
1

NATIONAL OPEN UNIVERSITY OF NIGERIA

SCHOOL OF SCIENCE AND TECHNOLOGY

COURSE CODE: CIT 671

COURSE TITLE: INTRODUCTION TO COMPUTER GRAPHICS AND

ANIMATION

2

MODULE 1 – Introduction to Computer Graphics and Animation

UNIT 1: Introduction to computer graphics and GPU

Contents Pages

1.0 Introduction to computer graphics…….………………………………………………..2

2.0 Objectives………………………………………………………………………………2

3.0 Main Content…………………………..……………………………………………….2

 3.1 A Graphics System …….……….……………………………………………....2

3.2 Application of computer graphics…………………………………………………..3

3.3 The CPU and the GPU…………………………………………………………..5

3.4 GPU forms……………………………………………………………………....7

3.5 The Graphics pipeline…………………………………………………………....8

4.0 Conclusion………………………………………………………………………...……..9

5.0 Summary…………………………………………………………………………………9

6.0 Tutor Marked Assignment…………………………………………………………….....9

7.0 References/Further

Reading…………………………………………………………………….……9

3

1.0 Introduction to Computer Graphics

Today, we find computer graphics used routinely in such diverse areas as science, engineering,

medicine, business, industry, government, art, entertainment, advertising, education, and training.

A major use of computer graphics is in design processes, particularly for engineering and

architectural systems, but almost all products are now computer designed. Computer-aided design

(CAD) methods are now routinely used in the design of buildings, automobiles, aircraft, watercraft,

spacecraft, computers, textiles, and many, many other products.

There is virtually no area in which graphical displays cannot be used to some advantage, and so it is

not surprising to find the use of computer graphics so widespread. Although early applications in

engineering and science had to rely on expensive and cumbersome equipment, advances in

computer technology have made interactive computer graphics a practical tool.

2.0 Objectives

On completing this unit, you would be able to:

1. Explain the various application areas of computer graphics

2. Understand the elements of a Graphic system.

3. Explain Graphics processing unit and its various forms

3.0 Main Content

3.1 A Graphics System

A computer graphics system is a computer system; as such, it must have all the components of a

general-purpose computer system. Let us start with the high-level view of a graphics system, as

shown in the block diagram in Figure 1.1(a). There are six major elements in the Graphic system:

1. Input devices

2. Central Processing Unit (CPU)

3. Graphics Processing Unit (GPU)

4. Memory

5. Frame buffer

6. Output devices

This model is general enough to include workstations and personal computers, interactive game

systems, mobile phones, GPS systems, and sophisticated image generation systems. Although most

of the components are present in a standard computer, it is the way each element is specialized for

4

computer graphics that characterizes this diagram as a portrait of a graphics system. A complete

graphic system is shown in figure 1.1(a).

Figure 1.1(a): A graphic system (Engel et al., 1991)

3.2 Applications of Computer Graphics

The development of computer graphics has been driven both by the needs of the user community

and by advances in hardware and software. The applications of computer graphics are many and

varied; we can, however, divide them into four major areas:

a) Display of information

b) Design

c) Simulation and animation

d) User interfaces

Although many applications span two or more of these areas, the development of the field was

based on separate work in each.

3.2.1 Display of Information

Classical graphics techniques arose as a medium to convey information among people. Although

spoken and written languages serve a similar purpose, the human visual system is unrivaled both as

a processor of data and as a pattern recognizer. More than 4000 years ago, the Babylonians

displayed floor plans of buildings on stones. More than 2000 years ago, the Greeks were able to

convey their architectural ideas graphically, even though the related mathematics was not

developed until the Renaissance.

Today, the same type of information is generated by architects, mechanical designers, and drafts-

people using computer-based drafting systems. For centuries, cartographers have developed maps

to display celestial and geographical information. Such maps were crucial to navigators as these

5

people explored the ends of the earth; maps are no less important today in fields such as geographic

information systems. Now, maps can be developed and manipulated in real time over the Internet.

Over the past 100 years, workers in the field of statistics have explored techniques for generating

plots that aid the viewer in determining the information in a set of data. Now, we have computer

plotting packages that provide a variety of plotting techniques and colour tools that can handle

multiple large data sets. Nevertheless, it is still the human‘s ability to recognize visual patterns that

ultimately allows us to interpret the information contained in the data. The field of information

visualization is becoming increasingly more important as we have to deal with understanding

complex phenomena from problems in bioinformatics to detecting security threats. Medical

imaging poses interesting and important data-analysis problems. Modern imaging technologies in

the field of medicine—such as computed tomography (CT), magnetic resonance imaging (MRI),

ultrasound, and positron-emission tomography (PET)—generate three-dimensional data that must

be subjected to algorithmic manipulation to provide useful information.

3.2.2 Design

Professions such as engineering and architecture are concerned with design. Starting with a set of

specifications, engineers and architects seek a cost-effective and esthetic solution that satisfies the

specifications. Design is an iterative process. Rarely in the real world is a problem specified such

that there is a unique optimal solution. Design problems are either overdetermined, such that they

possess no solution that satisfies all the criteria; much less an optimal solution, or underdetermined,

such that they have multiple solutions that satisfy the design criteria. Thus, the designer works in an

iterative manner. a possible design is generated, tested it, and then the results are used as the basis

for exploring other solutions.

The power of the paradigm of humans interacting with images on the screen of a CRT was

recognized by Ivan Sutherland over 40 years ago. Today, the use of interactive graphical tools in

computer-aided design (CAD) pervades fields such as architecture and the design of mechanical

parts and of very-large-scale integrated (VLSI) circuits. In many such applications, the graphics are

used in a number of distinct ways. For example, in a VLSI design, the graphics provide an interface

between the user and the design package, usually by means of such tools as menus and icons. In

addition, after the user produces a possible design, other tools analyze the design and display the

analysis graphically.

3.2.3 Simulation and Animation

Once graphics systems evolved to be capable of generating sophisticated images in real time,

engineers and researchers began to use them as simulators. One of the most important uses has

been in the training of pilots. Graphical flight simulators have proved both to increase safety and to

reduce training expenses. The use of special VLSI chips has led to a generation of arcade games as

sophisticated as flight simulators. Games and educational software for home computers are almost

6

as impressive as the flight simulators. The success of flight simulators led to the use of computer

graphics for animation in the television, motion-picture, and advertising industries. Entire animated

movies can now be made by computer at a cost less than that of movies made with traditional hand-

animation techniques. The use of computer graphics with hand animation allows the creation of

technical and artistic effects that are not possible with either alone. Whereas computer animations

have a distinct look, we can also generate photorealistic images by computer. Images that we see on

television, in movies, and in magazines often are so realistic that we cannot distinguish computer-

generated or computer-altered images from photographs.

The field of virtual reality (VR) has opened up many new horizons. A human viewer can be

equipped with a display headset that allows her to see separate images with her right eye and her

left eye so that she has the effect of stereoscopic vision. In addition, her body location and position,

possibly including her head and finger positions, are tracked by the computer. She may have other

interactive devices available, including force-sensing gloves and sound. She can then act as part of

a computer-generated scene, limited only by the image-generation ability of the computer. For

example, a surgical intern might be trained to do an operation in this way, or an astronaut might be

trained to work in a weightless environment.

3.2.4 User Interfaces

Our interaction with computers has become dominated by a visual paradigm that includes windows,

icons, menus, and a pointing device, such as a mouse. From a user‘s perspective, windowing

systems such as the X Window System, Microsoft Windows, and the Macintosh Operating System

differ only in details. More recently, millions of people have become users of the Internet. Their

access is through graphical network browsers, such as Firefox, Chrome, Safari, and Internet

Explorer that use these same interface tools. We have become so accustomed to this style of

interface that we often forget that what we are doing is working with computer graphics. Although

we are familiar with the style of graphical user interface used on most workstations, advances in

computer graphics have made possible other forms of interfaces.

3.3 The CPU and the GPU

In a simple system, there may be only one processor, the Central Processing Unit (CPU) of the

system, which must do both the normal processing and the graphical processing. The main

graphical function of the processor is to take specifications of graphical primitives (such as lines,

circles, and polygons) generated by application programs and to assign values to the pixels in the

frame buffer that best represent these entities. For example, a triangle is specified by its three

vertices, but to display its outline by the three line segments connecting the vertices, the graphics

system must generate a set of pixels that appear as line segments to the viewer. The conversion of

geometric entities to pixel colours and locations in the frame buffer is known as rasterization, or

scan conversion.

7

In early graphics systems, the frame buffer was part of the standard memory that could be directly

addressed by the CPU. Today, virtually all graphics systems are characterized by special-purpose

Graphics Processing Units (GPUs), custom-tailored to carry out specific graphics functions. The

GPU can be either on the mother board of the system or on a graphics card. The frame buffer is

accessed through the graphics processing unit and usually is on the same circuit board as the GPU.

GPUs have evolved to where they are as complex as or even more complex than CPUs. They are

characterized by both special-purpose modules geared toward graphical operations and a high

degree of parallelism—recent GPUs contain over 100 processing units, each of which is user

programmable. GPUs are so powerful that they can often be used as mini supercomputers for

general purpose computing.

3.3.1 Graphics Processing Unit

A Graphics Processing Unit or GPU (also occasionally called visual processing unit or VPU) is a

specialized circuit designed to rapidly manipulate and alter memory in such a way so as to

accelerate the building of images in a frame buffer intended for output to a display. GPUs are used

in embedded systems, mobile phones, personal computers, workstations, and game consoles.

Modern GPUs are very efficient at manipulating computer graphics, and their highly parallel

structure makes them more effective than general-purpose CPUs for algorithms where processing

of large blocks of data is done in parallel. In a personal computer, a GPU can be on a video card, or

it can be on the motherboard, or in certain CPUs, on the CPU die. An example is the GeForce

6600GT GPU shown in Figure 1.1(b). More than 90% of new desktop and notebook computers

have integrated GPUs, which are usually far less powerful than those on a dedicated video card.

Figure 1.1(b): GeForce 6600GT GPU

8

3.4 GPU forms

There are various GPU forms characterized by their interfaces with the main board. The common

ones are mentioned below.

3.4.1 Dedicated graphics cards

The GPUs of the most powerful class typically interface with the motherboard by means of an

expansion slot such as PCI Express (PCIe) or Accelerated Graphics Port (AGP) and can usually be

replaced or upgraded with relative ease, assuming the motherboard is capable of supporting the

upgrade. A few graphics cards still use Peripheral Component Interconnect (PCI) slots, but their

bandwidth is so limited that they are generally used only when a PCIe or AGP slot is not available.

A dedicated GPU is not necessarily removable, nor does it necessarily interface with the

motherboard in a standard fashion. The term "dedicated" refers to the fact that dedicated graphics

cards have RAM that is dedicated to the card's use, not to the fact that most dedicated GPUs are

removable. Dedicated GPUs for portable computers are most commonly interfaced through a non-

standard and often proprietary slot due to size and weight constraints. Such ports may still be

considered PCIe or AGP in terms of their logical host interface, even if they are not physically

interchangeable with their counterparts.

3.4.2 Integrated graphics solutions

Integrated graphics solutions, shared graphics solutions, or Integrated Graphics Processors (IGP)

utilize a portion of a computer's system RAM rather than dedicated graphics memory. They are

integrated into the motherboard. Exceptions are AMD's IGPs that use dedicated side-port memory

on certain motherboards, and APUs, where they are integrated with the CPU die. Computers with

integrated graphics account for 90% of all PC shipments. These solutions are less costly to

implement than dedicated graphics solutions, but are less capable. Historically, integrated solutions

were often considered unfit to play 3D games or run graphically intensive programs but could run

less intensive programs such as Adobe Flash. Modern desktop motherboards often include an

integrated graphics solution and have expansion slots available to add a dedicated graphics card

later.

As a GPU is extremely memory intensive, an integrated solution may find itself competing for the

already relatively slow system RAM with the CPU, as it has minimal or no dedicated video

memory. System RAM may be 2 GB/s to 16 GB/s, yet dedicated GPUs enjoy between 10 GB/s to

over 300 GB/s of bandwidth depending on the model (for instance the GeForce GTX 590 and

Radeon HD 6990 provide approximately 320 GB/s between dual memory controllers). Older

integrated graphics chipsets lacked hardware transform and lighting, but newer ones include it

9

3.4.3 Hybrid solutions

This newer class of GPUs competes with integrated graphics in the low-end desktop and notebook

markets. The most common implementations of this are ATI's HyperMemory and NVIDIA's

TurboCache. Hybrid graphics cards are somewhat more expensive than integrated graphics, but

much less expensive than dedicated graphics cards. These share memory with the system and have

a small dedicated memory cache, to make up for the high latency of the system RAM.

Technologies within PCI Express can make this possible. While these solutions are sometimes

advertised as having as much as 768MB of RAM, this refers to how much can be shared with the

system memory.

3.5 The Graphics pipeline

In 3D computer graphics, the terms graphics pipeline or rendering pipeline most commonly refers

to the current state of the art method of rasterization-based rendering as supported by commodity

graphics hardware. The graphics pipeline typically accepts some representation of a three-

dimensional primitive as an input and results in a 2D raster image as output. OpenGL and Direct3D

are two notable 3D graphic standards, both describing very similar graphic pipeline.

The rendering pipeline is mapped onto current graphics acceleration hardware such that the input to

the graphics card (GPU) is in the form of vertices. These vertices then undergo transformation and

per-vertex lighting. At this point in modern GPU pipelines a custom vertex shader program can be

used to manipulate the 3D vertices prior to rasterization. Once transformed and lit, the vertices

undergo clipping and rasterization resulting in fragments as shown in figure 1.1(d). A second

custom shader program can then be run on each fragment before the final pixel values are output to

the frame buffer for display.

FIGURE 1.1(c) Arithmetic pipeline (Ed Angel (1991)

FIGURE 1.1(d) Geometric pipeline. (Ed Angel, 1991)

The graphics pipeline is well suited to the rendering process because it allows the GPU to function

as a stream processor since all vertices and fragments can be thought of as independent. This allows

10

all stages of the pipeline to be used simultaneously for different vertices or fragments as they work

their way through the pipe. In addition to pipelining vertices and fragments, their independence

allows graphics processors to use parallel processing units to process multiple vertices or fragments

in a single stage of the pipeline at the same time.

4.0 Conclusion

A major use of computer graphics is in design processes, particularly for engineering and

architectural systems, design of buildings, automobiles, aircraft, watercraft, spacecraft, computers,

textiles, and many, many other products.

5.0 Summary

In this unit, we have studied Computer Graphics, its application areas, computer graphics systems

and also Graphic processing units and its various forms.

6.0 Tutor Marked Assignment

1. What do you understand by Computer Graphics?

2. Identify application areas of computer graphics.

3. Draw a graphic system.

4. Explain what GPU is meant for and write a short note and its various types.

7.0 References/Further Reading

1. Jeffrey J. McConnell (2006). Computer Graphics: Theory into Practice. Jones & Bartlett

Publishers. ISBN:0-7637-2250-2

2. R. D. Parslow, R. W. Prowse, Richard Elliot Green (1969). Computer Graphics: Techniques

and Applications. ISBN-13: 978-0306200168

3. Peter Shirley and others. (2005). Fundamentals of computer graphics. A.K. Peters, Ltd. ISBN-

13: 978:1568814692

4. David Salomon (1999). Computer Graphics and Geometric Modeling, Springer ISBN 0-387-

 98682-0.

5. Ed Angel (1991) Interactive Computer Graphics- A Top-Down Approach with OpenGL

 Fifth Edition, Addison-Wesley 2009 ISBN 0-321-53586-3

6. Donald Hearn and M. Pauline Baker (1997) Computer Graphics, C Version (2nd Edition),

 Prentice Hall, 1997, ISBN: 0135309247

11

MODULE 1 – Introduction to Computer Graphics and Animation

UNIT 2: Illumination: The BRDF.

Contents Pages

1.0 Introduction to BRDF……………………...…….……………………………………..11

2.0 Objectives…………………………………………………………………………….....11

3.0 Main Content………………………………………………………………....………....11

 3.1 An overview of the BRDF……………………………………………………....11

 3.2 The definition of BRDF…………….…………………………………………...13

3.3 Classes and properties of BRDFs……………………………………………………..14

3.4 Related functions……………………………………………...…...…………....15

3.5 Physically based BRDFs………………………………………………………..17

3.6 Application of BRDFs………………………………………………………......17

3.7 Features of BRDF models…………………………………………………...…..17

4.0 Conclusion…………………………………………………………………………...…..17

5.0 Summary…………………………………………………………………………...…....18

6.0 Tutor Marked Assignment………………………………………………………...…......18

7.0 References/Further

Reading…………………………………………………………………....…….18

12

1.0 Introduction to Bi-directional Reflection Distribution Function (BRDF)

One of the most general means to characterize the reflection properties of a surface is by use of the

bi-directional reflection distribution function (BRDF), a function which defines the spectral and

spatial reflection characteristic of a surface. The BRDF of a surface is the ratio of reflected radiance

to incident irradiance at a particular wavelength:

where the subscripts i and r denote incident and reflected respectively, is the direction

of light propagation, is the wavelength of light, L is radiance, and E is irradiance.

2.0 Objectives

On completing this unit, you would be able to:

1. Understand the BRDFs

2. Understand the application of BRDFs

3. Understand the features of BRDF models.

3.0 Main Content

3.1 An overview of the BRDF

To understand the concept of a BRDF and how BRDFs can be used to improve realism in

interactive computer graphics, we begin by discussing what we know about light and how light

interact with matter. In general, when light interacts with matter, a complicated light-matter

dynamic occurs. This interaction depends on the physical characteristics of the light as well as the

physical composition and characteristics of the matter. For example, a rough opaque surface such

as sandpaper will reflect light differently than a smooth reflective surface such as a mirror. Figure

1.2(a) shows a typical light-matter interaction scenario.

13

Figure 1.2(a): Light Interactions.

From this figure, we make a couple of observations about light. First, when light makes contact

with a material, three types of interactions may occur: light reflection, light absorption, and light

transmittance. That is, some of the incident light is reflected, some of the light is transmitted, and

another portion of the light is absorbed by the medium itself.

Light incident at surface light reflected light absorbed light transmitted

For opaque materials, the majority of incident light is transformed into reflected light and absorbed

light. As a result, when an observer views an illuminated surface, what is seen is reflected light, i.e.

the light that is reflected towards the observer from all visible surface regions. A BRDF describes

how much light is reflected when light makes contact with a certain material. Similarly, a BTDF

(Bi-directional Transmission Distribution Function) describes how much light is transmitted when

light makes contact with a certain material.

In general, the degree to which light is reflected (or transmitted) depends on the viewer and light

position relative to the surface normal and tangent. Consider, for example, a shiny plastic teapot

illuminated by a white point light source. Since the teapot is made of plastic, some surface regions

will show a shiny highlight when viewed by an observer. If the observer moves (i.e. changes view

direction), the position of the highlight shifts. Similarly, if the observer and teapot both remain

fixed, but the light source is moved, the highlight shifts. Since a BRDF a measure how light is

reflected, it must capture this view and light-dependent nature of reflected light. Consequently, a

BRDF is a function of incoming (light) direction and outgoing (view) direction relative to a local

orientation at the light interaction point.

Additionally, when light interacts with a surface, different wavelengths (colours) of light may be

absorbed, reflected, and transmitted to varying degrees depending upon the physical properties of

the material itself. This means that a BRDF is also a function of wavelength.

14

Finally, light interacts differently with different regions of a surface. This property, known as

positional variance, is most noticeably observed in materials such as wood that reflect light in a

manner that produces surface detail. Both the ringing and striping patterns often found in wood are

indications that the BRDF for wood varies with the surface spatial position. Many materials exhibit

this positional variance because they are not entirely composed of a single material. Instead, most

real world materials are heterogeneous and have unique material composition properties which vary

with the density and stochastic characteristics of the sub-materials from which they are comprised.

Considering the dependence of a BRDF on the incoming and outgoing directions, the wavelength

of light under consideration, and the positional variance, a general BRDF in functional notation can

be written as

Where is used to indicate that the BRDF depends on the wavelength under consideration, the

parameters i represent the incoming light direction in spherical coordinates, the

parameters 0 represent the outgoing reflected direction in spherical coordinates, and u and v

represent the surface position parameterized in texture space

Though a BRDF is truly a function of position, sometimes the positional variance is not included in

a BRDF description. Instead, it is common to see a BRDF written as a function of incoming and

outgoing directions and wavelength only (i.e. (Such BRDFs are often called

position-invariant or shift-invariant BRDFs. When the spatial position is not included as a

parameter to the function, an assumption is made that the reflectance properties of a material do not

vary with spatial position. In general, this is only valid for homogenous materials. One way to

introduce the positional variance is through the use of a detail texture. By adding or modulating the

result of a BRDF lookup with a texture, it is possibly to reasonably approximate a spatially variant

BRDF.

For the remainder of this unit, we will denote a position-invariant BRDF in functional notation as

 (
where i, 0 have the same meaning as before.

When describing a BRDF in this functional notation, it is sometimes convenient to omit the

 subscript for the sake of notation simplicity. When this is done, keep in mind that the values

produced by a BRDF do depend on the wavelength or colour channel under consideration. In

practice what this means is that in terms of the RGB colour convention, the value of the BRDF

function must be determined separately for each colour channel (i.e. R, G, and B separately). For

convenience, it‘s usually preferred not to specify a particular colour channel in the subscript. The

15

implicit assumption is that the programmer knows that a BRDF value must be determined for each

colour channel of interest separately. Given this slightly abbreviated form, the position-invariant

BRDF associated with a single colour channel can be considered to be a function of 4 variables.

When the RGB colour components are considered as a group, the BRDF is a three-component

vector function.

3.2 The Definition of a BRDF

Up until this point, the exact definition of a BRDF has not been discussed. Suppose we are given an

incoming light direction, wi, and an outgoing reflected direction, wo, each defined relative to a small

surface element. A BRDF is defined as the ratio of the quantity of reflected light in direction wo, to

the amount of light that reaches the surface from direction wi. To make this clear, let‘s call the

quantity of light reflected from the surface in direction wo, Lo, and the amount of light arriving from

direction wi, Ei. Then a BRDF is given by

Figure 1.2(b): A surface element illuminated by a light source.

Now consider figure 1.2(b). The figure shows a small surface element (i.e. a pixel/surface point)

that is being illuminated by a point light source. The amount of light arriving from direction wi is

proportional to the amount of light arriving at the differential solid angle. Suppose the light source

in the figure has intensity Li. Since the differential solid angle is small, it is essentially a flat region

on the hemisphere. As a result, the region is uniformly illuminated as the same quantity of light, Li,

arrives for each position on the differential solid angle. So the total amount of incoming light

arriving through the region is Lidw. The only problem is that this amount of light is with respect to

the differential solid angle and not the actual surface element under consideration. To determine the

amount of light with respect to the surface element, the incoming light must be ―spread out‖ or

projected onto the surface element. This projection is similar to that which happens with diffuse

Lambertian lighting and is accomplished by modulating that amount by cos iN wi. This

means

As a result, a BRDF is given by

Equation 1.2

16

From this definition, observe two interesting results. First, a BRDF is not bounded to the range [0,

1] – a common misconception about BRDFs. Although the ratio Lo to Li must be in [0, 1], the

division by the cosine term in the denominator implies that a BRDF may have values larger than 1.

Secondly, a BRDF is not a unit-less function. Since the BRDF definition above includes a division

by the solid angle (which has units steradians (sr)), the units of a BRDF are inverse steradians (sr-1).

3.3 Classes and Properties of BRDFs

There are two classes of BRDFs and two important properties. BRDFs can be classified into two

classes: isotropic BRDFs and anisotropic BRDFs. The two important properties of BRDFs are

reciprocity and conservation of energy.

The term ‗isotropic‘ is used to describe BRDFs that represent reflectance properties that are

invariant with respect to rotation of the surface around the surface normal vector. Consider a small

relatively smooth surface element and fix the light and viewer positions. If we were to rotate the

surface about its normal, the BRDF value (and consequently the resulting illumination) would

remain unchanged. Materials with this characteristic such as smooth plastics have isotropic BRDFs.

Anisotropy, on the other hand, refers to BRDFs that describe reflectance properties that do exhibit

change with respect to rotation of the surface around the surface normal vector. Some examples of

materials that have anisotropic BRDFs are brushed metal, satin, and hair. In general, most real-

world BRDFs are anisotropic to some degree, but the notion of isotropic BRDFs is useful because

many classes of analytical BRDF models fall within this class. In general, most real-world BRDFs

are probably more isotropic than anisotropic though many real-world surfaces have subtle

anisotropy. Any material that exhibits even the slightest anisotropic reflection has a BRDF that is

anisotropic. BRDFs based on physical laws and considered to be physically plausible have two

properties: reciprocity and conservation of energy.

17

Figure 1.2(c): The Reciprocity Principle

The reciprocity property is illustrated in figure 1.2(c). Basically it says that if the sense of the

traveling light is reversed, the value of the BRDF remains unchanged. That is, if the incoming and

outgoing directions are swapped, the value of the BRDF does not change. Mathematically, this

property is written as

Figure 1.2(d): Conservation of Energy- The quantity of light reflected must be less than

 or equal to the quantity of incident light.

The conservation of energy constraint has to do with the scattering of light during the light-matter

interaction. In general, this property states that when light from a single incoming direction makes

contact with a surface and is reflected/scattered over the sphere of outgoing directions, the total

quantity of light that is scattered cannot exceed the original quantity of light arriving at the surface.

Figure 1.2(d) illustrates this property. For each one unit of light energy that arrives at a point, no

more than one unit of light energy can be reflected in total to all possible outgoing directions.

By considering the definition of a BRDF (the ratio of the reflected light to incident light divided by

the projected solid angle), this means the sum over all outgoing directions of the BRDF times the

projected solid angle must be less than one in order for the ratio of the total amount of reflected

light to the incident light to be less than one. Mathematically, this is written as

18

When considering the continuous hemisphere of all outgoing reflected directions, the sum becomes

an integral and this conservation property becomes

3.4 Related functions

1. The Spatially Varying Bidirectional Reflectance Distribution Function (SVBRDF)

is a 6-dimensional function, , where describes a 2D location over an

object's surface.

2. The Bidirectional Texture Function (BTF) is appropriate for modeling non-flat

surfaces, and has the same parameterization as the SVBRDF; however in contrast, the

BTF includes non-local scattering effects like shadowing, masking, inter-reflections or

subsurface scattering. The functions defined by the BTF at each point on the surface are

thus called Apparent BRDFs.

3. The Bidirectional Surface Scattering Reflectance Distribution Function (BSSRDF),

is a further generalized 8-dimensional function in which light

entering the surface may scatter internally and exit at another location.

In all these cases, the dependence on wavelength has been ignored and binned into RGB channels.

In reality, the BRDF is wavelength dependent, and to account for effects such as iridescence or

luminescence the dependence on wavelength must be made explicit: fr(λi,ωi,λo,ωo).

3.5 Physically based BRDFs

Physically based BRDFs have additional properties, including,

http://en.wikipedia.org/wiki/Bidirectional_texture_function
http://en.wikipedia.org/wiki/Bidirectional_scattering_distribution_function
http://en.wikipedia.org/wiki/Iridescence
http://en.wikipedia.org/wiki/Luminescence

19

1. positivity:

2. Obeying Helmholtz reciprocity: fr(ωi,ωo) = fr(ωo,ωi).

3. conserving energy:

3.6 Applications of BRDF

The BRDF is a fundamental radiometric concept, and used in computer graphics for photorealistic

rendering of synthetic scenes, as well as in computer vision for many inverse problems such as

object recognition.

3.6 Features of BRDF models

BRDFs can be measured directly from real objects using calibrated cameras and light sources;

however, many phenomenological and analytic models have been proposed including the

Lambertian reflectance model frequently assumed in computer graphics. Some useful features of

recent models include:

1. accommodating anisotropic reflection

2. editable using a small number of intuitive parameters

3. accounting for Fresnel effects at grazing angles

4. being well-suited to Monte Carlo methods.

4.0 Conclusion

This unit has presented some of the basic terminologies and concepts about BRDFs, its applications

and useful features of recent models. The degree to which light is reflected (or transmitted) depends

on the viewer and light position relative to the surface normal and tangent. BRDF is also a function

of wavelength.

5.0 Summary

The bidirectional reflectance distribution function is a four-dimensional function that defines how

light is reflected at an opaque surface and accordingly is used in computer graphics for

photorealistic rendering of synthetic scenes, as well as in computer vision for many inverse

problems such as object recognition.

6.0 Tutor Marked Assignment

1. What do you understand by BRDF?

2. Identify Application areas and features of BRDFs.

3. Explain the classes and properties of BRDFs

4. Highlight the features of BRDF models.

http://en.wikipedia.org/wiki/Helmholtz_reciprocity
http://en.wikipedia.org/wiki/Computer_graphics
http://en.wikipedia.org/wiki/Rendering_%28computer_graphics%29
http://en.wikipedia.org/wiki/Rendering_%28computer_graphics%29
http://en.wikipedia.org/wiki/Computer_vision
http://en.wikipedia.org/wiki/Lambertian_reflectance
http://en.wikipedia.org/wiki/Anisotropic
http://en.wikipedia.org/wiki/Fresnel_equations
http://en.wikipedia.org/wiki/Monte_Carlo_method
http://en.wikipedia.org/wiki/Computer_graphics
http://en.wikipedia.org/wiki/Rendering_%28computer_graphics%29
http://en.wikipedia.org/wiki/Computer_vision

20

5. Differentiate between Isotropic BRDF and Anisotropic BRDF.

7.0 References/Further Reading

1. Jeffr Ward, Gregory J. (1992). "Measuring and modeling anisotropic reflection".

Proceedings of SIGGRAPH. pp. 265–272.

2. S.K. Nayar and M. Oren, "Generalization of the Lambertian Model and Implications for

Machine Vision". International Journal on Computer Vision, Vol. 14, No. 3, pp. 227–

251, Apr, 1995

3. Michael Ashikhmin, Peter Shirley (2000), An Anisotropic Phong BRDF Model, Journal

of Graphics Tools 2000

4. Ed Angel (1991) Interactive Computer Graphics- A Top-Down Approach with OpenGL

Fifth Edition, Addison-Wesley 2009 ISBN 0-321-53586-3

5. Donald Hearn and M. Pauline Baker (1997) Computer Graphics, C Version (2nd

Edition), Prentice Hall, 1997, ISBN: 0135309247

MODULE 1 – Introduction to Computer Graphics and Animation

UNIT 3: Vectors and dot Products

Contents Pages

1.0 Introduction to vectors…………………………………………………………………..20

2.0 Objectives………………………………………………………………………………..20

3.0 Main Content………………………………………………………………....……….....20

 3.1 Adding vectors and points…….…….……………………………….…………..20

3.2 Other Vector Operations………………………………………………...……...……..21

3.3 Dot products……………………………………………………...…...................21

3.4 Properties of Dot products ……………………………………………………....22

3.5 Cross products…………………………………………………………………....23

3.6 Properties of cross products……………………………………………………...23

4.0 Conclusion………………………………………………………………………………..24

5.0 Summary………………………………………………………………………………….24

http://www1.cs.columbia.edu/CAVE/publications/pdfs/Nayar_IJCV95.pdf
http://www1.cs.columbia.edu/CAVE/publications/pdfs/Nayar_IJCV95.pdf

21

6.0 Tutor Marked Assignment……………………………………………………………......24

7.0 References/Further

Reading…………………………………………………………………….…….25

1.0 Introduction to Vectors

Vectors are geometric objects that have a length and a direction. We can also talk about a vector's

tail (where it begins) and head (where it ends up). A vector is like a point, in that it is described by

a set of coordinates in a given dimension. But there are differences:

1. A point has an absolute position within a coordinate system. A vector has no position;

the same vector can appear anywhere.

2. A point has no dimension to it. A vector has a length as well as a direction.

Vectors are very important in computer graphics. For example, they are needed to:

1. Analyze shapes: find the point at which two lines intersect, the distance of a point to a

line, or whether a shape is convex or concave.

2. Determine visibility: find objects closest to the eye (ray tracing) or determine whether a

plane is facing away from us (back-face culling).

3. Calculate lighting effects: determine how much light hits a surface (illumination), how

much of that light is seen by the viewer (reflection), and what other objects are reflected

in that surface (ray tracing).

2.0 Objectives

22

On completing this unit, you would be able to:

1. Understand the what vectors are

2. Understand dot products and cross products

3. Understand vector operators and how to utilize them.

4. Understand the properties of Dot and Cross Products of vectors

3.0 Main Content

3.1 Adding vectors and points

Points and vectors can be used to define one another by adding and subtracting the coordinates.

Given that P and Q are points and u and v are vectors, then

1. P - Q is a vector with its tail at Q and its head at P

2. P + v is a new point (P displaced by the quantities in v)

3. u + v is another vector

Coordinates are added and subtracted as follows:

If a = (ax, ay, az) and b = (bx, by, bz) then

a + b = (ax+ bx, ay+ by, az+ bz) and a - b = (ax - bx, ay - by, az - bz).

For example, consider the illustration at left. Imagine that R

= (2, 3, 1), Q = (4, 1, 1), and P = (7, 3, 1). Then

1. u = Q - R = (2, -2, 0) and Q = R + u

2. v = P - Q = (3, 2, 0) and P = Q + v

u + v = (Q - R) + (P - Q) = P - R = (5, 0, 0)

3.2 Other vector operations

You can change the length of a vector by multiplying it with a scalar value. Given a scalar value s

and a vector v = (vx, vy, vz) then sv = (svx, svy, svz). For example, if s = 0.5 and v = (4, 3, 0) then sv =

(2, 1.5, 0).

23

You can find the length (or magnitude) of a vector using the Pythagorean Theorem. Given a vector

v = (vx, vy, vz), the magnitude of v is |v| = sqrt(vx*vx, vy*vy, vz*vz). For example, if v = (4, 3, 0) then |v|

= 5.

A unit vector is a vector of length 1. For any vector, you can find a corresponding unit vector (with

the same direction) by dividing each of the coordinate values by the magnitude of the original

vector. In other words, given a vector v = (vx, vy, vz), the unit vector is (vx / |v|, vy / |v|, vz / |v|). For

example, if v = (4, 3, 0) then the unit vector with the same direction is (4/5, 3/5, 0/5) = (0.8, 0.6, 0).

3.3 Dot product

The dot (or inner) product of 2 vectors produces a scalar value. The dot product is used to solve a

number of important geometric problems in graphics. The dot product for 3-dimensional vectors is

solved as follows:

If u = (ux, uy, uz) and v = (vx, vy, vz) then

u• v = uxvx + uyvy + uzvz.

3.4 Properties of Dot products

The dot product has the following properties:

1. Symmetry: u • v = v • u

2. Linearity: (u + w) • v = (u • v) + (w • v)

3. Homogeneity: (su) • v = s(u • v)

4. |v| = sqrt(v • v)

The dot product can be used to determine the angle between two

vectors.

From the Pythagorean Theorem, we know that

cos θ = ux / |u| and ux = cos θ* |u|

sinθ = uy / |u| and uy = sinθ* |u|

24

Therefore,

u • v = cosθ|u|cosφ|v| + sinθ|u|sinφ|v|

= |u||v|(cosθcosφ + sinθsinφ)

= |u||v|cos(θ-φ)

And so,

cos(θ-φ) = (u • v) / (|u||v|)

There is no need to calculate the exact cosine to know

whether the angle is acute, obtuse, or a right angle.

Because |u||v| is always a positive value, the sign of

cos(θ-φ) will take on the sign of u• v. So,

u• v > 0 implies the angle is acute (-90° < (θ-φ) < 90°);

u• v < 0 implies the angle is obtuse (90° < (θ-φ) < 270°); and

u• v = 0 implies the angle is right ((θ-φ) = 90° or (θ-φ) = -90°), i.e. the vectors are perpendicular.

3.5 Cross Product

The cross (or vector) product of 2 vectors produces another vector which is perpendicular

(orthogonal) to both of the vectors used to find it.

The cross product is defined in terms of the standard unit vectors i, j, and k, where

1. i = (1, 0, 0)

2. j = (0, 1, 0)

3. k = (0, 0, 1)

25

The cross product for 3-dimensional vectors is then solved as follows:

If u = (ux, uy, uz) and v = (vx, vy, vz) then

u x v = ((uyvz - uzvy)i + (uzvx - uxvz)j + (uxvy - uyvx)k).

This form can be hard to remember, and so we can also write the cross product as a determinant:

 i j K

u x v =

 ux uy Uz

 vx vy Vz

3.6 Properties of Cross Products

The cross product has the following properties:

1. Antisymmetry: u x v = -v x u

2. Linearity: u x (v + w) = (u x v) + (u x w)

3. Homogeneity: (su) x v = s(u x v)

4. i x j = k ; j x k = i ; k x i = j

The result of u x v is a vector that is perpendicular (orthogonal) to both u and v.

The result of u x v follows the right-hand rule:

1. Place your right hand at u and curl your fingers toward v. Your hand should be

enclosing the smaller angle (<= 180°) between u and v.

2. Stick out your thumb: it points in the direction of u x v.

The length of u x v equals the area of the parallelogram determined by u and v, which is

|u x v| = |u||v| * sinθ

where θ is the angle from u to v or v to u (whichever is less).

4.0 Conclusion

Vector graphics editors typically allow rotation, movement, mirroring, stretching, skewing, affine

transformations, changing of z-order and combination of primitives into more complex objects.

More sophisticated transformations include set operations on closed shapes (union, difference,

intersection, etc.).

5.0 Summary

26

In Vectors are geometric objects that have a length and a direction. Vectors are very important in

computer graphics to analyze shapes, Determine visibility and Calculate lighting effects.

6.0 Tutor Marked Assignment

1. What do you understand by vectors? Differentiate between vectors and scalars.

2. Identify the properties of Cross products and Dot products of vector

3. Try these problems to test your understanding of this material.

1. For each of the following, calculate the coordinates. Indicate whether the result is a

point or a vector.

1. v + u, where v = (-1, 0, 5) and u = (2, 1, 1)

2. P + v, where P = (1, 2, 3) and v = (-1, -2, -3)

3. P - Q, where P = (5, 5, 5) and Q = (1, 2, 3)

2. For each of the following, calculate sv and |sv| when

1. s = 3, v = (1, 1, 1)

2. s = 0.25, v = (-4, 8, 2)

3. For each of the following vectors v and u, calculate the dot product. What does the

result tell you about the angle between the vectors?

1. v = (1, 0, 0) and u = (0, 1, 0)

2. v = (1, 1, -1) and u = (2, 1, 0)

3. v = (-2, 0, 0) and u = (1, 1, 1)

4. Calculate the unit normal vector for the polygon defined by points P0 = (1, 1, 1), P1 =

(5, 1, 4) and P2 = (2, 1, 1).

7.0 References/Further Reading

1. Ed Angel (1991) Interactive Computer Graphics- A Top-Down Approach with OpenGL,

 Fifth Edition, Addison-Wesley 2009 ISBN 0-321-53586-3

2. Donald Hearn and M. Pauline Baker (1997) Computer Graphics, C Version (2nd

Edition), Prentice Hall, 1997, ISBN: 0135309247

3. G. Farin, Curves and Surfaces for Computer Aided Geometric Design: A Practical

Guide, 4th edition, Academic Press, San Diego, 1996. ISBN-13: 978-

0122490545

4. J.D. Foley et al., Computer Graphics: Principles and Practice, Addison-Wesley,

Reading, Mass., 1990. ISBN-13: 978-0201848403

27

MODULE 2 – Transformations, Camera models, Rasterization and Mapping techniques

UNIT 1: Transformations.

Contents Pages

1.0 Introduction to transformations…………………………………………………………27

2.0 Objectives………………………………………………………………………………..27

3.0 Main Content………………………………………………………………....……….....27

 3.1 2D transformations….….………………………………………………………..27

3.2 Affine transformations………………………………………...………………………29

28

3.3 Homogenous coordinates……………………………………………...….......…30

3.4 Uses and Abuses of Homogeneous Coordinates……………………………….31

3.5 Hierarchical transformations…………………………………………………….33

3.6 Transformations in openGL……………………………………………………..33

4.0 Conclusion……………………………………………………………………………….35

5.0 Summary…………………………………………………………………………………35

6.0 Tutor Marked Assignment…………………………………………………………….....35

7.0 References/Further

Reading…………………………………………………………………….……35

1.0 Introduction to Transformations

Transformations are one of the primary vehicles used in computer graphics to manipulate objects in

three-dimensional space. Their development is motivated by the process of converting coordinates

between frames, which results in the generation of a 4x4 matrix. We can generalize this process and

develop matrices that implement various transformations in space.

2.0 Objectives

On completing this unit, you would be able to:

1. Understand how transformations work

2. Differentiate between 2D and 3D transformations

29

3. Identify classes of transformations.

3.0 Main Content

3.1 2D Transformations

Given a point cloud, polygon, or sampled parametric curve, we can use transformations for several

purposes:

1. Change coordinate frames (world, window, viewport, device, etc).

2. Compose objects of simple parts with local scale/position/orientation of one part

defined with regard to other parts. For example, articulated objects.

3. Use deformation to create new shapes.

4. Useful for animation.

There are three basic classes of transformations:

i. Rigid body - Preserves distance and angles.

Examples: translation and rotation.

ii. Conformal - Preserves angles.

Examples: translation, rotation, and uniform scaling.

iii. Affine - Preserves parallelism. Lines remain lines.

Examples: translation, rotation, scaling, shear, and reflection.

Examples of transformations:

1. Translation by Vector
 : = +

1. Rotation by Clockwise

30

2. Uniform Scaling by Scalar :

3. Non-uniform Scaling by a and b:

4. Shear by Scalar h:

5. Reflection about the y-axis:

3.2 Affine Transformations

An affine transformation takes a point p̄ to q̄ according to a linear

transformation followed by a translation. You should understand the following proof

• The inverse of an affine transformation is also affine, assuming it exists.

Proof:

31

 Note:

The inverse of a 2D linear transformation is

• Lines and parallelism are preserved under affine transformations.

 Proof:

• Given a closed region, the area under an affine transformation

Note:

Example:

The matrix maps all points to the x-axis, so the area of any closed region will become

Zero. We have det(A) = 0, which verifies that any closed region‘s area will be scaled by zero

• A composition of affine transformations is still affine.

32

3.3 Homogeneous Coordinates

Homogeneous coordinates are another way to represent points to simplify the way in which we

express affine transformations. Normally, bookkeeping would become tedious when affine trans-

formations of the form are composed. With homogeneous coordinates, affine

transformations become matrices, and composition of transformations is as simple as matrix

multiplication. In future sections of the course we exploit this in much more powerful ways.

With homogeneous coordinates, a point p̄ is augmented with a 1, to form

All points (αp̄ , α) represent the same point p̄ for real α≠0

Given p̂ in homogeneous coordinates, to get p̄, we divide p̂ by its last component and discard the

last component.

Example:

The homogeneous points (2, 4, 2) and (1, 2, 1) both represent the Cartesian point

(1, 2). It‘s the orientation of p̂ that matters, not its length.

Many transformations become linear in homogeneous coordinates, including affine

transformations.

To produce q̂ rather than q̄, we can add a row to the matrix:

This is linear! Bookkeeping becomes simple under composition.

33

1

With homogeneous coordinates, the following properties of affine transformations become

apparent:

1. Affine transformations are associative.

For affine transformations F1, F2, and F3,

(F3 F2) F1 = F3 (F2 F1).

2. Affine transformations are not commutative.

For affine transformations F1 and F2,

F2 F1 = F1 F2.

3.4 Uses and Abuses of Homogeneous Coordinates

Homogeneous coordinates provide a different representation for Cartesian coordinates, and cannot

be treated in quite the same way. For example, consider the midpoint between two points p̄1 =

(1, 1) and p̄2 = (5, 5). The midpoint is (p̄1 + p̄2)/2 = (3, 3). We can represent these points in

homogeneous coordinates as p̂1 = (1, 1, 1) and p̂2 = (5, 5, 1). Directly applying the same

computation as above gives the same resulting point: (3, 3, 1).

However, we can also represent these points as p̂′
 = (2, 2, 2) and p̂′= (5, 5, 1). We then have

(p̂′+p̂′)/2 =(7/2, 7/2, 3/2) which corresponds to the Cartesian point (7/3, 7/3). This is a

different point, and illustrates that we cannot blindly apply geometric operations to homogeneous

coordinates. The simplest solution is to always convert homogeneous coordinates to Cartesian

coordinates. That said, there are several important operations that can be performed correctly in

terms of homogeneous coordinates, as follows.

3.4.1 Affine transformations:

An important case in the previous section is applying an affine trans- formation to a point in

homogeneous coordinates:

34

It is easy to see that this operation is correct, since rescaling p̂ does not change the result:

Which is the same geometric point as q̂ = (x′, y′,1)T

3 . 4 . 2 Vectors: We can represent a vector in homogeneous coordinates by setting

the last element of the vector to be zero: However, when adding a vector to a

point, the point must have the third component to be 1.

The result is clearly incorrect if the third component of the vector is not 1

3.5 Hierarchical Transformations

It is often convenient to model objects as hierarchically connected parts. For example, a robot arm

might be made up of an upper arm, forearm, palm, and fingers. Rotating at the shoulder on the

upper arm would affect all of the rest of the arm, but rotating the forearm at the elbow would affect

the palm and fingers, but not the upper arm. A reasonable hierarchy, then, would have the upper

arm at the root, with the forearm as its only child, which in turn connects only to the palm, and the

palm would be the parent to all of the fingers.

Homogeneous coordinates are a representation of points in projective geometry.

35

Each part in the hierarchy can be modeled in its own local coordinates, independent of the other

parts. For a robot, a simple square might be used to model each of the upper arm, forearm, and

so on. Rigid body transformations are then applied to each part relative to its parent to achieve

the proper alignment and pose of the object. For example, the fingers are positioned to be in the

appropriate places in the palm coordinates, the fingers and palm together are positioned in forearm

coordinates, and the process continues up the hierarchy. Then a transformation applied to upper

arm coordinates is also applied to all parts down the hierarchy.

3.6 Transformations in OpenGL

OpenGL manages two 4 × 4 transformation matrices: the modelview matrix, and the projection

matrix. Whenever you specify geometry (using glVertex), the vertices are transformed by the

current modelview matrix and then the current projection matrix. Hence, you don‘t have to perform

these transformations yourself. You can modify the entries of these matrices at any time. OpenGL

provides several utilities for modifying these matrices. The modelview matrix is normally used to

represent geometric transformations of objects; the projection matrix is normally used to store the

camera transformation. For now, we‘ll focus just on the modelview matrix, and discuss the camera

transformation later.

To modify the current matrix, first specify which matrix is going to be manipulated: use

glMatrixMode (GL MODE) to modify the modelview matrix. The modelview matrix can then

be initialized to the identity with glLoadIdentity(). The matrix can be manipulated by

directly filling its values, multiplying it by an arbitrary matrix, or using the functions OpenGL

provides to multiply the matrix by specific transformation matrices (glRotate, glTranslate,

and glScale). Note that these transformations right-multiply the current matrix; this can be

confusing since it means that you specify transformations in the reverse of the obvious order.

OpenGL provides a stacks to assist with hierarchical transformations. There is one stack for the

modelview matrix and one for the projection matrix. OpenGL provides routines for pushing and

popping matrices on the stack. The following example draws an upper arm and forearm with

shoulder and elbow joints. The current model view matrix is pushed onto the stack and popped

at the end of the rendering, so, for example, another arm could be rendered without the

36

transformations from rendering this arm affecting its model view matrix. Since each OpenGL

transformation is applied by multiplying a matrix on the right-hand side of the modelview matrix,

the transformations occur in reverse order. Here, the upper arm is translated so that its shoulder

position is at the origin, then it is rotated, and finally it is translated so that the shoulder is in its

appropriate world-space position. Similarly, the forearm is translated to rotate about its elbow

position, and then it is translated so that the elbow matches its position in upper arm coordinates.

Below is a program written in OpenGL that implements what has been illustrated above.

OpenGL Program:
glPus

hMatr

ix();

glTranslatef(worldShoulderX, worldShoulderY,

0.0f);

drawShoulde

rJoint();

glRotatef(shoulderRotation, 0.0f, 0.0f,

1.0f);

glTranslatef(-upperArmShoulderX, -upperArmShoulderY,

0.0f);

drawUpperAr

mShape();

glTranslatef(upperArmElbowX, upperArmElbowY,

0.0f);

drawElbowJoint();

glRotatef(elbowRotation, 0.0f, 0.0f, 1.0f);

glTranslatef(-forearmElbowX, -forearmElbowY, 0.0f);

drawForearmShape();

glPopMatrix();

4.0 Conclusion

Transformation can change vectors in a variety of ways that are useful. In particular, it can be used

to scale, rotate, and shear. Every matrix can be decomposed via SVD into a rotation times a scale

times another rotation. An important class of transforms is rigid-body transforms. These are

composed only of translations and rotations, so they have no stretching or shrinking of the objects.

Such transforms will have a pure rotation.

5.0 Summary

37

Transformations are used to manipulate objects in three-dimensional space. The three basic classes

of transformations are rigid body, conformal and affine transformations.

