

CIT 246 COURSE GUIDE

CIT 246
INTRODUCTION TO COMPUTER ORGANISATION

Course Adapter A. A. Afolorunso
National Open University of Nigeria
14\16 Ahmadu Bello Way
Victoria Island
Lagos

Course Co-ordinator A. A. Afolorunso
National Open University of Nigeria
14\16 Ahmadu Bello Way
Victoria Island
Lagos

NATIONAL OPEN UNIVERSITY OF NIGERIA

ii

COURSE
GUIDE

CIT 246 COURSE GUIDE

National Open University of Nigeria
Headquarters
14/16 Ahmadu Bello Way
Victoria Island
Lagos.

Abuja Office
No 5 Dar es Salaam Street
Off Aminu Kano Crescent
Wuse II
Abuja

e-mail: centralinfo@nou.edu.ng
URL: www.nou.edu.ng

National Open University of Nigeria

First Printed 2008

ISBN: 978-058-557-5

All Rights Reserved

Printed by:

iii

http://www.nou.edu.ng/
mailto:centralinfo@nou.edu.ng

CIT 246 COURSE GUIDE

CONTENTS PAGE

Introduction.. 1
What You will Learn in this Course... 1
Course Aims... 1
Course Objectives.. 1
Working through this Course.. 2
Course Materials.. 2
Study Units ... 3
Textbooks and References .. 3
Assignment File.. 3
Presentation Schedule... 4
Assessment.. 4
Tutor-Marked Assignment ……….. 4
Final Examinations and Grading... 5
Course Marking Scheme.. 5
Course Overview……………………………………………… 6
How to Get the Best from This Course 6
Facilitators/Tutors and Tutorials .. 8
Summary .. 9

iv

Introduction

CIT 246 – Introduction to Computer Organisation is a three credit unit
course of eight units. This course presents an overview of the structure
and functioning of computer systems. It covers aspects on data
representation, interconnection structures, memory system, input-output
system, and the organisation of the central processing unit. In addition
the concepts of microprocessors, reduced instruction set computers and
parallel architecture are discussed.

This course is divided into two modules. The first module deals with the
basic architecture of the computer system. it includes discussions on
data representation, bus structure, digital logic circuits, random access
memory, secondary storage, high-speed memories, input/output devices,
and input/output techniques.

The second module focuses on the organisation of the CPU, where the
discussions are about the instruction formats, addressing modes, control
unit operations, and the micro-programmed control unit.

The aim of this course is to equip you with the basic knowledge you
require to understand the inner workings of a computer system. By the
end of the course, you should be able to confidently explain the inner
features and workings of every component part of the computer
hardware system.

This Course Guide gives you a brief overview of the course content,
course duration, and course materials.

A course on computers can never be complete because of the existing
diversities of the computer system. Therefore, you are advised to read
through further readings to enhance the basic understanding you will
acquire from the course material.

What You will Learn in this Course

The main purpose of this course is to introduce you to concepts relating
to computer orgarnisation and provide you with the indepth knowledge
of the internal components of the computer hardware components and
their basic functions.. This we intend to achieve through the following:

Course Aims

1. Introduce the concepts relating to Computer Organisation;
2. Expose the basic relationships that exist among the internal

components of the computer system and their interactions.

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

3. Discuss instruction set and the characteristics, addressing schemes
and formats of the instruction.

4. Discuss micro-programmed control unit in detail.
5. Expose the basics of digital logic circuits as well as memory

orgarnisation.

Course Objectives

Certain objectives have been set out to ensure that the course achieves
its aims. Apart from the course objectives, every unit of this course has
set objectives. In the course of the study, you will need to confirm, at the
end of each unit, if you have met the objectives set at the beginning of
the unit. By the end of this course you should be able to:

1. Define the logical structure of the computer
2. Describe data representation in in computers
3. Define the concept of Interrupt
4. Define an input/output processor
5. Discuss various types of instructions and differentiate among

various types of operands.
6. Discuss the basic organisation of ALU.
7. Explain the working of a microprogrammed control unit.

Working through this Course

In order to have a thorough understanding of the course units, you will
need to read and understand the contents and practise the steps by
designing a mini system for your department, and be committed to
learning and implementing your knowledge.

This course is designed to cover approximately sixteen weeks, and it
will require your devoted attention. You should do the exercises in the
Tutor-Marked Assignments and submit to your tutors.

Course Materials

These include:

1. The Course Guide
2. Study units
3. Recommended texts
4. A file for your assignments and for records to monitor your

progress.

ii

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Study Units

There are eight study units in this course:

Module 1

Unit 1 Introduction and Data Representation
Unit 2 Digital Logic Circuits
Unit 3 Memory Organisation
Unit 4 Input/Output Organisation

Module 2

Unit 1 Instruction Sets
Unit 2 Register Organisation And Micro-Operations
Unit 3 ALU And Control Unit Organisation
Unit 4 Microprogrammed Control Unit

Make use of the course materials, do the exercises to enhance your
learning.

Textbooks and References

Mano, M. Morris (1993). Computer System Architecture (3rd ed)
Prentice Hall of India.

Hayes, John P.(1988). Computer Architecture and Organisation (2nd ed).
McGraw-Hill International Editions.

Stallings William. Computer Organisation and Architecture (3rd ed).
Maxwell Macmillan International Editions.

Baron, Robert J. and Higbie Lee.Computer Architecture Addison-
Wesley Publishing Company.

Tanenbaum, Andrew S.(1993).Structural Computer Organisation
(3rd ed).Printice Hall of India.

Assignment File

There are of two types of assignments: the Self-Assessment Exercises
and the Tutor-Marked Assignments. The self-assessment exercises will
enable you monitor your performance by yourself, while the tutor-
marked assignments will be supervised. The assignments take a certain
percentage of your total score in this course. The tutor-marked
assignments will be assessed by your tutor within a specified period.

iii

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

The examination at the end of this course will aim at determining your
level of mastery of the subject matter. This course includes eight tutor-
marked assignments and each must be done and submitted accordingly.
Your best scores however, will be recorded for you. Be sure to send
these assignments to your tutor before the deadline to avoid loss of
marks.

Presentation Schedule

The Presentation Schedule included in your course materials gives you
the important dates for the completion of tutor- marked assignments and
for attending tutorials. Remember, you are required to submit all your
assignments by the due date. You should guard against lagging behind
in your work.

Assessment

There are two aspects to the assessment of the course. First are the tutor
-marked assignments; second, is a written examination.

In tackling the assignments, you are expected to apply the information
and knowledge you acquired during this course. The assignments must
be submitted to your tutor for formal assessment in accordance with the
deadlines stated in the Assignment File. The work you submit to your
tutor for assessment will count for 30% of your total course mark.

At the end of the course, you will need to sit for a final three-hour
examination. This will also count for 70% of your total course mark.

Tutor-Marked Assignment

There are eight tutor- marked assignments in this course. You need to
submit all the assignments. The total marks for the best four (4)
assignments will be 30% of your total course mark.

Assignment questions for the units in this course are contained in the
Assignment File. You should be able to complete your assignments
from the information and materials contained in your set textbooks and
study units. However, you may wish to use other references to broaden
your viewpoint and provide a deeper understanding of the subject.

When you have completed each assignment, send it together with a form
to your tutor. Make sure that each assignment reaches your tutor on or
before the deadline given. If however you cannot complete your work
on time, contact your tutor before the assignment is done to discuss the
possibility of an extension.

iv

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Final Examinations and Grading

The final examination for the course will carry 70% percentage of the
total marks available for this course. The examination will cover every
aspect of the course, so you are advised to revise all your corrected
assignments before the examination.

This course endows you with the status of a teacher and that of a learner.
This means that you teach yourself and that you learn, as your learning
capabilities would allow. It also means that you are in a better position
to determine and to ascertain the what, the how, and the when of your
language learning. No teacher imposes any method of learning on you.

The course units are similarly designed with the introduction following
the table of contents, then a set of objectives and then the discouse and
so on.

The objectives guide you as you go through the units to ascertain your
knowledge of the required terms and expressions.

Course Marking Scheme

This table shows how the actual course marking is broken down.

Assessment Marks
Assignment 1- 4 Four assignments, best three marks of the

four count at 30% of course marks
Final Examination 70% of overall course marks
 Total 100% of course marks

Course Overview

Unit Title of Work Weeks
Activity

Assessment
(End of Unit)

Course Guide Week 1

Module 1
1 Introduction and Data Representation Week 1 Assignment 1

2 Digital Logic Circuit Week 2 - 3 Assignment 2

3 Memory Organisation Week 4 - 5 Assignment 3

4 Input/Output Organisation Week 6 - 7 Assignment 4

v

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Module 2
1 Instruction Sets Week 8 -9 Assignment 5

2 Register Organisation And Micro-
Operations

Week 10 – 11 Assignment 6

3 ALU And Control Unit Organisation Week 12 – 13 Assignment 7

4 Microprogrammed Control Unit Week 14 - 15 Assignment 8

Revision Week 16

Examination Week 17

Total 17 weeks

How to Get the Best from this Course

In distance learning the study units replace the university lecturer. This
is one of the great advantages of distance learning; you can read and
work through specially designed study materials at your own pace, and
at a time and place that suit you best. Think of it as reading the lecture
instead of listening to a lecturer. In the same way that a lecturer might
set you some reading to do, the study units tell you when to read your
set books or other material. Just as a lecturer might give you an in-class
exercise, your study units provide exercises for you to do at appropriate
points.

Each of the study units follows a common format. The first item is an
introduction to the subject matter of the unit and how a particular unit is
integrated with the other units and the course as a whole. Next is a set
of learning objectives. These objectives enable you know what you
should be able to do by the time you have completed the unit. You
should use these objectives to guide your study. When you have
finished the units you must go back and check whether you have
achieved the objectives. If you make a habit of doing this you will
significantly improve your chances of passing the course.

Remember that your tutor’s job is to assist you. When you need help,
don’t hesitate to call and ask your tutor to provide it.

1. Read this Course Guide thoroughly.

2. Organise a study schedule. Refer to the Course Overview for more
details. Note the time you are expected to spend on each unit and
how the assignments relate to the units. Whatever method you chose
to use, you should decide on it and write in your own dates for
working on each unit.

vi

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

3. Once you have created your own study schedule, do everything you
can to stick to it. The major reason that students fail is that they lag
behind in their course work.

4. Turn to Unit 1 and read the introduction and the objectives for the
unit.

5. Assemble the study materials. Information about what you need for
a unit is given in the overview at the beginning of each unit. You
will almost always need both the study unit you are working on and
one of your set of books on your desk at the same time.

6. Work through the unit. The content of the unit itself has been
arranged to provide a sequence for you to follow. As you work
through the unit you will be instructed to read sections from your set
books or other articles. Use the unit to guide your reading.

7. Review the objectives for each study unit to confirm that you have
achieved them. If you feel unsure about any of the objectives, review
the study material or consult your tutor.

8. When you are confident that you have achieved a unit’s objectives,
you can then start on the next unit. Proceed unit by unit through the
course and try to pace your study so that you keep yourself on
schedule.

9. When you have submitted an assignment to your tutor for marking,
do not wait for its return before starting on the next unit. Keep to
your schedule. When the assignment is returned, pay particular
attention to your tutor’s comments, both on the tutor-marked
assignment form and on the assignment. Consult your tutor as soon
as possible if you have any questions or problems.

10. After completing the last unit, review the course and prepare yourself
for the final examination. Check that you have achieved the unit
objectives (listed at the beginning of each unit) and the course
objectives (listed in this Course Guide).

Facilitators/Tutors and Tutorials

There are 15 hours of tutorials provided in support of this course. You
will be notified of the dates, times and location of these tutorials,
together with the name and phone number of your tutor, as soon as you
are allocated a tutorial group.
Your tutor will mark and comment on your assignments, keep a close
watch on your progress and on any difficulties you might encounter and

vii

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

provide assistance for you during the course. You must mail or submit
your tutor-marked assignments to your tutor well before the due date (at
least two working days are required). They will be marked by your tutor
and returned to you as soon as possible.

Do not hesitate to contact your tutor by telephone, or e-mail if you need
help. The following might be circumstances in which you would find
help necessary. Contact your tutor if:

• you do not understand any part of the study units or the assigned
readings,

• you have difficulty with the self-tests or exercises,
• you have a question or problem with an assignment, with your

tutor’s comments on an assignment or with the grading of an
assignment.

You should try your best to attend the tutorials. This is the only chance
to a have face to face contact with your tutor and to ask questions which
are answered instantly. You can raise any problem encountered in the
course of your study. To gain the maximum benefit from course
tutorials, prepare a question list before attending them. You will learn a
lot from participating in discussions actively.

Summary

Introduction to Computer Organisation, as the title implies, introduces
you to the fundamental concepts of how the computer system operates
internally to perform the basic tasks required of it by the end-users.
Therefore, you should acquire the basic knowledge of the internal
workings of the components of the computer system in this course. The
content of the course material was planned and written to ensure that
you acquire the proper knowledge and skills in order to be able to
programme the computer to do your bidding. The essence is to get you
to acquire the necessary knowledge and competence and equip you with
the necessary tools.

We wish you success with the course and hope that you will find it
interesting and useful.

viii

 MAIN
COURSE

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Course Code CIT 246

Course Title Introduction to Computer
Organisation

Course Adapter A. A. Afolorunso
National Open University of Nigeria
14/16, Ahmadu Bello Way
Victoria Island, Lagos

Course Co-ordinator A. A. Afolorunso
National Open University of Nigeria
14/16, Ahmadu Bello Way
Victoria Island, Lagos

CONTENTS PAGE

ix

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Module 1 ……………………………………………………….. 1

Unit 1 Introduction and Data Representation ……………... 1
Unit 2 Digital Logic Circuits …………………………….… 47
Unit 3 Memory Organisation ……………………………... 92
Unit 4 Input/Output Organisation ………………………. 133

Module 2 ……………………………………………………... 154

Unit 1 Instruction Sets …………………………………….. 154
Unit 2 Register Organisation and Micro-Operations ….….. 193
Unit 3 ALU And Control Unit Organisation……………… 224
Unit 4 Microprogrammed Control Unit ……….......... …… 248

x

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

MODULE 1

Unit 1 Introduction and Data Representation
Unit 2 Digital Logic Circuits
Unit 3 Memory Organisation
Unit 4 Input/Output Organisation

UNIT 1 INTRODUCTION AND DATA
REPRESENTATION

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 The Von Neumann Architecture
3.2 Computers: Then and Now

3.2.1 Mechanical Computers
3.2.2 First Generation Computers
3.2.3 Second Generation Computers
3.2.4 Third Generation Computers
3.2.5 Later Generation

3.3 Data Representation
3.3.1 Number Systems
3.3.2 Decimal Representation in Computers
3.3.3 Alphanumeric Representation
3.3.4 Computational Data Representation
3.3.5 The Fixed Point Representation
3.3.6 The Decimal Fixed Point Representation
3.3.7 The Floating Point Representation
3.3.8 Error Detection and Correction Codes

3.4 Instruction Execution
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

The computer which is one of the major components of an information
technology network is gaining increasing popularity. Today, computer
technology has permeated every sphere of existence of modern man.
From railway reservations to medical diagnosis; from TV programs to
satellite launching; from matchmaking to the arrest of criminals –

1

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

everywhere we witness the elegance, sophistication and efficiency
possible only with the help of computers.

In this unit we will revisit one of the important computer system
structures: The von Neumann Architecture. In addition we will examine
data representation, error detection and correction and a simple model of
instruction execution. This model will be enhanced in the second
module of this course. You can obtain more details on these terms from
the references and further readings.

2.0 OBJECTIVES

At the end of the unit you will be able to:

• define the logical structure of the computer;
• describe data representation in computers;
• describe the use of integer representation of data;
• identify how error detection and correction codes are used;
• define the instruction cycle; and
• define the concept or interrupt.

3.0 MAIN CONTENT

3.1 The Von Neumann Architecture

The basic function performed by a computer is the execution of a
program. Therefore, one of the key aspects in program execution is the
execution of an instruction. But what is an instruction? Obviously an
instruction is a form of control code, which supplies the information
about an operation and the data on which the operation is to be
performed. The control unit (CU) interprets each of these intstructions
and generates respective control signals.

The Arithmetic Logic Unit (ALU) in special storage areas called
registers performs the arithmetic and logical operations. The size of the
register is one of the important considerations in determining the
processing capabilities of the CPU. Register size refers to the amount of
information that can be held in a register at a time for processing. The
larger the register size, the faster may be the speed of processing.

An input/output system also called I/O components allows data input
and reporting of the results in proper format and form. For transfer of
information a computer system internally needs the system
interconnections. One such interconnection structure is BUS
interconnection.

2

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

The main memory is needed in a computer to store instructions and data
at the time of programme execution. It was pointed out by von-
Neumann that the same memory can be used for storing data and
instructions. In such cases the data can be treated as data on which
processing can be performed, while instructions can be treated as data
which can be used for the generation of control signals. The memory
unit stores all the information in a group of memory cells, also called
memory locations, as binary digits. Each memory location has a unique
address and can be addressed independently. The contents of the desired
memory locations are provided to the central processing unit by
referring to the address of the memory location. Memory to CPU is
another important data transfer path. The amount of information which
can be transferred between CPU and memory depends on the size of the
BUS connecting the two.

Let us summarise the key features of a von Neumann machine.

• The von Neumann machine uses a stored program concept, i.e., the
program and data are stored in the same memory unit. The
computers prior to this idea used to store programs and data on
separate memories. Entering and modifying these programs were
very difficult as they were entered manually by setting switches,
plugging, and unplugging.

• Each location of the memory of the von Neumann machine can be
addressed independently.

• Execution of instructions in the von Neumann machine is carried out
in a sequential fashion (unless explicity altered by the program itself)
from one instruction to the next.

Figure 1 shows the basic structure of a von Neuman machine.

3

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Figure 1. The basic structure of a conventional von Neumann
machine

A von Neumann machine has only a single path between the main
memory and the control unit (CU). This feature/constraint is referred to
as the von Neumann bottleneck. Several other architectures have been
suggested for modern computers. You can find about non-von Neumann
architectures in the further readings.

