 421 NET-CENTRIC COMPUTING

127

 System.out.println(

 "RMI registry cannot be located at port "

+ RMIPortNum);

 Registry registry= LocateRegistry.createRegistry(RMIPor

tNum);

 System.out.println(

 "RMI registry created at port " + RMIPortNum);

 }

} // end startRegistry

 In our object server template, the code for exporting an object is as

follows:

// register the object under the name “some”

registryURL = "rmi://localhost:" + portNum + "/some";

Naming.rebind(registryURL, exportedObj);

 The Naming class provides methods for storing and obtaining

references from the registry.

o In particular, the rebind method allow an object reference

to be stored in the registry with a URL in the form of:

 rmi://<host name>:<port number>/<reference name>
o The rebind method will overwrite any reference in the

registry bound with the given reference name.

o If the overwriting is not desirable, there is also

a bind method.

o The host name should be the name of the server, or simply

“localhost”.

o The reference name is a name of your choice, and should be

unique in the registry.

 When an object server is executed, the exporting of the distributed

object causes the server process to begin to listen and wait for

clients to connect and request the service of the object.

 An RMI object server is a concurrent server: each request from an

object client is serviced using a separate thread of the server.

 Note that if a client process invokes multiple remote method calls,

these calls will be executed concurrently unless provisions are

made in the client process to synchronize the calls.

CIT 421 MODULE 3

128

3.9 The RMI Registry

 A server exports an object by registering it by a symbolic name

with a server known as the RMI registry.

// Create an object of the Interface

SomeInterfacel obj = new SomeInterface(“Server1”);

// Register the object; rebind will overwirte existing

// registration by same name – bind() will not.

Naming.rebind(“Server1”, obj);

 A server, called the RMI Registry, is required to run on the host of

the server which exports remote objects.

 The RMIRegistry is a server located at port 1099 by default

 It can be invoked dynamically in the server class:

import java.rmi.registry.LocateRegistry;

 …

LocateRegistry.createRegistry (1099);…

 Alternatively, an RMI registry can be activated by hand using

the rmiregistry utility :

 rmiregistry <port number>

 where the port number is a TCP port number.

 If no port number is specified, port number 1099 is assumed.

 The registry will run continuously until it is shut down (via CTRL-

C, for example)

3.10 The Client-side Software

 The program for the client class is like any other Java class.

 The syntax needed for RMI involves

o locating the RMI Registry in the server host,

and

o looking up the remote reference for the server object; the

reference can then be cast to the remote interface class and

the remote methods invoked.

import java.rmi.*;

CIT 421 NET-CENTRIC COMPUTING

129

….

public class SomeClient {

 public static void main(String args[]) {

 try {

 String registryURL =

 "rmi://localhost:" + portNum + "/some";

 SomeInterface h =

 (SomeInterface)Naming.lookup(registryURL);

 // invoke the remote method(s)

 String message = h.method1();

 System.out.println(message);

 // method2 can be invoked similarly

 } // end try

 catch (Exception e) {

 System.out.println("Exception in SomeClient: " + e);

 }

 } //end main

 // Definition for other methods of the class, if any.

}//end class

3.11 Looking up the remote object

 The lookup method of the Naming class is used to retrieve the

object reference, if any, previously stored in the registry by the

object server.

 Note that the retrieved reference must be cast to the remote

interface (not its implementation) class.

String registryURL =

 "rmi://localhost:" + portNum + "/some";

SomeInterface h =

 (SomeInterface)Naming.lookup(registryURL);

3.12 Invoking the Remote Method

 The remote interface reference can be used to invoke any of the

methods in the remote interface, as in the example:

 String message = h.method1();

 System.out.println(message);

 Note that the syntax for the invocation of the remote methods is

the same as for local methods.

 It is a common mistake to cast the object retrieved from the registry

to the interface implementation class or the server object class.

CIT 421 MODULE 3

130

 Instead it should be cast as the interface class.

5.0 CONCLUSION

Clearly, an object reference cannot refer to an object on another virtual

machine so the invoker of a remote method does not have an actual

reference to the remote object. When we define a remote server in Java,

the definition must be written as a remote interface and a separate

implementation class. A stub object on the client’s machine implements

the remote interface and acts as a proxy for the remote object (the term

“stub” comes from CORBA). Clients use the remote interface (not the

implementation class) as the type of remote object references, and the

client’s remote interface reference refers to the stub. When the client

sends a message in the remote interface, the receiver is actually the stub,

which communicates with the remote object via TCP/IP.

6.0 SUMMARY

Remote Method Invocation (RMI) is an object-oriented implementation

of the Remote Procedure Call model. It is an API for Java programs only.

The RMI API allows a number of directory services to be used for

registering a distributed object. A simple directory service called the RMI

registry, rmiregistry, which is provided with the Java Software

Development Kit. The RMI Registry is a service whose server, when

active, runs on the object server’s host machine, by convention and by

default on the TCP port 1099. An object server is an object that provides

the methods of and the interface to a distributed object which must

implement each of the remote methods specified in the interface and

register an object which contains the implementation with a directory

service. It is recommended that the two parts be provided as separate

classes.

7.0 REFERENCES/FURTHER READING

https://en.wikipedia.org/wiki/Java_remote_method_invocation

https://www.cs.uic.edu/~troy/fall04/cs441/drake/rmi.html

https://en.wikipedia.org/wiki/Java_remote_method_invocation
https://www.cs.uic.edu/~troy/fall04/cs441/drake/rmi.html

CIT 421 NET-CENTRIC COMPUTING

131

UNIT 5 USING UML FOR COMPONENT-BASED

 DESIGNS

CONTENTS

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content

3.1 UML component Diagrams

3.2 Component Diagram at a Glance

3.3 Basic Concepts of Component Diagram

3.4 Interface

3.4.1 Provided Interface

3.4.2 Required Interface

3.5 Subsystems

3.6 Port

3.7 Relationships

3.8 Modelling Source Code

3.9 Modelling an Executable Release

3.10 Modelling a Physical Database

4.0 Self-Assessment Exercises

5.0 Conclusion

6.0 Summary

7.0 References/Further Reading

1.0 INTRODUCTION

Component-based software development (CBD) is a potential

breakthrough for software engineering. Unified Modeling Language

(UML) can potentially facilitate CBD design and modeling. Although

many research projects concentrate on the conceptual interrelation of

UML and CBD, few incorporate actual component frameworks into the

discussion, which is critical for real-world software system design and

modeling

2.0 INTENDED LEARNING OUTCOMES (ILOS)

By the end of this unit, you will be able to:

 Explain basic concepts of UML component diagrams

 identify the UML diagram types

 Differentiate between Provided Interface and Required Interface

CIT 421 MODULE 3

132

3.1 UML Component Diagrams

UML Component diagrams are used in modelling the physical aspects

of object-oriented systems that are used for visualizing, specifying, and

documenting component-based systems and also for constructing

executable systems through forward and reverse engineering.

Component diagrams are essentially class diagrams that focus on a

system's components that often used to model the static implementation

view of a system.

Figure 1: UML Diagram for Systems Designs

3.2 Component Diagram at a Glance

A component diagram breaks down the actual system under

development into various high levels of functionality. Each component

is responsible for one clear aim within the entire system and only

interacts with other essential elements on a need-to-know basis.

Figure 2: Component Diagram

https://en.wikipedia.org/wiki/Unified_Modeling_Language
https://en.wikipedia.org/wiki/Unified_Modeling_Language

CIT 421 NET-CENTRIC COMPUTING

133

The example above shows the internal components of a larger

component:

 The data (account and inspection ID) flows into the component

via the port on the right-hand side and is converted into a format

the internal components can use. The interfaces on the right are

known as required interfaces, which represents the services the

component needed in order to carry out its duty.

 The data then passes to and through several other components via

various connections before it is output at the ports on the left.

Those interfaces on the left are known as provided interface,

which represents the services to deliver by the exhibiting

component.

 It is important to note that the internal components are surrounded

by a large 'box' which can be the overall system itself (in which

case there would not be a component symbol in the top right

corner) or a subsystem or component of the overall system (in

this case the 'box' is a component itself).

3.3 Basic Concepts of Component Diagram

A component represents a modular part of a system that encapsulates its

contents and whose manifestation is replaceable within its environment.

In UML 2, a component is drawn as a rectangle with optional

compartments stacked vertically. A high-level, abstracted view of a

component in UML 2 can be modeled as:

1. A rectangle with the component's name

2. A rectangle with the component icon

3. A rectangle with the stereotype text and/or icon

Figure 3: A high-level, abstracted view of a component

3.4 Interface

In the example below shows two type of component interfaces:

3.4.1 Provided Interface symbols with a complete circle at their end

represent an interface that the component provides - this "lollipop"

symbol is shorthand for a realization relationship of an interface

classifier.

3.4.2 Required Interface symbols with only a half circle at their end

(a.k.a. sockets) represent an interface that the component requires (in

both cases, the interface's name is placed near the interface symbol

itself).

CIT 421 MODULE 3

134

Figure 4: Component Diagram Example - Using Interface (Order

System)

3.5 Subsystems

The subsystem classifier is a specialized version of a component

classifier. Because of this, the subsystem notation element inherits all

the same rules as the component notation element. The only difference

is that a subsystem notation element has the keyword of subsystem

instead of component.

Figure 5: A Sub-system

CIT 421 NET-CENTRIC COMPUTING

135

3.6 Port

Ports are represented using a square along the edge of the system or a

component. A port is often used to help expose required and provided

interfaces of a component.

Figure 6: A Port

3.7 Relationships

Graphically, a component diagram is a collection of vertices and arcs

and commonly contain components, interfaces and dependency,

aggregation, constraint, generalization, association, and realization

relationships. It may also contain notes and constraints.

Relationships Notation

Association:

 An Association specifies a semantic

relationship that can occur between typed

instances.

 It has at least two ends represented by

properties, each of which is connected to the

type of the end. More than one end of the

association may have the same type.

Composition:

 Composite aggregation is a strong form

of aggregation that requires a part instance be

included in at most one composite at a time.

 If a composite is deleted, all of its parts

are normally deleted with it.

CIT 421 MODULE 3

136

Aggregation
 A kind of association that has one of its

end marked shared as kind of aggregation,

meaning that it has a shared aggregation.

Constraint
 A condition or restriction expressed in

natural language text or in a machine readable

language for the purpose of declaring some of

the semantics of an element.

Dependency
 A dependency is a relationship that

signifies that a single or a set of model elements

requires other model elements for their

specification or implementation.

 This means that the complete semantics

of the depending elements is either

semantically or structurally dependent on the

definition of the supplier element(s).

Links:
 A generalization is a taxonomic

relationship between a more general classifier

and a more specific classifier.

 Each instance of the specific classifier is

also an indirect instance of the general

classifier.

 Thus, the specific classifier inherits the

features of the more general classifier.

3.8 Modelling Source Code

 Either by forward or reverse engineering, identify the set of

source code files of interest and model them as components

stereotyped as files.

 For larger systems, use packages to show groups of source code

files.

 Consider exposing a tagged value indicating such information as

the version number of the source code file, its author, and the date

it was last changed. Use tools to manage the value of this tag.

 Model the compilation dependencies among these files using

dependencies. Again, use tools to help generate and manage these

dependencies.

CIT 421 NET-CENTRIC COMPUTING

137

Figure 7: Component Diagram Example - C++ Code with versioning

3.9 Modelling an Executable Release

 Identify the set of components you'd like to model. Typically, this

will involve some or all the components that live on one node, or

the distribution of these sets of components across all the nodes

in the system.

 Consider the stereotype of each component in this set. For most

systems, you'll find a small number of different kinds of

components (such as executables, libraries, tables, files, and

documents). You can use the UML's extensibility mechanisms to

provide visual cues (clues) for these stereotypes.

 For each component in this set, consider its relationship to its

neighbors. Most often, this will involve interfaces that are

exported (realized) by certain components and then imported

(used) by others. If you want to expose the seams in your system,

model these interfaces explicitly. If you want your model at a

higher level of abstraction, elide these relationships by showing

only dependencies among the components.

CIT 421 MODULE 3

138

3.10 Modelling a Physical Database

 Identify the classes in your model that represent your logical

database schema.

 Select a strategy for mapping these classes to tables. You will also

want to consider the physical distribution of your databases. Your

mapping strategy will be affected by the location in which you

want your data to live on your deployed system.

 To visualize, specify, construct, and document your mapping,

create a component diagram that contains components

stereotyped as tables.

 Where possible, use tools to help you transform your logical

design into a physical design.

5.0 CONCLUSION

UML Component diagrams are used in modelling the physical aspects

of object-oriented systems that are used for visualizing, specifying, and

documenting component-based systems and also for constructing

executable systems through forward and reverse engineering.

6.0 SUMMARY

UML Component diagrams are used in modelling the physical aspects

of object-oriented systems that are used for visualizing, specifying, and

documenting component-based systems and also for constructing

https://en.wikipedia.org/wiki/Unified_Modeling_Language
https://en.wikipedia.org/wiki/Unified_Modeling_Language

CIT 421 NET-CENTRIC COMPUTING

139

executable systems through forward and reverse engineering. A port is

often used to help expose required and provided interfaces of a

component. Ports are represented using a square along the edge of the

system or a component. Graphically, a component diagram is a

collection of vertices and arcs and commonly contain components,

interfaces and dependency, aggregation, constraint, generalization,

association, and realization relationships. It may also contain notes and

constraints.

There are two type of component interfaces vis-à-vis, Provided

Interface and Required Interface. Provided Interface symbols with a

complete circle at their end represent an interface that the component

provides - this "lollipop" symbol is shorthand for a realization

relationship of an interface classifier. Required Interface symbols with

only a half circle at their end (a.k.a. sockets) represent an interface that

the component requires (in both cases, the interface's name is placed

near the interface symbol itself). UML Component diagrams are used in

modelling the physical aspects of object-oriented systems that are used

for visualizing, specifying, and documenting component-based systems

and also for constructing executable systems through forward and

reverse engineering.

7.0 REFERENCES/FURTHER READING

What is Component Diagram? (visual-paradigm.com)

https://www.semanticscholar.org/paper/Component-Based-

Development-Using-UML-Zhao-

Siau/509ddc5799765c0c4d71e621768e9d1d48f92dfe

https://en.wikipedia.org/wiki/Unified_Modeling_Language
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-component-diagram/;WWWSESSIONID=BB0D19F5749D0EEC3176EE10DEB55359.www1#component-diagram
https://www.semanticscholar.org/paper/Component-Based-Development-Using-UML-Zhao-Siau/509ddc5799765c0c4d71e621768e9d1d48f92dfe
https://www.semanticscholar.org/paper/Component-Based-Development-Using-UML-Zhao-Siau/509ddc5799765c0c4d71e621768e9d1d48f92dfe
https://www.semanticscholar.org/paper/Component-Based-Development-Using-UML-Zhao-Siau/509ddc5799765c0c4d71e621768e9d1d48f92dfe

CIT 421 MODULE 4

140

MODULE 4: DISTRIBUTED TRANSACTIONS

UNIT 1 DISTRIBUTED TRANSACTIONS

CONTENTS

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main content

3.1 Distributed Transactions

3.2 Two Types of Permissible Operations in Distributed

Transactions

3.2.1 DML and DDL Transactions

3.2.2 Transactions Control Statements

3.3 Session Trees for Distributed Transactions

3.4 Node Rules

3.4.1 Clients

3.4.2 Database Servers

3.4.3 Local Coordinators

3.4.4 Global Coordinators

3.4.5 Commit Point Site

3.5 How a Distributed Transactions Commits

3.6 Commit Point Strength

3.7 Two-Phase Commit Mechanism

3.7.1 Prepare Phase

3.7.2 Steps in the Prepare Phase

3.7.3 Commit Phase

3.7.3.1 Steps in the Commit Phase

3.8 Guaranteeing Global Database Consistency

3.9 Forget Phase

3.10 In-Doubt Transactions

3.10.1 Automatic Resolution of In-Doubt Transactions

3.11 Failure During the Prepare Phase

3.12 Failure During the Commit Phase

3.13 Manual Resolution of In-Doubt Transactions

3.14 Relevance of Systems Change Numbers for In-Doubt

Transactions

4.0 Self-Assessment Exercises

5.0 Conclusion

6.0 Summary

7.0 References/Further Reading

CIT 421 NET-CENTRIC COMPUTING

141

2.0 INTENDED LEARNING OUTCOMES (ILOS)

By the end of this unit, you will be able to:

 explain the concept of Distributed Transactions

 identify the two types of permissible operations in Distributed

Transactions

 state the steps in the Prepare and the Commit phase

Introduction to Module

A distributed transaction is a database transaction in which two or more

network hosts are involved. Usually, hosts provide transactional

resources, while the transaction manager is responsible for creating

and managing a global transaction that encompasses all operations against

such resources. Distributed transactions, as any other transactions, must

have all four ACID (atomicity, consistency, isolation,

durability) properties, where atomicity guarantees all-or-nothing

outcomes for the unit of work (operations bundle).

Open Group, a vendor consortium, proposed the X/Open Distributed

Transaction Processing (DTP) Model (X/Open XA), which became a de

facto standard for behavior of transaction model components.

Databases are common transactional resources and, often, transactions

span a couple of such databases. In this case, a distributed transaction can

be seen as a database transaction that must be synchronized (or

provide ACID properties) among multiple participating databases which

are distributed among different physical locations.

1.0 INTRODUCTION

A distributed transaction is a type of transaction with two or more

engaged network hosts. Generally, hosts provide resources, and a

transaction manager is responsible for developing and handling the

transaction. Like any other transaction, a distributed transaction should

include all four ACID properties (atomicity, consistency, isolation,

durability). Given the nature of the work, atomicity is important to ensure

an all-or-nothing outcome for the operations bundle (unit of work).

2.0 INTENDED LEARNING OUTCOMES (ILOS)

At the end of this unit, student will able to:

 Explain the term Distributed Transactions

 Identify and explain the two types of Permissible Operations in

Distributed Transactions.

https://en.wikipedia.org/wiki/Database_transaction
https://en.wikipedia.org/wiki/Database_transaction
https://en.wikipedia.org/wiki/ACID
https://en.wikipedia.org/wiki/ACID
https://en.wikipedia.org/wiki/X/Open_XA
https://en.wikipedia.org/wiki/X/Open_XA
https://en.wikipedia.org/wiki/Database_transaction
https://en.wikipedia.org/wiki/Synchronization
https://en.wikipedia.org/wiki/ACID
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Distributed_computing

CIT 421 MODULE 4

142

3.0 MAIN CONTENT

3.1 Distributed Transactions

A distributed transaction includes one or more statements that,

individually or as a group, update data on two or more distinct nodes of a

distributed database.

Figure 4.1.1: Sample Database on a Distributed Systems

The following distributed transaction executed by scott updates the

local sales database, the remote hq database, and the remote maint

database:

UPDATE scott.dept@hq.us.acme.com

 SET loc = 'REDWOOD SHORES'

 WHERE deptno = 10;

UPDATE scott.emp

 SET deptno = 11

 WHERE deptno = 10;

UPDATE scott.bldg@maint.us.acme.com

 SET room = 1225

 WHERE room = 1163;

COMMIT;

CIT 421 NET-CENTRIC COMPUTING

143

3.2 Two Types of Permissible Operations in Distributed

Transactions:

 DML and DDL Transactions

 Transaction Control Statements

3.2.1 DML and DDL Transactions

The following are the DML and DDL operations supported in a

distributed transaction:

 CREATE TABLE AS SELECT

 DELETE

 INSERT (default and direct load)

 LOCK TABLE

 SELECT

 SELECT FOR UPDATE

You can execute DML and DDL statements in parallel,

and INSERT direct load statements serially, but note the following

restrictions:

 All remote operations must be SELECT statements.

 These statements must not be clauses in another distributed

transaction.

 If the table referenced in the table_expression_clause of

an INSERT, UPDATE, or DELETE statement is remote, then

execution is serial rather than parallel.

 You cannot perform remote operations after issuing parallel

DML/DDL or direct load INSERT.

 If the transaction begins using XA or OCI, it executes serially.

 No loopback operations can be performed on the transaction

originating the parallel operation. For example, you cannot

reference a remote object that is actually a synonym for a local

object.

 If you perform a distributed operation other than a SELECT in the

transaction, no DML is parallelized.

3.2.2 Transaction Control Statements

The following are the supported transaction control statements:

 COMMIT

 ROLLBACK

 SAVEPOINT

https://docs.oracle.com/cd/B19306_01/server.102/b14231/ds_txns.htm#i1107593
https://docs.oracle.com/cd/B19306_01/server.102/b14231/ds_txns.htm#i1007611

CIT 421 MODULE 4

144

3.3 Session Trees for Distributed Transactions

As the statements in a distributed transaction are issued, the database

defines a session tree of all nodes participating in the transaction. A

session tree is a hierarchical model that describes the relationships among

sessions and their roles.