6.0 Tutor Marked Assignment

1.0 Explain how transformations work

2.0 What is affine transformation?

3.0 Identify and explain various classes of transformations with diagrams

4.0 What is 3D transformation?

5.0 Explain projective transformations.

6.0 Explain the following terms in Transformation

i. Rotation

ii. Scaling

iii. Shearing

iv. Reflection and

v. Orthogonal projections.

7.0 References/Further Reading

1. http://en.wikipedia.org/wiki/Transformation_matrix

2. Ed Angel (1991) Interactive Computer Graphics- A Top-Down Approach with OpenGL,

 Fifth Edition, Addison-Wesley 2009 ISBN 0-321-53586-3

3. Donald Hearn and M. Pauline Baker (1997) Computer Graphics, C Version (2nd

Edition), Prentice Hall, 1997, ISBN: 0135309247

MODULE 2 – Transformations, camera models, rasterization and mapping techniques

UNIT 2: Camera Models

Contents Pages

1.0 Introduction to camera models………………………………………………………….37

2.0 Objectives……………………………………………………………………………….37

3.0 Main Content………………………………………………………………....………....37

38

 3.1 The thin lens model…….……….………………………………………………37

3.2 Pinhole camera model………………………………………………………………..38

3.3 Camera projections……………………………………………...…....................39

3.4 Orthographic projections………………………………………………………..40

3.5 Camera position and orientation………………………………………………..41

3.6 Perspective projection…………………………………………………………..43

3.7 Homogenous projection………………………………………………………...45

3.8 Pseudodepth……………………………………………………………………46

3.9 Projecting a triangle…………………………………………………………….47

3.10 Camera projections in openGL…………………………………………………50

4.0 Conclusion……………………………………………………………………………...51

5.0 Summary………………………………………………………………………………..51

6.0 Tutor Marked Assignment……………………………………………………………...51

7.0 References/Further

Reading…………………………………………………………………….…..51

1.0 Introduction to camera models

Most modern cameras use lens to focus light onto the view plane (i.e., the sensory surface). This is

done so that one can capture enough light in a sufficiently short period of time that the objects do not

move appreciably, and the image is bright enough to show significant detail over a wide range of

intensities and contrasts.

In a conventional camera, the view plane contains either photo-reactive chemical; in a digital

camera, the view plane contains a charge-coupled device (CCD) array. (Some cameras use a

39

CMOS-based sensor instead of a CCD). In the human eye, the view plane is a curved surface called

the retina, and contains a dense array of cells with photo-reactive molecules.

2.0 Objectives

On completing this unit, you would be able to:

1. Understand the Thin lens and Pin-hole Camera Models.

2. Understand Projections

3. Understand projections of a triangle.

3.0 Main Content

3.1 Thin Lens Model

Lens models can be quite complex, especially for compound lens found in most cameras. Here we

consider perhaps the simplest case, known widely as the thin lens model. In the thin lens model,

rays of light emitted from a point travel along paths through the lens, converging at a point behind

the lens. The key quantity governing this behaviour is called the focal length of the lens. The

focal length, |f |, can be defined as distance behind the lens to which rays from an infinitely distant

source converge in focus.

Figure 2.2(a): Thin lens models

More generally, for the thin lens model, if z1 is the distance from the center of the lens (i.e., the

nodal point) to a surface point on an object, then for a focal length |f |, the rays from that surface

point will be in focus at a distance z0 behind the lens center, where z1 and z0 satisfy the thin lens

equation
 1

 |f |

1 1
= +

z0 z1

40

3.2 Pinhole Camera Model

The pinhole camera model describes the mathematical relationship between the coordinates of a

3D point and its projection onto the image plane of an ideal pinhole camera, where the camera

aperture is described as a point and no lenses are used to focus light. The model does not include,

for example, geometric distortions or blurring of unfocused objects caused by lenses and finite

sized apertures. It also does not take into account that most practical cameras have only discrete

image coordinates. This means that the pinhole camera model can only be used as a first order

approximation of the mapping from a 3D scene to a 2D image. Its validity depends on the quality

of the camera and, in general, decreases from the center of the image to the edges as lens distortion

effects increase.

Some of the effects that the pinhole camera model does not take into account can be compensated

for, for example by applying suitable coordinate transformations on the image coordinates, and

others effects are sufficiently small to be neglected if a high quality camera is used. This means that

the pinhole camera model often can be used as a reasonable description of how a camera depicts a

3D scene, for example in computer vision and computer graphics.

A pinhole camera is an idealization of the thin lens as aperture shrinks to zero.

view plane

infinitesimal

pinhole

Figure 2.2(b): Light from a point travels along a single straight path through a pinhole onto the

view plane. The object is imaged upside-down on the image plane.

We use a right-handed coordinate system for the camera, with the x-axis as the horizontal direction

and the y-axis as the vertical direction shown in figure 2.2(c) . This means that the optical axis

(gaze direction) is the negative z-axis.

y

-z

x

41

z

Figure 2.2(c): the right-hand coordinate.

The image you would get corresponds to drawing a ray from the eye position and intersecting it

with the window. This is equivalent to the pinhole camera model, except that the view plane is in

front of the eye instead of behind it, and the image appears right side-up, rather than upside down.

(The eye point here replaces the pinhole). To see this, consider tracing rays from scene points

through a view plane behind the eye point and one in front of it.

The earliest cameras were room-sized pinhole cameras, called camera obscuras. You would

walk in the room and see an upside-down projection of the outside world on the far wall.

The word camera is Latin for ―room;‖ camera obscura means ―dark room.‖

Figure 2.2(d): 18th-century camera obscuras. The camera on the right uses a mirror in the roof to

project images of the world onto the table, and viewers may rotate the mirror.

3.3 Camera Projections

Consider a point p̄ in 3D space oriented with the camera at the origin, which we want to project

onto the view plane. To project py to y, we can use similar triangles to get.

This is perspective projection.

Note that f < 0, and the focal length is |f |.

In perspective projection, distant objects appear smaller than near objects:

p
z

y

p
y

z

42

f
pinhole image

Figure 2.2 (e): Perspective Projection

3.4 Orthographic Projection

For objects sufficiently far away, rays are nearly parallel, and variation in pz is insignificant.

Figure 2.2(f): Here, the baseball players appear to be about the same height in pixels, even

though the batter is about 60 feet away from the pitcher. Although this is an example of

perspective projection, the camera is so far from the players (relative to the camera focal length)

that they appear to be roughly the same size.

In the limit, y = αpy for some real scalar α. This is orthographic projection:

y

z

image

Figure 2.2(g): orthographic projection

3.5 Camera Position and Orientation

Assume camera coordinates have their origin at the ―eye‖ (pinhole) of the camera, ē.

y v

u
g

e

w

43

x

z

 Figure 2.2(h): camera positioning

Let --g be the gaze direction, so a vector perpendicular to the view plane (parallel to the camera

z-axis) is

We need two more orthogonal vectors --u and --v to specify a camera coordinate frame, with

 and

 parallel to the view plane. It may be unclear how to choose them directly. However, we

can instead specify an ―up‖ direction. Of course this up direction will not be perpendicular to the

gaze direction.

Let --
 be the ―up‖ direction (e.g., toward the sky so --

 = (0, 1, 0)). Then, we want --v to be the closest

vector in the view-plane to --
 . This is really just the projection of --

 onto the view plane.

Therefore, --u must be perpendicular to --
 and

 . In fact, with these definitions it is easy to show that --

u must also be perpendicular to
 , so one way to compute --u and --v from --

 and --g is as follows:

Of course, we could have used many different ―up‖ directions, so long as --t × w-- = 0.

Using these three basis vectors, we can define a camera coordinate system, in which 3D points are

represented with respect to the camera‘s position and orientation. The camera coordinate system

has its origin at the eye point ē and has basis vectors --u, --v, and w-- , corresponding to the x, y, and z

axes in the camera‘s local coordinate system. This explains why we chose w-- to point away from

the image plane: the right-handed coordinate system requires that z (and, hence, w--) point away

from the image plane.

Now that we know how to represent the camera coordinate frame within the world coordinate

frame we and need to explicitly formulate the rigid transformation from world to camera

44

coordinates. With this transformation and its inverse, we can easily express points either in world

coordinates or camera coordinates (both of which are necessary).

To get an understanding of the transformation, it might be helpful to remember the mapping from

points in camera coordinates to points in world coordinates. For example, we have the following

correspondences between world coordinates and camera coordinates: Using such correspondences

Table 2.2: world coordinates and transformation coordinates

It is not hard to show that for a general point expressed in camera coordinates as the

corresponding point in world coordinates is given by

45

Where

Note: We can define the same transformation for points in homogeneous coordinates:

Now, we also need to find the inverse transformation, i.e., from world to camera coordinates.

Toward this end, note that the matrix Mcw is orthonormal. To see this, note that vectors --u, --v

and, w-- are all of unit length, and they are perpendicular to one another. You can also verify this

by computing M T Mcw . Because Mcw is orthonormal, we can express the inverse transformation

(from camera coordinates to world coordinates) as

This transformation takes a point from world to camera-centered coordinates.

3.6 Perspective Projection

From above, we found that the form of the perspective projection using the idea of similar triangles.

Here we consider a complementary algebraic formulation. To begin, we are given

1. A point p̄c in camera coordinates (UVW space),

2. Center of projection (eye or pinhole) at the origin in camera coordinates,

3. Image plane perpendicular to the z-axis, through the point (0, 0, f), with f < 0, and

4. line of sight is in the direction of the negative z-axis (in camera coordinates),

46

We can find the intersection of the ray from the pinhole to p̄c with the view plane.

Two important properties of perspective projection are:

1. Perspective projection preserves linearity. In other words, the projection of a 3D line

is a line in 2D. This means that we can render a 3D line segment by projecting the

endpoints to 2D, and then draw a line between these points in 2D.

2. Perspective projection does not preserve parallelism: two parallel lines in 3D

do not necessarily project to parallel lines in 2D. When the projected lines inter-

sect, the intersection is called a vanishing point, since it corresponds to a point

infinitely far away.

Self Assessment Exercise:

1. When do parallel lines project to parallel lines and when do they not?

The discovery of linear perspective, including vanishing points, formed a cornerstone of Western

painting beginning at the Renaissance. On the other hand, defying realistic perspective was a key

feature of Modernist painting. To see that linearity is preserved, consider that rays from points on a

line in 3D through a pinhole all lie on a plane, and the intersection of a plane and the image plane is

a line. This implies that drawing of polygons only requires projecting the vertices to the image plane

and draw lines between them.

47

3.7 Homogeneous Perspective

Fortunately, the transformation can be expressed linearly (ie as a matrix) in homogeneous coordi-

nates. To see this, remember that p̂ = (p̄, 1) = α(p̄, 1) in homogeneous coordinates. Using this

property of homogeneous coordinates we can write x̄∗ as

As usual with homogeneous coordinates, when you scale the homogeneous vector by the inverse

of the last element, when you get in the first three elements is precisely the perspective projection.

Accordingly, we can express x̂∗ as a linear transformation of p̂c:

48

3.8 Pseudodepth

49

x

What is the meaning of the near and far planes? Again, for convenience of implementation, we will

say that only objects between the near and far planes are visible. Objects in front of the near plane

are behind the camera, and objects behind the far plane are too far away to be visible. Of course,

this is only a loose approximation to the real geometry of the world, but it is very convenient

for implementation. The range of values between the near and far plane has a number of subtle

implications for rendering in practice. For example, if you set the near and far plane to be very far

apart in OpenGL, then Z-buffering (discussed later in the course) will be very inaccurate due to

numerical precision problems. On the other hand, moving them too close will make distant objects

disappear. However, these issues will generally not affect rendering simple scenes. (For homework

assignments, we will usually provide some code that avoids these problems).

3.9 Projecting a Triangle

Let‘s review the steps necessary to project a triangle from object space to the image plane.

1.

y

p
2

p
3 p

1

z

Figure 2.2 (i): A triangle in object coordinates.

50

51

52

3.10 Camera Projections in OpenGL

OpenGL‘s modelview matrix is used to transform a point from object or world space to camera

space. In addition to this, a projection matrix is provided to perform the homogeneous perspective

transformation from camera coordinates to clip coordinates before performing perspective

division. After selecting the projection matrix, the glFrustum function is used to specify a

viewing volume, assuming the camera is at the origin:

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

glFrustum(left, right, bottom, top, near, far);

For orthographic projection, glOrtho can be used instead:

glOrtho(left, right, bottom, top, near, far);

The GLU library provides a function to simplify specifying a perspective projection viewing

frustum:

gluPerspective(fieldOfView, aspectRatio, near, far);

The field of view is specified in degrees about the x-axis, so it gives the vertical visible angle. The

aspect ratio should usually be the viewport width over its height, to determine the horizontal field.

53

4.0 Conclusion

Some of the effects that the pinhole camera model does not take into account can be

compensated for, by applying suitable coordinate transformations on the image coordinates, and

others effects are sufficiently small to be neglected if a high quality camera is used. This means

that the pinhole camera model often can be used as a reasonable description of how a camera

depicts a 3D scene, in computer vision and computer graphics.

5.0 Summary

Most modern cameras use a lens to focus light onto the view plane. This is done so that one can

capture enough light in a sufficiently short period of time that the objects do not move appreciably,

and the image is bright enough to show significant detail over a wide range of intensities and

contrasts. Lens models can be quite complex, especially for compound lens found in most

cameras. This means that the pinhole camera model can only be used as a first order

approximation of the mapping from a 3D scene to a 2D image.

6.0 Tutor Marked Assignment

1. What do you understand by Thin lens Camera Model?

2. Identify Application areas of the pinhole camera model.

3. Explain camera projections.

4. Describe perspective projections.

7.0 References/Further Reading

1. David A. Forsyth and Jean Ponce (2003). Computer Vision, A Modern Approach.

Prentice Hall.

2. Richard Hartley and Andrew Zisserman (2003). Multiple View Geometry in computer

vision. Cambridge University Press. ISBN-13: 978-0521540513

3. Bernd Jähne (1997). Practical Handbook on Image Processing for Scientific

Applications. CRC Press. ISBN-13: 978-0849319006

4. Linda G. Shapiro and George C. Stockman (2001). Computer Vision. Prentice Hall.

ISBN-13: 978-0130307965

5. Ed Angel (1991) Interactive Computer Graphics- A Top-Down Approach with

OpenGL, Fifth Edition, Addison-Wesley 2009 ISBN 0-321-53586-3

6. Donald Hearn and M. Pauline Baker (1997) Computer Graphics, C Version (2nd

Edition), Prentice Hall, 1997, ISBN: 0135309247

54

MODULE 2 – Transformations, camera models, rasterization and mapping techniques

UNIT 3: Rasterization and The z-Buffer

Contents Pages

1.0 Introduction to raster graphics……………………...…….…………………………….53

2.0 Objectives………………………………………………………………………………54

3.0 Main Content………………………………………………………………....………...54

 3.1 Rasterization….………….……………………………………………………..54

3.2 Z-buffering……………………………………………………………………..55

3.3 Uses of Z-buffering…………………………………………………………… 55

3.4 Z-buffering algorithm……………………………………………………………......56

4.0 Conclusions…………………………………………………………………………………….56

5.0 Summary………………………………………………………………………………..56

6.0 Tutor Marked Assignment……………………………………………………………...57

7.0 References/Further

Reading…………………………………………………………………….…..57

55

1.0 Introduction to Raster Graphics

In computer graphics, a raster graphics image, or bitmap, is a data structure representing a

generally rectangular grid of pixels, or points of colour, viewable via a monitor, paper, or other

display medium. Raster images are stored in image files with varying formats. A bitmap

corresponds bit-for-bit with an image displayed on a screen, generally in the same format used

for storage in the display's video memory, or maybe as a device-independent bitmap. A bitmap is

technically characterized by the width and height of the image in pixels and by the number of

bits per pixel (a colour depth, which determines the number of colours it can represent).

The printing and prepress industries know raster graphics as contones (from "continuous tones")

and refer to vector graphics as "line work".

Figure 2.3(a): a bitmap smiley face image.

When this image is enlarged, individual pixels appear as squares. Zooming in further, they can

be analyzed, with their colours constructed by adding the values for red, green and blue. Raster

graphics are resolution dependent. They cannot scale up to an arbitrary resolution without loss of

apparent quality. This property contrasts with the capabilities of vector graphics, which easily

scale up to the quality of the device rendering them. Raster graphics deal more practically than

vector graphics with photographs and photo-realistic images, while vector graphics often serve

better for typesetting or for graphic design. Modern computer-monitors typically display about

72 to 130 pixels per inch (PPI), and some modern consumer printers can resolve 2400 dots per

inch (DPI) or more; determining the most appropriate image resolution for a given printer-

resolution can pose difficulties, since printed output may have a greater level of detail than a

viewer can discern on a monitor. Typically, a resolution of 150 to 300 pixel per inch works well

for 4-colour process Cyan Magenta Yellow Black (CMYK) printing.

http://en.wikipedia.org/wiki/Computer_graphics
http://en.wikipedia.org/wiki/Data_structure
http://en.wikipedia.org/wiki/Rectangle
http://en.wikipedia.org/wiki/Pixel
http://en.wikipedia.org/wiki/Color
http://en.wikipedia.org/wiki/Computer_display
http://en.wikipedia.org/wiki/Paper
http://en.wikipedia.org/wiki/Image_file
http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/Bitmap
http://en.wikipedia.org/wiki/Color_depth
http://en.wikipedia.org/wiki/Printing
http://en.wikipedia.org/wiki/Prepress
http://en.wikipedia.org/wiki/Vector_graphics
http://en.wikipedia.org/wiki/Smiley
http://en.wikipedia.org/wiki/Pixellation
http://en.wikipedia.org/wiki/Pixellation
http://en.wikipedia.org/wiki/Vector_graphics
http://en.wikipedia.org/wiki/Rendering_(computer_graphics)
http://en.wikipedia.org/wiki/Typesetting
http://en.wikipedia.org/wiki/Graphic_design
http://en.wikipedia.org/wiki/Pixels_per_inch
http://en.wikipedia.org/wiki/Dots_per_inch
http://en.wikipedia.org/wiki/Dots_per_inch
http://en.wikipedia.org/wiki/CMYK
http://en.wikipedia.org/wiki/File:Rgb-raster-image.svg

56

However, for printing technologies that perform colour mixing through dithering rather than

through overprinting (virtually all home and office, inkjet and laser printers included), printer

DPI and image PPI have a very different meaning, and this can be misleading. Because, through

the dithering process, the printer builds a single image pixel out of several printer dots to

increase colour depth, the printer's DPI setting must be set far higher than the desired PPI to

ensure sufficient colour depth without sacrificing image resolution. Thus, for instance, printing

an image at 250 PPI may actually require a printer setting of 1200 DPI.

2.0 Objectives

On completing this unit, you would be able to:

1. Understand how images are displayed.

2. Understand how imaging systems are organized (raster graphic Systems)

3. Understand the Z-buffering and its uses.

3.0 Main Content

3.1 Rasterization

Rasterization is the task of taking an image described in a vector graphics format (shapes) and

converting it into a raster image (pixels or dots) for output on a video display or printer, or for

storage in a bitmap file format. The term "rasterization" can in general be applied to any process

by which vector information can be converted into a raster format.

In normal usage, the term refers to the popular rendering algorithm for displaying three-

dimensional shapes on a computer. Rasterization is currently the most popular technique for

producing real-time 3D computer graphics. Real-time applications need to respond immediately

to user input, and generally need to produce frame rates of at least 24 frames per second to

achieve smooth animation. Compared with other rendering techniques such as ray tracing,

rasterization is extremely fast. However, rasterization is simply the process of computing the

mapping from scene geometry to pixels and does not prescribe a particular way to compute the

colour of those pixels. Shading, including programmable shading, may be based on physical light

transport, or artistic intent.

The process of rasterizing 3D models onto a 2D plane for display on a computer screen is often

carried out by fixed function hardware within the graphics pipeline. This is because there is no

motivation for modifying the techniques for rasterization used at render time and a special-

purpose system allows for high efficiency.

http://en.wikipedia.org/wiki/Dither
http://en.wikipedia.org/wiki/Overprinting
http://en.wikipedia.org/wiki/Color_depth
http://en.wikipedia.org/wiki/Vector_graphics
http://en.wikipedia.org/wiki/Raster_image
http://en.wikipedia.org/wiki/Pixel
http://en.wikipedia.org/wiki/Computer_display
http://en.wikipedia.org/wiki/Computer_printer
http://en.wikipedia.org/wiki/Vector_graphics
http://en.wikipedia.org/wiki/Raster_graphics
http://en.wikipedia.org/wiki/Rendering_%28computer_graphics%29
http://en.wikipedia.org/wiki/3D_computer_graphics
http://en.wikipedia.org/wiki/Persistence_of_vision
http://en.wikipedia.org/wiki/Ray_tracing_%28graphics%29
http://en.wikipedia.org/wiki/Shading
http://en.wikipedia.org/wiki/Shading_language
http://en.wikipedia.org/wiki/Graphics_pipeline

57

3.2 Z-buffering

Z-buffering is the management of image depth coordinates in three-dimensional (3-D) graphics,

usually done in hardware, sometimes in software. It is one solution to the visibility problem,

which is the problem of deciding which elements of a rendered scene are visible, and which are

hidden. The painter's algorithm is another common solution which, though less efficient, can also

handle non-opaque scene elements. Z-buffering is also known as depth buffering.

When an object is rendered by a 3D graphics card, the depth of a generated pixel (z coordinate)

is stored in a buffer (the z-buffer or depth buffer). This buffer is usually arranged as a two-

dimensional array (x-y) with one element for each screen pixel. If another object of the scene

must be rendered in the same pixel, the graphics card compares the two depths and chooses the

one closer to the observer. The chosen depth is then saved to the z-buffer, replacing the old one.

In the end, the z-buffer will allow the graphics card to correctly reproduce the usual depth

perception: a close object hides a farther one. This is called z-culling.

The granularity of a z-buffer has a great influence on the scene quality: a 16-bit z-buffer can

result in artifacts (called "z-fighting") when two objects are very close to each other. A 24-bit or

32-bit z-buffer behaves much better, although the problem cannot be entirely eliminated without

additional algorithms. An 8-bit z-buffer is almost never used since it has too little precision.

3.3 Uses for Z-buffering

Z-buffer data in the area of video editing permits one to combine 2D video elements in 3D space,

permitting virtual sets, "ghostly passing through wall" effects, and complex effects like mapping

of video on surfaces. An application for Maya, called IPR, permits one to perform post-rendering

texturing on objects, utilizing multiple buffers like z-buffers, alpha, object id, UV coordinates

and any data deemed as useful to the post-production process, saving time otherwise wasted in

re-rendering of the video.

Z-buffer data obtained from rendering a surface from a light's POV permits the creation of

shadows in a scanline renderer, by projecting the z-buffer data onto the ground and affected

surfaces below the object. This is the same process used in non-ray tracing modes by the free and

open sourced 3D application Blender.

http://en.wikipedia.org/wiki/Hardware
http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Visibility_problem
http://en.wikipedia.org/wiki/Painter%27s_algorithm
http://en.wikipedia.org/wiki/3D_graphics_card
http://en.wikipedia.org/wiki/Pixel
http://en.wikipedia.org/wiki/Buffer_%28computer_science%29
http://en.wikipedia.org/wiki/16-bit
http://en.wikipedia.org/wiki/Artifact_%28observational%29
http://en.wikipedia.org/wiki/Z-fighting
http://en.wikipedia.org/wiki/24-bit
http://en.wikipedia.org/wiki/32-bit
http://en.wikipedia.org/wiki/8-bit
http://en.wikipedia.org/wiki/Maya_%28software%29
http://en.wikipedia.org/wiki/Blender_%28software%29

58

3.4 Z-buffering Algorithm

Given: A list of polygons {P1, P2,.....Pn}

Output: A COLOUR array, which displays the intensity of the visible polygon surfaces.

Initialize:

 note : z-depth and z-buffer(x,y) is positive........

 z-buffer(x,y)=max depth; and

 COLOUR(x,y)=background colour.

Begin:

 for(each polygon P in the polygon list) do{

 for(each pixel(x,y) that intersects P) do{

 Calculate z-depth of P at (x,y)

 If (z-depth < z-buffer[x,y]) then{

 z-buffer[x,y]=z-depth;

 COLOUR(x,y)=Intensity of P at(x,y);

 }

 }

 }

 display COLOUR array.

4.0 Conclusion

Interactive raster graphics systems typically employ several processing units. In addition to the

central processing unit, or CPU, a special-purpose processor, called the video controller or

display controller, is used to control the operation of the display device.

5.0 Summary

Raster graphics are resolution dependent. They cannot scale up to an arbitrary resolution without

loss of apparent quality. Raster graphics deal more practically than vector graphics with

photographs and photo-realistic images, while vector graphics often serve better for typesetting

or for graphic design. Rasterization is the task of taking an image described in a vector graphics

format and converting it into a raster image for output on a video display or printer, or for

storage in a bitmap file format. Z-buffering is the management of image depth coordinates in

three-dimensional (3-D) graphics, usually done in hardware, sometimes in software. It is one

solution to the visibility problem, which is the problem of deciding which elements of a rendered

scene are visible, and which are hidden.

http://en.wikipedia.org/wiki/Pixellation
http://en.wikipedia.org/wiki/Typesetting
http://en.wikipedia.org/wiki/Graphic_design
http://en.wikipedia.org/wiki/Vector_graphics
http://en.wikipedia.org/wiki/Raster_image
http://en.wikipedia.org/wiki/Computer_display
http://en.wikipedia.org/wiki/Computer_printer
http://en.wikipedia.org/wiki/Hardware
http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Visibility_problem

59

6.0 Tutor Marked Assignment

1. What do you understand by Rasterization?

2. Write a rasterization algorithm.

3. Explain Z-buffering and state its uses.

4. Compare the Z-buffering algorithm with the painter‘s algorithm

5. Write short notes on the following display devices

1. Cathode ray tubes

2. Liquid crystal display

3. Plasma panels

4. Light emitting diodes

5. Thin-film electroluminescent displays.

7.0 References/Further Reading

1. 3D computer graphics – Compiled by H. Hees.

2. Ed Angel (1991) Interactive Computer Graphics- A Top-Down Approach with

OpenGL, Fifth Edition, Addison-Wesley 2009 ISBN 0-321-53586-3

3. Donald Hearn and M. Pauline Baker (1997) Computer Graphics, C Version (2nd

Edition), Prentice Hall, 1997, ISBN: 0135309247

60

MODULE 2 – Transformations, Camera models, Rasterization and Mapping techniques

UNIT 4: Mapping methods

Contents Pages

1.0 Introduction…………………..…...…….………………………………………….59

2.0 Objectives…………………………………………………………………………...59

3.0 Main Content………………………………………………………………....……..60

 3.1 Texture mapping…….…………….………………………………………...60

3.2 Two-dimensional texture mapping ……………………………………..….…...61

3.3 Bump mapping……………………………………………………...…...….62

3.4 Environmental mapping…………………………………………………….64

3.5 Multitexturing……………………………………………….……...……….65

3.6 Shadow mapping……………………………………………………………66

3.7 Algorithm overview…………………………………………………....……67

3.8 Light space coordinates………………………………………….…………..67

3.9 Depth map test……………………………………………………………….68

3.10 Drawing the scene…………………………………………………………...69

4.0 Conclusion…………………………………………………………………………...69

5.0 Summary……………………………………………………………………………..69

6.0 Tutor Marked Assignment…………………………………………………………...69

7.0 References/Further

Reading………………………………………………………………….…..70

61

1.0 Introduction to Mapping Methods

One of the most powerful uses of discrete data is for surface rendering. There are three major

techniques:

1. Texture mapping

2. Bump mapping

3. Environment mapping

Texture maps give detail by painting patterns onto smooth surfaces, while bump maps distort

the normal vectors during the shading process to make the surface appear to have small

variations in shape, such as the bumps on a real orange. Reflection maps, or environment

maps, allow us to create images that have the appearance of reflected materials without having

to trace reflected rays. In this technique, an image of the environment is painted onto the surface

as that surface is being rendered.

The three methods have much in common. All of them alter the shading of individual fragments

as part of fragment processing. They rely on the map being stored as a one-, two-, or three-

dimensional digital image. They also keep the geometric complexity low while creating the

illusion of complex geometry. However, they are subject to aliasing errors.

In virtual reality, visualization simulations, and interactive games, real-time performance is

required. Hardware support for texture mapping in modern systems allows the detail to be added,

without significantly degrading the rendering time. However, in terms of the standard pipeline,

there are significant differences among the three techniques. Standard texture mapping is

supported by the basic OpenGL pipeline and makes use of both the geometric and pixel

pipelines. Environment maps are a special case of standard texture mapping but can be altered to

create a variety of new effects if we can alter fragment processing. Bump mapping requires us to

process each fragment independently, something we can do with a fragment shader.

2.0 Objectives

On completing this unit, you would be able to:

1. Understand the various mapping methods

2. Understand the Mapping algorithms.

3. Differentiate between the mapping techniques.

62

3.0 Main Content

3.1 Texture mapping

Texture mapping is a method for adding detail, surface texture (a bitmap or raster image), or

colour to a computer-generated graphic or 3D model. A texture map is applied (mapped) to the

surface of a shape or polygon. This process is akin to applying patterned paper to a plain white

box. Every vertex in a polygon is assigned a texture coordinate (which in the 2d case is also

known as a UV coordinate) either via explicit assignment or by procedural definition. Image

sampling locations are then interpolated across the face of a polygon to produce a visual result

that seems to have more richness than could otherwise be achieved with a limited number of

polygons.

Figure 2.4(a): Texture mapping a pattern to a surface (Ed Angel, 1991)

Texture mapping uses an image (or texture) to influence the colour of a fragment. Textures can

be specified using a fixed pattern, such as the regular patterns often used to fill polygons; by a

procedural texture-generation method; or through a digitized image. We can characterize the

resulting image as the mapping of a texture to a surface as part of the rendering of the surface.

Textures are patterns. They can range from regular patterns, such as stripes and checkerboards,

to the complex patterns that characterize natural materials. In the real world, we can distinguish

among objects of similar size and shape by their textures. Thus, if we want to create detailed

virtual objects, we can extend our present capabilities by mapping a texture to the objects that we

create.

Textures can be one, two, three, or four dimensional. For example, a one-dimensional texture

might be used to create a pattern for colouring a curve. A three dimensional texture might

describe a solid block of material from which an object could sculptured. The use of surfaces is

so important in computer graphics, mapping two-dimensional textures to surfaces is by far the

http://en.wikipedia.org/wiki/Complexity
http://en.wikipedia.org/wiki/Bitmap
http://en.wikipedia.org/wiki/Raster_graphics
http://en.wikipedia.org/wiki/Color
http://en.wikipedia.org/wiki/Computer-generated_imagery
http://en.wikipedia.org/wiki/3D_model

63

most common use of texture. However, the processes by which these entities could be mapped is

much the same regardless of the dimensionality of the texture.

3.2 Two-Dimensional Texture Mapping

Although there are multiple approaches to texture mapping, all require a sequence of steps that

involve mappings among three or four different coordinate systems. Methods differ according to

the types of surfaces being considered and the type of rendering architecture available. In most

applications, textures start out as two-dimensional images of the sorts. Thus, they might be

formed by application programs or scanned in from a photograph, but, regardless of their origin,

they are eventually brought into processor memory as arrays. The elements of these arrays are

called texels, or texture elements, rather than pixels to emphasize how they will be used. We

prefer to think of this array as a continuous rectangular two-dimensional texture pattern T(s, t).

The independent variables s and t are known as texture coordinates. With no loss of generality,

we can scale our texture coordinates to vary over the interval [0,1].

A texture map associates a texel with each point on a geometric object that is itself mapped to

screen coordinates for display. If the object is represented in homogeneous or (x, y, z, w)

coordinates, then there are functions such that

x = x(s, t),

y = y(s, t),

z = z(s, t),

w = w(s, t).

One of the difficulties confronted is that although these functions exist conceptually, finding

them may not be possible in practice. In addition, there are concerns about the inverse problem:

Having been given a point (x, y, z) or (x, y, z, w) on an object, how do we find the corresponding

texture coordinates, or equivalently, how do we find the ―inverse‖ functions to use to find the

texel T(s, t)?

s= s(x, y, z , w),

t = t(x, y, z , w)

If we define the geometric object using parametric (u, v) surfaces, there is an additional mapping

function that gives object coordinate values, (x, y, z) or (x, y, z , w) in terms of u and v. Although

this mapping is known for simple surfaces, such as spheres and triangles, we also need the

mapping from parametric coordinates (u, v) to texture coordinates and sometimes the inverse

mapping from texture coordinates to parametric coordinates.

The projection process that take us from object coordinates to screen coordinates has to be

considered, going through eye coordinates, clip coordinates, and window coordinates along the

way. We can abstract this process through a function that takes a texture coordinate pair (s, t) and

tells us where in the colour buffer the corresponding value of T(s, t) will make its contribution to

64

the final image. Thus, there is a mapping of the form into coordinates, where (xs , ys) is a location

in the colour buffer.

xs=xs(s, t),

ys=ys(s, t)

Depending on the algorithm and the rendering architecture, the function that takes us from a

pixel in the colour buffer to the texel that makes a contribution to the colour of that pixel might

also be required. One way to think about texture mapping is in terms of two concurrent

mappings: the first from texture coordinates to object coordinates, and the second from

parametric coordinates to object coordinates. A third mapping takes us from object coordinates

to screen coordinates.

Conceptually, the texture-mapping process is simple. A small area of the texture pattern maps to

the area of the geometric surface, corresponding to a pixel in the final image. Assume that the

values of T are RGB colour values, these values can be used either to modify the colour of the

surface that might have been determined by a lighting model or to assign a colour to the surface

based on only the texture value. This colour assignment is carried out as part of the assignment

of fragment colours. On closer examination, we face a number of difficulties.

First, the map from texture coordinates to object coordinates must be determined. A two-

dimensional texture usually is defined over a rectangular region in texture space. The mapping

from this rectangle to an arbitrary region in three-dimensional space may be a complex function

or may have undesirable properties. For example, if we wish to map a rectangle to a sphere, we

cannot do so without distortion of shapes and distances.

Second, owing to the nature of the rendering process, which works on a pixel-by-pixel basis, we

are more interested in the inverse map from screen coordinates to texture coordinates. It is when

we are determining the shade of a pixel that we must determine what point in the texture image

to use—a calculation that requires us to go from screen coordinates to texture coordinates.

Third, because each pixel corresponds to a small rectangle on the display, we are interested in

mapping not points to points, but rather areas to areas. Here again is a potential aliasing problem

that we must treat carefully if we are to avoid artifacts, such as wavy sinusoidal or moir´e

patterns.

3.3 Bump Mapping

Bump mapping is a texture-mapping technique that can give the appearance of great complexity

in an image without increasing the geometric complexity. Unlike simple texture mapping, bump

mapping will show changes in shading as the light source or object moves, making the object

appear to have variations in surface smoothness. The technique of bump mapping varies the

65

apparent shape of the surface by perturbing the normal vectors as the surface is rendered; the

colours that are generated by shading then show a variation in the surface properties. Unlike

techniques such as environment mapping that can be implemented without programmable

shaders, bump mapping cannot be done in real time without them.

Bump mapping is a technique in computer graphics for simulating bumps and wrinkles on the

surface of an object. This is achieved by perturbing the surface normals of the object and using

the perturbed normal during lighting calculations. The result is an apparently bumpy surface

rather than a smooth surface although the surface of the underlying object is not actually

changed.

Bump mapping is limited in that it does not actually modify the shape of the underlying object.

On the left, a mathematical function defining a bump map simulates a crumbling surface on a

sphere, but the object's outline and shadow remain those of a perfect sphere. On the right, the

same function is used to modify the surface of a sphere by generating an isosurface. This actually

models a sphere with a bumpy surface with the result that both its outline and its shadow are

rendered realistically.

Figure 2.4(b): A bump map on a sphere (wikipedia)

Bump mapping is a technique in computer graphics to make a rendered surface look more

realistic by simulating small displacements of the surface. However, unlike traditional

displacement mapping, the surface geometry is not modified. Instead only the surface normal is

modified as if the surface had been displaced. The modified surface normal is then used for

lighting calculations as usual, typically using the Phong reflection model or similar, giving the

appearance of detail instead of a smooth surface. Bump mapping is much faster and consumes

fewer resources for the same level of detail compared to displacement mapping because the

geometry remains unchanged.

http://en.wikipedia.org/wiki/Computer_graphics
http://en.wikipedia.org/wiki/Surface_normal
http://en.wikipedia.org/wiki/Isosurface
http://en.wikipedia.org/wiki/Computer_graphics
http://en.wikipedia.org/wiki/Rendering_%28computer_graphics%29
http://en.wikipedia.org/wiki/Displacement_mapping
http://en.wikipedia.org/wiki/Phong_reflection_model
http://en.wikipedia.org/wiki/File:Bump_map_vs_isosurface2.png

66

There are primarily two methods to perform bump mapping. The first uses a height map for

simulating the surface displacement yielding the modified normal. This is the method invented

by Blinn and is usually what is referred to as bump mapping unless specified. The steps of this

method are summarized as follows.

Before lighting a calculation is performed for each visible point (or pixel) on the object's surface:

1. Look up the height in the heightmap that corresponds to the position on the surface.

2. Calculate the surface normal of the heightmap, typically using the finite difference

method.

3. Combine the surface normal from step two with the true ("geometric") surface

normal so that the combined normal points in a new direction.

4. Calculate the interaction of the new "bumpy" surface with lights in the scene using,

for example, the Phong reflection model.

The result is a surface that appears to have real depth. The algorithm also ensures that the surface

appearance changes as lights in the scene are moved around.

The other method is to specify a normal map which contains the modified normal for each point

on the surface directly. Since the normal is specified directly instead of derived from a height

map, this method usually leads to more predictable results. This makes it easier for artists to

work with, making it the most common method of bump mapping today. There are also

extensions which modifies other surface features in addition to increase in the sense of depth.

Parallax mapping is one such extension.

The primary limitation with bump mapping is that it perturbs only the surface normals without

changing the underlying surface itself. Silhouettes and shadows therefore remain unaffected,

which is especially noticeable for larger simulated displacements. This limitation can be

overcome by techniques including the displacement mapping where bumps are actually applied

to the surface or using an isosurface.

3.4 Environment Mapping

3.4.1 Introduction to Environment mapping

Environment mapping is a scheme that improves on the mapping techniques of chrome and

refraction mapping. It is useful because of the fact that in a reflective environment, ray tracing

can be very expensive. Environment mapping gives these reflections more cheaply with little

loss of accuracy. Its computation is independent of the level of detail of the surroundings. In

environment mapping, the object is surrounded by a closed three dimensional surface onto which

the environment is projected. Reflected rays are traced from the object, hit the surface and then

http://en.wikipedia.org/wiki/Heightmap
http://en.wikipedia.org/wiki/Pixel
http://en.wikipedia.org/wiki/Heightmap
http://en.wikipedia.org/wiki/Finite_difference
http://en.wikipedia.org/wiki/Normal_mapping
http://en.wikipedia.org/wiki/Parallax_mapping
http://en.wikipedia.org/wiki/Displacement_mapping
http://en.wikipedia.org/wiki/Isosurface

67

index onto the map. It is essentially the same as chrome mapping except that the map consists of

an image of the environment as seen from the center of the space to be environment mapped.

3.4.2 Factors affecting environment mapping

In all environment mapping techniques, the accuracy depends on the object being positioned in

the center of the surface and that objects in the environment are distant from the objects

receiving the environment map. As the object becomes larger with respect to the environment, or

the distance from the map center increases, the geometric distortion increases. This is because of

the fact that, the environment map is created as a projection from a single point at the center of

the surface.

Geometric distortion can be reduced by ray tracing those objects in the environment that are too

close to the reflective object. If the reflective object is to complex, it may have to be ray traced

which environment mapping cannot handle.

3.4.3 Techniques of environment mapping

The first use of environment mapping was developed by Jim Blinn and Newell (1976). In this

case, the object is deemed to be positioned at the center of a large sphere, onto the interior, of

which the environment is projected. The mapping used a latitude-longitude map indexed by the

reflected ray, similar to chrome mapping. The index function uses only the direction of R,

leading to errors in planar surfaces on large objects that will tend to index onto the same point on

the map. Also, mapping is essentially a spherical projection and contains a singularity at

(0,0,Rz).

In chrome mapping, this gave rise to spikes whereas in this case, distortions arise in the map

around the singularities. This is degradation and as it contributes to the final effect. The

difference between longitude-latitude mapping and chrome mapping is that in the former, the

map is the environment whereas in the latter, the map is an arbitrary image. In terms of

implementation, both of them are identical.

The other environment technique is one in which the environment is projected onto the six sides

of the cube. The mapping function R3 -> R2 is no longer spherical and so much less distortion.

Environment maps are constructed by taking six images, from a fixed point, in mutually

orthogonal directions either with a camera whose field of view is PI/2 or by using a renderer to

construct the maps from a modeled scene. These six images are then converted into six mip-

maps. The problem with using a real camera is that it is difficult to construct six component map

without encountering both geometric and illumination discontinuities at the seams or boundaries.

This technique is popular as it gives a neat way of blending computer generated objects and live

action sets.

68

3.5 Multi-texturing

There are many surface rendering effects that can best be implemented by more than a single

application of a texture. For example, suppose that we want to apply a shadow to an object

whose surface shades are themselves determined by a texture map. One can use a texture map for

the shadow, but if there were only a single texture application, this method would not work.

Fragment frame Buffer

Figure 2.4(c): Sequence of Texture Units (Ed Angel, 1991)

If, instead, we have multiple texture units as in Figure 2.4(c), then one can accomplish this task.

Each unit acts as an independent texturing stage starting with the results of the previous stage.

This facility is supported in recent versions of OpenGL. Suppose that we want to use two texture

units. We can define two texture objects as part of our initialization. Each in turn is then

activated and decision on how its texture should be applied is determined. The usual code for

multi-texturing is of the form

glActiveTexture(GL_TEXTURE0); /* unit 0 */

glBindTexture(GL_TEXTURE_2D, object0);

/* how to apply texture 0 */

glActiveTexture(GL_TEXTURE1); /* unit 1 */

glBindTexture(GL_TEXTURE_2D, object1);

/* how to apply texture 1 */

Each texture unit can use different texture coordinates, and the application needs to provide those

texture coordinates for each unit.

3.6 Shadow mapping

Shadow mapping or projective shadowing is a process by which shadows are added to 3D

computer graphics. This concept was introduced by Lance Williams in 1978. Since then, it has

been used both in pre-rendered scenes and real-time scenes in many console and PC games.

Texture unit0 Texture unit 1 Texture unit 3

69

Shadows are created by testing whether a pixel is visible from the light source, by comparing it

to a z-buffer or depth image of the light source's view, stored in the form of a texture.

3.6.1 Principle of a shadow and a shadow map

If you looked out from a source of light, all of the objects you can see would appear in light.

Anything behind those objects, however, would be in shadow. This is the basic principle used to

create a shadow map. The light's view is rendered; storing the depth of every surface it sees (the

shadow map). Next, the regular scene is rendered comparing the depth of every point drawn (as

if it were being seen by the light, rather than the eye) to this depth map.

Figure 2.4(d): Shadow mapping (Wikipedia)

This technique is less accurate than shadow volumes, but the shadow map can be a faster

alternative depending on how much fill time is required for either technique in a particular

application and therefore may be more suitable to real time applications. In addition, shadow

maps do not require the use of an additional stencil buffer, and can be modified to produce

shadows with a soft edge. Unlike shadow volumes, however, the accuracy of a shadow map is

limited by its resolution.

3.7 Shadow Mapping Algorithm overview

Rendering a shadowed scene involves two major drawing steps.

1. The first produces the shadow map itself.

2. The second applies it to the scene.

Depending on the implementation (and number of lights), this may require two or more drawing

passes.

3.7.1 Creating the shadow map

The first step renders the scene from the light's point of view. For a point light source, the view

should be a perspective projection as wide as its desired angle of effect (it will be a sort of square

spotlight). For directional light (e.g., that from the Sun), an orthographic projection should be

used. From this rendering, the depth buffer is extracted and saved. Because only the depth

information is relevant, it is usual to avoid updating the colour buffers and disable all lighting

70

and texture calculations for this rendering, in order to save drawing time. This depth map is often

stored as a texture in graphics memory.

This depth map must be updated any time there are changes to either the light or the objects in

the scene, but can be reused in other situations, such as those where only the viewing camera

moves. (If there are multiple lights, a separate depth map must be used for each light.) In many

implementations it is practical to render only a subset of the objects in the scene to the shadow

map in order to save some of the time it takes to redraw the map. Also, a depth offset which

shifts the objects away from the light may be applied to the shadow map rendering in an attempt

to resolve stitching problems where the depth map value is close to the depth of a surface being

drawn (i.e., the shadow casting surface) in the next step. Alternatively, culling front faces and

only rendering the back of objects to the shadow map is sometimes used for a similar result.

3.7.2 Shading the scene

The second step is to draw the scene from the usual camera viewpoint, applying the shadow map.

This process has three major components, the first is to find the coordinates of the object as seen

from the light, the second is the test which compares that coordinate against the depth map, and

finally, once accomplished, the object must be drawn either in shadow or in light.

3.8 Light space coordinates

In order to test a point against the depth map, its position in the scene coordinates must be

transformed into the equivalent position as seen by the light. This is accomplished by a matrix

multiplication. The location of the object on the screen is determined by the usual coordinate

transformation, but a second set of coordinates must be generated to locate the object in light

space.

The matrix used to transform the world coordinates into the light's viewing coordinates is the

same as the one used to render the shadow map in the first step (under OpenGL this is the

product of the modelview and projection matrices). This will produce a set of homogeneous

coordinates that need a perspective division (see 3D projection) to become normalized device

coordinates, in which each component (x, y, or z) falls between −1 and 1 (if it is visible from the

light view). Many implementations (such as OpenGL and Direct3D) require an additional scale

and bias matrix multiplication to map those −1 to 1 values to 0 to 1, which are more usual

coordinates for depth map (texture map) lookup. This scaling can be done before the perspective

division, and is easily folded into the previous transformation calculation by multiplying that

matrix with the following:

71

If done with a shader, or other graphics hardware extension, this transformation is usually

applied at the vertex level, and the generated value is interpolated between other vertices, and

passed to the fragment level.

3.9 Depth map test

Once the light-space coordinates are found, the x and y values usually correspond to a location in

the depth map texture, and the z value corresponds to its associated depth, which can now be

tested against the depth map. If the z value is greater than the value stored in the depth map at the

appropriate (x,y) location, the object is considered to be behind an occluding object, and should

be marked as a failure, to be drawn in shadow by the drawing process. Otherwise it should be

drawn lit. If the (x,y) location falls outside the depth map, the programmer must either decide

that the surface should be lit or shadowed by default (usually lit).

In a shader implementation, this test would be done at the fragment level. Also, care needs to be

taken when selecting the type of texture map storage to be used by the hardware: if interpolation

cannot be done, the shadow will appear to have a sharp jagged edge (an effect that can be

reduced with greater shadow map resolution).It is possible to modify the depth map test to

produce shadows with a soft edge by using a range of values (based on the proximity to the edge

of the shadow) rather than simply pass or fail.

The shadow mapping technique can also be modified to draw a texture onto the lit regions,

simulating the effect of a projector. The picture above, captioned "visualization of the depth map

projected onto the scene" is an example of such a process.

3.10 Drawing the scene

Drawing the scene with shadows can be done in several different ways. If programmable shaders

are available, the depth map test may be performed by a fragment shader which simply draws the

object in shadow or lighted depending on the result, drawing the scene in a single pass (after an

initial earlier pass to generate the shadow map).

If shaders are not available, performing the depth map test must usually be implemented by some

hardware extension (such as GL_ARB_shadow), which usually do not allow a choice between

two lighting models (lighted and shadowed), and necessitate more rendering passes:

Render the entire scene in shadow. For the most common lighting models, this should technically

be done using only the ambient component of the light, but this is usually adjusted to also

include a dim diffuse light to prevent curved surfaces from appearing flat in shadow. Enable the

72

depth map test, and render the scene lit. Areas where the depth map test fails will not be

overwritten, and remain shadowed.

An additional pass may be used for each additional light, using additive blending to combine

their effect with the lights already drawn. (Each of these passes requires an additional previous

pass to generate the associated shadow map.)

4.0 Conclusion

Environment mapping is a scheme that improves on the mapping techniques of chrome and

refraction mapping. In all environment mapping techniques, the accuracy depends on the object

being positioned in the center of the surface and that objects in the environment are distant from

the objects receiving the environment map

5.0 Summary

There are three mapping techniques: texture, environment and bump mapping. Texture mapping

is a method of adding detailed colour to a computer-generated graphic. Bump mapping is a

technique in computer graphics for simulating bumps and wrinkles on the surface of an object.

