

NATIONAL OPEN UNIVERSITY OF NIGERIA

CIT 237

PROGRAMMING AND ALGORITHMS

CIT 237 COURSE GUIDE

COURSE

GUIDE

CIT 237

PROGRAMMING AND ALGORITHMS

Course Developer Dr.A.S. Sodiya

Dept. of Computer Science

University of Agriculture

Abeokuta

Course Co-ordinator A. A.Afolorunso

National Open University of Nigeria
14\16 Ahmadu Bello Way
Victoria Island

Lagos

ii

CIT 237 COURSE GUIDE

iii

NATIONAL OPEN UNIVERSITY OF NIGERIA

National Open University of Nigeria
Headquarters
14/16 Ahmadu Bello Way
Victoria Island
Lagos

Abuja Office
No. 5 Dares Salaam Street
Off Aminu Kano Crescent
Wuse II, Abuja
Nigeria.

e-mail: centralinfo@nou.edu.ng

URL: www.nou.edu.ng

Published by

National Open University of Nigeria

First Printed 2008

Revised and Reprinted 2020

ISBN: ISBN: 978-058-581-8

All Rights Reserved

mailto:centralinfo@nou.edu.ng
http://www.nou.edu.ng/

CIT 237 COURSE GUIDE

iii

CONTENTS

Introduction..

PAGE

1

What You will Learn in this

Course... 1

Course Aims... 2

Course Objectives.. 2

Working through this Course.. 3

Course Materials.. 3

Study Units ... 3

Textbooks and References .. 4

Assignment File.. 7

Presentation Schedule... 8

Assessment.. 8

Tutor-Marked Assignment ... 8

Final Examinations and Grading... 9

Course Marking Scheme.. 9

Course Overview………………………………………………

10

How to Get the Best from this

Course 11

Facilitators/Tutors and Tutorials .. 12
Summary .. 13

Introduction

CIT 237 – Programming and Algorithms is a three credit unit course of

twenty-one units. This course presents an overview of the methods and

concept of programming and the role of algorithms in programming. It

covers aspects on programming concepts such as basic data types,

algorithms, performance analysis, fundamental data structures, P, NP

and NP-Complete Problems and some sorting algorithms.

This course is divided into three modules. The first module deals with

the basic introduction to the concept of programming and algorithms;

such as definition and characteristics of algorithms, basic data types and

fundamental data stuructures, program development life cycle, types of

programming languages, language translators and their characteristics,

tools for program design, etc.

The second module focuses on the performance analysis of algorithms

discussing issues such as efficiency attributes (i.e. time and space

efficiency), measuring the running time of an algorithm, measuring

input size, worst-case, best-case and average-case efficiencies, P, NP

and NP-Complete problems, etc.

The third module deals with sorting and some special problems. It

introduces you to some sorting and divide-and-conquer algorithms after

which it goes on to discuss some sorting techniques such as Merge Sort,

Bubble Sort, Selection Sort, etc. giving their algorithms and

performance analysis.

The aim of this course is to equip you with the basic knowledge of

writing efficient programs through the use of concise and efficient

algorithms. By the end of the course, you should be able to confidently

tackle any programming problem breaking it into its component parts,

write efficient algorithms to solve the problem and implement the

algorithm using any programming language of your choice as well as

being able to evaluate and measure the performance efficiency of any

algorithm.

This Course Guide gives you a brief overview of the course content,
course duration, and course materials.

A course on computers can never be complete because of the existing

diversities of the computer systems. Therefore, you are advised to read

through the further readings to enhance the basic understanding you will

acquire from the course material.

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

2
2

2
2
2

What You will Learn in this Course

The main purpose of this course is to introduce you to concepts relating

to problem solving through the efficient use of algorithms and

subsequent implementation of the algorithm in any language of choice

that is suitable to the application area. This, we intend to achieve

through the following:

Course Aims

1. Introduce the basic concepts relating to algorithms and

programming;

2. Expose the basic relationships that exist between algorithms and

program development.
3. Discuss the basic features of algorithms and components of

programs.

4. Discuss the fundamental data structures, data types, arithmetic

operations, etc.
5. Discuss features of programming languages, programming

methodologies and application areas, language translators,
programming environment, etc.

6. Expose the basics of measuring the efficiencies of algorithms and
how to identify basic operations within an algorithm.

Course Objectives

Certain objectives have been set out to ensure that the course achieves

its aims. Apart from the course objectives, every unit of this course has

set objectives. In the course of the study, you will need to find out, at the

end of each unit, if you have met the objectives set at the beginning of

the unit. By the end of this course you should be able to:

1. Define an algorithm, stating its basic characteristics

2. Enumerate the role of an algorithm in problem solving and how it

relates to a program
3. Define the concept of programming and describe the basic

features of a program;
4. Explain the program development life cycle
5. Discuss the concept of order of growth and explain the different

asymptotic notations
6. Operate the hill climbing technique and show how hill climbing

is used to solve problems.
7. Resolve the Knight‟s Tour problem, describe and resolve an n * n

tour problem
8. Explain the measures of algorithm efficiency
9. Explain the identification of basic operations within an algorithm

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

3
3

3
3
3

10. Distinguish between a polynomial and non-polynomial problem
11. Discuss (extensively) P, NP, NP –complete problems
12. Develop algorithms to perform some basic sorting, such as Merge

Sort, SelectionSsort, Bubble Sort, Quick Sort, etc. on some data,

and evaluate the performance of each algorithm.

Working Through This Course

In order to have a thorough understanding of the course units, you will

need to read and understand the contents, and practise the steps by

solving some simple problems by breaking them into smaller problems

and developing algorithms for each. You may then implement your

algorithms using any programming language of your choice that is

suitable for the application area.

This course is designed to cover approximately sixteen weeks, and it

will require your devoted attention. You should do the exercises in the

Tutor-Marked Assignments and submit to your tutors.

Course Materials

These include:

1. The Course Guide
2. Study Units
3. Recommended Texts

4. A file for your assignments and for records to monitor your

progress.

Study Units

There are 21 study units in this course:

Module 1 Introduction to Programming and Algorithms

Unit 1 Introduction to Programming

Unit 2 Programming Concepts
Unit 3 Algorithms
Unit 4 Basic Data Types
Unit 5 Fundamental Data Structure
Unit 6 Practical Exercise I
Unit 7 Fundamental Data Structures
Unit 8 Exercise I

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

4
4

4
4
4

Module 2 Performance Analysis of Algorithms

Unit 1 Performance Analysis Framework
Unit 2 Order of Growth
Unit 3 Worst-case, Best-case and Average-case Efficiencies
Unit 4 P, NP and NP-Complete Problems
Unit 5 Practical Exercise II

Module 3 Sorting and Some Special Problems

Unit 1 Introduction to Sorting and Divide-and-Conquer

Algorithm
Unit 2 Merge Sort

Unit 3 Quick Sort

Unit 4 Binary Search

Unit 5 Selection Sort

Unit 6 Bubble Sort
Unit 7 Special Problems and Algorithms
Unit 8 Practical Exercise IV

Textbooks and References

Gonnet and Ricardo Baeza-Yates (1993). Handbook of Algorithms and

Data Structures. International Computer Science Series

Holmes, B.J. (2000). Pascal Programming Continuum (2nd ed).

www.doc.ic.ac.uk/~wjk/C++Intro/

Levitin, A. (2003). Introduction to the Design & Analysis of Algorithms.

Addison-Wesley.

www.personal.kent.edu/~muhama/Algorithms

Tucker, A.B and Noonan, R.(2006).Programming Languages –
Principles and Paradigms. (2nd ed). McGraw – Hill College.

www.eslearning.algorithm.com

www.eslearning.algorithm.com

Cormen, T.H., Leiserson, C.F. Rivest, R.L., Stein, C. (2001).

Introduction to Algorithms (2nd ed). Canbridge:M/T Press.

http://www.amazon.co.uk/Handbook-Algorithms-Structures-International-Computer/dp/0201416077/ref=sr_1_22/202-8251764-2640635?ie=UTF8&s=books&qid=1186597273&sr=1-22
http://www.amazon.co.uk/Handbook-Algorithms-Structures-International-Computer/dp/0201416077/ref=sr_1_22/202-8251764-2640635?ie=UTF8&s=books&qid=1186597273&sr=1-22
http://www.amazon.co.uk/Pascal-Programming-B-J-Holmes/dp/0826454291/ref=sr_1_2/202-8251764-2640635?ie=UTF8&s=books&qid=1186597273&sr=1-2
http://www.doc.ic.ac.uk/~wjk/C++Intro/
http://www.personal.kent.edu/~muhama/Algorithms
http://www.eslearning.algorithm.com/
http://www.eslearning.algorithm.com/

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

5 5

Goodrich, M.T., and Tamassia, R. (2002). Algorithm Design.
Foundations, Analysis, and Internet Examples. New York:John
Wiley & Sons.

http://mathworld.wolfram.com/QueensProblem.html.

Ahrens, W. (1910). Mathematische Unterhaltungen und Spiele.
Leipzig, Germany: Teubner, p. 381.

Ball, W. W. R. and Coxeter, H. S. M.(1987). Mathematical Recreations

and Essays (13th ed). New York: Dover, pp. 175-186,.

Chartrand, G. "The Knight's Tour." §6.2 in Introductory Graph Theory
(1985).New York: Dover, pp. 133-135.

Conrad, A.; Hindrichs, T.; Morsy, H.; and Wegener, I.(1994). "Solution

of the Knight's Hamiltonian Path Problem on Chessboards."

Discr. Appl. Math. 50, 125-134.

de Polignac. Comtes Rendus Acad. Sci. Paris, Apr. 1861.

de Polignac. Bull. Soc. Math. de France 9, 17-24, 1881.

Dudeney, H. E.(1970). Amusements in Mathematics. New York: Dover,

pp. 96 and 102-103.

Elkies, N. D. and Stanley, R. P. "The Mathematical Knight." Math.

Intell. 25, No. 1, 22-34, Winter 2003.

Euler, L. "Solution d'une question curieuse qui ne paroit soumise a

aucune analyse." Mémoires de l'Académie Royale des Sciences et

Belles Lettres de Berlin, Année 1759 15, 310-337, 1766.

Euler, L. Commentationes Arithmeticae Collectae, Vol. 1. (1849)

Leningrad, pp. 337-355,.

Friedel, F. "The Knight's Tour."

http://www.chessbase.com/columns/column.asp?pid=163.

Gardner, M. (1978)."Knights of the Square Table." Ch. 14 in
Mathematical Magic Show: More Puzzles, Games, Diversions,
Illusions and Other Mathematical Sleight-of-Mind from
Scientific American. New York: Vintage, pp. 188-202,.

http://mathworld.wolfram.com/QueensProblem.html
http://www.amazon.com/exec/obidos/ASIN/0486253570/ref=nosim/weisstein-20
http://www.amazon.com/exec/obidos/ASIN/0486253570/ref=nosim/weisstein-20
http://www.amazon.com/exec/obidos/ASIN/0486247759/ref=nosim/weisstein-20
http://www.amazon.com/exec/obidos/ASIN/0486204731/ref=nosim/weisstein-20
http://www.chessbase.com/columns/column.asp?pid=163
http://www.amazon.com/exec/obidos/ASIN/0394408225/ref=nosim/weisstein-20
http://www.amazon.com/exec/obidos/ASIN/0394408225/ref=nosim/weisstein-20
http://www.amazon.com/exec/obidos/ASIN/0394408225/ref=nosim/weisstein-20

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

6 6

Gardner, M. (1984). The Sixth Book of Mathematical Games from

Scientific American. Chicago, IL: University of Chicago Press,

pp. 98-100.

Guy, R. K.(199). "The Queens Problem." §C18 in Unsolved Problems
in Number Theory, 2nd ed. New York: Springer-Verlag, pp.
133-135.

Jelliss, G. "Knight's Tour Notes." http://www.ktn.freeuk.com/.

Jelliss, G. "Chronology of Knight's Tours."
http://www.ktn.freeuk.com/cc.htm.

Kraitchik, M.(1942). "The Problem of the Knights." Ch. 11 in

Mathematical Recreations. New York: W. W. Norton, pp.
257-266.

Kyek, O.; Parberry, I.; and Wegener, I. "Bounds on the Number of

Knight's Tours." Discr. Appl. Math. 74, 171-181, 1997. Lacquière.

Bull. Soc. Math. de France 8, 82-102 and 132-158, 1880.

Madachy, J. S.(1970). Madachy's Mathematical Recreations. New
York: Dover, pp. 87-89.

Murray, H. J. R. (1902)."The Knight's Tour, Ancient and Oriental."

British Chess Magazine, pp. 1-7.

Pegg, E. Jr. "Leapers (Chess Knights and the Like)"
http://www.mathpuzzle.com/leapers.htm.

Roget, P. M. (1840).Philos. Mag. 16, 305-309.

Rose, C. "The Distribution of the Knight."
http://www.tri.org.au/knightframe.html.

Roth, A. "The Problem of the Knight: A Fast and Simple Algorithm."
http://library.wolfram.com/infocenter/MathSource/909/.

Rubin, F. (1974)."A Search Procedure for Hamilton Paths and Circuits."

J. ACM 21, 576-580.

Ruskey, F. "Information on the Knight's Tour Problem."
http://www.theory.csc.uvic.ca/~cos/inf/misc/Knight.html.

http://www.amazon.com/exec/obidos/ASIN/0226282503/ref=nosim/weisstein-20
http://www.amazon.com/exec/obidos/ASIN/0226282503/ref=nosim/weisstein-20
http://www.amazon.com/exec/obidos/ASIN/0387208607/ref=nosim/weisstein-20
http://www.amazon.com/exec/obidos/ASIN/0387208607/ref=nosim/weisstein-20
http://www.ktn.freeuk.com/
http://www.ktn.freeuk.com/cc.htm
http://www.amazon.com/exec/obidos/ASIN/0486201635/ref=nosim/weisstein-20
http://www.amazon.com/exec/obidos/ASIN/0486237621/ref=nosim/weisstein-20
http://www.mathpuzzle.com/leapers.htm
http://www.tri.org.au/knightframe.html
http://library.wolfram.com/infocenter/MathSource/909/
http://www.theory.csc.uvic.ca/~cos/inf/misc/Knight.html

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

77 77
7

Skiena, S. (1990). Implementing Discrete Mathematics: Combinatorics

and Graph Theory with Mathematica. Reading, MA: Addison-

Wesley, p. 166.

Sloane, N. J. A. Sequences A001230, A003192/M1369,

A006075/M3224, A033996, and A079137 in "The On-Line

Encyclopedia of Integer Sequences."

Steinhaus, H. (1999). Mathematical Snapshots, 3rd ed. New York:
Dover, p. 30.

Thomasson, D. "The Knight's Tour."

http://www.borderschess.org/KnightTour.htm.

van der Linde, A.(1874). Geschichte und Literatur des Schachspiels,
Vol. 2. Berlin: Springer-Verlag, pp. 101-111.

Vandermonde, A.-T. "Remarques sur les Problèmes de Situation."

L'Histoire de l'Académie des Sciences avec les Mémoires, Année
1771. Paris: Mémoirs, pp. 566-574 and Plate I, 1774.

Velucchi, M. "Knight's Tour: The Ultimate Knight's Tour Page of

Links." http://www.velucchi.it/mathchess/knight.htm.

Volpicelli, P. (1872). "Soluzione completa e generale, mediante la

geometria di situazione, del problema relativo alle corse del

cavallo sopra qualunque scacchiere." Atti della Reale Accad. dei

Lincei 25, 87-162.

Warnsdorff, H. C. (1823). von Des Rösselsprungs einfachste und

allgemeinste Lösung. Schmalkalden.

Watkins, J. (2004). Across the Board: The Mathematics of Chessboard

Problems. Princeton, NJ: Princeton University Press.

http://www.amazon.com/exec/obidos/ASIN/0521806860/ref=nosim/weisstein-20
http://www.amazon.com/exec/obidos/ASIN/0521806860/ref=nosim/weisstein-20
http://www.research.att.com/~njas/sequences/A001230
http://www.research.att.com/~njas/sequences/A003192
http://www.research.att.com/~njas/sequences/A006075
http://www.research.att.com/~njas/sequences/A033996
http://www.research.att.com/~njas/sequences/A079137
http://www.amazon.com/exec/obidos/ASIN/0486409147/ref=nosim/weisstein-20
http://www.borderschess.org/KnightTour.htm
http://www.amazon.com/exec/obidos/ASIN/3283000794/ref=nosim/weisstein-20
http://www.amazon.com/exec/obidos/ASIN/3283000794/ref=nosim/weisstein-20
http://www.velucchi.it/mathchess/knight.htm
http://www.amazon.com/exec/obidos/ASIN/0691115036/ref=nosim/weisstein-20
http://www.amazon.com/exec/obidos/ASIN/0691115036/ref=nosim/weisstein-20

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

88 88
8

Assignments File

These are of two types: One for the Self-Assessment Exercises and the

other for the Tutor-Marked Assignments. The self-assessment exercises

will enable you monitor your performance by yourself, while the tutor-

marked assignments will be supervised . The assignments take a certain

percentage of your total score in this course. The tutor-marked

assignments will be assessed by your tutor within a specified period.

The examination at the end of this course will aim at determining your

level of mastery of the subject matter. This course includes 21 tutor-

marked assignments and each must be done and submitted as stipulated

Your best scores however, will be recorded for you. Be sure to send

these assignments to your tutor before the deadline to avoid loss of

marks.

Presentation Schedule

The Presentation Schedule included in your course materials gives you

the important dates for the completion of tutor marked assignments and

the schedule for attending tutorials. Remember, you are required to

submit all your assignments by the due date. You should guard against

lagging behind in your work.

Assessment

There are two aspects to the assessment of the course. First are the tutor
marked assignments; second, is a written examination.

In tackling the assignments, you are expected to apply the information

and knowledge you acquired during this course. The assignments must

be submitted to your tutor for formal assessment in accordance with the

deadlines stated in the Assignment File. The work you submit to your

tutor for assessment will count for 30% of your total course mark.

At the end of the course, you will need to sit for a final three-hour

examination. This will also count for 70% of your total course mark.

Tutor-Marked Assignment

There are 21 tutor-marked assignments in this course. You need to

submit all the assignments. The total marks for the best four (4)

assignments will be 30% of your total course mark.

Assignment questions for the units in this course are contained in the

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

99 99
9

Assignment File. You should be able to complete your assignments

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

9
9

9

from the information and materials contained in your set textbooks,

reading and study units. However, you may wish to use other references

to broaden your viewpoint and provide a deeper understanding of the

subject.

When you have completed each assignment, send it together with a form

to your tutor. Make sure that each assignment reaches your tutor on or

before the deadline given. If however, you cannot complete your work

on time, contact your tutor before the assignment is done to discuss the

possibility of an extension.

Final Examinations and Grading

The final examination for the course will carry 70% percentage of the

total marks available for this course. The examination will cover every

aspect of the course, so you are advised to revise all your corrected

assignments before the examination.

