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Introduction 
 

 

CIT 211 – Introduction to Operating Systems is a three (3) credit unit course of twenty-two units. It 

deals with the various operating system design concepts and techniques. 
 

It also gives an insight into evolution of operating systems. Since operating systems is the most 

important software in the computer system, this course takes you through the various types of 

operating system depending on the environment, the design considerations, the functions performed 

by the operating system and how these are achieved/implemented either through hardware or 

software.. 
 

 

 

 

 
 

The second module treats, extensively, the various types of operating system. 
 

 

 

 

The fourth module discusses process synchronization issues such as Race Condition, Mutual 

Exclusion, Critical Section Problem, and other  Classic Problems of Synchronization. 
 

The fifth module treats deadlock issues such as deadlock Characterization and methods for dealing 

with deadlocks. 
 

The last i.e. the sixth module discusses memory management functions of the operating system and 

issues such as memory management algorithms like paging, segmentation, contiguous memory 

allocation with their peculiar features were discussed. 
 

This Course Guide gives you a brief overview of the course contents, course duration, and course 

materials. 
 

 

 

What you will learn in this course 
 

The main purpose of this course is to provide the necessary tools for designing and Operating 

system. It makes available the steps and tools that will enable you to make proper and accurate 

decision on designs issues and the necessary algorithms for a particular computing environment. 

Thus, we intend to achieve this through the following: 
 

Course Aims 

 

I. Introduce the concepts associated with Operating systems; 

This course is divided into six modules. The first module deals with the basic introduction to the 

concept of Operating Systems such as definition and functions of operating system, history and 

evolution of operating system. 

The third module deals with concept of process management and discusses the concepts of Co- 

operating Processes, Threads, and CPU Scheduling. 
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1. Define an OS 

2. State the major functions of the OS 
3. State the importance of the OS in the computer system./ 

4. Enumerate the various services rendered the user by the OS 

5. Discuss the history and evolution of operating system 

22. Define process synchronization 

23. Describe ways to enforce mutual exclusion 

II. Provide necessary tools for analysing a computing environment and choosing/designing 

appropriate operating system. 

III. Provide you with the necessary foundation in operating system designs 
 

 

Course Objectives 
 

Certain objectives have been set out to ensure that the course achieves its aims. Apart from the 

course objectives, every unit of this course has set objectives. In the course of the study, you will 

need to confirm, at the end of each unit, if you have met the objectives set at the beginning of each 

unit. By the end of this course you should be able to: 
 

6. Describe the functions/responsibilities of the kernel 

 
19. Describe the various CPU scheduling evaluation algorithms. 

20. Define Race condition 

21. Describe some real life examples of race condition 

24. Explain the critical section problem 

25. Define deadlock 

26. State the necessary conditions for deadlock to occur 

27. Describe some of the methods for handling deadlocks. 

 

28. Describe address binding 

29. Define logical and physical address space 

30. Distinguish between dynamic loading and dynamic linking 

31.Describe contiguous memory allocation and its various variants 

32.Distinguish between internal and external fragmentation 

33.Describe methods of solving external fragmentation 

34. Describe the principle of overlays and its uses 

7. Distinguish a process from a program 

8. List the possible states of a process 

9. Describe a process control block (PCB) 
10. Describe process creation and process termination 

11. Describe the concept of co-operating processes 

12. State reasons for allowing process co-operation 

13. Explain interprocess communication 

14. Distinguish between a thread and a process 

15. Enumerate the advantages of threads over processes 

16. Distinguish between preemptive and non-preemptive scheduling 
17. State the goals for CPU scheduling 

18. Give comparative analysis of the various CPU scheduling algorithms 
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Module 1: Operating System Fundamentals 
Unit 1: Definition and Functions of Operating System (OS) 

Unit 2: History and Evolution of Operating System 

Unit 3: The Kernel 

Unit 4: Types of Operating Systems 

Module 2: Types of Operating System 

Unit 1: Disk operating system 

Unit 2: Real-time operating system 
 

Unit 3: Time-Sharing and Object-oriented operating system 

Module 3: Process Management 

Unit 1: Processes 
 

Unit 2: Co-operating Processes 
 

Unit 3: Threads 

 
 

Working Through This Course 

 

 

In order to have a thorough understanding of the course units, you will need to read and understand 

the contents, practise the steps by designing an Information system of your own, and be committed 

to learning and implementing your knowledge. 
 

This course is designed to cover approximately seventeen weeks, and it will require your devoted 

attention. You should do the exercises in the Tutor-Marked Assignments and submit to your tutors. 
 

Course Materials 

 

These include: 

1. Course Guide 

2. Study Units 

3. Recommended Texts 
4. A file for your assignments and for records to monitor your progress. 

 

Study Units 

 

There are twenty-two study units in this course: 
 

 

35. Explain the differences between paging and segmentation 
36. Describe a method for solving the problems of both paging and segmentation 
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Module 6: Memory Management 
Unit 1: Memory Management Fundamentals 

Unit 2: Memory Management Algorithms I 

Unit 3: Memory Management Algorithms II 

 
 

Module 4: Process Synchronization 

Unit 1: Race Condition 

Unit 2: Synchronization 

Unit 3: Mutual Exclusion 

Unit 4: Critical Section Problem 

Unit 5: Classic Problems of Synchronization 
 

Module 5: Deadlocks 

Unit 1: Deadlock Characterization 

Unit 2: Methods for Dealing with Deadlocks 
 

 

Make use of the course materials, do the exercises to enhance your learning. 
 

Textbooks and References 
 

1. Roch, Benjamin (2004). Monolithic kernel vs. Microkenrel (pdf). Retrieved on 2006-10-12. 

2. Silberschatz, Abraham; James L. Peterson, Peter B. Galvin (1991). Operating system concepts. 

Boston, Massachusetts: Addison-Wesley, 696. ISBN 0-201-51379-X. 

3. Hansen, Per Brinch (April 1970). "The nucleus of a Multiprogramming System". 

Communications of the ACM 13 (4): 238-241. ISSN 0001-0782. 

4. Deitel, Harvey M. [1982] (1984). An introduction to operating systems, revisited first edition, 

Addison-Wesley, 673. ISBN 0-201-14502-2. 

5. Denning, Peter J. (April 1980). "Why not innovations in computer architecture?". ACM 

SIGARCH Computer Architecture News 8 (2): 4-7. ISSN 0163-5964. 

6. Hansen, Per Brinch [1973]. Operating System Principles. Englewood Cliffs: Prentice Hall, 

496. ISBN 0-13-637843-9. 

7. Per Brinch Hansen (2001). "The evolution of operating systems" (pdf). Retrieved on 2006-10- 

24. included in book: [2001] "1", in Per Brinch Hansen: Classic operating systems: from 

batch processing to distributed systems. New York,: Springer-Verlag, 1-36. ISBN 0-387- 

95113-X. 

8. Levin, R.; E. Cohen, W. Corwin, F. Pollack, W. Wulf (1975). "Policy/mechanism separation in 

Hydra". ACM Symposium on Operating Systems Principles / Proceedings of the fifth 

ACM symposium on Operating systems principles: 132-140. 

9. Linden, Theodore A. (December 1976). "Operating System Structures to Support Security and 

Reliable Software". ACM Computing Surveys (CSUR) 8 (4): 409 - 445. ISSN 0360-0300. 

10. Lorin, Harold (1981). Operating systems. Boston, Massachusetts: Addison-Wesley, pp.161- 

186. ISBN 0-201-14464-6. 

Unit 4: CPU Scheduling 
 

Unit 5: Algorithm Evaluation 
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11. Schroeder, Michael D.; Jerome H. Saltzer (March 1972). "A hardware architecture for 

implementing protection rings". Communications of the ACM 15 (3): 157 - 170. ISSN 

0001-0782. 

12. Shaw, Alan C. (1974). The logical design of Operating systems. Prentice-Hall, 304. ISBN 0- 

13-540112-7. 

13. Tanenbaum, Andrew S. (1979). Structured Computer Organization (in English). Englewood 

Cliffs, New Jersey: Prentice-Hall. ISBN 0-13-148521-0. 

14. Wulf, W.; E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, F. Pollack (June 1974). 

"HYDRA: the kernel of a multiprocessor operating system". Communications of the ACM 

17 (6): 337 - 345. ISSN 0001-0782. 

15. Andrew Tanenbaum, Operating Systems - Design and Implementation (Third edition); 

16. Andrew Tanenbaum, Modern Operating Systems (Second edition); 
17. Baiardi, F.; A. Tomasi, M. Vanneschi (1988). Architettura dei Sistemi di Elaborazione, 

volume 1 (in Italian). Franco Angeli. ISBN 88-204-2746-X. 

18. Daniel P. Bovet, Marco Cesati, The Linux Kernel; 

19. David A. Peterson, Nitin Indurkhya, Patterson, Computer Organization and Design, Morgan 

Koffman (ISBN 1-55860-428-6); 

20. B.S. Chalk, Computer Organisation and Architecture, Macmillan P.(ISBN 0-333-64551-0). 
21. Stallings, William (2005). Operating Systems: internals and design principles (5th edition). 

Prentice Hall. ISBN 0-13-127837-1. 

22. Allen B. Downey The Little Book of Semaphores, http://greenteapress.com/semaphores 

23. Dijkstra, E. W. (1971, June). Hierarchical ordering of sequential processes. Acta Informatica 

1(2): 115-138. 

24. Chandy, K.M.; Misra, J. (1984). The Drinking Philosophers Problem. ACM Transactions on 

Programming Languages and Systems. 

25. Lehmann, D. J., Rabin M. O, (1981). On the Advantages of Free Choice: A Symmetric and 

Fully Distributed Solution to the Dining Philosophers Problem. Principles Of 

Programming Languages 1981 (POPL'81), pages 133-138. 
 

 

Assignments File 
 

These are of two types: the self-assessment exercises and the Tutor-Marked Assignments. The self- 

assessment exercises will enable you monitor your performance by yourself, while the Tutor- 

Marked Assignment is a supervised assignment. The assignments take a certain percentage of your 

total score in this course. The Tutor-Marked Assignments will be assessed by your tutor within a 

specified period. The examination at the end of this course will aim at determining the level of 

mastery of the subject matter. This course includes twelve Tutor-Marked Assignments and each 

must be done and submitted accordingly. Your best scores however, will be recorded for you. Be 

sure to send these assignments to your tutor before the deadline to avoid loss of marks. 
 

 

Presentation Schedule 

http://greenteapress.com/semaphores
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The Presentation Schedule included in your course materials gives you the important dates for the 

completion of tutor marked assignments and attending tutorials. Remember, you are required to 

submit all your assignments by the due date.   You should guard against lagging behind in your 

work. 
 

 

Assessment 
 

 

There are two aspects to the assessment of the course. First are the tutor marked assignments; 

second, is a written examination. 
 

In tackling the assignments, you are expected to apply information and knowledge acquired during 

this course. The assignments must be submitted to your tutor for formal assessment in accordance 

with the deadlines stated in the Assignment File. The work you submit to your tutor for assessment 

will count for 30% of your total course mark. 
 

At the end of the course, you will need to sit for a final three-hour examination. This will also count 

for 70% of your total course mark. 
 

 

 

Tutor Marked Assignments (TMAS) 
 

There are twenty-two tutor marked assignments in this course. You need to submit all the 

assignments. The total marks for the best three (3) assignments will be 30% of your total course 

mark. 
 

Assignment questions for the units in this course are contained in the Assignment File. You should 

be able to complete your assignments from the information and materials contained in your set 

textbooks, reading and study units. However, you may wish to use other references to broaden your 

viewpoint and provide a deeper understanding of the subject. 
 

When you have completed each assignment, send it together with form to your tutor.   Make sure 

that each assignment reaches your tutor on or before the deadline given. If, however, you cannot 

complete your work on time, contact your tutor before the assignment is done to discuss the 

possibility of an extension. 
 

Examination and Grading 
 

The final examination for the course will carry 70% percentage of the total marks available for this 

course. The examination will cover every aspect of the course, so you are advised to revise all your 

corrected assignments before the examination. 
 

This course endows you with the status of a teacher and that of a learner. This means that you teach 

yourself and that you learn, as your learning capabilities would allow. It also means that you are in a 
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better position to determine and to ascertain the what, the how, and the when of your language 

learning. No teacher imposes any method of learning on you. 
 

The course units are similarly designed with the introduction following the table of contents, then a 

set of objectives and then the dialogue and so on. 
 

The objectives guide you as you go through the units to ascertain your knowledge of the required 

terms and expressions. 
 

 

Course Marking Scheme 

 

 
This table shows how the actual course marking is broken down. 

 

Assessment Marks 

Assignment 1- 4 Four assignments, best three marks of the four 
count at 30% of course marks 

Final Examination 70% of overall course marks 

Total 100% of course marks 

 

Table 1: Course Marking Scheme 

 

 
Course Overview 

 

 

Unit Title of Work Weeks 

Activity 

Assessment 

(End of Unit) 

 Course Guide Week 1  

 Module 1: Operating System 

Fundamentals 

  

1 Definition and Functions of 
Operating System (OS) 

Week 1 Assignment 1 

2 History and Evolution of Operating 
System 

Week 1 Assignment 2 

3 The Kernel Week 2 Assignment 3 

4 Types of Operating Systems  Week 2 Assignment 4 

 Module 2: Types of Operating 

System 

  

1 Disk operating system Week 3 Assignment 5 

2 Real-time operating system  Week 3 Assignment 6 
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3 Time-Sharing and Object-oriented operating 

system 

Week 3 Assignment 7 

 Module 3: Process Management    

1 Processes  Week 4 Assignment 8 

2 Co-operating Processes Week 4 Assignment 9 

3 Threads Week 5 Assignment 10 

4 CPU Scheduling Week 6-7 Assignment 11 

5 Algorithm Evaluation  Week 7 Assignment 12 

 Module 4: Process Synchronization   

1 Race Condition Week 8 Assignment 13 

2 Synchronization  Week 8 Assignment 14 

3 Mutual Exclusion  Week 9 Assignment 15 

4 Critical Section Problem Week 9 Assignment 16 

5 Classic Problems of Synchronization   Week 10 Assignment 17 

 Module 5: Deadlocks    

1 Deadlock Characterization Week 11 Assignment 18 

2 Methods for Dealing with Deadlocks   Week 12 Assignment 19 

 Module 6: Memory Management    

1 Memory Management Fundamentals   Week 13 Assignment 20 

2 Memory Management Algorithms I  Week 14 Assignment 21 

3 Memory Management Algorithms II  Week 15 Assignment 22 

 Revision Week 16  

 Examination Week 17  

Total  17 weeks  

 

 

 

How to get the best from this course 
 

In distance learning the study units replace the university lecturer. This is one of the great advantages of distance learning; you 

can read and work through specially designed study materials at your own pace, and at a time and place that suit you best. Think 

of it as reading the lecture instead of listening to a lecturer. In the same way that a lecturer might set you some reading to do, the 

study units tell you when to read your set books or other material. Just as a lecturer might give you an in-class exercise, your 

study units provide exercises for you to do at appropriate points. 

 

 

Each of the study units follows a common format. The first item is an introduction to the subject 

matter of the unit and how a particular unit is integrated with the other units and the course as a 
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whole. Next is a set of learning objectives. These objectives enable you know what you should be 

able to do by the time you have completed the unit. You should use these objectives to guide your 

study. When you have finished the units you must go back and check whether you have achieved 

the objectives. If you make a habit of doing this you will significantly improve your chances of 

passing the course. 
 

Remember that your tutor‘s job is to assist you. When you need help, don‘t hesitate to call and ask 

your tutor to provide it. 
 

1. Read this Course Guide thoroughly. 
 

2. Organize a study schedule. Refer to the ‗Course Overview‘ for more details. Note the time 

you are expected to spend on each unit and how the assignments relate to the units. Whatever 

method you chose to use, you should decide on it and write in your own dates for working on 

each unit. 
 

3. Once you have created your own study schedule, do everything you can to stick to it. The 

major reason that students fail is that they lag behind in their course work. 
 

4. Turn to Unit 1 and read the introduction and the objectives for the unit. 
 

5. Assemble the study materials. Information about what you need for a unit is given in the 

‗Overview‘ at the beginning of each unit. You will almost always need both the study unit 

you are working on and one of your set of books on your desk at the same time. 
 

6. Work through the unit. The content of the unit itself has been arranged to provide a sequence 

for you to follow. As you work through the unit you will be instructed to   read   sections 

from your set books or other articles. Use the unit to guide your reading. 
 

7. Review the objectives for each study unit to confirm that you have achieved them. If you feel 

unsure about any of the objectives, review the study material or consult your tutor. 
 

8. When you are confident that you have achieved a unit‘s objectives, you can then start on the 

next unit. Proceed unit by unit through the course and try to pace your study so that you keep 

yourself on schedule. 
 

9. When you have submitted an assignment to your tutor for marking, do not wait for its return 

before starting on the next unit. Keep to your schedule. When the assignment is returned, 

pay particular attention to your tutor‘s comments, both on the tutor-marked assignment form 

and also written on the assignment. Consult your tutor as soon as possible if you have any 

questions or problems. 
 

10. After completing the last unit, review the course and prepare yourself for the final 

examination. Check that you have achieved the unit objectives (listed at the beginning of 

each unit) and the course objectives (listed in this Course Guide). 
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Tutors and Tutorials 

 

 

There are 12 hours of tutorials provided in support of this course. You will be notified of the dates, 

times and location of these tutorials, together with the name and phone number of your tutor, as 

soon as you are allocated a tutorial group. 
 

Your tutor will mark and comment on your assignments, keep a close watch on your progress and 

on any difficulties you might encounter and provide assistance to you during the course. You must 

mail or submit your tutor-marked assignments to your tutor well before the due date (at least two 

working days are required). They will be marked by your tutor and returned to you as soon as 

possible. 
 

Do not hesitate to contact your tutor by telephone, or e-mail if you need help. The following might 

be circumstances in which you would find help necessary. Contact your tutor if: 

 

 you do not understand any part of the study units or the assigned readings, 

 you have difficulty with the self-tests or exercises, 

 you have a question or problem with an assignment, with your tutor‘s comments on an 

assignment or with the grading of an assignment. 
 

You should try your best to attend the tutorials. This is the only chance to have face to face contact 

with your tutor and to ask questions which are answered instantly. You can raise any problem 

encountered in the course of your study. To gain the maximum benefit from course tutorials, 

prepare a question list before attending them. You will learn a lot from participating in discussions 

actively. 
 

Summary 
 

Introduction to Operating systems introduces you to the concepts associated with operating system 

development and functions which is critical in understanding the various computing 

environments/hardware platforms. The content of the course material was planned and written to 

ensure that you acquire the proper knowledge and skills for the appropriate situations. Real-life 

situations have been created to enable you identify with and create some of your own. The essence 

is to help you in acquiring the necessary knowledge and competence by equipping you with the 

necessary tools to accomplish this. 

We hope that by the end of this course you would have acquired the required knowledge to view 

operating systems and the computing environments in a new way. 
 

We wish you success with the course and hope that you will find it both interesting and useful. 



15  

 



16  

CIT 211 

INTRODUCTION TO OPERATING SYSTEMS 

 
 

Course Developer Afolorunso, A. A. 

National Open University of Nigeria 

Lagos. 

 
 

Course Co-ordinator Afolorunso, A. A. 

National Open University of Nigeria 

Lagos. 

 

Course Editor Dr. A. S. Sodiya 

University of Agriculture, Abeokuta 

Ogun State 

 

Programme Leader Prof. Afolabi Adebanjo 
 

 

 
 



17  

Module 2: Types of Operating System 

Unit 1: Disk operating system 

Unit 2: Real-time operating system 

Unit 3: Time-Sharing and Object-oriented operating system 
 

Module 3: Process Management 

Unit 1: Processes 

Unit 2: Co-operating Processes 

Unit 3: Threads 

Unit 4: CPU Scheduling 

Unit 5: Algorithm Evaluation 

Module 6: Memory Management 
Unit 1: Memory Management Fundamentals 

Unit 2: Memory Allocation Techniques 

Unit 3: Non-Contiguous Memory Allocation 

 
 

 

Module 4: Process Synchronization 

Unit 1: Race Condition 

Unit 2: Synchronization 

Unit 3: Mutual Exclusion 

Unit 4: Critical Section Problem 

 
Unit 1: Deadlock Characterization 

Unit 2: Methods for Dealing with Deadlocks 
 

 

Module 5: Deadlocks 

Module 1: Operating System Fundamentals 
Unit 1: Definition and Functions of Operating System (OS) 

Unit 2: History and Evolution of Operating System 

Unit 3: The Kernel 

Unit 4: Types of Operating Systems 
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Module 1: Operating System Fundamentals 

Unit 1: Definition and Functions of Operating System (OS) 
 

 

Table of Contents 
 

1.0 Introduction 

2.0 Objectives 

3.0 Main Body 

3.1 What is an Operating System? 

3.2 Goals and Functions of OS 

3.3 Views of OS 
3.4 Services Provided by the OS 

4 Conclusion 

5 Summary 

6 Tutor Marked Assignment 

7 References/Further Reading 
 

1.0 Introduction 
 

Having just read through the Course Guide, you are now to go through this first unit of 

the course which is very fundamental to the understanding of what an Operating system 

is and the role it plays in the whole computer system. 
 

Now let us go through your study objectives for this unit. 
 

2.0 Objectives 
 

At the end of this unit, you should be able to: 

o Define an OS 

o State the major functions of the OS 

o State the importance of the OS in the computer system./ 

o Enumerate the various services rendered the user by the OS 
 

 

 

4.0 Main Body 
 

3.1 What is an Operating System? 
 

An Operating System (OS) can be defined as a set of computer programs that manage 

the hardware and software resources of a computer. It is the core of computer 

programming that primarily deals with computer architecture. Operating system is 

basically an application program that serves as an interface to coordinate different 

resources of computer. An operating system processes raw system and user input and 

responds by allocating and managing tasks and internal system resources as a service to 

users and programs of the system. 
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But simply put, an (OS) can be defined as a suite (set) of programs implemented either in 

software or firmware (hardwired instructions on chips usually in ROM) or both that 

makes the hardware usable. 
 

At the foundation of all system software, an operating system performs basic tasks such 

as controlling and allocating memory, prioritizing system requests, controlling input and 

output devices, facilitating networking and managing file systems. Most operating 

systems come with an application that provides an interface to the OS managed 

resources. These applications have had command line interpreters as a basic user 

interface, but more recently have been implemented as a graphical user interface (GUI) 

for ease of operation. Operating Systems themselves, have no user interfaces, and the 

user of an OS is an application, not a person. The operating system forms a platform for 

other system software and for application software. Windows, Linux, and Mac OS are 

some of the most popular OS's. 
 

3.2 Goals and Functions of OS 
 

OS can further be described by what they do i.e. by their functions, goals and objectives. 

Therefore, we will quickly run you through some of the goals of the OS which are: 
 

3.2.1 Convenience for the User 
 

When there is no OS, users of computer system will need to write machine-level program 

in order to manipulate the hardware. With OS, users can now easily and conveniently use 

the computer with no stress of directly programming the hardware. OS provide a 

convenient interface for using the computer system. 
 

3.2.2 Efficiency 
 

An OS allows computer system resources to be used in an efficient manner. This 

particularly important for large shared multi-user systems which are usually expensive. In 

the past, the efficiency (i.e. optimal use of the computer resources) considerations were 

often more important than convenience. 
 

3.2.3 Evolutionary Capabilities 
 

Ability to evolve also happens to be one of the goals of the OS. An OS should be 

constructed in such a way that it permits the effective development, testing and 

introduction of new system functions without interfering with its service. 
 

3.3 Views of OS 
 

OS can be viewed from the perspective of what they are. These views are diverse 

depending on the particular view point of a user. But some of these views are discussed 

below. 
 

3.3.1 OS as a User/Computer Interface 
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User 

1 

User 

2 

User 

3 

User 

n 

 

Computer Hardware 

A computer system can be viewed as a layered or hierarchical structure consisting of the 

hardware, operating system, utilities, application programs and users. 
 

The users of application programs are called the end-users and are generally not 

concerned with the computer‘s architecture. The end-user views the computer system in 

terms of an application. 
 

The application is developed by the application programmer who uses a programming 

language and a language translator. A set of programs called the utilities is provided to 

assist the programmer in program creation, file management and the control of 

Input/Output (I/O) devices. 
 

The most important system program, operating system masks the details of the hardware 

from the programmer and provides a convenient interface for using the system. it acts as 

a mediator, making it easier for the programmer and for application programs to access 

and use the available services and facilities. 
 

 

 

 

 

 

 

 

Compiler Assembler Text editor … Database 

System 
 

 

 

Operating System 
 

 

 

 

 

Figure 3.1: Abstract View of the Components of a Computer System 
 

 

3.3.2 OS as a Resource Manager 
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i. Program Creation: Although editors and debuggers are not   part of the OS, they 

are accessed through the OS to assist programmers in creating programs. 

ii. Program Execution: OS ensures that programs are loaded into the main memory. 

I/O devices and files are initialised and other resources are prepared. The 

program must be able to end its execution either normally or abnormally. In 

case of abnormal end to a program, it must indicate error. 

iii. Access to I/O devices: Each I/O device requires its own set of instructions or 

control signal for operation. The OS takes care of the details so that the 

programmer can think in terms of reads and writes. 

iv. Controlled Access: In the case of files, control includes an understanding of the 

nature of the I/O device (e.g. diskette drive, CDROM drive, etc.) as well as the 

file format of the storage medium. The OS deals with these details. In the case 

of the multi-user system, the OS must provide protection mechanisms to 

control access to the files. 

v. Communications: There are many instances in which a process needs to exchange 

information with another process. There are two major ways in which 

communication can occur: 

o It can take place between processes executing on the same computer. 
o It can take place between processes executing on different computer 

systems that are linked by a computer network. 

A computer system has a set of resources for the movement, storage and processing of 

data. The OS is responsible for managing these resources. Note that resources include 

CPU, file storage space, data, programs, memory space, I/O devices, etc. 
 

The OS is like any other computer program in that it provides instructions for the 

processor. The key difference is in the purpose of the program. The OS directs the 

processor in the use of the other system resources and in the timing of its execution of 

other programs. The processor, in order to do any of these things, must cease execution 

of the OS program to execute other programs. Thus, the OS relinquishes control long 

enough to prepare the processor to do the next piece of work. 
 

The portion of the OS that is always in main memory is called the kernel or nucleus and 

it contains the most frequently used functions in the OS. The remainder of the main 

memory contains other user programs and data. The allocation of this resource (i.e. main 

memory) is controlled jointly by the OS and the memory management hardware in the 

processor. 
 

3.3.2 Services Provided by the OS 
 

The services provided by the OS can be categorised into two: 
 

3.3.2.1 Convenience for the Programmer/User 
 

The conveniences offered the user are in diverse and following ways: 
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o CPU and memory hardware error: This encompasses memory error, power 
failure, a device failure such as connection failure on a network, lack of 
paper in printer. 

o Software errors: Arithmetic overflow, attempt to access forbidden memory 
locations, inability of the OS to grant the request of an application. 

 

In each case, the OS must make a response that makes the less impact on 

running applications. The response may range from ending the program that 

caused the error, retrying the operation or simply reporting the error to the 

application. 

vi. Error Detection: A variety of errors can occur while a computer system is running. 

These errors include: 

3.3.2.2 Efficiency of System: Single and Multi-User 
 

In the area of system efficiency, the OS offer the following services: 

 
 

 

 

i. System Access or Protection: In the case of a shared or public system, the OS 

controls access to the system and to specific system resources by ensuring that 

each user authenticates him/herself to the system, usually by means of 

passwords to be allowed access to system resources. It extends to defending 

external I/O devices including modems, network adapters from invalid access 

attempts and to recording all such connections for detection of break-ins. 

ii. Resources Allocation: In an environment where there multiple users or multiple 

jobs running at the same time, resources must be allocated to each of them. 

Many different types of resources are managed by the OS. Some (such as CPU 

cycles, main memory and file storage) may have general request and release 

codes. For instances, in determining how best to use the CPU, the OS have 

CPU-scheduling routines that take into account the speed of the CPU, the jobs 

that must be executed, the number of registers available and other factors. 

These routines may also be used to allocate plotters, modems and other 

peripheral devices. 

iii. Accounting: This helps to keep track of how much of and what types of computer 

resources are used by each user. Today, this record keeping is not for billing 

purposes but for simply accumulating usage statistics. This statistics may be 

available tool for researchers who want to reconfigure the system to improve 

computing services. 

iv. Ease of Evolution of OS: A major OS will evolve over time for a number of 

reasons such as hardware upgrades and new types of hardware e.g. The use of 

graphics terminals may affect OS design. This is because such a terminal may 

allow the user to view several applications at the same time through ‗windows‘ 

on the screen. This requires more sophisticated support in the OS. 

Communications may be implemented via a shared memory or by a technique 

of message passing in which packets of information are moved between 

processes by the OS. 
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 Defining the user interface 

 Sharing hardware among users 

 Allowing users to share data 

 Scheduling resources among users 

 Facilitating I/O 

 Recovering from errors 

 Etc. 

The OS interfaces with, programs, hardware, users such as administrative personnel, 

computer operators, application programmers, system programmers, etc. 
 

4.0 Conclusion 
 

As you have learnt in this unit the OS is very important software in the computer system 

that provides a variety of services to the applications running on the system and the user. 

It also adds to the efficiency and performance of the computer system. 
 

5.0 Summary 
 

The OS forms the bedrock of the computer system and is the platform on which all other 

software run. But the OS has not always been nor come with the computer system. It 

evolved over time as you are going to learn in the next unit. 
 

6.0 Tutor Marked Assignment 

1. What do you understand by the term ‗Operating System‘? 
2. List and briefly explain the various services rendered to the users by the OS 

3. Enumerate the goals and functions of the OS 

7.0 References/Further Reading 
 

1) T. Y. James (1999). Introduction to Operating Systems. 2
nd

 Edition 

2) Silberschatz, Abraham; Galvin, Peter Baer; Gagne, Greg (2004). Operating 

System Concepts. Hoboken, NJ: John Wiley & Sons. ISBN 0-471-69466-5 

 
 

Other features provided by the OS includes:  
 

 

 

You are to attempt the following assignments and submit your answers to your tutor for 

this course. Here we go: 
 

 

v. New Services: In response to user demands or the need of system managers, the 

OS may expand to offer new services. 

vi. Error corretion: The OS may have faults which may be discovered over the course 

of time and fixes will need to be made. 
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Module 1: Operating System Fundamentals 
 

Unit 2: History and Evolution of Operating System 
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1.0 Introduction 
 

Operating system was absent in the first commercial form of electronic computer 

launched in 1940's. Rows of mechanical switches were used to enter programs. At that 

time, programming languages were not   in use. Naturally, there was hardly any idea 

about operating system. The user had sole use of the machine and would arrive armed 

with program and data, often on punched paper tape. The program would be loaded into 

the machine, and the machine would be set to work until the program completed or 

crashed. Programs could generally be debugged via a front panel using switches and 

lights. It is said that Alan Turing was a master of this on the early Manchester Mark I 

machine, and he was already deriving the primitive conception of an operating system 

from the principles of the Universal Turing Machine. 
 

Later machines came with libraries of support code, which would be linked to the users‘ 

program to assist in operations such as input and output. This was the genesis of the 

modern-day operating system. However, machines still ran a single job at a time; at 

Cambridge University in England the job queue was at one time a washing line from 

which tapes were hung with different coloured clothes-pegs to indicate job-priority. 
 

As machines became more powerful, the time needed for a run of a program diminished 

and the time to hand off the equipment became very large by comparison. Accounting for 

and paying for machine usage moved on from checking the wall clock to automatic 

logging by the computer 
 

 

2.0 Objectives 
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3.1 History of Operating Systems 
 

To see what operating systems are and what operating systems do, let us consider how 

they have developed over the last 30 years. By tracing that evolution we can identify the 

common elements of operating systems, and see how, and why they developed as they 

are now. 
 

Operating systems and computer architecture have a great deal of influence on each 

other. To facilitate the use of the hardware, operating systems were developed. As 

operating system were designed and used, it became obvious that changes in the design 

of the hardware could simplify the operating system. In this short historical review, not 

ice how the introduction of new hardware features is the natural solution to many 

operating system problems. 
 

Operating systems have been evolving over the years. let us briefly look at this 

development. Since operating systems have historically been closely tied to the 

architecture of the computers on which they run, we will look at successive generations 

of computers to see what their operating systems were like. This mapping of operating 

systems generations to computer generations is admittedly crude, but it does provide 

some structure where there would otherwise be none. 
 

Since the history of computer operating systems parallels that of computer hardware, it 

can be generally divided into five distinct time periods, called generations that are 

characterized by hardware component technology, software development, and mode of 

delivery of computer services. 
 

3.1.1 The Zeroth Generation 
 

The term zeroth generation is used to refer to the period when there was no OS. This is 

the period before the commercial production and sale of computer equipment. The period 

might be dated as extending from the mid-1800s, and Charles Babbage‘s Analytical 

Engine, to the development of the first commercial computer in 1951. In particular, this 

period witnessed the emergence of the first electronics digital computers on the ABC, 

designed by John Atanasoff in 1940; the Mark I, built by Howard Aiken and a group of 

IBM engineers at Harvard in 1944; and the ENIAC, designed and constructed at the 

University of Pennsylvania by Wallace Eckert and John Mauchly. Perhaps the most 

significant of these early computers was the EDVAC, developed in 1944-46 by John von 

Neumann, Arthur Burks, and Herman Goldstine, since it was the first to fully implement 

By the end of this unit, you should be able to: 

 

o Discuss the history and evolution of operating system 

o State the basic functions of the operating system 

o Differentiate the various features of each generation of the operating system 

 

3.0 Main Body 
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the idea of the stored program and serial execution of instructions. The development of 

EDVAC set the stage for the evolution of commercial computing and operating system 

software. The hardware component technology of this period was electronic vacuum 

tubes. 
 

The actual operation of these early computers took place without the benefit of an 

operating system. Early programs were written in machine language and each contained 

code for initiating operation of the computer itself. 
 

The mode of operation was called "open-shop" and this meant that users signed up for 

computer time and when a user‘s time arrived, the entire (in those days quite large) 

computer system was turned over to the user. The individual user (programmer) was 

responsible for all machine set up and operation, and subsequent clean-up and 

preparation for the next user. This system was clearly inefficient and depended on the 

varying competencies of the individual programmer as operators. 
 

3.1.2 The First Generation, 1951-1956 
 

The first generation marked the beginning of commercial computing. 
 

Operation continued without the benefit of an operating system for a time. The mode was 

called "closed shop" and was characterized by the appearance of hired operators who 

would select the job to be run, initial program load the system, run the user‘s program, 

and then select another job, and so forth. Programs began to be written in higher level, 

procedure-oriented languages, and thus the operator‘s routine expanded. The operator 

now selected a job, ran the translation program to assemble or compile the source 

program, and combined the translated object program along with any existing library 

programs that the program might need for input to the linking program, loaded and ran 

the composite linked program, and then handled the next job in a similar fashion. 
 

Application programs were run one at a time, and were translated with absolute computer 

addresses that bound them to be loaded and run from these pre-assigned storage 

addresses set by the translator, obtaining their data from specific physical I/O device. 

There was no provision for moving a program to different location in storage for any 

reason. Similarly, a program bound to specific devices could not be run at all if any of 

these devices were busy or broken. 
 

The inefficiencies inherent in the above methods of operation led to the development of 

the mono-programmed operating system, which eliminated some of the human 

intervention in running job and provided programmers with a number of desirable 

functions. The OS consisted of a permanently resident kernel in main storage, and a job 

scheduler and a number of utility programs kept in secondary storage. User application 

programs were preceded by control or specification cards (in those day, computer 

program were submitted on data cards) which informed the OS of what system resources 

(software resources such as compilers and loaders; and hardware resources such as tape 

drives and printer) were needed to run a particular application. The systems were 

designed to be operated as batch processing system. 
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These systems continued to operate under the control of a human operator who initiated 

operation by mounting a magnetic tape that contained the operating system executable 

code onto a "boot device", and then pushing the IPL (initial program load) or "boot" 

button to initiate the bootstrap loading of the operating system. Once the system was 

loaded, the operator entered the date and time, and then initiated the operation of the job 

scheduler program which read and interpreted the control statements, secured the needed 

resources, executed the first user program, recorded timing and accounting information, 

and then went back to begin processing of another user program, and so on, as long as 

there were programs waiting in the input queue to be executed. 
 

The first generation saw the evolution from hands-on operation to closed shop operation 

to the development of mono-programmed operating systems. At the same time, the 

development of programming languages was moving away from the basic machine 

languages; first to assembly language, and later to procedure-oriented languages, the 

most significant being the development of FORTRAN (Formula Translator) by John W. 

Backus in 1956. Several problems remained, however. The most obvious was the 

inefficient use of system resources, which was most evident when the CPU waited while 

the relatively slower, mechanical I/O devices were reading or writing program data. In 

addition, system protection was a problem because the operating system kernel was not 

protected from being overwritten by an erroneous application program. Moreover, other 

user programs in the queue were not protected from destruction by executing programs. 

 

 

3.1.3 The Second Generation, 1956-1964 
 

The second generation of computer hardware was most not ably characterized by 

transistors replacing vacuum tubes as the hardware component technology. In addition, 

some very important changes in hardware and software architectures occurred during this 

period. For the most part, computer systems remained card and tape-oriented systems. 

Significant use of random access devices, that is, disks, did not appear until towards the 

end of the second generation. Program processing was, for the most part, provided by 

large centralized computers operated under mono-programmed batch processing 

operating systems. 
 

The most significant innovations addressed the problem of excessive central processor 

delay due to waiting for input/output operations. Recall that programs were executed by 

processing the machine instructions in a strictly sequential order. As a result, the CPU, 

with its high speed electronic component, was often forced to wait for completion of I/O 

operations which involved mechanical devices (card readers and tape drives) that were 

order of magnitude slower. This problem led to the introduction of the data channel, an 

integral, special-purpose computer with its own instruction set, registers, and control unit 

designed to process input/output operations separate and asynchronously from the 

operation of the computer‘s main CPU near the end of the first generation, and its 

widespread adoption in the second generation. 
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The data channel allowed some I/O to be buffered. That is, a program‘s input data could 

be read "ahead" from data cards or tape into a special block of memory called a buffer. 

Then, when the user‘s program came to an input statement, the data could be transferred 

from the buffer locations at the faster main memory access speed rather than the slower 

I/O device speed. Similarly, a program‘s output could be written another buffer and later 

moved from the buffer to the printer, tape, or card punch. What made this all work was 

the data channel‘s ability to work asynchronously and concurrently with the main 

processor. Thus, the slower mechanical I/O could be happening concurrently with main 

program processing. This process was called I/O overlap. 
 

