CIT 215: INTRODUCTION TO PROGRAMMING LANGUAGE

E WORK & LEARN ;

—_

NATIONAL OPEN UNIVERSITY OF NIGERIA

FACULTY OF SCIENCE

COURSE CODE: CIT 215

COURSE TITLE:

INTRODUCTION TO PROGRAMMING LANGUAGE

Introduction

CIT 215 Introduction to Programming Languages is a three [3] credit unit course of twenty
units. It deals with Introduction to Programming languages. Programming languages are not
very different from spoken languages. Learning any language requires an understanding of
the building blocks and the grammar that govern the construction of statements in that
language. This book will serve as an introduction to programming languages, taking you
through the history of programming languages. We will also learn about the various universal
properties of all programming languages and identify distinct design features of each
programming language. By the end of this book, you will have a deeper understanding of
what a programming language is and the ability to recognize the properties of programming
languages. You will also take overview of some programming languages such as to Basic,
Fortran, Pascal, C++ , HTML and Visual Basic.

Module 1 provides a foundation for the course. In this module we introduce the art of
computer programming; explained computer programming languages, and introductory
theory of algorithms. Also covered in the module are Flowcharting Techniques and structured
programming

Module 2: In this module, we provide introductions to the rudiments of BASIC and
FORTRAN programming language. In this module we introduce BASIC Programming;
explained more programming statements in BASIC, and introduce you to FORTRAN
Language. Also covered in the module are FORTRAN Keywords and Library Functions.

Module 3 provides introductions to the rudiments of Pascal Language, C++ Language and
HTML. In this module we explain the use of Loop and Selection Structures in Fortran;
explained Structured Programming in Pascal, and introduce you to Pascal Language. Also
covered in the module are Introduction to C++ Language and HTML

In module 4, we further explain text formatting and links in HTML; introduce you to
Introduction to Visual Basic and developing simple VB Programs. Also covered in the
module are programming with MathCad and using MATLAB Programming Tools.

The aim of this course is to equip you with the basic skills to write simple computer programs

This Course Guide gives you a brief overview of the course content, course duration, and
course materials.

Course Competencies

The main purpose of this course is to provide the necessary skills for understanding for
writing simple computer programs.
Course Objectives

Certain objectives have been set out to ensure that the course achieves its aims. Apart from
the course objectives, every unit of this course has set objectives. In the course of the study,
you will need to confirm, at the end of each unit, if you have met the objectives set at the
beginning of each unit.

Working through this Course

In order to have a thorough understanding of the course units, you will need to read and
understand the contents of this course and explore the importance of some programming
languages.

This course is designed to be covered in approximately sixteen weeks, and it will require your

devoted attention. You should do the exercises in the Tutor-Marked Assignments and submit
to your tutors.

Study Units

There are twenty study units in this course:

Module 1

Unit 1. The Art of Computer Programming

Unit 2: Computer Programming Languages

Unit 3: Introductory Theory of Algorithms

Unit 4 Flowcharting Techniques

Unit 5 Structured Programming

Module 2

Unit 1. Introduction to BASIC Programming

Unit 2: Starting with BASIC Programming

Unit 3: More Programming Statements in BASIC
Unit 4: Introduction to FORTRAN Language

Unit 5: FORTRAN Keywords and Library Functions
Module 3

Unit 1: Using Loop and Selection Structures in FORTRAN
Unit 2: Introduction to Pascal Language

Unit 3: Structured Programming in Pascal

Unit 4: Introduction to C++ Language

Unit 5: Introduction to HTML

Module 4

Unit 1: Further Text Formatting and Links in HTML
Unit 2: Introduction to Visual Basic

Unit 3: Developing Simple VB Programs

Unit 4: Programming With MathCad

Unit 5: Using MATLAB Programming Tools

References and Further Readings
Ammeraal, L; C++ For Programmers, John Wiley & Sons Ltd., 1991

Borland International Inc., Turbo Basic Version 1.1, 1987.

Borland International Inc., Turbo C++, 1990

Borland International, Inc., Turbo Pascal Version 6.0, 1990

Bride, M., HTML Publishing on the World Wide Web, NTC/Contemporary Publishing,
1998.

Bride, M., HTML Publishing on the World Wide Web, NTC/Contemporary Publishing,
1998.

Brightman, R. W. and Dimsdale, J. M., Using Computers in an Information Age, Delmar
Publishers Inc., 1986

Fatunla, S.0O., Fundamentals of FORTRAN Programming, ADA + JANE Press, 1993.
http://www.freeprogranmmingresources.com

Huggins, E., Mastering Pascal Programming, the Macmillan Press Ltd., 1983.

King, M., Pardoe, J. and Vickers, P. A First Course in Computer Programming Using C,
McGraw-Hill Book Company, 1995;

Mandell, S. L., Computers and Data Processing, West Publishing Company, 1985.
MathSoft, Inc. MathCad 2000 Professional, 1999

MathSoft, Inc., MathCad Plus 6.0, 1995.

Microsoft Corporation, Front Page 2002, 2001

Microsoft Corporation, Internet Explorer Version 6.0, 2001.

Microsoft Corporation, Internet Explorer Version 6.0, 2001. Microsoft Corporation, Front
Page 2000, 1999

Microsoft Corporation, MS DOS Quick Basic Version 1.1, 1992. KBASIC Software
Corporation, KBASIC Professional Edition, 2006 http://www.kbasic.com

Microsoft Corporation, MS-QUICKBASIC 1.1, 1992,

Microsoft Corporation, Visual Basic Programmer's Guide, Version 3, 1993.

Microsoft Corporation, Visual Basic Version 4.0, 1995.

Microsoft Corporation, Visual Basic Version 6.0, 1998

Monro, D. M., Fortran 77, Edward Arnold, 1987. WATCOM System Inc., WATFOR-77
V3.0, 1988

Monro, D.M., FORTRAN 77, Edward Arnold, 1987

Reju, S.A., Lecture Notes on Theory of Algorithms, Unpublished Manuscript.

http://www.freeprogranmmingresources.com/
http://www.kbasic.com/

Safaria, R.S., Computer Oriented Numerical Methods, Khanna Book Publishing Company,
Delhi, 1999

The MathWorks, Inc., MATLAB Version 5.2.0. 3084, 1998. hap //www.mathworks.

Williams, B.K. and Sawyer, S. C., Using Information Technology, 4, Edition, McGraw-Hill,
2001

Presentation Schedule

The Presentation Schedule included in your course materials gives you the important dates
for the completion of tutor marked assignments and attending tutorials. Remember, you are
required to submit all your assignments by the due date. You should guard against lagging
behind in your work

Assessment
There are two aspects to the assessment of the course. First are the tutor marked assignments;
second, is a written examination.

In tackling the assignments, you are expected to apply information and knowledge acquired
during this course. The assignments must be submitted to your tutor for formal assessment in
accordance with the deadlines stated in the Assignment File. The work you submit to your
tutor for assessment will count for 30% of your total course mark.

At the end of the course, you will need to sit for a final three-hour examination. This will also
count for 70% of your total course mark.

Tutor Marked Assignments (TMAS)

There are twelve tutor marked assignments in this course. You need to submit all the
assignments. The total marks for the best four (4) assignments will be 30% of your total
course mark.

Assignment questions for the units in this course are contained in the Assignment File. You
should be able to complete your assignments from the information and materials contained in
your set textbooks, rea ding and study units. However, you may wish to use other references
to broaden your viewpoint and provide a deeper understanding of the subject.

When you have completed each assignment, send it together with form to your tutor. Make
sure that each assignment reaches your tutor on or before the deadline given. If, however, you
cannot complete your work on time, contact your tutor before the assignment is done to
discuss the possibility of an extension.

Examination and Grading

The final examination for the course will carry 70% of the total marks available for this
course. The examination will cover every aspect of the course, so you are advised to revise all
your corrected assignments before the examination.

This course endows you with the status of a teacher and that of a learner. This means that
you teach yourself and that you learn, as your learning capabilities would allow. It also

means that you are in a better position to determine and to ascertain the

what, the how, and

the when of your course learning. No teacher imposes any method of learning on you.

The course units are similarly designed with the introduction following the table of contents,
then a set of objectives and then the concepts and so on.

The nhiectives anide vnii as vou go through the units to ascertain your knowledge of the
required terms and expressions.

Course Marking Scheme

This table shows how the actual course marking is broken down

Assessment IMlarks

Assignment 1- 4

Faiir assignments, best three marks of the

fonr

count at 30% of course marks

Final Examination

/0% ot overall course marks

[otal

100% ot course marks

Course Overview

Selection Structures

in FORTRAN

[Unit Titleof Work | Weeks Activity [Assessment
(End of Unit)
| Course Guide Week
Module 1 o
(] The Art of Computer | Week 1 Assignment 1
Programming -
2 Computer Week 1 Assignment 2
Programming
Languages e
3 Introductory Theory | Week 2 Assignment 3
of Algorithms B
4 Flowcharting Week 2 Assignment 4
Techniques B
S Structured Week 3- 4 Assignment 5
Programming
 Module 2 -
| Introduction to Week 5 Assignment 6
BASIC Programming
2 Starting with BASIC | Week 5 Assignment 7
Programming
3 More Programming | Week 67-8 Assignment 8
Statements in BASIC
4 Introductionto | Week 7 Assignment 9
FORTRAN
Language
5 FORTRAN - Week 8 Assignment 10
Keywords and
Library Functions
| Module 3 }
1] Using Loop and Week 9 Assignment 11

2 Introduction to Week 9 Assignment 12
Pascal Language

3 Structured Week 10 Assignment 13
Programming in
Pascal

4 Introduction to C++ | Week 11 Assignment 14
Language

5 Introduction to Week 12 Assignment 15
HTML

Module 4

il Further Text Week 13 Assignment 16
Formatting and Links
in HTML

2 Introduction to Week 13 Assignment 17
Visual Basic

3 Developing Simple | Week 14 Assignment 18
VB Programs

4 Programming With Week 14 Assignment 19
MathCad

5 Using MATLAB Week 15 Assignment 20
Programming Tools

Revision Week 16

Examination Week 17

Total 17 Weeks

How to get the Most from the Course

In distance learning the study units replace the university lecturer. This is one of the great
advantages of distance learning; you can read and work through specially designed study
materials at your own pace, and at a time and place that suit you best. Think of it as reading
the lecture instead of listening to a lecturer. In the same way that a lecturer might set you
some reading to do, the study units tell you when to read your set books or other material.
Just as a lecturer might give you an in-class exercise, your study units provide exercises for
you to do at appropriate points.

Each of the study units follows a common format. The first item is an introduction to the
subject matter of the unit and how a particular unit is integrated with the other units and the
course as a whole. Next is a set of learning objectives. These objectives enable you know
what you should be able to do by the time you have completed the unit. You should use these
objectives to guide your study. When you have finished the units you must go back and check
whether you have achieved the objectives. If you make a habit of doing this, you will
significantly improve your chances of passing the course.

Remember that your tutor s job is to assist you. When you need help, do not hesitate to call
and ask your tutor to provide it.

1. Read this Course Guide thoroughly.

2. Organize a study schedule. Refer to the Course Overview for more details. Note the
time you are expected to spend on each unit and how the assignments relate to the
units. Whatever method you chose to use, you should decide on it and write in your
own dates for working on each unit.

3. Once you have created your own study schedule, do everything you can to stick to it.

The major reason that students fail is that they lag behind in their course work.

Turn to Unit 1 and read the introduction and the objectives for the unit.

Assemble the study materials. Information about what you need for a unit is given in

the Overview at the beginning of each unit. You will almost always need both the

study unit you are working on and one of your set of books on your desk at the same
time.

6. Work through the unit. The content of the unit itself has been arranged to provide a
sequence for you to follow. As you work through the unit you will be instructed to
read sections from your set books or other articles. Use the unit to guide your reading.

7. Review the objectives for each study unit to confirm that you have achieved them. If
you feel unsure about any of the objectives, review the study material or consult
your tutor.

8. When you are confident that you have achieved a unit s objectives, you can then start
on the next unit. Proceed unit by unit through the course and try to pace your study so
that you keep yourself on schedule.

9. When you have submitted an assignment to your tutor for marking, do not wait for its
return before starting on the next unit. Keep to your schedule. When the assignment is
returned, pay particular attention to your tutor s comments, both on the tutor-
marked assignment form and also written on the assignment. Consult your tutor as
soon as possible if you have any questions or problems.

10. After completing the last unit, review the course and prepare yourself for the final
examination. Check that you have achieved the unit objectives (listed at the beginning
of each unit) and the course objectives (listed in this Course Guide).

ok

Facilitation

There are 12 hours of tutorials provided in support of this course. You will be notified of the
dates, times and location of these tutorials, together with the name and phone number of your
tutor, as soon as you are allocated a tutorial group. Your tutor will mark and comment on
your assignments, keep a close watch on your progress and on any difficulties you might
encounter and provide assistance to you during the course. You must mail or submit your
tutor-marked assignments to your tutor well before the due date (at least two working days
are required). They will be marked by your tutor and returned to you as soon as possible.

Do not hesitate to contact your tutor by telephone, or e-mail if you need help. The following
might be circumstances in which you would find help necessary.
Contact your tutor if:
* you do not understand any part of the study units or the assigned
readings,
* you have difficulty with the self-tests or exercises,
* you have a question or problem with an assignment, with your tutor s
comments on an assignment or with the grading of an assignment.

You should try your best to attend the tutorials. This is the only chance to have face to face
contact with your tutor and to ask questions which are answered instantly. You can raise any
problem encountered in the course of your study. To gain the maximum benefit from course
tutorials, prepare a question list before attending them. You will learn a lot from participating
in discussions actively

10

Course Information

Course Code: CIT 215

Course Title: Introduction to Programming Languages
Credit Unit: 3

Course Status: Core

Course Blub:

Semester: 1

Course Duration: 16 Weeks

Required Hours for Study

Course Team

Course Developer: ACETEL
Course Writer:

Content Editor: Prof Stephen O. Olabiyisi
Instructional Designer:

Learning Technologists:

Copy Editor

Year 2020

Ice Breaker

q

Module 1

Module Introduction

This module provides a foundation for the course. In this module we introduce the art of
computer programming; explained computer programming languages, and introductory
theory of algorithms. Also covered in the module are Flowcharting Techniques and
structured programming.

Unit 1. The Art of Computer Programming

Unit 2: Computer Programming Languages

Unit 3: Introductory Theory of Algorithms

Unit 4 Flowcharting Techniques

Unit 5 Structured Programming

Unit 1: THE ART OF COMPUTER PROGRAMMING
Contents

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content
3.1 Types of Computer Programming
3.2 Basic Principles of Programming

4.0 Self-Assessment Exercise(s)

5.0 Conclusion

6.0 Summary

7.0 Tutor Marked Assignment

8.0 Further Readings

1.0 Introduction

In this unit you are going to be introduced to the principles of computer programming.
As you know, a Computer is not a useful device as an entity without a programming
force driving its operations.

Generally, a complete a computer system is made up of the following:

. Hardware
. Operating System Software
. Application Software

In fact, a better way of illustrating the above is as follows:

12

USERS

APPLICATION
SOFTWARE

Programming Interface

OPERATING SYSTEM

HARDWARE

As you can see above, programming plays a very essential role in the usefulness of a
computer system, forming the interface link between human users and the computer
machinery. This unit will therefore take you through the fundamentals of computer
programming.

2.0 Intended Learning Outcomes (1LOs)
By the end of this unit, you should be able to:

. Explain the major types of programming
. Discuss the fundamental principles of programming
. Identify computer programming with problem-solving process

3.0 Main Content
3.1 Types of Computer Programming

As you are now aware, a Computer is simply a device manipulate | by a person.
Moreover, a complete functional Computer system consists of the hardware and
software, that is the programs. Now what is a Program itself? you may ask. The
following definition gives the answer.

Definition of a Computer Program
A PROGRAM is a series of step-by-step instructions that provides a solution to a
particular problem and directs the computer on what to do exactly. Now, though a
program is a set of instructions, but the statements must be submitted to a computer as a
unit to direct the computer behavior. There are generally two major types of
programming:

* System Programming

13

* Application Programming

You will now study the features of the above two types of programming System
Programming.

In short, system programs constitute the driving force behind 'tile operations of the
Computer System. They are specially designed to facilitate the use of the hardware and to
make the Computer System function efficiently and run quickly.

During the early days of Computer Systems, human operators monitored computer
operations, decided on the order in which submitted programs should be run and made
ready the input and output (1/0) devices. Even though the speeds of Central.

Processing Units (CPUs) increased as a result of early electronic revolution, the speed of
human operators behind the operational procedures of the computer did not increase.
There were therefore time delays and errors by the human operators which constituted
most of the problems that led to the development of a Super-Controller program) *
handle the problems caused by human-operators. This special program is what we call an
OPERATING SYSTEM (OS). See its definition below:

Operating System

An Operating System is a collection of system programs that jointly controls the
operations of a computer system and its resources. An Q simply helps you to efficiently
and reliably run other programs at manage your files. Now, with an OS installed on your
computer system, most of the responsibilities of human operators that characterized Abe
early generation computer operations, such as preparing the 1/0O device to be used for
each program or loading the programs into memory, are now all done by the operating
system.

There are two types of programs that make up the Operating System: -

* Control Programs
* Processing Programs

Control Programs

The OS control programs generally oversee the system operations skid carry out tasks
such as Input/output (I/O), scheduling, communicating with the Computer user or
programmer and handling interrupts. An interrupt is just a signal sent to the CPU
indicating that an event 'hat occurred.

Processing Programs

14

The OS processing programs are those that facilitate efficient processing operations by
simplifying program preparation and execution for you as a user. The major processing
programs existing in the OS are as follows:

* Language Translators
* Linkage Editor

* Library Programs
Utility Programs

Full discussions on each of the above programs are beyond the scope of this course. You
will learn more of them when you take full course on OS. All that have been said so far
are on system programming. As a reminder, take a break and attempt

But before concluding on the brief review of OS, the following are some common
examples of operating systems:

* Disk Operating System (DOS) — Microsoft original OS.

* Microsoft Windows Operating Systems (Windows 95, 98. 2000)

* Microsoft Windows NT

* Microsoft Windows XP

* Unix

* Linux

* Novel Netware

The above are found on most Personal Computers (PCs). However, we equally have the:
* Macintosh Operating System - which runs only on the Apple Macintosh
machines.
* Palm OS — which runs on Handheld computers, PC Phones or Palmtops.
* Windows CE — a slimmed version of Windows that runs on handheld PCs.
* Symbian OS that runs on PDAs or Mobile phones like Nokia 9300/9500

Application Programming

Application Programs are those that perform specific computational tasks or data
processing to solve user's problems. From this definition, you can see that application
programs concentrate on the particular problems to be solved.

Broad categories of application programs are stated below:
* Word Processing Software
+ Database Applications
* Electronic Spreadsheet applications
* Desktop Publishing applications
* Web Publishing Software
« Communication Software
» Accounting Software
* Graphic Tools

15

Design Software (e.g. CAD Packages)
Modeling Software

* Video Editing

* ... and others

Full details of some of the above types of software are in another course: "Software
Application Skills" in the School of Science and Technology. You may wish to refer to it.
Now you will go to the next section of this unit.

3.2 Basic Principles of Programming

As you have already seen in the last section, a computer program is designed to solve a

specific problem following the execution of the program instructions. However, you
should know that a Computer does not solve problems the way we do. Human beings
make use of reasoning, intelligence and intuition to solve problems while computers
solve problems according to instructions supplied by programmers.

In view of the above, every program has to be properly designed so as to solve the
problem behind its development effectively and accurately. Before you are introduced to
the basic steps involved in program development, you should know the aims guiding the
design of a good computer program. These are as follows:

* Reliability

* Maintainability
* Portability

* Readability

» Performance

* Memory Saving

Let us see these one by one.
Reliability

By reliability, we mean that you should be able to depend on the program to always do
what it has been designed to do.

Maintainability
By this, we mean that you should be able to modify the program when the need arises.

Portability
The concept of portability in programming is that a program should be capable of being
transferable to a different computer platform with a minimum modification, if any at all.

Readability

A program should be easy for other programmers to read and understand. For example, a
readable program is easier to maintain.

16

Performance

A program that doesn't carry out the expected tasks quickly and efficiently has lost the
performance aim. Therefore, a major aim in program design is that the program should
execute quickly and efficiently too.

Memory Saving
What is meant here is simply that a program should not be unnecessarily too long and
requiring excessive large memory to execute.

Having gone through the aims underlying the designs of programs, you will now see
below the different stages involved in program development:

. Problem Definition

. Solution Design

. Program Coding or Writing

. Program Testing

. Program Documentation and Maintenance

The above will be explained further as follows:

Problem Definition

Problem formulation or definition is very essential in programming and it begins with
recognition of a need for information by a user or an organization. The programmer is
expected to analyze the problem thoroughly in order to understand what is required of its
solution. Generally, if you describe a problem carefully at the beginning of the
programming process, your program will be better and might cost less to develop.

One way of defining a problem is to do that in terms of the following:

. Input
. Output
. Processing

Starting with OUTPUT, this represents the information requirements of users of the
program. This is the reason most of the times the programmer can simply use a report
generated by a program to design the corresponding input form or interface.

Having determined the output requirements, then the INPUT required to provide the
output should be determined too. Finally, based on the input and output requirements, the
PROCESSING can then be determined.

Solution Design
After the definition of the problem is completed, the design of the solution is the next
step and this may take the form of one or more programs.

17

What is best to do here is for the programmer to take each step or segment of the problem
definition and then work out a tentative program flow. When you approach the solution
by handling each segment separately, you can concentrate on developing an efficient and
logical flow for that segment. This is the approach employed in what is called **Modular
Programming™, where a program is divided into parts or modules for easy development
and maintenance.

To develop a program logical flow, there are two major aspects:
. General Logic
. Detailed Logic

The "general logic™ flow design can be done by using a "Structure Chart" which shows
the major elements of the program and their relationships to each other. After the general
logic description, you must deal with the "detailed logic"”. This is simply the step-by-step
operation of each block in your structure chart. Below for example is a structure chart for
a simple Payroll program:

Main
Segment
| T | T 1
Grom Pay (Dedections . Net Puy] [Files Upclnie] [Praat 1
Comp Coump Compulation Cheques
L._ N\ \ /
XA
Full Tire Part Time
Sufl Workees J
\

By detailed logic, we mean each of the boxes in the above chart should be described in
clear terms. In detailed logic description, you will definitely need to use such tools as
Flowcharts and Pseudocode which will be treated later in this course.

In general, there is nothing frightening about writing a C Imputer Program after
describing the problem and its solution; you simply need to understand the basic logic
patterns involved in programming which will be fully described under "Structure
Programming" unit in this course, that is, in unit 6.

Program Coding or Writing
Next to the two steps of program development described above is the coding or writing of
the program itself in a specific programming language, especially High Level Languages

(HLL), such as Basic, Pascal or C++, which you will be introduced to in the next unit.

Generally, the definition and solution of a problem do not depend on a particular
programming language. But most of the times, the proposed solution may limit the

18

choices of languages that can be employed. It is also necessary to know that some
language' are better suited for some types of problems as you will see in the next unit.

Program Testing
After the coding or writing of a program, it is submitted to the computer for testing.
Generally, testing involves the following:

 Debugging

» Compiling

* Testing (in stages)

Debugging
Errors in programs are usually called bugs and the processing of removing errors in your
programs is called debugging.

Compiling

Though you will be taught in detail the process of program compilation in unit 8, but you
should know that your program has to be translated before the computer can execute it.
Compiling is one way of translating your program. The other is by using Interpreters,
which will be treated ahead in unit 8.

Testing
Usually, for a large program that has been developed using modular method I, there are
various stages of testing as follows

* Unit Testing

* Integration Testing

» System Testing

» User Testing

Unit Testing involves testing the separate components or modules as they are being
developed. Integration Testing involves testing the program as separate modules are put
together. Finally, on the part of the programmer, System Testing occurs when the whole
program is being tested in its final form to be ready for use. However, there is also the
usual need for the user's testing. This is when the user of the program tests the final
program to see whether it meets his or her needs.

Program Documentation and Maintenance

There is no good programming without documentation. This is the documentation of all
the work involved in the program development. The documentation should consist of all
written descriptions and explanations of the program and other materials associated with
the development.

Generally, proper documentation serves as a reference guide for programmers and system
analysts who are to modify the programs and their procedures when the needs arise.
When an organization grows for example, program modifications must keep pace with its
changing needs. Hence the process of documentation is an ongoing one. Maintenance

19

%

includes any activity aimed at keeping programs in working condition, error-free, and up
to date. You will now round up this unit.

4.0 Self-Assessment Exercise(s)
1. What is a program?
2. Define system programs

5.0 Conclusion

In this unit, you have been introduced to the two main types of programming, namely,
System programming and Application Programming. As you have learned in the unit,
system programming facilitates the use of the Computer hardware and the running of the
application programs. The application programs are simply those that solve the users'
problems. The unit has equally taken you through the basic stages involved in programming

6.0 Summary

This unit has shown you that the computer machine is simply an electronic device
which only becomes a useful tool through its programming. According to what you
have learned in the unit, every computer program is designed to solve a specific
problem or perform a particular task. Hence the art of programming starts by defining
your problem and then followed by the designing of the solution. A very vital aspect of
programming from what you have learned in this unit is the documentation of your
program and this should be an ongoing process for a program that is regularly modified
to keep pace with the changing needs of its user

7.0 Tutor-Marked Assignments
1. Define a program and hence distinguish between system programming and
application programming.
2. What are processing programs? Give examples of these in an operating system.
3(a) Discuss portability and maintainability in program design.
(b) What is integration testing?

8.0 Further Readings

20

Brightman, R. W. and Dimsdale, J. M., Using Computers in an Information Age,
Delmar Publishers Inc., 1986

Mandell, S. L., Computers and Data Processing, West Publishing Company, 1985.

Williams, B.K. and Sawyer, S. C., Using Information Technology, 4, Edition,
McGraw-Hill, 2001

21

Unit 2: COMPUTER PROGRAMMING LANGUAGES

Contents

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content
3.1 Classification of Languages
3.2 High Level Languages

4.0 Self-Assessment Exercise(s)

5.0 Conclusion

6.0 Summary

7.0 Tutor Marked Assignment

7.0 Further Readings

2

1.0 Introduction

Historically, instructions for Computer processing in the early days of the Computer had
to be either wired on control panels and plugged into the machine at the start of a job
processing or had to be read from punched cards in distinct steps of the job processing.
Any of these methods was very slow since the computer had to wait for these
instructions to be fed in by a human operator.

To speed up processing, the computer memory became useful to store instructions as
well as data. This development introduced what was known as Stored-Program concept.
The need to represent instructions in one form of code or the other gave birth to the
notion of Programming Language and the first form of these codes became what is
called the Machine Language (ML).

In this unit, the above short history will be built upon to introduce you to computer
programming languages and their classifications. Your study objectives for this unit will
therefore be as follows:

2.0 Intended Learning Outcomes (1LOs)
By the end of this unit, you should be able to:

. Categorize Computer programming languages.
. State the various types of languages.
. Identify different levels of Computer programming languages.

22

3.0 Main Content

3.1 Classification of Languages

Before you see the general classification of programming languages, you will recall the
origin of programming languages mentioned under the Introduction. You have been
introduced to what is known as the Machine Language which is generally known as the
language that the computer understands. With the birth of the Machine Language, two
broad categories of languages are as follows:

. Low-Level Language

. High-Level Language

Low-Level Language

Machine Language is generally called the lowest- level language and it was the first
language available to computer programmers. It is very fast since the language needs no
translation because its instructions are made up of zeros and ones (O's and | 's). Thus
Machine Language is merely data to the computer and the program can modify itself
during execution.

The advantages of Machine Language (ML) can be summarized as follows:

. Fast execution speed
. Storage Saving
. Programmer's full control of the Computer and its capabilities However, ML has

Some disadvantages as follows:

. Difficult to learn

. Highly prone to errors

. Totally machine-dependent — this means that programs written in ML will only
. execute on the specific machine they were written.

You have been informed that ML is the lowest-level language. Hence it is the most
efficient language and it is good for you to know that every computer responds only to its
machine language.

The next in the hierarchy of languages that is closer to the Machine Language is the
Assembly Language (AL). Assembly Language was developed in the early 1950s to
alleviate some of the difficulties associated with the Machine Language. Symbolic names
or mnemonics were used to replace the binary code of the Machine Language.
Remember that a mnemonic means a memory aid. Hence AL instructions are easier to
remember than the O's and | 's of the ML instructions.

Below are the advantages of the AL:

. It is efficient in processing time and in the use of memory space.

. It encourages Modular Programming, where programs are broken into modules.
. It provides an error listing which is useful in debugging.

. Since it is very close to machine language, it is also fast.

23

Just as you have seen the disadvantages of Machine Language, the Assembly Language
also has its disadvantages. Some of these are stated below:

. It is cumbersome in usage.

. Assembly Language has one-to-one-relationship with machine language, meaning
that one Assembly Language instruction is translated into one Machine Language
instruction. This process leads to long program preparation time.

. Assembly Language is machine-dependent like the Machine Language.

Now, remember that under introduction to this unit, it was stated that languages can be
broadly categorized into two as Low-Level and High Level languages. However, there
are various ways of categorizing computer programming languages. One way of doing
this is to classify them by the following:

. Level

. Purpose

. Orientation

. Structure

. Translation Method

Level Classification
You have already seen this above as low- level and high-level languages. High- Level
Languages will be treated in the next section of this unit.

Purpose Classification

Under this classification, you have:

. General-Purpose Languages

. Special-Purpose Languages

A general-purpose language is one that can be used to solve a variety of problem types.
From what you have learnt already about low- level language, it means that the lower the
level, the more general purpose the language. A special-purpose language is one that can
be used for specific types of problems, such as a language called WPL (Word Processing
Language) developed by Apple for word processing.

Orientation Classification

In this classification, you have the following:
* Procedure — Oriented Languages
* Problem — Oriented Languages

In using A procedure-oriented language, you have to specify how to solve a problem by
indicating the procedures the computer will follow step by step. However, in a problem-
oriented language, you simply specify what to obtain as your results while the
development of the procedures is left to the language.

Translation Method Classification

24

Among all the Computer programming languages, only the machine language is in
machine-executable form. All other languages must be translated into O's and | 's, the
only things understood by the computer. Now, translators take the forms of the following:

* Interpreter
* Compiler
* Assembler

Interpreter

Some languages are interpreted by converting the "source program” into machine
language as the program is being executed. Interpreters translate code line-by- line which
therefore makes them run slowly than other translators. For example, sonic BASIC
language versions only interpret programs instead of compiling them. However, in Turbo
Basic, KBASIC or BASIC 4GL you can compile the BASIC source code into an
executable code.