This course endows you with the status of a teacher and that of a learner.

This means that you teach yourself and that you learn, as your learning

capabilities would allow. It also means that you are in a better position

to determine and to ascertain the what, the how, and the when of your

learning. No teacher imposes any method of learning on you.

The course units are similarly designed with the introduction following

the table of contents, then a set of objectives and then the dicourse and

so on.

The objectives guide you as you go through the units to ascertain your
knowledge of the required terms and expressions.

Course Marking Scheme

This table shows how the actual course marking is broken down.

Assessment Marks

Assignment 1- 4 Four assignments, best three marks of the
four count at 30% of course marks

Final Examination 70% of overall course marks

Total 100% of course marks

Table 1: The course marking scheme

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

1
0
1
0

1
0

Course Overview

Unit Title of Work Weeks
Activity

Assessment
(End of Unit)

 Course Guide Week 1

 Module 1: Introduction to Programming
and Algorithm

1 Introduction to Programming Week 1 Assignment 1

2 Programming Concepts Week 1 Assignment 2

3 Algorithm Week 2 Assignment 3

4 Basic Data Types Week 2 Assignment 4

5 Fundamental Data Structure Week 2 Assignment 5

6 Practical Exercises I Week 3 Assignment 6

7 Fundamental Data Structures Week 3 Assignment 7

8 Exercises I Week 3 Assignment 8

 Module 2: Performance Analysis of
Algorithms

1 Performance Analysis Framework Week 4 Assignment 9

2 Order of Growth Week 4 Assignment 10

3 Worst-case, Best-case and Average-case
Efficiencies

Week 5 Assignment 11

4 P, NP and NP-Complete Problems Week 6
-7

Assignment 12

5 Practical Exercise II Week 8 Assignment 13
 Module 3: Sorting and Some Special

Problems

1 Introduction to Sorting and Divide-and-
Conquer Algorithm

Week 9 Assignment 14

2 Merge Sort Week 10 Assignment 15

3 Quick Sort Week 10 Assignment 16

4 Binary Search Week 11 Assignment 17

5 Selection Sort Week 12 Assignment 18

6 Bubble Sort Week 13 Assignment 19

7 Special Problems and Algorithms Week 14 Assignment 20

8 Practical Exercise IV Week 15 Assignment 21
 Revision Week 16

 Examination Week 17

Total 17 weeks

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

1
1

11
11

How to Get the Best from this Course

In distance learning the study units replace the university lecturer. This

is one of the great advantages of distance learning; you can read and

work through specially designed study materials at your own pace, and

at a time and place that suit you best. Think of it as reading the lecture

instead of listening to a lecturer. In the same way that a lecturer might

set you some reading to do, the study units tell you when to read your

set books or other material. Just as a lecturer might give you an in-class

exercise, your study units provide exercises for you to do at appropriate

points.

Each of the study units follows a common format. The first item is an

introduction to the subject matter of the unit and how a particular unit is

integrated with the other units and the course as a whole. Next is a set

of learning objectives. These objectives enable you know what you

should be able to do by the time you have completed the unit. You

should use these objectives to guide your study. When you have

finished the units you must go back and check whether you have

achieved the objectives. If you make a habit of doing this you will

significantly improve your chances of passing the course.

Remember that your tutor‟s job is to assist you. When you need help,

don‟t hesitate to call and ask him or her to provide it.

1. Read this Course Guide thoroughly.

2. Organise a study schedule. Refer to the Course Overview for more

details. Note the time you are expected to spend on each unit and

how the assignments relate to the units. Whatever method you

choose to use, you should decide on it and write in your own dates

for working on each unit.

3. Once you have created your own study schedule, do everything you

can to stick to it. The major reason students fail is that they lag

behind in their course work.

4. Turn to Unit 1 and read the introduction and the objectives for the

unit.

5. Assemble the study materials. Information about what you need for

a unit is given in the Overview at the beginning of each unit. You

will almost always need both the study unit you are working on and

one of your set of books on your desk at the same time.

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

1
2

12
12

6. Work through the unit. The content of the unit itself has been

arranged to provide a sequence for you to follow. As you work

through the unit you will be instructed to read sections from your set

books or other articles. Use the unit to guide your reading.

7. Review the objectives for each study unit to confirm that you have

achieved them. If you feel unsure about any of the objectives, review

the study material or consult your tutor.

8. When you are confident that you have achieved a unit‟s objectives,

you can then start on the next unit. Proceed unit by unit through the

course and try to pace your study so that you keep yourself on

schedule.

9. When you have submitted an assignment to your tutor for marking,

do not wait for its return before starting on the next unit. Keep to

your schedule. When the assignment is returned, pay particular

attention to your tutor‟s comments, both on the tutor-marked

assignment form and on the assignment. Consult your tutor as soon

as possible if you have any questions or problems.

10. After completing the last unit, review the course and prepare yourself

for the final examination. Check that you have achieved the unit

objectives (listed at the beginning of each unit) and the course

objectives (listed in this Course Guide).

Facilitators/Tutors and Tutorials

There are 15 hours of tutorials provided in support of this course. You

will be notified of the dates, times and location of these tutorials,

together with the name and phone number of your tutor, as soon as you

are allocated a tutorial group.

Your tutor will mark and comment on your assignments, keep a close

watch on your progress and on any difficulties you might encounter and

provide assistance for you during the course. You must mail or submit

your tutor-marked assignments to your tutor well before the due date (at

least two working days are required). They will be marked by your tutor

and returned to you as soon as possible.

Do not hesitate to contact your tutor by telephone, or e-mail if you need

help. The following might be circumstances in which you would find

help necessary. Contact your tutor if:

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

1
3

13
13

you do not understand any part of the study units or the assigned

readings,

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

13
13
13

13
13

you have difficulty with the self-tests or exercises,

you have a question or problem with an assignment, with your

tutor‟s comments on an assignment or with the grading of an

assignment.

You should try your best to attend the tutorials. This is the only chance

to have a face to face contact with your tutor and to ask questions which

are answered instantly. You can raise any problem encountered in the

course of your study. To gain the maximum benefit from course

tutorials, prepare a question list before attending the classes. You will

learn a lot from participating in discussions actively.

Summary

Programming and Algorithms, as the title implies, will take you

thropugh the fundamental concepts of problem solving through the use

of algorithms and efficient programming. Therefore, you should acquire

the basic knowledge of the principles of algorithm development and

program writing in this course. The content of the course material was

planned and written to ensure that you acquire the proper knowledge

and skills in order to be able to write efficient algorithms and implement

them, using applicable programming languages for that area of

application. The essence is to get you to acquire the necessary

knowledge and competence and equip you with the necessary tools..

I wish you success with the course and hope that you will find it

interesting and useful.

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

14
14
14

14
14

MAIN

COURSE

Course Code CIT237

Course Title Programming and Algorithms

Course Developer Dr A. S. Sodiya

Dept. of Computer Science
University of Agriculture, Abeokuta

Course Co-ordinator A. A. Afolorunso

National Open University of Nigeria
14/16, Ahmadu Bello Way
Victoria Island, Lagos

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

15 15

NATIONAL OPEN UNIVERSITY OF NIGERIA

National Open University of Nigeria
Headquarters
14/16 Ahmadu Bello Way
Victoria Island
Lagos

Abuja Office
No. 5 Dares Salaam Street
Off Aminu Kano Crescent
Wuse II, Abuja
Nigeria.

e-mail: centralinfo@nou.edu.ng

URL: www.nou.edu.ng

Published by

National Open University of Nigeria

First Printed 2008

Revised and Reprinted 2020

ISBN: 978-058-581-8

All Rights Reserved

mailto:centralinfo@nou.edu.ng
http://www.nou.edu.ng/

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

16 16

CONTENTS PAGE

Module 1 Introduction to Programming and Algorithms….. 1

Unit 1

Introduction to Programming…….……………………

1

Unit 2 Programming Concepts……………………………… 9

Unit 3 Algorithms………………………………………........ 16

Unit 4 Basic Data Types…………………………….............. 22

Unit 5 Fundamental Data Structure…………………………. 27

Unit 6 Practical Exercise I…………………………………… 32

Unit 7 Fundamental Data Structures…………………………. 36

Unit 8 Exercise I……………………………………………... 41

Module 2

Performance Analysis of Algorithms…………….

44

Unit 1

Performance Analysis Framework…………….……

44

Unit 2
Unit 3

Order of Growth…………………………………….
Worst-case, Best-case and Average-case
Efficiencies………………………………………….

48

53

Unit 4 P, NP and NP-Complete Problems…………………. 58

Unit 5 Practical Exercise II………………………………... 64

Module 3

Sorting and Some Special Problems……………...

66

Unit 1

Introduction to Sorting and Divide-and-Conquer
Algorithm…………………………………………….

66

Unit 2 Merge Sort………………………………………..…. 71

Unit 3 Quick Sort……………………………………….….. 75

Unit 4 Binary Search………………………………………… 79

Unit 5 Selection Sort………………………………………… 82

Unit 6 Bubble Sort…………………………………………… 85

Unit 7 Special Problems and Algorithms……………………. 88

Unit 8 Practical Exercise IV………………………………… 96

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

1 1

MODULE 1 INTRODUCTION TO PROGRAMMING

AND ALGORITHM

Unit 1 Introduction to Programming

Unit 2 Programming Concepts
Unit 3 Algorithm
Unit 4 Basic Data Types
Unit 5 Fundamental Data Structure
Unit 6 Practical Exercise I
Unit 7 Fundamental Data Structures
Unit 8 Exercise I

UNIT 1 INTRODUCTION TO PROGRAMMING

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Meaning and Significance of Programming
3.2 Levels of Programming Languages
3.3 Features of Programming Languages
3.4 Programming Methodologies and Application Areas
3.5 Language Translators
3.6 The Programming Environment

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit introduces methods and concepts of programming. It also

explains how programs are executed by the compilers.

2.0 OBJECTIVES

By the end of this unit you should be able to:

list programs and programming languages

outline the different levels of programming languages and their

characteristics

outline the conventional features of programming languages

outline the methods of programming and its application areas

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

2 2

explain language translators, types, and their characteristics

outline and explain the environments of programming.

3.0 MAIN CONTENT

3.1 Meaning and Significance of Programming Languages

Programming languages are languages through which we can instruct

the computer to carry out some processes or tasks. They are also

designed to communicate ideas about algorithms between human beings

and computers. Programming languages can be used to execute a wide

range of algorithms, that is, an instruction could be executed through

more than a procedure of execution. The full concept of algorithm will

be explained later.

A program is a set of codes that instructs the computer to carry out

some processes. Programming is the process of writing programs.

3.2 Levels of Programming Languages

Programs and programming languages have been in existence since the

invention of computers, and there are three levels of programming

languages. These are:

- Machine Language: Machine language is a set binary

coded instruction, which consists of zeros (0) and ones (1).

Machine language is peculiar to each type of computer.

The first generation of computers was coded in machine

language that was specific to each model of computer.

Some of the shortcomings of the machine language were:

1. Coding in machine language was a very tedious and boring job

2. Machine language was not user-friendly. That is the user had to

remember a long list of codes, numbers or operation codes and
know where instructions were stored in computer memory.

3. Debugging any set of codes is a very difficult task since it

requires going through the program instruction from the

beginning to the end.

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

3 3

The major advantage of machine language is that it requires no

translation since it is already in machine language and is therefore faster

to execute.

- Low Level Language: This is a level of programming

language which is different from the machine language.

That is, the instructions are not entirely in binary coded

form. It also consists of some symbolic codes, which are

easier to remember than machine codes. In assembly

language, memory addresses are referenced by symbols

rather than addresses in machine language. Low level

programming language is also called assembly language,

because it makes use of an assembler to translate codes

into machine language. An example of assembly language

statement is:

MOVE A1, A2 Move the contents of Register A2 to A1

JMP b Go to the process with label b

The disadvantages of assembly language are that:

- It is specific to particular machines
- It requires a translator called an assembler.

The major advantage of the assembly language is that programs written

in it are easier to read and more user friendly than those written in

machine language, especially when comments are inserted in the codes

- High Level Language: This programming language

consists of English-like codes. High-level language is

independent of the computer because the programmer only

needs to pay attention to the steps or procedures involved

in solving the problem for which the program is to be used

to execute the problem. High-level language is usually

broken into one or more states such as: Main programs,

sub-programs, classes, blocks, functions, procedures, etc.

The name given to each component differs from one

language to the other.

Some advantages of high-level language:

- It is more user friendly, that is, easy to learn and write
- It is very portable, that is, it can be used on almost any computer
- It saves much time and effort when used compared to any other

programming level language.

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

4 4

- Codes written in this language can easily be debugged.

3.3 Features of Programming Languages

There are some conventional features which a programming language

must possess, these features are:

- It must have syntactic rules for forming statements.
- It must have a vocabulary that consists of letters of the alphabet.
- It must have a language structure, which consists of keywords,

expressions and statements.
- It may require a translator before it can be understood by a

computer.
- Programming languages are written and processed by the

computer for the purpose of communicating data between the
human being and the computer.

3.4 Programming Methodologies and Application Domain

3.4.1 Methodologies

Some programming methodologies are stated below:

- Procedural Programming: A procedural program is a

series of steps, each of which performs a calculation,

retrieves input, or produces output. Concepts like

assignments, loops, sequences and conditional statements

are the building blocks of procedural programming. Major

procedural programming languages are COBOL,

FORTRAN, C, AND C++.

- Object-Oriented (OO) Programming:The OO program

is a collection of objects that interact with each other by

passing messages that transform their state. The

fundamental building blocks of OO programming are

object modelling, classification and inheritance. Major

object-oriented languages are C++, Java etc.

- Functional Programming: A functional program is a

collection of mathematical functions, each with an input

(domain) and a result (range). Interaction and combination

of functions is carried out by functional compositions,

conditionals and recursion. Major functional programming

languages are Lisp, Scheme, Haskell, and ML.

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

5 5

- Logic (Declarative) Programming: A logic programme

is a collection of logical declarations about what outcome

a function should accomplish rather than how that

outcome should be accomplished. Logic programming

provides a natural vehicle for expressing non-determinism,

since the solutions to many problems are often not unique

but manifold. The major logic programming language is

Prolog.

- Event Driven Programming: An event driven program

is a continuous loop that responds to events that are

generated in an unpredictable order. These events

originate from user actions on the screen (mouse clicks or

keystrokes, for example), or else from other sources (like

readings from sensors on a robot). Major event-driven

programming languages include Visual basic and Java.

- Concurrent Programming: A concurrent program is a

collection of cooperating processes, sharing information

with each other from time to time but generally operating

asynchronously. Concurrent programming languages

include SR, Linda, and High performance FORTRAN.

3.4.2 Application Areas

The programming communities that represent distinct application areas
can be grouped in the following way:

- Scientific Computing: It is concerned with making

complex calculations very fast and very accurately. The

calculations are defined by mathematical models, which

represent scientific phenomena. Examples of scientific

programming languages include Fortran 90, C, and High

Performance Fortran

- Management Information System (MIS): Programs for

use by institutions to manage their information systems are

probably the most prolific in the world. These systems

include an organisation‟s payroll system, online sales and

marketing systems, inventory and manufacturing systems,

and so forth. Traditionally, MIS have been developed in

programming languages like COBOL, RPG, and SQL.

- Artificial Intelligence: The artificial intelligence
programming community has been active since the early
1960s. This community is concerned about developing

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

6 6

programs that model human intelligent behaviour, logical

deduction, and cognition. Examples of AI programming

languages are prominent functional and logic

programming languages like Prolog, CLP, ML, Lisp,

Scheme and Haskell.

- Systems: System programmers are those who design and

maintain the basic software that runs systems – operating

system components, networks software, programming

language compilers and debuggers, virtual machines and

interpreters, and so on. Some of these programs are written

in the assembly language of the machine, while many

others are written in a language specifically designed for

systems programming. The primary example of a system

programming language is C.

- Web-centric: The most dynamic area of new

programming community growth is the World Wide Web,
which is the enabling vehicle for electronic commerce and
a wide range of applications in academia, government, and

industry. The notion of Web-centric computing, and then

Web-centric programming, is motivated by an interactive

model, in which a program remains in an infinite loop

waiting for the next request or event to arrive, responding

to that event, and returning to its looping state.

Programming languages that support Web-centric

computing require a paradigm that encourages system-user

interaction, or event-driven programming. Programming

languages that support Web-centric computing include

Perl, Tc1/Tk, Visual basic, and Java

3.5 Translators

A translator is a program that translates another program written in any

programming language other than the machine language to an

understandable set of codes for the computer and in so doing produces a

program that may be executed on the computer. The need for a

translator arises because only a program that is directly executable on a

computer is the machine language. Examples of a translator are:-

1. Assembler: This is a program that converts programs written in
assembly or low-level language to machine language.

2. Interpreters and Compilers: These consist of programs that

convert programs in high level programming language into

machine language. The major difference between interpreters and

compilers is that a compiler converts the entire source program

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

7 7

into object code before the entire program is executed while the

interpreter translates the source instructions line by line. In the

former, the computer immediately executes one instruction

before translating the next instruction.

3.5.1 Features of Translators

They exist to make programs understandable by the computer

There exist different translators for different levels and types of

programming languages

Without them, the programs cannot be executed.

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

8 8

3.6 The Programming Environment

The Editor: An editor allows a program to be retrieved from the disk

and amended as necessary. In order to type any program on the

keyboard and save the program on a disk, it will be necessary to run a

program called an editor.

The Compiler: This will translate a program written in high level

language stored in a text mode on a disk to the program stored in a

machine-oriented language on a disk.

The Linker/Loader: A linker/loader picks up the machine-oriented

program and combines it with any necessary software (already in

machine oriented form) to enable the program to be run.

Before a compiled program can be run or executed by the computer, it

must be converted into an executable form.

4.0 CONCLUSION

In the course of these unit you where introduced to the concept of

programming, you also learnt about the idea of programming languages

and the various types and methodologies involved in writing a

programs. Conclusively you learnt about the various fields in which

programming language could be implemented. We finished this course

by looking at various interpreters and the various features of a

programming environment.

5.0 SUMMARY

In this unit you learnt that:

Programming languages are languages through which we can

instruct the computer to carry out processes and tasks.

A programme is a set of codes that instructs the computer to carry

out some processes while programming is the act of writing

programs.

There are four levels of the programming language- machine

language, low level language, assembly language and high level

language.

There are various programming methodologies, of which we have

procedural programming, object-oriented programming,

functional, logic (declarative), event driven and concurrent

programming.

There are basically two types of translators- assembler and

interpreters and compilers.

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

9 9

6.0 TUTOR-MARKED ASSIGNMENT

Write out any ten programming languages stating the application areas

in which they could be made use of and the type of translators they use

7.0 REFERENCES/FURTHER READINGS

Gonnet and Ricardo Baeza-Yates (1993). Handbook of Algorithms and

Data Structures. International Computer Science Series.