The data channel was controlled by a channel program set up by the operating system I/O 

control routines and initiated by a special instruction executed by the CPU. Then, the 

channel independently processed data to or from the buffer. This provided 

communication from the CPU to the data channel to initiate an I/O operation. It remained 

for the channel to communicate to the CPU such events as data errors and the completion 

of a transmission. At first, this communication was handled by polling. The CPU stopped 

its work periodically and polled the channel to determine if there were any message. 
 

Polling was obviously inefficient (imagine stopping your work periodically to go to the 

post office to see if an expected letter has arrived) and led to another significant 

innovation of the second generation - the interrupt. The data. channel was now able to 

interrupt the CPU with a message- usually "I/O complete." In fact, the interrupt idea was 

later extended from I/O to allow signalling of number of exceptional conditions such as 

arithmetic overflow, division by zero and time-run-out. Of course, interval clocks were 

added in conjunction with the latter, and thus operating system came to have a way of 

regaining control from an exceptionally long or indefinitely looping program. 
 

These hardware developments led to enhancements of the operating system. I/O and data 

channel communication and control became functions of the operating system, both to 

relieve the application programmer from the difficult details of I/O programming and to 

protect the integrity of the system to provide improved service to users by segmenting 

jobs and running shorter jobs first (during "prime time") and relegating longer jobs to 

lower priority or night time runs. System libraries became more widely available and 

more comprehensive as new utilities and application software components were available 

to programmers. 
 

In order to further mitigate the I/O wait problem, system were set up to spool the input 

batch from slower I/O devices such as the card reader to the much higher speed tape 

drive and similarly, the output from the higher speed tape to the slower printer. Initially, 

this was accomplished by means of one or more physically separate small satellite 

computers. In this scenario, the user submitted a job at a window, a batch of jobs was 

accumulated and spooled from cards to tape "off line," the tape was moved to the main 

computer, the jobs were run, and their output was collected on another tape that later was 

taken to a satellite computer for offline tape-to-printer output used then picked up their 

output at the submission windows. 
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Toward the end of this period, as random access devices became available, tape-oriented 

operating system began to be replaced by disk-oriented systems. With the more 

sophisticated disk hardware and the operating system supporting a greater portion of the 

programmer‘s work, the computer system that users saw was more and more removed 

from the actual hardware - users saw a virtual machine. 
 

The second generation was a period of intense operating system development. Also it 

was the period for sequential batch processing. But the sequential processing of one job 

at a time remained a significant limitation. Thus, there continued to be low CPU 

utilization for I/O bound jobs and low I/O device utilization for CPU bound jobs. This 

was a major concern, since computers were still very large (room-size) and expensive 

machines. Researchers began to experiment with multiprogramming and multiprocessing 

in their computing services called the time-sharing system. A noteworthy example is the 

compatible Time Sharing System (CTSS), developed at MIT during the early 1960s. 
 

3.1.4 The Third Generation, 1964-1979 
 

The third generation officially began in April 1964 with IBM‘s announcement of its 

System/360 family of computers. Hardware technology began to use integrated circuits 

(ICs) which yielded significant advantages in both speed and economy. 
 

Operating system development continued with the introduction and widespread adoption 

of multiprogramming. This marked first by the appearance of more sophisticated I/O 

buffering in the form of spooling operating systems, such as the HASP (Houston 

Automatic Spooling) system that accompanied the IBM OS/360 system. These systems 

worked by introducing two new systems programs, a system reader to move input jobs 

from cards to disk, and a system writer to move job output from disk to printer, tape, or 

cards. Operation of spooling system was, as before, transparent to the computer user who 

perceived input as coming directly from the cards and output going directly to the printer. 
 

The idea of taking fuller advantage of the computer‘s data channel I/O capabilities 

continued to develop. That is, designers recognized that I/O needed only to be initiated 

by a CPU instruction - the actual I/O data transmission could take place under control of 

separate and asynchronously operating channel program. Thus, by switching control of 

the CPU between the currently executing user program, the system reader program, and 

the system writer program, it was possible to keep the slower mechanical I/O device 

running and minimize the amount of time the CPU spent waiting for I/O completion. The 

net result was an increase in system throughput and resource utilization, to the benefit of 

both user and providers of computer services. 
 

This concurrent operation of three programs (more properly, apparent concurrent 

operation, since systems had only one CPU, and could, therefore execute just one 

instruction at time) required that additional features and complexity be added to the 

operating system. First, the fact that the input queue was now on disk, a direct access 

device, freed the system scheduler from the first-come-first-served policy so that it could 

select the "best" next job to enter the system (looking for either the shortest job or the 

highest priority job in the queue). Second, since the CPU was to be shared by the user 
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program, the system reader, and the system writer, some processor allocation rule or 

policy was needed. Since the goal of spooling was increase resource utilization by 

enabling the slower I/O devices to run asynchronously with user program processing, and 

since I/O processing required the CPU only for short periods to initiate data channel 

instructions, the CPU was dispatched to the reader the writer, and the program in that 

order. Moreover, if the writer or the user program was executing when something became 

available to read, the reader program would preempt the currently executing program to 

regain control of the CPU for its initiation instruction, and the writer program would 

preempt the user program for the same purpose. This rule, called the static priority rule 

with preemption, was implemented in the operating system as a system dispatcher 

program. 
 

The spooling operating system, in fact, had multiprogramming since more than one 

program was resident in main storage at the same time. Later this basic idea of 

multiprogramming was extended to include more than one active user program in 

memory at time. To accommodate this extension, both the scheduler and the dispatcher 

were enhanced. The scheduler became able to manage the diverse resource needs of the 

several concurrently active use programs, and the dispatcher included policies for 

allocating processor resources among the competing user programs. In addition, memory 

management became more sophisticated in order to assure that the program code for each 

job or at least that part of the code being executed, was resident in main storage. 
 

The advent of large scale multiprogramming was made possible by several important 

hardware innovations. The first was the widespread availability of large capacity, high 

speed disk units to accommodate the spooled input streams and the memory overflow 

together with the maintenance of several concurrently active program in execution. The 

second was relocation hardware which facilitated the moving of blocks of code within 

memory without an undue overhead penalty. Third was the availability of storage 

protecting hardware to ensure that user jobs are protected from one another and that the 

operating system itself is protected from user programs. Some of these hardware 

innovations involved extensions to the interrupt system in order to handle a variety of 

external conditions such as program malfunctions, storage protection violations, and 

machine checks in addition to I/O interrupts. In addition, the interrupt system became the 

technique for the user program to request services from the operating system kernel. 

Finally, the advent of privileged instructions allowed the operating system to maintain 

coordination and control over the multiple activities now going on within the system. 
 

Successful implementation of multiprogramming opened the way for the development of 

a new way of delivering computing services-time-sharing. In this environment, several 

terminals, sometimes up to 200 of them, were attached (hard wired or via telephone lines) 

to a central computer. Users at their terminals, "logged in" to the central system, and 

worked interactively with the system. The system‘s apparent concurrency was enabled by 

the multiprogramming operating system. Users shared not only the system‘ hardware but 

also its software resources and file system disk space. 
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The third generation was an exciting time, indeed, for the development of both computer 

hardware and the accompanying operating system. During this period, the topic of 

operating systems became, in reality, a major element of the discipline of computing. 
 

3.1.5 The Fourth Generation, 1979 - Present 
 

The fourth generation is characterized by the appearance of the personal computer and 

the workstation. Miniaturization of electronic circuits and components continued and 

large scale integration (LSI), the component technology of the third generation, was 

replaced by very large scale integration (VLSI), which characterizes the fourth 

generation. VLSI with its capacity for containing thousands of transistors on a small chip, 

made possible the development of desktop computers with capabilities exceeding those 

that filled entire rooms and floors of building just twenty years earlier. 
 

The operating system that control these desktop machines have brought us back in a full 

circle, to the open shop type of environment where each user occupies an entire computer 

for the duration of a job‘s execution. This works better now, not only because the 

progress made over the years has made the virtual computer resulting from the operating 

system/hardware combination so much easier to use or, in the words of the popular press 

"user-friendly." 
 

However, improvements in hardware miniaturization and technology have evolved so 

fast that we now have inexpensive workstation-class computer capable of supporting 

multiprogramming and time-sharing. Hence the operating systems that supports today‘s 

personal computers and workstations look much like those which were available for the 

minicomputers of the third generation. Examples are Microsoft‘s DOS for IBM- 

compatible personal computers and UNIX for workstation. However, many of these 

desktop computers are now connected as networked or distributed systems. Computers in 

a networked system each have their operating system augmented with communication 

capabilities that enable users to remotely log into any system on the network and transfer 

information among machines that are connected to the network. The machines that make 

up distributed system operate as a virtual single processor system from the user‘s point of 

view; a central operating system controls and makes transparent the location in the 

system of the particular processor or processors and file systems that are handling any 

given program. 
 

4.0 Conclusion 
 

As you have learnt in this unit, first computers did not have operating systems, but as 

technology advances through the 1960s, several major concepts were developed, driving 

the development of operating systems. In this unit, you have been introduced to the brief 

history and evolution of operating system. The knowledge of OS, being an important 

system software without which today‘s computers would not function, is crucial to your 

being able to work with the computer system. 
 

5.0 Summary 



32  

1. 

 

2. 

 

3. 

 

4. 

 
 

5. 

Per Brinch Hansen (2001), Classic operating systems: from batch processing to 

distributed systems. New York,: Springer-Verlag, 1-36. ISBN 0-387-95113-X. 

Deitel, Harvey M.; Deitel, Paul; Choffnes, David (2004). Operating Systems. 

Upper Saddle River, NJ: Pearson/Prentice Hall. ISBN 0-13-182827-4. 

Silberschatz, Abraham; Galvin, Peter Baer; Gagne, Greg (2004). Operating System 

Concepts. Hoboken, NJ: John Wiley & Sons. ISBN 0-471-69466-5. 

Tanenbaum, Andrew S.; Woodhull, Albert S. (2006). Operating Systems. Design 

and Implementation. Upper Saddle River, N.J.: Pearson/Prentice Hall. ISBN 0-13- 

142938-8. 

Tanenbaum, Andrew S. (2001). Modern Operating Systems. Upper Saddle River, 

N.J.: Prentice Hall. ISBN 0-13-092641-8. 

Since you are going to be interacting with the computer machine in your day-to-day 

activities as a computer user or professional, it is necessary to have the basic knowledge 

of OS. In the next unit, you are going to be introduced to the various types of OS in the 

market today based on several criteria. 
 

6.0. Tutor Marked Assignment 
 

You are to attempt the following assignments and submit your answers to your tutor for 

this course. Here we go: 
 

1. What is an OS? 

2. What led to the invention of the OS? 

3. Describe the characteristic features of the second generation OS 
4. What distinguishes the fourth generation OS from the third generation OS an what 

improvement in the computer architecture led to this? 
 

7.0 References/Further Reading 
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3.4.6 Exokernels 

In the previous unit we discussed the history and evolution of the operating system. In 

this unit you will be taken through the core component of the operating system which is 

the kernel. 

 
3.0 Main Body 

3.1 Kernel Overview 
3.2 Kernel basic responsibilities 

3.2.1 Process management 

3.2.2 Memory management 

3.2.3 Device management 

3.2.4 System calls 

3.3 Kernel design decisions 

3.3.1 Fault tolerance 
3.3.2 Security 

3.3.3 Hardware-based protection or language-based protection 

3.3.4 Process cooperation 

3.3.5 I/O devices management 

3.4 Kernel-wide design approaches 

3.4.1 Monolithic kernels 

3.4.2 Microkernels 

3.4.3 Monolithic kernels Vs. Microkernels 

3.4.4 Hybrid kernels 

3.4.5 Nanokernels 

4.0 Conclusion 

 
 

1.0 Introduction 
 

 

2.0 Objectives 
 

At the end of this unit, you should be able to: 
 

 Define the kernel 

 Describe the functions/responsibilities of the kernel 

 Explain its design philosophies/decisions 

5.0 Summary 

6.0 Tutor Marked Assignment 

7.0 References/Further Reading 

Module 1: Operating System Fundamentals 

Unit 3: The Kernel 
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A kernel connects the application software to the hardware of a computer. 
 

In computer science, the kernel is the central component of most computer operating 

systems (OS). Its responsibilities include managing the system's resources and the 

communication between hardware and software components. As a basic component of an 

operating system, a kernel provides the lowest-level abstraction layer for the resources 

(especially memory, processors and I/O devices) that applications must control to 

perform their function. It typically makes these facilities available to application 

processes through inter-process communication mechanisms and system calls. 

applications 

kernel 

Figure 3.1: The kernel connecting the application software to the hardware of a 

computer. 
 

Most operating systems rely on the kernel concept. The existence of a kernel is a natural 

consequence of designing a computer system as a series of abstraction layers, each 

relying on the functions of layers beneath itself. The kernel, from this viewpoint, is 

simply the name given to the lowest level of abstraction that is implemented in software. 

In order to avoid having a kernel, one would have to design all the software on the 

system not to use abstraction layers; this would increase the complexity of the design to 

such a point that only the simplest systems could feasibly be implemented. 

 
devices 

 
memory 

 
CPU 

 Describe the various kernel-wide design approaches 

3.0 Main Body 
 

3.1 Kernel Overview 
 

 

These tasks are done differently by different kernels, depending on their design and 

implementation. While monolithic kernels will try to achieve these goals by executing all 

the code in the same address space to increase the performance of the system, 

microkernels run most of their services in user space, aiming to improve maintainability 

and modularity of the codebase. A range of possibilities exists between these two 

extremes 
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While it is today mostly called the kernel, the same part of the operating system has also 

in the past been known as the nucleus or core. (You should note, however, that the term 

core has also been used to refer to the primary memory of a computer system, typically 

because some early computers used a form of memory called Core memory.) 
 

In most cases, the boot loader starts executing the kernel in supervisor mode, The kernel 

then initializes itself and starts the first process. After this, the kernel does not typically 

execute directly, only in response to external events (e.g. via system calls used by 

applications to request services from the kernel, or via interrupts used by the hardware to 

notify the kernel of events). Additionally, the kernel typically provides a loop that is 

executed whenever no processes are available to run; this is often called the idle process. 
 
 

 
OS and applications 

 

kernel 

 
assembler 

 

firmware 

hardware 

 
Figure 3.2: A typical vision of a computer architecture as a series of abstraction layers: 

hardware, firmware, assembler, kernel, operating system and applications. 
 

Kernel development is considered one of the most complex and difficult tasks in 

programming. Its central position in an operating system implies the necessity for good 

performance, which defines the kernel as a critical piece of software and makes its 

correct design and implementation difficult. For various reasons, a kernel might not even 

be able to use the abstraction mechanisms it provides to other software. Such reasons 

include memory management concerns (for example, a user-mode function might rely on 

memory being subject to demand paging, but as the kernel itself provides that facility it 

cannot use it, because then it might not remain in memory to provide that facility) and 

lack of reentrancy, thus making its development even more difficult for software 

engineers. 
 

A kernel will usually provide features for low-level scheduling of processes 

(dispatching), Inter-process communication, process synchronization, context switch, 

manipulation of process control blocks, interrupt handling, process creation and 

destruction, process suspension and resumption (see process states in the next module). 
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The kernel's primary purpose is to manage the computer's resources and allow other 

programs to run and use these resources. Typically, the resources consist of: 

 The CPU (frequently called the processor). This is the most central part of a 

computer system, responsible for running or executing programs on it. The 

kernel takes responsibility for deciding at any time which of the many running 

programs should be allocated to the processor or processors (each of which can 

usually run only one program at once) 

 The computer's memory. Memory is used to store both program instructions and 

data. Typically, both need to be present in memory in order for a program to 

execute. Often multiple programs will want access to memory, frequently 

demanding more memory than the computer has available. The kernel is 

responsible for deciding which memory each process can use, and determining 

what to do when not enough is available. 

 Any Input/Output (I/O) devices present in the computer, such as disk drives, 

printers, displays, etc. The kernel allocates requests from applications to 

perform I/O to an appropriate device (or subsection of a device, in the case of 

files on a disk or windows on a display) and provides convenient methods for 

using the device (typically abstracted to the point where the application does 

not need to know implementation details of the device) 

3.2 Kernel Basic Responsibilities 
 

 

 

Kernels also usually provide methods for synchronization and communication between 

processes (called inter-process communication or IPC). This is discussed in module 3. 
 

A kernel may implement these features itself, or rely on some of the processes it runs to 

provide the facilities to other processes, although in this case it must provide some means 

of IPC to allow processes to access the facilities provided by each other. 
 

Finally, a kernel must provide running programs with a method to make requests to 

access these facilities. 
 

3.2.1 Process Management 
 

The main task of a kernel is to allow the execution of applications and support them with 

features such as hardware abstractions. To run an application, a kernel typically sets up 

an address space for the application, loads the file containing the application's code into 

memory (perhaps via demand paging), sets up a stack for the program and branches to a 

given location inside the program, thus starting its execution. 
 

Multi-tasking kernels are able to give the user the illusion that the number of processes 

being run simultaneously on the computer is higher than the maximum number of 

processes the computer is physically able to run simultaneously. Typically, the number of 

processes a system may run simultaneously is equal to the number of CPUs installed 

(however this may not be the case if the processors support simultaneous 

multithreading). 
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In a pre-emptive multitasking system, the kernel will give every program a slice of time 

and switch from process to process so quickly that it will appear to the user as if these 

processes were being executed simultaneously. The kernel uses scheduling algorithms to 

determine which process is running next and how much time it will be given. The 

algorithm chosen may allow for some processes to have higher priority than others. The 

kernel generally also provides these processes a way to communicate; this is known as 

inter-process communication (IPC) and the main approaches are shared memory, 

message passing and remote procedure calls (see module 3). 
 

Other systems (particularly on smaller, less powerful computers) may provide co- 

operative multitasking, where each process is allowed to run uninterrupted until it makes 

a special request that tells the kernel it may switch to another process. Such requests are 

known as "yielding", and typically occur in response to requests for interprocess 

communication, or for waiting for an event to occur. Older versions of Windows and 

Mac OS both used co-operative multitasking but switched to pre-emptive schemes as the 

power of the computers to which they were targeted grew. 
 

The operating system might also support multiprocessing (SMP or Non-Uniform 

Memory Access); in that case, different programs and threads may run on different 

processors. A kernel for such a system must be designed to be re-entrant, meaning that it 

may safely run two different parts of its code simultaneously. This typically means 

providing synchronization mechanisms (such as spinlocks) to ensure that no two 

processors attempt to modify the same data at the same time. 
 

3.2.2 Memory Management 
 

The kernel has full access to the system's memory and must allow processes to access this 

memory safely as they require it. Often the first step in doing this is virtual addressing, 

usually achieved by paging and/or segmentation. Virtual addressing allows the kernel to 

make a given physical address appear to be another address, the virtual address. Virtual 

address spaces may be different for different processes; the memory that one process 

accesses at a particular (virtual) address may be different memory from what another 

process accesses at the same address. This allows every program to behave as if it is the 

only one (apart from the kernel) running and thus prevents applications from crashing 

each other. 
 

On many systems, a program's virtual address may refer to data which is not currently in 

memory. The layer of indirection provided by virtual addressing allows the operating 

system to use other data stores, like a hard drive, to store what would otherwise have to 

remain in main memory (RAM). As a result, operating systems can allow programs to 

use more memory than the system has physically available. When a program needs data 

which is not currently in RAM, the CPU signals to the kernel that this has happened, and 

the kernel responds by writing the contents of an inactive memory block to disk (if 

necessary) and replacing it with the data requested by the program. The program can then 

be resumed from the point where it was stopped. This scheme is generally known as 

demand paging. 
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 Using a software-simulated interrupt. This method is available on most hardware, 

and is therefore very common. 

 Using a call gate. A call gate is a special address which the kernel has added to a 

list stored in kernel memory and which the processor knows the location of. 

Virtual addressing also allows creation of virtual partitions of memory in two disjointed 

areas, one being reserved for the kernel (kernel space) and the other for the applications 

(user space). The applications are not permitted by the processor to address kernel 

memory, thus preventing an application from damaging the running kernel. This 

fundamental partition of memory space has contributed much to current designs of actual 

general-purpose kernels and is almost universal in such systems, although some research 

kernels (e.g. Singularity) take other approaches. 
 

3.2.3 Device Management 
 

To perform useful functions, processes need access to the peripherals connected to the 

computer, which are controlled by the kernel through device drivers. For example, to 

show the user something on the screen, an application would make a request to the 

kernel, which would forward the request to its display driver, which is then responsible 

for actually plotting the character/pixel. 
 

A kernel must maintain a list of available devices. This list may be known in advance 

(e.g. on an embedded system where the kernel will be rewritten if the available hardware 

changes), configured by the user (typical on older PCs and on systems that are not 

designed for personal use) or detected by the operating system at run time (normally 

called Plug and Play). 
 

In a plug and play system, a device manager first performs a scan on different hardware 

buses, such as Peripheral Component Interconnect (PCI) or Universal Serial Bus (USB), 

to detect installed devices, then searches for the appropriate drivers. 
 

As device management is a very OS-specific topic, these drivers are handled differently 

by each kind of kernel design, but in every case, the kernel has to provide the I/O to 

allow drivers to physically access their devices through some port or memory location. 

Very important decisions have to be made when designing the device management 

system, as in some designs accesses may involve context switches, making the operation 

very CPU-intensive and easily causing a significant performance overhead. 
 

3.2.4 System Calls 
 

To actually perform useful work, a process must be able to access the services provided 

by the kernel. This is implemented differently by each kernel, but most provide a C 

library or an API, which in turn invoke the related kernel functions. 
 

The method of invoking the kernel function varies from kernel to kernel. If memory 

isolation is in use, it is impossible for a user process to call the kernel directly, because 

that would be a violation of the processor's access control rules. A few possibilities are: 
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3.3 Kernel Design Decisions 
 

3.3.1 Fault Tolerance 
 

An important consideration in the design of a kernel is fault tolerance; specifically, in 

cases where multiple programs are running on a single computer, it is usually important 

to prevent a fault in one of the programs from negatively affecting the other. Extended to 

malicious design rather than a fault, this also applies to security, and is necessary to 

prevent processes from accessing information without being granted permission. 
 

Two main approaches to the protection of sensitive information are assigning privileges 

to hierarchical protection domains, for example by using a processor's supervisor mode, 

or distributing privileges differently for each process and resource, for example by using 

capabilities or access control lists. 
 

Hierarchical protection domains are much less flexible, as it is not possible to assign 

different privileges to processes that are at the same privileged level, and ca not therefore 

satisfy Denning's four principles for fault tolerance (particularly the Principle of least 

privilege). Hierarchical protection domains also have a major performance drawback, 

since interaction between different levels of protection, when a process has to manipulate 

a data structure both in 'user mode' and 'supervisor mode', always requires message 

copying (transmission by value). A kernel based on capabilities, however, is more 

flexible in assigning privileges, can satisfy Denning's fault tolerance principles, and 

typically does not suffer from the performance issues of copy by value. 
 

Both approaches typically require some hardware or firmware support to be operable and 

efficient. The hardware support for hierarchical protection domains is typically that of 

"CPU modes." An efficient and simple way to provide hardware support of capabilities is 

to delegate the MMU the responsibility of checking access-rights for every memory 

access, a mechanism called capability-based addressing. Most commercial computer 

architectures lack MMU support for capabilities. An alternative approach is to simulate 

capabilities using commonly-support hierarchical domains; in this approach, each 

protected object must reside in an address space that the application does not have access 

to; the kernel also maintains a list of capabilities in such memory. When an application 

When the processor detects a call to that location, it instead redirects to the 

target location without causing an access violation. Requires hardware support, 

but the hardware for it is quite common. 

 Using a special system call instruction. This technique requires special hardware 

support, which common architectures (not ably, x86) may lack. System call 

instructions have been added to recent models of x86 processors, however, and 

some (but not all) operating systems for PCs make use of them when 

available. 

 Using a memory-based queue. An application that makes large numbers of 

requests but does not need to wait for the result of each may add details of 

requests to an area of memory that the kernel periodically scans to find 

requests. 
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 Lack of need for separate address spaces. Switching between address spaces is a 

slow operation that causes a great deal of overhead, and a lot of optimization 

work is currently performed in order to prevent unnecessary switches in 

current operating systems. Switching is completely unnecessary in a language- 

based protection system, as all code can safely operate in the same address 

space. 

 Flexibility. Any protection scheme that can be designed to be expressed via a 

programming language can be implemented using this method. Changes to the 

protection scheme (e.g. from a hierarchical system to a capability-based one) 

do not require new hardware. 

needs to access an object protected by a capability, it performs a system call and the 

kernel performs the access for it. The performance cost of address space switching limits 

the practicality of this approach in systems with complex interactions between objects, 

but it is used in current operating systems for objects that are not accessed frequently or 

which are not expected to perform quickly. Approaches where protection mechanism are 

not firmware supported but are instead simulated at higher levels (e.g. simulating 

capabilities by manipulating page tables on hardware that does not have direct support), 

are possible, but there are performance implications. Lack of hardware support may not 

be an issue, however, for systems that choose to use language-based protection. 
 

3.3.2 Security 
 

An important kernel design decision is the choice of the abstraction levels where the 

security mechanisms and policies should be implemented. One approach is to use 

firmware and kernel support for fault tolerance (see above), and build the security policy 

for malicious behaviour on top of that (adding features such as cryptography mechanisms 

where necessary), delegating some responsibility to the compiler. Approaches that 

delegate enforcement of security policy to the compiler and/or the application level are 

often called language-based security. 
 

3.3.3 Hardware-Based Protection or Language-Based Protection 
 

Typical computer systems today use hardware-enforced rules about what programs are 

allowed to access what data. The processor monitors the execution and stops a program 

that violates a rule (e.g., a user process that is about to read or write to kernel memory, 

and so on). In systems that lack support for capabilities, processes are isolated from each 

other by using separate address spaces. Calls from user processes into the kernel are 

regulated by requiring them to use one of the above-described system call methods. 
 

An alternative approach is to use language-based protection. In a language-based 

protection system, the kernel will only allow code to execute that has been produced by a 

trusted language compiler. The language may then be designed such that it is impossible 

for the programmer to instruct it to do something that will violate a security requirement. 
 

Advantages of this approach include: 
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Examples of systems with language-based protection include JX and Microsoft's 

Singularity. 
 

3.3.4 Process cooperation 
 

Edsger Dijkstra proved that from a logical point of view, atomic lock and unlock 

operations operating on binary semaphores are sufficient primitives to express any 

functionality of process cooperation. However this approach is generally held to be 

lacking in terms of safety and efficiency, whereas a message passing approach is more 

flexible. 
 

3.3.5 I/O devices management 
 

The idea of a kernel where I/O devices are handled uniformly with other processes, as 

parallel co-operating processes, was first proposed and implemented by Brinch Hansen 

(although similar ideas were suggested in 1967). In Hansen's description of this, the 

"common" processes are called internal processes, while the I/O devices are called 

external processes. 

Naturally, the above listed tasks and features can be provided in many ways that differ 

from each other in design and implementation. While monolithic kernels execute all of 

their code in the same address space (kernel space) to increase the performance of the 

system, microkernels try to run most of their services in user space, aiming to improve 

maintainability and modularity of the codebase. Most kernels do not fit exactly into one 

of these categories, but are rather found in between these two designs. These are called 

hybrid kernels. More exotic designs such as nanokernels and exokernels are available, 

but are seldom used for production systems. The Xen hypervisor, for example, is an 

exokernel. 
 

The principle of separation of mechanism and policy is the substantial difference 

between the philosophy of micro and monolithic kernels. Here a mechanism is the 

support that allows the implementation of many different policies, while a policy is a 

particular "mode of operation". In minimal microkernel just some very basic policies are 

included, and its mechanisms allows what is running on top of the kernel (the remaining 

part of the operating system and the other applications) to decide which policies to adopt 

 
 

 

3.4 Kernel-Wide Design Approaches 
 

Disadvantages include: 
 

 Longer application start up time. Applications must be verified when they are 

started to ensure they have been compiled by the correct compiler, or may need 

recompiling either from source code or from bytecode. 

 Inflexible type systems. On traditional systems, applications frequently perform 

operations that are not type safe. Such operations cannot be permitted in a 

language-based protection system, which means that applications may need to 

be rewritten and may, in some cases, lose performance. 
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(as memory management, high level process scheduling, file system management, etc.). 

A monolithic kernel instead tends to include many policies, therefore restricting the rest 

of the system to rely on them. 
 

3.4.1 Monolithic kernels 
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Figure 3.3: Graphical overview of a monolithic kernel 
 

In a monolithic kernel, all OS services run along with the main kernel thread, thus also 

residing in the same memory area. This approach provides rich and powerful hardware 

access. Some developers maintain that monolithic systems are easier to design and 

implement than other solutions, and are extremely efficient if well-written. The main 

disadvantages of monolithic kernels are the dependencies between system components - a 

bug in a device driver might crash the entire system - and the fact that large kernels can 

become very difficult to maintain. 
 

3.4.2 Microkernels 
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Figure 3.4: Diagram of Microkernels Approach 
 

In the microkernel approach, the kernel itself only provides basic functionality that 

allows the execution of servers, separate programs that assume former kernel functions, 

such as device drivers, GUI servers, etc. 
 

The microkernel approach consists of defining a simple abstraction over the hardware, 

with a set of primitives or system calls to implement minimal OS services such as 

memory management, multitasking, and inter-process communication. Other services, 

including those normally provided by the kernel such as networking, are implemented in 

user-space programs, referred to as servers. Microkernels are easier to maintain than 

monolithic kernels, but the large number of system calls and context switches might slow 

down the system because they typically generate more overhead than plain function calls. 
 

Microkernels generally underperform traditional designs, sometimes dramatically. This is 

due in large part to the overhead of moving in and out of the kernel, a context switch, to 

move data between the various applications and servers. By the mid-1990s, most 

researchers had abandoned the belief that careful tuning could reduce this overhead 

dramatically, but recently, newer microkernels, optimized for performance, such as L4 

and K42 have addressed these problems. 
 

 

A microkernel allows the implementation of the remaining part of the operating system 

as a normal application program written in a high-level language, and the use of different 

operating systems on top of the same unchanged kernel. It is also possible to dynamically 

switch among operating systems and to have more than one active simultaneously. 
 

3.4.3 Monolithic kernels Vs. Microkernels 
 

As the computer kernel grows, a number of problems become evident. One of the most 

obvious is that the memory footprint increases. This is mitigated to some degree by 

perfecting the virtual memory system, but not all computer architectures have virtual 

memory support. To reduce the kernel's footprint, extensive editing has to be performed 

to carefully remove unneeded code, which can be very difficult with non-obvious 

interdependencies between parts of a kernel with millions of lines of code. 
 

Due to the problems that monolithic kernels pose, they were considered obsolete by the 

early 1990s. As a result, the design of Linux using a monolithic kernel rather than a 

microkernel was the topic of a famous flame war between Linus Torvalds and Andrew 

Tanenbaum. There is merit on both sides of the argument presented in the 

Tanenbaum/Torvalds debate. 
 

Some, including early UNIX developer Ken Thompson, argued that while microkernel 

designs were more aesthetically appealing, monolithic kernels were easier to implement. 

However, a bug in a monolithic system usually crashes the entire system, while this does 

not happen in a microkernel with servers running apart from the main thread. Monolithic 

kernel proponents reason that incorrect code does not belong in a kernel, and that 



44  

microkernels offer little advantage over correct code. Microkernels are often used in 

embedded robotic or medical computers where crash tolerance is important and most of 

the OS components reside in their own private, protected memory space. This is 

impossible with monolithic kernels, even with modern module-loading ones. However, 

the monolithic model tends to be more efficient through the use of shared kernel memory, 

rather than the slower IPC system of microkernel designs, which is typically based on 

message passing. 
 

3.4.4 Hybrid kernels 
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Figure 3.5: Diagram of Hybrid kernels Approach 
 

Hybrid kernel is a kernel architecture based on combining aspects of microkernel and 

monolithic kernel architectures used in computer operating systems. The category is 

controversial due to the similarity to monolithic kernel; the term has been dismissed by 

some as just marketing. The usually accepted categories are monolithic kernels and 

microkernels (with nanokernels and exokernels seen as more extreme versions of 

microkernels). 
 

The hybrid kernel approach tries to combine the speed and simpler design of a monolithic 

kernel with the modularity and execution safety of a microkernel. 
 

Hybrid kernels are essentially a compromise between the monolithic kernel approach and 

the microkernel system. This implies running some services (such as the network stack or 

the file system) in kernel space to reduce the performance overhead of a traditional 

microkernel, but still running kernel code (such as device drivers) as servers in user 

space. 
 

The idea behind this quasi-category is to have a kernel structure similar to a microkernel, 

but implemented as a monolithic kernel. In contrast to a microkernel, all (or nearly all) 

services are in kernel space. As in a monolithic kernel, there is no performance overhead 

associated with microkernel message passing and context switching between kernel and 

user mode. Also, as with monolithic kernels, there are none of the benefits of having 

services in user space. 
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3.4.5 Nanokernels 
 

The term is sometimes used informally to refer to a very light-weight microkernel, such 

as L4. 
 

A nanokernel or picokernel is a very minimalist operating system kernel. The 

nanokernel represents the closest hardware abstraction layer of the operating system by 

interfacing the CPU, managing interrupts and interacting with the MMU. The interrupt 

management and MMU interface are not necessarily part of a nanokernel; however, on 

most architectures these components are directly connected to the CPU, therefore, it often 

makes sense to integrate these interfaces into the kernel. 
 

A nanokernel delegates virtually all services – including even the most basic ones like 

interrupt controllers or the timer – to device drivers to make the kernel memory 

requirement even smaller than a traditional microkernel. 
 

software. 
 

Advantages and Disadvantages 
 

Nanokernels Versus Monolithic kernels 
 

A nanokernel is considered to be slower than a typical monolithic kernel due to the 

management and communication complexity caused by the separation of its components. 

Contrariwise this abstraction potentiates considerably faster development, simpler 

modules and higher code quality. Additionally the management effort of such code is not 

ably decreased because monolithic implementations tend to be more complex and 

intradependent. As a result of its lower module complexity nanokernel modules tend to 

be more accurate and maintainable. 
 

Furthermore APIs of monolithic kernels (as present in for example the Linux kernel) are 

often considered to be very unstable and quite mutable. It is often argued that this applies 

only to some implementations, but in reality monolithic drivers use more internal 

structures than separated modules. 
 

Another key aspect is the isolation of the nanokernel modules by architecture. Monolithic 

kernels generally suffer from a considerably bad security architecture because an 

inaccurate and insecure part directly affects the whole operating system. 
 

Nanokernels Versus microkernels 
 

Generally microkernels have integrated IPC, memory-, thread- and process management 

and elementary drivers. A nanokernel in contrast has essentially none of those, therefore 

nanokernels are not independently executable operating systems, which is why they are 

not an operating system kernel in the traditional sense. 
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In this unit you have been taken through the concept of kernel and its importance in 

operating systems design. Also, its various responsibilities in the computer environment 

had been deeply discussed not leaving behind the kernel design issues and trade-offs. 

Nevertheless this significant difference potentiates extremely powerful techniques like 

multi scheduling or operating system emulation. The simultaneous execution of a 

realtime- and pre-emptive scheduler on multi processor machines or the emulation of an 

entire operating system like UNIX in heterogeneous environments are some application 

areas of this technique. But in general this superiority applies and occurs only 

significantly in parallel- or distributed computing environments. 
 

3.4.6 Exokernels 
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Figure 3.6: Graphical overview of Exokernel 
 

An exokernel is a type of kernel that does not abstract hardware into theoretical models. 

Instead it allocates physical hardware resources, such as processor time, memory pages, 

and disk blocks, to different programs. A program running on an exokernel can link to a 

library operating system that uses the exokernel to simulate the abstractions of a well- 

known OS, or it can develop application-specific abstractions for better performance. 
 

4.0 Conclusion 
 

 

5.0 Summary 
 

Strictly speaking, an operating system (and thus, a kernel) is not required to run a 

computer. Programs can be directly loaded and executed on the "bare metal" machine, 

provided that the authors of those programs are willing to work without any hardware 

abstraction or operating system support. Most early computers operated this way during 

the 1950s and early 1960s, which were reset and reloaded between the execution of 

different programs. Eventually, small ancillary programs such as program loaders and 
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6.0 Tutor Marked Assignments 
 

1. In the context of Kernel design decisions, distinguish between harware-based and 

language-based protection. 

2. Differentiate between monolithic kernels and microkernels. 

3. Briefly describe the hybrid kernel concept. 

4. Itemize and briefly explain the various issues in kernel design. 
5. Enumerate the various responsibilities of the kernel. 
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1.0 Introduction 

Module 1: Operating System Fundamentals  
 

Unit 4: Types of Operating Systems 
 

3.1 Types of Operating Systems Based on the Types of Computer they Control and the 
Sort of Applications they Support 

3.1.1 Real-Time Operating Systems (RTOS) 

3.1.2 Single-User, Single-Tasking Operating System 

3.1.3 Single-User, Multi-Tasking Operating System 

3.1.4 Multi-User Operating Systems 

3.2 Types of OS based on the Nature of Interaction that takes place between the 

Computer User and His/Her Program during its Processing 

3.2.1 Batch Processing OS 

3.2.2 Time Sharing OS 

3.2.3 Real Time OS 

3.3 Other Types of OS based on the Definition of the System/Environment 

3.3.1 Multiprogramming Operating System 

3.3.2 Network Operating Systems 

3.3.3 Distributed Operating Systems 

 

In the last unit you have been introduced to the concept and history of operating system 

and how it evolved with each discovery and improvement in the technology of computer 

architecture. In this unit, you are presented with types of operating system based on: 
 

(i) The types of computer they control and the sort of applications they support 
 

(ii) The nature of interaction that takes place between the computer user and 

his/her program during its processing. 
 

2.0 Objectives 
 

At the end of this unit, you should be able to: 
 

o Categorise operating systems based on various criteria 
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o List the basic features of each type of operating system 

o Distinguish between one type of operating system and another 

3.0 Types of OS 
 

OS can be categorised in different ways based on perspectives. Some of the major ways 

in which the OS can be classified are explored and introduced in this unit. 
 