Figure 4.1.2: Example of a Session Tree

All nodes participating in the session tree of a distributed transaction

assume one or more of the following roles:

3.4 Node Roles

Roles Description

Client A node that references information in a database

belonging to a

different node

Database server A node that receives a request for information from

another node

Global

coordinator

The node that originates the distributed transaction

Local coordinator A node that is forced to reference data on other

nodes to complete its part of the transaction

Commit point site The node that commits or rolls back the transaction

as instructed by the global

The role a node plays in a distributed transaction is determined by:

 Whether the transaction is local or remote

 The commit point strength of the node ("Commit Point Site")

 Whether all requested data is available at a node, or whether other

nodes need to be referenced to complete the transaction

https://docs.oracle.com/cd/B19306_01/server.102/b14231/ds_txns.htm#i1007721

CIT 421 NET-CENTRIC COMPUTING

145

 Whether the node is read-only

3.4.1 Clients

A node acts as a client when it references information from a database on

another node. The referenced node is a database server. In Figure 2, the

node sales is a client of the nodes that host

the warehouse and finance databases.

3.4.2 Database Servers

A database server is a node that hosts a database from which a client

requests data.

In Figure 2, an application at the sales node initiates a distributed

transaction that accesses data from the warehouse and finance nodes.

Therefore, sales.acme.com has the role of client node,

and warehouse and finance are both database servers. In this

example, sales is a database server and a client because the application

also modifies data in the sales database.

3.4.3 Local Coordinators

A node that must reference data on other nodes to complete its part in the

distributed transaction is called a local coordinator. In Figure 2, sales is a

local coordinator because it coordinates the nodes it directly

references: warehouse and finance. The node sales also happens to be the

global coordinator because it coordinates all the nodes involved in the

transaction.

A local coordinator is responsible for coordinating the transaction among

the nodes it communicates directly with by:

 Receiving and relaying transaction status information to and from

those nodes

 Passing queries to those nodes

 Receiving queries from those nodes and passing them on to other

nodes

 Returning the results of queries to the nodes that initiated them

3.4.4 Global Coordinator

The node where the distributed transaction originates is called the global

coordinator. The database application issuing the distributed transaction

is directly connected to the node acting as the global coordinator. For

example, in Figure 2, the transaction issued at the node sales references

information from the database servers warehouse and finance.

https://docs.oracle.com/cd/B19306_01/server.102/b14231/ds_txns.htm#CHDCFICE
https://docs.oracle.com/cd/B19306_01/server.102/b14231/ds_txns.htm#CHDCFICE
https://docs.oracle.com/cd/B19306_01/server.102/b14231/ds_txns.htm#CHDCFICE
https://docs.oracle.com/cd/B19306_01/server.102/b14231/ds_txns.htm#CHDCFICE

CIT 421 MODULE 4

146

Therefore, sales.acme.com is the global coordinator of this distributed

transaction.

The global coordinator becomes the parent or root of the session tree. The

global coordinator performs the following operations during a distributed

transaction:

 Sends all of the distributed transaction SQL statements, remote

procedure calls, and so forth to the directly referenced nodes, thus

forming the session tree

 Instructs all directly referenced nodes other than the commit point

site to prepare the transaction

 Instructs the commit point site to initiate the global commit of the

transaction if all nodes prepare successfully

 Instructs all nodes to initiate a global rollback of the transaction if

there is an abort response

3.4.5 Commit Point Site

The job of the commit point site is to initiate a commit or roll back

operation as instructed by the global coordinator. The system

administrator always designates one node to be the commit point site in

the session tree by assigning all nodes a commit point strength. The node

selected as commit point site should be the node that stores the most

critical data.

Figure 4.1.3: Commit Point Site

The commit point site is distinct from all other nodes involved in a

distributed transaction in these ways:

 The commit point site never enters the prepared state.

Consequently, if the commit point site stores the most critical data,

CIT 421 NET-CENTRIC COMPUTING

147

this data never remains in-doubt, even if a failure occurs. In failure

situations, failed nodes remain in a prepared state, holding

necessary locks on data until in-doubt transactions are resolved.

 The commit point site commits before the other nodes involved in

the transaction. In effect, the outcome of a distributed transaction

at the commit point site determines whether the transaction at all

nodes is committed or rolled back: the other nodes follow the lead

of the commit point site. The global coordinator ensures that all

nodes complete the transaction in the same manner as the commit

point site.

3.5 How a Distributed Transaction Commits

A distributed transaction is considered committed after all non-commit-

point sites are prepared, and the transaction has been actually committed

at the commit point site. The redo log at the commit point site is updated

as soon as the distributed transaction is committed at this node.

Because the commit point log contains a record of the commit, the

transaction is considered committed even though some participating

nodes may still be only in the prepared state and the transaction not yet

actually committed at these nodes. In the same way, a distributed

transaction is considered not committed if the commit has not been

logged at the commit point site.

3.6 Commit Point Strength

Every database server must be assigned a commit point strength. If a

database server is referenced in a distributed transaction, the value of its

commit point strength determines which role it plays in the two-phase

commit. Specifically, the commit point strength determines whether a

given node is the commit point site in the distributed transaction and thus

commits before all of the other nodes. This value is specified using the

initialization parameter COMMIT_POINT_STRENGTH. This section

explains how the database determines the commit point site.

The commit point site, which is determined at the beginning of the prepare

phase, is selected only from the nodes participating in the transaction. The

following sequence of events occurs:

1. Of the nodes directly referenced by the global coordinator, the

database selects the node with the highest commit point strength

as the commit point site.

2. The initially-selected node determines if any of the nodes from

which it has to obtain information for this transaction has a higher

commit point strength.

3. Either the node with the highest commit point strength directly

referenced in the transaction or one of its servers with a higher

commit point strength becomes the commit point site. After the

CIT 421 MODULE 4

148

final commit point site has been determined, the global coordinator

sends prepare responses to all nodes participating in the transaction

Figure 4.1.4: Commit Point Strengths and Determination of the Commit

Point Site

The following conditions apply when determining the commit point site:

 A read-only node cannot be the commit point site.

 If multiple nodes directly referenced by the global coordinator

have the same commit point strength, then the database designates

one of these as the commit point site.

 If a distributed transaction ends with a rollback, then the prepare

and commit phases are not needed. Consequently, the database

never determines a commit point site. Instead, the global

coordinator sends a ROLLBACK statement to all nodes and ends

the processing of the distributed transaction.

As Figure 4 illustrates, the commit point site and the global coordinator

can be different nodes of the session tree. The commit point strength of

each node is communicated to the coordinators when the initial

connections are made. The coordinators retain the commit point strengths

of each node they are in direct communication with so that commit point

sites can be efficiently selected during two-phase commits. Therefore, it

is not necessary for the commit point strength to be exchanged between a

coordinator and a node each time a commit occurs.

3.7 Two-Phase Commit Mechanism

Unlike a transaction on a local database, a distributed transaction involves

altering data on multiple databases. Consequently, distributed transaction

https://docs.oracle.com/cd/B19306_01/server.102/b14231/ds_txns.htm#i1007762

CIT 421 NET-CENTRIC COMPUTING

149

processing is more complicated, because the database must coordinate the

committing or rolling back of the changes in a transaction as a self-

contained unit. In other words, the entire transaction commits, or the

entire transaction rolls back.

The database ensures the integrity of data in a distributed transaction

using the two-phase commit mechanism.

In the prepare phase, the initiating node in the transaction asks the other

participating nodes to promise to commit or roll back the transaction.

During the commit phase, the initiating node asks all participating nodes

to commit the transaction.

If this outcome is not possible, then all nodes are asked to roll back. All

participating nodes in a distributed transaction should perform the same

action: they should either all commit or all perform a rollback of the

transaction. The database automatically controls and monitors the commit

or rollback of a distributed transaction and maintains the integrity of

the global database (the collection of databases participating in the

transaction) using the two-phase commit mechanism. This mechanism is

completely transparent, requiring no programming on the part of the user

or application developer.

The commit mechanism has the following distinct phases, which the

database performs automatically whenever a user commits a distributed

transaction:

Phase Description

Prepare

phase

The initiating node, called the global coordinator, asks

participating nodes other than the commit point site to

promise to commit or roll back the transaction, even if

there is a failure. If any node cannot prepare, the

transaction is rolled back.

Commit

phase

If all participants respond to the coordinator that they are

prepared, then the coordinator asks the commit point site

to commit. After it commits, the coordinator asks all

other nodes to commit the transaction

Forget phase The global coordinator forgets about the transaction

3.7.1 Prepare Phase

The first phase in committing a distributed transaction is the prepare

phase. In this phase, the database does not actually commit or roll back

the transaction. Instead, all nodes referenced in a distributed transaction

(except the commit point site, described in the "Commit Point Site") are

told to prepare to commit. By preparing, a node:

https://docs.oracle.com/cd/B19306_01/server.102/b14231/ds_txns.htm#i1007721

CIT 421 MODULE 4

150

 Records information in the redo logs so that it can subsequently

either commit or roll back the transaction, regardless of

intervening failures

 Places a distributed lock on modified tables, which prevents reads

When a node responds to the global coordinator that it is prepared to

commit, the prepared node promises to either commit or roll back the

transaction later, but does not make a unilateral decision on whether to

commit or roll back the transaction. The promise means that if an instance

failure occurs at this point, the node can use the redo records in the online

log to recover the database back to the prepare phase.

Note:

Queries that start after a node has prepared cannot access the associated

locked data until all phases complete. The time is insignificant unless a

failure occurs.

3.7.1.1 Types of Responses in the Prepare Phase

When a node is told to prepare, it can respond in the following ways:

Response Meaning

Prepared Data on the node has been modified by a statement in the

distributed transaction, and the node has successfully

prepared

Read-

only

No data on the node has been, or can be, modified (only

queried), so no preparation is necessary

Abort The node cannot successfully prepare.

Prepared Response

When a node has successfully prepared, it issues a prepared message.

The message indicates that the node has records of the changes in the

online log, so it is prepared either to commit or perform a rollback. The

message also guarantees that locks held for the transaction can survive a

failure.

Read-Only Response

When a node is asked to prepare, and the SQL statements affecting the

database do not change any data on the node, the node responds with

a read-only message. The message indicates that the node will not

participate in the commit phase

CIT 421 NET-CENTRIC COMPUTING

151

There are three cases in which all or part of a distributed transaction is

read-only:

Case Condition Consequence

Partially

read-only

Any of the following occurs:

 Only queries are

issued at one or more nodes.

 No data is changed.

Changes rolled back due to

triggers firing or constraint

violations.

The read-only nodes

recognize their status

when asked to prepare.

They give their local

coordinators a read-only

response. Thus, the

commit phase completes

faster because the

database eliminates read-

only nodes from

subsequent

Completely

read-only

with

prepare

phase

All of following occur:

 No data changes.

Transaction is not started

with SET TRANSACTION

READ ONLY statement

All nodes recognize that

they are read-only during

prepare phase, so no

commit phase is required.

The global coordinator,

not knowing whether all

nodes are read-only, must

still perform the prepare

phase.

Completely

read-only

without

two-phase

commit

All of following occur:

 No data changes.

Transaction is started

with SET TRANSACTION

READ ONLY statement.

Only queries are allowed

in the transaction, so

global coordinator does

not have to perform two-

phase commit. Changes

by other transactions do

not degrade global

transaction-level read

consistency because of

global SCN coordination

Note that if a distributed transaction is set to read-only, then it does not

use undo segments. If many users connect to the database and their

transactions are not set to READ ONLY, then they allocate undo space

even if they are only performing queries.

Abort Response

When a node cannot successfully prepare, it performs the following

actions:

1. Releases resources currently held by the transaction and rolls back

the local portion of the transaction.

CIT 421 MODULE 4

152

2. Responds to the node that referenced it in the distributed

transaction with an abort message.

These actions then propagate to the other nodes involved in the distributed

transaction so that they can roll back the transaction and guarantee the

integrity of the data in the global database. This response enforces the

primary rule of a distributed transaction: all nodes involved in the

transaction either all commit or all roll back the transaction at the same

logical time.

3.7.2 Steps in the Prepare Phase

To complete the prepare phase, each node excluding the commit point site

performs the following steps:

1. The node requests that its descendants, that is, the nodes

subsequently referenced, prepare to commit.

2. The node checks to see whether the transaction changes data on

itself or its descendants. If there is no change to the data, then the

node skips the remaining steps and returns a read-only response

3. The node allocates the resources it needs to commit the transaction

if data is changed.

4. The node saves redo records corresponding to changes made by

the transaction to its redo log.

5. The node guarantees that locks held for the transaction are able to

survive a failure.

6. The node responds to the initiating node with a prepared response

or, if its attempt or the attempt of one of its descendants to prepare

was unsuccessful, with an abort response.

These actions guarantee that the node can subsequently commit or roll

back the transaction on the node. The prepared nodes then wait until

a COMMIT or ROLLBACK request is received from the global

coordinator.

After the nodes are prepared, the distributed transaction is said to be in-

doubt. It retains in-doubt status until all changes are either committed or

rolled back.

3.7.3 Commit Phase

The second phase in committing a distributed transaction is the commit

phase. Before this phase occurs, all nodes other than the commit point site

referenced in the distributed transaction have guaranteed that they are

prepared, that is, they have the necessary resources to commit the

transaction.

CIT 421 NET-CENTRIC COMPUTING

153

3.7.3.1 Steps in the Commit Phase

The commit phase consists of the following steps:

1. The global coordinator instructs the commit point site to commit.

2. The commit point site commits.

3. The commit point site informs the global coordinator that it has

committed.

4. The global and local coordinators send a message to all nodes

instructing them to commit the transaction.

5. At each node, the database commits the local portion of the

distributed transaction and releases locks.

6. At each node, the database records an additional redo entry in the

local redo log, indicating that the transaction has committed.

7. The participating nodes notify the global coordinator that they

have committed.

When the commit phase is complete, the data on all nodes of the

distributed system is consistent.

Guaranteeing Global Database Consistency

Each committed transaction has an associated system change number

(SCN) to uniquely identify the changes made by the SQL statements

within that transaction. The SCN functions as an internal timestamp that

uniquely identifies a committed version of the database.

In a distributed system, the SCNs of communicating nodes are

coordinated when all of the following actions occur:

 A connection occurs using the path described by one or more

database links

 A distributed SQL statement executes

 A distributed transaction commits

Among other benefits, the coordination of SCNs among the nodes of a

distributed system ensures global read-consistency at both the statement

and transaction level. If necessary, global time-based recovery can also

be completed.

During the prepare phase, the database determines the highest SCN at all

nodes involved in the transaction. The transaction then commits with the

high SCN at the commit point site. The commit SCN is then sent to all

prepared nodes with the commit decision.

CIT 421 MODULE 4

154

3.8 Guaranteeing Global Database Consistency

Each committed transaction has an associated system change number

(SCN) to uniquely identify the changes made by the SQL statements

within that transaction. The SCN functions as an internal timestamp that

uniquely identifies a committed version of the database.

In a distributed system, the SCNs of communicating nodes are

coordinated when all of the following actions occur:

 A connection occurs using the path described by one or more

database links

 A distributed SQL statement executes

 A distributed transaction commits

Among other benefits, the coordination of SCNs among the nodes of a

distributed system ensures global read-consistency at both the statement

and transaction level. If necessary, global time-based recovery can also

be completed.

During the prepare phase, the database determines the highest SCN at all

nodes involved in the transaction. The transaction then commits with the

high SCN at the commit point site. The commit SCN is then sent to all

prepared nodes with the commit decision.

3.9 Forget Phase

After the participating nodes notify the commit point site that they have

committed, the commit point site can forget about the transaction. The

following steps occur:

1. After receiving notice from the global coordinator that all nodes

have committed, the commit point site erases status information

about this transaction.

2. The commit point site informs the global coordinator that it has

erased the status information.

3. The global coordinator erases its own information about the

transaction.

3.10 In-Doubt Transactions

The two-phase commit mechanism ensures that all nodes either commit

or perform a rollback together. What happens if any of the three phases

fails because of a system or network error? The transaction becomes in-

doubt.

Distributed transactions can become in-doubt in the following ways:

 A server machine running Oracle Database software crashes

 A network connection between two or more Oracle Databases

involved in distributed processing is disconnected

CIT 421 NET-CENTRIC COMPUTING

155

 An unhandled software error occurs

The RECO process automatically resolves in-doubt transactions when the

machine, network, or software problem is resolved. Until RECO can

resolve the transaction, the data is locked for both reads and writes. The

database blocks reads because it cannot determine which version of the

data to display for a query.

3.10.1 Automatic Resolution of In-Doubt Transactions

In the majority of cases, the database resolves the in-doubt transaction

automatically. Assume that there are two nodes, local and remote, in the

following scenarios. The local node is the commit point site.

User scott connects to local and executes and commits a distributed

transaction that updates local and remote.

3.11 Failure During the Prepare Phase

Figure 5 illustrates the sequence of events when there is a failure during

the prepare phase of a distributed transaction:

Figure 4.1.1: Failure During Prepare Phase

The following steps occur:

1. User SCOTT connects to Local and executes a distributed

transaction.

2. The global coordinator, which in this example is also the commit

point site, requests all databases other than the commit point site

to promise to commit or roll back when told to do so.

3. The remote database crashes before issuing the prepare response

back to local.

4. The transaction is ultimately rolled back on each database by the

RECO process when the remote site is restored.

https://docs.oracle.com/cd/B19306_01/server.102/b14231/ds_txns.htm#i1008049

CIT 421 MODULE 4

156

3.12 Failure During the Commit Phase

Figure 6 illustrates the sequence of events when there is a failure during

the commit phase of a distributed transaction:

Figure 4.1.6: Failure During the Commit Phase

The following steps occur:

1. User Scott connects to local and executes a distributed transaction.

2. The global coordinator, which in this case is also the commit point

site, requests all databases other than the commit point site to

promise to commit or roll back when told to do so.

3. The commit point site receives a prepared message

from remote saying that it will commit.

4. The commit point site commits the transaction locally, then sends

a commit message to remote asking it to commit.

5. The remote database receives the commit message, but cannot

respond because of a network failure.

6. The transaction is ultimately committed on the remote database by

the RECO process after the network is restored.

3.13 Manual Resolution of In-Doubt Transactions

You should only need to resolve an in-doubt transaction in the following

cases:

 The in-doubt transaction has locks on critical data or undo

segments.

 The cause of the machine, network, or software failure cannot be

repaired quickly.

Resolution of in-doubt transactions can be complicated. The procedure

requires that you do the following:

 Identify the transaction identification number for the in-doubt

transaction.

https://docs.oracle.com/cd/B19306_01/server.102/b14231/ds_txns.htm#CHDGGDDE

CIT 421 NET-CENTRIC COMPUTING

157

 Query

the DBA_2PC_PENDING and DBA_2PC_NEIGHBORS views to

determine whether the databases involved in the transaction have

committed.

 If necessary, force a commit using the COMMIT

FORCE statement or a rollback using the ROLLBACK

FORCE statement.

3.14 Relevance of System Change Numbers for In-Doubt

Transactions

A system change number (SCN) is an internal timestamp for a

committed version of the database. The Oracle Database server uses the

SCN clock value to guarantee transaction consistency. For example, when

a user commits a transaction, the database records an SCN for this commit

in the redo log.

The database uses SCNs to coordinate distributed transactions among

different databases. For example, the database uses SCNs in the following

way:

1. An application establishes a connection using a database link.

2. The distributed transaction commits with the highest global SCN

among all the databases involved.

3. The commit global SCN is sent to all databases involved in the

transaction.

SCNs are important for distributed transactions because they function as

a synchronized commit timestamp of a transaction, even if the transaction

fails. If a transaction becomes in-doubt, an administrator can use this SCN

to coordinate changes made to the global database. The global SCN for

the transaction commit can also be used to identify the transaction later,

for example, in distributed recovery.

Discussion

How do you manually resolve an In-Doubt Transactions? Discuss.

4.0 SELF-ASSESSMENT/EXERCISES

1. Explain the sequence of events when there is a failure during the

commit phase of a distributed transaction

Answer

The following steps occur:

(i) User Scott connects to local and executes a distributed transaction.

(ii) The global coordinator, which in this case is also the commit point

site, requests all databases other than the commit point site to

promise to commit or roll back when told to do so.

CIT 421 MODULE 4

158

(iii) The commit point site receives a prepared message

from remote saying that it will commit.

(iv) The commit point site commits the transaction locally, then sends

a commit message to remote asking it to commit.

(v) The remote database receives the commit message, but cannot

respond because of a network failure.

(vi) The transaction is ultimately committed on the remote database by

the RECO process after the network is restored.