Compiler

Unlike an Interpreter, a Compiler translates an entire program into machine language
before the execution of the program. A Compiler usually translates the SOURCE
program into another program called the OBJECT program which is the machine
language version of the source code. With the object program created by your compiler,
you will never use the source program again except when you want to modify it.
Generally, a compiled program runs faster than an interpreted program.

Assembler

You have already been introduced to the Assembly Language which is neither compiled
nor interpreted. For the language, it is simply assembled. Since the assembly language is
already close to the machine language, assembling a program is therefore less time-
consuming than compilation.

Before you proceed to the next section on High-Level Lang ages, it is worth noting that
advancement in computer programming languages has added a new classification of
languages, called Very High Level Languages (VHLL'S) or what are usually referred to
as the 4th Generation Languages (4GL's).

Below are the basic characteristic layers of a simple 4GL:

. Database
. Data Communication
. Data Processing

. End User Facilities (EUF)

From the above, database languages such as FoxPro, Dbase and Foxbase are 4GL's. A
language such as Visual Basic which equally has database capabilities can also be
classified as a 4GL from the above characteristics.

Now, you will be introduced to the High- Level Languages in the following section.

25

3.2 High Level Languages

In the previous section, you have learnt about the Low-Level language which is
fundamentally machine-dependent. In contrast to machine dependence of low- level
language, High-Level Languages (HLL's) are machine- independent.

High-Level Languages are either
. Procedure-Oriented, or
. Problem-oriented

You will recall that the above two classes of languages were mentioned under
orientation classification of languages in the last section. High Level Languages can
further be classified again as follows, remembering that there are many ways of
classifying computer programming languages:

. Scientific-Oriented Languages
. Business-Oriented Languages
. Multi-Purpose Languages

. Education-Oriented languages
. Natural Languages

It is good for you to know that a language can have any of the above characteristics with
one of the two earlier features, that is, problem oriented or procedure-oriented feature.
This should not confuse you. Now, it is time to introduce you to some common high-
level languages. Detailed features of some of these languages will be treated in other
units in this course.

FORTRAN

You are starting with Fortran because it is generally referred to as the first high- level
language. The name is the short for "FORmula TRANSslator. Fortran is a scientific-
oriented and problem-oriented language. Since early computer users were scientists and
engineers, it was not therefore surprising that the first high- level language was designed
to solve scientific problems. The language was developed by an IBM (International
Business Machines) group led by John Backus in 1957, though its first appearance was
in 1956 according to some authors. There have been various versions of the language as
follows:

. Fortran 11 in 1959

. Fortran 1V in 1966

. Fortran 77 in 1977

. Fortran 90/95 — the latest version.

You will learn more about the language in unit 10 of this course. BASIC

BASIC is the acronym for "Beginner's All-purpose Symbolic Instruction Code and it is
the most popular programming language. It is an Education-oriented language developed
in 1965 for use by Colleges and Universities for instructional purposes. It is also a

26

general-purpose and procedure-oriented language. BASIC can be interpreted and also
compiled. You will learn more about BASIC in this course. Today, we have a number of
BASIC language versions which you can use to develop beautifully designed software
packages.

PASCAL

Pascal language was designed in 1971 like BASIC as a teaching language. The language
was named after Blaise Pascal who was a French Mathematician and Philosopher and the
inventor of the first mechanical adding machine. You are going to learn about the
fundamentals of the language in unit 12 of this course.

Cor C++

The C language was developed as an improvement of the earlier versions, A and B
which were developed by Bell Laboratories. C language was developed in conjunction
with the UNIX operating system; in fact, it is the language of the Unix operating system.
The language is lower in level than a language like Pascal but higher than assembly
language. Presently, we have the C++ and Visual C++ languages which are the later
versions of the original C language.

A good number of big organizations today prefer C++ programmers for their in-house
software development because of the essential features of C++ which are absent in other
languages. You will also be introduced to the basic features of C/C++ language in this
course. A good knowledge of C++ will help you to understand Java language easily
which is an essential language in Web publishing.

COBOL

COBOL stands for "Common Business Oriented Language" and was developed in 1960
as a language suitable for business applications. Except for some big organizations which
are unwilling to rewrite their programs using one of the modern languages, COBOL is
almost totally abandoned by programmers today.

There are a number of other high-level languages that you may have no cause to study
today because of the new trend in programming. Some of these are listed below:

. ADA - named after Augusta Ada Byron, the 1% Computer programmer. It was
developed in 1983 by U.S Defence Department.

. APL - A Programming Language, developed between 1962 and 1968.

. PL/1 - Programming Language 1, developed in 1964.

. LOGO - developed in 1966.

. RPG - Report Program Generator, developed in the 1970's.

. LISP - Short for LIST Processor, developed in 1960 as a Special-purpose
language designed to manipulate nonnumeric data.

Though you will not be introduced to the essential programming languages in this course

until later in your academic programme, however, there are some vital programming
languages you will need to study as a programmer. Examples of these are:

27

. HTML - Hypertext Markup Language
. Java - an object-oriented language
. SQL - Structured Query Language

You will be introduced to the HTML in this course

LI 4.0 Self-Assessment Exercise(s)

1. State the problem associated with machine dependency of ML, and AL
2. Define a procedure-oriented language and give two examples from the list of
languages mentioned in this unit

V57|
5.0 Conclusion

In this unit, you have been introduced to the general classification of computer
programming languages, namely, low- level and high-level languages. The two low-level
languages are the machine language and the assembly language, the former being the
lowest.

The machine language, as you have learnt in this unit is the only language understood by
the Computer and all other languages have to be translated into the language for the
Computer to execute their instructions.

6.0 Summary

This unit has presented to you an overview of computer programming languages. Apart
from the low- level languages, namely, the machine and assembly languages, you were
introduced to some common examples of high-level languages. The basic
characteristics of some of these languages such as BASIC, FORTRAN, PASCAL, C++
and HTML will be treated later in this course.

7.0 Tutor-Marked Assignments
1. Identify the first, second and third generation languages.
2(a) Give two common advantages of the machine and assembly languages.
(b) How are languages translated into machine code?
3(a) Classify the languages below: (i) Fortran (ii) BASIC (iii) C++ (iv) Pascal
(b) State the features of 4GLs.

8.0 Further Readings

28

Brightman, R. W. and Dimsdale, J. M., Using Computers in an Information Age,
Delmar Publishers Inc., 1986

Mandell, S. L., Computers and Data Processing, West Publishing Company, 1985.

29

Unit 3: INTRODUCTORY THEORY OF ALGORITHMS

Contents
1.0 Introduction
2.0 Intended Learning Outcomes (ILOs)
3.0 Main Content
3.1 Problem Theory and Algorithms
3.2 Basic Features of Algorithms
4.0 Self-Assessment Exercise(s)
5.0 Conclusion
6.0 Summary
7.0 Tutor Marked Assignment
8.0 Further Readings

2

1.0 Introduction

As you already learnt in unit 1, a Computer program is usually designed to solve a
specific problem. However, a PROGRAM belongs to a larger class of problem-solving
techniques known as ALGORITHMS. This unit is therefore aimed at introducing you to
the basic theory of problem-solving and its relationship with algorithms. You will also
be taken through the fundamental features of an algorithm in the unit.

2.0 Intended Learning Outcomes (I1LOs)

By the end of this unit, you should be able to:
» Define the basic concepts of problem theory
* Explain the principle of solving complex problems.
» Discuss the characteristic features of an algorithm
+ State various forms of representing algorithms

3.0 Main Content

3.1 Problem Theory and Algorithms

The design and development of algorithms rest solely on the principles of problem
theory. You may ask, what is an algorithm? Precisely, an algorithm is a procedure for
solving a particular problem. This definition will be expanded more in the next section. It
is good to also quickly state here that a PROGRAM is an ALGORITHM but the converse
is not true. An algorithm has to be expressed in a high- level language to qualify as a
program.

30

Now, every problem is usually characterized by the following states:

* Initial State

* Goal State.
Every algorithm is designed to transform a problem from its Initial (or unsolved) state to
its Goal (or solved) state by means of permissible operators or steps specified by the
algorithm. You will need to see an important definition below.

Definition (Stepwise Refinement)
Complex problems that cannot be solved directly are usually simplified into sub-

problems and sub-goals until you obtain a sub-problem state that you can solve directly.
Such a problem solving method is called Stepwise Refinement.

The principle of stepwise refinement is usually employed in Computer program
development in which an initial highly abstract representation of a required program is
gradually refined through a sequence of intermediate representation to obtain a final
program in a chosen programming language.

Before you go to the next section, below is an important set of concepts in algorithm
theory closely related to problem-solving principle.

Problem State Assertions

The description of problem states is often given by what you call ASSERTIONS in
problem theory. The assertions are classified as follows in association with algorithm
development:

* Initial Assertion

* Final Assertion

* Invariant Assertion
e Pre-condition

» Post-condition.

The above types of assertions are discussed briefly as follows:

Initial Assertion

This is the declaration or statement that precedes the first step of an algorithm and it
simply describes the initial problem state before the execution of the associated
algorithm.

Final Assertion

This is the assertion following the last step of an algorithm which describes that goal state
of the associated problem, that is, after the associated algorithm has been executed.

31

Invariant Assertion

This is an assertion that is true under the execution of a step in an algorithm irrespective
of the number of times the step is repeated (both before and after the execution of the
step).

Pre-condition
A precondition is the assertion preceding a step of an algorithm. By this definition, you
will see that Initial Assertion is a precondition.

Post condition

A post condition is the assertion following an algorithm step and by this definition, it also
means that Final Assertion is a post-condition.

Generally, precondition and post-condition are called Intermediate Assertions and they
generalize Initial and Final Assertions respectively.

3.2 Basic Features of Algorithms

In the last section, you have been introduced to the fundamental concepts of problem
theory and the fact that an algorithm is a procedure for solving a particular problem.
Now, you will be going through the features of an algorithm. As stated in the last section,
below now is an expanded definition of an algorithm.

Definition (Algorithm)

An Algorithm is a prescribed set of well-defined rules or instructions for the solution of a
problem in a finite number of steps. On the other hand, you can define an algorithm to be
a sequence of well-defined, finite steps, ordered sequentially to accomplish a task.

In fact, most recipes for dishes are simply algorithms, however, with the avoidance of a
statement such as "Add Salt to taste”. Why? The reason is that an algorithm step should
not contain such an ambiguous statement.

Now, you will see below the features or characteristics of an algorithm. You may as well
call them Algorithm Criteria as stated below.

Algorithm Criteria
o Every algorithm is expected to satisfy the following criteria:
Input Criterion
Output Criterion
Precision Criterion
Finiteness Criterion
Efficiency or Effectiveness Criterion.

O O O O O

32

The above five criteria will now be discussed below. Input Criterion There should be zero
or more values which are externally supplied to the algorithm.

Output Criterion
An algorithm should provide an output of implementation or experimentation. This is
very essential to check the correctness of the algorithm.

Precision Criterion
Each step of an algorithm must be clear without any ambiguity or any inherent
assumptions.

Finiteness Criterion
An algorithm must terminate after a finite number of steps. There should also be a
stopping criterion to terminate an algorithm in a case of a step with repeated execution.

Efficiency Criterion

Each step of an algorithm must be sufficiently basic that it can be carried out in principle.
That is, each step must be feasible (in addition to being definite or precise). There must
never be an impossible task included in algorithm steps. In actual programming, an
example of impossible tasks is when a quantity is being divided by zero.

You will now be introduced to an essential method of measuring the efficiency of an
algorithm, presented under what is usually termed algorithm complexity.

Algorithm Complexity

What is meant by algorithm complexity here is simply the difficulty of solving
computational problems, measured in terms of some resources employed during the
computational process. This is described below.

Suppose P is an algorithm with n as the size of the input data. Usually, Time and Memory
(or space) employed by P are two major measures of the efficiency of P. While time is
measured by counting the operations that consume the maximum time among other
operations, the space is measured by counting the memory locations needed by the
algorithm. You can see from the above description that algorithm complexity is a
function f(n) which gives the running time and/or memory requirements of the algorithm
in terms of the size n of the input data.

Generally, the memory requirements of an algorithm are some multiples of input data
size and the program size. Now, in brief, an algorithm is said to be efficient if it requires
the following:

e Minimum Memory

e Minimum Time.

But generally, unless otherwise stated, algorithm efficiency mostly refers to the running
time of the algorithm and it is not usually possible to of sin an algorithm with the

33

minimum time and memory features. Hence you have to make a choice between alternate
algorithms; that is, one with minimum time or one with minimum memory.

Algorithm Representation
Below are the common forms of representing algorithms:

» Pseudocode
» Flowcharts
« Formulae.

There are other forms of representing algorithms which you may not bother about for
now at this level. Some of these forms are:

* Decision Trees

* Nassi-Shneidermann Structured
* Flow Diagrams (NSSF)

* Warnier-Or Diagrams.

Apart from the first three forms listed above, the last three are seldom used today despite
some of their merits, especially the NSSF diagrams. You will be introduced to flowcharts
in the next unit. However, you will see the definition of Pseudocode below.

Definition (PSEUDOCODE)

A Pseudocode is a logical representation of an algorithm using third generation language
(3 GL) style such as DO, WHILE, IF-THENELSE, etc. Pseudocode is also called
structured English since it is English- like in structure. It is essential to know that a
Pseudocode is not directly executable on a computer except it is transformed into a high-
level language code.

Interestingly, Pascal language has a general form for its Pseudocode which cannot be said
of other languages. The general form is as follows:

ALGORITHM name
DECLARE

definitions and declarations
EXECUTE

statements to be executed
END name.

As you can see above, a Pascal Pseudocode is simply made up of four blocks:
- Algorithm Name

Declarations
« Executable Statements

34

End of algorithm.
See an example below.
Example 1 (Pascal Pseudocode)

ALGORITHM average

DECLARE
a, b, c: REAL
EXECUTE
INPUT a, b c: = (at+ b)/2
OUTPUT _c=-, ¢
END average.

The above example finds the average of two numbers. You can see below how the above
Pseudocode can be transformed easily into a Pascal code.

Example 2 (Pascal Code)

PROGRAM Average (INPUT, OUTPUT);
VAR a, b, ¢ : REAL;
BEGIN
READ (a, b);
c:=(a+hb)z;
WRITTEN (' c=', ¢);
END.

You will return to this example in the unit on Introduction to Pascal Language in this
course. However, you can see how it is very easy to transform a Pascal Pseudocode into
its associated high- level language Pascal code.

The symbol : = in the Pascal Pseudocode in Example 1 is called the ASSIGNMENT
OPERATOR or SYMBOL and it is used in place of equality sign. The general usage is as
follows:

variable : = expression.

The above is read as "expression is assigned to variable” or "variable becomes
expression”

In the Pascal pseudocode above if you have an output statement as follows:
OUTPUT ‘¢ =", ¢, MORE

the equivalent Pascal code statement will become:

WRITE ('c =", ¢);

which means that the next output will be printed on the same line.

35

SELF ASSESSMENT EXERCISE 1
I.

As you have already seen in the example above, an output statement could consist of a message
or a string of characters to make the output more meaningful to the user.

Instruction Execution
The instructions in an algorithm are usually executed one after the other as they appear in the
algorithm steps.

Algorithm Completion
Generally, an algorithm is completed with the execution of the last instruction. However, an
algorithm can be terminated at any intermediate state by using the exit instruction.

LI 4.0 Self-Assessment Exercise(s)

Why do you think the END statement in the Pascal Pseudocode in Example 1 has to
bear the name again?

WRITE: variable list
Or
OUTPUT variable list

N\ A

194
5.0 Conclusion
In this unit, you have learnt the basic concepts of problem theory and how they are
related to algorithm development. The unit has also shown you the essential criteria that
characterize ever algorithm. If you remember, they are:

* Input

* OQOutput

* Precision

* Finiteness
* Efficiency.

Finally, in this unit, you have been introduced to some various forms of representing
algorithms.

36

)

6.0 Summary
Problem theory is very fundamental to the design and development of algorithms as

you have been taught in this unit. The unit has therefore taken you through some basic
concepts of problem theory.

As you will remember, a major concept in problem theory is ASSERTION which
describes the state of a problem as it is being transformed by algorithm steps. This unit
has also specifically shown you the major characteristics of algorithms and how they
are represented in various forms. The next unit will specifically take you through a
very essential and common v ay of representing algorithms which is very basic to
computer programming design

6.0 Tutor-Marked Assignments
1. How does the method of Stepwise Refinement affect the development of an

algorithm?
2. What is the essential factor in the measurement of an algorithm efficiency?
3. Construct an algorithm to compute the sum of n integers starting with the kth

integer

8.0 Further Readings
Reju, S.A., Lecture Notes on Theory of Algorithms, Unpublished Manuscript.

Safaria, R.S., Computer Oriented Numerical Methods, Khanna Book Publishing
Company, Delhi, 1999.

37

Unit 4: FLOWCHARTING TECHNIQUES

Contents
1.0 Introduction
2.0 Intended Learning Outcomes (ILOs)
3.0 Main Content
3.1 Types of Flowcharts and Symbols
3.2 Applications of Flowcharts
4.0 Self-Assessment Exercise(s)
5.0 Conclusion
6.0 Summary
7.0 Tutor Marked Assignment
8.0 Further Readings

2

1.0 Introduction

The task of computer programming rests to a large extent on the ability of the computer
programmer to properly make use of the initial analysis and design tools available to
him. Programming is one of the essential components of the broad task of system
analysis and design. For analysis and design work to be useful, it must be expressed in
one understandable form or the other. In general practice, analysts and programmers
make use of diagrams and charts as important tools. In this unit, you will therefore be
introduced to the use of flowcharts, specifically in programming. Below are your study
objectives for this unit.

@ 2.0 Intended Learning Outcomes (ILOs)

By the end of this unit, you should be able to:
 State the types of flowcharts employed in programming.
* ldentify various ANSI (American National Standards Institute) symbols used in
flowcharts.
* Construct simple flowcharts for simple programs.

3.0 Main Content

3.1 Types of Flowcharts and Symbols

Under the broad area of System Analysis and Design of which programming is a
component, you can classify diagrams and charts used by analysts and programmers as
follows:

» Data Flow Diagrams (DFD).

38

» System Flowcharts

* Forms Flowcharts

* Program Flowcharts

* Hierarchy or Structure Charts

* Hierarchy plus Input-Processing-Output (HIPO) Charts.

Though your emphasis will be or Program Flowcharts in this unit, however, see some
brief descriptions of the above list as follows.

Data Flow Diagrams
The common symbols use DFD d in are « Open-ended rectangle or Sinks.

e Circles or Bubbles.
* Arrows.

The Sinks are as shown below

or

They signify files or other sources of information.

The Bubbles are as stated above circles:

A bubble is an operation or a procedure that transforms data.
The arrows? represent the flow of data and they are usually accompanied by comments to

indicate the flowing data. There is what is called SANDWICH PRINCIPLE which states
that "Every bubble falls between at least two data flow arrows".

39

System Flowcharts

While Data Flow Diagrams focus on the flow of data and the general operations in using
data to obtain results, system flowcharts perform the same role but in addition specify the
data processing techniques to be used. Since system flowcharts provide more details, they
are therefore referred to as "Device-Specific" _, especially when automated processing
methods are employed.

Forms Flowcharts

The DFDs and system flowcharts already considered give no any indication of the units
of an organization that perform the data processing task and which units use the
information. However, Forms Flowcharts are simply employed to supply this information
of how documents and forms flow among the organizational units. They don't indicate
how data are processed.

Program Flowcharts

You have already seen three types of charts above that provide the overview of the flow
of data and the assignments of functions among the agents in a system. When all the
agents are human, you call the system a MANUAL SYSTEM. But when computers are
employed to perform some procedures, the system is called a COMPUTERISED
SYSTEM.

Now, program flowcharts or what are also called "Logic or Block" diagrams are the
charts employed to depict the step-by-step procedures to be used by a computer system to
process data. Usually, the flowchart symbols are arranged in the same logical sequence in
which corresponding program statements will appear in the program.

As a programmer, you are expected to be very familiar with how to construct a good
program flowchart. This is because flowcharts provide excellent way of documenting
your program. Moreover, flowcharts serve as good maintenance tools since they can be
employed to guide the programmer to determine what statements are required to make
any necessary modifications and where to locate them. Thus an updated flowchart
provides good documentation for a revised program.

Now, at this juncture, it is in order to quickly introduce you to the flowcharts symbols as
approved by ANSI (American National Standards
Institute).

Flowchart Symbols

Flowcharts generally make use of symbols that are assigned specific meanings. The
common symbols are as follows, in the table below:

40

Table 1 ANSI Flowchart Symbols

SYMBOLS DESIGNATION OR NAME MEANING
Oval Terminals
Rectangie Process
Diamond Decision
Paraliclogram Input/Out
Rectangle with Double Predefined Process
Vertical Bars or Modules

Document or Prin. d

Curve-sided Quad Output
Maultiple Curve-sided Quads Multi-document
tion or
Hexagon Initialization
Trapezium Mam;ll Input

IVEINSIE

41

Symmetric Trapezium

Manual Operation

Rectangle with Vertical
& Horizontal bars

(Y
T LI

0wt o1 bobivib sd

Small Circle Co or_
suneivsst nsn
+

an wilifrie Bobploni mnp@,ﬁé“"f. 19rho st eﬂﬁmmd'f
™ w2y v bolgobs zlodmye) ody gnoms 916 Isds
b ._!..l\ 1 Loaeat2 1 Y 3 I)
iz g y¢lizss zlodirsz szol weib asy yoy ,woM
s 26 dovz zogsdusqg ogwitoz amoz Y aldelisve

doirasez 1xon 2t mi zlodeyz nedovwolt svods sdito

bne wol

w arlt qorulive eds tedowoll o

Vertical Cylinder

152 zrfwkohedTape 13019
nsdowold o1eM .
nMedowold 012iM -

Magnetic Disk
i) 21 nedowolt otosm A

2

s b niztgof] ods to atomguz rosgr odl stedvw "nsdowol
AL0id o) b znsdowol ovssm .\(Ilcoﬂlﬁl .zalpbom
-benoijnarm 191l ?tl. meigsid
arly to tlt cwode nndeeolt onsirn s zhordowolt owsr 24ido’]
R T ~'(l" siboliss ozle a2t 11 9snsH| lisiob ol a1 misigolq
6 aid 1 2o nnizeonorg sdi 1oiqob JlSequentisk Aoeas§iStomgy!
um')bn sno-ofono 6 1o 1ziznos nafto|bne mmgmq slusimeg
glirodnoisle mmotuotg bne
15 .(s o) bupubonian goiad 1o uoy pedl ad v walA
o)‘HH e owstostz ool o 1994 91 poy bas /J’!Ld.)NO"
| PR " is loiss f} “L PECITTL BUTTT PSP TSP IC P75 B 1P B -n‘nc PR | ey erTs
| Amows or Flowlines Flow Directions
@ Horizootal Cylinder Direct Access Storage
] .

There are yet some few other symbols not included in the above table that are among the
symbols adopted by ANSI and also ISO (International Standards Organization).

42

Now, you can draw these symbols easily by using drawing tools available in some
software packages such as Flowchart or Microsoft Word Auto-shapes. You will be given
examples associated with the use of the above flowchart symbols in the next section.

Program flowcharts can be divided into two:

* Macro Flowchart
* Micro Flowchart.

A macro flowchart is the flowchart that outlines the general flow and major segments of a
program. It is also called the "Modular program flowchart" where the major segments of
the program are called the modules. Specifically, macro flowcharts are those called Block
Diagrams as earlier mentioned.

Unlike macro flowcharts, a micro flowchart shows the logic of the program in full detail.
Hence it is also called a "Detail Flowchart". Micro flowcharts usually depict the
processing steps required within a particular program and often consist of a one-to-one
correspondence between flowchart blocks and program statements.

Now, you remember that you were being introduced to various types of flowcharts and
you are Yyet to treat structure and HIPO charts before it was seen to be getting a bit late to
introduce the flowchart symbols. Now, see the brief descriptions of the remaining two
types below:

Hierarchy or Structure Charts

Structure charts are diagrams that depict the procedures of an operation in a hierarchical
form. A typical example of a hierarchical chart is the one showing the organizational
structure of an organization. Structure charts are usually read from top to bottom and left
to right and they concentrate majorly on those procedures that should be executed to
perform the job or each module. This is referred to as "Top-Down analysis".

HIPO Charts

HIPO (pronounced "hypo") as you have already learnt stands for Hierarchy Plus Input-
Processing-Output. HIPO charts have design approach similar to that of structure charts
and they are more concerned with WHAT is done than with HOW it is done. Since the
emphasis in this unit is more concerned with flowcharts that directly provide aids to
programming, you will therefore presently not be bothered with detail description of
HIPO charts.

You will now go through some simple applications of flowcharts.

3.2 Applications of Flowcharts

43

In this section, you will be introduced to some simple examples of problems with their
associated flowcharts. You will start with the example in unit 3, having the following
Pseudocode.

Start
read: a, b
set ¢ = (ath)/2
write: ¢

End.

However, remember you used Pascal Pseudocode for the above example in unit 3.
Before drawing the simple flowchart for the problem, modify the Pseudocode as
follows:
Start
read: a, b
setc=(a+h)/2
if ¢ <0 then
write: "Average is negative"
re-start
else end if write: ¢

End.
The flowchart for the above problem is as follows:

Example 1

44

c = (a+b)/2

NO

Pl ol
C__mo_)

The above flowchart uses the most commonly used symbols, namely:

Terminals
. Input/Output
. Processing
. Decision,

The original problem was deliberately modified for you to use the Decision box in the
flowchart.
Now your exercise below

You will now go through another example, having the following Pseudocode:
Example 2

START
DOWHILE staff number? 0
READ: staff weekly work record
IF work is hourly THEN
CALCULATE gross pay
ELSE
Pay = (annual salary)/52
ENDIF
Update payroll file
ENDDO

45

END.

In the above Pseudocode, the calculation of the gross pay is taken to be a pre-defined
process. The flowchart is as follows in an unbroken form:

(sTarT)
(A }——
o
/ READ weekly
/ work record

NO
NO
Work = Hourly
YES
CALCULATE Gross Pay
Gross Pay = Ansal/52

UPDATE
Payroll File

To minimize the use of a long flow line, a connector has been used in the above
flowchart. In the flowchart, you will observe that the program is terminated when the
staff number is entered as zero. As you will observe in the flowchart, expressions have to
be shortened in forms that the boxes can easily accommodate.

As you have already learnt in the previous section of this unit, the predefined process
box is representing a module of the program, which in the above example is the segment
of the program that computes the Gross Pay.

Later in your course of study, you will definitely come across more complex problems

that will demand the use of more of the flowchart symbols you have already been
introduced to in this unit. You will now round up the unit.

46

|—| 4.0 Self-Assessment Exercise(s)

1. Among the various types of charts introduced above, identify those that provide
details essential to practical programming.

Answer
Program flowcharts and system flowcharts, but more specifically the former (i.e.
program flowcharts).

2. Reconstruct the above flowchart for the same problem with manual input and a
print output.

Answer
The new flowchart is as follows:

START
|
/ READ ab /

¢ = (a+b)?2

END

You observe that "PRINT" is used in the Document Symbol to make it more
appropriate. The same word can be used in the Pseudocode since you are free to be
flexible in your use of words in Pseudocode.

pm

19
5.0 Conclusion
In this unit, you were taken through the general types of flowcharts employed in system

analysis and design with special emphasis on program flowcharts.

As you learnt in the unit, program flowcharts can be divided into two: Macro
flowcharts and Micro flowcharts. While the former focus on the major segments of a

47

program, the latter show the logic of the programming in full detail. There are standard
symbols approved by ANSI and ISO as presented in Table 1 in the unit. You need to
get used to the symbols since flowcharting provides a very good way of documenting
your program.

6.0 Summary

The unit has introduced you to the fundamentals of flowcharting as an essential step to
good programming. You were also taken through some examples of flowcharts, using
the most common symbols. You need to practice with more complex problems that
will suggest the use of more symbols of flowcharts.

In summary, below are some rules that guide flowcharting:

» Organize flowcharts in modules

» Use the standardized symbols approved by ANSI and ISC

+ Vary symbol size but not shape

* Maintain good and consistent spacing between symbols for good readability.

» Arrange program flow from top to bottom and left to right.

* Never cross flow lines

 Avoid the use of connectors unless they are necessary to avoid too many breaks in
the flowchart

» There must be no path or flow line that goes nowhere. This is a rule that is
consistent with the concept of a "Proper Program™ that has one entry and one exit.

7.0 Tutor-Marked Assignments

1. What is the sandwich principle and in what type of chart is it applicable?
2. Distinguish between system flowcharts and program flowcharts.
3. Let f(x) be a given function with xmin and xmax as the minimum and

Maximum end points over which f(x) is to tabulated. Let dx be the
increment in x. Study the following pseudocode and then construct an
appropriate flowchart for it.

START
READ: xmin, xmax, dx
Set X = xmin
WHILE (x = xmax) DO
Sety =f(x)
WRITE: xly
Set X = x+dx
WHILE END
END.

48

8.0 Further Readings

Brightman, R.W. and Dimsdate, J.M., Using Computers in an Information Age, Delmar
Publishers Inc., 1986.

Mandell, S.L., Computers and Data Processing, West Publishing Company, 1985.

Salaria, R.S., Computer Oriented Numerical Methods, Khanna Book Publishing
Company, Delhi, 1999.

49

Unit 5: STRUCTURED PROGRAMMING

Contents
1.0 Introduction
2.0 Intended Learning Outcomes (ILOs)
3.0 Main Content
3.1 Basic Logical Structures
3.2 Structured Programming Methods
4.0 Self-Assessment Exercise(s)
5.0 Conclusion
6.0 Summary
7.0 Tutor Marked Assignment
8.0 Further Readings

2

1.0 Introduction

In this unit, you will be taught an essential method of programming, known as
"Structured Programming". The structured programming design is a programming tool
developed in the 1960s as a way of defining the elements of a problem and as at today
it's the best approach to all computer programming tasks.

This unit is aimed at introducing you to the basic elements of structured programming
with their appropriate illustrative flowcharts. Now, look at your study objectives for this
unit.

|@\ 2.0 Intended Learning Outcomes (ILOs)

By the end of this unit, you should be able to:
» Define the three basic structures of structured programming
« Explain the techniques employed in structured programming projects.
« Develop computer programs using any of the patterns of structured
programming.

3.0 Main Content

3.1 Basic Logical Structures

Before you go into the three types of logical patterns that characterize structured
programming you need to understand the benefits of this method of programming. To
start with, you need to know that without a standardized method of solving a problem, a
programmer may spend more time than expected in finding an appropriate solution
method and in the development of the associated program. Structured programming

50

gives room for well-thought-out program logic and provides an attempt to keep
programs as simple and straight forward as possible.