Multi-texturing is the use of more than one texture at a time on a shape

6.0 Tutor Marked Assignment

1. What do you understand by texture mapping?

2. Identify application areas of texture mapping.

3. In what scenario is environmental mapping applicable?

4. Iterate factors affecting environmental mapping

5. What is multi-texturing?

6. Explain shadow mapping.

7. Compare bum mapping to a displacement mapping

7.0 References/Further Reading

1. Ed Angel (1991) Interactive Computer Graphics- A Top-Down Approach with OpenGL,

Fifth Edition, Addison-Wesley 2009 ISBN 0-321-53586-3

2. Donald Hearn and M. Pauline Baker (1997) Computer Graphics, C Version (2nd

Edition), Prentice Hall, 1997, ISBN: 0135309247

3. Paul Rademacher (1997) Graphics for the Masses

4. High resolution textures resource366

5. http://www.cs.unc.edu/~rademach/xroads-RT/RTarticle.html

6. http://www.mayang.com/textures/

http://en.wikipedia.org/wiki/Computer_graphics

73

7. Blinn, James F. "Simulation of Wrinkled Surfaces", Computer Graphics, Vol. 12 (3), pp.

286-292 SIGGRAPH-ACM (August 1978)

MODULE 3 – Hierarchical Modeling and Animation

UNIT 1: Modeling, Hierarchies and scene graphs

Contents Pages

1.0 Introduction…………………………...……………………...…………………………72

2.0 Objectives…………………………………………………….…………………………72

3.0 Main Content………………………………………………………………....………....72

 3.1 Hierarchical models…….……….………………………………………………72

3.2 A robot arm………………………………………………………………….…...…...75

3.3 Trees and transversal…………………………………………………………………...76

3.4 Scene graphs……………………………………………………...…...………....77

4.0 Conclusion……………………………………………………………………………….80

5.0 Summary…………………………………………………………………………………80

6.0 Tutor Marked Assignment…………………………………………………………….....80

7.0 References/Further

Reading…………………………………………………………………….……81

74

1.0 Introduction

Models are abstractions of the world—both of the real world in which we live and of virtual

worlds that is created with computers. In computer science, abstract data types are used to model

organizations of objects; in computer graphics, worlds are modelled with geometric objects. We

go through analogous processes in computer graphics, choosing which primitives to use in our

models and how to show relationships among them. Often, as is true of choosing a mathematical

model, there are multiple approaches, so we seek models that can take advantage of the

capabilities of graphics systems discussed in this unit.

In this unit we will explore multiple approaches to developing and working with models of

geometric objects. We consider models that use as building blocks a set of simple geometric

objects: either the primitives supported by our graphics systems or a set of user-defined objects

built from these primitives. We extend the use of transformations to include hierarchical

relationships among the objects. The techniques are appropriate for applications, such as robotics

and figure animation, where the dynamic behavior of the objects is characterized by relationships

among the parts of the model. The notion of hierarchy is a powerful one and is an integral part of

object oriented methodologies. We extend our hierarchical models of objects to hierarchical

models of whole scenes, including cameras, lights, and material properties. Such models allow

us to extend our graphics APIs to more object-oriented systems and also give us insight into

using graphics over networks and distributed environments, such as the World Wide Web.

2.0 Objectives

On completing this unit, you would be able to:

75

1. Understand the hierarchical models

2. Understand the application hierarchical animations.

3. Understand the scene graphs and Scene trees.

3.0 Main Content

3.1 Hierarchical Models

Suppose that we wish to build a model of an automobile that we can animate. The model can

compose from five parts—the chassis and the four wheels — each of which can be described by

using our standard graphics primitives. Two frames of a simple animation of the model are

shown in Figure 3.1(a).

Figure 3.1(a): Simple Animation Model. (Ed Angel, 1991)

A program could be writen to generate this animation by noting that if each wheel has a radius r,

then a 360-degree rotation of a wheel must correspond to the car moving forward (or backward)

a distance of 2πr. The program could then contain one function to generate each wheel and

another to generate the chassis. All these functions could use the same input, such as the desired

speed and direction of the automobile. The pseudo-code is presented as follows:

{

float s; /* speed */

float d[3]; /* direction */

float t; /* time */

/* determine speed and direction at time t*/

draw_right_front_wheel(s,d);

draw_left_front_wheel(s,d);

draw_right_rear_wheel(s,d);

draw_left_rear_wheel(s,d);

draw_chassis(s,d);

}

It is linear and shows none of the relationships among the components of the automobile. There

are two types of relationships that would be exploited. First, the movement of the car cannot be

separate from the movement of the wheels. If the car moves forward, the wheels must turn.

Secondly, the fact that all the wheels of the automobile are identical is considered; they are

76

merely located in different places, with different orientations. The relationship can represented

among parts of the models, both abstractly and visually, with graphs.

Mathematically, a graph consists of a set of nodes (or vertices) and a set of edges. Edges

connect pairs of nodes or possibly connect a node to itself. Edges can have a direction associated

with them; the graphs we use here are all directed graphs, which are graphs that have their

edges leaving one node and entering another.

Figure 3.1 (b): Tree structure for an automobile. Fig 3.1(c): DAC model for and automobile

(Ed Angel, 1991)

The most important type of graph that can be used is a tree. A (connected) tree is a directed

graph without closed paths or loops. In addition, each node but one—the root node—has one

edge entering it. Thus, every node except the root has a parent node, the node from which an

edge enters, and can have one or more child nodes, nodes to which edges are connected. A node

without children is called a terminal node, or leaf. Figure 3.1(b) shows a tree that represents the

relationships in our car model. The chassis is the root node, and all four wheels are its children.

Although the mathematical graph is a collection of set elements, in practice, both the edges and

nodes can contain additional information. For the car example, each node can contain

information defining the geometric objects associated with it. The information about the location

and orientation of the wheels can be stored either in their nodes or in the edges connecting them

with their parent.

In most cars the four wheels are identical, so storing the same information on how to draw each

one at four nodes is inefficient. One can use the ideas behind the instance transformation to allow

us to use a single prototype wheel in the model. If that is done, the tree structure can be replaced

by the directed acyclic graph (DAG) in Figure 3.1(c). In a DAG, although there are loops, we

cannot follow directed edges around any loop. Thus, if we follow any path of directed edges

from a node, the path terminates at another node, and in practice, working with DAGs is no more

difficult than working with trees. For our car, we can store the information that positions each

77

instance of the single prototype wheel in the chassis node, in the wheel node, or with the edges.

Both forms—trees and DAGs—are hierarchical methods of expressing the relationships in the

physical model. In each form, various elements of a model can be related to other parts—their

parents and their children. We will explore how to express these hierarchies in a graphics

program

Advantages of Hierarchies

1. Reasonable control knobs

2. Maintains structural constraints

Disadvantages of Hierarchies

1. Hierarchies does not always give the ―right‖ control knobs trivially e.g. hand or foot

position – Re-rooting may help

2. Hierarchical methods can‘t do closed kinematic chains easily (keep hand on hip)

3. Missing other constraints: do not walk through walls

Hierarchies are a vital tool for modelling and animation

.

3.2 A Robot ARM

Robotics provides many opportunities for developing hierarchical models. Consider the simple

robot arm illustrated in Figure 3.1d(a). It can be modelled with three simple objects, or symbols,

perhaps using only two parallelepipeds and a cylinder. Each of the symbols can be built up from

our basic primitives.

FIGURE 3.1(d) Robot arm. (a) Total model. (b) Components. FIGURE 3.1(e) Movement of

robot components and frames.

The robot arm consists of the three parts shown in Figure 3.1d(b). The mechanism has three

degrees of freedom, two of which can be described by joint angles between components and the

third by the angle the base makes with respect to a fixed point on the ground. In our model, each

joint angle determines how to position a component with respect to the component to which it is

78

attached, or in the case of the base, the joint angle positions it relative to the surrounding

environment. Each joint angle is measured in each component‘s own frame. We can rotate the

base about its vertical axis by an angle θ. This angle is measured from the x-axis to some fixed

point on the bottom of the base. The lower arm of the robot is attached to the base by a joint that

allows the arm to rotate in the plane z = 0 in the arm‘s frame. This rotation is specified by an

angle φ that is measured from the x-axis to the arm. The upper arm is attached to the lower arm

by a similar joint, and it can rotate by an angle ψ, measured like that for the lower arm, in its own

frame. As the angles vary, we can think of the frames of the upper and lower arms as moving

relative to the base. By controlling the three angles, we can position the tip of the upper arm in

three dimensions.

Suppose a program is to be written so as to render the simple robot model. Rather than

specifying each part of the robot and its motion independently, we take an incremental approach.

The base of the robot can rotate about the y-axis in its frame by the angle θ. Thus, we can

describe the motion of any point p on the base by applying a rotation matrix Ry(θ) to it. The

lower arm is rotated about the z-axis in its own frame, but this frame must be shifted to the top of

the base by a translation matrix T(0, h1, 0), where h1 is the height above the base to the point

where the joint between the base and the lower arm is located. However, if the base has rotated,

then we must also rotate the lower arm, using Ry(θ). We can accomplish the positioning of the

lower arm by applying Ry(θ)T(0, h1, 0)Rz(φ) to the arm‘s vertices. We can interpret the matrix

Ry(θ)T(0, h1, 0) as the matrix that positions the lower arm relative to the object or world frame

and Rz(φ) as the matrix that positions the lower arm relative to the base. Equivalently, we can

interpret these matrices as positioning the frames of the lower arm and base relative to some

world frame, as shown in Figure 3.1(e)

3.3 Trees and Traversal

Figure 3.1(f) shows a boxlike representation of a humanoid that might be used for a robot model

or in a virtual reality application. If the torso is taken as the root element, one can represent this

figure with the tree shown in Figure 3.1(g). Once we the torso have been positioned, the position

and orientation of the other parts of the model are determined by the set of joint angles. We can

animate the figure by defining the motion of its joints. In a basic model, the knee and elbow

joints might each have only a single degree of freedom, like the robot arm, whereas the joint at

the neck might have two or three degrees of freedom.

79

FIGURE 3.1(f) A humanoid figure FIGURE 3.1(g) Tree representation of Figure 5.1

(Ed Angel, 1991)

Let‘s assume that we have functions, such as head and left_upper_arm that draw the individual

parts (symbols) in their own frames. We can now build a set of nodes for our tree by defining

matrices that position each part relative to its parent, exactly as we did for the robot arm. If we

assume that each body part has been defined at the desired size, each of these matrices is the

concatenation of a translation matrix with a rotation matrix. We can show these matrices, as we

do in Figure 3.1(h), by using the matrices to label the edges of the tree. Remember that each

matrix represents the incremental change when we go from the parent to the child.

The interesting part of this example is how we do the traversal of the tree to draw the figure. In

principle, we could use any tree-traversal algorithm, such as a depth-first or breadth-first search.

Although in many applications it is insignificant which traversal algorithm is used, we will see

that there are good reasons for always using the same algorithm for traversing our graphs. We

will always traverse our trees left to right, depth first. That is, we start with the left branch,

follow it to the left as deep as we can go, then go back up to the first right branch, and proceed

recursively. This order of traversal is called a pre-order traversal.

We can write a tree-traversal function in one of two ways. We can do the traversal explicitly in

the application code, using stacks to store the required matrices and attributes as we move

through the tree. We can also do the traversal recursively. In this second approach, the code is

simpler because the storage of matrices and attributes is done implicitly. We develop both

approaches because both are useful and because their development yields further insights into

how we can build graphics systems.

80

FIGURE 3.1(h) Tree with matrices. (Ed Angel, 1991)

3.4 Scene Graphs

If we think about what goes into describing a scene, we can see that in addition to our graphical

primitives and geometric objects derived from these primitives, we have other objects, such as

lights and a camera. These objects may also be defined by vertices and vectors and may have

attributes, such as colour, that are similar to the attributes associated with geometric primitives. It

is the totality of these objects that describes a scene, and there may be hierarchical relationships

among these objects. For example, when a primitive is defined in a program, the camera

parameters that exist at that time are used to form the image. If we alter the camera lens between

the definitions of two geometric objects, we may produce an image in which each object is

viewed differently. Although we cannot create such an image with a real camera, the example

points out the power of our graphics systems.

The use of tree data structures can be extended to describe these relationships among geometric

objects, cameras, lights, and attributes. Knowing that one can write a graphical application

program to traverse a graph, we can expand our notion of the contents of a graph to describe an

entire scene. One possibility is to use a tree data structure and to include various attributes at

each node—in addition to the instance matrix and a pointer to the drawing function.

Another possibility is to allow new types of nodes, such as attribute-definition nodes and matrix-

transformation nodes. Consider the tree in Figure 3.1(i). Here, we have set up individual nodes

for the colours and for the model-view matrices. The place where there are branches at the top

81

can be considered a special type of node, a group node whose function is to isolate the two

children.

FIGURE 3.1(i) Scene tree. (Ed Angel, 1991)

The group node allows us to preserve the state that exists at the time that we enter a node and

thus isolates the state of the subtree beginning at a group node from the rest of the tree. Using our

preorder traversal algorithm, the corresponding application code is of the following form:

pushAttrib

pushMatrix

colour

translate

rotate

object1

translate

object2

popMatrix

pushMatrix

translate

rotate

object3

popMatrix

popAttrib

The group nodes correspond to the OpenGL push and pop functions. This code preserves and

restores both the attributes and the model-view matrix before exiting. It sets a drawing colour

that applies to the rest of the tree and traverses the tree in a manner similar to the figure example.

82

We can go further and note that we can use the attribute and matrix stacks to store the viewing

conditions; thus, we can create a camera node in the tree. Although we probably do not want a

scene in which individual objects are viewed with different cameras, we may want to view the

same set of objects with multiple cameras, producing, for example, the multiview orthographic

projections and isometric view that are used by architects and engineers. Such images can be

created with a scene graph that has multiple cameras.

The scene graph we have just described is equivalent to an OpenGL program in the sense that we

can use the tree to generate the program in a totally mechanical fashion. This approach was taken

by Open Inventor and later by Open Scene Graph (OSG), both object-oriented APIs that were

built on top of OpenGL. Open Inventor and OSG programs build, manipulate, and render a scene

graph. Execution of a program causes traversal of the scene graph, which in turn executes

graphics functions that are implemented in OpenGL.

The notion of scene graphs couples nicely with the object-oriented paradigm. We can regard all

primitives, attributes, and transformations as software objects, and we can define classes to

manipulate these entities. From this perspective, we can make use of concepts such as data

encapsulation to build up scenes of great complexity with simple programs that use predefined

software objects. We can even support animations through software objects that appear as nodes

in the scene graph but cause parameters to change and the scene to be redisplayed.

Although, in Open Inventor, the software objects are rendered using OpenGL, the scene graph

itself is a database that includes all the elements of the scene. OpenGL is the rendering engine

that allows the database to be converted to an image, but it is not used in the specification of the

scene. Game engines employ a similar strategy in which the game play modifies a scene graph

that can be traversed and rendered at an interactive rate. Graphics software systems are evolving

to the configuration shown in Figure 3.1(j). OpenGL is the rendering engine. It usually sits on

top of another layer known as the hardware abstraction layer (HAL), which is a virtual

machine that communicates with the physical hardware. Above OpenGL is an object-oriented

layer that supports scene graphs and a storage mechanism. User programs can be written for any

of the layers, depending on what facilities are required by the application.

83

FIGURE 3.1(j) Modern graphics architecture. (Ed Angel, 1991)

4.0 Conclusion

The notion of hierarchy is a powerful one and is an integral part of object oriented

methodologies.

5.0 Summary

Models are abstractions of the world; both of the real world in which we live and of virtual

worlds that we create with computers. Its application is found in the field of robotics and figure

animation where the dynamic behavior of the objects is characterized by relationships among the

parts of the model.

6.0 Tutor Marked Assignment

1. What do you understand by hierarchical models?

2. State the advantages and disadvantages of hierarchies.

3. Explain its use in the field or robotics.

4. What are scene graphs?

5. Identify its application areas.

7.0 References/Further Reading

1. Ed Angel (1991) Interactive Computer Graphics- A Top-Down Approach with OpenGL,

Fifth Edition, Addison-Wesley 2009 ISBN 0-321-53586-3

2. Donald Hearn and M. Pauline Baker (1997) Computer Graphics, C Version (2nd

Edition), Prentice Hall, 1997, ISBN: 0135309247

3. Leler, Wm and Merry, Jim (1996) 3D with HOOPS, Addison-Wesley

ISBN-13:978-0201870251

4. Wernecke, Josie (1994) The Inventor Mentor: Programming Object-Oriented 3D

Graphics with Open Inventor, Addison-Wesley, ISBN 0-201-62495-8 (Release 2)

84

MODULE 3 – Hierarchical Modeling and Animation

UNIT 2: Animation

Contents Pages

1.0 Introduction ………………………….……………………………………………….83

2.0 Objectives……………………………………………………………………………..83

3.0 Main Content………………………………………………………………....……….83

 3.1 Traditional animation…….………..…………………………………………..83

85

3.2 Stop animation……….………………………………………………………..88

3.3 Computer animation……………………………………...……………………89

4.0 Conclusion…………………………………………………………………………………...90

5.0 Summary……………………………………………………………………………….90

6.0 Tutor Marked Assignment……………………………………………………………..90

7.0 References/Further

Reading…………………………………………………………………….….90

1.0 Introduction

Animation is the rapid display of a sequence of images of 2-D or 3-D artwork or model

positions in order to create an illusion of movement. The effect is an optical illusion of motion

due to the phenomenon of persistence of vision, and can be created and demonstrated in several

ways. The most common method of presenting animation is as a motion picture or video

2.0 Objectives

On completing this unit, you would be able to:

1. Understand Animation Techniques; cel, stop animations.

http://en.wikipedia.org/wiki/Illusion
http://en.wikipedia.org/wiki/Optical_illusion
http://en.wikipedia.org/wiki/Motion_%28physics%29
http://en.wikipedia.org/wiki/Persistence_of_vision

86

2. Understand the processes flow of traditional animation.

3. Differentiate between 2D and 3D animations.

3.0 Main Content

3.1 Traditional animation

Traditional animation (also called cel animation or hand-drawn animation) was the process used

for most animated films of the 20th century. Traditional animation is an animation technique

where each frame is drawn by hand. The technique was the dominant form of animation in

cinema until the advent of computer animation. The individual frames of a traditionally animated

film are photographs of drawings, which are first drawn on paper. To create the illusion of

movement, each drawing differs slightly from the one before it. The animators' drawings are

traced or photocopied onto transparent acetate sheets called cels, which are filled in with paints

in assigned colours or tones on the side opposite the line drawings. The completed character cels

are photographed one-by-one onto motion picture film against a painted background by a

rostrum camera.

3.1.1 Processes of Traditional Animations

1. Storyboards

Traditionally-animated productions, just like other forms of animation, usually begin life as a

storyboard, which is a script of sorts written with images as well as words, similar to a giant

comic strip. The images allow the animation team to plan the flow of the plot and the

composition of the imagery. The storyboard artists will have regular meetings with the

director, and may have to redraw or "re-board" a sequence many times before it meets final

approval.

2. Voice recording

Before true animation begins, a preliminary soundtrack or "scratch track" is recorded, so that

the animation may be more precisely synchronized to the soundtrack. Given the slow,

methodical manner in which traditional animation is produced, it is almost always easier to

synchronize animation to a pre-existing soundtrack than it is to synchronize a soundtrack to

pre-existing animation. A completed cartoon soundtrack will feature music, sound effects,

and dialogue performed by voice actors. However, the scratch track used during animation

typically contains only the voices; any vocal songs the characters must sing along to, and

87

temporary musical score tracks; the final score and sound effects are added in post-

production.

3. Animatic

Often, an animatic or story reel is made after the soundtrack is created, but before full

animation begins. An animatic typically consists of pictures of the storyboard synchronized

with the soundtrack. This allows the animators and directors to work out any script and

timing issues that may exist with the current storyboard. The storyboard and soundtrack are

amended if necessary, and a new animatic may be created and reviewed with the director

until the storyboard is perfected. Editing the film at the animatic stage prevents the animation

of scenes that would be edited out of the film since traditional animation is a very expensive

and time-consuming process, creating scenes that will eventually be edited out of the

completed cartoon is strictly avoided.

4. Design and timing

Once the animatic has been approved, it and the storyboards are sent to the design

departments. Character designers prepare model sheets for all important characters and props

in the film. These model sheets will show how a character or object looks from a variety of

angles with a variety of poses and expressions, so that all artists working on the project can

deliver consistent work. Sometimes, small statues known as maquettes may be produced, so

that an animator can see what a character looks like in three dimensions. At the same time,

the background stylists will do similar work for the settings and locations in the project, and

the art directors and colour stylists will determine the art style and colour schemes to be used.

While design is going on, the timing director (who in many cases will be the main director)

takes the animatic and analyzes exactly what poses, drawings, and lip movements will be

needed on what frames. An exposure sheet (or X-sheet for short) is created; this is a printed

table that breaks down the action, dialogue, and sound frame-by-frame as a guide for the

animators. If a film is based more strongly in music, a bar sheet may be prepared in addition

to or instead of an X-sheet. Bar sheets show the relationship between the on-screen action,

the dialogue, and the actual musical notation used in the score.

5. Layout

Layout begins after the designs are completed and approved by the director. The layout

process is the same as the blocking out of shots by a cinematographer on a live-action film. It

is here that the background layout artists determine the camera angles, camera paths, lighting,

and shading of the scene. Character layout artists will determine the major poses for the

characters in the scene, and will make a drawing to indicate each pose. For short films,

character layouts are often the responsibility of the director. The layout drawings and

storyboards are then spliced, along with the audio and an animatic is formed (not to be

88

confused by its predecessor the leica reel). The term "animatic" was originally coined by

Disney animation studios.

6. Animation

Once the animatic is finally approved by the director, animation begins. In the traditional

animation process, animators will begin by drawing sequences of animation on sheets of

transparent paper perforated to fit the peg bars in their desks, often using coloured pencils,

one picture or "frame" at a time. A peg bar is an animation tool that is used in traditional (cel)

animation to keep the drawings in place. The pins in the peg bar match the holes in the paper.

It is attached to the animation desk or light table depending on which is being used. A key

animator or lead animator will draw the key drawings in a scene, using the character layouts

as a guide. The key animator draws enough of the frames to get across the major points of the

action; in a sequence of a character jumping across a gap, the key animator may draw a frame

of the character as he is about to leap, two or more frames as the character is flying through

the air, and the frame for the character landing on the other side of the gap.

Timing is important for the animators drawing these frames; each frame must match exactly

what is going on in the soundtrack at the moment the frame will appear, or else the

discrepancy between sound and visual will be distracting to the audience. For example, in

high-budget productions, extensive effort is given in making sure a speaking character's

mouth matches in shape the sound that character's actor is producing as he or she speaks.

While working on a scene, a key animator will usually prepare a pencil test of the scene. A

pencil test is a preliminary version of the final animated scene; the pencil drawings are

quickly photographed or scanned and synced with the necessary soundtracks. This allows the

animation to be reviewed and improved upon before passing the work on to his assistant

animators, who will go add details and some of the missing frames in the scene. The work of

the assistant animators is reviewed, pencil-tested, and corrected until the lead animator is

ready to meet with the director and have his scene sweatboxed, or reviewed by the director,

producer, and other key creative team members. Similar to the storyboarding stage, an

animator may be required to re-do a scene many times before the director will approve it.

This process is the same for both character animation and special effects animation, which on

most high-budget productions are done in separate departments. Effects animators animate

anything that moves and is not a character, including props, vehicles, machinery and

phenomena such as fire, rain, and explosions. Sometimes, instead of drawings, a number of

special processes are used to produce special effects in animated films; rain, for example, has

been created in Disney animated films since the late-1930s by filming slow-motion footage

of water in front of a black background, with the resulting film superimposed over the

animation.

7. Pencil test

89

After all the drawings are cleaned-up, they are then photographed on an animation camera,

usually on black and white film stock. Nowadays, pencil tests can be made using a video

camera, and computer software.

8. Backgrounds

While the animation is being done, the background artists will paint the sets over which the

action of each animated sequence will take place. These backgrounds are generally done in

gouache or acrylic paint, although some animated productions have used backgrounds done

in watercolour, oil paint, or even crayon. Background artists follow very closely the work of

the background layout artists and colour stylists (which is usually compiled into a workbook

for their use), so that the resulting backgrounds are harmonious in tone with the character

designs.

9. Traditional ink-and-paint and camera

Once the clean-ups and in between drawings for a sequence are completed, they are prepared

for photography, a process known as ink-and-paint. Each drawing is then transferred from

paper to a thin, clear sheet of plastic called a cel, a contraction of the material name celluloid

(the original flammable cellulose nitrate was later replaced with the more stable cellulose

acetate). The outline of the drawing is inked or photocopied onto the cel, and gouache or a

similar type of paint is used on the reverse sides of the cels to add colours in the appropriate

shades. In many cases, characters will have more than one colour palette assigned to them;

the usage of each one depends upon the mood and lighting of each scene. The transparent

quality of the cel allows for each character or object in a frame to be animated on different

cels, as the cel of one character can be seen underneath the cel of another; and the opaque

background will be seen beneath all of the cels.

When an entire sequence has been transferred to cels, the photography process begins. Each

cel involved in a frame of a sequence is laid on top of each other, with the background at the

bottom of the stack. A piece of glass is lowered onto the artwork in order to flatten any

irregularities, and the composite image is then photographed by a special animation camera,

also called rostrum camera. The cels are removed, and the process repeats for the next frame

until each frame in the sequence has been photographed. Each cel has small registration holes

along the top or bottom edge of the cel, which allow the cel to be placed on corresponding

peg bars before the camera to ensure that each cel aligns with the one before it; if the cels are

not aligned in such a manner, the animation, when played at full speed, will appear "jittery."

Sometimes, frames may need to be photographed more than once, in order to implement

superimpositions and other camera effects.

10. Digital ink and paint

90

The current process, termed "digital ink and paint," is the same as traditional ink and paint

until after the animation drawings are completed; instead of being transferred to cels, the

animators' drawings are scanned into a computer, where they are coloured and processed

using one or more of a variety of software packages. The resulting drawings are composited

in the computer over their respective backgrounds, which have also been scanned into the

computer (if not digitally painted), and the computer outputs the final film by either

exporting a digital video file, using a video cassette recorder, or printing to film using a high-

resolution output device. Use of computers allows for easier exchange of artwork between

departments, studios, and even countries and continents.

11. Computers and digital video cameras

Computers and digital video cameras can also be used as tools in traditional cel animation

without affecting the film directly, assisting the animators in their work and making the

whole process faster and easier. Doing the layouts on a computer is much more effective than

doing it by traditional methods. Additionally, video cameras give the opportunity to see a

"preview" of the scenes and how they will look when finished, enabling the animators to

correct and improve upon them without having to complete them first. This can be

considered a digital form of pencil testing.

3.1.2 Types of Traditional Animation

Full animation refers to the process of producing high-quality traditionally animated films,

which regularly use detailed drawings and plausible movement. Fully animated films can be

done in a variety of styles, from more realistically animated works.

1. Limited animation involves the use of less detailed and/or more stylized drawings and

methods of movement. Pioneered by the artists at the American studio United Productions of

America, limited animation can be used as a method of stylized artistic expression.

2. Rotoscoping is a technique, patented by Max Fleischer in 1917, where animators trace live-

action movement, frame by frame. The source film can be directly copied from actors'

outlines into animated drawings.

3. Live-action/animation is a technique, when combining hand-drawn characters into live

action shots. One of the earlier uses of it was Koko the Clown when Koko was drawn over

live action footage.

3.2 Stop motion

Stop-motion animation is used to describe animation created by physically manipulating real-

world objects and photographing them one frame of film at a time to create the illusion of

movement. Computer software is widely available to create this type of animation. There are

http://en.wikipedia.org/wiki/Limited_animation
http://en.wikipedia.org/wiki/United_Productions_of_America
http://en.wikipedia.org/wiki/United_Productions_of_America
http://en.wikipedia.org/wiki/Rotoscoping
http://en.wikipedia.org/wiki/Max_Fleischer
http://en.wikipedia.org/wiki/Frame_%28film%29
http://en.wikipedia.org/wiki/Films_with_live_action_and_animation
http://en.wikipedia.org/wiki/Koko_the_Clown

91

many different types of stop-motion animation, usually named after the type of media used to

create the animation. Examples are:

1. Puppet animation typically involves stop-motion puppet figures interacting with each

other in a constructed environment, in contrast to the real-world interaction in model

animation. The puppets generally have an armature inside of them to keep them still and

steady as well as constraining them to move at particular joints.

2. Puppetoon, created using techniques developed by George Pal, are puppet-animated

films which typically use a different version of a puppet for different frames, rather than

simply manipulating one existing puppet.

3. Clay animation, or Plasticine animation often abbreviated as claymation, uses figures

made of clay or a similar malleable material to create stop-motion animation. The

figures may have an armature or wire frame inside of them, similar to the related puppet

animation (below), that can be manipulated in order to pose the figures. Alternatively,

the figures may be made entirely of clay, such as in the films of Bruce Bickford, where

clay creatures morph into a variety of different shapes.

4. Cutout animation is a type of stop-motion animation produced by moving 2-

dimensional

5. Silhouette animation is a variant of cutout animation in which the characters are backlit

and only visible as silhouettes

6. Model animation refers to stop-motion animation created to interact with and exist as a

part of a live-action world. Intercutting, matte effects, and split screens are often

employed to blend stop-motion characters or objects with live actors and settings.

7. Go motion is a variant of model animation which uses various techniques to create

motion blur between frames of film, which is not present in traditional stop-motion.

8. Object animation refers to the use of regular inanimate objects in stop-motion

animation, as opposed to specially created items.

9. Graphic animation uses non-drawn flat visual graphic material (photographs,

newspaper clippings, magazines, etc.) which are sometimes manipulated frame-by-frame

to create movement. At other times, the graphics remain stationary, while the stop-

motion camera is moved to create on-screen action.

10. Pixilation involves the use of live humans as stop motion characters. This allows for a

number of surreal effects, including disappearances and reappearances, allowing people

to appear to slide across the ground, and other such effects.

3.3 Computer animation

Computer animation is the process used for generating animated images by using computer

graphics. Modern computer animation usually uses three-dimensional (3D) computer graphics,

although two-dimensional (2D) computer graphics are still used for stylistic, low bandwidth, and

http://en.wikipedia.org/wiki/Puppet_animation
http://en.wikipedia.org/wiki/Armature
http://en.wikipedia.org/wiki/Puppetoon
http://en.wikipedia.org/wiki/George_Pal
http://en.wikipedia.org/wiki/Clay_animation
http://en.wikipedia.org/wiki/Armature
http://en.wikipedia.org/wiki/Bruce_Bickford_%28animator%29
http://en.wikipedia.org/wiki/Cutout_animation
http://en.wikipedia.org/wiki/Silhouette_animation
http://en.wikipedia.org/wiki/Model_animation
http://en.wikipedia.org/wiki/Matte
http://en.wikipedia.org/wiki/Go_motion
http://en.wikipedia.org/wiki/Motion_blur
http://en.wikipedia.org/wiki/Object_animation
http://en.wikipedia.org/wiki/Graphic_animation
http://en.wikipedia.org/wiki/Pixilation

92

faster real-time renderings. Sometimes the target of the animation is the computer itself, but

sometimes the target is another medium, such as film.

Computer animation is essentially a digital successor to the stop motion techniques used in

traditional animation with 3D models and frame-by-frame animation of 2D illustrations.

Computer generated animations are more controllable than other more physically based

processes, such as constructing miniatures for effects shots or hiring extras for crowd scenes, and

because it allows the creation of images that would not be feasible using any other technology. It

can also allow a single graphic artist to produce such content without the use of actors, expensive

set pieces, or props.

To create the illusion of movement, an image is displayed on the computer screen and repeatedly

replaced by a new image that is similar to it, but advanced slightly in the time domain (usually at

a rate of 24 or 30 frames/second). This technique is identical to how the illusion of movement is

achieved with television and motion pictures.

3.3.1 2D animation

2D animation figures are created and/or edited on the computer using 2D bitmap graphics or

created and edited using 2D vector graphics. This includes automated computerized versions of

traditional animation techniques such as, interpolated morphing, onion skinning and interpolated

rotoscoping. 2D animation has many applications, including analog computer animation, Flash

animation and PowerPoint animation. Cinemagraphs are still photographs in the form of an

animated GIF file of which part is animated.

3.3.2 3D animation

3D animation is digitally modeled and manipulated by an animator. In order to manipulate a

mesh, it is given a digital skeletal structure that can be used to control the mesh. This process is

called rigging. Various other techniques can be applied, such as mathematical functions (ex.

gravity, particle simulations), simulated fur or hair, effects such as fire and water and the use of

motion capture to name but a few. These techniques fall under the category of 3D dynamics.

Well-made 3D animations can be difficult to distinguish from live action and are commonly used

as visual effects for recent movies.

4.0 Conclusion

One open challenge in computer animation is a photorealistic animation of humans. Currently,

most computer-animated movies show animal characters, fantasy characters machines or

cartoon-like humans. The movie is often cited as the first computer-generated movie to attempt

to show realistic-looking humans.

5.0 Summary

http://en.wikipedia.org/wiki/2D_computer_graphics
http://en.wikipedia.org/wiki/Bitmap_graphics
http://en.wikipedia.org/wiki/Vector_graphics
http://en.wikipedia.org/wiki/Interpolated
http://en.wikipedia.org/wiki/Morphing
http://en.wikipedia.org/wiki/Onion_skinning
http://en.wikipedia.org/wiki/Interpolated
http://en.wikipedia.org/wiki/Scanimate
http://en.wikipedia.org/wiki/Flash_animation
http://en.wikipedia.org/wiki/Flash_animation
http://en.wikipedia.org/wiki/PowerPoint_animation
http://en.wikipedia.org/wiki/Cinemagraph
http://en.wikipedia.org/wiki/Still_photograph
http://en.wikipedia.org/wiki/Animated_GIF
http://en.wikipedia.org/wiki/3D_animation
http://en.wikipedia.org/wiki/Motion_capture
http://en.wikipedia.org/wiki/3D_computer_graphics
http://en.wikipedia.org/wiki/Animations
http://en.wikipedia.org/wiki/Visual_effects

93

In this unit, we have surveyed computer animation and its application areas. Animation is the

rapid display of a sequence of images of 2-D or 3-D artwork or model positions in order to create

an illusion of movement. Traditional animation was the process used for most animated films of

the 20th century. Stop-motion animation is used to describe animation created by physically

manipulating real-world objects and photographing them one frame of film at a time to create the

illusion of movement

6.0 Tutor Marked Assignment

1. What do you understand by Computer Animation?

2. Identify traditional animation processes.

3. Explain in details animation techniques.

7.0 References/Further Reading

1. Ed Angel (1991) Interactive Computer Graphics- A Top-Down Approach with OpenGL,

Fifth Edition, Addison-Wesley 2009 ISBN 0-321-53586-3

2. Donald Hearn and M. Pauline Baker (1997) Computer Graphics, C Version (2nd

Edition), Prentice Hall, 1997, ISBN: 0135309247

3. Culhane, Shamus (1990). Animation Script to Screen. St Martin‘s Griffin, 1990. ISBN-

13: 978-0312050528

4. Laybourne, Kit. The Animation Book. Three Rivers Press, 1998. ISBN-13:978-

0517886021

5. Ledoux, Trish, Ranney, Doug, & Patten, Fred (Ed.), Complete Anime Guide: Japanese

Animation Film Directory and Resource Guide, Tiger Mountain Press 1997

6. Lowe, Richard & Schnotz, Wolfgang (Eds) Learning with Animation. Research

implications for design Cambridge University Press, 2008. ISBN-13:978-0521851893.

MODULE 3 – Hierarchical Modeling and Animation

UNIT 3: Keyframing and Motion capture.

Contents Pages

1.0 Introduction……………………..…….………………………………………………..92

2.0 Objectives………………………………………………………………………………92

http://en.wikipedia.org/wiki/Illusion

94

3.0 Main Content………………………………………………………………....………...92

 3.1 Keyframing….………….………………………………………………………92

3.2 Practical applications…………………………………………………………....94

3.3 Motion capture…………………………….……………………………………94

3.4 Applications of motion capture…………………………………….…………...97

3.5 Methods and systems…………………………………………………………...97

3.6 Non-optical systems…………………………………………………………….100

4.0 Conclusion…………………………………………………………………………………….102

5.0 Summary………………………………………………………………………………..102

6.0 Tutor Marked Assignment……………………………………………………………...102

7.0 References/Further

Reading…………………………………………………………………….…..102

1.0 Introduction

Keyframing is the simplest form of animating an object. Based on the notion that an object has a

beginning state or condition, and will be changing over time in; position, form, colour,

luminosity, or any other property, to some different final form. Keyframing takes the stance that

we only need to show the "key" frames, or conditions, that describe the transformation of this

object, and that all other intermediate positions can be figured out from these.

95

The latter case also demonstrates that keyframing can effect more than simply an object's

position in 3D space. Virtually any property of an object can be keyed at a given condition, and

changed to a different through keyframing. Some (slightly) more robust examples of this might

be a door opening and closing or a shock absorber compressing and decompressing In the case of

the shock absorber, the spring is changing scale in the Z direction, compressing and expanding

itself. Beyond scaling, we can also change the shape of an object over time.

2.0 Objectives

On completing this unit, you would be able to:

1. Understand the key concepts of keyframing.

2. Understand the applications of keyframing and its advantages over other animation

techniques.

3. Understand the motion capture.

3.0 Main Content

3.1 Keyframing

Keyframing is an animation technique where motion curves are interpolated through states at

times, (~q1, ..., ~qT), called keyframes, specified by a user. A key frame is a drawing that defines

the starting and ending points of any smooth transition. They are called "frames" because their

position in time is measured in frames on a strip of film. A sequence of keyframes defines which

movement the viewer will see, whereas the position of the keyframes on the film, video or

animation defines the timing of the movement, only two or three keyframes over the span of a

second do not create the illusion of movement, the remaining frames are filled with in-betweens.

http://en.wikipedia.org/wiki/Dissolve_(filmmaking)
http://en.wikipedia.org/wiki/Film_frame
http://en.wikipedia.org/wiki/Film
http://en.wikipedia.org/wiki/Comic_timing
http://en.wikipedia.org/wiki/Tweening

96

Figure: Horse in motion (Muybridge, 1978)

Advantages of Keyframing

– Very expressive

– Animator has complete control over all motion parameters

Disadvantages of Keyframing

– Very labor intensive

– Difficult to create convincing physical realism

Potentially everything except complex physical phenomena such as smoke, water, or Fire

3.2 Practical Applications

A means to change parameters

In software packages that support animation, especially 3D graphics packages, there are many

parameters that can be changed for any one object. One example of such an object is a light. (In

3D graphics, lights function similarly to real-world lights: They cause illumination, cast

shadows, and create specular highlights.) Lights have many parameters including light intensity,

beam size, light colour, and the texture cast by the light. Supposing that an animator wants the

beam size of the light to change smoothly from one value to another within a predefined period

97

of time, that could be achieved by using keyframes. At the start of the animation, a beam size

value is set. Another value is set for the end of the animation. Thus, the software program

automatically interpolates the two values, creating a smooth transition.

Video editing

In non-linear digital video editing as well as in video compositing software, a key frame is a

frame used to indicate the beginning or end of a change made to the signal. For instance, a key

frame could be set to indicate the point at which audio will have faded up or down to a certain

level.

Video compression

In video compression, a keyframe, also known as an Intra Frame, is a frame in which a complete

image is stored in the data stream. In video compression, only changes that occur from one frame

to the next are stored in the data stream, in order to greatly reduce the amount of information that

must be stored. This technique capitalizes on the fact that most video sources (such as a typical

movie) have only small changes in the image from one frame to the next. Whenever a drastic

change to the image occurs, such as when switching from one camera shot to another, or at a

scene change, a keyframe must be created. The entire image for the frame must be output when

the visual difference between the two frames is so great that representing the new image

incrementally from the previous frame would be more complex and would require even more

bits than reproducing the whole image.

3.3 Motion capture

Motion capture, motion tracking, or mocap are terms used to describe the process of recording

movement and translating that movement on to a digital model. It is used in military,

entertainment, sports, and medical applications, and for validation of computer vision

and

robotics. In filmmaking, it refers to recording actions of human actors, and using that

information to animate digital character models in 2D or 3D computer animation. When it

includes face and fingers or captures subtle expressions, it is often referred to as performance

capture.

http://en.wikipedia.org/wiki/Non-linear_editing
http://en.wikipedia.org/wiki/Digital_video
http://en.wikipedia.org/wiki/Video_editing
http://en.wikipedia.org/wiki/Compositing
http://en.wikipedia.org/wiki/Video_compression
http://en.wikipedia.org/wiki/Motion_(physics)
http://en.wikipedia.org/wiki/Military_science
http://en.wikipedia.org/wiki/Filmmaking
http://en.wikipedia.org/wiki/Computer_animation

98

Figure 3.3(b): Motion capture of the animated movie ‗The Polar Express‘, Weta)

In motion capture sessions, movements of one or more actors are sampled many times per

second, although with most techniques (recent developments from Weta use images for 2D

motion capture and project into 3D), motion capture records only the movements of the actor,

not his or her visual appearance. This animation data is mapped to a 3D model so that the model

performs the same actions as the actor. This is comparable to the older technique of rotoscope,

such as the 1978 The Lord of the Rings animated film where the visual appearance of the motion

of an actor was filmed, then the film used as a guide for the frame-by-frame motion of a hand-

drawn animated character.

Camera movements can also be motion captured so that a virtual camera in the scene will pan,

tilt, or dolly around the stage driven by a camera operator while the actor is performing, and the

motion capture system can capture the camera and props as well as the actor's performance. This

allows the computer-generated characters, images and sets to have the same perspective as the

video images from the camera. A computer processes the data and displays the movements of the

actor, providing the desired camera positions in terms of objects in the set. Retroactively

obtaining camera movement data from the captured footage is known as match moving or

camera tracking.

In motion capture, an actor has a number of small, round markers attached to his or her body that

reflect light in frequency ranges that motion capture cameras are specifically designed to pick up.

With enough cameras, it is possible to reconstruct the position of the markers accurately in 3D.

In practice, this is a laborious process. Markers tend to be hidden from cameras and 3D

reconstructions fail, requiring a user to manually fix such drop outs. The resulting motion curves

are often noisy, requiring yet more effort to clean up the motion data to more accurately match

what an animator wants. Despite the labor involved, motion capture has become a popular

technique in the movie and game industries, as it allows fairly accurate animations to be created

http://en.wikipedia.org/wiki/Weta_Digital
http://en.wikipedia.org/wiki/Rotoscope
http://en.wikipedia.org/wiki/The_Lord_of_the_Rings_(1978_film)
http://en.wikipedia.org/wiki/Match_moving

99

from the motion of actors. However, this is limited by the density of markers that can be placed

on a single actor. Faces are still very difficult to convincingly reconstruct.

3.3.1 Advantages of Motion Capture

Motion capture offers several advantages over traditional computer animation of a 3D model:

1. More rapid, even real time results can be obtained. In entertainment applications this can

reduce the costs of keyframe-based animation. For example: Hand Over.

2. The amount of work does not vary with the complexity or length of the performance to

the same degree as when using traditional techniques. This allows many tests to be done

with different styles or deliveries.

3. Complex movement and realistic physical interactions such as secondary motions, weight

and exchange of forces can be easily recreated in a physically accurate manner.

4. The amount of animation data that can be produced within a given time is extremely

large when compared to traditional animation techniques. This contributes to both cost

effectiveness and meeting production deadlines.

5. Potential for free software and third party solutions reducing its costs.

3.3.2 Disadvantages of Motion Capture

1. Specific hardware and special programs are required to obtain and process the data.

2. The cost of the software, equipment and personnel required can potentially be prohibitive

for small productions.

3. The capture system may have specific requirements for the space it is operated in,

depending on camera field of view or magnetic distortion.

4. When problems occur, it is easier to reshoot the scene rather than trying to manipulate the

data. Only a few systems allow real time viewing of the data to decide if the take needs to

be redone.

5. The initial results are limited to what can be performed within the capture volume

without extra editing of the data.

6. Movement that does not follow the laws of physics generally cannot be captured.

7. Traditional animation techniques, such as added emphasis on anticipation and follow

through, secondary motion or manipulating the shape of the character, as with squash and

stretch animation techniques, must be added later.

8. If the computer model has different proportions from the capture subject, artifacts may

occur. For example, if a cartoon character has large, over-sized hands, these may intersect

the character's body if the human performer is not careful with their physical motion.

http://en.wikipedia.org/wiki/Computer_animation
http://en.wikipedia.org/wiki/Hand_Over
http://en.wikipedia.org/wiki/Squash_and_stretch
http://en.wikipedia.org/wiki/Squash_and_stretch

100

3.4 Applications of Motion Capture

1. Video games often use motion capture to animate athletes, martial artists, and other

in-game characters.

2. Movies use motion capture for CG effects, in some cases replacing traditional cel

animation, and for completely computer-generated creatures, such as King Kong,

Avatar, Motion capture has begun to be used extensively to produce films which

attempt to simulate or approximate the look of live-action cinema, with nearly

photorealistic digital character models.

3. Virtual Reality and Augmented Reality allows users to interact with digital content in

real-time. This can be useful for training simulations, visual perception tests, or

performing virtual walk-throughs in a 3D environment. Motion capture technology is

frequently used in digital puppetry systems to drive computer generated characters in

real-time.

4. Gait analysis is the major application of motion capture in clinical medicine.

Techniques allow clinicians to evaluate human motion across several biometric

factors, often while streaming this information live into analytical software.

3.5 Methods and systems

Motion tracking or motion capture started as a photogrammetric analysis tool in biomechanics

research in the 1970s and 1980s, and expanded into education, training, sports and recently

computer animation for television, cinema, and video games as the technology matured. A

performer wears markers near each joint to identify the motion by the positions or angles

between the markers. Acoustic, inertial, LED, magnetic or reflective markers, or combinations of

any of these, are tracked, optimally at least two times the frequency rate of the desired motion, to

sub-millimeter positions.

3.5.1 Optical systems

Optical systems utilize data captured from image sensors to triangulate the 3D position of a

subject between one or more cameras calibrated to provide overlapping projections. Data

acquisition is traditionally implemented using special markers attached to an actor; however,

more recent systems are able to generate accurate data by tracking surface features identified

dynamically for each particular subject. Tracking a large number of performers or expanding the

capture area is accomplished by the addition of more cameras. These systems produce data with

3 degrees of freedom for each marker, and rotational information must be inferred from the

relative orientation of three or more markers; for instance shoulder, elbow and wrist markers

providing the angle of the elbow.

http://en.wikipedia.org/wiki/Video_game
http://en.wikipedia.org/wiki/Computer-generated_imagery
http://en.wikipedia.org/wiki/Peter_Jackson%27s_King_Kong
http://en.wikipedia.org/wiki/Avatar_(2009_film)
http://en.wikipedia.org/wiki/Virtual_Reality
http://en.wikipedia.org/wiki/Augmented_Reality
http://en.wikipedia.org/wiki/Digital_puppetry
http://en.wikipedia.org/wiki/Gait_analysis
http://en.wikipedia.org/wiki/Clinical_medicine
http://en.wikipedia.org/wiki/Computer_animation
http://en.wikipedia.org/wiki/Television
http://en.wikipedia.org/wiki/Film
http://en.wikipedia.org/wiki/Video_game
http://en.wikipedia.org/wiki/LED
http://en.wikipedia.org/wiki/Triangulation

101

3.5.1.1 Passive Optical Systems

Passive optical system use markers coated with a retro-reflective material to reflect light that is

generated near the cameras lens. The camera's threshold can be adjusted so only the bright

reflective markers will be sampled, ignoring skin and fabric.

The centroid of the marker is estimated as a position within the 2-dimensional image that is

captured. The grayscale value of each pixel can be used to provide sub-pixel accuracy by finding

the centroid of the Gaussian. An object with markers attached at known positions is used to

calibrate the cameras and obtain their positions and the lens distortion of each camera is

measured.

Figure3.3(c): optical motion capture system, Grookda Oger, 2010)

Several markers are placed at specific points on an actor's face during facial optical motion

capture. If two calibrated cameras see a marker, a 3 dimensional fix can be obtained. Typically a

system will consist of around 6 to 24 cameras. Systems of over three hundred cameras exist to

try to reduce marker swap. Extra cameras are required for full coverage around the capture

subject and multiple subjects.

Vendors have constraint software to reduce the problem of marker swapping since all markers

appear identical. Unlike active marker systems and magnetic systems, passive systems do not

require the user to wear wires or electronic equipment. Instead, hundreds of rubber balls are

attached with reflective tape, which needs to be replaced periodically. The markers are usually

attached directly to the skin (as in biomechanics), or they are velcroed to a performer wearing a

full body spandex/lycra suit designed specifically for motion capture. This type of system can

capture large numbers of markers at frame rates as high as 10000fps.

http://en.wikipedia.org/wiki/Retroreflective
http://en.wikipedia.org/wiki/Gaussian
http://en.wikipedia.org/wiki/Velcro
http://en.wikipedia.org/wiki/File:MotionCapture.jpg

102

3.5.1.2 Active Optical Systems

Active optical systems triangulate positions by illuminating one Light-emitting diodes (LED) at a

time very quickly or multiple LEDs with software to identify them by their relative positions,

somewhat akin to celestial navigation. Rather than reflecting light back that is generated

externally, the markers themselves are powered to emit their own light. Since Inverse Square law

provides 1/4 the power at 2 times the distance, this can increase the distances and volume for

capture.