2. In what ways can the Distributed transactions become in-doubt ?

Answer:

 A server machine running Oracle Database software crashes

 A network connection between two or more Oracle Databases

involved in distributed processing is disconnected

 An unhandled software error occurs

5.0 CONCLUSION

Databases are standard transactional resources, and transactions usually

extend to a small number of such databases. In such cases, a distributed

transaction may be viewed as a database transaction that should be

synchronized between various participating databases allocated between

various physical locations. The isolation property presents a unique

obstacle for multi-database transactions.

For distributed transactions, each computer features a local transaction

manager. If the transaction works at several computers, the transaction

managers communicate with various other transaction managers by

means of superior or subordinate relationships, which are accurate only

for a specific transaction.

6.0 SUMMARY

A distributed transaction includes one or more statements that,

individually or as a group, update data on two or more distinct nodes of a

distributed database. Two Types of Permissible Operations in Distributed

Transactions are DML and DDL Transactions & Transaction Control

Statements. The database ensures the integrity of data in a distributed

transaction using the two-phase commit mechanism: the prepare phase

and the commit phase. Distributed transactions can become in-doubt in

the following ways: either a server machine running Oracle Database

software crashes, a network connection between two or more Oracle

Databases involved in distributed processing is disconnected or an

unhandled software error occurs. When a node cannot successfully

prepare, it performs the following actions:

https://docs.oracle.com/cd/B19306_01/server.102/b14231/ds_txns.htm#i1107593
https://docs.oracle.com/cd/B19306_01/server.102/b14231/ds_txns.htm#i1007611
https://docs.oracle.com/cd/B19306_01/server.102/b14231/ds_txns.htm#i1007611

CIT 421 NET-CENTRIC COMPUTING

159

1. Releases resources currently held by the transaction and rolls back

the local portion of the transaction.

2. Responds to the node that referenced it in the distributed

transaction with an abort message.

7.0 REFERENCES/FURTHER READING

https://en.wikipedia.org/wiki/Distributed_transaction

https://www.techopedia.com/definition/29166/distributed-transaction

https://en.wikipedia.org/wiki/Distributed_transaction
https://www.techopedia.com/definition/29166/distributed-transaction

CIT 421 MODULE 4

160

UNIT 2 FLAT AND NESTED DISTRIBUTED

TRANSACTIONS

CONTENTS

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main content

3.1 Flat & Nested Distributed Transactions

3.2 Transactions Commands

3.3 Roles for Running a Transactions Successfully

3.4 Flat & Nested Distributed Transactions

3.4.1 Flat Transactions

3.4.1.1 Limitations of a Flat Transactions

3.4.2 Nested Transactions

3.4.2.1 Advantage

3.5 Role

4.0 Self-Assessment Exercises

5.0 Conclusion

6.0 Summary

7.0 References/Further Reading

1.0 INTRODUCTION

Transactions are inevitable in the smooth running of 21st century business

life. Almost all daily activities run on network transactions. Applications

run processes that have one or more threads that need to be synchronized,

in a multithreading environments, enables a concurrency.

2.0 INTENDED LEARNING OUTCOMES (ILOS)

At the end of this unit, the student will able to:

 Differentiate between the Flat and Nested Transactions

 State the advantage of Nested over Flat transactions

 Learn from existing scenarios of cybercrimes in India

3.0 MAIN CONTENT

3.1 Flat & Nested Distributed Transactions

A transaction is a series of object operations that must be done in an

ACID-compliant manner. ACID connotes:

 Atomicity – The transaction is completed entirely or not at all.

https://www.geeksforgeeks.org/acid-properties-in-dbms/

CIT 421 NET-CENTRIC COMPUTING

161

 Consistency – It is a term that refers to the transition from one

consistent state to another.

 Isolation – It is carried out separately from other transactions.

 Durability – Once completed, it is long lasting.

3.2 Transactions Commands:

 Begin – initiate a new transaction.

 Commit – End a transaction and the changes made during the

transaction are saved. Also, it allows other transactions to see the

modifications you’ve made.

 Abort – End a transaction and all changes made during the

transaction will be undone.

3.3 Roles for Running a Transaction Successfully:

 Client – The transactions are issued by the clients.

 Coordinator – The execution of the entire transaction is

controlled by it (handles Begin, commit & abort).

 Server – Every component that accesses or modifies a resource is

subject to transaction control. The coordinator must be known by

the transactional server. The transactional server registers its

participation in a transaction with the coordinator.

A flat or nested transaction that accesses objects handled by different

servers is referred to as a distributed transaction. When a distributed

transaction reaches its end, in order to maintain the atomicity property of

the transaction, it is mandatory that all of the servers involved in the

transaction either commit the transaction or abort it.

To do this, one of the servers takes on the job of coordinator, which entails

ensuring that the same outcome is achieved across all servers.

The method by which the coordinator accomplishes this is determined by

the protocol selected. The most widely used protocol is the ‘two-phase

commit protocol.’ This protocol enables the servers to communicate with

one another in order to come to a joint decision on whether to commit or

abort the complete transaction.

3.4 Flat & Nested Distributed Transactions

If a client transaction calls actions on multiple servers, it is said to be

distributed. Distributed transactions can be structured in two different

ways:

1. Flat transactions

2. Nested transactions

https://www.geeksforgeeks.org/acid-properties-in-dbms/
https://www.geeksforgeeks.org/acid-properties-in-dbms/
https://www.geeksforgeeks.org/acid-properties-in-dbms/
https://www.geeksforgeeks.org/sql-transactions/#:~:text=SET%20TRANSACTION%20%5B%20READ%20WRITE%20%7C%20READ,last%20COMMIT%20or%20ROLLBACK%20command.
https://www.geeksforgeeks.org/two-phase-commit-protocol-distributed-transaction-management/
https://www.geeksforgeeks.org/two-phase-commit-protocol-distributed-transaction-management/

CIT 421 MODULE 4

162

3.4.1 Flat Transactions:

A flat transaction has a single initiating point (Begin) and a single end

point (Commit or abort). They are usually very simple and are generally

used for short activities rather than larger ones. A client makes requests

to multiple servers in a flat transaction. Transaction T, for example, is a

flat transaction that performs operations on objects in servers X, Y, and

Z.

Before moving on to the next request, a flat client transaction completes

the previous one. As a result, each transaction visits the server object in

order. A transaction can only wait for one object at a time when servers

utilize locking.

Figure 4.2.1: Flat Transactions

3.4.1.1 Limitations of a Flat Transaction:

 All work is lost in the event of a crash.

 Only one DBMS may be used at a time.

 No partial rollback is possible.

3.4.2 Nested Transactions

A transaction that includes other transactions within its initiating point

and at the end point are known as nested transactions. So the nesting of

the transactions is done in a transaction. The nested transactions here are

called sub-transactions. The top-level transaction in a nested transaction

CIT 421 NET-CENTRIC COMPUTING

163

can open sub-transactions, and each sub-transaction can open more sub-

transactions down to any depth of nesting. A client’s transaction T opens

up two sub-transactions, T1 and T2, which access objects on servers X

and Y, as shown in the figure 4.2.2 below. T1.1, T1.2, T2.1, and T2.2,

which access the objects on the servers M, N and P are opened by the sub-

transactions T1 and T2.

Figure 4.2.2: Nested Transactions

Concurrent Execution of the Sub-transactions is done which are at the

same level – in the nested transaction strategy. Here, in the above

diagram, T1 and T2 invoke objects on different servers and hence they

can run in parallel and are therefore concurrent.

T1.1, T1.2, T2.1, and T2.2 are four sub-transactions. These sub-

transactions can also run in parallel.

Consider a distributed transaction (T) in which a customer transfers:

 $105 from account A to account C and

 Subsequently, $205 from account B to account D.

It can be viewed/ thought of as:

Transaction T:

Start

Transfer $105 from A to C:

Deduct $105 from A (withdraw from A) & Add $105 to C (deposit to C)

Transfer $205 from B to D:

Deduct $205 from B (withdraw from B) & Add $205 to D (deposit to D)

End

Assuming that:
1. Account A is on server X

2. Account B is on server Y, and

CIT 421 MODULE 4

164

3. Accounts C and D are on server Z.

The transaction T involves four requests – 2 for deposits and 2 for

withdrawals. Now they can be treated as sub-transactions (T1, T2, T3,

T4) of the transaction T.

As shown in the figure 4.2.3 below, transaction T is designed as a set of

four nested transactions: T1, T2, T3 and T4.

3.4.2.1 Advantage of Nested Transactions:

The performance is higher than a single transaction in which four

operations are invoked one after the other in sequence.

Figure 4.2.2: Nested Transactions

So, the Transaction T may be divided into sub-transactions as:

//Start the Transaction

T = open transaction

//T1

openSubtransaction

 a.withdraw(105);

//T2

openSubtransaction

 b.withdraw(205);

//T3

openSubtransaction

 c.deposit(105);

//T4

openSubtransaction

 d.deposit(205);

//End the transaction

close Transaction

CIT 421 NET-CENTRIC COMPUTING

165

3.5 Role of coordinator

When the Distributed Transaction commits, the servers that are involved

in the transaction execution, for proper coordination, must be able to

communicate with one another.

When a client initiates a transaction, an “openTransaction” request is sent

to any coordinator server. The contacted coordinator carries out the

“openTransaction” and returns the transaction identifier to the client.

Distributed transaction identifiers must be unique within the distributed

system. A simple way is to generate a TID contains two parts – the ‘server

identifier” (example :IP address) of the server that created it and a number

unique to the server.

The coordinator who initiated the transaction becomes the distributed

transaction’s coordinator and has the responsibility of either aborting it or

committing it.

Every server that manages an object accessed by a transaction is a

participant in the transaction & provides an object we call the participant.

The participants are responsible for working together with the coordinator

to complete the commit process.

The coordinator every time, records the new participant in the participants

list. Each participant knows the coordinator & the coordinator knows all

the participants. This enables them to collect the information that will be

needed at the time of commit and hence work in coordination.

Discussion

Discuss Roles for Running a Transaction Successfully.

4.0 SELF-ASSESSMENT/EXERCISES

1. Explain the role of a Corrdinator

Answer:

When the Distributed Transaction commits, the servers that are involved

in the transaction execution, for proper coordination, must be able to

communicate with one another.

When a client initiates a transaction, an “openTransaction” request is sent

to any coordinator server. The contacted coordinator carries out the

“openTransaction” and returns the transaction identifier to the client.

CIT 421 MODULE 4

166

2. Explain Flat Transactions with the aid of a diagram

Answer:

A flat transaction has a single initiating point (Begin) and a single end

point (Commit or abort). They are usually very simple and are generally

used for short activities rather than larger ones. A client makes requests

to multiple servers in a flat transaction. Transaction T, for example, is a

flat transaction that performs operations on objects in servers X, Y, and

Z.

Before moving on to the next request, a flat client transaction completes

the previous one. As a result, each transaction visits the server object in

order. A transaction can only wait for one object at a time when servers

utilize locking.

Figure 4.2.1: Flat Transactions

5.0 CONCLUSION

A flat transaction has a single initiating point (Begin) and a single end

point (Commit or abort). They are usually very simple and are generally

used for short activities rather than larger ones. The performance of

Nested Transactions is higher than a single transaction in which four

operations are invoked one after the other in sequence

6.0 SUMMARY

A transaction is a series of object operations that must be done in an ACID

(Atomicity, Consistency, Consistency and Isolation) -compliant manner.

https://www.geeksforgeeks.org/acid-properties-in-dbms/
https://www.geeksforgeeks.org/acid-properties-in-dbms/
https://www.geeksforgeeks.org/acid-properties-in-dbms/

CIT 421 NET-CENTRIC COMPUTING

167

Transactions Commands include Begin, Commit and Abort. Roles for

Running a Transaction Successfully include Client, Coordinator and

Server. Limitations of a Flat Transaction are that, all work is lost in the

event of a crash, only one DBMS may be used at a time and that no partial

rollback is possible. Nested Transactions is a transaction that includes

other transactions within its initiating point and at the end point. The

performance is higher in nested transactions than in a single transaction.

7.0 REFERENCES/FURTHER READING

Flat & Nested Distributed Transactions - GeeksforGeeks

https://www.geeksforgeeks.org/sql-transactions/#:~:text=SET%20TRANSACTION%20%5B%20READ%20WRITE%20%7C%20READ,last%20COMMIT%20or%20ROLLBACK%20command.
https://www.geeksforgeeks.org/flat-nested-distributed-transactions/?ref=gcse

CIT 421 MODULE 4

168

UNIT 3 CONCURRENCY

CONTENTS

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main content

3.1 Concurrency

3.2 Two Models for Concurrent Programming

3.2.1 Shared Memory

3.2.2 Message Passing

3.3 Processes, Threads & Time-Slicing

3.3.1 Process

3.3.2 Thread

3.3.3 Time Slicing

3.4 Shared Memory Example

3.4.1 Interleaving

3.4.2 Race Condition

3.4.3 Reordering

3.5 Message Passing Example

3.6 Concurrent is Hard to Test and Debug

4.0 Self-Assessment Exercises

5.0 Conclusion

6.0 Summary

7.0 References/Further Reading

1.0 INTRODUCTION

Cybercrime is "international" that there are ‘no cyber-borders between

countries’  The complexity in types and forms of cybercrime increases

the difficulty to fight back, fighting cybercrime calls for international

cooperation . Various organizations and governments have already

made joint efforts in establishing global standards of legislation and law

enforcement both on a regional and on an international scale.

2.0 INTENDED LEARNING OUTCOMES (ILOS)

At the end of this unit, student will able to:

 Explain the concepts, Concurrency, shared memory

 Identify and explain two models for concurrent programming

 Describe the following terms: interleaving, reordering,

concurrency, race condition and time-slicing.

CIT 421 NET-CENTRIC COMPUTING

169

3.0 MAIN CONTENT

3.1 Concurrency

Concurrency means multiple computations are happening at the same

time. Concurrency is everywhere in modern programming, whether we

like it or not:

 Multiple computers in a network

 Multiple applications running on one computer

 Multiple processors in a computer (today, often multiple processor

cores on a single chip)

In fact, concurrency is essential in modern programming:

 Web sites must handle multiple simultaneous users.

 Mobile apps need to do some of their processing on servers (“in

the cloud”).

 Graphical user interfaces almost always require background work

that does not interrupt the user. For example, Eclipse compiles

your Java code while you’re still editing it.

Being able to program with concurrency will still be important in the

future. Processor clock speeds are no longer increasing. Instead, we are

getting more cores with each new generation of chips. So in the future, in

order to get a computation to run faster, we’ll have to split up a

computation into concurrent pieces.

3.2 Two Models for Concurrent Programming

There are two common models for concurrent programming:

 Shared memory and

 Message passing.

Figure 4.3.1: Shared Memory

CIT 421 MODULE 4

170

3.2.1 Shared memory

In the shared memory model of concurrency, concurrent modules interact

by reading and writing shared objects in memory. Other examples of the

shared-memory model:

 A and B might be two processors (or processor cores) in the same

computer, sharing the same physical memory.

 A and B might be two programs running on the same computer,

sharing a common filesystem with files they can read and write.

 A and B might be two threads in the same Java program (we will

explain what a thread is below), sharing the same Java objects.

3.2.2 Message Passing

In the message-passing model, concurrent modules interact by sending

messages to each other through a communication channel. Modules send

off messages, and incoming messages to each module are queued up for

handling. Examples include:

 A and B might be two computers in a network, communicating by

network connections.

 A and B might be a web browser and a web server – A opens a

connection to B, asks for a web page, and B sends the web page

data back to A.

 A and B might be an instant messaging client and server.

 A and B might be two programs running on the same computer

whose input and output have been connected by a pipe, like ls |

grep typed into a command prompt.

3.3 Processes, Threads, Time-slicing

 The message-passing and shared-memory models are about how

concurrent modules communicate. The concurrent modules

themselves come in two different kinds: processes and threads.

3.3.1 Process

 A process is an instance of a running program that is isolated from

other processes on the same machine. In particular, it has its own

private section of the machine’s memory.

Figure 3.3.2: An example of shared memory

CIT 421 NET-CENTRIC COMPUTING

171

 The process abstraction is a virtual computer. It makes the program

feel like it has the entire machine to itself – like a fresh computer

has been created, with fresh memory, just to run that program.

 Just like computers connected across a network, processes

normally share no memory between them. A process can’t access

another process’s memory or objects at all. Sharing memory

between processes is possible on most operating system, but it

needs special effort. By contrast, a new process is automatically

ready for message passing, because it is created with standard input

& output streams, which are the System out and System.in streams

you’ve used in Java.

3.3.2 Thread

A thread is a locus of control inside a running program. Think of it as a

place in the program that is being run, plus the stack of method calls that

led to that place to which it will be necessary to return through.

 Just as a process represents a virtual computer, the thread

abstraction represents a virtual processor. Making a new thread

simulates making a fresh processor inside the virtual computer

represented by the process. This new virtual processor runs the

same program and shares the same memory as other threads in

process.

 Threads are automatically ready for shared memory, because

threads share all the memory in the process. It needs special effort

to get “thread-local” memory that’s private to a single thread. It’s

also necessary to set up message-passing explicitly, by creating

and using queue data structures. We will talk about how to do that

in a future reading.

3.3.3 Time Slicing

 When there are more threads than processors, concurrency is

simulated by time slicing, which means that the processor

switches between threads. The figure on the right, above, shows

Figure 4.3.3: Many Concurrent Threads, One or Two Processors

CIT 421 MODULE 4

172

how three threads T1, T2, and T3 might be time-sliced on a

machine that has only two actual processors. In the figure 2, time

proceeds downward, so at first one processor is running thread T1

and the other is running thread T2, and then the second processor

switches to run thread T3. Thread T2 simply pauses, until its next

time slice on the same processor or another processor.

 On most systems, time slicing happens unpredictably and non-

deterministically, meaning that a thread may be paused or resumed

at any time.

3.4 Shared Memory Example

Let’s look at an example of a shared memory system. The point of this

example is to show that concurrent programming is hard, because it can

have subtle bugs.

Imagine that a bank has cash machines that use a shared memory model,

so all the cash machines can read and write the same account objects in

memory. To illustrate what can go wrong, let’s simplify the bank down

to a single account, with a dollar balance stored in the balance variable,

and two operations deposit and withdraw that simply add or remove a

dollar:

// suppose all the cash machines share a single bank account

private static int balance = 0;

private static void deposit() {

 balance = balance + 1;

}

private static void withdraw() {

 balance = balance - 1;

}

Figure 4.3.4: Shared memory system showing that concurrent programming is hard

CIT 421 NET-CENTRIC COMPUTING

173

Customers use the cash machines to do transactions like this:

deposit(); // put a dollar in

withdraw(); // take it back out

In this simple example, every transaction is just a one dollar deposit

followed by a one-dollar withdrawal, so it should leave the balance in the

account unchanged. Throughout the day, each cash machine in our

network is processing a sequence of deposit/withdraw transactions.

// each ATM does a bunch of transactions that

// modify balance, but leave it unchanged afterward

private static void cashMachine() {

 for (int i = 0; i < TRANSACTIONS_PER_MACHINE; ++i) {

 deposit(); // put a dollar in

 withdraw(); // take it back out

 }

}

So at the end of the day, regardless of how many cash machines were

running, or how many transactions we processed, we should expect the

account balance to still be 0.

But if we run this code, we discover frequently that the balance at the end

of the day is not 0. If more than one cashMachine() call is running at the

same time – say, on separate processors in the same computer –

then balance may not be zero at the end of the day.

3.4.1 Interleaving

Here is one thing that can happen. Suppose two cash machines, A and B,

are both working on a deposit at the same time. Here is how the deposit()

step typically breaks down into low-level processor instructions:

get balance (balance=0)

add 1

write back the result (balance=1)

When A and B are running concurrently, these low-level instructions

interleave with each other (some might even be simultaneous in some

sense, but let’s just worry about interleaving for now):

A get balance (balance=0)

A add 1

A write back the result (balance=1)

CIT 421 MODULE 4

174

 B get balance (balance=1)

 B add 1

 B write back the result (balance=2)

This interleaving is fine – we end up with balance 2, so both A and B

successfully put in a dollar. But what if the interleaving looked like this:

A get balance (balance=0)

 B get balance (balance=0)

A add 1

 B add 1

A write back the result (balance=1)

 B write back the result (balance=1)

The balance is now 1 – A’s dollar was lost! A and B both read the balance

at the same time, computed separate final balances, and then raced to store

back the new balance – which failed to take the other’s deposit into

account.

3.4.2 Race Condition

A race condition means that the correctness of the program (the

satisfaction of postconditions and invariants) depends on the relative

timing of events in concurrent computations A and B. When this happens,

we say “A is in a race with B.”

Some interleavings of events may be OK, in the sense that they are

consistent with what a single, nonconcurrent process would produce, but

other interleavings produce wrong answers – violating postconditions or

invariants.