Basically, structured programming employs Modular Approach and Top-Down
Principle, the concepts which you have come across in the previous units. Now, the
fundamental objectives of structured programming are as follows:

* To increase programmer productivity

* To increase program clarity by reducing complexity
* To reduce program testing time

* To reduce program maintenance time and effort.

Here is an essential feature of structured programming: It is a "GO-TOless" programming
technique, meaning that the BRANCH pattern characterized by GO TO statements is
highly discouraged in structured programming. This is because a GO TO statement
causes an unconditional branch from one part of the program to another and an excessive
use of such statements leads to continuous changes in the program execution flow.
Moreover, a program with many GOTO statements is very difficult to modify by
programmers.

Having gone through the above preliminaries but important aspects of structured
programming you will now see the three basic logical patterns that characterize structured
programming. They are as follows:

* Sequence Structure
. Selection Structure
* |terative Structure.

Sequence Structure
In sequential structure or what you can also call sequential logic, the steps are executed
one after another as serial operations. This can be illustrated by the following flowchart:

Process A

Process B

Process C

51

In fact, most processes, even of very complex problems will usually follow this
elementary sequence structure or logic.

Looking at the above flowchart, there are two arrows, one at the top leading to the first
process box and one at the bottom leading out from the last process box. They
respectively represent the ENTRY and EXIT points of the program segment. It is good
to state here that as basic guideline of structured programming is that each module
should have only one entry point and one exit point. For this reason, a program that has
only one entry and one exit is called a PROPER program.

Selection Structure

The selection structure uses conditions and based on the decision taken by the computer
after comparison of data, one of the available alternatives is selected. For this reason, it
is also called Alternation structure or Conditional structure. You can also call it the IF
structure. The selection structures can be categorized as follows:

* Single Alternation
* Double Alternation
* Multiple Alternation.

Single Alternation
This is described by the following flowchart:

In the above flowchart, if the condition is satisfied, then the instruction(s) in the Process
box (or what is also called ACTION BLOCK) is/are executed. If the condition is not
satisfied, the control transfers to the next instruction following the checking of the
condition.

The pseudocode is as follows:
IF condition THEN
action-block statement(s) ENDIF

Double Alternation
The structure is illustrated below:

52

FALSE TRUE
Condition

Process

You will do the following exercise now.

Multiple Alternation
The structure is seen in the following flowchart using three conditions:

53

THEN
Process - |

Condition - 1

TRUE

THEN
TRUE Process - 2

FALSE

Condition - 3 THEN
TRUE Process - 3
FALSE
Condition - 4 THEN

TRUE Process -4

ELSE Process

Looking at the above flowchart, you will see that if none of the four conditions is
satisfied, then the process in the ELSE box will be executed.

You will now study the third structure below

Iterative Structure

Iterative Structure is of the following two forms generally
* WHILE Loop

* DO-UNTIL Loop.

WHILE Loop
To start with, an iterative structure is also called the Loop or Repetition structure. Now

the WHILE loop which you can also call the DOWHILE structure is illustrated below:

54

FALSE

Condition

TRUE

Condition

A pseudocode for the above flowchart is as follows:
WHILE condition DO

statement(s)
ENDWHILE.

When using the WHILE loop, the following points are essential:

. Have an instruction that initializes the condition before the use of the
WHILE structure.
. Let there be an instruction that modified the condition within the loop.

Without such a statement, the loop will repeat itself indefinitely.

As you have seen in the “above flowchart, the "condition” is used to control the loop.
Thus the loop is executed until the condition no longer remains true.

Now, see the other type of loop structure in the following illustrative flowchart.

55

DO-UNTIL Loop

Process

FALSE

TRUE

You can also call the above structure the REPEAT-UNTIL structure. A Pseudocode for
this logical structure is therefore as follows:

REPEAT
Statement(s) UNTIL
Condition

For Loop
This is illustrated below, using the following flowchart:

FORI=j TO k bys DO

Process

A Pseudocode for the above type of loop is as follows:
FOR1=jTO bys DO
Statement(s)
ENDFOR.

56

In the above pseudocode, the variables are defined as follows:

Indexvariable
initial value

[

J :

k : final value
S step size.

Essentially, the index variable i controls the loop while the step size can either be
negative (to implement decrement) or positive (to implement increment). When the step
size is not stated, the default step size is taken to be 1.

For example, a flowchart for positive step size is as follows:

i=i+s

With the above you will now go to the next section before you round up this unit.

3.2 Structured Programming Methods
In this section, you will be introduced to the two methods employed in developing a
structured program. The two methods are:

. Level programming
. Path programming.

Level Programming

Programming by level is also called Top-down programming technique and it is
characterized by writing all the program modules on level one or top-most level before
programming the modules on level two. In the same vein, the modules on level two are
programmed before the modules on level three, and so on.

57

An illustration is as follows:

LEVELS MODULES
| Module
1
| |
2 Module Module Module
2 3 4
== L—l
3 Module Module Module
5 6 7
4 Module
3

Then, look at the second technique illustrated below:

Path Programming
This is a method where all modules along a logical path in the program are developed in
sequence. See the illustration below:

LEVELS MODULES
! Module
1
[1
2 Module Module Module
2 6 8
3 Module Module Module
3 Rl 7
4 Module
5

The Path Programming is also called Backtracking programming. The method helps the
programmer to backtracks to the first unwritten module that is directly connected to the
path being developed, until all modules are developed.

Before you round up this unit, remember you have been taught in the unit that in

structured programming, each module should have only one entry point and one exit
point. Do you remember what we call a program characterized by one entry point and one

58

exit point? It is called a Proper Program. The modules are usually linked together by
DRIVER PROGRAMS. A driver program simply directs the computer to ENTER the
appropriate module, and when the computer EXITS the module, control is returned to the
driver program. You will now round up the unit.

LI 4.0 Self-Assessment Exercise(s)

1. Construct the pseudocode for the above structure.
Answer

IF condition THEN

Action — block - 1

ELSE

Action block — 2

ENDIF

Where action-block-1 constitutes the THEN Process and action-block2 represents
the ELSE Process.

As you can see in the above flowchart, if the condition is satisfied, then the
instruction(s) in the THEN process box is/are executed, otherwise the
instruction(s) in the ELSE process box is/are executed.
2. Construct a flowchart for the Pseudocode below.
DO
Statement(s)
WHILE condition

5.0 Conclusion
In this unit, you have been introduced to the basic logical structures that
characterize structured programming. A very major objective of structured
programming as you have learnt in this unit is to increase program clarity by
reducing complexity. This is the fundamental principle behind the use of modular
approach and top-down technique in structured programming.

The three basic control structure, c: patterns employed in structured programming
are Sequence, Selection and Iterative structures. The illustrative flowcharts for
these patterns were presented in this unit.

6.0 Summary

59

]

This unit has basically focused on the various types of logical structures you need to
employ to develop structured programs. Very much related to the subject of structured
program Hug are the two well-known programming techniques called Level
Programming and Path Programming. These two methods were illustrated in this unit.
Based on what you have learnt in this unit,some programming languages will be
introduced to you later in this course with some typical examples that employ the
principles already learnt in this unit.

7.0 Tutor-Marked Assignments
1. Why is structured programming called the GO-TO-LESS Programming?
2. Among the three types of patterns that characterize structured programming,
identify the structure that seems to be inherent in the other two.
3 (a) Construct a flowchart for a FOR-Loop when the step size is negative.
(b) Which of the following types of loop structures a FOR- Loop is a special case?
* WHILE Loop

*DO-UNTIL Loop

8.0 Further Readings

Brightman, R.W. and Dimsdale, J.M., Using Computers in an Information Age, Delmar
Publishers Inc., 1986.

Mandell, S.L., Computers and Data Processing, West Publishing Company, 1985.

Salaria, R.S., Computer Oriented Numerical Methods, Khanna Book Publishing
Company, Delhi, 1999.

60

Module 2

Module Introduction

This module provides introductions to the rudiments of BASIC and FORTRAN programming
language. In this module we introduce BASIC Programming; explained more programming
statements in BASIC, and introduce you to FORTRAN Language. Also covered in the module
are FORTRAN Keywords and Library Functions.

Unit 1:
Unit 2:
Unit 3:
Unit 4:

Unit 5:

Unit 1:

Introduction to BASIC Programming
Starting with BASIC Programming

More Programming Statements in BASIC
Introduction to FORTRAN Language
FORTRAN Keywords and Library Functions

INTRODUCTION TO BASIC PROGRAMMING

Contents

1.0
2.0
3.0

4.0
5.0
6.0
7.0
8.0

2

Introduction

Intended Learning Outcomes (ILOs)

Main Content

3.1 BASIC Variables and Characters

3.2 Reserved Words or Keywords in BASIC
Self-Assessment Exercise(s)

Conclusion

Summary

Tutor Marked Assignment

Further Readings

1.0 Introduction

This Unit is aimed at introducing you to the rudiments of BASIC language. As you
already know in the previous unit, BASIC stands for Beginner's All-purpose Symbolic
Instruction Code. The language was developed in the early 1960s by John Kemeny and
Thomas Kurtz of Dartmouth College, as a teaching language. There are many versions
of the language. Examples are:

BASICA - Advanced BASIC
GW BASIC - Eagle BASIC
QBASIC - Quick BASIC
Turbo BASIC

61

Visual BASIC
BASIC 4GL
KBASIC
FreeBASIC
SpeedBASIC
ExtremeBASIC
MediaBAS1C
YaBAS1C
XBASIC
Liberty BASIC
Just BASIC
WXBASIC
smallBASIC
Gambas

Versions like BASICA and GW BASIC are already taken over by other versions listed
above. Visual BASIC is a version of the language specially designed for Windows
platforms and is today one of the programming tools with very high preference among
programmers. However, it is interesting to know that BASIC language remains one of
the best programming tools gaining wide acceptance even in the face of rapid
developments of various computing platforms.

+. CATURANG- 1\T8 XY
e " Turhe Pazic
file tais K Lumpile Uptivn

~unpale |

U877 required
Ieghaard hreak

Lownds
Sl fwevf law
l ek Lest

P ot l Faraneter lin=
MLoutatomums

Figure 1: Turbo Basic Screen

For example, SmallBASIC has been designed to run on various platforms including
Windows, Linux and Pocket PC platforms. Gambas is designed for Linux operating
system, while most of the versions listed in (vi) — (xvi) are for Windows platforms and
they compete favourably with Visual Basic. Specifically, SpeedBASIC is an attempt to
create an object oriented BASIC style language, similar to Visual Basic, with its own
Integrated Development Environment (IDE). The Basic source code is converted to C++
while a compiler is used to compile and link the C++ source with libraries handling
Graphic User Interface (GUI), File 1/0O and etc. For example, below, is a screen shot of

62

KBASIC Professional, Version 1.4, released May 2006, to show you that BASIC has
worn a beautiful object oriented look and it's yet reigning alongside other programming
languages today. Il

sl ey D205 |8 o3
gm&ub—uwi_svnhm O3t

| -—«:—* e - g ——n,~'--_.r_2—
G H 4B LA00 PHE RSO F AnDSE 1 o
& W

weyin | bedlanaJavfons

‘ meran=E® V7
-] 1| AL AR

mZ AXEPREFA G wniROed T

= Tastanlime ths EDL Sadwaey @
LEL S35 Lyt [SALTHITIIINC) < 0) (
flatdecr g
—_— ('3(“.*.‘ saitislize SIL Yaha'. i
exit{l)

of Cnmra }

" o Lo o o491 Y DA T
= pveel " vt 159 Oein)
i - oalat Lise!
Tnstid dispiet in a HA0RAB) B-hit DalELLT
nz‘ ;:-3- 9'&5{:&'{31 cckiodelt46. 481. 8. MHB)
10 (BGTEEA SS NWAE D4 s
= . Cabin'l b GUOnN0S v
.‘;:' L sbida\dors — ey
™ e
k010
Ll ¥
fait eliring the best videe o

2 T et M
- 7o 8 weleeme for BT3 E:. ::col szg Gt 4]
P ahpdp i p TP TL N e m—

In brief, this unit will concentrate on the variables and characters employed in BASIC
programming. Since every language has its Reserved Words, this unit will also introduce
you to some BASIC reserved words that are common with most BASIC interpreters and
compilers.

Now, look at your study objectives for this unit.

I@l 2.0 Intended Learning Outcomes (ILOs)

By the end of this unit, you should be able to:
* Define the types of variables used in BASIC language statements.
* Describe the use of the major characters and symbols used in BASIC
* Explain the meanings of some BASIC reserved words

3.0 Main Content

3.1 Basic Variables and Characters

The BASIC Interpreter or Compiler (since you can compile your BASIC program with
Turbo BASIC, KBASIC, MediaBASIC and others, for Example) handles variables as
names of memory locations. Memory can just be visualized as a litn2.e Post Office with
its Post Office boxes as memory locations or cells. You know that each Post Office box
has an address to identify it. The contents of the box can change from time to time but
the address remains uniquely unchanged. The same occurs in the computer memory.
Now, in addition to identifying memory locations, variable names are also used to
identify the types of data being stored in the computer memory. Though there are several

63

types of data, in this unit on BASIC, you will only be introduced to two, and hence two
types of variables, namely:

* Numeric Variables
» String Variables

NUMERIC VARIABLES

Generally, in BASIC, variable names must start with a letter and can be followed with
numbers or other letters, for example, a variable name can be as long as 40 characters (as
in MS QBasic). So, examples of variables names are Al, B3, AB4, JONH, REJ2, Y5, and
SO on.

Numeric variables are simply those that represent numbers. In BASIC, such numbers can
be whole numbers, decimals, zero, positive or negative integers. In other several
programming languages, you may need to identify specifically the type of the variable,
either as REAL, INTEGER, LOGICAL, COMPLEX or CHARACTER. However,
BASIC is a more accommodating language and most versions may not bother you on
identifying the variable type.

STRING VARIABLES

Variable names are also employed to represent character data in memGry. Character
variable names are similar to numeric variable names, but they refer to memory locations
containing character strings, where collections of characters are called String Variables.
To specifically distinguish a string variable, the dollar symbol $ is used at the end of the
variable name. Examples of string variable names are therefore as follows:

A$, JOHNS, B2$, REJS, etc.

It is good for you to also know that the dollar signs $ also appears at the end of almost
every BASIC reserved word that deals with strings. Now, while the values of numeric
variables are simply numbers, the values of string variables are given as characters
enclosed between double quotes, such as "NAME", "OK", etc. the space character can
also be made as part of the string.

You may find the following points very helpful as you choose your variable names:
« Keep your variable name as short as possible since you need to type it every time
you need it in your program code (though you can copy and paste, every time).

+ Select a meaningful variable name to assist you in remembering what it represents

Below, you will now see the meanings of some characters or symbols used in BASIC
language.

The characters will be grouped for your understanding as follows:

. Alphabetic characters
. Numeric characters

64

. Data — type Suffixes

. Mathematical Operators

. Special or other characters

ALPHABETIC CHARACTERS

a—zorA—Z

That is. BASIC accepts letters A to Z, either in lower or upper cases.
NUMERIC CHARACTERS

0 —9and A — F (or a—1) for hexadecimal numbers

DATA-TYPE SUFFIXES

$ String

! Single Precision
Double Precision
% Integer

& Long Integer

MATHEMATICAL OPERATORS
+ Addition
* Multiplication
- Subtraction
= Relational symbol or Assignment symbol
' Less than
> Greater than
Decimal point
Exponentiation
<> Not equal to

Division
<= Less than or equal to
== QGreater than or equal to

Intcger division

Special car Other Characters

: - (Colon) separates multiple statements on a single line

; - (Semicolon), controls PRINT statement output

, - (Comma) also controls PRINT statement output

- (Single Quote) used for comment line in place of REM.

- Used in place of PRINT. BASIC also uses it as INPUT statement prompt

N

You will see the use of some of the above symbols and characters in subsequent units on
BASIC in this course. In the next section, you will now be introduced to some keywords
or reserved words in BASIC

65

X

3.2 Reserved Words Or Keywords In Basic

Just as words have their meanings in the natural language, the same thing applies in
programming languages, reserved words generally describe the operations to be
performed by the computer. If your reserved words are wrongly coded, you will
definitely receive syntax error message during the running of the program. As a vital
programming rule, it is essential to avoid using any of the reserved words as a variable
name to avoid program errors during execution. Now, for your understanding, the BASIC
reserved words are grouped below according to their programming tasks.

M_uEEncai zbnpﬂmgu ABS. ASC. ATN, EEBL. %Ei E'M TOS. CSNG

(or Library Functions) CVDMBF, CVSMBF, EXP, INT, LOG, RANDOMIZE,

TAN, TIME $ (Function).
T | Conrol of Program Flow | "

7

3 Declambion of Corstant and | CONST, DATA, E . DIM, OPTION
Variable READ. REDIM, REM, RESTORE, SWAP, TYPE...

4 Delmition and Call of BASIC | CALL, DECLARE, Eﬂ'. FUNCTION, RUN, mﬂ_l.
procedures SHARED, STATIC. SUB

T " 5 :
5 | Display of Graphic Images PALETTE, PCOPY, PMAP, POINT, PRESET, PSET,

PUT(Graphi SCi Staement), VIEW., WINDOW
6 Man: of Mem E,

i comm "THBIR, KILL, MRDIR. NAME. RMDIR
(assignment). LINE INPUT. LOCATE, LPOS,

% Device Input/ Output LPRINT, LPRINT USING, OPEN, COM, OUT,
POS, PRINT, PRINT USING, SPC, SCREEN(function),
TAB, VIEW, PRINT. WAIT, WIDTH

CLOSE. EOF. FILEATIR, FREEFILE, GET IF‘F 110),
INPUT, INPUTS, LINE INPUT, LOC, LOCK, LOF,
9 Fike Input‘Output OPEN, PUT(Fike o), SEEK(Function),
SEEK(Siatament), UNLOCK. WRITE

ASC, % - 3
LEN, LSET. LTRIMS, MIDS (Function),

10 | Manipulation of Strings MIDS(Slatement), OCTS, RIGHTS, RSET,

RTRIMS SPACES. STRS, STRINGS, UCASES, VAL.
COM. ERDEV, ERDEVS, ERL, ERR, E

11 | Setting Traps for Events and | KEY(Event Trap), ON COM, ON ERROR, ON KEY,
Emors ON PEN. ON PLAY. ON STRIG, ON TIMER. PEN,
PLAY(Event). RESUME., RETURN, STRIG, TIMER
(Function). TIMER(Stalement)

What a long list! Yes, but you may not use most of the above keywords in your
programming lifetime! Some programmers don't even know that some of the above
keywords exist in BASIC since their program demands do not necessitate their use.

The above list of keywords simply shows you that BASIC is a very rich language in
terms of programming tools. Getting grounded in BASIC will help you a lot in studying
other object oriented versions BASIC such as Visual Basic.

Some of the reserved words as seen above appear under more than one programming

task. In the subsequent units, you will see the use of some of the commonly used
keywords in some examples.

4.0 Self-Assessment Exercise(s)

66

Identify the following variables as acceptable or unacceptable, giving your reason(s) if
unacceptable in BASIC.

I. ADA
ii. $x iii. TAX iv. 8BIG v. W.3

Answers
i. Acceptable
ii. Unacceptable — the dollar sign ($) must be placed after the name.
iii. Acceptable
iv. Unacceptable — a letter must begin the name and not a number.
v. Unacceptable (for common versions) — only letters and numbers are allowed in
the name.

5.0 Conclusion
This unit has introduced you to the two common types of variables used in BASIC
programming, namely:

* Numeric Variable

« String Variable

The unit also shows you the various types of characters generally employed in
BASIC. As in natural language and in other programming languages, there are specific
meanings to keywords in BASIC and the unit has provided you a very extensive list of
reserved words used in BASIC

6.0 Summary

BASIC language is still today a good language with its wide range of programming
tools for the development of a wide range of applications. Its basic knowledge is very
essential for programmers who want to quickly understand for example other object
oriented versions of BASIC such as Visual Basic, KBASIC, etc.

What you have learnt in this unit on BASIC will be employed in various examples you
will come across in subsequent units on the language in this course.

7.0 Tutor-Marked Assignments
1. State four (4) types of variables including the two types commonly associated
with BASIC programming.
2. Using the appropriate symbols, write the following expressions in BASIC code:

67

(a) 4dac +6bc’ e b’
5

b 2

(b) 4dac +6bc’ e b’
b 2
3. State three reserved words in BASIC that can be used under more than one
programming task

\@I 8.0 Further Readings

Brightman, R. W. and Dimsdale, J. M; Using computers in an Information Age,
Delmar Publishers Inc; 1986

Microsoft Corporation, MS DOS Quick Basic Version 1.1, 1992. KBASIC Software
Corporation, KBASIC Professional Edition, 2006 http://www.kbasic.com
http://www.freeprogranmmingresources.com

68

http://www.kbasic.com/
http://www.freeprogranmmingresources.com/

Unit 2: STARTING WITH BASIC PROGRAMMING

Contents

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content
3.1 Commonly Used BASIC Statements
3.2 BASIC Programming Environment Limits

4.0 Self-Assessment Exercise(s)

5.0 Conclusion

6.0 Summary

7.0 Tutor Marked Assignment

8.0 Further Readings

2

1.0 Introduction

Having been introduced to the common types of variables used in BASIC and a
summarized grouping of its reserved words, this unit is aimed at leading you gently into
BASIC programming. The unit will therefore introduce you to the most commonly used
statements you can hardly do without in BASIC code.

As already learnt in the last unit, BASIC programming has its peculiar features. For
example, you have learnt that a variable name can be as long as forty (40) characters in
BASIC programming. That simply suggests to you that BASIC Programming language
has its own environment bounds. This unit will therefore also introduce you to the limits
that characterize BASIC Programming environment before you go into in-depth
programming using the language

\@I 2.0 Intended Learning Outcomes (ILOs)

By the end of this unit, you should be able to:
« Start up a BASIC programming environment.
* Use the common statements in BASIC programming code.
« State the environment limits that characterize BASIC programming

3.0 Main Content

3.1 Commonly Used BASIC Statements

Before introducing you to the common statements in BASIC programming code, you
need to see the programming environments for the following commonly available
versions of BASIC Interpreter.

69

* Microsoft Quick BASIC
* Turbo Basic.

Microsoft QBASIC Interpreter

Below is the Quick BASIC Interpreter window environment:

@ DOSBox 0.74, Cpu speed: max 100% cycles, Frameskip 0, Program: CBASIC - x
File Edit View Search Run el Options

dContentsk 4Indexr 4Backk Step F8

rocedure Step F1o

help on a QBasic keyword

Press the key of the fir|ElGie=ml]
. Use the direction keys t
= AR N SR LR A | Togole Breakpoint

lear fAll Breakpoints
Set Next Statement

ABS Functiom
ABSOLUTE Keyword AS Keyword

ACCESS Keyword ASC Functiom
AND DOperator ATN Functiom
ANY Keyword

BASE Keyword BLOAD Statement
Basic Character Set Boolean Operators
BEEP Statement BSAVE Statement

Executes next program statement

The Quick BASIC program is a DOS program usually shipped with MS-DOS operating
system. Thus the program is readily available on any computer system running on fully
installed MS-DOS Version 5 for example.

As you can see in the above figure, the Interpreter is a menu-driven environment where
you can type your BASIC code and run the program immediately. With this version of
BASIC coding environment, you cannot compile your program into an executable form
as you can do in Turbo Basic environment shown below.

Turbo BASIC Interpreter

The Turbo Basic Interpreter or Compiler environment is as seen in the following figure
(as presented in Unit | of this Module)

70

Turbo Basic
File Edit Fun Comg i be Opt bomsx Setup Vindow Dedag

Edit Colarx
A CHONANE . BaS : nil 1 | ez A

N isdous
FAMNT "Hosma | taxt™ douSetep
FHINT "Marknd block™ HMiter |5 douSetep
TRINT “Ervor mossege”

Title

Farder
Porsal text
Barked block
Matas lise
Errar sesamge

fextore dcfaultx

640x4001p FH-Zoon Fo-Mext Fi-Goto SCHILL-Sizemoue AlL-X-Exit

As you can observe from the above figure, the environment is also menu-driven but with
available option to compile the source program into an EXEcutable file. This is shown in
the next figure below:

2= Windows PowerShell

C:\Users\warren.rumak> Set-Content example2.vb A

C:\Users\warren.rumak> C:\Windows\Microsoft.NET\Framework\v4.0.30319\vbc.exe .\example2.vb
Mic ft (R) Visual Basic Compiler version 14.7.3056

for Visual Basic 2012

Copyright (c) Microsoft Corporation. All rights reserved.

This compiler is provided as part of the Microsoft (R) .NET Framework, but only supports languag
e versions up to Visual Basic 2012, which is no longer the latest version. For compilers that su
pport newer versions of the Visual Basic programming language, see http://go.microsoft.com/fwlin
k/?LinkID=533241

\Users\warren.rumak> .\example2.exe

C:
1
2
3
4
S
C:

\Users\warren.rumak>

The editing window changes to the window when you are ready to type your BASIC
source code

71

Cerman)l Prgepl b

Now, you will be introduced to the following very common statements:

* REM Statement

» Assignment or LET Statement

* INPUT Statement

* PRINT Statement

* GOTO Statement

* |F... THEN... ELSE Statement

* END Statement.

Before you see the forms of the above BASIC statements, it is good to state that a BASIC
statement has the following general form:

Line Number (optional) statement

In other versions of BASIC like GW-BASIC, you must number every statement, but in
MS-QUICKBASIC or Turbo Basic, line number is optional. Line numbers are necessary
when your program contains GOTO statement(s) or GOSUB statement(s). Now, get
started with BASIC statements stated above.

REM Statement

The REM or REMark statement is simply a comment statement that provides information
about the program or any of its segments to the programmer. The REM statement
provides no information to the computer itself and hence the statement is never executed
during the execution of the program.

For example, a REM statement may explain what a variable name represents or what
program segment (or module) does. Example of a REM statement is as follows:
10 REM This program finds the average of 'two number

The above code has a REM statement broken into two lines. In line 20, the single quote
character is used in place of the reserved word REM. You may have a REM statement
without any comment just to create an empty line within the code for good readability.
Thus you may have REM statements that look like the following:

72

40 REM

50 R E M *hkhkkhkhkhkkhkhkhkikhkhiikhk

Assignment or LET Statement

The assignment or what is also called the LET statement is simply used to assign values
to variables. The general format is as follows:

line # (optional) LET variable = expression
or
line # (optional) variable = expression

where line # represents LINE NUMBER.

In BASIC, the equality (=) sign is the assignment symbol. In the above general format,
the expression on the right hand side can be any of the following:

e A constant
¢ An Arithmetic formula
e Avariable.

As you can see in the above general format, some versions of BASIC (such as MS-Quick
BASIC and Turbo Basic) do not require the reserved word LET in an assignment
statement. Hence it is optional.

Examples of assignment statements are as follows:

10 X =25 B$ = "NOUN"
20 Y=X"2 + 3*X-4

30 N$ =B$

40T=Y

INPUT Statement

When a computer program is designed to run many times, each time working with
different input data, an INPUT statement is necessary in the code. In using INPUT
statement, a single statement can be used for multiple variables in place of multiple
INPUT statements.

Examples of INPUT statements are as follows:

10 INPUT X1: INPUT A$

20 INPUT X2, X3, B4
30 INPUT "SCORE =", EX

73

In line 30, a string constant is used in the statement to help the program user see on the
screen an information about the value to be entered for variable "EX". That is, when line
30 is executed, you will see something like the following on the screen.

SCORE =?

The question mark (?) simply indicates that the program is requesting for an input from
the keyboard.

PRINT Statement

Very central to the output phase of any BASIC program is the PRINT statement. This is
used to display the results of computer processing. To send an output to a printer, you use
LPRINT instead of the PRINT statement.

The general format is as follows:

Line # (optional) PRINT expression.

The expression in the above statement can take the form of the following:

* Variables
» Arithmetic expressions
» Literals

« Combination of the above three types.

By a literal, we mean an expression that consists of alphabetic, numeric or special
characters.
Examples of PRINT statements are as follows:

10 PRINT X: PRINT

20 PRINT A, B

30 ?7C;D

40 PRINT -VALUE=I, V

50 PRINT 3*A—B

60 PRINT T$

70 PRINT "THE SOLUTION IS"
80 LPRINT W

In line 10, the second PRINT statement prints an empty line. This is necessary to provide
a good space between output lines. In line 30, the question mark (?) is used in place of the
reserved word PRINT. In QuickBasic, the symbol is automatically changed to the word
PRINT when you move out of the line to the next. When line 80 is executed, the value of
the numeric variable W is sent to the printer.

74

Now, you will observe that semicolon (;) is used in the PRINT statement instead of the
comma (,) symbol. These two characters give different formats to the result output of a
PRINT statement. Assuming that the values of A, B, C and D are as follows: A=2, B =
1, C =23, D =0. When line 20 is executed, you will have an output like this:

2 1
while the execution of line 30 will appear like this:
23 0

You will observe that the values of C and D are printed immediately after the other while
the values of A and B are printed with spaces between them, specifically, there will be 14
spaces between them. Generally, BASIC divides your output screen into what are called
PRINT ZONES. There are five (5) of them, the first starting at column 1, the second at
15, the third at 29, the fourth at 43, the fifth at 57. Using semicolon in your PRINT
statement is a way of giving enough space between the printed values. However, a more
flexible way to format your output is to use the TAB function which will be introduced to
you in the next unit.

GOTO Statement

Very often, when you use an IF ... THEN statement, one condition causes the computer to
execute the next line of BASIC code whit? another condition requires it to execute some
code somewhere else if the program. Therefore, in order to move or branch to the code
that doesn't follow the IF... THEN statement, you need an unconditional branch
statement, which is the GOTO statement. That means that, every time the computer
encounters a GOTO statement, it branches to the specified program line irrespective of
any condition in the program. As you will remember, you have learnt in this course that
structured programming discourages GOTO statements.

Now, an example of GOTO statement is seen in the following code:
10 CLS : INPUT A
20 IF A <3 THEN GOTO 40

30 ? : PRINT
40 END

IF ... THEN... ELSE Statement

This statement works just like IF ... THEN statement used in the above BASIC code,
except that the ELSE part is executed if the condition is not satisfied.

An example is as follows:

10 CLS
20 INPUT X

75

30
40

IF X>0 THEN PRINT "POSITIVE" ELSE? X
END

In the above code CLS statement simply clears the screen.
END Statement

Every program has a terminal point. In BASIC, the END statement signifies the end of
the program as used in the above immediate two BASIC codes. Since line numbers are
optional in some BASIC versions, therefore an END statement can appear anywhere in
the BASIC program where the program logically ends. Some Basic versions don't even
require an END statement, such as QuickBASIC.