SELF-ASSESSMENT EXERCISE 1

State whether True or False:

1. A byte is equal to 8 bits and can represent a character internally.
True False

2. A word on pentium is equal to one byte. True False

3. The von Neumann architecture specifies different memory units

for data and instructions. The memory which stores data is called
data memory and the memory which stores instructions is called
instruction, independently. True False

4. In von Neumann architecture each bit of memory can be accessed
independently. True False

Data and Control Information
Interconnection

Main
Memory

Address
Interconnection

Data and Instruction
 Internnection

Central Processing Unit (CPU)

Operational
Registers Arithmetic

and Logic
UnitsControl Unit

Input/Output
System

4

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

5. A program is a sequence of instructions designed for achieving a
task or goal. True False

6. One MB is equal to 1024KB True False

3.2 Computers: Then and Now

Let us discuss the history of computers because this will give the basic
information about the technological development trends in the computer
in the past and its projections in the future. If we want to know about
computers completetely then we must start from the history of
computers and look into the details of various technological and
intellectual breakthroughs. These are essential to give us the feel of how
much work and effort has been done to get the computer in this shape.

The ancestors of the modern age computer were the mechanical and
electromechanical devices. This ancestry can be traced to as far back as
the 17th century, when the first machine capable of performing four
mathematical operations, viz.: addition, substration, division and
multiplication was invented. In the subsequent subsection we present a
very brief account of mechanical computers.

3.2.1 Mechanical Computers

Blaise Pascal made the very first attempt towards the automatic
computing. He invented a device, which consisted of lots of gears and
chains and used to perform repeated addition and substraction. This
device was called pascaline. Later many attempts were made in this
direction; we will not go into the details of these mechanical calculating
devices. But we must examine some details about the innovation by
Charles Babbage, the grandfather of the modern computer. He designed
two computers:

The Difference Engine: It was based on the mathematical principle of
finite differences and was used to solve calculations on large numbers
using a formula. It was also used for polynomial and trigonometric
functions.

The Analytical Engine by Babbage: It was a general purpose-
computing device, which could be used for performing any
mathematical operation automatically. It consisted of the following
components:

• The Store: A mechanical memory unit consisting of sets of
counter wheels

5

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

• The Mill: An arithmetical unit, which is capable of performing
the four basic arithmetical operations.

• Cards: There are basically two types of cards:

• Operation Cards: Selects one of four arithmetical operations by
activating the mill to perform the selected function.

• Variable Cards: Selects the memory location to be used by the
mill for a particular operation (i.e., the source of the operands and the
destination of the results).

• Output: It could be directed to a printer or a cardpunch device.

 Cards make the program

 Each card contains an instruction

Figure 2: Logical structure of Babbage’s analytical engine

The basic features of this analytical engine were as follows:

• It was a general-purpose programmable machine.

• It had the provision of an automatic sequence control, thus enabling
programs to alter its sequence of operations.

• The provision of sign checking of result existed.
• A mechanism for advancing or reversing control cards was

permitted, thus enabling the execution of any desired instruction. In
others words, Babbage devised conditional and branching
instructions. The Babbage machine is fundamentally the same as a
modern computer. Unfortunately Babbage’s work could not be
completed. But as a tribute to Charles Babbage his analytical engine

The mill
performs the job

of the
arothemetical

unit

Store used as
memory

Output on
Printer or

punched card

Operational
Cards

Variable
Cards

Results

Instructions

6

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

was completed in the decade and is now on display at the Science
Museum at London.

Next notable attempts towards the computer were electromechanical.
Zuse used electromechanical relays that could be either opened or closed
automatically. Thus, the use of binary digits, rather than decimal
numbers started.

Harvard Mark I and the Bug

The next significant effort towards devising an electromechanical
computer was made at the Harvard University, jointly sponsored by
IBM and the Department of UN Navy. Howard Aiken of Harvard
University developed a system called Mark I in 1944. Mark I was a
decimal machine.

You may have heard a term called “bug”. It is mainly used to indicate
errors in computer programs. This term was coined when one day, a
program in Mark I did not run properly due to a moth short-circuiting
the computer. Since then, the moth or the bug has been linked with
errors or problems in computer programming. Thus, the process of
eliminating errors in a program is known as “debugging”.

The basic drawbacks of these mechanical and electromechanical
computers were:

• The friction/inertia of moving components had limited the speed.
• The data movement using gears and liner was quite difficult and

unreliable.
• The change was to have switching and storing mechanisms with no

moving parts; and then the electronic switching technique “triode”
vacuum tubes were used, hence the birth of the first electronic
computer.

3.2.2 First Generation Computers

It is indeed ironic that scientific inventions of great significance have
often been linked with supporting a very sad and undesirable aspect of
civilisation i.e. fighting wars. Nuclear energy would not have been
developed as fast, if colossal efforts were not spent towards devising
nuclear bombs.

Similarly, the origin of the first truly general-purpose computer was also
designed to meet the requirements of World War II. The ENIAC (the
Electronic Numerical Integrator and Calculator) was designed in 1945 at
the University of Pennsylvania to calculate figures for thousands of

7

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

gunnery tables required by the US army for accuracy in artillery fire.
The ENIAC ushered in the era of what is known as first generation
computers. It could perform 5000 additions or 500 multiplications per
minute. It was however, a monstrous installation. It used thousands of
vacuum tubes (18000), weighed 30 tons, occupied a number of rooms,
needed a great amount of electricity and emitted excessive heat. The
main features of ENIAC can be summarised as:

• ENIAC was a general purpose-computing machine in which vacuum
tube technology was used.

• ENIAC was based on decimal arithmetic rather than binary
arithmetic.

• ENIAC needed to be programmed manually by setting switches and
plugging or unplugging. Thus, to pass a set of instructions to the
computer was cumbersome and time-consuming. This was
considered to be the major deficiency of ENIAC.

The trends, which were encountered during the era of first generation
computers, were as follows:

• Centralised control in a single CPU; all the operations required a
direct intervention of the CPU.

• The use of ferrite-core main memory was started during this time.
• Concepts such as the use of virtual memory and index register (you

will know more about these terms later) started.
• Punched cards were used as input devices.
• Magnetic tapes and magnetic drums were used as secondary

memory.
• Binary code or machine language was used for programming.
• Towards the end, due to difficulties encountered in the use of

machine language as programming language, the use of symbolic
language that is now called assembly language started.

• Assembler, a program that translates assembly programs to machine
was made.

• The computer was accessible to only one program at a time (single
user environment).

• The advent of von Neumann architecture.

3.2.3 Second Generation Computers

The second-generation computers started with the advent of transistors.
A transistor is a two-state device made from silicon. It is cheaper,
smaller and dissipates less heat than the vacuum tube but can be utilised
in a similar way as that of vacuum tubes. Unlike vacuum tubes, a
transistor does not require wires, metal glass capsule and vacuum;

8

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

therefore, it is called a solid-state device. The transistors were invented
in 1947 and launched the electronic revolution in 1950.

The generation of computers is basically differentiated by a fundamental
hardware technology. Each new generation of computers is
characterised by greater speed, larger memory capacity and smaller size
than the previous generation. Thus, second generation computers were
more advanced in terms of arithmetic and logic units and the control unit
than their counterparts of the first generation. By this time high-level
languages were beginning to be used and the provisions for system
software were starting.

One of the main computer series during this time was the IBM 700
series. Each successful number of this series showed increased
performanace and capacity and reduced cost. In these series two main
concepts, I/O channels – an independent processor for input/output, and
a multiplexor- a useful routing device, were used.

3.2.4 Third Generation Computers

A single self-contained transistor is called a discrete component. In the
1960s, the electronic equipment were made from the discrete
components such as transistors, capacitors, resistors and so on. These
components were manufactured separately and were soldered on circuit
boards, which then could be used for making computers of the electronic
components. Since the computer could contain around 10,000 of these
transitors, the entire mechanism was cumbersome. Then started the era
of microelectronics (small electronics) with the invention of integrated
circuits (ICs). The use of ICs in computer defined the third generation of
computers.

Some examples of third generation computers are IBM system/360
family and DEC PDP/8 systems. Third generation computers mainly
used SSI chips. The PDP/8 was a compact, cheap system from DEC.
This computer established a concept of minicomputer. One of the key
concepts which were brought forward during this time was the concept
of the family of compatible computers. IBM mainly started this concept
with its system/360 family.

A family of computers consists of several models. Each model is
assigned a model number; for example, the IBM system/360 family has,
Models 30, 40, 50, 65 and 75. As we go from a lower model number to
higher model number in this family, the memory capacity, processing
speed and cost increases. But, all these models are compatible in nature;
that is, a progam written on a lower model can be executed on a higher
model without any change. Only the time of execution is reduced as we

9

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

go towards a higher model. The biggest advantage of this family system
was the flexibility of the selection of models. For example, if you had
limited budget and processing requirements you could possibly have
started with a relatively moderate model such as Model 30. As your
business flourished and your processing requirement increased, you
could upgrade your computer with subsequent models such as 40, 50, 65
and 75 depending on your need. Here, you were not sacrificing
investment on the already developed software as they could be used in
these machines also.

Let us summarise the main characteristics of the family. These are:

• The instructions on a family are of similar type. Normally, the
instructions set on a lower end member is a subset of higher end
member, therefore, a program written on a lower end member can be
executed on a higher end member, but a program written on a higher
end member may or may not execute on a lower end member.

• The operating system used on family members is the same. In certain
cases some features can be added in the operating system for the
higher end members.

• The speed of execution of instruction increases from lower end
family members to higher end members.

• The number of I/O ports or interfaces increases as we move to higher
members.

• Memory size increases as we move towards higher members.

• The cost increases from lower to higher members.

But how was the family concept implemented? There were three main
features of implementation. These are:

• Increased complexity of the arithmetic logic unit
• Increase in memory – CPU data paths
• Simultaneous access of data in higher ends members.

The major developments which took place in the third generation can be
summarised as:

• IC circuits were starting to find their application in the computer
hardware replacing the discrete transistor component circuits. This
resulted in reduction in the cost and the physical size of the
computer.

10

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

• Semiconductor (integrated circuit) memories were starting to
augment ferrite core memory as main memory.

• The CPU design was made simple and the CPU was made more
flexible using a technique called microprogramming (this will be
discussed in Module 2).

• Certain new techniques were introduced to increase the effective
speed of program execution. These techniques were pipelining and
multiprocessing. These can be found in the further readings.

• The operating system of computers was incorporated with the
efficienct methods of sharing the facilities or resources such as
processor and memory space, automatically.

3.2.5 Later Generations

One of the major milestones in the IC technology was the very large
scale integration (VLSI) where thousands of transistors could be
integrated on a single chip. The main impact of VLSI was that it was
possible to produce a complete CPU or main memory or other similar
devices on a single IC chip. This implied that mass production of CPU;
memory etc. could be done at a very low cost. The VLSI-based
computer architecture is sometimes referred to as the fourth generation
computer.

The fourth generation is also coupled with Parallel Computer
Architectures. These computers had shared or distributed memory and
specilalised hardware units for floating point computation. In this era,
multiprocessing operating systems, compilers and special languages and
tools were developed for parallel processing and distributed computing.
VAX 9000, CRAY X-MP, IBM/3090 F are some of the systems
developed during this era.

The fifth generation computers are also available presently. These
computers mainly emphasise Massively Parallel Processing. These
computers use high-density packaging and optical technologies.
Discussions on such technologies are beyond the scope of this course.

SELF-ASSESSMENT EXERCISE 2

1. What is a general-purpose machine?
2. List the advantages of IC technology over discrete components.
3.3 Data Representation

11

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Having discussed the history of computers, we shall focus our attention
on answering some questions such as:
How is information represented in a computer? It is in the form of a
binary digit popularly called bit. But how are the arithmetical
calculations performed through these bits? How then are words like
ABCD stored in the computer? This section will try to highlight all these
points. But before we try to answer these questions, let us first
recapitulate the number system.

3.3.1 Number Systems

A number system of base (also called radix) r is a system which has r
distinct symbols for r digits. A string of these symbolic digits represents
a number. To determine the quantity that the number represents, we
multiply the number by an integer power of r depending on the place in
which it is located and then find the sum of weighted digits.

Decimal Numbers: The decimal number system has ten digits
represented by 0,1,2,3,4,5,6,7,8 and 9. Any decimal number can be
represented as a string of these digits and since there are ten decimal
digits, therefore, the base or radix of this system is 10.

Thus, a string of number 234.5 can be represented in quantity as:

2x102+3x 101+4x 100+5x 10-1

Binary Numbers: In binary numbers we have two digits 0 and 1 and
they can also be represented, as a string of these two-digits called bits.
The base of the binary number system is 2.

For converting the value of binary numbers to the decimal equivalent we
have to find its quantity, which is found by multiplying a digit by its
place value. For example, binary number 101010 is equivalent to

1 x 25 + 0 x 24 + 1 x 23 + 0 x 22 + 1 x 21 + 0 x 20

 = 1 x 32 + 0 x 16 + 1 x 8 + 0 x 4 + 1 x 2 + 0 x 1
 = 32 + 8 + 2
 = 42 in decimal.

Octal Numbers: An octal system has eight digit represented as 0, 1, 2,
3, 4, 5, 6, 7. For finding the equivalent decimal number of an octal
number one has to find the quantity of the octal number, which is again
calculated as:
Octal number (23.4)8

(Please note the subscript 8 indicates it is an octal number, similarly a
subscript 2 will indicate binary, 10 will indicate decimal and H will

12

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

indicate a hexadecimal number;in case no subscript is specified then the
number should be treated as a decimal number or else whatever number
system is specified before it.)

Decimal equivalent

(23.4)8 = 2 x 81 + 3 x 80 + 4 x 8-1

= 2 x 8 + 3 x 1 + 4 x 1/8
= 16 + 3 + 0.5
= (19.5)10

Hexadecimal Numbers: The hexadecimal system has 16 digits, which
are represented as 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. A number
(F2)H is equivalent to

F x 161 + 2 x 160

= (15 x 16) + 2

(As F is equivalent to 15 for decimal)
= 240 + 2

= (242)10

Conversion of Decimal Number to Binary Number: For converting a
decimal number to binary number, the integer and fractional part are
handled separately. Let us explain it with the help of an example.

Example 1: Convert the decimal number 43.125 to binary.

Solution:

Integer Part = 43 Fraction 0.125
By dividing the quotient of integer
part repeatedly by 2 and separating
the remainder till we get 0 as the
quotient

By multiplying the fraction
repeatedly by 2 and separating the
integer as you get it till you have
all zeros in fraction

Quotient Remainder 0.125
 21 1 x2

13

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

 10 1 0 0.250
 5 0 x2
 2 1 0 0.500
 1 0 x2
 0 1 1 1.000

The integer equivalent binary The decimal equivalent to
is (101011)2 binary is .001
(Read the way arrow is) (Read the way arrow is)

Thus the number (101011.001)2 is = (43.125)10

1 x 25 + 0 x 24 + 1 x 23 + 0 x 22 + 1 x 21 + 1 x 20 + 0 x 2-1 + 0 x 2-2 + 1 x 2-2

= 32 + 0 + 8 + 0 + 2 + 1 + 0 + 0 + 1/8

= (43.125)10

One easy direct method in decimal to binary conversion for integer part
is to first write the place values as:

26 25 24 23 22 21 20

64 32 16 8 4 2 1

Now, take the integer part, e.g., 40, find the next lower or equal binary
place value number that is 32 in this case. Place 1 at 32 and subtract 32
from 40, which is 8. Do the same for 8 till we reach 0.
These steps are shown as:

32 16 8 4 2 1
1 40 – 32 = 8
1 0 1 8 – 8 = 0
1 0 1 0 0 0 is the number

Try it.

Conversion of Binary to Octal and Hexadecimal: The rules for these
conversions are straightforward. For converting binary to octal the
binary number is divided into groups of three, which are then combined
by place value to generate equivalent octal. For example the number

 1 101011 .001 01
 001 101011 .001 010

(Please note the number is unchanged, we have added 0 to complete the
grouping. Also note the style of grouping before and after the decimal.

14

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

We count three numbers from right to left while after the decimal, from
left to right.)

The 011 = 0 x 22 + 1 x 21 + 1 x 20

= 0 + 2 + 1 = 3
101 = 1 x 4 + 0 x 2 + 1 x 1 = 5
001 = 0 x 4 + 0 x 2 + 1 x 1 = 1
010 = 0 x 4 + 1 x 2 + 0 x 1 = 2
The number is (153.12)8

Grouping four binary digits and finding an equivalent hexadecimal digit
for it can make the hexadecimal conversion. For example the same
number will be equivalent to

 110 1011 . 0010 1
= 0110 1011 . 0010 1000
= 6 11 . 2 8
= 6 B . 2 8 (11 in hexadecimal is B)
= (6B.28) H

Conversely, we can conclude that a hexadecimal digit can be broken
down into a string of binary having 4 places and an octal can be broken
down into a string of binary having 3 places. Figure 3 gives the binary
equivalent of octal and hexadecimal numbers.

Octal Number Binary- coded Hexadecimal Binary-coded
Octal Number Hexadecimal

0 000 0 0000
1 001 1 0001
2 010 2 0010
3 011 3 0011
4 100 4 0100
5 101 5 0101
6 110 6 0110
7 111 7 0111

 8 1000
 9 1001

 -Decimal-
 A 10 1010
 B 11 1011
 C 12 1100
 D 13 1101

 E 14 1110
 F 15 1111

Figure 3: Binary equivalent of octal and hexadecimal numbers
3.3.2 Decimal Representation in Computers

15

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

The binary number system is most natural for the computer because of
the two stable states of its components. But unfortunately, this is not a
very natural system for us as we work with the decimal number system.
Then how does the computer do the arithmetic? One of the solutions,
which are followed in most computers, is to convert all input values to
binary. Then the computer performs arithmetical operations and finally
converts the results back to the decimal number so that we can interpret
it easily. Is there any alternative to this scheme? Yes, there exists an
alternative way of performing computation in decimal form but it
requires that the decimal numbers be coded suitably before performing
these computations. Normally, the decimal digits are coded in 6-8 bits as
alphanumeric characters but for the purpose of arithmetical calculations
the decimal digits are treated as four bit binary codes.

As we know 2 bianry bits can represent 22 = 4 different combination, 3
bits can represent 23 = 8 combination and 4 bits can represent 24 = 16
combination. To represent decimal digits into binary form we require 10
combinations only, but we need to have a 4-digit code. One of the
common representations is to use the first ten binary combinations to
represent the ten decimal digits. These are popularly known as Binary
Coded Decimals (BCD). Figure 4 shows the binary coded decimal
numbers. Let us represent 43.125 in BCD. It is 0100 0011.0001.0010
0101. Compare it with the binary we have acquired in Example 1.