Holmes, B.J. (2000). Pascal Programming Continuum (2nd ed).

www.doc.ic.ac.uk/~wjk/C++Intro/

http://www.amazon.co.uk/Handbook-Algorithms-Structures-International-Computer/dp/0201416077/ref=sr_1_22/202-8251764-2640635?ie=UTF8&s=books&qid=1186597273&sr=1-22
http://www.amazon.co.uk/Handbook-Algorithms-Structures-International-Computer/dp/0201416077/ref=sr_1_22/202-8251764-2640635?ie=UTF8&s=books&qid=1186597273&sr=1-22
http://www.amazon.co.uk/Pascal-Programming-B-J-Holmes/dp/0826454291/ref=sr_1_2/202-8251764-2640635?ie=UTF8&s=books&qid=1186597273&sr=1-2
http://www.doc.ic.ac.uk/~wjk/C++Intro/

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

10 10

UNIT 2 PROGRAMMING CONCEPTS

CONTENTS

1.0 Introduction

2.0 Objectives
3.0 Main Content

3.1 Program Development Cycle C 7, D4
3.2 Program Execution Stages
3.3 Principles of Good Programming Style

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit introduces you to programming concepts. These include the

programming development cycle which consists of the stages involved

in developing an efficient program. It also introduces you to the

program execution stages, as well as the conventional principles of

good programming

2.0 OBJECTIVES

Having gone through this unit, you should be able to:

explain the five major steps involved in developing an efficient

program

outline the four stages involved in the execution of a normal

program

outline the principles of a good programming style.

3.0 MAIN CONTENT

3.1 The Program Development Cycle

The major five stages involved in developing an efficient program are:-

- Problem Analysis: This is where the clear statement of

the problem is stated. The programmer must be sure that

he understands the problem and how to solve it. He must

know what is expected of the problem, i.e. what the

program should do, the nature of the output and the input

to consider so as get the output. He must also understand

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

11 11

the ways of solving the problem and the relationship
between the input and the expected output.

- Design: The planning of the solution to the problem in the
first stage takes place in this stage. The planning consists
of the process of finding a logical sequence of precise
steps that solve the problem. Such a sequence of steps is
called an algorithm. Every detail, including obvious steps
should appear in the algorithm. The three popular methods
used to develop the logic plan are: flowcharts, a pseudo
code, and a top-down chart. These tools help the
programmer break down a problem into a sequence of
small tasks the computer can perform to solve the
problem. Planning may also involve using representative
data to test the logic of the algorithm by hand to ensure
that it is correct.

- Coding: Translation of the algorithm in stage two into a

programming language takes place here. The process for

writing the program is called coding. The programmer

uses the algorithm devised in the design stage along with

the choice of the programming language he got from stage

three.

- Testing and Debugging: The process involves the

location and removal of error in the program if any.

Testing is the process of checking if the program is

working as expected and finding errors in the program,

and debugging is the process of correcting errors that are

found (An error in a program is called a bug.).

- Documentation: This is the final stage of program

development. It consists of organising all the material that

describes the program. The documentation of the program

is intended to allow another person or the programmer at a

later date, to understand the program. Internal

documentation remarks consist of statements in the

program that are not executed, but point out the purpose of

various parts of the program. Documentation might also

consist of a detailed description of what the program does

and how to use the program. Other types of documentation

are flowchart and pseudo code that were used to construct

the program. Although documentation is listed as the last

step in the program development cycle, it should take

place as the program is being coded. It is sometimes the

first step during program execution because the

programmer can use another program documentation in

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

12 12

developing a new program by just improving on the
previous work.

3.2 Program Execution Stages

The normal program execution consists of four (4) stages (See figure

2.1), though some programming languages like BASIC combine two or

three of these in one single process. The program execution stages are

explained below:-

Data Data

Program

(Source

Code)

Compilation
Object
Code

Output

Figure 2: Program execution stages

- The Program (Source Code): This is the coded

instruction given to the computer in a particular

programming language in order to accomplish a given

task. The source code must obey the syntactic and

semantic rules of the source programming language.

- The Compilation Process: The source code is supplied to

the complier, which coverts the object code. The process

of compilation involves reading the source code, checking

for errors in the source code and converting it to an

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

13 13

executable format (machine code) if no error is detected,

else the process of compilation is aborted and an error is

reported.

- The Object Code: The object code is the result of the

compilation process and it is also called the target code.

The object code is dependent on the programming

language chosen. For instance, the object code of JAVA

compilation is a byte code, that of Fortran is an executable

statement of the target machine, while that BASIC is that

of the target machine language, but it is not written to any

file like that of Fortran and JAVA.

- The Output: The last stage is for the computer to give the

result. The computer executes the object code in order to

present the desired output. It is important to note that a

valid or desired output might not be given if the logic of

the program is not correct.

3.3 Principles of a Good Programming Style

The following represent the major considerations in writing good
programs:-

1. Naming Conventions: It is very important to give
 meaningful names to all your constructs. A name like

get_Height() or get_avg_height() gives us much

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

14 14

more information than ctunde(). Also, a variable name- total-

for addition is more meaningful than pen. The name of a class

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

15 15

should communicate its purpose. Class name should start with an
uppercase letter, e.g. class AddPrime.

Major variables, which are shared by multiple functions and/or

modules should be identified and named at the design stage itself.

Variable name should start with a lowercase letter, e.g.
firstQuad;

Functions should be named similar to variables. We can always

distinguish between them because of the parenthesis associated

with functions.

2. File Naming and Organisation: Files should be organised into

directories in a module-wise fashion instead of having a

monolithic structure where all source code files and all header

files are in a single directory. This should be part of the design

process.

3. Formatting and Indentation: The lines within the code should

be clearly organised in a way that it will be easy to read and

understand even for the writer. Proper identification should be

used to show subordinate lines.

4. Comments and Documentation: Introducing comments and

proper explanations (documentation) of the program aid in

understanding the code. They help us in following the program

flow, and skip parts for which we are not interested in details.

This allows for program amendment and extensibility.

5. Classes: Ensure that all the classes in your application have a

default constructor, copy constructor and overloaded operator.

Also ensure that all the class data items are appropriately

initialised in constructor and assigned to each member of the

class.

6. Functions: A function should normally do only one job and do it

well. Avoid generic functions with lots of conditional branches to

do everything. If a function is supposed to do multiple jobs, then

create helper functions and delegate responsibilities to them.

Make functions simple and small. The ideal size of functions is

around 35 - 40 lines.

7. Using STL: Use Standard Template Library (STL) instead of

creating your own container data structures. Do not use hash

maps in STL; they are not portable across platforms.

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

16 16

8. Pointers and References: Use references, especially if coding in

C++, encourages the use of references instead of pointers. In fact

a pointer should typically be passed to a function only in cases

where you need to execute something on the pointer being a null

condition.

9. Minimising Bugs by Testing: Testing is an integral part of

software development. Tests help us not only in making sure that

what we have written is correct, but also in finding out if

someone breaks the code later. So, it is a good programming style

to thoroughly test a program.

4.0 CONCLUSION

In the course of the program the student should be able to write a good

program following a good programming convention, apart from learning

the cycle of program development. The programme execution stages are

also not left out of this unit.

5.0 SUMMARY

Problem Analysis - This is where the clear statement of the

problem is stated.

Design - The planning of the solution to the problem in the first

stage takes place in this stage

Planning may also involve using representative data to test the

logic of the algorithm by hand to ensure that it is correct.

Coding - Translation of the algorithm in stage two into a

programming language takes place here

The process for writing the program is called coding.

Testing and debugging - The process involves the location and

removal of errors (if any) in the program .

Documentation - This is the final stage of program development;

it consists of organising all the material that describes the
program.
The normal program execution consists of four (4) stages.

The programme (source code) –This is the set of coded

instructions given to the computer to perform a particular task.

The process of compilation involves reading the source code and

checking for errors it.

The object code - The object code is the result of the compilation

process and it is also called the target code.
It is very important to give meaningful names to all your

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

17 17

constructs. A name like get_Height() or

get_avg_height() gives us much more information than

ctunde().

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

18 18

The variable name should start with a lowercase letter, e.g.

firstQuad;

The name of a class should communicate its purpose.

A class name should start with an uppercase letter.

Files should be organised into directories in a module-wise

fashion.

Introducing comments and proper explanations (documentation)

of the program helps in understanding the code.

Ensure that all the classes in your application have a default

constructor.

Avoid generic functions with lots of conditional branches to do

everything.

Use the Standard Template Library (STL) instead of creating

your own container data structures.

6.0 TUTOR-MARKED ASSIGNMENT

1. What are the major five stages involved in developing an
efficient program?

2. What is the final stage of program development?

3. is the process of checking if the program is working or

is not working aright.
4. Draw the program execution chart.
5. What do you understand by compilation?
6. What do you understand by logical error?
7. The computer executes the object code in order to present the

desired
8. What are the principles of a good programming language?

9. Which of these is a good variable name following a good

programming? conventions:
(a) variable (b) variable2 (c) 2variable
(d) math ()

10. Differentiate between a function and a variable.
11. How do you make a clumsy code look neat and readable?
12. What is the importance of comments?
13. is an integral part of software development.
14. What do you understand by a good programming style?

7.0 REFERENCES/FURTHER READINGS

Gonnet and Ricardo Baeza-Yates (1993). Handbook of Algorithms and

Data Structures. International Computer Science Series.

Holmes, B.J. (2000). Pascal Programming. Continuum. (2nd ed).

www.doc.ic.ac.uk/~wjk/C++Intro/

http://www.amazon.co.uk/Handbook-Algorithms-Structures-International-Computer/dp/0201416077/ref=sr_1_22/202-8251764-2640635?ie=UTF8&s=books&qid=1186597273&sr=1-22
http://www.amazon.co.uk/Handbook-Algorithms-Structures-International-Computer/dp/0201416077/ref=sr_1_22/202-8251764-2640635?ie=UTF8&s=books&qid=1186597273&sr=1-22
http://www.amazon.co.uk/Pascal-Programming-B-J-Holmes/dp/0826454291/ref=sr_1_2/202-8251764-2640635?ie=UTF8&s=books&qid=1186597273&sr=1-2
http://www.doc.ic.ac.uk/~wjk/C++Intro/

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

19 19

Levitin, A. (2003). Introduction to the Design & Analysis of Algorithms.
Published by Addison-Wesley.

www.personal.kent.edu/~muhama/Algorithms

http://www.personal.kent.edu/~muhama/Algorithms

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

20 20

UNIT 3 ALGORITHMS

CONTENTS

1.0 Introduction

2.0 Objectives
3.0 Main Content

3.1 Introduction to Algorithms A page 3
3.2 Computational Problems and Algorithms
3.3 Characteristics of Algorithm C
3.4 Algorithm Design and Analysis Stages A page 9
3.5 Types of Major Computing Problems A page 19

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

In this unit, you will be introduced to algorithms as well as the necessary

conditions to design a good algorithm. The unit also highlights

important stages to in designing an algorithm. The characteristics of a

good algorithm are also outlined, among which is the fact that a good

algorithm must have a beginning and an end.

2.0 OBJECTIVES

By the end of this unit you should be able to:

explain what an algorithm is

differentiate between computational problems and algorithms

outline the characteristics of an algorithm

explain the stages in the design of an algorithm.

3.0 MAIN CONTENT

3.1 Introduction to Algorithms

What is an algorithm? Although there is no universally agreed-on

wording to describe this notion, there is a general agreement about what

the concept means:

An algorithm is a finite sequence of unambiguous instructions for

solving a problem, i.e., for obtaining a required output for any legitimate

input in a finite amount of time.

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

21 21

Problem definition

Problem analysis

Algorithm

Input *computer* output

Figure.3: The position of algorithms in problem solving

As shown in the above figure, after a problem has been identified, the

problem is then carefully analysed in order to present a suitable

algorithm. An algorithm is then designed and presented to the computer

in a particular programming language. The computer will then generate

the output, based on the input.

3.2 Computational Problems and Algorithms

Definition 1: A computational problem is a specification of the

desired input-output relationship.

Definition 2: An instance of a problem is all the inputs needed to
compute a solution to the problem.

Definition 3: An algorithm is a well defined computational procedure

that transforms inputs into outputs, achieving the desired input-output

relationship.

Definition 4: A correct algorithm halts with the correct output for every

input instance. We can then simply say that an algorithm is a procedure

for solving computational problems

3.3 Characteristics of Algorithms

The following are the major considerations in the design of algorithms

An algorithm must have a beginning and an end

The non ambiguity requirement for each step of an algorithm

cannot be compromised.

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

22 22

The range of inputs for which an algorithm works has to be

specified carefully

The same algorithm can be represented in several different ways

Several algorithms for solving the same problem may exist

Algorithms for the same problem can be based on very different

ideas and can solve the problem with dramatically different

speeds

It must terminate at a reasonable period of time.

3.4 Algorithm Design and Analysis Stages

The diagram below represents the stages in algorithm design

Problem definition

Identifying the computational requirements

Algorithmic Decisions

Algorithm Design

Evaluation

Analysis

Coding

Problem Definition

Conventionally, when providing solutions for any given problem, the

problem solver must fully have the understanding of the problem, that is

he/ she must think about the problem's exceptional cases and must ask

questions again and again in order to avoid doubt(s), and fully

understand the subject matter.

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

23 23

Identifying Computational Requirement(s)

After the programmer has fully understood the problem, all he/she needs

do, is to identify the computational requirement(s) needed to solve the

problem.

Algorithmic Decisions (Pre-Design Decisions)

Before a programmer designs an algorithm, he/she decides the method

to implement in solving the problem, whether its exact or approximate,

which are called exact algorithm or approximate algorithm respectively.

Also during this stage the programmer decides and chooses the

appropriate data structure needed to represent the inputs.

Algorithm Design

In this phase the programmer battles with the problem of how he or she

should design an algorithm to solve the given problem. Also, the

programmer specifies the fashion which the algorithm will follow, either

pseudo code algorithm fashion or Euclid algorithm fashion.

Algorithm Evaluation

The algorithm evaluation phase is the testing phase whereby the

programmer confirms that the algorithm yields the desired result for the

right input that is in a reasonable amount of time. The programmer

proves the correctness of the algorithm.

Proving an Algorithm’s Correctness

Since an algorithm has been specified, you have to prove its correctness.

That is, you have to prove that the algorithm yields a required result for

every legitimate input in a finite amount of time.

Algorithm Analysis

In this phase, we check the efficiency of the algorithm in terms of time

and space which are termed as time efficiency and space efficiency

respectively.

Coding the Algorithm

Most algorithms finally transit into computer programs. The transition

(coding of an algorithm) involves a challenge and an opportunity. The

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

24 24

challenge is the development of the algorithm into a program, either

incorrectly or inefficiently, while the opportunity is that the coded

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

25 25

algorithm eventually becomes an automated solution to the given
problem.

3.5 Types of Algorithms

1. Non-recursive Algorithms

These are algorithms that do not recall back the same algorithm or
function. For example, write a program to generate Fibonacci sequence.

M = 1

N = 2
I = 2
WRITE M
WRITE N

30 L = N

N = N + M

WRITE N
M = L
I = I+1
IF I <= 30 GOTO 30
END

2. Recursive Algorithms

These are algorithms that have the same function calling themselves.
For example, the recursive algorithm for the Fibonacci example is.

Algorithm f (n)

F (0)=0;
F (1)= 1;
For I= 2 to N

F (I) = F (I-1) + F (I-2);

RETURN F (N);

In this algorithm, we can see functions like F (I-1), F (I), F (I-2) calling /

referring to the same algorithm. This case is also referred to as a

recursion.

4.0 CONCLUSION

In this unit, you have learnt how to design an efficient algorithm. You

were also shown the difference between computational problems and

algorithms. This unit also explained the stages in the design of an

efficient algorithm.

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

26 26

5.0 SUMMARY

This unit has explained what an algorithm is and the necessary

considerations to design a good algorithm. It has also examined the

important stages to take in the design of an algorithm, as well as the

characteristics of algorithms.

6.0 TUTOR-MARKED ASSIGNMENT

1. In one sentence, define an algorithm.

2. List and explain five (5) stages involved in the design of an

algorithm.

7.0 REFERENCES/FURTHER READINGS

www.doc.ic.ac.uk/~wjk/C++Intro/

Gonnet and Ricardo Baeza-Yates (1993). Handbook of Algorithms and

Data Structures. International Computer Science Series.

Holmes, B. J. (2000). Pascal Programming Continuum (2nd ed).

http://www.doc.ic.ac.uk/~wjk/C++Intro/
http://www.amazon.co.uk/Handbook-Algorithms-Structures-International-Computer/dp/0201416077/ref=sr_1_22/202-8251764-2640635?ie=UTF8&s=books&qid=1186597273&sr=1-22
http://www.amazon.co.uk/Handbook-Algorithms-Structures-International-Computer/dp/0201416077/ref=sr_1_22/202-8251764-2640635?ie=UTF8&s=books&qid=1186597273&sr=1-22
http://www.amazon.co.uk/Pascal-Programming-B-J-Holmes/dp/0826454291/ref=sr_1_2/202-8251764-2640635?ie=UTF8&s=books&qid=1186597273&sr=1-2

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

27 27

UNIT 4 PROGRAM DESIGN TOOLS

CONTENTS

1.0 Introduction

2.0 Objectives
3.0 Main Content

3.1 Introduction
3.2 Flowcharts
3.3 Pseudocodes

4.0 Conclusion
5.0 Summary
6.0 Tutor-marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

In this unit, you will be introduced to algorithms as well as the necessary

conditions to design a good algorithm. The unit highlights important

stages to design an algorithm and also outlines the characteristics of a

good algorithm, one of which is that a good algorithm must have a

beginning and an end.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

identify various tools used to represent an algorithms otherwise

known as programming tools

understand the symbols and functions of each pictorial

component of a flow-chart

explain what pseudo codes are and their advantages

differentiate between flow charts and pseudo codes.

3.0MAIN CONTENT

3.1Introduction to Programming Tools

It has been stated earlier that an algorithm is a set of procedures for

solving a problem. The tools used to clearly represent an algorithm are

programming tools.

Example: Problem: Design an algorithm to find the average of two
numbers.

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

28 28

Discussion: Since an algorithm is just the solution steps for a problem,
it can be represented by ordinary English expressions.

Solution:

1. Start

2. Get the first number
3. Get the second number
4. Add the two numbers together
5. Show the result
6. Stop

3.2Flowcharts

A flowchart consists of special geometric symbols connected by arrows.

Within each symbol is a phrase presenting the activity at that step. The

shape of the symbol indicates the type of operation that is to occur. For

instance, the parallelogram denotes input or output. The arrows

connecting the symbols, called flow lines, show the progression in

which the steps take place. Flowcharts should “flow” from the top of the

page to the bottom. Although the symbols used in flowcharts are

standardised, no standards exist for the amount of detail required within

each symbol.