The power to each marker can be provided sequentially in phase with the capture system

providing a unique identification of each marker for a given capture frame at a cost to the

resultant frame rate. The ability to identify each marker in this manner is useful in real-time

applications. The alternative method of identifying markers is to do it algorithmically requiring

extra processing of the data.

3.5.2 Time modulated active marker

Active marker systems can further be refined by strobing one marker on at a time, or tracking

multiple markers over time and modulating the amplitude or pulse width to provide marker ID.

12 megapixel spatial resolution modulated systems show more subtle movements than 4

megapixel optical systems by having both higher spatial and temporal resolution. Directors can

see the actors performance in real time, and watch the results on the mocap driven CG character.

The unique marker IDs reduces the turnaround, by eliminating marker swapping and providing

much cleaner data than other technologies. LEDs with onboard processing and a radio

synchronization allow motion capture outdoors in direct sunlight, while capturing at 480 frames

per second due to a high speed electronic shutter.

Figure 3.3(d): A high-resolution active marker system, Kameraad Pjotr (2007)

.

http://en.wikipedia.org/wiki/File:Activemarker2.PNG

103

Computer processing of modulated IDs allows less hand cleanup or filtered results for lower

operational costs. This higher accuracy and resolution requires more processing than passive

technologies, but the additional processing is done at the camera to improve resolution via a sub-

pixel or centroid processing, providing both high resolution and high speed.

3.5.3 Semi-passive imperceptible marker

One can reverse the traditional approach based on high speed cameras. Systems such as Prakash

use inexpensive multi-LED high speed projectors. The specially built multi-LED IR projectors

optically encode the space. Instead of retro-reflective or active light emitting diode (LED)

markers, the system uses photosensitive marker tags to decode the optical signals. By attaching

tags with photo sensors to scene points, the tags can compute not only their own locations of

each point, but also their own orientation, incident illumination, and reflectance.

These tracking tags work in natural lighting conditions and can be imperceptibly embedded in

attire or other objects. The system supports an unlimited number of tags in a scene, with each tag

uniquely identified to eliminate marker reacquisition issues. Since the system eliminates a high

speed camera and the corresponding high-speed image stream, it requires significantly lower

data bandwidth. The tags also provide incident illumination data which can be used to match

scene lighting when inserting synthetic elements. The technique appears ideal for on-set motion

capture or real-time broadcasting of virtual sets but has yet to be proven.

3.5.4 Markerless Approach to Motion Capture

Emerging techniques and research in computer vision are leading to the rapid development of the

markerless approach to motion capture. Markerless systems such as those developed at Stanford,

University of Maryland, MIT, and Max Planck Institute, do not require subjects to wear special

equipment for tracking. Special computer algorithms are designed to allow the system to analyze

multiple streams of optical input and identify human forms, breaking them down into constituent

parts for tracking. Applications of this technology extend deeply into popular imagination about

the future of computing technology.

3.6 Non-optical systems

The following subsections discuss on types of non-optical systems

3.6.1 Inertial systems

Inertial Motion Capture technology is based on miniature inertial sensors, biomechanical models

and sensor fusion algorithms. The motion data of the inertial sensors (inertial guidance system) is

often transmitted wirelessly to a computer, where the motion is recorded or viewed. Most inertial

systems use gyroscopes to measure rotational rates. These rotations are translated to a skeleton in

the software. Much like optical markers, the more gyros the more natural the data. No external

http://en.wikipedia.org/wiki/Computer_vision
http://www.stanford.edu/group/biomotion/
http://www.cfar.umd.edu/users/aravinds/research/nsf.html
http://en.wikipedia.org/wiki/MIT
http://en.wikipedia.org/wiki/Max_Planck_Institute
http://en.wikipedia.org/wiki/Inertial_guidance_system

104

cameras, emitters or markers are needed for relative motions. Inertial mocap systems capture the

full six degrees of freedom body motion of a human in real-time. Benefits of using Inertial

systems include: no solving, portability, and large capture areas. Disadvantages include lower

positional accuracy and positional drift which can compound over time.

These systems are similar to the Wii (video game) controllers but are more sensitive and have

greater resolution and update rates. They can accurately measure the direction to the ground to

within a degree. The popularity of inertial systems is rising amongst independent game

developers, mainly because of the quick and easy set up resulting in a fast pipeline.

3.6.2 Mechanical motion

Mechanical motion capture systems directly track body joint angles and are often referred to as

exo-skeleton motion capture systems, due to the way the sensors are attached to the body.

Performers attach the skeletal-like structure to their body and as they move so do the articulated

mechanical parts, measuring the performer‘s relative motion. Mechanical motion capture

systems are real-time, relatively low-cost, free-of-occlusion, and wireless (untethered) systems

that have unlimited capture volume. Typically, they are rigid structures of jointed, straight metal

or plastic rods linked together with potentiometers that articulate at the joints of the body.

3.6.3 Magnetic systems

Magnetic systems calculate position and orientation by the relative magnetic flux of three

orthogonal coils on both the transmitter and each receiver. The relative intensity of the voltage or

current of the three coils allows these systems to calculate both range and orientation by

meticulously mapping the tracking volume. The sensor output is 6DOF, which provides useful

results obtained with two-thirds the number of markers required in optical systems; one on upper

arm and one on lower arm for elbow position and angle. The markers are not occluded by

nonmetallic objects but are susceptible to magnetic and electrical interference from metal objects

in the environment, like rebar (steel reinforcing bars in concrete) or wiring, which affect the

magnetic field, and electrical sources such as monitors, lights, cables and computers. The sensor

response is nonlinear, especially toward edges of the capture area. The wiring from the sensors

tends to preclude extreme performance movements. The capture volumes for magnetic systems

are dramatically smaller than they are for optical systems. With the magnetic systems, there is a

distinction between ―AC‖ and ―DC‖ systems: one uses square pulses, the other uses sine wave

pulse.

http://en.wikipedia.org/wiki/6DOF

105

4.0 Conclusion

A keyframe is a drawing that defines the starting and ending points of any smooth transition.

They are called "frames" because their position in time is measured in frames on a strip of film.

A sequence of keyframes defines which movement the viewer will see, whereas the position of

the keyframes on the film, video or animation defines the timing of the movement.

5.0 Summary

Keyframing is the simplest form of animating an object. Based on the notion that an object has a

beginning state or condition, and will be changing over time, in position, form, colour,

luminosity, or any other property, to some different final form. Its use is found in video editing,

video compression as a means to change parameters. Motion capture is used to describe the

process of recording movement and translating that movement on to a digital model.

6.0 Tutor Marked Assignment

1. What do you understand by keyframing?

2. Identify the advantages and disadvantages of the animation technique.

3. What is motion capture?

4. Describe the system used in motion capture.

7.0 References/Further Reading

1. Ed Angel (1991) Interactive Computer Graphics- A Top-Down Approach with OpenGL,

Fifth Edition, Addison-Wesley 2009 ISBN 0-321-53586-3

2. Donald Hearn and M. Pauline Baker (1997) Computer Graphics, C Version (2nd

Edition), Prentice Hall, 1997, ISBN: 0135309247

3. Larry Greenemeier. "E-Motion: Next-Gen Simulators to Blur the Line between Person

and Avatar". http://www.scientificamerican.com/article.cfm?id=next-generation-

simulator.

http://en.wikipedia.org/wiki/Dissolve_(filmmaking)
http://en.wikipedia.org/wiki/Film_frame
http://en.wikipedia.org/wiki/Film
http://en.wikipedia.org/wiki/Comic_timing
http://en.wikipedia.org/wiki/Motion_(physics)
http://www.scientificamerican.com/article.cfm?id=next-generation-simulator
http://www.scientificamerican.com/article.cfm?id=next-generation-simulator
http://www.scientificamerican.com/article.cfm?id=next-generation-simulator
http://www.scientificamerican.com/article.cfm?id=next-generation-simulator

106

MODULE 3 – Hierarchical Modeling and Animation

UNIT 4: Physical Simulation.

Contents Pages

1.0 Introduction………………………...…….…………………………………………….104

2.0 Objectives………………………………………………………………………………104

3.0 Main Content………………………………………………………………....………...104

 3.1 Simulation………………………………………………………………………104

3.2 Types of simulation….……………….……………………………………...….104

3.3 Physical simulation……………………………………...……………………...105

3.4 Data-driven animation...……………………………………..……………………….106

3.5 Application areas of simulation…………...………………………...…...……..106

3.6 Common User Interaction Systems for Virtual Simulations…………………...107

3.7 Virtual Simulation Input Hardware…………………………………………….107

3.8 Virtual Simulation Output Hardware…………………………………………..109

3.9 Other forms of Simulation……………………………………………………...110

4.0 Conclusion……………………………………………………………………………...112

5.0 Summary………………………………………………………………………………..112

6.0 Tutor Marked Assignment……………………………………………………………...112

7.0 References/Further

Reading…………………………………………………………………….…..113

107

 1.0 Introduction

Simulation has been seen to cut across different field of endeavours. We will consider its

application in education and training, clinical healthcare, automobile industry, biomechanics,

engineering and technology. We will also consider various input and output hardware used in

simulation.

2.0 Objectives

On completing this unit, you would be able to:

1. Understand physical simulation.

2. Understand the benefits of physical simulation.

3. Identify application area of simulation.

4. Identify Simulation input and output hardware.

3.0 Main Content

3.1 Simulation

Simulation is the imitation of some real thing available, state of affairs, or process. The act of

simulating something generally entails representing certain key characteristics or behaviours of a

selected physical or abstract system.

Simulation is used in many contexts, such as simulation of technology for performance

optimization, safety engineering, testing, training, education, and video games. Training

simulators include flight simulators for training aircraft pilots in order to provide them with a

lifelike experience. Simulation is also used for scientific modeling of natural systems or human

systems in order to gain insight into their functioning. Simulation can be used to show the

eventual real effects of alternative conditions and courses of action. Simulation is also used when

the real system cannot be engaged, because it may not be accessible, or it may be dangerous or

unacceptable to engage, or it is being designed but not yet built, or it may simply not exist.

3.2 Types of Simulation

1. Physical simulation refers to simulation in which physical objects are substituted for

the real thing. These physical objects are often chosen because they are smaller or

cheaper than the actual object or system.

2. Interactive simulation is a special kind of physical simulation, often referred to as a

human in the loop simulation, in which physical simulations include human

operators, such as in a flight simulator or a driving simulator. Human in the loop

simulations can include a computer simulation as a so-called synthetic environment.

http://en.wikipedia.org/wiki/Technology
http://en.wikipedia.org/wiki/Safety_engineering
http://en.wikipedia.org/wiki/Experiment
http://en.wikipedia.org/wiki/Training
http://en.wikipedia.org/wiki/Education
http://en.wikipedia.org/wiki/Video_game
http://en.wikipedia.org/wiki/Flight_simulator
http://en.wikipedia.org/wiki/Lifelike_experience
http://en.wikipedia.org/wiki/Scientific_modeling
http://en.wikipedia.org/wiki/Driving_simulator

108

A computer simulation is an attempt to model a real-life or hypothetical situation on a computer

so that it can be studied to see how the system works. By changing variables, predictions may be

made about the behaviour of the system. It is a tool to create a virtual environment of the real

time system. Computer simulation has become a useful part of modeling many natural systems in

physics, chemistry and biology, and human systems in economics and social science (the

computational sociology) as well as in engineering to gain insight into the operation of those

systems. A good example of the usefulness of using computers to simulate can be found in the

field of network traffic simulation. In such simulations, the model behaviour will change each

simulation according to the set of initial parameters assumed for the environment.

Traditionally, the formal modeling of systems has been via a mathematical model, which

attempts to find analytical solutions enabling the prediction of the behaviour of the system from

a set of parameters and initial conditions. Computer simulation is often used as an adjunct to, or

substitution for, modeling systems for which simple closed form analytic solutions are not

possible. There are many different types of computer simulation; the common feature they all

share is the attempt to generate a sample of representative scenarios for a model in which a

complete enumeration of all possible states would be prohibitive or impossible. Several software

packages exist for running computer-based simulation modeling (e.g. Monte Carlo simulation,

stochastic modeling, and multi-method modeling) that make all the modeling almost effortless.

3.3 Physical Simulation

It is possible to simulate the physics of the natural world to generate realistic motions,

interactions, and deformations. Dynamics rely on the time evolution of a physical system in

response to forces. Forward simulation has the advantage of being reasonably easy to simulate.

However, a simulation is often very sensitive to initial conditions, and it is often difficult to

predict paths without running a simulation—in other words, control is hard. With inverse

dynamics, constraints on a path are specified. Then we attempt to solve for the forces required to

produce the desired path. This technique can be very difficult computationally.

Advantages of Physically-based animation

1. Realistic motion i.e close to real life motion.

2. Long simulations are easy to create

3. Natural secondary effects such as wiggles, bending, and so on—materials behave

naturally

4. Interactions between objects are also natural.

Disadvantages of Physically-based animation

1. The main disadvantage of physically-based animation is the lack of control, which

can be critical, for example, when a complicated series of events needs to be modeled

or when an artist needs precise control over elements in a scene.

2. Very slow

http://en.wikipedia.org/wiki/Prediction
http://en.wikipedia.org/wiki/Model_(abstract)
http://en.wikipedia.org/wiki/Physics
http://en.wikipedia.org/wiki/Chemistry
http://en.wikipedia.org/wiki/Biology
http://en.wikipedia.org/wiki/Economics
http://en.wikipedia.org/wiki/Social_science
http://en.wikipedia.org/wiki/Computational_sociology
http://en.wikipedia.org/wiki/Engineering
http://en.wikipedia.org/wiki/Network_traffic_simulation
http://en.wikipedia.org/wiki/Model_(abstract)
http://en.wikipedia.org/wiki/Mathematical_model
http://en.wikipedia.org/wiki/Closed-form_solution
http://en.wikipedia.org/wiki/Scenario
http://en.wikipedia.org/wiki/Monte_Carlo_method
http://en.wikipedia.org/wiki/Stochastic

109

3. Not expressive

3.4 Data-Driven Animation

Data-driven animation uses information captured from the real world, such as video or captured

motion data, to generate animation. The technique of video textures finds points in a video

sequence that are similar enough that a transition may be made without appearing unnatural to a

viewer, allowing for arbitrarily long and varied animation from video. A similar approach may

be taken to allow for arbitrary paths of motion for a 3D character by automatically finding

frames in motion capture data or keyframed sequences that are similar to other frames. An

animator can then trace out a path on the ground for a character to follow, and the animation is

automatically generated from a database of motion.

Advantages of Data-driven simulation

1. It captures specific style of real actors

2. It is very flexible

3. It can generate new motion in real-time

Disadvantages of Data-driven simulation

1. Requires good data, and possibly lots of it

Uses of Data-driven simulation

1. Character animation

3.5 Application Areas of Simulation

1. Simulation in education and training

Simulation is extensively used for educational purposes. It is frequently used by way of adaptive

hypermedia. Simulation is often used in the training of civilian and military personnel. This

usually occurs when it is prohibitively expensive or simply too dangerous to allow trainees to use

the real equipment in the real world. In such situations they will spend time learning valuable

lessons in a "safe" virtual environment yet living a lifelike experience. Often the convenience is

to permit mistakes during training for a safety-critical system. Training simulations typically

come in one of three categories:

1. "Live" simulation - where actual players use genuine systems in a real environment.

2. "virtual" simulation - where actual players use simulated systems in a synthetic

environment, or

3. "Constructive" simulation - where simulated players use simulated systems in a

synthetic environment. Constructive simulation is often referred to as "wargaming"

http://en.wikipedia.org/wiki/Adaptive_hypermedia
http://en.wikipedia.org/wiki/Adaptive_hypermedia
http://en.wikipedia.org/wiki/Training
http://en.wikipedia.org/wiki/Lifelike_experience
http://en.wikipedia.org/wiki/Training_Simulation

110

since it bears some resemblance to table-top war games in which players command

armies of soldiers and equipment that move around a board.

In standardized tests, "live" simulations are sometimes called "high-fidelity", producing

"samples of likely performance", as opposed to "low-fidelity", "pencil-and-paper"

simulations producing only "signs of possible performance", but the distinction between

high, moderate and low fidelity remains relative, depending on the context of a particular

comparison.

Simulations in education are somewhat like training simulations. They focus on specific

tasks. The term 'microworld' is used to refer to educational simulations which model some

abstract concept rather than simulating a realistic object or environment, or in some cases

model a real world environment in a simplistic way so as to help a learner develop an

understanding of the key concepts. Normally, a user can create some sort of construction

within the microworld that will behave in a way consistent with the concepts being modeled.

The Logo programming environment developed by Papert is one of the most famous

microworlds

4. Management games (or business simulations) have been finding favour in business

education in recent years. Business simulations that incorporate a dynamic model

enable experimentation with business strategies in a risk free environment and

provide a useful extension to case study discussions.

5. Social simulations may be used in social science classrooms to illustrate social and

political processes in anthropology, economics, history, political science, or

sociology courses, typically at the high school or university level. These may, for

example, take the form of civics simulations, in which participants assume roles in a

simulated society, or international relations simulations in which participants engage

in negotiations, alliance formation, trade, diplomacy, and the use of force. Such

simulations might be based on fictitious political systems, or be based on current or

historical events.

3.6 Common User Interaction Systems for Virtual Simulations

Virtual Simulations represent a specific category of simulation that utilizes simulation equipment

to create a simulated world for the user. Virtual Simulations allow users to interact with a virtual

world. Virtual worlds operate on platforms of integrated software and hardware components. In

this manner, the system can accept input from the user (e.g., body tracking, voice/sound

recognition, physical controllers) and produce output to the user (e.g., visual display, aural

display, haptic display), Virtual Simulations use the aforementioned modes of interaction to

produce a sense of immersion for the user.

http://en.wikipedia.org/wiki/Wargaming
http://en.wikipedia.org/wiki/Standardized_test
http://en.wikipedia.org/wiki/Logo_(programming_language)
http://en.wikipedia.org/wiki/Case_study

111

3.7 Virtual Simulation Input Hardware

There is a wide variety of input hardware available to accept user input for virtual simulations.

The following list briefly describes several of them:

Body Tracking: The motion capture method is often used to record the user‘s movements and

translate the captured data into inputs for the virtual simulation. For example, if a user physically

turns their head, the motion would be captured by the simulation hardware in some way and

translated to a corresponding shift in view within the simulation.

1. Capture Suits and/or gloves may be used to capture movements of user‘s body

parts. The systems may have sensors incorporated inside them to sense movements of

different body parts (e.g., fingers). Alternatively, these systems may have exterior

tracking devices or marks that can be detected by external ultrasound, optical

receivers or electromagnetic sensors. Internal inertial sensors are also available on

some systems. The units may transmit data either wirelessly or through cables.

2. Eye trackers can also be used to detect eye movements so that the system can

determine precisely where a user is looking at any given instant.

Physical Controllers: they provide input to the simulation only through direct manipulation by

the user. In virtual simulations, tactile feedback from physical controllers is highly desirable in a

number of simulation environments.

1. Omni directional treadmills can be used to capture the user‘s locomotion as they

walk or run.

2. High fidelity instrumentation such as instrument panels in virtual aircraft cockpits

provides users with actual controls to raise the level of immersion. For example,

pilots can use the actual global positioning system controls from the real device in a

simulated cockpit to help them practice procedures with the actual device in the

context of the integrated cockpit system.

Voice/Sound Recognition: This form of interaction may be used either to interact with agents

within the simulation (e.g., virtual people) or to manipulate objects in the simulation (e.g.,

information). Voice interaction presumably increases the level of immersion for the user.

1. Users may use headsets with boom microphones, lapel microphones or the room may

be equipped with strategically located microphones.

112

Research in future input systems hold a great deal of promise for virtual simulations. Systems

such as brain-computer interfaces (BCIs) Brain-computer interface offer the ability to further

increase the level of immersion for virtual simulation users. It is possible that these types of

systems will become standard input modalities in future virtual simulation systems.

3.8 Virtual Simulation Output Hardware

There is a wide variety of output hardware available to deliver stimulus to users in virtual

simulations. The following list briefly describes several of them:

a. Visual Display: they provide the visual stimulus to users.

1. Stationary displays can vary from a conventional desktop display to 360-degree

wrap around screens to stereo three-dimensional screens. Conventional desktop

displays can vary in size from 15 to 60+ inches. Wrap around screens are typically

utilized in what is known as a Cave Automatic Virtual Environment (CAVE) Cave

Automatic Virtual Environment. Stereo three-dimensional screens produce three-

dimensional images either with or without special glasses—depending on the design.

2. Head mounted displays (HMDs) have small displays that are mounted on headgear

worn by the user. These systems are connected directly into the virtual simulation to

provide the user with a more immersive experience. Weight, update rates and field of

view are some of the key variables that differentiate HMDs. Naturally, heavier

HMDs are undesirable as they cause fatigue over time. If the update rate is too slow,

the system is unable to update the displays fast enough to correspond with a quick

head turn by the user. Slower update rates tend to cause simulation sickness and

disrupt the sense of immersion..

b. Aural Display: several different types of audio systems exist to help the user hear and

localize sounds spatially. Special software can be used to produce 3D audio effects to create the

illusion that sound sources are placed within a defined three-dimensional space around the user.

1. Stationary conventional speaker systems may be used to provide dual or multi-

channel surround sound. However, external speakers are not as effective as

headphones in producing 3D audio effects.

2. Conventional headphones offer a portable alternative to stationary speakers. They

also have the added advantages of masking real world noise and facilitate more

effective 3D audio sound effects.

1. Haptic Display: these displays provide sense of touch to the user Haptic technology.

This type of output is sometimes referred to as force feedback.

http://en.wikipedia.org/wiki/Brain-computer_interface
http://en.wikipedia.org/wiki/Cave_Automatic_Virtual_Environment
http://en.wikipedia.org/wiki/Cave_Automatic_Virtual_Environment
http://en.wikipedia.org/wiki/Haptic_technology

113

1. Tactile tile displays use different types of actuators such as inflatable bladders,

vibrators, low frequency sub-woofers, pin actuators and/or thermo-actuators to

produce sensations for the user.

2. End effector displays can respond to users‘ inputs with resistance and force. These

systems are often used in medical applications for remote surgeries that employ

robotic instruments.

d. Vestibular Display: these displays provide a sense of motion to the user motion

simulator. They often manifest as motion bases for virtual vehicle simulation such as driving

simulators or flight simulators. Motion bases are fixed in place but use actuators to move the

simulator in ways that can produce the sensations pitching, yawing or rolling. The simulators can

also move in such a way as to produce a sense of acceleration on all axes (e.g., the motion base

can produce the sensation of falling).

3.9 Other forms of Simulation

3.9.1 Clinical healthcare simulators

Medical simulators are increasingly being developed and deployed to teach therapeutic and

diagnostic procedures as well as medical concepts and decision making to personnel in the health

professions. Simulators have been developed for training procedures ranging from the basics

such as blood draw, to laparoscopic surgery and trauma care. They are also important to help on

prototyping new devices for biomedical engineering problems. Currently, simulators are applied

to research and development of tools for new therapies, treatments and early diagnosis in

medicine.

Another important medical application of a simulator — although, perhaps, denoting a slightly

different meaning of simulator — is the use of a placebo drug, a formulation that simulates the

active drug in trials of drug efficacy.

3.9.2 Automobile simulator

An automobile simulator provides an opportunity to reproduce the characteristics of real vehicles

in a virtual environment. It replicates the external factors and conditions with which a vehicle

interacts enabling a driver to feel as if they are sitting in the cab of their own vehicle. Scenarios

and events are replicated with sufficient reality to ensure that drivers become fully immersed in

the experience rather than simply viewing it as an educational experience.

3.9.3 Biomechanics simulators

A biomechanics simulator is used to analyze walking dynamics, study sports performance,

simulate surgical procedures, analyze joint loads, design medical devices, and animates human

http://en.wikipedia.org/wiki/Motion_simulator
http://en.wikipedia.org/wiki/Motion_simulator
http://en.wikipedia.org/wiki/Laparoscopic
http://en.wikipedia.org/wiki/Placebo

114

and animal movement. A neuro-mechanical simulator that combines biomechanical and

biologically realistic neural network simulation. It allows the user to test hypotheses on the

neural basis of behavior in a physically accurate 3-D virtual environment.

3.9.4 City and urban simulation

A city simulator can be a city-building game but can also be a tool used by urban planners to

understand how cities are likely to evolve in response to various policy decisions. AnyLogic is

an example of modern, large-scale urban simulators designed for use by urban planners. City

simulators are generally agent-based simulations with explicit representations for land use and

transportation. UrbanSim and LEAM are examples of large-scale urban simulation models that

are used by metropolitan planning agencies and military bases for land use and transportation

planning.

3.9.5 Classroom of the future

The "classroom of the future" will probably contain several kinds of simulators, in addition to

textual and visual learning tools. This will allow students to enter the clinical years better

prepared, and with a higher skill level. The advanced student or postgraduate will have a more

concise and comprehensive method of retraining — or of incorporating new clinical procedures

into their skill set — and regulatory bodies and medical institutions will find it easier to assess

the proficiency and competency of individuals.

The classroom of the future will also form the basis of a clinical skills unit for continuing

education of medical personnel; and in the same way that the use of periodic flight training

assists airline pilots, this technology will assist practitioners throughout their career.

3.9.6 Communication Satellite Simulation

Modern satellite communications systems (SatCom) are often large and complex with many

interacting parts and elements. In addition, the need for broadband connectivity on a moving

vehicle has increased dramatically in the past few years for both commercial and military

applications. To accurately predict and deliver high quality of service, satcom system designers

have to factor in terrain as well as atmospheric and meteorological conditions in their planning.

To deal with such complexity, system designers and operators increasingly turn towards

computer models of their systems to simulate real world operational conditions and gain insights

in to usability and requirements prior to final product sign-off. Modeling improves the

understanding of the system by enabling the SatCom system designer or planner to simulate real

world performance by injecting the models with multiple hypothetical atmospheric and

environmental conditions.

http://en.wikipedia.org/wiki/City-building_game
http://en.wikipedia.org/wiki/AnyLogic
http://en.wikipedia.org/wiki/Agent_(economics)
http://en.wikipedia.org/wiki/UrbanSim
http://en.wikipedia.org/wiki/LEAM
http://en.wikipedia.org/wiki/Competence_(human_resources)
http://en.wikipedia.org/w/index.php?title=SatCom&action=edit&redlink=1
http://en.wikipedia.org/wiki/Satcom

115

3.9.7 Digital Lifecycle Simulation

Simulation solutions are being increasingly integrated with CAx (CAD, CAM, CAE....) solutions

and processes. The use of simulation throughout the product lifecycle, especially at the earlier

concept and design stages, has the potential of providing substantial benefits. These benefits

range from direct cost issues such as reduced prototyping and shorter time-to-market, to better

performing products and higher margins. However, for some companies, simulation has not

provided the expected benefits.

3.9.8 Engineering, technology or process simulation

Simulation is an important feature in engineering systems or any system that involves many

processes. For example, in electrical engineering, delay lines may be used to simulate

propagation delay and phase shift caused by an actual transmission line. Similarly, dummy loads

may be used to simulate impedance without simulating propagation, and is used in situations

where propagation is unwanted. A simulator may imitate only a few of the operations and

functions of the unit it simulates.

Most engineering simulations entail mathematical modeling and computer assisted investigation.

There are many cases, however, where mathematical modeling is not reliable. Simulation of fluid

dynamics problems often requires both mathematical and physical simulations. In these cases the

physical models require dynamic similitude. Physical and chemical simulations have also direct

realistic uses, rather than research uses. In chemical engineering, for example, process

simulations are used to give the process parameters immediately used for operating chemical

plants, such as oil refineries.

4.0 Conclusion

Key issues in simulation include acquisition of valid source information about the relevant

selection of key characteristics and behaviours, the use of simplifying approximations and

assumptions within the simulation, and fidelity and validity of the simulation outcomes.

5.0 Summary

Simulation is the imitation of some real thing available, state of affairs, or process. Simulation is

used in many contexts, such as simulation of technology for performance optimization, safety

engineering, testing, training, education, and video games. Virtual Simulations allow users to

interact with a virtual world. Virtual worlds operate on platforms of integrated software and

hardware components. In this manner, the system can accept input from the user (e.g., body

tracking, voice/sound recognition, physical controllers) and produce output to the user (e.g.,

visual display, aural display, haptic display)

http://en.wikipedia.org/wiki/Electrical_engineering
http://en.wikipedia.org/wiki/Propagation_delay
http://en.wikipedia.org/wiki/Phase_(waves)#Phase_shift
http://en.wikipedia.org/wiki/Transmission_line
http://en.wikipedia.org/wiki/Dummy_load
http://en.wikipedia.org/wiki/Electrical_impedance
http://en.wikipedia.org/wiki/Similitude_(model)
http://en.wikipedia.org/wiki/Chemical_engineering
http://en.wikipedia.org/wiki/Process_simulation
http://en.wikipedia.org/wiki/Process_simulation
http://en.wikipedia.org/wiki/Technology
http://en.wikipedia.org/wiki/Safety_engineering
http://en.wikipedia.org/wiki/Safety_engineering
http://en.wikipedia.org/wiki/Experiment
http://en.wikipedia.org/wiki/Training
http://en.wikipedia.org/wiki/Education
http://en.wikipedia.org/wiki/Video_game

116

6.0 Tutor Marked Assignment

1. What do you understand by Computer Simulation?

2. Highlight the merits and demerits of physically-based animation.

3. Identify the application areas of simulation in various fields.

4. Identify the input and output hardware devices used for simulation.

7.0 References/Further Reading

1. Ed Angel (1991) Interactive Computer Graphics- A Top-Down Approach with OpenGL,

Fifth Edition, Addison-Wesley 2009 ISBN 0-321-53586-3

2. Donald Hearn and M. Pauline Baker (1997) Computer Graphics, C Version (2nd

Edition), Prentice Hall, 1997, ISBN: 0135309247

3. Encyclopedia of Computer Science, "designing a model of a real or imagined system and

conducting experiments with that model".

4. Sokolowski, J.A., Banks, C.M. Principles of Modeling and Simulation. Hoboken, NJ:

Wiley, 2009. ISBN-13:978-0470289433

117

MODULE 4 – Curves and surfaces, image and the human visual system

UNIT 1: Introduction to curves and surfaces: Bezier, B-splines and NURBS.

Contents Pages

1.0 Introduction……………………….……………………...…….……………………....115

2.0 Objectives………………………………………………………………………………115

3.0 Main Content………………………………………………………………....………...115

 3.1 A bezier curve…….……….……………………………………………………115

3.2 Applications of Bezier curves………………………………………………...………115

3.3 B-splines……………………………………...…...…...……………………….123

3.4 NURBS………………………………………………………………………...121

3.5 Subdivision surface………………………………………………………….....123

4.0 Conclusion………………………………………………...…………………………....125

5.0 Summary…………………………………………………………...…………………...133

6.0 Tutor Marked Assignment……………………………………………………...………133

7.0 References/Further

Reading………………………………………………………...……………....133

118

1.0 Introduction

Curves are found in various areas of computer graphics. They are used when creating 3D models, vector

images, animations, or for example in definition of TrueType fonts. There is a great variety of curves.

Some are easy to use, some are flexible enough to describe a large variety of shapes, and some are simple

enough to be implemented and accelerated by graphics hardware. NURBS and Bézier curves are ones of

the most commonly used curves.

2.0 Objectives

On completing this unit, you would be able to:

1. Understand the concept of curves and surfaces in computer

2. Understand the application of curves and surfaces.

3. Understand Bezier, hermite, b-spline curves.

4. Understand NURBS.

3.0 Main Content

3.1 A Bézier curve

A Bézier curve is a parametric curve frequently used in computer graphics and related fields.

Generalizations of Bézier curves to higher dimensions are called Bézier surfaces, of which the

Bézier triangle is a special case.

Bézier curves are also used in the time domain, particularly in animation and interface design,

e.g., a Bézier curve can be used to specify the velocity over time of an object such as an icon

moving from A to B, rather than simply moving at a fixed number of pixels per step. When

animators or interface designers talk about the "physics" or "feel" of an operation, they may be

referring to the particular Bézier curve used to control the velocity over time of the move in

question.

Bézier curves were widely publicized in 1962 by the French engineer Pierre Bézier, who used

them to design automobile bodies. The curves were first developed in 1959 by Paul de Casteljau

using de Casteljau's algorithm, a numerically stable method to evaluate Bézier curves.

3.2 Applications of Bezier curves

Bézier curves are widely used in computer graphics to model smooth curves. As the curve is

completely contained in the convex hull of its control points, the points can be graphically

displayed and used to manipulate the curve intuitively. Affine transformations such as translation

http://en.wikipedia.org/wiki/Parametric_curve
http://en.wikipedia.org/wiki/Computer_graphics
http://en.wikipedia.org/wiki/Dimension
http://en.wikipedia.org/wiki/B%C3%A9zier_surface
http://en.wikipedia.org/wiki/B%C3%A9zier_triangle
http://en.wikipedia.org/wiki/Graphical_user_interface
http://en.wikipedia.org/wiki/France
http://en.wikipedia.org/wiki/Pierre_B%C3%A9zier
http://en.wikipedia.org/wiki/Automobile
http://en.wikipedia.org/wiki/Paul_de_Casteljau
http://en.wikipedia.org/wiki/De_Casteljau%27s_algorithm
http://en.wikipedia.org/wiki/Numerical_stability
http://en.wikipedia.org/wiki/Convex_hull
http://en.wikipedia.org/wiki/Affine_transformation
http://en.wikipedia.org/wiki/Translation_(geometry)

119

and rotation can be applied on the curve by applying the respective transform on the control

points of the curve.

Quadratic and cubic Bézier curves are most common; higher degree curves are more expensive

to evaluate.

Figure 4.1(a): Bézier path in Adobe Illustrator

When more complex shapes are needed, low order Bézier curves are patched together. This is

commonly referred to as a "path" in vector graphics standards (like SVG) and vector graphics

programs. To guarantee smoothness, the control point at which two curves meet must be on the

line between the two control points on either side.

The simplest method for scan converting (rasterizing) a Bézier curve is to evaluate it at many

closely spaced points and scan convert the approximating sequence of line segments. However,

this does not guarantee that the rasterized output looks sufficiently smooth, because the points

may be spaced too far apart. Conversely, it may generate too many points in areas where the

curve is close to linear. A common adaptive method is recursive subdivision, in which a curve's

control points are checked to see if the curve approximates a line segment to within a small

tolerance. If not, the curve is subdivided parametrically into two segments, 0 ≤ t ≤ 0.5 and 0.5 ≤ t

≤ 1, and the same procedure is applied recursively to each half. There are also forward

differencing methods, but great care must be taken to analyze error propagation. Analytical

methods where a spline is intersected with each scan line involve finding roots of cubic

polynomials (for cubic splines) and dealing with multiple roots, so they are not often used in

practice.

A Bézier curve is defined by its order (linear, quadratic, cubic, etc.) and a set of control points P0

through Pn, the number n of which depends on the order (n = 2 for linear, 3 for quadratic, etc.).

The first and last control points are always the end points of the curve; however, the intermediate

control points (if any) generally do not lie on the curve.

3.2.1 Linear Bézier curves

Given points P0 and P1, a linear Bézier curve is simply a straight line between those two points.

The curve is given by

http://en.wikipedia.org/wiki/Rotation
http://en.wikipedia.org/wiki/Adobe_Illustrator
http://en.wikipedia.org/wiki/Vector_graphics
http://en.wikipedia.org/wiki/SVG
http://en.wikipedia.org/wiki/Rasterisation
http://en.wikipedia.org/wiki/Spline_(mathematics)
http://en.wikipedia.org/wiki/Straight_line
http://en.wikipedia.org/wiki/File:B%C3%A9zier_curve_in_Adobe_Illustrator_CS2.png

120

and is equivalent to linear interpolation.

3.2.2 Quadratic Bézier curves

A quadratic Bézier curve is the path traced by the function B(t), given points P0, P1, and P2,

,

which can be interpreted as the linear interpolant of corresponding points on the linear Bézier

curves from P0 to P1 and from P1 to P2 respectively. More explicitly it can be written as:

It departs from P0 in the direction of P1, then bends to arrive at P2 in the direction from P1. In

other words, the tangents in P0 and P2 both pass through P1. This is directly seen from the

derivative of the Bézier curve:

A quadratic Bézier curve is also a parabolic segment. As a parabola is a conic section, some

sources refer to quadratic Béziers as "conic arcs".

3.2.3 Cubic Bézier curves

Four points P0, P1, P2 and P3 in the plane or in higher-dimensional space define a cubic Bézier

curve. The curve starts at P0 going toward P1 and arrives at P3 coming from the direction of P2.

Usually, it will not pass through P1 or P2; these points are only there to provide directional

information. The distance between P0 and P1 determines "how long" the curve moves into

direction P2 before turning towards P3.

Writing BPi,Pj,Pk(t) for the quadratic Bézier curve defined by points Pi, Pj, and Pk, the cubic Bézier

curve can be defined as a linear combination of two quadratic Bézier curves:

The explicit form of the curve is:

http://en.wikipedia.org/wiki/Linear_interpolation
http://en.wikipedia.org/wiki/Parabola
http://en.wikipedia.org/wiki/Conic_section

121

For some choices of P1 and P2 the curve may intersect itself, or contain a cusp.

Bézier curves can be defined for any degree n.

3.2.4 Recursive definition of A Bézier curve

A recursive definition for the Bézier curve of degree n expresses it as a linear interpolation

between two Bézier curves of degree n − 1.

Let denote the Bézier curve determined by the points P0, P1, ..., Pn. Then

to start, and

This recursion is elucidated in the animations below.

3.3 Explicit definition of Bezier curves

The formula can be expressed explicitly as follows:

where is the binomial coefficient.

For example, for n = 5:

Terminology

Some terminology is associated with these parametric curves. We have

http://en.wikipedia.org/wiki/Linear_interpolation
http://en.wikipedia.org/wiki/Binomial_coefficient

122

where the polynomials

are known as Bernstein basis polynomials of degree n, defining t
0
 = 1 and (1 − t)

0
 = 1. The

binomial coefficient, , has the alternative notation,

The points Pi are called control points for the Bézier curve. The polygon formed by connecting

the Bézier points with lines, starting with P0 and finishing with Pn, is called the Bézier polygon

(or control polygon). The convex hull of the Bézier polygon contains the Bézier curve.

3.2.5 Properties of Bezier Curves

1. The curve begins at P0 and ends at Pn; this is the so-called endpoint interpolation

property.

2. The curve is a straight line if and only if all the control points are collinear.

3. The start (end) of the curve is tangent to the first (last) section of the Bézier polygon.

4. A curve can be split at any point into two subcurves, or into arbitrarily many

subcurves, each of which is also a Bézier curve.

5. Some curves that seem simple, such as the circle, cannot be described exactly by a

Bézier or piecewise Bézier curve; though a four-piece cubic Bézier curve can

approximate a circle (see Bézier spline), with a maximum radial error of less than one

part in a thousand, when each inner control point (or offline point) is the distance

horizontally or vertically from an outer control point on a unit circle. More generally, an

n-piece cubic Bézier curve can approximate a circle, when each inner control point is the

distance

http://en.wikipedia.org/wiki/Bernstein_polynomial
http://en.wikipedia.org/wiki/Binomial_coefficient
http://en.wikipedia.org/wiki/Polygon
http://en.wikipedia.org/wiki/Line_(mathematics)
http://en.wikipedia.org/wiki/Convex_hull
http://en.wikipedia.org/wiki/Incidence_(geometry)#Collinearity
http://en.wikipedia.org/wiki/Tangent
http://en.wikipedia.org/wiki/Circle
http://en.wikipedia.org/wiki/Piecewise
http://en.wikipedia.org/wiki/B%C3%A9zier_spline

123

from an outer control point on a unit circle, where t is 360/n degrees, and n > 2.

6. The curve at a fixed offset from a given Bézier curve, often called an offset curve

(lying "parallel" to the original curve, like the offset between rails in a railroad track),

cannot be exactly formed by a Bézier curve (except in some trivial cases). However,

there are heuristic methods that usually give an adequate approximation for practical

purpose.

7. Every quadratic Bézier curve is also a cubic Bézier curve, and more generally, every

degree n Bézier curve is also a degree m curve for any m > n. In detail, a degree n

curve with control points P0, …, Pn is equivalent (including the parameterization) to

the degree n + 1 curve with control points P'0, …, P'n + 1, where

.

3.2.5 The Bézier surface

The Bézier surface is formed as the cartesian product of the blending functions of two orthogonal

Bézier curves.

Where Pi,j is the i,jth control point. There are Ni+1 and Nj+1 control points in the i and j directions

respectively.

The corresponding properties of the Bézier curve apply to the Bézier surface.

o The surface does not in general pass through the control points except for the corners of

the control point grid.

o The surface is contained within the convex hull of the control points.

C Source Example

The following source code generates the surface shown in the first example above. It is provided

for illustration only, the headers and prototype files are not given.

#define NI 5

#define NJ 4

XYZ inp[NI+1][NJ+1];

#define RESOLUTIONI 10*NI

http://en.wikipedia.org/wiki/Railroad_track
http://en.wikipedia.org/wiki/Heuristic

124

#define RESOLUTIONJ 10*NJ

XYZ outp[RESOLUTIONI][RESOLUTIONJ];

int main(argc,argv)

int argc;

char **argv;

{

 int i,j,ki,kj;

 double mui,muj,bi,bj;

 /* Create a random surface */

 srandom(1111);

 for (i=0;i<=NI;i++) {

 for (j=0;j<=NJ;j++) {

 inp[i][j].x = i;

 inp[i][j].y = j;

 inp[i][j].z = (random() % 10000) / 5000.0 - 1;

 }

 }

 for (i=0;i<RESOLUTIONI;i++) {

 mui = i / (double)(RESOLUTIONI-1);

 for (j=0;j<RESOLUTIONJ;j++) {

 muj = j / (double)(RESOLUTIONJ-1);

 outp[i][j].x = 0;

 outp[i][j].y = 0;

 outp[i][j].z = 0;

 for (ki=0;ki<=NI;ki++) {

 bi = BezierBlend(ki,mui,NI);

 for (kj=0;kj<=NJ;kj++) {

 bj = BezierBlend(kj,muj,NJ);

 outp[i][j].x += (inp[ki][kj].x * bi * bj);

 outp[i][j].y += (inp[ki][kj].y * bi * bj);

 outp[i][j].z += (inp[ki][kj].z * bi * bj);

 }

 }

 }

 }

 printf("LIST\n");

 /* Display the surface, in this case in OOGL format for GeomView */

 printf("{ = CQUAD\n");

 for (i=0;i<RESOLUTIONI-1;i++) {

 for (j=0;j<RESOLUTIONJ-1;j++) {

 printf("%g %g %g 1 1 1 1\n",

 outp[i][j].x, outp[i][j].y, outp[i][j].z);

 printf("%g %g %g 1 1 1 1\n",

 outp[i][j+1].x, outp[i][j+1].y, outp[i][j+1].z);

 printf("%g %g %g 1 1 1 1\n",

 outp[i+1][j+1].x,outp[i+1][j+1].y,outp[i+1][j+1].z);

 printf("%g %g %g 1 1 1 1\n",

 outp[i+1][j].x, outp[i+1][j].y, outp[i+1][j].z);

 }

 }

 printf("}\n");

125

 /* Control point polygon */

 for (i=0;i<NI;i++) {

 for (j=0;j<NJ;j++) {

 printf("{ = SKEL 4 1 \n");

 printf("%g %g %g \n",inp[i][j].x,inp[i][j].y,inp[i][j].z);

 printf("%g %g %g \n",inp[i][j+1].x,inp[i][j+1].y,inp[i][j+1].z);

 printf("%g %g %g

\n",inp[i+1][j+1].x,inp[i+1][j+1].y,inp[i+1][j+1].z);

 printf("%g %g %g \n",inp[i+1][j].x,inp[i+1][j].y,inp[i+1][j].z);

 printf("5 0 1 2 3 0\n");

 printf("}\n");

 }

 }

}

Bézier Blending Function

This function computes the blending function as used in the Bézier surface code above. It is

written for clarity, not efficiency. Normally, if the number of control points is constant, the

blending function would be calculated once for each desired value of mu.

double BezierBlend(k,mu,n)

int k;

double mu;

int n;

{

 int nn,kn,nkn;

 double blend=1;

 nn = n;

 kn = k;

 nkn = n - k;

 while (nn >= 1) {

 blend *= nn;

 nn--;

 if (kn > 1) {

 blend /= (double)kn;

 kn--;

 }

 if (nkn > 1) {

 blend /= (double)nkn;

 nkn--;

 }

 }

 if (k > 0)

 blend *= pow(mu,(double)k);

 if (n-k > 0)

 blend *= pow(1-mu,(double)(n-k));

 return(blend);

}

126

3.3 B-Splines

A B-Spline consists of multiple Bézier arcs and provides a unified mechanism on how to define

continuity in the joins. Consider two cubic Bézier curves - that is 8 total control points (4 per

curve).

figure 4.1(b): B-Splines consist of Bézier arcs.

Making the last point of the first (green) curve equal to the first point of the second (violet) curve

- this saves us 1 point leaving us with 7 total control points. We have replaced one control point

with an external condition.

The third (blue) curve and the fourth (yellow) curve share ending points just like in previous

case, but and also share the same tangent direction at the junction point. There are two external

conditions and only 6 control points are necessary to describe the curves.

B-Splines use external conditions to put multiple pieces together while keeping the original

concept of control points. The neighbor curves share some control points. External conditions are

either implicit (uniform curves) or explicitly given by a knot vector. Knot vector defines how

much information should be shared by neighbor curves (segments).

Knot vector is a sequence of numbers, usually from 0 to 1, for example (0, 0.5, 0.5, 0.7, 1), and it

holds the information about external conditions mentioned earlier. Number of intervals defines

number of segments (3 in our case: 0-0.5, 0.5-0.7, 0.7-1). Numbers in knot vector are called

knots and each knot has its multiplicity. Multiplicity of knot 0.7 is 1, while multiplicity of knot

0.5 is 2. The higher the multiplicity, the less information share the neighbor segments. When

multiplicity is equal to the degree of used curves, there is a sharp edge (green and violet curves

on the image).

127

3.4 NURBS

NURBS stands for Non-Uniform Rational B-Spline. It means NURBS uses rational Bézier

curves and a non-uniform explicitly given knot vector. Therefore, degree, control points,

weights, and knot vector is needed to specify a NURBS curve. So far, we were talking about

curves - one-dimensional formations. The principles can be applied to higher-dimensional

objects like surfaces or volumes. Surfaces are used when creating 3D objects, for example

landscape while volumes can be used to define a non-linear transformation.

Development of NURBS began in the 1950s by engineers who were in need of a mathematically

precise representation of freeform surfaces like those used for ship hulls, aerospace exterior

surfaces, and car bodies, which could be exactly reproduced whenever technically needed. Prior

representations of this kind of surface only existed as a single physical model created by a

designer.

The pioneers of this development were Pierre Bézier who worked as an engineer at Renault, and

Paul de Casteljau who worked at Citroën, both in France. Bézier worked nearly parallel to de

Casteljau, neither knowing about the work of the other. But because Bézier published the results

of his work, the average computer graphics user today recognizes splines — which are

represented with control points lying off the curve itself — as Bézier splines, while de

Casteljau‘s name is only known and used for the algorithms he developed to evaluate parametric

surfaces. In the 1960s it became clear that non-uniform, rational B-splines are a generalization of

Bézier splines, which can be regarded as uniform, non-rational B-splines.

At first NURBS were only used in the proprietary CAD packages of car companies. Later they

became part of standard computer graphics packages. They allow representation of geometrical

shapes in a compact form. They can be efficiently handled by the computer programs and yet

allow for easy human interaction. NURBS surfaces are functions of two parameters mapping to a

surface in three-dimensional space. The shape of the surface is determined by control points.

3.4.1 Examples of NURBS curves

Following screenshots demonstrate different uses of NURBS in 3D graphics.

http://en.wikipedia.org/wiki/Freeform_surface
http://en.wikipedia.org/wiki/Designer
http://en.wikipedia.org/wiki/Pierre_B%C3%A9zier
http://en.wikipedia.org/wiki/Renault
http://en.wikipedia.org/wiki/Paul_de_Casteljau
http://en.wikipedia.org/wiki/Citro%C3%ABn
http://en.wikipedia.org/wiki/France
http://en.wikipedia.org/wiki/Computer_graphics
http://en.wikipedia.org/wiki/Spline_(mathematics)
http://en.wikipedia.org/wiki/B%C3%A9zier_spline
http://en.wikipedia.org/wiki/Parametric_surface
http://en.wikipedia.org/wiki/Parametric_surface
http://en.wikipedia.org/wiki/Generalization
http://en.wikipedia.org/wiki/Computer_aided_design

128

Figure 4.1(c): Surfaces or revolution can roughly

approximate relatively large amount of different shapes.