3.1 Types of Operating Systems Based on the Types of Computer they Control 

and the Sort of Applications they Support 
 

Based on the types of computers they control and the sort of applications they support, 

there are generally four types within the broad family of operating systems. The broad 

categories are as follows: 
 

3.1.1 Real-Time Operating Systems (RTOS): 

They are used to control machinery, scientific instruments and industrial systems. An 

RTOS typically has very little user-interface capability, and no end-user utilities, since 

the system will be a sealed box when delivered for use. A very important part of an 

RTOS is managing the resources of the computer so that a particular operation executes 

in precisely the same amount of time every time it occurs. In a complex machine, having 

a part move more quickly just because system resources are available may be just as 

catastrophic as having it not   move at all because the system is busy. RTOS can be hard 

or soft. A hard RTOS guarantees that critical tasks are performed on time. However, soft 

RTOS is less restrictive. Here, a critical real-time task gets priority over other tasks and 

retains that priority until it completes. 
 

3.1.2 Single-User, Single-Tasking Operating System: 
 

As the name implies, this operating system is designed to manage the computer so that 

one user can effectively do one thing at a time. The Palm OS for Palm handheld 

computers is a good example of a modern single-user, single-task operating system. 
 

3.1.3 Single-User, Multi-Tasking Operating System: 
 

This is the type of operating system most people use on their desktop and laptop 

computers today. Windows 98 and the Mac O.S. are both examples of an operating 

system that will let a single user have several programs in operation at the same time. For 

example, it is entirely possible for you as a Windows user to be writing a note in a word 

processor while downloading a file from the Internet and at the same time be printing the 

text of an e-mail message. 
 

3.1.4 Multi-User Operating Systems: 
 

A multi-user operating system allows many different users to take advantage of the 

computer's resources simultaneously. The operating system must make sure that the 
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requirements of the various users are balanced, and that each of the programs they are 

using has sufficient and separate resources so that a problem with one user does not affect 

the entire community of users. Unix, VMS, and mainframe operating systems, such as 

MVS, are examples of multi-user operating systems. It's important to differentiate here 

between multi-user operating systems and single-user operating systems that support 

networking. 
 

Windows 2000 and Novell Netware can each support hundreds or thousands of 

networked users, but the operating systems themselves are not true multi-user operating 

systems. The system administrator is the only user for Windows 2000 or Netware. The 

network support and the entire remote user logins the network enables are, in the overall 

plan of the operating system, a program being run by the administrative user. 
 

3.2 Types of OS based on the Nature of Interaction that takes place between the 

Computer User and His/Her Program during its Processing 
 

Modern computer operating systems may be classified into three groups, which are 

distinguished by the nature of interaction that takes place between the computer user and 

his or her program during its processing. The three groups are: called batch, time-shared 

and real time operating systems. 
 

3.2.1 Batch Processing OS 
 

In a batch processing operating system environment, users submit jobs to a central place 

where these jobs are collected into a batch, and subsequently placed on an input queue at 

the computer where they will be run. In this case, the user has no interaction with the job 

during its processing, and the computer‘s response time is the turnaround time (i.e. the 

time from submission of the job until execution is complete, and the results are ready for 

return to the person who submitted the job). 
 

3.2.2 Time Sharing OS 
 

Another mode for delivering computing services is provided by time sharing operating 

systems. In this environment a computer provides computing services to several or many 

users concurrently on-line. Here, the various users are sharing the central processor, the 

memory, and other resources of the computer system in a manner facilitated, controlled, 

and monitored by the operating system. The user, in this environment, has nearly full 

interaction with the program during its execution, and the computer‘s response time may 

be expected to be no more than a few second. 
 

3.2.3 Real Time OS 
 

The third class of operating systems, real time operating systems, are designed to service 

those applications where response time is of the essence in order to prevent error, 

misrepresentation or even disaster. Examples of real time operating systems are those 

which handle airlines reservations, machine tool control, and monitoring of a nuclear 



52  

power station. The systems, in this case, are designed to be interrupted by external signal 

that require the immediate attention of the computer system. 
 

In fact, many computer operating systems are hybrids, providing for more than one of 

these types of computing service simultaneously. It is especially common to have a 

background batch system running in conjunction with one of the other two on the same 

computer. 
 

3.3 Other Types of OS based on the Definition of the System/Environment 
 

A number of other definitions are important to gaining a better understanding and 

subsequently classifying operating systems: 
 

3.3.1 Multiprogramming Operating System 
 

A multiprogramming operating system is a system that allows more than one active user 

program (or part of user program) to be stored in main memory simultaneously. 
 

Thus, it is evident that a time-sharing system is a multiprogramming system, but note that 

a multiprogramming system is not   necessarily a time-sharing system. A batch or real 

time operating system could, and indeed usually does, have more than one active user 

program simultaneously in main storage. Another important, and all too similar, term is 

‗multiprocessing‘. 
 

A multiprocessing system is a computer hardware configuration that includes more than 

one independent processing unit. The term multiprocessing is generally used to refer to 

large computer hardware complexes found in major scientific or commercial 

applications. 
 

3.3.2 Network Operating Systems 
 

A networked computing system is a collection of physical interconnected computers. The 

operating system of each of the interconnected computers must contain, in addition to its 

own stand-alone functionality, provisions for handling communication and transfer of 

programs and data among the other computers with which it is connected. 
 

In a network operating system, the users are aware of the existence of multiple 

computers, and can log in to remote machines and copy files from one machine to 

another. Each machine runs its own local operating system and has its own user (or 

users). Network operating systems are designed with more complex functional 

capabilities. 
 

Network operating systems are not fundamentally different from single processor 

operating systems. They obviously need a network interface controller and some low- 

level software to drive it, as well as programs to achieve remote login and remote files 

access, but these additions do not change the essential structure of the operating systems. 
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3.3.3 Distributed Operating Systems 
 

A distributed computing system consists of a number of computers that are connected 

and managed so that they automatically share the job processing load among the 

constituent computers, or separate the job load as appropriate particularly configured 

processors. Such a system requires an operating system which, in addition to the typical 

stand-alone functionality, provides coordination of the operations and information flow 

among the component computers. 
 

The distributed computing environment and its operating systems, like networking 

environment, are designed with more complex functional capabilities. However, a 

distributed operating system, in contrast to a network operating system, is one that 

appears to its users as a traditional uniprocessor system, even though it is actually 

composed of multiple processors. In a true distributed system, users should not be aware 

of where their programs are being run or where their files are located; that should all be 

handled automatically and efficiently by the operating system. 
 

True distributed operating systems require more than just adding a little code to a 

uniprocessor operating system, because distributed and centralized systems differ in 

critical ways. Distributed systems, for example, often allow program to run on several 

processors at the same time, thus requiring more complex processor scheduling 

algorithms in order to optimize the amount of parallelism achieved. 
 

4.0 Conclusion 
 

The earliest operating systems were developed for mainframe computer architectures in 

the 1960s and they were mostly batch processing operating systems. The enormous 

investment in software for these systems caused most of the original computer 

manufacturers to continue to develop hardware and operating systems that are compatible 

with those early operating systems. Those early systems pioneered many of the features 

of modern operating systems.. 
 

5.0 Summary 
 

This unit has taken you through some of the various classifications of OS we have based 

on different criteria. You will need this knowledge as you work in different computer 

environment. In the next unit we will be discussing the disk operating system. 
 

6.0 Tutor Marked Assignment 
 

You are to attempt the following assignments and submit your answers to your tutor for 

this course. Here we go: 
 

1. Network operating systems are not fundamentally different from single processor 

operating systems. Discuss 
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2. Distinguish between Network OS and Distributed OS. 

3. How is a soft RTOS different from hard RTOS 

4. List the major features of a multi-user OS. 
 

7.0 References/Further Reading 
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3.2 Examples of Disk Operating Systems that were the OS itself 

4.0 Conclusion 

5.0 Summary 

6.0 Tutor Marked Assignment 

7.0 Further Reading 

3.0 Disk operating system 
 

Disk Operating System (specifically) and disk operating system (generically), most 

often abbreviated as DOS (not to be confused with the DOS family of disk operating 

systems for the IBM PC compatible platform), refer to operating system software used in 

most computers that provides the abstraction and management of secondary storage 

devices and the information on them (e.g., file systems for organizing files of all sorts). 

Such software is referred to as a disk operating system when the storage devices it 

manages are made of rotating platters (such as hard disks or floppy disks). 
 

In the early days of microcomputing, memory space was often limited, so the disk 

operating system was an extension of the operating system. This component was only 

loaded if needed. Otherwise, disk-access would be limited to low-level operations such as 

reading and writing disks at the sector-level. 
 

In some cases, the disk operating system component (or even the operating system) was 

known as DOS. 

 
3.1 Examples of disk operating systems that were extensions to the OS 

 

1.0 Introduction 
 

The previous unit introduced the various types of OS based on different criteria. In this 

unit, you will be taken through the disk operating system and its various characteristics 

and examples. 
 

2.0 Objectives 
 

At the end of this unit, the students should be able to: 
 

o Describe the disk operating system (DOS) 

o List the classes of DOS we have 

o State what distinguishes the different classes of DOS 
 

Module 2: Types of Operating System 

Unit 1: Disk operating system 

Table of Contents 
 

1.0 Introduction 

2.0 Objectives 

3.0 Disk operating system 
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Sometimes, a disk operating system can refer to the entire operating system if it is loaded 

off a disk and supports the abstraction and management of disk devices. Examples 

include DOS/360 and FreeDOS. On the PC compatible platform, an entire family of 

operating systems was called DOS. 
 

In the early days of computers, there were no disk drives; delay lines, punched cards, 

paper tape, magnetic tape, magnetic drums, were used instead. And in the early days of 

microcomputers, paper tape or audio cassette tape (see Kansas City standard) or nothing 

were used instead. In the latter case, program and data entry was done at front panel 

switches directly into memory or through a computer terminal/keyboard, sometimes 

controlled by a ROM BASIC interpreter; when power was turned off after running the 

program, the information so entered vanished. 
 

Both hard disks and floppy disk drives require software to manage rapid access to block 

storage of sequential and other data. When microcomputers rarely had expensive disk 

drives of any kind, the necessity to have software to manage such devices (i.e. the 'disks‘) 

carried much status. To have one or the other was a mark of distinction and prestige, and 

so was having the Disk sort of an Operating System. As prices for both disk hardware 

and operating system software decreased, there were many such microcomputer systems. 
 

Mature versions of the Commodore, SWTPC, Atari and Apple home computer systems 

all featured a disk operating system (actually called 'DOS' in the case of the Commodore 

64 (CBM DOS), Atari 800 (Atari DOS), and Apple II machines (Apple DOS)), as did (at 

the other end of the hardware spectrum, and much earlier) IBM's System/360, 370 and 

(later) 390 series of mainframes (e.g., DOS/360: Disk Operating System / 360 and 

DOS/VSE: Disk Operating System / Virtual Storage Extended). Most home computer 

DOS'es were stored on a floppy disk always to be booted at start-up, with the not able 

exception of Commodore, whose DOS resided on ROM chips in the disk drives 

themselves, available at power-on. 
 

In large machines there were other disk operating systems, such as IBM's VM, DEC's 

RSTS / RT-11 / VMS / TOPS-10 / TWENEX, MIT's ITS / CTSS, Control Data's assorted 

NOS variants, Harris's Vulcan, Bell Labs' Unix, and so on. In microcomputers, SWTPC's 

6800 and 6809 machines used TSC's FLEX disk operating system, Radio Shack's TRS- 

80 machines used TRS-DOS, their Color Computer used OS-9, and most of the Intel 

8080 based machines from IMSAI, MITS (makers of the legendary Altair 8800), 

Cromemco, North Star, etc used the CP/M-80 disk operating system. See list of operating 

systems. 
 

Usually, a disk operating system was loaded from a disk. Only a very few comparable 

DOSes were stored elsewhere than floppy disks; among these exceptions were the British 

BBC Micro's optional Disc Filing System, DFS, offered as a kit with a disk controller 

chip, a ROM chip, and a handful of logic chips, to be installed inside the computer; and 

Commodore's CBM DOS, located in a ROM chip in each disk drive. 
 

3.1 Brief History of MS-DOS 
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 A larger disk sector size (512 bytes as opposed to 128 bytes) 

 A memory-based file allocation table. 

Both of which improved disk file performance. 
 

Here is a summary of the most significant features of versions of MS-DOS: 

 
 

 

 

Version Date Features 

1.0 1981  Based on IBM PC 

 Designed to cater for floppy disks and therefore 

used a simple file storage system, simlar to 

CP/M. 

 A memory-based file allocation table 

 A larger disk sector 512 bytes 

2.0 1983  Based on IBM PC/XT with 10MB hard disk 

 A hierarchical file directory to simplify the vast 

storage 

 Installable device drivers. 

3.0 1984  Based on IBM PC/AT with 20MB hard disk 

 Supported RAM disks 

 Read-only files 

3.1 1984  Some support for networks (file sharing, 

locking, etc.) 

3.2 1986  3.5 inch disks 

 Support for IBM Token Ring Network 

The history of Microsoft disk operating system (MS-DOS) is closely linked to the IBM 

PC and compatibles. Towards the end of the 1970‘s, a number of PCs appeared on the 

market, based on 8-bit microprocessor chips such as Intel 8080. IBM decided to enter this 

market and wisely opted for a 16-bit microprocessor, the Intel 8088. IBM wanted to 

introduced the PC to the market as quickly as possible and released it without having 

enough time to develop its own OS. 
 

At that time, CP/M (by Digital Research) dominated the market. In 1979, a small 

company Seattle the Computer Products developed its own OS, 86-DOS to test some of 

its Intel based products (86-DOS was designed to be similar to CP/M). IBM purchased 

86-DOS and in collaboration with Microsoft developed a commercial product. MS-DOS 

Version 1.0 was also referred to as PC-DOS MS-DOS had some similarities to CP/M, 

(such as the one level file storage system for floppy disks) which was important in terms 

of market acceptance in those days although MS-DOS did offer several improvements 

over CP/M such as: 
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3.2 Examples of disk operating systems that were extensions to the OS 

 The DOS operating system for the Apple Computer's Apple II family of 

computers. This was the primary operating system for this family from 1979 

with the introduction of the floppy disk drive until 1983 with the introduction 

of ProDOS; many people continued using it long after that date. Usually it was 

called Apple DOS to distinguish it from MS-DOS. 

 Commodore DOS, which was used by 8-bit Commodore computers. Unlike most 

other DOS systems, it was integrated into the disk drives, not loaded into the 

computer's own memory. 

 Atari DOS: which was used by the Atari 8-bit family of computers. The Atari OS 

only offered low-level disk-access, so an extra layer called DOS was booted 

off a floppy that offered higher level functions such as filesystems. 

 MSX-DOS, for the MSX computer standard. Initial version, released in 1984, was 

nothing but MS-DOS 1.0 ported to Z80; but in 1988 it evolved to version 2, 

offering facilities such as subdirectories, memory management and 

environment strings. The MSX-DOS kernel resided in ROM (built-in on the 

disk controller) so basic file access capacity was available even without the 

command interpreter, by using BASIC extended commands. 

 Disc Filing System (DFS) This was an optional component for the BBC Micro, 

offered as a kit with a disk controller chip, a ROM chip, and a handful of logic 

chips, to be installed inside the computer. See also Advanced Disc Filing 

System. 

 AMSDOS, for the Amstrad CPC computers. 

3.3 1987  Support for new IBM PS/2 computers 

 1.44 MB floppies 

 Multiple 32MB disk partitions 

 Support for Expanded Memory system 

4.0 1988  Simple window-based command shell 

 Up to 2 gigabyte disk partitions 

5.0 1991  Improved memory management 

 Doubling the disk space by compressing files 

for floppies and hard disks 

 Interlink a program that transfers files 

between computers 

 Improved data protection facility 

 Antivirus facility that can remove more than 

800 viruses from your system. 

 Improved extended commands. 

 

 



59  

 The DOS/360 initial/simple operating system for the IBM System/360 family of 

mainframe computers (it later became DOS/VSE, and was eventually just 

called VSE). 

 The DOS operating system for DEC PDP-11 minicomputers (this OS and the 

computers it ran on were nearly obsolete by the time PCs became common, 

with various descendants and other replacements). 

 DOS for the IBM PC compatible platform 

The best known family of operating systems named "DOS" is that running on IBM 

PCs type hardware using the Intel CPUs or their compatible cousins from other 

makers. Any DOS in this family is usually just referred to as DOS. The original 

was licensed to IBM by Microsoft, and marketed by them as "PC-DOS". When 

Microsoft licenced it to other hardware manufacturers, it was called MS-DOS. 

Digital Research produced a compatible variant known as "DR-DOS", which was 

eventually taken over (after a buyout of Digital Research) by Novell. This became 

"OpenDOS" for a while after the relevant division of Novell was sold to Caldera 

International, now called SCO. There is also a free version named "FreeDOS". 

 
 

3.2 Examples of Disk Operating Systems that were the OS itself  
 

 

 

4.0 Conclusion 
 

The earliest operating systems were developed for mainframe computer architectures in 

the 1960s and they were mostly batch processing operating systems. The enormous 

investment in software for these systems caused most of the original computer 

manufacturers to continue to develop hardware and operating systems that are compatible 

with those early operating systems. Those early systems pioneered many of the features 

of modern operating systems. 
 

5.0 Summary 
 

This unit has taken you through some of the various sample of early OS. The DOS is no 

longer popular because of the advanced GUI packages in the market now. But you still 

find it in some computing environment. 
 

6.0 Tutor Marked Assignment 
 

You are to attempt the following assignments and submit your answers to your tutor for 

this course. Here we go: 
 

1. Disk operating system can be the operating system itself or not . Discuss. 
 

2. Distinguish between DOS that is the OS itself and the one that is not . 

 GDOS and G+DOS, for the +D and DISCiPLE disk interfaces for the ZX 

Spectrum. 
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3. Give two examples each of DOS that are the OS itself and DOS that are the 

extension of the OS. 
 

7.0 References/Further Reading 
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Module 2: Types of Operating System 

Unit 2: Real-time operating system 
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1.0 
  

Introduction 
 

The previous unit discussed the disk operating system and its various characteristics and 

examples. In this unit you will be exposed to the real-time operating system (RTOS), its 

design philosophies and some of its other characteristic features like scheduling, interrupt 

handling, etc. 
 

2.0 Objectives 
 

At the end of this unit, you should be able to: 
 

 Define and describe the real-time OS 

 Explain its design philosophies 

 Describe how its handles tasks such as memory allocation, scheduling, interrupt 

handling, intertask communication, etc. 

 State how it is different from the disk OS 

 Give examples of RTOS 

3.0 Real-Time Operating System (RTOS) 
 

A real-time operating system (RTOS) is a multitasking operating system intended for 

real-time applications. Such applications include embedded systems (programmable 



62  

 Event-driven (priority scheduling) designs switch tasks only when an event of 

higher priority needs service, called preemptive priority. 

 Time-sharing designs switch tasks on a clock interrupt, and on events, called 

round-robin. 

Time-sharing designs switch tasks more often than is strictly needed, but give smoother, 

more deterministic multitasking, the illusion that a process or user has sole use of a 

machine. 
 

Early CPU designs needed many cycles to switch tasks, during which the CPU could do 

nothing useful. So early OSes tried to minimize wasting CPU time by maximally 

avoiding unnecessary task-switches. 
 

More recent CPUs take far less time to switch from one task to another; the extreme case 

is barrel processors that switch from one task to the next in zero cycles. Newer RTOSes 

almost invariably implement time-sharing scheduling with priority driven pre-emptive 

scheduling. 
 

3.2 Scheduling 
 

In typical designs, a task has three states: 
 

1) Running 

thermostats, household appliance controllers, mobile telephones), industrial robots, 

spacecraft, industrial control (see SCADA), and scientific research equipment. 
 

An RTOS facilitates the creation of a real-time system, but does not guarantee the final 

result will be real-time; this requires correct development of the software. An RTOS does 

not necessarily have high throughput; rather, an RTOS provides facilities which, if used 

properly, guarantee deadlines can be met generally (soft real-time) or deterministically 

(hard real-time). An RTOS will typically use specialized scheduling algorithms in order 

to provide the real-time developer with the tools necessary to produce deterministic 

behavior in the final system. An RTOS is valued more for how quickly and/or predictably 

it can respond to a particular event than for the given amount of work it can perform over 

time. Key factors in an RTOS are therefore at minimal interrupt latency and a minimal 

thread switching latency. 
 

An early example of a large-scale real-time operating system was the so-called "control 

program" developed by American Airlines and IBM for the Sabre Airline Reservations 

System. 
 

Debate exists about what actually constitutes real-time computing. 
 

3.1 Design philosophies 
 

Two basic designs exist: 
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 Temporarily masking/disabling interrupts 

2) Ready 
 

3) Blocked. 
 

Most tasks are blocked, most of the time. Only one task per CPU is running. In simpler 

systems, the ready list is usually short, two or three tasks at most. 
 

The real key is designing the scheduler. Usually the data structure of the ready list in the 

scheduler is designed to minimize the worst-case length of time spent in the scheduler's 

critical section, during which preemption is inhibited, and, in some cases, all interrupts 

are disabled. But, the choice of data structure depends also on the maximum number of 

tasks that can be on the ready list (or ready queue). 
 

If there are never more than a few tasks on the ready list, then a simple unsorted 

bidirectional linked list of ready tasks is likely optimal. If the ready list usually contains 

only a few tasks but occasionally contains more, then the list should be sorted by priority, 

so that finding the highest priority task to run does not require iterating through the 

entire list. Inserting a task then requires walking the ready list until reaching either the 

end of the list, or a task of lower priority than that of the task being inserted. Care must 

be taken not to inhibit preemption during this entire search; the otherwise-long critical 

section should probably be divided into small pieces, so that if, during the insertion of a 

low priority task, an interrupt occurs that makes a high priority task ready, that high 

priority task can be inserted and run immediately (before the low priority task is 

inserted). 
 

The critical response time, sometimes called the flyback time, is the time it takes to 

queue a new ready task and restore the state of the highest priority task. In a well- 

designed RTOS, readying a new task will take 3-20 instructions per ready queue entry, 

and restoration of the highest-priority ready task will take 5-30 instructions. On a 20MHz 

68000 processor, task switch times run about 20 microseconds with two tasks ready. 100 

MHz ARM CPUs switch in a few microseconds. 
 

In more advanced real-time systems, real-time tasks share computing resources with 

many non-real-time tasks, and the ready list can be arbitrarily long. In such systems, a 

scheduler ready list implemented as a linked list would be inadequate. 
 

3.3 Intertask communication and resource sharing 
 

A significant problem that multitasking systems must address is sharing data and 

hardware resources among multiple tasks. It is usually "unsafe" for two tasks to access 

the same specific data or hardware resource simultaneously. ("Unsafe" means the results 

are inconsistent or unpredictable, particularly when one task is in the midst of changing a 

data collection. The view by another task is best done either before any change begins, or 

after changes are completely finished.) There are three common approaches to resolve 

this problem: 
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General-purpose operating systems usually do not allow user programs to mask (disable) 

interrupts, because the user program could control the CPU for as long as it wished. 

Modern CPUs make the interrupt disable control bit (or instruction) inaccessible in user 

mode to allow operating systems to prevent user tasks from doing this. Many embedded 

systems and RTOSs, however, allow the application itself to run in kernel mode for 

greater system call efficiency and also to permit the application to have greater control of 

the operating environment without requiring OS intervention. 
 

On single-processor systems, if the application runs in kernel mode and can mask 

interrupts, often that is the best (lowest overhead) solution to preventing simultaneous 

access to a shared resource. While interrupts are masked, the current task has exclusive 

use of the CPU; no other task or interrupt can take control, so the critical section is 

effectively protected. When the task exits its critical section, it must unmask interrupts; 

pending interrupts, if any, will then execute. Temporarily masking interrupts should only 

be done when the longest path through the critical section is shorter than the desired 

maximum interrupt latency, or else this method will increase the system's maximum 

interrupt latency. Typically this method of protection is used only when the critical 

section is just a few source code lines long and contains no loops. This method is ideal 

for protecting hardware bitmapped registers when the bits are controlled by different 

tasks. 
 

When the critical section is longer than a few source code lines or involves lengthy 

looping, an embedded/real-time programmer must resort to using mechanisms identical 

or similar to those available on general-purpose operating systems, such as semaphores 

and OS-supervised interprocess messaging. Such mechanisms involve system calls, and 

usually invoke the OS's dispatcher code on exit, so they can take many hundreds of CPU 

instructions to execute, while masking interrupts may take as few as three instructions on 

some processors. But for longer critical sections, there may be no choice; interrupts 

cannot be masked for long periods without increasing the system's interrupt latency. 
 

A binary semaphore is either locked or unlocked. When it is locked, a queue of tasks can 

wait for the semaphore. Typically a task can set a timeout on its wait for a semaphore. 

Problems with semaphore based designs are well known: priority inversion and 

deadlocks. 
 

In priority inversion, a high priority task waits because a low priority task has a 

semaphore. A typical solution is to have the task that has a semaphore run at (inherit) the 

priority of the highest waiting task. But this simplistic approach fails when there are 

multiple levels of waiting (A waits for a binary semaphore locked by B, which waits for a 

binary semaphore locked by C). Handling multiple levels of inheritance without 

introducing instability in cycles is not straightforward. 
 

In a deadlock, two or more tasks lock a number of binary semaphores and then wait 

forever (no timeout) for other binary semaphores, creating a cyclic dependency graph. 





Binary semaphores 

Message passing 
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The simplest deadlock scenario occurs when two tasks lock two semaphores in lockstep, 

but in the opposite order. Deadlock is usually prevented by careful design, or by having 

floored semaphores (which pass control of a semaphore to the higher priority task on 

defined conditions). 
 

The other approach to resource sharing is for tasks to send messages. In this paradigm, 

the resource is managed directly by only one task; when another task wants to interrogate 

or manipulate the resource, it sends a message to the managing task. This paradigm 

suffers from similar problems as binary semaphores: Priority inversion occurs when a 

task is working on a low-priority message, and ignores a higher-priority message (or a 

message originating indirectly from a high priority task) in its in-box. Protocol deadlocks 

occur when two or more tasks wait for each other to send response messages. 
 

Although their real-time behavior is less crisp than semaphore systems, simple message- 

based systems usually do not have protocol deadlock hazards, and are generally better- 

behaved than semaphore systems. 
 

3.4 Interrupt handlers and the scheduler 
 

Since an interrupt handler blocks the highest priority task from running, and since real 

time operating systems are designed to keep thread latency to a minimum, interrupt 

handlers are typically kept as short as possible. The interrupt handler defers all 

interaction with the hardware as long as possible; typically all that is necessary is to 

acknowledge or disable the interrupt (so that it wo not occur again when the interrupt 

handler returns). The interrupt handler then queues work to be done at a lower priority 

level, often by unblocking a driver task (through releasing a semaphore or sending a 

message). The scheduler often provides the ability to unblock a task from interrupt 

handler 
 

3.5 Memory allocation 
 

Memory allocation is even more critical in an RTOS than in other operating systems. 
 

Firstly, speed of allocation is important. A standard memory allocation scheme scans a 

linked list of indeterminate length to find a suitable free memory block; however, this is 

unacceptable as memory allocation has to occur in a fixed time in an RTOS. 
 

Secondly, memory can become fragmented as free regions become separated by regions 

that are in use. This can cause a program to stall, unable to get memory, even though 

there is theoretically enough available. Memory allocation algorithms that slowly 

accumulate fragmentation may work fine for desktop machines—when rebooted every 

month or so—but are unacceptable for embedded systems that often run for years without 

rebooting. 
 

The simple fixed-size-blocks algorithm works astonishingly well for simple embedded 

systems 
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1. Memory allocation is even more critical in an RTOS than in other operating 

systems. Discuss 

2. Name some of the environment in which the RTOS can be found 

3. List and explain the two basic design philosophies for the RTOS 
4. Describe how interprocess communication and resource sharing are implemented 

in the RTOS. 

7.0 Further Reading 
 

1. Deitel, Harvey M.; Deitel, Paul; Choffnes, David (2004). Operating Systems. Upper 

Saddle River, NJ: Pearson/Prentice Hall. ISBN 0-13-182827-4. 

2. Silberschatz, Abraham; Galvin, Peter Baer; Gagne, Greg (2004). Operating System 

Concepts. Hoboken, NJ: John Wiley & Sons. ISBN 0-471-69466-5. 

3. Tanenbaum, Andrew S.; Woodhull, Albert S. (2006). Operating Systems. Design and 

Implementation. Upper Saddle River, N.J.: Pearson/Prentice Hall. ISBN 0-13-142938- 

8. 

4. Tanenbaum, Andrew S. (2001). Modern Operating Systems. Upper Saddle River, 

N.J.: Prentice Hall. ISBN 0-13-092641-8. 

 
 

You are to attempt the following assignments and submit your answers to your tutor for 

this course. Here we go: 
 

 

 

4.0 Conclusion 
 

As you would have seen or discovered while reading through this unit the design of the 

RTOS is more complex and involving than that of the DOS. The RTOS is not found in 

most computer environment because of its complexity. But it is most suitable for use in 

life and time critical environment. 
 

5.0 Summary 
 

This unit has extensively describe and discussed the RTOS and the way it carries out 

various OS functions such as memory allocation, scheduling, interrupt handling and 

interprocess communication (You will learn more about some of these functions of the 

OS in later units in these course). You are to compare all these with what you have learnt 

about DOS in the previous unit. 
 

6.0 Tutor Marked Assignment 
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1.0 Introduction 

2.0 Objectives 

3.0 Main Body 

3.1 Object-oriented operating system 

 Explain what is meant by object-oriented OS 

 Compare with examples the various attempts that had been made to develop an 

object-oriented OS 

 
 

3.0 Main Body 
 

3.1 Object-oriented operating system 
 

An object-oriented operating system is an operating system which internally uses 

object-oriented methodologies. 

 
 

3.1.1 Examples 

3.1.1 NeXTSTEP 

3.1.2 Choices 

3.1.3 Athene 

3.1.4 BeOS 

3.1.5 Syllable 

3.1.6 TAJ 
3.1.7 Java-based operating systems 

 
 

 

4.0 Conclusion 

5.0 Summary 

6.0 Tutor Marked Assignment 

7.0 References/Further Reading 

1.0 Introduction 
 

In the previous unit, you been exposed to the real-time operating system, its history and 

application areas. This unit will extensively discuss the time-sharing operating system as 

well as the Object-oriented operating systems and the various attempts (citing examples 

where necessary) that had been made to develop them. 

2.0 Objectives 

At the end of this unit, you should be able to: 

Module 2: Types of Operating System 

Unit 3: Object-oriented and Time sharing Operating Systems 

Table of Contents 
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An object-oriented operating system is in contrast to an object-oriented user interface or 

programming framework, which can be placed above a non-object-oriented operating 

system like DOS, Microsoft Windows or Unix. 
 

It can be argued, however, that there are already object-oriented concepts involved in the 

design of a more typical operating system such as Unix. While a more traditional 

language like C does not support object orientation as fluidly as more recent languages, 

the not ion, for example, of a file, stream, or device driver (in Unix, each represented as a 

file descriptor) can be considered a good example of object orientation: they are, after all, 

abstract data types, with various methods in the form of system calls, whose behavior 

varies based on the type of object, whose implementation details are hidden from the 

caller, and might even use inheritance in their underlying code. 
 

3.1.1 Examples 
 

3.1.1.1 NeXTSTEP 
 

During the late 1980s, Steve Jobs formed the computer company NeXT. One of NeXT's 

first tasks was to design an object-oriented operating system, NEXTSTEP. They did this 

by adding an object-oriented framework on top of Mach and BSD using the Objective-C 

language as a basis. 
 

NEXTSTEP's basis, Mach and BSD, are not object-oriented. Instead, the object-oriented 

portions of the system live in userland. Thus, NEXTSTEP cannot be considered an 

object-oriented operating system in the strictest terms. 
 

The NeXT hardware and operating system were not successful, and, in search of a new 

strategy, the company re-branded its object-oriented technology as a cross-platform 

development platform. 
 

Though NeXT's efforts were innovative and novel, they gained only a relatively small 

acceptance in the marketplace. NeXT was later acquired by Apple Computer and its 

operating system became the basis for Mac OS X most visibly in the form of the "Cocoa" 

frameworks. 
 

3.1.1.2 Choices 
 

Choices is an object-oriented operating system that was developed at the University of 

Illinois at Urbana-Champaign. It is written in C++ and uses objects to represent core 

kernel components like the CPU, Process and so on. Inheritance is used to separate the 

kernel into portable machine independent classes and small non-portable dependent 

classes. Choices has been ported to and runs on SPARC, x86 and ARM. 
 

3.1.1.3 Athene 
 

Athene is an object based operating system first released in 2000 by Rocklyte Systems. 

The user environment is constructed entirely from objects that are linked together at 
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 32-bit Protected mode Operating System 

 Paging enable 

 Secure Exception handling 

 Interrupt management system 

 Work with different kinds of CPU (80386 onwards). 
 Fully functional built in keyboard driver 

 Total DMA control 

 Floppy driver 

 Mouse driver 

 Fat file system driver 

runtime. Applications for Athene can also be created using this methodology and are 

commonly scripted using the object scripting language 'DML' (Dynamic Markup 

Language). Objects can be shared between processes by creating them in shared memory 

and locking them as required for access. Athene's object framework is multi-platform, 

allowing it to be used in Windows and Linux environments for the development of object 

oriented programs. 
 

3.1.1.4 BeOS 
 

One attempt at creating a truly object-oriented operating system was the BeOS of the mid 

1990s, which used objects and the C++ language for the application programming 

interface (API). But the kernel itself was written in C with C++ wrappers in user space. 

The system did not become mainstream though even today it has its fans and benefits 

from ongoing development. 
 

3.1.1.5 Syllable 
 

Syllable makes heavy use of C++ and for that reason is often compared to BeOS. 
 

3.1.1.6 TAJ 
 

TAJ is India's first object oriented operating system. It is made in C++ with some part in 

assembly. The source code of TAJ OS is highly modularized and is divided into different 

modules, each module is implemented as class. Many object oriented features like 

inheritance, polymorphism, virtual functions etc are extensively used in developing TAJ 

Operating System. TAJ OS is a multitasking, multithreading and multiuser operating 

system. 
 

The kernel of TAJ Operating System is of monolithic type. i.e. all the device drivers and 

other important OS modules are embedded into kernel itself. This increases the speed of 

execution by reducing context switching time (time taken to execute a system call). 
 

TAJ OS is developed by Viral Patel. You can download the image file for TAJ OS at 

http://www.viralpatel.net or http://www.geocities.com/taj_os 
 

Features of TAJ Operating System: 
 

http://www.viralpatel.net/
http://www.geocities.com/taj_os
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3.1.1.7 Java-based operating systems 
 

Given that Sun Microsystems' Java is today one of the most dominant object-oriented 

languages, it is no surprise that Java-based operating systems have been attempted. In this 

area, ideally, the kernel would consist of the bare minimum required to support a JVM. 

This is the only component of such an operating system that would have to be written in a 

language other than Java. Built upon that JVM and basic hardware support, it would be 

possible to write the rest of the operating system in Java; even parts of the system that are 

more traditionally written in a lower-level language such as C, for example device 

drivers, can be written in Java. 
 

Examples of attempts at such an operating system include JNode and JOS 
 

3.2 Time-sharing 
 

Time-sharing refers to sharing a computing resource among many users by multitasking. 
 

Because early mainframes and minicomputers were extremely expensive, it was rarely 

possible to allow a single user exclusive access to the machine for interactive use. But 

because computers in interactive use often spend much of their time idly waiting for user 

input, it was suggested that multiple users could share a machine by using one user's idle 

time to service other users. Similarly, small slices of time spent waiting for disk, tape, or 

network input could be granted to other users. 
 

Throughout the late 1960s and the 1970s computer terminals were multiplexed onto large 

institutional mainframe computers (central computer systems), which in many 

implementations sequentially polled the terminals to see if there was any additional data 

or action requested by the computer user. Later technology in interconnections were 

interrupt driven, and some of these used parallel data transfer technologies like, for 

example, the IEEE 488 standard. Generally, computer terminals were utilized on College 

properties in much the same places as desktop computers or personal computers are 

found today. In the earliest days of personal computers, many were in fact used as 

particularly smart terminals for time-sharing systems. 
 

With the rise of microcomputing in the early 1980's, time-sharing faded into the 

background because the individual microprocessors were sufficiently inexpensive that a 

single person could have all the CPU time dedicated solely to their needs, even when 

idle. 
 

The Internet has brought the general concept of time-sharing back into popularity. 

Expensive corporate server farms costing millions can host thousands of customers all 

sharing the same common resources. As with the early serial terminals, websites operate 

primarily in bursts of activity followed by periods of idle time. The bursty nature permits 

 Multitasking 

 Multithreading 

 Multiuser 
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 IBM CMS (part of VM/CMS) 
 IBM TSS/360 (never finished; see OS/360) 

 IBM Time Sharing Option (TSO) 

 KRONOS (and later NOS) on the CDC 6000 series 

 Michigan Terminal System 

 Multics 

 MUSIC/SP 

 ORVYL 

 RSTS/E 

the service to be used by many website customers at once, and none of them not ice any 

delays in communications until the servers start to get very busy. 
 

3.2.1 The Time-Sharing Business 
 

In the 1960s, several companies started providing time-sharing services as service 

bureaus. Early systems used Teletype K/ASR-33s or K/ASR-35s in ASCII environments, 

and an IBM teleprinter in EBCDIC environments. They would connect to the central 

computer by dial-up acoustically coupled modems operating at 10-15 characters per 

second. Later terminals and modems supported 30-120 characters per second. The time- 

sharing system would provide a complete operating environment, including a variety of 

programming language processors, various software packages, file storage, bulk printing, 

and off-line storage. Users were charged rent for the terminal, a charge for hours of 

connect time, a charge for seconds of CPU time, and a charge for kilobyte-months of disk 

storage. 
 

Common systems used for time-sharing included the SDS 940, the PDP-10, and the IBM 

360. Companies providing this service included Tymshare (founded in 1966), Dial Data 

(bought by Tymshare in 1968), and Bolt, Beranek, and Newman. By 1968, there were 32 

such service bureaus serving the NIH alone. 
 

3.2.2 History 
 

The concept was first described publicly in early 1957 by Bob Bemer as part of an article 

in Automatic Control Magazine. The first project to implement a time-sharing system 

was initiated by John McCarthy in late 1957, on a modified IBM 704, and later an 

additionally modified IBM 7090 computer. Although he left to work on Project MAC 

and other projects, one of the results of the project, known as the Compatible Time 

Sharing System or CTSS, was demonstrated in November, 1961. CTSS has a good claim 

to be the first time-sharing system and remained in use until 1973. The first commercially 

successful time-sharing system was the Dartmouth Time-Sharing System (DTSS) which 

was first implemented at Dartmouth College in 1964 and subsequently formed the basis 

of General Electric's computer bureau services. DTSS influenced the design of other 

early timesharing systems developed by Hewlett Packard, Control Data Corporation, 

UNIVAC and others (in addition to introducing the BASIC programming language). 
 