3.2 BASIC Programming Environment Limits
Below are the programming environment limits that are allowed in BASIC. They are
simply the minimum and maximum values or sizes for the following:

* Names

» Strings

* Numbers
* Arrays

* Procedures
* Files

Name, String and Numbers

Descriptions Minimum Maximum
Variable Name Length | Character 40 Characters
Intepers -32, 768 32.767
Long Integers -2, 147,48}, 648 2, 147, 483. 647
String Length 0 Character 312, 767 Characters
Single Precision Numbers: -

(i) Positive 2.80297E-45 3.402823E+38
(ii) Negative -3 402823E+38 -2.802597LE-45

Double Precision Numbers:

(i) Positive 4.94065645841 1.797693 1348623
2465D-324 1D+ 308
11i) Negative -1.797603 148 49406564584
62310308 12465D-324
Array Limits

76

Descriptions Minimum Maximum
Amay size:

(1) Static | Bvte 65,515 Bytes
(11y Dynamic - 63,735 Bytes
Number of Dimensions | | ()

allowed

Dimension allowed if] 1 R
unspecitied

Armray subscript value -31.768 3767
Procedure and File Limits

Descriptions Minimum Maximum

Procedure Size 0 64K

Number of Arguments| 0 60

passed

Data File Numbers 1 255

Data Record Number 1 2,147,483.647
Data Record Size 1 Byte 32K

Date File Size = Available Disk Space
Path Names 1 Character 127 Characters

The knowledge of the above limits is very essential as you develop programs using the
BASIC language. Some of the BASIC versions mentioned in Unit 1 of this module might
have their limits a bit varied from the above. You will now round up this unit.

LI 6.0 Self-Assessment Exercise(s)

1. Identify the types of the "expression" in
10X =25 BS = "NOUN"
20 Y=X"2 + 3*X-4

30 NS =BS
MT=Y
Answer
Line 10:
25 - Numeric constant
"NOUN" - String constant.
Line 20: XA2+3*X 4 - A formula
Line 30: BS - String variable
Line 40: Y - Numeric variable.

For your observation, line 10 has two statements combined into one line by using the
colon (:) symbol

77

[

0/

2. Study the following flowchart and provide the equivalent BASIC code:

ST A_ﬁ

—

/ READ A.B/

C = 2(A+B)
3

PRINT C

Answer

The BASIC code is as follows:
10 INPUT A,B
20 C=2%*(A+B))2
30 LPRINTC
40 END.

7.0 Conclusion

In this unit, you have been introduced to the common statements you are going to
frequently use in BASIC programming. The most common BASIC Interpreters today
are the Microsoft QuickBasic and Turbo BASIC Interpreters with the latter having a
menu facility to compile your BASIC code into an executable file. Remember that in
Unit 1 Module 2, you were introduced to many other versions of BASIC Interpreters
and Compilers.

The Unit has introduced to you the various limits that characterize the BASIC
programming environment.

6.0 Summary

The unit having shown you some common statements in BASIC programming, you are
now ready to get started with programming in BASIC language. You were equally
introduced to the programming environments of the most two common BASIC
Interpreters, namely, the MS-QUICKBASIC and the Turbo BASIC interpreters.

78

As you have learnt in this unit, there are same programming limits in BASIC associated
with the following:

* Names
 Strings

* Numbers
* Arrays

* Procedures
* Files

Knowledge of these limits is very essential for your successful running of your BASIC
programs. In the next unit, you will be introduced to more BASIC statements that are not
covered in this unit

7.0 Tutor-Marked Assignments
1. Study the following flowchart and write the corresponding BASIC code

e —
-

(,_\ START)
:‘ I’
/ READXY /

/ OPRINTW

~——

C_Ep_D

2. (a) Give the 1 — character alternatives you can use in place of the following
statements.
(b) When is GOTO statement needed in BASIC programming?
3. What do you observe from the programming environment limits for Single and
Double Precision Numbers?

8.0 Further Readings

Borland International Inc., Turbo Basic Version 1.1, 1987.

79

Brightman, R.W. and Dimsdate, J.M., Using Computers in an Information Age, Delmar
Publishers Inc., 1986.

Mandell, S.L., Computers and Data Processing West Publishing Company, 1985.

Microsoft Corporation, MS-QUICKBASIC 1.1, 1992.

80

Unit 3:

Conten
1.0
2.0
3.0

4.0
5.0
6.0
7.0
8.0

2

©)

MORE PROGRAMMING STATEMENTS IN BASIC

ts

Introduction

Intended Learning Outcomes (I1LOs)
Main Content

3.1 Data Entry Statements
3.2 Using Loops in BASIC
Self-Assessment Exercise(s)
Conclusion

Summary

Tutor Marked Assignment
Further Readings

1.0 Introduction

In the previous two units, you have been introduced to how to get started with BASIC
programming. Definitely, as you have seen under the reserved words in BASIC, there is
so much to learn about BASIC statements that cannot be covered in this course since
you are expected to learn some fundamental concepts in other programming languages
as well.

In this unit, you will therefore be introduced to some additional BASIC statements that
are frequently encountered, while a good number of other BASIC statements would
definitely be studied by you as you make progress in your computer programming
courses or as you are confronted with programming problems that might require their
use. If you remember what you learnt under Structured Programming, there are basically
three types of structures, namely, sequence, selection and looping structures. As you will
observe, the first two types of structures have been encountered in the last unit in the use
of some of the BASIC statements. For example, IF... THEN... ELSE statement describes
a selection structure while the sequence structure is inherent in almost all programming
statements.

Now in this unit, you will be introduced to BASIC statements that describe looping
structures. However, in the process of introducing one particular BASIC statement,
attempt would be made to also introduce you to more statements in order to cover a good
number of BASIC statements. The first part of this unit will first of all show you
additional method of entering data into BASIC programs.

2.0 Intended Learning Outcomes (ILOs)

By the end of this unit, you will be able to:

* Explain the different methods of entering data into BASIC programs by using
different types of BASIC statements.

81

* Use additional BASIC statements not covered in the last unit.
* Write a BASIC code that performs a repetition, otherwise called looping.

11

3.0 Main Content

3.1 Data Entry Statements
In BASIC, there are three commonly used methods of entering data into BASIC
programs. The three methods use the following BASIC statements:

* INPUT Statement
* LET or Assignment Statement
* READ/DATA Statement.

Good enough, you have been introduced to the first two types of statements in the last
unit. You will therefore be taught in this unit the use of the READ/DATA statement as
another way of entering data into your BASIC program. Before then, see below the
general guidelines on using the three statements given above.

* Use the LET or Assignment statement when the data to be used by your program
are constant. Moreover, the LET statement is often used to assign a starting value
to a variable, such as zero. This is normally called an INITIALIZATION.
Remember that, you can simply state your assignment without the LET keyword.

* Use the INPUT statement when a Question-and-Answer mode is required by your
program. This is the method you also use when input data are likely to change
frequently.

* Use READ/DATA statement when you are to enter many data values. This is the
same method you use when entering data into arrays.

READ and DATA Statements

The READ and DATA statements always work together because values contained in the
DATA statements are usually assigned to variables listed in the READ statements. The
general format for the READ and DATA statements is as follows:

Line # READ variable list
Line # DATA data list

A DATA statement can have one or several data items and each of the data is known as a
Data Element. DATA statements are not executed but only provide information to the
program. Because of this, you can place a DATA statement anywhere in a program with
the corresponding READ statement.

82

Now examples of READ/DATA statements are as follows:

10 READ B, C, D$
20 READ X, Y

60 DATA 20, 40.2, "DAY" 70 DATA 60, 32.

Generally, the READ statement tells the computer to search through the BASIC program
to locate the first DATA statement. The computer then assigns your data values
consecutively to the variables in the READ statement. You will therefore see the reason
why the third value in line 60 in the above code is a string constant, because the third
variable in line 10 is a string variable.

BASIC maintains what is called Data Pointer. The pointer simply keeps track of the next
data element to be read. Thus if a READ statement is attempted after the data list has
been exhausted, a message is going to alert you that the end of the data list has been
reached. The BASIC Interpreter or Compiler takes all the data items in all the DATA
statements and forms one combined data list, ordering the DATA statements from lowest
line number to the highest and then using the data from left to right.

Now, though you have already been told that DATA statements may appear anywhere in
a program, however it is a common programming practice to group them together either
at the beginning or the end of a program. Such a practice makes program debugging
easier.

Look at the following code:

10 CLS

20 READ DS, ER, B$

30 PRINT TAB (2); DS; TAB (4); ER; TAB (8); B$
40 DATA 23,455, BIRTH =

50 END

Do you notice any error(s) in the above code? There is no any error at all. The interesting
thing about DATA statement is that it is the only place where character strings do not
have to be enclosed within quotation marks as used in line 40 above for the string
variable (B$) value.

In the above code, attempt has been deliberately made to introduce you to the TAB
function which is normally used with PRINT statement to provide flexibility in your
output format. The general format for the TAB function statement is as follows:

TAB (expression)

83

where the expression in the parentheses may be a numeric constant, numeric variable or
arithmetic expression, to tell the computer the column at which printing is to start. For
example, in the above code, the computer is to tab to column 2 before printing the value
for variable DS. The semi colon after the TAB function simply instructs the computer to
start printing at the next column, i.e. column 3

3.2 Using Loops in BASIC

There are programmable problems that require execution of the same instructions a
number of times. For example, a payroll program requires calculation of some pay values
repeatedly for every employee until the employee list is exhausted. The BASIC
statements to execute such repetitions are the FOR and NEXT statements.

The general format for the statements are as follows:

line # (optional) FOR loop variable initial value TO terminal value STEP step value

(optional) NEXT loop variable.

In the above general format, the loop variable is also called the INDEX variable. The
STEP statement is optional but only necessary when step value is different from the
default value 1. As you have already learnt in unit 5, the step size can indicate increment
or decrement.

An example of FOR ... NEXT statement is seen below:

10 PRINT
20 FORX=1TO3STEPO0.5
30 Y =SQR(X)

40 W=INT(X)

50 PRINTY,W

60 NEXTX

70 END

The output of the above program is as follows (using QuickBASIC Interpreter):

/ ! /
1.5 1.224745 /
2 1.414214 2
25 1.581139 2
3 1.732051 3

Again, the above program has included two BASIC Library functions:

* SQR — Square Root Function
* INT — Integer Function

84

where the Integer function returns the number if it is an integer or the next lower integer,
if otherwise.

Nested FOR and NEXT Statements

There are cases when you can have nested loops. That is, all of one loop can be within
another loop. See an example below:

10 FOR1=1TO4

20 FORJ=1TO9
30 PRINT I; J
40 NEXT J

50 NEXT1

As you can observe above, it is customary to indent the inner loop to enhance
readability. In the nested FOR and N F XT statements as you have in the above example,
always be careful o to mix the FOR from one loop with the NEXT from another. In other
words, one loop must be completely inside another. In the above example the J loop is the
Inner Loop which is completely inside the | loop which is the Out Loop.

It is interesting for you to also know here that FOR... NEXT loops equally help you to
enter successive data items into a program instead of using the INPUT statements.

Now, below are very essential rules you should remember when using FOR... NEXT
loops.

a. The initial value must be less than or equal to the terminal value when using a
positive step value, i.e. when implementing an increment.

b. When implementing a decrement, i.e. when the step value is negative, the initial
value must be greater than or equal to the terminal value.

c. The step value should never be o, since this would result in an endless loop.

d. Transfer can be made from one statement to another within a loop. However, you
cannot make a transfer from a statement within a loop to the FOR statement.

e. The value of the index (or loop) variable should not be modified by program
statements within the loop.

f. Theinitial, terminal and step expressions can be made up of any numeric variable,
constant or arithmetic expression (or formula)

h. Each FOR statement must have an associated NEXT statement.

85

i. FOR and NEXT loops can be nested. However, the NEXT statement of the inner
loop must precede the NEXT statement of the outer loop.

Using FOR.. .NEXT Statements in Arrays

It is usually valuable to be able to store many values under the same variable name.
Though these data values are not stored in the same memory locations, but they have the
same identifier. Such variable are called Subscripted Variables. But more precisely, a set
of variables with the same name and different subscripts is called an ARRAY.

By the above definition, it then means that simple variables are Unsubscripted Variables.

Usually, the BASIC interpreter or compiler is designed to assume that an array will have
no more than ten (10) or eleven (11) elements or subscripts (depending on the BASIC
version). But a programmer can specify the number of elements in an array for which
memory space must be reserved, if he needs more than 10. You can do this by using the
DIM statement or the DIMension statement, with the general format as follows:

Line # DIM variable I (limit 1), variable 2 (limit 2), variable 3 (limit 3),

The variables are the array names while each limit is an integer constant that represents
the maximum number of memory locations required for a particular array. You don't
actually require a DIM statement for arrays of ten or fewer elements.

As a programming rule, DIM statements must appear in a program before the first
reference to the arrays they describe, and as a good practice, you should place the DIM
statements at the beginning of your program.
Examples of DIM statements are as follows:

10 DIMA(50), B(2)

20 DIM D$(3),PR(K)

30 DIMITEMS$ (J+K).

As you can see above, the subscript of an array variable can be:

. a Number
. a Numeric variable ¢
. an Arithmetic expression.

Now, back to FOR and NEXT statements. They can be an efficient method of reading
data into an array. Look at the following example:

10 FORT=1TO9STEP2

20 Y(T)T+3
30 Y (T+1) T*3

86

40 NEXT
From the above code, you have the following results of processing:

. T is assigned the value of 1 at the beginning.

. (T+3)or4isstored in Y (1) while (T * 3) or 3isstored in Y (2)

. Then T is stepped to 3 and (3+3) or 6 is stored in Y (3) and (3* 3) or 9 is
stored in Y (4).

. The above process continues until T =9.

Before rounding up this unit, look again at the following example:

10 DIM NS$ (20)
20 FORJ=1TO3

30 READ P(J)
40 N$(J) = "PRICE"
50 PRINT N$(J); J, P(J)

60 NEXT J : GOSUB 200

70 DATA 2.23,4.5,6.3

80 END

200 REM Below is a SUBROUTINE
210 PRINT "PRICES INSUFFICIENT"
220 PRINT

230 RETURN.

The output of the above program is as follows:

PRICE 1 2.23
PRICE 2 4.5
PRICE 3 6.3
PRICE INSUFFICIENT

In the above program code, you have been introduced again to another statement, namely,
the GOSUB statement which is a special case of the GOTO statement. The GOSUB
statement is specifically used to transfer control to a program SUBROUTINE, which is a
block of code that performs one task each time it is executed. When you divide your
BASIC program into sections such as subroutines, you are using a form of structured
programming which you already know is called Modular Programming. Usually, you end
a subroutine with a RETURN statement while it is a good custom to begin your
subroutine block with a REM statement as seen in the above code.

You will now round up this unit.

87

4.0 Self-Assessment Exercise(s)

1. What happens if comma (,) is used in place of semicolon (;) after the TAB
function?
Answer

The printing will be done in the pre-defined Print Zones, ignoring the columns
specified in the TAB function expression.

2. What other expression can you use in place of the SQR function?

Answer
SQR(X)=X"0.5

3. What are the two basic steps taken by the computer when it encounters a FOR
statement?

Answer
These are steps:
It sets the index variable to the initial value specified.
The first time the FOR... NEXT loop is executed, the FOR statement tests to see if
the index variable value exceeds the specified terminal value. If the value does not
exceed the terminal value, the statements in the loop are executed. Otherwise
control is transferred to the statement following the NEXT statement

4. What is the flowchart symbol appropriate for the DIM statement?
Answer

The symbol is the Preparation Symbol:

5.0 Conclusion
In this unit, you have been taken through additional BASIC statements such as:

. READ/DATA statements

88

. FOR.. .NEXT statements

. DIM statements.
. GOSUB...RETURN statements
. Some library function statements.

The unit has explored different ways of using some of the statements to enter data into
your program apart from the INPUT and the assignment statements treated in the
previous unit.

Specifically, this unit has also introduced you to how to implement loops by using the
FOR...NEXT statements with the associated rules when using the statements.

6.0 Summary

This unit, apart from introducing you to more BASIC statements has equally treated
the fundamental concept of an ARRAY and how it is treated in BASIC. Though the
examples shown focused mainly on One-Dimensional arrays, you can equally
encounter Two-Dimensional arrays such as matrices in your programming
assignments. Two-Dimensional arrays are simply represented as follows:

. AU, .1) - for numeric variables.
. B$(K, S) - for string variables.

You have already learnt in this unit that the DIM statement is normally used to specify
the number of array elements. The unit has also introduced you to the GOSUB statement
which is a special case of GOTO statement.

With this unit, being the third unit dedicated to BASIC programming, you can now get
started with BASIC programming problems while the table of reserved words in unit 6
will help you to develop yourself in BASIC programming beyond what you have
covered in this course.

7.0 Tutor-Marked Assignments

1. State the various types of BASIC statements you can use to enter data into your
program.

2. State an important rule to be followed when using nested loops in BASIC.

3. ldentify the error(s) in the following program:

10 PRINT

20 FORI=1TO 4 STEP -2
30 PRINT 2 *1

40 FORJ=I1TO5
50 PRINT J

89

1

60 NEXT I
70 NEXT J

8.0 Further Readings

Brightman, R.W. and Dimsdate, J.M., Using Computers in an Information Age, Delmar
Publishers Inc., 1986.

Mandell, S.L., Computers and Data Processing West Publishing Company, 1985.

Microsoft Corporation, MS-QUICKBASIC 1.1, 1992.

90

Unit 4:

Conten
1.0
2.0
3.0

4.0
5.0
6.0
7.0
8.0

2

INTRODUCTION TO FORTRAN LANGUAGE

ts

Introduction

Intended Learning Outcomes (I1LOs)

Main Content

3.1 Getting Started with FORTRAN Programming
3.2 FORTRAN Variables and Constants
Self-Assessment Exercise(s)

Conclusion

Summary

Tutor Marked Assignment

Further Readings

1.0 Introduction

In this unit, you are going to be introduced to the fundamentals of FORTRAN language.
FORTRAN, as you will remember is an acronym for FORmula TRANslator which was
developed by John Backus and his team between 1953 and 1957. Since the appearance
of its first compiler in 1957, FORTRAN has undergone various revisions as follows:

* FORTRAN Il - in 1958

* FORTRAN IV -in 1962

* FORTRAN 66- in 1966

* FORTRAN 77 -in 1978

* FORTRAN 90/95 - in the 90s.

FORTRAN is the first High-Level Language which was designed principally for
scientific and engineering environments. In order to favourably compete with other
programming languages which are well structured, an ANSI committee was inaugurated
in 1980 to formulate a new standard for FORTRAN. This led to the FORTRAN 90
version which incorporates all of FORTRAN 77 features and can compete well with
structured languages such as Pascal and C++. However, presently, FORTRAN 90
compiler is still uneasy to come by and so, the most commonly used compilers are still
for Fortran 77.

To start with, this unit will give you a snapshot of FORTRAN language features,

especially, some rules guiding its program coding before introducing you to descriptions
of variables and constants in FORTRAN. Your study objectives are as

2.0 Intended Learning Outcomes (ILOs)
By the end of this unit, you will be able to:

91

 Describe the basic rules guiding the coding of FORTRAN programs.
» Distinguish between the various types of variables and constants in FORTRAN

100

3.0 Main Content

3.1 Getting Started with FORTRAN Programming

Later in this course, you will be introduced to some few features of Fortran 90, but
meanwhile, unless otherwise stated, most of the features you will be going through
below are Fortran 77 adapted. However, just as you have been told of various versions
that exist for BASIC language interpreters, the same applies to FORTRAN compilers.

Below are some available compilers for Fortran 77 language:

* Microsoft Fortran 77

* FORTE — Fortran Environment

* Fortransoft

* ProFortran

* WATFOR 77— Interpretive Fortran Version.

Each line of Fortran code can be typed using any ASCII (text) editor such as Microsoft
Notepad editor. However, the code lines must be entered according to the following

rules:
Column 1: Used for comment line by entering letter
C (or symbol * for some compilers).
Columns 2-5: Statement number or label.
Column 6: Blank or character for continuation line
(e.g. +, $, depending on your compiler).
Columns 7-72: Fortran statement s.

Columns 73 — 80: Optional sequence number.

It is good to state here that Fortran 90 allows free form source coding, that is, there is no
restriction on where Fortran statements are to be located as specified in the above Fortran
77 rules. Moreover, a comment can be placed at the end of a statement provided an
exclamation mark () precedes the comment.

Before you get introduced to the Fortran variables and constants, below are the common
characters recognized by Fortran language:

* The 26 letters: A — Z (upper or lower cases).
* The 10 digits: 0 —9

e Thel2symbols:=+-*/(),.$_:

* The Blank character.

92

Remember that the above list depends on the FORTRAN compilers. You can also see
immediately below the operators employed by FORTRAN.

FORTRAN Operators
The FORTRAN operators are classified as follows:

* Arithmetic Operators
» Relational Operators
* Logical Operators.

Arithmetic Operators

+ - Addition

- - Subtraction

* - Multiplication
/ - Division

** - Exponentiation

= - Assignment.

Relational Operators
(Please, take note of the dots (.) before and after the two characters)

LT. - Less than (<)

.LE. - Less than or equal to (=)
.GE. - Greater than or equal to (=)
.GT. Greater than (>) .

EQ.- Equalto (=).

NE. - Not equal to (?).

Logical Operators

AND. AND (A)

OR. OR (V)

NOT. NOT (~)

3.2 FORTRAN Variables and Constants

You will start with the variables since a great deal of flexibility is gained when you allow
a quantity to be referred to by a name rather than a constant value. Generally, the major

aim of any computation is to find unknown values from known ones.

Just as in any other programming languages, variables in Fortran can be given names
consisting of several alphanumeric characters, but for most compilers of Fortran 77, the

93

number of characters can be as many as six, the first being a letter as in BASIC language.
In FORTRAN, there are several types of variables as follows:

* REAL

* NTEGER

* OUBLE PRECISION
« OGICAL

¢ COMPLEX

¢ CHARACTER

Among all the types of Fortran variables, the most common two are the REAL and
INTEGER types. A very peculiar characteristic of Fortran is that it assumes that the type
of a variable is implied by its spelling. The integer and real variables are identified as
follows:

REAL : Al, X2, B8, DAY, ...
INTEGER : JOS, 12, K4, MONEY, ...

Precisely, an INTEGER variable starts with any of the characters 1, J, K, L, M, N while
REAL variable begins with any other character outside I - N (i.,e. A— H and O — 2Z)

For example, the following are not valid variable names in Fortran

4AB It begins with a number (4)
BX.5 It contains an illegal character (.)
C$ It contains an illegal character ($).

The above method of specifying variable types in FORTRAN is one of the rigid rules you
find in Fortran. Care should always be taken in handling variables in FORTRAN
especially in assignment statements. Mixing of different types of variables in the same
expressions can easily lead to errors without conversion functions.

Though FORTRAN assumes the type of a variable by its first letter, it however gives you
the opportunity to change the presumed type by using declaration statements such as
follows:

INTEGER X, Y, ZERO
REAL 12, JOS, NUM.

By default, variable name ZERO for example, is a real variable since it starts with Z, but
with the above declaration statement, ZERO will be treated as an integer variable in the
statements following such declaration. As a common practice, DECLARATION
statements are usually given at the beginning of your program before the first references
to the names defined in the declaration statements.

94

In case you intend to have mixed-type expressions, that is expressions containing
different types of variables, you will need to use the Fortran Intrinsic functions such as
REAL and NT for real and integer expressions respectively.

See the following examples:

B = (3/5) * (F — 32)
NUM =R *J/3

The above two FORTRAN assignment statements will definitely give you errors when
executed. The errors can be corrected as seen in the modified expressions below:

B = (10/5.0) * (F— 32.0)
NUM = INT 9R "REAL (J)/3.0).

From what you can see above, it is always advisable to use decimal points in real
numbers to avoid mixed-type errors.

FORTRAN constants
The most commonly used constants in FORTRAN are the real and integer constants.

An Integer Constant is a positive, negative or zero whole number without a decimal point
or commas. Therefore, FORTRAN assumes your humber having no decimal point as an
integer. Examples are 4, 32,

6932, ...

A Real Constant on the other hand is a positive, negative or zero number with a decimal
point. You can express real constants in

+ Scientific Notation — e.g. 2.304E-3, 3.42E+3
» Double Precision Notation — e.g. 2.304D-3, 3.42D+3.

Just as there are several types of variables apart from the real and integer variables, there
are also other constants allowed in FORTRAN in addition to the real and integer
constants. For example, in FORTRAN, you also have the following types of constants (to
be treated later in other units):

* Complex Constants
* Logical Constants
» String Constants.

LI 4.0 Self-Assessment Exercise(s)

1. Explain the roles of the REAL and INT functions used in the second FORTRAN
statement of

95

4N\

/

O/

B = (10/5.0) * (F— 32.0)
NUM = INT 9R "REAL (J)/3.0.

Answer

The variable NUM is an integer variable name and therefore represents a memory
location to be occupied by an integer value. Therefore, the expression on the right hand
side should be completely of an integer type.

By writirlg:
R REAL (J)/3.0

the expression becomes of type real. Finally, by writing:
INT (R * REAL (J)/3.0)

the expression on the right hand side can now be assigned to NUM, which is an integer.
Another way of carrying out the conversion on the right hand side is by writing the
whole assignment as follows:

NUM = INT(R)* J/3

This last form of expression is simpler and may still yield the same result like the other
one but INT function is a Truncator.

2. ldentify the error(s) in each of the following, if any, and attempt correcting them:

i. Fortran Variables: $AB, 62A, BB4, X4+2 ii. Assignments:
a. A= X**2 + J**2
b. MAX3=J4—K2
Cc. NAT=1**2+45%*]

Answers
. Variables: The variable names SAB and 62A are not Fortran valid
variable names while X4+2 is containing an operator.
ii. Assignments:
a. A = X**2 + REAL (J) **2
No any error
C. NAT =TNT (REAL (I) **2 I- 4.5 * REAL (J).

=

5.0 Conclusion

In this unit, you have been taken through the fundamental rules guiding Fortran
programming and coding. As you have learnt in this unit there are some rules to be
followed while coding your Fortran source programs. For example, column 1 is

96

specially reserved for character "C" to enter. your comment. This is analogous to using
REM in BASIC language. Your Fortran statements are to be entered between columns
7 and 72. However, the column rules that exist in Fortran 77 are rather non-existent in
the Fortran 90 version whose compiler is not yet widely available.

This unit has equally shown you the types of variables and constants employed by
Fortran. While emphasis has been laid on the most commonly used types, that is, the
real and integer types, you will be introduced to the other types later in the course.

6.0 Summary

As you have learnt in this unit, Fortran is very quick to assume the type of your
variable by the first letter of the variable. Every variable name that starts with 1, J, K,
L, M and N is assumed to be an integer unless you change the presumed type by using
the declaration statement keyword REAL or its form of intrinsic function. Starting a
variable name with other letters is assumed that the variable is real by Fortran.

Remember that the unit also introduced you to the types of operators used in Fortran
language programming. These operators will be used in some examples in the
subsequent units. With all that you have learnt in this unit, you are now ready to start
using some simple statements in the next unit.

7.0 Tutor-Marked Assignments

1. From what you have learnt about Fortran 77 in this unit, state the two main areas of
strict compliance with Fortran rules

2. State types of variables and constants available in FORTRAN programming

3. Rewrite the following expressions to correct the errors:

(@) J2=K**20+3*M4(b) REJU=1-4*B**3(c) NAME =J/3+4*R,

Llﬂ 8.0 Further Readings

Fatunla, S.O., Fundamentals of FORTRAN Programming, ADA + JANE Press, 1993.

Monro, D.M., FORTRAN 77, Edward Arnold, 1987

97

Unit 5: FORTRAN KEYWORDS AND LIBRARY FUNCTIONS

Contents

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content
3.1 FORTRAN Reserved Words and Library Functions
3.2 Using READ, WRITE and FORMAT Statements

4.0 Self-Assessment Exercise(s)

5.0 Conclusion

6.0 Summary

7.0 Tutor Marked Assignment

8.0 Further Readings

In this unit, you are going to be introduced to the common reserved words or keywords
available in most Fortran compilers. During your study of the BASIC language, you
have seen the need of having a good knowledge of a language's keywords since they
provide commands to the compiler of the language. The keywords or reserved words
also provide the tools needed to solve your programmable problems.

1.0 Introduction

Library functions are very essential in most programming problems since they are the
same as quick methods of processing a number of program statements in a single
statement. In this unit, you are also going to be introduced to Fortran library functions.

A very simple program statement characterized by simple data entry and output of
processing will also be introduced in this unit using the common FORTRAN statements
acceptable by most compilers.

|@\ 2.0 Intended Learning Outcomes (ILOs)

By the end of this unit, you should be able to:
* Identify FORTRAN reserved words and library function names.
» Discover the differences in some Fortran keywords and their BASIC language
counterparts.
* Write simple Fortran programs using the READ and WRITE statements
* Describe the various types of specifications used in FORMAT statements.

3.0 Main Content

3.1 FORTRAN Reserved®Words and Library Functions

98

The FORTRAN reserved words are listed below with the general format of using them,
as supported by most FORTRAN compilers

99

Reserved Words

ASSIGN
BACKSPACE
BLOCK DATA
CALL
CHARACTER
CLOSE |
COMMON
LCOMPLEX
COMPLEX
CONTINUE
DATA

DIMENSION
DO
DOUBLE PRECISION

ELSE

ELSE IF
END

END FILE
END IF
ENTRY
EQUIVALENCE
EXTERNAL
FORMAT
FUNCTION
GOTO

IF
IMPLICIT

INQUIRE
INTEGER

INTRINSIC
LOGICAL

General Format of Usage

ASSIGN label TO ivar
BACKSPACE <clist>

CALL name [<arguments>]
CHARACTER <list>

CLOSE <clist>

COMMON [/name/<list=/name/<list>...]
COMPLEX <list>

FUNCTION name <[dummy arg]>
DATA <list>/
constants/...]

DIMENSION <list>

DO label variable = value, value

DOUBLE PRECISION <list>

DOUBLE PRECISION FUNCTION
<[dummy arg}>

<list>/constants/[,

ELSE IF <logical expression™> THEN
END FILE <clist>

ENTRY name [<dummy arg>]
EQUIVALENCE <list> [, <list>...]
EXTERNAL <list>

FORMAT <specification>

FUNCTION name <[dummy arg}>

GO TO label

GO TO ivar, <label [, label...]>

IF <arithmetic expression> label, label, label
IF <logical expression> statcment

IF <logical expression> THEN

IMPLICIT <list>

INQUIRE <clist>

INTEGER <list>

INTEGER FUNCTION name <[dummy
arg]>

INTRINSIC <list>

LOGICAL <list>

100

OPEN
PARAMETER

PAUSE
PRINT
PROGRAM
READ
REAL

RETURN
REWIND
SAVE

STOP
SUBROUTINE
WRITE

In the above table:

ivar
ival
fmt
clist
list

(]

| |

Il

Below, you are also introduced to the Fortran Generic Intrinsic functions with their
meanings, caution should be taken in using Fortran library functions since specific
names are given to the functions according to the type of value expected from
processing, that is, whether real, integer, complex or double precision value.