Figure 4.1(d): Surface was created by moving a 2D NURBS

curve along a path defined by another 3D NURBS curve.

The left image demonstrates a surface created by revolving a 2D NURBS curve around Y axis.

The curve itself consists of 3 pieces (knot vector: 0, 0.2, 0.6, 0.6, 0.6, 1). Join between the two

upper pieces is smooth, because the multiplicity of knot 0.2 is 1 and curve degree is 3. On the

other hand, knot 0.6 with multiplicity 3 causes a sharp edge.

The right image shows a surface created by sweeping a 2D curve along a 3D trajectory.

figure 4.1(e): NURBS surfaces need relatively large amount

of control points, which makes them hard to control.

figure 4.1(f): The middle part of the text is magnified and

the text is bent using a 2nd degree NURBS volume.

Left image shows a NURBS surface and its control points. NURBS surfaces are used rather

rarely in their pure form because the number of control points is usually large (4x4 in our simple

case) and the surface becomes hard to control.

Right image shows a 3D text that was transformed using a Bézier (or NURBS) volume of degree

2. The text is bent and its central part is larger - that effect was caused by the non-linear

transformation defined by the NURBS volume (note the control points in the center of the

model).

3.4.2 Operations with NURBS

When working with NURBS in their pure form, there is one very useful operation: inserting new

knot. A knot can be inserted into a NURBS curve without changing the shape of the curve. The

desired side effect of this operation is an additional control point that provides finer control of

the related region of the NURBS curve or surface.

http://www.rw-designer.com/rsrc/NURBS-revolution.png
http://www.rw-designer.com/rsrc/NURBS-extrusion.png
http://www.rw-designer.com/rsrc/NURBS-surface.png
http://www.rw-designer.com/rsrc/NURBS-volume.png
http://www.rw-designer.com/rsrc/NURBS-revolution.png
http://www.rw-designer.com/rsrc/NURBS-extrusion.png
http://www.rw-designer.com/rsrc/NURBS-surface.png
http://www.rw-designer.com/rsrc/NURBS-volume.png
http://www.rw-designer.com/rsrc/NURBS-revolution.png
http://www.rw-designer.com/rsrc/NURBS-extrusion.png
http://www.rw-designer.com/rsrc/NURBS-surface.png
http://www.rw-designer.com/rsrc/NURBS-volume.png
http://www.rw-designer.com/rsrc/NURBS-revolution.png
http://www.rw-designer.com/rsrc/NURBS-extrusion.png
http://www.rw-designer.com/rsrc/NURBS-surface.png
http://www.rw-designer.com/rsrc/NURBS-volume.png

129

There are other operations with NURBS, like elevating degree, removing knots, or computing

control point positions from points laying on a curve, but they do not reach the usefulness of knot

insertion.

3.5 Subdivision surface

A subdivision surface is a method of representing a smooth surface via the specification of a

coarser piecewise linear polygon mesh. The smooth surface can be calculated from the coarse

mesh as the limit of a recursive process of subdividing each polygonal face into smaller faces

that better approximate the smooth surface.

The subdivision surfaces are defined recursively. The process starts with a given polygonal

mesh. A refinement scheme is then applied to this mesh. This process takes that mesh and

subdivides it, creating new vertices and new faces. The positions of the new vertices in the mesh

are computed based on the positions of nearby old vertices. In some refinement schemes, the

positions of old vertices might also be altered (possibly based on the positions of new vertices).

This process produces a denser mesh than the original one, containing more polygonal faces.

This resulting mesh can be passed through the same refinement scheme again and so on.

The limit subdivision surface is the surface produced from this process being iteratively applied

infinitely many times. In practical use however, this algorithm is only applied a limited number

of times. The limit surface can also be calculated directly for most subdivision surfaces using the

technique of Jos Stam, which eliminates the need for recursive refinement.

3.5.1 Editing a subdivision surface

Subdivision surfaces can be naturally edited at different levels of subdivision. Starting with basic

shapes you can use binary operators to create the correct topology. Then edit the coarse mesh to

create the basic shape, then edit the offsets for the next subdivision step, then repeat this at finer

and finer levels. You can always see how your edit effect the limit surface via GPU evaluation of

the surface.

A surface designer may also start with a scanned in object or one created from a NURBS surface.

The same basic optimization algorithms are used to create a coarse base mesh with the correct

topology and then add details at each level so that the object may be edited at different levels.

These types of surfaces may be difficult to work with because the base mesh does not have

control points in the locations that a human designer would place them. With a scanned object

this surface is easier to work with than a raw triangle mesh, but a NURBS object probably had

well laid out control points which behave less intuitively after the conversion than before.

Non-uniform rational basis spline (NURBS) is a mathematical model commonly used in

computer graphics for generating and representing curves and surfaces which offers great

flexibility and precision for handling both analytic and freeform shapes.

http://en.wikipedia.org/wiki/Surface
http://en.wikipedia.org/wiki/Piecewise_linear
http://en.wikipedia.org/wiki/Polygon_mesh
http://en.wikipedia.org/wiki/Limit_of_a_sequence
http://en.wikipedia.org/wiki/Recursion
http://en.wikipedia.org/wiki/Face_(geometry)
http://en.wikipedia.org/wiki/B-spline
http://en.wikipedia.org/wiki/Computer_graphics

130

A surface under construction, e.g. the hull of a motor yacht, is usually composed of several

NURBS surfaces known as patches. These patches should be fitted together in such a way that

the boundaries are invisible. This is mathematically expressed by the concept of geometric

continuity.

3.5.3 Usefulness of NURBS curves and surfaces

1. They are invariant under affine as well as perspective transformations: operations like

rotations and translations can be applied to NURBS curves and surfaces by applying

them to their control points.

2. They offer one common mathematical form for both standard analytical shapes (e.g.,

conics) and free-form shapes.

3. They provide the flexibility to design a large variety of shapes.

4. They reduce the memory consumption when storing shapes (compared to simpler

methods).

5. They can be evaluated reasonably quickly by numerically stable and accurate

algorithms.

3.5.4 Control points of Bezier curves

The control points determine the shape of the curve. Typically, each point of the curve is

computed by taking a weighted sum of a number of control points. The weight of each point

varies according to the governing parameter. For a curve of degree d, the weight of any control

point is only nonzero in d+1 intervals of the parameter space. Within those intervals, the weight

changes according to a polynomial function (basis functions) of degree d. At the boundaries of

the intervals, the basis functions go smoothly to zero, the smoothness being determined by the

degree of the polynomial.

As an example, the bases function of degree one is a triangle function. It rises from zero to one,

then falls to zero again. While it rises, the basis function of the previous control point falls. In

that way, the curve interpolates between the two points, and the resulting curve is a polygon,

which is continuous, but not differentiable at the interval boundaries, or knots. Higher degree

polynomials have correspondingly more continuous derivatives. Note that within the interval the

polynomial nature of the basis functions and the linearity of the construction make the curve

perfectly smooth, so it is only at the knots that discontinuity can arise. The fact that a single

control point only influences those intervals where it is active is a highly desirable property,

http://en.wikipedia.org/wiki/Geometric_continuity
http://en.wikipedia.org/wiki/Geometric_continuity
http://en.wikipedia.org/wiki/Invariant_(mathematics)
http://en.wikipedia.org/wiki/Affine_transformation
http://en.wikipedia.org/wiki/Graphical_projection
http://en.wikipedia.org/wiki/Conics
http://en.wikipedia.org/wiki/Numerically_stable
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Weighted
http://en.wikipedia.org/wiki/Continuous_function
http://en.wikipedia.org/wiki/Differentiable
http://en.wikipedia.org/wiki/Knot_(graph_theory)

131

known as local support. In modeling, it allows the changing of one part of a surface while

keeping other parts equal.

Adding more control points allows better approximation to a given curve, although only a certain

class of curves can be represented exactly with a finite number of control points. NURBS curves

also feature a scalar weight for each control point. This allows for more control over the shape of

the curve without unduly raising the number of control points. In particular, it adds conic

sections like circles and ellipses to the set of curves that can be represented exactly. The term

rational in NURBS refers to these weights.

The control points can have any dimensionality. One-dimensional points just define a scalar

function of the parameter. These are typically used in image processing programs to tune the

brightness and colour curves. Three-dimensional control points are used abundantly in 3D

modeling, where they are used in the everyday meaning of the word 'point', a location in 3D

space. Multi-dimensional points might be used to control sets of time-driven values, e.g. the

different positional and rotational settings of a robot arm. NURBS surfaces are just an

application of this. Each control 'point' is actually a full vector of control points, defining a curve.

These curves share their degree and the number of control points, and span one dimension of the

parameter space. By interpolating these control vectors over the other dimension of the

parameter space, a continuous set of curves is obtained, defining the surface.

3.5.5 The knot vector

The knot vector is a sequence of parameter values that determines where and how the control

points affect the NURBS curve. The number of knots is always equal to the number of control

points plus curve degree plus one. The knot vector divides the parametric space in the intervals

mentioned before, usually referred to as knot spans. Each time the parameter value enters a new

knot span, a new control point becomes active, while an old control point is discarded. It follows

that the values in the knot vector should be in non-decreasing order, so (0, 0, 1, 2, 3, 3) is valid

while (0, 0, 2, 1, 3, 3) is not.

Consecutive knots can have the same value. This then defines a knot span of zero length, which

implies that two control points are activated at the same time (and of course two control points

become deactivated). This has impact on continuity of the resulting curve or its higher

derivatives; for instance, it allows the creation of corners in an otherwise smooth NURBS curve.

A number of coinciding knots is sometimes referred to as a knot with a certain multiplicity.

Knots with multiplicity two or three are known as double or triple knots. The multiplicity of a

knot is limited to the degree of the curve; since a higher multiplicity would split the curve into

disjoint parts and it would leave control points unused. For first-degree NURBS, each knot is

paired with a control point.

http://en.wikipedia.org/wiki/Dimensionality
http://en.wikipedia.org/wiki/Scalar_(mathematics)

132

The knot vector usually starts with a knot that has multiplicity equal to the order. This makes

sense, since this activates the control points that have influence on the first knot span. Similarly,

the knot vector usually ends with a knot of that multiplicity. Curves with such knot vectors start

and end in a control point.

The individual knot values are not meaningful by themselves; only the ratios of the difference

between the knot values matter. Hence, the knot vectors (0, 0, 1, 2, 3, 3) and (0, 0, 2, 4, 6, 6)

produce the same curve. The positions of the knot values influences the mapping of parameter

space to curve space. Rendering a NURBS curve is usually done by stepping with a fixed stride

through the parameter range. By changing the knot span lengths, more sample points can be used

in regions where the curvature is high. Another use is in situations where the parameter value has

some physical significance, for instance if the parameter is time and the curve describes the

motion of a robot arm. The knot span lengths then translate into velocity and acceleration, which

are essential to get right to prevent damage to the robot arm or its environment. This flexibility in

the mapping is what the phrase non uniform in NURBS refers to.

Necessary only for internal calculations, knots are usually not helpful to the users of modeling

software. Therefore, many modeling applications do not make the knots editable or even visible.

It's usually possible to establish reasonable knot vectors by looking at the variation in the control

points. More recent versions of NURBS software (e.g., Autodesk Maya and Rhinoceros 3D)

allow for interactive editing of knot positions, but this is significantly less intuitive than the

editing of control points.

3.5.6 Order of NURBS

The order of a NURBS curve defines the number of nearby control points that influence any

given point on the curve. The curve is represented mathematically by a polynomial of degree one

less than the order of the curve. Hence, second-order curves (which are represented by linear

polynomials) are called linear curves, third-order curves are called quadratic curves, and fourth-

order curves are called cubic curves. The number of control points must be greater than or equal

to the order of the curve.

In practice, cubic curves are the ones most commonly used. Fifth- and sixth-order curves are

sometimes useful, especially for obtaining continuous higher order derivatives, but curves of

higher orders are practically never used because they lead to internal numerical problems and

tend to require disproportionately large calculation times.

3.5.6.1 Construction of the basis functions

The basis functions used in NURBS curves are usually denoted as Ni,n(u), in which i corresponds

to the i-th control point, and n corresponds with the degree of the basis function. The parameter

http://en.wikipedia.org/wiki/Autodesk_Maya
http://en.wikipedia.org/wiki/Rhinoceros_3D

133

dependence is frequently left out, so we can write Ni,n. The definition of these basis functions is

recursive in n. The degree-0 functions Ni,0 are piecewise constant functions. They are one on the

corresponding knot span and zero everywhere else. Effectively, Ni,n is a linear interpolation of

Ni,n − 1 and Ni + 1,n − 1. The latter two functions are non-zero for n knot spans, overlapping for n − 1

knot spans. The function Ni,n is computed as

From bottom to top: Linear basis functions N1,1 (blue) and N2,1 (green), their weight functions f

and g and the resulting quadratic basis function. The knots are 0, 1, 2 and 2.5

Ni,n = fi,nNi,n − 1 + gi + 1,nNi + 1,n − 1

fi rises linearly from zero to one on the interval where Ni,n − 1 is non-zero, while gi + 1 falls from

one to zero on the interval where Ni + 1,n − 1 is non-zero. As mentioned before, Ni,1 is a triangular

function, nonzero over two knot spans rising from zero to one on the first, and falling to zero on

the second knot span. Higher order basis functions are non-zero over corresponding more knot

spans and have correspondingly higher degree. If u is the parameter, and ki is the i-th knot, we

can write the functions f and g as

and

The functions f and g are positive when the corresponding lower order basis functions are non-

zero. By induction on n it follows that the basis functions are non-negative for all values of n and

u. This makes the computation of the basis functions numerically stable.

Again by induction, it can be proved that the sum of the basis functions for a particular value of

the parameter is unity. This is known as the partition of unity property of the basis functions.

Fig 4.1(g): Linear basis functions

http://en.wikipedia.org/wiki/Mathematical_induction
http://en.wikipedia.org/wiki/File:Nurbsbasislin2.png
http://en.wikipedia.org/wiki/File:Nurbsbasisquad2.png
http://en.wikipedia.org/wiki/File:Nurbsbasislin2.png
http://en.wikipedia.org/wiki/File:Nurbsbasisquad2.png
http://en.wikipedia.org/wiki/File:Nurbsbasislin2.png
http://en.wikipedia.org/wiki/File:Nurbsbasisquad2.png
http://en.wikipedia.org/wiki/File:Nurbsbasislin2.png
http://en.wikipedia.org/wiki/File:Nurbsbasisquad2.png

134

Fig 4.1(h): Quadratic basis functions

The figures show the linear and the quadratic basis functions for the knots {..., 0, 1, 2, 3, 4, 4.1,

5.1, 6.1, 7.1, ...}

One knot span is considerably shorter than the others. On that knot span, the peak in the

quadratic basis function is more distinct, reaching almost one. Conversely, the adjoining basis

functions fall to zero more quickly. In the geometrical interpretation, this means that the curve

approaches the corresponding control point closely. In case of a double knot, the length of the

knot span becomes zero and the peak reaches one exactly. The basis function is no longer

differentiable at that point. The curve will have a sharp corner if the neighbour control points are

not collinear.

3.5.7 General form of a NURBS curve

Using the definitions of the basis functions Ni,n from the previous paragraph, a NURBS curve

takes the following form:

In this, k is the number of control points and wi are the corresponding weights. The

denominator is a normalizing factor that evaluates to one if all weights are one. This can be seen

from the partition of unity property of the basis functions. It is customary to write this as

in which the functions

are known as the rational basis functions.

3.5.8. Manipulating NURBS objects

135

A number of transformations can be applied to a NURBS object. For instance, if some curve is

defined using a certain degree and N control points, the same curve can be expressed using the

same degree and N+1 control points. In the process a number of control points change position

and a knot is inserted in the knot vector. These manipulations are used extensively during

interactive design. When adding a control point, the shape of the curve should stay the same,

forming the starting point for further adjustments. A number of these operations are discussed

below.

3.5.9 Knot Operations

3.5.9.1 Knot insertion

As the term suggests, knot insertion inserts a knot into the knot vector. If the degree of the curve

is n, then n − 1 control points are replaced by n new ones. The shape of the curve stays the same.

A knot can be inserted multiple times, up to the maximum multiplicity of the knot. This is

sometimes referred to as knot refinement and can be achieved by an algorithm that is more

efficient than repeated knot insertion.

3.5.9.2 Knot removal

Knot removal is the reverse of knot insertion. Its purpose is to remove knots and the associated

control points in order to get a more compact representation. Obviously, this is not always

possible while retaining the exact shape of the curve. In practice, a tolerance in the accuracy is

used to determine whether a knot can be removed. The process is used to clean up after an

interactive session in which control points may have been added manually, or after importing a

curve from a different representation, where a straightforward conversion process leads to

redundant control points.

3.5.9.3 Degree elevation

A NURBS curve of a particular degree can always be represented by a NURBS curve of higher

degree. This is frequently used when combining separate NURBS curves, e.g. when creating a

NURBS surface interpolating between a set of NURBS curves or when unifying adjacent curves.

In the process, the different curves should be brought to the same degree, usually the maximum

degree of the set of curves. The process is known as degree elevation.

3.5.9.4 Curvature

136

The most important property in differential geometry is the curvature κ. It describes the local

properties (edges, corners, etc.) and relations between the first and second derivative, and thus,

the precise curve shape. Having determined the derivatives it is easy to compute the curvature k

of shapes

or approximated as the arclength from the second derivate κ = | r''(so) | . The direct computation

of the curvature κ with these equations is the big advantage of parameterized curves against their

polygonal representations.

4.0 Conclusion

Editing NURBS curves and surfaces is highly intuitive and predictable. Control points are

always either connected directly to the curve/surface or act as if they were connected by a rubber

band. Depending on the type of user interface, editing can be realized via an element‘s control

points, which are most obvious and common for Bézier curves, or via higher level tools such as

spline modeling or hierarchical editing.

5.0 Summary

Curves are used when creating 3D models, vector images, animations. There is a great variety of

curves. Some are easy to use, some are flexible enough to describe a large variety of shapes, and

some are simple enough to be implemented and accelerated by graphics hardware. Bézier curves

are widely used in computer graphics to model smooth curves. A B-Spline consists of multiple

Bézier arcs and provides a unified mechanism how to define continuity in the joins.

6.0 Tutor Marked Assignment

1. What do you understand by Curves and surfaces?

2. Identify Applications of Bezier curves.

3. State the properties of Bezier curves

4. Highlight the usefulness of NURB curves and surfaces.

7.0 References/Further Reading

1. Ed Angel (1991) Interactive Computer Graphics- A Top-Down Approach with OpenGL,

Fifth Edition, Addison-Wesley 2009 ISBN 0-321-53586-3

2. Donald Hearn and M. Pauline Baker (1997) Computer Graphics, C Version (2nd

Edition), Prentice Hall, 1997, ISBN: 0135309247

http://en.wikipedia.org/wiki/Differential_geometry
http://en.wikipedia.org/wiki/Curvature
http://en.wikipedia.org/wiki/B%C3%A9zier_curve

137

3. Paul Bourke: Bézier Surfaces (in 3D), 1996

http://local.wasp.uwa.edu.au/~pbourke/geometry/bezier/index.html

4. Donald Knuth: Metafont: the Program, Addison-Wesley 1986, pp. 123–131.

5. Dr Thomas Sederberg, BYU Bézier curves, 2003

http://www.tsplines.com/resources/class_notes/Bezier_curves.pdf

6. David F. Rogers: An Introduction to NURBS with Historical Perspective

ISBN-13:978-1558606692.

7. Demidov, Evgeny. "NonUniform Rational B-splines (NURBS) - Perspective projection".

An Interactive Introduction to Splines. Ibiblio. http://www.ibiblio.org/e-

notes/Splines/NURBS.htm. Retrieved 2010-02-14

8. Les Piegl and Wayne Tiller: The NURBS Book. Springer-Verlag. Newyork, NY. Second

Edition, 1997.

MODULE 4 – Curves and surfaces, image and the human visual system

UNIT 2: Colour theory

Contents Pages

1.0 Introduction to colour

theory…...…….…………………………………………………135

2.0 Objectives……………………………………………………………………………...135

3.0 Main Content………………………………………………………………....………..135

 3.1 Definition of light………….….……………………………………………….135

3.2 Colour

concepts…………………………………………………………………137

3.3 RGB Colour

model……………………………………………………………...139

3.4 YIQ Colour

space……………….………………………………………………140

3.5 CMYK colour

model……………………………………………………………141

138

3.6 HSL and HSV …………………………………………………………………142

4.0 Conclusion………………………………………………………………………………….....143

5.0 Summary……………………………………………………………………………….143

6.0 Tutor Marked Assignment……………………………………………………………..143

7.0 References/Further

Reading…………………………………………………………………….….143

1.0 Introduction

Colour theory is a body of practical guidance to colour mixing and the visual impacts of specific

colour combinations. A tradition of "colour theory" began in the 18th century, initially within a

partisan controversy around Isaac Newton's theory of colour and the nature of so-called primary

colours. From there it developed as an independent artistic tradition with only superficial

reference to colourimetry and vision science.

2.0 Objectives

On completing this unit, you would be able to:

1. Understand the properties of light and the human vision

2. Understand the various colour theories.

3. Differentiate the various colour models.

3.0 Main Content

http://en.wikipedia.org/wiki/Color
http://en.wikipedia.org/wiki/Isaac_Newton
http://en.wikipedia.org/wiki/Primary_color
http://en.wikipedia.org/wiki/Primary_color
http://en.wikipedia.org/wiki/Colorimetry
http://en.wikipedia.org/wiki/Vision_science

139

3.1 Definition of Light

Light is electromagnetic radiation that is visible to the human eye; and is responsible for the

sense of sight. Light travels in a straight line under normal circumstances - i.e. travelling through

a uniform medium. Our visual systems rely heavily on this fact, 'back-projecting' rays that enter

our eyes, to the probable origin of the light rays. Objects that we see around us can usually be

assumed to be where they appear to be, as long as the light from them has travelled to our eyes in

a straight line. However, the following phenomena can alter the path or nature of the light. The

remaining part of this section discusses the properties of light.

1. Absorption of light

Light falling on an object may be absorbed, transmitted, or reflected. What happens to it

depends on the colour of the object: a red object reflects red light and absorbs much of the

rest of the other colours that we see. The colour of an object is that colour which is reflected

rather than absorbed.

2. Reflection of light

Reflection of light is the most familiar property of light, since it is what enables us to see

objects around us. Light from a source, such as the Sun, or a lamp, travels in a straight line

until it strikes an object, at which point it may be absorbed, transmitted, or reflected.

Reflection occurs when waves encounter a boundary that does not absorb the radiation's

energy and bounces the waves off the surface. The incoming light wave is referred to as an

incident wave and the wave that is bounced from the surface is called the reflected wave.

Those surfaces which reflect the most light appear white, or silver. A highly polished,

smooth and flat silver surface acts as a mirror, reflecting a perfect image of the world around

it.

3. Refraction of light

Light that is transmitted through a medium will usually be deviated somewhat from the

straight path it was previously following. This phenomenon is familiar with transparent

objects such as glasses and lenses - objects seen through them appear larger, smaller, or

distorted. Place a stick partially into water and it appears to be bent at the surface.

Refraction is an important characteristic of lenses that allows them to focus a beam of light

onto a single point. Refraction occurs as light passes from a one medium to another when

there is a difference in the index of refraction between the two materials.

4. Interference of light

http://encyclozine.com/science/astronomy/solar/sun

140

Interference is the net effect of the combination of two or more wave trains moving on

intersecting or coincident paths. The effect is that of the addition of the amplitudes of the

individual waves at each point affected by more than one wave.

If two of the components are of the same frequency and phase (i.e., they vibrate at the same

rate and are maximum at the same time), the wave amplitudes are reinforced, producing

constructive interference; but, if the two waves are out of phase by 1/2 period (i.e., one is

minimum when the other is maximum), the result is destructive interference, producing

complete annulment if they are of equal amplitude. One of the best examples of interference

is demonstrated by the light reflected from a film of oil floating on water or a soap bubble,

which reflects a variety of beautiful colours when illuminated by natural or artificial light

sources.

5. Diffraction of light

Diffraction occurs when a light wave passes by a corner or through an opening or slit that is

physically the approximate size of, or even smaller than, that light's wavelength. This is a

specialized case of light scattering in which an object with regularly repeating features (such

as a diffraction grating) produces an orderly diffraction of light in a diffraction pattern. In the

real world, most objects are very complex in shape and should be considered to be composed

of many individual diffraction features that can collectively produce a random scattering of

light.

6. Polarization of light

Natural sunlight and most forms of artificial illumination transmit light waves whose electric

field vectors vibrate in all perpendicular planes with respect to the direction of propagation.

When the electric field vectors are restricted to a single plane by filtration then the light is

said to be polarized with respect to the direction of propagation and all waves vibrate in the

same plane.

3.2 Colour concepts

Understanding colour on the computer can be a bit tricky since the computer makes use of more

than one type of colour model. There are two types of colour spaces - additive and subtractive

colours. Additive colours are the colours that are inherent in light. They are the colours

indigenous to monitors, digital cameras, and scanners. The human eyes, also, sees these colours.

They are red, green, and blue (RGB). They are called primary additive colours because when

added together, they form white.

141

Subtractive colours are those used in the printing trades such as dyes, inks, and pigments. These

colours are cyan, magenta, and yellow. These colours are called absorbing or subtractive colours

since when light is absorbed by all of them, they produce black. These are the colours used in

printers. They are commonly referred to as CMY colours. However, usually one sees CMYK. K

stands for a truer black since when 100% of C, M, and Y are combined; the resulting colour is a

muddy dark brown. All of these colours are related.

For example:

 white = red + green + blue black = cyan + magenta + yellow

 cyan = green + blue red = yellow + magenta

 magenta = blue + red green = yellow + cyan

 yellow = red + green blue = cyan + magenta

RGB and CMY colours form a complementary relationship.

 Red.........Cyan

 Green......Magenta

 Blue........Yellow

Computers are capable of generating images of varying numbers of colours. These can range

from 16 colours to 16 million colours. If an image is created with only 16 colours and this image

is turned into a grayscale image, there are only a certain number of shades of gray possible.

Likewise, if an image that has 16 million colours is turned into a grayscale image, there are many

more shades of gray even though the human eye cannot discern them all. How can the computer

vary the number of colours or shades of gray? The computer monitor is made up of red, green,

and blue phosphors or light producing elements. Each of the colours associated with a pixel

(picture element) can have attributed to it a certain number of colours. Bit-depth determines how

many colours or levels of gray each pixel carries. In scanning for example, a bit-depth of 24

means that the red, green, and blue sources of light each have 8 bits of colour assigned to them.

The more colour bits assigned to a pixel, the more colours can be displayed and, theoretically,

the more shades of gray. However, the human eye can only see a certain number of shades of

gray. Also, not all visual colours can be transmitted to the printed medium. Thus, for example,

when a scanner advertises that it can produce a bit-depth of 36, this bit-depth will not necessarily

produce a better image than one with a bit-depth of 30 or even 24.

There are other models for assigning colours to an image:

 HSB = Hue, Saturation, & Brightness

 HSL=Hue Saturation, & Lightness

 HSV=Hue, Saturation, & Value Colour Space

142

 Hue = The colour of something

 Saturation = The strength of a colour

 Value = How dark or light is a colour

3.2.1 Additive colour

An additive colour model involves light emitted directly from a source or illuminant of some

sort. The additive reproduction process usually uses red, green and blue light to produce the

other colours. Combining one of these additive primary colours with another in equal amounts

produces the additive secondary colours cyan, magenta, and yellow. Combining all three primary

lights (colours) in equal intensities produces white. Varying the luminosity of each light (colour)

eventually reveals the full gamut of those three lights (colours).

Computer monitors and televisions are the most common form of additive light. The coloured

pixels do not overlap on the screen, but when viewed from a sufficient distance, the light from

the pixels diffuses to overlap on the retina. Another common use of additive light is the projected

light used in theatrical lighting, such as plays, concerts, circus shows, and night clubs.

Results obtained when mixing additive colours are often counterintuitive for people accustomed

to the more everyday subtractive colour system of pigments, dyes, inks and other substances

which present colour to the eye by reflection rather than emission. For example, in subtractive

colour systems green is a combination of yellow and blue; in additive colour, red + green =

yellow and no simple combination will yield green. Additive colour is a result of the way the eye

detects colour, and is not a property of light. There is a vast difference between yellow light, with

a wavelength of approximately 580 nm, and a mixture of red and green light. However, both

stimulate our eyes in a similar manner, so we do not detect that difference.

3.2.2 Subtractive colour

A subtractive colour model explains the mixing of paints, dyes, inks, and natural colourants to

create a full range of colours, each caused by subtracting (that is, absorbing) some wavelengths

of light and reflecting the others. The colour that a surface displays depends on which colours of

the electromagnetic spectrum are reflected by it and therefore made visible. Subtractive colour

systems start with light, presumably white light. Coloured inks, paints, or filters between the

viewer and the light source or reflective surface subtract wavelengths from the light, giving it

colour. If the incident light is other than white, our visual mechanisms are able to compensate

well, but not perfectly, often giving a flawed impression of the "true" colour of the surface.

http://en.wikipedia.org/wiki/Light
http://en.wikipedia.org/wiki/Red
http://en.wikipedia.org/wiki/Green
http://en.wikipedia.org/wiki/Blue
http://en.wikipedia.org/wiki/Primary_color
http://en.wikipedia.org/wiki/Secondary_color
http://en.wikipedia.org/wiki/Cyan
http://en.wikipedia.org/wiki/Magenta
http://en.wikipedia.org/wiki/Yellow
http://en.wikipedia.org/wiki/White
http://en.wikipedia.org/wiki/Luminosity
http://en.wikipedia.org/wiki/Gamut
http://en.wikipedia.org/wiki/Subtractive_color
http://en.wikipedia.org/wiki/Emission_%28electromagnetic_radiation%29
http://en.wikipedia.org/wiki/Human_eye
http://en.wikipedia.org/wiki/Paint
http://en.wikipedia.org/wiki/Dye
http://en.wikipedia.org/wiki/Ink
http://en.wikipedia.org/wiki/Color
http://en.wikipedia.org/wiki/Light
http://en.wikipedia.org/wiki/Electromagnetic_spectrum

143

figure 4.2(a): Additive Colour system

Conversely, additive colour systems start without light (black). Light sources of various

wavelengths combine to make a colour. In either type of system, three primary colours are

combined to stimulate humans‘ trichromatic colour vision, sensed by the three types of cone

cells in the eye, giving an apparently full range.

3.3 RGB colour model

The RGB colour model is an additive colour model in which red, green, and blue light is added

together in various ways to reproduce a broad array of colours. The name of the model comes

from the initials of the three additive primary colours, red, green, and blue.

The main purpose of the RGB colour model is for the sensing, representation, and display of

images in electronic systems, such as televisions and computers, though it has also been used in

conventional photography. Before the electronic age, the RGB colour model already had a solid

theory behind it, based in human perception of colours.

RGB is a device-dependent colour model: different devices detect or reproduce a given RGB

value differently, since the colour elements (such as phosphors or dyes) and their response to the

individual R, G, and B levels vary from manufacturer to manufacturer, or even in the same

device over time. Thus an RGB value does not define the same colour across devices without

some kind of colour management.

Typical RGB input devices are colour TV and video cameras, image scanners, and digital

cameras. Typical RGB output devices are TV sets of various technologies (CRT, LCD, plasma,

etc.), computer and mobile phone displays, video projectors, multicolour LED displays, and

large screens such as JumboTron, etc. Colour printers, on the other hand, are not RGB devices,

but subtractive colour devices (typically CMYK colour model).

3.4 YIQ Colour space

http://en.wikipedia.org/wiki/Additive_color
http://en.wikipedia.org/wiki/Primary_color
http://en.wikipedia.org/wiki/Trichromatic
http://en.wikipedia.org/wiki/Color_vision
http://en.wikipedia.org/wiki/Cone_cell
http://en.wikipedia.org/wiki/Cone_cell
http://en.wikipedia.org/wiki/Additive_color
http://en.wikipedia.org/wiki/Color_model
http://en.wikipedia.org/wiki/Red
http://en.wikipedia.org/wiki/Green
http://en.wikipedia.org/wiki/Blue
http://en.wikipedia.org/wiki/Color
http://en.wikipedia.org/wiki/Additive_primaries
http://en.wikipedia.org/wiki/Photography
http://en.wikipedia.org/wiki/Trichromacy
http://en.wikipedia.org/wiki/Color_management
http://en.wikipedia.org/wiki/Professional_video_camera
http://en.wikipedia.org/wiki/Image_scanner
http://en.wikipedia.org/wiki/Digital_camera
http://en.wikipedia.org/wiki/Digital_camera
http://en.wikipedia.org/wiki/Cathode_ray_tube
http://en.wikipedia.org/wiki/Liquid_crystal_display_television
http://en.wikipedia.org/wiki/Plasma_display
http://en.wikipedia.org/wiki/Computer_display
http://en.wikipedia.org/wiki/Mobile_phone
http://en.wikipedia.org/wiki/Video_projector
http://en.wikipedia.org/wiki/LED
http://en.wikipedia.org/wiki/JumboTron
http://en.wikipedia.org/wiki/Subtractive_color
http://en.wikipedia.org/wiki/CMYK_color_model

144

YIQ is the colour space used by the NTSC colour TV system, employed mainly in North and

Central America, and Japan. It is currently in use only for low-power television stations, as full-

power analog transmission was ended by the U.S. Federal Communications Commission (FCC).

It is still federally mandated for these transmissions as shown in this excerpt of the current FCC

rules and regulations part 73 "TV transmission standard".

The YIQ system is intended to take advantage of human colour-response characteristics. The eye

is more sensitive to changes in the orange-blue (I) range than in the purple-green range (Q) —

therefore less bandwidth is required for Q than for I. Broadcast NTSC limits I to 1.3 MHz and Q

to 0.4 MHz. I and Q are frequency interleaved into the 4 MHz Y signal, which keeps the

bandwidth of the overall signal down to 4.2 MHz. In YUV systems, since U and V both contain

information in the orange-blue range, both components must be given the same amount of

bandwidth as I to achieve similar colour fidelity.

Figure 4.2(b): YIQ colour space

Very few television sets perform true I and Q decoding, due to the high costs of such an

implementation. Compared to the cheaper R-Y and B-Y decoding which requires only one filter,

I and Q each requires a different filter to satisfy the bandwidth differences between I and Q.

These bandwidth differences also requires that the 'I' filter include a time delay to match the

longer delay of the 'Q' filter. The Rockwell Modular Digital Radio (MDR) was one I and Q

decoding set, which in 1997 could operate in frame-at-a-time mode with a PC or in realtime with

the Fast IQ Processor (FIQP). Some RCA "Colourtrak" home TV receivers made circa 1985 not

only used I/Q decoding, but also advertised its benefits along with its comb filtering benefits as

full "100 percent processing" to deliver more of the original colour picture content. Earlier, more

than one brand of colour TV (RCA, Arvin) used I/Q decoding in the 1954 or 1955 model year on

models utilizing screens about 13 inches (measured diagonally). The original Advent projection

television used I/Q decoding. Around 1990, at least one manufacturer (Ikegami) of professional

studio picture monitors advertised I/Q decoding.

3.5 CMYK colour model

http://en.wikipedia.org/wiki/Color_space
http://en.wikipedia.org/wiki/NTSC
http://en.wikipedia.org/wiki/North_America
http://en.wikipedia.org/wiki/Central_America
http://en.wikipedia.org/wiki/Japan
http://en.wikipedia.org/wiki/Federal_Communications_Commission
http://en.wikipedia.org/wiki/Bandwidth_%28signal_processing%29
http://en.wikipedia.org/wiki/Colortrak
http://en.wikipedia.org/wiki/Comb_filter
http://en.wikipedia.org/wiki/File:YIQ_IQ_plane.svg

145

The CMYK colour model (process colour, four colour) is a subtractive colour model, used in

colour printing, and is also used to describe the printing process itself. CMYK refers to the four

inks used in some colour printing: cyan, magenta, yellow, and key (black). Though it varies by

print house, press operator, press manufacturer and press run, ink is typically applied in the order

of the abbreviation.

Figure 4.2(c): CYMK colour model

The "K" in CMYK stands for key since in four-colour printing cyan, magenta, and yellow

printing plates are carefully keyed or aligned with the key of the black key plate. Some sources

suggest that the "K" in CMYK comes from the last letter in "black" and was chosen because B

already means blue. However, this explanation, though plausible and useful as a mnemonic, is

incorrect.

The CMYK model works by partially or entirely masking colours on a lighter, usually white,

background. The ink reduces the light that would otherwise be reflected. Such a model is called

subtractive because inks "subtract" brightness from white.

In additive colour models such as RGB, white is the "additive" combination of all primary

coloured lights, while black is the absence of light. In the CMYK model, it is the opposite: white

is the natural colour of the paper or other background, while black results from a full

combination of coloured inks. To save money on ink, and to produce deeper black tones,

unsaturated and dark colours are produced by using black ink instead of the combination of cyan,

magenta and yellow.

3.6 HSL and HSV

HSL stands for hue, saturation, and lightness, and is often also called HLS. HSV stands for hue,

saturation, and value, and is also often called HSB (B for brightness). A third model, common in

computer vision applications, is HSI, for hue, saturation, and intensity. Unfortunately, while

typically consistent, these definitions are not standardized, and any of these abbreviations might

be used for any of these three or several other related cylindrical models.

http://en.wikipedia.org/wiki/Subtractive_color
http://en.wikipedia.org/wiki/Color_model
http://en.wikipedia.org/wiki/Color_printing
http://en.wikipedia.org/wiki/Cyan
http://en.wikipedia.org/wiki/Magenta
http://en.wikipedia.org/wiki/Yellow
http://en.wikipedia.org/wiki/Black
http://en.wikipedia.org/wiki/Printing_press
http://en.wikipedia.org/wiki/Key_plate
http://en.wikipedia.org/wiki/Mnemonic
http://en.wikipedia.org/wiki/Brightness
http://en.wikipedia.org/wiki/Additive_color
http://en.wikipedia.org/wiki/RGB_color_model
http://en.wikipedia.org/wiki/Primary_colors
http://en.wikipedia.org/wiki/Saturation_%28color_theory%29
http://en.wikipedia.org/wiki/File:SubtractiveColor.svg
http://en.wikipedia.org/wiki/File:CMYK_color_swatches.svg
http://en.wikipedia.org/wiki/File:SubtractiveColor.svg
http://en.wikipedia.org/wiki/File:CMYK_color_swatches.svg

146

HSL and HSV are the two most common cylindrical-coordinate representations of points in an

RGB colour model, which rearrange the geometry of RGB in an attempt to be more intuitive and

perceptually relevant than the cartesian (cube) representation. They were developed in the 1970s

for computer graphics applications, and are used for colour pickers, in colour-modification tools

in image editing software, and less commonly for image analysis and computer vision.

Figure 4.2 (d): HSL and HSV Colour models

In each cylinder, the angle around the central vertical axis corresponds to "hue", the distance

from the axis corresponds to "saturation", and the distance along the axis corresponds to

"lightness", "value" or "brightness". Note that while "hue" in HSL and HSV refers to the same

attribute, their definitions of "saturation" differ dramatically. Because HSL and HSV are simple

transformations of device-dependent RGB models, the physical colours they define depend on

the colours of the red, green, and blue primaries of the device or of the particular RGB space,

and on the gamma correction used to represent the amounts of those primaries. Each unique

RGB device therefore has unique HSL and HSV spaces to accompany it, and numerical HSL or

HSV values describe a different colour for each basis RGB space.

Both of these representations are used widely in computer graphics, and one or the other of them

is often more convenient than RGB, but both are also criticized for not adequately separating

colour-making attributes, or for their lack of perceptual uniformity. Other more computationally

intensive models, such as CIELAB or CIECAM02 better achieve these goals.

4.0 Conclusion

http://en.wikipedia.org/wiki/Cylindrical_coordinate_system
http://en.wikipedia.org/wiki/RGB_color_model
http://en.wikipedia.org/wiki/Color_vision
http://en.wikipedia.org/wiki/Cartesian_coordinate_system
http://en.wikipedia.org/wiki/Computer_graphics
http://en.wikipedia.org/wiki/Color_tool
http://en.wikipedia.org/wiki/Image_editing
http://en.wikipedia.org/wiki/Image_analysis
http://en.wikipedia.org/wiki/Computer_vision
http://en.wikipedia.org/wiki/Primary_color
http://en.wikipedia.org/wiki/Gamma_correction
http://en.wikipedia.org/w/index.php?title=Perceptual_uniformity&action=edit&redlink=1
http://en.wikipedia.org/wiki/CIELAB
http://en.wikipedia.org/wiki/CIECAM02
http://en.wikipedia.org/wiki/File:Hsl-hsv_models.svg

147

Understanding colour on the computer can be a bit tricky since the computer makes use of more

than one type of colour model. Therefore, a deep understanding of the various colour models is

necessary in order to produce realistic colours on computer graphics

5.0 Summary

Colour theory is a body of practical guidance to colour mixing and the visual impacts of specific

colour combinations. Subtractive colours are those used in the printing trades such as dyes, inks,

and pigments while Additive colours are the colours that are inherent in light. . RGB, YIQ, HSL,

HSV and CYMK are colour models discussed in the unit with varying applications.

6.0 Tutor Marked Assignment

1. What do you understand by colour theory?

2. Explain the following colour models

1. RGB colour model

2. YIQ colour space

3. CYMK colour Model

4. HSV and HSL colour models

3. Identify the properties of light and relate them to colour models discussed

above.

7.0 References/Further Reading

1. Ed Angel (1991) Interactive Computer Graphics- A Top-Down Approach with OpenGL,

Fifth Edition, Addison-Wesley 2009 ISBN 0-321-53586-3

2. Donald Hearn and M. Pauline Baker (1997) Computer Graphics, C Version (2nd

Edition), Prentice Hall, 1997, ISBN: 0135309247

3. O'Connor, Z. (2010). Colour harmony revisited. Colour Research and Application, 35 (4),

pp267-273.

4. Pointer, M. R. & Attridge, G.G. (1998). The number of discernible colours. Colour

Research and Application, 23 (1), pp52-54.

5. Hard, A. & Sivik, L. (2001). A theory of colours in combination - A descriptive model

related to the NCS colour-order system. Colour Research and Application, 26 (1), pp4-

28.

6. Feisner, E. A. (2000). Colour: How to use colour in art and design. London: Laurence

King.

7. Mahnke, F. (1996). Colour, Environment and Human response. New York: John Wiley &

Sons. ISBN-13: 978-0471286677

MODULE 4 – Curves and surfaces, image and the human visual system

Unit 3 - Pixels and images, Vision and colour, HDR images and Optical illusion

Contents Pages

1.0 Introduction………..……………...…….……………………………………………145

http://en.wikipedia.org/wiki/Color

148

2.0 Objectives…………………………………………………………………………….145

3.0 Main Content………………………………………………………………....………145

 3.1 Definition of a pixel…….……….……………………………………………145

3.2 Vision and colour……………………………………………………….………....146

3.3 Alpha compositing……………………………………………………...….....146

3.4 Alpha blending……………………………………………………………….149

3.5 High dynamic range imaging………………………………………………...149

3.6 Optical Illusions……………………………………………………………...151

3.7 Depth and motion perception………………………………………………...153

3.8 Cognitive processes hypothesis……………………………………………...155

4.0 Conclusion………………………………………………………………………..….155

5.0 Summary…………………………………………………………………….….…....155

6.0 Tutor Marked Assignment……………………………………………………..….....155

7.0 References/Further

Reading…………………………………………………………….….….....156

1.0 Introduction

A pixel (short for picture element) is one of the many tiny dots that make up the representation of

a picture in a computer's memory. Each such information element is not really a dot, nor a

square, but an abstract sample. With care, pixels in an image can be reproduced at any size

http://graphics.wikia.com/index.php?title=Representation&action=edit&redlink=1
http://graphics.wikia.com/index.php?title=Picture&action=edit&redlink=1
http://graphics.wikia.com/index.php?title=Computer&action=edit&redlink=1
http://graphics.wikia.com/index.php?title=Sample_(signal)&action=edit&redlink=1

149

without the appearance of visible dots or squares; but in many contexts, they are reproduced as

dots or squares and can be visibly distinct when not fine enough. The intensity of each pixel is

variable; in colour systems, each pixel has typically three or four dimensions of variability such

and Red, Green and Blue, or Cyan, Magenta, Yellow and Black.

2.0 Objectives

On completing this unit, you would be able to:

1. Understand what makes up a pixel.

2. Understand the relationship between vision and colour.

3. Understand alpha compositing and Image anti-aliasing.

3.0 Main Content

3.1 Definition of a Pixel

A pixel is generally thought of as the smallest complete sample of an image. The definition is

highly context sensitive. For example, we can speak of pixels in a visible image (e.g. a printed

page) or pixels carried by one or more electronic signal(s), or represented by one or more digital

value(s), or pixels on a display device, or pixels in a digital camera (photosensor elements). This

list is not exhaustive and depending on context there are several synonyms which are accurate in

particular contexts, e.g. pel, sample, bytes, bits, dots, spots, superset, triad, stripe set, window,

etc. We can also speak of pixels in the abstract, in particular when using pixels as a measure of

resolution, e.g. 2400 pixels per inch or 640 pixels per line. Dots is often used to mean pixels,

especially by computer sales and marketing people, and gives rise to the abbreviation DPI or dots

per inch.

The colour samples that form a digitized image (such as a JPG file used on a web page) are also

called pixels. Depending on how a computer displays an image, these may not be in one-to-one

correspondence with screen pixels. In areas where the distinction is important, the dots in the

image file may be called texels.

In computer programming, an image composed of pixels is known as a bitmapped image or a

raster image. The word raster originates from analogue television technology. Bitmapped

images are used to encode digital video and to produce some types of computer-generated art. In

digital imaging, a pixel, or pel, (picture element) is a single point in a raster image, or the

smallest addressable screen element in a display device; it is the smallest unit of picture that can

be represented or controlled.

Each pixel has its own address. The address of a pixel corresponds to its coordinates. Pixels are

normally arranged in a two-dimensional grid, and are often represented using dots or squares.

Each pixel is a sample of an original image; more samples typically provide more accurate

representations of the original. The intensity of each pixel is variable. In colour image systems, a

http://graphics.wikia.com/index.php?title=Intensity_(physics)&action=edit&redlink=1
http://graphics.wikia.com/index.php?title=JPG&action=edit&redlink=1
http://graphics.wikia.com/index.php?title=Web_page&action=edit&redlink=1
http://graphics.wikia.com/index.php?title=Computer_display&action=edit&redlink=1
http://graphics.wikia.com/index.php?title=Correspondence&action=edit&redlink=1
http://graphics.wikia.com/index.php?title=Screen_pixel&action=edit&redlink=1
http://graphics.wikia.com/index.php?title=Image_file&action=edit&redlink=1
http://graphics.wikia.com/index.php?title=Texel_(graphics)&action=edit&redlink=1
http://graphics.wikia.com/index.php?title=Bitmap&action=edit&redlink=1
http://graphics.wikia.com/index.php?title=Raster_graphics&action=edit&redlink=1
http://graphics.wikia.com/index.php?title=Television&action=edit&redlink=1
http://graphics.wikia.com/index.php?title=Digital_video&action=edit&redlink=1
http://graphics.wikia.com/wiki/Computer-generated_art
http://en.wikipedia.org/wiki/Digital_imaging
http://en.wikipedia.org/wiki/Raster_graphics
http://en.wikipedia.org/wiki/Display_device
http://en.wikipedia.org/wiki/Sampling_(signal_processing)
http://en.wikipedia.org/wiki/Intensity_(physics)

150

colour is typically represented by three or four component intensities such as red, green, and

blue, or cyan, magenta, yellow, and black.

In some contexts (such as descriptions of camera sensors), the term pixel is used to refer to a

single scalar element of a multi-component representation (more precisely called a photosite in

the camera sensor context, although the neologism sensel is sometimes used to describe the

elements of a digital camera's sensor), while in others the term may refer to the entire set of such

component intensities for a spatial position. In colour systems that use chroma subsampling, the

multi-component concept of a pixel can become difficult to apply, since the intensity measures

for the different colour components correspond to different spatial areas in such a representation.

3.2 Vision and Colour

Colour vision is the capacity of an organism or machine to distinguish objects based on the

wavelengths (or frequencies) of the light they reflect, emit, or transmit. Colours can be measured

and quantified in various ways; indeed, a human's perception of colours is a subjective process

whereby the brain responds to the stimuli that are produced when incoming light reacts with the

several types of cone photoreceptors in the eye.

3.3 Alpha Compositing

In computer graphics, alpha compositing is the process of combining an image with a

background to create the appearance of partial or full transparency. It is often useful to render

image elements in separate passes, and then combine the resulting multiple 2D images into a

single, final image in a process called compositing. For example, compositing is used extensively

when combining computer rendered image elements with live footage. In order to combine these

image elements correctly, it is necessary to keep an associated matte for each element. This

matte contains the coverage information—the shape of the geometry being drawn—making it

possible to distinguish between parts of the image where the geometry was actually drawn and

other parts of the image which are empty.