Other historical timesharing systems, some of them still in widespread use, include: 
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4.0 Conclusion 
 

As you have   learnt   in   this   unit,   several   attempts   had   been   made   at 

developing a truly object-oriented operating system. The unit has also discussed the basic 

features of some the object-oriented OS in existence today. 
 

5.0 Summary 
 

This unit has briefly discussed the time-sharing operating system as well as object- 

oriented OS and the various attempts that have been made to develop them. In the next 

unit you will be learning about some of the basic functions of the OS and how they are 

achieved. 

1. Deitel, Harvey M.; Deitel, Paul; Choffnes, David (2004). Operating Systems. Upper 

Saddle River, NJ: Pearson/Prentice Hall. ISBN 0-13-182827-4. 

2. Silberschatz, Abraham; Galvin, Peter Baer; Gagne, Greg (2004). Operating System 

Concepts. Hoboken, NJ: John Wiley & Sons. ISBN 0-471-69466-5. 

3. Tanenbaum, Andrew S.; Woodhull, Albert S. (2006). Operating Systems. Design and 

Implementation. Upper Saddle River, N.J.: Pearson/Prentice Hall. ISBN 0-13-142938- 

8. 

4. Tanenbaum, Andrew S. (2001). Modern Operating Systems. Upper Saddle River, 

N.J.: Prentice Hall. ISBN 0-13-092641-8. 

 
 

 

6.0 Tutor Marked Assignment  
 

You are to attempt the following assignments and submit your answers to your tutor for 

this course. Here we go: 
 

1. What do you under by object-oriented OS 

2. Discuss at least three of the attempts that have been made to develop object-oriented 

OS stating the characteristic features of each of the examples of these attempts. 
 

 

 

7.0 References/Further Reading  
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4.0 Conclusion 
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7.0 References/Further Reading 
 

1.0 Introduction 
 

Early computer systems allowed one program to be executed at a time. This program has 

complete control of the system, and had access to all the system‘s resources. Current-day 

computer systems allow multiple programs to be loaded into memory and to be executed 

concurrently. This evolution requires firmer control and more compartmentalization of 

the various programs. These needs resulted in the not ion of a process, which is a 

program in execution. A process is the unit of work in a modern time-sharing system. 
 

Although, the main concern of the OS is the execution of user programs, it also needs to 

take care of various system tasks that are better left outside the kernel itself. A system 

therefore consists of a collection of processes: Operating system processes executing 

system code, and user processes executing user code. All these processes can potentially 

execute concurrently, with the CPU (or CPUs) multiplexed among them. By switching 

the CPU between processes, the operating system can make the computer more 

productive. 
 

 

 

2.0 Objectives 
 

At the end of this unit, you should be able to: 

Module 3: Process Management 

Unit 1: Processes 

Table of Contents 
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 An image of the executable machine code associated with a program. 
 Memory (typically some region of virtual memory); which includes the 

executable code, process-specific data (input and output), a call stack (to keep 

 
 

3.0 Main Body 
 

3.1 The Process 
 

Informally, a process is a program in execution or simply an instance of a computer 

program that is being executed. It is more than the program code, which is sometimes 

called text section. While a program itself is just a passive collection of instructions, a 

process is the actual execution of those instructions. It includes the current activity, as 

represented by the value of the program counter and the contents of the processor‘s 

registers. In addition, a process generally includes the process stack, which contains 

temporary data (such as method parameters, return addresses, and local variables), and a 

data section, which contains global variables. 
 

You should note the emphasis that a program by itself is not a process; a program is a 

passive entity such as the content of the file stored on disk, whereas a process is an active 

entity, with a program counter specifying the next instruction to execute and a set of 

associated resources. 
 

Several processes may be associated with the same program - each would execute 

independently (multithreading - where each thread represents a process), either 

synchronously (sequentially) or asynchronously (in parallel). Although, two processes 

may be associated with the same program, they nevertheless considered two separate 

execution sequences. For instance, several users may be running different copies of the 

mail program, or the same user may invoke many copies of the editor program. Each of 

these is a separate process, and although the text sections are equivalent, the data sections 

vary. It is also common to have a process that spawns many processes as it runs. 
 

Modern computer systems allow multiple programs and processes to be loaded into 

memory at the same time and, through time-sharing (or multitasking), give an appearance 

that they are being executed at the same time (concurrently) even if there is just one 

processor. Similarly, using a multithreading OS and/or computer architecture, parallel 

processes of the same program may actually execute simultaneously (on different CPUs) 

on a multiple CPU machine or network. 
 

In general, a computer system process consists of (or is said to 'own') the following 

resources: 
 

 Define a process 

 List the possible states of a process 

 Describe a process control block (PCB) 

 Describe process creation and process termination 
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3.2 Process states 
 

As a process executes, it changes state. The state of a process is defined in part by the 

current activity of that process. Each process may be in one of the following states: 

 New: The process is being created. 

 Running: Instructions are being executed. 

 Waiting: The process is waiting for some event to occur (such as I/O completion 

or reception of a signal) 

 Ready: the process is waiting to be assigned to a processor. 

 Terminated: The processor has finished execution. 

New Terminated 

Admitted Exit 
Interrupt 

Ready Running 

Scheduler dispatch 

I/O or Event completion I/O or Event wait 

Waiting 

Figure 3.1: Process State 

 

These state names are arbitrary, and they vary across operating systems. The states that 

they represent are found on all systems, however. Certain operating systems more finely 

delineate process states. Only one process can be running on any processor at any instant, 

although many processes may be ready and waiting. The state diagram corresponding to 

these states is presented in Figure 3.1. The various process states, are displayed in the 

figure, with arrows indicating possible transitions between states. 

 
 

 

 

track of active subroutines and/or other events), and a heap to hold 

intermediate computation data generated during runtime. 

 Operating system descriptors of resources that are allocated to the process, 

such as file descriptors (Unix terminology) or handles (Windows), and data 

sources and sinks. 

 Security attributes, such as the process owner and the process' set of 

permissions (allowable operations). 

 Processor state (context), such as the content of registers, physical memory 

addressing, etc. The state is typically stored in computer registers when the 

process is executing, and in memory otherwise. 
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3.3 Process Control Block (PCB) 
 

Each process is represented in the operating system by a process control block (PCB) – 

also called a task control block. A PCB contains many pieces of information associated 

with a specific process as shown in Figure 3.2 below. 
 

 

Pointer 

 

Process State 

Process number 

Program counter 

 

Registers 

Memory limits 

List of open files 

. 

. 

. 

 
Figure 3.2: Process Control Block (PCB) 

 

The content of the PCB include: 

 Process State: As you have learnt in the previous section, the state may be new, 

ready, running, waiting, halted, etc. 

 Program counter: The counter indicates the address of the next instruction to be 

executed for this process. 

 CPU registers: the register vary in number and type, depending on the computer 

architecture. They include accumulators, index registers, stack pointers, and 

general-purpose registers, plus any condition-code information. Along with the 

program counter, this state information must be saved when an interrupt occurs, to 

allow the process to be continued correctly afterward. (Figure 3.3) 

 CPU-Scheduling information: This information includes a process priority, 

pointers to scheduling queues, and any other scheduling parameters. 

 Memory-management information: this information may include such 

information as the value of the base and limit registers, the page tables, or the 

segment tables, depending on the memory system used by the operating system. 

 Accounting information: this information includes the amount of CPU and real 

time used, time limits, account numbers, job or process numbers, etc. 



77  

 
 

 

process P0 operating system process P1  

 

interrupt or system call 

Executing 

 
save state into PCB0 

. Idle 

. 

. 
 

reload state from PCB1 

 

 
Executing 

Idle interrupt or system call 

 

 

save state into PCB1 

. 

. Idle 

. 
 

reload state from PCB0 

Executing 

 

 
 

Figure 3.3: Diagram showing CPU switch from process to process 

 

 

3.4 Process Scheduling 
 

The objective of multiprogramming is to have some process running at all times so as to 

maximize CPU utilization. The objective of time-sharing is to switch the CPU among 

processes so frequently that users can interact with each program while it is running. A 

uniprocessor system can have only one running process. If more processes exist, the rest 

must wait until the CPU is free and can be rescheduled. 
 
3.4.1 Scheduling Queues 

 I/O status information: the information includes the list of I/O devices allocated 

to this process, a list of open files, etc. 

 

The PCB simply serves as the repository for any information that may vary from 

process to process. 
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 The process could issue an I/O request, and then be placed in an I/O queue. 

 The process could create a new sub process and wait for its termination. 

 The process could be removed forcibly from the CPU, as result of an interrupt, and 

be put back in the ready queue. 

 In the first two cases, the process eventually switches from the waiting state to the 

ready state, and is then put back in the ready queue. A process continues this cycle 

until it terminates, at which time it is removed from all queues and has its PCB 

and resources deallocated. 

3.4.2 Schedulers 
 

A process migrates between the various scheduling queues throughout its lifetime. The 

operating system must select, for scheduling purposes, processes for these queues in 

some fashion. The selection process is carried out by the appropriate scheduler. 
 

In a batch system, often more processes are submitted than can be executed immediately. 

These processes are spooled to a mass-storage device, where they a re kept for later 

execution. The long-term scheduler, or job scheduler, selects processes from this pool 

and loads them into memory for execution. The short-term scheduler, or CPU scheduler, 

As processes enter the system, they are put into a job queue. This queue consists of all 

processes in the system. The processes that are residing in main memory and are ready 

and waiting to execute are kept on a list called the ready queue. This queue is generally 

stored as a linked list. A ready-queue header contains pointers to the first and final PCB 

in the list. We extend each PCB to include a pointer field that points to the next PCB in 

the ready queue. 
 

The operating system also has other queues. When a process is allocated the CPU, it 

executes for a while and eventually quits, is interrupted, or waits for the occurrence of a 

particular event, such as the completion of an I/O request. In the case of I/O request, such 

a request may be to a dedicated tape drive, or to a shared device, such as a disk. Since the 

system has many processes, the disk may be busy with the I/O request of some other 

process. The process therefore may have to wait for the disk. The list of processes 

waiting for a particular I/O device is called a device queue. Each device has its own 

queue. 
 

A common way of representating process scheduling is by using a queueing diagram, 

such as that in Figure 3.4. Each rectangular box represents a queue. Two types of queues 

are present: the ready queue and a set of device queues. The circles represent the 

resources that serve the queues, and the arrows indicate the flow of processes in the 

system. 
 

A new process is initially put in the ready queue. It waits in the ready queue until it is 

selected for execution (or dispatched). Once the process is assigned to the CPU and is 

executing, one of several events could occur: 
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time slice expired 

selects from among the processes that are ready to execute, and allocates the CPU to one 

of them. 
 

 
 

CPU 
 

 

 

I/O 
 

 

child executes 
 

 

 

interrupt occurs 
 

 

Figure 3.4: Queuing-diagram representation of process scheduling 
 

 

 

The primary distinction between these two schedulers is the frequency of their execution. 

The short-term scheduler must select a new process for the CPU frequently. A process 

may execute for only a few milliseconds before waiting for an I/O request. Often, the 

short-term scheduler executes at least once every 100 milliseconds. Due to the brief time 

between executions, the short-term scheduler must be fast. 
 

The long-term scheduler, on the other hand, executes much less frequently. There may be 

minutes between the creation of new processes in the system. The long-term scheduler 

controls the degree of multiprogramming - the number of processes in memory. If the 

degree of multiprogramming is stable, then the average rate of process creation must be 

equal to the average rate of processes leaving the system.. therefore, the long-term 

scheduler may need to be invoked only when process leaves the system. 
 

3.4.3 Context Switch 
 

Switching the CPU to another process requires saving the state of the old process and 

loading the saved state for the new process. This task is known as context switch. The 

context of a process is represented in the PCB of a process; it includes the value of the 

CPU registers, the process state (Figure 3.1), and memory-management information. 

When a context switch occurs, the kernel saves the context of the old process in its PCB 

and loads the saved context of the new process scheduled to run. Context-switch time is 

pure overhead, because the system does no useful work while switching. Its speed varies 

from machine to machine, depending on the memory speed, the number of registers that 

must be copied, and the existence of special instructions. Typical speeds range from 1 to 

I/O queue 

wait for an 

interrupt 

fork a child 

I/O request 

ready queue 
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1. The parent continues to execute concurrently with its children. 
2. The parent waits until some or all of its children have terminated 

1. The child process is a duplicate of the parent process. 

2. The child process has a program loaded into it. 

1000 micro seconds. Also, context-switch times are highly dependent on h/which 

support. 
 

3.5 Operations on Processes 
 

The processes in the system can execute concurrently, and they must be created and 

deleted dynamically. Therefore, the operating system must provide a mechanism (or 

facility) for process creation and termination. 
 

3.5.1 Process Creation 
 

A process may create several new processes, via a create-process system call, during the 

course of execution. The creating process is called a parent process, whereas the new 

processes are called the children of that process. Each of these new processes may in 

turn create other processes, forming a tree of processes (Figure 3.5). 
 

In general, a process will need certain resources (such as CPU time, memory, files, I/O 

devices) to accomplish its task. When a process creates a subprocess, that subprocess 

may be able to obtain its resources directly from the operating system, or it may be 

constrained to a subset of the resources of the parent process. The parent may have to 

partition its resources among its children, or it may be able to some resources (such as 

memory or files) among several of its children. Restricting a child process to a subset of 

the parent‘s resources prevents any process from overloading the system by creating too 

many subprocesses. 
 

When a process is created it obtains initialization data (or input) that may be passed along 

from the parent process to the child process in addition to the various physical and logical 

resources. For instance, consider a process whose function is to display the status of a 

file, say F1, on the screen of a terminal. When it is created, it will get, as an input from its 

parent process, the name of the file F1, and it will execute using that datum to obtain the 

desired information. It may also get the name of the output device. Some operating 

systems pass resources to child processes. On such a system, the new process may get 

two open files, F1 and the terminal device, and may just need to transfer the datum 

between the two. 
 

When a process creates a new process, two possibilities exist in terms of execution: 
 

 

There are also two possibilities in terms of the address space of the new process:  
 

 

In UNIX, every process except process 0 (the swapper) is created when another process 

executes the fork system call. The process that invoked fork is the parent process and the 
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root 

page daemon swapper init 

User 1 User 2 User 3 

newly-created process is the child process. Every process (except process 0) has one 

parent process, but can have many child processes. 
 

In UNIX, a child process is in fact created (using fork) as a copy of the parent. The child 

process can then overlay itself with a different program (using exec) as required. 

Each process may create many child processes but will have only one parent process, 

except for the very first process which has no parent. The first process, called init in 

UNIX, is started by the kernel at booting time and never terminates. 
 

The kernel identifies each process by its process identifier (PID). Process 0 is a special 

process that is created when the system boots; after forking a child process (process 1), 

process 0 becomes the swapper process. Process 1, known as init, is the ancestor of 

every other process in the system. 
 

When a child process terminates execution, either by calling the exit system call, causing 

a fatal execution error, or receiving a terminating signal, an exit status is returned to the 

operating system. The parent process is informed of its child's termination through a 

SIGCHLD signal. A parent will typically retrieve its child's exit status by calling the wait 

system call. However, if a parent does not do so, the child process becomes a zombie 

process. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: A tree on a typical UNIX system 
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On Unix and Unix-like operating systems, a zombie process or defunct process is a 

process that has completed execution but still has an entry in the process table, this entry 

being still needed to allow the process that started the zombie process to read its exit 

status. 
 

Example 
 

Here is some sample C programming language code to illustrate the idea of forking. The 

code that is in the "Child process" and "Parent process" sections are executed 

simultaneously. 
 

pid_t pid; 
 

pid = fork(); 
 

if(pid == 0) 

{ 

/* Child process: 

* When fork() returns 0, we are in 
* the child process. 
* Here we count up to ten, one each second. 
*/ 

int j; 

for(j=0; j < 10; j++) 

{ 

printf("child: %d\n", j); 

sleep(1); 

} 

_exit(0); /* Note that we do not use exit() */ 

} 

else if(pid > 0) 

{ 

/* Parent process: 

* Otherwise, we are in the parent process. 
* Again we count up to ten. 
*/ 

int i; 

for(i=0; i < 10; i++) 

{ 

printf("parent: %d\n", i); 

sleep(1); 

} 

} 

else 

{ 

/* Error handling. */ 

fprintf(stderr, "could not fork"); 
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exit(1); 

} 
 

This code will print out the following: 
 

parent: 0 

child: 0 

child: 1 

parent: 1 

parent: 2 

child: 2 

child: 3 

parent: 3 

parent: 4 

child: 4 

child: 5 

parent: 5 

parent: 6 

child: 6 

child: 7 

parent: 7 

parent: 8 

child: 8 

child: 9 

parent: 9 

 

Figure 3.6: C program forking a separate process 
 

The order of each output is determined by the kernel. 
 

Windows NT operating system supports both models: The parent‘s address space may be 

duplicated, or the parent may specify the name of a program for the operating system to 

load into the address space of the new process. 
 

3.5.2 Process Termination 
 

A process terminates when it finishes executing its final statement and asks the operating 

system to delete it by using exit system call. At that point, the process may return data 

(output) to its parent process (via the wait system call). All the resources of the process – 

including physical and virtual memory, open files, and I/O buffers – are deallocated by 

the operating system. 
 

Termination occurs under additional circumstances. A process can cause the termination 

of another process via an appropriate system call e.g. abort. Usually, only the parent of 

the process that is to be terminated can invoke such a system call. Otherwise, users could 

arbitrarily kill each other‘s jobs. A parent, therefore, need to know the identities of its 
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 The child has exceeded its usage of some of the resources that it has been 

allocated. This requires the parent to have a mechanism to inspect the state of its 

children. 

 The task assigned to the child is no longer required. 

 The parent is exiting, and the operating system does allow a child to continue if its 

parent terminate. On such systems, if a process terminates (either normally or 

abnormally), then all its children must also be terminated. This phenomenon, 

referred to as cascading termination, is normally initiated by the operating system. 

 
 

 

To illustrate process execution and termination, consider that in UNIX, we can terminate 

a process by using the exit system call; its parent process may wait for the termination of 

a child process by using wait system call. The wait system call returns the process 

identifier of a terminated child, so that the parent can tell which of its possibly many 

children has terminated. If the parent terminates, however, all its children have assigned 

as their new parent the init process. Thus, the children still have a parent to collect their 

status. 
 

4.0 Conclusion 
 

This unit has introduced you to the concept of processes. It has extensively discussed 

process control block, process scheduling and the various operations that can be carried 

out on processes. 
 

In the next unit, you will be taken through co-operating processes and the means through 

which these co-operating processes communicate with one another. 
 

5.0 Summary 
 

As you have learnt in this unit, a process is a program in execution. As a process 

executes, it changes state. The state of a process is defined by that process current 

activity. Each process may be in one of the following states: new, ready, running, 

waiting, or terminated. Each process is represented in the operating system by its own 

process-control block (PCB). 
 

A process, when it is not executing is placed in some waiting queue. The two major 

classes of queues in an operating system are I/O request queues and the ready queue. The 

ready queue contains all the processes that are ready to execute and are waiting for the 

CPU. Each process is represented by a PCB, and the PCB can be linked together to form 

a ready queue. Long-term (or job) scheduling is selection of processes to be allowed to 

contend for the CPU. Long-term scheduling is normally influenced by resource – 

children. Thus, when one process creates a new process, the identity of the newly created 

process is passed to the parent. 
 

A parent may terminate the execution of one of its children for a variety of reasons, such 

as these: 
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1. What do you understand by the term ‗Process‘? 

2. Distinguish between a process and a program 

3. List and explain the possible states of a process 

4. Describe a process control block (PCB). 

5. What are possible information that a PCB will contain? 

6. Describe the actions taken by the kernel to switch context between processes. 

7. Describe process creation and process termination. 

8. What do you understand by process scheduling? 

9. Explain the various types of scheduling we have. 

7.0 References/Further Reading 
 

Silberschatz, Abraham; Cagne, Greg, Galvin, Peter Baer (2004). Operating system 

concepts with Java, Sixth Edition, John Wiley & Sons, Inc. 
 

Stallings, William (2005). Operating Systems: internals and design principles (5th 

edition). Prentice Hall. ISBN 0-13-127837-1. 
 

http://en.wikipedia.org/wiki/Process_states 

 
 

 

 

allocation considerations, especially memory management. Short-term (or CPU) 

scheduling is the selection of one process from the ready queue. 
 

6.0 Tutor-Marked Assignment 
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1.0 Introduction 
 

The previous unit has introduced you to the concept of processes and the various 

operations that can be carried out on processes. Sometimes, when you have more than 

one process running on the computer system, there may be need for them to interact with 

one another. This unit takes you through the different ways that these various processes 

that may be running on the computer system at the same time interacts with one another. 
 

2.0 Objectives 
 

At the end of this unit, you should be able to: 

 Describe the concept of co-operating processes 

 State reasons for allowing process co-operation 

 Explain interprocess communication 

 Describe message passing 

 Describe some methods for logically implementing a link and the send/receive 

operations 

 Describe means of ensuring synchronization communicating processes 

 Describe the concept of buffering and the various ways it can be implemented. 

 
 

 

 

3.0 Main Body  

Module 3: Process Management 

Unit 2: Co-operating Processes 

Table of Contents 
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 Information sharing: since several users may be interested in the same piece of 

information, e.g. a shared file, we must provide an environment to allow 

concurrent access to these types of resources. 

 Computation speedup: if we want a particular task to run faster, we must break it 

into sub-tasks, each of which will be executing in parallel with the others. Such a 

speedup can be achieved only if the computer has multiple processing elements 

(such as CPUs or I/O channels). 

 Modularity: We may want to construct the system in a modular fashion, dividing 

the system functions into separate processes or threads. 

 Convenience: even an individual user may have many tasks on which to work at 

one time. For instance, a user may be editing, printing, and compiling in parallel. 

 
 

 

Concurrent execution of co-operating processes requires mechanisms that allow 

processes to communicate with one another and to synchronize their actions. 
 

To illustrate the concept of co-operating processes, let us consider the producer-consumer 

problem, which is a common paradigm for co-operating processes. A producer process 

produces information that is consumed by a consumer process. For example, a print 

program produces characters that are consumed by the printer driver. 
 

To allow producer and consumer processes to run concurrently, we must have available a 

buffer of items that can be filled by the producer and emptied by the consumer. A 

producer can produce one item while the consumer consuming another item. The 

producer and consumer must be synchronised, so that it does not try to consume an item 

that has not yet been produced. In this situation, the consumer must wait until an item is 

produced. 
 

The unbounded-buffer producer-consumer places no practical limit on the size of the 

buffer. The consumer may have to wait for new items, but the producer can always 

produce new items. The bounded-buffer producer-consumer problem assumes a fixed 

buffer size. In this case, the consumer must wait if the buffer is empty and the producer 

must wait if the buffer is full. 
 

The buffer may either be provided by the operating system through the use of an 

interprocess-communication (IPC) facility (this will be discussed fully in the next 

3.1 Co-operating processes 
 

The concurrent processes executing in the operating system may be either independent 

processes or co-operating processes. A process is independent if it cannot be affected by 

the other processes executing in the system. Clearly, any process that does not share any 

data (temporary or persistent) with any other process is independent. Whereas, a process 

is co-operating if it can be affected by the other processes executing in the system. 

Clearly, any process that shares data with other processes is co-operating process. 
 

We may want to provide an environment for process co-operation for several reasons: 
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 Direct or indirect communication 

 Symmetric or asymmetric communication 

 Automatic or explicit buffering 

 Send by copy or send by reference 

 Fixed-sized or variable-sized messages 

We are going to look at each of these types of messages in the following section. 
 

3.2.2 Naming 

section), or explicitly coded by the application programmer with the use of shared 

memory. 
 

3.2 Interprocess Communication (IPC) 
 

Processes can communicate with each other via Inter-process communication (IPC). This 

is possible for both processes running on the same machine and on different machines. 
 

IPC provides a mechanism to allow processes to communicate and to synchronise their 

actions without sharing the same address space. IPC is particularly useful in a distributed 

environment where the communicating processes may reside on different computers 

connected with a network. An example of this is a chat program used on the World Wide 

Web (WWW). 
 

IPC is best provided by message-passing system and message-passing system can be 

defined in many ways. We are now going to look at different issues when designing 

message-passing systems. 
 

3.2.1 Message-Passing system 
 

The function of a message system is to allow processes to communicate with one another 

without the need to resort to shared data. An IPC facility provides at least the two 

operations: send(message) and receive(message). 
 

Messages sent by a process can be of either fixed or variable size. If only fixed-sized 

messages can be sent, the system-level implementation is straightforward. This 

restriction, however, makes the task of programming more difficult. On the other hand, 

variable-sized messages require a more complex system-level implementation, but the 

programming task becomes simpler. 
 

If processes P and Q want to communicate, they must send messages to and receive 

message from each other, a communication link must exist between them. This link can 

be implemented in a variety of ways. We are concerned here not with the link‘s physical 

implementation (such as shared memory, hardware bus, or network), but rather with its 

logical implementation. Here are several methods for logically implementing a link and 

the send/receive operations: 
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 send (P, message) – Send message to process P 

 receive (Q, message) – Receive a message from process Q 

 a link is established automatically between every pair of processes that want to 

communicate. The processes need to know only each other‘s identity to 

communicate. 

 A link is associated with exactly two processes. 

 Exactly one link exists between each pair of processes. 

This scheme exhibits symmetry in addressing; that is, both the sender and the receiver 

processes must name the other to communicate. A variant of this scheme employs 

asymmetry in addressing. Only the sender names the recipient, the recipient is not 

required to name the sender. In this scheme send and receive primitives are defined as 

follows: 

 send (P, message) – Send message to process P 

 receive (id, message) – Receive a message from any process, the variable id is set 

to the name of the process with which communication has taken place. 
 

The disadvantage in both symmetric and asymmetric schemes is the limited 

modularity of the resulting process definitions. Changing the name of a process may 

necessitate examining all other process definitions. All refrences to the old name must 

be found, so that they can be modified to the new name. this situations is not 

desirable from the viewpoint of separate compilation. 

With indirect communication, the messages are sent to and received from mailboxes 

or ports. A mailbox can be viewed abstractly as an object into which messages can be 

placed by processes and from which messages can be removed. Each mailbox has a 

unique identification. In this scheme, a process can communicate with some other 

process via a number of different mailboxes. Two processes can communicate only if 

they share a mailbox. The send and receive primitives are defined as follows: 

 
 

 

A communication link in this scheme has the following properties:  
 

 

 

 

3.2.2.2 Indirect Communication  
 

 

 send (A, message) – Send a message to mailbox A  

Processes that want to communicate must have a way to refer to each other. They can use 

either direct or indirect communication. 

3.2.2.1 Direct Communication 

With direct communication, each process that wants to communicate must explicitly 

name the recipient or sender of the communication. In this scheme, the send and 

receive primitives are defined as follows: 
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 A link is established between a pair of processes only if both members of the 

pair have a shared mailbox. 

 A link may be associated with more than two processes. 

 A number different links may exist between each pair of communicating 

processes, with each link corresponding to one mailbox. 

Now suppose that processes P1, P2 and P3 all share mailbox A. Process P1 sends a 

message to A, while P2 and P3 each a receive from A. Which process will receive the 

message sent by P1? The answer depends on the scheme that we choose: 

 Allow a link to be associated with at most two processes 

 Allow at most one process at a time to execute a receive operation. 

 Allow the system to select arbitrarily which process will receive the message (that 

is, either P2 or P3, but not both, will receive the message). The system may 

identify the receiver to the sender. 

A mailbox may be owned by either a process or by the operating system. if the mailbox is 

owned by a process (i.e. that mailbox is part of the address space of the process), then we 

distinguish between the owner (who can only receive messages through this mailbox) and 

the user (who can only send messages to the mailbox). Since each mailbox has a unique 

owner, there can be no confusion about who should receive a message sent to this 

mailbox. When a process that owns a mailbox terminates, the mailbox disappears. Any 

process that subsequently sends a message to this mailbox must be not ified that the 

mailbox no longer exists. 
 

On the other hand, a mailbox owned by the operating system is independent and is not 

attached to any particular process. The operating system then must provide a mechanism 

that allows a process to do the following: 

 Create a new mailbox 

 Send and receive messages through the mailbox 

 Delete a mailbox 

The process that creates a new mailbox is that mailbox‘s owner by default. Initially, the 

owner is the only process that can receive messages through the mailbox. However, the 

ownership and receive privilege mat be passed to other processes through appropriate 

system calls. Of course, the provision would result in multiple receiver for each mailbox. 
 

3.2.3 Synchronization 

 receive (A, message) – Receive a message from mailbox A  
 

In this scheme, a communication link has the following properties:  
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 Blocking send: the sending process is blocked until the message is received by the 

receiving process or by the mailbox. 

 Nonblocking send: the sending process sends the message and resumes operation. 

 Blocking receive: the receiver blocks until a message is available. 

 Nonblocking receive: the receiver retrieves either a valid message or a null. 

Different combinations of send and receive are possible. When both the send and 

receive are blocking, we have a rendezvous between the sender and the receiver. 
 

3.2.4 Buffering 
 

Whether the communication is direct or indirect, messages exchanged by communicating 

processes reside in a temporary queue. Basically, such a queue can be implenmented in 

three ways: 

 Zero capacity: The queue has maximum length 0; thus, the link cannot have any 

messages waiting in it. In this case, te sender must block until the recipient 

receives the message. 

 Bounded capacity: The queue has finite length n; thus, at most n messages can 

reside in it. If the queue is not full when a new message is sent, the latter is placed 

in the queue (either the message is copied or a pointer to the message is kept), and 

the sender can continue the execution without waiting. The link has a finite 

capacity, however. If the link is full, the sender must block until space is available 

in the queue. 

 Unbounded capacity: The queue has potentially infinite length; thus, any number 

of messages can wait in it. The sender never blocks. 

The zero capacity case is sometimes referred to as a message system with no buffering; 

the other cases are referred to as automatic buffering. 
 

4.0 Conclusion 
 

In this unit, you have been taken through the concept of co-operating processes, the 

means through which they communicate, and the various means to ensure 

synchronization between communicate processes. 
 

5.0 Summary 
 

As you have learnt in this unit, the processes in the system can execute concurrently. 

There are several reasons for allowing concurrent execution: information sharing, 

computation speedup, modularity,, and convenience. Concurrent execution requires 

mechanism for process creation and deletion. 

Communication between processes takes place by calls to send and receive primitives. 

There are different design options for implementing each primitive. Message passing 

may be either blocking or nonblocking – also known as synchronous and asynchronous. 
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a. Direct and indirect communication 

b. Symmetric and asymmetric communication 

c. Automatic and explicit buffering 

d. Send by copy and send by reference 

e. Fixed-sized and variable-sized messages 

1. What do you understand by co-operating processes 

2. State reasons for allowing process co-operation 

3. What do you understand by interprocess communication (IPC) 
4. What are the benefits and detriments of each of the following? Consider both the 

system and the programmers‘ levels. 

7.0 References/Further Reading 
 

1. Silberschatz, Abraham; Cagne, Greg, Galvin, Peter Baer (2004). Operating system 

concepts with Java, Sixth Edition, John Wiley & Sons, Inc.. ISBN 0-471-48905- 

0. 

2. Stallings, William (2005). Operating Systems: internals and design principles (5th 

edition). Prentice Hall. ISBN 0-13-127837-1. 

 
 

5. Consider the IPC scheme where mailboxes are used.  

 
6. Briefly explain buffering and the various ways it can be implemented.  

 

 

a. Suppose a process P wants to wait for two messages, one from mailbox A 

and one from mailbox B. What sequence of send and receive should it 

execute? 

b. What sequence of send and receive should P execute if P wants to wait 

for one message from mailbox A or from mailbox B (or from both) 

c. A receive operation makes a process wait until the mailbox is nonempty. 

Devise a scheme that allows a process to wait until a mailbox is empty, or 

explain why such a scheme cannot exist. 

The processes executing in the operating system may be either independent processes or 

co-operating processes. Co-operating processes must have the means to communicate 

with each other. Principally, two complementary communication schemes exist: shared 

memory and message systems. The shared-memory method requires communicating 

processes to share some variables. The processes are expected to exchange information 

through the use of these shared variables. In a shared memory system, the responsibility 

for providing communication rests with the application programmers, the operating 

system needs to provide only the shared memory. The message-system method allows the 

processes to exchange messages. The responsibility for providing communication may 

resy with the operating system itself. These two schemes are not mutually exclusive, and 

can be used simultaneously within a single operating system. 
 

6.0 Tutor-Marked Assignment 
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1.0 Introduction 

A thread, sometimes called a lightweight process (LWP), is a basic unit of CPU 

utilization; it comprises a thread ID, a program counter, a register set, and a stack. It 

shares with other threads belonging to the same process its code section, data section, and 

other operating system resources, such as open files and signals. A traditional (or 

heavyweight) process has a single thread of control. If the process has multiple threads 

of control, it can do more than one task at a time. Figure 3.1 illustrates the difference 

between a traditional single-threaded process and a multithreaded process. 
 

2.0 Objectives 
 

At the end of this unit, you should be able to: 

 Distinguish between a thread and a process 

 Enumerate the advantages of threads over processes 

 Distinguish between user and kernel threads 

 
 

 

 

 

Module 3: Process Management 

Unit 3: Threads 

Table of Contents 
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3.0 Main Body 
 

3.1 Threads 
 

In modern operating systems, each process can have several threads of execution (or 

threads for short). Multiple threads share the same program code, operating system 

resources (such as memory and file access) and operating system permissions (for file 

access as the process they belong to). A process that has only one thread is referred to as 

a single-threaded process, while a process with multiple threads is referred to as a multi- 

threaded process. Multi-threaded processes have the advantage that they can perform 

several tasks concurrently without the extra overhead needed to create a new process and 

handle synchronised communication between these processes. For example a word 

processor could perform a spell check as the user types, without freezing the application - 

one thread could handle user input, while another runs the spell checking utility. 
 

3.1.1 Motivation 
 

Many software packages that run on modern desktop PCs are multithread. An 

application typically is implemented as a separate process with several threads of control. 

A web browser might have one thread display images or text while another thread 

retrieves data from the network. A word processor may have athread for displaying 

graphics, another thread for reading keystrokes from the user, and a third thread for 

performing spelling and grammar checking in the background. 
 

In certain situations a single application may be required to perform several similar tasks. 

For instance, a web server accepts client requests for web pages, images, sound, and so 

on. A bus web server may have several (perhaps hundreds of) clients concurrently 

accessing it. If the web server ran as a traditional single-threaded process, it would be 

able to service only one client at a time. The amount of time that a client might have to 

wait for its request to be serviced could be enormous. 
 

One solution is to have the server run as a single process that accepts requests. When the 

server receives a request, it creates a separate process to service that request. In fact, this 

process-creation method was in common use before threads became popular. Process 

creation, as you have seen in the previous unit is very heavyweight. If the new process 

will perform the same tasks as the existing process, why incur all that overhead? 
 

It is generally more efficient for one process that contains multiple threads to serve the 

same purpose. This approach would multithread the web-server process. The server 

would create a separate thread that would listen for client requests; when a request was 

made; rather than creating another process, it would create another thread to service the 

request. 
 

3.1.2 Benefits 

 Describe various multithreading models and their advantages and disadvantages. 

 State the advantages of thread pools and the motivation for thread pools. 
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Single-threaded Multithreaded 

Figure 3.1: Single- and multithreaded processes 

thread 

Stack registers 

files data code 

1. Responsiveness: Multithreading an interactive application may allow program to 

continue running even if part of it is blocked or is performing a lengthy operation, 

thereby increasing responsiveness to the user. For instance, a multithreaded web 

browser could still allow user interaction in one thread while an image is being 

loaded in another thread. 

2. Resource sharing: By default, threads share the memory and the resources of the 

process to which they belong. The benefit of code sharing is that it allows an 

application to have several different threads of activity all within the same address 

space. 

3. Economy: Allocating memory and resources for process creation is costly. 

Alternatively, because threads share resources of the process to which they belong, 

it is more economical to create and context switch threads. It can be difficult to 

gauge empirically he difference in overhead for creating and maintaining a process 

rather than a thread, but in general it is much more time consuming to create and 

mange processes than threads. 

4. Utilization of multiprocessor architectures: Multithreading is a popular 

programming and execution model that allows multiple threads to exist within the 

context of a single process, sharing the process' resources but able to execute 

independently. The threaded programming model provides developers with a 

useful abstraction of concurrent execution. The benefits of multithreading can be 

greatly increased in a multiprocessor architecture, where each thread may be 
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The benefits of multithreaded programming can be broken down into four major 

categories: 
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3.1.3 Types of Threads 
 

Threads can be classified into two different types viz: user threads and kernel threads, 

depending on the level at which support is provided for threads. 
 

Support for threads may be provided at either the user level in which case the thread is 

referred to as user threads or fibers, or by the kernel, in which case it is referred to 

kernel threads. 

 User threads (Fibers): These are supported above the kernel and are implemented 

by a thread library at the user level. The library provides support for thread 

creation, scheduling, and management with no support from the kernel. Since the 

kernel is not aware of user-level threads, fiber creation and scheduling are done in 

user space without the need for kernel intervention. Therefore, fibers are generally 

fast to create and manage. 

However, the use of blocking system calls in fibers can be problematic. If a fiber 

performs a system call that blocks, the other fibers in the process are unable to run 

until the system call returns. A typical example of this problem is when 

performing I/O: most programs are written to perform I/O synchronously. When 

an I/O operation is initiated, a system call is made, and does not return until the 

I/O operation has been completed. In the intervening period, the entire process is 

"blocked" by the kernel and cannot run, which starves other fibers in the same 

process from executing. 
 

As mentioned earlier, fibers are implemented entirely in userspace. As a result, 

context switching between fibers in a process does not   require any interaction 

with the kernel at all and is therefore extremely efficient: a context switch can be 

performed by locally saving the CPU registers used by the currently executing 

fiber and loading the registers required by the fiber to be executed. Since 

scheduling occurs in userspace, the scheduling policy can be more easily tailored 

to the requirements of the program's workload. 

User-thread libraries include POSIX Pthreads, Mach C-threads, and Solaris 2 

UI-threads. 