 Decimal Binary Coded Decimal
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

10 0001 0000
11 0001 0001
12 0001 0010
13 0001 0011
…. ……………..
20 0010 0000
…. ……….…….
30 0011 0000

Figure 4: Binary Coded Decimals (BCD)
3.3.3 Alphanumeric Representation

16

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

But what about alphabets and special characters like +, -, etc? How do
we represent these in computer? A set containing letters of the alphabet
(in both cases), the decimal digits (10 in number) and special characters
(roughly 10-15 in number) consist of at least 70 – 80 elements. One such
code generated for this set and is popularly used is ASCII (American
National Standard Code for Information Interchange). This code uses 7
bits to represent 128 characters. Now, an extended ASCII is used having
an 8-bit character representation code on microcomputers.

Similarly, binary codes can be formulated for any set of discrete
elements, e.g. colours, the spectrum, the musical notes, chessboard
positions etc. In addition these binary codes are also used to formulate
instructions, which are advanced forms of data representation. We will
discuss instructions in detail in the later modules.

3.3.4 Computational Data Representation

Till now we have discussed various number systems and BCD and
alphanumeric representations but how are these codes actually used to
represent data for scientific calculations? The computer is a discrete
digital device and it stores information in flip-flops (see Unit 2 of this
course for more details) which are two state devices, in binary form.
Basic requirements of computational data representation in binary form
are:

• Representation of sign;
• Representation of magnitude;
• If the number is fractional, then binary or decimal point, and

exponent

The solution to sign representation is easy, because sign can be either
positive or negative, therefore, one bit can be used to represent a sign.
By default it should be the leftmost bit. Thus, a number of n bit can be
represented as n+1 bit number, where n+1th bit is the sign bit and the rest
n bits represent its magnitude (Please refer to Figure 5).

 n + 1 n n - 1 …………………………..3 2 1

 1 bit n bits
 sign Magntitude

Figure 5: A (n + 1) bit number

The decimal position can be represented by a position between the flip-
flops (storage cells in computer). But how can one determine this

17

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

decimal position? Well to simplify the representation aspect, two
methods were suggested:

1. Fixed representation where the decimal position is assumed either
at the beginning or at the end of a number; and

2. Floating point representation where a second register is used to
keep the value of exponent that determines the position of the
binary or decimal point in the number.

Before discussing these two representations let us first discuss the term
“complement” of a number. These complements may be used to
represent negative numbers in digital computers.

Complement: There are two types of complements for a number of
base r; these are called r’s complement and (r- 1)’s complement. For
example, for decimal numbers the base is 10, therefore, complements
will be 10’s complement and (10-1) = 9’s complements. For binary
numbers we talk about 2’s and 1’s complements. But how are we to
obtain complements and what do these complements mean? Let us
discuss these issues with the help of following example:

Example 2: Find the 9’s complement and 10’s complement for the
decimal number 256.

Solution

9’s complement: The 9’s complement is obtained by substracting each
of the numbers from 9 (the highest digit value). Similarly, for obtaining
1’s complement for a binary number we have to subtract each binary
digit of the number from the digit 1 in the same manner as given in the
example 3.

9’s complement of 256 = 9 9 9
 - 2 - 5 - 6
= 7 4 3

10’s complement: adding 1 in the 9’s complement produces the 10’s
complement:

10’s complement of 256 = 743 + 1 = 744

Please note that on adding the number and its 9’s complement we get
999 (for this three digit numbers) while on adding the number and its
10’s complement we get 1000.
Example 3: Find 1’s and 2’s complement of 1010

18

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Solution

1’s complement: The 1’s complement of 1010 is

1 1 1 1
 - 1 - 0 - 1 - 0

0 1 0 1

The number is 1 0 1 0
The 1’s complement is 0 1 0 1

Please note that wherever you have a digit 1 in the number, the
complement contains 0 for that digit and vice versa. In other words to
obtain 1’s complement of a binary number, we only have to change all
the 1’s of the number to 0 and all the zeros to 1’s. This can be done by
complementing each bit.

2’s complement: adding 1 in 1’s complement will generate the 2’s
complement.

The 2’s complement can also be obtained by not complementing the
least significant zeros till the first 1 is encountered. This 1 is also not
complemented. After this 1, the rest of the bits on the left are
complemented.

Therefore, 2’s complement of the following number (using this method)
should be (you can check it by finding 2’s complement as we have done
in the example):

Number 2’s complement

2’s complement = 0 1 0 1 (1 + 1 in binary = 10)
 + 1
 0 1 1 0

Most significant bit Least significant bit

The number is 1 0 1 0
2’s complements is 0 1 1 0

No change in these bits

19

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

 100100 011 100
 No change in these bits

100000 100000 (No change in number and in
complement, a special case)

101001 010111 No change in this bits

3.3.5 The Fixed Point Representation

The fixed-point numbers in binary use a sign bit. A positive number has
a sign bit 0, while the negative number has a sign bit 1. In the fixed-
point numbers we assume that the position of the binary point is at the
end. It implies that all the represented numbers should be integers. A
negative number can be represented in one of the following ways.

• Signed magnitude representation,
• Signed 1’s complement representation, or
• Signed 2’s complement representation.

(Assumption size of register = 7 bit, the 8th bit is used for error checking
and correction or other purposes).

Signed magnitude representation

 +6 -6
 0 000110 1 000110

 Sign bit Sign bit

(No change in the magnitude only the sign
 bit changes)

Signed 1’s complement 0 000110 1 111001

Sign bit
(complement all the bits including sign

 bit of the positive number to obtain its
 complement negative number)

Signed 2’s complement 0 000110 1 111010

Sign bit (2’s complement of the positive
number including sign bit)

Arithmetical Additions

20

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

The complexity of arithmetical additions is dependent on the
representation which has been followed. Let us discuss this with the help
of the following example.

Example: Add 25 and – 30 in binary using a 7 bit register in
signed magnitude representation
signed 1’s complement
signed 2’s complement

Solution: 25 or +25 is
0 011001
- 30 in signed magnitude representation is:
+30 is 0011110,
Therefore – 30 is 1 011110

To do the arithmetical addition with one negative number we have to
check the magnitude of the numbers. The number which has the smaller
magnitude is then subtracted from the bigger number and the sign of
bigger number is selected. The implementation of such a scheme in
digital hardware will require a long sequence of control decisions as
well as circuits that will add, compare and subtract numbers. Is there a
better alternative than this scheme? Let us first try the signed 2’s
complement.

-30 in signed 2’s complement notation will be
+30 is 0 011110
-30 is 1 100010 (2’s complement of 30 including a sign bit)
+25 is 0 011001
-25 is 1 100111

Addition

21

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

+25 0 011 001
+30 0 011 110
+55 0 110 111 +5 is 0 000 101

-5 is 1 111 011
+25 0 011 001 in 2’s complement representation
-30 1 100 110
-05 1 111 011 (Just add the two numbers)

-25 1 100 001
+30 0 011 110
+05 1 0 000 101 (Just add the two numbers)

 Discard the card out of the sign bit.

-25 1 100 111 +55 is 0 110 111 in
-30 1 100 010 2’s complement representation.
-55 1 1 001 001 Therefore in the 2’s complement notation -55 is

 = 1 001 001
 Discard the carry bit.

Please note how easy it is to add two numbers using signed 2’s
complement. This procedure requires only one control decision and only
one circuit for adding the two numbers. But it puts the additional
condition that the negative numbers should be stored in signed 2’s
complement form in the registers. This can be achieved by
complmenting the positive number bit by bit and then incrementing the
resultant by 1 to get signed 2’s complement.

Signed 1’s Complement Representation

Another possibility, which is also simple, is the use of signed 1’s
complement. Signed 1’s complement has a rule. Add the two numbers,

including the sign bit. If carry of the most significant bit or sign bit is
one, then increment the result by 1 and discard the carry over. Let us
repeat all the operations with 1’s complement.

+25 0 011 001 (-25) 1 100 110
+30 0 011 110 -30 1 100 001

+25 0 011 001 (-25) 1 100 110
+30 0 011 110 +30 0 011 110
+55 0 110 111 +5 1 0 000 100

Carry out is 1 so add 1 to the sum,
and the carry over.
Thus sum = 0 000 101 which is
number 5.

+25 0 011 001
-30 1 100 001

22

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

-5 1 111 010

+5 is 0 000 101
-5 in 1’s complement 1 111 010

-25 1 100 110
-30 1 100 001
-55 1 1 000 111

 Carry out

Since, the carry out is 1, so add 1 to sum and discard the carry out.

1 000 111
 1
1 001 000

+55 is 0 110 111
-55 is 1’s complement 1 001 000

Another interesting feature about these representations is the
representation of 0. In the signed magnitude and 1’s complement there
are two representations for zero as:

Signed magnitude + 0 - 0
 0 000000 1 000000

Signed 1’s complement 0 000000 1 111111

But in signed 2’s complement there is just one zero and there is no
positive or negative zero.

+0 000000 -0 2’s complement of
 +0 = 1 111111

 1
 1 0 000000

 discard the carry

Thus, both +0 and -0 are the same in 2’s complement notation. This is
an added advantage in favour of 2’s complement notation. The highest
numbers, which can be accommodated in a register, also depend on the
type of representation. In general, in an 8-bit register, 1 bit I used as
sign. Therefore, the remaining 7 bits can be used for representing the
value. The highest and the lowest number, which can be represented,
are:

For a signed magnitude representation 27 – 1 to – (27 – 1)
 = 128 – 1 to – (128 – 1)

23

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

 = 127 to – 127

For signed 1’s complement 127 to – 127

But, for signed 2’s complement we can represent +127 to -128. The -128
is represented in signed 2’s complement notation as 10000000.

Arithmetic Subtraction: The subtraction can be easily done using the
2’s complement by taking the 2’s complement of the subtractend
(inclusive of sign bit) and then adding the two numbers.

Signed 2’s complement provides a very simple way for adding and
subtracting two numbers, thus, many computers (including IBM PC)
adopt signed 2’s complement notation. The reason why signed 2’s
complement is preferred over signed 1’s complement is because it has
only one representation for zero.

Overflow: An overflow is said to have occurred when the sum of two n
digits number occupies n+ 1 digit. This definition is valid for both
binary as well as decimal digits. But what is the significance of an
overflow for binary numbers since it is not a problem for the cases when
we add two numbers? Well the answer is in the limits of representaton
of numbers. Every computer employs a limit for representing numbers.
For instance, in our examples we are using 8-bit registers for calculating
the sum. But what will happen if the sum of the two numbers can be
accommodated in 9 bits? Where are we going to store the 9th bit? The
problem will be cleared by the following example.

Example: Add the numbers 65 and 75 in 8-bit register in signed 2’s
complement notation.

 65 0 1000001
 75 0 1001011
140 1 0001100 The expected result is +140 but the binary sum is a

negative number and is equal to – 116, which
obviously is a wrong result. This has occurred
because of an overflow.

How does the computer know that an overflow has occurred?
If the carry into the sign bit is not equal to the carry out of the sign bit
then an overflow must have occurred.

For example,

24

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

-65 1 0111111 -65 1 0111111
 -15 1 1110001 -75 1 0110101

-80 1 1 0110000 -140 1 0 1110100
 Carry into sign bit = 1

 Carry out of sign bit = 1
 No overflow Carry into sign bit = 0

 Carry out of sign bit = 1
 Therefore, overflow

Thus, an overflow has occurred; i.e., the arithmetical results so
calculated have exceeded the capacity of the representation. This
overflow also implies that the calculated results might be erroneous.

3.3.6 The Decimal Fixed Point Representation

A decimal digit is represented as a combination of four bits; thus, a four
digit decimal number will require 16 bits for decimal digits
representation and an additional 1 bit for a sign. Normally to keep the
conversion of one decimal digit to 4 bits, the sign sometimes is also
assigned a 4-bit code. This code can be the bit combination which has
not been used to represent decimal digits; e.g., 1100 may represent plus
and 1101 can represent minus.

Although this scheme wastes considerable amount of storage space, it
does not require the conversion of a decimal number to binary. Thus, it
can be used at places where the amount of computer arithmetic is less
than the amount of input/output of data; e.g., calculators or business data
processing. The arithmetic in decimal can also be performed as in binary
except that instead of signed 1’s complement, signed 9’s complement is
used and instead of signed 2’s complement signed 10’s complement is
used.

3.3.7 The Floating Point Representation

The floating-point number representation consists of two parts. The first
part of the number is a signed fixed-point number, which is termed
mantissa, and the second part specifies the decimal or binary point
position and is termed an exponent. The mantissa can be an integer or a
fraction. Please note that the position of the decimal or binary point is
assumed and it is not a physical point; therefore, wherever we are
representing a point it is only the assumed position.

Example 1: A decimal +12.34 in a typical floating point notation is:

25

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

sign sign

0 1234 0 02
 Mantissa (fraction) Exponent

sign sign

 0 1234 0 02
 Mantissa (interger) Exponent

This number in any of the above form (if represented in BCD) requires
17 bits for mantissa (1 for sign and 4 for each decimal digit as BCD) and
9 bits for exponent (1 for sign and 4 for each decimal digit as BCD).
Please note that the exponent indicates the correct decimal location. In
the first case (where exponent is) +2 indicates that the actual position of
the decimal point is two places to the right of the assumed position,
while exponent – 2 indicates that the assumed position of the point is
two places towards the left of assumed position. The assumption of the
position of point is normally the same in a computer resulting in a
consistent computational environment.

Floating-point numbers are often represented in normalised forms. A
floating point number whose mantissa does not contain zero as the most
significant digit of the number is considered to be in normalised form.
For example, a BCD mantissa +370 which is 0 0011 0111 0000 is in
normalised form because these leading zero’s are not part of a zero digit.
On the other hand a binary number 001100 is not in the normalised
form. The normalised form of this number is:

0 1100
 (sign)

A floating binary number +1010.001 in a 16-bit register can be
represented in normalised form (assuming 10 bits for mantissa and 6 bits
for exponent).

0 101000100 0 00100

 sign sign

Mantissa (fraction) Exponent

A zero cannot be normalised as all the digits in mantissa in this case
have to be zero.

Arithmetical operations involved with floating point numbers are more
complex in nature, take longer time for execution and require complex
hardware. Yet the floating-point representation is a must as it is useful in
scientific calculations. Real numbers are normally represented as

26

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

floating point numbers. Floating point numbers are explained in detail in
the next module of this course.

3.3.8 Error Detection and Correction Codes

Before we wind up the data representation in the context of today’s
computer, we must discuss a code which helps in the recognition and
correction of errors. The computer is an electronic medium therefore,
there is a possibility of errors being introduced during the transmission
of data. These errors may result from some disturbance in the
transmission media or from external disturbances. Most of these errors
result in the change of a bit from 0 to 1 or 1 to 0. One of the simplest
error detection codes that is used commonly is called parity bit.

The Parity Bit: A parity bit is an extra bit added with binary data such
that it makes the total number of 1’s in the data either odd or even. For
example, in a7-bit data 0110101 let us add an 8th bit, which is a parity
bit. If the added parity bit is an even parity bit then the value of this
parity bit should be zero as already four 1’s are these in the 7-bit
number. If we are adding an odd partiy bit then it will be 1, since we
already have four 1 bits in the number and on adding an 8th bit (which is
a parity bit) as 1 we are making the total number of 1’s in the number
(which now includes parity bit also) as 5, an odd number.

Similarly in 0010101 Parity bit for even parity is 1
Parity bit for odd parity is 0

But how does the parity bit detect an error? We will discuss this issue in
general as an error detection and correction system (refer to Figure 6).

 Figure 6: Error detection and correction

For transferring or storing N bit data with error detection and/or
correction mechanism, an error detection code is generated using a
function (for example, even parity bit generation) at the source or
storage end. The data as well as the error detection code is passed on to

27

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

the data destination where once again the error detection code is
generated using the same function on the data. The comparison of the
generated and incoming error detection code determines whether the
error has occurred or not. In case an error has occurred, an error signal is
generated and a correction mechanism (in case the error code is an error
detection and correction code, this step is not valid if parity bits are
used), is applied on the data. In case, no error is detected then the data
needs no correction and is sent as it is. Sometimes, it is not possible to
correct the errors. Such conditions are reported.

The parity bit is only an error detection code. The concept of the parity
bit has been developed and error detection and correction codes have
been developed using more than one parity bit. One such code is the
Hamming error correcting code.

The Hamming Error Correcting Code: Richard Hamming at Bell
Laboratories devised this code. We will discuss this code with the help
of Venn diagrams. For simplicity we will confine ourselves only to 4-
bit data. Figure 7 (a) shows the Venn diagrams with filled in data bits,
which are filled in the intersecting inner compartments.

Figure 7: The Hamming error correction code

The next step is to fill in the parity bits for these four data bits. The
principle here is that we add the parity bits such that the number of 1’s
in a circle is even (even parity). Figure 7(b) is filled up using this rule.
Please note that each circle has an even number of 1’s.

After the data transfer, let us say, we encounter a situation where one of
the data bit is changed from 1 to 0. Thus, an error has occurred. This
condition is shown in Figure 7 (c). Please note that except for the data
bit no other bit has changed. How will this error be detected and
rectified? Figure 7(d) shows the detection and rectification. The parity
bit of the two circles is indicating an error of one bit. Since two circles

28

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

are indicating errors, then the error is at the intersection of these two
circles. So, we have not only recognised the error but also its source.
Thus, in this case by changing the bit in error from 0 to 1 we will rectify
the error.

Now let us discuss a scheme for error correction and detection of single
bit errors in the context of figure 7, for 8-bit words. The first question in
this respect is: what should be the length of the code? Before answering
this question we have to look into the comparison logic of error
detection. Error detection is done by comparing the two ‘i’ bit error
detection and correction codes fed to the comparison logic bit by bit
(refer to figure 6). Let us have the comparison logic which produces a
zero if the compared bits are the same, or else it produces a one.