A table of the flowchart symbols adopted by the American National

Standards Institute (ANSI) follows (Figure 4). Figure 5 shows the

flowchart for the postage stamp problem.

The main advantage of using a flowchart to plan a task is that it provides

a pictorial representation of the task, which makes the logic easier to

follow. We can clearly see every step and how each step is connected to

the next. The major disadvantage with flowcharts is that when a

program is very large, the flowcharts may continue for many pages,

making them difficult to follow and modify.

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

29 29

Symbol Name Meaning

Flow line Used to connect symbols and indicate
the flow of logic.

Terminal Used to represent the beginning

(start) or the end (end) of a task.

Input/Output Used for input and output operations,

such as reading and printing. The data

to be read or printed are described

inside.

Processing Used for arithmetic and data-

manipulation operations. The

instructions are listed inside the

symbol.

Decision Used for any logic or comparison

operations. Unlike the input/output

and processing symbols, which have

one entry and one exit flow line, the

decision symbol has one entry and

two exit paths. The path chosen

depends on whether the answer to a

question is “yes” or “no”.

Off page Used to indicate that the flowchart

continues to a second page.

Connector Used to join different flow lines

Predefined Used to represent a group of

statements that perform one

processing task.

Annotation Used to provide additional

information about another flowchart

symbol.

Figure 4: Table of the flowchart symbols adopted by the American National
Standards Institute (ANSI)

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

30 30

Add the two
numbers

(C = A + B)

Start Terminal

Read the
first No (A)

Input

Read the

second

number (A)

Input

Processing

Show the

result

(display C)

Output

Stop Terminal

Figure 5: The flowchart for the postage stamp problem

3.3Pseudo Codes

A pseudo code is an abbreviated version of an actual computer code

(hence, the term pseudo code). The geometric symbols used in

flowcharts are replaced by English-like statements that outline the

process. As a result, a pseudo code looks more like a computer code

than a flowchart does. The pseudo code allows the programmer to focus

on the steps required to solve a problem rather than on how to use the

computer language. The programmer can describe the algorithm in

Visual Basic-like form without being restricted by the rules of Visual

Basic. When the pseudo code is completed, it can be easily translated

into the Visual Basic language.

The pseudocode has several advantages. It is compact and probably will

not extend for many pages as a flowchart would. Also, the plan looks

like the code to be written and so is preferred by many programmers.

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

31 31

The pseudo code for the example in 3.2 is given below:

Step 1 Start Step

2 Input A Step 3

Input B Step 4 C

= A + B Step 5

Print C Step 6

Stop

4.0 CONCLUSION

The unit introduced the tools used to represent an algorithm, known as

programming tools, such as flow charts and pseudo codes. You were

also introduced to the symbol names and meaning of pictorial

components of a flow chart.

5.0 SUMMARY

This unity has dealt with programming tools (flow-charts and pseudo

code). It has also showed the diagrams used and the English-like

statements used to represent an algorithm. The unit also stated the

advantages of both pseudo codes and flow charts.

6.0 TUTOR-MARKED ASSIGNMENT

Using the flowchart only, design an algorithm to find the mean of five
numbers.

Write the pseudo code of the flowchart above.

7.0 REFERENCES/FURTHER READINGS

www.doc.ic.ac.uk/~wjk/C++Intro/

www.personal.kent.edu/~muhama/Algorithms

http://www.doc.ic.ac.uk/~wjk/C++Intro/
http://www.personal.kent.edu/~muhama/Algorithms

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

32 32

UNIT 5 PROGRAM TESTING, DOCUMENTATION &

MAINTENANCE

CONTENTS

1.0 Introduction

2.0 Objectives
3.0 Main Content

3.1 Program Testing
3.2 Program Documentation
3.3 Program Maintenance

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit introduces you to testing, documentation, and maintenance of

programs in details.

2.0 OBJECTIVES

After completing this unit you should be able to:

outline what is meant by program testing and the

reason why it may be labour intensive

explain program documentation and the two major

reasons for program documentation

explain why program maintenance is important.

3.0 MAIN CONTENT

3.1 Program Testing

Program testing is an integral component of software development and it

is performed to determine the existence, quality, or genuineness of the

attributes of the program of application.

Program testing is done in a way that the program is run on some test

cases and the results of the program‟s performance are examined to

check whether the program is working as expected. It is also important

to perform a test process on every condition or attribute that determines

the effective/correct functionality of the system. The testing process

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

33 33

normally begins with selecting the test factor(s). The test factors

determine whether the program is working correctly and efficiently.

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

34 34

Testing is generally focused on two areas: internal efficiency and

external effectiveness. The goal of external effectiveness testing is to

verify that the software is functioning according to system design, and

that it is performing all the necessary functions or sub-functions. The

goal of internal testing is to make sure that the computer code is

efficient, standardised, and well documented. Testing can be a labor-

intensive process, due to its iterative nature.

1. Structural System Testing: This is designed to verify

that the developed system and programs work correctly.

Its components include:

Stress testing

Recovery testing

Compliance testing

Execution testing

Operations testing

Security testing

TECHNIQUE DESCRIPTION EXAMPLE

STRESS Determine that the
system still
performs with
expected volumes

Sufficient disk space

allocation

Communication lines

adequate

EXECUTION System achieves
desired level of
proficiency

Transaction turnaround

time adequate

Software/hardware use

optimised

RECOVERY System can be
returned to an
operational status
after a failure

Induce failure

Evaluate adequacy of

backup data

OPERATIONS System can be
executed in a
normal operational
status

Determine systems can

run using document

JCL adequate

COMPLIANCE
(TO
PROCESS)

System is
developed in
accordance with
standards and
procedures

Standards followed

Documentation complete

SECURITY System is protected

in accordance with
importance to
organisation

Access denied

Procedures in place

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

35 35

2. Functional System Testing: This is designed to ensure

that the system requirements and specifications are

achieved. Its components include:

Requirement testing

Error-handling testing

Inter-systems testing

Parallel testing

Regressing testing

Manual-support testing

Control test

TECHNIQUE DESCRIPTION EXAMPLE

REQUIREMENTS System performs as

specified
Prove system

requirements

Compliance to

policies regulations

REGRESSION Verifies that

anything unchanged
still performs
correctly

Unchanged system

segments function

Unchanged manual

procedures correct

ERROR

HANDLING

Errors can be

prevented or
detected, and then
corrected

Error introduced

into test

Errors re-entered

MANUAL

SUPPORT

The people
-computer
interaction works

Manual procedures

developed

People trained

INTER-
SYSTEMS

Data is correctly
passed from system
to system

Intersystem

parameters changed

Intersystem

documentation

updated

CONTROL Controls reduce

system risk to an
acceptable level

File reconciliation

procedures work

Manual controls in

place

PARALLEL Old system and new

system are run and
the results compared
to detect unplanned
differences

Old and new system

can reconciled

Operational status of

old system

maintained

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

36 36

3.2 Program Documentation

This is the procedure of including illustrations or comments to explain

lines or segments within the program. This is necessary so as to

understand the program especially when the program is long.

The two major reasons for documentation are:

Clarity: It makes the program to be clear and understandable to

the programmers .Even, the program writer will find it difficult

understanding some parts of the program if it is not properly

documented.

Extensibility: Documentation allows for easy amendment,

extension or upgrade of the program. Documentation allows other
programmers (apart from the writer) to be able to work on the
programmer. We all know that a programmer might not be
available every time.

However, it is important to note that program documentation

must be efficient. This means that correct descriptions should be

attached to the lines and segments within the program. This is

necessary so as not to mislead other programmers that might

want to work on the program in the future.

3.3 Program Maintenance

Program development does not really end after implementation; it is still

important to still monitor the system so as to continually check whether

the program is still working according to earlier specifications. It is also

important to check whether the program still meets current needs of the

user. Program maintenance is the act of ensuring the smooth and

continuous working of the program in the nature of business and

dynamics of operation. The following are the reasons why program

maintenance is necessary:

1. Changes in nature of business

2. Dynamics of operation
3. Changes in technology
4. Improving the size and efficiency of code – refactoring

4.0 CONCLUSION

This unit has explained some of the reasons why you should maintain

your program. It has further explained two major reasons for program

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

37 37

documentation. It introduced program testing as well as the reasons for

carrying out in our program.

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

38 38

5.0 SUMMARY

What this unit explains is the reason why you should maintain your

programs and why program testing is a labour intensive task. It also

explained and gave instances of types of programming testing and the

techniques used in carrying them out.

6.0 TUTOR-MARKED ASSIGNMENT

1. Explain briefly what you understand by Program Testing.

2. Enumerate the components of Structural System Testing.
3. What do you understand by System Recovery?
4. What is the function of Functional System Testing?
5. Give two examples of Error Handling.
6. What are the two major reasons for documentation?
7. Why is program maintenance necessary?

7.0 REFERENCES/FURTHER READINGS

Gonnet and Ricardo Baeza-Yates (1993). Handbook of Algorithms and

Data Structures. International Computer Science Series.

Holmes, B.J (2000). Pascal Programming. Continuum (2nd ed).

www.doc.ic.ac.uk/~wjk/C++Intro/

www.personal.kent.edu/~muhama/Algorithms

http://www.amazon.co.uk/Handbook-Algorithms-Structures-International-Computer/dp/0201416077/ref=sr_1_22/202-8251764-2640635?ie=UTF8&s=books&qid=1186597273&sr=1-22
http://www.amazon.co.uk/Handbook-Algorithms-Structures-International-Computer/dp/0201416077/ref=sr_1_22/202-8251764-2640635?ie=UTF8&s=books&qid=1186597273&sr=1-22
http://www.amazon.co.uk/Pascal-Programming-B-J-Holmes/dp/0826454291/ref=sr_1_2/202-8251764-2640635?ie=UTF8&s=books&qid=1186597273&sr=1-2
http://www.doc.ic.ac.uk/~wjk/C++Intro/
http://www.personal.kent.edu/~muhama/Algorithms

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

39 39

UNIT 6 BASIC DATA TYPES

CONTENTS

1.0 Introduction

2.0 Objectives
3.0 Main Content

3.1 Data and Programming
3.2 Numeric Data Types
3.3 Non-numeric Data Types

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

In this unit, you will be introduced to the various forms in which data

can be represented Data Structures). You will also be introduced to the

different data types, like integers, real numbers, character data type and

string data type.

2.0 OBJECTIVES

By the time you must have completed this unit, you should be able to:

explain the fact that data exists in a variety of forms

outline the data types, which include numeric and

non-numeric data types

outline the constituents of an integer, real-numbers,

character data type and string data type.

3.0 MAIN CONTENT

3.1Data and Programming

Most programs are designed to manipulate data in order to get an output.

Data exist in a variety of forms. Examples are 20,000,000, which might

be a day‟s sales, simplified, limited, name of an organisation and so on.

Data serve as input to most programs. The format or procedure for input
specification within a program depends on the nature of data.

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

40 40

3.2Numeric Data Types

They consist of whole numeric valves. Examples are:

1. Integers: Integers consist of positive and negative whole valves.

Examples, are 500, - 112, 77 etc.

Major standard integer data types are:

Bytes

Shortint

Integer

Word

Long int

You can find out about all these in programming languages.

2. Real Numbers: These consist of valves with fractional

parts. Examples are 257.29, 20.10, 11.00, etc. Floating-

point numbers normally have two parts: the mantissa

(the fractional part) and an exponent (the power to which

the base of the number is raised to in order to give the

correct valve of the number).

For example: The floating-point representation of 49234.5 is mantissa

Mantissa = 0.4923425
Exponent = 5
So we have 0.4923425E5.

The standard real data types are:

Real

Single

Double

Extended

Also read more about these

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

41 41

3.3Non-Numeric Data Types

These are valves that are not numbers in nature. Examples are

1. Character Data Type

This consists of representations of individual characters using the

American Standard Code for Information Interchange (ASCII). ASCII

uses 7-bits to represent each character.

Character ASCII Code

A 65
B 66
C 67

2. String Data Type

A string consists of a sequence of characters enclosed in single or

double quotation marks depending on the programming language.

For example

- “Abiola”
- “I am a man”
- “1999”

4.0 CONCLUSION

This unit has examined in detail the types of data in programming

languages. Also you have been able to know more about the numeric

and non-numeric data types, the standard real data types, etc.

5.0 SUMMARY

There are basically two types of data types, which are numeric and

non numeric data types.

Numeric data types are either integers or real numbers.

Non numeric data types are either character or string.

6.0 TUTOR-MARKED ASSIGNMENT

Write and explain any example of a numeric and non-numeric data type.

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

42 42

7.0 REFERENCES/FURTHER READINGS

Gonnet and Ricardo Baeza-Yates (1993). Handbook of Algorithms and

Data Structures. International Computer Science Series.

B.J. Holmes (2000). Pascal Programming. Continuum (2nd ed).

www.doc.ic.ac.uk/~wjk/C++Intro/

www.doc.ic.ac.uk/~wjk/C++Intro/

www.personal.kent.edu/~muhama/Algorithms

http://www.amazon.co.uk/Handbook-Algorithms-Structures-International-Computer/dp/0201416077/ref=sr_1_22/202-8251764-2640635?ie=UTF8&s=books&qid=1186597273&sr=1-22
http://www.amazon.co.uk/Handbook-Algorithms-Structures-International-Computer/dp/0201416077/ref=sr_1_22/202-8251764-2640635?ie=UTF8&s=books&qid=1186597273&sr=1-22
http://www.amazon.co.uk/Pascal-Programming-B-J-Holmes/dp/0826454291/ref=sr_1_2/202-8251764-2640635?ie=UTF8&s=books&qid=1186597273&sr=1-2
http://www.doc.ic.ac.uk/~wjk/C++Intro/
http://www.doc.ic.ac.uk/~wjk/C++Intro/
http://www.personal.kent.edu/~muhama/Algorithms

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

43 43

UNIT 7 FUNDAMENTAL DATA STRUCTURES

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Introduction to Data Structure
3.2 Linear Data Structures A 26
3.3 Graphs A 28
3.4 Trees A 32

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit is intended to show you the various ways of representing data

in an algorithm and in programming as a whole.

2.0 OBJECTIVES

At the end of this unit you should be able to:

explain data structures and give related examples

outline the different types of data structures

explain the different types of linear data structures and when they

are used in the design of algorithms

explain the operations of the different types of data structures

differentiate between trees and graphs.

3.0 MAIN CONTENT

3.1 Introduction to Data Structure

Data structure is a means of organising related data items. Data

structures became necessary to learn the design of algorithms. Since

most algorithms operate on data, therefore, it is important to understand

the ways of organising data in the design and analysis of algorithms.

The data structure to be used is determined by the problem at hand. For

instance, if you have to work on a list of data, you will need an array in

the design of the algorithm. There are two basic types of data structures;

these are linear data structures and non-linear data structures. Examples

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

44 44

of data structures are arrays (one-dimensional or multidimensional),
queues, stack, trees, linked list etc.

3.2 Linear Data Structures

Array: An array can be defined as sequences of objects all of which are

of the same type that are collectively referred to by the same name. Each

individual array element (that is each of the data items), can be referred

to by specifying the array name, followed by an index (also called a

subscript), enclosed in parenthesis. For instance LIST (1) LIST is the

name of the array while 1 is the index pointing to the data item on LIST.

There are two types of arrays; one dimensional array (list or column)

and multi dimensional arrays (table, matrix etc).

Linked list: A linked list is a sequence of zero or more elements called

nodes, each containing two kinds of information: some data and one or

more links called pointers to other nodes of the linked list. In every

linked list, there is a special pointer which is called the null which is

used to indicate the absences of a node successor. Also, it contains a

special node called the header; this node contains the information about

the linked list such as its current length.

Stack: A stack is a data structure in which insertion and deletion can

only be done at one end (called the TOP). In a stack, there are two major

processes called PUSH and POP. PUSH is the process of adding

elements to the stack while POP is the process of deleting elements from

the stack. This (stack's) scheme is referred to as the Last-In-First-Out

(LIFO) scheme. A typical/physical illustration of a stack is a pile of

plates in a container. Stacks are used in implementing recursive

algorithms.

Queue: Unlike the stack, a queue is a data structure with two ends, in

which an insertion is made at a end (REAR) and a deletion is done at the

other end (FRONT). A queue operates a First-In-First-Out (FIFO)

scheme. A typical and practical illustration of this data structure is a

queue in a modern entry. Queues are used for several graph problems.

Heap: It is a partially ordered data structure that is used in

implementing priority queues. A priority queue is a set of items with an

orderable characteristic called an item's priority. A heap can also be

defined as a binary tree with keys assigned to its nodes.

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

45 45

3.3 Non-Linear Data Structures

A graph consists of two things:

1. A set V whose elements are called vertices, points or nodes and

2. A set E of unordered pairs of distinct vertices, called edges.

A graph is denoted by G (V, E) when we want to emphasise the two
parts of the graph G.

Therefore, a graph can be pictorially (imaginarily) defined as a

connection of points in a plane called vertices or edges, some of which

are connected line segments called edges or arcs. It is formally defined

by a pair of two sets.

Graph G = (V, E).

It is more convenient to label the vertices of a graph with letters, integer
numbers or character strings.

The figure below represents the graph G with four vertices A,B,C & D

and five edges e1=(A,B), e2=(B,C), e3= (C,D), e4=(A,C), e5=(B,D).

We usually denote a graph by drawing its diagram rather than explicitly
listing its vertices and edges.

A B

D C

3.4 TREES

A graph is said to by acyclic or cycle-free, since it contains no cycle,

while a tree is a connected a cyclic graph. A forest is a graph with no

cycle hence, each of its connected components is a tree.

There are some properties possessed by trees which graphs do not have;

for instance, the number of edges in a tree is always one less the number

of its vertices.

\E\ = |V| - 1.

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

46 46

The figures below are examples of trees with different numbers of
vertices.

a b a b h

c d c d e i

f g f g j

i d a

c b a e
b d e

c g f

h g f h i

4.0 CONCLUSION

In the course of this unit you were introduced to the concept of data
structure and the various data structures that are available.

5.0 SUMMARY

This unit has shown that:

Data structure is a means of organising related data items.

A data structure could be either linear or non-linear.

The basic linear data structures available are array, linked list,

stack, queue and heap.

The basic non-linear data structures are graph and trees.

6.0 TUTOR-MARKED ASSIGNMENT

1. Describe how one can implement each of the following

operations on an array so that the time it takes does not depend on

the array‟s size n.

a. Delete the ith element of an array (1 i n).

b. Delete the ith element of a sorted array (the remaining

array has to stay sorted, of course).

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

47 47

2. If you have to solve the searching problem for a list of n

numbers, how can you take advantage of the fact that the list is

known to be sorted? Give separate answers for
a. Lists represented as arrays
b. Lists represented as linked lists.