All these versions of the bank-account code exhibit the same race

condition:

// version 1

private static void deposit() {

 balance = balance + 1;

}

private static void withdraw() {

 balance = balance - 1;

}

// version 2

private static void deposit() {

 balance += 1;

}

CIT 421 NET-CENTRIC COMPUTING

175

private static void withdraw() {

 balance -= 1;

}

// version 3

private static void deposit() {

 ++balance;

}

private static void withdraw() {

 --balance;

}

You cannot tell just from looking at Java code how the processor is going

to execute it. You can’t tell what the indivisible operations – the atomic

operations – will be. It isn’t atomic just because it’s one line of Java. It

doesn’t touch balance only once just because the balance identifier occurs

only once in the line. The Java compiler, and in fact the processor itself,

makes no commitments about what low-level operations it will generate

from your code. In fact, a typical modern Java compiler produces exactly

the same code for all three of these versions!

The key lesson is that you cannot tell by looking at an expression whether

it will be safe from race conditions.

3.4.3 Reordering

The race condition on the bank account balance can be explained in terms

of different interleavings of sequential operations on different processors.

But in fact, when you are using multiple variables and multiple

processors, you cannot even count on changes to those variables

appearing in the same order.

Here’s an example:

private boolean ready = false;

private int answer = 0;

// computeAnswer runs in one thread

private void computeAnswer() {

 answer = 42;

 ready = true;

}

// useAnswer runs in a different thread

private void useAnswer() {

 while (!ready) {

 Thread.yield();

CIT 421 MODULE 4

176

 }

 if (answer == 0) throw new RuntimeException("answer wasn't

ready!");

}

We have two methods that are being run in different

threads. computeAnswer does a long calculation, finally coming up with

the answer 42, which it puts in the answer variable. Then it sets

the ready variable to true, in order to signal to the method running in the

other thread, useAnswer, that the answer is ready for it to use. Looking at

the code, answer is set before ready is set, so

once useAnswer sees ready as true, then it seems reasonable that it can

assume that the answer will be 42 but quite not true.

The problem is that modern compilers and processors do a lot of things to

make the code fast. One of those things is making temporary copies of

variables like answer and ready in faster storage (registers or caches on a

processor), and working with them temporarily before eventually storing

them back to their official location in memory. The storeback may occur

in a different order than the variables were manipulated in your code. Here

is what might be going on under the covers (but expressed in Java syntax

to make it clear). The processor is effectively creating two temporary

variables, tmpr and tmpa, to manipulate the fields ready and answer:

private void computeAnswer() {

 boolean tmpr = ready;

 int tmpa = answer;

 tmpa = 42;

 tmpr = true;

 ready = tmpr;

 // <-- what happens if useAnswer() interleaves here?

 // ready is set, but answer isn't.

 answer = tmpa;

}

3.5 Message Passing Example

CIT 421 NET-CENTRIC COMPUTING

177

Now let us look at the message-passing approach to our bank account

example.

Now not only are the cash machine modules, but the accounts are

modules, too. Modules interact by sending messages to each other.

Incoming requests are placed in a queue to be handled one at a time. The

sender does not stop working while waiting for an answer to its request.

It handles more requests from its own queue. The reply to its request

eventually comes back as another message.

Unfortunately, message passing does not eliminate the possibility of race

conditions. Suppose each account supports get-

balance and withdraw operations, with corresponding messages. Two

users, at cash machine A and B, are both trying to withdraw a dollar from

the same account. They check the balance first to make sure they never

withdraw more than the account holds, because overdrafts trigger big

bank penalties:

get-balance

if balance >= 1 then withdraw 1

The problem is again interleaving, but this time interleaving of

the messages sent to the bank account, rather than

the instructions executed by A and B. If the account starts with a dollar

in it, then what interleaving of messages will fool A and B into thinking

they can both withdraw a dollar, thereby overdrawing the account?

One lesson here is that you need to carefully choose the operations of a

message-passing model. withdraw-if-sufficient-funds would be a better

operation than just withdraw.

3.6 Concurrency is Hard to Test and Debug

If we have not persuaded you that concurrency is tricky, here is the worst

of it. It is very hard to discover race conditions using testing. And even

once a test has found a bug, it may be very hard to localize it to the part

of the program causing it.

Concurrency bugs exhibit very poor reproducibility. It is hard to make

them happen the same way twice. Interleaving of instructions or messages

depends on the relative timing of events that are strongly influenced by

the environment. Delays can be caused by other running programs, other

network traffic, operating system scheduling decisions, variations in

processor clock speed, etc. Each time you run a program containing a race

condition, you may get different behavior.

Figure 4.3.5: A message passing example

CIT 421 MODULE 4

178

These kinds of bugs are heisenbugs, which are nondeterministic and hard

to reproduce, as opposed to a “bohrbug”, which shows up repeatedly

whenever you look at it. Almost all bugs in sequential programming are

bohrbugs.

A heisenbug may even disappear when you try to look at it

with println or debugger! The reason is that printing and debugging are

so much slower than other operations, often 100-1000x slower, that they

dramatically change the timing of operations, and the interleaving. So

inserting a simple print statement into the cashMachine():

private static void cashMachine() {

 for (int i = 0; i < TRANSACTIONS_PER_MACHINE; ++i) {

 deposit(); // put a dollar in

 withdraw(); // take it back out

 System.out.println(balance); // makes the bug disappear!

 }

}

…and suddenly the balance is always 0, as desired, and the bug appears

to disappear. But it is only masked, not truly fixed. A change in timing

somewhere else in the program may suddenly make the bug come back.

Concurrency is hard to get right. Part of the point of this reading is to

scare you a bit. Over the next several readings, we’ll see principled ways

to design concurrent programs so that they are safer from these kinds of

bugs.

Discussion

What are heisenbugs and bohrbug bugs. Discuss.

5.0 CONCLUSION

When there are more threads than processors, concurrency is simulated

by time slicing, which means that the processor switches between threads.

Multithreading abounds in all enterprise developments.

6.0 SUMMARY

Concurrency means multiple computations are happening at the same

time. Concurrency is everywhere in modern programming. In the shared

memory model of concurrency, concurrent modules interact by reading

and writing shared objects in memory. In the message-passing model,

concurrent modules interact by sending messages to each other through a

communication channel. A race condition means that the correctness of

the program (the satisfaction of postconditions and invariants) depends

on the relative timing of events in concurrent computations A and B.

Concurrency bugs exhibit very poor reproducibility. It is hard to make

CIT 421 NET-CENTRIC COMPUTING

179

them happen the same way twice. Interleaving of instructions or messages

depends on the relative timing of events that are strongly influenced by

the environment.

7.0 REFERENCES/FURTHER READING

Concepts: Concurrency (uhcl.edu)

Processes and Threads (The Java™ Tutorials > Essential Java Classes >

Concurrency) (oracle.com)

https://sceweb.uhcl.edu/helm/RationalUnifiedProcess/process/workflow/ana_desi/co_cncry.htm#Top
https://docs.oracle.com/javase/tutorial/essential/concurrency/procthread.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/procthread.html

CIT 421 MODULE 4

180

UNIT 4 CHARACTERISTICS OF SERVICE ORIENTED

ARCHITECTURE

CONTENTS

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main content

3.1 Service-Oriented Architecture (SOA)

3.1.1 A Service

3.2 An Example: SOA Apps Provide a Cohesive Platform for

Overstock.com (a large Online Retailer)

3.3 The 6 Defining Concepts of SOA

3.4 Understanding SOA: The Transportation Analogy

4.0 Self-Assessment Exercises

5.0 Conclusion

6.0 Summary

7.0 References/Further Reading

1.0 INTRODUCTION

Service-oriented architecture (SOA) is a software development model

that allows services to communicate across different platforms and

languages to form applications. In SOA, a service is a self-contained unit

of software designed to complete a specific task. Service-oriented

architecture allows various services to communicate using a loose

coupling system to either pass data or coordinate an activity.

2.0 Intended Learning Outcomes (ILOs)

At the end of this unit, students will able to:

 state the characteristics of Service Oriented Architecture (SOA).

 identify the 6 Defining Concepts of SOA.

 employ the understanding of SOA to solve future problems.

3.0 MAIN CONTENT

3.1 Service-Oriented Architecture (SOA)

Service-Oriented Architecture, can be defined as "services" that provide

a platform by which disparate systems can communicate with each other.

These services are essentially groups of software components that help a

company seamlessly carry out important business processes. SOA

https://www.techtarget.com/searchnetworking/definition/loose-coupling
https://www.techtarget.com/searchnetworking/definition/loose-coupling

CIT 421 NET-CENTRIC COMPUTING

181

implementation makes interoperability between heterogeneous

applications and technologies possible.

The rise of SOA technology and integration in recent years is placing it

as one of the most important applications for communicating between

different systems — or in this context, services.

3.1.1 A Service

Services represent building blocks that allow users to organize

information in ways that are familiar to them. These building blocks

combine information about users and their behavior in a seamless fashion

to present a relatively simple interface.

A service is commonly characterized by these four properties:

1. It logically represents a business activity with a specified outcome.

2. It is self-contained

3. It is a black box for its consumers

4. It may consist of other underlying services

T

o further simplify this concept, an SOA service is the mechanism that

satisfies a customer’s wants or needs through a negotiated contract.

Therefore, SOA is a collection of different services.

To better understand what service-oriented architecture is all about,

consider this quote from industry expert David Sprott:

3.2 An Example: SOA Apps Provide a Cohesive Platform for

Overstock.com (a large Online Retailer)

Communication of services can involve something as simple as passing

data, or it can involve a coordination of an activity between two or more

different SOA services.

One way to illustrate the SOA method is by taking a look at a large online

retailer like Overstock.com.

In order for Overstock customers to make a transaction, different

programs must work together seamlessly. The various steps in the

ordering process can involve various programs developed at different

times, each using their own unique platforms and technologies.

For instance, there might be one program that tracks inventory, which is

different than the interface (i.e. the Internet) the customer uses to shop.

Then, there is likely an entirely different program for their shopping cart

and another for processing payment.

CIT 421 MODULE 4

182

SOA services tie all of these various programs together so that an online

shopper can quickly find out if what they are looking for is in stock and

get it shipped to their doorstep with just a few clicks of their mouse.

3.3 The 6 Defining Concepts of SOA

In October of 2009, a manifesto was created about service-oriented

architecture. This manifesto states that there are six core values of SOA:

1. Business value is more important than technical strategy.

2.

3. Strategic goals are more valuable than project-specific benefits.

4. Intrinsic interoperability is greater than custom integration.

5. Shared services over specific-purpose implementations.

6. Flexibility is given more importance than optimization.

7. Evolutionary refinement is more important than pursuit of initial

perfection.

3.4 Understanding SOA: The Transportation Analogy

Another way to think about SOA is through the analogy of transportation.

Imagine that you have to travel from your home in Ibadan to a business

conference or trade show in Kano. What are the various steps you might

take to get there?

First, you will have to drive to the airport, then take a shuttle to the airport

terminal. Next, you will board the plane for Kano. After landing, you take

another shuttle from the gate to the main terminal, where you have to flag

down a taxi or call an Uber to drive you to your hotel. When it is time for

the conference to start, you walk to the nearest train stop, hop on, and ride

it to the conference center.

All of these various transportation methods worked together to

accomplish your end goal of attending the conference — your car, the

shuttle bus, airplane, train, and even walking. There were many individual

“steps” you had to take to arrive at your final destination on time, and

there were likely other ways you could have gone about it.

For instance, instead of driving to the airport, you could have walked to a

train station or bus stop and gotten to the airport this way. Or you could

have driven completely across the country, thus eliminating your need for

any other type of transportation altogether.

However, by combining numerous transportation methods you were able

to get to the conference faster and probably cheaper than if you had driven

the whole way.

In this analogy of SOA, the various modes of transportation can be viewed

as the different “services” used to reach an end goal. Just like the cars,

http://www.soa-manifesto.org/

CIT 421 NET-CENTRIC COMPUTING

183

bus, train, and plane all worked together to help you accomplish your goal

of attending the conference, combining different units of software

applications (services) can help business achieve new milestones in the

most efficient manner.

Discussion

What is Service Oriented Architetcure?

4.0 SELF-ASSESSMENT/EXERCISES

1. Define Services

Answer:

Services represent building blocks that allow users to organize

information in ways that are familiar to them. These building blocks

combine information about users and their behavior in a seamless fashion

to present a relatively simple interface.

2. What are the four properties a service is commonly characterized by:

Answer:

1. It logically represents a business activity with a specified outcome.

2. It is self-contained

3. It is a black box for its consumers

4. It may consist of other underlying services

3. Explain the concept of SOA using another analogy aside of the

Transportation Analogy.

5.0 CONCLUSION

In life we realize our different goals via combination of methods.

Applying this principle in deploying solutions and even researches

enables novelty and the benefits are much more than losses.

6.0 SUMMARY

Service-Oriented Architecture (SOA), can be defined as "services" that

provide a platform by which disparate systems can communicate with

each other. A Service represents the building blocks that allow users to

organize information in ways that are familiar to them. A service is

commonly characterized by these four properties: It logically represents

a business activity with a specified outcome, it is self-contained, It is a

black box for its consumers and It may consist of other underlying

services.

CIT 421 MODULE 5

184

MODULE 5 MOBILE & CLOUD COMPUTING

UNIT 1 INTRODUCTION TO MOBILE & CLOUD

COMPUTING

CONTENTS

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main content

3.1 Mobile and Cloud Computing

3.2 Cloud Computing

3.3 Capabilities of Cloud Computing

3.4 Categories of Cloud Computing Models

3.4.1 Software as a Service (SaaS)

3.4.2 Platform as a Service (PaaS)

3.4.3 Infrastructure as a Service (IaaS)

3.5 Mobile Cloud Computing (MCC)

3.5.1 Advantage of Mobile & Cloud Computing

3.5.2 Disadvantages of Mobile & Cloud Computing

3.6 Mobile & Cloud Computing Security Concerns

3.7 The Top Threats in the Usage of Mobile & Cloud

Computing

3.7.1 Data Loss

3.7.2 Untrusted Service Providers

3.7.3 Insecure API

4.0 Self-Assessment Exercises

5.0 Conclusion

6.0 Summary

7.0 References/Further Reading

Introduction to Module

Mobile cloud computing (MCC) is the method of using cloud technology

to deliver mobile apps. Complex mobile apps today perform tasks such as

authentication, location-aware functions, and providing targeted content

and communication for end users. Hence, they require extensive

computational resources such as data storage capacity, memory, and

processing power. Mobile cloud computing takes the pressure off mobile

devices by harnessing the power of cloud infrastructure. Developers build

and update rich mobile apps using cloud services and then deploy them

for remote access from any device. These cloud-based mobile apps use

cloud technology to store and process data so that the app is usable on all

types of old and new mobile devices.

Unit 1: Introduction to Mobile & Cloud Computing

Unit 2: Technologies for Wireless Communications

CIT 421 NET-CENTRIC COMPUTING

185

Unit 3: Wireless Cellular Systems

Unit 4: Characteristics of Service Oriented Architecture

1.0 INTRODUCTION

Cloud Computing seems to be the most promising technology of the

century we are living. It provides a new manner of sharing distributed

resources and services that may be part of different organizations,

geographycally located in different places and different time zones.

Mobile Cloud Computing offers partially the same functionality, with the

only additional requirement that, at least, some of the devices are mobile.

In this paper, we will try to provide a detailed explanation of Mobile

Cloud Computing concept by providing different examples, figures,

accessibility, pros and cons and comparison.

2.0 INTENDED LEARNING OUTCOMES (ILOS)

At the end of this unit, student will able to:

 Explain the concept of Cloud computing and its capabilities

 Identify and explain the categories of Cloud computing

 Highlight and explain the top threats in the usage of Mobile and

Cloud Computing

3.0 MAIN CONTENT

3.1 Mobile & Cloud Computing

3.2 Cloud Computing

Cloud Computing is the delivery of the computing services, such as

servers, databases, storage and networking – over the Internet. These

services, usually are offered by so called Cloud Providers, that usually

charge based on usage.

Nowadays, everyone that is using a device connected to Internet, might

be user of cloud services, even though we might not be aware of it. Almost

every online service, including email, document editors or entertaining

apps, might be running using cloud services.

CIT 421 MODULE 5

186

Figure 15: Cloud Computing

3.3 Capabilities of Cloud Computing

Generally, these are a few of the capabilities of Cloud Computing:

 Create new apps and services

 Store, back up and recover data

 Deliver software

 Analyse data for pattern recognition

 Streaming.

Besides the capabilities that Cloud Computing provides, there are also a

lot of benefits that it can offer.

 Cost – using cloud services lowers the costs that organizations

need to spend for buying hardware and software tools for setting

up the infrastructure for its needs.

 Speed – when the organization needs more resources, provisioning

additional resources in cloud services can be done in minutes.

 Scaling – the ability to scale elastically on demand using cloud

services appears as their main and most common use case –

processing power, storage, bandwidth and whatever the demand is,

in less than a minute.

Depending on the type of service a Service Providers provides, there are

several categories of Cloud Computing models, as listed:

3.4 Categories of Cloud Computing models

3.4.1 Software as a Service (SaaS)

The providers that provide this model of Cloud Computing solutions

usually provide a web-based application where the users of the service

can operate. In this model, the consumer does not have any control over

CIT 421 NET-CENTRIC COMPUTING

187

the infrastructure in which the service is running, including the network,

servers, storage or operating system. It removes the need that several

organizations or companies will have to install and run their applications

or services on their data centers or company computers. By this, the

organizations save a lot of financial resources by saving money on the

hardware they would need to run the application, the rent of space where

the data center would be located on, or even software license for operating

systems and depending software.

3.4.2 Platform as a Service (PaaS)

Platform as a Service is another Cloud Computing model in which the

third-party provider provides the necessary hardware and software tools

– usually required for development or research – over the Internet. In

other words, all the programming languages, libraries, services and other

programming tools provided by the provider are deployed in the cloud

infrastructure that the provider provides. Similar as in the previous model,

SaaS, the end user does not have any control nor have to manage any part

of the infrastructure, such as network, operating systems and storage.

3.4.3 Infrastructure as a Service (IaaS)

According to most of the information provided by different surveys, IaaS

is the most common cloud-based model provided by the service providers.

IaaS refers to the service providers who provide processing capability,

storage, network and other fundamental computing resources, to the

consumer who wants to run any type of software. Usually these services

are made possible by using virtual machines as instances. Xen, Oracle

VirtualBox, KVM or Hyper-V are typical examples of providers that offer

great possibilities to run these VMs.

3.5 Mobile Cloud Computing (MCC)

In the consumer space, mobility players such as Apple, Google, and

Microsoft all offer variants of cloud-based apps and private storage.

However, the line between the individual and the professional is

increasingly being blurred. Allowing employees access to company

resources using private devices makes them expect access to your CRM

system on their iPad, with (near) real-time business intelligence reports

delivered by the touch of a finger while sharing analysis with their teams

on the collaboration platform.

Most of the companies tend to move their apps and services in the cloud.

Every company’s mission is to grow and evolve. Considering this case,

organizations face trouble with new coming employees, which bring their

own devices, services and apps. This means that, it requires more efforts

CIT 421 MODULE 5

188

and time to integrate the data to the corporate cloud, in order to ensure

support and control over usage of the same. When we add the complex

format of making sure that corporate services are up to date, all this

process becomes a mess and quite often it becomes a challenging task for

the responsible employees.

3.5.1 Advantages of Mobile & Cloud Computing

Mobile Cloud Computing offers a bunch of advantages while using cloud

services. Following are listed some of the most important ones:

 Flexibility – one of key advantages while using MCC is that the

cloud information can be used anywhere, everywhere; all you need

is a mobile device of any kind, which is paired or configured with

the organization cloud platform.

 Real time available data – accessing the data in real time is no

longer a challenge while you are out of the office.

 No upfront payments – last, but not least – payments. Commonly,

cloud applications does not require payment without using it. It is

mostly the case pay-for-use, which helps in growing the adoption

of the model.

3.5.2 Disadvantages of Mobile & Cloud Computing (MCC)

Whenever there are advantages on any issue, it is sure there would be the

disadvantages as well. The following are some listed and most important

disadvantages of Mobile and Cloud Computing.

 Security – a major concern with Cloud Computing is the security

and data integration. When mobile is the subject, the attention must

be two times higher: unprotected information can be easily sniffed.

 Internet connection – considering the flexibility of MCC, allowing

the users to access the data from anywhere, requires Internet

connection. Making sure that, when accessing data, the user have

access to strong and stable Internet connection, often can cause

headache, especially in non-metropolitan areas.

 Performance – considering smaller size and lower hardware

performance, it is understandable that the performance with MCC

will be in a much lower level.

3.6 Mobile Cloud Computing Security Concerns

One of the most significant concerns of Cloud Computing in general and

Mobile and Cloud Computing particularly, is data security.