Therefore, if similar position bits are the same then we get zero at that
bit position, but if they are different, i.e. this bit position may point to
some error, then this particualr bit position will be marked as one. This
way a match word called syndrome word is constructed. This syndrome
word is “i” bit long; therefore, it can represent 2i values or combinations.
For example, a 4-bit syndrome word can represent 24= 16 values, which
range from 0 to 15 as:

0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111
1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111

The value 0000 or 0 represent no error while the other values i.e. 2i –
1(for 4 bits 24 – 1 = 15, that is from 1 to 15) represent an error condition.
Each of these 2i – 1 (or 15 for 4 bits) values can be used to represent an
error of a particular bit. Since the error can occur during the
transmission of “N” bit data plus “i” bit error correction code, we need
to have at least “N+i” error values to represent them. Therefore, the
number of error correction bits should be found from the following
equation:

2i – 1 >= N+i

If we are assuming an 8-bit word then we need to have

2i – 1 > = 8 + i

Say at i = 3 LHS = 23 – 1 = 7; RHS = 8 + 3 = 11
i = 4 LHS = 24 – 1 = 15; RHS = 8 + 4 = 12

Therefore, for an 8-bit word we need to have at least a 4 error correction
code.
Similarly for a16- bit word we need to have i = 5

29

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

25 – 1 = 31 and 16 + i = 16 + 5 = 21

For a 16-bit word we need to have five error correcting bits.

The next step in this connection will be to arrange the 8-bit word and its
4-bit error correction code in such a way that a particular value of the
syndrome word specifies an error in a unique bit (which may be data or
an error detection code). The following arrangement of the (N+i) bits is
suggested.

Bit positions 12 11 10 9 8 7 6 5 4 3 2 1
Data bits 8 7 6 5 4 3 2 1
Correction bits 8 4 2 1

Figure 8: Data bits and bit positions

The above arrangement is derived on the basis that:

• The syndrome word zero implies no error.

• If the syndrome word contains only one bit as one then it should be
inferred that an error has occurred only in the parity bits, therefore,
no correction is needed in the data. But how can we implement it?
This can be implemented easily by assigning the check bits as 1st, 2nd,
4th, and 8th bit positions.

• In case more than one bit in the syndrome word is set as 1 then the
numerical value of the syndrome word should determine the bit
position which is in error.

• The arrangement shown in figure 8 has an added advantage, i.e. each
bit position can be calculated as a fraction of correction bit positions.
Please note that in case any one of the correction bits has changed
during data transmission, that implies that any one of the 1st and 2nd

or 4th or 8th bit position data have been altered. Therefore, the
syndrome bit will be 0001 if the data at first bit position has changed,
0010 if 2nd bit position has changed; or 0100 if data at 4th bit position
has changed, or 1000 if data at 8th bit position has changed. Thus, the
proposed bit arrangement scheme of figure 8 satisfies the second
assumption for the bit arrangement scheme. The next assumption in
this regard is the value of syndrome word should indicate the bit
position which is in error, that is, if there is an error in bit position 3
it should change correction bits of bit positions 1 and 2 and so on.
Let us discuss how this can be achieved.

Let us make the table for the proposed scheme.

30

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Table 1

We are assuming that only one bit can be in error. The table given
indicates that the first bit in the syndrome word should be one if any one
of the 1st, 3rd, 5th, 7th, 9th, or 11th bit position is in error. The second bit of
the syndrome word should be one if any one of the 2nd, 3rd, 6th, 7th, 10th,
or 11th bit position is in error, the third bit of the syndrome word should
be 1 if any of the 4th, 5th, 6th, 7th, or 12th bit position is in error and the
fourth bit of the syndrome word should be 1 if any of the 9th, 10th, 11th,
or 12th, bit position is in error.

Since the 1st, 2nd, 4th, 8th bit position are occupied by correction bits or
check bits at the source, therefore, they should not be used for
calculating check bits,

Based on the above facts, the check bits should be calculated as:

Check bit 1 = Even parity of (3rd, 5th, 7th, 9th, 11th bit position)

Check bit 2 = Even parity of (3rd, 6th, 7th, 10th, 11th bit position)

Check bit 3 = Even parity of (5th, 6th, 7th, 12th bit position)

Check bit 4 = Even parity of (9th, 10th, 11th, 12th bit position)

or in other words (refer figure 8):

Check bit 1 = Even parity of (Data bits 1, 2, 4, 5, 7)

Check bit 2 = Even parity of (Data bits 1, 3, 4, 6, 7)

Check bit 3 = Even parity of (Data bits 2, 3, 4, 8)

Check bit 4 = Even parity of (Data bits 5, 6, 7, 8)

Bit position in
error

Effected bit position
of syndrome word

Comments

1 - - - 1 One bit position in error
2 - - 2 - One bit position in error
3 - - 2 1 1 + 2 = 3
4 - 4 - - One bit position in error
5 - 4 - 1 4 + 1 = 5
6 - 4 2 - 4 + 2 = 6
7 - 4 2 1 4 + 2 + 1 =7
8 8 - - - One bit position in error
9 8 - - 1 8 + 1 = 9
10 8 - 2 - 8 + 2 = 10
11 8 - 2 1 8 + 2 + 1 = 11
12 8 4 - - 8 + 4 = 12

31

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

This is called a single error correcting (SEC) code. Let us see an
example of error correction using this code.

Example: An 8 -bit input word 01011011 on transmission is received
as 01001011 (that is error in 5th data bit). How can the SEC code, if
used, rectify this error?

Solution: The SEC code for an 8-bit word is of 4 bits

Check bit 1 = Even parity of (1,1,1,1,1) = 1

Check bit 2 = Even parity of (1,0,1,0,1) = 1

Check bit 3 = Even parity of (1,0,1,0) = 0

Check bit 4 = Even parity of (1,0,1,0) = 0

Therefore, the 12-bit word to be transmitted is:

Bit positions 12 11 10 9 8 7 6 5 4 3 2 1
Data bits 8 7 6 5 4 3 2 1
Check bits 4 3 2 1
Data to be transmitted 0 1 0 1 0 1 0 1 0 1 1 1
The data is received as 0 1 0 0 0 1 0 1 0 1 1 1

 (Error in 5th data bit)

Calculation of check bits of data received:

Check bit 1 = Even parity of (1, 1, 1, 0, 1) = 0

Check bit 2 = Even parity of (1, 0, 1, 0, 1) = 1

Check bit 3 = Even parity of (1, 0, 1, 0) = 0

Check bit 4 = Even parity of (0, 0, 1, 0) = 1

Syndrome word = compare the received check bits to calculated check
bits of received data

 = 0 0 1 1 received check bits
 1 0 1 0 calculated check bits

 1 0 0 1 syndrome word

Please note that for syndrome word calculation if two check bits are the
same then the respective bit in the syndrome word will be 0. If the two
check bits are different then the bit in the syndrome word will be 1.

32

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Thus, syndrome word = 1001, which implies that the 9th bit position in
the received 12-bit information is in error. The 9th bit position
corresponds to the fifth data bit. Change this bit to 1 if it is 0 or to 0 if it
is 1. Since in the received data it is 0, therefore, change it to 1.

Hence, the data was (excluding check bits) received as 01001011

The corrected data is 01011011

The corrected data is the same as the transmitted data.

Normally, the SEC code may be used in semiconductor memories for
correction of single bit errors. However, it is supplemented with an
added feature for the detection of errors in two bits. This is called a
SEC-DED (Single Error Correction – Double Error Detecting) code.
This code requires an additional check bit in comparison with the SEC
code. We will only illustrate the working principle of the SEC-DED
code with the help of a Venn diagram for a 4-bit data word.

Basically, the SEC-DED code guards against the errors of two bits in
SEC codes. Figure 9 shows the principle of the SEC-DED code. Figure
9(a) shows a 4-bit data placed in the Venn diagram. In Figure 9(b) the
necessary check bits have been added. Please note a square on the top;
this is an additional overall even parity bit. Figure 9(c) shows a situation
of data access or transmission where two-data bits (a check bit and a
data bit) get changed. Now the SEC code tries to correct the data but it
results in another error (refer to figure 9(d) and 9(e)). But the error is
caught on checking the extra parity bit, hence the double error detection
(refer to figure 9(f)).

 Figure 9: SEC-DED code
Thus, the error is detected a second time but it cannot be corrected; only
an error signal can be issued informing that the data read contains errors.

3.4 Instruction Execution

33

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Having discussed the data representation in detail, let us come back to
the discussion on the instructions.

As discussed earlier, the basic function performed by a computer is the
execution of a program. The program which is to be executed is a set of
instructions that is stored in the memory. The central processing unit
(CPU) executes the instructions of the program to complete a task.

The major responsibility of the instruction execution is with the CPU.
The instruction execution takes place in the CPU registers. Let us, first
discuss a few typical registers, some of which are commonly available
in some of the machines.

These registers are:

Memory Address Register (MAR): It specifies the address of the
memory location from which the data or instruction is to be accessed
(for a read operation) or to which the data is to be stored (for a written
operation).

Memory Buffer Register (MBR): It is a register which contains the
data to be written in the memory (for a written operation) or it receives
the data from the memory (for read operation).

Program Counter (PC): It keeps track of the instruction that is to be
executed next, after the execution of an on-going instruction.

Instruction Register (IR): Here the instructions are loaded before their
execution.

The simplest model of instruction processing can be a two-step process.
The CPU reads (fetches) instructions (coded) from the memory one at a
time, and executes or performs the operation specified by this
instruction. The instruction fetch is carried out for all the instructions.
An instruction fetch involves the reading of an instruction from the
memory location(s) to the CPU. The execution of this instruction may
involve several operations, depending on the nature of the instruction.

The processing needed for a single instruction (fetch and execution) is
referred to as an instruction cycle. The instruction cycle consists of the
fetch cycle and the execution cycle. Program execution terminates if the
electric power supply is discontinued or some sort of unrecoverable
error occurs, or by a program itself.

34

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

A program counter is used for a fetch cycle in a typical CPU. The
program counter keeps track of the instruction that is to be fetched next.
Normally the next instruction in sequence is fetched next as programs
are executed in sequence.

The fetched instruction is in the form of a binary code and is loaded into
an instruction register (IR) in the CPU. The CPU interprets the
instruction and takes the required action. In general, these actions can be
divided into the following categories:

Data Transfer: From the CPU to memory or from memory to CPU, or
from CPU to I/O, or from I/O to CPU.

Data Processing: A logic, arithmetical or shift operation may be
performed by the CPU on the data.

Transfer of Control: This action may require an alteration of the
sequence of execution. For example, an instruction from location 100 on
execution may specify that the next instruction should be fetched from
location 200. On the execution of such an instruction, the program
counter, which was having a location value of 101 (the next instruction
to be fetched in a case in which the memory word is equal to the register
size) will be modified to contain a location value of 200. The value 101
may be saved in case the transfer of control instruction is a subroutine or
function call.

The execution of a program may involve any combination of these
actions. Let us take an example of an instruction execution.

Example: Let us assume a hypothetical machine which has a 16-bit
instruction and data. Each instruction of the machine consists of two
components: the operation code and the address of the operand in
memory.

The operation code is assumed to be of four bits; therefore, the
remaining 12 bits are for the address of the operand. The memory is
divided into words of 16 bits. The CPU of this machine contains an
additional register called accumulator (AC) in addition to the registers
given earlier. The AC stores the data temporarily for computation
purposes. Figure 10 shows the instruction and data formats for this
machine.

35

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Figure 10: Instruction and data format for an assumed machine

The machine can have 24 = 16 possible operation codes. For example, let
us assume operation codes as:

0001 as “Load the accumulator with the content of the memory”
0010 as “Store the current value of the accumulator in the memory”
0011 as “Add the value from memory to the Accumulator”

This machine can address 212 = 4096 memory words directly.

Please note that PC can be of 12 bits.

Now let us use the hexadecimal notation to show how the execution is
performed.

Let us assume that three consective instructions to be executed are:

Opcode Operand Address Operation desired
0001 0101 0101 0000 (Load accumulator)
0011 0101 0101 0001 (Add value from memory to

accumulators)
0010 0101 0101 0000 (Store AC in the memory)

The hexadecimal notations for these instructions are:

1 5 5 0

3 5 5 1

2 5 5 0

Let us assume that these instructions are stored in three consecutive
memory locations (all addresses are in hex notation) 101, 102 and 103
(we will use hexadecimal notation for this example) and the PC contains
a value (101), which in turn is the address of first of these instructions.

(Please refer to Figure 11).

36

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

 (a) Before execution (b) After execution

Figure 11: Memory and registers content on execution or the three given
consecutive instructions.

Since the PC contains value 101, on the next instruction cycle the
address stored in the PC is passed to MAR which in turn helps in
accessing the memory location 101 and brings its content in MBR which
in turn passes it on to IR. The PC is incremented to contain 102 now.
The IR has the value 1550, which is decoded as “Load the content of
address 550 in the accumulator”.

Thus, the accumulator register is loaded with the content of location
550, which is 0005. Now the instruction 101 execution is complete, and
the next instruction that is 102 (indicated by PC) is fetched and PC is
incremented to 103. This instruction is 3551, which instructs the CPU to
add the contents of memory location 551 to the accumulator.

Therefore, the accumulator will now contain the sum of its earlier value
and the value stored in memory location 551.

On the execution of the instruction at memory location 103, PC becomes
104; the accumulator results are stored in location 550 and IR still
contains the third instruction. This state is shown in Figure 11(b).

Please note that the execution of the instructions in the above example
requires only data transfer and data processing operations. All the
instructions of the example require one memory reference during their
execution. Does an instruction require more than one memory reference
or operand address? Well, one such instruction is ADD A, B of PDP –
11. The execute cycle of this instruction may consist of steps such as:

AC

PC

103

101

.

.
2550
3551
1550

.
0007
0002

101

0007

2550

101
102
103

550

551

PC

AC

IR

101
102

550

IR.

.
2550
3551
1550

.
0005
0002 551

PC

37

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

• Decode that instruction which is ADD

• Read memory location A (only the contents) into the CPU.

• Read memory location B (only the contents) into the CPU. (Here, we
are assuming that the CPU has at least two registers for storing
memory location contents. The contents of location A and location B
need to be written in two different registers).

• Add values of the two above registers.

• Write back the result from the register containing the sum (in the
CPU) to the memory location.

Thus, in general, the execution cycle for a particular instruction may
involve more than one stage and memory reference. In addition, an
instruction may ask for an I/O operation. Considering the above
situations, let us work out a more detailed view of an instruction cycle.
Figure 12 gives a state diagram of an instruction cycle. A state is defined
as a particular instance of instruction execution.

Figure 12: An instruction cycle

Please note that in the above state diagram some states may be bypassed
while some may be visited more than once. The instruction cycle shown
in Figure 12 consists of the following states/stages:

• First the address of the next instruction is calculated based on the
width instruction and memory organisation. For example, if in a
computer an instruction is of 16 bits and if the memory is organised
as 16-bit words, then the address of the next instruction is evaluated
by adding one to the address of the previous instruction. In case the
memory is organised as bytes, which can be addressed individually,
then we need to add two to the previous address to get the address of

38

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

the next instruction. In most computers this information is available
in the PC register.

• An instruction is fetched from a memory location to the CPU.

• The next state decodes the instruction to determine the type of
operation desired and the operands to be used.

• In case the operands need to be fetched from memory or via I/O,
then the address of the memory location or I/O device is calculated.

• The operand is fetched from the memory or read from the I/O
device.

• The operation asked by the instruction is performed.

• Finally, the results are written back to the memory or I/O wherever
desired by first calculating the address of the operand and then
transferring the value.

Please note that multiple operands and multiple results are allowed in
many computers. An example of such a case is PDP-11 where an
instruction ADD A, B requires operand A and B to be fetched. The
sequence of states reference in this case is: State 1-2-3-4-5-6-7-8.

In certain machines a single instruction can issue an operation to be
performed on an array of numbers or a string of characters. Such an
operation involves repeated fetch for the operands.

Before winding up our discussion on instruction execution, let us
discuss one very important mechanism, which plays an important role in
input/output and other processing.

Interrupts

The term interrupt is defined loosely to any exceptional event that
causes the CPU to temporarily transfer its control from a currently
executing program to a different program which provides service to the
exceptional event. An interrupt may be generated by a number of
sources, which may be either internal or external to the CPU. Figure 13
gives the list of the classes of very common interrupts along with some
events in which they may occur.

39

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Program
Interrupts or
traps

Generated internally by the CPU, on certain exceptional
events during instruction execution. Some of these
events can be:

• Division by zero
• Arithmetic overflow
• Attempt at executing an illegal/priviledged

instruction.
• Trying to reference location other than allowed for

that program.
Timer
Interrupts

Generated by a timer within the processor. It has a
special significance for multiprogramming operating
systems.

I/O Interrupts Generated by input/output controllers. The request of
starting an Input/output operation or signaling normal
completion of an Input/output operation or signaling the
occurrence of an error in Input/output operation.

Hardware
failure

Generated on hardware failure. Some of these failures
can be:

• Power failure
• Memory parity error.

Figure 13: Various classes of interrupts

Interrupts are a useful mechanism; they are mainly used for improving
the efficiency of processing. Why? The main cause is in the fact that
almost all the external devices are slower than the processor, therefore,
in a typical system a processor has to continually test the status of the I/
O device; in turn wasting a lot of CPU time. With the interrupt facility
the CPU is freed from the task of testing the status of the input/output
device and can do useful processing during this time, thus increasing the
processing efficiency.

How does the CPU know that an interrupt has occurred? The CPU can
be interrupted by providing a control line. This line, also known as the
interrupt request line, connects the source/sources of interrupts to the
CPU. The interrupt signal is then stored in a register of the CPU. This
register is periodically tested by the CPU (when? we will answer it a
little later) to determine the occurence of an interrupt. Once the CPU
knows that an interrupt has occurred then what? The CPU then needs to
execute an interrupt servicing programme, which tries to remove/service
the condition/device, which has caused the interrupt. In general, each
source of interrupt requires a different interrupt servicing program to be
executed. The CPU is normally assigned the address of the interrupt
servicing program to be executed. Considering these requirements let us

40

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

work out the steps which CPU must perform on the occurence of an
interrupt.

1. The CPU must find out the source of the interrupt, as this will
determine which interrupt service program is to be executed.

2. The CPU requires the addresses of the interrupt service routine,
which are normally stored in the memory.

3. What happens to the program it was executing before the
interrupt? This program needs to be interrupted till the CPU
executes the interrupt service program. Do we need to do
something for this program? Well, the context of this program is
to be saved. We will discuss this a bit later.