3. a. Show the stack after each operation of the following
 sequence that starts with the empty stack.
 Push (a), push (b), pop, push(c), push (d), pop
 b. Show the queue after each operation of the following
 sequence that starts with the empty queue:enqueue(a),
 enqueue(b), dequeue, enqueue(c), enqueue(d), dequeue

7.0 REFERENCES/FURTHER READINGS

Levitin, A. (2003). Introduction to the Design & Analysis of Algorithms.
Published by Addison-Wesley.

www.doc.ic.ac.uk/~wjk/C++Intro/

www.personal.kent.edu/~muhama/Algorithms

http://www.doc.ic.ac.uk/~wjk/C++Intro/
http://www.personal.kent.edu/~muhama/Algorithms

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

48 48

UNIT 8 EXERCISE I

CONTENTS

1.0 Introduction

2.0 Objectives
3.0 Main Content

3.1 Exercise
3.2 Solution

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit is a recap of the module because it will expose you to the
practical aspect of what the module has taught.

2.0 OBJECTIVES

At the end of this unit you should be able to develop a working
algorithm and a corresponding flowchart for the algorithm.

3.0 MAIN CONTENT

3.1 The Problem

Use pseudo codes and a flowchart to represent an algorithm to generate

prime numbers between 1 and 200.

3.2 Solution

a. Pseudocodes

I=1

WRITE 1
FOR I = 2, I – 1

FOR J = 2, I – 1
IF MOD (I, J) = 0
GOTO 20

ENDIF

NEXT J
WRITE “I”

20 NEXT I

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

49 49

Note

- The mod function that is used in the pseudo codes is used

in most programming languages to get the remainder when

a number is divided by another number.

- The facilitator should explain the pseudo codes to the

students.

b. Flowchart

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

50 50

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

51 51

4.0 CONCLUSION

The unit is a practical approach to the module and it is necessary for you

to have a solid experience in the development of an algorithm and a

flow chart as a pre-requisite for the remaining part of the course.

5.0 SUMMARY

You should be able to develop an algorithm and a flow chart for the

algorithm

6.0 TUTOR-MARKED ASSIGNMENT

Use pseudo codes and a flowchart to represent an algorithm to find the

average of the first 100 numbers.

7.0 REFERENCES/FURTHER READINGS

Gonnet and Ricardo Baeza-Yates (1993). Handbook of Algorithms and

Data Structures. International Computer Science Series

Holmes, B.J (2000). Pascal Programming. Continuum, 2nd (ed).

www.personal.kent.edu/~muhama/Algorithms

http://www.amazon.co.uk/Handbook-Algorithms-Structures-International-Computer/dp/0201416077/ref=sr_1_22/202-8251764-2640635?ie=UTF8&s=books&qid=1186597273&sr=1-22
http://www.amazon.co.uk/Handbook-Algorithms-Structures-International-Computer/dp/0201416077/ref=sr_1_22/202-8251764-2640635?ie=UTF8&s=books&qid=1186597273&sr=1-22
http://www.amazon.co.uk/Pascal-Programming-B-J-Holmes/dp/0826454291/ref=sr_1_2/202-8251764-2640635?ie=UTF8&s=books&qid=1186597273&sr=1-2
http://www.personal.kent.edu/~muhama/Algorithms

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

52 52

MODULE 2 PERFORMANCE ANALYSIS OF

ALGORITHMS

Unit 1 Performance Analysis Framework

Unit 2 Order of Growth
Unit 3 Worst-Case, Best-Case and Average-Case Efficiencies
Unit 4 P, NP and NP-Complete Problems
Unit 5 Practical Exercise II

UNIT 1 PERFORMANCE ANALYSIS FRAMEWORK

CONTENTS

1.0 Introduction

2.0 Objectives
3.0 Main Content

3.1 Efficiency Attributes
3.2 Measuring Input Size
3.3 Units for Measuring Running Time

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0INTRODUCTION

This unit will introduce you to the criteria used in analysing the

performance of an algorithm. As you will see, this unit is an introduction

to other units in this module.

2.0OBJECTIVES

At the end of this unit, you should be able to:

state the criteria for estimating the running time of an algorithm

estimate the running time of an algorithm

list the efficiency attributes of an algorithm

describe how time efficiency of an algorithm is measured.

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

53 53

3.0 MAIN CONTENT

3.1 Efficiency Attributes

The efficiency attributes are used to analyse the performance of
algorithms. There are two types of algorithm efficiency attributes.

Time Efficiency: - This indicates how fast an algorithm runs.

Space Efficiency: - It deals with the space required for an algorithm to

run efficiently. In the early computing days, both resources – time and

space – were limited.

3.2 Measuring Input Size

It is certain that all algorithms do not run at a time on the same number

of input(s). For example, it takes longer to sort larger arrays, multiply

larger matrices, and so on. It is then necessary to investigate an

algorithm‟s efficiency, as a function of input size parameter n. Selecting

such a parameter is not difficult in most problems. For example, it will

be the size of the list for problems of sorting, searching, finding the list‟s

smallest element, and most other problems dealing with lists. For the

problem of evaluating a polynomial P(x) = anx
n +….+ a0 of degree n, it

will be the polynomial‟s degree or the number of its coefficients, which

is larger by one than its degree.

Of course, there are situations where the choice of a parameter

indicating an input size is not really a factor. An example is computing

the product of two n-by-n matrices. There are two natural measures of

size for this problem. The first and more frequently used is the matrix

order n. But the other natural contender is the total number of elements

N in the matrices being multiplied.

The choice of an appropriate size metric can be influenced by operations

of the algorithm in question. For example, how should we measure an

input‟s size for a spell-checking algorithm? If the algorithm examines

individual characters of its input, then we should measure the size by the

number of characters; if it works by processing words, we should count

their number in the input.

3.3 Units for Measuring Running Time

In measuring the running time of algorithm, it is necessary to identify

the basic operations within the algorithm. The basic operations are the

most important operations of the algorithm. After identifying the basic

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

54 54

operation, we then compute the number of times the basic operation is
executed.
As a rule, it is not difficult to identify the basic operation of an
algorithm: it is usually the most time-consuming operation in the
algorithm‟s innermost loop. For example, most sorting algorithms work
by comparing elements (keys) of a list being sorted with each other; for
such algorithms, the basic operation is a key comparison. As another
example, algorithms for matrix multiplication and polynomial
evaluation require two arithmetic operations: multiplication and
addition. On most computers, multiplication of two numbers takes
longer than addition, making the former an unquestionable choice for
the basic operation.

Conclusively, an algorithm‟s time efficiency can be measured by

counting the number of times the algorithm‟s basic operation is executed

on inputs of size n. This will be fully treated in unit three of this

module.

4.0 CONCLUSION

In this unit, you have been introduced to the fundamental concepts of

analysing the performance of an algorithm.

5.0 SUMMARY

Having gone through this unit, you are expected to have learnt the

following:

The efficiency attributes of an algorithm are time

efficiency and space efficiency.

The time efficiency is measured as a function of the input

size n

The time efficiency is measured as a function of the

number of times basic operations were executed on an

input.

The running time of an algorithm is estimated based on

the basic operations.

6.0 TUTOR-MARKED ASSIGNMENT

1. What do you understand by the term “Running time of an

algorithm”? How is it measured?

2. What are the units for measuring the running time of an

algorithm?

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

55 55

3. Describe space efficiency with respect to the running of an
algorithm.

7.0 REFERENCES/FURTHER READINGS

Holmes,B. J. (1997). BASIC Programming – A Complete Course Text.

Gp Publications.

www.eslearning.algorithm.com

Levitin, A. (2003). Introduction to the Design and Analysis of
Algorithms. Addison- Wesley.

www.personal,kent.edu/wmuhama/algorithms.

Tucker, A.B and Noonan, R.(2006).Programming Languages –

Principles and Paradigms. (2nd ed). McGraw – Hill College.

http://www.eslearning.algorithm.com/
http://www.personal/

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

56 56

UNIT 2 ORDER OF GROWTH

CONTENTS

1.0 Introduction

2.0 Objectives
3.0 Main Content

3.1 Informal Notation
3.2 o - Notation
3.3 O - Notation

3.4 - Notation

3.5 - Notation

3.6 - Notation

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit introduces and explains order of growth and the different
notations that are used to represent order of growth of algorithms.

2.0 OBJECTIVES

By the end of this unit you should be able to:

explain order of growth

explain the different asymptotic notations.

3.0 MAIN CONTENT

3.1Informal Introduction

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

57 57

Let us consider the table below to informally describe the growth of

algorithms based on some standard functions.

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

58 58

1010 1015

1012
 1018

n log2
n
 n n log2

n
 n2 n3 2n n!

10 3.3 101
 3.3.101

 102
 103

 103
 3.6.106

102
 6.6 102

 6.6.102
 104

 106
 1.3.1030

 9.3.10157

103
 10 103

 1.0.104
 106

 109

104
 13 104

 1.3.105
 108

 1012

105 17 105 1.7.106

106 20 106 2.0.107

All the functions are based on input size n. We can see that the function

growing the slowest among these is the logarithmic function. It grows so

slowly, in fact, that we should expect a program implementing an

algorithm with a logarithmic basic-operation count to run practically

instantaneously on inputs of all realistic sizes.

On the other end of the spectrum are the exponential function 2n and the

factorial function n. Both these functions grow so fast that their values

become astronomically large, even for rather small values of n.

Algorithms performance is mostly represented by these functions

because these functions describe the performance of these most

algorithms on input size n.

3.1o-Notation

This is pronounced as “little oh of”. Let (x) and g (x) be two functions

of x. Each of the five symbols above is intended to compare the rapidity

of growth of and g. If we say that (x) = o (g (x)), then informally we

are saying that grows more slowly than g does when x is very large.

Definition

We say that (x) = o (g (x)) ((x

) If limx

, (x)/g (x) exists and

is equal to 0.
Here are some examples:

1.X2 = o(x5)

2. Sin x = o (x)

3.14.709 x = o (x/2 + 7 cos x)

3.2O-Notation

This is pronounced as “big oh of”. The second symbol of the asymptotic

vocabulary is the „O‟. When we say that (x) = O (g (x)) we mean,

informally, that certainly does not grow at a faster rate than g. It might

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

59 59

grow at the same rate or it might grow more slowly; both are
possibilities that the „O‟ permits.

Definition

We say that (x) = O (g (x)) (x) if C, xo such that | (x) | < Cg (x)

(x > xo).

The qualifier „x ‟ will usually be omitted, since it will be understood
that we will most often be interested in large values of the variables that
are involved.

For example, it is certainly true that sin x = O (x), but even more can be

said, namely that sin x = O (1). Also x3 + 5x2 + 77 cos x = O (x5) and 1/

(1 + x2) = O (1). Now we can see how the „o‟ gives more precise

information that the „O‟, for we can sharpen the last example by saying

that 1/(1 + x2) = o (1). This is sharper because not only does it tell us

that the function is bounded when x is large, we learn that the function

actually approaches 0 as x .

This is typical of the relationship between O and o. It often happens that

a „O‟ result is sufficient for an application. However, that may not be the

case, and we may need the more precise „o‟ estimate.

3.3 -Notation

The third symbol of the language of asymptotic is the „ ‟. This is

pronounced, as “is theta of”

Definition

We say that (x) = (g(x)) if there are constants c1 > 0, c2 > 0, xo such

that for all x > xo it is true that c1g(x) < (x) < c2g(x).

We might then say that and g are of the same rate of growth, only the

multiplicative constants are uncertain. Some examples of the „ ‟ at work

are

(X + 1) 2 = (3X2)

(x2 + 5x + 7)/(5x3 + 7x + 2) = (1/x)

3 + 2x = (x ¼)

(1 + 3/x)x = (1).

The „ ‟ is much more precise than either the „O‟ or the „o‟. If we know

that (x) = (x2), then we know that (x)/x2 stays between two nonzero

constants for all sufficiently large values of x. The rate of growth of is

established: it grows quadratic ally with x.

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

60 60

3.4 - Notation

This is pronounced as “is asymptotically equal to”. The most precise of

the symbols of asymptotic is the „ ‟. It tells us that not only do and go

grow at the same rate, but that in fact /g approaches 1 as x - .

Definition

We say that (x) g(x) if limx - (x)/g(x) = 1.

Here are some examples. X2 + x x2

(3x + 1) 4 81x4

Sin 1/x 1/x

(2x3 + 5x + 7)/(x2 + 4) 2x

2x + 7 log x + cos x 2x

Observe the importance of getting the multiplicative constants exactly

right when the „ ‟ symbol is used. While it is true that x2 = (x2), it is

not true that 1x2 = (17x2), but to make such an assertion is to use a bad

style since no more information is conveyed with the “17” than without

it.

3.5 - Notation

This is pronounced, as “is omega of”. The last symbol in the asymptotic

set that we will need is the „ ‟ which is the negation of „o‟. That is to

say, (x) = (g (x)) means that it is not true that (x) = o(g(x)). In the

study of algorithms for computers, the „ ‟ is used when we want to

express the thought that a certain calculation takes at least so-and-so

long to do. For instance, we can multiply together two n x n matrices in

time (n3).

4.0 CONCLUSION

In this unit, you have learnt the five asymptotic symbols for representing

order of growth of algorithms. .

5.0 SUMMARY

This unit has explained the five functions for comparing the growth

order of an algorithm. These functions in ascending order are o, O, , ,

6.0 TUTOR-MARKED ASSIGNMENT

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

61 61

Question: Use the asymptotic symbols to compare the following

functions. You might need to write small programs before you can get

the order of growth effectively.

1. f (x) and g (x) where f (a) = 4a2+a+ 7 and g (a) = a!
2. f (x) and g (x) where f (x) = 4x and g (x) = x4

3. h (x) and i (x) where h (x) = cos (x) and i (x) = sin (x)
4. f (a) and g (b) where f (x) = (x2) 2 and g (x) = x4

7.0 REFERENCES/FURTHER READINGS

Holmes,B. J. (1997). BASIC Programming – A Complete Course Text.

Gp publications.

www.eslearning.algorithm.com

Levitin, A.(2003) Introduction to the Design and Analysis of
Algorithms. Addison- Wesley.

www.personal.kent.edu/wmuhama/algorithms.

Tucker, A.B and Noonan, R. (2006). Programming Languages –

Principles and Paradigms.(2nd ed). McGraw – Hill College.

http://www.eslearning.algorithm.com/
http://www.personal.kent.edu/wmuhama/algorithms

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

62 62

UNIT 3 WORST-CASE, BEST-CASE AND AVERAGE-

CASE EFFICIENCIES

CONTENTS

1.0 Introduction

2.0 Objectives
3.0 Main Content

3.1 Worst-Case
3.2 Best-Case
3.3 Average-Case

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit extends what we learnt in Unit1 of this module. It discusses the

different techniques that can be used to measure the efficiencies of

algorithms.

2.0 OBJECTIVES

At the end of this unit you should be able to:

explain the three methods that are used to measure the efficiencies of

algorithms

explain how to identify basic operations within an algorithm.

3.0 MAIN CONTENT

3.1Worst-Case

An algorithm is its efficiency for the worst-case input of size n, which is

an input (or inputs) of size n for which the algorithm runs the longest

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

63 63

among all possible inputs of that size. The way to determine the worst-

case efficiency of an algorithm is, in principle, quite straight forward:

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

64 64

We analyse the algorithm to see what kind of inputs yield the largest

value of the basic operations‟ count C (n) among all possible inputs of

size n and then compute this worst-case value Cworst(n). Clearly, the

worst-case analysis provides very important information about an

algorithm‟s efficiency by bounding its running time from above. In

other words, it guarantees that for any instance of size n, the running

time will not exceed Cworst(n), its running time on the worst-case inputs.

As it was mentioned in Unit 1 of this module, we need to count the

number of basic operations performed by the algorithm on the worst-

case input

A basic operation could be:

An assignment
A comparison between two variables
An arithmetic operation between two variables. The worst-case

input is that input assignment for which the most basic operations

are performed.

Example 1

n := 5;

loop
get(m);
n := n -1;

until (m=0 or n=0)

Worst-case: 5 iterations

Example 2

get(n);

loop
get(m);
n := n -1;

until (m=0 or n=0)

Worst-case: n iterations

Examples 3 of “input size”:

a. Sorting:

n == The number of items to be sorted;

Basic operation: Comparison.

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

65 65

b. Multiplication (of x and y):

n == The number of digits in x plus the number of digits in y.

Basic operations: single digit arithmetic.

c. Graph “searching”:

n == the number of nodes in the graph or the number of edges in the
graph.
Counting the Number of Basic Operations

Example 4 Sequence: P and Q are two algorithm sections:

Time(P ; Q) = Time(P) + Time(Q)
Iteration:
while < condition > loop

P;
end loop;
or
for i in 1..n loop

P;

end loop

Time = Time(P) * (Worst-case number of iterations)
Conditional
if < condition > then

P;

else
Q;

end if;

Time = Time(P) if < condition > =true

Time(Q) if < condition > =false

Example 5

for i in 1..n loop

for j in 1..n loop
if i < j then

swop (a(i,j), a(j,i)); -- Basic operation
end if;

end loop;
end loop;

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

66 66

Time < n*n*1

= n^2

3.2 Best-Case

The best-case efficiency of an algorithm is an input (or inputs) of size n

for which the algorithm runs the fastest among all possible inputs of that

size. Accordingly, we can analyse the best-case efficiency as follows:

First, we determine the kind of inputs for which the count C(n) will be

the smallest among all possible inputs of size n. (Note that the best case

does not mean the smallest input; it means the input of size n for which

the algorithm runs the fastest). Then we should ascertain the value of

C(n) on these most convenient inputs. For example, for sequential

search, best-case inputs will be lists of size n with their first elements

equal to a search key; accordingly. Cbest(n) = 1.

The analysis of the best-case efficiency is not as important as that of the
worst-case efficiency. But it is not completely useless either.

3.3 Average-Case

The average-case efficiency seeks to provide information on random

input. It is calculated by dividing all instances of size n into several

classes so that for each instance of the class, the number of times the

algorithm‟s basic operation is executed is the same. This then means that

a probability distribution of inputs needs to be assumed or obtained so

that the expected value of the basic operation‟s count can be derived.

Estimating average-case efficiency is not an easy task and it is difficult

for this level. Students can just get familiar with known average case

results.

4.0 CONCLUSION

This unit teaches the three methods of analysing the efficiency of

algorithms.

5.0 SUMMARY

This unit has explained how to measure the efficiencies of algorithms.

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

67 67

6.0 TUTOR-MARKED ASSIGNMENT

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

68 68

Write the pseudo codes for the algorithm to find the largest out of n

integers and use worst-case to determine the efficiency.

7.0 REFERENCES/FURTHER READINGS

Holmes,B.J. (1997). BASIC Programming – A Complete Course Text.

Gp Publications.

www.eslearning.algorithm.com
Levitin, A.(2003). Introduction to the Design and Analysis of

Algorithms. Published by Addison- Wesley.

www.personal.kent.edu/wmuhama/algorithms.