 Kernel threads: These are supported directly by the operating system. The kernel 

performs thread creation, scheduling and management in kernel space. Due to the 

fact that thread management is done by the operating system, kernel threads are 

generally slower to create and manage than are user threads. However, since the 

kernel is managing the threads, if a thread performs a blocking system call, the 

 
 

 

 

 

 

running in parallel on a different processor. A single-threaded process can only 

run on one CPU, no matter how many are available. Multithreading on a multi- 

CPU machine increases concurrency. In single-processor architecture, the CPU 

generally moves between each thread so quickly as to create an illusion of 

parallelism, but in reality only one thread is running at a time. 
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The use of kernel threads simplifies user code by moving some of the most 

complex aspects of threading into the kernel. The program does not need to 

schedule threads or explicitly yield the processor. User code can be written in a 

familiar procedural style, including calls to blocking APIs, without starving other 

threads. However, since the kernel may switch between threads at any time, kernel 

threading usually requires locking that would not be necessary otherwise. Bugs 

caused by incorrect locking can be very subtle and hard to reproduce. Kernel 

threading also has performance limits. Each time a thread starts, blocks, or exits, 

the process must switch into kernel mode, and then back into user mode. This 

context switch is fairly quick, but programs that create many short-lived threads 

can suffer a performance hit. Hybrid threading schemes are available which 

provide a balance between kernel threads and fibers. 

 
 

 

3.2 Multithreading Implementation 
 

Operating systems generally implement threads in one of two ways: preemptive 

multithreading, or cooperative multithreading. Preemptive multithreading is generally 

considered the superior implementation, as it allows the operating system to determine 

when a context switch should occur. Cooperative multithreading, on the other hand, relies 

on the threads themselves to relinquish control once they are at a stopping point. This can 

create problems if a thread is waiting for a resource to become available. The 

disadvantage to preemptive multithreading is that the system may make a context switch 

at an inappropriate time, causing priority inversion or other bad effects which may be 

avoided by cooperative multithreading. 
 

Traditional mainstream computing hardware did not have much support for 

multithreading as switching between threads was generally already quicker than full 

process context switches. Processors in embedded systems, which have higher 

requirements for real-time behaviors, might support multithreading by decreasing the 

thread switch time, perhaps by allocating a dedicated register file for each thread instead 

of saving/restoring a common register file. In the late 1990s, the idea of executing 

instructions from multiple threads simultaneously has become known as simultaneous 

multithreading. This feature was introduced in Intel's Pentium 4 processor, with the name 

Hyper-threading. 
 

3.2.1 Multithreading Implementation Models 
 

Many systems provide support for both fibers and kernel threads, resulting in many 

different and incompatible implementations of threading. In this section we will look at 

the three common types of multithreading implementation. 

kernel can schedule another thread in the application for execution. Also in 

multiprocessor environment, the kernel can schedule threads on different 

processors. Most contemporary operating systems – including Windows NT, 

Windows 200, Solaris 2, BeOS, and Tru64 UNIX support kernel threads. Most 

contemporary operating systems – including Windows NT, Windows 200, Solaris 

2, BeOS, and Tru64 UNIX support kernel threads. 
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The many-to-one model maps many user-level threads to one kernel thread. Thread 

management is done in user space, so it is efficient, but the entire process will block if 

a thread makes a blocking system call. Also, because only one thread can access the 

kernel at a time, multiple threads are unable to run in parallel on multiprocessors. 

Green threads, a thread library available for Solaris 2, use this model. In addition, 

fiber libraries implemented on operating systems that do not support kernel threads 

use the many-to-one model. 

user thread 

K 

3.2.1.2 One-to-One Model 
 

The one-to-one model maps each user thread (fiber) to a kernel thread. It provides more 

concurrency than the many-to-one model by allowing another thread to run when a thread 

makes a blocking system call; it also allows multiple threads to run in parallel on 

multiprocessors. The only drawback to this model is that creating a fiber requires creating 

the corresponding kernel thread. Most implementations of this model restrict the number 

of threads supported by the system because the overhead of creating kernel threads can 

burden the performance of an application. 

user thread 

K K K K 
kernel thread 

  3.2.1.1 Many-to-One Model  
 

 

  Figure 3.2: Many-to-One Model  
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Figure 3.3: One-to-One Model 
 

 

 

3.2.1.3 Many-to-Many Model 
 

The many-to-many model multiplexes many fibers to a smaller or equal number of kernel 

threads. The number of kernel threads may be specified to either a particular application 

or a particular machine (an application may be allocated more kernel threads on a 

multiprocessor than on a miniprocessor. whereas the many-to-one model allows the 

developer to create as many fibers as she wishes, true concurrency is not gained because 

kernel can schedule only one thread at a time. The one-to-one model allows for greater 

concurrency, but the developer has to be careful not to create too many threads within an 

application (and in some instances may be limited in the number of threads she can 

create) the many-to-many model suffers from neither of these shortcomings. Developers 

can create as many fibers as necessary, and the corresponding kernel threads can run in 

parallel on a multiprocessor. Also when a thread performs a blocking system call, the 

kernel can schedule another thread for execution. Solaris 2, IRX, HP-UX, and Tru64 

UNIX support this model. 
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Figure 3.4: Many-to-Many Model 
 

3.3 Threading Issues 
 

3.3.1 Thread Cancellation 
 

This is the task of terminating a thread before it has completed. For instance, if multiple 

threads are running concurrently searching through a database and one returns the result, 

the remaining threads might be cancelled. Another situation might occur when a user 

presses a button on a web browser that stops a web page from loading any further. Often 

a web page is loaded in a separate thread. When a user presses the stop button, the thread 

loading the page is cancelled. 



100  

1. Asynchronous cancellation: one thread immediately terminates the target thread. 
2. Deferred cancellation: the target thread can periodically check if it should 

terminate, allowing the target an opportunity to terminate itself in an orderly 

fashion. 

The difficulty with cancellation occurs in situations where resources have been allocated 

to a cancelled thread or if a thread was cancelled while in the middle of updating data it is 

sharing with other threads. This becomes especially troublesome with asynchronous 

cancellation. The operating system will often reclaim system resources from a cancelled 

thread, but often will not claim all resources. Therefore, cancelling a thread 

asynchronously may not free a necessary system-wide resource. 
 

Alternatively, deferred cancellation works by one thread indicating that a target thread is 

to be cancelled. However, cancellation will occur only when the target thread checks to 

determine if it should be cancelled or not . This allows a thread to check if it should be 

cancelled at a point when it can safely be cancelled. Pthreads refers to such as 

cancellation point. 
 

3.3.2 Signal Handling 
 

In UNIX systems, a signal is used to notify a process that a particular event has occurred. 

A signal may be received either synchronously or asynchronously, depending on the 

source and the reason for the event being signalled. Whether a signal is synchronous or 

asynchronous, all signals follow the following pattern: 

a) A signal is generated by the occurrence of a particular event. 

b) A generated signal is delivered to a process. 

c) Once delivered, the signal must be handled. 

An example of a synchronous signal includes an illegal memory access or division by 

zero. Synchronous signals are delivered to the same process that performed the operation 

causing the signal, hence the name synchronous. 
 

When a signal is generated by an event external to a running process, that process 

receives the signal asynchronously. Examples of such signals include terminating a 

process with specific keystrokes or having a timer expire. Typically an asynchronous 

signal is sent to another process. 
 

Every signal may be handled by one of two possible handlers: 

1. A default signal handler 

2. A user-defined signal handler. 

 
 

 

 

 

 

A thread that is to be cancelled is often referred as the target thread. Cancellation of a 

target thread may occur in two different scenarios: 
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 Deliver the signal to the thread to which the signal applies. 

 Deliver the signal to every thread in the process. 

 Deliver the signal to certain threads in the process. 

 Assign a specific thread to receive all signals for the process. 

1. It is usually faster to service a request with an existing thread than waiting to 

create a thread. 

 
 

 

The method of delivering a signal depends on the type of signal generated. 
 

3.3.3 Thread Pools 
 

In the scenario of multithreading a web server, whenever the server receives a request, it 

creates a separate thread to service the request. Whereas creating a separate thread is 

certainly faster than creating a separate process, a multithreaded server nonetheless has 

potential problems. The first concerns the amount of time required to create the thread 

prior to servicing the request, compounded with the fact that this thread will be discarded 

once it has completed its work. The second issue is more problematic: if we allow all 

concurrent requests to be serviced in a new thread, we have not placed a bound on the 

number of threads concurrently active in the system. Unlimited threads could exhaust 

system resources, such as CPU time or memory. One solution to this issue is to thread 

pools. 
 

The general idea behind a thread pool is to create a number of threads at process startup 

and place them into a pool, where they sit and wait for work. When a server receives a 

request, it awakens a thread from this pool (if one is available) passing it the request to 

service. Once the thread completes its service, it returns to the pool awaiting more work. 

If the pool contains no available thread, the server waits until one becomes free. 
 

 

 

3.3.3.1 Advantages of Thread Pools 
 

In particular, thread pools have the following advantages: 
 

Every signal has a default signal handler that is run by the kernel when handling the 

signal. This default action may be overridden by a user-defined signal handler function. 

In this instance, the user-defined function is called to handle the signal rather than the 

default action. Both synchronous and asynchronous signals may be handled in different 

ways. Some signals may be simply ignored (such ads changing the size of a window); 

others may be handled by terminating the program (such as an illegal memory access. 
 

Handling signals in single-threaded programs is straightforward. Signals are always 

delivered to a process. However, delivering signals is more complicated in multithreaded 

programs, as a process may have several threads. Generally, a signal can be delivered in 

any of the following ways: 
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The number of threads in the pool can be set heuristically based upon factors such as the 

number of CPUs in the system, the amount of physical memory and the expected number 

of concurrent client requests. More sophisticated thread-pool architectures can 

dynamically adjust the number of threads in the pool according to usage patterns. Such 

architectures provide the further advantage of having a smaller pool, thereby consuming 

less memory, when the load on the system is low. 
 

3.3.4 Thread-Specific Data 
 

Threads belonging to a process share the data of the process. Indeed, this sharing of data 

provides one of the benefits of multithreaded programming. However, each thread might 

need its own copy of certain data in some circumstances. Let us call such data thread- 

specific data. For instance, in a transaction-processing system, we might service each 

transaction in a separate thread. Furthermore, each transaction may be assigned a unique 

identifier. To associate each thread with its unique identifier we could use thread-specific 

data. Most libraries, including Win32 and Pthreads, provide some form of support for 

thread-specific data. Java provides support as well. 
 

4.0 Conclusion 
 

In this unit you have been introduced to the main concept of light-weight processes 

popularly known as threads. It is believed that having gone through this unit you are now 

conversant with threads, the main issues concerning threads, the motivation for threads, 

etc. 
 

5.0 Summary 
 

A thread is a flow of control within a process. A multithreaded process contains several 

different flows of control within the same address space. The benefits of multithreading 

include increased responsiveness to the user, resource sharing within the process, 

economy, and the ability to take advantage of multiprocessor architectures. 
 

Fibers are threads that are visible to the programmer and are unknown to the kernel. A 

thread library in user space typically manages fibers. The operating system kernel 

supports and manages kernel-level threads. In general, fibers are faster to create and 

manage than are kernel threads. Three different types of models relate fibers and kernel- 

level threads: The many-to-one maps many fibers to a single kernel thread. The one-to- 

one model maps each user thread to a corresponding kernel thread. The many-to-many 

model multiplexes many user threads to a smaller or equal number of kernel threads. 

Other issues include thread cancellation, signal handling and thread-specific data. 
 

6.0 Tutor-Marked Assignment 

2. A thread pool limits the number of threads that exist at any point in time. This is 

particularly important on systems that cannot support a large number of 

concurrent threads. 
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1. What are the two major differences between fibers and kernel-level threads? 

Under what circumstances is one type better than the other? 

2. What resources are used when a thread is created? How do they differ from those 

used when a process is created? 

3. Describe the action taken by a kernel to context switch between kernel threads. 

4. Describe the action taken by a thread library to context switch between fibers. 
5. Provide two programming examples of multithreading that improves performance 

over a single-threaded solution 

6. Provide two programming examples of multithreading that do not improve 

performance over a single-threaded solution 
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2.0 Objectives: 
 

At the end of this unit, you should be able to: 

 Distinguish between preemptive and non-preemptive scheduling 

 State the goals for CPU scheduling 

 Give comparative analysis of the following scheduling algorithms: 

o FCFS 

o SJF 

o Priority Scheduling 

o Round-Robin Scheduling 

 
 

1.0 Introduction 

2.0 Objectives 

3.0 Main body 

3.1 Basic Concepts 
3.1.1 CPU-I/O Burst Cycle 

3.1.2 CPU Scheduler 

3.1.3 Preemptive Scheduling and Non-preemptive Scheduling 

3.1.4 Dispatcher 

3.2 Scheduling Criteria 

3.3 Scheduling Algorithms 

3.3.1 First-Come-First-Serve Scheduling 
3.3.2 Shortest-job-First Scheduling 

3.3.3 Priority Scheduling 

3.3.4 Round-Robin Scheduling 

3.3.5 Multilevel Queue Scheduling 

3.3.6 Multilevel Feedback Queue Scheduling 

3.4 Multiple-Processor Scheduling 

4.0 Conclusion 
5.0 Summary 

6.0 Tutor-Marked Assignment 

7.0 References/Further Reading 
 

1.0 Introduction 

CPU scheduling is the basis of multi-programmed operating systems. By switching 

the CPU among processes, the operating system can make the computer more 

productive. In this unit, you are going to be introduced to the basic scheduling 

concepts and be presented with several different CPU-scheduling algorithms. The 

problem of selecting an algorithm for a particular system will also be considered. 
 

 

Module 3: Process Management 

Unit 4: CPU Scheduling 

Table of Contents 
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 Select a CPU scheduling algorithm for a particular system.  

3.0 Main Body 
 

3.1 Ontology: Basic Concepts 
 

The objective of multiprogramming is to have some process running at times, in order to 

maximize CPU utilization. In a uniprocessor system, only one process may run at a time; 

any other processes must wait until the CPU is free and can be rescheduled. 
 

The idea of multiprogramming is relatively simple. A process is executed until it must 

wait, typically for the completion of some I/O request. In a simple computer system, the 

CPU would then sit idle. All this waiting time is wasted. With multiprogramming, we try 

to use this time productively. Several processes are kept in memory at one time. When 

one process has to wait, the operating system takes the CPU away from that process and 

gives the CPU to another process. This pattern continues. 
 

Scheduling is fundamental to operating system function. Almost all computer resources 

are scheduled before use. The CPU is, of course, one of the primary computer resources. 

Thus, its scheduling is central to operating system design. 
 

3.1.1 CPU-I/O Burst Cycle 
 

The success of CPU scheduling depends on the following observed property of processes. 

Process execution consists of a cycle of CPU execution and I/O wait. Processes alternate 

between these two states. Process execution begins with a CPU burst. That is followed by 

an I/O burst, then another CPU burst, then another I/O burst, and so on. Eventually, the 

last CPU burst will end with system request to terminate execution, rather than with 

another I/O burst (see Figure 3.1) 
 

The duration of these CPU burst have been extensively measured. Although they vary 

greatly by process and by computer, they tend to have a frequency curve similar to that 

shown in Figure 3.2. The curve is generally characterized as exponential or hyper- 

exponential, with many short CPU bursts and a few long CPU bursts. An I/O-bound 

program would typically have many very short CPU bursts while a CPU-bound program 

might have a few very long CPU bursts. This distribution can help us select an 

appropriate CPU-scheduling algorithm. 

o Multilevel Queue Scheduling 

o Multilevel Feedback Queue Scheduling 



106  

 

Process A 
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Figure 3.1 Alternating Sequence of CPU and I/O Bursts of Two Processes. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Histogram of CPU-Bursts Times. 
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 It incurs a cost 

 It also has an effect on the design of the operating system kernel. 

3.3.1 CPU Scheduler 
 

Whenever the CPU becomes idle, the operating system must select on the processes in 

the ready queue to be executed. The selection process is carried out by the short-term 

scheduler (or CPU scheduler). The scheduler selects from among the processes in 

memory that are ready to execute, and allocates the CPU to one of them. 
 

The ready queue is not necessarily a first-in, first-out (FIFO) queue. As you shall see, 

when we consider the various scheduling algorithms, a ready queue may be implemented 

as a FIFO queue, a priority queue, a tree, or simply an ordered linked list. Conceptually, 

however, all the processes in the ready queue are lined up waiting for a chance to run on 

the CPU. The records in the queues are generally process control blocks (PCBs) of the 

processes. 
 

 

 

3.3.2 Preemptive Scheduling and Non-preemptive Scheduling 
 

CPU scheduling decisions may take place under the following circumstances: 
 

1. When a process switches from the running state to the waiting state (for example, I/O 

request, or invocation of wait for the termination of one of the child processes) 

2. When a process switches from the running state to the ready state (for example, when 

an interrupt occurs) 

3. When a process switches from the waiting state to the ready state ( for example, 

completion of I/O) 

4. When a process terminates 
 

In circumstances 1 and 4, there is no choice in terms of scheduling. A new process (if one 

exists in the ready queue) must be selected for execution. There is a choice, however, in 

circumstances 2 and 3. 
 

When scheduling takes place only under circumstances 1 and 4, we say the scheduling 

scheme is nonpreemptive. Otherwise, the scheduling scheme is preemptive. Under non- 

preemptive scheduling, once the CPU has been allocated to a process, the process keeps 

the CPU until it releases the CPU either by terminating or by switching to the waiting 

state. This scheduling method is used by Microsoft Windows 3.1 operating system. It is 

the only method that can be used on certain hardware platforms, because it does not 

require the special hardware needed for preemptive scheduling. 
 

Some of the disadvantages of preemptive scheduling are that: 
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 Switching context 

 Switching to user mode 

 Jumping to the proper location in the user program to restart that program. 

 
 

 

The dispatcher should be as fast as possible, given that it is invoked during every process 

switch. The time it takes for the dispatcher to stop one process and start another running 

is known as the dispatch latency. 
 

 

 

3.2 Scheduling Criteria 
 

Different CPU-scheduling algorithms have different properties and may favour one class 

of processes over another. In choosing which algorithm to use in a particular situation, 

we must consider the properties of the various algorithms. 
 

Many criteria have been suggested for comparing CPU-scheduling algorithms. The 

characteristics used for comparison can make a substantial difference in the 

determination of the best algorithm. The criteria include the following: 
 

CPU Utilization: We want to keep the CPU as busy as possible. CPU utilization may 

range from 0 to 100 percent. In a real system, it should range from 40 percent (for a 

lightly loaded system) to 90 percent (for a heavily used system). 
 

Throughput: if the CPU is busy executing processes, then work is being done. One 

measure of work is the number of processes completed per time unit, called throughput. 

For long processes, this rate may be 1 process per hour or 10 processes per second for 

short transactions. 
 

Turnaround Time: This is the interval from the time of submission of a process to the 

time of completion. It is the sum of the periods spent waiting to get into memory, waiting 

in the ready queue, executing on the CPU and doing I/O. 
 

Waiting Time: The CPU scheduling algorithm does not   affect the amount of time 

during which a process executes or does I/O. It affects only the amount of time that a 

process spends waiting in the ready queue. Waiting time is, therefore, the sum of the 

periods spent waiting in the ready queue. 
 

Response Time: This is the amount of time it takes to start responding but not the time 

it takes to output the response. i.e. the time from the submission of a request until the first 

response is produced. 

3.1.4 Dispatcher 
 

Another component involved in the CPU scheduling function is the dispatcher. The 

dispatcher is the module that gives control of the CPU to the process selected by the 

short-term scheduler. This function includes: 
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If the processes arrive in the order P1, P2, P3, and are served in FCFS order, we get the 

result shown in the Gantt Chart below: 

P3 P2 P1 

We usually want to maximize CPU utilization and throughput, and to minimize 

turnaround time, waiting time, and response time. In most cases, we optimize the average 

measure. However, in some circumstances we want to optimize the minimum or 

maximum values, rather than the average. For instance, to guarantee that all users get 

good service, we may want to minimize the maximum response time. 
 

 

 

3.3 Scheduling Algorithms 
 

CPU scheduling deals with the problem of deciding which of the processes in the ready 

queue is to be allocated the CPU. In this section, we describe many CPU-scheduling 

algorithms that exist. 
 

3.3.1 First-Come, First Served (FCFS) Scheduling 
 

This is the simplest CPU-scheduling algorithm. In this scheme, the process that requests 

the CPU first is allocated the CPU first. The implementation of the FCFS policy is easily 

managed with a FIFO queue. When a process enters the ready queue, its PCB is linked 

onto the tail of the queue. When the CPU is free, it is allocated to the process at the head 

of the queue. The running process is the removed from the queue. The code for FCFS 

scheduling is simple to write. 
 

The average waiting time under FCFS policy is often quite long. 
 

 

Process Burst time 

P1 24 

P2 3 

P3 3 
 

 

 

 

 

 

 

0 24 27 30 

 

The waiting time is 0 milliseconds for process P1, 24 milliseconds for process P2, and 27 

milliseconds for process P3. Hence the average waiting time is (0 + 24 + 27)/3 = 17 

milliseconds. If the processes arrive in the order P2, P3, P1, however, the result will be as 

shown in the Gantt chart below: 
 

P2 P3 P1 

0 3 6 30 
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3.3.2 Shortest-Job-First (SJF) Scheduling 
 

This algorithm associates with each process the length of the latter‘s next CPU burst. 

When the CPU is available, it is assigned to the process that has the smallest next CPU 

burst. If two processes have the same length next CPU burst, FCFS scheduling is used to 

break the tie. 
 

Example 3.2 Consider the following set of processes that arrive at time 0, wit the length 

of the CPU-burst time given in milliseconds: 

The average waiting time is now (6 + 0 + 3)/3 = 3 milliseconds. This reduction is 

substantial. Therefore, the average waiting time under FCFS policy is generally not 

minimal, and may vary substantially if the process CPU-burst times vary greatly. 

 

FCFS scheduling algorithm may lead to convoy effect whereby all other processes wait 

for one big process to get off the CPU. This results in lower CPU and device utilization. 

FCFS scheduling algorithm is non-preemptive. 
 

 

Process Burst time 

P1 6 

P2 8 

P3 7 

P4 3 

Using SJF scheduling, we could schedule these processes according to the Gantt chart 

below: 

 

P4 P1 P3 P2 

0 3 9 16 24 
 

The waiting time is 3 milliseconds for process P1, 16 milliseconds for process P2, 9 

milliseconds for process P3, and 0 milliseconds for process P4. Hence the average waiting 

time is (3 + 16 + 9 + 0)/4 = 7 milliseconds. If we were using FCFS scheduling scheme, 

then the average waiting time would be 10.25 milliseconds. 
 

The SJF scheduling algorithm is provably optimal because it gives the minimum average 

waiting time for a given set of processes. However, it cannot be implemented at the level 

of short-term CPU scheduling because there is no way to know the length of the next 

CPU burst. 
 

SJF algorithm may be either preemptive or nonpreemptive. The choice arises when a new 

process arrives at the ready queue while a previous process is executing. The new process 

may have a shorter next CPU burst than what is left of the current executing process. A 

preemptive SJF algorithm will pre-empt the current executing process, whereas a 

nonpreemptive SJF algorithm will allow the currently running process to finish its CPU 
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If the processes arrive at the ready queue at the times shown and need the indicated burst 

times, then the resulting preemptive SJF schedule is as depicted in Gantt chart below: 

0 1 5 10 17 26 

Process Arrival time Burst time 

P1 0 8 

P2 1 4 

P3 2 9 

P4 3 5 

 

 
 

 

 

 

 

 

 

P1 P2 P4 P1 P3 

 

 

Process P1 is started at time 0, since it is the only process in the queue. Process P2 arrives 

at time 1. The remaining time for process P1 (7 milliseconds) is larger than the time 

required by process P2 (4 milliseconds), so process P1 is pre-empted, and process P2 is 

scheduled. The average waiting time for this example is ((10 – 1) + (1 – 1) + (17 – 2) + (5 

– 3)/4 = 26/4 = 6.5 milliseconds. 

 

A nonpreemptive SJF scheduling would result in an average waiting time of 7.75 

milliseconds. 

 

3.3.3 Priority Scheduling 
 

A priority is associated with each process and the CPU is allocated to the process with 

the highest priority. Equal-priority processes are scheduled in FCFS. 

 

An SJF algorithm is therefore simply a priority algorithm where the priority is the inverse 

of the (predicted) next CPU burst. The larger the CPU burst, the lower the priority and 

vice versa. 

 

Priority is expressed in terms of fixed range number such as 0 to 10. however there is no 

general agreement on whether 0 is the highest or lowest priority. Some systems use low 

numbers to represent low priority while others use low numbers for high priority. But in 

this course, we will use low numbers to represent high priority. 

 

Example 3.4: Consider the following set of processes, assumed to have arrived at time 0, 

in the order P1, P2, …, P5, with the length of the CPU-burst time given in milliseconds: 

burst. Preemptive SJF scheduling is sometime called shortest-remaining-time-first 

scheduling. 
 

Example 3.3: Consider the following four processes, with length of the CPU-burst given 

in milliseconds: 
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Process Burst time Priority 

P1 10 3 

P2 1 1 

P3 2 4 

P4 1 5 

P5 5 2 
 

 

Using priority scheduling, we would schedule these processes according to the Gantt 

chart below: 

 

P2 P5 P1 P3 P4 

0 1 6 16 18 19 
 

The average waiting time is 8.2 milliseconds. 

 

Priorities can be defined either internally or externally. Internally defined priorities use 

measurable quantity(ies) such as time limits, memory requirements, etc. to compute the 

priority of a process. External priorities are set by criteria that are external to the 

operating system such as importance of the process, amount being paid for use of the 

compute, the owner of the process, and other (political) factors. 

 

Priority scheduling may be either preemptive or nonpreemptive. When a process arrives 

at the ready queue, its priority is compared with that of the currently running process. A 

preemptive priority-scheduling algorithm will preempt the CPU if the priority of the 

newly arrived process is higher than that of the currently running process. A 

nonpreemptive priority-scheduling algorithm will simply put the new process at the head 

of the ready queue. 

 

The major disadvantage of priority-scheduling algorithms is indefinite blocking or 

starvation. A situation whereby low priority processes indefinitely wait for the CPU 

because of a steady stream of higher-priority processes. 

 

A solution to indefinite blocking of low-priority processes is aging. Aging is a technique 

of gradually increasing the priority of processes that wait in the system for a long time. 

 

3.3.4 Round-Robin (RR) Scheduling 
 

Round-robin (RR) is one of the simplest scheduling algorithms for processes in an 

operating system. It assigns time slices to each process in equal portions and in circular 

order, handling all processes without priority. Round-robin scheduling is both simple and 
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easy to implement, and starvation-free. Round-robin scheduling can also be applied to 

other scheduling problems, such as data packet scheduling in computer networks. 
 

The name of the algorithm comes from the round-robin principle known from other 

fields, where each person takes an equal share of something in turn. 
 

It is similar to FCFS scheduling, but preemption is added to switch between processes. A 

small unit of time, called a time quantum (or time slice), is defined. A time quantum is 

generally from 10 – 100 milliseconds. The ready queue is treated as a circular queue. The 

CPU scheduler goes around the ready queue, allocating the CPU to each process for a 

time interval of up to 1 time quantum. 

 

To implement the RR scheduling, we keep the ready queue as a FIFO queue of processes. 

New processes are added to the tail of the queue. The CPU scheduler picks from the head 

of the queue, sets a timer to interrupt after 1 time quantum, and dispatches the process. 

 

One of two things will then happen. The process may have a CPU burst of less than one 

time quantum. In which case the process itself releases the CPU voluntarily. The 

scheduler will then proceed to the next process in the ready queue. Otherwise, if the CPU 

burst of the currently running process is longer than 1 time quantum, the timer will go off 

and will cause an interrupt to the operating system. A context switch will be executed, 

and the process will be put at the tail of the ready queue. The scheduler then selects the 

next process in the ready queue. 

 

The average waiting time under RR policy is often quite long. 

 

Example 3.5: Consider the following set of processes, assumed to have arrived at time 0, 

in the order P1, P2, P3, with the length of the CPU-burst time given in milliseconds: 

 

Process Burst time 

P1 24 

P2 3 

P3 3 

 
If we use a time quantum of 5 milliseconds, we would schedule these processes 

according to the Gantt chart below: 

 

P1 P2 P3 P1 P1 P1 P1 

0 5 8 11 16 21 26 30 
 

The average waiting time is 17/3 = 5.66 milliseconds. 

 

In RR scheduling algorithm, no process is allocated the CPU for more than 1 time 

quantum in a row. If a process‘ CPU burst exceeds 1 time quantum, that process is 
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preempted and is put back in the ready queue. The RR scheduling algorithm is 

preemptive. 

 

3.3.5 Multilevel Queue (MLQ) Scheduling 
 

In this scheduling algorithm, processes are classified into different groups. For instance, a 

common division is made between foreground (or interactive) processes and background 

(or batch) processes. Therefore the ready queue is partitioned into several separate 

queues. The processes are permanently assigned to one queue, generally based on some 

property of the process, such as memory size, process priority, etc. Each queue has its 

own scheduling algorithm. E.g. foreground might use RR while background might use 

FCFS. 

In addition, there must be scheduling among the queues which is usually implemented as 

fixed priority preemptive scheduling. For example foreground queue may have absolute 

priority over background queue. Therefore no process in the background queue could run 

except the foreground queues are empty. If a process entered the foreground queue while 

a prcesss from the background queue is running, the background queue process will be 

preempted. 

This will lead to possible starvation for the background queue process. To address this 

problem, time slice can be used between the queue. Each queue gets a certain portion of 

the CPU time which it an then schedule among the various processes in its queue. For 

instance, in the background – foreground queue example, the foreground queue can be 

given 80% of the CPU time for RR scheduling among its processes, whereas the 

background queue receives 20% of the CPU to give to its processes in FCFS manner. 
 

 

Figure 3.3: Multilevel Queue Scheduling 
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3.3.6 Multilevel Feedback Queue (MLFQ) Scheduling 

 

Similar to MLQ, but here processes can move between the queues. The idea is to separate 

processes with different CPU-burst characteristics (i.e., based on their ―behavior‖). A 

process that uses too much CPU time is degraded to a lower-priority queue, a process that 

waits too long is upgraded to a higher-priority queue.   This is a kind of aging that 

prevents starvation. 

 

In general, MLFQ scheduler is defined by the following parameters: 

 Number of queues 

 Scheduling algorithms for each queue 

 Criteria for determining when to upgrade a process to a higher-priority queue 

 Criteria for determining when to demote a process to a lower-priority queue 

 The criteria for determining which queue a process will enter when that 

process needs service. 

 

MLFQ is the most general scheme, and also the most complex. 

 

Example 3.6: Consider a MLFQ scheduler with three queues, Q0 with time quantum 8 

milliseconds, Q1 with time quantum 16 milliseconds and Q2 on FCFS basis only when 

queues Q0 and Q1 are empty. 
 

In this scheduling algorithm a new job enters queue Q0 served by FCFS. Then job 

receives 8 milliseconds. If not finished in 8 milliseconds, it is moved to Q1. At Q1 job 

served by FCFS. It then receives 16 milliseconds. If not completed, it is preempted and 

moved to Q2 where it is served in FCFS order with any CPU cycles left over from queues 

Q0 and Q1. 

 

Figure 3.4: Multilevel Feedback Queues 

 
 

3.4 Multiple-Processor Scheduling 
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Our discussion in this unit so far has focused on the problems of scheduling the CPU in a 

system with a single processor. If multiple CPUs are available, the scheduling problem is 

correspondingly more complex. Many possibilities have been tried but as you saw with 

single processor CPU scheduling, there is no one best solution. In his section we will 

briefly discuss some of the issues concerning multiple-processor scheduling. 
 

If several identical processors are available, then load sharing can occur. It would be 

possible to provide a separate queue for each processor. In this case however, one 

processor could be idle, with an empty queue, while another processor could be very 

busy. To avoid such situation, we can use a common ready queue. All processes go into 

one queue and are scheduled onto any available processor. 
 

In such a scheme, one of two scheduling approaches may be used. In one approach, each 

processor is self-scheduling. Each processor examines the common ready queue and 

selects a process to execute. However, we must ensure that no two processors choose the 

same process and that processes are not lost from the queue. The second approach avoids 

this problem by appointing one processor as scheduler for the other processors, thereby 

creating a master-slave structure. 
 

Some systems go a step further by having all scheduling decisions, I/O processing, and 

other system activities handled by one single processor – the master server. The other 

processors only execute user codes. 
 

SELF ASSESSMENT TEST 
 

Suppose that the following processes arrive for execution at the times indicated. Each 

process will run the listed amount of time. In answering the questions, use nonpreemptive 

scheduling and base all decisions on the information you have at the time the decision 

must be made. 
 

a. What is the average turnaround time for these processes with the FCFS scheduling 

algorithm? 
 

b. What is the average turnaround time for these processes with the SJF scheduling 

algorithm? 
 

c. The SJF is supposed to improve performance, but not ice that we chose to run 

process P1 at time 0 because we did not know that two shorter processes would 

arrive soon. Compute what the average turnaround time will be if the CPU is left 

idle for the first 1 unit and then SJF scheduling is used. Remember that processes P1 

and P2 are waiting during this idle time, so their waiting time may increase. This 

algorithm could be known as future knowledge scheduling. 
 

Process Arrival time Burst time 

P1 0 8 

P2 0 4 

P3 1 1 
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4.0 Conclusion 
 

In this unit, you have been taken through the various CPU scheduling algorithms. It is our 

belief that by now you can select a scheduling algorithm that will be optimal for a 

particular situation/system. However, there are formal techniques for determining the 

best scheduling algorithm for a particular situation and this we will discuss this in this 

next unit. 
 

5.0 Summary 
 

CPU scheduling is the task of selecting a waiting process from the ready queue and 

allocating the CPU to it. The CPU is allocated to the selected process by the dispatcher. 
 

FCFS scheduling is the simplest scheduling algorithm but it can cause short processes to 

wait for very long ones. SJF scheduling is provably optimal, producing the shortest 

waiting time. SJF is a special case of the general priority scheduling algorithm, which 

simply allocates the CPU to the highest priority process. But both SJF and priority 

scheduling may suffer from starvation. Aging is a technique to prevent starvation. 
 

RR scheduling is more appropriate for a time shared (interactive) system. The major 

problem is the selection of the time quantum. Too large quantum will make the RR 

scheduling to degenerate to FCFS scheduling while too small quantum results in 

scheduling overhead in the form of context-switch time becoming excessive. 
 

FCFS algorithm is non-preemptive; RR algorithm is preemptive. SJF and priority 

algorithms may be either preemptive or non-preemptive. MLQ algorithms allow different 

algorithms to be used for various classes of processes. MLF queues allow processes to 

move from one queue to another. 
 

6.0 Tutor Marked Assignments 
 

1. Explain the differences in the degree to which the following scheduling algorithms 

discriminate in favour of short processes: 
 

a) FCFS 
 

b) RR 
 

c) Multilevel Feedback queues 
 

2. Define the differences between pre-emptive and non-pre-emptive scheduling. State 

why strict non-preemptive scheduling is unlikely to be used in a computer centre. 

3. Consider the following set of processes, with the length of the CPU-burst time 

given in milliseconds as below: 
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Process Burst time Priority 

P1 10 3 

P2 1 1 

P3 2 3 

P4 1 4 

P5 5 2 
 

 

The processes are assumed to have arrived in the order P1, P2, P3, P4, P5, all at time 0. 
 

a. Draw four Gantt charts illustrating the execution of these processes using FCFS, SJF, 

a non-preemptive priority (a smaller priority number implies a higher priority), and 

RR (quantum = 1) scheduling. 
 

b. What is the turnaround time of each process for each of the scheduling algorithms in 

(a) above? 
 

c. What is the waiting time of each process for each of the scheduling algorithms in (a)? 
 

d. Which of the schedules in (a) results in the minimal average waiting time (over all 

processes)? 
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1.0 Introduction 
 

How do we select a CPU-scheduling algorithm for a particular system? As you saw in the 

previous unit, there are many scheduling algorithms, each with its own parameters. As a 

result, selecting an algorithm can be difficult. The first problem is defining the criteria to 

be used in selecting an algorithm. As you saw in the previous unit, criteria are often 

defined in terms of CPU utilization, response time, or throughput. To select an algorithm, 

you must first define the relative importance of these measures. Your criteria may include 

several measures, such as: 
 

 Maximize CPU utilization under the constraint that the maximum response time is 

1 second. 

 Maximize throughput such that turnaround is (on average) linearly proportional to 

total execution time. 
 

Once the selection criteria have been defined, we are then going to evaluate the various 

algorithms under consideration. We describe the different evaluation methods in the rest 

of this unit. 
 

2.0 Objectives 
 

At the end of this unit you should be able to: 
 

 Describe the various CPU scheduling evaluation algorithms. 

 Enumerate the advantages and disadvantages of each evaluation algorithms 

 Based on your knowledge, select the best scheduling algorithm for a particular a 

particular system. 
 

3.0 Main Body 

Module 3: Process Management 

Unit 5: Algorithm Evaluation 

Table of Contents 



120  

3.1 Deterministic Modelling 
 

Deterministic modelling is a type of analytical evaluation. Analytical evaluation uses the 

given algorithm and the system workload to produce a formula or number that evaluates 

the performance of the algorithm for that workload. 
 

Deterministic modelling takes a particular predetermined workload and defines the 

performance of each algorithm for that workload. 

 

 

Example 1: 
 

Assume we have the workload shown. All five processes arrive at time 0, in the order 

given, with the length of the CPU-burst time given in milliseconds: 

 

Process Burst Time 

P1 10 

P2 29 

P3 3 

P4 7 

P5 12 

 

 

Consider the FCFS, SJF, and RR (quantum = 10milliseconds) scheduling algorithms for 

this set of processes. Which algorithm would give the minimum average waiting time? 
 

For the FCFS algorithm, we would execute the processes as: 
 

 

The waiting time is 0 milliseconds for process P1, 10 milliseconds for process P2, 39 

milliseconds for P3, 42 milliseconds for process P4 and 49 milliseconds for process P5. 

Therefore, the average waiting time is (0 + 10 + 39 + 42 + 49)/5 = 28 milliseconds. 
 

With nonpreemptive SJF scheduling, we execute the processes as: 
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The waiting time is 10 milliseconds for process P1, 32 milliseconds for process P2, 0 

milliseconds for P3, 3 milliseconds for process P4 and 20 milliseconds for process P5. 

Therefore, the average waiting time is (10 + 32 + 0 + 3 + 20)/5 = 13 milliseconds. 
 

With RR algorithm, we execute the processes as: 
 

 

The waiting time is 0 milliseconds for process P1, 32 milliseconds for process P2, 20 

milliseconds for P3, 23 milliseconds for process P4 and 40 milliseconds for process P5. 

Therefore, the average waiting time is (0 + 32 + 20 + 23 + 40)/5 = 13 milliseconds. 
 

You can see that in this case, the SJF results in less than one-half the average waiting 

time obtained with FCFS scheduling; the RR algorithm gives us an intermediate value. 
 

Advantages of Deterministic Modelling: 
 

 It is simple and fast. 