4. Finally, the CPU executes the interrupt service program till the
completion of the program. A RETURN statement marks the ends
of this program. After that the control is passed back to the
interrupted program.

Let us analyse some of the above points in greater details.

Let us first discuss saving the context of a program. The execution of a
program in the CPU is done using certain sets of registers and their
respective circuitry. As the CPU registers are also used by the interrupt
service program it is very likely that these routines alter the content of
several registers, therefore, it is the responsibility of the operating
system that before an interrupt service program is executed the previous
context of the CPU registers should be stored, such that the execution of
the interrupted program can be restarted without any change from the
point of interruption. Therefore, at the beginning of interrupt processing
the essential context of the processor is saved either into a special save
area in the main memory or into a stack. This context is restored when
the interrupt service program is finished, thus, the interrupted program
execution can be restarted from the point of interruption.

Interrupts and the Instruction Cycle: Let us summarise the interrupt
process. On the occurrence of an interrupt, an interrupt request (in the
form of a signal) is issued to the CPU. The CPU immediately suspends
the operation of the currently executing program, saves the context of
this program and starts executing a program which services that
interrupt request. This program is also known as an interrupt handler.
After the interrupting condition/device has been serviced the execution
of the original program is resumed.

41

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

A user program can perceive the interrupt as: the interruption of the
execution in between. The execution resumes as soon as the interrupt
processing is completed. Therefore, the user program need not contain
any special code for interrupt handling. This job is to be performed by
the processor and the operating system, which in turn is also responsible
for suspending the execution of the user program, and later interrupt
handling resumes the user program from the same point.

Figure 14: An instruction cycle with an interrupt cycle

The interrupts can be added in the instruction cycle (refer Figure 14) as
an additional state. In the interrupt cycle, the responsibility of the
CPU/processor is to check whether any interrupts have occurred. This is
indicated by the presence of the interrupt signal. In case no interrupt
needs service then the processor proceeds to the next instruction of the
current program. In case an interrupt needs servicing then the interrupt is
processed as follows:

• Suspend the execution of the current program and save its context
and return address (point of interruption)

• Set the program counter to the starting address of this interrupt
service program.

• This processor then executes the instructions in the interrupt-
servicing program. The interrupt servicing programs are normally
part of the operating system.

• After completing the interrupt servicing program the CPU can
resume the program it had suspended earlier.

42

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Multiple Interrupts

Is it possible that multiple interrupts occur at the same time? Yes, it is
possible to have multiple interrupts occurring at the same time. For
example, a program from a communication line may receive the data
and on the other side it is printing results. The printer on completion of
every print operation will generate an interrupt, while the
communication line controller will be generating the interrupt on arrival
of a unit of data. Since these two interrupts are independent, the
communication interrupt may occur while the printer interrupt is being
processed.

How to deal with these multiple interrupts

 One of the approaches is to disable (do not allow other interrupts to be
processed). If an interrupt occurs while the first interrupt is being
processed then it will remain pending till the interrupt has been enabled
again. Therefore, in this scheme the first few instructions in the
processing of an interrupt disable other interrupts. After the interrupt
service program for the current interrupt is completed, then the
processor enables the interrupts and checks whether any other interrupt
has occurred. Thus, in this approach interrupts are handled in sequential
order.

The main drawback of this approach is that it does not consider the
relative priority or time-critical nature of some interrupts. For example,
while inputting from a communication line, the data need to be accepted
quickly so that room can be made for more input. In case the first burst
of data input is not processed before the second burst arrives, the data
may be lost.

Figure 15: An example of multiple interrupts with priority scheme

43

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

For such cases another scheme in which priorities for interrupts is
defined is followed. This scheme allows the higher priority interrupts to
interrupt a lower priority interrupt service program in between.

For example, let us assume a system with three input/output devices:
printer, disk, and communication line. Let us assume that these have
priorities of 1, 2 and 3 respectively. Priority 3 is the highest while 1 is
lowest in our case. An instance of program execution is shown with
multiple interrupts in Figure 15.

Initially the user program is being executed by the CPU till the point A,
where a printer interrupt occurs. The CPU acknowledges the printer
interrupt by placing the context of the user program on the system stack
and by starting to execute the interrupt servicing program (ISP) for the
printer, before the ISP of the printer is finished as point B
communication line interrupt occurs. Since this is a higher priority
interrupt, the CPU acknowledges the interrupt and pushes the context of
the ISP of the printer from the CPU to the system stack and starts
executing the ISP (communication line). While processing the ISP
(communication line) another interrupt of disk occurs but it is held back
as the ISP (communication line) is of higher priority. When the ISP
(communication line) finishes the context of ISP (printer) is executed
again, but as the disk interrupt has higher priority and is pending, the
disk interrupt is acknowledged and processed at point B. After
completing the ISP (disk) the ISP (printer) is completed and control is
passed back to user program, which resumes executing from the point of
interruption.

4.0 CONCLUSION

This unit has taken you through the history of computers as well as how
information is represented in a computer by first recapitulating the
number systems.

Also, error detection and correction codes such as parity bit and having
error-correction codes have been extensively discussed, together with
the instruction (program) execution which is the basic function
performed by a computer and the major responsibility of the CPU.

The basic concepts of the instruction cycle, interrupts and the correlation
between this two have been thoroughly examined.

44

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

5.0 SUMMARY

This completes our discussion on the introductory concepts of computer
architecture. The von-Neumann architecture discussed in the unit is not
the only architecture but many new architectures have come up which
you will find in the further readings.

The information given on various topics such as interrupts, data
representation, error detection codes etc. although exhaustive, can be
supplemented with additional readings. In fact, a course in an area of
computer science must be supplemented by further reading to keep
knowledge up to date, as the computer world keeps changing. You are
advised to study several journals on, computers to enhance your
knowledge.

6.0 TUTOR-MARKED ASSIGNMENT

1. Convert the following binary numbers to decimal

(a) 1100,1101
(b) 10101010

2. Convert the following decimal numbers to binary.

(a) 23 (b) 49.25 (c) 892

3. Convert the numbers given in question 2 to hexadecimal from
decimal or from the binary.

4. Write the BCD equivalent the three numbers given in question 2.
5. Find the 1’s and 2’s complement of the following fixed-point

numbers.

(a) 10100010
(b) 00000000
(c) 11001100

6. Add the following numbers in an 8-bit register using signed 2’s
complement notation.

(a) +50 and -5
(b) +45 and -65
(c) +75 and +85
(d) - 75 and – 85

Also indicate the overflow condition if any.

45

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

7. Find the even and odd parity bits for the following 7-bit data:

(a) 0101010 (b) 0000000 (c) 1111111 (d) 1000100

8. Find the length of SEC code and SEC-DED code for 16-bit word
data transfer.

State whether True or False

9. The value of a PC will be incremented by 1 after fetching each
instruction if the memory word is of one byte and an instruction is
16 bits long. True False

10. Both MAR and MBR are needed to fetch the data or instruction

from the memory. True False

11. A clock may generate an interrupt. This is known as a timer
interrupt. True False

12. Context switching is not desired before interrupt processing

True False

13. In case multiple interrupts occur at the same time, only one of the
interrupts will be acknowledged and the rest will be lost.

 True False

7.0 REFERENCES/FURTHER READINGS

Mano, M. Morris (1993).Computer System Architecture (3rd ed). India:
Prentice Hall.

Hayes, John P. (1988). Computer Architecture and Organisation (2nd

ed). McGraw-Hill International editions.

Stallings William. Computer Organisation and Architecture (3rd ed).
Maxwell Macmillan International Editions.

Baron, Robert J. and Higbie Lee. Computer Architecture. Addison-
Wesley Publishing Company.

Tanenbaum, Andrew S. (1993) Structural Computer Organisation (3rd

ed). India: Prentice Hall.

46

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

UNIT 2 DIGITAL LOGIC CIRCUITS

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Boolean Algebra
3.2 Logic Gates
3.3 Combination Circuits

3.3.1 Minimising of Gates
3.3.2 The Multiplexer
3.3.3 Decoders
3.3.4 Programmable Logic Array
3.3.5 Adders

3.4 Sequential Circuits
3.4.1 Flip-Flops
3.4.2 Registers
3.4.3 Counters

3.5 Interconnection Structures
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

By now you should be aware of the basic configuration of a computer
system and the various terms related to it. In this unit, you will be
exposed to some of the basic components which form the most essential
part of a computer. You will come across terms like computer bus,
binary adders, logic gates, flip-flops combinational and sequential
circuits, etc. These circuits are the backbone of any computer system
and knowing them is essential. After this unit we will discuss memory
organisation and I/O organisation and then we will discuss CPU
organisation later. But the bases for all those are the digital logic circuits
only, which we are going to discuss in this unit.

2.0 OBJECTIVES

This unit is an attempt to answer one basic query “How does a computer
actually perform computations?”

At the end of this unit you will be able to describe:

• What the flip-flops and gates are

47

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

• Combination and sequential circuits and their applications thereof
• Some of the useful circuits of a computer system such as

multiplexers, decoders etc.
• How a very basic mathematical operation- the addition- is performed

by a computer and
• One of the most widely used interconnecting mechanisms: the

computer bus.

3.0 MAIN CONTENT

3.1 Boolean Algebra

Before going further, let us briefly recapitulate the Boolean algebra,
which will be useful in the discussions on logic circuits. The Boolean
algebra is an attempt to represent the true-false logic of humans in
mathematical form. George Boole proposed the principles of the
Boolean algebra in 1854, hence the name Boolean algebra. Boolean
algebra is used for designing and analysing digital circuits.

Let us first discuss the rules of Boolean algebra and thereafter we will
discuss how it can be used in analysing or designing digital circuits.

Point 1:

A variable in Boolean algebra can take only two values

1 (TRUE) or 0 (FALSE)

Point 2:

There are three basic operations in Boolean algebra, viz:

AND, OR and NOT

(These operators will be given in capitals in this module for
differentiating them from normal and, or, not, etc)

A AND B or A.B or AB
A OR B or A + B
NOT A or ¬A or A’ or Ᾱ

But how the value of A AND B changes with the values of A and B can
be represented in tabular form, which is referred to as the “truth table”.

A B A AND B A OR B NOT A
0 0 0 0 1
0 1 0 1 1
1 0 0 1 0
1 1 1 1 0

48

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

In addition three more operators have been defined for Boolean algebra:

XOR (Exlusive OR), NOR (Not OR) and NAND (Not AND)

However, for designing and analysing a logical circuit, it is convenient
to use AND, NOT and OR operators because AND and OR obey many
laws as of multiplication and addition in the ordinary algebra of real
numbers.

We will discuss XOR, NOR and NAND operators in the next
subsection.

Point 3:

The basic logical identities used in Boolean algebra are:

BASIC IDENTITIES

A.B = B.A A+B = B+A Commutative law

A.(B+C) = (A.B)+(A.C) A+(B.C) = (A+B).(A+C) Distributive law

1.A = A 0+A = A Identity law
A.Ᾱ = 0 A+Ᾱ = 1 Inverse law

OTHER IDENTITIES

0.A = 0 1+ A= 1
A.A = A A+A = A
A.(B.C) = (A.B).C A+ (B+C) = (A+B)+C Associative law
A.B = Ᾱ+B A+B = Ᾱ.B Demorgan’sTheorem

We will not give any proofs of these identities. The use of some of the
identities is shown in the example given after Boolean function
definition. DeMorgan’s law is very useful in simplifying logical
expressions.

Boolean Function:

49

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

A Boolean function is defined as an algebraic expression formed with
the binary variables, the logic operation symbols, parenthesis, and equal
to sign. For example,

F = A.B+C is a Boolean function.

The value of Boolean function F can be either 0 or 1.

A Boolean function can be broken into logic diagram and vice versa (we
will discuss this in the next section), therefore if we code the logic
operations in Boolean algebraic form and simplify this expression we
will design the simplified form of the logic circuits.

Let us see how DeMorgan theorem and other Boolean identities help in
simplifying the digital logic circuits. Let us consider the Boolean
function.

F = (A+B) + B

Now let us simplify the function,

F = (A+B) + B

= [A + (B)].B On applying DeMorgan’s theorem in (A+ B)+B

= [(A + B).B] As (B) = B and {A + B} = (A + B)
= A.B+ B.B On applying Distributive law
= (A.B + 0) [Property B.B = 0]
= (A.B) [Property A+0 = A]

The simplified Boolean function is

F = A.B

Figure 16 shows the two logic diagrams. The meaning of these symbols
will be clear in the next subsection.

50

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

(a) Before simplying the Boolean function

 F = A.B

(b) After simplying the Boolean function

Figure 16: The logic diagram of two equivalent circuits

3.2Logic Gates

Digital systems are said to be constructed by using logic gates. A logic
gate is an electronic circuit which produces a typical output signal
depending on its input signal. The output signal of a gate is a simple
Boolean operation of its input signal(s). Gates are the basic logic
elements. These gates are the AND, OR, NOT, NAND, NOR, EXOR
and EXNOR gates. Any Boolean function can be represented in the
form of gates.

The basic operations are described below with the aid of truth tables.

AND gate

The AND gate is an electronic circuit that gives a high output (1) only if
all its inputs are high. A dot (.) is used to show the AND operation i.e.
A.B. Bear in mind that this dot is sometimes omitted i.e. AB

A

B

51

http://www.ee.surrey.ac.uk/Projects/Labview/gatesfunc/index.html#truth%23truth

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

OR gate

The OR gate is an electronic circuit that gives a high output (1) if one or
more of its inputs are high. A plus (+) is used to show the OR
operation.

NOT gate

The NOT gate is an electronic circuit that produces an inverted version
of the input at its output. It is also known as an inverter. If the input
variable is A, the inverted output is known as NOT A. This is also
shown as A', or A with a bar over the top, as shown at the outputs. The
diagrams below show two ways in which the NAND logic gate can be
configured to produce a NOT gate. It can also be done using NOR logic
gates in the same way.

NAND gate

52

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

This is a NOT-AND gate which is equal to an AND gate
followed by a NOT gate. The outputs of all NAND gates are
high if any of the inputs are low. The symbol is an AND gate
with a small circle on the output. The small circle represents an
inversion.

NOR gate

This is a NOT-OR gate which is equal to an OR gate followed by
a NOT gate. The outputs of all NOR gates are low if any of the
inputs are high.

The symbol is an OR gate with a small circle on the output. The
small circle represents an inversion.

 EXOR gate

The 'Exclusive-OR' gate is a circuit which will give a high output
if either, but not both, of its two inputs are high. An encircled
plus sign () is used to show the EOR operation.

53

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

EXNOR gate

The 'Exclusive-NOR' gate circuit does the opposite of the EOR gate. It
will give a low output if either, but not both of its two inputs are high.
The symbol is an EXOR gate with a small circle on the output. The
small circle represents an inversion.

 The NAND and NOR gates are called universal functions since with
either one the AND and OR functions and NOT can be generated.

Note:

A function in sum of products form can be implemented using NAND
gates by replacing all AND and OR gates by NAND gates.

A function in product of sums form can be implemented using NOR
gates by replacing all AND and OR gates by NOR gates.

Table 1: Logic gate symbols

Table 2 is a summary truth table of the input/output combinations for the
NOT gate together with all possible input/output combinations for the

54

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

other gate functions. Also note that a truth table with 'n' inputs has 2n

rows. You can compare the outputs of different gates.

Table 2: Logic gates representation using the Truth table

The truth table of NAND and NOR can be made from NOT (A AND B)
and NOT (A OR B) respectively. Exclusive OR (XOR) is a special gate
whose output is one only if the inputs are not equal. The inverse of
exclusive OR can be a comparator which will produce a one output if
two inputs are equal.

The digital circuit use only one or two types of gates for simplicity in
fabrication purposes. Therefore, one must think in terms of functionally
complete sets of gates. What does a functionally complete set imply? A
set of gates by which any Boolean function can be implemented is called
a functionally complete set. The functionally compete sets are: (AND,
NOT), (NOR), (NAND), (OR< NOT) etc.

Example: Let us take the NAND gate and try to represent NOT, AND
and OR operations through it.

55

http://www.ee.surrey.ac.uk/Projects/Labview/gatesfunc/index.html#truth%23truth

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Similarly NOR gate can be used to implement any Boolean function.

SELF-ASSESSMENT EXERCISE 1

1. Simplify the Boolean function.

2. Draw the logic diagram of the above function
3. Draw the logic diagram of the simplified function.

3.3 Combination Circuits

Combinational circuits are interconnected circuits of gates according to
a certain rule to produce an output depending on its input value. A well-
formed combinational circuit should not have feedback loops. A
combinational circuit can be represented as a network of gates and, can
be expressed by a truth table or a Boolean expression.

The output of a combinational circuit is related to its input by a
combinational function, which is independent of time. Therefore, for an
ideal combinational circuit the output should change instantaneously
according to changes in input. But in actual cases there is a slight delay.
This delay is normally proportional to the depth or number of levels, i.e.

56

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

the maximum number of gates lying on any path from input to output.
For example, the depth of the combinational circuit in figure 3 is two.

Figure 17: A two level AND-OR combinational circuit

The basic design issue related to combinational circuits is: the
minimisation of the number of gates. The normal circuit constraints for
combinational circuit design are:

• The depth of the circuit should not exceed a specific level.

• Number of input lines to a gate (fan in) and how many gates its
output can be fed (fan out) are constrained by the circuit power
constraints.

3.3.1 Minimisation of Gates

The simplification of the Boolean expression is very useful for
combinational circuit designs. The following three methods are used for
this.

• Algebraic simplification
• Karnaugh maps
• The Quine McCluskey method

But before defining any of the above stated methods let us discuss the
forms of algebraic expressions. An algebraic expression can exist in two
forms:

• Sum of products (SOP) e.g. (A.¬B) + (¬A. ¬B)
• Product of sums (POS) e.g. (¬A +¬B).(A+B)

If a product of SOP expression contains every variable of that function
either in true or complement form then it is defined as a minterm. This
minterm will be true only for one combination of input values of the
variables. For example, in the SOP expression-

F (A,B,C) = (A.B.C) + (¬A. ¬B.C) + (A.B)

57

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

We, have three product terms namely A.B.C, ¬A. ¬B.C and A.B. But
only the first two of them qualify to be a minterm as the third one does
not contain variable C or its complement. In addition, the term A.B.C
will be one only if A=1, B=1 and C=1 for any other combination of
values of A,B,C the minterm will have zero value. Similarly, the
minterm ¬A. ¬B.C will have value 1 only if ¬A = 1 i.e. A=0, ¬B=1 i.e.
B=0 and C=1.For any other combination of values the minterm will
have a zero value.