Tucker, A.B and Noonan, R.(2006). Programming Languages –
Principles and Paradigms. (2nd ed). McGraw – Hill College.

http://www.eslearning.algorithm.com/
http://www.personal.kent.edu/wmuhama/algorithms

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

69 69

UNIT 4 P, NP AND NP-COMPLETE PROBLEMS

CONTENTS

1.0 Introduction

2.0 Objectives
3.0 Main Content

3.1 Basic Definitions
3.2 P and NP Problems
3.3 NP-Complete Problems

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit will discuss the different categories of computational

problems.

2.0 OBJECTIVES

At the end of this unit you should be able to:

distinguish between a polynomial and non-polynomial problem

identify a non-polynomial – complete problem

understand some basic issues in algorithm time efficiencies

understand P, NP, NP –complete problems.

3.0 MAIN CONTENT

3.1 Basic Definitions

We say that an algorithm solves a problem in polynomial time if its

worst-case time efficiency belongs to O (p (n)) here p (n) is a

polynomial of the problem‟s input size n. (Note that since we are using

big-oh notation here, problems solvable in, say, logarithmic time are

solvable in polynomial time as well). Problems that can be solved in

polynomial time are called tractable; problems that cannot be solved in

polynomial time are called intractable.

Computational complexity classifies problems according to their
inherent difficulty.

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

70 70

3.2P and NP Problems

Most problems discussed in this unit can be solved in polynomial time

by some algorithms. They include computing the product and the

greatest common divisor of two integers, sorting, searching (for a

particular key in a list or for a given pattern in a text string), checking

connectivity and acyclicity of a graph, finding a minimum spanning tree,

and finding the shortest paths in a weighted graph. (You are invited to

add more examples to this list.).

Informally, we can think about problems that can be solved in

polynomial time as the set that computer science theoreticians call P. A

more formal definition of P is that it includes only decision problems,

which are problems with yes/no answers.

Class P is a class of decision problems that can be solved in polynomial

time by (deterministic) algorithms. This class of problems is called

polynomial.

The restriction of P to decision problems can be justified by the

following reasons. First, it is sensible to exclude problems not solvable

in polynomial time because of their exponentially large output. Such

problems arise naturally e.g., generating subsets of a given set or all the

permutations of n distinct items but it is apparent from the outset that

they cannot be solved in polynomial time. Second, many important

problems that are not decision problems in their most natural

formulation can be reduced to a series of decision problems that are

easier to study. For example, instead of asking about the smallest

number of colours needed to colour the vertices of a graph so that no

two adjacent vertices are coloured the same colour, we can ask whether

there exists such a colouring of the graph‟s vertices with no more than m

colours for m = 1, 2… (The problem of vertex colouring with m colours

is called the m-colouring problems) The first value of m in this series

for which the decision problem of m-colouring has a solution solves the

optimisation version of the graph-colouring problem as well.

It is natural to wonder whether every decision problem can be solved in

polynomial time. The answer to this question turns out to be no. In fact,

some decision problems cannot be solved at all by any algorithm. Such

problems are called undecidable. Alan Turing gave a famous example

in 1936. The problem in question is called the halting problem: given a

computer program and an input to it, determine whether the program

will halt on that input or continue working indefinitely on it.

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

71 71

Are there decidable but intractable problems? Yes, there are, but the

number of known examples is small, especially of those that arise

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

72 72

naturally rather than being constructed for the sake of a theoretical
argument.

There are a large number of important problems, however, for which no

polynomial-time algorithm has been found, nor has the impossibility of

such an algorithm been proved. The classic monograph by M. Garey and

D. Johnson (GJ79) contains a list of several hundred such problems

from different areas of computer science, mathematics, and operations

research. Here is just a small sample of some of the best-known

problems that fall into this category:

Hamiltonian circuit: Determine whether a given graph has a

Hamiltonian circuit (a path that starts and ends at the same vertex and

passes through all the other vertices exactly once).

Traveling salesman: Find the shortest tour through n cities with known

positive integer distances between them (find the shortest Hamiltonian

circuit in a complete graph with positive integer weights).

Knapsack problem: Find the most valuable subset of n items of given

positive integer weights and values that fit into a knapsack of a given

positive integer capacity.

Partition problem: Given n positive integers, determine whether it is

possible to partition them into two disjoint subsets with the same sum.

Bin packing: Given n items whose sizes are positive rational numbers
not larger than 1, put them into the smallest number of bins of size 1.

Graph colouring: For a given graph, find its chromatic number (the

smallest number of colours that need to be assigned to the graph‟s

vertices so that no two adjacent vertices are assigned the same colour.

Integer linear programming: Find the maximum (or minimum) value

of a linear function of several integer-valued variables subject to a finite

set of constrains in the form of linear equalities and/or inequalities.

A nondeterministic algorithm is a two-stage procedure that takes as its

input an instance I of a decision problem and does the following:

Nondeterministic (“guessing”) stage: An arbitrary string S is generated

that can be thought of as a candidate solution to the given instance I (but

may be complete gibberish as well).

Deterministic (“verification”) stage: A deterministic algorithm takes
both I and S as its input and outputs yes if S represents a solution to

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

73 73

instance I. (If S is not a solution to instance I, the algorithm either
returns no or is allowed not to halt at all.)

We say that a nondeterministic algorithm solves a decision problem if

and only if for every yes instance of the problem it returns yes on some

execution. (In other words, we require a nondeterministic algorithm to

be capable of “guessing” a solution at least once and to be able to verify

its validity. And, of course, we do not want it to ever output a yes

answer on an instance for which the answer should be no). Finally, a

nondeterministic algorithm is said to be nondeterministic polynomial

if the time efficiency of its certification stage is polynomial.

Now we can define the class of NP problems.

Class NP is the class of decision problems that can be solved by

nondeterministic polynomial algorithms. This class of problems is called

nondeterministic polynomial.

Most decision problems are in NP. First of all, this call includes all the
problems in P;

P NP,

This is true because, if a problem is in P, we can use the deterministic

polynomial time algorithm that solves it in the verification-stage of a

nondeterministic algorithm that simply ignores string S generated in its

nondeterministic (“guessing”) stage. But NP also contains the

Hamiltonian circuit problem, the partition problem, as well as decision

versions of the traveling salesman, the knapsack, graph colouring and

many hundreds of other difficult combinatorial optimisation problems

cataloged in (GJ79). The halting problem, on the other hand, is among

the rare examples of decision problems that are known not to be in NP.

3.3NP-Complete Problems

Let us introduce another important notion in the computational

complexity theory that of NP completeness.

A decision problem D is said to be NP-complete if

1. it belongs to class NP;
2. every problem in NP is polynomially reducible to D.

The fact that closely related decision problems are polynomially

reducible to each other is not very surprising. For example, let us prove

that the Hamiltonian circuit problem is polynomially reducible to the

decision version of the traveling salesman problem. The latter can be

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

74 74

stated as the problem to determine whether there exists a Hamiltonian

circuit in a given complete graph with positive integer weights whose

length is not greater than a given positive integer m. We can map a

graph G of a given instance of the Hamiltonian circuit problem to a

complete weighted graph G’ representing an instance of the traveling

salesman problem by assigning 1 as the weight to each edge in G and

adding an edge of weight 2 between any pair of not adjacent vertices in

G. As the upper bound m on the Hamiltonian circuit length, we take m
= n, where n is the number of vertices in G (and G’). Obviously, this
transformation can be done in polynomial time.

Let G be a yes instance of the Hamiltonian circuit problem. Then G has

a Hamiltonian circuit, and its image in G’ will have length n, making the

image a yes instance of the decision traveling salesman problem.

Conversely, if we have a Hamiltonian circuit of the length not larger

than n in g’, then its length must be exactly n (why?) and hence the

circuit must be made up of edges present in g, making the inverse image

of the yes instance of the decision travelling salesman problem be a yes

instance of the Hamiltonian circuit problem. This completes the proof.

4.0 CONCLUSION

This unit shows how to distinguish between different computational

problems. You have also been exposed to different decidable and

undecidable problems.

5.0 SUMMARY

This unit, teaches that

Problems that can be solved in polynomial time are called tractable

while, that which cannot be solved in polynomial time are intractable

The class of decision problem that can be solved in polynomial time

by (deterministic) algorithms are called polynomial problems and

they are mostly with yes/no answer.

Decision problems that can not be solved at all by any algorithm are

called undecidable problems.

6.0 TUTOR-MARKED ASSIGNMENT

A game of chess can be posed as the following decision problem: given

a legal positioning of chess pieces and information about which side is

to move, determine whether that side can win. Is this decision problem

decidable?

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

75 75

7.0 REFERENCES/FURTHER READINGS

Holmes,B.J.(1997). BASIC Programming – A Complete Course Text.

Gp Publications.

www.eslearning.algorithm.com

Levitin, A. (2003). Introduction to the Design and Analysis of
Algorithms., Published by Addison- wesley.

www.personal.kent.edu/wmuhama/algorithms.

Tucker, A.B and Noonan, R.(2006). Programming Languages –

Principles and Paradigms. (2nd ed). McGraw – Hill College.

http://www.eslearning.algorithm.com/
http://www.personal.kent.edu/wmuhama/algorithms

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

76 76

UNIT 5 PRACTICAL EXERCISE II

CONTENTS

1.0 Introduction

2.0 Objectives
3.0 Main Content

3.1 Exercise
3.2 Solutions

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit presents another practical exercise in order for you to further
understand how to analyse efficiencies of algorithms.

2.0 OBJECTIVES

At the end of this unit, you should have had further understanding into
how to determine efficiency of algorithms.

3.0MAIN CONTENT

3.1 Exercise

Write the pseudocodes for the algorithm to find the average of the

smallest and the largest of n integers.

3.2Solution

MIN = A(I) 1

For I = 1 to n
If MIN > A(I)

TEMP = MIN 4n

MIN = A(I)

A(I) = TEMP
end If

end do
MAX = A(I)
For J = 2 to n 4n

If MAX < A(I)
TEMP1 = MAX 4n
MAX = A(J)

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

77 77

A(J) = TEMP

end If

end do
AVE = (MIN + MAX) / 2
PRINT AVE

= 1 * 4n * 4n * 1

The basic operations are denoted by *. We can simply say that it is of
O(n2).

4.0 CONCLUSION

A clearer view of an estimation of the non time growth of an algorithm
has been presented.

5.0 SUMMARY

Basic operations have been clearly identified. Estimation of efficiency
of algorithms is practically discussed.

6.0 TUTOR-MARKED ASSIGNMENT

Write the pseudo codes of the algorithm to convert any binary number to
decimal and estimate the worse-case runtime efficiency.

7.0 REFERENCES/FURTHER READINGS

Holmes, B .J. (1997).BASIC Programming – A Complete Course Text.

Gp Publications.

www.eslearning.algorithm.com

Levitin, A.(2003).Introduction to the Design and Analysis of

Algorithms. Published by Addison- Wesley.

www.personal.kent.edu/wmuhama/algorithms.

Tucker, A.B and Noonan, R. (2006). Programming Languages –
Principles and Paradigms. (2nd ed). McGraw – Hill College.

http://www.eslearning.algorithm.com/
http://www.personal.kent.edu/wmuhama/algorithms

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

78 78

MODULE 3 SORTING AND SOME SPECIAL

PROBLEMS

Unit 1 Introduction to Sorting and Divide-and-Conquer
 Algorithms

Unit 2 Merge Sort

Unit 3 Quick Sort

Unit 4 Binary Search

Unit 5 Selection Sort

Unit 6 Bubble Sort

Unit 7 Special Problems and Algorithms
Unit 8 Practical Exercise IV

UNIT 1 INTRODUCTION TO SORTING AND DIVIDE-

AND-CONQUER ALGORITHMS

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Introduction to Sorting
3.2 Fundamentals of Divide-and-Conquer Algorithms
3.3 Practical Proof of Divided-and-Conquer Algorithms

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit discusses the meaning of sorting. It also describes the concept
of divide and conquer algorithms as problem-solving techniques.

2.0 OBJECTIVES

You are expected to be able to explain the following at the end of this
unit:

meaning and significance of sorting

meaning and practical understanding of divide and

conquer algorithms.

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

79 79

3.0 MAIN CONTENT

3.1 Introduction to Sorting

Sorting is the process of arranging a set of items or objects in increasing
or decreasing order.

The Significance of Sorting

For orderly analysis and presentation of items

For locating an item or items within a set

For finding duplicate values or nearest pair within a set

For finding the intersection or union of two or more sets

Sorting is also used as a part of many geometric algorithms (eg

convex hull, nearest pair of points in the plane).

3.1 Fundamentals of Divide-and-Conquer Algorithms

This is a method of designing algorithms that (informally) proceed as
follows:

Given an instance of the problem to be solved,

split this into several, smaller, sub-instances (of the same problem)

independently solve each of the sub-instances

and then combine the sub-instance solutions so as to yield a solution

for the original instance.

The diagram below represents the divide-and-conquer technique:

Problem of size n

subproblem 1
of size n/2

subproblem 2
of size n/2

solution to
subproblem 1

solution to
subproblem 2

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

80 80

solution to the
original problem

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

81 81

Examples of algorithms that adopt the strategy of divide-and-conquer
algorithms are mergesort, quicksort and binary search.

3.3 Practical Proof of Divide-and-Conquer Algorithms

Consider an algorithm, alpha say, which is known to solve all problem

instances of size n in at most c n^2 steps (where c is some constant). We

then discover an algorithm, beta say, which solves the same problem by:

1.Dividing an instance into 3 sub-instances of size n/2.
2.Solving these 3 sub-instances.
3.Combining the three sub-solutions taking d n steps to do this.

Suppose our original algorithm, alpha, is used to carry out step 2.

Let

T(alpha)(n) = Running time of alpha

T(beta)(n) = Running time of beta

Then,
T(alpha)(n) = c n^2 (by definition of alpha)

But

T(beta)(n) = 3 T(alpha)(n/2) + d n

= (3/4)(cn^2) + dn

So if
dn < (cn^2)/4 (i.e. d < cn/4)

then

beta is faster than alpha

In particular for all large enough n, (n > 4d/c = Constant), beta is faster

than alpha.

This realisation of beta improves upon alpha by just a constant factor.
But if the problem size, n, is large enough then

n > 4d/c

n/2 > 4d/c
...

n/2^i > 4d/c

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

82 82

which suggests that using beta instead of alpha for the “solves these”

stage repeatedly until the sub-sub-sub..sub-instances are of size n0 < =

(4d/c) will yield a still faster algorithm.

So consider the following new algorithm for instances of size n

procedure gamma (n : problem size) is

begin
if n <= n^-0 then

Solve problem using Algorithm alpha;
else

Split into 3 sub-instances of size n/2;

Use gamma to solve each sub-instance;

Combine the 3 sub-solutions;
end if;

end gamma;

Let T(gamma)(n) denote the running time of this algorithm.

cn^2 if n < = n0

T(gamma)(n) =

3T(gamma)(n/2)+dn otherwise

4.0CONCLUSION

You should have understood sorting and what the divide and conquer
technique is all about.

5.0SUMMARY

Sorting is the arrangement of items in a predetermined order.

Divide- and – Conquer algorithms require dividing problems into

sub- instances, solving these sub-instances and combining the

solutions to the sub-instances to form the original solution.

6.0 TUTOR- MARKED ASSIGNMENT

1. Write a pseudo code for a divide-and-conquer algorithm for

finding a position of the largest element in an array of n numbers.

2. Find out about the brute-force algorithm and compare it with the

divide-and-conquer algorithm.

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

83 83

7.0 REFERENCES/FURTHER READINGS

Holmes, B. J . (1997). BASIC Programming – A Complete Course

Text. Gp publications.

www.eslearning.algorithm.com

Levitin, A. (2003). Introduction to the Design and Analysis of
Algorithms . Published by Addison- Wesley.

www.personal.kent.edu/wmuhama/algorithms.

Tucker, A.B and Noonan, R . (2006). Programming Languages –

Principles and Paradigms. (2nd ed). McGraw – Hill College.

http://mathworld.wolfram.com/QueensProblem.html

http://mathworld.wolfram.com/QueensProblem.html

http://www.eslearning.algorithm.com/
http://www.personal.kent.edu/wmuhama/algorithms
http://mathworld.wolfram.com/QueensProblem.html
http://mathworld.wolfram.com/QueensProblem.html

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

84 84

UNIT 2 MERGE SORT

CONTENTS

1.0 Introduction

2.0 Objectives
3.0 Main Content

3.1 Understanding Merge Sort
3.2 The Merge Sort Algorithm
3.3 The Efficiency of the Merge Sort Algorithm

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit describes merge sort sorting technique. It explains merge sort

as an example of divide-and conquer algorithm.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

give the practical meaning of merge sort

present the merge sort algorithm

state the performances of the merger sort algorithm.

3.0 MAIN CONTENT

3.1 Understanding Merge sort

Merge sort is an example of an application that adopts the strategy of the

divide-and-conquer technique. It sorts a given array E[0..n – 1] by

dividing it into two halves E[0..[n/2] – 1] and A[[n/2]..n – 1], sorting

each of them recursively, and then merging the two smaller sorted arrays

into a single sorted one. This figure represents the merge sort technique.

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

85 85

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

8 3 2 9 7 1 5 4

3 8 2 9 1 7 4 5

2 3 8 9 1 4 5 7

1 2 3 4 5 6 7 8

3.2 The Merge Sort Algorithm

ALGORITHM Merge sort (E[0..n – 1])
//Sorts array E[0..n – 1] by recursive merge sort
//Input: An array E[0..n – 1] of orderable elements

//Output: Array E[0..n – 1] sorted in nondecreasing order

if n > 1
copy E[0..[n/2] – 1] to B[0..[n/2] – 1]
copy E[[n/2]..n – 1] to C[0..[n/2] – 1]
Merge sort (B(0..[n/2 – 1])
Merge sort (C[0..[n/2] – 1])
Merge(B, C, E)

The merging of two sorted arrays can be done as follows: Two pointers

(array indices) are initialised to point to the first elements of the arrays

being merged. Then the elements pointed to are compared and the

smaller of them is added to a new array being constructed; after that, the

index of that smaller element is incremented to point to its immediate

successor in the array it was copied from. This operation is continued

until one of the two given arrays is exhausted, and then the remaining

elements of the other array are copied to the end of the new array.

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

86 86

ALGORITHM Merge(B[0..p – 1], C[0..q – 1], E[0..p + q – 1])
//Merges two sorted arrays into one sorted array
//Input: Arrays B[0..p – 1] and C[0..q – 1] both sorted
//Output: Sorted array A[0..p + 1 – 1] of the elements of B and C
i  0‟; j  0; k  0

while i < p and j < q do

if B[I] C[j]

E[k] B[I]; i i + 1
else A[k]  C[j]; j  j + 1
k k + 1
if i = p
copy C[j..q – 1] to E[k..p + q – 1]
else copy B[i..p – 1] to E[k..p + q – 1]

3.3 The Efficiency of the Merge Sort Algorithm

The efficiency of merge sort is

Cworst(n) (n log n)

The details of how this was arrived at will be studied in a future study in
Algorithm Design.