Mobile devices are at the top of the list of the most significant security

risks. Confidentiality, integrity and authenticity of information are the

most particular threat. Confidentiality is considered a risk when

CIT 421 NET-CENTRIC COMPUTING

189

unauthorized parties manage to intercept data transmission. Allowing

such a thing, risks the integrity of the data. The authenticity is risked when

these unauthorized parties can use the devices to trigger transactions.

The latest trends of using mobile devices is by using free applications,

which can be infected by malicious software. Using open channels over

network threatens confidential information. Thus, these applications are

often updated or upgraded, trying to provide as much security as possible.

3.7 The Top Threats in the usage of Mobile and Cloud

Computing

3.7.1 Data Loss

Using Cloud Computing is more like outsourcing the data to the service

provider.

This means increasing the risk of exposing important data which were not

issues in traditional computing. Since more of the service providers

provide shared resources, it is more likely for the transactions to crash and

data to be lost. Recently, there has been a lot of unintentional deletion of

data by the providers. Also, a bad line code can mess up access keys, and

the data is lost.

The following solutions can lower the risk:

- Encryption of data while transmission;

- Using access control tools

- Time-to-time back up

3.7.2 Untrusted service providers

Known as malicious insiders, they are the people who have access and

authorization to manage data in the care of the service providers, offering

cloud services. These people can either be working for other companies

or they do it for their personal intentions.

3.7.3 Insecure API

Usually, the communication between a client (in this case, a mobile

device which is handled by the company’s employee) and the server

(which is somewhere in the cloud) is done by an Application

Programming Interface. In order to keep data integration and security in

a higher level, the company providing the API should secure the

communication channels and the information transmitted. Avoiding

insecure APIs can be achieved by using the following techniques:

CIT 421 MODULE 5

190

 Applying authentication and access control tools on data

transmission channels

 Implementing the proper security model according to service

provider’s security protocols

Discussion

What are the advantages and disadvantages of Mobile and cloud

computing?

4.0 Self-Assessment/Exercises

1. Give and explain 3 top threats in the usage of Mobile and Cloud

Computing.

Answer

a. Data Loss

Using Cloud Computing is more like outsourcing the data to the service

provider.

This means increasing the risk of exposing important data which were not

issues in traditional computing. Since more of the service providers

provide shared resources, it is more likely for the transactions to crash and

data to be lost. Recently, there has been a lot of unintentional deletion of

data by the providers. Also, a bad line code can mess up access keys, and

the data is lost.

The following solutions can lower the risk:

- Encryption of data while transmission;

- Using access control tools

- Time-to-time back up

b. Untrusted service providers

Known as malicious insiders, they are the people who have access and

authorization to manage data in the care of the service providers, offering

cloud services. These people can either be working for other companies

or they do it for their personal intentions.

c. Insecure API

Usually, the communication between a client (in this case, a mobile

device which is handled by the company’s employee) and the server

(which is somewhere in the cloud) is done by an Application

Programming Interface. In order to keep data integration and security in

a higher level, the company providing the API should secure the

communication channels and the information transmitted. Avoiding

insecure APIs can be achieved by using the following techniques:

 Applying authentication and access control tools on data

transmission channels

 Implementing the proper security model according to service

provider’s security protocols

2. Whenever there are advantages on any issue, it is sure there would

be the disadvantages as well. Produce the disadvantages of Mobile and

Cloud computing

CIT 421 NET-CENTRIC COMPUTING

191

The following are some listed and most important disadvantages of

Mobile and Cloud Computing.

 Security – a major concern with Cloud Computing is the security

and data integration. When mobile is the subject, the attention must be

two times higher: unprotected information can be easily sniffed.

 Internet connection – considering the flexibility of MCC, allowing

the users to access the data from anywhere, requires Internet connection.

Making sure that, when accessing data, the user have access to strong and

stable Internet connection, often can cause headache, especially in non-

metropolitan areas.

 Performance – considering smaller size and lower hardware

performance, it is understandable that the performance with MCC will be

in a much lower level.

5.0 CONCLUSION

Nowadays, Cloud Computing is moving in big strides towards becoming

the most popular and the used technology, either in the organizational

context, or personal domaina. Considering the fact that mobile technology

provides flexibility, compactness and portability, the big players in the IT

industry are really focused on generating, as optimal as possible, solutions

that will drive mobile devices.

6.0 SUMMARY

Cloud Computing is the delivery of the computing services, such as

servers, databases, storage and networking – over the Internet. Generally,

these are a few of the capabilities of Cloud Computing: Create new apps

and services, Store, back up and recover data, Deliver software, Analyse

data for pattern recognition and Streaming. The following are some listed

and most important disadvantages of Mobile and Cloud Computing:

Security, Internet connection and Performance. The Top Threats in the

usage of Mobile and Cloud Computing are Data Loss, Untrusted service

providers and Insecure API.

7.0 REFERENCES/FURTHER READING

Lofstad, S.: Trends in Cloud Computing: The Impact of Mobile Devices.

Director of Data Center Technologies at Oracle Insight. 2013.

http://www.oracle.com/us/corporate/profit/archives/opinion/011813-

slofstad-1899122.html

CIT 421 MODULE 5

192

Bahtovski, A., Gusev, M.: Cloud Computing in Mobile Technologies.

The 9th Conference for Informatics and Information Technology

(CIIT 2012).

Shanklin, M.: Mobile Cloud Computing (A survey paper written under

the guidance of Prof.

Raj Jain). https://www.cse.wustl.edu/~jain/cse574-10/ftp/cloud/

4. Wikipedia: Cloud Computing.

https://en.wikipedia.org/wiki/Cloud_computing

Microsoft Azure: What is cloud computing? A beginner’s guide.

 https://azure.microsoft.com/en-in/overview/what-is-cloud-computing/

Rouse, M.: Definition: Software as a Service (SaaS). May, 2016.

 http://searchcloudcomputing.techtarget.com/definition/Software-as-a-

Service

Rouse. M: Definitaion: Platform as a Service (PaaS). September, 2017.

 http://searchcloudcomputing.techtarget.com/definition/Platform-as-a-

Service-PaaS

Mobile Cloud Computing – Pros and Cons. December, 2014.

https://www.getcloudservices.com/blog/mobile-cloud-computing-pros-

and-cons/

Kleiner, C., Disterer, G.: Ensuring mobile device security and compliance

at the workplace. Conference on Enterprice Information Systems,

HCist 2015, October 7-9, 2015.

Aldossary, S., Allen, W: Data Security, Privacy, Availability and

Integrity in Cloud Computing: Issues and Current Solutions.

International Journal of Advanced Computer Science and

Applications, Vol. 7, No. 4, 2016.

https://en.wikipedia.org/wiki/Cloud_computing
https://azure.microsoft.com/en-in/overview/what-is-cloud-computing/
http://searchcloudcomputing.techtarget.com/definition/Software-as-a-Service
http://searchcloudcomputing.techtarget.com/definition/Software-as-a-Service
http://searchcloudcomputing.techtarget.com/definition/Platform-as-a-Service-PaaS
http://searchcloudcomputing.techtarget.com/definition/Platform-as-a-Service-PaaS
https://www.getcloudservices.com/blog/mobile-cloud-computing-pros-and-cons/
https://www.getcloudservices.com/blog/mobile-cloud-computing-pros-and-cons/

CIT 421 NET-CENTRIC COMPUTING

193

UNIT 2 TECHNOLOGIES FOR WIRELESS

COMMUNICATIONS

CONTENTS

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main content

3.1 Technologies for Wireless Communications

3.1.1 Radio

3.1.2 Cellular

3.1.3 Satellite

3.1.4 Wi-fi

3.2 Pros & Cons of Microwave Internet Service

3.2.1 Pros-Lower Initials Costs

3.2.2 Cons-Interference

3.2.3 Pro-mobility

3.2.4 Cons-Shared Bandwidth

3.3 Different Types of Roles

3.3.1 AM and FM

3.3.2 Shortwave Radio

3.3.3 Satellite Radio

3.3.4 Ham Radio

3.3.5 Walkie-Talkie

4.0 Self-Assessment Exercises

5.0 Conclusion

6.0 Summary

7.0 References/Further Reading

1.0 INTRODUCTION

Wireless communication technology defines any method of

communication possible without a direct physical connection between the

two parties, largely describing systems based on radio waves. The first

wireless communication systems came into use at the end of the 19th

century, and the technology has matured significantly over the

intervening years. Today, many types of devices use wireless

communication technology, allowing users to remain in contact even in

remote areas.

2.0 INTENDED LEARNING OUTCOMES (ILOS)

At the end of this unit, the student will able to:

 identify and describe some technologies for Wireless

Communication

CIT 421 MODULE 5

194

 explain the Pros & Cons of Microwave Internet Service

 identify and explain the types of radios

3.0 MAIN CONTENT

3.1 Technologies for Wireless Communication

3.1.1 Radio

Open radio communication was one of the first wireless technologies to

find widespread use, and it still serves a purpose today. Portable

multichannel radios allow users to communicate over short distances,

while citizen's band and maritime radios provide communication services

for truckers and sailors. Ham radio enthusiasts share information and

serve as emergency communication aids during disasters with their

powerful amateur broadcasting equipment, and can even communicate

digital data over the radio spectrum.

3.1.2 Cellular

Cellular networks use encrypted radio links, modulated to allow many

different users to communicate across a single frequency band. Because

individual handsets lack significant broadcasting power, the system relies

on a network of cellular towers, capable of triangulating the source of any

signal and handing reception duties off to the most suitable antenna. Data

transmission over cellular networks is possible, with at least, modern 3G

systems capable of speeds approaching that of wired DSL or cable

connections. Cellular providers typically meter their service, charging

customers by the minute for voice and by the megabyte for data.

3.1.3 Satellite

Satellite communication is another wireless technology that has found

widespread use in specialized situations. These devices communicate

directly with orbiting satellites via a radio signal, allowing users to stay

connected virtually anywhere on Earth. Portable satellite phones and

modems feature more powerful broadcast and reception hardware than

cellular devices due to the increased range, and are correspondingly more

expensive. For semi-permanent or permanent installations, such as

outfitting a ship for satellite communication, a more traditional

communication system may link to a single satellite uplink, allowing

multiple users to share the same broadcast equipment.

3.1.4 Wi-Fi

CIT 421 NET-CENTRIC COMPUTING

195

Wi-Fi is a form of low-power wireless communication used by computers

and hand-held electronic devices. In a Wi-Fi setup, a wireless router

serves as the communication hub, linking portable devices to a wired

internet connection. These networks are extremely limited in range due to

the low power of the transmissions, allowing users to connect only within

close proximity to a router or signal repeater. Wi-Fi is common in home

networking applications, allowing users to link devices without running

lengths of cable, and in commercial applications where a business may

provide wireless Internet access to their customers. Wi-Fi networks may

be free to use, or their owners may secure them with passwords and access

restrictions.

3.2 Pros & Cons of Microwave Internet Service

Microwave radio transmission has been used for wireless data

transmission since before the terms wireless broadband or WiFi came into

common usage. It was primarily used by businesses to connect separate

office buildings or locations. Transmission was limited by slower data

speeds, line-of-sight connections and bandwidth issues. The development

of WiMAX -- Worldwide Interoperability for Microwave Access --

technology has improved upon these shortcomings.

3.2.1 Pro -- Lower Initial Costs

The costs of installing a microwave tower are significantly less than those

of installing traditional buried cable systems, such as DSL or cable.

WiMAX technology has a greater range than traditional WiFi and is not

limited to line-of sight access, providing for a larger potential customer

base per tower. WiMAX operates on frequencies both licensed and non-

licensed. The system is governed by IEEE 802.16 standards, which

provides a feasible economic model and regulated environment for

wireless carriers.

3.2.2 Con -- Interference

Radio frequency (RF) transmissions can be adversely affected by weather

conditions and terrain. Temperature, humidity, precipitation and wind can

all cause interference with RF communications. Topographical features

like hills and valleys can reflect or block signals. The density and height

of nearby trees will also affect reception. Lakes, rivers and other water

formations are extremely reflective surfaces in regards to radio

transmissions. Large buildings can also create a "shadow" which leaves a

dead spot directly behind the structure. These obstacles necessitate proper

layout and planning of the wireless networks to minimize signal

degradation.

CIT 421 MODULE 5

196

3.2.3 Pro -- Mobility

WiMAX was the first of the Fourth Generation, 4G, wireless

technologies. Fixed networks can provide service within a 30 mile area.

As long as a customer is within that range they are able to access the

service. Mobile networks have a range of about 2.5 miles, providing even

greater flexibility and availability of connection.

3.2.4 Con -- Shared Bandwidth

All connections within range of a tower share the same bandwidth.

WiMAX offers speeds up to 70Mbps, but this is attainable only in ideal

conditions and with a single user. Connection speeds are significantly

reduced as more and more users connect to the network. Slower speeds

also result from being farther from the tower.

3.3 Different Types of Radios

Radio communication, first developed at the turn of the 20th century,

remains a significant part of the technology landscape despite decades of

innovation and scientific breakthroughs. Radios work by transmitting and

receiving electromagnetic waves that move invisibly at the speed of light,

carrying music and speech in a coded form that depends on the type of

radio used. Over the decades, radio has evolved into many different types,

each of which fulfills different needs.

3.3.1 AM and FM

Amplitude modulation, or AM radio, is one of the oldest forms of wireless

broadcasting. With AM, an audio signal rapidly modifies the strength of

radio waves in a process called modulation; an AM receiver decodes the

modulation back into sound. With the introduction of the transistor in the

1960s, pocket-sized AM radios became a reality for the first time.

Although AM's coding scheme is simple, its sound quality is only fair,

and it is vulnerable to electrical noise. FM, which was developed in the

1930s, relies on the modulation of the radio signal's frequency and not its

strength. The higher radio frequencies used for FM as well as the

modulation scheme give it much better sound quality with less noise than

AM.

CIT 421 NET-CENTRIC COMPUTING

197

3.3.2 Shortwave Radio

Shortwave radio lies in a range of frequencies from 1.7 to 30 megahertz,

just above the AM radio band in the U.S. Because of the way its

frequencies interact with the Earth's ionosphere, shortwave broadcasts

can travel thousands of miles -- under some circumstances, listeners can

tune in anywhere on Earth. Government and commercial stations

broadcast on shortwave frequencies to provide news, information and

other content. For example, the U.S. government runs WWV, a station

that gives accurate time information, at 2.5, 5, 10, 15 and 20 MHz.

3.3.3 Satellite Radio

One of the newest forms of broadcasting, satellite radio is a commercial,

subscription-based service that uses a network of satellites to transmit

signals over wide areas. Unlike traditional AM and FM broadcasts,

satellite radio is digitally encoded, requiring a special receiver. Even with

the receiver, you cannot tune in unless you have a paid subscription; a

computer chip in the receiver locks out any channels not paid for.

Advantages of satellite radio include good sound quality, nationwide

coverage and access to material that sidesteps the Federal

Communications Commission's ban on profanity.

3.3.4 Ham Radio

An amateur or "ham" radio operator broadcasts and receives signals over

a restricted set of frequencies set aside by the FCC; ham radio requires

special training, licensing and equipment. As with shortwave, ham radio

broadcasts can travel thousands of miles depending on the time of day and

other conditions. For many, ham radio serves as an interesting and

entertaining hobby, as operators learn practical radio skills and form

friendships with operators in other countries. In times of natural disaster,

local communications may be knocked out; ham operators are known to

step in to pass along life-saving information.

3.3.5 Walkie-Talkie

A walkie-talkie is a portable, handheld device that sends and receives

radio signals, usually within a range of about a mile. Walkie-talkies are

used by two or more people to communicate in situations where cell

phone service is poor or unavailable, such as in remote locations or in

buildings. Because walkie-talkies have low power and short range, you

don't need a special license to operate them; they interfere little with other

radio signals

CIT 421 MODULE 5

198

Discussion

Discuss any two radio types.

4.0 SELF-ASSESSMENT/EXERCISES

1. Describe the Wi-Fi technologies

Answer:

Wi-Fi is a form of low-power wireless communication used by computers

and hand-held electronic devices. In a Wi-Fi setup, a wireless router

serves as the communication hub, linking portable devices to a wired

internet connection. These networks are extremely limited in range due to

the low power of the transmissions, allowing users to connect only within

close proximity to a router or signal repeater. Wi-Fi is common in home

networking applications, allowing users to link devices without running

lengths of cable, and in commercial applications where a business may

provide wireless Internet access to their customers. Wi-Fi networks may

be free to use, or their owners may secure them with passwords and access

restrictions

2. Explain Satellite as a technology for wireless communication

Satellite communication is another wireless technology that has found

widespread use in specialized situations. These devices communicate

directly with orbiting satellites via a radio signal, allowing users to stay

connected virtually anywhere on Earth. Portable satellite phones and

modems feature more powerful broadcast and reception hardware than

cellular devices due to the increased range, and are correspondingly more

expensive. For semi-permanent or permanent installations, such as

outfitting a ship for satellite communication, a more traditional

communication system may link to a single satellite uplink, allowing

multiple users to share the same broadcast equipment.

5.0 CONCLUSION

Wireless communication as technology has come to live with us. Its

capability rest most in mobility. It is more comfortable as enables the user

to work untethered. Its disadvantage stems from instability as it could be

interfered with anytime which does not augur well with mission critical

systems.

6.0 SUMMARY

Wireless communication technology defines any method of

communication possible without a direct physical connection between the

two parties, largely describing systems based on radio waves. Different

CIT 421 NET-CENTRIC COMPUTING

199

Types of Radios are AM and FM, Shortwave Radio, Satellite Radio, Ham

Radio and Walkie-Talkie. Technologies for Wireless Communication are

Radio, Cellular, Satellite and Wi-Fi.

CIT 421 MODULE 5

200

UNIT 3 WIRELESS CELLULAR SYSTEMS

CONTENTS

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main content

3.1 Wireless Cellular Systems

3.1.1 Cellular Concepts

3.1.2 Frequency Reuse

3.1.2.1 Interference and Reuse

3.1.3 Multiple Access

3.1.3.1 FDMA

3.1.3.2 TDMA

3.1.3.3 CDMA

3.1.4 Systems Capacity

3.1.4.1 Channel Capacity

3.1.4.2 Cellular Capacity

3.1.4.2.1 Cellular analog Capacity

3.1.4.2.2 TDMA/ EDMA Capacity

3.1.4.2.3 CDMA Capacity

3.1.5 Modulation and Coding

3.1.5.1 Modulations

4.0 Self-Assessment Exercises

5.0 Conclusion

6.0 Summary

7.0 References/Further Reading

1.0 INTRODUCTION

Wireless communications are especially useful for mobile applications,

so wireless systems are often designed to cover large areas by splitting

them into many smaller cells. This cellular approach introduces many

difficulties such as how to avoid interference, or how to hand-over from

one cell to another, while maintaining good service quality. Coverage,

capacity, interference, and spectrum reuse are important concerns of

cellular systems; this chapter reviews these aspects as well as the

technologies, tools, and standards used to optimize them.

2.0 INTENDED LEARNING OUTCOMES (ILOS)

At the end of this unit, student will able to:

 Explain some concepts on Wireless Cellular Systems

 Explain the term, Frequency re-use

CIT 421 NET-CENTRIC COMPUTING

201

 Identify and explain the techniques for multiple devices to access

the wireless system.



3.0 MAIN CONTENT

3.1 Wireless Cellular Systems

3.1.1 Cellular Concepts

Providing wireless service over wide areas requires different schemes to

efficiently use spectrum in different locations while avoiding

interference.

3.1.2 Frequency Reuse

Covering a large geographic area with limited amount of spectrum leads

to the reuse of the same frequency in multiple locations; this leads to co-

channel interference considerations, meaning interference from different

areas (or cells) that use the same frequency channel. Co-channel

interference considerations are usually approached by considering the

following parameters:

 St: total number of RF channels available (given the amount of

spectrum and channel width dictated by technology standard),

 S0: number of channels per cell, which reflects system capacity at

a given location,

 K: the reuse factor, the number of cells that is repeated to provide

coverage over a large area.

The three quantities are linked by the straightforward relation:

 … equation 5.3.1

The reuse factor K is therefore an important parameter for capacity. The

lowest reuse factor (K = 1) maximizes capacity; but this has to be

balanced with interference considerations: indeed a higher reuse factor

(K = 3, 4, 7, or higher) provides more distance between cells using the

same frequency, which lowers interferences.

3.1.2.1 Interference and Reuse

Spectrum reuse causes interference; quantifying them require us to

consider how a signal propagates from one cell to another. Assume a

propagation model using a power path loss exponent n, that is a model

where power decays in 1∕Rn (R being the distance separating transmit

station from receiver). This means that the ratio of received power to

https://morse.colorado.edu/~tlen5510/text/classweb.html#QQ2-7-33
https://morse.colorado.edu/~tlen5510/text/classwebli1.html#QQ2-7-34
https://morse.colorado.edu/~tlen5510/text/classwebli1.html#QQ2-7-35

CIT 421 MODULE 5

202

transmit power may be expressed as Pr ∕Pt = A∕Rn, (equation 5.3.2) where

A is some constant.