To store matte information, the concept of an alpha channel was introduced by Alvy Ray Smith

in the late 1970s, and fully developed in a 1984 paper by Thomas Porter and Tom Duff. In a 2D

image element, which stores a colour for each pixel, additional data is stored in the alpha channel

with a value between 0 and 1. A value of 0 means that the pixel does not have any coverage

information and is transparent; i.e. there was no colour contribution from any geometry because

the geometry did not overlap this pixel. A value of 1 means that the pixel is opaque because the

geometry completely overlapped the pixel. If an alpha channel is used in an image, it is common

to also multiply the colour by the alpha value, to save on additional multiplications during

compositing. This is usually referred to as premultiplied alpha. Assuming that the pixel colour is

expressed using straight (non-premultiplied) RGBA tuples, a pixel value of (0.0, 0.5, 0.0, 0.5)

http://en.wikipedia.org/wiki/RGB_color_model
http://en.wikipedia.org/wiki/RGB_color_model
http://en.wikipedia.org/wiki/CMYK_color_model
http://en.wiktionary.org/wiki/sensel
http://en.wikipedia.org/wiki/Chroma_subsampling
http://en.wikipedia.org/wiki/Wavelength
http://en.wikipedia.org/wiki/Frequency
http://en.wikipedia.org/wiki/Light
http://en.wikipedia.org/wiki/Color
http://en.wikipedia.org/wiki/Brain
http://en.wikipedia.org/wiki/Cone_cell
http://en.wikipedia.org/wiki/Eye
http://en.wikipedia.org/wiki/Computer_graphics
http://en.wikipedia.org/wiki/Matte_(filmmaking)
http://en.wikipedia.org/wiki/Alvy_Ray_Smith
http://en.wikipedia.org/wiki/Tom_Duff

151

implies a pixel which has 50% of the maximum green intensity and 50% opacity. If the colour

were fully green, its RGBA would be (0, 1, 0, 0.5).

However, if this pixel uses premultiplied alpha, all of the RGB values (0, 1, 0) are multiplied by

0.5 and then the alpha is appended to the end to yield (0, 0.5, 0, 0.5). In this case, the 0.5 value

for the G channel actually indicates 100% green intensity (with 50% opacity). For this reason,

knowing whether a file uses premultiplied or straight alpha is essential to correctly process or

composite it. Premultiplied alpha has some practical advantages over normal alpha blending

because premultiplied alpha blending is associative and linear interpolation gives better results,

although premultiplication can cause a loss of precision and, in extreme cases, a noticeable loss

of quality.

With the existence of an alpha channel, it is possible to express compositing image operations,

using a compositing algebra. For example, given two image elements A and B, the most

common compositing operation is to combine the images such that A appears in the foreground

and B appears in the background. This can be expressed as A over B. In addition to over, Porter

and Duff (1984) defined the compositing operators in, held out by (usually abbreviated out),

atop, and xor (and the reverse operators rover, rin, rout, and ratop) from a consideration of

choices in blending the colours of two pixels when their coverage is, conceptually, overlaid

orthogonally:

Figure 4.3(a): Alpha compositing of image A and B

The over operator is, in effect, the normal painting operation. The in operator is the alpha

compositing equivalent of clipping.

http://en.wikipedia.org/wiki/Associativity
http://en.wikipedia.org/wiki/Linear_interpolation
http://en.wikipedia.org/wiki/Clipping_(computer_graphics)
http://en.wikipedia.org/wiki/File:Alpha_compositing.svg

152

As an example, the over operator can be accomplished by applying the following formula to each

pixel value:

where Co is the result of the operation, Ca is the colour of the pixel in element A, Cb is the colour

of the pixel in element B, and αa and αb are the alpha of the pixels in elements A and B

respectively. If it is assumed that all colour values are premultiplied by their alpha values (ci =

αiCi), we can rewrite the equation for output colour as:

and resulting alpha channel value is

However, this operation may not be appropriate for all applications, since it is not associative.

The associative version of this operation is very similar; simply take the newly computed colour

value and divide it by its new alpha value, as follows:

Image editing applications that allow merging of layers generally prefer this second approach.

3.4 Alpha blending

Alpha blending is a convex combination of two colours allowing for transparency effects in

computer graphics. The value of alpha in the colour code ranges from 0.0 to 1.0, where 0.0

represents a fully transparent colour, and 1.0 represents a fully opaque colour. This corresponds

to "SRC over DST" in Porter and Duff equations.

The value of the resulting colour is given by:

If the destination background is opaque, then dsta = 1, and if you enter it to the upper equation:

http://en.wikipedia.org/wiki/Associative
http://en.wikipedia.org/wiki/Convex_combination
http://en.wikipedia.org/wiki/Color
http://en.wikipedia.org/wiki/Transparency_(graphic)
http://en.wikipedia.org/wiki/Computer_graphic

153

The alpha component may be used to blend to red, green and blue components equally, as in 32-

bit RGBA, or, alternatively, there may be three alpha values specified corresponding to each of

the primary colours for spectral colour filtering.

Note that the RGB colour may be premultiplied, hence saving the additional multiplication

before RGB in the equation above. This can be a considerable saving in processing time given

that images are often made up of millions of pixels.

3.5 High dynamic range imaging

In image processing, computer graphics, and photography, high dynamic range imaging (HDRI

or just HDR) is a set of techniques that allow a greater dynamic range between the lightest and

darkest areas of an image than current standard digital imaging techniques or photographic

methods. This wide dynamic range allows HDR images to more accurately represent the range of

intensity levels found in real scenes, ranging from direct sunlight to faint starlight, and is often

captured by way of a plurality of differently exposed pictures of the same subject matter.

The two main sources of HDR imagery are computer renderings and merging of multiple low-

dynamic-range (LDR) or standard-dynamic-range (SDR) photographs. Tone-mapping

techniques, which reduce overall contrast to facilitate display of HDR images on devices with

lower dynamic range, can be applied to produce images with preserved or exaggerated local

contrast for artistic effect.

3.5.1 Dynamic range in Photography

In photography, dynamic range is measured in Exposure value (EV) differences (known as stops)

between the brightest and darkest parts of the image that show detail. An increase of one EV or

one stop is a doubling of the amount of light.

Dynamic Ranges of Common Devices

Device Stops Contrast

1. LCD display 9.5 700:1 (250:1 - 1750:1)

2. DSLR camera (Canon EOS-1D Mark II) 11 2048:1

3. Print film 7 128:1

4. Human eye 10–14 1024:1 – 16384:1

http://en.wikipedia.org/wiki/Red
http://en.wikipedia.org/wiki/Green
http://en.wikipedia.org/wiki/Blue
http://en.wikipedia.org/wiki/32-bit
http://en.wikipedia.org/wiki/32-bit
http://en.wikipedia.org/wiki/RGBA_color_space
http://en.wikipedia.org/wiki/Primary_color
http://en.wikipedia.org/wiki/Spectral_color
http://en.wikipedia.org/wiki/Filter_(optics)
http://en.wikipedia.org/wiki/Image_processing
http://en.wikipedia.org/wiki/Computer_graphics
http://en.wikipedia.org/wiki/Photography
http://en.wikipedia.org/wiki/Dynamic_range#Photography
http://en.wikipedia.org/wiki/High-dynamic-range_rendering
http://en.wikipedia.org/wiki/Tone_mapping
http://en.wikipedia.org/wiki/Exposure_value
http://en.wikipedia.org/wiki/Canon_EOS-1D_Mark_II

154

Table 4.3: Dynamic ranges of common devices

High-dynamic-range photographs are generally achieved by capturing multiple standard

photographs, often using exposure bracketing, and then merging them into an HDR image.

Digital photographs are often encoded in a camera's raw image format, because 8 bit JPEG

encoding doesn't offer enough values to allow fine transitions (and also introduces undesirable

effects due to the lossy compression).

Any camera that allows manual over- or under-exposure of a photo can be used to create HDR

images. Some cameras have an auto exposure bracketing (AEB) feature with a far greater

dynamic range than others, from the 3 EV of the Canon EOS 40D, to the 18 EV of the Canon

EOS-1D Mark II. As the popularity of this imaging technique grows, several camera

manufactures are now offering built in HDR features. For example, the Pentax K-7 DSLR has an

HDR mode which captures an HDR image and then outputs (only) a tone-mapped JPEG file. The

Canon PowerShot G12 and Canon PowerShot S95 offer similar features in a smaller format.

 3.5.2 Comparison with traditional digital images

Information stored in high-dynamic-range images typically corresponds to the physical values of

luminance or radiance that can be observed in the real world. This is different from traditional

digital images, which represent colours that should appear on a monitor or a paper print.

Therefore, HDR image formats are often called "scene-referred", in contrast to traditional digital

images, which are "device-referred" or "output-referred". Furthermore, traditional images are

usually encoded for the human visual system (maximizing the visual information stored in the

fixed number of bits), which is usually called "gamma encoding" or "gamma correction". The

values stored for HDR images are often gamma compressed (power law) or logarithmically

encoded, or floating-point linear values, since fixed-point linear encodings are increasingly

inefficient over higher dynamic ranges.

HDR images often use a higher number of bits per colour channel than traditional images to

represent many more colours over a much wider dynamic range. 16-bit ("half precision") or 32-

bit floating point numbers are often used to represent HDR pixels. However, when the

appropriate transfer function is used, HDR pixels for some applications can be represented with

as few as 10–12 bits for luminance and 8 bits for chrominance without introducing any visible

quantization artifacts.

3.6 Optical Illusion (Visual Illusion)

An optical illusion (also called a visual illusion) is characterized by visually perceived images

that differ from objective reality. The information gathered by the eye is processed in the brain to

http://en.wikipedia.org/wiki/Bracketing#Exposure_bracketing
http://en.wikipedia.org/wiki/Raw_image_format
http://en.wikipedia.org/wiki/JPEG
http://en.wikipedia.org/wiki/Lossy_compression
http://en.wikipedia.org/wiki/Autobracketing
http://en.wikipedia.org/wiki/Canon_EOS_40D
http://en.wikipedia.org/wiki/Canon_EOS-1D_Mark_II
http://en.wikipedia.org/wiki/Canon_EOS-1D_Mark_II
http://en.wikipedia.org/wiki/Pentax_K-7
http://en.wikipedia.org/wiki/Canon_PowerShot_G12
http://en.wikipedia.org/wiki/Canon_PowerShot_S95
http://en.wikipedia.org/wiki/Luminance
http://en.wikipedia.org/wiki/Radiance
http://en.wikipedia.org/wiki/Digital_images
http://en.wikipedia.org/wiki/Visual_system
http://en.wikipedia.org/wiki/Gamma_correction
http://en.wikipedia.org/wiki/Gamma_correction
http://en.wikipedia.org/wiki/Logarithm
http://en.wikipedia.org/wiki/Floating-point
http://en.wikipedia.org/wiki/Fixed-point_arithmetic
http://en.wikipedia.org/wiki/Channel_(digital_image)
http://en.wikipedia.org/wiki/Half_precision
http://en.wikipedia.org/wiki/Floating_point
http://en.wikipedia.org/wiki/Transfer_function
http://en.wikipedia.org/wiki/Chrominance
http://en.wikipedia.org/wiki/Visual_perception

155

give a perception that does not tally with a physical measurement of the stimulus source. There

are three main types: literal optical illusions that create images that are different from the objects

that make them, physiological ones that are the effects on the eyes and brain of excessive

stimulation of a specific type (brightness, colour, size, position, tilt, movement), and cognitive

illusions, the result of unconscious inferences.

3.6.1 Physiological illusions

Physiological illusions, such as the afterimages following bright lights, or adapting stimuli of

excessively longer alternating patterns (contingent perceptual aftereffect), are presumed to be the

effects on the eyes or brain of excessive stimulation or interaction with contextual or competing

stimuli of a specific type—brightness, colour, position, tile, size, movement, etc. The theory is

that a stimulus follows its individual dedicated neural path in the early stages of visual

processing, and that intense or repetitive activity in that or interaction with active adjoining

channels cause a physiological imbalance that alters perception

Figure 4.2 (c): A scintillating grid illusion. Shape, position, colour,

and 3D contrast converge to produce the illusion of black dots at the intersections.

The Hermann grid illusion and Mach bands are two illusions that are best explained using a

biological approach. Lateral inhibition, where in the receptive field of the retina light and dark

receptors compete with one another to become active, has been used to explain why we see

bands of increased brightness at the edge of a colour difference when viewing Mach bands. Once

a receptor is active it inhibits adjacent receptors. This inhibition creates contrast, highlighting

edges. In the Hermann grid illusion the gray spots appear at the intersection because of the

inhibitory response which occurs as a result of the increased dark surround. Lateral inhibition has

also been used to explain the Hermann grid illusion, but this has been disproved. More recent

"empirical" approaches to optical illusions have had some success in explaining optical

phenomena with which theories based on lateral inhibition have struggled

3.6.2 Cognitive illusions

http://en.wikipedia.org/wiki/Perception
http://en.wikipedia.org/wiki/Cognitive
http://en.wikipedia.org/wiki/Afterimage
http://en.wikipedia.org/wiki/Physiological
http://en.wikipedia.org/wiki/Imbalance
http://en.wikipedia.org/wiki/Grid_illusion
http://en.wikipedia.org/wiki/Contrast_(vision)
http://en.wikipedia.org/wiki/Grid_illusion
http://en.wikipedia.org/wiki/Mach_bands
http://en.wikipedia.org/wiki/Illusion
http://en.wikipedia.org/wiki/Lateral_inhibition
http://en.wikipedia.org/wiki/Receptive_field
http://en.wikipedia.org/wiki/Lateral_inhibition
http://en.wikipedia.org/wiki/Grid_illusion
http://en.wikipedia.org/wiki/Grid_illusion#Theories
http://en.wikipedia.org/wiki/Empirical_theories_of_perception
http://en.wikipedia.org/wiki/File:Grid_illusion.svg

156

Cognitive illusions are assumed to arise by interaction with assumptions about the world, leading

to "unconscious inferences", an idea first suggested in the 19th century by Hermann Helmholtz.

Cognitive illusions are commonly divided into ambiguous illusions, distorting illusions, paradox

illusions, or fiction illusions.

1. Ambiguous illusions are pictures or objects that elicit a perceptual 'switch' between

the alternative interpretations. The Necker cube is a well known example; another

instance is the Rubin vase.

2. Distorting or geometrical-optical illusions are characterized by distortions of size,

length, position or curvature. A striking example is the Café wall illusion. Other

examples is the famous Müller-Lyer illusion and Ponzo illusion.

3. Paradox illusions are generated by objects that are paradoxical or impossible, such as

the Penrose triangle or impossible staircases seen, for example, in M. C. Escher's

Ascending and Descending and Waterfall. The triangle is an illusion dependent on a

cognitive misunderstanding that adjacent edges must join.

4. Fictions are when a figure is perceived even though it is not in the stimulus.

To make sense of the world it is necessary to organize incoming sensations into information

which is meaningful. Gestalt psychologists believe one way this is done is by perceiving

individual sensory stimuli as a meaningful whole. Gestalt organization can be used to explain

many illusions including the Duck-Rabbit illusion where the image as a whole switches back and

forth from being a duck then being a rabbit and why in the figure-ground illusion the figure and

ground are reversible.

Figure 4.2 (d): Kanizsa triangle

In addition, Gestalt theory can be used to explain the illusory contours in the Kanizsa Triangle. A

floating white triangle, which does not exist, is seen. The brain has a need to see familiar simple

objects and has a tendency to create a "whole" image from individual elements. Gestalt means

"form" or "shape" in German. However, another explanation of the Kanizsa Triangle is based in

http://en.wikipedia.org/wiki/Hermann_von_Helmholtz
http://en.wikipedia.org/wiki/Ambiguous_image
http://en.wikipedia.org/wiki/Necker_cube
http://en.wikipedia.org/wiki/Rubin_vase
http://en.wikipedia.org/wiki/Geometrical-optical_illusions
http://en.wikipedia.org/wiki/Caf%C3%A9_wall_illusion
http://en.wikipedia.org/wiki/M%C3%BCller-Lyer_illusion
http://en.wikipedia.org/wiki/Ponzo_illusion
http://en.wikipedia.org/wiki/Penrose_triangle
http://en.wikipedia.org/wiki/Penrose_staircase
http://en.wikipedia.org/wiki/M._C._Escher
http://en.wikipedia.org/wiki/Ascending_and_Descending
http://en.wikipedia.org/wiki/Waterfall_(M._C._Escher)
http://en.wikipedia.org/wiki/Gestalt_psychology
http://en.wikipedia.org/wiki/Figure-ground_(perception)
http://en.wikipedia.org/wiki/Illusory_Contours
http://en.wikipedia.org/wiki/File:Kanizsa_triangle.svg

157

evolutionary psychology and the fact that in order to survive it was important to see form and

edges. The use of perceptual organization to create meaning out of stimuli is the principle behind

other well-known illusions including impossible objects. Our brain makes sense of shapes and

symbols putting them together like a jigsaw puzzle, formulating that which isn't there to that

which is believable.

3.7 Depth and motion perception

Illusions can be based on an individual's ability to see in three dimensions even though the image

hitting the retina is only two dimensional. The Ponzo illusion is an example of an illusion which

uses monocular cues of depth perception to fool the eye.

Figure 4.2 (e): Ponzo illusion

In the Ponzo illusion the converging parallel lines tell the brain that the image higher in the

visual field is farther away therefore the brain perceives the image to be larger, although the two

images hitting the retina are the same size. The Optical illusion seen in a diorama/false

perspective also exploits assumptions based on monocular cues of depth perception. The M. C.

Escher Waterfall painting (lithograph,1961) exploits rules of depth and proximity and our

understanding of the physical world to create an illusion.

Like depth perception, motion perception is responsible for a number of sensory illusions. Film

animation is based on the illusion that the brain perceives a series of slightly varied images

produced in rapid succession as a moving picture. Likewise, when we are moving, as we would

be while riding in a vehicle, stable surrounding objects may appear to move. We may also

perceive a large object, like an airplane, to move more slowly than smaller objects, like a car,

although the larger object is actually moving faster. The Phi phenomenon defined by Max

Wertheimer (Gestalt psychology, (1912) is yet another example of how the brain perceives

motion, which is most often created by blinking lights in close succession.

http://en.wikipedia.org/wiki/Evolutionary_psychology
http://en.wikipedia.org/wiki/Impossible_objects
http://en.wikipedia.org/wiki/Ponzo_illusion
http://en.wikipedia.org/wiki/Ponzo_illusion
http://en.wikipedia.org/wiki/Parallel_(geometry)
http://en.wikipedia.org/wiki/Visual_field
http://en.wikipedia.org/wiki/Diorama
http://en.wikipedia.org/wiki/False_perspective
http://en.wikipedia.org/wiki/False_perspective
http://en.wikipedia.org/wiki/Depth_perception
http://en.wikipedia.org/wiki/M._C._Escher
http://en.wikipedia.org/wiki/M._C._Escher
http://en.wikipedia.org/wiki/Waterfall_(M._C._Escher)
http://en.wikipedia.org/wiki/Depth_perception
http://en.wikipedia.org/wiki/Motion_perception
http://en.wikipedia.org/wiki/Animation
http://en.wikipedia.org/wiki/Phi_phenomenon
http://en.wikipedia.org/wiki/File:Ponzo_illusion.gif

158

Figure 4.2(f): An optical illusion: the two circles seem to move when the viewer's head is

moving forwards and backwards while looking at the black dot.

3.8 Cognitive processes hypothesis

The hypothesis claims that visual illusions occur because the neural circuitry in our visual system

evolves by neural learning, to a system that makes very efficient interpretations of usual 3D

scenes based in the emergence of simplified models in our brain that speed up the interpretation

process but give rise to optical illusions in unusual situations. In this sense, the cognitive

processes hypothesis can be considered a framework for an understanding of optical illusions as

the signature of the empirical statistical way vision has evolved to solve the inverse problem.

Research indicates that 3D vision capabilities emerge and are learned jointly with the planning of

movements. After a long process of learning, an internal representation of the world emerges that

is well adjusted to the perceived data coming from closer objects. The representation of distant

objects near the horizon is less "adequate". In fact, it is not only the Moon that seems larger

when we perceive it near the horizon. In a photo of a distant scene, all distant objects are

perceived as smaller than when we observe them directly using our vision.

The retinal image is the main source driving vision but what we see is a "virtual" 3D

representation of the scene in front of us. We do not see a physical image of the world; we see

objects, and the physical world is not itself separated into objects. We see it according to the way

our brain organizes it. The names, colours, usual shapes and other information about the things

we see pop up instantaneously from our neural circuitry and influence the representation of the

scene. We "see" the most relevant information about the elements of the best 3D image that our

neural networks can produce. The illusions arise when the "judgments" implied in the

unconscious analysis of the scene are in conflict with reasoned considerations about it.

http://en.wikipedia.org/wiki/File:Revolving_circles.svg

159

4.0 Conclusion

A human's perception of colours is a subjective process whereby the brain responds to the stimuli

that are produced when incoming light reacts with the several types of cone photoreceptors in the

eye, which makes it difficult to define its components.

5.0 Summary

In this unit, we have surveyed pixels and imaging, vision and colour perception in the human

brain, alpha bending and optical illusion caused by excessive stimulation or interaction with

contextual or competing stimuli of a specific type. An optical illusion is characterized by visually

perceived images that differ from objective reality

6.0 Tutor Marked Assignment

1. What do you understand by alpha compositing?

2. Explain the human perception of colour

3. Identify the two sources of HDR imagery.

4. Mention the three main types of optical illusion with concrete examples.

7.0 References/Further Reading

1. Ed Angel (1991) Interactive Computer Graphics- A Top-Down Approach with OpenGL,

Fifth Edition, Addison-Wesley 2009 ISBN 0-321-53586-3

2. Donald Hearn and M. Pauline Baker (1997) Computer Graphics, C Version (2nd

Edition), Prentice Hall, 1997, ISBN: 0135309247

3. J.D Foley and A. Van Dam, Fundamentals of Interactive Computer Graphics, 1982

4. Rudolf F. Graf (1999). Modern Dictionary of Electronics. Oxford. ISBN-13:978-

0750698665

5. Michael Goesele (2004). New Acquisition Techniques for Real Objects and Light Sources

in Computer Graphics

6. Porter, Thomas; Tom Duff (1984). "Compositing Digital Images". Computer Graphics

18 (3): 253–259.

http://en.wikipedia.org/wiki/Brain
http://en.wikipedia.org/wiki/Cone_cell
http://en.wikipedia.org/wiki/Eye
http://en.wikipedia.org/wiki/Visual_perception
http://en.wikipedia.org/wiki/Visual_perception
http://books.google.com/?id=o2I1JWPpdusC&pg=PA569
http://books.google.com/?id=ZTJJ8QzNv1wC&pg=PA33&dq=sensel+sensor-element
http://books.google.com/?id=ZTJJ8QzNv1wC&pg=PA33&dq=sensel+sensor-element

160

MODULE 5 – Ray tracing, illumination algorithms and GPGPU

UNIT 1: Ray tracing, BSP Trees and Monte-carlo raytracing

Contents Pages

1.0 Introduction…………….……...…….………………………………………………...158

2.0 Objectives……………………………………………………………………………...158

3.0 Main Content………………………………………………………………....………..158

 3.1 Raytracing.……………………………………………………………………..158

3.2 Some Ray Terminologies…………………………………………………...….159

3.3 Reflection and Refraction…………………………………………...………....161

3.4 Ray Intersection…….…………………………………………….……...…….164

3.5 Colour and Shading……………………………………………….…………….165

3.6 Building a Simple Ray Tracer………………………………….…...…………166

3.7 BSP Trees………....……………………….………...…....................................171

3.8 Bounding volumes…………….….……………………………………………183

3.9 Monte carlo ray tracing……………………………………………...................185

161

4.0 Conclusion…………………………………………...……….......................................185

5.0 Summary……………………………………………………………………………….186

6.0 Tutor Marked Assignment……………………………………………………………..186

7.0 References/Further

Reading…………………………………………………………………….….186

1.0 Introduction

Although, three-dimensional computer graphics have been around for many decades, there has

been a surge of general interest towards the field in the last couple of years. Just a quick glance at

the latest blockbuster movies is enough to see the public's fascination with the new generation of

graphics. As exciting as graphics are, however, there is a definite barrier which prevents most

people from learning about them. For one thing, there is a lot of math and theory involved.

Beyond that, just getting a window to display even simple 2D graphics can often be a daunting

task. Simple 3D graphics method known as ray tracing, which can be understood and

implemented without dealing with much math or the intricacies of windowing systems. The only

math we assume is a basic knowledge of vectors, dot products, and cross products.

2.0 Objectives

On completing this unit, you would be able to:

1. Understand the raytracing

2. Identify the properties of raytracing

3. Build a simple raytracer

3.0 Main Content

3.1 Ray tracing

162

In computer graphics, ray tracing is a technique for generating an image by tracing the path of

light through pixels in an image plane and simulating the effects of its encounters with virtual

objects. The technique is capable of producing a very high degree of visual realism, usually

higher than that of typical scanline rendering methods, but at a greater computational cost. This

makes ray tracing best suited for applications where the image can be rendered slowly ahead of

time, such as in still images and film and television special effects, and more poorly suited for

real-time applications like video games where speed is critical. Ray tracing is capable of

simulating a wide variety of optical effects, such as reflection and refraction, scattering, and

dispersion phenomena (such as chromatic aberration).

A serious disadvantage of ray tracing is low performance. Scanline algorithms and other

algorithms use data coherence to share computations between pixels, while ray tracing normally

starts the process afresh, treating each eye ray separately. However, this separation offers other

advantages, such as the ability to shoot more rays as needed to perform anti-aliasing and improve

image quality where needed. Although, it does handle inter-reflection and optical effects such as

refraction accurately, traditional ray tracing is also not necessarily photorealistic. True

photorealism occurs when the rendering equation is closely approximated or fully implemented.

Implementing the rendering equation gives true photorealism, as the equation describes every

physical effect of light flow. However, this is usually infeasible given the computing resources

required. The realism of all rendering methods, then, must be evaluated as an approximation to

the equation, and in the case of ray tracing, it is not necessarily the most realistic. Other methods,

including photon mapping, are based upon ray tracing for certain parts of the algorithm, yet give

far better results.

3.2 Some Ray Terminologies

Before presenting the full description of ray tracing, we should agree on some basic terminology.

When creating any sort of computer graphics, you must have a list of objects that you want your

software to render. These objects are part of a scene or world (Fig. 5.1(a)), in graphics, this

viewpoint is called the eye or camera. Following this camera analogy, just like a camera needs

film onto which the scene is projected and recorded, in graphics we have a view window on

which we draw the scene. The difference is that while in cameras the film is placed behind the

aperture or focal point, in graphics the view window is in front of the focal point. So, the colour

of each point on real film is caused by a light ray (actually, a group of rays) that passes through

the aperture and hits the film, while in computer graphics each pixel of the final image is caused

by a simulated light ray that hits the view window on its path towards the eye. The results,

however,

.

Our goal is find the colour of each point on the view window. We subdivide the view window

are the same

http://en.wikipedia.org/wiki/Computer_graphics
http://en.wikipedia.org/wiki/Digital_image
http://en.wikipedia.org/wiki/Light
http://en.wikipedia.org/wiki/Pixel
http://en.wikipedia.org/wiki/Image_plane
http://en.wikipedia.org/wiki/Scanline_rendering
http://en.wikipedia.org/wiki/Computation_time
http://en.wikipedia.org/wiki/Special_effects
http://en.wikipedia.org/wiki/Video_game
http://en.wikipedia.org/wiki/Reflection_(physics)
http://en.wikipedia.org/wiki/Refraction
http://en.wikipedia.org/wiki/Light_scattering
http://en.wikipedia.org/wiki/Dispersion_(optics)
http://en.wikipedia.org/wiki/Chromatic_aberration
http://en.wikipedia.org/wiki/Anti-aliasing
http://en.wikipedia.org/wiki/Rendering_equation
http://en.wikipedia.org/wiki/Photon_mapping

163

into small squares, where each square corresponds to one pixel in the final image. If you want to

create an image at the resolution of 640x400, you would break up the view window into a grid of

640 squares across and 400 square down. The real problem, then, is assigning a colour to each

square. This is what ray tracing does.

Figure 5.1(a). The eye, view window, and world.

Ray tracing is so named because it tries to simulate the path that light rays take as they bounce

around within the world - they are traced through the scene. The objective is to determine the

colour of each light ray that strikes the view window before reaching the eye. A light ray can

best be thought of as a single photon (although this is not strictly accurate because light also has

wave properties). The name ``ray tracing'' is a bit misleading because the natural assumption

would be that rays are traced starting at their point of origin, the light source, and towards their

destination, the eye (see Fig. 5.1(a)). This would be an accurate way to do it, but unfortunately it

tends to be very difficult due to the sheer numbers involved. Consider tracing one ray in this

manner through a scene with one light and one object, such as a table. We begin at the light bulb,

but first need to decide how many rays to shoot out from the bulb. Then for each ray we have to

decide in what direction it is going. There is really an infinity of directions in which it can travel

- how do we know which to choose? Assuming these questions have been answered and a

number of photons are being traced. Some will reach the eye directly, others will bounce around

some and then reach the eye, and many, many more will probably never hit the eye at all. For all

the rays that never reach the eye, the effort tracing them is wasted.

164

Figure 5.1(b). Tracing rays from the light source to the eye. Lots of rays are wasted because they

never reach the eye.

In order to save ourselves this wasted effort, we trace only those rays that are guaranteed to hit

the view window and reach the eye. It seems at first that it is impossible to know beforehand

which rays reach the eye. After all, any given ray can bounce around the room many times

before reaching the eye. However, if we look at the problem backwards, we see that it has a very

simple solution. Instead of tracing the rays starting at the light source, we trace them backwards,

starting at the eye. Consider any point on the view window whose colour we're trying to

determine. Its colour is given by the colour of the light ray that passes through that point on the

view window and reaches the eye. We can just as well follow the ray backwards by starting at

the eye and passing through the point on its way out into the scene. The two rays will be

identical, except for their direction: if the original ray came directly from the light source, then

the backwards ray will go directly to the light source; if the original bounced off a table first, the

backwards ray will also bounce off the table. You can see this by looking at Figure 5.1(b) again

and just reversing the directions of the arrows. So the backwards method does the same thing as

the original method, except it does not waste any effort on rays that never reached the eye.

This, then, is how ray tracing works in computer graphics. For each pixel on the view window,

we define a ray that extends from the eye to that point. We follow this ray out into the scene and

as it bounces off of different objects. The final colour of the ray (and therefore of the

corresponding pixel) is given by the colours of the objects hit by the ray as it travels through the

scene.

Just as in the light-source-to-eye method it might take a very large number of bounces before the

ray ever hits the eye, in backwards method it might take many bounces before the ray every hits

the light. Since we need to establish some limit on the number of bounces to follow the ray on,

we make the following approximation: every time a ray hits an object, we follow a single new

ray from the point of intersection directly towards the light source (Fig. 5.1(c)).

165

Figure 5.1(c). We trace a new ray from each ray-object intersection

directly towards the light source

In the figure, there are two rays, a and b, which intersect the purple sphere. To determine the

colour of a, we follow the new ray ‗a‘ directly towards the light source. The colour of a will then

depend on several factors, discussed in Colour and Shading discussed in section 3.4. As you can

see, b will be shadowed because the ray b' towards the light source is blocked by the sphere

itself. Ray a would have also been shadowed if another object blocked the ray a'.

3.3 Reflection and Refraction

Just as shadows are easily handled, so are reflection and refraction. In the above example, we

only considered a single bounce from the eye to the light source. To handle reflection we also

consider multiple bounces from objects, and to handle refraction we consider what happens when

a ray passes through a partially- or fully-transparent object.

If an object is reflective we simply trace a new reflected ray from the point of intersection

towards the direction of reflection. The reflected ray is the mirror image of the original ray,

pointing away from the surface. If the object is to some extent transparent, then we also trace a

refracted ray into the surface. If the materials on either side of the surface have different indices

of refraction, such as air on one side and water on the other, then the refracted ray will be bent,

like the image of a straw in a glass of water. If the same medium exists on both sides of the

surface then the refracted ray travels in the same direction as the original ray and is not bent.

http://www.cs.unc.edu/~rademach/xroads-RT/RTarticle.html#color

166

Figure 5.1d. (a) Reflected ray. (b) Refracted ray

The directions of the reflected and refracted rays are given by the following formulas. For a ray

with direction V, and a surface with normal N (the normal is just the direction perpendicular to

the surface - pointing directly away from it), the reflected ray direction Rl is given by

c1 = -dot_product(N, V)

Rl = V + (2 * N * c1)

Note that since V, N, and Rl are vectors with x, y, and z components, the arithmetic on them is

performed per-component. The refracted ray direction Rr is given by

n1 = index of refraction of original medium

n2 = index of refraction of new medium

n = n1 / n2

c2 = sqrt(1 - n
2
 * (1 - c1

2
))

Rr = (n * V) + (n * c1 - c2) * N

3.3.1 Recursive Reflection and Refraction

167

Figure 5.1(e). Recursive reflection and refraction

Figure 5.1(e) shows an example of objects that are both reflective and refractive (it does not

show the rays from each intersection to the light source, for the sake of clarity). Note how much

more complicated the rays become once reflection and refraction are added. Now, each reflected

and refracted ray can strike an object which spawns another two rays, each of these may spawn

another two, and so on. This arrangement of rays spawning subrays leads to the idea of a tree of

rays. The root node of this tree is the original ray (a in the figure) from the eye, and each node in

the tree is either a reflected or a refracted ray from the ray above it. Each leaf of the tree is either

where the ray hit a non-reflective and non-transparent object, or where the tree depth reached a

maximum.

As complicated as it seems, there is actually a very simple way to implement this tree of rays:

with recursive function calls.

 For each point on the view window, we call a function trace_ray(), passing it the ray from

the eye through the point.

 If the first object intersected by the ray is non-reflective and non- transparent, the

function simply determines the colour at the intersection point and returns this colour.

 If this ray strikes a reflective object, however, the function invokes trace_ray()

recursively, but with the reflected ray instead.

 If the intersected object is transparent, the function also calls trace_ray() with the

refracted ray as a parameter.

 The colours returned by these two function calls are combined with the object colour, and

the combined colour is returned.

This can be easily expressed in pseudo-code as:

168

Colour trace_ray(Ray original_ray)

{

Colour point_colour, reflect_colour, refract_colour

Object obj

obj = get_first_intersection(original_ray)

point_colour = get_point_colour(obj)

if (object is reflective)

reflect_colour = trace_ray(get_reflected_ray(original_ray, obj))

if (object is refractive)

refract_colour = trace_ray(get_refracted_ray(original_ray, obj))

return (combine_colours(point_colour, reflect_colour, refract_colour))

}

where a Colour is the triple (R, G, B) for the red, green, and blue components of the colour,

which can each vary between zero and one. This function, along with some intersection routines,

is really all that is needed to write a ray tracer.

3.4 Ray Intersection

One of the basic computations needed by the ray tracer is an intersection routine for each type of

object in the scene: one for spheres, one for cubes, one for cones, and so forth. If a ray intersects

an object, the object's intersection routine returns the distance of the intersection point from the

origin of the ray, the normal vector at the point of intersection, and, if texture mapping is being

used, a coordinate mapping between the intersection point and the texture image. The distance to

the intersection point is needed because if a ray intersects more than one object, we choose the

one with the closest intersection point. The normal is used to determine the shade at the point,

since it describes in which direction the surface is facing, and therefore affects how much light

the point receives (see Colour and Shading in section 3.4).

3.4.1 Intersecting a Sphere

For each type of object that the ray tracer supports, you need a separate intersection routine. We

will limit our ray tracer to handling spheres only, since the intersection routine for a sphere is

among the simplest. The following derivation of a sphere intersection is based on [Glassner90].

http://www.cs.unc.edu/~rademach/xroads-RT/RTarticle.html#color
http://www.cs.unc.edu/~rademach/xroads-RT/RTarticle.html#glas90

169

Figure 5.1(f). Intersection of a ray with a sphere.

Fig. 5.1(f) shows the geometry of a ray R (with origin at E and direction V) intersecting a sphere

with center at O and radius r. According to the diagram,

v
2
 + b

2
 = c

2
 and d

2
 + b

2
 = r

2
 (by simple geometry)

and so

d = sqrt(r
2
 - (c

2
 - v

2
))

To determine whether an intersection occurs, we compute the value of d. If d >= 0, then a valid

intersection occurs. If the ray does not intersect, then d will be less than zero. After finding the

value of d, the distance from E to the intersection point P is (v - d). The pseudocode for all this

is:

v = dot_product(EO, V)

disc = r
2
 - ((dot_product(EO, EO) - v

2
)

if (disc < 0)

no intersection

else

d = sqrt(disc)

P = E + (v - d) * V

3.5 Colour and Shading

There are many different ways to determine colour at a point of intersection. Some methods are

very simple - as in flat shading, where every point on the object has the same colour. Some

techniques - such as the Cook-Torrance method- are fairly complex, and take into account many

physical attributes of the material in question. We will describe here a simple model known as

Lambertian shading or cosine shading. It determines the brightness of a point based on the

normal vector at the point and the vector from the point to the light source. If the two coincide

(the surface directly faces the light source) then the point is at full intensity. As the angle

between the two vectors increases, as when the surface is tilted away from the light, then the

brightness diminishes. This model is known as ``cosine shading'' because that mathematical

function easily implements the above effect: it returns the value 1 when given an angle of zero,

and returns zero when given a ninety degree angle (when the surface and light source are

perpendicular). Thus, to find the brightness of a point, we simply take the cosine of the angle

170

between the two vectors. This value can be quickly computed because it is equal to the dot

product of the two unit-length vectors. So by taking the dot product of the surface normal and the

unit-length vector towards the light, we get a value between -1 and 1. The values from -1 to 0

indicate that the surface is facing away from the light source, so it doesn't receive any light. The

value of 0 means the surface is directly perpendicular to the light source (it is at grazing

incidence), and so again does not receive any light. Values above 0 indicate that the surface does

receive some light, with maximum reception when the dot product is 1.

In case the result of the dot product is zero or below zero, we still may not want that part of the

object to be pitch-black. After all, even when an object is completely blocked from a light

source, there is still light bouncing around that illuminates it to some extent. For this reason we

add a little bit of ambient light to every object, which means that the minimum amount of light

that an object can receive is actually above zero. If we set the ambient coefficient to 20%, say,

then even in total shadow an object will receive 20% illumination, and will thus be somewhat

visible. If 20% illumination is always present, then the remaining 80% is determined by cosine

shading. The value 80% in this case is known as the diffuse coefficient, which is just (1 –

(ambient coefficient)). The final colour computation is then:

shade = dot_product(light_vector, normal_vector)

if (shade < 0)

shade = 0

point_colour = object_colour * (ambient_coefficient +

diffuse_coefficient * shade)

3.6 Building a Simple Ray Tracer

The easiest way to describe a ray tracer is recursively, through a single function that traces a ray

and calls itself for the reflected and transmitted rays.

Most of the work in ray tracing goes into the calculation of intersections between rays and

surfaces. One reason is that it is difficult to implement a ray tracer that can handle a variety of

objects in that as we add more complex objects, computing intersections become problematic.

Consequently, most basic ray tracers support only flat and quadric surfaces.

We have seen the basic considerations that determine the ray-tracing process. Building a simple

recursive ray tracer that can handle simple objects—quadrics and polyhedra—is quite easy. In

this section, we will examine the basic structure and the functions that are required. We need two

basic functions. The recursive function raytrace follows a ray, specified by a point and a

direction, and returns the shade of the first surface that it intersects. It will use the function

intersect to find the location of the closest surface that the specified ray intersects.

3.6.1 Recursive Ray Tracing

Let us consider the procedure trace in pseudocode. We give it a starting point p and a direction d,

and it returns a colour c. In order to stop the ray tracer from recursing forever, we can specify a

171

maximum number of steps max that it can take. We will assume, for simplicity that we have only

a single light source whose properties, as well as the description of the objects and their surface

properties, are all available globally. If there are additional light sources, we can add in their

contributions in a manner similar to the way in which we deal with the single source:

colour c = trace(point p, vector d, int step)

{

colour local, reflected, transmitted;

point q;

normal n;

if (step > max) return(background_colour);

q = intersect(p, d, status);

if (status == light_source) return(light_source_colour);

if (status == no_intersection) return(background_colour);

n = normal(q);

r = reflect(q, n);

t = transmit(q, n);

local = phong(q, n, r);

reflected = trace(q, r, step+1);

transmitted = trace(q, t, step+1);

return(local + reflected + transmitted);

}

Note that the calculation of reflected and transmitted colours must take into account how much

energy is absorbed at the surface before reflection and transmission. If we have exceeded the

maximum number of steps, we return a specified background colour. Otherwise, we use intersect

to find the intersection of the given ray with the closest object. This function must have the entire

database of objects available to it, and it must be able to find the intersections of rays with all

types of objects supported. Consequently, most of the time spent in the ray tracer and the

complexity of the code is hidden in this function.

If the ray does not intersect any object, we can return a status variable from intersect and return

the background colour from trace. Likewise, if the ray intersects the light source, we return the

colour of the source. If an intersection is returned, there are three components to the colour at

this point: a local colour that can be computed using the modified Phong (or any other) model, a

reflected colour, and, if the surface is translucent, a transmitted colour. Before computing these

colours, we must compute the normal at the point of intersection, as well as the direction of

reflected and transmitted rays.

The complexity of computing the normal depends on the class of objects supported by the ray

tracer, and this calculation can be part of the function trace. The computation of the local colour

requires a check to see if the light source is visible from the point of closest intersection. Thus,

we cast a feeler or shadow ray from this point toward the light source and check whether it

intersects any objects. We can note that this process can also be recursive because the shadow

172

ray might hit a reflective surface, such as a mirror, or a translucent surface, such as a piece of

glass.

In addition, if the shadow ray hits a surface that itself is illuminated, some of this light should

contribute to the colour at q. Generally, we ignore these possible contributions because they will

slow the calculation significantly. Practical ray tracing requires that we make some compromises

and is never quite physically correct. Next, we have two recursive steps that compute the

contributions from the reflected and transmitted rays starting at q using trace. It is these

recursions that make this code a ray tracer rather than a simple ray-casting rendering in which we

find the first intersection and apply a lighting model at that point. Finally, we add the three

colours to obtain the colour at p.

3.6.2 Calculating Intersections

Most of the time spent in a typical ray tracer is in the calculation of intersections in the function

intersect. Hence, we must be very careful in limiting the objects to those for which we can find

intersections easily. The general intersection problem can be expressed cleanly if we use an

implicit representation of our objects. Thus, if an object is defined by the surface(s)

f (x, y, z) = f (p) = 0,

and a ray from a point in the direction d is represented by the parametric form

p(t) = + td,

then the intersections are given for the values of t such that

f (+ td) = 0,

which is a scalar equation in t. If f is an algebraic surface, then f is a sum of polynomial terms of

the form x
i
y

j
z

k
 and f (P0 + td) is a polynomial in t. finding the intersections reduces to finding all

the roots of a polynomial. Unfortunately, there are only a few cases that do not require numerical

methods. One is quadrics. All quadrics could be written as the quadratic form

P
T
Ap + b

T
p + c = 0.

Substituting in the equation for a ray, leaves us with a scalar quadratic equation to solve for the

values of t that yield zero, one, or two intersections. Ray tracers can handle quadrics without

difficulty because the solution of the quadratic equation requires only the taking of a single

square root. In addition, we can eliminate those rays that miss a quadric object and those that are

tangent to it before taking the square root, further simplifying the calculation.

Consider, for example, a sphere centered at pc with radius r, which can be written as

(p − pc) . (p − pc) − r
2
 = 0.

Substituting in the equation of the ray

P(t) = P0 + td,

we get the quadratic equation d . dt
2
 + 2(P0− Pc). dt + (P0− Pc) . (P0− pc) − r2 = 0.

173

Planes are also simple. We can take the equation for the ray and substitute it into the equation of

a plane

p . n + c = 0,

which yields a scalar equation that requires only a single division to solve. Thus, for the ray

p = P0+ td,

we find

t = P0. n + cn . d

.

However, planes by themselves have limited applicability in modeling scenes. We are usually

interested either in the intersection of multiple planes that form convex objects (polyhedra) or a

piece of a plane that defines a flat polygon. For polygons, we must decide whether the point of

intersection lies inside or outside the polygon.

The difficulty of such a test depends on whether the polygon is convex and, if not convex,

whether it is simple. For convex polygons, there are very simple tests that are similar to the tests

for ray intersections with polyhedra that we consider next. Although we can define polyhedra by

their faces, we can also define them as the convex objects that are formed by the intersection of

planes. Thus, a parallelepiped is defined by six planes and a tetrahedron by four. For ray tracing,

the advantage of this definition is that we can use the simple ray–plane intersection equation to

derive a ray–polyhedron intersection test.

We develop the test as follows. Let us assume that all the planes defining our polyhedron have

normals that are outward facing. Consider the ray in Figure 5.1(f) that intersects the polyhedron.

It can enter and leave the polygon only once. It must enter through a plane that is facing the ray

and leave through a plane that faces in the direction of the ray. However, this ray must also

intersect all the planes that form the polyhedron (except those parallel to the ray).Consider the

intersections of the ray with all the front-facing planes—that is, those whose normals point

toward the starting point of the ray. The entry point must be the intersection farthest along the

ray. Likewise, the exit point is the nearest intersection point of all the planes facing away from

the origin of the ray, and the entry point must be closer to the initial point than the exit point.

174

FIGURE 5.1(g) Ray intersecting

a polyhedron with outwardfacing

normals shown.

If we consider a ray that misses the same polyhedron, as shown in Figure 5.1(h), we see that the

farthest intersection with a front-facing plane is farther from the initial point than the closest

intersection with a back-facing plane. Hence, our test is to find these possible entry and exit

points by computing the ray–plane intersection points, in any order, and updating the possible

entry and exit points as we find the intersections. The test can be halted if we ever find a possible

exit point closer than the present entry point or a possible entry point farther than the present exit

point

Consider the two-dimensional example illustrated in Figure 5.1(i) that tests for a ray–convex

polygon intersection in a plane. Here lines replace planes, but the logic is the same. Suppose that

we do the intersections with the lines in the order 1, 2, 3, 4. Starting with line 1, we find that this

line faces the initial point by looking at the sign of the dot product of the normal with the

direction of the ray. The intersection with line 1 then yields a possible entry point. Line 2 faces

away from the initial point and yields a possible exit point that is farther away than our present

estimate of the entry point. Line 3 yields an even closer exit point but still one that is farther than

the entry point. Line 4 yields a farther exit point that can be discarded. At this point, we have

tested all the lines and conclude the ray passes through the polygon.

Figure 5.1(j) has the same lines and the same convex polygon but shows a ray that misses the

polygon. The intersection with line 1 still yields a possible entry point. The intersections with

lines 2 and 3 still yield possible exit points that are farther than the entry point. But the

FIGURE 5.1(h) Ray missing

a polyhedron with outwardfacing

normals shown.

FIGURE 5.1(i) Ray intersecting a convex

polygon
FIGURE 5.1 (j) Ray missing a convex

polygon.

175

intersection with line 4 yields an exit point closer than the entry point, which indicates that the

ray must miss the polygon.

3.7 BSP Trees

A Binary Space Partitioning (BSP) tree is a structure that, as the name suggests, subdivides the

space into smaller sets. These days, given hardware accelerated Z-buffers; the benefit of this is

that one has a smaller amount of data to consider given a location in space. But in the beginning

of the 90‘s, the main reason BSP-trees were being used was that they sorted the polygons in the

scene so that you always drew back-to-front, meaning that the polygon with the lowest Z-value

was drawn last. There are other ways to sort the polygons so that the closest polygon is drawn

last, for example the Painter‘s algorithm, but few are as cheap as BSP-trees, because the sorting

of the polygons is done during the pre-processing of the map and not under run-time. The

algorithm for generating a BSP-tree is actually an extension of Painter‘s algorithm (foley et al,

1990). Just as the original design of the BSP algorithm, the Painter‘s algorithm works by

drawing the polygons in the scene in back-to-front order. However, there are some major

drawbacks with Painter‘s algorithm:

1. Polygons will not be drawn correctly if they pass through any other polygon.

2. It is difficult and computationally expensive to calculate the order that the polygons

should be drawn in for each frame.

3. The algorithm cannot handle cases of cyclic overlap as shown in the figure below.

Figure 5.1(k): Cyclic Overlap

3.7.1 The BSP Algorithm

The original idea for the creation of a BSP-tree is that you take a set of polygons that is part of a

scene and divide them into smaller sets, where each subset is a convex set of polygons. That is,

each polygon in this subset is in front of every other polygon in the same set. Polygon 1 is in

front of polygon 2 if each vertex in polygon 1 is on the positive side of the plane polygon 2

defines or in that plane that. A cube made of inward facing polygons is a convex set, whilst a

cube made of outwards facing polygons is not.