A similar type of term used in POS form is called maxterm. Maxterm is
a term of POS expression, which contains all the variables of the
function in true or complemented form. For example,
F(A,B,C)=(A=B=C).(¬A+¬B+C) have two maxterms. A maxterm have
a value 0 for only one combination of input values. The maxterm A+B
+C will be 0 value only for A=0, B=0 and C=0. For all other
combination of values of A, B, C it will have a value one.

Now let us come back to the problem of minimising the number of
gates.

Algebraic Simplification

We have already discussed the algebraic simplification of a logical
circuit. An algebraic expression can exist in POS or SOP forms. The
algebraic functions can appear in many different forms. Although the
process of simplification exists yet it is cumbersome because of the
absence of routes, which tell what rule to apply next. The Karnaugh map
is a simple direct approach of simplification of logical expressions.

Karnaugh Maps

The Karnaugh map is a convenient way of representing and simplifying
Boolean functions of 4 to 6 variables. Karnaugh maps can also be used
for designing the circuits in situations where you can construct the truth
table for an operation or a function. In other words, Karnaugh maps can
be used to construct a circuit when the input and output to that proposed
circuit are defined. For each output one Karnaugh map needs to be
constructed. The stepwise procedure for Karnaugh map is as follows:

Step 1 Create a simple map depending on the number of variables
in the function. Figure 18(a) shows the map of two, three
and four variables. A map of 2 variables contains 4 value
positions or elements, while for 3 variables it has 23=8
elements; similarly for 4 variables it is 24=16 elements and
so on. Special care is taken to represent variables in the

58

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

map. Value of only one variable changes in two adjacent
columns or rows. The advantage of having a change in one
variable is that two adjacent columns or rows represent a
true form or complement form of a single variable. For
example, in Figure 18(b) the columns which have positive
A are adjacent to ¬A. Please note the adjacency of the
corners. The rightmost column can be considered to be
adjacent to the first column; since they differ only by one
variable, therefore, they are adjacent. Similarly the
topmost and bottommost rows are adjacent.

Figure 18: Maps of two, three and four variables and their adjacencies.

Please note:

1. Decimal equivalents of the cells are given for help in
understanding where the position of the respective decimal
equivalent is. It is not the value filled in a suare. A square can
contain one or nothing.

2. The 00, 01, 11 etc. written on the top implies the value of
respective variables.

59

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

3. Wherever the value of a variable is zero it is said to represent its
complement form.

4. The value of only one variable changes when we move from one
row to the next row or from one column to the next column.

Step 2: The next step in the Karnaugh map is to map the truth
table into the map. The mapping is done by putting a 1 in
the respective squares belonging to the 1 value in the truth
table. This mapped map is used to arrive at simplified
Boolean expressions, which then can be used for drawing
up the optimal logical circuits. Step 2 will be clearer in the
example.

Step 3: Now create simple algebraic expressions from the
Karnaugh map. These expressions are created by using
adjacency if we have two adjacent 1’s then the expressions
for those can be simplified together since they differ in
only one variable. Similarly we search for adjacent pairs
of four, eight, and so on. A 1 can appear in more than one
adjacent pairs. You must find adjacencies till all 1’s in the
Karnaugh map are covered. The following example will
clarify step 3.

Example 2: Now let us see how to use Karnaugh map simplification
for finding the Boolean function for the cases whose truth
table is given as:

A B C D Decimal Output F
Equivalent

0 0 0 0 0 1
0 0 0 1 1 1
0 0 1 0 2 1
0 0 1 1 3 0
0 1 0 0 4 0
0 1 0 1 5 0
0 1 1 0 6 1
0 1 1 1 7 0
1 0 0 0 8 1
1 0 0 1 9 1
1 0 1 0 10 1
1 0 1 1 11 0
1 1 0 0 12 0
1 1 0 1 13 0
1 1 1 0 14 0
1 1 1 1 15 0

60

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Another short representation of the truth table is ∑(0,1,2,6,8,9, 10)
which indicate the decimal equivalent for A, B, C, D values for which
the output is one.

Let us construct the Karnaugh map for this.

Figure 19: Karnaugh’s map of the truth table of example 2

Let us see the pairs which can be considered adjacent in the Karnaugh
map here.

The pairs are

1. The four corners
2. The four 1’s as in top and bottom in columns 1 and 2
3. The two 1’s in the top two rows of the last column.

The corners can be represented by the expressions:

1. (¬A¬B¬C¬D + ¬A¬BC¬D) + (A¬B¬C¬D + A¬BC¬D)
= ¬A.¬B.¬D(¬C+C) + A.¬B.¬D(¬C+C)
= ¬A¬B¬D + A¬B¬D as (¬C+C)=1
= ¬B¬D (¬A + A)
= ¬B¬D as (¬A+A)=1

2. The four 1’s give the following term:

(¬A¬B¬C¬D + ¬A¬B¬C.D) + (A¬B¬C¬D + A¬B¬CD)
= ¬A¬B¬C (¬D + D) + A¬B¬C (¬D + D)
= ¬A¬B¬C + A¬B¬C as (¬D+D)=1
= ¬B¬C (¬A + A)
= ¬B¬C as (¬A+A)=1

61

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

3. The two 1’s in the last column

¬A¬B C¬D + ¬A B C ¬D
= ¬A C ¬D (¬B + B)
= ¬A C ¬D as (¬B+B)=1

Thus, the Boolean expression derived from this Karnaugh map is

F = ¬B ¬D + ¬B ¬C + ¬A C ¬D

The expressions so obtained through the Karnaugh map are in the form
of the sum of the product form, i.e. it is expressed as a sum of the
products of the variables. The expression is one of the minimal
solutions. This expression can be expressed in product of the sum form,
but for this, special methods need to be used.

Let us see how we can modify the Karnaugh map simplification to
obtain the product of the sum form. Suppose in the previous example
instead of using 1’s we combine the adjacent zero square then we will
obtain the inverse function and on taking NOT of this function we will
get the product of sum form (the use of DeMorgan’s theorem will be
required).

Another important aspect of this simple method of digital circuit design
is DONOT care conditions. These conditions further simplify the
algebraic function. These conditions imply that it does not matter
whether the output produced is zero or 1 for a specific input. These
conditions can occur when the combination of the number of inputs are
more than needed; e.g., calculation through BCD where 4 bits are used
to represent a decimal digit, which implies we can represent 24 = 16
digits but since we have only 10 decimal digits, therefore, 6 of those
input combinations do not matter and thus, are a candidate for DONOT
care condition.

What will happen if we have more than 4-6 variables? As the number of
the variables increases the Karnaugh map becomes more and more
cumbersome (as the number of possible combination of inputs keeps on
increasing). A method was suggested to deal with the increasing number
of variables. This is a tabular approach and is known as the Quine-
Mckluskey method. This method is suitable for programming and hence
provides a tool for automating designs in the form of minimised
Boolean expressions.

The basic principle behind the Quine- Mckluskey method is to remove
the terms which are redundant and can be obtained by other terms.
Discussions on this method are beyond this course.

62

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Let us now discuss some important combinational circuits. We will not
go to the details of their design in this unit.

3.3.2 The Multiplexer

The multiplexer is one of the basic building units of a computer system,
which, in principle allows sharing of a common line by more than one
input lines. It connects multiple input lines to a single output line. At a
specific time one of the input lines is selected and the selected input is
passed on to the output line. The diagram of a 4x1 multiplexer (MUX) is
given in Figure 20.

 10

 11

 12

 13

 S1 S0
(a) Block diagram

S0 S1 0
0 0 11

0 1 11

1 0 11

1 1 11
(c) Truth table

Figure20: A 4 x 1 multiplexer

But how does the multiplexer know which line to select? The select
lines control this operation. The select lines provide the communication

 4 x 1
 MUX

63

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

among the various components of a computer. Now let us see how the
multiplexer also known as MUX works. Here for simplicity we will take
the example of the 4 x 1 MUX i.e. there are 4 input lines connected to
one output line. For the sake of consistency we will call input lines as I,
and output lines as O and control line as a selection line S or enable as
E.

Please notice the way in which S0 and S1 are connected in the circuit. To
the ‘a’ AND gate S0 and S1 are inputted in complement form that mean
‘a’ gate will output I0 when both the selection lines have a value of 0
which implies ¬S0 = 1 that is S0 = 0 and S1 = 0 and hence the first entry
in the truth table. Please note that at S0 = 0, & S1 = 0 AND gates ‘b’, ‘c’
and ‘d’ will yield zero outputs and when all these outputs pass OR gate
‘e’ they will yield I0 as the output for this case. That is for S0 = 0 and S1

= 0, the output becomes I0 which in other words can be said as “For S0 =
0 and S1 = 0, I0 input line is selected by MUX”. Similarly the other
entries in the truth table are corresponding to the logical nature of the
diagram. Therefore, by having 2 control lines we could have a 4 x 1
MUX. To have 8 x 1 MUX we must have 3 control lines or with 3
control lines we could make 23 = 8 i.e. 8 x 1 MUX. Similarly with n
control lines we can have 2n x 1 MUX. Another parameter that is
predominant in MUX design is the number of inputs to OR gate. These
inputs are determined by the voltage capacity of the gate, which
normally is a maximum of eight inputs to a gate.

Where can these devices be used in a computer? The multiplexers are
used in digital circuits for data and control signal routing. We have seen
a concept where out of n input lines 1 can be selected. Can we have a
reverse concept i.e. we have one input line and data is transmitted to one
of the possible 2n lines where n represents the number of selection lines.
This operation is called demultiplexing.

3.3.3 Decoders

Decoders convert one type of coded information to another form. A
decoder has n input lines, one enable line (a sort of selection line) and 2n

output lines. Let us see an example of a 3x8 decoder which decodes a 3-
bit information and there is only one output line which gets a value 1 or
in other words out of 23=8 lines only one output line is selected. Thus,
depending on the selected output line the information of the 3 bits can
be recognised or decoded.

64

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

(a) Block diagram (b) Logic diagram

I1 I2 I3 O0 O1 O2 O3 O4 O5 O6 O7

0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0
0 1 1 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 0 0 0 0 1
(c) Truth Table

Figure 21: The logic diagram of a 3 x 8 decoder

Please try to make the logic circuit of a decoder yourself by drawing a
Karnaugh map for each output. Please note that in the logic diagram,
wherever the values in the truth table are appearing as zero in input, and
one in the output, the input should be fed in complemented form. E.g.,
the first four entries of truth table contain 0 in I0 position and hence I0

value zero is passed through a NOT gate and fed to AND gates ‘a’, ‘b’,
‘c’ and ‘d’ which implies that these gates will be activated/selected only
if I0 is 0. If I0 value is 1 then none of the top four AND gates can be
activated. A similar type of logic is valid for I1. Please note the output
line selected is named 000 or 010 or 111, etc. The output value of only
one of the lines will be 1. These 000, 010 indicate the label and suggest
that if you have these I0 I1 I2 input values then the labelled line will be
selected for the output. The enable line is used for combining two 3x8

65

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

decoders to make one 4x16 decoder. How? Please find out from the
suggested readings.

3.3.4 Programmable Logic Array

Till now, the individual gates are treated as basic building blocks from
which various logic functions can be derived. We have also learnt about
the strategies of minimisation of number of gates. But with the
advancement of technology the integration provided by integrated
circuit technology has increased resulting in the production of one to ten
gates on a single chip (in Small Scale Integration). The gate level
designs are constructed at the gate level only but if the design is to be
done using these SSI chips, the design consideration needs to be
changed as a number of such SSI chips may be used for developing a
logic circuit. With MSI & VLSI we can put even more gates on a chip
and can also make gate interconnections on a chip. This integration and
connection bring the advantages of decreased cost, size, and increased
speed. But the basic drawback faced in such VLSI & MSI chips is that
for each logic function the layout of gates and interconnection need to
be designed. The cost involved in making such a custom chip design is
quite high. Thus came the concept of Programamble Logic Array (PLA),
a general-purpose chip that can be readily adopted for any specific
purpose.

The PLA are designed for SOP form of Boolean function and consist of
a regular arrangement of NOT, AND & OR gates on a chip. Each input
to the chip is passed through a NOT gate, thus, the input and their
complement are available to each AND gate. The output of each AND
gate is made available for each OR gate. The output of each OR gate is
treated as chip output. By making appropriate connections any logic
function can be implemented in these Programmable Logic Arrays.

Figure 22: Programmable Logic Array

66

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

The figure 22(a) shows a PLA of three inputs and two outputs. Please
note the connectivity points, all these points can be connected if desired.

Figure 22(b) shows an implementation of logic function:

O0 = I0, I1, I2 + ¬I0 ¬I1 ¬I2 and O1 = ¬I0 ¬I1 ¬I2 + ¬I0. ¬I1

Please note the second function is a non-optimal function and can be
simplified using Boolean algebra.

3.3.5 Adders

Adders play one of the most important roles in binary arithmetic. In fact
fixed-point addition time is often used as a simple measure to express
processor’s speed. Addition and subtraction circuits can be used as the
basis for implementation of multiplication and division. (We are not
giving details of this. You can find it in the further readings).

Thus, considerable efforts have been put in the designing of high-speed
addition and subtraction circuits. It is has been considered to be an
important task since the time of Babbage. Number codes are also
responsible for adding to the complexity of arithmetical circuits. The 2’s
complement notation is one of the most widely used codes for fixed-
point binary numbers because of the ease of performing addition and
subtraction through it.

A combinational circuit, which performs the addition of two bits, is
called a half-adder, while the combinational circuit that performs the
arithmetical addition of three bits (the third bit is a previous carry bit) is
called a full adder.

In half adder the inputs are:

• The augend lets say ‘x’ bit and addend ‘y’ bit
• The outputs are Sum ‘S’ bit and Carry ‘C’ bit

The logical relationships between these are given by the following truth
table.

x y C S

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

67

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

‘C’ can be obtained on applying AND gate on ‘x’ and ‘y’, therefore,
while ‘S’ can be found from following the Karnaugh map.

 0 1

 1
 1

Therefore, the logic diagram of half adder is

Let us take the full adder. In a full adder another variable carry from
previous bit ‘P’ is used in addition. Thus, the truth for it is:

Input Output
x y P C S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

 C = f (x, y, p)
 Let us represent it using the Karnaugh map:

S = x + y

S

0

1

y
x

68

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Three adjacencies marked (a) (b) and (c)

(a) x y p + xyp
= xp(y + y)
= xp

(b) xyp + xy p
= xy

(c) x yp + xyp
= yp

C = xy + xp + yp

For finding sum S

 S
 00 01 11 10

 1 1
 1 1

Therefore, the full adder can be represented as:

Till now we have discussed the addition of bits only, but what will
happen if we are actually adding two numbers. A number in computer
can be 4 byte i.e. 32-bit long or even more. Even for these cases the

yp

0
1

No adjacencies
S = x y p + x y p + x y p + xyp

x

69

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

basic unit is the full adder. Let us see (for example) how we can
construct an adder which adds two 4-bit numbers. Let us assume that the
numbers are: x3 x2 x1 x0 and y3 y2 y1 y0, here xi, and yi, (i – 0 to 3)
represent a bit.

The 4-bit adder is shown below:

S3, S2, S1, S0 represent the overall sum and overall carry is C3 from the
fourth bit adder. The main feature of this adder is that carry of each
lower bit is fed to the next higher bit addition stage, it implies that
addition of the next higher bit has to wait for the previous stage addition.

This is called ripple carry adder. The ripple carry becomes time
consuming when we are going for addition of say 32 bits. Here the most
significant bit i.e., the 32nd bit has to wait till the addition of the first 31
bits is complete. Therefore, a high-speed adder, which generates input
carry bit of any stage directly from the inputs to previous stages, was
developed. These are called carry look-ahead adders. In this adder the
carry for various stages can be generated directly by the logic
expressions such as:

C0 = x0 Y0

C1 = x1 y1 + (x1 + y1) C0

Full
Adder
(bit)

Full
Adder
(bit)

Full
Adder
(bit)

Full
Adder
(bit)

P
3

C
2

P
2

C
1

C
0

P
1

P
0
= 0

S
3

S
2

S
1

S
0

x
3

y
3

x
2

x
1

x
0

y
2

y
1

y
0

C
3

70

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

The complexity of the look-ahead carry bit increases as the level of
carry increases. But in turn it produces the addition in a very short time.
The carry look-ahead becomes increasingly complicated with increasing
numbers of bit, therefore, carry look-ahead adders are normally
implemented for adding chunks of 4 to 8 bits and then the carry is
rippled to next chunk of 4 to 8 bits carry look-ahead circuit.

SELF-ASSESSMENT EXERCISE 2

1. Draw a Karnaugh map for five variables.
2. Map the function having four variables in a Karnaugh’s map. The

function is F(A,B,C,D) ∑(2,6,10,14).
3. Find the optimal logic expression for the above function. Draw

the resultant logic diagram.
4. What are the advantages of PLA?
5. Can a full adder be constructed using two half adders?

3.4 Sequential Circuits

These are logic circuits whose present output depends on the past inputs.
These circuits store and remember information. The sequential circuits
unlike combinational circuits are time dependent. Normally the current
output of a sequential circuit depends on the state of the circuit and on
the current input to the circuit. It is a connection of flip-flops and gates.
What is a flip-flop? You will find the answer in this section. There can
be two types of sequential circuits.

• Synchronous
• Asynchronous

Synchronous circuits use flip-flops and their status can change only at
discrete instants. (Don’t they seem a good choice for discrete digital
devices such as computers?). The asynchronous sequential circuits may
be regarded as combinational circuits with feedback path. Since the
proportion delays of output to input are small they may tend to become
unstable at times.

The synchronous in sequential circuits can be achieved using a clock
pulse generator. It synchronises the effect of input over output. It
presents signal of the following form:

71

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Figure 23: Clock signal of a clock pulse generator

The signal produced by a clock pulse generator is in the form of a clock
pulse or clock signal. These clock pulses are distributed throughout the
computer system for synchronisation.