LOGICAL FUNCTION name <[dummy
arg]>

OPEN <clist>

PARAMETER <name=constant[,name =
constant]...>

PAUSE [constant]

PRINT fmt [, list]

READ fmt [, list]

REAL <list>

REAL FUNCTION name <[dummy arg]>
RETURN [ival]

REWIND <list>

SAVE [list]

STOP [constant)

SUBROUTINE name [<dummy arg>]
WRITE <list> [list]

WRITE fmt [, list].

integer variable

integer value

format identifier

control list

list of items (rules vary from one compiler to
another).

optional items for common compilers

Now, study the table below:

101

Function Name | Meanlng Speciflc Name Mappleg
(Argument ? Result) |
ABS() Absolte Value JABS 171
¢ ABS R? R
DABS D? D
CABS C? R
CMPLX () | Complex Type YER C
DBLE () Double Precision DBLE I D
Type R
INT() Integer Type INT D
: JFIX c
IDINT
REAL () Real Type REAL_FLOAT R
ACOS() Cos* () ACOS, DCOS
AINT () Truncation AINT, DINT R? R
ANINT() Neazest Whole N0, ANINT, DNINT
ASIN () se'(.) ASIN, DASIN D? D
ATAN () Tan’ () ATAN, DATAN
ATANZ(,) |22 (% ATANZ, DATANZ
COSH () coth () COSH, DCOSH
Lod®() 1ogio () ALOGY, DLOG" R R
SINH () aizd () SINH, DSINH
TAN() tan,} TAN, DTAN D? D
TANH() tanh () TANH, DTANH
(NINT () Newert laizge NINT, IDINT R? D
D? D
00S () Cos () €05, DCOS, OCO8
EXP() ™ EX?, DEXP, CEXP R? R
LOG() log!? ALOG, DLOG, CLOG D? D
SIN() () SN, DSIN, CSIN cve
SQRT () V() SQRT, DSQRT, CSQRT
CMPLXL,) Complex Conversion OMPLX IRDT C
AIMAG() | Complex Imagirary AIMAG C?R
CONIC () Cozplex Conjugite CONIG crc
DPROD Double Precigion DPROD R?D
Prodact
CHAR () Character Conversion CHAR 17 CH
ICHAR(.) Character Conversion ICHAR CH?1
LEN () Character Length LEN CH? I
SIGN(..) Sign Transfer ISICN, SIGN, DSIGN 71
MOD¢(..) Remainéer MOD, AMOD, DMOD R?R
DM (. Positive Diffmence DIV, DIM, DDIM D?D
MAX(,...) | Largest Vaiue MAXI, AMAXI, 171
DMAX1, MAX0, AMAX0 [|R? R
MIN(....) Smallest Value MIN1, AMINL, DMINI D?D
MINO, AMINO

In the above table, the fourth column is to guide you on what data type to expect when
any of the intrinsic functions is evaluated on different types of arguments. For example,
"C ? R" shows that the function CABS" produces a real number, taking a complex
expression or value as the argument. Some of the above functions will be used in some
examples in this course.

Now, get started with learning the most frequently used Fortran Statements in the next

section.

102

3.2 Using READ, WRITE and FORMAT Statements

One of the most common and simple statements in programming is one that directs you
to enter some few data into the program to see some results of processing an assignment
statement. This you will see below, using the READ and WRITE statements which are
the Fortran standard INPUT and OUTPUT statements. You can also use the PRINT
ATiement in place of the WRITE statement.

Now, for, accepting data during the execution of a program, Fortran employs the READ
statement in a list directed form as follows:

READ * [, list]

Please, you should remember that the square brackets are not part of Fortran but simply
denote an optional item. That is, the comma and the list are optional.

For example, the following statement:
READ*, X, Y, Z

causes the computer to request for real value data inputs from the keyboard, that is, the
STANDARD INPUT DEVICE. Remember that X, Y. 7 are assumed to represent real
numbers by Fortran. So, when entering the values, they must contain decimal points.

Another way of using the READ statement is as follows:
READ(*, *) [, list]

This form of READ statement requests for input data list from the keyboard, giving you
no specified data format. A more general form of this variant of READ statement is as
follows:

READ (unit, 0 <list>

where 'unit' identifies the INPUT device from which the data list is to be read. The
parameter " indicates format description which is usually a number that locates the
FORMAT statement to be used. The 'unit' parameter is also a number specified in an
OPEN statement where the path and the name of the input data file is specified. Before
you see some examples, see the general forms of WRITE or PRINT statements also
below:

WRITE (unit,f) <list>

WRITE (**) [list]
PRINT*, <list>.

103

In the above forms of output statements, the “*' parameter denotes the STANDARD
OUTPUT DEVICE, that is, the MONITOR. This is when 'unit' = "*' in the WRITE
statement.

Now, look at the following example as shown in the two figures below, using the
WATFORT77 interpretive environment. The WATFOR 77 acts like an Interpreter and
helps you to receive immediate results of executing your FORTRAN program.

CYWATTORAWATTORZF IXI

-y

By typing 'run' or 'RUN' at the command prompt, the program gives you an input
prompt of blinking cursor to enter your data. In the above program, two real values are
requested whose sum of squares is to be assigned to Z. Entering:

X 12.4
Y 45.78
the result yields Z = 2249.5680000

CAWATFORAWATHOR 27 EXE

Below, you will now see the use of FORMAT statement, which is usually used to add
flexibility to READ and WRITE statements. See this in the FORTRAN program code
below, using the WATFOR 77 program editor and interpreter.

104

S WATFORZ 2.EXE

—~—-

In the above program, There are three output statements: the first prints the string:
“*** SOLUTION BELOW***'

The second prints an empty line while the third prints the values of X, Y and Z, using a
FORMAT statement in line number 2. The FORMAT statement directs the computer to
print 1 blank space before printing the first real or what is also called Floating Point
number X. The number should be of length 5 and 2 decimal places. Usually the decimal
point is part of the length. The specification is given by "F5.2".

You will observe that even though the value of X is read into the program as 12.4, but it
is finally printed as 12.40 to obey the FORMAT statement specification. You will also
see that though the value of Y is read in as 45.78, it is finally printed as 45.8 because of
the specification "F5.1" in the FORMAT statement. The value of Y is to be printed after
2 blank spaces as specified by 2X in the statement.

Below is the general format for the FORMAT specification for each of the variable
types allowed in Fortran:

I. klm: for Integers, where k specifies the number of integer fields, each

occupying m spaces.

ii. kFLj : for floating point or real numbers, where k specifies how many real
numbers in | space each with j decimal places.

iii. IcELj: for k real numbers in scientific notation each of length 1 and j
decimal places.

iv. kDL.j: for k Double Precision numbers, each of length 1 and j decimal
places.

v. kAw: for k characters of length w.

vi. nZd: for n consecutive items in a hexadecimal system, each with field

length d
vii. ~ nOd: for n consecutive items in an Octal system, each with field length
viii. Lw: for logical value of field length w.

105

Look at the following example before you round up this unit.

INTEGER A, B
C Program To Calculate Average of Two Numbers
READ *, A, B
MEAN = (A +B)/2
WRITE (*,*)
PRINT 5, A,B, MEAN
5 FORMAT (11CI2,13,14)
END.

The above program converts A and B into integer variables from their presumed real
type. Here you see that the PRINT statement is used with the FORMAT statement with
line label 5. In the FORMAT statement, A is to be printed as an integer of length 2, B of
length 3 and MEAN of length 4. To take care of the length specification, Fortran adds
blank spaces behind the values to make up for the number of spaces.

You will now round up this unit after this exercise below:

u 4.0 Self-Assessment Exercise(s)

State the FORTRAN equivalent keyword or symbol for the follow BASIC language

keywords and symbols:

i. REM

ii. INPUT

iii. SQR

iv. A

V. PRINT
Answers

i) C — in the first column

ii) READ

iii) SQRT

iV) **

V) PRINT or WRITE.

5.0 Conclusion

In this unit, you have been introduced to the reserved words in Fortran and the generic
intrinsic functions. Just like BASIC language, you need to be acquainted with the
Fortran keywords to be able to use the rich resources of its programming features.

106

And you have seen in the list of library functions, Fortran somehow "discriminates”
between the types of the functions according to their data type. Like in variable names,
the first letter of the function name specified the type of value you should expect when
using the function. Fortran is very unique in its way of accepting input data and
producing the output of results. FORMAT statement is usually employed in
conjunction with the READ and WRITE statements to provide flexibility.

6.0 Summary

In this unit, you have really got started with Fortran programming with the introduction
to the reserved words and library functions. Get acquainted with the common keywords
to start with and you will soon discover that Fortran is not difficult to learn.

In the next unit, you will be introduced to additional Fortran keywords as employed in
some examples.

7.0 Tutor-Marked Assignments
1. State the differences between the following Fortran reserved words:
a. COMPLEX and CMPLX
b. INTEGER and INT
c. DOUBLE PRECISION and DBLE.

2. a. Classify the following functions into integer, real, complex and double

precision types:
i) DSIN ii) AMOD iii) IDIM iv) CABS
b. What are the meanings of the above functions in (a)?

3. Write a Fortran program that requests for three real numbers from the keyboard,
subtracts 48 from their sum and then divides the result by 6 before sending the
output to the screen. In the input statement, let the program use the following
specification for the three numbers: length is 8, decimal places are 3. The output
should be unformatted.

L:M 8.0 Further Readings

Fatunla, S.O., Fundamentals of Fortran Programming, ADA + JANE Press, 1993.

Monro, D.M, Fortran 77, Edward Arnold, 1987.

107

Module 3

Module Introduction

This module provides introductions to the rudiments of Pascal Language, C++ Language and
HTML. In this module we explain the use of Loop and Selection Structures in Fortran; explained
Structured Programming in Pascal, and introduce you to Pascal Language. Also covered in the
module are Introduction to C++ Language and HTML.

Unit 1;
Unit 2:
Unit 3;

Unit 4:
Unit 5;

Unit 1:

Using Loop and Selection Structures in FORTRAN
Introduction to Pascal Language

Structured Programming in Pascal

Introduction to C++ Language

Introduction to HTML

USING LOOP AND SELECTION STRUCTURES IN FORTRAN

Contents

1.0
2.0
3.0

4.0
5.0
6.0
7.0
8.0

aQ

Introduction

Intended Learning Outcomes (I1LOs)

Main Content

3.1 The FORTRAN DO Loop

3.2 Using IF... THEN... ELSE Statements
Self-Assessment Exercise(s)

Conclusion

Summary

Tutor Marked Assignment

Further Readings

1.0 Introduction

As you will remember under BASIC programming, there is a way of executing
repeatedly, a set of program instructions. Just as BASIC has its own form of statements
to perform a loop operation, Fortran also has special statements in handling loops in a
program.

This unit will therefore introduce you to the DO ... CONTINUE statements employed in
Fortran for program loops.

108

The unit will also show you how to handle alternation or selection in Fortran through the
use of IF ... THEN ... ELSE statements. This will therefore afford you the opportunity
of seeing how relational operators are used in Fortran language. In the process of going
through some examples in this unit, you will be introduced to some additional Fortran
statements. Your study objectives for the unit are as follows.

2.0 Intended Learning Outcomes (ILOs)

By the end of this unit, you should be able to:
* Use the DO statement to process simple program loops.
* Write FORTRAN programs using the IF ... THEN ... ELSE statements.
* Use some additional FORTRAN statements to solve some simple problems.

3.0 Main Content

The FORTRAN DO Loop
Before seeing the practical examples of using the DO statement in FORTRAN, it is good
to emphasize that the loop structure helps to conserve both space and time in program
coding when a problem involves repeated execution of a number of program
instructions.
In general, a loop segment can be divided into three main sections as follows:

* the loop HEADER
* the BODY of the loop.
* the loop TERMINATOR.

The general form of the DO statement is as follows:

DO label [,] variable = expression I, expression 2.

On the other hand, you can also express the general DO statement as follows:

DO label counter = lower limit, upper limit, step size.

As already stated above, every loop is expected to have a terminator, and the 'label’ in the
above general forms of DO statement is actually the statement label of the loop
terminator. In FORTRAN, the terminator of a loop initiated by a DO statement is given
by a CONTINUE statement.

Now see a simple DO... CONTINUE statement below:

DO 10J=1.40

109

BODY OF LOOP

10 CONTINUE.

The above example simply directs the computer to repeat 40 times the statements
between the DO and CONTINUE statements. The block of statements which constitutes
the body of the loop is also called the RANGE of the DO statement (including the
terminating statement).

You learn how to program by studying program examples. So, study the following
program closely because it consists of additional features in FORTRAN to be explained
shortly:

Example 1

PROGRAM ITER
REAL X, T, FF
C BELOW IS A USER-DEFINED FUNCTION
F(X) = X**2 +3.0
OPEN (7, FILE = 'C:\NOU\OUT.DAT",
$ STATUS = 'NEW'") WRITE (7,10)
10 FORMAT (2X, 'T' 10X, 'FCT))
DO20T=0,4,05
FF=F(T)
WRITE (7,%) T, FF
20 CONTINUE
END

Definitely, you will observe that a few keywords have been added in the above program.

In brief, below are some additional features beyond what you have learnt on Fortran in
this course:

* The use of the keyword PROGRAM

* The use of a user-defined function

* Introduction of the OPEN statement

* The use of a line continuation symbol ($).

The keyword PROGRAM is used in Fortran as a Program Header statement, usually to
give a name to your program code.

110

Below the comment line is an assignment statement which defines a function F(X). The
use of user-defined function is essential in programming especially when a program has
repeated references to such a function at different points of the program. As you can see
in the above program, the function statement is used in the line following the DO
statement. See the next explanation on the OPEN statement.

The OPEN Statement

The OPEN Statement is used primarily to connect a file or the printer to your program.
Below is the general form of the statement:

OPEN [UNIT =] number, filespec list)

where "filespec” stands for file specification and there are various types of Fortran
specifiers. The most common specifiers are:

FILE =
STATUS =
ACCESS =

Others are:

IOSTAT =
ERR=
FORM =
RECL =
BLANK =

As you can see in the example above, two specifiers were used in the OPEN statement,
namely, "FILE =" and "STATUS =".

Briefly, in the above example, the OPEN statement connects your program to a device
with unit label specified by the number 7 as indicated in the 'WRITE statements. In your
case, the device is a hard disk and the file to be used is specified to reside in the folder
"NOU", whose name is "OUT.DAT".

The STATUS specifier simply directs the computer to create the file during the program
execution, hence its status type is "NEW". Other types of STATUS identifiers are:

. OoLD

. SCRATCH
. UNKNOWN

111

A file identified as OLD for example, is a file already existing on the drive before the
execution of your program.

Now, back to the DO... CONTINUE statement in the above example, the body of the
loop is to calculate the values of the function F(T) for values of T from 0 to 4 with step
size 0.5. The results are to be written to the file created by the OPEN statement. The

output of the program is as seen below:
e E=Es)

If OUT - Nolepad

Fie Edt Formet Vew
T F(T)
0.0000000 3,0000000
Q. 5000000 3,2500000
1.0000000 4,0000000
1,35000000 3,2500000
2.0000000 7.0000000
2. 3000000 9,2500000
3, 0000 000 12, 0000000
2, 3000000 15,2500000
4., 0000 000 19, 0000000
s = rees e

As you can see from the output above, the file "OUT.DAT" can be opened by you by any
ASCII editor such as "Notepad".

In your DO ... CONTINUE statement, if the step size is not given, the FORTRAN
compiler takes the step size as 1, just like the BASIC language interpreter

3.2 Using IF... THEN ... ELSE Statements

It is good to state here that the use of IF ... THEN ... ELSE statement is very important in
FORTRAN because it enables FORTRAN programs to be written in a way more
harmonious with structured programming.

The simple IF ... THEN statement has the following form:

IF (logical expression) THEN
block of statements

END IF
next statements.

It is a common programming practice to indent the block of statements between the IF
statement and the ENDIF statement to enhance readability of your code.

Remember that ENDIF keyword in FORTRAN is a single word unlike in BASIC where
the keyword is broken into two (i.e. END IF).

112

The ELSE statement is used in conjunction with IF ... THEN statement as expressed
below:

IF (logical expression) THEN block of statements
ELSE
block of statements ENDIF.

Now, look at the following example:
Example 2

READ (*,*) X, Y

IF (X+Y . EQ. 0.0) THEN

WRITE(*,*) 'X = -Y"
STOP

ELSE
Z=(X+Y)+2.0
PRINT *, X, YZ
END IF

In the above program code, on reading in the values of X and Y from the keyboard, the IF
statement checks if X+Y = 0. If this is true, the control is transferred to the next two
statements. The STOP statement terminates the program execution at this point. If the
value of the logical expression is FALSE, the control is passed to the statements
following the ELSE statement.

In the above program, take note that the relational operator.EQ. is used and not the
equality (—) sign.

Before you round up this unit, see below the various forms of IF statements:
* The logical IF
* The block IF
* The ELSE IF
Their general forms are as follows:
Logical IF
IF (logical expression) statement

An example is as follows:

IF (J .GT. 4) GO TO 40

113

Block IF
IF (logical expression) THEN
An example is already given in the above FORTRAN code.

ELSE IF
ELSE IF (logical expression) THEN.
The use of IF... THEN... ELSE IF statement is essentially necessary to avoid having too

many ENDIF's when using the IF statement to check many conditions in a multi-
selection structure. A more general format for the ELSE IF statement is as follows:

IF (first logical expression)
THEN first block of statements
ELSE IF (logical expression) THEN
second block of statements
ELSE IF (logical expression) THEN
ELSE IF (last logical expression) THEN
last block of statements
ELSE

block of statements
ENDIF.

You will now round up this unit.

LI 4.0 Self-Assessment Exercise(s)

1. There was a statement in the above example 1 that was not necessary.
What is the statement and why?
Answer
The statement is
REAL X, T, FF

The declaration statement is not necessary because the variables X, T, FF are
already assumed to be real by default.

2. Give the IF statement version for the above program in example 2 for checking
the following conditions:

114

Answers

IF (X .GT. Y) THEN
or
IF (X-Y .GT. 0.0) THEN

IF (X .LE. Y) THEN
or
IF (X-Y .LE. 0.0) THEN.

5.0 Conclusion

Definitely, you cannot cover everything about Fortran programming in this course as
you should have observed in this unit. This unit has simply attempted to introduce you
to additional common statements you will frequently need to use in FORTRAN
programming. Developing programs that involve loops and conditional statements are
common features in programming. This unit has shown you how to handle loops in
Fortran by using the DO... CONTINUE statements. You have also seen the use of IF
statements in its various forms and also how to use the relational operators in
FORTRAN code.

6.0 Summary

Fortran is very easy to learn as you have seen in this unit and the last two units. This
unit has extended the use of Fortran statements to the basic features of structured
programming available in the language. With these three units on basic features of
Fortran programming, you have been equipped with the fundamental knowledge of
Fortran to get started with the language In the subsequent units, you will also be
introduced to the fundamental knowledge of some other languages so as to have a
broad basic knowledge of the commonly used programming languages

7.0 Tutor-Marked Assignments

1. Use the WATFOR 77 software to code and run the following FORTRAN program:

INTEGER SUM
SUM=0
DO10D=1,7

IF (K .GT. 3) THEN
SUM = SUM + K
ELSE

115

SUM =SUM * K
ENDIF
PRINT*, SUM
10 CONTINUE
END

2a State the three segments that characterize a loop and hence write out the
segments in the loop contained in the program above.
b. Describe the use of the following status identifiers employed in OPEN

statement:
OLD
SCRATCH

3. What is the difference between the STOP and END statements?

8.0 Further Readings
Fatunla, SD., Fundamentals of Fortran Programming, ADA + JANE Press, 1993.

Monro, D. M., Fortran 77, Edward Arnold, 1987. WATCOM System Inc., WATFOR-
77 V3.0, 1988

116

Unit 2: INTRODUCTION TO PASCAL LANGUAGE

Contents
3.0 Introduction
4.0 Intended Learning Outcomes (ILOs)
3.0 Main Content
3.1 Getting Started with Pascal Programming
3.2 Pascal Keywords and Operators
3.3 Pascal Standard Functions and Procedures
4.0 Self-Assessment Exercise(s)
5.0 Conclusion
6.0 Summary
7.0 Tutor Marked Assignment
8.0 Further Readings

@ 1.0 Introduction

This unit will introduce you to the third language in this course, namely, the PASCAL
Language. In this unit, you will be discovering for the first time what was never
necessary in the first two languages you have studied. Pascal has its own unique way of
code development as you will remember in Unit 3 of this course when studying some
basic elements of algorithms. You will remember that Pascal was said to have its own

specific form of pseudocode that you can easily transform into Pascal code.

In this unit, you will therefore be introduced to the basic characteristics of Pascal
language and its keywords and functions. Now, look at your study objectives below:

\@I 2.0 Intended Learning Outcomes (1LOs)

At. the end of this unit, you should be able to:
* Describe the fundamental characteristics of Pascal programs
« Distinguish some differences between Pascal language and other programming
languages
« Identify the essential operators and keywords used in Pascal programming
* Describe the Pascal Library Functions

3.0 Main Content

3.1 Getting Started with Pascal Programming

117

To start with, it is good to state that Pascal was designed to be compatible with structured
programming concepts. Essentially, the language offers alternative logic structures to
avoid the use of branching (or GO TO) statements that is highly discouraged in structured
programming.

Pascal allows variables of any length, although only the first six characters have meaning
to the computer and it is more English- like than the Fortran language. Generally, Pascal
has been observed to have poor input and output (I/O) capabilities, however, it has very
good graphic capabilities unlike BASIC and Fortran.

Below is the summary of the elements of a Pascal program illustrated in the following

chart.
A PASCAL PROGRAM
T e

RESEPVED WORDS IDENTIFIERS REAL INTEGER

USER-DEFINED STANDARD WORDS

Generally, each Pascal program has two basic parts:
* HEADING
* BODY.

The program heading is for definitions and declarations. In fact, the program heading
starts with the word PROGRAM followed by an identifier and program parameters. You
will see all these in examples very shortly.

The program body simply consists of Pascal statements, each of which must be separated
from its successor by a SEPARATOR which is usually a semicolon. However, it is good
to remark that certain reserved words also serve as separators in Pascal coding

To learn how to program and explain some important concepts, you need to study
program examples. You will now see a program below to learn the general basic
characteristics of a simple Pascal program.

Example 1

118

PROGRAM Circumference (INPUT, OUTPUT);
(This program finds the circumference of a circle)

CONST
Pi = 3.14159;
VAR
Radius, circum: REAL;
BEGIN
READ (radius);
Circum: =2 * Pi * radius;
WRITE (* Circumference =', circum);
END.

Now, closely looking at the above program example, you will observe that a Pascal
program can be said to consist of the following sequences:

* Definitions

* Declarations

* Statements

* Optional Remarks.

When you divide a Pascal program into two major parts: Heading and Body, the heading
identifies the program name and it is better and conventional to use an identifier that
suggests what the program is expected to do. The name of the program is followed by
(INPUT, OUTPUT) which indicates to the computer that the program will receive data
from its standard input device and also transmit data to its standard output device. The
words INPUT and OUTPUT are in this context called the Program Parameters.

Below the program header is a comment enclosed within braces { }. So, Pascal uses
braces instead of using a keyboard as in BASIC or a character as in Fortran. The
comments can be placed anywhere in a program where a space is allowed. Some Pascal
compilers also accept double asterisk symbols (*...*) to enclose comments.

There are two word symbols:
* CONST
* VAR.

The word symbol CONST indicates that the following data items will define the
CONSTANTS to be used by your program. The word symbol VAR also indicates the
beginning of the declarations of the names or identifiers to be used for VARIABLE data.

The body of the program starts with the word symbol BEGIN and terminates with the
word END. Remember that the END statement is followed by a full stop () as an
essential part of the program code. END statements in subprograms end with semicolons.
From what you have seen above, a Pascal program is punctuation — sensitive.

119

Before you are introduced to the Pascal keywords and operators, you will observe in the
above program example that the assignment operator in Pascal is made up of a
combination of two single symbols (:=).

To fully get started with Pascal programming, you need to be introduced to the Pascal
programming environment. Below is the programming environment for Turbo Pascal
Compiler:

Edit Run Compile Options
Edit
Insert Indent E:HW.PAS

Output

Fo-output F9-Make F10-Main menu

Build

Destination Memory
frimary file...
Clear primary file

Information...

F1 Help Ooq»ne source file
Looking at the above two screen windows of the Turbo Pascal compiler, you will observe

some similarities with the Turbo BASIC environment. You will be using the compiler to
run some Pascal programs later in this course

120

3.2 Pascal Keywords and Operators
The reserved words used in Pascal are as follows:

AND, ARRAY, BEGIN, CASE, CONST, DISPOSE, DIV, BOOZEAN, CHAR, DO,
DOWNTO, ELSE, END, FILE, FOR, FUNCTION, GET, GOTO, IF, IN, INTEGER,
INPUT, FALSE, LABEL, MOD, NEW, NOT, OF, OR, OUTPUT, OTHERWISEW,
MAXINT, PACKED, PACK, PAGE, PROCEDURE, PROGRAM, PUT, READ,
RECORD, READLN, REAL, REPEAT, RESET, REWRITE, SET, THEN, TO, TRUE,
TYPE, UNPACK, UNTIL, VAR, WHILE, WITH, WRITE, WRITELN, TEXT.

Already, some of the above reserved or pre-defined Pascal words have been used in the
program example considered in the last section. Looking at the example closely, the
following reserved words were employed in the program.

¢ PROGRAM
 CONST

* VAR
 BEGIN

e REAL

* READ

* WRITE

e END

* INPUT

. OUTPUT.

Below, you have the operators being used in Pascal programming as classified generally:

Arithmetic Operators

+ - Addition

- Subtraction

- Multiplication
- Division

= - Assignment

Relational Operators

< Less than

= Greater than

= Equal to

<= Less than or equal to
== Greater than or equal to
<= Not equal to

121

Boolean Operators

AND The AND Operator
OR The OR Operator
NOT : The NOT Operator.

3.3 Pascal Standard Functions and Procedures
The commonly used Pascal library functions and procedures are classified as follows:
* Arithmetic Functions
* Transfer Functions
* Boolean Functions
* Procedures

Arithmetic Functions

SQR (X) Square of X (1.e. X2)

SQRT (X) Square Root of X (i.e. VX)

ABS (X) Absolute Value of X (1.e. |X])

EXP (X) Exponential Function of X (eX)

LN (X) Natural Logarithm of X (logeX)

SIN (X) Sine of X

COS (X) Cosine of X

ARCTAN (X) Arctangent of X (tan-1(X))
Transfer
CHR (X) Character corresponding to the value of the

integer type X.

ORD (X) Ordinal number of the scalar X.
TRUNC (X) Integer result of truncating X.
ROUND (X) Integer result of rounding real X to the

Boolean Functions

nearest integer

EOF (filename) Returns TRUE if end of file is reached

EOLN (filename) Returns TRUE if end of line i1s reached in
the file.

ODD (X) Returns TRUE if the integer parameter X is

an odd number.

122

Procedures

NEW (X) : Creates a new address for the pointer X.
DISPOSE (X) : Disposes of the address of the pointer X.

The following two functions are also employed in Pascal:

SUCC (X) : Supplies the value after the current value of
scalar type
X within the ordered set of values that the
scalar type on take.

You will now round up this unit, having been introduced to the basic knowledge of
Pascal to get you started with the programming language.

Ed

4.0 Self-Assessment Exercise(s)

1. Construct the Pascal Pseudocode for the above Pascal program in example 1.
(Remember you studied this in Unit 3 of this course).

Answer

ALGORITHM Circumference

DECLARE
Pi = 3.14159
radius, circum : REAL

EXECUTE
INPUT radius
Circum ? 2 * Pi * radius
Output ‘circumference =', circum, MORE

END circumference.

2. There is an operator that exists in BASIC and Fortran but is missing in the groups
of operators listed above. What is it?

Answer

The Exponentiation Operator.
The single operator for exponentiation is a uniquely absent feature in Pascal.

3. Discuss how to express the exponentiation operation and tangent function in
Pascal since there are no direct ways of expressing them.

123

Answer

The exponentiation operation can be expressed by using the SQR function. This
can also be done by the EXP and LN functions, carefully. The tangent function
also can be expressed by using the SIN and COS functions.

5.0 Conclusion
In this unit, you have been introduced to the general features of the Pascal language.

Something unique with PAS as you have seen in this unit is the peculiar punctuation
marks that are essential in its code unlike in BASIC and Fortran that you have studied
in this course.

The unit has also introduced you to the commonly used reserved words and operators
with the language library functions

6.0 Summary

In this unit, you have seen that as good as the Pascal language is, being developed to be
compatible with structured programming features, yet the language has few demerits.
For example, there are no direct ways of expressing exponentiation and tangent
function as in other languages.

Having been introduced to the general features of the Pascal language, you will in the
next unit be taken through some examples that employ the reserved words and
functions studied in this unit.
7.0 Tutor-Marked Assignments
Apart from the semicolons, state three reserved words that also serve as separators in
Pascal code.
1 (a). State where remarks cannot be placed within Pascal code.

(b) How do you have access to the output window of the Turbo Pascal Compiler?

2. Write a Pascal program that finds the area of a rectangle, using the standard 1/0
devices.

8.0 Further Readings
Borland International, Inc., Turbo Pascal Version 6.0, 1990

Huggins, E., Mastering Pascal Programming, the Macmillan Press Ltd., 1983.

124

Salaria, R.S., Computer Oriented Numerical Methods, Khanna Book Publishing Co.
Ltd., 1999.

125

Unit 3: STRUCTURED PROGRAMMING WITH PASCAL

Contents
5.0 Introduction
6.0 Intended Learning Outcomes (ILOs)
3.0 Main Content
3.1 Iterative Structures in Pascal
3.2 IF- THEN Statements in Pascal
4.0 Self-Assessment Exercise(s)
5.0 Conclusion
6.0 Summary
7.0 Tutor Marked Assignment
8.0 Further Readings

2

1.0 Introduction
As already learnt in the last unit, Pascal was designed to be compatible with the
structured programming features. Do you remember the three basic structures of
structured programming? They are:

* Sequence Structure

 Selection Structure

* |terative Structure.

In this unit, you will be introduced to the Selection and Iterative Structures as they are
used in Pascal. You will remember that the sequence structure is embedded in every
other structure.