4.0CONCLUSION

The meaning and algorithm of merge sort has been presented. The
worse-case efficiency was also discussed.

5.0SUMMARY

Merge sort adopts the strategy of divide-and- conquer.

It requires dividing the array into two halves and sorting them

recursively, then merging the two smaller sorted arrays into a single

one.

Merge sort algorithm is divided into two- the merge sort(for

splitting and sorting halves) and the merger(for merging two halves

together).

6.0TUTOR -MARKED ASSIGNMENT

1. Apply merge sort to sort the list E, X, A, M, P. L. E in
alphabetical order.

2. How stable is the divide-and-conquer algorithm?

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

87 87

7.0 REFERENCES/FURTHER READINGS

Holmes, B. J . (1997). BASIC Programming – A Complete Course Text.

Gp Publications.

www.eslearning.algorithm.com

Levitin, A. (2003). Introduction to the Design and Analysis of
Algorithms. Addison Wesley.

www.personal.kent.edu/wmuhama/algorithms.

Tucker, A.B and Noonan, R . (2006). Programming Languages –

Principles and Paradigms. (2nd ed). McGraw – Hill College.

http://mathworld.wolfram.com/QueensProblem.html.

http://mathworld.wolfram.com/QueensProblem.html..

http://www.eslearning.algorithm.com/
http://www.personal.kent.edu/wmuhama/algorithms
http://mathworld.wolfram.com/QueensProblem.html
http://mathworld.wolfram.com/QueensProblem.html

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

88 88

UNIT 3 QUICK SORT

CONTENTS

1.0 Introduction

2.0 Objectives
3.0 Main Content

3.1 Introduction to Quick Sort
3.2 The Quick Sort Algorithm
3.3 The Efficiency of the Quick Sort Algorithm

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

In this unit, you will be introduced to a new sorting technique called the

Quicksort which could be used in rearranging elements of any given

array.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

evaluate the procedures involved in a quick sort algorithm

transverse array using the quick sort algorithm.

3.0 MAIN CONTENT

3.1 Introduction to Quick Sort

Quick sort is another important sorting algorithm that is based on the

divide-and-conquer approach. Unlike merge sort, which divides its

input‟s elements according to their position in the array, quick sort

divides them according to their value. Specifically, it rearranges

elements of a given array A[0..n – 1] to achieve its partition a situation

where all the elements before some positions are smaller than or equal to

A[s] and all the elements after positions are greater than or equal to a[s]:

A[0]… a[s – 1] a[s] a[s + 1]…a[n – 1]

All are A[s] all are A[s]s

Obviously, after a partition has been achieved, A[s]s will be in its final
position in the sorted array, and we can continue sorting the two sub

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

89 89

arrays of the elements preceding and following A[s]s independently
(e.g. by the same method).

3.2 The Algorithm

ALGORITHM quick sort (A[l..r])
//Sorts a sub array by quick sort
//Input: A sub array A[l..r] of A[0..n – 1], defined by its left and

right indices
// l and r

//Output: The sub array A[l..r] sorted in a nondecreasing order

if i < r
s Partition([Al..r])//s is a split position
Quick sort(A[l..s – 1])
Quick sort(A[s + 1..r])

A partition of A [0..n – 1] and, more generally, of its sub array a[l..r] (0

l < r n – 1) can be achieved by the following algorithm. First, we

select an element with respect to whose value we are going to divide the

sub array. Because of its guiding role, we call this element the pivot.

There are several different strategies for selecting a pivot; we will return

to this issue when we analyse the algorithm‟s efficiency. For now, we

use the simplest strategy of selecting the sub array‟s first element: p =
A[l].

Three situations may arise, depending on whether or not the scanning
indices have crossed. If scanning indices I and j have not crossed, i.e., I
< j, we simply exchange A[i] and A[j] and resume the scans by
incrementing I and decrementing j respectively:

i j

P all are p p . . . p all are

If the scanning indices have crossed over, i.e. I > I, we have partitioned
the array after exchanging the pivot with A[j]:

P all are p p all are p

Finally, if the scanning indices stop while pointing to the same element,

i.e., I = j, the value they are pointing to must be equal to p (why?). Thus,

we have partitioned the array:

P all are p = p all are p

We can combined the last case with the case of crossed-over indices (I >

j) by exchanging the pivot with A[j] whenever I j.

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

90 90

Here is a pseudo code implementing this partitioning procedure.

ALGORITHM Partition (A[l..r])

//Partitions a sub array by using its first element as a pivot
//Input: A sub array A[l..r] of A[0..n – 1], defined by its

left and right
// indices l and r (l < r)
//Output: a partition of A[l..], with the split position returned as
// this function‟s value
p a[l]
i  l; j  r + 1
repeat

repeat I  I + 1 until A[I] p

repeat j  j – 1 until A[j] p

swap(A[I], A[j])

until I j

swap(A[I], A[j]) //uno last swap when I j

swap(A[l], A[j]

return j

3.3 The Efficiency of Quick Sort Algorithm

The efficiency of Quick sort is

Cworst(n) (n2)

Cbest(n) (nlog2 n)

Cavg(n) =0

The details of how this was arrived at will be studied in the study in
Algorithm Design.

4.0 CONCLUSION

This unit has presented another type of sorting technique called the

quick sort technique which divides its important elements according to

their position or value to the array.

5.0 SUMMARY

Quick sort is another important sorting algorithm that is based on

the divide-and-conquer approach.

It divides the input elements according to their respective values.

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

91 91

6.0 TUTOR- MARKED ASSIGNMENT

a. Design an algorithm to rearrange elements of a given array of n

real numbers so that all its negative elements precede all its

positive elements. Your algorithm should be both time and space-

efficient.
b. Apply quick sort to sort the E, X, A, M, P, L, E

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.F. Rivest, R.L., Stein, C. (2001).

Introduction to Algorithms (2nd ed). M/T Press, Cambridge.

Goodrich, M.T., and Tamassia, R. (2002). Algorithm Design.

Foundations, Analysis, and Internet Examples. New York: John
Wiley & Sons.

Tucker, A.B and Noonan, R. (2006). Programming Languages –

Principles and Paradigms. (2nd ed). McGraw – Hill College.

http://mathworld.wolfram.com/QueensProblem.html.

http://mathworld.wolfram.com/QueensProblem.html.

http://mathworld.wolfram.com/QueensProblem.html
http://mathworld.wolfram.com/QueensProblem.html

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

92 92

UNIT 4 BINARY SEARCH

CONTENTS

1.0 Introduction

2.0 Objectives
3.0 Main Content

3.1 Understanding Binary Search
3.2 The Algorithm
3.3 The Efficiency of Binary Search

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit introduces the binary search algorithm as well as its efficiency

and the procedures involved in traversing the elements of any given

array. The binary search is an effective way of traversing arrays.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

explain how the binary search operates

explain how the binary search is used to traverse an array of

elements

explain the algorithm of the binary search

explain the efficiency of the binary search.

3.0 MAIN CONTENT

3.1 Understanding the Binary Search

The Binary Search

The binary search is a remarkably efficient algorithm for searching in a

sorted array. It works by comparing a search key K with the array‟s

middle element A[m]. If they match, the algorithm stops; otherwise, the

same operation is repeated recursively for the first half of the array if K
< A[m] and for the second half if K > [m]:

K
A[0]. . . A[m – 1] A[m] A[m + 1] A[n – 1]

Search here if search here if

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

93 93

K < A[m] K > A[m]

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

94 94

As an example, let us apply the binary search to searching for K = 70 in
the array

3 14 27 31 39 42 55 70 74 81 85 93 98

The iterations of the algorithm are given in the following table:

Index 0 1 2 3 4 5 6 7 8 9 10 11

12
Value 3 14 27 31 39 42 55 70 74 81 85 93

98

Interation 1 l m r

Interation 2 l m r

Interation 3 l, m r

3.2 The Algorithm

Although the binary search is clearly based on a recursive idea, it can be

easily implemented as a nonrecursive algorithm, too. Here is a pseudo

code for this nonrecursive version:

ALGORITHM Binary Search(A[0..n – 1], K)

//Implements nonrecursive binary search
//Input: An array A[0..n – 1] sorted in ascending order and
// a search key K
//Output: An index of the array‟s element that is equal to K

// or – 1 if there is no such element

l  0; r  n – 1

while l r do

m  [(l + r)/2]
if K = A[m]return m
else if K < A[m] r  m – 1
else l  m + 1
return – 1

3.3 The Efficiencies of the Binary Search

The efficiencies of the binary search are

Cworst(n) (log n)

Cbest(n) = 1

Cavg(n) =(log2 n)

The details of how this was arrived at will be studied in in Algorithm

Design.

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

95 95

4.0 CONCLUSION

This unit has presented another effective way of transversing arrays

through the binary search algorithm which works by comparing a

search key with the arrays‟ middle element A[m].

5.0 SUMMARY

This unit has discussed the binary search

The binary search is based on recursive data while the

implementation is based on non-recursive algorithm.

6.0 TUTOR-MARKED ASSIGNMENT

Write a program in any programming language to implement the binary
search on any set of integers.

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.F. Rivest, R.L., Stein, C.

(2001) .Introduction to Algorithms (2nd ed) Cambridge M/T Press

Goodrich, M.T., and Tamassia, R. (2002). Algorithm Design.

Foundations, Analysis, and Internet Examples. New York : John
Wiley & Sons.

Tucker, A.B and Noonan, R . (2006). Programming Languages –

Principles and Paradigms. (2nd ed). McGraw – Hill College.

http://mathworld.wolfram.com/QueensProblem.html.

http://mathworld.wolfram.com/QueensProblem.html.

http://mathworld.wolfram.com/QueensProblem.html
http://mathworld.wolfram.com/QueensProblem.html

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

96 96

UNIT 5 SELECTION SORT

CONTENTS

1.0 Introduction

2.0 Objectives
3.0 Main Content

3.1 Understanding Selection
3.2 The Algorithm
3.3 Efficiencies of Selection Sort

4.0 Conclusion
5.0 Summary
7.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit introduces you to the selection sort algorithm used in scanning

the all the given elements of an array to find its smallest element and

substitute it within the first element.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

describe how selection sort operates

explain how selection sort is used to transverse elements in an array

describe an algorithm of the selection sort.

3.0 MAIN CONTENT

3.1 Selection Sort

We start selection sort by scanning the entire given list to find its

smallest element and exchange it with the first element, putting the

smallest element in its final position in the sorted list. Then we scan the

list, starting with the second element, to find the smallest among the last

n – 1 elements and exchange it with the second element, putting the

second smallest element in its final position. Generally, on the ith pass

through the list, which we number from 0 to n – 2, the algorithm

searches for the smallest item among the last n – I elements and swaps it

with Ai:

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

97 97

A0 A1 … Ai-1 Ai,. . . , Amin, . . . , An-1

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

98 98

In their final positions the last n-1 elements.

After n – 1 passes, the list is sorted.

3.2 The Algorithm

Here is a pseudocode of this algorithm, which, for simplicity, assumes

that the list is implemented as an array.

ALGORITHM Selection Sort(A[0..n – 1])

//The algorithm sorts a given array by selection sort
//Input: An array A[0..n – 1] of orderable elements

//Output: Array A[0..n – 1] sorted in ascending order

for i  0 to n – 2 do
min  i
for j  i + 1 to n – 1 do

if A[j] < A[min] min  j

swap A[i] and A[min]

As an example, the action of the algorithm on the list 89, 45, 68, 90, 29,

34, 17 is illustrated in figure

89 45 68 90 29 34 17

17 45 68 90 29 34 89

17 29 68 90 45 34 89

17 29 34 90 45 68 89

17 29 34 45 90 68 89

17 29 34 45 68 90 89

17 29 34 45 68 89 90

Figure: Selection sort‟s operation on the list 89, 45, 69, 90, 29, 34, 17.

Each line corresponds to one iteration of the algorithm, i.e.,, a pass

through the list‟s tail to the right of the vertical bar; an element in bold

indicates the smallest element found. Elements to the left of the vertical

bar are in their final positions and are not considered in this and

subsequent iterations.

3.3 The Efficiencies

Thus, selection sort is a (n2) algorithm on all inputs. Note, however,

that the number of key swaps is only (n) or, more precisely, n – 1 (one

for each repetition of the I loop). This property distinguishes selection

sort positively from many other sorting algorithms.

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

99 99

4.0 CONCLUSION

By now, you should be able to sort an array of elements in a desired

order, using the selection sort algorithm.

5.0 SUMMARY

This unit further explains selection sort, its algorithm, and

efficiencies.

The number of key swaps is only (n) or, more precisely, n – 1

which distinguishes it from other sorting algorithms.

6.0 TUTOR-MARKED ASSIGNMENT

Write a program in any programming language to implement a selection

sort on any set of integers.

7.0 REFERENCES/FURTHER READINGS

Cormen,T.H.,Leiserson,C.F. Rivest, R.L., Stein, C. (2001) Introduction

to Algorithms (2nd ed). Cambridge: M/T Press.

Goodrich,M.T.,and Tamassia,R.(2002). Algorithm Design. Foundations,

Analysis, and Internet Examples. New York: John Wiley & Sons.

Tucker A.B and Noonan R. (2006). Programming Languages –

Principles and Paradigms. (2nd ed). McGraw – Hill College.

http://mathworld.wolfram.com/QueensProblem.html.

http://mathworld.wolfram.com/QueensProblem.html.

http://mathworld.wolfram.com/QueensProblem.html
http://mathworld.wolfram.com/QueensProblem.html

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

10
0

100

UNIT 6 BUBBLE SORT

CONTENTS

1.0 Introduction

2.0 Objectives
3.0 Main Content

3.1 Understanding Bubble Sort
3.2 The Algorithm
3.3 Efficiencies of Bubble Sort

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

The bubble sort is also another effective way in the variety of sort

techniques available in programming. It will be introduced in this unit as

well as its algorithm.

2.0 OBJECTIVES

At the end of this unit you should be able to:

explain how bubble sort operates

explain how bubble sort is used to transverse array of homogenous

elements

describe the algorithm of bubble sort

explain the efficiency of the bubble sort algorithm.

3.0 MAIN CONTENT

3.1 Understanding Bubble Sort

Another brute-force application to the sorting problem is to compare

adjacent elements of the list and exchange them if they are out of order.

By doing it repeatedly, we end up “bubbling up” the largest element to

the last position on the list. The next pass bubbles up the second largest

element, and so on until, after n – 1 passes, the list is sorted. Pass I (0 I

n – 2) of bubble sort can be represented by the following diagram:

A0, …, Aj  Aj + 1, .., An-i -1 An-i … An-1

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

10
1

101

The action of the algorithm on the list 89, 45, 68, 90, 29, 34, 17 is
illustrated as an example.

Bubble Sort

89  45 68 90 29 34 17
45 89  68 90 29 34 17
45 68 89  90  29 34 17
45 68 89 29 90  34 17
45 68 89 29 34 90  17
45 68 89 29 34 17 |90

45  68  89  29 34 17 |90

45 68 29 89  34 17 |90
45 68 29 34 89  17 |90
45 68 29 34 17 89 90
etc

The first two passes of bubble sort on the list 89, 45, 68, 90, 29, 34, 17.

Note that a new line is shown after a swap of two elements is done. The

elements to the right of the vertical bar are in their final positions and

are not considered in subsequent iterations of the algorithm.

3.2 The Algorithm

Here is a pseudo code of this algorithm.

ALGORITHM bubble sort(A[0..n – 1])

//The algorithm sorts array A(0..n – 1] by bubble sort

//Input: An array a[0..n – 1] of orderable elements

//Output: Array A[0..n – 1] sorted in ascending order

for I  0 to n – 2 do
for j  0 to n – 2 – I do
if A[j + 1] < A[j] swap A[j] and A[j + 1]

3.3 The Efficiency

It is also in (n2) in the worst and average cases. In fact, even among

elementary sorting methods, bubble sort is an inferior choice, and, if it

were not for its catchy name, you would probably never hear of it.

4.0 CONCLUSION

By now you should be able to use the bubble sort, having discovered

that it is a fast and easy way to transverse an array of any given set of

elements.

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

10
2

102

5.0 SUMMARY

In the unit you have just concluded, the following were examined:

The bubble sort algorithm.

Its way of sorting elements of any given array.

Bubble sort effectiveness.

6.0 TUTOR-MARKED ASSIGNMENT

Write a program in any programming language to implement the bubble
sort algorithm on any set of integers.

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.F. Rivest, R.L., Stein, C. (2001).

Introduction to Algorithms (2nd ed). Cambridge: M/T Press.

Goodrich, M.T., and Tamassia, R. (2002). Algorithm Design.

Foundations, Analysis, and Internet Examples. New York: John
Wiley & Sons.

Tucker, A. B and Noonan, R . (2006). Programming Languages –

Principles and Paradigms. (2nd ed). McGraw – Hill College.

http://mathworld.wolfram.com/QueensProblem.html.

http://mathworld.wolfram.com/QueensProblem.html.

http://mathworld.wolfram.com/QueensProblem.html
http://mathworld.wolfram.com/QueensProblem.html

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

10
3

103

UNIT 7 SPECIAL PROBLEMS AND ALGORITHMS

CONTENTS

1.0 Introduction

2.0 Objectives
3.0 Main Content

3.1 Hill Climbing Technique
3.2 Knight-tour Problem
3.3 N-Queen Problems

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit shows some special problems and algorithms. Hill climbing

can be used to solve problems that have many solutions, but where some

solutions are better than others.

2.0 OBJECTIVES

At the end of this unit you should be able to:

operate the hill climbing technique

show how hill climbing is used to solve problems

resolve the Knight‟s tour problem

describe and resolve an n * n tour problem.

3.0 MAIN CONTENT

3.1 Hill Climbing Technique

Hill climbing is an optimisation technique which belongs to the family

of local search. It is a relatively simple technique to implement, making

it a popular first choice. Although more advanced algorithms may give

better results, there are situations where hill climbing works well.

Hill climbing can be used to solve problems that have many solutions

but where some solutions are better than others. The algorithm is started

with a (bad) solution to the problem, and sequentially makes small

changes to the solution, each time improving it a little bit. At some point

the algorithm arrives at a point where it cannot see any improvement

anymore, at which point the algorithm terminates. Ideally, at that point a

http://en.wikipedia.org/wiki/Local_search_(optimization)

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

10
4

104

solution is found that is close to optimal, but it is not guaranteed that hill
climbing will ever come close to the optimal solution.

An example of a problem that can be solved with hill climbing is the

Travelling salesman problem. It is easy to find a solution that will visit

all the cities, but this solution will probably be very bad compared to the

optimal solution. The algorithm starts with such a solution and makes

small improvements to it, such as switching the order in which two

cities are visited. Eventually, a much better route is obtained.