Figure 5.3.1: Frequency reuse patterns

Figure 5.3.1: Frequency reuse patterns K =3, 4, and 7, on hexagonal cells.

Bold contour shows the pattern of cells repeated to provide wide area

coverage. D shows the shortest distance between cells reusing the same

frequency.

With this model, signal to interference ratios are estimated as

 … equation 5.3.3

Where i0 is the number of co-channel cells nearest to the cell (called first

tier or tier one); that number increases with K. And Di is the distance to

the tier-one cells reusing the same frequency (as shown in figure 5.3.1).

In the case of hexagonal cell approximation the expression simplifies to

equation 5.3.1:

 … equation 5.3.4

n values vary typically between 2 and 4 with the types of terrain. We will

also see that specific wireless technologies require a certain signal to noise

and interference ratio (mostly based on data rates); so equation (5.3.1)

leads to a minimal acceptable value for K.

3.1.3 Multiple Access

A major requirement of cellular networks is to provide an efficient

technique for multiple devices to access the wireless system. These

techniques include:

https://morse.colorado.edu/~tlen5510/text/classwebli1.html#QQ2-7-37

CIT 421 NET-CENTRIC COMPUTING

203

a. FDMA:
Frequency Division Multiple Access, perhaps the most straightforward,

in which every user device uses its own frequency channel. This method

was used in the first generation analog systems.

b. TDMA:
Time Division Multiple Access, in which a radio channel is divided in

time slots, and use devices use their allocated time slots. In fact TDMA

systems are often hybrid FDMA as well as multiple channels are used,

most 2G systems were TDMA.

c. CDMA:
Code Division Multiple Access, in which orthogonal (or pseudo

orthogonal) codes are used to differentiate user devices. CDMA is very

spectrum efficient, and was used by 3G standards. There are several

approaches to achieve CDMA, such as frequency hooping (FH-CDMA)

or direct spreading (DS-CDMA).

These are the main multiple access techniques, but subtle extensions and

combinations can be devised to obtain more efficient schemes.

3.1.4 System Capacity

Wireless communications deal with at least two main concerns: coverage

and capacity.

a. Channel Capacity

One fundamental concept of information theory is one of channel

capacity, or how much information can be transmitted in a

communication channel. In the 1940’s Claude Shannon invented formal

characterization of information theory and derived the well-known

Shanon’s capacity theorem. That theorem applies to wireless

communications.

The Shannon capacity equation gives an upper bound for the capacity in

a non-faded channel with added white Gaussian noise:

 … equation 5.3.5

Where C= capacity (bits/s), W=bandwidth (Hz), S∕N= signal to noise (and

interference) ratio.

That capacity equation assumes one transmitter and one receiver, though

multiple antennas can be used in diversity scheme on the receiving side.

The equation singles out two fundamentally important aspects: bandwidth

and SNR.

https://morse.colorado.edu/~tlen5510/text/classweb.html#QQ2-7-38
https://morse.colorado.edu/~tlen5510/text/classwebli1.html#QQ2-7-39

CIT 421 MODULE 5

204

Bandwidth reflects how much spectrum a wireless system uses, and

explains why the spectrum considerations are so important: they have a

direct impact on system capacity. SNR of course reflects the quality of

the propagation channel, and will be dealt with in numerous ways:

modulation, coding, error correction, and important design choices such

as cell sizes and reuse patterns.

b. Cellular Capacity

Practical capacity of many wireless systems are far from the Shannon’s

limit (although recent standards are coming close to it); and practical

capacity is heavily dependent on implementation and standard choices.

Digital standards deal in their own way with how to deploy and optimize

capacity. Most systems are limited by channel width, time slots, and voice

coding characteristics. CDMA systems are interference limited, and have

tradeoffs between capacity, coverage, and other performance metrics

(such as dropped call rates or voice quality).

i. Cellular Analog Capacity:
Fairly straight forward, every voice channel uses a 30 kHz frequency

channel, these frequencies may be reused according to a reuse pattern, the

system is FDMA. The overall capacity simply comes from the total

amount of spectrum, the channel width and the reuse pattern.

ii. TDMA/FDMA Capacity:
In digital FDMA systems, capacity improvements mainly come from the

voice coding and elaborate schemes (such as frequency hopping) to

decrease reuse factor. The frequency reuse factor hides a lot of

complexity; its value depends greatly on the signal to interference levels

acceptable to a given cellular system. TDMA systems combine multiple

time slots per channels.

iii. CDMA Capacity:
A usual capacity equation for CDMA systems may be fairly easily derived

as follows (for the reverse link): first examine a base station with N

mobiles, its noise and interference power spectral density dues to all

mobiles in that same cell is ISC = (N-1)Sα, where S is the received power

density for each mobile, and α is the voice activity factor. Other cell

interferences IOC are estimated by a reuse fraction β of the same cell

interference level, such that IOC = βISC; (usual values of β are around 1∕2).

The total noise and interference at the base is therefore Nt = ISC(1 + β).

Next assume the mobile signal power density received at the base station

is S = REb∕W. Eliminating ISC, we derive:

…equation 5.3.6

Where:

https://morse.colorado.edu/~tlen5510/text/classwebli1.html#QQ2-7-40

CIT 421 NET-CENTRIC COMPUTING

205

 W is the channel bandwidth (in Hz),

 R is the user data bit rate (symbol rate in symbol per second),

 Eb∕Nt is the ratio of energy per bit by total noise (usually given in

dB Eb∕Nt ≈ 7dB),

 α is the voice activity factor (for the reverse link), typically 0.5,

 and β is the interference reuse fraction, typically around 0.5, and

represents the ratio of interference level from the cell in

consideration by interferences due to other cells. (The number 1

+ β is sometimes called reuse factor, and 1∕(1 + β) reuse efficiency)

This simple equation (5.3.6) gives us a number of voice channels in a

CDMA frequency channel.

We can already see some hints of CDMA optimization and investigate

certain possible improvement for a 3G system. In particular:

improving α can be achieved with dim and burst capabilities, β with

interference mitigation and antenna downtilt considerations, R with

vocoder rate, W with wider band CDMA, Eb∕Nt with better coding and

interference mitigation techniques.

Some aspects however are omitted in this equation and are required to

quantify other capacity improvements mainly those due to power control,

and softer/soft handoff algorithms.

Of course other limitations come into play for wireless systems, such as

base station (and mobile) sensitivity, which may be incorporated into

similar formulas; and further considerations come into play such as:

forward power limitations, channel element blocking, backhaul capacity,

mobility, and handoff.

3.1.5 Modulation and Coding

Modulation techniques are a necessary part of any wireless system,

without them, no useful information can be transmitted. Coding

techniques are almost as important, and combine two important aspects:

first to transmit information efficiently, and second to deal with error

correction (to avoid retransmissions).

Modulation

A continuous wave signal (at a carrier frequency fc) in itself encodes and

transmits no information. The bits of information are encoded in the

variations of that signal (in phase, amplitude, or a combination thereof).

These variations cause the occupied spectrum to increase, thus occupying

a bandwidth around fc; and the optimal use of that bandwidth is an

important part of a wireless system. Various modulation schemes and

coding schemes are used to maximize the use of that spectrum for

https://morse.colorado.edu/~tlen5510/text/classweb.html#QQ2-7-41
https://morse.colorado.edu/~tlen5510/text/classwebli1.html#QQ2-7-42

CIT 421 MODULE 5

206

different applications (voice or high speed data), and in various conditions

of noise, interference, and RF channel resources in general.

Classic modulation techniques are well covered in several texts, and we

simply recall here a few important aspects of digital modulations (that

will be important in link budgets). The main digital modulations used in

modern wireless systems are outlined in table 5.3.1.

Table 5.3.1: The main Digital Modulations in Modern Wireless Systems

Modulation Bits encoded by: Example

Amplitude Shift

Keying

Discrete amplitude levels On/off keying

Frequency Shift

Keying

Multiple discrete

frequencies

Phase Shift Keying Multiple discrete phases BPSK, QPSK, 8-

PSK

Quadrature

Ampl. Mod.

Both phase and amplitude 16, 64, 256 QAM

Discussion

Provide the bits they are encoded in and example of the main digital

modulations used in modern wireless systems.

5.0 CONCLUSION

Providing wireless service over wide areas requires different schemes to

efficiently use spectrum in different locations while avoiding

interference.

6.0 SUMMARY

Covering a large geographic area with limited amount of spectrum leads

to the reuse of the same frequency in multiple locations; this leads to co-

channel interference considerations, meaning interference from different

areas (or cells) that use the same frequency channel. Spectrum reuse

causes interference; quantifying them require us to consider how a signal

propagates from one cell to another. A major requirement of cellular

networks is to provide an efficient technique for multiple devices to

access the wireless system. These techniques include FDMA, TDMA and

CDMA. Wireless communications deal with at least two main concerns:

coverage and capacity. The capacities are Channel Capacity and Cellular

Capacity. Modulation techniques are a necessary part of any wireless

system, without them, no useful information can be transmitted. Coding

techniques are almost as important, and combine two important aspects:

first to transmit information efficiently, and second to deal with error

correction (to avoid retransmissions).

https://morse.colorado.edu/~tlen5510/text/classwebli1.html#QQ2-7-39
https://morse.colorado.edu/~tlen5510/text/classwebli1.html#QQ2-7-40
https://morse.colorado.edu/~tlen5510/text/classwebli1.html#QQ2-7-40

CIT 421 NET-CENTRIC COMPUTING

207

7.0 REFERENCES/FURTHER READING

Contents (colorado.edu)

https://www.tutorialspoint.com/wireless_communication/wireless_com

munication_cellular_networks.htm

https://www.javatpoint.com/cellular-system-infrastructure

https://morse.colorado.edu/~tlen5510/text/classwebli1.html#QQ2-7-42
https://www.tutorialspoint.com/wireless_communication/wireless_communication_cellular_networks.htm
https://www.tutorialspoint.com/wireless_communication/wireless_communication_cellular_networks.htm
https://www.javatpoint.com/cellular-system-infrastructure

CIT 421 MODULE 5

208

UNIT 4 OVERVIEW OF WIRELESS LAN, IEEE 802.11,

PERSONAL AREA NETWORK, BLUETOOTH

CONTENTS

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main content

3.1 Introduction to Wireless Local Area Network (WLAN)

3.2 WLANs and Access Points

3.3 Emerging WLANs and the Ubiquity of WLANs

3.3 How a WLAN works

3.4 Configuration of WLAN

3.5 How roaming works on a WLAN

3.6 WLAN architecture

3.7 Benefits of a WLAN

3.8 IEEE 802.11 Standard

3.9 Bluetooth Technology

4.0 Self-Assessment Exercises

5.0 Conclusion

6.0 Summary

7.0 References/Further Reading

 1.0 INTRODUCTION

A wireless local area network (WLAN) is a wireless distribution method

for two or more devices. WLANs use high-frequency radio waves and

often include an access point to the Internet. A WLAN allows users to

move around the coverage area, often a home or small office, while

maintaining a network connection.

A WLAN is sometimes called a local area wireless network (LAWN).

2.0 INTENDED LEARNING OUTCOMES (ILOS)

At the end of this unit, students will able to:

 Describe WLAN, IEEE 802.11 standard and Bluetooth

technology.

 Explain the WLAN Architecture.

 Identify and explain the configurations of WLAN

CIT 421 NET-CENTRIC COMPUTING

209

3.0 MAIN CONTENT

3.1 Wireless Local Area Network (WLAN)

A wireless local-area network (WLAN) is a group of colocated computers

or other devices that form a network based on radio transmissions rather

than wired connections. A Wi-Fi network is a type of WLAN.

Although some may use the terms “Wi-Fi” and “WLAN” interchangeably

but they are not the same. A “Wi-Fi connection” refers to a given wireless

connection that a device uses, the WLAN is the network itself. “Wi-Fi”

is a superset of the IEEE 802.11 standard and is sometimes used

interchangeably with that standard. However, not every Wi-Fi device

actually receives Wi-Fi Alliance certification, although Wi-Fi is used by

more than 700 million people through about 750,000 Internet connection

hot spots. The hot spots themselves also constitute WLANs, of a

particular kind.

3.1.1 WLANs and Access Points

Every component that connects to a WLAN is considered a station, and

falls into one of two categories: access points (APs) and clients.

 Access points or APs transmit and receive radio frequency signals

with devices that are able to receive transmitted signals; they

normally function as routers.

 Clients, on the other hand, may include a variety of devices, such

as desktop computers, workstations, laptop computers, IP phones

and other cell phones and smartphone devices.

All stations able to communicate with each other are called basic service

sets (BSSs), of which there are two types: independent and infrastructure.

Independent BSSs (IBSS) exist when two clients communicate without

using APs, but cannot connect to any other BSS. Such WLANs are called

a peer-to-peer or an ad-hoc WLANs. The second BSS is called an

infrastructure BSS. It may communicate with other stations but only in

other BSSs and it must use APs.

3.1.2 Emerging WLANs and its Ubiquity

In the early 1990s, WLANs were very expensive, and were only used

when wired connections were strategically impossible.

By the late 1990s, most WLAN solutions and proprietary protocols were

replaced by IEEE 802.11 standards in various versions (versions "a"

through "n"). WLAN prices also began to decrease significantly.

CIT 421 MODULE 5

210

As technology progressed, WLANs became easier and easier to set up and

administrate.

That led to the emergence of the ISP WLAN, where so many small local

home networks are mostly coordinated by the Internet Service Provider,

and not engineered by the end-user on-site.

In these types of ISP WLAN setups, the ISP’s modem is the access point.

It's also the router. All that the consumer has to do is plug in the router,

use provided security passwords, and connect home devices to the home

WLAN.

You could call this “wireless local area network as a service” (WLANaaS)

or refer to a “plug-and-play” or abstracted wireless local area network

model. In any case, it’s ultimately very convenient for the household.

Although ISPs don't usually advertise their products as home LANs,

that’s what they are. Some types of ISP services talk about using the

modem as a “gateway” to the Internet, which implies that your WLAN is

on the other side of that gateway.

Users of home WLANs are more frequently connecting devices such as

phones, televisions, computers and printers to evolved WLAN systems

where the ISP will offer some type of dashboard visualization for the

WLAN in question.

There's also been some innovation toward peer-to-peer WLANs that work

without a defined access point. In other words, all of the devices are

independently operated to network together. This challenges the

traditional idea that the WLAN was made of access points and clients, as

discussed above. At the same time, in the client/server architecture, where

a similar approach is used to engineer Internet services, peer-to-peer

systems are also challenging that traditional build as well. As the IoT

paves the way for advanced connectivity, the WLAN provides that “sub-

network” and the convenience of local Wi-Fi operation.

3.1.4 How a WLAN works

Like broadcast media, a WLAN transmits information over radio waves.

Data is sent in packets. The packets contain layers with labels and

instructions that, along with the unique MAC (Media Access Control)

addresses assigned to endpoints, enable routing to intended locations.

3.1.5 Configuration of WLAN

A WLAN can be configured in one of two ways:

CIT 421 NET-CENTRIC COMPUTING

211

a. Infrastructure

A home or office Wi-Fi network is an example of a WLAN set up in

infrastructure mode. The endpoints are all connected and communicate

with each other through a base station, which may also provide internet

access.

A basic infrastructure WLAN can be set up with just a few parts: a

wireless router, which acts as the base station, and endpoints, which can

be computers, mobile devices, printers, and other devices. In most cases,

the wireless router is also the internet connection.

b. Ad hoc

In this setup, a WLAN connects endpoints such as computer workstations

and mobile devices without the use of a base station. Use of Wi-Fi Direct

technology is common for an ad hoc wireless network. An ad hoc WLAN

is easy to set up and can provide basic peer-to-peer (P2P) communication.

An ad hoc WLAN requires only two or more endpoints with built-in radio

transmission, such as computers or mobile devices. After adjusting

network settings for ad hoc mode, one user initiates the network and

becomes visible to the others.

3.1.6 How Roaming works on a WLAN

For any sized network, access points can extend the area of access. Wi-Fi

standards are designed to allow a non-stationary user's connection to jump

from one access point to another, though some users and applications may

experience brief dropouts. Even with non-overlapping access points, a

user's connection is simply paused until connection with the next access

point. Additional access points can be wired or wireless. When access

points overlap, they can be configured to help optimize the network by

sharing and managing loads.

3.1.7 WLAN Architecture

a. Stations
Stations are components that connect wirelessly to networks. They are

either access points or endpoints, each identified with a unique network

address.

b. Basic Service Set (BSS)

A BSS is a group of stations that connects to the network. In ad hoc

networks, the group of stations is called an Independent BSS (IBSS). A

set of connected BSSs, as in a network with multiple access points, is

called an Extended Service Set (ESS).

CIT 421 MODULE 5

212

c. Distribution system

The distribution system connects access points in an ESS. The

connections can be wired or wireless. A wireless distribution system

(WDS) can use mesh or its own WDS protocol. Fixed wireless is a

specialized form of radio transmission for connecting a geographically

distant access point.

d. Access point

The access point is the base station that serves as a hub to which other

stations connect. The "access" is that of the stations to the network, but it

may also mean internet access, since many routers double as internet

modems. In an ESS, access points may be connected with Ethernet cables

or wirelessly.

e. Bridge

The bridge is used to connect a WLAN to a LAN or to an access point.

f. Endpoint

The endpoint is any end-user station, such as a computer, mobile device,

printer, or Internet of Things (IoT) device.

3.1.8 Benefits of a WLAN

1. Extended reach: WLANs enable computing to happen anywhere,

even when carrying high data loads and advanced web

applications.

2. Device flexibility: A WLAN supports use of a wide range of

devices, such as computers, phones, tablets, gaming systems, and

IoT devices.

3. Easier installation and management: A WLAN requires less

physical equipment than a wired network, which saves money,

reduces installation time, and takes up less of a footprint in office

settings.

4. Scalability: A WLAN is easy to scale. Adding users is as simple

as assigning login credentials.

5. Network management: Nearly all management of a WLAN can be

handled virtually. A single software interface can provide

visibility, manage users, monitor network health, and collect data.

3.2 IEEE 802.11 Standard

IEEE 802.11 is the set of technical guidelines for implementing Wi-Fi.

Selling products under this trademark is overseen by an industry trade

association by the name of the Wi-Fi Alliance.

CIT 421 NET-CENTRIC COMPUTING

213

IEEE 802.11 has its roots from a 1985 decision by the U.S. Federal

Commission for Communication that opened up the ISM band for

unlicensed use. The standard was formally released in 1997. That original

standard was called IEEE 802.11-1997 and is now obsolete.

It's common to hear people refer to "802.11 standards" or the "802.11

family of standards." However, to be more precise, there is only one

standard (IEEE 802.11-2007) but many amendments. Commonly known

amendments include 802.11a, 802.11b, 802.11g, and 802.11n.

3.3 Bluetooth Technology

Bluetooth is a short-range wireless communication technology that

allows devices such as mobile phones, computers, and peripherals to

transmit data or voice wirelessly over a short distance. The purpose of

Bluetooth is to replace the cables that normally connect devices, while

still keeping the communications between them secure.

The "Bluetooth" name is taken from a 10th-century Danish king named

Harald Bluetooth, who was said to unite disparate, warring regional

factions. Like its namesake, Bluetooth technology brings together a

broad range of devices across many different industries through a

unifying communication standard.

Developed in 1994, Bluetooth was intended as a wireless replacement

for cables. It uses the same 2.4GHz frequency as some other wireless

technologies in the home or office, such as cordless phones and WiFi

routers. It creates a 10-meter (33-foot) radius wireless network, called

a personal area network (PAN) or piconet, which can network between

two and eight devices. This short-range network allows you to send a

page to your printer in another room, for example, without having to run

an unsightly cable.

Bluetooth uses less power and costs less to implement than Wi-Fi.

Its lower power also makes it far less prone to suffering from or causing

interference with other wireless devices in the same 2.4GHz radio band.

Bluetooth range and transmission speeds are typically lower than Wi-Fi

(the wireless local area network that you may have in your home).

Bluetooth v3.0 + HS i.e Bluetooth high-speed technology devices, can

deliver up to 24 Mbps of data, which is faster than the 802.11b WiFi

standard, but slower than wireless-a or wireless-g standards. As

technology has evolved, however, Bluetooth speeds have increased.

The Bluetooth 4.0 specification was officially adopted on July 6, 2010.