There is GOTO statement still made available in Pascal but is rarely used since it
generally upsets a program structure and reduces the clarity of the program. It is
therefore a common practice to confine the use of GOTO statement to those very few
instances when there is no alternative construction

\@I 2.0 Intended Learning Outcomes (ILOs)

By the end of this unit, you should be able to:
* Identify various types of iterative structures available in Pascal.
* Use some additional keywords available in Pascal Programming language.
* Use the IF-THEN Statements to perform alternation in Pascal.

3.0 Main Content

126

3.1 Iterative Structures in Pascal
The iterative structures in Pascal are as follows:
* FOR loop
* WHILE loop
* REPEAT loop.

The FOR Loop

One of the major strengths of a computer is its ability to repeat selected instructions with
different data. That is what the FOR statement does when used in Pascal programming.
The general construction form for the FOR statement is as follows:

FOR < control var >:= <expr> TO <expr> DO <statement>

where <control var> is an integer variable and <expr> is any expression that can be
evaluated into a value of the same type as the control variable. The component
<statement > may be any statement (simple or compound) or another FOR statement.

Look at the example below:

Example 1

PROGRAM Example 13 (OUTPUT);
VAR
a: REAL; b : INTEGER;
BEGIN
a:=1.24
FORb=0TO5DO
BEGIN
WRITELN (b, a);
END;
END

The output of the above program is as follows:

1.2400000000E+00
6.2000000000E+00
3.1000000000E+01
1.5500000000E+02
7.7500000000E+02
3.8750000000E+03

Ok~ wpNDEFE, O

In the above program, the compound statement bounded by the inner BEGIN and END
delimiters has been repeated six times under the execution of the FOR statement. You
will however observe that the inner END statement is followed by the normal separator,
semi colon, since it is not the end of the program.

127

The WHILE Loop

The WHILE ... DO statement is another iterative statement available in Pascal. The
general representation is as follows:

WHILE <expression> DO <statement>
See the following program that uses the WHILE statement.
Example 2

PROGRAM Example 13a (OUTPUT);
CONST
firstNumber = 1;
Multiplicant = 0.05
VAR
number, lastNumber : REAL;
BEGIN
number: = firstNumber;
WHILE number >0 DO
BEGIN
lastNumber : = number;
number : = number * 0.05;
END;
WRITELN (Number =', number);
WRITELN (The Last Number =', lastNumber);
END.

From the program above, the WHILE statement will be repeated until the value of
‘number' becomes so small beyond what your computer can recognize as zero.

The REPEAT Loop

The REPEAT statement is very similar to the WHILE statement The general form of its
representation is as follows:

REPEAT <statement> UNTIL <Boolean expr>

where <Boolean expr> is a Boolean expression.
There are two major differences between the WHILE and REPEAT loops;

e The REPEAT and UNTIL statements act as delimiters in the same way as BEGIN

and END statements. So, the REPEAT loop doesn't need to start with BEGIN
statement and end with END statement as in WHILE loop.

128

e In the WHILE loop, the condition of the Boolean expression is tested before the
loop is entered, whereas a REPEAT loop will always be executed at least once,
even if the condition is false at the beginning.

Now, see an example of the REPEAT loop below:
Example 3
PROGRAM Sales (INPUT, OUTPUT);

VAR itemNumber, quantity: INTEGER; total, unitPrice, totalPrice: REAL,;
BEGIN

Total: =0;
WRITELN (19/N Qty Unit Price Total);
REPEAT

READ (itemNumber, quantity, unitPrice);

totalPrice: = quality + unitPrice;

WRITTELN (totalPrice : 38: 2);

Total: = total + totalPrice;

UNTIL itemNumber = 0;

WRITTEN (‘'Grand Total = N', total : 9: 2);
END.

3.2 IF-THEN Statements in Pascal

As already learnt in the previous two languages you have studied, that is, BASIC and
Fortran, the IF-THEN statement is meant for performing an alternation process on
fulfillment of a condition.

As in other languages the general form of its representation in Pascal is as follows:

IF <Boolean expression> THEN <statement>
The difference between the WHILE and IF statements is that whereas the WHILE
statement will repeat the statement until the associated conditional expression is satisfied,
the IF statement will not. If the expression following an IF is true, then the statement
following its THEN part is executed (once only). If, on the other hand, the expression is
false, then the statement is ignored by the computer and the control is passed to the next
instruction in the program.
The usage is seen in the following example before you round up this unit.

Example 4

PROGRAM Example 13b (INPUT, OUTPUT);
VAR ch: CHAR,;

129

BEGIN
READ (ch);
IF (ch>="0) (ch <="9) THEN
WRITE (digit);
IF (ch>="A) AND (ch <= Z’) THEN
OR(ch="T)OR (ch="E’)
OR (ch ='U’) THEN WRITE ("vowel’),
ELSE WRITE (‘consonant’);
ELSE WRITE (‘error’);
END.

Definitely, the above program has introduced you to more features of the IF statements.
For example, the program incorporates the IF-THENELSE construction whose general
form is as follows:
IF <expression> THEN <statement> ELSE <statement>
For nested IF statements, the following rule should be followed:
IF <expression> THEN
IF <expression> THEN <statement>

ELSE <statement>

In brief, the rule is that, an ELSE is paired with the nearest preceding otherwise unpaired
THEN.

In the above program, you will notice that if the input is a digit, your output will be
"digiterror"
This is as a result of an incorrect use of the ELSE statement
With all that you have learnt in this unit and the last unit, you have actually started with
Pascal programming. These two units are just intended to do that. A complete course on

Pascal Programming will let you dig deeper into the usage of the good features of Pascal
programming.

LI 4.0 Self-Assessment Exercise(s)

1. Run the program. In example 3

Answer
The output is as follows:

S/IN Qty. UnitPrice Total

130

7N

/

O/

1. 3 5.50 16.50

2. 45 0.20 9
3. 12 3.40 40.80
Grand Total = N66.30

To terminate the REPEAT loop, you simply enter the digit 0 as indicated in the
UNTIL statement. In the above program, a WRITELN statement such as

WRITELN (totalPrice : 38 : 2);

simply states that the value of "totalPrice” should be printed with length 38 and 2
decimal places.

2. What statement do you amend to correct this error in the nested IF statements?

Answer
The first four statements after the BEGIN word symbol should be as follows:

READ (ch);
IF (ch>="0") AND (ch < '9’) THEN
WRITE (digit);
ELSE IF (ch >= ‘4’) AND (ch <= ‘Z’) THEN.

The above program has introduced you also to the use of the Boolean operators and of
course a variable type CHAR.

6.0 Conclusion

This unit has taken you through the features of structured programming embedded in
Pascal programming language. The iterative structure can be carried out with either the
FOR, WHILE or REPEAT statement as you have seen in this unit.

The selection structure is implemented in Pascal the same way as in other languages.
The unit has shown you the careful manner the ELSE statements should be paired with
IF statements.

6.0 Summary

Structured programming features are well supported in Pascal language as you have
seen being demonstrated in this unit. Though the GOTO option is still available in
Pascal, it is rarely used since the iterative and selection structures can be used in place
of such branching statement. With all that you have learnt in this unit, you have the
fundamental knowledge needed to start programming in Pascal. An extended

131

knowledge to cover the other reserved words listed in this unit will require a treatment
in a complete course on Pascal programming. lii the next unit, you will be introduced
again to another programming language.

7.0 Tutor-Marked Assignments
1. Run the Pascal program in Example 2.
2. Write a very short Pascal program that gives the following output:
True=1
False =0
3. Study the following Pascal code:
IF((@=1)AND (b=1)
OR (a<>1) AND (b <>1)
THEN answer : = TRUE
ELSE answer : = FALSE.

Give a single assignment statement which is equivalent to the above 4 — line
code

8.0 Further Readings

Huggins, E., Mastering Pascal Programming, The Macmillan Press Ltd., 1983.

Borland International Inc., Turbo Pascal Verb o n 6.0, 1990.

132

Unit 4: INTRODUCTION TO C++ LANGUAGE CONTENTS

Contents
1.0 Introduction
2.0 Intended Learning Outcomes (ILOs)
3.0 Main Content
3.1 An Overview of C++ Language
3.2 C++ Keywords and Operators
4.0 Self-Assessment Exercise(s)
5.0 Conclusion
6.0 Summary
7.0 Tutor Marked Assignment
8.0 Further Readings

2

1.0 Introduction

This unit is going to introduce you to one of the most versatile programming languages
today. That is the C++ language which was designed by B. Stroustrup and published in
his book, "The C++ programming Language™ in 1986. The C++ has been fundamentally
derived from the original C language which was published by B.W. Kernighan and D.
M. Ritchie in 1978. The C++ designation is simply related to the expression C++ which
you can write in a C program to increment a variable C.

One of the attractive features of C++ is that the language offers good facilities for
Obiject-Oriented Programming (00P). In brief; the C++ language is a better C language
since there are some facilities available in C-H- which are not available in the original C.
This unit will simply give you an overview of the C++ language with its keywords and
operators. Now, look at your study objectives below.

\@I 2.0 Intended Learning Outcomes (ILOs)

By the end of this unit, you should be able to:
* Describe the general form of a C++ program.
 Explain the role of Header files in C-H- programs.
* Identify the different categories of operators used in C++ language
* .Write simple C++ programs and use a compiler to run them

3.0 Main Content

3.1 An Overview of C++ Language

133

In this unit, you will be using the Turbo C-1-1- compiler to run the few programs you
will encounter in the study. The compiler offers you the flexibility of compiling both
your C and C++ programs. Just simply remember to save your source program with
extension C or CPP for the original C or C++, respectively.

Now, you can only develop programs when you are familiar with the grammar rules
governing the language just as you have in other languages. For now, C++ programs can
be said to majorly consist of the following:

* Comments
* Header Files
* |dentifiers
 Statements
* Functions.

Remember, just like in other languages, the program statements consist of the operator
allowed by the C++ language.

In brief, a simple C++ program has the following general representation:

/I <comments> ... # include <header file>

include <header file> main (<parameters>) {<identifiers and statements> ;

}
You will now see the explanation on the above general form as follows:
Comments

Generally, it is a good programming practice to start your program with meaningful
comments. Just as there are ways of inserting comments in other languages, C++ also has
its own way of identifying a comment. In C++ language, you begin your comment with
the two characters (or double slash):

1
The end of the line is simply the end of your comment. Analogously, the original C
language uses the two characters:

/*
to begin your comment and the two characters:

*/

to end the comment.

134

Include Lines

The include lines are used to “include” the header files. The header files, usually with
extension .h, are files employed by C++ to declare functions and to define macros. They
serve in reducing the amount of source code or program lines. Thus logically, an include
line is used to include the contents of a header file.

Include lines usually begin with:
#include
and they should be on separate lines of their own.

Below is a list of some header files available in a specified directory created for them
when you install your C++ compiler:

alloc.h, assert.h, bcd.h, bios.h, complex.h, ctype.h, conio.h, dir.h, dos.h,
errno.h, float.h, graphics.h, io.h, iomanip.h, limits.h, math.h, mem.h,
stddelh, stdio.h, stream.h, iostream.h, stdlib.h, time. h, values. li, etc.

The above files are STANDARD header files residing in the INCLUDE subfolder of
your main Turbo C++ directory. You can also write your own header files.

Functions
Being a structured programming language, C++ program contains one or more functions,
one of which is called "main™ as used in the above general form.

main (<parameters>).

As seen in the general construction, you do not need the term "function™ to designate it. A
function in C++ simply denotes a concrete program segment. In C++, your functions may
or may not have parameters. Thus you can simply have something like this:

Main ()
{

}
It should be noted that the body of every function in C++ is embedded between braces {
...}. The two braces can be written on the same line or in the same vertical column.

Statements

The C++ statements can be DECLARATIONS or executable statements. Declaration
statements are used to specify the variable types. In C++, you can include your
declarations in an assignment as you will see below in some examples.

135

Just as you have in Pascal, it is interesting to state that C++ statements end with
semicolons, as indicated in the general form above.

Before you are introduced to a simple C++ program, you need to know of the C++

variable types.

Variable Types

Variables in C++ are of the following types with their fixed sizes in memory:

Sizes in Memory

char 1
double 8
enum 2
float 4
jut 2
long 4
(or long Mt) 4
long doubk 10
short 2

(or short int)

Now, see your first C++ program below, being a program which reads two real numbers
from the keyboard to compute their average:

/I A program that finds the average of two numbers

include <iostream.h>

main ()

{ cout << "Enter Two Number: ";

float X, y;

cmn>>x>>vy;
float mean = (x + y)/2;

cout << "Average =" << mean << endl;

}

The above program uses the 'iostream.h' header file in its include line because of the
standard input and output streams ‘cin' and 'cout used in the program. In the original or
traditional C language, you can use the standard functions 'scanf” and 'printf" which are
contained in the “stdio.h' header file.

136

As explained above, you need some knowledge of the contents of some header files so as
to know what to use in your include lines.

The statement:
cin >>x >>y;

reads two values from the standard input stream (i.e. from the keyboard) and stores them
into the variable x and y. The operator used here appears like an arrow head which sends
the values from 'cm' to x and y. It is called a "Shift Operator".

In the same way, the statement:

cout << "Enter Two Numbers:";

uses the standard output stream ‘cue which sends the characters between the double
quotes to the video screen.

As you can see in the above program, variables x and y are declared to be floating
numbers. The declaration of the variable 'mean’ is done with the assignment.

The use of "endl" in the program simply specifies that you are at the end of the line.
Instead of using "endl", you can also use

\n‘ or -\nl.

Now, when the above program is compiled, your output will look like this:
Enter Two Numbers: 2.4 4.6
Average = 3.5

Below are two window screens of Turbo C++ compiler. The "Message" window is meant
to display error messages or compilation messages.

The final output of your program can be viewed by selecting "Output” from the
"Window" menu as shown in the figure below:

137

Wit beush Ba lowpile Deko
-

B e
R—

3.2 OFF Keywords and Operators
Already, in the above example you considered in the last section, you have seen some of
the C++ keywords and operators.

Keywords

By keywords, the reserved words are also included in the list below:
asm, auto, break, case, catch, char, class, const, continue, default, delete,
do, double, else, enum, extern, float, for, friend, goto, g inline, int, long,
new, operator, private, protected, public, register, return, short, signed,
sizeof static, struct, switch, template, this, throw, try, typedof union,
unsigned, virtual, void, volatile, while, etc.

As you can see above, C++ has many friendly reserved words, in fact one of them is even

named 'friend' !. Generally, as in other languages, the needs of your problem will suggest

the keywords to be employed in your C++ program.

C++ Operators

138

Generally, C++ has many operators and the language treats as operator‘s things that other
programming languages do not. This is what makes some people to see the C++ language
as seemingly difficult. However, the language is not as difficult from the little you have
seen in this unit already.

The operators will be classified as follows for easy understanding:

* Arithmetic Operators
* Binary Operators.

However, the arithmetic operators are also included under some categories of binary
operators. It is therefore sufficient to just see the operators under the following categories
of the binary operations:

* Additive Operators

* Multiplicative Operators
» Shift Operators

* Bitwise Operators

* Logical Operators

* Assignment Operators
* Relational Operators

* Equality Operators.

There are other operators too that may not be appropriate to classify under the above
groups. The language has many operators as you have been told. It is an operator-driven
and function-driven language.

Additive Operators

+ : Addition
- 1 Subtraction.

Multiplicative Operators

* : Multiplication
/ : Division

% X Remainder.
Shift Operators

<< : Shift Left

>> : Shift Right

Bitwise Operators

139

Bitwise X OR (Exclusive OR)
Bitwise OR (Inclusive OR) — the "Pipe"
character on your keyboard

&) Bitwise AND
A .
I

Logical Operators
&& Logical AND

| ; Logical OR (double pipe)
! : Logical NOT

Assignment Operators

= : Assignment
= Assign Product
= Assign Quotient
%o : Assign Remainder
+= Assign Sum
= Assign Difference
<< Assign Left Shift
== Assign Right Shift

= Assign Bitwise AND
A= Assign Bitwise XOR

= Assign Bitwise OR
Relational Operators

Less than

Greater than

Less than or equal to Greater than or Equal to

Equality Operators

== Equal to
I= : Not equal to

There are other operators, and one of such is:

Sizeof : To check the size of a variable type.

As you have seen in the list above, you will agree that C++ is really an operator-driven
language as earlier asserted. You need to know how C++ handles a particular type of

variable described below.

140

Printers in C++

The C++ language uses extensively what are called POINTERS. In brief, a variable that
has an address as its value is called a POINTER. Pointers are therefore employed to
generally store ADDRESSES just as you use arithmetic variables to store numbers.

Now, C++ uses the unary operator " to designate a pointer variable. Thus a declaration
such as follows:

float *r;

defines r as a pointer-to-float variable while the value of r itself is an address. There is
therefore an operator, called the '"ADDRESS OF' operator, represented by '&'. This is an
inverse operator of ™*'. The operator ™' is also called the INDIRECTION operator, and

when you write:
*r

it simply means "the contents of". From all the explanations above, if you have for
example:

this simply means r.

Before you round up this unit, look at the following example:
#include <iostream.h>
main ()
{inti, & =1i;i=4; x+=10;
cout << "New Value of i = "<< i <<".\n";
cout << "Using x, we have i ="<< x <<".\n";

}

The output of the above program will give you the following:

New Value of i = 14.
Using x, we have i = 14.

In the above program, x is a reference variable, using the "address of' operator. The
program also uses the "Assign Sum" operator +=to add 10 to 4.

Instead of using the "endl" keyword, the program uses "\n" alternative to end the output
line

You will round up this unit now since all about C++ cannot be exhaustively covered in
this course. The course is meant to give you a broad view of programming tools available
in programming languages

141

1.

4.0 Self-Assessment Exercise(s)
There is an operator indirectly referred to in the introduction of this unit which is not
listed above. What is it?

Answer

The operator is the first of the two listed below. The second is its inverse:
++ : Increment
--) Decrement.

7.0 Conclusion

In this unit, you have been introduced to the general fundamental characteristics of the
C++ language. You have seen the peculiar features in the language that are absent in
BASIC, Fortran and Pascal languages that you have studied in this course. A typical
example of these features is the idea of header files. You will need to have an idea
about the contents of some header files so as to know what are the appropriate header
files to include in your programs.

The unit has shown you the richness of C++ in terms of operators. The same thing
holds for usage of functions. A complete course on C++ language will help you to
understand more of the language which has been classified as a Middle-Level
language because of its immense capabilities, especially for developing operating
systems.

6.0 Summary

Obviously, C++ language is a very rich language in terms of its capabilities and the
features it offers. This unit has shown you some of the basic features of the language
and with what you have learnt in the unit, you can easily get started with the language.

The header files used in the include lines can either be selected among the standard
files kept in the INCLUDE subfolder of your Turbo C++ Directory or be personally
developed by you and kept in the INCLUDE subdirectory or your current directory.
This unit will be the only unit devoted to C++ language just to give you an introduction
to the language. However, it should be noted that a good knowledge of C++ will help
you to easily and quickly understand the JAVA language. The next unit will also take
you further into another language.

7.0 Tutor-Marked Assignments
What is the keyword ENUM used for in C++?

142

2. Write a C++ program that calculates the area of a circle, the value of the radius
being read from the keyboard.
3. Study the following C++ program:

include <iostream.h>
void f(int n)
{if (n>0)
{f(n-2); cout << n <<"”; f(n-1);
}
{
main ()
{intk;
cout << "Enter k: "'; cin >>k;
cout << "Output: \n";
a) How many functions are in the above program?
b) What is the function that calls itself in the program?

8.0 Further Readings
Ammeraal, L; C++ For Programmers, John Wiley & Sons Ltd., 1991

King, M., Pardoe, J. and Vickers, P. A First Course in Computer Programming Using
C, McGraw-Hill Book Company, 1995;

Borland International Inc., Turbo C++, 1990

143

Unit 5: INTRODUCTION TO HTML CONTENTS

Contents

7.0 Introduction

8.0 Intended Learning Outcomes (ILOs)

3.0 Main Content
3.1 Fundamentals of Web Pages
3.2 Textand Tags in HTML

4.0 Self-Assessment Exercise(s)

5.0 Conclusion

6.0 Summary

7.0 Tutor Marked Assignment

8.0 Further Readings

2

1.0 Introduction

This unit is introducing you to a programming language that seems to be the most easiest
language to learn today and also the most demanding language to publish web pages on
the Internet.

HTML simply stands for "HyperText Markup Language”. It is interesting to let you
know that you can master enough of HTML syntax in a few hours to be able to create a
wonderful web page. The unit will first of all take you through some basics of how web
pages work so as to be able to understand what various HTML commands are expected
to perform when executed by a web browser.

The first concepts to fully understand in HTML are tags and text formatting. This unit
will get you started with the knowledge of these fundamental aspects of HTML. Now,
look at your study objectives for this unit.

‘@\ 2.0 Intended Learning Outcomes (I1LOs)

By the end of this unit, you should be able to:
* Describe what a web page is and how it works.
* Explain various ways of creating HTML pages
* Explain how to use tags and format text in HTML document

PN

3.0 Main Content

144

3.1 Fundamentals of Web Pages

By now, you are expected to have the basic idea of what is called the INTERNET, which
is the network of sub-networks of computers across the world. Today, HTML pages are
the standard interface to the Internet. The inter-linked HTML pages were named the
World Wide Web (www) while the special programs written to view web pages are
called Web Browsers. Examples of Web Browsers are the Microsoft Internet Explorer,
Mozilla Firefox, Netscape Navigator, etc. Basically, Hypertext means text stored in
electronic form with crossreference links between pages. However, HTML or web pages
today may include the following:

* Text

+ Sound

* Video

Animated Graphics

* Interactive Programs.

The world wide web is the unique part of the Internet that relies on HTML, but there are
other services of the Internet and an example is the E-mail service.

Apart from what are listed above that can be included on Web Pages, you can also have
the following as parts of the contents:

* Links

* Forms

* Frames

* Image Maps
« Java Applets
* Counters.

See few explanations on web page contents below:
Text

Text is usually said to travel quickly over the Net (short for Internet). Generally, you
have lots of control over text, such as its font size, colour, alignment and other properties.

Graphics

It is a common saying that, "a picture is worth a thousand words". Though graphics are
good forms of information presentation, you should know that it takes a longer time to
retrieve or download them from remote computers on the Internet.

Generally, you should expect vie wing delays of web pages since most of them are

located on some other computers different from your own. If web pages have many
graphics, expect to spend some time waiting for them to fully be downloaded on your

145

computer. As a website developer or programmer, learn how to include graphics that are
worth seeing and small for easy retrieval. Graphics can be animated on web pages.

Multimedia

With video and sound files included on web pages, you must have suitable software to
view or listen to them.

Links

No good web page without some vital links to direct visitors to other pages. These links
are generally called "hyperlinks".

Forms

To get feedback from web pages, the best way is to use forms. A form consists of a set of
slots into which website visitors can enter some required information. However, your
Internet Service Provider (ISP) must rim software that can collect data submitted by your
website visitors and pass them to you.

Frames

Frames are used to divide your website into a set of separate areas, each of which can

display a different file and be changed independently. They are employed to enhance the
look and the usability of your website or web pages (- a website is a collection of web

pages).
Image Maps

These are larger pictures having a number of hyperlinks embedded within them. They are
majorly used to act as ‘contents' lists at the top of websites.

Java Applets

Java applets are little programs you can embed into your web pages to be downloaded or
run within the browsers of the page visitors.

From the list above, you can see that web pages are simply "Assemblies of Elements™ and
most of the elements are located in many different computer files which may also be
stored in different computers anywhere in the world.

Now, look at a web page below:

146

_gup-;---up-n !!

. 'quuxﬁt OlE & Foulomie

u-:-n L L L L .)-n-q-nnn-ﬂv-u-u-

Y7 -2~ | v e Gt B vocu O v o e 3 e
o L IE LK SaynepGenetiin (2a1ec g | My el | D €

0

e
T — W b fees New ol Man mens
U e - e —— -
o o (Goeyi Svan i Feairge iy] frees
o G
u’“l_l -
Jwondcpe: || QNETISWEESM +AS Smal =3
| Smelipe Jrgtics Qe fir MR Sacuwoes
o Mot . | HECRS | 01
| deivy o L Mas o wmkes e R T
J2smey: dolbs shower

e WO et
i

33 oW, e ant peme ol

T 0nephs W 1l Line . o " !.

MTE o e pegte saee m‘ Mg e Sl g ange

"y ohrw e g o
Mt iy dhen B4 s 10N mienge s -m‘:n e

The above web page is a combination of text and animated graphics. Especially the Clock
graphic on the right hand side of the page is animated to provide the current time and
date. The web browser used in the figure above is the Mozilla Firefox, a free browser.

You will now see the use of tags and text formatting in HTML to create web pages.

3.2 Textand Tags in HTML

You have already seen in the list unit how web pages work, with an example of a web
page.

By definition, TAGS are instructions to Web Browsers, directing them how to do the
following:

* How to lay out text

* What graphics to display and where
* What distant pages to link

* And a variety of other things.

Below are some common basic rules for using tags:

* Each tag must be enclosed in <angle brackets>.

» Upper or lower case letters can be used but upper case makes them identifiable
easily among HTML commands.

* Most tags are in pairs but identical while the closing tag starts with a forward
slash(/).

* Browsers ignore spaces or new lines around tags.

147

Just have a look at part of the HTML source code of a sample web page (of the Course
Developer):

3 Source of: file://IC | holliday/cware1 7feb04... [= |[B)[X]

<html>

<head>

<meta name="zauthor” content="Mark Holliday">
<title>d very simple web page<jftitle>
<fhead>

<body>

<!-— This 3is a comment —-->

Hello world!

<hr>

Hello Mars!

<fhody>
<fhtml>

As seen above, you can develop your HTML program code using any ASCII editor such
as the Microsoft Notepad. You only need to save the document file with extension .html
or .htm for the Web browser to identify it.

Below are the HTML tags every HTML page or document must have:

e <HTML>
 <HEAD>

e <TITLE>.. </TITLE>
* </HEAD>

« <BODY>

« </BODY>

e <HTML>.

As you can see from the above list of common tags, they are classified into:

* Opening Tag
* Closing Tag.

In the HTML code in the above figure, do you see the above tags? Yes, however, you
need to scroll down the document to see some of the closing tags.

See the brief explanations of the above common tags:

148

HTML:
HEAD:
TITLE:
BODY:

This encloses the entire HTML document.
Encloses the header area of the document
Indicates the title of the document
Encloses the text of the document.

Having seen the tags every HTML document must have, below are a set of tags that can
be used to define headings for a range of sizes. The heading tags generally start with
<H... followed by a number between 1 and 6. You will demonstrate these as seen below:

HTML>

<H1> National Open University </H1>

<H2> School of Science and Technology </H2>
<H3> Department of Computer Science </H3>
<H4> Rivers State Study Centre </H4>

<H5> Dr. Sunday A. Reju </H5>

<HG6> Visiting Lecturer </H6> This is a Test Page

<HTML>

In terms of sizes, the heading tags have the following points:

<H1>:
<H2>:
<H3>:
<H4>:
<H5>:
<H6>:

24 point
18 point
14 point
12 point
10 point
7 point

Normal body text: 12 point.

Note that the text "This is a Test Page", is a normal body text in the above web page.
Closely associated with the <H...> tags are the tags which help you
to have more control over the size of heading text. Using the tag,
there are six values the size can take as stated below:

Font Point Size Heading
Size Equivalent
Value

7 36 pt

6 24 pt <H I>

5 18 pt <H2>

4 12 pt (Bold) <H4>

3 12 pt (Plain) Body Text

149

2 9 pi

An example of using the tag is as follows:

<HTML>

<TITLE> National Open University of Nigeria
</TITLE>

 National
Open University

</HTML>

The output of the above HTML code is as in the figure below:

D Masional Opee Uniweraity of Migeria - Micrasalt lnteenat Leplorer - [Weckiag Oftiine)

T O et | teutes | Meda

Aiaws @) CAD0IS 200 ST W Lo sDed T s b 2 dew e un®

Fovertrs o |

e M ' Natiooal Opel] Uninver ity

i n the wrb

el

You will see in the above figure that the text within the <TITLE> ... <TITLE> tags is the
title of the web page itself.

This unit will be rounded up now while you will be privileged to see more tags in the
next unit.

I—I 4.0 Self-Assessment Exercise(s)

Type the above into an HTML document and open the file with a browser.

Answer

The output, using Microsoft Internet Explorer is as seen in the following figure:

150

o . O

Ly Corwl o tha Wik
yurke

) Mt

LR

CuPemacal Y
Q% 2
@lvavnt

@ e

Mo B0l vew lavdns O8O

@ S e a” []
o 2 "~) ¥ - e

ok [y R Agreh Mime | Sheeh | Fovomes | Wik Hson P e
ORI - o e vy v o R - L
P —— x

w~. & % | Natlonal Open Universicy

QC“

School of Science and Tech
Department «f Counpriier Bchemes
Fuves s Brwte Nondy Counw

Dir. Susdeg A Bufe

) g - ——

Ths1s a Tem Fage

5.0 Conclusion

This unit has introduced you to the dynamics of web pages and how they are created
by using the HTML (i.e. HyperText Markup Language) which was developed by the
Physicist Tim Berners-Lee, as a way to easily cross-reference text on the Internet
through hypertext links

The unit has specifically shown you the roles of TAGS in HTML document and a few
tags that are used to format text on web pages.

6.0 Summary

You need to know how web pages work so as to have a good foundation in using the
programming tool used for their creation, namely, the HTML. The unit has therefore
shown you various types of elements that can be embedded on a web page. These are:

Text

Graphics

Multimedia clips such as video and sound
Links

Forms

Frames

Image Maps

Java Applets.

151

The use of tags in HTML document has been discussed in this unit with the most
common tags being identified.

To view an HTML document you need a Web Browser such as the Microsoft Internet
Explorer, Mozilla, etc, as used in this unit. In the next unit, you will be introduced to
additional tags and HTML commands.

7.0 Tutor-Marked Assignments
1 a) Identify two reasons why web pages experience some delays before appearing on
the computer screen.
b) What does a Web Browser do?
2. Among the following, which are the components of a web page that are directly
contained in the associated HTML document?
. HTML codes

. Text

. Sounds

. Video

. Links to other files
. Graphics.

3. Give examples of software necessary to view video and listen to the sounds
embedded in web pages.

8.0 Further Readings

Bride, M., HTML Publishing on the World Wide Web, NTC/Contemporary
Publishing, 1998.

Microsoft Corporation, Internet Explorer Version 6.0, 2001. Microsoft Corporation,
Front Page 2000, 1999.

152

aQ

Module 4

Module Introduction

In this module we further explain text formatting and links in HTML; introduce you to
Introduction to Visual Basic and developing simple VB Programs. Also covered in the
module are programming with MathCad and using MATLAB Programming Tools.