176

Figure 5.1(l): The difference between a convex set and a non-convex set

The functions needed to determine whether a set of polygons is a convex set would look like this:

► CLASSIFY-POINT

// Indata:

// Polygon – The polygon to classify the point versus.

* Point - 3D-point to classify versus the plane defined by the polygon.

* Outdata:Which side the point is of the polygon.

* Effect: Determines on which side of the plane defined by the polygon the point is located.

CLASSIFY-POINT (Polygon, Point)

1 SideValue = Polygon.Normal * Point

2 if (SideValue = Polygon.Distance)

3 then return COINCIDING

4 else if (SideValue < Polygon.Distance)

5 then return BEHIND

6 else return INFRONT

► POLYGON-INFRONT

* Indata:

* Polygon1 – The polygon to determine whether the other polygon is in front of or not

* Polygon2 – The polygon to check if it is in front of the first polygon or not

* Outdata:

* Whether the second is in front of the first polygon or not.

* Effect:

* Checks each point in the second polygon is in front of the first polygon. If so is the case it is

considered to be in the front of it.

POLYGON-INFRONT (Polygon1, Polygon2)

1 for each point p in Polygon2

2 if (CLASSIFY-POINT (Polygon1, p) <> INFRONT)

3 then return false

4 return true

► IS-CONVEX-SET

* Indata:

* PolygonSet – The set of polygons to check for convexity

* Outdata:

* Whether the set is convex or not

* Effect:

* Checks each polygon against each other polygon, to see if they are

177

* in front of each other, if any two polygons doesn‘t fulfill that

* criteria the set isn‘t convex.

IS-CONVEX-SET (PolygonSet)

1 for i f 0 to PolygonSet.Length ()

2 for j f 0 to PolygonSet.Length ()

3 if(i <> j && not POLYGON-INFRONT(PolygonSet[i], PolygonSet[j]))

4 then return false

5 return true

The function POLYGON-INFRONT is a non-symmetric comparison, meaning that if Polygon2 is in

front of Polygon1 it does not necessarily imply that Polygon1 is in front of Polygon2. This can easily be

shown with the following example:

Figure 5.1(m): The non-symmetric nature of the comparison

POLGON-INFRONT

In Figure 5.1(m), Polygon1 is in front of Polygon2 since both p3 and p4 is on the positive side of

Polygon2, but Polygon2 is not in front of Polygon1 since p2 is behind Polygon1. The idea can be slightly

modified as the need of convex sets is not as acute when you can use hardware accelerated Z-buffers.

Later in this series it will be described how this can be solved.

The structures needed for a BSP-tree can be defined as follows:

class BSPTree

{

 BSPTreeNode RootNode // The root node of the tree.

}

class BSPTreeNode

{

 BSPTree Tree // The tree this node belongs to.

 BSPTreePolygon Divider // The polygon that lies in middle w of the two sub trees.

 BSPTreeNode *RightChild // The right sub tree of this node.

 BSPTreeNode *LeftChild // The left sub tree of this node.

 BSPTreePolygon PolygonSet[] // The set of polygons in this node.

}

class BSPTreePolygon

{

178

 3DVector Point1 // Vertex 1 in the polygon.

 3DVector Point3 // Vertex 2 in the polygon.

 3DVector Point3 // Vertex 3 in the polygon.

}

As you can see each polygon is represented by only three points. This is because the hardware in graphic

cards is designed to draw triangles. But the algorithm for generating BSP-trees is designed to take care of

polygons with any number of points, as long as all points are in the same plane.

There are several ways to split up the set of polygons into smaller subsets. For example, you can choose

an arbitrary plane in space and divide the polygons by putting the ones on the positive side of the plane in

the right sub tree and the polygons on the negative side in the left sub tree. The problem with this

approach is that it is very difficult to find a plane that divides the polygons into two approximately

equally sized sets, since there are an infinite set of planes in space. So the most common way to do this is

by taking one of the polygons in the scene and dividing the polygons according to the plane that polygon

defines.

We have defined an algorithm, POLYGON-INFRONT, which can classify whether a polygon is on the

positive side of another polygon. Now, we need to modify that algorithm to be able to also determine

whether the polygon is spanning the plane defined by the other polygon. The algorithm is defined as

follows:

► CALCULATE-SIDE

* Indata:

* Polygon1 – The polygon to classify the other polygon against

* Polygon2 – The polygon to classify

* Outdata:

* Which side of polygon1 polygon 2 is located on.

* Effect:

* Classifies each point in the second polygon versus the

* first polygon. If there are points on the positive side but no

* points on the negative side, Polygon2 is considered to be in front

* of Polygon1. If there are points on the negative side but no

* points on the positive side, Polygon2 is considered to be behind

* Polygon1. If all points are coinciding polygon2 is considered to

* be coinciding with Polygon1. The last possible case is that there

* are points on both the positive and the negative side, then

* polygon2 is considered to be spanning Polygon1.

CALCULATE-SIDE (Polygon1, Polygon2)

1 NumPositive = 0, NumNegative = 0

2 for each point p in Polygon2

3 if (CLASSIFY-POINT (Polygon1, p) = INFRONT)

4 then NumPositive = NumPositive + 1

5 if (CLASSIFY-POINT (Polygon1, p) = BEHIND)

179

6 then NumNegative = NumNegative + 1

7 if (NumPositive > 0 && NumNegative = 0)

8 then return INFRONT

9 else if(NumPositive = 0 && NumNegative > 0)

10 then return BEHIND

11 else if(NumPositive = 0 && NumNegative = 0)

12 then return COINCIDING

13 else return SPANNING

This gives us a problem when it comes to determining which subset a polygon that is spanning the plane

should be placed in. The algorithm deals with this by splitting such a polygon into two polygons. This

also solves two of the problems in Painter‘s algorithm, namely cyclic overlap and intersecting polygons.

Below is example of how a polygon is splitted:

Figure 5.1(n): Splitting a polygon

In the figure above Polygon1 is the classifying polygon and Polygon2 is the polygon that is classified.

Since Polygon2 is spanning the plane defined by Polygon1 it has to be splitted. The result is the picture to

the right. Polygon2 is now completely in front of Polygon1 and Polygon3 is completely behind. The

glitch between Polygon2 and Polygon3 is just there to illustrate that it is two separate polygons, after a

split the two resulting polygons will be adjacent to each other.

When a BSP-tree is created, one has to decide whether the need is of a balanced tree, meaning that there

should not be too big a difference in depth between the left and the right sub tree of each node, or try to

limit the number of splits, since each split creates new polygons. If too many new polygons is created

during the BSP-tree creation the graphic card will have a hard time rendering the map, thus reducing the

frame rate, while a unbalanced tree will require more expensive traversal of the tree. We decided to

accept a certain number of splits in order to get a more balanced tree. But the main concern was reducing

the number of new polygons created. Below is our loop for choosing the best dividing polygon from a

set of polygons:

180

► CHOOSE-DIVIDING-POLYGON

* Indata:

* PolygonSet – The set of polygons to search for the best dividing polygon.

* Outdata:

* The best dividing polygon

* Effect:

* Searches through the set of polygons and returns the polygons that

* splits the set into the two best resulting sets. If the set is

* convex no polygon can be returned.

CHOOSE-DIVIDING-POLYGON (PolygonSet)

1 if (IS-CONVEX-SET (PolygonSet))

2 then return NOPOLYGON

3 MinRelation = MINIMUMRELATION

4 BestPolygon = NOPOLYGON

5 LeastSplits = INFINITY

6 BestRelation = 0

 // Loop to find the polygon that best divides the set.

7 while(BestPolygon = NOPOLYGON)

8 for each polygon P1 in PolygonSet

9 if (Polygon P1 has not been used as divider previously

 during the creation of the tree)

 // Count the number of polygons on the positive side, negative side

 // of and spanning the plane defined by the current polygon.

10 NumPositive = 0, NumNegative = 0, NumSpanning = 0

11 for each polygon P2 in PolygonSet except P1

12 Value = CALCULATE-SIDE(P1, P2)

13 if(Value = INFRONT)

14 NumPositive = NumPositive + 1

15 else if(Value = BEHIND)

16 NumNegative = NumNegative + 1

17 else if(Value = SPANNING)

18 NumSpanning = NumSpanning + 1

 // Calculate the relation between the number of polygons in the two

 // sets divided by the current polygon.

19 if (NumPositive < NumNegative)

20 Relation = NumPositive / NumNegative

21 else

22 Relation = NumNegative / NumPositive

 // Compare the results given by the current polygon to the best this

 // far. If the this polygon splits fewer polygons and the relation

 // between the resulting sets is acceptable this is the new candidate

 // polygon. If the current polygon splits the same amount of polygons

 // as the best polygon this far and the relation between the two

 // resulting sets is better -> this polygon is the new candidate

181

 // polygon.

23 if (Relation > MinRelation && (NumSpanning < LeastSplits ||

 NumSpanning = LeastSplits && Relation > BestRelation))

24 BestPolygon = P1

25 LeastSplits = NumSpanning

26 BestRelation = Relation

 // Decrease the number least acceptable relation by dividing it with

 // a predefined constant.

27 MinRelation = MinRelation / MINRELATIONSCALE

28 return BestPolygon

3.7.1.1 Complexity Analysis

Because of the while loop it is very hard to find a bound to this function. Depending of the

structure of the scene the while loop might loop for a very long time. The

MINRELATIONSCALE is what decides how much the acceptable relation decreases per

iteration, thus how long it will take before the minimum relation will be small enough to accept

the best possible solution. The worst case is that we have a set consisting of n polygons that is

not a convex set and the best possible solution is a dividing polygon that splits the set into one

part consisting of n-1 polygons and another set consisting of 1 polygon. This solution will only

be acceptable when the minimal acceptable relation is less than 1/(n-1) (see line 19-23 in the

algorithm). Meaning that MinRelation / MINRELATIONSCALE
i
 < 1/(n-1) where i is the

number of iterations in the loop, this is due the division by MINRELATIONSCALE at line 27 in

the algorithm. Let us assume that the initial value for MinRelation is 1, which is the highest

possible value since the relation is always between 0 and 1

This is no upper bound for i, but since i will be very close to logMINRELATIONSCALE (n-1) we will,

for simplicity assume they are equal. Another practical assumption to make is that

MINRELATIONSCALE always should be greater than or equal to 2. Thus giving us:

logMINRELATIONSCALE (n-1) = i MINRELATIONSCALE >= 2

i = logMINRELATIONSCALE (n-1) < lg(n-1) = O(lg n)

Inside the while loop, there are two iterations over the set of polygons. Giving us that the worst

case behavior of this algorithm is of order O(n
2
 lg n), but the typical behavior is almost always

closer to O(n
2
) as there tend to exist a polygon that will fulfill the requirements in the first

iteration.

(see lines 19-22 in the algorithm). We have:

1 / MINRELATIONSCALE
i
 < 1/(n-1)

1 < MINRELATIONSCALE
i
/(n-1)

(n-1) < MINRELATIONSCALE
i

logMINRELATIONSCALE (n-1) < i

182

The loop in CHOOSE-DIVIDING-POLYGON might look as if there are cases where it will not

terminate, but this is not true since if the set of polygons is a non-convex set there is always one

polygon that can divide the polygons into two sets. CHOOSE-DIVIDING-POLYGON selects

the polygon that splits the least number of polygons. To prevent from choosing polygons that

would not divide the set, the relation between the sizes of the two resulting sets must be better

than a threshold value. To better illustrate this we show an example where choosing the polygon

that splits the fewest amount of polygons would render in an infinite loop:

Figure 5.1(o): Problems when choosing dividing polygon

In the above example, choosing either polygon 1,6,7 or 8 would not result in the split of any

polygon, but on the other hand each of the polygons in the set is on the positive side of those

polygons, so in the next loop the same polygon would be chosen again, rendering in a infinite

loop. As a matter of fact 1,2,3 and 4 is on the border of the least convex hull that can hold the

polygon set, polygons for which this is true cannot be used as a dividing polygon since all other

polygons in the set is on the positive side of them. Choosing polygon 2,3,4 or 5 would each

cause one split but it would also divide the set into two smaller sets.

Another reason why a it is not always good to choose the polygon that splits the fewest polygons

is that in most cases that heuristic will result in a unbalanced set. A balanced tree will perform

better during runtime than an unbalanced one.

When the best polygon has been chosen the rest of the polygons is divided according to that

polygon. There are two ways to do deal with the dividing polygon:

1. A leafy tree can be created, meaning that all polygons are put into the leaf nodes, thus

the dividing polygons have to be categorized to be on one of the sides. In our

example we count the polygons in the same plane as the dividing polygon as being on

the positive side of the plane.

2. The other way is to store the dividing polygons in the internal nodes. This process is

repeated for each sub tree until each leaf contains a convex set of polygons.

The algorithm for generating a leafy BSP-tree looks like this:

183

► GENERATE-BSP-TREE

* Indata:

* Node - The sub tree to build of the type BSPTreeNode.

* PolygonSet – The set of polygons to create a BSP-tree from.

* Outdata:

* A BSP-tree stored in the incoming node.

* Effect:

* Generates a BSP-tree out of a set of polygons.

GENERATE-BSP-TREE (Node, PolygonSet)

1 if (IS-CONVEX-SET (PolygonSet))

2 Tree = BSPTreeNode (PolygonSet)

3 Divider = CHOOSE-DIVIDING-POLYGON (PolygonSet)

4 PositiveSet = {}

5 NegativeSet = {}

6 for each polygon P1 in PolygonSet

7 Value f CALCULATE-SIDE (Divider, P1)

8 if(Value = INFRONT)

9 PositiveSet = PositiveSet U P1

10 else if (Value = BEHIND)

11 NegativeSet = NegativeSet U P1

12 else if (Value = SPANNING)

13 Split_Polygon (P1, Divider, Front, Back)

14 PositiveSet = PositiveSet U Front

15 NegativeSet = NegativeSet U Back

16 GENERATE-BSP-TREE (Tree.RightChild, PositiveSet)

17 GENERATE-BSP-TREE (Tree.LeftChild, NegativeSet)

The call to CHOOSE-DIVIDING-POLYGON is of order O(n
2
 lg n), which dominates the rest of

the function except for the recursive calls. If we assume that the division of the polygon set is

fairly even we can formulate the following function to calculate the bounds of GENERATE-

BSP-TREE:

T(n) = 2T(n/2) + O(n
2
 lg n)

Using Masters Theorem (Thomas, 2001) we get that the order of complexity is Θ(n
2
 lg n), where

n is the number of polygons in the incoming set. Following there is an example of how a BSP-

tree is generated. The structure below is the original set of polygons, we have numbered them to

make the example easier to follow. This set of polygons is going to be divided into a BSP-tree.

184

Figure 5.1(p): Example Structure

To be able to run the algorithm, we must choose a couple of constants, namely: MINIMUMRELATION

and MINRELATIONSCALE. We found that choosing MINIMUMRELATION = 0.8 and

MINRELATIONSCALE = 2 will give quite good result, but one can experiment we those numbers. The

higher the MINIMUMRELATION is the better balanced the tree will be, but the number of splitted

polygons will probably increase too.

The starting set of polygons is obviously not a convex set, so a dividing polygon will be chosen. After a

quick glance at the structure, we can see that polygons {1,2,6,22,28} cannot be used as dividing polygons

since they define convex hull that contains the whole set of polygons. But all the other polygons are

candidates for being dividing polygon. The polygons that split the fewest number of polygons and give

the best relation between the sizes of the two resulting sets are 16 and 17, these two polygons lie on the

same line and do not split any other polygon. The two resulting sets is almost equally sized namely

|negative|= 15 and |positive| = 13 polygons in each of the resulting sets. Let us choose polygon 16 as the

divider. The result will look as follows:

Figure 5.1(q): The result of a split at polygon 16

185

Neither the right nor the left subtree contains a convex set of polygons so a new dividing

polygon must be chosen in both.

In the left sub tree {1,2,6,7} is on the convex hull and they cannot be used as dividers. Polygon 4

and 10 is on the same line and they do not split any other polygon. The sizes of the resulting sets

is |negative|= 7 and |positive| = 8 which is very balanced. We choose 4 as the divider.

{16,17,22,23,28} contains the right sub tree, so they will not be dividers. The polygons that will

not split any other polygons are {18,19,27,26} but the sizes of the resulting sets for all of them

will be |negative|= 3 and |positive| = 11, 3/11 is below the minimum relation(0.5) so we will have

to check the other polygons to see if they can provide us with a more balanced solution. Each of

{20,21,24,25} splits exactly one polygon, but the most balanced set is attained by polygon 21,

which after splitting polygon 22 produces resulting sets of size |negative|= 6 and |positive| = 8.

The following shows the result after these operations:

Figure 5.1(r): The second step

None of the sub trees contain a convex set of polygons so the algorithm will move on in the same

manner; the resulting tree will look like this:

186

Figure 5.1(s): The final tree

Even though it is not the optimal solution it is quite close to it and it does not take that long time.

3.7.1.2 Drawing the BSP Tree

Now that the BSP-tree is created, it is very easy to draw the polygons the tree, with zero chance

of failure in the drawing. The algorithm of that process is described below. We assume there is a

function IS-LEAF that given a BSP-node, it returns true if that node is a leaf otherwise false.

► DRAW-BSP-TREE

* Indata:

* Node – The node to draw.

* Position – The viewer‘s position.

* Outdata:

* None

* Effect:

* Draws the polygons contained in the node and its sub trees.

DRAW-BSP-TREE (Node, Position)

1 if (IS-LEAF(Node))

2 DRAW-POLYGONS (Node.PolygonSet)

3 return

 // Calculate which sub tree the viewer is in.

4 Side = CLASSIFY-POINT (Node.Divider, Position)

 // If the viewer is in the right sub tree draw that tree before the

187

 // left.

5 if (Side = INFRONT || Side = COINCIDING)

6 DRAW-BSP-TREE (Node.RightChild, Position)

7 DRAW-BSP-TREE (Node.LeftChild, Position)

 // Otherwise draw the left first.

8 else if(Value = BEHIND)

9 DRAW-BSP-TREE (Node.LeftChild, Position)

10 DRAW-BSP-TREE (Node.RightChild, Position)

This way of drawing gives us no reduction in number of polygons that is drawn to the screen. Since a map

can consist of hundreds of thousands of polygons, it is no good solution. In some way, nodes that are not

visible or even polygons that are not visible should be discarded. This is called hidden surface removal.

3.8 Bounding volume

In computer graphics and computational geometry, a bounding volume for a set of objects is a

closed volume that completely contains the union of the objects in the set. Bounding volumes are

used to improve the efficiency of geometrical operations by using simple volumes to contain

more complex objects. Normally, simpler volumes have simpler ways to test for overlap. A

bounding volume for a set of objects is also a bounding volume for the single object consisting

of their union, and the other way around. Therefore, it is possible to confine the description to the

case of a single object, which is assumed to be non-empty and bounded (finite).

Uses of bounding volumes

1. Bounding volumes are most often used to accelerate certain kinds of tests.

2. In ray tracing, bounding volumes are used in ray-intersection tests, and in many

rendering algorithms, they are used for viewing frustum tests. If the ray or viewing

frustum does not intersect the bounding volume, it cannot intersect the object

contained in the volume. These intersection tests produce a list of objects that must

be displayed. Here, displayed means rendered or rasterized.

3. In collision detection, when two bounding volumes do not intersect, then the

contained objects cannot collide.

Testing against a bounding volume is typically much faster than testing against the object itself,

because of the bounding volume's simpler geometry. This is because an 'object' is typically

composed of polygons or data structures that are reduced to polygonal approximations. In either

case, it is computationally wasteful to test each polygon against the view volume if the object is

not visible. (Onscreen objects must be 'clipped' to the screen, regardless of whether their surfaces

are actually visible.)

188

To obtain bounding volumes of complex objects, a common way is to break the objects/scene

down using a scene graph or more specifically bounding volume hierarchies like e.g. (Oriented

Bounding Box) OBB trees. The basic idea behind this is to organize a scene in a tree-like

structure where the root comprises the whole scene and each leaf contains a smaller subpart.

3.8.1 Common types of bounding volume

The choice of the type of bounding volume for a given application is determined by a variety of

factors: the computational cost of computing a bounding volume for an object, the cost of

updating it in applications in which the objects can move or change shape or size, the cost of

determining intersections, and the desired precision of the intersection test. The precision of the

intersection test is related to the amount of space within the bounding volume not associated with

the bounded object, called void space. Sophisticated bounding volumes generally allow for less

void space but are more computationally expensive. It is common to use several types in

conjunction, such as a cheap one for a quick but rough test in conjunction with a more precise

but also more expensive type.

A bounding sphere is a sphere containing the object. In 2-D graphics, this is a circle. Bounding

spheres are represented by centre and radius. They are very quick to test for collision with each

other: two spheres intersect when the distance between their centres does not exceed the sum of

their radii. This makes bounding spheres appropriate for objects that can move in any number of

dimensions.

A bounding ellipsoid is an ellipsoid containing the object. Ellipsoids usually provide tighter

fitting than a sphere. Intersections with ellipsoids are done by scaling the other object along the

principal axes of the ellipsoid by an amount equal to the multiplicative inverse of the radii of the

ellipsoid, thus reducing the problem to intersecting the scaled object with a unit sphere. Care

should be taken to avoid problems if the applied scaling introduces skew. Skew can make the

usage of ellipsoids impractical in certain cases, for example collision between two arbitrary

ellipsoids.

A bounding cylinder is a cylinder containing the object. In most applications the axis of the

cylinder is aligned with the vertical direction of the scene. Cylinders are appropriate for 3-D

objects that can only rotate about a vertical axis but not about other axes, and are otherwise

constrained to move by translation only. Two vertical-axis-aligned cylinders intersect when,

simultaneously, their projections on the vertical axis intersect – which are two line segments – as

well their projections on the horizontal plane – two circular disks. Both are easy to test. In video

games, bounding cylinders are often used as bounding volumes for people standing upright.

A bounding capsule is a swept sphere (i.e. the volume that a sphere takes as it moves along a

straight line segment) containing the object. Capsules can be represented by the radius of the

swept sphere and the segment that the sphere is swept across). It has traits similar to a cylinder,

but is easier to use, because the intersection test is simpler. A capsule and another object intersect

189

if the distance between the capsule's defining segment and some feature of the other object is

smaller than the capsule's radius. For example, two capsules intersect if the distance between the

capsules' segments is smaller than the sum of their radii. This holds for arbitrarily rotated

capsules, which is why they're more appealing than cylinders in practice.

A bounding box is a cuboid, or in 2-D a rectangle, containing the object. In dynamical

simulation, bounding boxes are preferred to other shapes of bounding volume such as bounding

spheres or cylinders for objects that are roughly cuboid in shape when the intersection test needs

to be fairly accurate. The benefit is obvious, for example, for objects that rest upon other, such as

a car resting on the ground: a bounding sphere would show the car as possibly intersecting with

the ground, which then would need to be rejected by a more expensive test of the actual model of

the car; a bounding box immediately shows the car as not intersecting with the ground, saving

the more expensive test.

In many applications the bounding box is aligned with the axes of the co-ordinate system, and it

is then known as an axis-aligned bounding box (AABB). To distinguish the general case from an

AABB, an arbitrary bounding box is sometimes called an oriented bounding box (OBB). AABBs

are much simpler to test for intersection than OBBs, but have the disadvantage that when the

model is rotated they cannot be simply rotated with it, but need to be recomputed.

3.9 Monte Carlo Ray tracing

Realistic image synthesis is increasingly important in areas such as entertainment (movies,

special effects and games), design, architecture and more. A common trend in all these areas is to

request more realistic images of increasingly complex models. Monte Carlo ray tracing based

techniques are the only methods that can handle this complexity. Recent advances in algorithms

and computation power have made Monte Carlo ray tracing the natural choice for most

problems. This is a significant change from just a few years back when the (finite element)

radiosity method was the preferred algorithm for most graphics researchers.

3.9.1 Advantages of Monte Carlo ray tracing

• Geometry can be procedural

• No tessellation is necessary

• It is not necessary to pre-compute a representation for the solution

• Geometry can be duplicated using instancing

• Any type of BRDF can be handled

• Specular reflections (on any shape) are easy

• Memory consumption is low

• The accuracy is controlled at the pixel/image level

• Complexity has empirically been found to be O(logN) where N is number of scene elements.

Compare this with O(N logN) for the fastest finite element methods.

190

In addition, one might add that Monte Carlo ray tracing methods can be very easy to implement.

A basic path tracing algorithm which has all of the above advantages is a relatively

straightforward extension to ray tracing. The main problem with Monte Carlo ray tracing is

variance seen as noise in the rendered images. This noise can be eliminated by using more

samples. Unfortunately, the convergence of Monte Carlo methods is quite slow, and a large

number of samples can be necessary to reduce the variance to an acceptable level. Another way

of reducing variance is to try to be cleverer; a large part of this course material is devoted to

techniques and algorithms for making Monte Carlo ray tracing more efficient.

4.0 Conclusion

A serious disadvantage of ray tracing is low performance. Scanline algorithms and other

algorithms use data coherence to share computations between pixels, while ray tracing normally

starts the process anew, treating each eye ray separately.

5.0 Summary

Ray tracing is a technique for generating an image by tracing the path of light through pixels in

an image plane and simulating the effects of its encounters with virtual objects.

6.0 Tutor Marked Assignment

1.0 What do you understand by raytracing?

2.0 What makes it different from other scanline rendering methods?

3.0 state the advantages of monte-carlo raytracing.

4.0 What is BSP trees?

7.0 References/Further Reading

1. Ed Angel (1991) Interactive Computer Graphics- A Top-Down Approach with OpenGL,

Fifth Edition, Addison-Wesley 2009 ISBN 0-321-53586-3

2. Donald Hearn and M. Pauline Baker (1997) Computer Graphics, C Version (2nd

Edition),Prentice Hall, 1997, ISBN: 0135309247

3. Sunsted, Tod. (1997) 3D computer graphics: Moving from wire-frame drawings to solid,

shaded models

4. Sobey, Anthony.(2007) Software Engineering

5. Southwick, Andrew R. Quake Rendering Tutorial

6. S. Mann and R. W. Picard. "On Being ‗Undigital‘ With Digital Cameras: Extending

Dynamic Range By Combining Differently Exposed Pictures".

http://citeseer.ist.psu.edu/mann95being.html

http://en.wikipedia.org/wiki/Digital_image
http://en.wikipedia.org/wiki/Light
http://en.wikipedia.org/wiki/Pixel
http://en.wikipedia.org/wiki/Image_plane
http://citeseer.ist.psu.edu/mann95being.html
http://citeseer.ist.psu.edu/mann95being.html
http://citeseer.ist.psu.edu/mann95being.html

191

MODULE 5 – Ray tracing, illumination algorithms and GPGPU

UNIT 2: Photon Mapping and Radiosity

Contents Pages

1.0 Introduction…………………...……………………...…….…………………………188

2.0 Objectives……………………………………………………………………………...188

3.0 Main Content………………………………………………………………....………..188

 3.1 Photon Mapping………………………………………………………………..188

3.2 Diffuse inter-reflection………………………………………………………....189

3.2 Subsurface scattering………………………………………………………...…189

3.4 Usage of Photon Mapping……………………………………………………...189

3.5 Calculating radiance using the photon map…………………………………....190

3.6 Radiosity……………………………………………………………………….191

3.7 The Radiosity algorithm………………………………………………………..193

4.0 Conclusion……………………………………………………………………………...197

5.0 Summary………………………………………………………………………………..197

6.0 Tutor Marked Assignment……………………………………………………………...198

7.0 References/Further

Reading…………………………………………………………………….…..198

192

1.0 Introduction

In this unit we will be looking at two popular illumination algorithms: Photon mapping and

radiosity which have been used in the field of computer graphics and also what makes it

preferred above other illumination algorithms.

2.0 Objectives

On completing this unit, you would be able to:

1. Understand the illumination algorithms: Photon mapping and radiosity

2. Understand the interaction of light with surfaces

3. Understand the usage of photo mapping

3.0 Main Content

3.1 Photo mapping

Photon mapping is a two-pass global illumination algorithm developed by Henrik Wann Jensen

(2001) that solves the rendering equation. Rays from the light source and rays from the camera

are traced independently until some termination criterion is met, and then they are connected in a

second step to produce a radiance value. It is used to realistically simulate the interaction of light

with different objects. Specifically, it is capable of simulating the refraction of light through a

transparent substance such as glass or water, diffuse inter-reflection between illuminated objects,

the subsurface scattering of light in translucent materials, and some of the effects caused by

particulate matter such as smoke or water vapor. It can also be extended to more accurate

simulations of light such as spectral rendering.

Unlike path tracing, bidirectional path tracing and Metropolis light transport, photon mapping is

a "biased" rendering algorithm, which means that averaging many renders using this method

does not converge to a correct solution to the rendering equation. However, since it is a

consistent method, a correct solution can be achieved by increasing the number of photons.

http://en.wikipedia.org/wiki/Global_illumination
http://en.wikipedia.org/wiki/Henrik_Wann_Jensen
http://en.wikipedia.org/wiki/Rendering_equation
http://en.wikipedia.org/wiki/Ray_tracing_(graphics)
http://en.wikipedia.org/wiki/Radiance
http://en.wikipedia.org/wiki/Light
http://en.wikipedia.org/wiki/Diffuse_interreflection
http://en.wikipedia.org/wiki/Subsurface_scattering
http://en.wikipedia.org/wiki/Spectral_rendering
http://en.wikipedia.org/wiki/Path_tracing
http://en.wikipedia.org/wiki/Path_tracing#Bidirectional_path_tracing
http://en.wikipedia.org/wiki/Metropolis_light_transport
http://en.wikipedia.org/wiki/Rendering_equation

193

Figure 5.2(a): A model of a wine glass ray traced with photon mapping to show caustics.

Light refracted or reflected causes patterns called caustics, usually visible as concentrated

patches of light on nearby surfaces. For example, as light rays pass through a wine glass sitting

on a table, they are refracted and patterns of light are visible on the table. Photon mapping can

trace the paths of individual photons to model where these concentrated patches of light will

appear.

3.2 Diffuse inter-reflection

Diffuse inter-reflection is apparent when light from one diffuse object is reflected onto another.

Photon mapping is particularly adept at handling this effect because the algorithm reflects

photons from one surface to another based on that surface's bidirectional reflectance distribution

function (BRDF), and thus light from one object striking another is a natural result of the

method. Diffuse inter-reflection was first modeled using radiosity solutions. Photon mapping

differs though in that it separates the light transport from the nature of the geometry in the scene.

Colour bleed is an example of diffuse inter-reflection.

3.3 Subsurface scattering

Subsurface scattering is the effect evident when light enters a material and is scattered before

being absorbed or reflected in a different direction. Subsurface scattering can accurately be

modeled using photon mapping. This was the original way Jensen (2001) implemented it.

However, the method becomes slow for highly scattering materials, and bidirectional surface

scattering reflectance distribution functions (BSSRDFs) are more efficient in these situations.

3.4 Usage of Photon Mapping

3.4.1 Construction of the photon map (1st pass)

With photon mapping, light packets called photons are sent out into the scene from the light

sources. Whenever a photon intersects with a surface, the intersection point and incoming

direction are stored in a cache called the photon map. Typically, two photon maps are created for

http://en.wikipedia.org/wiki/Ray_tracing
http://en.wikipedia.org/wiki/Caustic_(optics)
http://en.wikipedia.org/wiki/Refraction
http://en.wikipedia.org/wiki/Specular_reflection
http://en.wikipedia.org/wiki/Caustic_(optics)
http://en.wikipedia.org/wiki/Diffuse_interreflection
http://en.wikipedia.org/wiki/Bidirectional_reflectance_distribution_function
http://en.wikipedia.org/wiki/Bidirectional_reflectance_distribution_function
http://en.wikipedia.org/wiki/Radiosity
http://en.wikipedia.org/wiki/Color_bleeding_(computer_graphics)
http://en.wikipedia.org/wiki/Subsurface_scattering
http://en.wikipedia.org/w/index.php?title=Bidirectional_surface_scattering_reflectance_distribution_function&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Bidirectional_surface_scattering_reflectance_distribution_function&action=edit&redlink=1
http://en.wikipedia.org/wiki/File:Glas-1000-enery.jpg

194

a scene: one especially for caustics and a global one for other light. After intersecting the surface,

a probability for reflecting, absorbing, or transmitting/refracting is given by the material. A

Monte Carlo method called Russian roulette is used to choose one of these actions. If the photon

is absorbed, no new direction is given, and tracing for that photon ends. If the photon reflects, the

surface's bidirectional reflectance distribution function is used to determine a new direction.

Finally, if the photon is transmitting, a different function for its direction is given depending

upon the nature of the transmission.

Once the photon map is constructed (or during construction), it is typically arranged in a manner

that is optimal for the k-nearest neighbor algorithm, as photon look-up time depends on the

spatial distribution of the photons. Jensen advocates the usage of kd-trees. The photon map is

then stored on disk or in memory for later usage.

3.4.2 Rendering (2nd pass)

In this step of the algorithm, the photon map created in the first pass is used to estimate the

radiance of every pixel of the output image. For each pixel, the scene is ray traced until the

closest surface of intersection is found.

At this point, the rendering equation is used to calculate the surface radiance leaving the point of

intersection in the direction of the ray that struck it. To facilitate efficiency, the equation is

decomposed into four separate factors: direct illumination, specular reflection, caustics, and soft

indirect illumination.

For an accurate estimate of direct illumination, a ray is traced from the point of intersection to

each light source. As long as a ray does not intersect another object, the light source is used to

calculate the direct illumination. For an approximate estimate of indirect illumination, the photon

map is used to calculate the radiance contribution.

Specular reflection can be, in most cases, calculated using ray tracing procedures (as it handles

reflections well). The contribution to the surface radiance from caustics is calculated using the

caustics photon map directly. The number of photons in this map must be sufficiently large, as

the map is the only source for caustics information in the scene.

For soft indirect illumination, radiance is calculated using the photon map directly. This

contribution, however, does not need to be as accurate as the caustics contribution and thus uses

the global photon map.

3.5 Calculating radiance using the photon map

In order to calculate surface radiance at an intersection point, one of the cached photon maps is

used. The steps are:

http://en.wikipedia.org/wiki/Monte_Carlo_method
http://en.wikipedia.org/wiki/Bidirectional_reflectance_distribution_function
http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm
http://en.wikipedia.org/wiki/Kd-tree
http://en.wikipedia.org/wiki/Rendering_equation

195

1. Gather the N nearest photons using the nearest neighbor search function on the

photon map.

2. Let S be the sphere that contains these N photons.

3. For each photon, divide the amount of flux (real photons) that the photon represents

by the area of S and multiply by the BRDF applied to that photon.

4. The sum of those results for each photon represents total surface radiance returned by

the surface intersection in the direction of the ray that struck it.

3.5.1 Optimizations of Photon mapping

1. To avoid emitting unneeded photons, the initial direction of the outgoing photons is often

constrained. Instead of simply sending out photons in random directions, they are sent in

the direction of a known object that is a desired photon manipulator to either focus or

diffuse the light. There are many other refinements that can be made to the algorithm: for

example, choosing the number of photons to send, and where and in what pattern to send

them. It would seem that emitting more photons in a specific direction would cause a

higher density of photons to be stored in the photon map around the position where the

photons hit, and thus measuring this density would give an inaccurate value for

irradiance. This is true; however, the algorithm used to compute radiance does not

depend on irradiance estimates.

2. For soft indirect illumination, if the surface is Lambertian, then a technique known as

irradiance caching may be used to interpolate values from previous calculations.

3. To avoid unnecessary collision testing in direct illumination, shadow photons can be

used. During the photon mapping process, when a photon strikes a surface, in addition to

the usual operations performed, a shadow photon is emitted in the same direction the

original photon came from that goes all the way through the object. The next object it

collides with causes a shadow photon to be stored in the photon map. Then during the

direct illumination calculation, instead of sending out a ray from the surface to the light

that tests collisions with objects, the photon map is queried for shadow photons. If none

are present, then the object has a clear line of sight to the light source and additional

calculations can be avoided.

4. To optimize image quality, particularly of caustics, Jensen recommends use of a cone

filter. Essentially, the filter gives weight to photons' contributions to radiance depending

on how far they are from ray-surface intersections. This can produce sharper images.

5. Image space photon mapping achieves real-time performance by computing the first and

last scattering using a GPU rasterizer.

3.5.2 Variations

http://en.wikipedia.org/wiki/Irradiance
http://en.wikipedia.org/wiki/Radiance
http://en.wikipedia.org/wiki/Lambertian
http://en.wikipedia.org/w/index.php?title=Irradiance_caching&action=edit&redlink=1
http://research.nvidia.com/publication/hardware-accelerated-global-illumination-image-space-photon-mapping

196

Although photon mapping was designed to work primarily with ray tracers, it can also be

extended for use with scanline renderers.

3.6 Radiosity

Radiosity is a global illumination algorithm used in 3D computer graphics rendering. Radiosity

is an application of the finite element method to solving the rendering equation for scenes with

purely diffuse surfaces. Unlike Monte Carlo algorithms (such as path tracing), which handle all

types of light paths, typical radiosity methods only account for paths which leave a light source

and are reflected diffusely some number of times (possibly zero) before hitting the eye. Such

paths are represented as "LD*E". Radiosity calculations are viewpoint independent which

increases the computations involved, but makes them useful for all viewpoints.

Radiosity methods were first developed in about 1950 in the engineering field of heat transfer.

They were later refined specifically for application to the problem of rendering computer

graphics in 1984 by researchers at Cornell University.

3.6.1 Visual characteristics of Radiosity

The inclusion of radiosity calculations in the rendering process often lends an added element of

realism to the finished scene, because of the way it mimics real-world phenomena. Consider a

simple room scene.

Figure 5.2(b): Difference between standard direct illumination and radiosity

The image on the left was rendered with a typical direct illumination renderer. There are three

types of lighting in this scene which have been specifically chosen and placed by the artist in an

attempt to create realistic lighting: spot lighting with shadows (placed outside the window to

create the light shining on the floor), ambient lighting (without which any part of the room not lit

http://en.wikipedia.org/wiki/Scanline_rendering
http://en.wikipedia.org/wiki/Global_illumination
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/3D_computer_graphics
http://en.wikipedia.org/wiki/Rendering_(computer_graphics)
http://en.wikipedia.org/wiki/Finite_element_method
http://en.wikipedia.org/wiki/Rendering_equation
http://en.wikipedia.org/wiki/Monte_Carlo_method
http://en.wikipedia.org/wiki/Path_tracing
http://en.wikipedia.org/wiki/Heat_transfer
http://en.wikipedia.org/wiki/Cornell_University
http://en.wikipedia.org/wiki/File:Radiosity_Comparison.jpg

197

directly by a light source would be totally dark), and omnidirectional lighting without shadows

(to reduce the flatness of the ambient lighting).

The image on the right was rendered using a radiosity algorithm. There is only one source of

light: an image of the sky placed outside the window. The difference is marked. The room glows

with light. Soft shadows are visible on the floor, and subtle lighting effects are noticeable around

the room. Furthermore, the red colour from the carpet has bled onto the grey walls, giving them a

slightly warm appearance. None of these effects were specifically chosen or designed by the

artist.

3.7 The Radiosity algorithm

The surfaces of the scene to be rendered are each divided up into one or more smaller surfaces

(patches). A view factor is computed for each pair of patches. View factors (also known as form

factors) are coefficients describing how well the patches can see each other. Patches that are far

away from each other, or oriented at oblique angles relative to one another, will have smaller

view factors. If other patches are in the way, the view factor will be reduced or zero, depending

on whether the occlusion is partial or total.

The view factors are used as coefficients in a linearized form of the rendering equation, which

yields a linear system of equations. Solving this system yields the radiosity, or brightness, of

each patch, taking into account diffuse inter-reflections and soft shadows.

Progressive radiosity solves the system iteratively in such a way that after each iteration, we have

intermediate radiosity values for the patch. These intermediate values correspond to bounce

levels. That is, after one iteration, we know how the scene looks after one light bounce, after two

passes, two bounces, and so forth. Progressive radiosity is useful for getting an interactive

preview of the scene. Also, the user can stop the iterations once the image looks good enough,

rather than wait for the computation to numerically converge.

As the algorithm iterates, light can be seen to flow into the scene, as multiple bounces are

computed. Individual patches are visible as squares on the walls and floor. Another common

method for solving the radiosity equation is "shooting radiosity," which iteratively solves the

radiosity equation by "shooting" light from the patch with the most error at each step. After the

first pass, only those patches which are in direct line of sight of a light-emitting patch will be

illuminated. After the second pass, more patches will become illuminated as the light begins to

bounce around the scene. The scene continues to grow brighter and eventually reaches a steady

state.

http://en.wikipedia.org/wiki/View_factor

198

3.7.1 Mathematical formulation

The basic radiosity method has its basis in the theory of thermal radiation, since radiosity relies

on computing the amount of light energy transferred among surfaces. In order to simplify

computations, the method assumes that all scattering is perfectly diffuse. Surfaces are typically

discretized into quadrilateral or triangular elements over which a piecewise polynomial function

is defined.

After this breakdown, the amount of light energy transfer can be computed by using the known

reflectivity of the reflecting patch, combined with the view factor of the two patches. This

dimensionless quantity is computed from the geometric orientation of two patches, and can be

thought of as the fraction of the total possible emitting area of the first patch which is covered by

the second patch.

More correctly, radiosity B is the energy per unit area leaving the patch surface per discrete time

interval and is the combination of emitted and reflected energy:

where:

1. B(x)i dAi is the total energy leaving a small area dAi around a point x.

2. E(x)i dAi is the emitted energy.

3. ρ(x) is the reflectivity of the point, giving reflected energy per unit area by

multiplying by the incident energy per unit area (the total energy which arrives from

other patches).

4. S denotes that the integration variable x' runs over all the surfaces in the scene

5. r is the distance between x and x'

6. θx and θx' are the angles between the line joining x and x' and vectors normal to the

surface at x and x' respectively.

7. Vis(x,x') is a visibility function, defined to be 1 if the two points x and x' are visible

from each other, and 0 if they are not.

The geometrical form factor (or "projected solid angle") Fij.

Fij can be obtained by projecting the element Aj onto a the surface of a unit hemisphere, and then

projecting that in turn onto a unit circle around the point of interest in the plane of Ai. The form

factor is then equal to the proportion of the unit circle covered by this projection.

Form factors obey the reciprocity relation AiFij = AjFji

http://en.wikipedia.org/wiki/Heat
http://en.wikipedia.org/wiki/Lambert%27s_cosine_law
http://en.wikipedia.org/wiki/Finite_element_method
http://en.wikipedia.org/wiki/View_factor
http://en.wikipedia.org/wiki/Dimensionless_number

199

If the surfaces are approximated by a finite number of planar patches, each of which is taken to

have a constant radiosity Bi and reflectivity ρi, the above equation gives the discrete radiosity

equation,

where Fij is the geometrical view factor for the radiation leaving j and hitting patch i.

This equation can then be applied to each patch. The equation is monochromatic, so colour

radiosity rendering requires calculation for each of the required colours.

3.7.1.1 Solution methods

The equation can formally be solved as matrix equation, to give the vector solution:

This gives the full "infinite bounce" solution for B directly. However, the number of calculations

to compute the matrix solution scales according to n
3
, where n is the number of patches. This

becomes prohibitive for realistically large values of n.

Instead, the equation can more readily be solved iteratively, by repeatedly applying the single-

bounce update formula above. Formally, this is a solution of the matrix equation by Jacobi

iteration. The reflectivities ρi are less than 1, this scheme converges quickly, typically requiring

only a handful of iterations to produce a reasonable solution. Other standard iterative methods

for matrix equation solutions can also be used, for example the Gauss–Seidel method (jefferys,

1988), where updated values for each patch are used in the calculation as soon as they are

computed, rather than all being updated synchronously at the end of each sweep. The solution

can also be tweaked to iterate over each of the sending elements in turn in its main outermost

loop for each update, rather than each of the receiving patches. This is known as the shooting

variant of the algorithm, as opposed to the gathering variant. Using the view factor reciprocity,

Ai Fij = AjFji, the update equation can also be re-written in terms of the view factor Fji seen by

each sending patch Aj:

This is sometimes known as the "power" formulation, since it is now the total transmitted power

of each element that is being updated, rather than its radiosity.

http://en.wikipedia.org/wiki/View_factor
http://en.wikipedia.org/wiki/Jacobi_iteration
http://en.wikipedia.org/wiki/Jacobi_iteration
http://en.wikipedia.org/wiki/Gauss%E2%80%93Seidel_method

200

The view factor Fij itself can be calculated in a number of ways. Early methods used a hemi-cube

(an imaginary cube centered upon the first surface to which the second surface was projected,

devised by Cohen and Greenberg in 1985). The surface of the hemi-cube was divided into pixel-

like squares, for each of which a view factor can be readily calculated analytically. The full form

factor could then be approximated by adding up the contribution from each of the pixel-like

squares. The projection onto the hemi-cube, which could be adapted from standard methods for

determining the visibility of polygons, also solved the problem of intervening patches partially

obscuring those behind.

However, all this was quite computationally expensive, because ideally form factors must be

derived for every possible pair of patches, leading to a quadratic increase in computation as the

number of patches increased. This can be reduced somewhat by using a binary space partitioning

tree to reduce the amount of time spent determining which patches are completely hidden from

others in complex scenes; but even so, the time spent to determine the form factor still typically

scales as n log n. New methods include adaptive integration

3.7.1.2 Sampling approaches

The form factors Fij themselves are not in fact explicitly needed in either of the update equations;

neither to estimate the total intensity ∑j Fij Bj gathered from the whole view, nor to estimate how

the power AjBj being radiated is distributed. Instead, these updates can be estimated by sampling

methods, without ever having to calculate form factors explicitly. Since the mid 1990s such

sampling approaches have been the methods most predominantly used for practical radiosity

calculations.

The gathered intensity can be estimated by generating a set of samples in the unit circle, lifting

these onto the hemisphere, and then seeing what was the radiosity of the element that a ray

incoming in that direction would have originated on. The estimate for the total gathered intensity

is then just the average of the radiosities discovered by each ray. Similarly, in the power

formulation, power can be distributed by generating a set of rays from the radiating element in

the same way, and spreading the power to be distributed equally between each element a ray hits.

This is essentially the same distribution that a path-tracing program would sample in tracing back

one diffuse reflection step; or that a bidirectional ray tracing program would sample to achieve

one forward diffuse reflection step when light source mapping forwards. The sampling approach

therefore to some extent represents a convergence between the two techniques, the key

difference remaining that the radiosity technique aims to build up a sufficiently accurate map of

the radiance of all the surfaces in the scene, rather than just a representation of the current view.

3.7.2 Reducing computation time

http://en.wikipedia.org/wiki/View_factor
http://en.wikipedia.org/wiki/Hemicube_(computer_graphics)
http://en.wikipedia.org/wiki/Computation
http://en.wikipedia.org/wiki/Form_factor_(radiative_transfer)
http://en.wikipedia.org/wiki/Quadratic_function
http://en.wikipedia.org/wiki/Binary_space_partitioning
http://en.wikipedia.org/wiki/Binary_space_partitioning
http://en.wikipedia.org/wiki/Path-tracing

201

Although in its basic form radiosity is assumed to have a quadratic increase in computation time

with added geometry (surfaces and patches), this need not be the case. The radiosity problem can

be rephrased as a problem of rendering a texture mapped scene. In this case, the computation

time increases only linearly with the number of patches (ignoring complex issues like cache use).

Following the commercial enthusiasm for radiosity-enhanced imagery, but prior to the

standardization of rapid radiosity calculation, many architects and graphic artists used a

technique referred to loosely as false radiosity. By darkening areas of texture maps

corresponding to corners, joints and recesses, and applying them via self-illumination or diffuse

mapping, a radiosity-like effect of patch interaction could be created with a standard scanline

renderer (cf. ambient occlusion). Radiosity solutions may be displayed in realtime via lightmaps

on current desktop computers with standard graphics acceleration hardware

3.7.3 Advantages of Radiosity Algorithm

One of the advantages of the radiosity algorithm is that it is relatively simple to explain and

implement. This makes it a useful algorithm for teaching students about global illumination

algorithms. A typical direct illumination renderer already contains nearly all of the algorithms

(perspective transformations, texture mapping, hidden surface removal) required to implement

radiosity. A strong grasp of mathematics is not required to understand or implement this

algorithm
.

3.7.4 Limitations of Radiosity Algorithm

Typical radiosity methods only account for light paths of the form LD*E, i.e., paths which start

at a light source and make multiple diffuse bounces before reaching the eye. Although there are

several approaches to integrating other illumination effects such as specular and glossy

reflections, radiosity-based methods are generally not used to solve the complete rendering

equation.

Basic radiosity also has trouble resolving sudden changes in visibility (e.g., hard-edged shadows)

because coarse, regular discretization into piecewise constant elements corresponds to a low-pass

box filter of the spatial domain. Discontinuity meshing uses knowledge of visibility events to

generate a more intelligent discretization.