 It gives exact numbers, allowing the algorithms to be compared. 

Disadvantages of Deterministic Modelling: 
 

 It requires exact numbers for input and its answers apply to only those cases. 

 It is too specific. 

 It requires too much knowledge to be useful. 

3.2 Queuing Models 
 

Queuing models employ probabilistic distributions for CPU and I/O bursts The computer 

system is described as a network of servers. Each server has a queue of waiting 

processes. The CPU is a server with its ready queue, as is the I/O system with its device 

queues. Knowing arrival rates and service rates, we can compute utilization, average 

queue length, average wait time, etc. This area of study is called queuing-network 

analysis. 
 

For instance, let n be the average queue length (excluding the process being serviced), let 

W be the average waiting time in the queue, and let λ be the average arrival rate for new 

processes in the queue (such as three processes per second). Then we expect that during 

the time W that a process waits, λ × W new processes will arrive in the q. if the system is 
in a steady state, then the number of processes leaving the queue must be equal to the 
number of processes that arrive. Therefore, 

n = λ × W. 
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This equation is known as Little‘s formula. The formula is particularly useful because it 

is valid for any scheduling algorithm and arrival distribution. It can be used to compute 

one of the three variables once the other two are known. 
 

Advantages of Queuing Analysis: 
 

 It can be useful in comparing scheduling algorithms.

Limitations: 
 

 The classes of algorithms and distribution that can be handled is presently limited

 It is hard to express a system of complex algorithms and distributions.

 Queueing models are often an approximation of a real system. As a result, the accuracy of 

the computed results may be questionable.

 

3.3 Simulations 
 

This is used to get a more accurate evaluation of scheduling algorithms. Simulations 

involve programming a model of the computer system. Software data structures represent 

the major components of the system. The simulator has a variable representing a clock; as 

this variable‘s value is increased, the simulator modifies the system state to reflect the 

activities of the devices, the processes and the scheduler. As the simulation executes, 

statistics that indicate algorithm performance are gathered and printed. 
 

 

 
 

 

Figure 3.1: Evaluation of CPU scheduler by Simulation. 
 

Advantages: 
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 It produces accurate results for its inputs. 

Disadvantages: 
 

 It can be expensive 

 Trace tapes can require large amounts of storage space. 

 The design, coding and debugging of the simulator can be a major task. 

3.4 Implementation 
 

Even a simulator is of limited accuracy. The only completely accurate way to evaluate a 

scheduling algorithm is to code it, put it in the operating system, and see how it works. 

This approach puts the actual algorithm in the real system for evaluation under real 

operating conditions. 
 

Limitations: 
 

 This approach is very expensive. The expense is incurred not only in coding the 

algorithm and modifying the operating system to support it as well as its required 

data structure, but also in the reaction of the users to a constantly changing 

operating system. 
 

4.0 Conclusion 
 

This unit has taken you through the various scheduling evaluation algorithms. However, 

as you have seen there is no perfect evaluation algorithm. There are always difficulties to 

be encountered when evaluating scheduling algorithms. One of the major difficulties with 

any algorithm evaluation is that the environment in which the algorithm is used will 

change. The environment will change not only in the usual way, as new programs are 

written and the types of problems change, but also as a result of the performance of the 

scheduler. If short processes are given priority, then users may break larger processes into 

sets of small processes. If interactive processes are given priority over non-interactive 

processes, then users may switch to interactive use. 
 

5.0 Summary 
 

Due to the fact that a wide variety of scheduling algorithms are available, we need 

methods/means of selecting among them. Analytical methods use mathematical analysis 

to determine the performance of an algorithm. Simulation methods determine 

performance by imitating the scheduling algorithm on a ―representative‖ sample of 

processes, and computing the resulting performance. 
 

6.0 Tutor Marked Assignment 
 

1. Briefly compare the evaluation algorithms discussed in this unit. Which one is 

best? Give reasons. 
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2. Briefly describe the deterministic model. What are its advantages and 

disadvantages? 
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1.0 Introduction 

3.0 Main Body 
 

3.1 Race Condition 
 

As said earlier, race condition is a flaw in a system or process whereby the output of the 

process is unexpectedly and critically dependent on the sequence or timing of other 

events. To illustrate this, let us look at this simple example: 
 

Let us assume that two threads T1 and T2 each wants to increment the value of a global 

integer by one. Ideally, the following sequence of operations would take place: 

Module 4: Process Synchronization 

Unit 1: Race Condition 

 
 

3.1 Race Condition 
3.2 Real life examples 

3.2.1 File systems 

3.2.2 Networking 

3.2.3 Life-critical systems 

3.3 Computer security 

 

 

A race condition or race hazard is a flaw in a system or process whereby the output of 

the process is unexpectedly and critically dependent on the sequence or timing of other 

events. The term originates with the idea of two signals racing each other to influence the 

output first. Race conditions arise in software when separate processes or threads of 

execution depend on some shared state. 
 

2.0 Objectives 
 

At the end of this unit you should be able to: 
 

 Define Race condition 

 Describe some real life examples of race condition 

 Describe computer security in view of race condition 
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In the case shown above, the final value of i is 2, as expected. However, if the two 

threads run simultaneously without locking or synchronization, the outcome of the 

operation could be wrong. The alternative sequence of operations below demonstrates 

this scenario: 

1. Integer i = 0; 

2. T1 reads the value of i from memory into a register : 0 

3. T2 reads the value of i from memory into a register : 0 

4. T1 increments the value of i in the register: (register contents) + 1 = 1 

5. T2 increments the value of i in the register: (register contents) + 1 = 1 

6. T1 stores the value of the register in memory : 1 

7. T2 stores the value of the register in memory : 1 

8. Integer i = 1 

 
 

 

 

The final value of i is 1 instead of the expected result of 2. This occurs because the 

increment operations of the second case are non-atomic. Atomic operations are those that 

cannot be interrupted while accessing some resource, such as a memory location. In the 

first case, T1 was not interrupted while accessing the variable i, so its operation was 

atomic. 
 

For another example, consider the following two tasks, in pseudocode: 
 

global integer A = 0; 
 

// increments the value of A and print "RX" 

// activated whenever an interrupt is received from the 

serial controller 

task Received() 

{ 

A = A + 1; 

print "RX"; 

} 
 

// prints out only the even numbers 

// is activated every second 

task Timeout() 

{ 

if (A is divisible by 2) 

1. Integer i = 0; 

2. T1 reads the value of i from memory into a register : 0 

3. T1 increments the value of i in the register: (register contents) + 1 = 1 

4. T1 stores the value of the register in memory : 1 

5. T2 reads the value of i from memory into a register : 1 

6. T2 increments the value of i in the register: (register contents) + 1 = 2 

7. T2 stores the value of the register in memory : 2 

8. Integer i = 2 
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1. timeout occurs, activating task Timeout 

2. task Timeout evaluates A and finds it is divisible by 2, so elects to execute the 

"print A" next. 

3. data is received on the serial port, causing an interrupt and a switch to task 

Received 

4. task Received runs to completion, incrementing A and printing "RX" 

5. control returns to task Timeout 

6. task timeout executes print A, using the current value of A, which is 5. 

Mutexes are used to address this problem in concurrent programming. 
 

3.2 Real life examples 
 

3.2.1 File systems 
 

In file systems, two or more programs may "collide" in their attempts to modify or access 

a file, which could result in data corruption. File locking provides a commonly-used 

solution. A more cumbersome remedy involves reorganizing the system in such a way 

that one unique process (running a daemon or the like) has exclusive access to the file, 

and all other processes that need to access the data in that file do so only via interprocess 

communication with that one process (which of course requires synchronization at the 

process level). 
 

A different form of race condition exists in file systems where unrelated programs may 

affect each other by suddenly using up available resources such as disk space (or 

memory, or processor cycles). Software not carefully designed to anticipate and handle 

this rare situation may then become quite fragile and unpredictable. Such a risk may be 

 
 

 

{ 

print A; 

} 

} 

 

Output would look something like: 

 
0 

0 

0 

RX 

RX 

2 

RX 

RX 

4 

4 

 

Now consider this chain of events, which might occur next: 
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1. Recognize when a race condition has occurred; and 

2. Repair the ill effects. 

3.2.3 Life-Critical Systems 
 

Software flaws in life-critical systems can be disastrous. Race conditions were among the 

flaws in the Therac-25 radiation therapy machine, which led to the death of five patients 

and injuries to several more. Another example is the Energy Management System 

provided by GE Energy and used by Ohio-based FirstEnergy Corp. (and by many other 

power facilities as well). A race condition existed in the alarm subsystem; when three 

sagging power lines were tripped simultaneously, the condition prevented alerts from 

being raised to the monitoring technicians, delaying their awareness of the problem. This 

overlooked for a long time in a system that seems very reliable. But eventually enough 

data may accumulate or enough other software may be added to critically destabilize 

many parts of a system. Probably the best known example of this occurred with the near- 

loss of the Mars Rover "Spirit" not long after landing, but this is a commonly overlooked 

hazard in many computer systems. A solution is for software to request and reserve all 

the resources it will need before beginning a task; if this request fails then the task is 

postponed, avoiding the many points where failure could have occurred. (Alternately, 

each of those points can be equipped with error handling, or the success of the entire task 

can be verified afterwards, before continuing on.) A more common but incorrect 

approach is to simply verify that enough disk space (for example) is available before 

starting a task; this is not adequate because in complex systems the actions of other 

running programs can be unpredictable. 
 

3.2.2 Networking 
 

In networking, consider a distributed chat network like Internet relay chat (IRC), where a 

user acquires channel-operator privileges in any channel he starts. If two users on 

different servers, on different ends of the same network, try to start the same-named 

channel at the same time, each user's respective server will grant channel-operator 

privileges to each user, since neither server will yet have received the other server's signal 

that it has allocated that channel. (Note that this problem has been largely solved by 

various IRC server implementations.) 
 

In this case of a race condition, the concept of the "shared resource" covers the state of 

the network (what channels exist, as well as what users started them and therefore have 

what privileges), which each server can freely change as long as it signals the other 

servers on the network about the changes so that they can update their conception of the 

state of the network. However, the latency across the network makes possible the kind of 

race condition described. In this case, heading off race conditions by imposing a form of 

control over access to the shared resource—say, appointing one server to control who 

holds what privileges—would mean turning the distributed network into a centralized one 

(at least for that one part of the network operation). Where users find such a solution 

unacceptable, a pragmatic solution can have the system: 
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software flaw eventually led to the North American Blackout of 2003. (GE Energy later 

developed a software patch to correct the previously undiscovered error.) 
 

3.3 Computer Security 
 

A specific kind of race condition involves checking for a predicate (e.g. for 

authentication), then acting on the predicate, while the state can change between the time 

of check and the time of use. When this kind of bug exists in security-conscious code, a 

security vulnerability called a time-of-check-to-time-of-use (TOCTTOU) bug is created. 
 

3.4 Asynchronous Finite State Machines 
 

Even after ensuring that single bit transitions occur between states, the asynchronous 

machine will fail if multiple inputs change at the same time. The solution to this is to 

design a machine so that each state is sensitive to only one input change. 
 

4.0 Conclusion 
 

In this unit you have learnt about race condition, its cause, life examples and computer 

examples of race condition. In the next unit(s) you will be exposed to ways of preventing 

the occurrence of race condition especially unexpected race condition. 
 

5.0 Summary 
 

A situation where several processes access and manipulate the same data concurrently 

and the outcome of the execution depends on the particular order in which the access 

takes place is called race condition. To guide against race condition, there is need for a 

form synchronization of processes. Such situations occur frequently in operating systems 

as different parts of a system manipulate resources and we want the changes not to 

interfere with one another. A major portion of this module is concerned with process 

synchronization and coordination issues. 
 

6.0 Tutor-Marked Assignment 
 

1. What do you understand by the term race condition? 
 

2. Describe any two life examples of race condition. 
 

3. Briefly explain reason why it is desirable to avoid race condition. 
 

7.0 References/Further Reading 
 

1. M. Herlihy, V. Luchangco and M. Moir. "Obstruction-Free Synchronization: Double-

Ended Queues as an Example." 23rd International Conference on Distributed 

Computing Systems, 2003, p.522. 
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1.0 Introduction 

2.0 Objectives 
3.0 Main body 

1.0 Introduction 
 

Synchronization refers to one of two distinct, but related concepts: synchronization of 

processes, and synchronization of data. Process synchronization refers to the idea that 

multiple processes are to join up or handshake at a certain point, so as to reach an 

agreement or commit to a certain sequence of action while Data synchronization refers 

to the idea of keeping multiple copies of a dataset in coherence with one another, or to 

maintain data integrity. Process synchronization primitives are commonly used to 

implement data synchronization. In this unit you are going to be introduced to process 

synchronization. 
 

2.0 Objectives 
 

At the end of this unit, you should be able to: 

 Define process synchronization 

 Describe non-blocking synchronization 

 Explain the motivation for non-blocking synchronization 

 Describe various types of non-blocking synchronization algorithms 

3.0 Main body 
 

3.1 Process synchronization 

Module 4: Process Synchronization 

Unit 2: Synchronization 

Table of Contents  
 

3.1 Process Synchronization 
3.2 Non-blocking Synchronization 

3.2.1 Motivation 

3.2.2 Implementation 

3.2.3 Wait-freedom 

3.2.4 Lock-freedom 

3.2.5 Obstruction-freedom 

 
 

 

 

4.0 Conclusion 
5.0 Summary 
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 barrier 

 lock/semaphore 

 thread join 

 mutex 

 non-blocking synchronization 

 synchronous communication operations (see: Comparison of synchronous and 

asynchronous signalling) 

 
 

 

A synchronization point is the location, in a process or collection of threads or 

processes, where the synchronization occurs. 
 

3.2 Non-blocking synchronization 
 

Non-blocking synchronization ensures that threads competing for a shared resource do 

not have their execution indefinitely postponed by mutual exclusion. Non-blocking is 

often called lock-free: an algorithm with guaranteed system-wide progress. However, 

since 2003, the term has been weakened to only prevent progress-blocking interactions 

with a pre-emptive scheduler. 
 

In modern usage, therefore, an algorithm is non-blocking if the suspension of one or more 

threads will not   stop the potential progress of the remaining threads. They are designed 

to avoid requiring a critical section. Often, these algorithms allow multiple processes to 

make progress on a problem without ever blocking each other. For some operations, these 

algorithms provide an alternative to locking mechanisms. 
 

3.2.1 Motivation 
 

The traditional approach to multi-threaded programming is to use locks to synchronize 

access to shared resources. Synchronization primitives such as mutexes, semaphores, and 

critical sections are all mechanisms by which a programmer can ensure that certain 

sections of code do not execute concurrently if doing so would corrupt shared memory 

structures. If one thread attempts to acquire a lock that is already held by another thread, 

the thread will block until the lock is free. 
 

Blocking a thread, though, is undesirable for many reasons. An obvious reason is that 

while the thread is blocked, it cannot accomplish anything. If the blocked thread is 

performing a high-priority or real-time task, it is highly undesirable to halt its progress. 

Other problems are less obvious. Certain interactions between locks can lead to error 

conditions such as deadlock, livelock, and priority inversion. Using locks also involves a 

trade-off between coarse-grained locking, which can significantly reduce opportunities 

Process synchronization refers to the coordination of simultaneous threads or processes to 

complete a task in order to get correct runtime order and avoid unexpected race 

conditions. 
 

There are many types of synchronization: 
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for parallelism, and fine-grained locking, which requires more careful design, increases 

overhead and is more prone to bugs. 
 

Non-blocking algorithms are also safe for use in interrupt handlers: even though the 

preempted thread cannot be resumed, progress is still possible without it. In contrast, 

global data structures protected by mutual exclusion cannot safely be accessed in a 

handler, as the preempted thread may be the one holding the lock. 
 

Non-blocking synchronization has the potential to prevent priority inversion, as no thread 

is forced to wait for a suspended thread to complete. However, as livelock is still possible 

in the modern definition, threads have to wait when they encounter contention; hence, 

priority inversion is still possible depending upon the contention management system 

used. Lock-free algorithms, below, avoid priority inversion. 
 

3.2.2 Implementation 
 

Non-blocking algorithms use atomic read-modify-write primitives that the hardware must 

provide, the most not able of which is compare and swap (CAS). Ultimately, all 

synchronizing algorithms must use these; however, critical sections are almost always 

implemented using standard interfaces over these primitives. Until recently, all non- 

blocking algorithms had to be written "natively" with the underlying primitives to 

achieve acceptable performance. However, the emerging field of software transactional 

memory promises standard abstractions for writing efficient non-blocking code. 
 

Much research has also been done in providing basic data structures such as stacks, 

queues, sets, and hash tables. These allow programs to easily exchange data between 

threads asynchronously. 
 

3.2.3 Wait-freedom 
 

Wait-freedom is the strongest non-blocking guarantee of progress, combining guaranteed 

system-wide throughput with starvation-freedom. An algorithm is wait-free if every 

operation has a bound on the number of steps it will take before completing. 
 

It was shown in the 1980s that all algorithms can be implemented wait-free, and many 

transformations from serial code, called universal constructions, have been demonstrated. 

However, the resulting performance does not in general match even naive blocking 

designs. It has also been shown that the widely-available atomic conditional primitives, 

compare-and-swap, cannot provide starvation-free implementations of many common 

data structures without memory costs growing linearly in the number of threads. Wait- 

free algorithms are therefore rare, both in research and in practice. 
 

3.2.4 Lock-freedom 
 

Lock-freedom allows individual threads to starve but guarantees system-wide throughput. 

An algorithm is lock-free if every step taken achieves global progress (for some sensible 

definition of progress). All wait-free algorithms are lock-free. 
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In general, a lock-free algorithm can run in four phases: completing one's own operation, 

assisting an obstructing operation, aborting an obstructing operation, and waiting. 

Completing one's own operation is complicated by the possibility of concurrent 

assistance and abortion, but is invariably the fastest path to completion. 
 

The decision about when to assist, abort or wait when an obstruction is met is the 

responsibility of a contention manager. This may be very simple (assist higher priority 

operations, abort lower priority ones), or may be more optimized to achieve better 

throughput, or lower the latency of prioritized operations. 
 

Correct concurrent assistance is typically the most complex part of a lock-free algorithm, 

and often very costly to execute: not   only does the assisting thread slow down, but 

thanks to the mechanics of shared memory, the thread being assisted will be slowed, too, 

if it is still running. 
 

3.2.5 Obstruction-freedom 
 

Obstruction-freedom is possibly the weakest natural non-blocking progress guarantee. An 

algorithm is obstruction-free if at any point, a single thread executed in isolation (i.e. with 

all obstructing threads suspended) for a bounded number of steps will complete its 

operation. All lock-free algorithms are obstruction-free. 
 

Obstruction-freedom demands only that any partially-completed operation can be aborted 

and the changes made rolled back. Dropping concurrent assistance can often result in 

much simpler algorithms that are easier to validate. Preventing the system from 

continually live-locking is the task of a contention manager. 
 

Recent research has yielded a promising practical contention manager, whimsically 

named Polka, combining exponential backoff with "priority accumulation". As an 

operation progresses, it gains "priority"; when an operation is obstructed by another with 

higher priority, it will back off, with backoff intervals increasing exponentially. Each 

backoff increases the operation's priority; only when its priority is greater than that of its 

obstructor will it abort it. Aborted operations retain their former priority, giving their next 

attempt a greater chance of success. 
 

Polka achieves good throughput in benchmarks because it minimizes both wasted effort, 

by prioritizing long transactions, and memory interconnect contention, using exponential 

backoff. This can inform other parallel algorithms, such as lock-free ones, to achieve 

greater throughput in the common case. 
 

4.0 Conclusion 
 

In this unit you have been introduced to synchronization, particularly non-blocking 

synchronization. 
 

5.0 Summary 
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1. Define Synchronization 

2. What is the need for process synchronization 

3. Describe any lock-free non-blocking synchronization algorithm 
4. When is an algorithm wait-free? 

5. Enumerate the various phases in which a lock-free algorithm can run. 

1. M. Herlihy, V. Luchangco and M. Moir. "Obstruction-Free Synchronization: Double- 

Ended Queues as an Example." 23rd International Conference on Distributed Computing 

Systems, 2003, p.522. 

2. F. Fich, D. Hendler, N. Shavit. "Impossibility and universality results for wait-free 

synchronization" Proceedings of the seventh annual ACM Symposium on Principles of 

distributed computing, 1988, pp. 276 - 290. 

3. F. Fich, D. Hendler, N. Shavit. "On the inherent weakness of conditional synchronization 

primitives." 23rd Annual ACM Symposium on Principles of Distributed Computing, 

2004, pp. 80-87. 

4. W. Scherer and M. Scott. "Advanced Contention Management for Dynamic Software 

Transactional Memory." 24th annual ACM SIGACT-SIGOPS Symposium on Principles 

of Distributed Computing, 2005, pp. 240-248. 
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2.0 Objectives 

3.0 Main body 

3.1 What is Mutual Exclusion? 

1.0 Introduction 
 

In the previous units of this module you have been introduced you to some pertinent 

concepts in process synchronization. This unit will further expose you to another 

important concept in process synchronization which is mutual exclusion. It is an 

algorithm that is often used in concurrent programming to avoid the simultaneous use of 

a common resource by pieces of computer code known as critical section (this will be 

discussed in this next unit. 
 

2.0 Objectives 
 

At the end of this unit, you should be able to: 

 Describe what you understand by mutual exclusion 

 Describe ways to enforce mutual exclusion 

3.0 Main Body 
 

3.1 What is Mutual Exclusion? 
 

Mutual exclusion (often abbreviated to mutex) algorithms are used in concurrent 

programming to avoid the simultaneous use of a common resource, such as a global 

variable, by pieces of computer code called critical sections. 
 

Examples of such resources are fine-grained flags, counters or queues, used to 

communicate between code that runs concurrently, such as an application and its 

interrupt handlers. The problem is acute because a thread can be stopped or started at any 

time. 
 

To illustrate: suppose a section of code is mutating a piece of data over several program 

steps, when another thread, perhaps triggered by some unpredictable event, starts 

Module 4: Process Synchronization 

Unit 3: Mutual Exclusion 

 

 

 

 
 

3.2 Enforcing mutual exclusion 

3.3 Hardware solutions 
3.4 Software solutions 

 
 

 

 

4.0 Conclusion 

5.0 Summary 
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Problems in achieving mutual exclusion include lockstep, loss of mutual exclusion, 

deadlock and indefinite postponement. 

3.2 Enforcing Mutual Exclusion 

There exist both software and hardware solutions for enforcing mutual exclusion. The 

different solutions are presented below. 

On a uniprocessor system the common way to achieve mutual exclusion is to disable 

interrupts for the smallest possible number of instructions that will prevent corruption of 

the shared data structure, the critical section. This prevents interrupt code from running in 

the critical section. 
 

In a computer in which several processors share memory, an indivisible test-and-set of a 

flag is used in a tight loop to wait until the other processor clears the flag. The test-and- 

set performs both operations without releasing the memory bus to another processor. 

When the code leaves the critical section, it clears the flag. This is called a "spinlock" or 

"busy-wait." 

 
 

Mutual exclusion is one of the control problems faced in the case of competing 

processes. The enforcement of mutual exclusion creates two additional control problems; 

deadlock and starvation (Stallings) 
 

Mutual exclusion has two levels of concurrency: 
 

1. Concurrency among processes 

2. Concurrency among activities (threads) with a single process. 
 

If concurrent processes or activities do not access common resources, there is no 

problem, but there s a problem if they do. A solution to this problem is to keep the critical 

activities sequential rather than concurrent. This solution is not always practical. 
 

 

3.2.1 MUTUAL EXCLUSION HARDWARE APPROACH (TEST-AND-SET) 
 

 

The test and set instruction can be defined as follows: 

function testset (var i: integer) : boolean; 

executing. If this second thread reads from the same piece of data, the data, in the process 

of being overwritten, is in an inconsistent and unpredictable state. If the second thread 

tries overwriting that data, the ensuing state will probably be unrecoverable. These 

critical sections of code accessing shared data must therefore be protected, so that other 

processes which read from or write to the chunk of data are excluded from running. 
 

A mutex is also a common name for a program object that negotiates mutual exclusion 

among threads, also called a lock. 



138  

Some computers have similar indivisible multiple-operation instructions, e.g., compare- 

and-swap, for manipulating the linked lists used for event queues and other data 

structures commonly used in operating systems. 

Beside the hardware supported solution, some software solutions exist that use "busy- 

wait" to achieve the goal. Examples of these include: 

 Dekker's algorithm 

 Peterson's algorithm 

 Lamport's bakery algorithm 

 The Black-White Bakery Algorithm 

 Semaphores 
 Monitor (synchronization) 

 Message passing 

Most classical mutual exclusion methods attempt to reduce latency and busy-waits by 

using queuing and context switches. Some claim that benchmarks indicate that these 

special algorithms waste more time than they save. 

begin 

if i =0; then 

begin 

i := 1 
testset : = true 

end 

else testset := false 

end. 
 

The instruction test the value of its argument i. If the value is 0, then it replaces it by 1 

and returns true. otherwise, the value is not changed and false is returned. The entire 

testset function is carried out automatically; that is, it is not subject to interruption 
 

 

3.2.2 MUTUAL EXCLUSION: SOFTWARE APPROACH 
 

 

 

 

Software approaches can be implemented for concurrent processes that execute on a 

single processor or a multiprocessor machine with shared main memory. These 

approaches usually assume elementary mutual exclusion at the memory access level. 

That is, simultaneous accesses (reading and/or writing) to the same location in main 

memory are serialized by some sort of memory arbiter, although the order of access 

granting is not specified ahead of time. Beyond this, no support at the hardware, 

operating system, or programming-language level is assumed. 
 

Peterson's Algorithm provided a simple and elegant solution. That mutual exclusion is 

preserved is easily shown. Consider process P0. Once it has set flag [0] to true, P1 cannot 

enter its critical section. If P1 already is in its critical section, then flag [1] = true and P0 

is blocked from entering its critical section. On the other hand, mutual blocking is 

prevented. Suppose that P0 is blocked in its while loop. this means that flag [1] is true 
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and turn = 1. P0 can enter its critical section when either flag [1] becomes false or turn 

becomes 0. Now consider three exhaustive cases: 
 

1. P1 has no interest in its critical section. This case is impossible, because it implies 

flag [1] = false. 

2. P1 is waiting for its critical section. This case is also impossible, because if turn = 

1, P1 is able to enter its critical section. 
 

P1 is using its critical section repeatedly and therefore monopolizing access to it. This 

cannot   happen, because P1 is obliged to give P0 an opportunity by setting turn to 0 

before each attempt to enter its critical section. 
 

The algorithm for two processes is presented below. 

 
 

var flag: array [0..1] of boolean; 

turn: 0..1; 

procedure P0; 

begin 

repeat 

flag [0] := true 

turn : = 1 

while flag [1] and turn = 1 do{ nothing }; 

<critical section>; 

flag [0] : = false; 

<remainder> 

forever 

end; 

 

procedure P1; 

begin 

repeat 

flag [1] := true 

turn : = 0; 

while flag [0] and turn = 0 do{ nothing }; 
<critical section>; 

flag [1] : = false; 

<remainder> 

forever 

end; 

begin 

flag [0] := false; 

flag [1] := false; 

turn := 1; 

parbegin 

P0;P1 
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1. What do you understand by mutual exclusion 

2. What is it used for? 

3. State some of the software methods of implementing mutual exclusion algorithm 

4. What do you understand by busy-wait? 

1. Michel Raynal: Algorithms for Mutual Exclusion, MIT Press, ISBN 0-262-18119-3 
2. Sunil R. Das, Pradip K. Srimani: Distributed Mutual Exclusion Algorithms, IEEE 

Computer Society, ISBN 0-8186-3380-8 

3. Thomas W. Christopher, George K. Thiruvathukal: High-Performance Java 

Platform Computing, Prentice Hall, ISBN 0-13-016164-0 

parend 

end. 
 

This algorithm is easily generalized to the case of n processes. 
 

Many forms of mutual exclusion have side-effects. For example, classic semaphores 

permit deadlocks, in which one process gets a semaphore, another process gets a second 

semaphore, and then both wait forever for the other semaphore to be released. Other 

common side-effects include starvation, in which a process never gets sufficient 

resources to run to completion, priority inversion, in which a higher priority thread waits 

for a lower-priority thread, and "high latency" in which response to interrupts is not 

prompt. 
 

Much research is aimed at eliminating the above effects, such as by guaranteeing non- 

blocking progress. No perfect scheme is known. 
 

4.0 Conclusion 
 

This unit has taken you through the concept of mutual exclusion. In the next unit, you 

will see how it can be used to solve critical-section problem. 
 

5.0 Summary 
 

Mutual Exclusion, as you have seen in this unit can be implemented by hardware or 

software. The hardware features can make the programming task easier and improve 

system efficiency. The software forms of mutual exclusion especially the classic 

semaphores have side-effects one of which is that it may lead to deadlocks. 
 

6.0 Tutor-Marked Assignment 
 

 

7.0 References/Further Reading  
 

4. Gadi Taubenfeld, Synchronization Algorithms and Concurrent Programming, 
Pearson/Prentice Hall, ISBN 0-13-197259-6 
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1.0 Introduction 
 

Consider a system consisting of n processes {P0, P1,…, Pn-1}. Each process has a segment 

of code called critical section, in which the processes may be changing common 

variables, updating a table, writing a file, etc. The important feature of the system is that, 

when one process is executing, in its critical section, no other process is to be allowed to 

execute in its critical section. Therefore the execution of the critical section by the 

processes is mutually exclusive in time. The critical section problem is to design a 

protocol that the processes can use to cooperate. Each process must request permission to 

enter its critical section. The section of code implementing this request is the entry 

section. The critical section may be followed by an exit section. The remaining code is 

the remainder section. 
 

do { 

 

critical section 
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} while(1); 
 

Figure 1.1 General structure of a typical process Pi 

1. Mutual Exclusion: if process Pi is executing in its critical section, then no other 

processes can be executing in their critical sections. 

2. Progress: If no process is executing in its critical section and some processes wish 

to enter their critical sections, then only those processes that are not executing in 

their remainder section can participate in the decision on which will enter its 

critical sectionnext, and this selection cannot be postponed indefinitely. 

3. Bounded Waiting: there exists a bound on the number of times that other 

processes are allowed to enter their critical sections after a process has made a 

request to enter its critical section and before that request is granted. 

Based on these three requirements, we will discuss some solutions to critical section 

problem in this unit. 

A critical section is a piece of code that accesses a shared resource (data structure or 

device) that must not be concurrently accessed by more than one thread of execution. A 

critical section will usually terminate in fixed time, and a thread, task or process will only 

have to wait a fixed time to enter it (i.e. bounded waiting). Some synchronization 

mechanism is required at the entry and exit of the critical section to ensure exclusive use, 

for example a semaphore. 
 

By carefully controlling which variables are modified inside and outside the critical 

section (usually, by accessing important state only from within), concurrent access to that 

state is prevented. A critical section is typically used when a multithreaded program must 

update multiple related variables without a separate thread making conflicting changes to 

  remainder section  
 

 

A solution to the critical section problem must satisfy the following three requirements:  
 

 

 

2.0 Objectives 
 

At the end of this unit you should be able to: 
 

 Explain the critical section problem 

 State the different levels of critical section 

 Define semaphores 

 Define monitors 

 Distinguish between monitors and semaphores 
 

3.0 Main Body 
 

3.1 The Critical Section Problem 
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that data. In a related situation, a critical section may be used to ensure a shared resource, 

for example a printer, can only be accessed by one process at a time. 
 

How critical sections are implemented varies among operating systems. 
 

The simplest method is to prevent any change of processor control inside the critical 

section. On uni-processor systems, this can be done by disabling interrupts on entry into 

the critical section, avoiding system calls that can cause a context switch while inside the 

section and restoring interrupts to their previous state on exit. Any thread of execution 

entering any critical section anywhere in the system will, with this implementation, 

prevent any other thread, including an interrupt, from getting the CPU and therefore from 

entering any other critical section or, indeed, any code whatsoever, until the original 

thread leaves its critical section. 
 

This brute-force approach can be improved upon by using semaphores. To enter a critical 

section, a thread must obtain a semaphore, which it releases on leaving the section. Other 

threads are prevented from entering the critical section at the same time as the original 

thread, but are free to gain control of the CPU and execute other code, including other 

critical sections that are protected by different semaphores. 
 

Some confusion exist in the literature about the relationship between different critical 

sections in the same program. In general, a resource that must be protected from 

concurrent access may be accessed by several pieces of code. Each piece must be 

guarded by a common semaphore. Is each piece now a critical section or are all the pieces 

guarded by the same semaphore in aggregate a single critical section? This confusion is 

evident in definitions of a critical section such as "... a piece of code that can only be 

executed by one process or thread at a time". This only works if all access to a protected 

resource is contained in one "piece of code", which requires either the definition of a 

piece of code or the code itself to be somewhat contrived. 
 

3.1.1 Application Level Critical Sections 
 

Application-level critical sections reside in the memory range of the process and are 

usually modifiable by the process itself. This is called a user-space object because the 

program run by the user (as opposed to the kernel) can modify and interact with the 

object. However the functions called may jump to kernel-space code to register the user- 

space object with the kernel. 
 

Example Code For Critical Sections with POSIX pthread library 
 

/* Sample C/C++, Unix/Linux */ 

#include <pthread.h> 

pthread_mutex_t cs_mutex = PTHREAD_MUTEX_INITIALIZER; /* 

This is the critical section object*/ 
 

/* Enter the critical section -- other threads are locked 

out */ 
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pthread_mutex_lock( &cs_mutex ); 
 

/* Do some thread-safe processing! */ 
 

/*Leave the critical section -- other threads can now 

pthread_mutex_lock() */ 

pthread_mutex_unlock( &cs_mutex); 
 

 

 

Example Code For Critical Sections with Win32 API 
 

/* Sample C/C++, Win9x/NT/ME/2000/XP, link to kernel32.dll 

*/ 

#include <windows.h> 

CRITICAL_SECTION cs; /* This is the critical section object 

-- once initialized, it cannot 

be moved in memory */ 
 

/* Initialize the critical section -- This must be done 

before locking */ 

InitializeCriticalSection(&cs); 
 

/* Enter the critical section -- other threads are locked 

out */ 

EnterCriticalSection(&cs); 
 

/* Do some thread-safe processing! */ 
 

/* Leave the critical section -- other threads can now 

EnterCriticalSection() */ 

LeaveCriticalSection(&cs); 
 

/* Release system object when all finished -- usually at 

the end of the cleanup code */ 

DeleteCriticalSection(&cs); 

 

Note that on Windows NT (not 9x/ME), the function TryEnterCriticalSection() can be 

used to attempt to enter the critical section. This function returns immediately so that the 

thread can do other things if it fails to enter the critical section (usually due to another 

thread having locked it). Note that the use of a CriticalSection is not   the same as a 

Win32 Mutex, which is an object used for inter-process synchronization. A Win32 

CriticalSection is for inter-thread synchronization (and is much faster as far as lock 

times), however it cannot be shared across processes. 
 

3.1.2 Kernel Level Critical Sections 
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Typically, critical sections prevent process and thread migration between processors by 

interrupts. Also, pre-emption of processes and threads is prevent by interrupts. 
 

Critical sections often allow nesting. Nesting allows multiple critical sections to be 

entered and exited at little cost. 
 

If the scheduler interrupts the current process or thread in a critical section, the scheduler 

will either allow the process or thread to run to completion of the critical section, or it 

will schedule the process or thread for another complete quantum. The scheduler will not 

migrate the process or thread to another processor, and it will not schedule another 

process or thread to run while the current process or thread is in a critical section. 
 

Similarly, if an interrupt occurs in a critical section, the interrupt's information is 

recorded for future processing, and execution is returned to the process or thread in the 

critical section. Once the critical section is exited, and in some cases the scheduled 

quantum completes, the pending interrupt will be executed. 
 

Since critical sections may execute only on the processor on which they are entered, 

synchronization is only required within the executing processor. This allows critical 

sections to be entered and exited at almost zero cost. No interprocessor synchronization is 

required, only instruction stream synchronization. Most processors provide the required 

amount of synchronization by the simple act of interrupting the current execution state. 

This allows critical sections in most cases to be nothing more than a per processor count 

of critical sections entered. 
 

Performance enhancements include executing pending interrupts at the exit of all critical 

sections and allowing the scheduler to run at the exit of all critical sections. Furthermore, 

pending interrupts may be transferred to other processors for execution. 
 

Critical sections should not be used as a long-lived locking primitive. They should be 

short enough that the critical section will be entered, executed, and exited without any 

interrupts occurring, from neither hardware much less the scheduler. 
 

3.2 Semaphores 
 

The first major advance in dealing with the problems of concurrent processes came in 

1965 with Dijkstra's treatise. The fundamental principle is this: two or more processes 

can cooperate by means of simple signal, such that a process can be forced to stop at a 

specified place until it has received a specified signal. Any complex coordination 

requirement can be satisfied by the appropriate structure of signals. For signalling, 

special variables called semaphores are used. To transmit a signal via semaphores, a 

process executes the primitive signal(s). To receive a signal via semaphore s, a process 

executes the primitive wait(s); if the corresponding signal has not yet been transmitted, 

the process is suspended until the transmission takes place. 
 

To achieve the desired effect, we can view the semaphore as a variable that has an integer 

value upon which three operations are defined: 
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In mutual exclusion, waits always occur before signals, as waits happen at the start of a 

critical piece of code, with a signal at the end of it. The above equation states that no 

more than one wait may run to completion before a signal has been performed. Thus no 

more than one process may enter the critical section at a time as required 

1. A semaphore may be initialized to a non-negative value 

2. The wait operation decrements the semaphore value. If the value becomes 

negative, then the process executing the wait is blocked 

3. The signal operation increments the semaphore value. If the value is not positive, 

then a process blocked by wait operation is unblocked. 
 

Other than these three operations, there is no way to inspect or manipulate semaphores. 
 

Semaphores are operated on by a signal operation, which increments the semaphore value 

and the wait operation, which decreases it. The initial value of semaphore indicates the 

number of wait operations that can be performed on the semaphore. Thus: 
 

V= I - W + S 
 

where I is the initial value of the semaphore 
 

W is the number of completed wait operations performed on the semaphore 

S is the number of signal operations performed on it 

V is the current value of the semaphore (which must be greater than or equal to 

zero). 
 

As V is > 0 then I- W+ S > 0, which gives 

I + S > W 

or 
 

W < I + S 
 

Thus, the number of wait operations must be less than or equal to the initial value of the 

semaphore, plus the number of signal operations. A binary semaphore will have an initial 

value of 1 (I = 1), thus: 
 

W< S+ 1 
 

 

3.2.1 The Problem with Semaphores 

Semaphores work but programmers still need to code carefully to ensure mutual 

exclusion and that synchronisation operate correctly. 
 