Unit 1: Further Text Formatting and Links in HTML

Unit 2: Introduction to Visual Basic

Unit 3: Developing Simple VB Programs

Unit 4 Programming with MathCad

Unit 5 Using MATLAB Programming Tools

Unit 1: Further Text Formatting and Links in HTML
Contents

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content
3.1 Additional Tags for Text Formatting
3.2 Links within HTML Document

4.0 Self-Assessment Exercise(s)

5.0 Conclusion

6.0 Summary

7.0 Tutor Marked Assignment

8.0 Further Readings

1.0 Introduction

In the last unit, you were introduced to some essential tags used in HTML document.
More specifically, the tags every HTML document must have were studied. However,
there are more tags beyond those already considered in the last unit. You will therefore
be using additional tags in this unit. The unit will also introduce you to special tags that
help you to move from one web page to another. Now, look at your study objectives for
this unit.

153

‘@\ 2.0 Intended Learning Outcomes (I1LOs)

By the end of this unit, you should be able to:
* Use more HTML tags for formatting text on web pages
* Identify some other HTML commands for handling web page components.
* Explain how to link web pages using the appropriate HTML commands

3.0 Main Content
3.1 Additional Tags for Text Formatting

In this section, you will learn about the following:
* Paragraphs and Line Breaks
* Text Alignment
* Text Emphasis
* Text Colour

Paragraphs and Line Breaks

<pP>:

The tag for setting up a paragraph is the <P> tag. The tag marks the beginning of a new
paragraph and places a blank line before it. The <P> tag can be placed at the end of a

piece of text, at the start of the next or in between.

:
The above is the line BREAK tag and marks the start of a new line.

<HR>:

The tag <HR> stands for Horizontal Rule and this is used to separate paragraphs by
drawing a line between them. The line is usually a thin line with a shaded effect and

extends through the width of the window.

Text Alignment

To align text, HTML uses the keyword ALIGN inside the <H...> or <P> tag followed by
"Center”, "Left" or "Right". Body text and headings are usually aligned left, hence the

left alignment is optional.

Examples of HTML code using ALIGN are as follows:

154

<H4 ALIGN = "Center">
</H4> <P ALIGN = "Right">.

Text Emphasis

The following tags can be used to emphasise a word or phrase in your text on any web
page.

... To set text to BOLD
<I>..</I> To make text ITALIC
<TT>.</TT> To set text in courier font.

The above tags are 'classified as PHYSICAL TAGS, meaning that they only work if the
web page visitor's browser can display bold, italic and courier fonts. However, see the
next tag.

 ... : To set text to bold, like

 is an example of a LOGICAL TAG, that is, a tag whose effect can
be redefined at the receiving end.

<BLINK> ... </BLINK>: This makes text to flash to catch viewer's attention.
Text Colour

You can set the colour of the background and of the text by including either or both
phrases in the <BODY ... >tag as follows:

<BODY BGCOLOR = value TEXT = value> ... >

The colours are usually set by using what look like 6-digit hexadecimal numbers. The
numbers are meant to set the brightness of the RED, GREEN and BLUE components of a
colour. Using a 24-bit colour display, each of the numbers can be between '00' and 'FF'.
However, practically, the light values are taken as follows:

00 : for off
80 : for dipped colour
FF : for full beam colour.

Below is a table that summarises major colour values for the RGB components

155

R K B Colour
00 00 00 Black

FF 00 00 Bright Red
00 FF 00 Bright Green
00 00 FF Bright Blue
80 00 00 Dark Red
00 80 00 Dark Green
00 00 80 Dark Blue
FF FF 00 Bright Yellow
80 80 J_ 00 | ___. Brown
FF 00 | FF Magenta
80 00 | &0 Indigo
00 FF FF Bright Cyan
00 80 80 Turquoise
FF FF FF White

80 80 80 Grey

For example, look at the following HTML code line:
<BODY TEXT = FF0000>
The command sets the text colour to Bright Red.

To set the colour for a section of text use the keyword "COLOR =" inside a <FONT...>
tag like the one below:

Sometimes, the above can be written as follows:

This is just used to make the colour values to be easily seen, but neither # nor the quotes
are necessary.
3.2 Links Within HTML Document

Generally, links can be used for:

* hypertext
* graphics.

Hypertext links are what HTML is all about, majorly.

The keyword for links is HREF

156

The word stands for Hypertext REFerence and it identifies the target page or point within
a page. But you cannot use HREF alone, you need to ANCHOR it to a piece of text or a
graphic so that there is a web page element to click on to activate the link. The ANCHOR
TAGS are:

<A ..>and
The tags mark the beginning and the end of the link text. An example is as follows:
 NOUN Courses
The above link uses a file (NOU15.html) stored in the same directory while the text
'NOUN Courses' is the text that will be underlined when viewed in your browser and can
be clicked to link you to the web page (NOU15.html).

Another example of a link is below:

 Yahoo!

This link connects you to the Home Page of the Yahoo! Directory, while "Yahoo!" will be
the word underlined as the link. Your computer must have an Internet connection to be
able to connect to such a website page. What about linking an image?

To link an image, the HTML tag is as follows:

 stands for "Image SouRCe" and the tag will place your image against the
left edge of your page, directly after any text, and with later text starting to its right. To
change the positioning of the image, you need to use the tag with ALIGN. An example is
as follows:

To set the vertical position in relation to surrounding text, there are three ALIGN values:
« TOP
* MIDDLE
« BOTTOM

Generally, BOTTOM is the default position, that is, the accompanying text is placed at
the bottom of the image.

The CENTER position can also be used for image positioning in the following form:

<CENTER><CENTER>

157

http://www.yahoo.com/

Before rounding up this unit, see the following example:

<HTML>

<TITLE>

NOU Home Page

</TITLE>

<HI> National Open University </HI>
<HR>

<I> School of Science and Tech </1>

 Programs
<HTML>

The output of the above HTML source code is as follows:

TR 14O b lerse Page - Micronal s Enies it | splorer - [Working OHline)

L Viees Faver b Tonm - romip

<> - < L= 2 “e , | 3 | - >
oy - - T ch Favorsme >l Twa by
madiess [$] ClDoorrmrds il Cub e VAT U o Mo b) g b ‘AA_’"-:-V‘:r:?_I‘.L.t-I

e B3 % | National Opemn University

A Frussasne

W) P10 116 JOCErare: and Sorlings) At |e PO LI OO T O S

When the mouse pointer is on the link, the target is shown on the status bar at the bottom
of the window as seen in the above figure.

You will now round up this unit.

LI 4.0 Self-Assessment Exercise(s)

How do you insert comments in HTML source code>
Answer

Comments are written inside <!...> tags.
You will now see the use of links in the next section

19,

5.0 Conclusion

158

This unit has shown you additional tags for formatting text and also for linking web
pages and images.

As seen in this unit, the web page background colour and the colour of a text can also
be set by using appropriate tags. To set colours, you need to know the colour values
for various combinations of RGB (RED, GREEN and BLUE) components. With all
that you have learnt in this unit in addition to what was covered in the last unit, you
can now get started with programming with HTML

6.0 Summary

As seen in this unit, all you need to know in HTML is the appropriate tags to be used
for various types of displays expected on your browser. This unit has extended the list
of tags studied in the last unit.

Most importantly, the tags used for connecting web pages and files have been
introduced to you in the unit. There are some other tags used in HTML which are not
covered in these two units, but the first reference under 'References/Further Readings'
will help you to understand more of the HTML tags.

Remember that your HTML code can be typed using any text editor, but saved with
.html extension. There are also special software packages meant for website
development such as the Microsoft Front Page 2000. You should interact with it.

The next unit will introduce you to another language.

7.0 Tutor-Marked Assignments
1. Explain how to do the following:
a) How to adjust the size of a graphic?
b) How to put a border around an image?
2. Define the following:
. Logical tags
. Anchor tags.
3. What tag is to be used to make sure that the BOLD text is properly
displayed on the website visitor's browser?

8.0 Further Readings

Bride, M., HTML Publishing on the World Wide Web, NTC/Contemporary
Publishing, 1998.

159

Microsoft Corporation, Internet Explorer Version 6.0, 2001.

Microsoft Corporation, Front Page 2002, 2001.

160

uUnit 2; Introduction to Visual Basic

Contents

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content
3.1 Overview of Visual Basic Language Programming
3.2 Programming Tools in Visual Basic

4.0 Self-Assessment Exercise(s)

5.0 Conclusion

6.0 Summary

7.0 Tutor Marked Assignment

8.0 Further Readings

1.0 Introduction

The unit will also introduce you to Visual Basic language programming. In the unit, will
also learn the basic things you handle within VB programming environment. Such things
are: Project, Forms, Controls, Properties and Code.

‘@\ 2.0 Intended Learning Outcomes (I1LOs)

By the end of this unit, you should be able to:
* Describe the general form of a Visual Basic language program
* Understand the basic things you handle within VB programming environment
» Describe the similarity of capabilities of VB and C++

3.0 Main Content
3.1 Overview of Visual Basic Language Programming

Visual Basic is a third-generation event-driven programming language first released by
Microsoft in 1991. It evolved from the earlier DOS version called BASIC. BASIC
means Beginners' All-purpose Symbolic Instruction Code. Since then Microsoft has
released many versions of Visual Basic, from Visual Basic 1.0 to the final version Visual
Basic 6.0. Visual Basic is a user-friendly programming language designed for beginners,
and it enables anyone to develop GUI window applications easily.

161

In 2002, Microsoft released Visual Basic.NET(VB.NET) to replace Visual Basic 6.
Thereafter, Microsoft declared VB6 a legacy programming language in 2008.
Fortunately, Microsoft still provides some form of support for VB6. VB.NET is a fully
object-oriented programming language implemented in the .NET Framework. It was
created to cater for the development of the web as well as mobile applications. However,
many developers still favor Visual Basic 6.0 over its successor Visual Basic.NET.

What programs can you create with Visual Basic 6?

In VB 6, you can create any program depending on your objective. For math teachers,
you can create mathematical programs such as Geometric Progression, Quadratic
Equation Solver, Simultaneous Equation Solver ,Prime Number Tester, Factors Finder,
Quadratic Function Graph Plotter and so on. For science teachers, you can create
simulation programs such as Projectile, Simple Harmonic Motion, Star War etc. If you
are in business, you can also create business applications such as inventory management
system , Amortization Calculator , investments calculator, point-of-sale system, payroll
system, accounting program and more to help manage your business and increase
productivity. For those of you who like games , you can create programs such as slot
machine, reversi, tic tac toe and more. Besides, you can create multimedia programs
such as Smart Audio Player, Multimedia Player and more. Indeed, there is no limit to
what program you can create

The Visual Basic Integrated Development Environment

Before you can write programs in VB 6, you need to install Visual Basic 6 compiler on
your computer. You can purchase a copy of Microsoft Visual Basic 6.0 Learning Edition
or Microsoft Visual Basic Professional Edition from Amazon.com, both are vb6
compilers. Besides, you can also buy it from eBay at Microsoft Visual Basic 6.0 6
Professional PRO MSDN Library Manual Service Pack. If you have already installed
Microsoft Office in your PC or laptop, you can also use the built-in Visual Basic
Application in Excel to start creating Visual Basic programs without having to spend
extra cash to buy the VB6 compiler.

You can also install VB6 on Windows 10 but you need to follow certain steps otherwise
the installation will fail. First, you need to run setup as administrator. Next, you need to
use custom installation. Clear the checkbox for Data Access. If you don't, set up will
hang at the end of the installation. Finally, click next and wait for the installation to
complete. For complete instructions, please follow this link Install VB6 on Windows 10

After installing the vb6 compiler, the icon will appear on your desktop or in your
programs menu. Click on the icon to launch the VB6 compiler. On start up, Visual Basic
6.0 will display the following dialog box as shown in Figure

162

http://www.vbtutor.net/VB_Sample/GP.htm
http://www.vbtutor.net/VB_Sample/QESolver.htm
http://www.vbtutor.net/VB_Sample/QESolver.htm
https://www.vbtutor.net/VB_Sample/simuleq.htm
https://www.vbtutor.net/VB_Sample/simuleq.htm
https://www.vbtutor.net/VB_Sample/factors%20Finders.html
https://www.vbtutor.net/VB_Sample/QGraphplotter.htm
https://www.vbtutor.net/VB_Sample/projectile.htm
https://www.vbtutor.net/VB_Sample/shm.htm
https://www.vbtutor.net/VB_Sample/starwar.htm
https://www.vbtutor.net/index.php/2013/02/03/inventory-management-system-2/
https://www.vbtutor.net/index.php/2013/02/03/inventory-management-system-2/
https://www.vbtutor.net/VB_Sample/amortize.htm
https://www.vbtutor.net/VB_Sample/Investment.htm
https://www.vbtutor.net/VB_Sample/vbslot2.htm
https://www.vbtutor.net/VB_Sample/vbslot2.htm
https://www.vbtutor.net/VB_Sample/reversi.htm
https://www.vbtutor.net/VB_Sample/tictactoe.htm
https://www.vbtutor.net/VB_Sample/audio.html
https://www.vbtutor.net/VB_Sample/multimp.htm
https://www.amazon.com/gp/product/B00002SFK8/ref%3Das_li_qf_sp_asin_tl?ie=UTF8&tag=liewvoonkiong&linkCode=as2&camp=1789&creative=9325&creativeASIN=B00002SFK8
https://www.amazon.com/Microsoft-Visual-Basic-6-0-Professional/dp/B00B1T9T0G/ref%3Dpd_sim_sbs_65_4?ie=UTF8&psc=1&refRID=87MRHN3DWNBV1YHCHYTA
https://www.ebay.com/itm/Microsoft-Visual-Basic-6-0-6-Professional-PRO-MSDN-Library-Manual-Service-Pack-/322782055958?epid=1901581590&hash=item4b274f4e16%3Ag%3AdPQAAOSw3utY7~52
https://www.ebay.com/itm/Microsoft-Visual-Basic-6-0-6-Professional-PRO-MSDN-Library-Manual-Service-Pack-/322782055958?epid=1901581590&hash=item4b274f4e16%3Ag%3AdPQAAOSw3utY7~52
https://excelvbatutor.com/
https://excelvbatutor.com/
https://www.fortypoundhead.com/showcontent.asp?artid=23993

ﬁ New Project X

P iinasi

New l Existing] Recent I

o 2= » B O\

el efadd ActiveX EXE ActiveX DLL ActiveX VB Application

Control Wizard
< < < <
SN S S
29
VB Wizard ActiveX Activex Addin Data Project

Manager Document Dl Document Exe
v

Cancel |
Help |

P O P O

™ Dont show this dialog in the future

You can choose to either start a new project, open an existing project or select a list of
recently opened programs. A project is a collection of files that make up your
application. There are various types of applications that we could create, however, we
shall concentrate on creating Standard EXE programs (EXE means executable). Before
you begin, you must think of an application that preferably have commercial
.educational or recreational value. Next, click on the Standard EXE icon to go into the
actual Visual Basic 6 programming environment.

When you start a new Visual Basic 6 Standard EXE project, you will be presented with
the Visual Basic 6 Integrated Development Environment (IDE). The Visual Basic 6
Integrated Programming Environment is shown in Figure 1.2. It consists of the toolbox,
the form, the project explorer and the properties window.

163

iy, Preject] - Micraseft Visual Basic [design]
File Edit Yiew Project Fgmmat Debug Run Query Diagram Toels Add-ins Window Help
B-h-BleRioaaloc]) NERERAM T 00 |

object's fitle bar or below an object’s

The Form is the primary building block of a Visual Basic 6 application. A Visual Basic 6
application can actually comprise many forms, but we shall focus on developing an
application with one form first. We will learn how to develop applications with multiple
forms later. Before you proceed to build the application, it is a good practice to save the
project first. You can save the project by selecting Save Project from the File menu,
assign a name to your project and save it in a certain folder. You shall now proceed to
learn Visual Basic programming from the next lesson onwards

The following need to be defined for you as major features that characterize the VB
programming environment:

* Project

* Form

* Controls
* Properties
* Code.

Project

164

A PROJECT is a collection of files you create that makes up your Windows application
created by Visual Basic. Precisely, it is a collection of the forms, program modules and
resource files that make up an application. Your Project Explorer will usually list these
files as you continue your programming development activities. See examples of Project
Explorer Windows below:

A class modue cortans
the dafinng characlenstics
of a class, heluding its
properbe: and methods.

A foim file contains i F
the description of a —L

foirn and the code

associated with it

Form1
Class1 Class1
A standard module —-1- s Modulel Module1

contains declaiabions | sRESUURm-RES

A resource file allows pou
and procedues

to collect dl of the veisionr
speafic text and bitmaps for
an applicabon in one place.

Froject - Project!
I=

= 333 Projectl {Projeck1)

=-&3 Forms

S w8 Forml (Form.)

The first window above is the Project Explorer Window for VB Version 4.0 while the
one below is for Version 6.0.

Form

A FORM is simply the window you create which includes the controls and the code
associated with that form.

An example of a form with three controls is seen below:

165

w~ Form1

Controls

Controls are the programming tools such as boxes, labels, buttons available on the
Toolbox window which you place on your form to get input or to display output. The
controls are what actually make VB applications VISUAL indeed. They add visual
appeal to your forms.

Properties
The properties are the specifications of the initial values for your forms and controls.

They provide such characteristics as size, name and position of your objects. The
properties can be set by using the Properties Windows.

Code
A code is just the name given to the programming statements you and associate with the
controls on your form. You will see examples of codes in the next unit.

3.2 Programming Tools in Visual Basic

Having shown you the general features of VB programming environment, this section is
just to introduce you to few tools among many that are available in VB language
programming.

Look again at the following screens:

166

« Feninctt wermm 't Vinse D ic [Smign])

Oe B2 Yo Doee fomr b Bo Qe Regn Dat A0 0s Yiniee 0

Ve Roml i
& oo roee e

St Poor
Seewe o

| © B
Seg Papeiin

e e
et e

S on Cuiet
Q iy

L LT S

R L T
FESLTE
L T)

4Pt t e

| B LR e pmpue Foret D G Quee O ek Jiim Whise b
1w/ HERYRAD

- =i
Pyt - e
om e
Promectt (haeat 1}

The above figures show you a number of things you can do with your applications you
develop with VB. For example, you can compile your VB program into an executable
form as seen in the first screen above under the File menu option: "Make Project 1.exe"

Remember, the names Project 1, Form 1 and Module 1 are all the names VB gives to
your programming items before you rename them, using your own names.

The second figure above also shows you what you can do to your Project components.

For example, you can add an MDI form to your project. There are majorly two types of
forms.

* SDI (Single-Document Interface)
* MDI (Multiple-Document Interface).

An SDI application is one that requires only a single data window while an MDI
application allows the opening of multiple data documents within the same application.
An example of SDI application is the Windows Notepad while an example of MDI
application is Microsoft Word or Microsoft Excel.

167

Now, look at the Toolbox below:

The controls available on your Toolbox are what make things happen on your forms. You
will be using some of these controls in the next unit. Before then, you need to know of an
essential concept in Visual Basic.

Events

Generally, the user interface of a Visual Basic application you create with VB is made of
OBJECTS. The objects are the forms and controls you use to enable your program users
to enter data and view information. Now, each of the objects you create recognizes
actions users perform, such as clicking a button, opening a form or typing in a text field.
These actions are called EVENTS.

Thus eprograms developed within VB environment are "Even-Driven" programs. You

will round up this unit here so as to get properly started with VB simple programming in
the next unit.

168

4.0 Self-Assessment Exercise(s)

What object properties are displayed in the Properties Window shown in the first
figure of this unit?

Answer
The properties of the current form, i.e. Form 1

5.0 Conclusion

This unit has given you a brief but essential overview of Visual Basic language
programming. In the unit, you have seen the basic things you handle within VB
programming environment. Such things are:

* Project

* Forms

» Controls
* Properties
* Code.

As you have already learnt in the unit, VB programs are Event-Driven programs, and
this is what makes the language a very powerful tool in the hands of programmers.

6.0 Summary

As you have been taught in this unit, Visual Basic is a very easy language to learn
because it is based on the Beginners language, that is, BASIC. Forms, which are major
components of VB Project are where things happen, being the platforms upon which
users can interact with the computer.

The next unit will show you how to design simple forms with appropriate controls
placed on them to perform one task or the other.

7.0 Tutor-Marked Assignments
1. Define the following:

. Objects
. Project
. Controls.

2. Distinguish between SDI and MDI and give 2 examples each of the applications
that allow Form windows in their mode.
3. Describe the similarity of capabilities of VB and C++

169

8.0 Further Readings

Microsoft Corporation, Visual Basic Programmer's Guide, Version 3, 1993.
Microsoft Corporation, Visual Basic Version 4.0, 1995.

Microsoft Corporation, Visual Basic Version 6.0, 1998

170

aQ

Unit 2: DEVELOPING SIMPLE VB PROGRAMS

Contents
1.0 Introduction
2.0 Intended Learning Outcomes (I1LOs)
3.0 Main Content
3.1 Writing Event-Driven Code
3.2 Adding Menus to Forms
4.0 Self-Assessment Exercise(s)
5.0 Conclusion
6.0 Summary
7.0 Tutor Marked Assignment
8.0 Further Readings

1.0 Introduction

This unit will make use of the basic knowledge you have already got from the previous
unit to get you started with simple programming using VB. The unit will specifically
teach you how to create simple forms and place some controls on them using the
Toolbox.

The unit is also going to introduce you to the code environment of VB and how to hook
up your controls with their associated event-driven code. A major feature of most
Windows application is the Menu facilities. In this unit, you will learn without rigour
how to design simple menus on your forms.

In Visual Basic programming, there are WIZARDS that can automatically help you to
create your applications. Wizards are Question-and-Answer dialog boxes that automate
tasks. For new programmers, it is advisable to learn how to create applications without
the wizards so as to have control over every aspect of the design and to also learn many
things about the language. See below your study objectives for this unit.

‘@\ 2.0 Intended Learning Outcomes (1LOs)

By the end of this unit, you should be able to:
* Use a number of controls on the Toolbox
* Set properties for forms and controls in a VB application.
* Write simple code for controls placed on forms
* Design simple menus on forms

171

3.0 Main Content

3.1 Writing Event-Driven Code

You will start first of all by seeing below what you are expected to see when you start
Visual Basic programming environment. See the following Figure:

ﬁa New Project

A
New] Existing | Recent |
¥ = Y

SELEGRSNE ActiveX EXE ActiveX DLL ActiveX VB Application
Control Wizard

N B B e R

VB Wizard ActiveX Activex Data Project

Manager Document DIl Document Exe
v

Help |

P & P &

I~ Dont show this dialog in the future

As seen above, to start a new application from scratch, you have various options of types
of application you want to select from. You are to double-click the "Standard Exe"
option, after which a blank Form window will appear for you to begin creating your

application by placing the controls on it.

172

» Project! - Microsoft Visual Basic [design] - [Form1 (Ferm)]

3 B Ede Yo Project Formet Debug Ron Query [agram Tooks Add-lns Window Helo

S-o-BeE B =]y luarﬁ'rawil‘ﬁ.h

- I Projectl (Project1)
= 3 Forme
B Forml (Forml)

IFnrml Fom

Aphabetic | Categortoed |

| Narre) Forml
Aq DA ANCH 1-30

Fakse

[] ar=00c000F
Bordersty 1'~ 2 - Siable

Foml
ChpControls Trus
Controlox Trus
Cravdiods 13 - Copry Pen
DrawiStybe 0-5chd

v

Caption
Retums/sets the text dsplared inan
object’s ttie bar or below an chiject's

Before you go ahead, do the following:

* Use "Save Project As" from the File menu to name your project and the Form 1
file
* Use the Properties Window to rename the Caption as NOU Example 1.

Doing this, you will have the following screen:

T ey ———
'.&.ﬁ.],‘,b WAy e &le%’ﬂam‘-’u - Mawien |

AL PO .
Aotk | ot |
o) :yr_c_-.a
e
‘-tu Fake
ke El waamacr.
e 3 Smb
O Searph
oy Tas
‘wedoodio o Tow

Now, get started by placing two
» The Command Button

173

» The Picture Box.

These controls are on the first row of the Toolbox. In fact you will see then name of the

control displayed by just pointing to the control. On placing these controls, you have the
following Figure

it nEe
h e
(4] ED 4 B Rl NOLSve Find
o
% e)

You will start with the first control, "Command 1" button. Rename the caption from the

Properties window. Remember that you have to select the button first before the
properties are displayed in the Properties window.

Rename the caption as "EXIT" and then double-click the button to open the code window
as follows:

'.-.I—!—w'v'—mw!' Caver Ip MR DYOM 1we

oy . =a n e NS ARG D wewit
R S S PR THIL o ST 2."~;’?‘W":". X T RSN A A
r % -fQ 2L war | 4 LK
o g T oy
NI AW - 'n 4% 15 *a bt
v ERERan 3 |
o oRe®
=

You are now about to write your first event-driven code. Visual Basic has made your

work easy by already giving you the Header and the Terminator for your program
segment:

Private Sub Command I — Click ()

174

End Sub.

From the Properties window, rename the Name property to "exit" and type the VB
command "Unload Me" as the event statement. The name of the Event is "Click™ and to
select any other type of event, you can click the downward arrow as seen below.

Now, for the second control on your form, select the control, and from the Properties
Window, click the button in front of the "Picture” property to select your picture to place
on the Form. Locate your picture from your directory where it is stored as indicated
below:

P

{7 exr

Above is the output of your application. Clicking the EXIT button will close the -NOU
Example 11 window that you have created.

Since you only want to display the picture object, you may not need to add any code to
the control.

175

3.2 Adding Menus to Forms

To add menus to your form created in the last section, it is very easy. In this case, you
will need the -Menu Editorll which you can access from the Tools menu or the toolbar as
shown below:

v Project - Microsaft Visual Basic [design]

D5 BX Yo Bt Famdt Debup Bun ey Ctpran [Teds M3TS Mrom kb

B-a-BlEE =@ oo D
AR RS Procedure Atrbubes .

B enuEdw.. GHE

General L el ST
ABAF[T
V¢ EREH gu § cg;wmltﬁn&u)
é SOOB® -~ ‘jﬁgmrummmfmd
me A

Capticn oK

[C
Mams: | _“ajcel‘
Irdex: ;r— .« Sherteut: -]{I‘uone) %

HelpContextID:]EI - NegotiateFosition: [0 - Mone ¥
[cChecked v Enabled W vistile [~ windowLit

4-] -} _J _tl _-l_rJ Next [hsert Celsts

Before you add your menus, it is good to state that Menus consist of the following:

e Menu Title
* Menu Item
* Separator bar

Every part of a menu is a menu control and as a result, a menu has predefined set of
properties and events.

176

Every part of a menu is a menu control and as a result, a menu has predefined set of
properties and events.

For example, look at the menu below:

. Projectl - Microsoft Visual Basic jdesign)

Ele Edt Wes Project Fomat Qebug Bun Cugmr-y

e Qpan Pvoysct

Cerle

Add Froject,
Roemove Pyojyect

L

a'sra Projmck A

Ex

=t NOLEP O Ciras

e MOLFProrm A

é-‘,” el
[3 vy Sty

Mo) MAan =i

R TRLE Lai

- e B ccs TS TS M ™ lar v be
2 a\Project) vop
4 Repsdrojecsl vbp

s P

The Menu Tile is "File"
The Menu ltems are:

* New Project
* Open Project

* Exit.
You can see that there are a number of separator bars.

Now, back to the Menu Editor, you have these three essential properties:

* Caption this is to specify a menu title.

* Name this is the name used to refer to the menu control in the associated
code.

* Index this is a numeric value that uniquely identifies the menu control if

it is taken as a control array part.

Set the properties as shown below:

177

Many fditor

Cagtioy: | !ﬂ!!ﬁuﬂ“ﬂ i S & 4 j
Name: ImecRamr P concel '

tndex: | Sotes: [wers) T vl
Heplav=stiD j:_" = Aecgobat = ol o r:.‘u;;r.— i

I Chmched V Enslbed ¥ intie I Wedara st

R = .
“*+r | ueﬂ—] L‘m!J Lele':e}

' AOule
M S1ad

As seen in the above Menu Editor, the Menu captioned "NOU Admin" is expected to
have two menu items — "Coordinator" and "Schools". You can use the Indent arrow to
add the menu items. The character "R" placed between the characters in the title is to
specify what letter to use with the ALT key to select the me nu. For example, by pressing
ALT + A, you can select the "NOU Admin" menu from the menu bar.

If you now select the Run command from your VB toolbar, you have the following form:

178

Pt e
NG R R S
AN SURRNSY S ST L R PN

v liarkire

- ko AN Y

»
h;l‘. ANy

reodraey

BT Y et
e TR AT

S Sada s Seea =L em 2w v ey N !-

- ————— - — - - - —

To add code to the menu items, simply click the menu item on the form to open the code
window as follows:

[n;mtic,l :_j :Clicl;- 3 —}

Privete Suc exit_Click()
Unlosd M=
Enc Suo

Fravats Sus mnuCoord Click()

Eng :

Frivazz sue maullig Click()

You will now round up this unit having got the basic knowledge of creating a simple
application with Visual Basic.

179

LI 4.0 Self-Assessment Exercise(s)

What do you think the above code will perform on clicking the button EXIT?

Answer

The action will close the Form window.

5.0 Conclusion

This unit has taken you through the few basic steps you need to follow to get started
with writing event-driven programs when creating a VB application. You have seen in
the unit how it is easy to place controls on your forms and how to hook up the controls
‘with code that is expected to drive them.

You have been using menus in many applications you have interacted with such as
Microsoft Word. Now, you can create your own menus as seen in this unit.

6.0 Summary

The unit is not aimed at taking you through the many lists of VB keywords or operators
as in other languages. You are already acquainted with some of them when you studied
BASIC language. This unit has simply taught you how to add code to your controls and
menus. You have seen how it is very easy to develop applications with VB.

You just need to get started with VB programming now while all other helps you need
to extend your knowledge can be obtained from the "Books Online™ (or MSDN CDs of
your Visual Studio setup CDs) which you can access from the Help menu of your fully
installed Visual Basic programming environment.

7.0 Tutor-Marked Assignments

1. Name two of the following:
a) Event Names
b) Project components.

180

2. State at least 8 controls you can place on your forms.
3. What do you do to access information or data in an existing database using a VB
application?

8.0 Further Readings

Microsoft Corporation, Visual Basic Version 6.0, 1998.

181

Unit 4: PROGRAMMING WITH MATHCAD CONTENTS

Contents

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content
3.1 Introduction to Special Programming Software
3.2 Using MathCad Programming Tools

4.0 Self-Assessment Exercise(s)

50 Conclusion

6.0 Summary

7.0 Tutor Marked Assignment

8.0 Further Readings

2

In this unit, you are going to extend your knowledge of various programming languages
you have learnt in this course into that of some special software developed for
programming purposes. In fact, most of these packages have their own way of program
coding, call it special languages. However, their programming keywords, operators and
statements are very close to most of the languages you have already studied. Some even
have exactly the same operators used in some standard programming languages.