Bluetooth version 4.0 features include low energy consumption, low

cost, multivendor interoperability, and enhanced range.

https://www.lifewire.com/what-is-wireless-2377432
https://www.lifewire.com/definition-of-pan-817889
https://www.lifewire.com/wireless-standards-802-11a-802-11b-g-n-and-802-11ac-816553
https://www.lifewire.com/wireless-standards-802-11a-802-11b-g-n-and-802-11ac-816553

CIT 421 MODULE 5

214

The hallmark feature enhancement to the Bluetooth 4.0 spec is its

lower power requirements; devices using Bluetooth v4.0 are optimized

for low battery operation and can run off of small coin-cell batteries,

opening up new opportunities for wireless technology. Instead of fearing

that leaving Bluetooth on will drain your cell phone's battery, for

example, you can leave a Bluetooth v4.0 mobile phone connected all the

time to your other Bluetooth accessories.

3.3.1 Connecting With Bluetooth

Many mobile devices have Bluetooth radios embedded in them. PCs and

some other devices that do not have built-in radios can be Bluetooth-

enabled by adding a Bluetooth dongle, for example.

The process of connecting two Bluetooth devices is called "pairing."

Generally, devices broadcast their presence to one another, and the user

selects the Bluetooth device they want to connect to when its name or

ID appears on their device. As Bluetooth-enabled devices proliferate, it

becomes important that you know when and to which device you're

connecting, so there may be a code to enter that helps ensure you're

connecting to the correct device.

This pairing process can vary depending on the devices involved. For

example, connecting a Bluetooth device to your iPad can involve

different steps from those to pair a Bluetooth device to your car.

3.3.2 Bluetooth Limitations

There are some downsides to Bluetooth. The first is that it can be a drain

on battery power for mobile wireless devices like smartphones, though

as the technology (and battery technology) has improved, this problem

is less significant than it used to be.

Also, the range is fairly limited, usually extending only about 30 feet,

and as with all wireless technologies, obstacles such as walls, floors, or

ceilings can reduce this range further.

The pairing process may also be difficult, often depending on the

devices involved, the manufacturers, and other factors that all can result

in frustration when attempting to connect.

3.3.3 Security and Bluetooth

Bluetooth is considered a reasonably secure wireless technology when

used with precautions. Connections are encrypted, preventing casual

eavesdropping from other devices nearby. Bluetooth devices also shift

radio frequencies often while paired, which prevents an easy invasion.

https://www.lifewire.com/definition-of-dongle-816315
https://www.lifewire.com/pair-bluetooth-device-to-ipad-4103765
https://www.lifewire.com/pair-bluetooth-cell-phone-with-car-534615

CIT 421 NET-CENTRIC COMPUTING

215

Devices also offer a variety of settings that allow the user to limit

Bluetooth connections. The device-level security of "trusting" a

Bluetooth device restricts connections to only that specific device. With

service-level security settings, you can also restrict the kinds of activities

your device is permitted to engage in while on a Bluetooth connection.

As with any wireless technology, however, there is always some security

risk involved. Hackers have devised a variety of malicious attacks that

use Bluetooth networking. For example, "bluesnarfing" refers to a

hacker gaining authorized access to information on a device through

Bluetooth; "bluebugging" is when an attacker takes over your mobile

phone and all its functions.

For the average person, Bluetooth doesn't present a grave security risk

when used with safety in mind (e.g., not connecting to unknown

Bluetooth devices). For maximum security, while in public and not using

Bluetooth, you can disable it completely.

3.4 Personal Area Network (PAN)

A personal area network (PAN) is the interconnection of information

technology devices within the range of an individual person, typically

within a range of 10 meters. For example, a person traveling with a laptop,

a personal digital assistant (PDA), and a portable printer could

interconnect them without having to plug anything in, using some form

of wireless technology. Typically, this kind of personal area network

could also be interconnected without wires to the Internet or other

networks.

Conceptually, the difference between a PAN and a wireless LAN is that

the former tends to be centered around one person while the latter is a

local area network (LAN) that is connected without wires and serving

multiple users.

In another usage, a personal area network (PAN) is a technology that

could enable wearable computer devices to communicate with other

nearby computers and exchange digital information using the electrical

conductivity of the human body as a data network. For example, two

people each wearing business card-size transmitters and receivers

conceivably could exchange information by shaking hands. The

transference of data through intra-body contact, such as handshakes, is

known as linkup.

The human body's natural salinity makes it a good conductor of

electricity. An electric field passes tiny currents, known as Pico amps,

through the body when the two people shake hands. The handshake

completes an electric circuit and each person's data, such as e-mail

CIT 421 MODULE 5

216

addresses and phone numbers, are transferred to the other person's laptop

computer or a similar device. A person's clothing also could act as a

mechanism for transferring this data.

The concept of a PAN first was developed by Thomas Zimmerman and

other researchers at M.I.T.'s Media Lab and later supported by IBM's

Almaden research lab. In a research paper, Zimmerman explains why the

concept might be useful:

As electronic devices become smaller, lower in power requirements, and

less expensive, we have begun to adorn our bodies with personal

information and communication appliances. Such devices include cellular

phones, personal digital assistants (PDAs), pocket video games, and

pagers. Currently there is no method for these devices to share data.

Networking these devices can reduce functional I/O redundancies and

allow new conveniences and services.

Discussion

Bluetooth is secure. Discuss.

4.0 SELF-ASSESSMENT/EXERCISES

1. Identify and explain the benefits of a WLAN

Answer

a. Extended reach: WLANs enable computing to happen anywhere,

even when carrying high data loads and advanced web

applications.

b. Device flexibility: A WLAN supports use of a wide range of

devices, such as computers, phones, tablets, gaming systems, and

IoT devices.

c. Easier installation and management: A WLAN requires less

physical equipment than a wired network, which saves money,

reduces installation time, and takes up less of a footprint in office

settings.

d. Scalability: A WLAN is easy to scale. Adding users is as simple

as assigning login credentials.

e. Network management: Nearly all management of a WLAN can be

handled virtually. A single software interface can provide

visibility, manage users, monitor network health, and collect data.

2. A WLAN can be configured in one of two ways. Itemize and

explain each of the ways.

CIT 421 NET-CENTRIC COMPUTING

217

Answer:

a. Infrastructure
A home or office Wi-Fi network is an example of a WLAN set up in

infrastructure mode. The endpoints are all connected and communicate

with each other through a base station, which may also provide internet

access.

A basic infrastructure WLAN can be set up with just a few parts: a

wireless router, which acts as the base station, and endpoints, which can

be computers, mobile devices, printers, and other devices. In most cases,

the wireless router is also the internet connection.

b. Ad hoc

In this setup, a WLAN connects endpoints such as computer workstations

and mobile devices without the use of a base station. Use of Wi-Fi Direct

technology is common for an ad hoc wireless network. An ad hoc WLAN

is easy to set up and can provide basic peer-to-peer (P2P) communication.

An ad hoc WLAN requires only two or more endpoints with built-in radio

transmission, such as computers or mobile devices. After adjusting

network settings for ad hoc mode, one user initiates the network and

becomes visible to the others.

5.0 CONCLUSION

Wireless LANs provide high speed data communication in small areas

such as building or an office. WLANs allow users to move around in a

confined area while they are still connected to the network. In some

instances wireless LAN technology is used to save costs and avoid laying

cable, while in other cases, it is the only option for providing high-speed

internet access to the public. Whatever the reason, wireless solutions are

popping up everywhere.

6.0 SUMMARY

A wireless local-area network (WLAN) is a group of colocated computers

or other devices that form a network based on radio transmissions rather

than wired connections. A Wi-Fi network is a type of WLAN. A WLAN

can be configured in one of two ways vis-à-vis as Infrastructure or Ad

hoc. WLAN Architecture can take the form of a Station, Basic Service

Set (BSS), Distribution system, Access point, Bridge and Endpoint. Many

mobile devices have Bluetooth radios embedded in them. There are

some downsides to Bluetooth such as being a drain on battery power for

mobile wireless devices like smartphones, the range is fairly limited,

obstacles such as walls, floors, or ceilings can reduce this range further

CIT 421 MODULE 5

218

and the pairing process may also be difficult, often depending on the

devices involved, the manufacturers, and other factors.

A Personal Area Network (PAN) is the interconnection of information

technology devices within the range of an individual person, typically

within a range of 10 meters. For example, a person traveling with a laptop,

a personal digital assistant (PDA), and a portable printer could

interconnect them without having to plug anything in, using some form

of wireless technology.

7.0 REFERENCES/FURTHER READING

https://www.google.com/search?q=bluetooth&oq=bluetooth&aqs=chro

me..69i57j0l5.5255j0j4&sourceid=chrome&ie=UTF-8

https://www.techopedia.com/definition/5107/wireless-local-area-

network-wlan

https://www.cisco.com/c/en/us/products/wireless/wireless-lan.html#~q-a

https://www.javatpoint.com/wireless-lan-introduction

https://www.google.com/search?q=bluetooth&oq=bluetooth&aqs=chrome..69i57j0l5.5255j0j4&sourceid=chrome&ie=UTF-8
https://www.google.com/search?q=bluetooth&oq=bluetooth&aqs=chrome..69i57j0l5.5255j0j4&sourceid=chrome&ie=UTF-8
https://www.techopedia.com/definition/5107/wireless-local-area-network-wlan
https://www.techopedia.com/definition/5107/wireless-local-area-network-wlan
https://www.cisco.com/c/en/us/products/wireless/wireless-lan.html#~q-a
https://www.javatpoint.com/wireless-lan-introduction

CIT 421 NET-CENTRIC COMPUTING

219

UNIT 5 HIGH SPEED WIRELESS NETWORK:

HIPERLAN

CONTENTS

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main content

3.1 High Performance Local Area Network (HIPERLAN)

3.2 How HIPERLAN works

3.3 HIPERLAN Protocol Family

3.4 Phases of the HIPERLAN1

3.5 Wireless Asynchronous Mode (WATM)

4.0 Self-Assessment Exercises

5.0 Conclusion

6.0 Summary

7.0 References/Further Reading

1.0 INTRODUCTION

High Performance Radio Local Area Network (HiperLAN) is one of the

wireless networking protocols in Europe. It is an alternative to the

Institute of Electrical and Electronics Engineers (IEEE) 802.11

standards. The HiperLAN standard was created by the European

Telecommunications Standards Institute (ETSI). The original goal of the

HiperLAN standard was to create a protocol that featured a higher data

transfer rate than the 802.11 standard.

2.0 INTENDED LEARNING OUTCOMES (ILOS)

At the end of this unit, students will able to:

 Describe High Performance LAN.

 Explain the HIPERLAN Features.

 Identify and explain the Protocol Family

3.0 MAIN CONTENT

3.1 HIPERLAN stands for high performance local area network. It

is a wireless standard derived from traditional LAN environments and can

support multimedia and asynchronous data effectively at high data rates

of 23.5 Mbps. It is primarily a European standard alternative for the IEEE

802.11 standards and was published in 1996. It is defined by the European

Telecommunications Standards Institute (ETSI). It does not necessarily

https://www.practicaladultinsights.com/what-is-the-ieee.htm

CIT 421 MODULE 5

220

require any type of access point infrastructure for its operation, although

a LAN extension via access points can be implemented.

3.2 How HIPERLAN Works

Radio waves are used instead of a cable as a transmission medium to

connect stations. Either, the radio transceiver is mounted to the movable

station as an add-on and no base station has to be installed separately, or

a base station is needed in addition per room. The stations may be moved

during operation-pauses or even become mobile. The maximum data rate

for the user depends on the distance of the communicating stations. With

short distance(<50 m) and asynchronous transmission a data rate of 20

Mbit/s is achieved, with up to 800 m distance a data rate of 1 Mbit/s are

provided. For connection-oriented services, e.g. video-telephony, at least

64 kbit/s are offered.

HIPERLAN uses cellular-based data networks to connect to an ATM

backbone. The main idea behind HIPERLAN is to provide an

infrastructure or ad-hoc wireless with low mobility and a small radius.

HIPERLAN supports isochronous traffic with low latency.

3.3 HIPERLAN Protocol Family

The HiperLAN standard family has four different versions. The key

feature of all four networks is their integration of time-sensitive data

transfer services. Over time, names have changed and the former

HIPERLANs 2, 3, and 4 are now called HiperLAN2, HIPERACCESS,

and HIPERLINK.

Figure 5.5.1: HIPERLAN Protocol Family

CIT 421 NET-CENTRIC COMPUTING

221

3.3.1. HIPERLAN 1

Planning for the first version of the standard, called HiperLAN/1, started

1991, when planning of 802.11 was already going on. The goal of the

HiperLAN was the high data rate, higher than 802.11. The standard was

approved in 1996. The functional specification is EN300652, the rest is

in ETS300836.

The standard covers the Physical layer and the Media Access Control part

of the Data link layer like 802.11. There is a new sub layer called Channel

Access and Control sub layer (CAC). This sub layer deals with the access

requests to the channels. The accomplishing of the request is dependent

on the usage of the channel and the priority of the request.

CAC layer provides hierarchical independence with Elimination-Yield

Non-Preemptive Multiple Access mechanism (EY-NPMA). EY-NPMA

codes priority choices and other functions into one variable length radio

pulse preceding the packet data. EY-NPMA enables the network to

function with few collisions even though there would be a large number

of users. Multimedia applications work in HiperLAN because of EY-

NPMA priority mechanism. MAC layer defines protocols for routing,

security and power saving and provides naturally data transfer to the

upper layers.

On the physical layer FSK and GMSK modulations are used in

HiperLAN/1. HiperLAN features:

 range 50 m

 slow mobility (1.4 m/s)

 supports asynchronous and synchronous traffic

 sound 32 kbit/s, 10 ns latency

 video 2 Mbit/s, 100 ns latency

 data 10 Mbit/s

 HiperLAN does not conflict with microwave and other kitchen

appliances, which are on 2.4 GHz.

Elimination-Yield Non-preemptive Priority Multiple Access (EY-

NPMA)

EY-NPMA is a contention based protocol that has been standardized

under ETSI‘s HIPERLAN, a standard for wireless LANs. Unlike other

contention based protocols, EY-NPMA provides excellent support for

different classes of traffic regarding quality of service and demonstrates

very low collision rates.

CIT 421 MODULE 5

222

EY-NPMA is the medium access mechanism used by HIPERLAN Type

1. It uses active signaling.

Active signaling takes advantage of the fact that the current wireless

technology enables us to have a slot time very much smaller than the

average packet size. Each node that wants to access the medium transmits

a non-data preamble pattern consisting of slots. This pattern is made up

of alternating idle and busy periods of different lengths (measured in

slots). Conflict resolution and collision detection is done during this

preamble. The main rule is that if a node detects a signal during one of its

listening periods in its pattern, it aborts and defers until the next cycle.

Otherwise, the node transmits its packet at the end of the pattern

transmission.

With EYNPMA, each station may attempt to access the channel when a

condition out of a group of three is met. The three conditions are:

a. Channel free condition

b. Synchronized channel condition

c. Hidden elimination condition

a. The channel free condition occurs when the channel remains idle

for at least a predefined time interval. A station willing to transmit

senses the channel for this time interval, the station extends its

period of sensing by a random number of slots (backoff). If the

channel is still sensed as idle during the backoff period, the station

commences transmitting. In both modes of operation unicast

transmissions must get positively acknowledged or else the

transmission is declared erroneous. Multicast and broadcast

packets are not acknowledged.

b. The synchronized channel condition occurs when the channel is

idle in the channel synchronization interval, which starts

immediately after the end of the previous channel access cycle.

3.4 Phases of the HIPERLAN1 EY-NPMA Access Scheme

The synchronized channel access cycle consists of three distinct phases:

1. Prioritization

In prioritization, EY-NPMA recognizes five distinct priorities from 0 to

4, with 0 being the highest priority. The cycle begins with each station

having data to transmit sensing the channel for as many slots as the

priority of the packet in its buffer. All stations that successfully sense the

channel as idle for the whole interval proceed to the next phase, the

elimination phase.

2. Contention (Elimination and Yield) Transmission

During the elimination phase, each station transmits an energy burst of

random length. These bursts ensure that only the stations having the

highest priority data at a time proceed to the elimination phase. The length

of the energy burst is a multiple of slots up to a predefined maximum. As

CIT 421 NET-CENTRIC COMPUTING

223

soon as a station finishes bursting, it immediately senses the channel. If

the channel is sensed as idle, the station proceeds to the next phase.

Otherwise, it leaves the cycle.

3. During the yield phase, the station that survived the two previous

ones, back off for a random number of slots. The station that backs off for

the shortest interval eventually gets access of the channel for data

transmission. All other station sense the beginning of the transmission and

refrain from transmitting.

Important features of the EY-NPMA

 No preemption by frames with higher priority after the priority

resolution possible.

 Hierarchical independence of performance.

 Fair contention resolution of frames with the same priority

3.5 Wireless Asynchronous Transfer Mode (WATM)

The concept of WATM was first proposed in 1992 as pointed out in and

now it is actively considered as a potential framework for next-generation

wireless communication networks capable of supporting integrated,

quality-of-service (QoS) based multimedia services. The strength of

wireless ATM technology is said to be its ability to provide support for

different protocols, such as ISDN1 and Internet protocols. As the volume

of wireless traffic is increasing, so is the role of QoS support, which will

become very important when multiple services are multiplexed into the

same radio access technology. As QoS support is a fundamental property

of ATM technology, WATM promises a solution for this requirement.

ATM is a very complex system and modifications for wireless

communication and mobility management is going to make it more

difficult.

Need for WATM
The area of wireless transmission systems has been increasing rapidly.

Mobility raises a new set of questions, techniques, and solutions. This

growth will occur in an environment characterized by rapid development

of end-user applications and services towards the Internet and broadband

multimedia delivery over the evolving fixed-wired infrastructure.

Therefore, new developments of wireless networks are needed to enable

wireless technologies to interwork with existing wired networks.

Therefore, in order for ATM to be successful, it must offer a wireless

extension. Otherwise it cannot participate in the rapidly growing field of

mobile communications.

As ATM networks scale well from local area networks (LANs) to wide

area networks (WANs), and there is a need for mobility in local and wide

area applications, a mobile extension of ATM is required in order to have

CIT 421 MODULE 5

224

wireless access in local and wide environments. Many other wireless

technologies, such as EEE 802.11, typically only offer best-effort services

or to some extent, time-bounded services. However, these services do not

provide as many QoS parameters as ATM networks do. WATM could

offer QoS for adequate support of multimedia data streams.

a. Reference Model

Figure 5.5.2: WATM Reference Model

The WATM system reference model, proposed by ATM Forum Wireless

ATM (WATM) group, specifies the signaling interfaces among the

mobile terminal, wireless terminal adapter, wireless radio port, mobile

ATM switch and non-mobile ATM switch.

It also specifies the user and control planes protocol layering architecture.

This model is commonly advocated by many communication companies,

such as NEC, Motorola, NTT, Nokia, Symbionics, and ORL.

Components of WATM
The major components of a Wireless ATM system are:

a) WATM terminal

b) WATM terminal adapter

c) WATM radio port

d) mobile ATM switch

e) standard ATM network and

f) ATM host.

The system reference model consists of a radio access segment and a fixed

network segment. The fixed network is defined by "M (mobile ATM)"

UNI and NNI interfaces while the wireless segment is defined by "R

(Radio)" radio access layer (RAL) interface.

CIT 421 NET-CENTRIC COMPUTING

225

The "W" UNI is concerned with handover signaling, location

management, wireless link and QoS control. The "R" RAL governs the

signaling exchange between the WATM terminal adapter and the mobile

base station. Hence, it concerns channel access, datalink control, meta-

signaling, etc. The "M" NNI governs the signaling exchange between the

WATM base station and a mobile capable ATM switch. It is also

concerned with mobility-related signaling between the mobile capable

ATM switches

b) The Broadband Radio Access Networks (BRAN)

The broadband radio access networks (BRAN), which have been

standardized by the European Telecommunications Standards Institute

(ETSI), could have been an RAL for WATM. The main motivation

behind BRAN is the deregulation and privatization of the

telecommunication sector in Europe. The primary market for BRAN

includes private customers and small to medium-sized companies with

Internet applications, multi-media conferencing, and virtual private

networks. The BRAN standard and IEEE 802.16 have similar goals.

 BRAN standardization has a rather large scope including indoor and

campus mobility, transfer rates of 25–155 Mbit/s, and a transmission

range of 50 m–5 km. Standardization efforts are coordinated with the

ATM Forum, the IETF, other groups from ETSI, the IEEE etc. BRAN has

specified four different network types:

1. HIPERLAN 1: This high-speed WLAN supports mobility at data

rates above 20 Mbit/s. Range is 50 m, connections are multi-point-

to-multi-point using ad-hoc or infrastructure networks

2. HIPERLAN/2: This technology can be used for wireless access

to ATM or IP networks and supports up to 25 Mbit/s user data rate

in a point-to-multi- point configuration.