Hill climbing is used widely in artificial intelligence fields, for reaching

a goal state from a starting node. The choice of next node and starting

node can be varied to give a list of related algorithms.

Hill climbing terminates when there are no successors of the current

state which are better than the current state itself. This is often a

problem. For example, consider the following route map:

These problems are essentially the result of local maxima in the search
space - points which are better than any surrounding state, but which

aren't the solution . There are some ways in which we can get round

this (to some extent) by tweaking or extending the algorithm a bit. We

could use a limited amount of backtracking, so that we record alternative

reasonable looking paths which weren't taken and go back to them. Or

we could weaken the restriction that the next state has to be better by

looking ahead a bit in the search - maybe the next but one state should

be better than the current one. None of these solutions is perfect, and in

general hill climbing is only good for a limited class of problems where

we have an evaluation function that fairly accurately predicts the actual

distance to a solution.

This can be described as follows:

1. Start with current-state = initial-state.
2. Until current-state = goal-state OR there is no change in

current-state do:

a. Get the successors of the current state and use the `evaluation
function to assign a score to each successor.

b. If one of the successors has a better score than the current-state
then set the new current-state to be the successor with the best
score.

If one of the successors has a better score than the current state then set
the new current state to be the successor with the best score.

http://en.wikipedia.org/wiki/Traveling_salesman_problem
http://en.wikipedia.org/wiki/Artificial_intelligence

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

10
5

105

Note that the algorithm does not attempt to exhaustively try every node

and path, so no node list or agenda is maintained - just the current state.

If there are loops in the search space then using hill climbing you

shouldn't encounter them - you can't keep going up and still get back to

where you were before.

3.2 The Knight’s –Tour Problem

A knight's tour of a chessboard (or any other grid) is a sequence of

moves by a knight chess piece (which may only make moves which

simultaneously shift one square along one axis and two along the other)

such that each square of the board is visited exactly once. It is therefore

a Hamiltonian path on the graphs consisting of vertices corresponding to

the chessboard squares and edges corresponding to legal knight moves.

If the final position of such a tour is a knight's move away from the

initial position of the knight, the tour is called a re-entrant or closed, and

is therefore a Hamiltonian circuit. The figures below show six knight's

tours on an chessboard, all but the first of which are re-entrant. The

final tour has the additional property that it is a semi magic square with

row and column sums of 260 and main diagonal sums of 348 and 168.

Figure 6: Six Knight’s Tour on an chessboard

The knight's tour graph is a graph on vertices in which each

vertex represents a square in an chessboard, and each edge

corresponds to a legal move by a knight. The knight's tour graph is

implemented as Knight‟sTourGraph[m, n] in the Mathematica package.

The number of edges in the knight's tour graph is (8
times the triangular numbers), so for , 2, ..., the first few values are
0, 0, 8, 24, 48, 80, 120, ...

The numbers of (undirected) closed knight's tours on a

chessboard for , 2, ... are 0, 0, 9862, 13267364410532, There are

no closed tours for boards with odd. The number of cycles

covering the directed knight's graph for an chessboard was

computed by Löbbing and Wegener (1996) as 8121130233753702400.

They also computed the number of undirected tours, obtaining an

http://mathworld.wolfram.com/Chessboard.html
http://mathworld.wolfram.com/Chess.html
http://mathworld.wolfram.com/HamiltonianPath.html
http://mathworld.wolfram.com/HamiltonianCircuit.html
http://mathworld.wolfram.com/Chessboard.html
http://mathworld.wolfram.com/SemimagicSquare.html
http://mathworld.wolfram.com/Chessboard.html
http://mathworld.wolfram.com/Chessboard.html
http://reference.wolfram.com/mathematica/Combinatorica/ref/KnightsTourGraph.html
http://www.wolfram.com/products/mathematica/
http://mathworld.wolfram.com/TriangularNumber.html
http://mathworld.wolfram.com/Chessboard.html
http://mathworld.wolfram.com/Chessboard.html

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

10
6

106

incorrect answer of 33439123484294 (which is not divisible by 4 as it

must be), and so are redoing the calculation. The apparently correct

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

10
7

107

value of 13267364410532 appears in Wegener's subsequent book

(Wegener 2000), and also agrees with unpublished calculations of B. D.

McKay.

The number of possible tours on a board for , 4, ... are 8, 0, 82,

744, 6378, 31088, 189688, 1213112,

The following additional results are given by Kraitchik (1942, pp.

264-265). There are 14 tours on the rectangle, two of which are

symmetrical. There are 376 tours on the rectangle, none of which is

closed. There are 16 symmetric tours on the rectangle and 8 closed

tours on the rectangle. There are 58 symmetric tours on the

rectangle and 28 closed tours on the rectangle. There are five

doubly symmetric tours on the square. There are 1728 tours on the

square, 8 of which are symmetric. The longest "uncrossed" knight's

tours on an board for , 4, ... are 2, 5, 10, 17, 24, 35, ...

Backtracking algorithms (in which the knight is allowed to move as far

as possible until it comes to a blind alley, at which point it backs up

some number of steps and then tries a different path) can be used to find

knight's tours, but such methods can be very slow.

Warnsdorff (1823) proposed an algorithm that finds a path without any

backtracking by computing ratings for "successor" steps at each

position. Here, successors of a position are those squares that have not

yet been visited and can be reached by a single move from the given

position. The rating is highest for the successor whose number of

successors is least. In this way, squares tending to be isolated are visited

first and therefore prevented from being isolated (Roth). The time

needed for this algorithm grows roughly linearly with the number of

squares of the chessboard, but unfortunately computer implementation

shows that this algorithm runs into blind alleys for chessboards bigger

than , despite the fact that it works well on smaller boards (Roth).

Recently, Conrad et al. (1994) discovered another linear time algorithm

and proved that it solves the Hamiltonian path problem for all n ≥ 5. The

Conrad et al. algorithm works by a decomposition of the chessboard into

smaller chessboards (not necessarily square) for which explicit solutions

are known. This algorithm is rather complicated because it has to deal

http://mathworld.wolfram.com/Backtracking.html

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

10
8

108

with many special cases, but has been implemented in Mathematica by

A. Roth. Example tours are illustrated above for n × n boards with

to 8.

3.3 n*n Queen’s Problem

In chess, a queen can move as far as she pleases, horizontally, vertically,

or diagonally. A chess board has 8 rows and 8 columns. The standard 8

by 8 Queen's problem describes how to place 8 queens on an ordinary

chess board so that none of them can hit any other in one move. This is

an amusing puzzle and chess players and researchers have been finding

best solutions to this problem.

An obvious modification of the 8 by 8 problem is to consider an N by N

"chess board" and ask if one can place N queens on such a board. It is

easy to see that this is impossible if N is 2 or 3, and it's reasonably

straightforward to find solutions when N is 4, 5, 6, or 7. The problem

begins to become difficult for manual solution precisely when N is 8.

The fact that this number coincidentally equals the dimensions of an

ordinary chess board has probably contributed to the popularity of the

problem.

4.0 CONCLUSION

In this unit, you will observe that the hill climbing can be used to solve

problems that have many solutions but where some solutions are better

than others. An example of a problem that can be solved with hill

climbing is the travelling salesman problem. It is also used widely in

artificial intelligence fields for reaching a goal state from a starting

node.

5.0 SUMMARY

This unit has addressed the following:

Hill climbing technique and algorithm

How hill climbing is used in solving problems

The Knight‟s tour problems.

The Queen‟s problem

http://www.wolfram.com/products/mathematica/

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

10
9

109

6.0TUTOR- MARKED ASSIGNMENT

1. Briefly describe the climbing technique and algorithm.
2. Briefly explain how the climbing technique is used in solving

problems.
3. Compare the Knight‟s tour problem and the Queen‟s problem

you have learnt about in this unit.

7.0 REFERENCES/FURTHER READINGS

http://mathworld.wolfram.com/QueensProblem.html.

http://mathworld.wolfram.com/QueensProblem.html.

Ahrens, W. (1910). Mathematische Unterhaltungen und Spiele.
Leipzig, Germany: Teubner, p. 381.

Ball, W. W. R. and Coxeter, H. S. M.(1987). Mathematical Recreations

and Essays (13th ed). New York: Dover, pp. 175-186,.

Chartrand, G. "The Knight's Tour." §6.2 in Introductory Graph Theory

(1985).New York: Dover, pp. 133-135.

Conrad, A.; Hindrichs, T.; Morsy, H.; and Wegener, I.(1994). "Solution

of the Knight's Hamiltonian Path Problem on Chessboards."

Discr. Appl. Math. 50, 125-134.

de Polignac. Comtes Rendus Acad. Sci. Paris, Apr. 1861.

de Polignac. Bull. Soc. Math. de France 9, 17-24, 1881.

Dudeney, H. E.(1970). Amusements in Mathematics. New York: Dover,

pp. 96 and 102-103.

Elkies, N. D. and Stanley, R. P. "The Mathematical Knight." Math.

Intell. 25, No. 1, 22-34, Winter 2003.

Euler, L. "Solution d'une question curieuse qui ne paroit soumise a

aucune analyse." Mémoires de l'Académie Royale des Sciences et

Belles Lettres de Berlin, Année 1759 15, 310-337, 1766.

Euler, L. Commentationes Arithmeticae Collectae, Vol. 1. (1849)

Leningrad, pp. 337-355,.

Friedel, F. "The Knight's Tour."
http://www.chessbase.com/columns/column.asp?pid=163.

http://mathworld.wolfram.com/QueensProblem.html
http://mathworld.wolfram.com/QueensProblem.html
http://www.amazon.com/exec/obidos/ASIN/0486253570/ref=nosim/weisstein-20
http://www.amazon.com/exec/obidos/ASIN/0486253570/ref=nosim/weisstein-20
http://www.amazon.com/exec/obidos/ASIN/0486247759/ref=nosim/weisstein-20
http://www.amazon.com/exec/obidos/ASIN/0486204731/ref=nosim/weisstein-20
http://www.chessbase.com/columns/column.asp?pid=163

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

11
0

110

Gardner, M. (1978)."Knights of the Square Table." Ch. 14 in

Mathematical Magic Show: More Puzzles, Games, Diversions,

Illusions and Other Mathematical Sleight-of-Mind from Scientific

American. New York: Vintage, pp. 188-202,.

Gardner, M. (1984). The Sixth Book of Mathematical Games from

Scientific American. Chicago, IL: University of Chicago Press,

pp. 98-100.

Guy, R. K.(199). "The Queens Problem." §C18 in Unsolved Problems

in Number Theory, 2nd ed. New York: Springer-Verlag, pp.
133-135.

Jelliss, G. "Knight's Tour Notes." http://www.ktn.freeuk.com/.

Jelliss, G. "Chronology of Knight's Tours."

http://www.ktn.freeuk.com/cc.htm.

Kraitchik, M.(1942). "The Problem of the Knights." Ch. 11 in

Mathematical Recreations. New York: W. W. Norton, pp.
257-266.

Kyek, O.; Parberry, I.; and Wegener, I. "Bounds on the Number of

Knight's Tours." Discr. Appl. Math. 74, 171-181, 1997.

Lacquière. Bull. Soc. Math. de France 8, 82-102 and 132-158, 1880.

Madachy, J. S.(1970). Madachy's Mathematical Recreations. New

York: Dover, pp. 87-89.

Murray, H. J. R. (1902)."The Knight's Tour, Ancient and Oriental."

British Chess Magazine, pp. 1-7.

Pegg, E. Jr. "Leapers (Chess Knights and the Like)"

http://www.mathpuzzle.com/leapers.htm.

Roget, P. M. (1840).Philos. Mag. 16, 305-309.

Rose, C. "The Distribution of the Knight."
http://www.tri.org.au/knightframe.html.

Roth, A. "The Problem of the Knight: A Fast and Simple Algorithm."

http://library.wolfram.com/infocenter/MathSource/909/.

Rubin, F. (1974)."A Search Procedure for Hamilton Paths and Circuits."

J. ACM 21, 576-580.

http://www.amazon.com/exec/obidos/ASIN/0394408225/ref=nosim/weisstein-20
http://www.amazon.com/exec/obidos/ASIN/0394408225/ref=nosim/weisstein-20
http://www.amazon.com/exec/obidos/ASIN/0394408225/ref=nosim/weisstein-20
http://www.amazon.com/exec/obidos/ASIN/0226282503/ref=nosim/weisstein-20
http://www.amazon.com/exec/obidos/ASIN/0226282503/ref=nosim/weisstein-20
http://www.amazon.com/exec/obidos/ASIN/0387208607/ref=nosim/weisstein-20
http://www.amazon.com/exec/obidos/ASIN/0387208607/ref=nosim/weisstein-20
http://www.ktn.freeuk.com/
http://www.ktn.freeuk.com/cc.htm
http://www.amazon.com/exec/obidos/ASIN/0486201635/ref=nosim/weisstein-20
http://www.amazon.com/exec/obidos/ASIN/0486237621/ref=nosim/weisstein-20
http://www.mathpuzzle.com/leapers.htm
http://www.tri.org.au/knightframe.html
http://library.wolfram.com/infocenter/MathSource/909/

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

11
1

111

Ruskey, F. "Information on the Knight's Tour Problem."
http://www.theory.csc.uvic.ca/~cos/inf/misc/Knight.html.

Skiena, S. (1990). Implementing Discrete Mathematics: Combinatorics

and Graph Theory with Mathematica. Reading, MA: Addison-

Wesley, p. 166.

Sloane, N. J. A. Sequences A001230, A003192/M1369,

A006075/M3224, A033996, and A079137 in "The On-Line

Encyclopedia of Integer Sequences."

Steinhaus, H. (1999). Mathematical Snapshots, 3rd ed. New York:

Dover, p. 30.

Thomasson, D. "The Knight's Tour."
http://www.borderschess.org/KnightTour.htm.

van der Linde, A.(1874). Geschichte und Literatur des Schachspiels,

Vol. 2. Berlin: Springer-Verlag, pp. 101-111.

Vandermonde, A.-T. "Remarques sur les Problèmes de Situation."

L'Histoire de l'Académie des Sciences avec les Mémoires, Année
1771. Paris: Mémoirs, pp. 566-574 and Plate I, 1774.

Velucchi, M. "Knight's Tour: The Ultimate Knight's Tour Page of

Links." http://www.velucchi.it/mathchess/knight.htm.

Volpicelli, P. (1872). "Soluzione completa e generale, mediante la

geometria di situazione, del problema relativo alle corse del

cavallo sopra qualunque scacchiere." Atti della Reale Accad. dei

Lincei 25, 87-162.

Warnsdorff, H. C. (1823). von Des Rösselsprungs einfachste und
allgemeinste Lösung. Schmalkalden.

Watkins, J. (2004). Across the Board: The Mathematics of Chessboard

Problems. Princeton, NJ: Princeton University Press.

http://www.theory.csc.uvic.ca/~cos/inf/misc/Knight.html
http://www.amazon.com/exec/obidos/ASIN/0521806860/ref=nosim/weisstein-20
http://www.amazon.com/exec/obidos/ASIN/0521806860/ref=nosim/weisstein-20
http://www.research.att.com/~njas/sequences/A001230
http://www.research.att.com/~njas/sequences/A003192
http://www.research.att.com/~njas/sequences/A006075
http://www.research.att.com/~njas/sequences/A033996
http://www.research.att.com/~njas/sequences/A079137
http://www.amazon.com/exec/obidos/ASIN/0486409147/ref=nosim/weisstein-20
http://www.borderschess.org/KnightTour.htm
http://www.amazon.com/exec/obidos/ASIN/3283000794/ref=nosim/weisstein-20
http://www.amazon.com/exec/obidos/ASIN/3283000794/ref=nosim/weisstein-20
http://www.velucchi.it/mathchess/knight.htm
http://www.amazon.com/exec/obidos/ASIN/0691115036/ref=nosim/weisstein-20
http://www.amazon.com/exec/obidos/ASIN/0691115036/ref=nosim/weisstein-20

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

11
2

112

UNIT 8 PRACTICAL EXERCISE III

CONTENTS

1.0 Introduction

2.0 Objectives
3.0 Main Content

3.1 Problem I
3.2 Problem II

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

In this unit, you will be exposed to the practical applications of all the
sorting algorithms you learnt in the previous units of this course.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

explain how bubble sort is implemented in c programming language

show how quick sort is implemented in c programming language.

3.0 MAIN CONTENT

3.1 Problem I

Write the C codes for implementing bubble sort

Solution

void bubble sort(int numbers[],int array_size)

{

int i, j, temp;

for (i = (array_size - 1); i >= 0; i--)

{

for (j = 1; j <= i; j++)

{

if (numbers[j-1] > numbers[j])

{

temp = numbers[j-1];

numbers[j-1] = numbers[j];

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

11
3

113

numbers[j] = temp;
}

}
}

}

3.2 Problem II

Write the C codes for implementing quick sort

Solution

void quick sort(int numbers[], int array_size)

{

q_sort(numbers, 0, array_size - 1);

}

void q_sort(int numbers[], int left, int right)

{

int pivot, l_hold, r_hold;

l_hold = left;

r_hold = right;
pivot = numbers[left];
while (left < right)

{

while ((numbers[right] >= pivot) && (left < right))
right--;

if (left != right)

{

numbers[left] = numbers[right];
left++;

}

while ((numbers[left] <= pivot) && (left < right))

left++;
if (left != right)
{

numbers[right] = numbers[left];

right--;
}

}

numbers[left] = pivot;

pivot = left;

left = l_hold;

right = r_hold;

if (left < pivot)

CIT 237 PROGRAMMING AND ALGORITHMS CIT 237 PROGRAMMING AND ALGORITHMS

11
4

114

q_sort(numbers, left, pivot-1);
if (right > pivot)

q_sort(numbers, pivot+1, right);

}

4.0 CONCLUSION

This unit has showed you how to implement bubble sort using the C

codes. Also, it showed you how to execute the quick sort using the C

codes as well.

5.0 SUMMARY

By now you should have learnt how:

To implement the bubble and the quick sort using the C codes.

To write programs using the C programming language.

6.0 TUTOR-MARKED ASSIGNMENT

1. Study the codes above and run them with sample data on a C
compiler.

2. Write the codes for implementing any sorting algorithm in
any programming language that you have learnt.

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.F. Rivest, R.L., Stein, C. (2001).

Introduction to Algorithms (2nd ed). Cambridge:M/T Press.

Goodrich, M.T., and Tamassia,R. (2002). Algorithm Design.

Foundations, Analysis, and Internet Examples. New York:John
Wiley & Sons.

Tucker, A.B and Noonan, R. (2006). Programming Languages –

Principles and Paradigms. (2nd ed). McGraw – Hill College.

http://mathworld.wolfram.com/QueensProblem.html.

http://mathworld.wolfram.com/QueensProblem.html.

http://mathworld.wolfram.com/QueensProblem.html
http://mathworld.wolfram.com/QueensProblem.html