1.0 Introduction

In this unit, you will be introduced specifically to MathCad Package, after giving you an
overview of some of these special programming software. Your study objectives in this
unit are seen below

‘@\ 2.0 Intended Learning Outcomes (I1LOs)

By the end of this unit, you should be able to:
* Identify some specialized software for programming.
* Explain the features of MathCad Software
* .Use MathCad to solve some problems

3.0 Main Content
3.1 Introduction to Special Programming Software

Specialised programming software are usually developed to handle a class of common
programming problems. Some common examples of these applications are as follows:

182

* MathCad

* Matlab

* Mathematica

* Statistica

* SPSS

* Microsoft Access

* Microsoft Front Page.

For example, from the above list, some of these packages have been treated in a course
on Software Application Skills in the School of Science and Technology. They will
therefore not be treated in this course again. Specifically, Microsoft Access and SPSS
have been treated in that course. You may wish to refer to your course material if you
took or are taking the course. Microsoft Access for example is a very good programming
software for database problems and interestingly enough, Visual Basic that you have just
studied in the previous two units have common programming tools with Microsoft
Access.

Similarly, Microsoft FrontPage is a very good programming tool for development of Web
Pages. In fact, there are wizards in FrontPage to help you create your HTML code very
fast.

Statistical is another good programming tool for statistical analysis with more analysis
tools than that of SPSS.

MathCad, MatLab and Mathematica are special programming software for advanced
Mathematical and Engineering problems. You need to have some knowledge of these
applications to complete your broad knowledge of programming tools aimed at covering
in this course.

Something so unique about these specialized programming applications is their
capabilities to plot graphs and handle large data problems with ease. You only need to
master few commands associated with their languages to see yourself solving complex
problems.

Below are the figures to show you some of the programming environments for three of
the applications listed above.

183

Math Formatting \ Text Formatting Calculation Dotment

ABCl +
Spe: Adgto Proofing Language
Check | Dictionary Engiish {United Kingdom) *

Yext Font Paragraph Speliing

113, Linear_and_Angular_Momentum_of_Three_Small_Balls 202. RLC_Circuit_Analysis

— Niathcad Solution

Calculate the Impedansek at the frequencies over the required range in order to g
Impedances

fml'n =200 Hz . -

Impedances’

% »
npts =100 Add to Dictionary
Ignore

freq:=logspact

ZLF!: |R+ lj L

Figure 1: MathCad

TLAB R20160 A% O a8
v 31304'..41'&;...."3@]" ¢ entat: S ;.
| Naw Vanable 5 Anslyze Code = (o) Praterences 4
e S8 W Omames ¥ Us o R] e.’.s‘ e
Varable ~ o 20 Teve . Path
New Mew Open || Compare e Save iz Open o ayot RESUNCL
Sopt v v Dats {7 Clear v 4 Clear v v [l pacorel v -
s i VARG coct TNVIRONMINT = —-
s I it » C: » Users » Ontecnia » Documents » MATLAB P
Current Folder ¥ Command Window)
Naene « New to MATLAB? See resources for Getting Started x
Your MATLIAB lic
Please contac
MathRorks =o
i >>
Details ~
Workspace O
Name - Value
+! Ready

Figure 2: MATLAB

184

Chart Element Schemes = —-‘—(=
W« chartt L= 2)
A -
File Ipe pttes —lAt-d S
{ | General } Statistical [Financial —t Basic Math Assistant L)
LU ~ Calculator @ -
\‘\'0]1 i) .‘ ﬁ! ! Jlﬂ' I Basic } Advanced beico
. . Sin Cos Tan - 10* -
%__, _ \ @.s > ‘\"bw ArcSin |AreCos |ArcTan! Log | Logio
\ 74 —— Define Function | Clear | Table | i | §
" X) £ g [=] _ Rowes Cole
! & %
. & oo oo
[> o a“ - (O o oo
v Chart Blement Sugo | [mdo| 5w [C.w
A Options Preview P v [i) ~ | Documentstion
= —
Rectangle o 2 ! 5 e .. L
4 S [3 x ® J. ° H
S ER K (m) 74 = o
(] . N + i{=}] , - 1
Tab Enter TraditionalForm
Input from Above Create Input Cell
Qutput from Above Create Text Cell
Command Complete Make Template
v Basic Commands
~ Pan S v Typesetting
RoundngRacdis
) 0 ¥ Help and Seftings -
= . 100% =
insert Option = 100% =

Figure 3: Mathematica

Exploring various menus for the above applications will show you some of their
programming capabilities. However, the best way of studying the applications is to open
their Help files using the Help menu.

You will now see in the next section some of the programming capabilities of Mathcad.

The Mathcad version used in this course material is the Version 6.0 of the application.

3.2 Using MathCad Programming Tools

To properly understand the capabilities of MathCad, you should open the Help file from
the Help menu. MathCad is a very powerful tool capable of doing the following, among

other things:

* Animation

* Data Analysis

* Plotting Graphics

* Solving Equations

« Statistical Analysis

* Programming

» Symbolic Calculations

185

* Vectors and Matrix Analysis
* Text Editing.
* etc.

MathCad and most other specialized applications are Interpretive Programming software,
meaning that they have built- in interpreter to give you the results of your programming
expressions instantly.

To start with, below are some of the programming tools displayed in seven (7) windows
which can be accessed by clicking the icons on the third row of the toolbars. The tools are
displayed as Palettes as follows:

2 Mathcad PLUS - [Untitlod:1]

Fp Fle Lx 1ot Math Gsphss hrosk: Wi Boe ved
Dle|a|s 0m) mie| Al [Ole =it alp] 2
A A 1 BEE BEE
A
O R O
olelolel
1% v |w]
ra el
& elg |
'} — |
LK (A M|
| | ;.-‘
o‘n‘P,;.‘
SERIE

* Arithmetic Palette

* Evaluation and Boolean Palette
* Graphing Palette

* Vectors and Matrices Palette

* Calculus Palette

* Programming Palette

* Greek Letters Palette.

See the use of one of the tools on the Evaluation palette as follows:

* Position the cursor (+) at where you want expression to appear

* Select n! on the palette

* Type your number whose factorial you want to find (say 45) in the empty holder.
* Press = key on your keyboard to see the answer as follow:

186

45! =1.196.1056

That is, 45!=1.196 x 1056

Secondly, use the Calculus Palette to find the integral of a quadratic function between x =

0 and x = 2. The processes of carrying out these two computations are shown below with
the results on the right hand side window.

feanztants -] [Tiwnes New Raman =] o
0122 2 .

&9 =119 0%

2
L 51804 =767

One more example for finding the inverse of a matrix is as follows within MathCad:

mmrmm«amw*w-

Ww
[eonetamss 2] Funsaniewfoman =] [0 -] M 0 HEEE

43235881 <0109 004 -0132 0164 00 002 006 0032
41777753 8pe -C0da D111 -0103 007% 000 Q029 009
21664067 G027 0029 0 0004 019 ~0165 002 -01%

Al|035]695 A_‘_-(.uli'l 0oR 0158 000F 9157 0152 0127 024
793a3300 0003 008 0l 0051 0D0& -0134 0305 0086
§RAa3046¢8 0022 0174 -0182 -0022 <006 0128 0013 0008
17029377 0183 <0132 0103 OOD4 0053 ~002 0083 003
76498243 0148 0133 0066 0012 006 01IR 0066 QIS

To obtain the- above results, use the Vectors and Matrices Palette and click the matrix
button to define the rows and columns of the matrix. MathCad will give you the matrix
frame to enter entries. Then simply type:

187

AA-1
to obtain A-1. Press "=" key on the keyboard to get the inverse instantly.

From the immediate example, you will observe that MathCad uses the following
operators:

= for Assignment (as in Pascal)
A for exponentiation (as in BASIC).

Operators and Coding

MathCad has a way of coding its own programming expressions to obtain the required
symbols you want to use to carry out one process or the other. Some of these coding
conventions are as seen below for some operators:

= e wr

<~ Mathcad PLUS 3
Fla Edit Bookmark Opticrs Halp
':,:r'lv:«ru"j g.e.sr:.*'uﬂ -f:‘_;:_k_] b-—_F:;mt £4 2)
ARITHMETIC OPERAT ‘,_ T
Curl+Enter
'.
conugate -
I 7
Eentiatiot e
Aactonal I
ayl [.Jt I
"'-; lication -
[eqanen —

1 aal Crrl+!
Jragucd Ctrl+Shift+3
‘ange preduct £
ange sum $
;:fli'd:lll[N\
sUbtracuinn -
summation Ctri+Shift+4

188

File Edt Bookmork Options Help

Cortents| Search | Back Print £«
BOOLEAN OPERATORS |
greater than >
less than <
greater than or equal Ctrl+0
less than or equal Ciri+9
not equal Ctl+3
equal Ctrl+=

differentiation ?
integration &
nth derivative Ctrl+?

189

2 Mathcad PLUS

powers of mateix o

magnitude |

multiplication -

SCri yeclof [

i ri [

subtraction -
sum elements Cul+a
superscript Ctri+6
tianspose Cirl+1
yectonze Ctrl+—

Below is a simple programming session of solving a nonlinear equation using one of the
MathCad reserved words: root

¥ Mathcad PLUS [Untitled:1]
(B3 File Edt Text Math Graphics Symb

g 'Timcs Now

‘ 'quda-ll':;lcls

f(x) = 4 e ‘Guess: x:=3

soln = root(f(x),x) son=-0.773

What you have below is also a graph of 2 — dimensional plot using MathCad.

190

4 Mathcad PLUS [Untitled: 1]
Py File Edt Text Math G'qll'lu.'qn_hi: IMtdv

B2 | 2 S o)

a2 ! o s (o) (|
l‘/zsrl:,hhr 3 —'_} r’ rees New Roman 3

3

K3) =g 4% +27-12 x:=.20.20

ke
2'1& T
f
1107
L
= -
" |
= 10’ =20 0 0

For a 3-dimensional plot, we have the following example using MathCad (specifically
MathCad 2000.

Malhcad Professional |[Untitled:1)
|a] Ale Edt Yew lIreert Fomat Math Symboies Widow Help -8 %

DEHERY| =8 o " mow QA= @ X
Jl_ﬁ-' B = dfo djs zp|===EE kayv
B 4Fl= gD i
; s
fry) =l 2+) sal 20 j=1.30 A g
R T T
Mu.ij - Flz. g

Finally, see a very simple MathCad program to find the sum of the first n integers:

191

Msing For Loops

Simple for loop, increasing or decreasing the
range variable by 1

Example: Finding the sum of the first n integers (eguivalent to
using Mathcad's summatidh operator).

sum(n) := |50 sum(5) =15
for t1€1.n

S8 +1

You will now round up this unit.

4.0 Self-Assessment Exercise(s)

5.0 Conclusion

This unit has shown you the use of some specialized programming software to solve
some classes of problems. The unit specifically focused on MathCad which has a lot of
tools to solve various groups of mathematical problems.

The unit showed you some examples of problem solving using some MathCad codes.

As you have seen in some of the examples, MathCad has its Am built- in functions.
Below are some of them summarized, for solving equations:

192

+ Mathcad PLUS
Fle Edt Bookmark Opbions Help
Lonterts] Seach | Back | Pant (4 2)

Find{x y. .)
Solves & system of equations

Mingrrixy. |

Appraoximate solution 1o a system af equations

root(f>) x)

Solwes one aquation in one unknown

Isolve|Nx]
Solves a sysiem of equaiions

polyroots(v)
Solves for the roots of the polynomial whose coeflicients are in v

6.0 Summary

This unit has introduced you to programming applications specially developed to solve
problems by-passing the conventional methods of developing programs using the
standard languages. The unit specifically took you through MathCad software which is
an Interpretive application capable of solving a wide range of mathematical and
statistical problems. As seen in the unit, MathCad has its operators very similar to
those you have already encountered in other programming languages.

The next unit will also introduce you to another specialized programming application
before concluding this course?

7.0 Tutor-Marked Assignments

1(a) State five (5) arithmetic operators employed in MathCad programming that are
the same with those of two

programming languages you have studied. State the languages

b) Mention specifically an operator used in Pascal employed by MathCad.

2. Give the MathCad coding that will produce the following symbols:

* (Square Root)

* ¥ (Summation)

* # (Not Equal to)
« [(Integral)

193

+ State three (3) built- in functions available in MathCad.
* What is the extension for files created by MathCad

8.0 Further Readings

MathSoft, Inc., MathCad Plus 6.0, 1995.

MathSoft, Inc. MathCad 2000 Professional, 1999

194

Unit 5: USING MATLAB PROGRAMMING TOOLS

Contents
1.0 Introduction
2.0 Intended Learning Outcomes (ILOs)
3.0 Main Content
3.1 Introduction to MATLAB
3.2 Programming with MATLAB
4.0 Self-Assessment Exercise(s)
5.0 Conclusion
6.0 Summary
7.0 Tutor Marked Assignment
8.0 Further Readings

In this unit, which is the concluding unit for this course, you are going to be introduced
to one of the most powerful mathematical applications available for Mathematics and
Engineering problems today. MATLAB is a very high performance language for
technical computing. It consists of essential features that will make you to appreciate the
power of computing.

1.0 Introduction

This unit will therefore introduce you to the general knowledge of the language
application and some of its programming tools. Your study objectives for this unit are as
presented below.

|@\ 2.0 Intended Learning Outcomes (ILOs)

By the end of this unit, you should be able to:

» State the typical uses of the MATLAB tools.
* ldentify some of MATLAB commands and functions.
* Use some of the programming tools in MATLAB to solve problems.

P

11

3.0 Main Content
3.1 Introduction to MATLAB

MATLAB simply stands for MATrix LABoratory and it was originally developed to
provide access to matrix application developed by LINPAC and EISPACK projects.

195

MATLAB is an interactive package whose basic data element is an array that does not
require dimensioning. This special feature has made the software very unique for solving
many technical computational problems, especially those with matrix and vector
formulations.

In brief, you can use MATLAB for the following:

* Mathematical computations

* Modeling and Simulation

* Algorithm Development

« Data Analysis and Visualization

« Scientific and Engineering Graphics
* Application Development

* etc.

Specifically, MATLAB is characterized by what are called TOOLBOXES. A Toolbox in
MATLAB is a family of applicationspecific solutions and they serve as comprehensive
collections of MATLAB functions which are called M-Files (i.e. with extension .M).
Available toolboxes in MATLAB are as follows:

* Simulation

* Optimization

* Neural Networks
» Signal Processing
* Fuzzy Logic

* Control Systems

* Wavelets

* and others.

MATLAB Language

The MATLAB language has the following features:
* Control flow statements
* Functions
» Data structures
* Input/Output facilities
* Object-Oriented Programming.

The language allows what have been classified into two as follows:

* Programming in the small
* Programming in the large.

"Programming in the small™ simply means the creation of quick and easily disposable
programs while "Programming in the large"” has to do with the creation of complete, large
and complex application programs.

196

See below now the startup screen for MATLAB programming environment:

'@m the Help Navigator pane provide diffarent ways to find information

Usea the Close boxto Drag the separator bar to adjust View documantation in
hide the pane the width of the panes the display pans,
= |
File Edit |[View Go Favprites Dedktop Window Help £
Help Ng\\(]gplqlr X | g o @
Corterts | index | Search | Domos | | vue: [1ekrias =]
@ Begin Here — — =

#&2 Release Notes » —
;4 €2 Installation MATLAB
- N s
#-€2 Communications Toolbo =
[:~: €2 Signal Processing Toolb Functions: Handle
- Simulink - Graphics:
i+ CDMA Reference Blocks “ In.Alphabetical Order -

& Communications Blocks
- Signal Processing Block
L@ Support and Web Senic || DOcumentation Set

Getting Started
Introduces MATLAB and gets you stanted using it

< L | | T | ::-]
7

L 1 I"-' I h&ol(l-

Looking at the two figures above, the programming environment looks so simple,
hiding away the underlying programming capabilities.

In the first figure, there are two essential buttons apart from the standard buttons on
the toolbar. They are for the following:

* Workspace Browser

197

e Path Browser.

For example, by clicking the Path Browser button, you have the following window
when maximized

D‘l R
“—l
[bapench o
4 ’ ol w
OV Ma Lad \taoibor et 16 \ oo ‘ eleas.n
s Vot Lkt acihun | metl e | Leng
5 Mt Lk |8 0 a5 e | nrh 1.0h | & bt e
2 WM Lab\ £ 00IDaT | BaT L e Lok P fencass.0
A L\ S v i en et Lad | epes wpyisie.a
Her it o \h 00dhan | aat L ah L mak fam @clewr.n
Ho: et Lad \Eeolben | et 1 b L duta fm .
AT M Lad \ e ol e Lt bak \pwiy e adoom.
€2) Mo Las \Caaidan | net ik | fun fun [T e———
S Mas Led\reciderinot l &b\ spax Cue : @pnt
C:) Mot Lad A\ vwdbua ot L ab | g aphitd i
T M LA AN A ATA Y | 0t L ah L Grmph { ' ShaaEha
2 VMt Lad \ 2 001D 0N\ kit L 6d L spacqraph ' ®ccoruc 0
ANt Lok \noulbos | met Lad | gr aphins ! ey »
TAMat LAk \tealban nat lad Luihasie ’ ®ecap w
SAMET Lab \toolber \ mat led Lete o Grtves w
B S P T P ™ .
T8 Ak Lad \Eaalhan|met 1ab Lt bne fum =
Jo: \MatLad \teolben vt ab | danes pye s —-—
€ M Lab \n w0 ddan |t L ab | win s aaxya
€7 M AR\ anidan | net § k)| damss ! ae.a
G Ve Lad \te0 1303\ Quay’ Dusey TR decn
OV Nan Lad \dvwibes | buney | fusdence ~ ' Snavass w

The Path Browser allows you to have access to some of the MATLAB (M) Files. For
example, by double-clicking the file *"contents.m™ in the path

C:/Matlab \toolbox \matlab\polyfini*

you have the file opened as shown below in the MATLAB Editor.

*

S Polyncmaale .

5 L£octs = Fiod polyncmial xoots.

. poly - Canvar:t oo ke polynomiel.

LY polyval - Evaluate polynomisl,

. polyveln =~ Rvaluate po GOmin]l OITH WALEIX Argument

* L LR P ~ Fortiml-fraction Sxpansion (resrsdusw]

* pelyrae = FAL polynomisl 19 dets.

- polyaer = bifferenciace polymnomial,

- Sonv - ¥ultiply polynomials.

2 daremy - Divide polyseminlie.

S Duiijciee

* =P b = Chaah meguesnts 6 1-D mad I-0 dets rousices

- xyschx = Check arguments to 3«0 data Coutinen.

. xyrvonk =~ Check Argwsencs €0 3-0 volum=s dace rout ioee

. Sutareahn - True if inputs should be sSurcmac Celly Sahor igded,

. whkypp ~ Maks pDlesve-wiss polyasmisl.

. uranky p = Supply derails about pirecesise polynowial.

. eplonoore N-D Zpline Incerpolsacion.

. femiz ~ Famidus Of & reapested Fale.

: tzego = Tcan=mi=sion teros,

~ abodonk = Check comaistency of A, 0,C.D0 marcices
T - “-=lce ~ Comvme: simie-mpmce AysLiem to Tranfess function
B » - - SR WY e mnemeE S . S v s |

The file shows some of the function names used by MATLAB to handle interpolation and
polynomial functions.

198

You will now see below some specific examples of using the MATLAB programming
features.

3.2 Programming with MATLAB

You will now start to explore the capabilities of MATLAB within its Command Window
by typing each of the following expressions followed by the ENTER key to see your
results:

>>a=[32609]
3269
>>A=[471;590;531]
471
590
531
>>B =A'
455
793
101
>> roots (a)
ans =
0.2485 + 1.5863i
0.2485 - 1.5863i
-1.1636
>>

From the above code window, you can see how a vector and a matrix are typed within the
MATLAB programming environment.

Vector a is typed as seen above with a space between each element.
When you hit the ENTER key, MATLAB returns

a=
3269

However, a matrix is typed with semicolon to separate the rows as seen above. When you

hit the ENTER key, MATLAB now arranges the matrix rows and columns as you see
above.

199

The transpose of a matrix is defined by the single quote (B = A"). The moment you hit the
ENTER key, the transpose is immediately displayed by MATLAB.

In the above working session, you have seen one of the functions employed by
MATLAB. The roots of a polynomial function are obtained by using the built- in
MATLAB function "roots".

Remember that you have earlier typed a vector:

a=[32609]

MATLAB takes the above as the coefficients of a polynomial when used with the "roots"
function. That means that the polynomial associated with the above vector is as follows:

A(X) =3x3 +2x2 + 6Xx + 9

Now, look at the following Figure:

R
D& a - r®
: : I | e o vty e
wh s A B e ———— bl
oty
R~
Rl
.\ A 13
! v 2
\ . ' y
w rewinie) :
"y - | '] 4
. ¢ T30
. aaew voeman | L]
“1.v» |
- e ,’ ik
"- 1
|
. s |
’ s |
] . s |
= plote) \ AL = as 3 B
.-

You have used another MATLAB built- in function: plot (a) and the result is the graph
seen above.

From the roots of vector a, you can see that MATLAB also handles complex
computations.

MATLAB has a way of keeping track in memory of all that you have typed at the
command prompt and the answers to your computational processing. You can recall all
these from the memory by typing the command,;

"whos"

200

See this below:

- .'“‘
|
N s 5
7 9 3
1 o 1
» plot(a)
» WNos
Name size Bytes Class
" I3 72 double arvray
B x3 72 double array
2 x4 32 double array
ans a1 48 double array (complex)

Grand total is 25 elements using 224 bytes

Now, below is an example of MATLAB programming that produces a 3-dimensional
graph. You can see below the graph the MATLAB expressions that produce the graph.

These expressions can also be saved as an M-File script and run from the Editor
environment.

4 Slideshow Mlayer

he gaston & which iz geslesr, & p o p T =ozy way

to fnd ot ie 1o ype k directly at e MATLAB cormand
Question Whet
eapitof 2

MATLAB has a number of DEMOS that will greatly help you to study various aspects of

MATLAB programming capabilities. You can access them from the HELP menu of the
command window.

Below is a window to show you some of the demos available:

201

Now, before you round up this unit, see below the list of some commands used by
MATLAB. The list is obtained by accessing some of the M-Files in the toolboxes.

202

% General purpose commands:
% MATLAB Toolbox Version 5.2 18-Dec-1997

%

% General information:

% help - On-line help, display text at command line.

% helpwin - On-line help, separate window for
navigation.

% helpdesk Comprehensive hypertext documentation

and troubleshooting.

% demo - Run demonstrations.

% ver - MATLAB, SIMULINK, and toolbox version
information.

% whatsnew - What’s new in MATLAB 5.1

% Readme - Display Readme files.

%

% Managing the workspace:

Y% who - List current variables.

% whos - List current variables, long form.

% clear - Clear variables and functions from memory

% pack - Consolidate workspace memory.

% load - Load workspace variables from disk.

% save - Save workspace variables to disk.

% quit - Quit MATLAB session.

%

% Managing commands and functions:

% what - List MATLAB-specific files in directory

% type - List M-file

% edit - Edit M-file

% lookfor - Search all M-files for keyword

% which - Locate functions and files.

% pcode - Create pre-pared pseudo-code file (p-file).

% inmem - List functions in memory

% mex - Compile MEX-function,

%

203

% path - Get/set search path.

% addpath - Add directory to search path.

% rmpath - Remove directory from search path.
% editpath - Modify search path.

%

% Controlling the command window:

% echo - Echo commands in M-files

% more - . Control paged output in command window.
% diary - Save text of MATLAB session

% format - Set output format.

% |

% Operating system commands:

% cd - - Change current working directory
% copyfile - Copy a file
% pwd - Show (print) current working directory
% dir - List directory
% delete - . Delete file
% getenv - Get environment variable

"% mkdir - Make directory
% ! - Execute operating system command (see

. PUNCT).

% dos - Execute DOS command and return result.
% unix - Execute UNIX command and return result
% vms - Execute VMS DCL command and return

result
% web - Open Web browser on site or files.
% computer - Computer type.
%
% Debugging M-files:
% debug - -List debugging commands

% dbstop - Set breakpoint
% dbclear - Remove breakpoint
% dbcont B “Continue execution
% dbdown - .Change local workspace context
% dbstack - -Display function call stack
% dbstatus - List all breakpoints
% dbstep - Execute one or more lines
% dbtype - List M-file with line numbers
% dbup - ‘Change local workspace context
% dbquit - Quit debug mode
% dbmex - ‘Debug MEX-files (UNIX only).

%

% Profilling M -files:
% profile - ‘Profile M-file execution time.
% 5

% Managing the search path:

204

% See also PUNCT.

% Obsolete functions :
% mexdebug -
%

% Others :

% binpatch -

% doc -
% docroot =
% exif -
% helpinfo -
% info -
% isstudent 3
% isunix -
% isvims -
% isppc -
% isieee -
% Is -
% matlabpath -
% memory -
% notebook -
% nnload -
% openvar -
% prepender -
% profsumm -
% subscribe -
%

% GUI Utilities:

% editarray

% maeasgn

% maesize

% maeresize

% maedispsubarray
% mauifindexe
% mauifunc

% mdbstatus

Debug MEX-files.

Patch binary file
A utility for load HTML documentation into
a web browser

A utility to determine MATLAB help root
directory

Exit from MATLAB

Information about help options
Information about MATLAB and the
MathWorks

True for the student edition of MATLAB
True for the UNIX version of MATLAB
True for the VMS version of MATLAB
True for Macintosh Power PC.

True for computers with IEEE arithmetic
List directory.

Search path.

Help for memory limitations

Open an m-book in Microsoft word
(Windows only).

Netscape Navigator load

Open a workspace variable for graphical
editing.

Utility function.

Summarize profile information.

Subscribe to the MathWorks Newslettei.

- Edit an array graphically (Windows
only).

- Assign the result of an expression into

an array subrange.
- Print size of a 2-D array.
- Change the size of a matrix to be [m
n].
Print specified subarray
Return the absolute pathname to a
MAUI executable.
- Produce short description of a
variable

- DBSTATUS for the Debugger/Editor

205

% miedit - Edit M-tile
% miolereg - Register MATLAB as current OLE COM
' object.
% miport - Get the port which MATLARB is listening on.
% genpath - Generate reasonable path based on toolbox.
% path2rc - Save the current MATLAB path in the
pathdef.m file.
% pathtool - Path Browser for Macintosh and PC.
% regedit - Run the registry editor (UNIX only).
% workspace - Workspace Browser for Macintosh and PC.
% Interpolation and polynomials.
%
% Data interpolation:
% interpl E 1-D interpolation (table lookup).
% interplq - Quick 1-D linear interpolation
% interpft - 1-D interpolation using FFT method.
% interp2 - 2-D interpolation (table lookup).
% interp3 - 3-D interpolation (table lookup).
% intern - N-D interpolation (table lookup).
% griddata - Data gridding and surface fitting.
%
% Spline interpolation:
% spline - Cubic spline interpolation
% ppval - Evaluate piecewise polynomial.
%
% Geometric analysis:
% delaunay - Delaunay triangulation.
% dsearch E Search Delaunay triangulation for nearest
’ point.
% tsearch - Closest triangle search.
% convhull - Convex hull
% voronoi - Voronoi diagram
% inpolygon - True for points inside polygonal region
% rectint - Kectangle intersection area.
% polyarea - Area of polygon.
%
% Polynomials:
% roots - Find polynomial roots.
% poly - Convert roots to polynomial
% polyval & p Evaluate polynomial
% polyvalm - Evaluate polynomial with matrix argument.

% residue

Partial-fraction expansion (residues).
% polyfit Fit polynomial to data

% polyder Differentiate polynomials

% conv - Multiply polynomials

% deconv - Divide polynomials.

206

0/
/0

0/
/0

0/
/0
0

Yo

0/
/0

%
%
%
%

0
0

Utilities:
xychk

xyzchk
xyzvchk

automesh

mkpp
uninkpp
splhcore
resi2
tzero
abcdchk
ss2tf

ss2zp
tf2ss

tf2zp
tfchk
zplss
zp2tf

mpoles

Obsolete functions :

icubic
interp4
interps
interp6
tablel
table2

Check arguments to 1-D and 2-D data
routines.

Check arguments to 3-D data routines.
Check arguments to 3-D volume data
routines.

True if inputs should be automatically
meshgridded.

Make piece-wise polynomial

Supply details about piccewise polynomial.
N-D Spline interpolation

Residue of a repeated pole.
Transmission zeros

Check consistency of A,B,C,D matrices.
Convert state-space system to transfer
function

Convert state-space system to zero-pole.
Convert transfer function to state-space
Convert transfer function to zero-pole.
Check for proper transfer function.
Convert zero-pole system to state -space.
Convert zero-pole system to transfer
function.

Identify repeated poles and their
multiplicities.

[-D cubic interpolation

2-D bilinear data interpolation.
2-D bicubic data interpolation
2-D nearest neighbor interpolation
1-D tablc lookup

2-D table lookup.

You will now round up this unit.

4.0 Self-Assessment Exercise(s)
What command do you use to clear your command window?

Answer

207

7N

Yo/

The command is "dc". Now, see the list:

5.0 Conclusion

This unit has shown you some few tools for advanced programming available in
MATLAB. You have seen it demonstrated how MATLAB can instantly give you the
results of mathematical computations that would normally take some efforts to carry
out if you were to employ the conventional programming methods of using other
languages. This unit also is the concluding unit for the whole course. Definitely, you
have learnt so much in this unit and the whole course to get you started with
programming generally.

6.0 Summary

MATLAB is one of the powerful interactive programming languages that this unit has
briefly explored with you. MATLAB stands for MATrix LABoratory, meaning that it
is an application specifically suited for problems you can formulate in vectorial and
matrix forms. Some few examples were treated to give you a taste of its immense
capabilities. It is advisable that you access the Demos available in the Help files of the
application so as to learn more about the powerful language. Moreover, this unit
concludes your study in this course, and with the general overview of programming
languages you have already, you are now equipped to get started with programming.
Good luck.

7.0 Tutor-Marked Assignments
1. Identify, among others, five areas of applications MATLAB can be used.

2. Give two functions each available in MATLAB for solving problems related to

the following:
* Polynomials
* Matrices.

3. What is a toolbox? Name 3 toolboxes available in MATLAB

8.0 Further Readings

The MathWorks, Inc., MATLAB Version 5.2.0. 3084, 1998. hap //www.mathworks.
corn

208