3.2.2 Language Constructs 
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The problem with semaphores is that they are too low level in nature: they are similar to 

doing mutual exclusion and synchronisation in assembly language using goto's. They 

have no structure. They are also damnably hard to prove correct and near to impossible 

to test! 
 

What is needed are high-level language constructs that enforce the necessary discipline. 

The two main contenders for this job are: 
 

 Critical Regions, and more usefully, Conditional Critical Regions 

 Monitors 
 

3.3 Monitors 

Monitors are a common high-level synchronization tool which solve some of the 

problems associated with semaphores. 
 

Monitors are actually a much nicer way of implementing mutual exclusion than 

semaphores. One of the reasons for this is that the code that implements mutual exclusion 

is all in one place, the monitor. With semaphores, code can distributed all over the place 

in the form of wait and signal semaphore function calls. 
 

Additionally, it is next to impossible to setup a monitor incorrectly. On the other hand 

with semaphores it is quite common to do a wait (B) when you should have done a wait 

(C). Simple little mistakes are easy to make with semaphores. 
 

3.3.1 Process Synchronization with Monitors 
 

Process synchronization with monitors is implemented in much the same way as it is 

implemented with semaphores. However, with monitors you use condition variables 

rather than semaphores. 
 

For this reason, it is important that you realize the difference between semaphores and 

condition variables. This is made more difficult because 
 

 both semaphores and condition variables use wait and signal as the valid 

operations, 

 the purpose of both is somewhat similar, and 

 they are actually quite different. 
 

The main difference is the operation of signal. With a semaphore the signal operation 

actually increments the value of the semaphore. So, if there are not   any processes 

blocked on the semaphore, the signal will be "remembered" by the incrementing of the 

semaphore. 
 

The signal function on a Monitor‘s condition variable is different. If there are no 

processes blocked on the condition variable then the signal function does nothing. The 

signal is not remembered. In order to remember "empty signals", you have to use some 
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other form of variables. The good part of this is that using other variables within a 

monitor is simple because we can be assured that mutual exclusion is being implemented. 
 

4.0 Conclusion 
 

In this unit, you learnt some of the methods for synchronizing co-operating processes and 

how these methods are implemented as well as the advantages and disadvantages of each 

approach. In the next unit we will discuss some of the classic problems of 

synchronization. 
 

5.0 Summary 
 

Given a collection of cooperating sequential processes that share data, mutual exclusion 

must be provided. One solution is to ensure that a critical section of code is in use by only 

one process or thread at a time. Different algorithms exist for solving the critical-section 

problem, with the assumption that only storage interlock is available. 
 

The main disadvantage of these user-coded solutions is that they all require busy waiting. 

Semaphores overcome this difficulty. Semaphores can be used to solve various 

synchronization problems and can be implemented efficiently. However, there are some 

problems with using semaphores too. 
 

Monitors overcome the problem with using semaphores because it is next to impossible 

to setup a monitor incorrectly. 
 

6.0 Tutor-Marked Assignment 
 

1. Enumerate the requirements that must be satisfied by a solution to the critical section 

problem 
 

2. What do you understand by critical section? When is it used? 
 

3. Compare Application-level critical section and kernel-level critical section. 
 

4. What do you understand by semaphore? 
 

5. What are the problems with using semaphores to implement mutual exclusion and how 

does monitor overcome these problems? 
 

6. What are monitors? 
 

7. Can monitors be incorrectly setup? Explain 
 

7.0 References/Further Reading 
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1.0 Introduction 
 

In a multiprogramming environment, several processes may compete for a finite number 

of resources. A process requests resources; if the resources are not available, at that time, 

the process enters a wait state. Waiting processes may never again change state, because 

the resources they have requested are held by other waiting processes. This situation is 

called deadlock. We have already mentioned this briefly in module 4 in connection with 

semaphores. 
 

In this module, you will be taken through methods that an operating system can use to 

prevent or deal with deadlocks 

 

Objectives 
 

At the end of this unit, you should be able to: 
 

 Define deadlock 

 State the necessary conditions for deadlock to occur 

 Describe Resource-Allocation graph 

 Explain how it can be used to describe deadlocks 

 Describe some of the methods for handling deadlocks. 

3.0 Main Body 
 

3.1 System Model 

 

Module 5: Deadlocks 
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A system consists of a finite number of resources to be distributed among a number of 

competing processes. The resource are partitioned into several types, each of which 

consists of some number of identical instances. Memory space, CPU cycles, files, and I/O 

devices (such as printers and tape drives) are examples of resource types. If a system has 

two CPUs, then the resource type CPU has two instances. Similarly, the resource type 

printer may have five instances. 
 

A process must request a resource before using it, and must release the resource after 

using it. a process may request as many resources as it requires to carry out its designated 

task. Obviously, the number of resources requested may not exceed the total number of 

resources available in the system. i.e. a process cannot   request three printers if the 

system has only two. 
 

Under normal mode of operation, a process may utilize a resource in only the following 

sequence. 
 

1. Request: If the request cannot be granted immediately (for example, if the 

resource is been used by another process), then the requesting process must wait 

until it can acquire the resource. 

2. Use: The process can operate on the resource (for example, if the resource is a 

printer, the process can print on the printer) 

3. Release: The process releases the resource. 
 

Request and release of resources can be accomplished through the wait and signal 

operations on semaphores. Therefore, for each use, the operating system checks to make 

sure that the using process has requested and been allocated the resource. A system table 

records whether each resource is free or allocated, and, if a resource is allocated, to which 

process. If a process requests a resource that is currently allocated to another process, it 

can be added to a queue of processes waiting for this resource. 
 

A set of processes is in a deadlock state when every process in the set is waiting for an 

event that can only be caused by another process in the set. 
 

To illustrate deadlock state, consider a system with three tape drives. Suppose each of 

three processes holds one of these tape drives. If each process now requests another tape 

drive, the three processes will be in deadlock. Each is waiting for the event ―tape drive is 

released‖ which can be caused only by one of the other waiting processes. This example 

illustrates a deadlock involving the same resource type. 
 

Deadlocks may also involve different resource type. E.g. Consider a system with one 

printer and one tape drive. Suppose that process P1 is holding the tape drive and process 

P2 is holding the printer. If P1 requests the printer and P2 requests the tape drive, a 

deadlock occurs. 
 

A deadlock is also called a deadly embrace. 
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1. Mutual exclusion condition: At least one resource must be held in a non-sharable 

mode; i.e. only one process at a time can use the resource. If another process 

requests that resource, the requesting process must be delayed until the resource 

has been released. 

2. Hold-and-wait condition: A process must be holding at least one resource and 

waiting to acquire additional resources that are currently being held by other 

processes. 

3. No-preemption condition: Resources cannot be preempted; i.e. only a process 

holding a resource may voluntarily release the resource after completing its task. 

4. Circular-wait condition: two or more processes form a circular chain where each 

process waits for a resource that the next process in the chain holds. i.e. A set (P0, 

P1, …, Pn) of waiting processes must exist such that P0 is waiting for a resource 

that is held by P1, P1 is waiting for a resource that is held by P2, …, Pn-1 is waiting 

for a resource that is held by Pn, and Pn is waiting for a resource that is held by P0. 

Deadlock only occurs in systems where all these four conditions hold. You should note 

that the hold-and-wait condition leads to the circular-wait condition implies. So, the four 

conditions are not completely independent. 
 

3.2.2 Resource-Allocation (R-A) Graph 
 

Deadlocks can be described more precisely in terms of a directed graph called a system 

resource-allocation graph. This graph consists of a set of vertices V and a set of edges E. 

The set vertices V is partitioned into two different types of nodes P = {P1, P2, …, Pn}, the 

set consisting of all the active processes in the system, and R = {R1, R2, …, Rm}, the set 

consisting of all resource types in the system. 
 

A directed edge from process Pi, to resource type Rj, is denoted by Pi → Rj; it signifies 

that process Pi requested an instance of resource type Rj and is currently waiting for that 

resource. A directed edge from resource type Rj to process Pi is denoted by Rj → Pi; it 

Deadlocks occur most commonly in multitasking and client/server environments. 

Therefore, a programmer who is developing multithreaded applications must pay 

particular attention to this problem: Multithreaded programs are good candidates for 

deadlock because multiple threads can compete for shared resources. 
 

3.2 Deadlock Characterization 
 

In a deadlock, processes never finish executing and system resources are tied up, 

preventing other jobs from starting. Before we discuss the various methods for dealing 

with the deadlock problem, we shall describe to you features that characterized 

deadlocks. 
 

3.2.1 Necessary Conditions 
 

A deadlock situation can arise if the following conditions hold simultaneously in a 

system: 
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o P = (P1, P2,, P3) 

o R = (R1, R2,, R3, R4) 
o E = {P1 → R1, P2 → R3, R1 → P2, R2 → P2, R2 → P1, R3 → P3} 

signifies that an instance of resource type Rj has been allocated to process Pi. A directed 

edge Pi → Rj is called a request edge; a directed edge Rj → Pi is called an assignment 

edge. 
 

Pictorially, each process Pi is represented as a circle, and each resource type Rj as a 

square. Since resource type Rj may have more than one instance, we represent each such 

instance as a dot within the square. You should note that a request edge points only to the 

square whereas an assignment edge must also designate one of the dots in the square. 
 

When a process Pi request an instance of resource type Rj, a request edge is inserted in the 

resource-allocation graph. When this request can be fulfilled; the request edge is 

instantaneously transformed to an assignment edge. When the process no longer needs 

access to the resource it releases the resource, and as a result the assignment edge is 

deleted. 
 

R1 R3 
 

 

 

 

 

P1 P2 P3 
 

 

 

 

 

 

 

R2 R4 

 

Figure 3.1: Resource-Allocation Graph (RAG) 
 

The resource-allocation graph shown in figure 3.1 depicts the following situation: 
 

 The sets P, R and E  
 

 

 

 Resource instances: 

o One instance of resource type R1 

o Two instances of resource type R2 

o One instance of resource type R3 

o Two instances of resource type R4 

 Process states: 
o Process is P1 is holding an instance of resource type R2, and is waiting 

for an instance of resource type R1. 
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Given the definition of a RAG, it can be shown that, if the graph contains no cycles, 

then no process in the system is deadlocked. If the graph does contain a cycle, then a 

deadlock may exist. 
 

If each resource type has exactly one instance, then a cycle implies that deadlock has 

occurred. If the cycle involves only a set resource types, each of which has only a 

single instance, then a deadlock has occurred. Each process involved the cycle is 

deadlocked. In this case, a cycle in the graph is both a necessary and a sufficient 

condition for the existence of deadlock. 
 

If each resource type has several instances, then a cycle does not necessarily imply 

that a deadlock has occurred. In this case, a cycle in the graph is both a necessary but 

not a sufficient condition for the existence of deadlock. 
 

To illustrate this concept, let us return to the R-A graph depicted in figure 3.1 above. 

Suppose process P3 requests an instance of resource type R2. Since no resource 

instance is currently available, a request edge P3 → R2 is added to the graph (see figure 

3.2). At this point, two minimal cycles exist in the system: 
 

P 1 → R1 → P2 → R3 → P3 → R2 → P1 

P2 → R3 → P3 → R2 → P2 

R1 

R3 
 

 

 

 

 
P1 P2 P3 

 

 

 

 

 

 

 

R2 R4 

Figure 3.2: Resource-Allocation Graph with a Deadlock 
 

Processes P1, P2, and P3 are deadlocked. Process P2 is waiting for resource R3, which is 
held by process P3. Process P3, on the other hand, is waiting for either 

o Process is P2 is holding an instance of resource type R1 and R2, and is 
waiting for an instance of resource type R3. 

o Process is P3 is holding an instance of resource type R3. 
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 We can use a protocol to prevent or avoid deadlocks, ensuring that the system will 

never enter add state. 

 We can allow the system to enter a deadlock state, detect it, and recover. 

 We can ignore the problem altogether, and pretend that deadlocks never occur in 

the system. This method is use by most operating system including UNIX. 

We shall elaborate briefly on each method. Then in the later units, we shall present you 

detailed algorithms. 

 
 

 

process P1 or P2 to release resource R2. In addition, process P1 is waiting for P2 to 

release resource R1. 

Now consider the R-A graph in figure 3.3. 

R1 
P2 

P1 

P3 

R2 

P4 

Figure 3.2: Resource-Allocation Graph with a cycle but no Deadlock 
 

In this example, you also have a cycle: 
 
P 1 → R1 → P3 → R2 → P1 

However, there is no deadlock. Observe that process P4 may release its instance of 

resource type R4 and that resource could then be allocated to P3, breaking the cycle 

Conclusively, if a resource-allocation graph does not have a cycle, then the system is not 

in a deadlock state. On the other hand, if there is a cycle, then the system may or may not 

be in a deadlock state. This observation is important when you deal with deadlock 

problem. 
 

3.3 Methods for Handling Deadlocks 
 

Principally, we can deal with the deadlock problem in one of three ways: 
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5.0    Summary 

A deadlock state occurs when two or more processes are waiting indefinitely for an event 

that can be caused only by one of the waiting processes. 

As discussed in this unit, a deadlock situation may occur if and only if four necessary 

conditions hold simultaneously in the system and there are three principal methods for 

dealing with deadlocks. You will learn about these methods in the next unit. 

To ensure that deadlocks never occur, the system can use either deadlock-prevention or a 

deadlock-avoidance scheme. Deadlock-prevention is a set of methods for ensuring that at 

least one of the necessary conditions (unit 2) cannot hold. These methods prevent 

deadlocks by constraining how requests for resources can be made. These methods are 

discussed in unit 2. 
 

Deadlock avoidance, on the other hand, requires that the operating system be given in 

advance additional information concerning which resources a process will request and 

use during its lifetime. With this additional knowledge, we can decide for each request 

whether or not the process should wait. To decide whether the current request can be 

satisfied or must be delayed, the system must consider the resources currently allocated 

to each process, and the future requests and releases of each process. These schemes are 

discussed in later units. 
 

If system does not employ either a deadlock-prevention or a deadlock-avoidance 

algorithm, then a deadlock situation may occur. In this environment, the system can 

provide an algorithm that examines the state of the system to determine whether a 

deadlock has occurred, and an algorithm to recover from the deadlock (if a deadlock has 

indeed occurred). This issue is discussed in unit 2. 
 

If the system does not ensure that a deadlock will never occur, and also does not provide 

a mechanism for deadlock detection and recovery, then we may arrive at a situation 

where the system is in deadlock state yet has no way of recognizing what has happened. 

In this case, the undetected deadlock will result in the deterioration of the system 

performance, because resources are being held by processes that cannot run, and because 

more and more processes, as they make requests for resources, enter a deadlock state. 

Eventually, system will stop functioning and will need to be restarted manually. 
 

Although this method does not seem to be a viable approach to the deadlock problem, it 

is nevertheless used in some operating systems. In many systems, deadlocks occur 

infrequently like once in a year. Therefore, this method is cheaper than the costly 

deadlock-prevention, deadlock-avoidance, or deadlock-detection and recovery methods 

that must be used constantly. 
 

4.0    Conclusion 

In this unit, you have been exposed to the concept of deadlock problem, necessary 

conditions for its occurrence and some of the ways it can be handled when it occurs. In 

subsequent units, you will be taken through some specific algorithms on each of the 

methods for handling deadlock problems. 
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2. List three examples of deadlocks that are not related  to a  computer system 

environment. 
3. Is it possible to have a deadlock involving only one process? Explain your answer. 

4. Using R-A graph, describe deadlocks 

5. State the necessary conditions for deadlock to occur. 

6. What are the various methods for handling deadlocks? 
 

7.0 References/Further Reading 
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1. E. W. Dijkstra "EWD108: Een algorithme ter voorkoming van de dodelijke 

omarming" (in Dutch; An algorithm for the prevention of the deadly embrace) 

2. Lubomir, F. Bic (2003). Operating System Principles. Prentice Hall. 

3. "Operating System Concepts" by Silberschatz, Galvin, and Gagne (pages 259-261 of 

the 7th edition) 

 
1. Consider the traffic deadlock depicted below: 

(a) Show that the four necessary conditions for deadlock indeed hold in this example. 

(b) State a simple rule that will avoid deadlocks in this system. 
 

 

 

6.0 Tutor-Marked Assignment 
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1.0 Introduction 
 

As you have seen in the previous unit, for a deadlock to occur, each of the four necessary 

conditions must hold. You were also introduced to some of the methods for handling a 

deadlock situation. In this unit you will be fully exposed to deadlock prevention and 

deadlock avoidance approaches. As discussed before, deadlock prevention is all about 

ensuring that at least one of the four necessary conditions cannot hold, we will elaborate 

further by examining each of the four conditions separately. 
 

Deadlock avoidance is an alternative method for avoiding deadlocks which takes care of 

some of the shortcomings of deadlock-prevention such as low device utilization and 

reduced system throughput. In this unit, you will therefore learn how some of the 
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3.1.4 Circular Wait 
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2.0 Objectives 
 

At the end of this unit you should be able to: 
 

 Describe deadlock prevention 

 Explain what is meant by deadlock avoidance 

 Describe Banker‘s algorithm 

 Describe Resource-Allocation graph algorithm 

 Explain what is meant by safe state 

 Describe Deadlock lock detection algorithms and how to recover from 

deadlock 
 

3.0 Main Body 
 

3.1 Deadlock Prevention 
 

As you have seen in unit 1 of this module, for a deadlock to occur, each of the four 

necessary conditions must hold. By ensuring that at least one of the four necessary 

conditions cannot hold, you can prevent the occurrence of a deadlock. Now, we will 

elaborate on this approach by examining each of the four conditions separately. 
 

3.1.1 Mutual Exclusion 
 

The mutual exclusion condition must hold for non-sharable resources. For instance, a 

printer cannot be simultaneously shared by several processes. Sharable resources, on the 

other hand, do not require mutually exclusive access, and thus cannot be involved in a 

deadlock. Read-only files are a good example of a sharable resource. If several processes 

attempt to open a read-only file at the same time, they can be granted simultaneous 

access to the file. A process never needs to wait for a sharable resource. In general, 

however, we cannot prevent deadlocks by denying the mutual-exclusion condition: 

Some resources are intrinsically nonsharable. Algorithms that avoid mutual exclusion are 

called non-blocking synchronization algorithms. 
 

3.1.2 Hold and Wait 
 

To ensure that the hold-and-wait condition never occurs, in the system, we must 

guarantee that, whenever a process requests a resource, it does not hold any other 

resources. One protocol that can be used requires each process to request and be allocated 

all resources before it begins execution. We can implement this provision by requiring 

that system calls requesting resources for a process precede all other system calls. 
 

An alternative protocol allows a process to request resources only when the process has 

none. A process may request some resources and use them. Before it can request any 

algorithms for deadlock prevention, deadlock avoidance and deadlock detection and 

recovery are implemented. 
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i. Resource utilization may be low, since many of the resources may be allocated but 

unused for a long period. In the example given, for instance, we can release the 

tape drive and disk file, and again request the disk file and printer, only if we can 

sure that our data will remain on the disk file. If we cannot be assured that they 

will, then we must request all resources at the beginning for both protocols. 

ii. Starvation is possible. A process that needs several popular resources may have to 

wait indefinitely; because at least one of the resources that it needs is always 

allocated to some other process. 

3.1.3 No Pre-emption 

 

The third necessary condition is that there be no pre-emption of resources that have 

been allocated. To ensure that this condition does not hold, we can use the following 

protocol. 
 

If a process is holding some resources and requests another resource that cannot be 

immediately allocated to it (that is, the process must wait), then all resources are pre- 

empted. In other words, these resources are implicitly released. The pre-empted 

resources are added to the list of resources for which the process is waiting. The 

process will be started only when it can regain its old resources, as well as the new 

ones that it is requesting. 
 

Alternatively, if a process requests some resources, we first check whether they are 

available. If they are, we allocate them. If they are not available we check whether 

they are allocated to some other process that is which waiting for additional resources. 

If so, we pre-empt the desired resources from the waiting process and allocate them to 

the requesting process. If the resources are not either available or held by a waiting 

process, the requesting process must wait. 

 
 

 

additional resources, however, it must release all the resources that it is currently 

allocated. 
 

To illustrate the difference between these two protocols, we consider a process that 

copies data from a tape drive to a disk file, sorts the disk file, and then prints the results to 

a printer. If all resources must be requested at the beginning of the process, then the 

process must initially request the tape drive, disk file and printer. It will hold the printer 

for its entire execution, even though it needs the printer only at the end. 
 

The second method allows the process to request initially only the tape drive and disk 

file. It copies from the tape drive to the disk file. The process must then request the disk 

file and the printer. After copying the disk file to the printer, it releases these two 

resources and terminates. 
 

These protocols have two main disadvantages: 
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While it is waiting, some of its resources may be pre-empted, but only if another 

process requests them. A process can be restarted only when it is allocated the new 

resources it is requesting and recovers any resources that were pre-empted while it is 

waiting. 
 

This protocol is often applied to resources whose state can be easily saved and 

restored later such as CPU registers and memory space. It cannot generally be applied 

to such resources as printer and tape drives. 
 

3.1.4 Circular Wait 
 

The fourth and final condition for deadlocks is the circular wait condition. Circular wait 

prevention consists in allowing processes to wait for resources, but ensure that the 

waiting cannot be circular. One approach might be to assign a precedence/ordering to 

each resource and force processes to allocate resources in order of increasing precedence. 

That is to say that if a process holds some resources and the highest precedence of these 

resources is m, then this process cannot request any resource with precedence/ordering 

smaller than m. This forces resource allocation to follow a particular and non-circular 

ordering, so circular wait cannot occur. 
 

Another approach is to allow holding only one resource per process; if a process requests 

another resource, it must first free the one it's currently holding (or hold-and-wait). 
 

3.2 Deadlock Avoidance 
 

Deadlock can be avoided if certain information about processes is available in advance of 

resource allocation. For every resource request, the system sees if granting the request 

will mean that the system will enter an unsafe state, meaning a state that could result in 

deadlock. The system then only grants request that will lead to safe states. In order for the 

system to be able to figure out whether the next state will be safe or unsafe, it must know 

in advance at any time the number and type of all resources in existence, available, and 

requested. 
 

Each request requires that the system consider the resources currently available, the 

resources currently allocated to each process, and the future requests and releases of each 

process, to decide whether the current request can be satisfied or must wait to avoid a 

possible future deadlock. 
 

The various algorithms differ in the amount and type of information required. The 

simplest and most useful model requires that each process declare the maximum number 

of resources of each type that it may need. Given a priori information, about the 

maximum number of resources of each type that may be requested for each process, it is 

possible to construct an algorithm that ensures that the system will never enter a deadlock 

state. This algorithm defines the deadlock-avoidance approach. A deadlock-avoidance 

algorithm dynamically examines the resource-allocation state to ensure that a circular 
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It is important to note that a process may be in unsafe state but would not result in a 

deadlock. The not ion of safe/unsafe state only refers to the ability of the system to enter 

a deadlock state or not . For example, if a process requests A which would result in an 

unsafe state, but releases B which would prevent circular wait, then the state is unsafe but 

the system is not in deadlock. 
 

3.2.1 Safe State 
 

A state is safe if the system can allocate resources to each process (up to its 

maximum) in some order and still avoid a deadlock. More formerly, a system is in a 

safe state only if there exists a safe sequence. A sequence of processes <P1, P2,,…, Pn> 

is a safe sequence for the current allocation state if, for each Pi, the resources that Pi, 

can still request can be satisfied by the currently available resources plus the resources 

held by all the Pj, with j < i. In this situation, if the resources that process Pi needs are 

not immediately available, then Pi can wait until all Pj have finished. When they have 

finished, Pi can obtain all its needed resources, complete its designated task, return its 

allocated resources and terminate. When Pi terminates, Pi+1 can obtain its needed 

resources and so on. If no such sequence exists, then the system state is said to be 

unsafe. 

 
 

 Wait/Die Wound/Wait 

O is waiting for a 

resource that is 

being held by Y 

 
O waits 

 
Y dies 

Y is waiting for a 

resource that is 

being held by O 

 
Y dies 

 
Y waits 

 

wait condition can never exist. The resource-allocation state is defined by the number of 

available and allocated resources, and the maximum demands of the processes. 
 

One known algorithm that is used for deadlock avoidance is the Banker's algorithm, 

which requires resource usage limit to be known in advance. However, for many systems 

it is impossible to know in advance what every process will request. This means that 

deadlock avoidance is often impossible. 
 

Two other algorithms are Wait/Die and Wound/Wait, each of which uses a symmetry- 

breaking technique. In both these algorithms there exists an older process (O) and a 

younger process (Y). Process age can be determined by a timestamp at process creation 

time. Smaller timestamps are older processes, while larger timestamps represent younger 

processes. 
 

Table 1 
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 Processes Maximum 

Needs 

Current 

Needs 

 

P0 10 5 

P1 4 2 

P2 9 2 

 

At time t0, the system is in a safe state. The sequence < P1, P0 P3> satisfies the safety 

condition, since process P1 can immediately be allocated all its tape drives and then 

return them (the system will then have 5 available tape drives), then process P0 can get 

all its tape and return them ( the system will then have 10 available tape drives), and 

finally process P2 could get all its tape drives and return them (the system will then 

have all its 12 tape drives available). 

A safe state is not a deadlock state. Conversely, a deadlock state is an unsafe state. 

Not all unsafe states are deadlocks, however, an unsafe state may lead to a deadlock. 

As long as the state is safe, the operating system can avoid unsafe (and deadlock) 

state. In an unsafe state, the operating system cannot prevent processes from request 

resources such that a deadlock occurs: The behaviour of the processes controls unsafe 

states. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.1: Safe, Unsafe, and Deadlock State Spaces 
 

To illustrate, let us consider a system with 12 magnetic tape drives, and processes: P0, 

P1, ,and P2. Process P0, requires 10 tape drives, process P1 may need as many as 4, and 

process P2 may need up to 9 tape drives. Suppose that at time t0, process P0 is holding 

5 tape drives, process P1 is holding 2, and process P2 is holding 2 tape drives. 

Therefore, there are 3 free tape drives. 
 

Table 2 

Unsafe 

 
 

safe 

 
Deadlock 
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A system may go from a safe state to an unsafe state. Suppose that at time t1, process P2 

requests and is allocated one more tape drive. The system is no longer in a safe state. At 

this point, only process P1 can be allocated all its tape drive. If we had made P2 wait until 

either of the other processes had finished and released its resources, then we could have 

avoided the deadlock. 
 

Given the concept of safe state, we can define avoidance algorithms that ensure that the 

system will never deadlock. The idea is simply to ensure that the system will always 

remain in a safe state. Initially, the system is in a safe state. Whenever a process requests 

a resource that is currently available, the system must decide whether the resource can be 

allocated immediately or whether the process must wait. The request is granted only if 

the allocation leaves the system in a safe state. 
 

In this scheme, if a process requests a resource that is currently available, it may still 

have to wait. Therefore, resource utilization may be lower than it would be without a 

deadlock-avoidance algorithm. 
 

3.2.2 Resource-Allocation Graph Algorithm 
 

If we have a resource-allocation system with only one instance of each resource type, a 

variant of the resource-allocation graph defined in Section 3.2.2 of the last unit can be 

used for deadlock avoidance. 
 

In addition to the request and assignment edges, we introduce a new type of edge, called 

a claim edge. A claim edge Pi → Rj indicates that process Pi may request resource Rj at 

some time in the future. This edge resembles a request edge in direction, but is 

represented by a dashed line. When process Pi requests resource Rj, the claim edge Pi → 

Rj is converted to a request edge. Similarly when a resource Rj is released by Pi, the 

assignment edge Rj → Pi is reconverted to a claim edge Pi → Rj. Note that the resources 

must be claimed a priori in the system. That is, before process Pi starts executing, all its 

claim edges must already appear in the resource-allocation graph. We can relax this 

condition by allowing a claim edge Pi → Rj to be added to the graph only if all the edges 

associated with process Pi are claim edges. 
 

Suppose process Pi request resource Rj. The request can be granted only if converting the 

request edges Pi → Rj to an assignment edge Rj → Pi does not result in the formation of 

a cycle in the resource-allocation graph. You check for safety by using a cycle-detection 

algorithm. An algorithm for detecting a cycle in this graph requires an order of n
2
 

operations, where n is the number of processes in the system. 
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R1 
 

 

 

 

P1 P2 
 

 

 
 

R2 
 
 

Figure 3.2 Resource-Allocation graph for deadlock avoidance 
 

If no cycles exists, then the allocation of the resource will leave the system in a safe state. 

If a cycle is found, then the allocation will put the system in an unsafe state. Therefore, 

process Pi will have to wait for its requests to be satisfied. 
 

To illustrate this algorithm, we consider the resource-allocation graph of Figure 3.2. 

Suppose that P2 requests R2. Although R2 is currently free, we cannot allocate it to P2, 

since this will create a cycle in the graph (Figure 3.3). A cycle indicates that the system is 

in an unsafe state. If P1 requests R2, and P2 requests R1, then a deadlock will occur. 

 

R1 
 

 

 

 

P1 P2 
 

 

 
 

R2 
 
 

Figure 3.3 An unsafe state in a Resource-Allocation graph 
 

 

 

3.2.3 Banker’s Algorithm 
 

The resource-allocation graph algorithm is not applicable to a resource-allocation system 

with multiple instances of each resource type. The deadlock-avoidance algorithm that we 

describe next is applicable to such a system, but is less efficient than the resource- 

allocation graph scheme. This algorithm is commonly known as the ―Banker‘s 

Algorithm‖. The name was chosen because this algorithm could be used in a banking 
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 How much of each resource each process could possibly request? 
 How much of each resource each process is currently holding? 

 How much of each resource the system has available? 

Some of the resources that are tracked in real systems are memory, semaphores and 

interface access. 
 

Example 1 
 

Assuming that the system distinguishes between four types of resources, (A, B, C and D), 

the following is an example of how those resources could be distributed. Note that this 

example shows the system at an instant before a new request for resources arrives. Also, 

the types and number of resources are abstracted. Real systems, for example, would deal 

with much larger quantities of each resource. 

 
Available system resources: 

A B C D 

4 3 3 3 

 

Processes (currently allocated resources): 

A B C D 

P1 1 2 2 1 

P2 1 0 3 3 

P3 1 1 1 0 

 

Processes (maximum resources): 

A B C D 

P1 3 3 2 2 

P2 1 2 3 4 

P3 1 1 5 0 

3.2.3.3 Safe and Unsafe States 

 
 

 

system to ensure bank never allocates its available cash such that it can no longer satisfy 

the needs of all it customers. 

3.2.3.1 Algorithm 

The Banker's algorithm is run by the operating system whenever a process requests 

resources. The algorithm prevents deadlock by denying or postponing the request if it 

determines that accepting the request could put the system in an unsafe state (one where 

deadlock could occur). 

3.2.3.2 Resources 

For the Banker's algorithm to work, it needs to know three things: 
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1. P1 acquires 2 A, 1 B and 1 D more resources, achieving its maximum 

o The system now still has 1 A, no B, 1 C and 1 D resource available 

2. P1 terminates, returning 3 A, 3 B, 2 C and 2 D resources to the system 

o The system now has 4 A, 3 B, 3 C and 3 D resources available 

3. P2 acquires 2 B and 1 D extra resources, then terminates, returning all its 

resources 

o The system now has 5 A, 3 B, 6 C and 6 D resources 

4. P3 acquires 4 C resources and terminates 

o The system now has all resources: 6 A, 4 B, 7 C and 6 D 

5. Because all processes were able to terminate, this state is safe 

Note that these requests and acquisitions are hypothetical. The algorithm generates them 

to check the safety of the state, but no resources are actually given and no processes 

actually terminate. Also note that the order in which these requests are generated – if 

several can be fulfilled – does not matter, because all hypothetical requests let a process 

terminate, thereby increasing the system's free resources. 
 

For an example of an unsafe state, look at what would happen if process 2 were holding 1 

more unit of resource B at the beginning. 

3.2.3.4 Requests 

When the system receives a request for resources, it runs the Banker's algorithm to 

determine if it is safe to grant the request. The algorithm is fairly straight forward once 

the distinction between safe and unsafe states is understood. 

 
 

 

 

1. Can the request be granted?  

A state (as in the above example) is considered safe if it is possible for all processes to 

finish executing (terminate). Since the system cannot know when a process will 

terminate, or how many resources it will have requested by then, the system assumes that 

all processes will eventually attempt to acquire their stated maximum resources and 

terminate soon afterward. This is a reasonable assumption in most cases since the system 

is not particularly concerned with how long each process runs (at least not from a 

deadlock avoidance perspective). Also, if a process terminates without acquiring its 

maximum resources, it only makes it easier on the system. 
 

Given that assumption, the algorithm determines if a state is safe by trying to find a 

hypothetical set of requests by the processes that would allow each to acquire its 

maximum resources and then terminate (returning its resources to the system). Any state 

where no such set exists is an unsafe state. 
 

Example 2 
 

We can show that the state given in the previous example is a safe state by showing that 

it is possible for each process to acquire its maximum resources and then terminate. 
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Whether the  system  denies  an  impossible  or  unsafe  request or makes  it wait is  an 

operating system specific decision. 
 

Example 3 
 

Continuing the previous examples, assume process 3 requests 2 units of resource C. 

1. There is not enough of resource C available to grant the request 

2. The request is denied 

 

On the other hand, assume process 3 requests 1 unit of resource C. 

1. There are enough resources to grant the request 

2. Assume the request is granted 

o The new state of the system would be: 

A B C D 

Free 3 1 0 2 

P1 1 2 2 1 

P2 1 0 3 3 

P3 1 1 2 0 

1. Determine if this new state is safe 

1. 

2. 

3. 
4. 

P1 can acquire 2 A, 1 B and 1 D resources and terminate 

Then, P2 can acquire 2 B and 1 D resources and terminate 

Finally, P3 can acquire 3 C resources and terminate 

Therefore, this new state is safe 
2. Since the new state is safe, grant the request 

 

Finally, assume that process 2 requests 1 unit of resource B. 

1. 

2. 

There are enough resources 

Assuming the request is granted, the new state would be: 

A B C D 

Free 3 0 1 2 

P1 1 2 2 1 

P2 1 1 3 3 

 
 

 

 

 

 

 

 

 

 

o If so, grant the request 

o If not, either deny the request or put it on a waiting list 

2. Assume that the request is granted 

3. Is the new state safe? 

o If not, the request is impossible and must either be denied or put on a 

waiting list 
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Since the state is unsafe, deny the request 2. 

o P1 is unable to acquire enough B resources 

o P2 is unable to acquire enough B resources 

o P3 is unable to acquire enough C resources 

o No process can acquire enough resources to terminate, so this state 

is not safe 

Is this state safe? Assuming P1, P2, and P3 request more of resource B and 

C. 

1. 

 
 

 

Note that in this example, no process was able to terminate. It is possible that some 

processes will be able to terminate, but not all of them. That would still be an unsafe 

state. 
 

3.2.3.5 Trade-offs 
 

Like most algorithms, the Banker's algorithm involves some trade-offs. Specifically, it 

needs to know how much of each resource a process could possibly request. In most 

systems, this information is unavailable, making the Banker's algorithm useless. Besides, 

it is unrealistic to assume that the number of processes is static. In most systems the 

number of processes varies dynamically. Moreover, the requirement that a process will 

eventually release all its resources (when the process terminates) is sufficient for the 

correctness of the algorithm, however it is not sufficient for a practical system. Waiting 

for hours (or even days) for resources to be released is usually not acceptable. 
 

 

 

3.3 Deadlock Detection 
 

Often neither deadlock avoidance nor deadlock prevention may be used. Instead, 

deadlock detection and process restart are used by employing an algorithm that tracks 

resource allocation and process states, and rolls back and restarts one or more of the 

processes in order to remove the deadlock. Detecting a deadlock that has already 

occurred is easily possible since the resources that each process has locked and/or 

currently requested are known to the resource scheduler or OS. 
 

Detecting the possibility of a deadlock before it occurs is much more difficult and is, in 

fact, generally undecidable, because the halting problem can be rephrased as a deadlock 

scenario. However, in specific environments, using specific means of locking resources, 

deadlock detection may be decidable. In the general case, it is not possible to distinguish 

between algorithms that are merely waiting for a very unlikely set of circumstances to 

occur and algorithms that will never finish because of deadlock. 
 

3.4 Distributed deadlock 

P3 1 1 1 0 
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 Abort all deadlocked processes: this method clearly will break the deadlock 

cycle, but at a great expense; these processes may have computed for a long time, 

and the results of these partial computations must be discarded and probably 

recomputed later. 

 Abort one process at a time until the deadlock cycle is eliminated: this method 

incurs considerable overhead, since, after each process is aborted, a deadlock- 

detection algorithm must be invoked to determine whether any processes are still 

deadlocked. 

Aborting a process may not be easy. If the process was in the midst of updating a file, 

terminating it will leave that file in an incorrect state. Similarly, if the process was in the 

midst of printing data on the printer, the system must reset the printer to a correct state 

before printing the next job. 
 

If the partial termination method is used, then, given a set of deadlocked processes, we 

must determine which process (or processes) should be terminated in an attempt to break 

the deadlock. This determination is a policy decision, similar to CPU scheduling 

problems. The question is basically an economic one. We should abort those processes 

the termination of which will incur the minimum cost. Unfortunately, the term minimum 

cost is not a precise one. Many factors may determine which process is chosen, 

including: 

Distributed deadlocks can occur in distributed systems when distributed transactions or 

concurrency control is being used. Distributed deadlocks can be detected either by 

constructing a global wait-for graph from local wait-for graphs at a deadlock detector or 

by a distributed algorithm like edge chasing. 
 

Phantom deadlocks are deadlocks that are detected in a distributed system but do not 

actually exist - they have either been already resolved or no longer exist due to 

transactions aborting. 
 

3.5 Recovery from Deadlock 
 

When a detection algorithm determines that a deadlock exists, several alternatives exists. 

One possibility is to inform the operator that a deadlock has occurred, and to let the 

operator deal with the deadlock manually. The other possibility is to let the system 

recover from the deadlock automatically. There are two options for breaking a deadlock. 

One solution is simply to abort one or more processes to break the circular wait. The 

second option is to pre-empt some resources from one or more of the deadlocked 

processes. 
 

3.5.1 Process Termination 
 

To eliminate deadlocks by aborting process, we use one of two methods. In both 

methods, the system reclaims all resources allocated to the terminated processes. 
 

 

 

1. What the priority of the process is?  
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3.5.2 Resource Pre-emption 
 

To eliminate deadlocks using resource pre-emption, we successfully pre-empt some 

resources from processes and give these resources to other processes until the deadlock 

cycle is broken. 
 