A clock can have two states: an enable or active state, otherwise a
disable or inactive state. Both of these states can be related to zero or
one levels of clock signals (it depends on implementation). Normally,
the flip-flops change their state only at the active state of the clock
pulse. In certain designs the active state of the clock is triggered when
the transition (this is sometimes termed edge-triggered transition) from 0
to 1 or 1 to 0 is taking place in a clock signal. A typical CPU is
synchronised by a clock signal whose frequency is used as a basic
measure of the CPU’s speed of operation and hence you might have
heard the term “CPU operating at 400 MHz” or so.

3.4.1 Flip-Flops

What is a flip-flop? A flip-flop is a binary cell, which can store a bit of
information and which in itself is a sequential circuit. But, how does it
do it? A flip-flop maintains any one of the two stable states that can be
treated as zero or one depending on the presence and absence of output
signals. The state of a flip-flop can only change when a clock pulse has
arrived. Let us first see the basic flip-flop or a latch that was a
revolutionary step in computers. The basic latch presented here is
asynchronous. Let us see its logic diagram (Figure 24).

Figure 24: A Basic latch (S-R latch using NOR gates)

Clock cycle
or clock pulse

1

0

72

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

A flip-flop can be constructed using two NAND or NOR gates; it
contains a feedback loop. The flip-flop in the figure has two inputs R
(Reset) and S (set) and two outputs Q and ¬Q.

In a normal mode of operation both the flip-flop inputs are at zero i.e. S
= 0 & R = 0. This flip-flop can show two states: either the value Q is 1
(therefore ¬Q = 0) we say the flip-flop is in set state or the value of Q is
0 (therefore ¬Q = 1) we call it a clear state. Let us see how the S and R
input can be used to set and clear the state of the flip-flop. The first
question is, why in normal cases S and R are zero? The reason is that
this state does not cause any change in state. Suppose the flip-flop was
in set state i.e. Q = 1 and ¬Q = 0 and as S = 0 and R = 0, the output of
‘a’ NOR gate will be 1 since both its input ¬Q and R are zero (refer the
truth table of 1 NOR gate in Figure 24) and ‘b’ NOR gate will show
output as 0 as one of its input Q is 1. Similarly if flip-flop was in clear
state then ¬Q = 1 and R = 0, therefore, output of ‘a’ gate will be 0 and
‘b’ gate 1. Thus, flip-flop maintains a stable state at S = 0 and R = 0.

The flip-flop is taken to set state if the S input momentarily goes to 1
and then goes back to 0. R remains at zero during this time. What
happens if, say initially, the flip-flop was in state 0 i.e. the value of Q
was 0. As soon as S becomes 1 the output of NOR gate ‘b’ goes to 0 i.e.
¬Q becomes 0 and almost immediately Q becomes 1 as both the input
(¬Q and R) to NOR gate ‘a’ become 0. The change in the value of S
back to 0 does not change the value of Q again as the input to NOR gate
‘b’ now are Q = 1 and S = 0. Thus, the flip-flop stays in the set state
even after S returns to zero.

If the flip-flop was in state 1 then, when S goes to 1 there is no change
in value of ¬Q as both the inputs to NOR gate ‘b’ are 1 at this time.
Thus, ¬Q remains in state 0 or in other words flip-flop stays in the set
state.

If R input goes to value 1 then flip-flop acquires the clear state. On
changing momentarily the value of R to 1 the Q output changes to 0
irrespective of the state of flip-flop and as Q is 0 and S is 0 the ¬Q
becomes 1. Even after R comes back to value 0, Q remains 0 i.e., flip-
flop comes to the clear state.

What will happen when both S and R go to 1 at the same time? Well,
this is the situation which may create a set or clear state depending on
which of the S and R stays longer in zero state. But meanwhile both of
them are 1 and the value of Q and ¬Q becomes 1 which implies that
both Q and its complement are one, an impossible situation. Therefore,
the transition of both S and R to 1 simultaneously is an undesirable
condition for this basic latch.

73

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Let us try to construct a synchronous R-S flip-flop form the basic latch.
The clock pulse will be used to synchronise the flip-flop. (What is a
clock pulse?).

R-S flip-flop: The main feature in R-S flip-flop is the addition of a
clock pulse input. In this flip-flop a change in the value of R or S will
change the state of the flip-flop only if the clock pulse at that moment is
one. It is denoted as:

Figure 25: R-S flip-flop

The value ¬Q can be acquired as an additional output that is in
complemented form.

The excitation or characteristic table basically represents the effect of S
and R inputs on the state of the flip-flop, irrespective of the current state
of the flip-flop. The other two inputs P (preset) and C (clear) are
asynchronous inputs and can be used to set the flip-flop or clear the flip-
flop respectively at the start of operation, independent of the clock
pulse.

Let us have a look at some more typical and popular flip-flops.

D Flip-Flop

D flip-flop is a special type of flip-flop in the sense that it represents the
currently applied input as the state of the flip-flop. Thus, in effect it can
store 1 bit of data information and is sometimes referred to as Data flip-
flop. Please note that the state of the flip-flop changes for the applied
input. It does not have a condition where the state does not change as the

74

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

case in RS flip-flop, the state of R-S flip-flop does not change when S =
0 and R = 0. If we do not want a particular input state to change then
either the clock is to be disabled during that period or a feedback of the
output can be embedded with the input D. D flip-flop is also referred to
as Delay flip-flop because it delays the 0 or 1 applied to its input by a
single clock pulse.

(a) Logic diagram

 J Q

K Q

(b) Symbolic representation (c) Characteristic table

J-K flip-flop

Input State at the completion
J K of clock cycle

0 0 No change in State
0 1 Clear the flip-flop (state 0)
1 0 Set the flip-flop (state 1)
1 1 Complement the state of flip-flop

J P

 Clock

K C

75

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

(a) Logic diagram

 Q

 Q

(b) Symbolic representation (c) Characteristic table
D flip-flop

Figure 26: Other flip-flops

J K flip-flop

The basic drawback with the R S flip-flop is that one set of input
conditions are not utilised and this can be used with a little change in the
circuit. In this flip-flop the last combination is used to complement the
state of the flip-flop.

After discussing some of the simple sequential circuits, that is flip-flop
let us discuss some of the complex sequential circuits, which can be
developed using simple gates, and flip-flops.

3.4.1 Registers

A register is a binary function which holds the binary information in
digital form. Thus, a register consists of a group of binary storage cells.
A register consists of one and more flip-flops depending on the number
of bits to be stored in a word. A separate flip-flop is used for storing a
bit of a word. In addition to storage, registers are normally coupled with
combinational gates enabling certain data processing tasks. Thus, a
register in a broad sense consists of the flip-flop that stores binary
information and gates, which controls when and how information is
transferred to the register.

Normally in a register independent data lines are provided for each flip-
flop, enabling the transfer of data to and from all flip-flops to the
register simultaneously. This mode of operation is called Parallel Input-
Output. Since the stored information in a set of flip-flops is treated as a
single entity, common control signals such as clock, preset and clear can
be used for all the flip-flops of the register. Registers can be constructed
from any type of flip-flop. These flip-flops in integrated circuit registers
are usually constructed internally using two separate flip-flop circuits.

 P
D

 Clock
 S

Input D State after the
 completion of
 clock pulse

0 0
1 1

76

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

The normally used special kind of arrangement is termed the master-
slave flip-flop. This type of flip-flop helps in having a stable state at the
output. It consists of a master flip-flop and a slave flip-flop.

Figure 27: Masters-slave flip-flop using J-K flip-flop

Note: You can construct master-slave flip-flop with D flip-flop (Figure
27) or R-S flip-flop in the same manner.

Now, let us analyse this flip-flop.

1. When the clock pulse is 0 the master is disabled but the slave
becomes active and its output Q and ¬Q becomes equal to Y and
¬Y respectively. Why? Well, the possible combination of the
value of Y and ¬Y are either Y = 1 which means ¬Y = 0; or Y =
0 which implies ¬Y = 1. Let us see the characteristic table for
these two inputs for the J-K flip-flop. The SLAVE flip-flop, thus,
can have value either J=1 and K=0 which will set the flip-flop
that is Q=1 and ¬Q=0; or J=0, K=1 which will clear the flip-flop.
Therefore, Q is same as Y.

2. When inputs are applied at J and K and the clock pulse becomes
1, only the master gets activated, resulting in intermediate output
Y go to state 0 or 1 depending on the input and previous state.
Please note that during this time the slave is still maintaining its
previous state. As the clock pulse become 0, the master becomes
inactive and the slave acquires the same state as the master.

But why do we acquire this master-slave combination? There is a major
reason for this master-slave form. Consider a situation where the output
of a flip-flop is going to input of other flip-flops. Here, the assumption is

77

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

that the clock pulse inputs of all flip-flops are synchronised and occur at
the same time. The change of state of the master occurs when the clock
pulse goes to 1, but during that time the output of the slave still has not
changed, thus the state of the flip-flops in the system can be changed
simultaneously during the same clock pulse even though outputs of flip-
flops are connected to the inputs of flip-flops. In other words there are
no restrictions on feedback from the register’s outputs to its inputs.

Let us come back to the register having parallel input-output. Figure 28
shows a 4-bit register with parallel input-outputs.

Figure 28: A register with a parallel input-output

It is one of the simplest registers and contains preset, clear (for clearing
the register completely) and clock pulse input in addition to the data
value through D input. All the four bits in this register can be input and
output simultaneously (as master-slave configuration can be employed
in D flip-flop) hence the name parallel input-output.

Another kind of register that is used for shifting the data to the left is
called a shift register. A shift register may operate in serial input-output
mode in which data is entered in the register one bit at a time from one
end of the register and can be read from the other end as one bit at a
time. Figure 29 gives a 4-bit right-shift register with serial input-output.
This register is constructed using D flip-flops.

Figure 2915: The right shift register with serial input-outputs

78

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Please note that in this register shift enable is used instead of the clock
pulse, since we do not necessarily want the register to perform shift on
each clock pulse. Clear and preset inputs are also used here. The data is
shifted in this register bit by bit. For example: 1 0 1 1 will be loaded in
the register as:

 Flip-Flop States
Input 1 2 3 4 On the occurrence of the next shift
 1 1 x x x enable which may be the next

 1 1 1 x x clock pulse
 0 0 1 1 x
 1 1 0 1 1

It can be recovered in a similar fashion from the registers

Flip-Flop States
 1 2 3 4 Output
 0 1 0 1 1
 0 0 1 0 1
 0 0 1 0 0

 0 0 0 0 1

Shift enable controls the shifting of the data to the right here.

A shift register can be constructed for bi-directional shift with parallel
input-output or serial input-output. A general structure may have the
facility of parallel data transfer to or from the register. In addition, the
facility of left or right shift may also be provided. But this structure will
require additional control lines for indicating whether a parallel or serial
output is desired; and whether the left shift or right shift operation is
desired. A general symbolic diagram for such a register is given in
Figure 30.

Figure 30: A tour bit-right shift register with parallel load

79

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

The basic diagram of such a circuit resembles figure 28 but requires
additional combinational circuit before an input is fed. You can refer to
further readings for further reference.

These shift registers can be used in a number of applications such as
storage of serial data, parallel to serial and serial to parallel data
conversion and multiplication & division operations. For example,
performing a left-shift for an unsigned binary number is equivalent to
multiplication by binary two. Similarly, a right-shift operation on an
unsigned binary number is equivalent to the division by two. For
example, if we multiply:

Decimal 5 Binary 0101 Shift left and place a zero
on

the last digit position 0010 ٭ 2 ٭
 10 shifted out 01010 shift in

3.4.2 Counters

Another useful sequential circuit is the counter. A counter in principle is
a register whose value is incremented by one on the occurrence of some
event. When the value stored in the counter reaches the maximum value
it can store, the next incremented value becomes zero. The counters are
used for counting the number of times an event occurs and are useful for
generating the timing signals for controlling the sequence of operations
in digital computers. A counter may also be used in the generation of
counted timing signals of the clock pulse. It can be compared to the
clock you use at home, where, basic clock signals may be generated
from the quartz crystal; however, the clock shows a counted sequence of
hours, minutes and seconds.

There are two types of counters- asynchronous and synchronous. This
classification is based on the way they operate. In the asynchronous
counter the state of one flip-flop changes at a time while in the
synchronous counter the state of all the flip-flops can be changed at the
same time.

Figure 31: A 4-bit ripple counter

80

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

The Asynchronous Counter: This is also termed a ripple counter, since
the change that occurs in order to increment the counter ripples through
the counter from one end to the other. Figure 31 shows an
implementation of a 4-bit counter implemented using J-K flip-flops.
This counter is incremented on the occurrence of each clock pulse and it
counts from 0 to 15.

The input line to J and K is kept high, i.e. logical one in this counter and
each time a clock pulse occurs the value of the flip-flop is
complemented (Refer to the characteristic table of J-K flip-flop). Please
note the clock inputs to the flip-flops. The first flip-flop is fed with the
clock pulse as clock input but the second, third and fourth flip-flops are
provided with the output of its previous flip-flop as clock signals,
implying that these flip-flops will be complemented if the previous flip-
flop has a value 1. Thus, the effect of the complement will ripple
through these flip-flops.

The Synchronous Counter: Take the instance when the state of the
ripple counter is 0111 now the next state will be 1000 that means a
change in the state of all the flip-flops, but will it occur simultaneously
in the ripple counter? No, the first leftmost flip-flop will change state
from 1 to 0, this will cause the next flip-flop to change state and so on
till the last flip-flop changes state. Thus, a delay in changing the state is
proportional to the length of the counter. Therefore, to avoid this delay,
normally synchronous counters are used, in which all the flip-flops
change state at the same time (see Figure 32).

Figure 32: The logic diagram of a 3- bit synchronous counter

In a synchronous counter:

1. The first flip-flop is always complemented.

2. The second flip-flop is complemented in the next clock pulse if
the current state of the first flip-flop is set (one).

81

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

3. The third flip-flop is fed by an AND gate which is connected
with the output of the first and second flip-flops, thus the third
flip-flop will be complemented only if the first AND second flip-
flops are currently in 1 state. This will be more evident from the
following truth table:

O0 O1 O2

0 0 0
1 0 0
0 1 0
1 1 0
0 0 1
1 1 1
0 1 1
1 1 1
0 0 0
1

4. The master-slave flip-flops are used here and, therefore all the
flip-flops can change state simultaneously.

3.5 Interconnection Structures

A computer consists of three basic components:

• CPU
• Memory and
• Input/output components

If data is to be exchanged among these three components, we need to
have an interconnection structure, which allows transfer of information
among all these. This interconnecting structure must support

• The transfer of an instruction or a unit of data from memory to CPU.
• The transfer of a unit of data from CPU to memory
• Reading of data from input/output device i.e., transfers from

input/output device to CPU.
• CPU sending data to input/output device.
• The transfer of input/output devices to memory
• The transfer of memory to input/output devices.

To support these transfers several interconnecting structures have been
tried by various computer developers. All these structures can be
broadly classified as four basic architectures.

82

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

1. Input/Output to Central Processor: In this structure all
exchanges between input/output devices and memory pass
through the CPU. It is a simple and inexpensive structure but
reduces the CPU throughout as the CPU is tied up in doing input-
output tasks, which are normally considerably slower than that of
CPU operations.

2. Input/Output to Memory: This architecture involves direct
transfer between input/output and memory without involving
much time from CPU. The input/output here can be performed
simultaneously when the CPU is doing other computations but
this structure has a complex and flexible control mechanism.

3. Input/Output to Central Switch: A central switch is provided
here which controls the access of the memory by CPU and input/
output device. Here, the CPU is freed up to do other
computations. It also provides control of input/output operations
through the CPU directly. Therefore, it is a powerful flexible
approach and is popular in large mainframes line. The major
drawback of this approach is the complexity of the switch.

4. Input/Output to Bus: It is a flexible and simple structure and
used commonly in micro and mini-computers. Let us discuss this
in greater details.

Bus Interconnection

A bus is a set of connections between two or more components/devices
that are designed to transfer several/all bits of a word from a specific
source to destination. It is a shared media of information transfer. A bus
consists of multiple communication wires that are also termed lines. A
line is capable of transferring one bit only. Thus, for transferring a word
of 16 bits simultaneously over a bus we need to have 16 bus lines. In
addition, some other lines are needed for controlling this transfer.

A bus may be unidirectional (capable of transmitting data in one
direction) or bi-directional. In a shared bus only one source can transmit
at a time while one (or more than one) receives that signal. Figure 33
shows the diagram of a shared bus. The shared bus is the one which we
will discuss further.

 Figure 33: A shared bus

 Shared Bus

IOCPU Memories

83

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

A computer system contains a number of buses, which provide
pathways among several devices. A shared bus that connects the CPU,
memory and input/output is called a system bus.

A system bus may consist of 50 to 100 separate lines. These lines can be
broadly categorised into three functional groups:

• Data lines: these are collectively called Data Bus
• Address lines: these are collectively called Address Bus
• Control lines: these are collectively called Control Bus.

The data bus provides a path for moving data between the system
modules. It normally consists of 8, 16 or 32 bit separate lines. The
number of lines in data bus is called the width of data bus. Thus, a data
bus width limits the maximum number of bits that can be transferred
simultaneously between two modules e.g., CPU and memory. The width
of the data bus also helps in determining the overall performance of a
computer system.

For example, if the width of a data bus is 8 bits and an instruction is of
16 bits then for fetching each instruction two memory accesses will be
needed by the CPU.

The address bus is used to designate the source of data for the data bus.
As the memory may be divided into a linear array of bytes or words,
therefore, for reading or writing any information on to memory, CPU
needs to specify the address of a particular location. The address bus
supplies this address. Thus, the width of the address bus specifies the
maximum possible memory supported by a system.

For example, if a system has a 16 bit wide address bus then it can have a
main memory size equivalent to 216 = 64K. The role of control lines
(bus) is to control the access to data and address bus, as bus is a shared
medium. The control lines are used for transmission of commands and
timing signals (which validate data and address) between the system
modules.

Some of the control lines of bus are required for bus request, bus grant,
providing clock signals, providing reset signals, reading/writing to I/O
devices or memory, etc.

The bus is used in the following ways:

1. Request for sending data

• First the sender grabs the permit to use the bus.

84

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

• And then transfers the information

2. Request for receiving data from other module.

• Grab the bus
• Transfer the request to other module to send the data
• Then wait for the other module to send the data

Physically, a bus is a number of parallel electrical conductors. These
circuits are normally imprinted on printed circuit boards. The bus
normally extends across most of the system components that can be
trapped into the bus lines. You can see these wires in the printed circuit
board of your personal computer. Let us now discuss some of the
aspects related to the bus.