4.0 Conclusion

Photon mapping is a "biased" rendering algorithm, which means that averaging many renders

using this method does not converge to a correct solution to the rendering equation. Radiosity

calculations are viewpoint independent which increases the computations involved, but makes

them useful for all viewpoints.

http://en.wikipedia.org/wiki/Texture_mapping
http://en.wikipedia.org/wiki/Cache
http://en.wikipedia.org/wiki/False_radiosity
http://en.wikipedia.org/wiki/Ambient_occlusion
http://en.wikipedia.org/wiki/Lightmap
http://en.wikipedia.org/wiki/Graphics_accelerator
http://en.wikipedia.org/wiki/Perspective_transform
http://en.wikipedia.org/wiki/Texture_mapping
http://en.wikipedia.org/wiki/Hidden_surface_removal
http://en.wikipedia.org/wiki/Specular_reflection
http://en.wikipedia.org/wiki/Low-pass_filter
http://en.wikipedia.org/wiki/Low-pass_filter
http://en.wikipedia.org/wiki/Rendering_equation

202

5.0 Summary

In this unit, we have surveyed tow global illumination algorithms, photon mapping and radiosity.

Photon mapping is used to realistically simulate the interaction of light with different objects

while Radiosity is an application of the finite element method to solving the rendering equation

for scenes with purely diffuse surfaces.

6.0 Tutor Marked Assignment

1.0 What do you understand by photon mapping?

2.0 Discuss radiosity as an illumination algorithm

3.0 Differentiate between standard direct illumination and radiosity

4.0 What are the limitations of the radiosity algorithm?

7.0 References/Further Reading

1. Ed Angel (1991) Interactive Computer Graphics- A Top-Down Approach with OpenGL,

Fifth Edition, Addison-Wesley 2009 ISBN 0-321-53586-3

2. Donald Hearn and M. Pauline Baker (1997) Computer Graphics, C Version (2nd

Edition), Prentice Hall, 1997, ISBN: 0135309247

3. Modeling the interaction of light between diffuse surfaces", C. Goral, K. E. Torrance, D.

P. Greenberg and B. Battaile, Computer Graphics, Vol. 18, No. 3.

4. G Walton, Calculation of Obstructed View Factors by Adaptive Integration, NIST Report

NISTIR-6925, see also http://view3d.sourceforge.net/

5. Realistic Image Synthesis Using Photon Mapping ISBN 1-56881-147-0

6. Jensen, Henrik W., Realistic Image Synthesis Using Photon Mapping, A K Peters, Ltd.,

Massachusetts, 2001. ISBN-13: 978-1568814629.

http://en.wikipedia.org/wiki/Light
http://en.wikipedia.org/wiki/Finite_element_method
http://en.wikipedia.org/wiki/Rendering_equation
http://www.cs.rpi.edu/~cutler/classes/advancedgraphics/S07/lectures/goral.pdf
http://en.wikipedia.org/wiki/Computer_Graphics_(Publication)
http://www.bfrl.nist.gov/IAQanalysis/docs/NISTIR-6925.pdf
http://www.bfrl.nist.gov/IAQanalysis/docs/NISTIR-6925.pdf
http://view3d.sourceforge.net/
http://graphics.ucsd.edu/~henrik/papers/book/
http://en.wikipedia.org/wiki/Special:BookSources/1568811470

203

MODULE 5 – Ray tracing, illumination algorithms and GPGPU

UNIT 3: General Purpose – GPU Computing

Contents Pages

1.0 Introduction…………………………………………………………………………….200

2.0 Objectives………………………………………………………………………………200

3.0 Main Content………………………………………………………………....………...200

3.1 GPGPU programming concepts………………………………………………..200

3.2 GPU techniques………………………………………………………………...202

3.3 Applications…………………………………………………………………….204

4.0 Conclusion……………………………………………………………………………...205

5.0 Summary………………………………………………………………………………..205

6.0 Tutor Marked Assignment……………………………………………………………...205

7.0 References/Further

Reading…………………………………………………………………….…..205

204

1.0 Introduction

General-Purpose computing on Graphics Processing Units (GPGPU, also referred to as GPGP

and less often GP²U) is the technique of using a GPU, which typically handles computation only

for computer graphics, to perform computation in applications traditionally handled by the CPU.

It is made possible by the addition of programmable stages and higher precision arithmetic to the

rendering pipelines, which allows programmers to use stream processing on non-graphics data.

Additionally, the use of multiple graphics cards in a single computer, or large numbers of

graphics chips, further parallelizes the already parallel nature of graphics processing

GPU functionality has, traditionally, been very limited. In fact, for many years the GPU was only

used to accelerate certain parts of the graphics pipeline. Some improvements were needed before

GPGPU became feasible.

2.0 Objectives

On completing this unit, you would be able to:

1. Understand the GPGPU

2. Understand programming concepts such as stream processing, computational resources

and kernels

3. Identify application areas of GPU computing.

3.0 Main Content

3.1 GPGPU programming concepts

GPUs are designed specifically for graphics and thus are very restrictive in terms of operations

and programming. As a result of their nature, GPUs are only effective at tackling problems that

can be solved using stream processing and the hardware can only be used in certain ways. The

following are some of the programming concepts in GPGPU computing.

1. Stream processing

http://en.wikipedia.org/wiki/Graphics_processing_unit
http://en.wikipedia.org/wiki/Computer_graphics
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Rendering_pipeline
http://en.wikipedia.org/wiki/Programmer
http://en.wikipedia.org/wiki/Stream_processing
http://en.wikipedia.org/wiki/Graphics_pipeline
http://en.wikipedia.org/wiki/Stream_processing

205

GPUs can only process independent vertices and fragments, but can process many of them in

parallel. This is especially effective when the programmer wants to process many vertices or

fragments in the same way. In this sense, GPUs are stream processors – processors that can

operate in parallel by running a single kernel on many records in a stream at once.

A stream is simply a set of records that require similar computation. Streams provide data

parallelism. Kernels are the functions that are applied to each element in the stream. In the

GPUs, vertices and fragments are the elements in streams and vertex and fragment shaders

are the kernels to be run on them. Since GPUs process elements independently, there is no

way to have shared or static data. For each element, we can only read from the input, perform

operations on it, and write to the output. It is permissible to have multiple inputs and multiple

outputs, but never a piece of memory that is both readable and writable.

Arithmetic intensity is defined as the number of operations performed per word of memory

transferred. It is important for GPGPU applications to have high arithmetic intensity else the

memory access latency will limit computational speed. Ideal GPGPU applications have large

data sets, high parallelism, and minimal dependency between data elements.

2. Computational resources

There are a variety of computational resources available on the GPU:

1. Programmable processors – Vertex, primitive, and fragment pipelines allow

programmer to perform kernel on streams of data

2. Rasterizer – creates fragments and interpolates per-vertex constants such as texture

coordinates and colour

3. Texture Unit – read only memory interface

4. Frame buffer – write only memory interface

In fact, the programmer can substitute a write only texture for output instead of the

framebuffer. This is accomplished either through Render to Texture (RTT), Render-To-

Backbuffer-Copy-To-Texture (RTBCTT), or the more recent stream-out.

5. Textures as stream

The most common form for a stream to take in GPGPU is a 2D grid because this fits

naturally with the rendering model built into GPUs. Many computations naturally map into

grids: matrix algebra, image processing, physically based simulation, and so on.

Since textures are used as memory, texture lookups are then used as memory reads. Certain

operations can be done automatically by the GPU because of this.

http://en.wikipedia.org/w/index.php?title=Arithmetic_intensity&action=edit&redlink=1
http://en.wikipedia.org/wiki/Render_to_Texture

206

6. Kernels

Kernels can be thought of as the body of loops. For example, if the programmer were

operating on a grid on the CPU, they might have code that looked like this:

// Input and output grids have 10000 x 10000 or 100 million elements.

void transform_10k_by_10k_grid(float in[10000][10000], float

out[10000][10000])

{

 for(int x = 0; x < 10000; x++)

 {

 for(int y = 0; y < 10000; y++)

 {

 // The next line is executed 100 million times

 out[x][y] = do_some_hard_work(in[x][y]);

 }

 }

}

On the GPU, the programmer only specifies the body of the loop as the kernel and what data

to loop over by invoking geometry processing.

7. Flow control

In sequential code it is possible to control the flow of the program using if-then-else

statements and various forms of loops. Such flow control structures have only recently been

added to GPUs. Conditional writes could be accomplished using a properly crafted series of

arithmetic/bit operations, but looping and conditional branching are not possible.

Recent GPUs allow branching, but usually with a performance penalty. Branching should

generally be avoided in inner loops, whether in CPU or GPU code, and various techniques,

such as static branch resolution, pre-computation, predication, loop splitting, and Z-cull can

be used to achieve branching when hardware support does not exist.

3.2 GPU techniques:

The following are GPU techniques:

1. Map

The map operation simply applies the given function (the kernel) to every element in the stream.

A simple example is multiplying each value in the stream by a constant (increasing the

brightness of an image). The map operation is simple to implement on the GPU. The

programmer generates a fragment for each pixel on screen and applies a fragment program to

each one. The result stream of the same size is stored in the output buffer.

207

2. Reduce

Some computations require calculating a smaller stream (possibly a stream of only 1 element)

from a larger stream. This is called a reduction of the stream. Generally a reduction can be

accomplished in multiple steps. The results from the previous step are used as the input for the

current step and the range over which the operation is applied is reduced until only one stream

element remains.

3. Stream filtering

Stream filtering is essentially a non-uniform reduction. Filtering involves removing items from

the stream based on some criteria.

4. Scatter

The scatter operation is most naturally defined on the vertex processor. The vertex processor is

able to adjust the position of the vertex, which allows the programmer to control where

information is deposited on the grid. Other extensions are also possible, such as controlling how

large an area the vertex affects.

The fragment processor cannot perform a direct scatter operation because the location of each

fragment on the grid is fixed at the time of the fragment's creation and cannot be altered by the

programmer. However, a logical scatter operation may sometimes be recast or implemented with

an additional gather step. A scatter implementation would first emit both an output value and an

output address. An immediately following gather operation uses address comparisons to see

whether the output value maps to the current output slot.

5. Gather

The fragment processor is able to read textures in a random access fashion, so it can gather

information from any grid cell, or multiple grid cells, as desired
.

6. Sort

The sort operation transforms an unordered set of elements into an ordered set of elements. The

most common implementation on GPUs is using sorting networks.

7. Search

The search operation allows the programmer to find a particular element within the stream, or

possibly find neighbors of a specified element. The GPU is not used to speed up the search for an

individual element, but instead is used to run multiple searches in parallel.

http://en.wikipedia.org/wiki/Vertex_(geometry)
http://en.wikipedia.org/wiki/Sorting_networks

208

8. Data structures

A variety of data structures can be represented on the GPU:

1. Dense arrays

2. Sparse arrays – static or dynamic

3. Adaptive structures

3.4 Applications

The following are some of the areas where GPUs have been used for general purpose computing:

1. Bitcoin peer-to-peer currency relies on a distributed computing network for

performing SHA256 calculations where GPGPUs have become the dominant mode

of calculation

2. MATLAB acceleration using the Parallel Computing Toolbox and MATLAB

Distributed Computing Server, as well as 3rd party packages like Jacket.

3. k-nearest neighbor algorithm

4. Computer clusters or a variation of a parallel computing (utilizing GPU cluster

technology) for highly calculation-intensive tasks

5. Physical based simulation and physics engines (usually based on Newtonian physics

models)

6. Statistical physics

7. Lattice gauge theory

8. Segmentation– 2D and 3D

9. Level-set methods

10. CT reconstruction

11. Fast Fourier transform

12. Tone mapping

13. Audio signal processing

14. Digital image processing

15. Video Processing

16. Global illumination – ray tracing, photon mapping, radiosity among others,

subsurface scattering

17. Geometric computing – constructive solid geometry, distance fields, collision

detection, transparency computation, shadow generation

18. Scientific computing

19. Bioinformatics

20. Computational finance

21. Medical imaging

22. Computer vision

http://en.wikipedia.org/wiki/Array_data_structure
http://en.wikipedia.org/wiki/Sparse_array
http://en.wikipedia.org/wiki/Adaptive
http://en.wikipedia.org/wiki/Bitcoin
http://en.wikipedia.org/wiki/MATLAB
http://en.wikipedia.org/wiki/Jacket_(software)
http://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm
http://en.wikipedia.org/wiki/Computer_clusters
http://en.wikipedia.org/wiki/Parallel_computing
http://en.wikipedia.org/wiki/GPU_cluster
http://en.wikipedia.org/wiki/Physics_engine
http://en.wikipedia.org/wiki/Newtonian_physics
http://en.wikipedia.org/wiki/Statistical_physics
http://en.wikipedia.org/wiki/Lattice_gauge_theory
http://en.wikipedia.org/wiki/Segmentation_(image_processing)
http://en.wikipedia.org/wiki/Level_set
http://en.wikipedia.org/wiki/Computed_tomography
http://en.wikipedia.org/wiki/Fast_Fourier_transform
http://en.wikipedia.org/wiki/Tone_mapping
http://en.wikipedia.org/wiki/Audio_signal_processing
http://en.wikipedia.org/wiki/Digital_image_processing
http://en.wikipedia.org/wiki/Video_Processing
http://en.wikipedia.org/wiki/Global_illumination
http://en.wikipedia.org/wiki/Ray_tracing_(graphics)
http://en.wikipedia.org/wiki/Photon_mapping
http://en.wikipedia.org/wiki/Radiosity
http://en.wikipedia.org/wiki/Subsurface_scattering
http://en.wikipedia.org/wiki/Constructive_solid_geometry
http://en.wikipedia.org/wiki/Collision_detection
http://en.wikipedia.org/wiki/Collision_detection
http://en.wikipedia.org/wiki/Bioinformatics
http://en.wikipedia.org/wiki/Computational_finance
http://en.wikipedia.org/wiki/Medical_imaging
http://en.wikipedia.org/wiki/Computer_vision

209

23. Digital signal processing / signal processing

24. Control engineering

25. Neural networks

26. Database operations

27. Lattice Boltzmann methods

28. Cryptography and cryptanalysis

29. Electronic Design Automation

4.0 Conclusion

GPU functionality has, traditionally, been very limited. In fact, for many years the GPU was only

used to accelerate certain parts of the graphics pipeline. Some improvements were needed before

GPGPU became feasible.

5.0 Summary

General-purpose computing on graphics processing units is the technique of using a GPU, which

typically handles computation only for computer graphics, to perform computation in

applications traditionally handled by the CPU. There are a variety of computational resources

available on the GPU: Programmable processors, Rasterizer, Texture Unit and Frame buffer.

6.0 Tutor Marked Assignment

1.0 What do you understand by GPGPU?

2.0 Identify computational resources available in a GPU.

3.0 Explain some of the GPU techniques discussed in this unit.

7.0 References/Further Reading

1. Ed Angel (1991) Interactive Computer Graphics- A Top-Down Approach with OpenGL,

Fifth Edition, Addison-Wesley 2009 ISBN 0-321-53586-3

2. Donald Hearn and M. Pauline Baker (1997) Computer Graphics, C Version (2nd

Edition), Prentice Hall, 1997, ISBN: 0135309247

3. GPGPU Programming in F# using the Microsoft Research Accelerator system.

4. GPGPU Review, Tobias Preis, European Physical Journal Special Topics 194, 87-119

(2011)

http://en.wikipedia.org/wiki/Digital_signal_processing
http://en.wikipedia.org/wiki/Signal_processing
http://en.wikipedia.org/wiki/Control_engineering
http://en.wikipedia.org/wiki/Neural_networks
http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Lattice_Boltzmann_methods
http://en.wikipedia.org/wiki/Cryptography
http://en.wikipedia.org/wiki/Cryptanalysis
http://en.wikipedia.org/wiki/Electronic_Design_Automation
http://en.wikipedia.org/wiki/Graphics_pipeline
http://en.wikipedia.org/wiki/Graphics_processing_unit
http://en.wikipedia.org/wiki/Computer_graphics
http://en.wikipedia.org/wiki/Central_processing_unit
http://blogs.msdn.com/b/satnam_singh/archive/2009/12/15/gpgpu-and-x64-multicore-programming-with-accelerator-from-f.aspx
http://tobiaspreis.de/publications/p_epjst_2011_econophysics.pdf
http://en.wikipedia.org/wiki/Tobias_Preis

210

MODULE 5 – Ray tracing, Illumination algorithms and GPGPU

UNIT 4: Visualization, Facial modeling and Animation

Contents Pages

1.0 Introduction……………………...…….……………………………………………….207

2.0 Objectives………………………………………………………………………………207

3.0 Main Content………………………………………………………………....………...207

 3.1 Visualization…………………….……………………………………………...207

3.2 Application of Visualization…………………………..…………...…………...208

3.3 Visualization techniques………………………………………………………..210

3.4 Facial Modeling and Animation………………………………………………..211

3.5 Facial Animation techniques…………………………..……………………….212

3.6 Speech Animation……………………………………………………………....215

3.7 Face Animation Languages…………………………………………………….216

4.0 Conclusion……………………………………………………………………………...217

5.0 Summary………………………………………………………………………………..217

6.0 Tutor Marked Assignment……………………………………………………………...218

7.0 References/Further

Reading…………………………………………………………………….…..218

211

1.0 Introduction

Visualization today has ever-expanding applications in science, education, engineering (e.g.,

product visualization), interactive multimedia, medicine, etc. Typical of a visualization

application is the field of computer graphics. The development of animation also helped advance

visualization. The use of visualization to present information is not a new phenomenon. It has

been used in maps, scientific drawings, and data plots for over a thousand years

2.0 Objectives

On completing this unit, you would be able to:

1. Understand Visualization

2. Understand the Applications of Visualization.

3. Understand Visualization techniques

4. Understand Facial modeling and animation.

3.0 Main Content

3.1 Visualization

Visualization is any technique for creating images, diagrams, or animations to communicate a

message. Visualization through visual imagery, has been an effective way to communicate both

abstract and concrete ideas since the dawn of man. Examples from history include cave

paintings, Egyptian hieroglyphs, Greek geometry, and Leonardo da Vinci's revolutionary

methods of technical drawing for engineering and scientific purposes.

Computer graphics has from its beginning been used to study scientific problems. However, in

its early days the lack of graphics power often limited its usefulness. The recent emphasis on

visualization started in 1987 with the special issue of Computer Graphics on Visualization in

Scientific Computing. Since then, there have been several conferences and workshops, co-

sponsored by the IEEE Computer Society and ACM SIGGRAPH, devoted to the general topic,

and special areas in the field, for example volume visualization.

http://en.wikipedia.org/wiki/Interactive_Visualization
http://en.wikipedia.org/wiki/Medical_visualization
http://en.wikipedia.org/wiki/Computer_graphics
http://en.wikipedia.org/wiki/Animation
http://en.wikipedia.org/wiki/Image
http://en.wikipedia.org/wiki/Diagram
http://en.wikipedia.org/wiki/Animation
http://en.wikipedia.org/wiki/Cave_painting
http://en.wikipedia.org/wiki/Cave_painting
http://en.wikipedia.org/wiki/Egyptian_hieroglyphs
http://en.wikipedia.org/wiki/Geometry
http://en.wikipedia.org/wiki/Leonardo_da_Vinci
http://en.wikipedia.org/wiki/Scientific_computing
http://en.wikipedia.org/wiki/IEEE_Computer_Society
http://en.wikipedia.org/wiki/ACM_SIGGRAPH

212

Most people are familiar with the digital animations produced to present meteorological data

during weather reports on television, though few can distinguish between those models of reality

and the satellite photos that are also shown on such programs. TV also offers scientific

visualizations when it shows computer drawn and animated reconstructions of road or airplane

accidents. Some of the most popular examples of scientific visualizations are computer-

generated images that show real spacecraft in action, out in the void far beyond Earth, or on

other planets. Dynamic forms of visualization, such as educational animation or timelines, have

the potential to enhance learning about systems that change over time.

Apart from the distinction between interactive visualizations and animation, the most useful

categorization is probably between abstract and model-based scientific visualizations. The

abstract visualizations show completely conceptual constructs in 2D or 3D. These generated

shapes are completely arbitrary. The model-based visualizations either place overlays of data on

real or digitally constructed images of reality or make a digital construction of a real object

directly from the scientific data.

Scientific visualization is usually done with specialized software, though there are a few

exceptions, noted below. Some of these specialized programs have been released as Open source

software, having very often its origins in universities, within an academic environment where

sharing software tools and giving access to the source code is common. There are also many

proprietary software packages of scientific visualization tools.

Models and frameworks for building visualizations include the data flow models popularized by

systems such as AVS, IRIS Explorer, and VTK toolkit, and data state models in spreadsheet

systems such as the Spreadsheet for Visualization and Spreadsheet for Images.

3.2 Applications of visualization

As a subject in computer science, scientific visualization is the use of interactive, sensory

representations, typically visual, of abstract data to reinforce cognition, hypothesis building, and

reasoning. Data visualization is a related subcategory of visualization dealing with statistical

graphics and geographic or spatial data (as in thematic cartography) that is abstracted in

schematic form.

1. Scientific visualization

Scientific visualization is the transformation, selection, or representation of data from

simulations or experiments, with an implicit or explicit geometric structure, to allow the

exploration, analysis, and understanding of the data. It is a very important part of visualization

and maybe the first one, as the visualization of experiments and phenomena is as old as Science

itself. Traditional areas of scientific visualization are flow visualization, medical visualization,

http://en.wikipedia.org/wiki/Meteorological
http://en.wikipedia.org/wiki/Television
http://en.wikipedia.org/wiki/Satellite_photo
http://en.wikipedia.org/wiki/Computer-generated
http://en.wikipedia.org/wiki/Computer-generated
http://en.wikipedia.org/wiki/Spacecraft
http://en.wikipedia.org/wiki/Planet
http://en.wikipedia.org/wiki/Educational_animation
http://en.wikipedia.org/wiki/Timeline
http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Proprietary_software
http://en.wikipedia.org/wiki/Dataflow
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Scientific_visualization
http://en.wikipedia.org/wiki/Cognition
http://en.wikipedia.org/wiki/Hypothesis
http://en.wikipedia.org/wiki/Reasoning
http://en.wikipedia.org/wiki/Data_visualization
http://en.wikipedia.org/wiki/Statistical_graphics
http://en.wikipedia.org/wiki/Statistical_graphics
http://en.wikipedia.org/w/index.php?title=Hematic_map&action=edit&redlink=1
http://en.wikipedia.org/wiki/Scientific_visualization
http://en.wikipedia.org/wiki/Science
http://en.wikipedia.org/w/index.php?title=Flow_Visualization&action=edit&redlink=1
http://en.wikipedia.org/wiki/Medical_visualization

213

astrophysical visualization, and chemical visualization. There are several different techniques to

visualize scientific data, with isosurface reconstruction and direct volume rendering being the

more common.

2. Educational visualization

Educational visualization is using a simulation normally created on a computer to create an

image of something so it can be taught about. This is very useful when teaching about a topic

that is difficult to otherwise see, for example, atomic structure, because atoms are far too small to

be studied easily without expensive and difficult to use scientific equipment. It can also be used

to view past events, such as looking at dinosaurs, or looking at things that are difficult or fragile

to look at in reality like the human skeleton.

3. Information visualization

Information visualization concentrates on the use of computer-supported tools to explore large

amount of abstract data. The term "information visualization" was originally coined by the User

Interface Research Group at Xerox PARC and included Dr. Jock Mackinlay. Practical

application of information visualization in computer programs involves selecting, transforming,

and representing abstract data in a form that facilitates human interaction for exploration and

understanding. Important aspects of information visualization are dynamics of visual

representation and the interactivity. Strong techniques enable the user to modify the visualization

in real-time, thus affording unparalleled perception of patterns and structural relations in the

abstract data in question.

4. Knowledge visualization

The use of visual representations to transfer knowledge between at least two persons aims to

improve the transfer of knowledge by using computer and non-computer-based visualization

methods complementarily. Examples of such visual formats are sketches, diagrams, images,

objects, interactive visualizations, information visualization applications, and imaginary

visualizations as in stories. While information visualization concentrates on the use of computer-

supported tools to derive new insights, knowledge visualization focuses on transferring insights

and creating new knowledge in groups. Beyond the mere transfer of facts, knowledge

visualization aims to further transfer insights, experiences, attitudes, values, expectations,

perspectives, opinions, and predictions by using various complementary visualizations.

5. Visual communication

Visual communication is the communication of ideas through the visual display of information.

Primarily associated with two dimensional images, it includes: alphanumerics, art, signs, and

http://en.wikipedia.org/w/index.php?title=Astrophysical_visualization&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Chemical_visualization&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Isosurface_reconstruction&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Direct_volume_rendering&action=edit&redlink=1
http://en.wikipedia.org/wiki/Simulation
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Atomic_structure
http://en.wikipedia.org/wiki/Dinosaur
http://en.wikipedia.org/wiki/Human_skeleton
http://en.wikipedia.org/wiki/Information_visualization
http://en.wikipedia.org/wiki/Data_transformation
http://en.wikipedia.org/wiki/Knowledge
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Sketch_(drawing)
http://en.wikipedia.org/wiki/Diagram
http://en.wikipedia.org/wiki/Image
http://en.wikipedia.org/wiki/Object_(image_processing)
http://en.wikipedia.org/wiki/Narrative
http://en.wikipedia.org/wiki/Knowledge
http://en.wikipedia.org/wiki/Group_(sociology)
http://en.wikipedia.org/wiki/Fact
http://en.wikipedia.org/wiki/Insight
http://en.wikipedia.org/wiki/Experience
http://en.wikipedia.org/wiki/Attitude_(psychology)
http://en.wikipedia.org/wiki/Value_(personal_and_cultural)
http://en.wikipedia.org/wiki/Expectation_(epistemic)
http://en.wikipedia.org/wiki/Perspective_(cognitive)
http://en.wikipedia.org/wiki/Opinion
http://en.wikipedia.org/wiki/Prediction
http://en.wikipedia.org/wiki/Visual_communication
http://en.wikipedia.org/wiki/Communication
http://en.wikipedia.org/wiki/Idea
http://en.wikipedia.org/wiki/Information
http://en.wikipedia.org/wiki/Two_dimensional
http://en.wikipedia.org/wiki/Image
http://en.wikipedia.org/wiki/Alphanumeric
http://en.wikipedia.org/wiki/Art
http://en.wikipedia.org/wiki/Information_sign

214

electronic resources. Recent research in the field has focused on web design and graphically-

oriented usability.

3.3 Visualization techniques

The following are examples of some common visualization techniques:

1. Constructing isosurfaces: they are normally displayed using computer graphics, and

are used as data visualization methods in computational fluid dynamics (CFD),

allowing engineers to study features of a fluid flow (gas or liquid) around objects,

such as aircraft wings. An isosurface may represent an individual shock wave in

supersonic flight, or several isosurfaces may be generated showing a sequence of

pressure values in the air flowing around a wing. Isosurfaces tend to be a popular

form of visualization for volume datasets since they can be rendered by a simple

polygonal model, which can be drawn on the screen very quickly.

2. Direct volume rendering: In scientific visualization and computer graphics, volume

rendering is a set of techniques used to display a 2D projection of a 3D discretely

sampled data set. A typical 3D data set is a group of 2D slice images acquired by a

CT, MRI, or MicroCT scanner. Usually these are acquired in a regular pattern (e.g.,

one slice every millimeter) and usually have a regular number of image pixels in a

regular pattern. This is an example of a regular volumetric grid, with each volume

element, or voxel represented by a single value that is obtained by sampling the

immediate area surrounding the voxel.

3. Streamlines, streaklines, and pathlines: Engineers often use dyes in water or smoke in

air in order to see streaklines, from which pathlines can be calculated. Streaklines are

identical to streamlines for steady flow. Further, dye can be used to create

timelines.
[4]

 The patterns guide their design modifications, aiming to reduce the drag.

This task is known as streamlining, and the resulting design is referred to as being

streamlined. Streamlined objects and organisms, like steam locomotives,

streamliners, cars and dolphins are often aesthetically pleasing to the eye.

http://en.wikipedia.org/wiki/Electronics
http://en.wikipedia.org/wiki/Web_design
http://en.wikipedia.org/wiki/Usability
http://en.wikipedia.org/wiki/Isosurface
http://en.wikipedia.org/wiki/Volume_rendering
http://en.wikipedia.org/wiki/Streamlines,_streaklines,_and_pathlines
file:///F:/segz/Streamlines,_streaklines,_and_pathlines.htm%23cite_note-3

215

4. Euler diagram: Often, Euler diagrams are augmented with extra structures, such as

dots, labels or graphs, showing information about what is contained in the various

zones. One significant feature of Euler diagrams is their capacity to visualize

complex hierarchies.

5. Chernoff face: display multivariate data in the shape of a human face. The individual

parts, such as eyes, ears, mouth and nose represent values of the variables by their

shape, size, placement and orientation. The idea behind using faces is that humans

easily recognize faces and notice small changes without difficulty. Chernoff faces

handle each variable differently. Because the features of the faces vary in perceived

importance, the way in which variables are mapped to the features should be

carefully chosen (e.g. eye size and eyebrow-slant have been found to carry significant

weight)

6. Hyperbolic trees: a hyperbolic tree (often shortened as hypertree) defines a graph

drawing method inspired by hyperbolic geometry. Displaying hierarchical data as a

tree suffers from visual clutter as the number of nodes per level can grow

exponentially. For a simple binary tree, the maximum number of nodes at a level n is

2
n
, while the number of nodes for larger trees grows much more quickly. Drawing the

tree as a node-link diagram thus requires exponential amounts of space to be

displayed.

7. Table, matrix

8. Charts (pie chart, bar chart, histogram, function graph, scatter plot, etc.)

9. Graphs (tree diagram, network diagram, flowchart, existential graph, etc.)

10. Maps

11. parallel coordinates - a visualization technique aimed at multidimensional data

12. Treemap - a visualization technique aimed at hierarchical data

13. Venn diagram

14. Timeline

15. Brushing and linking

16. Cluster diagram or dendrogram

17. Ordinogram

3.4 Facial Modeling and Animation

Computer facial animation is primarily an area of computer graphics that encapsulates models

and techniques for generating and animating images of the human head and face. Due to its

subject and output type, it is also related to many other scientific and artistic fields from

http://en.wikipedia.org/wiki/Euler_diagram
http://en.wikipedia.org/wiki/Chernoff_face
http://en.wikipedia.org/wiki/HyperbolicTree
http://en.wikipedia.org/wiki/Table_(information)
http://en.wikipedia.org/wiki/Matrix_(mathematics)
http://en.wikipedia.org/wiki/Pie_chart
http://en.wikipedia.org/wiki/Bar_chart
http://en.wikipedia.org/wiki/Histogram
http://en.wikipedia.org/wiki/Function_graph
http://en.wikipedia.org/wiki/Scatter_plot
http://en.wikipedia.org/wiki/Decision_tree
http://en.wikipedia.org/wiki/Network_diagram
http://en.wikipedia.org/wiki/Flowchart
http://en.wikipedia.org/wiki/Existential_graph
http://en.wikipedia.org/wiki/Map
http://en.wikipedia.org/wiki/Parallel_coordinates
http://en.wikipedia.org/wiki/Treemap
http://en.wikipedia.org/wiki/Venn_diagram
http://en.wikipedia.org/wiki/Timeline
http://en.wikipedia.org/wiki/Brushing_and_linking
http://en.wikipedia.org/wiki/Cluster_diagram
http://en.wikipedia.org/wiki/Ordination_(statistics)
http://en.wikipedia.org/wiki/Computer_graphics
http://en.wikipedia.org/wiki/Human_head
http://en.wikipedia.org/wiki/Face

216

psychology to traditional animation. The importance of human faces in verbal and non-verbal

communication and advances in computer graphics hardware and software have caused

considerable scientific, technological, and artistic interests in computer facial animation.

Although development of computer graphics methods for facial animation started in the early

1970s, major achievements in this field are more recent and happened since the late 1980s.

Computer facial animation includes a variety of techniques from morphing to three-dimensional

modeling and rendering. It has become well-known and popular through animated feature films

and computer games but its applications include many more areas such as communication,

education, scientific simulation, and agent-based systems (for example online customer service

representatives).

Human facial expression has been the subject of scientific investigation for more than one

hundred years. Study of facial movements and expressions started from a biological point of

view. After some older investigations, for example by John Bulwer in late 1640s, Charles

Darwin‘s book The Expression of the Emotions in Men and Animals can be considered a major

departure for modern research in behavioural biology.

More recently, one of the most important attempts to describe facial activities (movements) was

Facial Action Coding System (FACS). Introduced by Ekman and Friesen in 1978, FACS defines

46 basic facial Action Units (AUs). A major group of these Action Units represent primitive

movements of facial muscles in actions such as raising brows, winking, and talking. Eight AUs

are for rigid three-dimensional head movements, i.e. turning and tilting left and right and going

up, down, forward and backward. FACS has been successfully used for describing desired

movements of synthetic faces and also in tracking facial activities.

Computer based facial expression modelling and animation is not a new endeavour. The earliest

work with computer based facial representation was done in the early 1970s. The first three-

dimensional facial animation was created by Parke in 1972. In 1973, Gillenson developed an

interactive system to assemble and edit line drawn facial images. And in 1974, Parke developed

a parameterized three-dimensional facial model.

3.5 Facial Animation Techniques

3.5.1 2D Animation

Two-dimensional facial animation is commonly based upon the transformation of images,

including both images from still photography and sequences of video. Image morphing is a

technique which allows in-between transitional images to be generated between a pair of target

still images or between frames from sequences of video. These morphing techniques usually

consist of a combination of a geometric deformation technique, which aligns the target images,

http://en.wikipedia.org/wiki/Psychology
http://en.wikipedia.org/wiki/Animation
http://en.wikipedia.org/wiki/Face
http://en.wikipedia.org/wiki/Communication
http://en.wikipedia.org/wiki/Communication
http://en.wikipedia.org/wiki/Graphics_processing_unit
http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Computer_graphics
http://en.wikipedia.org/wiki/Morphing
http://en.wikipedia.org/wiki/Computer_model
http://en.wikipedia.org/wiki/Rendering_(computer_graphics)
http://en.wikipedia.org/wiki/Film
http://en.wikipedia.org/wiki/Computer_games
http://en.wikipedia.org/wiki/Communication
http://en.wikipedia.org/wiki/Education
http://en.wikipedia.org/wiki/Simulation
http://en.wikipedia.org/wiki/Software_agent
http://en.wikipedia.org/wiki/Facial_expression
http://en.wikipedia.org/wiki/John_Bulwer
http://en.wikipedia.org/wiki/Charles_Darwin
http://en.wikipedia.org/wiki/Charles_Darwin
http://en.wikipedia.org/wiki/Biology
http://en.wikipedia.org/wiki/Facial_Action_Coding_System
http://en.wikipedia.org/wiki/Paul_Ekman
http://en.wikipedia.org/wiki/Friesen
http://en.wikipedia.org/wiki/FACS
http://en.wikipedia.org/wiki/Animation
http://en.wikipedia.org/wiki/Fred_Parke
http://en.wikipedia.org/wiki/Fred_Parke
http://en.wikipedia.org/wiki/Morphing
http://en.wikipedia.org/wiki/Morphing

217

and a cross-fade which creates the smooth transition in the image texture. An early example of

image morphing can be seen in Michael Jackson's video for "Black or White‖

Another form of animation from images consists of concatenating together sequences captured

from video. In 1997, Bregler et al. described a technique called video-rewrite where existing

footage of an actor is cut into segments corresponding to phonetic units which are blended

together to create new animations of a speaker. Video-rewrite uses computer vision techniques to

automatically track lip movements in video and these features are used in the alignment and

blending of the extracted phonetic units. This animation technique only generates animations of

the lower part of the face, these are then composited with video of the original actor to produce

the final animation.

Figure 5.4(a): 2D traditional animation (pencilanimation.org)

3.5.2 3D Animation

http://en.wikipedia.org/wiki/Morphing
http://en.wikipedia.org/wiki/Michael_Jackson
http://en.wikipedia.org/wiki/Phonetic
http://en.wikipedia.org/wiki/Computer_vision
http://en.wikipedia.org/wiki/Phonetic

218

Three-dimensional head models provide the most powerful means of generating computer facial

animation. One of the earliest works on computerized head models for graphics and animation

was done by Parke. The model was a mesh of 3D points controlled by a set of conformation and

expression parameters. The former group controls the relative location of facial feature points

such as eye and lip corners. Changing these parameters can re-shape a base model to create new

heads. The latter group of parameters (expression) are facial actions that can be performed on

face such as stretching lips or closing eyes. This model was extended by other researchers to

include more facial features and add more flexibility. Different methods for initializing such

―generic‖ model based on individual (3D or 2D) data have been proposed and successfully

implemented. The parameterized models are effective ways due to use of limited parameters,

associated to main facial feature points. The MPEG-4 standard defines a minimum set of

parameters for facial animation.

Figure 5.4(b): 3D animation (lawalstemescal.com)

Animation is done by changing parameters over time. Facial animation is approached in different

ways, traditional techniques include

http://en.wikipedia.org/wiki/Human_head
http://en.wikipedia.org/wiki/Graphics
http://en.wikipedia.org/wiki/Animation
http://en.wikipedia.org/wiki/Frederic_Parke
http://en.wikipedia.org/wiki/Polygon_mesh
http://en.wikipedia.org/wiki/Human_eye
http://en.wikipedia.org/wiki/Lip
http://en.wikipedia.org/wiki/Facial_Action_Coding_System
http://en.wikipedia.org/wiki/MPEG-4
http://en.wikipedia.org/wiki/Animation

219

a) shapes/morph targets,

b) skeleton-muscle systems,

c) bones/cages,

d) motion capture on points on the face and

e) knowledge based solver deformations.

a. Shape based systems offer a fast playback as well as a high degree of fidelity of expressions.

The technique involves modelling portions of the face mesh to approximate expressions and

visemes and then blending the different sub meshes, known as morph targets or shapes.

Perhaps the most accomplished character using this technique was Gollum, from The Lord of

the Rings. Drawbacks of this technique are that they involve intensive manual labor, specific

to each character and must be animated by slider parameter tables.

b. Skeletal Muscle systems, physically based head models form another approach in modeling

the head and face. Here the physical and anatomical characteristics of bones, tissues, and skin

are simulated to provide a realistic appearance (e.g. spring-like elasticity). Such methods can

be very powerful for creating realism but the complexity of facial structures make them

computationally expensive, and difficult to create. Considering the effectiveness of

parameterized models for communicative purposes (as explained in the next section), it may

be argued that physically based models are not a very efficient choice in many applications.

This does not deny the advantages of physically based models and the fact that they can even

be used within the context of parameterized models to provide local details when needed.

Waters, Terzopoulos, Kahler, and Seidel (among others) have developed physically based

facial animation systems.

c. 'Envelope Bones' or 'Cages' are commonly used in games. They produce simple and fast

models, but are not prone to portray subtlety.

d. Motion capture uses cameras placed around a subject. The subject is generally fitted either

with reflectors (passive motion capture) or sources (active motion capture) that precisely

determine the subject's position in space. The data recorded by the cameras is then digitized

and converted into a three-dimensional computer model of the subject. Until recently, the

size of the detectors/sources used by motion capture systems made the technology

inappropriate for facial capture. However, miniaturization and other advancements have

made motion capture a viable tool for computer facial animation. The main difficulties of

motion capture are the quality of the data which may include vibration as well as the

retargeting of the geometry of the points. A recent technology developed at the Applied

Geometry Group and Computer Vision Laboratory at ETH Zurich achieves real-time

performance without the use of any markers using a high speed structured light scanner. The

system is based on a robust offline face tracking stage which trains the system with different

facial expressions. The matched sequences are used to build a person-specific linear face

model that is subsequently used for online face tracking and expression transfer.

e. Deformation Solver Face Robot.

http://en.wikipedia.org/w/index.php?title=Shapes/morph_targets&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Skeleton-muscle_systems&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Bones/cages&action=edit&redlink=1
http://en.wikipedia.org/wiki/Motion_capture
http://en.wikipedia.org/w/index.php?title=Solver_deformations&action=edit&redlink=1
http://en.wikipedia.org/wiki/Viseme
http://en.wikipedia.org/wiki/Human_head
http://en.wikipedia.org/wiki/Face
http://en.wikipedia.org/wiki/Anatomy
http://en.wikipedia.org/wiki/Bone
http://en.wikipedia.org/wiki/Biological_tissue
http://en.wikipedia.org/wiki/Human_skin
http://en.wikipedia.org/wiki/Keith_Waters
http://en.wikipedia.org/wiki/Motion_capture
http://en.wikipedia.org/wiki/ETH_Zurich
http://en.wikipedia.org/w/index.php?title=Face_Robot&action=edit&redlink=1

220

3.6 Speech Animation

Speech is usually treated in a different way to the animation of facial expressions, this is because

simple keyframe-based approaches to animation typically provide a poor approximation to real

speech dynamics. Often visemes are used to represent the key poses in observed speech (i.e. the

position of the lips, jaw and tongue when producing a particular phoneme), however there is a

great deal of variation in the realisation of visemes during the production of natural speech. The

source of this variation is termed coarticulation which is the influence of surrounding visemes

upon the current viseme (i.e. the effect of context). To account for coarticulation current systems

either explicitly take into account context when blending viseme keyframes or use longer units

such as diphone, triphone, syllable or even word and sentence-length units.

One of the most common approaches to speech animation is the use of dominance functions

introduced by Cohen and Massaro (1993). Each dominance function represents the influence

over time that a viseme has on a speech utterance. Typically the influence will be greatest at the

center of the viseme and will degrade with distance from the viseme center. Dominance

functions are blended together to generate a speech trajectory in much the same way that spline

basis functions are blended together to generate a curve. The shape of each dominance function

will be different according to both which viseme it represents and what aspect of the face is

being controlled (e.g. lip width, jaw rotation etc.). This approach to computer-generated speech

animation can be seen in the Baldi talking head.

Other models of speech use basis units which include context (e.g. diphones, triphones etc.)

instead of visemes. As the basis units already incorporate the variation of each viseme according

to context and to some degree the dynamics of each viseme, no model of coarticulation is

required. Speech is simply generated by selecting appropriate units from a database and blending

the units together. This is similar to concatenative techniques in audio speech synthesis. The

disadvantage to these models is that a large amount of captured data is required to produce

natural results, and whilst longer units produce more natural results the size of database required

expands with the average length of each unit.

Finally, some models directly generate speech animations from audio. These systems typically

use hidden markov models or neural nets to transform audio parameters into a stream of control

parameters for a facial model. The advantage of this method is the capability of voice context

handling, the natural rhythm, tempo, emotional and dynamics handling without complex

approximation algorithms. The training database is not needed to be labeled since there are no

phonemes or visemes needed; the only needed data is the voice and the animation parameters.

An example of this approach is the Johnnie Talker system

3.7 Face Animation Languages

http://en.wikipedia.org/wiki/Keyframe
http://en.wikipedia.org/wiki/Viseme
http://en.wikipedia.org/wiki/Phoneme
http://en.wikipedia.org/wiki/Coarticulation
http://en.wikipedia.org/wiki/Diphone
http://en.wikipedia.org/wiki/Triphone
http://en.wikipedia.org/wiki/Syllable
http://en.wikipedia.org/wiki/Word
http://en.wikipedia.org/wiki/Sentence_(linguistics)
http://en.wikipedia.org/wiki/Spline
http://en.wikipedia.org/wiki/Diphone
http://en.wikipedia.org/wiki/Triphone
http://en.wikipedia.org/wiki/Coarticulation
http://en.wikipedia.org/wiki/Speech_synthesis
http://en.wikipedia.org/wiki/Hidden_markov_model
http://en.wikipedia.org/wiki/Neural_net

221

Many face animation languages are used to describe the content of facial animation. They can be

input to a compatible "player" software which then creates the requested actions. Face animation

languages are closely related to other multimedia presentation languages such as SMIL and

VRML. Due to the popularity and effectiveness of XML as a data representation mechanism,

most face animation languages are XML-based. For instance, this is a sample from Virtual

Human Markup Language (VHML):

 <vhml>
 <person disposition="angry">

 First I speak with an angry voice and look very angry,

 <surprised intensity="50">

 but suddenly I change to look more surprised.

 </surprised>

 </person>

 </vhml>

More advanced languages allow decision-making, event handling, and parallel

and sequential actions. Following is an example from Face Modeling Language

(FML):

 <fml>

 <act>

 <par>

 <hdmv type="yaw" value="15" begin="0" end="2000" />

 <expr type="joy" value="-60" begin="0" end="2000" />

 </par>

 <excl event_name="kbd" event_value="" repeat="kbd;F3_up" >

 <hdmv type="yaw" value="40" begin="0" end="2000"event_value="F1_up"/>

 <hdmv type="yaw" value="-40" begin="0" end="2000"

event_value="F2_up"/>

 </excl>

 </act>

 </fml>

Figure 5.4(a): Examples of facial models

4.0 Conclusion

http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Multimedia
http://en.wikipedia.org/wiki/Synchronized_Multimedia_Integration_Language
http://en.wikipedia.org/wiki/VRML
http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/Virtual_Human_Markup_Language
http://en.wikipedia.org/wiki/Virtual_Human_Markup_Language
http://en.wikipedia.org/wiki/Face_Modeling_Language
http://www.cs.ubc.ca/nest/imager/contributions/forsey/dragon/browse/Bawling.gif
http://www.cs.ubc.ca/nest/imager/contributions/forsey/dragon/browse/Crying.gif
http://www.cs.ubc.ca/nest/imager/contributions/forsey/dragon/browse/Disgusted.gif
http://www.cs.ubc.ca/nest/imager/contributions/forsey/dragon/browse/Kiss.gif
http://www.cs.ubc.ca/nest/imager/contributions/forsey/dragon/browse/Bawling.gif
http://www.cs.ubc.ca/nest/imager/contributions/forsey/dragon/browse/Crying.gif
http://www.cs.ubc.ca/nest/imager/contributions/forsey/dragon/browse/Disgusted.gif
http://www.cs.ubc.ca/nest/imager/contributions/forsey/dragon/browse/Kiss.gif
http://www.cs.ubc.ca/nest/imager/contributions/forsey/dragon/browse/Bawling.gif
http://www.cs.ubc.ca/nest/imager/contributions/forsey/dragon/browse/Crying.gif
http://www.cs.ubc.ca/nest/imager/contributions/forsey/dragon/browse/Disgusted.gif
http://www.cs.ubc.ca/nest/imager/contributions/forsey/dragon/browse/Kiss.gif
http://www.cs.ubc.ca/nest/imager/contributions/forsey/dragon/browse/Bawling.gif
http://www.cs.ubc.ca/nest/imager/contributions/forsey/dragon/browse/Crying.gif
http://www.cs.ubc.ca/nest/imager/contributions/forsey/dragon/browse/Disgusted.gif
http://www.cs.ubc.ca/nest/imager/contributions/forsey/dragon/browse/Kiss.gif

222

Model-based visualizations either place overlays of data on real or digitally constructed images

of reality or make a digital construction of a real object directly from the scientific data.

5.0 Summary

In this unit, we have surveyed visualization, its application areas and facial animation.

Visualization is said to be any technique for creating images, diagrams, or animations to

communicate a message. Visualization today has ever-expanding applications in science,

education, engineering, interactive multimedia, medicine

6.0 Tutor Marked Assignment

1. What do you understand by visualization?

2. Identify Application areas.

3. Identify and discuss some the visualization techniques mentioned in this unit.

4. What is facial modeling?

7.0 References/Further Reading

1. Ed Angel (1991) Interactive Computer Graphics- A Top-Down Approach with OpenGL,

Fifth Edition, Addison-Wesley 2009 ISBN 0-321-53586-3

2. Donald Hearn and M. Pauline Baker (1997) Computer Graphics, C Version (2nd Edition)

Prentice Hall, 1997, ISBN: 0135309247

3. Battiti, Roberto; Mauro Brunato (2011). Reactive Business Intelligence. From Data to

Models to Insight.. Trento, Italy: Reactive Search Url:

http://www.reactivebusinessintelligence.com/.

4. Matthew Ward, Georges Grinstein, Daniel Keim (2010), Interactive Data Visualization:

Foundations, Techniques, and Applications, Hardcover (May, 2010). ISBN: 1568814735

5. Marty R. (2008), Applied Security Visualization. Pearson Education, 2008.

ISBN: 0321510105

6. Visualization Handbook (Hardcover) by Charles D. Hansen, Chris Johnson, Academic

Press (June, 2004). ISBN: 0123875822.

7. Cohen and Masoro (1993) Use of dominant functions.

8. Bregler et al (1997). Video-rewrite techniques.

http://en.wikipedia.org/wiki/Image
http://en.wikipedia.org/wiki/Diagram
http://en.wikipedia.org/wiki/Animation
http://en.wikipedia.org/wiki/Interactive_Visualization
http://en.wikipedia.org/wiki/Medical_visualization
http://www.reactivebusinessintelligence.com/
http://www.reactivebusinessintelligence.com/
http://www.reactivebusinessintelligence.com/
http://en.wikipedia.org/wiki/Pearson_Education
http://en.wikipedia.org/wiki/Academic_Press
http://en.wikipedia.org/wiki/Academic_Press