If pre-emption is required to deal with deadlocks, then three issues need to be addressed: 

1. Selecting a victim: which resources and which processes are to be pre-empted? 

As in process termination, w must determine the order of pre-emption to minimize 

cost. Cost factors may include such parameters as the number of resources a 

deadlock process is holding, and the amount of time a deadlocked process has thus 

far consumed during its execution. 

2. Rollback: if we pre-empt, a resource from a process, what should be done with 

that process? Clearly it cannot continue with its normal execution; it is missing 

some needed resource. We must roll back the process to some safe state, and 

restart it from that state. 

Since, in general, it is difficult to determine what a safe state is, the simplest 

solution is a total rollback. Abort the process and then restart it. However, it is 

more effective to roll back the process only as far as necessary to break the 

deadlock. On the other hand, this method requires the system to keep more 

information about the state of all the running processes. 

3. Starvation: how do we ensure that starvation will not occur. That is, how can we 

guarantee that resources will not always be pre-empted from the same process? 

In a system where victim selection is based primarily on cost factors, it may 

happen that the same process is always picked as a victim. As a result, this process 

never completes its designated task, a starvation situation that needs to be dealt 

with in any practical system. Clearly, we must ensure that a process can be picked 

as a victim only a (small) finite number of times. The most common solution is to 

include the number of rollbacks in the cost factor. 

3.6 Livelock 
 

A livelock is similar to a deadlock, except that the states of the processes involved in the 

livelock constantly change with regard to one another, none progressing. Livelock is a 

 
 

 

 

 

 

 

2. How long the process has computed, and how much longer the process will 

compute before completing its designated task.? 

3. How many and what type of resources the process has used (for example, whether 

the resources are simple to pre-empt)? 

4. How many more resources the process needs in order to complete? 

5. How many processes will need to be terminated? 

6. Whether the process is interactive or batch? 
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4.0 Conclusion 
 

In this unit, you have learnt more about deadlocks especially the three methods for 

dealing with deadlocks: 

 Use some protocol to prevent or avoid deadlocks, ensuring that the system will 

never enter a deadlock state. 

 Allow the system to enter deadlock state, detect it, and then recover. 

 Ignore the problem altogether, and pretend  that deadlocks never  occur in the 

system. This solution is the one used by most operating systems including UNIX. 

 
 

 

 

 

 

 

 
 

 

 

5.0 Summary 
 

A deadlock situation may occur if and only if four necessary conditions hold 

simultaneously in the system: mutual exclusion, hold and wait, no pre-emption, and 

circular wait. To prevent deadlocks, we ensure that at least one of the necessary 

conditions never holds. 
 

Another method for avoiding deadlocks that is less stringent than the prevention 

algorithms is to have a priori information on how each process will be utilizing the 

resources. The banker‘s algorithm, for example, needs to know the maximum number of 

each resource class that may be requested by each process. Using this information, we 

can define a deadlock-avoidance algorithm. 
 

If a system does not employ a protocol to ensure that deadlocks will never occur, then 

detection algorithm must be invoked to determine whether a deadlock has occurred. If a 

deadlock is detected, the system must recover either by terminating some of the 

deadlocked processes, or by pre-empting resources from some of the deadlocked 

processes. 
 

In a system that selects victims for rollback primarily on the basis of cost factors, 

starvation may occur. As a result, the selected process never completes its designated 

task. 

special case of resource starvation; the general definition only states that a specific 

process is not progressing. 
 

As a real-world example, livelock occurs when two people meet in a narrow corridor, and 

each tries to be polite by moving aside to let the other pass, but they end up swaying from 

side to side without making any progress because they always both move the same way at 

the same time. 

Livelock is a risk with some algorithms that detect and recover from deadlock. If more 

than one process takes action, the deadlock detection algorithm can repeatedly trigger. 

This can be avoided by ensuring that only one process (chosen randomly or by priority) 

takes action. 
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a. Increase Available (new resources added) 

b. Decrease Available (resources permanently removed from system) 
c. Increase Max for one process (the process needs more resources than allowed, it 

may want more) 

d. Decrease Max for one process (the process decides it does not need that many 

resources) 

e. Increase the number of processes 

f. Decrease the number of processes 

2. Consider a system consisting of four resources of the same type that are shared by 

three processes, each of which needs at most two resources. Show that the system is 

deadlock-free. 
 

3. Consider a system that runs 5,000 jobs per month with no deadlock-prevention or 

deadlock-avoidance scheme. Deadlocks occur about twice per month, and the operator 

must terminate and rerun about 10 jobs per deadlock. Each job is worth about N2.00 

(in CPU time), and the jobs terminated tend to be about half-done when they are 

aborted. 

A systems programmer has estimated that a deadlock-avoidance algorithm (like the 

banker‘s algorithm) could be installed in the system with an increase in the average 

execution time per job of about 10 percent. Since the machine currently has 30-percent 

idle time, all 5,000 jobs per month could still be run, although turnaround time would 

increase by about 20 percent on average. 

a. What are the arguments for installing the deadlock-avoidance algorithm? 

b. What are the arguments against installing the deadlock-avoidance algorithm? 

4. Consider the following snapshot of a system: 

 
 

 

 

 

 

 

Allocation Max  Available 

A B C D A B C D A B C D 

P0 0 0 1 2 0 0 1 2 1 5 2 0 

P1 1 0 0 0 1 7 5 0  

P2 1 3 5 4 2 3 5 6  

P3 0 6 3 2 0 6 5 2  

P4 0 0 1 4 0 6 5 6  

6.0 Tutor Marked Assignment 
 

1. In a real computer system, neither the resources available nor the demands of 

processes for resources are consistent over long periods (months). Resources break or 

are replaced, new processes come and go, new resources are bought and added to the 

system. If deadlocks is controlled by the banker‘s algorithm, which of the following 

changes can be made safely (without introducing the possibility of deadlock), and 

under what circumstances? 



174  

a) What is the content of the matrix Need? 

b) Is the system in a safe state? 
c) If a request from process P1 arrives for (0,4,2,0), can the request be granted 

immediately? 

5. Consider the following resource-allocation policy. Requests and releases for resources 

are allowed at any time. If a request for resources cannot be satisfied because the 

resources are not available, then we check any processes that are blocked, waiting for 

resources. If they have the desired resources, then these resources are taken away from 

them and are given to the requesting process. The vector of resources for which the 

waiting process is waiting is increased to include the resources that were taken away. 
 

For example, consider a system with three resource types and the vector Available 

initialized to (4,2,2). If process P0 asks for (2,2,1), it gets them. If P1 asks for (1,0,1), it 

gets them. Then, if P0 asks for (0,0,1), it is blocked (resource not available). If P2 now 

asks for (2,0,0), it gets the available one (1,0,0) and one that was allocated to P0 (since 

P0 is blocked). P0‘s Allocation vector goes down to (1,2,1), and its Need vector goes 

up to (1,0,1). 

a) Can deadlock occur? If so, give an example. If not, which necessary 

condition cannot occur? 

b) Can indefinite blocking occur? 
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Answer the following questions using the banker‘s algorithm: 
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3.1 Address Binding 

  3.2 Logical Address Space Versus Physical Address Space  
3.3. Dynamic Loading 

3.4 Dynamic Linking and Shared Libraries 

3.5 Overlays 

4.0 Conclusion 

5.0 Summary 

6.0 Tutor-Marked Assignment 
7.0 References/Further Reading 

 

 

1.0 Introduction 
 

In module 3 you were shown how the CPU can be shared by a set of processes. As a 

result of CPU scheduling, we can improve both the utilization of the CPU and the speed 

of the computer‘s response to its users. To realise this increase in performance, however, 

we must keep several processes in memory; that is, we must share memory. 
 

In this module, we will discuss various ways to manage memory. The memory- 

management algorithms vary from a primitive bare-machine approach to paging and 

segmentation strategies. Each approach has its own advantages and disadvantages. 

Selection of a memory-management method for a specific system depends on many 

factors, especially on the hardware design of the system. As you shall see, many 

algorithms require hardware support, although recent designs have closely integrated the 

hardware and operating system. 
 

As you learnt in the first module of this course, memory is central to the operation of a 

modern computer system. Memory consist of a large array of words or bytes, each with 

its own address. The CPU fetches instructions from memory according to the value of the 

program counter. These instructions may cause additional loading from and storing to 

specific memory addresses. 
 

A typical instruction-execution cycle, for example, first fetches an instruction from 

memory. The instruction is then decoded and may cause operands to be fetched from 

memory. After the instruction has been executed on the operands, results may be stored 

back in memory. The memory unit sees only a stream of memory addresses; it does not 

know how they are generated (by the instruction counter, indexing, indirection, literal 

addresses, etc.) or what they are for (instructions or data). Accordingly, we can ignore 

Module 6: Memory Management 
 

Unit 1: Memory Management Fundamentals 
 

Table of Contents 
 

1.0 Introduction 

2.0 Objectives 

3.0 Main body 
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 Describe address binding 

 Define logical and physical address space 

 Briefly explain dynamic loading 

 Distinguish between dynamic loading and dynamic linking 

 Define what is meant by shared libraries 

 Describe the principle of overlays and its uses 

 
 

 

3.0 Main Body 
 

3.1 Address Binding 
 

Usually a program resides on a disk as a binary executable file. The program must be 

brought into memory and placed within a process for it to be executed. Depending on the 

memory management in use, the process may be moved between disk memory during its 

execution. The collection of processes on the disk that is waiting to be brought into 

memory for execution forms the input queue. 
 

The normal procedure is to select one of the processes in the input queue and to load that 

process into memory. As the process is executed, it accesses instructions and data from 

memory. Eventually, the process terminates, and its memory space is declared available. 
 

Most systems allow user process to reside in any part of the physical memory. Therefore, 

although the address space of the computer starts at 00000, the first address of the user 

process does not need to be 00000. This arrangement affects the addresses that the user 

program can use. In most cases, a user program will go through several steps, some of 

which may be optional, before being executed (Figure 3.1). Addresses may be 

represented in different ways during these steps. Addresses in the source program are 

generally symbolic (such as count). A compiler will typical bind these symbolic 

addresses to relocatable addresses (such as ―14 bytes from the beginning of this 

module‖). The linkage editor or loader will in turn bind these relocatable addresses to 

absolute addresses (such as 74014). Each binding is a mapping from one address space to 

another. 
 

Classically the binding of instructions and data to memory addresses can be done at any 

step along the following ways: 
 

Compile time: if you know at compile time where the process will reside in memory, 

then absolute code can be generated. For instance, if you know a priori that a user process 

resides starting at location R, then the generated compiler code will start at that location 

how a memory address is generated by a program. We are interested in only the sequence 

of memory addresses generated by a running program. 
 

2.0 Objectives 
 

At the end of this unit you should be able to: 
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and extend up from there. If at some later time, the starting location changes, then it will 

be necessary to recompile this code. The MS-DOS .COM-format programs are absolute 

code bound at compile time. 
 

Load time: If it is not known at compile time where the process will reside in memory, 

then the compiler must generate relocatable code. In this case, final binding is delayed 

until load. If the starting address changes, you need only to reload the user code to 

incorporate this changed value. 
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Figure 3.1: Multistep processing of a user program. 
 

Execution time: If the process can be moved during its execution from one memory 

segment to another, then binding must be delayed until run time. Special hardware must 
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Meanwhile, we illustrate this mapping with a simple MMU scheme which is a 

generalization of the base-register scheme. 

be available for this scheme to work, as you will learn in the next section. Most general 

purpose operating system use this method. 
 

A major part of this module is devoted to showing how these various bindings can be 

implemented effectively in a computer system and to discussing appropriate hardware 

support. 
 

3.2 Logical-Address Space Versus Physical-Address Space 
 

An address generated by the CPU is commonly referred to as logical address, whereas an 

address seen by the memory unit – that is, the one loaded into the memory-address 

register of the memory – is commonly referred to as a physical address. 
 

The compile-time and load-time address-binding methods generate identical logical and 

physical addresses. However, the execution-time address-binding scheme results in 

differing logical and physical addresses. In this case, we usually refer to the logical 

address as a virtual address. We use logical address and virtual address interchangeably 

in this text. The set of all logical addresses generated by a program is a logical-address 

space; the set of all physical addresses corresponding to these logical addresses is a 

physical-addresses space. Thus, in the execution-time address-binding scheme, the 

logical- and physical-address spaces differ. 
 

The run-time mapping from virtual to physical addresses is done by a hardware device 

called the memory-management unit (MMU). We can choose from among many 

different methods to accomplish such a mapping as you will learn in subsequent sections 

of this unit. 
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Figure 3.2: Dynamic relocation using a relocation register. 
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This method requires the hardware support illustrated in figure 3.2. The base register is 

here called relocation register. The value in the relocation register is added to every 

address generated by a user process at the time it is sent to memory. For example, if the 

base is at 14000, then an attempt by the user to address location 0 is dynamically 

relocated to location 14000; an access to location 455 is mapped to location 14455. The 

MS-DOS operating system running on the Intel 80x86 family of processors uses four 

relocation registers when loading and running processes. 
 

The user program never sees the real physical addresses. The program can create a 

pointer to location 455, store it in memory, manipulate it, compare it to other addresses – 

all as the number 455. Only when it is used as a memory address (in an indirect load or 

store, perhaps) is it relocated relative to the base register. The user program deals with 

logical addresses. The memory-mapping hardware converts logical addresses into 

physical addresses. You learnt about this form of execution-time binding in the previous 

section. The final location of a referenced memory address is not determined until the 

reference is made. 
 

We now have two different types of addresses: logical addresses (in the range of 0 to 

max) and physical addresses (in the range R + 0 to R + max for base value R). The user 

generates only logical addresses and thinks that the process runs in location 0 to max. The 

user program supplies logical addresses, these logical addresses must be mapped to 

physical addresses before they are used. 
 

Note that the concept of logical-address space that is bound to a separate physical- 

address space is central to proper memory management. 
 

3.3 Dynamic Loading 

 

So far you have learnt that the entire program and data must be in physical memory for the process 

to execute. The size of a process is limited to the size of physical memory. To obtain better 

memory-space utilization, we can use dynamic loading. With dynamic loading, a routine is not 

loaded until it is called. All routines are kept on disk in a relocatable format. The main program is 

loaded into memory and is executed. When a routine needs to call another routine, the calling 

routine first checks to see whether the other routine has been loaded. If not, the relocatable linking 

loader is called to load the desired routine into memory and to update the program‘s address tables 

to reflect this change. Then control is passed to the newly loaded routine. 

 

The advantage of dynamic loading is that an unused routine is never loaded. This method is 

particularly useful when large amounts of code are needed to handle infrequently occurring cases, 

such as error routines. In this case, although the total program size may be large, the portion that is 

used (and hence loaded) may be much smaller. 

 

Dynamic loading does not require special support from the operating system. It is the responsibility 

of the users to design their programs to take advantage of such method. Operating system may help 

the programmer, however, by providing library routines to implement dynamic loading. 

 

3.4 Dynamic Linking and Shared Libraries 
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Figure 3.1 also shows the dynamically linked libraries. Some operating systems support only static 

linking, in which the system language libraries are treated like any other object module and are 

combined by the loader into the binary program image. The concept of dynamic linking is similar to 

that of dynamic loading. Rather than loading being postponed until execution time, linking is 

postponed. This feature is usually used with system libraries, such as language subroutine libraries. 

Without this facility, all programs on a system need to have a copy of their language library (or at 

least the routine referenced by the program) included in the executable image. This requirement 

wastes both disk space and main memory. With dynamic linking, a stub is included in the image for 

each library-routine reference. This stub is a small piece of code that indicates how to locate the 

appropriate memory-resident library routine or how to load the library if the routine is not already 

present. 

 

When this stub is executed, it checks to see whether the needed routine is already in memory. If not, 

the program loads the routine into memory. Either way, the stub replaces itself with the address of 

the routine, and executes the routine. Hence, the next time that the code segment is reached, the 

library routine is executed directly incurring no cost for dynamic linking. Under this scheme, all 

processes that use a language library execute only one copy of the library code. 

 

This feature can be extended to library updates (such as bug fixes). A library may be replaced by a 

new version, and all programs that reference the library will automatically use the new version. 

Without dynamic linking, all such programs would need be relinked to gain access to the new 

library. So that programs will not accidentally execute new, incompatible versions of libraries, 

version information is included in both the program and the library. More than one version of a 

library may be loaded into memory, and each program uses its version information to decide which 

copy of the library to use. Minor changes retain the same version number, whereas major changes 

increment the version number. Therefore only programs that are compiled with new library version 

are affected by the incompatible changes incorporated in it. Other programs linked before the new 

library was installed will continue using the older library. This system is also known as shared 

libraries. 

 

Unlike dynamic loading, dynamic linking generally requires help from the operating system. If the 

processes in memory are protected from one another, then the operating system is the only entity 

that can check to see whether the needed routine is in another process‘ memory space, or that can 

allow multiple processes to access the same memory addresses. 

 

3.5 Overlays 

 

You can use overlays to enable a process to be larger than the amount of memory allocated to it. 

The idea is to keep in memory only the instructions and data that are need at any given time. When 

other instructions are needed, they are loaded into space previously occupied by instructions that are 

no longer needed. 

 

For example, consider a two- pass assembler. During pass 1, it constructs a symbol table and during 

pass 2, it generates machine-language code. You may be able to partition such an assembler into 

pass 1 code, pass 2 code, the symbol table and common support routines used by both passes 1 and 

2. Assume that the sizes of these components are as follows: 

 

Pass 1 90 KB 

Pass 2 60 KB 

Symbol table 40 KB 
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symbol table 40K 

common 

routines 
50K 

overlay drivers 10K 

90K pass 1 pass 2 
60K 

Figure 3.3: Overlay for a two-pass assembler 
 

3.5 Swapping 
 

As you have learnt so far in the course, a process needs to be in memory to be executed. A 

process, however, can be swapped temporarily out of memory to a backing store, and then 

brought back into memory for continued execution. For example, assume a 

multiprogramming environment with a round-robin CPU-scheduling algorithm. When a 

quantum expires, the memory manager will start to swap out the process that just finished, 

and to swap in another process to the memory space that has been freed (Figure 3.4). In the 

Common routines 50 KB 

 

To load everything at once, you would require 240 KB of memory. If only 200 KB is available, you 

cannot run your process. However, not ice that pass 1 and pass 2 do not need to be in memory at 

the same time. You can therefore define two overlays as follows: 

 

Overlay A is the symbol table, common routines and pass 1. 

Overlay B is the symbol table, common routines and pass 2. 

You then add an overlay driver of say 10 KB and start with overlay A in memory. When you finish 

pass 1, you jump to the overlay driver which reads overlay B into memory overwriting overlay A, 

and then transfer control to pass 2. Overlay A needs 180 KB while overlay B needs only 150 KB 

(see figure 3.3). You can then run your assembler in the 200 KB memory. It will load faster due to 

the fact that fewer data need to be transferred before execution starts. However, it will run slower, 

due to the extra I/O to read the code for overlay B over the code for overlay A. 

 

The codes for overlay A and B are kept on disk as absolute memory images, and are read by the 
overlay drivers as needed. 

 

As in dynamic loading, overlays do not require any special support from the operating system. 
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meantime, the CPU scheduler will allocate a time slice to some other process in memory. 

When each process finishes its quantum, it will be swapped with another process. 
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Figure 3.4: Swapping of two processes using a disk as a backing store 
 

Normally a process that is swapped out will be swapped back into the same memory space 

that it occupied previously especially if binding is done at assembly or load time. However, 

if execution time binding is being used, then the process can be swapped into a different 

memory space because the physical addresses are computed at execution time. 
 

As earlier mentioned, swapping requires a backing store. The backing store is commonly a 

fast disk which must be large enough to accommodate copies of all memory images for all 

users. It must also provide a direct access to these memory images. The system maintains a 

ready queue consisting of all processes whose memory images are on the backing store or in 

memory and are ready to run. Whenever the CPU scheduler decides to execute a process, it 

calls the dispatcher. The dispatcher checks to see whether the next process in the queue is in 

memory. If not, and there is no free memory region, the dispatcher swaps out a process 

currently in memory and swaps in the desired process. It then reloads registers as normal 

and transfer control to the selected process. 
 

The context-switch time in such a swapping system is fairly high. 
 

4.0 Conclusion 
 

In this unit, you have been taken through some fundamental concepts of memory 

management. In the subsequent units of this module you will learn more about the various 

techniques of memory management. Meanwhile you are advised to consult the references 

for in-depth knowledge of the various concepts treated in this module. 
 

5.0 Summary 
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 Compile time 

 Load time 

 Execution time 

An address generated by the CPU is called logical address while the one seen by the 

memory unit is called physical address. 
 

Dynamic loading and dynamic linking are used to obtain better memory space utilization. 

However, dynamic linking requires help from the operating system while dynamic loading 

does not . 
 

Overlays are used to allow a process to be larger than the amount of memory allocated to it. 

Overlays, like dynamic loading do not require special operating system support. 
 

A process can be swapped in and out of memory to a backing store. 
 

6.0 Tutor Marked Assignment 

1. 

2. 
3. 

Name two differences between logical and physical addresses. 

Distinguish between dynamic linking and dynamic loading. 

How is dynamic linking related to shared libraries? 

1. Lubomir, F. Bic (2003). Operating System Principles. Prentice Hall. 

2. "Operating System Concepts" by Silberschatz, Galvin, and Gagne (7th edition) 

 
 

 

 

 

7.0 References/Further Reading  
 

 

In this unit, you have learnt the following: 
 

Address binding can be done at any of the following stages: 
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3.2 Memory Allocation 

3.2.1 Fixed Partition Methods 

3.2.2 Variation Partition Methods 

3.3 Memory Allocation Strategies 

3.3.1 First-Fit 

3.3.2 Best-Fit 

3.3.3 Worst-Fit 

As you have learnt from the previous unit, memory management is essential to process 

execution which is the primary job of the CPU. The main memory must accommodate both 

the operating system and the various user processes. You therefore need to allocate different 

parts of the main memory in the most efficient way possible. In this unit, therefore, you will 

about the some memory management algorithms such as contiguous memory allocation and 

its different flavours. Also, the problems that may arise from contiguous memory allocation 

(fragmentation) will be discussed in this unit. 
 

2.0 Objectives 
 

At the end of this unit, you should be able to: 

 Describe contiguous memory allocation 

 Describe the various variants of contiguous memory allocation such as best-fit, 

worst-fit, and first-fit 

 Distinguish between internal and external fragmentation 

 Describe methods of solving external fragmentation 

 
3.1 Contiguous Memory Allocation 

3.4 Fragmentation 

 
4.0 Conclusion 

 
 

 

5.0 Summary 

6.0 Tutor-Marked Assignment 

7.0 References/Further Reading 

 
 

1.0 Introduction 

3.4.1 Internal Fragmentation 

3.4.2 Solutions to External Fragmentation 

Module 6: Memory Management 
 

Unit 2: Memory Allocation Techniques 
 

Table of Contents 
 

1.0 Introduction 

2.0 Objectives 

3.0 Main body 
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 fixed partition 

 variable partition 

 
 

 

These two methods are discussed in the following sections. 
 

3.2.1 Fixed Partition Methods 
 

One of the simplest methods for memory allocation is to divide memory into several fixed- 

sized partitions. Each partition may contain exactly one process. in this multiple-partition 

method, when a partition is free, a process is selected from the input queue and is loaded 

into the free partition. When the process terminates, the partition becomes available for 

another process. This method was originally used by the IBM OS/360 operating system 

(called MFT). It is no longer in use. The method we are going to describe next is a 

generalization of the fixed-partition scheme (called MVT). It is used primarily in a batch 

environment. The ideas presented are also applicable to time-sharing environment in which 

pure segmentation is used for memory management. 
 

 

 

3.2.2 Variable Partition Methods 
 

The operating system keeps a table indicating which parts of memory are available and 

which are occupied. Initially all memory are available for user processes, and is considered 

as one large block of available memory, a hole. When a process arrives and needs memory, 

we search for a hole large enough for this process. if we find one, we allocate only as much 

as is needed, keeping the rest available to satisfy future requests. 

3.0 Main Body 
 

3.1 Contiguous Memory Allocation 
 

As you may not iced on your system, the memory is usually divided into two partitions: one 

for resident operating system and one for the user processes. You may place the operating 

system in either low memory or high memory. The major factor affecting this decision is the 

location of the interrupt vector. Since the interrupt vector is often in low memory, 

programmers usually place the operating system in low memory as well. Therefore, in this 

course, we shall only discuss the situation where the operating system resides in low 

memory. 
 

We usually want several user processes to reside in memory at the same time. We, 

therefore, need to consider how to allocate available memory to the processes that are in the 

input queue waiting to be brought into memory. In this contiguous memory allocation, each 

process is contained in a single contiguous section of memory. 
 

3.2 Memory Allocation 
 

Memory allocation can be done in two ways: 
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As processes enter the system, they are put into an input queue. The operating system takes 

into account the memory requirements of each process and the amount of available memory 

space in determining which processes are allocated memory. When a process is allocated 

space, it is loaded into memory and it can then compete for the CPU. When a process 

terminates, it releases its memory, which the operating system may then fill with another 

process from the input queue. 
 

At any given time, we have a list of available block sizes and the input queue. The operating 

system can order the input queue according to a scheduling algorithm. Memory is allocated 

to processes until, finally, the memory requirements of the next process cannot be satisfied 

i.e. no available block of memory (or hole) is large enough to hold that process. The 

operating system can then wait until a large enough block is available, or it can skip down 

the input queue to see whether the smaller memory requirements of some other process can 

be met. 
 

In general, a set of hole of different sizes is scattered throughout memory at any given time. 

When a process arrives and needs memory, the system searches this set for a hole that is 

large enough for this process. if the hole is too large, is too large, it is split into two. One 

part is allocated to the arriving process, the other is returned to the set of holes. When a 

process terminates, it releases its block of memory. Which is then placed back in the set of 

holes. If the new hole is adjacent to other holes, these adjacent holes are merged to form one 

larger hole. At this point, the system may need to check whether there processes waiting for 

memory and whether this newly freed and recombined memory could satisfy the demands 

of any of these waiting processes. 
 

The procedure is a particular instance of the general dynamic storage allocation problem, 

which is how to satisfy a request of size n from a list of free holes. There are many solutions 

to this problem. The set of holes is searched to determine which hole is best to allocate. 
 

3.3 Memory Allocation Strategies 
 

The first-fit, best-fit and worst-fit strategies are the most common ones used to select a free 

hole from the set of available holes. 
 

3.3.1 First-Fit 
 

In first-fit algorithm, you allocate the first hole that is big enough. Searching can start either 

at the beginning of the set of holes or where the previous first-fit search ended. You can stop 

searching as soon as you find a free hole that is large enough. 
 

3.3.2 Best-Fit 
 

In best-fit algorithm, you allocate the smallest hole that is big enough. You must search the 

entire list from top to bottom except in a case where the list is ordered by size. This strategy 

produces the smallest leftover hole. 
 

3.3.3 Worst-Fit 
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In worst-fit algorithm, you allocate the largest available hole. As in best-fit, you must search 

the entire list, unless the list is kept ordered by size. This strategy produces the largest 

leftover hole, which may be more useful than the smaller leftover hole from a best-fit 

approach. 
 

It can be shown, using techniques such as simulations, that both first-fit and best-fit are 

better than worst-fit in terms of decreasing both time and storage utilization. Neither first-fit 

nor best-fit is clearly better in terms of storage utilization, but first-fit is generally faster. 
 

However, these algorithms suffer from external fragmentation. As processes are loaded 

and removed from memory, the free memory space is broken into little pieces. External 

fragmentation exists when enough total memory space exists to satisfy a request but it is not 

contiguous. Storage is fragmented into large number of small holes. This fragmentation 

problem can be severe. In the worst case, we could have a block of free (or wasted) memory 

between every two processes. If all this memory were in one big free block, we might be 

able to run several more processes. 
 

The selection of the first-fit versus best-fit strategies can affect the amount of fragmentation. 

First-fit is better for some systems whereas best-fit is better for others. Another factor is 

which end of a free block do you allocate? However, you should note that no matter which 

algorithm you use, external fragmentation will be a problem. 
 

3.4 Fragmentation 
 

In the previous section you learnt about external fragmentation. You should, however, note 

that memory fragmentation can be internal or external. 
 

3.4.1 Internal Fragmentation 
 

To illustrate this, consider a multiple partition allocation scheme with a hole of 18,464 

bytes. Suppose that the next process requests 18,462 bytes. If you allocate the requested 

blocks, you are left with a hole of 2 bytes. The overhead to keep track of this hole will be 

substantially larger than the hole itself. The general approach is to break the physical 

memory into fixed-sized blocks, and allocate memory in unit of block sizes. With this 

approach, the memory allocated to a process may be slightly larger than the requested 

memory. The different between these two numbers is internal fragmentation i.e. memory 

that is internal to a partition but is not being used. 
 

3.4.2 Solutions to External Fragmentation 
 

1. Compaction: this is a solution to the problem of external fragmentation. The goal is to 

shuffle the memory contents to place all free memory together in one large block. But 

compaction is not always possible. If relocation is static and is done at assembly or load 

time, compaction cannot be done. Compaction is only possible if relocation is dynamic, and 

is done at run time. 
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 First-fit 

 Best-fit 

 Worst-fit 

Hence or otherwise, given the memory partitions of 100 KB, 500 KB, 200 KB, 300 KB 

and 600 KB (in that order), how would each of the fist-fit, best-fit, and worst-fit 

algorithms place processes of 212 KB, 417 KB, 112 KB, and 426 KB (in that order)? For 

this particular case, which algorithm makes the most efficient use of memory? 

1. Lubomir, F. Bic (2003). Operating System Principles. Prentice Hall. 

2. "Operating System Concepts" by Silberschatz, Galvin, and Gagne (7th edition) 
3. Modern Operating Systems (2nd Edition) by Andrew S. Tanenbaum (ISBN 0-13-031358- 

0) 

2. Noncontiguous Logical-Address Space: Another solution to external fragmentation 

problem is to permit the logical-address space of a process to be noncontiguous. Therefore, 

allowing a process to be allocated physical memory wherever the latter is available. Two 

ways of achieving this are through paging and segmentation or you can combine the two 

techniques of paging and segmentation. You will be exposed to these two techniques in the 

next unit. 
 

4.0 Conclusion 
 

In this unit, you have learnt about some of the algorithms for memory management 

especially contiguous memory allocation. You have also learnt about the problem of 

fragmentation especially external fragmentation. In the next unit, we will go further and 

discuss paging and segmentation which are ways of implementing noncontiguous logical- 

address space solution to external fragmentation. 
 

5.0 Summary 
 

Memory management algorithms for multiprogrammed operating systems range from 

simple single-user system approach to paged segmentation. In this unit. We have only 

discussed contiguous memory allocation. In unit 3, we will continue with our discussion on 

memory allocation algorithms and also outline the criteria to use in comparing the various 

memory management algorithms. 
 

6.0 Tutor Marked Assignment 
 

1. Explain the difference between internal and external fragmentation. 
 

2. Describe the following allocation algorithms: 
 

 

 

7.0 References/Further Reading  
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3.1.1 Translating the memory addresses 

3.1.2 Protected memory 

5.0 Summary 

6.0 Tutor-Marked Assignment 

7.0 References/Further Reading 

 
 

1.0 Introduction 
 

In the last university, you learnt about contiguous memory allocation in which it was 

highlighted that external fragmentation is a major problem with this method of memory 

allocation. It was also mentioned that compaction and non-contiguous logical address space 

are solutions to external fragmentation. In this unit we will go further to discuss some of the 

techniques for making the physical address space of a process non-contiguous such as 

paging, segmentation, etc. 
 

2.0 Objectives 
 

At the end of this unit, you should be able to: 

 Describe paging 

 Describe segmentation 

 Explain the differences between paging and segmentation 

 State the advantages and disadvantages of both paging and segmentation 

 Describe a method for solving the problems of both paging and segmentation 

3.0 Main Body 
 

3.1 Paging 

 
3.1 Paging 

3.1.3 Issues with Paging 

3.2 Segmentation 

3.2.1 Hardware Implementation 

3.2.2 Advantages and Problems of Segmentation 
3.3 Segmentation with Paging 

4.0 Conclusion 

 

 

 

Module 6: Memory Management 

Unit 3: Non-Contiguous Allocation 
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2.0 Objectives 

3.0 Main body 
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f 

This is a memory-management scheme that permits the physical-address space of a process 

to be contiguous. Paging avoids the considerable problem of fitting the varying-sized 

memory chunks onto the backing store from which most of the previous memory- 

management schemes suffered. 
 

Paging permits the logical address space to be mapped to a number of equal size blocks 

called page frames, by dividing the logical address space into pages of the same size. When 

a process is to be executed, its pages are loaded into any available memory frames from the 

backing store. The backing store is divided into fixed-sized blocks that are of the same as 

the memory frames. 
 

The hardware support for paging is as illustrated in Figure 3.1 below. Every address 

generated by the CPU is divided into two parts: a page number (p) and a page offset (d). 

The page number is used as an index into a page table. The page table contains the based 

address of each page in physical memory. This base address is combined with the page 

offset to define the physical memory address that is sent to the memory unit. 
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Figure 3.1: Paging Hardware 
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The paging model of memory is shown in Figure 3.2 below. 
 

The page size, like the frame size, is defined by the hardware. The size of a page is of 

power 2 and it varies between 512 bytes and 16 MB per page, depending on the 

computer architecture. 
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Figure 3.2: Paging model of logical and physical memory 
 

3.1.1 Translating the memory addresses 
 

To minimize the performance penalty of address translation, most modern CPUs include an 

on-chip memory management unit (MMU), and maintain a table of recently used virtual-to- 

physical translations, called a Translation Lookaside Buffer (TLB). Addresses with entries 

in the TLB require no additional memory references (and therefore time) to translate. 

However, the TLB can only maintain a fixed number of mappings between virtual and 

physical addresses; when the needed translation is not resident in the TLB, action will have 

to be taken to load it in. 
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logical address space 

data 
 

stack 

 
heap 

 
code 

 
 

3.1.3 Issues with Paging 
 

As you may have not iced, paging is a form of dynamic relocation. Every logical address is 

bounded by the paging hardware to some physical address. Using paging is similar to using 

a table of base/relocation registers, one for each frame. 
 

When you use a paging scheme, you have no external fragmentation. However, internal 

fragmentation may occur since frames are allocated as units. 
 

3.2 Segmentation 
 

Users do not think of memory as a linear array of bytes with some containing instructions 

and other containing data. Instead users prefer to view memory as a collection of variable- 

sized segments with no necessary ordering among segments. See Figure 3.3 below. 
 
 

On some processors, this is performed entirely in hardware. The MMU has to do additional 

memory references to load the required translations from the translation tables, but no other 

action is needed. In other processors, assistance from the operating system is needed. An 

exception is raised, and the operating system handles this exception by replacing one of the 

entries in the TLB with an entry from the primary translation table, and the instruction 

which made the original memory reference is restarted. 
 

3.1.2 Protected memory 
 

Hardware that supports virtual memory almost always supports memory protection 

mechanisms as well. The MMU may have the ability to vary its operation according to the 

type of memory reference (for read, write or execution), as well as the privilege mode of the 

CPU at the time the memory reference was made. This allows the operating system to 

protect its own code and data (such as the translation tables used for virtual memory) from 

corruption by an erroneous application program and to protect application programs from 

each other and (to some extent) from themselves (e.g. by preventing writes to areas of 

memory that contain code). 
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Figure 3.3: User’s view of a program 
 

Segmentation is a memory-management scheme that supports this user view of memory. A 

logical-address space is a collection of segments. Each segment has a name and a length. 

The addresses specify both segment name and the offset within the segment. The user, 

therefore, specifies each address by two quantities: a segment name and an offset. 
 

For implementation simplicity, segments are numbered and are referred to by a segment 

number rather than by a segment name. Therefore, a logical address consists of a two tuple: 
 

<segment-number, offset>. 
 

Normally the user program is compiled and the compiler automatically constructs segments 

that reflects the input program. 
 

3.2.1 Hardware Implementation 
 

Although the user can now refer to objects in the program by a two-dimensional address, the 

actual physical memory is still a one-dimensional sequence of bytes. Hence, we must define 

an implementation to map two-dimensional user-defined addresses into one-dimensional 

physical addresses. This mapping is affected by segment table. Each entry of the segment 

table has a segment limit. The segment base contains the starting physical address where the 

segment resides in memory, whereas the segment limit specifies the length of the segment. 
 

The use of a segment table is as illustrated in Figure 3.4 below. A logical address consists of 

two parts: a segment number, s and an offset into that segment, d. The segment number is 

used as an index into the segment table. The offset d of the logical address must be between 
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Figure 3.4: Segmentation hardware 
 

0 and the segment limit. If it is not, we trap to the operating system (logical addressing 

attempt beyond end of segment). If this offset is legal, it is added to the segment base to 

produce the address in physical memory of the desired byte. The segment table is therefore 

essentially an array of base-limit register pairs. 
 

3.2.2. Advantages and Problems of Segmentation 

Advantages: 

 Operating system may allow segments to grow and shrunk dynamically with 

unchanging addressing 

 Protection on segment level of related data 

 Sharing on segment level is easy. 

Problems: 
 

 Contiguous allocation of memory with all its attendant problems as you learnt from 

unit 2 of this module 

 May cause external fragmentation 

 Dynamic shrinking/growing is expensive. The operating system may have to move 

things around. 
 

3.3 Segmentation with Paging 
 

As you have learnt so far in this unit, both paging and segmentation have advantages and 

disadvantages. But the problems/disadvantages of these two can be solved by paging of the 

segments. In this combined technique, each segment has its own page table. Segment table 

entries now refer to base of the per segment page table and the offset within the segment is 

subdivided into page number and offset within page and used as earlier discussed. 
 

This combination is the one used in the Intel 386 architecture. 
 

4.0 Conclusion 
 

In this concluding unit of this module and the course general, you have been further exposed 

to some memory-management algorithms. You should please note that the topics treated are 

not exhaustive. You therefore advised to refer to the references/further Reading sited at the 

end of each unit for more in-depth knowledge of the subject matter. 
 

5.0 Summary 
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The various memory-management algorithms discussed in the last two units differ in many 

aspects. In comparing different memory-management strategies, you should use the 

following considerations: 
 

  Hardware support 

 Performance 

 Fragmentation 

 Relocation 

 Swapping 

 Sharing 

 Protection 

6.0 
 

Tutor Marked Assignments 

 
1. Why are page sizes always powers of 2? 

 2. Why are segmentation and paging sometimes combined into one scheme? 
 3. State the various advantages and disadvantages of paging 
 4. State the various advantages and disadvantages of segmentation 
 5. What are the differences between paging and segmentation? 

7.0 
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