3. HIPERACCESS: This technology could be used to cover the

‗last mile to a customer via a fixed radio link, so could be an

alternative to cable modems or xDSL technologies.

4. HIPERLINK: To connect different HIPERLAN access points

or HIPERACCESS nodes with a high-speed link, HIPERLINK

technology can be chosen.

As an access network, BRAN technology is independent from the

protocols of the fixed network. BRAN can be used for ATM and TCP/IP

networks as illustrated in Figure 5.5.3. Based on possibly different

physical layers, the DLC layer of BRAN offers a common interface to

higher layers. To cover special characteristics of wireless links and to

adapt directly to different higher layer network technologies, BRAN

provides a network convergence sub layer. This is the layer which can be

used by a wireless ATM network, Ethernet, Fire wire, or an IP network.

In the case of BRAN as the RAL for WATM, the core ATM network

would use services of the BRAN network convergence sub layer.

CIT 421 MODULE 5

226

Figure 5.5.3: Layered Model of RAN Wireless Access Network

Discussion

BRAN has specified four different network types. Discuss.

4.0 SELF-ASSESSMENT/EXERCISES

1. The major components of a Wireless ATM system are:

Answer:

a) WATM terminal

b) WATM terminal adapter

c) WATM radio port

d) mobile ATM switch

e) standard ATM network and

f) ATM host.

2. Describe the Broadband Radio Access Networks (BRAN)

Answer:

The broadband radio access networks (BRAN), which have been

standardized by the European Telecommunications Standards Institute

(ETSI), could have been an RAL for WATM. The main motivation

behind BRAN is the deregulation and privatization of the

telecommunication sector in Europe. The primary market for BRAN

includes private customers and small to medium-sized companies with

Internet applications, multi-media conferencing, and virtual private

networks. The BRAN standard and IEEE 802.16 have similar goals.

 BRAN standardization has a rather large scope including indoor and

campus mobility, transfer rates of 25–155 Mbit/s, and a transmission

range of 50 m–5 km. Standardization efforts are coordinated with the

ATM Forum, the IETF, other groups from ETSI, the IEEE etc.

CIT 421 NET-CENTRIC COMPUTING

227

5.0 CONCLUSION

At high data transmission rates, the packet transmission time of a local

area network (LAN) could become comparable to or less than the medium

propagation delay. The performance of many LAN schemes degrades

rapidly when the packet transmission time becomes small comparative to

the medium propagation delay.

6.0 SUMMARY

HIPERLAN stands for high performance local area network. It is a

wireless standard derived from traditional LAN environments and can

support multimedia and asynchronous data effectively at high data rates

of 23.5 Mbps. HIPERLAN works using Radio waves instead of a cable

as a transmission medium to connect stations. HiperLAN features are

range 50 m, slow mobility (1.4 m/s), it supports asynchronous and

synchronous traffic, sound 32 kbit/s, 10 ns latency, video 2 Mbit/s, 100

ns latency, data 10 Mbit/s and HiperLAN does not conflict with

microwave and other kitchen appliances, which are on 2.4 GHz.

The concept of WATM was first proposed in 1992 as pointed out in and

now it is actively considered as a potential framework for next-generation

wireless communication networks capable of supporting integrated,

quality-of-service (QoS) based multimedia services. The major

components of a Wireless ATM system are: WATM terminal, WATM

terminal adapter, WATM radio port, mobile ATM switch, standard ATM

network and ATM host.

The broadband radio access networks (BRAN), which have been

standardized by the European Telecommunications Standards Institute

(ETSI), could have been an RAL for WATM. The main motivation

behind BRAN is the deregulation and privatization of the

telecommunication sector in Europe. The primary market for BRAN

includes private customers and small to medium-sized companies with

Internet applications, multi-media conferencing, and virtual private

networks. The BRAN standard and IEEE 802.16 have similar goals.

 BRAN standardization has a rather large scope including indoor and

campus mobility, transfer rates of 25–155 Mbit/s, and a transmission

range of 50 m–5 km. Standardization efforts are coordinated with the

ATM Forum, the IETF, other groups from ETSI, the IEEE etc.

BRAN has specified four different network types: HIPERLAN 1,

HIPERLAN/2, HIPERACCESS and HIPERLINK

CIT 421 MODULE 5

228

7.0 REFERENCES/FURTHER READING

https://dl.acm.org/doi/10.1145/103724.103726

https://cmd.inp.nsk.su/old/cmd2/manuals/networking/perfomance/ch01/

ch01.htm

https://dl.acm.org/doi/10.1145/103724.103726
https://cmd.inp.nsk.su/old/cmd2/manuals/networking/perfomance/ch01/ch01.htm
https://cmd.inp.nsk.su/old/cmd2/manuals/networking/perfomance/ch01/ch01.htm

	CIT 421 Course Gude.pdf
	Introduction
	What You Will Be Learning in this Course
	Course Aim
	Course Objectives
	Working through this course
	Course Material
	Study Units
	Presentation Schedule
	Assessment
	Tutor-Marked Assignment (TMAs)
	Final Examination and Grading
	Course Marking Scheme
	Facilitators/Tutors and Tutorials
	Summary

	CIT 421 Main Course.pdf
	Module 1.pdf
	UNIT 1: INTRODUCTION TO DISTRIBUTED
	COMPUTING
	Module 1 presents the essentials of Net-centric computing. Here, we are going to discuss the concepts of established networks in different location and job running on each simultaneously (distributed computing) the output of which are to be combined a...
	1.0 INTRODUCTION
	2.0 INTENDED LEARNING OUTCOMES (ILOS)
	3.0 MAIN CONTENT
	Discussion
	4.0 Self-Assessment Exercises
	5.0 CONCLUSION
	6.0 SUMMARY
	7.0 REFERENCES/FURTHER READING
	UNIT 2: MOBILE & WIRELESS COMPUTING
	1.0 INTRODUCTION
	Mobile and wireless computing is a human–computer interaction concept in which a computer could be in motion during normal usage. Mobile and wireless computing involves mobile communication, mobile hardware and mobile software, does involve the use of...
	2.0 INTENDED LEARNING OUTCOMES (ILOS)
	3.0 MAIN CONTENT
	Discussion
	4.0 Self-Assessment Exercise
	5.0 CONCLUSION
	6.0 SUMMARY
	7.0 REFERENCES/FURTHER READING
	UNIT 3 NETWORK SECURITY
	1.0 INTRODUCTION
	2.0 INTENDED LEARNING OUTCOMES (ILOS)
	3.0 Main Content
	3.3 The Three Key Focuses of Network Security
	3.4 Benefits of Network Security
	1. Builds trust
	2. Mitigates risk
	3. Protects proprietary information
	4. Enables a more modern workplace

	3.5 Network Security Tools and Techniques

	Discussion
	4.0 Self-Assessment/Exercise
	1. Builds trust
	2. Mitigates risk
	3. Protects proprietary information
	4. Enables a more modern workplace

	5.0 CONCLUSION
	6.0 SUMMARY
	Three key focuses that should serve as a foundation of any network security strategy are protection, detection and response Protection entails any tools or policies designed to prevent network security intrusion. Detection refers to the resources that...

	7.0 REFERENCES/FURTHER READING
	UNIT 4 CLIENT-SERVER COMPUTING
	1.0 INTRODUCTION
	2.0 INTENDED LEARNING OUTCOMES (ILOS)
	3.0 MAIN CONTENT
	3.1 Client Server Computing
	3.2 Characteristics of Client Server Computing
	3.3 Differences between Client-Server and Peer-to-Peer Computing
	3.4 Advantages of Client-Server Computing
	3.5 Disadvantages of Client Server Computing

	Discussion
	4.0 SELF-ASSESSMENT/EXERCISE
	Advantages of Client-Server Computing
	Characteristics of Client Server Computing

	5.0 CONCLUSION
	6.0 SUMMARY
	7.0 REFERENCES/FURTHER READING
	1.0 INTRODUCTION
	2.0 INTENDED LEARNING OUTCOMES (ILOS)
	3.0 MAIN CONTENT
	3.1 Building a Web Application (app)-Prerequisites for Building a Web Application
	3.2.1 Step 1 – Source an idea
	3.2.2 Step 2 – Market Research
	3.2.3 Step 3 - Define your web apps functionality
	3.2.4 Step 4 - Sketch your web app
	3.2.5 Step 5 – Plan your web apps workflow
	3.2.6 Step 6 – Wireframing / Prototyping Your Web Application
	3.2.7 Step 7 – Seek early validation
	3.2.8 Before Starting the development stage.

	3.2.9 Step 8 – Architect and build your database
	A Database
	Database Types
	a. SQL
	b. Document Database
	Physical separation
	Pros:
	Cons:

	Logical separation
	All of your clients are stored in one giant database. Every time you need to get data for a single client, you must remember to include a filter for the client. E.g. ‘select’ from customers where customerClientId = “1234”
	Pros:
	Cons:

	Ensure your database is secured. You should look into best practices for securing your particular database. Some databases come with a default administrator login, which people often forget to change. This could leave your data open to the world.

	3.2.10 Step 9 - Build the frontend
	A frontend

	3.2.11 Step 10 - Build your backend
	3.2.12 Step 11 - Host your web application
	3.2.13 Step 12 - Deploy your web app

	Discussion
	4.0 SELF-ASSESSMENT/EXERCISE
	a. SQL
	b. Document Database
	2. What do we mean by the backend, the types and what determine your backend choice? Explain.

	5.0 CONCLUSION
	There are many types of database for many different purposes. A web app will most commonly use one of SQL or Document database. You should look into best practices for securing your particular database. Some databases come with a default administrator...

	6.0 SUMMARY
	7.0 REFERENCES/FURTHER READING

	Module 2.pdf
	UNIT 1: INTRODUCTION TO PARALLEL SYSTEMS
	1.0 INTRODUCTION
	Parallel systems deal with the simultaneous use of multiple computer resources that can include a single computer with multiple processors, a number of computers connected by a network to form a parallel processing cluster or a combination of both.
	2.0 INTENDED LEARNING OUTCOMES (ILOS)
	3.0 MAIN CONTENT
	3.1 Parallel Processing Systems
	Discussion
	4.0 SELF-ASSESSMENT/EXERCISES
	5.0 CONCLUSION
	6.0 SUMMARY
	7.0 REFERENCES/FURTHER READING
	UNIT 2 PARALLEL PROGRAMMING MODELS
	1.0 INTRODUCTION
	2.0 Intended Learning Outcomes (ILOs)
	3.0 MAIN CONTENT
	Discussion
	4.0 SELF-ASSESSMENT/EXERCISES
	5.0 CONCLUSION
	6.0 SUMMARY
	7.0 REFERENCES/FURTHER READING
	1.0 INTRODUCTION
	2.0 Intended Learning Outcomes (ILOs)
	3.0 MAIN CONTENT
	3.1 The message-passing
	3.2 The message-passing programming model
	Discussion
	4.0 SELF-ASSESSMENT/EXERCISES
	5.0 CONCLUSION
	6.0 SUMMARY
	7.0 REFERENCES/FURTHER READING
	Neil MacDonald, Elspeth Minty, Tim Harding, Simon Brown, Edinburgh Parallel Computing Centre, The University of Edinburgh. (Course Notes)
	Advances in GPU Research and Practice | ScienceDirect
	https://slideplayer.com/slide/7559656/

	UNIT 4 DEPENDENCE ANALYSIS
	1.0 INTRODUCTION
	3.0 MAIN CONTENT
	3.3 Why use dependency analysis
	3.3.1 Improve Refactoring
	3.3.2 Reduce Technical Debt
	3.3.3 Understand Impact of Change

	3.4 How dependency analysis works
	 Extract
	 Import
	 Interact

	Discussion
	 Extract
	 Import
	 Interact

	5.0 CONCLUSION
	6.0 SUMMARY
	7.0 REFERENCES/FURTHER READING
	UNIT 5 OPENMP PROGRAMMING
	1.0 INTRODUCTION
	2.0 INTENDED LEARNING OUTCOMES (ILOS)
	3.0 MAIN CONTENT
	Discussion
	5.0 CONCLUSION
	6.0 SUMMARY
	7.0 REFERENCES/FURTHER READING
	UNIT 6 EVALUATION OF PROGRAMS
	1.0 INTRODUCTION
	Program evaluation is a systematic method for collecting, analyzing, and using information to answer questions about projects, policies and programs, particularly about their effectiveness and efficiency. In both the public and private sectors, stakeh...
	2.0 INTENDED LEARNING OUTCOMES (ILOS)
	3.0 MAIN CONTENT
	Discussion
	4.0 SELF-ASSESSMENT EXERCISES
	5.0 CONCLUSION
	6.0 SUMMARY
	7.0 REFERENCES/FURTHER READING

	Module 3.pdf
	UNIT 1: INTRODUCTION TO DISTRIBUTED SYSTEMS
	2.0 INTENDED LEARNING OUTCOMES (ILOS)
	3.0 MAIN CONTENT
	3.2 How a distributed system works
	3.3 Key Characteristics of a Distributed System
	3.4 Distributed Tracing
	3.6 What are some challenges of distributed systems?
	3.7 The risks of distributed systems

	4.0 SELF-ASSESSMENT EXERCISES
	5.0 CONCLUSION
	6.0 SUMMARY
	7.0 REFERENCES/FURTHER READING
	3.0 Main Content
	2.0 Intended Learning Outcomes (ILOs)
	3.2 A model & Systems Models
	3.2.1 A model is a computer program that describes the mechanics of the considered system. The encoding of a model can be made in many ways.
	3.2.2 Systems Models

	4.0 SELF-ASSESSMENT EXERCISES
	A model is a computer program that describes the mechanics of the considered system. The encoding of a model can be made in many ways.
	Systems Models: A system is a set of elements that relate to each other in some manner. The elements of a system can be objects, people, organizations, processes, descriptions or even ideas. The relationships between these elements can include differe...
	 State diagrams, which show how the system reacts to internal and external events

	5.0 CONCLUSION
	6.0 SUMMARY
	A system is a simplified representation of reality. A model is a computer program that describes the mechanics of the considered system. The encoding of a model can be made in many ways.

	UNIT 3 DISTRIBUTED OBJECTS
	3.0 Main Content
	A distributed object is an object that can be accessed remotely. This means that a distributed object can be used like a regular object, but from anywhere on the network. An object is typically considered to encapsulate data and behavior. The location...
	2.0 INTENDED LEARNING OUTCOMES (ILOS)
	4.0 SELF-ASSESSMENT EXERCISES
	5.0 CONCLUSION
	6.0 SUMMARY
	7.0 REFERENCES/FURTHER READING
	UNIT 4 REMOTE METHOD INVOCATION
	3.0 Main Content
	2.0 INTENDED LEARNING OUTCOMES (ILOS)
	5.0 CONCLUSION
	6.0 SUMMARY
	7.0 REFERENCES/FURTHER READING
	3.0 Main Content
	Component-based software development (CBD) is a potential breakthrough for software engineering. Unified Modeling Language (UML) can potentially facilitate CBD design and modeling. Although many research projects concentrate on the conceptual interrel...
	2.0 INTENDED LEARNING OUTCOMES (ILOS)
	5.0 CONCLUSION
	6.0 SUMMARY
	7.0 REFERENCES/FURTHER READING

	Module 4.pdf
	2.0 INTENDED LEARNING OUTCOMES (ILOS)
	1.0 INTRODUCTION
	2.0 INTENDED LEARNING OUTCOMES (ILOS)
	3.0 MAIN CONTENT
	Discussion
	4.0 SELF-ASSESSMENT/EXERCISES
	5.0 CONCLUSION
	6.0 SUMMARY
	7.0 REFERENCES/FURTHER READING
	UNIT 2 FLAT AND NESTED DISTRIBUTED
	TRANSACTIONS
	1.0 INTRODUCTION
	2.0 INTENDED LEARNING OUTCOMES (ILOS)
	3.0 MAIN CONTENT
	Discussion
	4.0 SELF-ASSESSMENT/EXERCISES
	5.0 CONCLUSION
	6.0 SUMMARY
	UNIT 3 CONCURRENCY
	1.0 INTRODUCTION
	2.0 INTENDED LEARNING OUTCOMES (ILOS)
	3.0 MAIN CONTENT
	Discussion
	5.0 CONCLUSION
	When there are more threads than processors, concurrency is simulated by time slicing, which means that the processor switches between threads. Multithreading abounds in all enterprise developments.
	6.0 SUMMARY
	7.0 REFERENCES/FURTHER READING
	UNIT 4 CHARACTERISTICS OF SERVICE ORIENTED ARCHITECTURE
	1.0 INTRODUCTION
	2.0 Intended Learning Outcomes (ILOs)
	Discussion
	4.0 SELF-ASSESSMENT/EXERCISES
	5.0 CONCLUSION
	6.0 SUMMARY

	Module 5.pdf
	MODULE 5 MOBILE & CLOUD COMPUTING
	UNIT 1 INTRODUCTION TO MOBILE & CLOUD COMPUTING
	1.0 INTRODUCTION
	2.0 INTENDED LEARNING OUTCOMES (ILOS)
	3.0 MAIN CONTENT
	Discussion
	4.0 Self-Assessment/Exercises
	5.0 CONCLUSION
	6.0 SUMMARY
	7.0 REFERENCES/FURTHER READING
	UNIT 2 TECHNOLOGIES FOR WIRELESS
	COMMUNICATIONS
	1.0 INTRODUCTION
	2.0 INTENDED LEARNING OUTCOMES (ILOS)
	3.0 MAIN CONTENT
	Discussion
	4.0 SELF-ASSESSMENT/EXERCISES
	5.0 CONCLUSION
	6.0 SUMMARY
	1.0 INTRODUCTION
	2.0 INTENDED LEARNING OUTCOMES (ILOS)
	3.0 MAIN CONTENT
	Discussion
	5.0 CONCLUSION
	Providing wireless service over wide areas requires different schemes to efficiently use spectrum in different locations while avoiding interference.
	6.0 SUMMARY
	7.0 REFERENCES/FURTHER READING
	CONTENTS
	3.1 Introduction to Wireless Local Area Network (WLAN)
	3.2 WLANs and Access Points
	3.3 Emerging WLANs and the Ubiquity of WLANs
	3.3 How a WLAN works

	1.0 INTRODUCTION
	2.0 INTENDED LEARNING OUTCOMES (ILOS)
	3.1.1 WLANs and Access Points
	3.1.2 Emerging WLANs and its Ubiquity
	a. Infrastructure
	b. Ad hoc
	3.1.6 How Roaming works on a WLAN
	a. Stations
	b. Basic Service Set (BSS)
	c. Distribution system
	d. Access point
	e. Bridge
	f. Endpoint
	3.1.8 Benefits of a WLAN
	1. Extended reach: WLANs enable computing to happen anywhere, even when carrying high data loads and advanced web applications.
	2. Device flexibility: A WLAN supports use of a wide range of devices, such as computers, phones, tablets, gaming systems, and IoT devices.
	3. Easier installation and management: A WLAN requires less physical equipment than a wired network, which saves money, reduces installation time, and takes up less of a footprint in office settings.
	4. Scalability: A WLAN is easy to scale. Adding users is as simple as assigning login credentials.
	5. Network management: Nearly all management of a WLAN can be handled virtually. A single software interface can provide visibility, manage users, monitor network health, and collect data.

	3.3 Bluetooth Technology
	3.3.1 Connecting With Bluetooth
	3.3.2 Bluetooth Limitations
	3.3.3 Security and Bluetooth

	3.4 Personal Area Network (PAN)
	Discussion
	4.0 SELF-ASSESSMENT/EXERCISES
	a. Extended reach: WLANs enable computing to happen anywhere, even when carrying high data loads and advanced web applications.
	b. Device flexibility: A WLAN supports use of a wide range of devices, such as computers, phones, tablets, gaming systems, and IoT devices.
	c. Easier installation and management: A WLAN requires less physical equipment than a wired network, which saves money, reduces installation time, and takes up less of a footprint in office settings.
	d. Scalability: A WLAN is easy to scale. Adding users is as simple as assigning login credentials.
	e. Network management: Nearly all management of a WLAN can be handled virtually. A single software interface can provide visibility, manage users, monitor network health, and collect data.
	a. Infrastructure
	b. Ad hoc

	5.0 CONCLUSION
	6.0 SUMMARY
	7.0 REFERENCES/FURTHER READING
	3.1 High Performance Local Area Network (HIPERLAN)
	1.0 INTRODUCTION
	2.0 INTENDED LEARNING OUTCOMES (ILOS)
	4.0 SELF-ASSESSMENT/EXERCISES
	5.0 CONCLUSION
	At high data transmission rates, the packet transmission time of a local area network (LAN) could become comparable to or less than the medium propagation delay. The performance of many LAN schemes degrades rapidly when the packet transmission time be...
	6.0 SUMMARY
	7.0 REFERENCES/FURTHER READING