Dedicated or Multiplexed Buses: A dedicated bus line, as the name
suggests, is assigned permanently to a function or to a physical subset of
the components of the computer. The example of a functional dedicated
bus is the dedicated address bus and data bus. As far as physical
dedication is concerned a bus is dedicated to only a subset of modules.
For example, an input/output bus can be used to connect all the
input/output modules. The physical dedication increases the

throughput of the bus as only few modules are in contention but it
increases the overall size and cost of a system.

In certain computer buses some or all the address lines are used for data
transfer operations, that is, the same lines are used for the address as
well as data lines, but of course, at different times. This is known as
time multiplexing and is a good example of a multiplexed bus. This
multiplexing reduces the total number of lines to be used, which in turn
results in reduction of cost and space. But the disadvantages of
multiplexing are the complex circuitry and potential reduction in
performance, as the multiplexed lines cannot be used in parallel.

Synchronous or Asynchronous Timing: Another important aspect of
buses is the manner in which the data transfer is timed. In synchronous
buses the data is transferred during a specific time that is known to
source and destination. Synchronisation is normally achieved by using
the clock pulse of the same clock source for both source and destination
or different clocks of the same frequency. Normally, the synchronising
source and destination keep a periodic communication in order to keep
step with each other. The synchronous buses are easy to implement and
test but restrict information transfer rate to that of the slowest device.
The alternative approach to the synchronous bus is the asynchronous
bus. In this approach each item that is to be transferred has a separate

85

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

control signal. This signal indicates the presence of the item on the bus
to the destination. With the asynchronous buses a variety of fast and
slow devices can share a bus. However, the bus-control circuitry is more
complex and expensive in the case of asynchronous buses.

Bus Arbitration: Another important aspect of the system where buses
are used is the control of a bus. In most of the systems more than one
module need control of the bus. For example, input/output modules may
need the control of the bus for transferring data to memory. Similarly,
the CPU also needs the control of the bus for data transfer. Suppose both
of these devices want to transfer information at the same time then?
There should be a method for resolving the simultaneous data transfer
requests on the bus. This process of selecting one of the units from
various buses requesting units is called bus arbitration. Two broad
categories of arbitration have been suggested. These are centralised and
distributed.

In the centralised scheme a hardware circuit device that is referred to as
the bus controller or bus arbiter processes the request to use the bus. The
bus controller may be a separate module or can be constructed as the
part of the CPU.

On the contrary the distributed scheme has shared access control logic
among the various modules. These modules work together to share the
bus. Irrespective of the scheme, the main role of the arbitration is to
designate one device as master (which controls the bus during the time it
is designated as master) and a second device as slave (which takes all
the orders from the master). Let us discuss some of the arbitration
schemes among various contending masters. Please note that all these
arbitration schemes differ in the number of control lines needed and in
the speed of response to various bus-access requests.

Daisy Chaining: In daisy chaining the control of the bus is granted to
any module by a bus grant signal, which is chained through all the
contending masters. Refer to Figure 34 to note how the bus grant signal
is distributed among various modules. The other two control signals are
bus request and bus busy.

86

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Figure 34: Daisy chaining arbitration

The bus request line, if activated, only indicates that one or more
modules require the bus. The bus controller responds to the bus request
only if the bus busy line is inactive, that is, the bus is free. The bus
controller responds to the bus request signal by placing the signal on the
bus grant line. The bus grant signal passes through the modules one by
one. On receiving the bus grant the module that was requesting for bus
access, blocks further propagation of bus grant signal and issue a bus

busy signal and starts using the bus. If the bus grant is passed through
a module which had not issued the bus request, then the bus grant signal
is forwarded to the next module.

In this scheme the priority is wired in and cannot be changed by
programs. In Figure 34 the assumed priority is (highest to lowest)
Module 1, Module 2…Module N. If two modules, let us say 1 and N
request the bus at the same time then the bus will be granted to Module
1 first as the signal has to pass through Module 1 to reach Module N.
The basic drawback of this simple scheme is that if the bus request of
Module 1 is occurring at a high rate then rest of the modules may not get
the bus for quite some time. Another problem can occur when say the
bus grant line between say Module 4 and Module 5 fails, or Module 4 is
unable to pass the bus grant signal. In any of the above mentioned cases
no bus access will be possible beyond Module 4.

Polling: Another method that is commonly used for bus arbitration is
polling. In polling instead of single bus grant lines, as the case of daisy
chaining, we encounter poll count lines. These lines are connected to all
the modules connected on the bus (refer Figure 35). The bus request and
bus busy are the other two control lines for bus control. A request to use
the bus is made on the bus request line while the bus request will not be
responded to till the bus busy line is active. The bus controller responds
to a signal on bus request line by generating a sequence of numbers on
poll count lines. These numbers are normally considered to be a unique
address assigned to the connected modules. When the poll count

87

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

matches the address of a particular module that is requesting for the bus,
the modules activates the bus busy signal and starts using the bus. The
polling basically is asking each module one by one whether it has
something to do with the bus. The polling has two main advantages over
daisy chaining. The first advantage is that in polling the priority of
contending modules can be altered (if desired) by changing the sequence
of the generation of numbers on the poll count lines. The second
advantage of polling over daisy chaining is that the failure of one
module will not affect any other module as far as bus grant is concerned.
But it has certain inherent disadvantages also in comparison to daisy
chaining. Polling requires more control lines which adds in cost and the
maximum number of modules which can share the bus in polling is
restricted by the number of poll count lines. For example, in the figure
35 we have three polls count lines, which implies that at most 23 = 8
modules can share this bus.

Figure 35: Polling

Independent Requesting: In this arbitration scheme, each module has
its independent bus request and bus grant line. In this scheme the
identification of the requesting unit is almost immediate and requests
can be responded to quickly. Priority in such a system can be through
the bus controller and can be changed through a program (if desired).

88

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Figure 36: Independent requesting

In certain systems a combination of these arbitration schemes may be
used.

Types of Data Transfer: Let us discuss the various types of data
transfer on a bus. The buses support read and write transfer. A read data
transfer is basically a transfer of information from slave to master while
the write data transfer is from master to slave. The data transfer is also
dependent on whether dedicated or multiplexed lines are used for
address and data. In a write operation the data follows the address of
slave (in multiplexed data and address lines) or can be transferred
almost at the same time the address is transferred (in dedicated lines),
while for a read operation the access time of data at the slave causes
slight delay. In addition, the delay may be caused if a bus request is
needed for grabbing the bus during read or the write operation.

Another important data transfer type is the read-modify-write operation.
In this operation the read operation is followed immediately by a write
operation for the same address. The address in such cases is broadcast
only at the beginning of this operation. During this read-modify-write
operation no other bus master can access the data element. These types
of operation are used for shared memory which can be used by many
programs at the same time.

In a read-after-write transfer the write is followed immediately by a read
operation for the same address. This operation can be used for checking
whether the correct data is written or not.

Finally, some buses allow transfer of a block of data. In such cases the
address is followed by several data cycles. The address specifies the
address of the location from which the first data item is to be transferred.

89

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

The subsequent data items are transferred from/to the subsequent
locations.

The Local Bus

With the development of graphical user interfaces the information that is
to be transferred between the processor, memory, display, and secondary
storage has increased tremendously. For example, the monochrome text
is about 4 KB of information; compare it to a 256 colour. Windows
screen requires about 300 KB. Since in microcomputers, the displayed
information is also a part of memory-based information, thus, more I/O
bandwidth is needed to handle large amounts of data transfer to and
from the display mechanism and the increasingly larger and faster hard
disks. Increasing the speed of the processor in such situations will not be
used properly as the processor will always have to wait for the system

bus to transmit data. This gave birth to the concept of the local bus.
One such popular local bus on modern computers is the Peripheral
Component Interconnect or PCI bus.

The Peripheral Component Interconnect (PCI) bus was developed by
Intel in 1993.

PCI is a 32-bit bus that normally runs at 33 MHz or 66 MHz etc.

4.0CONCLUSION

In this unit, we had tried to answer the basic query “How does a
computer actually perform computation” which had led us into
discussing Boolean algebra, computer logic gates, truth table,
combinational circuits and the simplification of these circuits using
Boolean algebra and Karnaugh maps.

Also various types of circuits and their applications in a computer
system and how a basic mathematical operation such as addition is done
by the computer have been extensively discussed in this unit.

5.0 SUMMARY

 This unit provides you information about the basis of a computer
system. Some more details on these basics will be discussed later. But
the key element for the design is the combinational and sequential
circuit. With the advent of PLA’s the designing of circuits is changing
and now the scenario is moving towards microprocessors.

90

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

With this developing scenario in the forefront and the expectations of
Ultra Large Scale Integration (ULSI) in view, it is not far off when the
design of logical circuits will be confined to single microchip
components. The bus structure discussed in this unit will be widely used
throughout this module. We have not given any example of this
structure, but if you need more details on it you can refer to further
readings.

6.0 TUTOR- MARKED ASSIGNMENT

1. What are sequential circuits? How are they different from
combinational circuits?

2. What are the advantages of the master-slave flip-flop?
3. Can a ripple counter be constructed from a shift register?
4. The system bus is used to connect the CPU to a central switch

True False
5. A bus can be used to transfer only data True False
6. The same bus lines may be used to transfer data and addresses

True False
7. In the Daisy chaining arbitration scheme the priority of the

connected modules can be changed. True False
8. Microcomputers do not need a system bus True False

7.0 REFERENCES/FURTHER READINGS

Mano, M. Morris (1993).Computer System Architecture (4th ed).
Prentice Hall of India.

Hayes, John, P.(1988). Computer Architecture and Organisation (2nd

ed). McGraw-Hill International.

Stallings, William. Computer Organisation and Architecture (3rd ed).
Maxwell Macmillan International Editions.

Baron, Robert J. and Higbie, Lee. Computer Architecture. Addison-
Wesley Publishing Company.

91

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

UNIT 3 MEMORY ORGANISATION

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Memory System
3.2 Characteristics Terms for Various Memory Devices
3.3 Random Access Memory

3.3.1 Ferrite Core Memories
3.3.2 Semiconductor Memories
3.3.3 Read Only Memories
3.3.4 Chip Organisation

3.4 External/Auxiliary Memory
3.4.1 Magnetic Disk
3.4.2 Magnetic Tapes
3.4.3 Charge-Coupled Devices (CCDs)
3.4.4 Magnetic Bubble Memories

3.5 High Speed Memories
3.5.1 Interleaved Memories
3.5.2 Cache Memory
3.5.3 Associative Memories

4.0 Conclusion
5.0 Summary
6.0 Tutor- Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

We have already discussed the basic structure of the computer. We
started our discussion, in the previous unit with the digit logic circuits,
the basic building block of modern computers and then moved on to
discuss one of the most important interconnection structures-- the Bus
structure of the computer. Now, we will discuss the other basic
components of a computer, to make the picture complete. We can start
with the CPU’s structure and go on to discuss the memory, input/output
etc. However, for the sake of simplicity we will start with memory
organisation and then move on to input/output organisation (Unit 4) and
then we will devote a full module on CPU organisation (Module 2).

In this unit we will examine the main memory, cache memory, magnetic
secondary memory and the optical memory. With the advancement of
technologies the optical memories are becoming increasingly popular
and therefore, will be discussed in sufficient detail in the unit.

92

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

2.0 OBJECTIVES

At the end of the unit, you should be able to:

• describe the key characteristics of the memory system;
• distinguish among various types of random access memories;
• differentiate among various external memories;
• describe the latest secondary storage technologies and their data

storage format; and
• describe the importance of cache memory and other high-speed

memories.

3.0 MAIN CONTENT

3.1 The Memory System

The memory in a computer system is required for storage and
subsequent retrieval of the instructions and data. A computer system
uses a variety of devices for storing these instructions and data that are
required for its operations. Normally we classify the information to be
stored on computer in two basic categories: data and instructions.

The storage devices along with the algorithm or information on how to
control and manage these storage devices constitute the memory system
of a computer.

A memory system is a very simple system yet it exhibits a wide range of
technology and types. The basic objective of a computer system is to
increase the speed of computation. Likewise the basic objective of a
memory system is to provide fast, uninterrupted access by the processor
to the memory such that the processor can operate at the speed at which
it is expected to work.

But does this kind of technology where there is no speed gap between
the processor and the memory speed exist? Yes, it does, but
unfortunately as the access time (time taken by CPU to access a location
in memory) becomes less and less the cost per bit of memory becomes
increasingly higher. In addition, normally these memories require power
supply till the information needs to be stored. These things are not very
convenient, but on the other hand the memories with smaller cost have
very high access time that will result in slower operations of the CPU.
Thus, the cost versus access time anomaly has lead to a hierarchy of
memory where we supplement fast memories with large, cheaper,
slower memories. These memory units may have very different physical
and operational characteristics, therefore, making the memory system

93

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

very diverse in type, cost, organisation, technology and performance.
This memory hierarchy will work only if the frequency of access to the
slower memories is significantly less than the faster memories.

Figure 37: The memory hierarchy

You should be familiar with all the terms given in the above diagram,
except the term, “disk cache”. The disk cache may be a portion of RAM,
sometimes called the soft disk cache that is used to speed up the access
time on a disk. In some newer technologies such a memory can be a part
disk drive itself; such a memory is sometimes called the hard disk cache
or buffer. These hard disk caches are more effective, but they are
expensive, and therefore smaller. Almost all modern disk drives include
a small amount of internal cache.

3.2 Characteristics Terms for Various Memory Devices

The following terms are most commonly used for identifying the
comparative behaviour of various memory devices and technologies.

Storage Capacity: It is representative of the size of the memory. The
capacity of internal memory and main memory can be expressed in
terms of number of words or bytes. The storage capacity of the external
memory is normally measured in terms of bytes.

Unit of Transfer: A unit of transfer is the number of bits read in or out
of the memory in a single read or write operation. For main memory and

REGISTERS

MAGNETIC TAPE/OPTICAL DISK

CACHE

MAIN MEMORY

DISK CACHE

MAGNETIC DISK

94

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

internal memory, the normal unit of transfer of information is equal to
the word length of a processor. In fact it depends on the number of data
lines in and out of the memory module. (Why?) In general, these lines
are kept equal to the word size of the processor. What is a word? You
have already learnt about this term in Unit 1 of this module. The unit of
transfer of the external memory is normally quite large (Why? You will
find the answer to this question later in this unit) and is referred to as the
block of data.

Access Modes: Once we have defined the unit of transfer the next
important characteristic is the access mode in which the information is
accessed from the memory. A memory is considered to consist of
various memory locations. The information from memory devices can
be accessed in the following ways:

• Random Access;
• Sequential Access;
• Direct Access.

Access Time: The access time is the time required between the requests
made for a read or write operation till the time the data is made available
or written at the requested location. Normally it is measured for a read
operation. The access time depends on the physical characteristics and
access mode used for that device.

Permanence of Storage: Is it possible to lose information stored by the
memory over a period of time? If yes, then what can be the reasons for
the loss of information and what should be done to avoid it?

There are several reasons for information destruction; these are
destructive readout, dynamic storage, volatility, and hardware failure.
You are familiar with all these terms.

There can be some memories where the stored l looses its strength to
become 0 over a period of time. These kinds of memories require
refreshing. The memories, which require refreshing, are termed dynamic
memories. In contrast, the memories, which do not require refreshing,
are called static memories.

DRAM (Dynamic RAM)

DRAM technologies are mainly used as main memories. Presently
DRAMs are available in many different forms. The basic anomaly
relating to DRAMs is the cost versus speed. A faster processor needs
faster memories. However, it is important to have MORE main memory
rather than BETTER system memory. The performance considerations

95

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

are normally associated with the performance of cache rather than the
main memory.

Please note that DRAM at core is RAM. The basic difference among
various acronyms of DRAM technologies are primarily because of
connection of modules, configuration and addressing, or any special
enhancement such as building a small portion of SRAM (Cache) in the
DRAM module. A simple organisation of a DRAM chip is given in
Figure 38(c).

SRAMs are mainly used as cache memories. These cache memories are
discussed in more details later in this unit.

Cycle Time: It is the minimum time lapse between two consecutive
read requests. Is it equal to access time? Yes, for most of the memories
except the ones in which destructive readout is encountered or a
refreshing cycle is needed prior to next read. Cycle time for such
memories is the access time (time elapsed when a read request is made
available) plus writing time as after the data has been made available,
the information has to be written back in the same location as the
previous value has been destroyed by reading.

Data Transfer Rate: The amount of information that can be
transferred in or on the memory in a second it termed the data transfer
rate or bandwidth. It is measured in bits per second. The maximum
number of bits that can be transferred in a second depends on how many
bits can be transferred in or out of the memory simultaneously and thus
the data bus width becomes one of the controlling factors.

Physical Characteristics: In this respect the memory devices can be
categorised into four main categories viz: electronic, magnetic,
mechanical and optical. One of the requirements for a memory device is
that it should exhibit two well-defined physical states, such that 0 and 1
can be represented in those two states. The data transfer rate of the
memory depends on how quickly the state can be recognised and
altered. The following table lists some of the memory technologies
along with their physical and other important characteristics.

96

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Table 3 Characteristics of some memory technologies

Some of the main attributes that are considered for the storage devices
are physical size, energy consumption and reliability.

The physical size also depends on the storage density of the memories.
This is also coupled with the question of portability of memory. The
energy consumption is another key factor that determines the power
consumption of the computer and cooling system requirements. The
higher the power consumption, the costlier the equipment required for
the internal cooling of the computer.

Reliability is measured as mean time to failure. The storage devices,
which require mechanical motion e.g., hard disks, are more prone to
failure rather than the semiconductor memories, which are totally
electronic in nature. Very high-speed semiconductor memories are also
prone to failure as technology is moving towards its limits.

Cost: Another key factor which is of prime concern in a memory
system, is cost. It is normally expressed per bit. The cost of a memory
system includes not only the device but also the cost of access circuitry
and peripherals essential for the operation of the memory. Table 3 also
shows per bit cost of these memories. Please note that as the access time
for memories is increasing, the cost is decreasing.

SELF-ASSESSMENT EXERCISE

State whether True or False

1. Memory hierarchy is built in the computer system, as the main
memory can not store very large data. True False

2. The secondary memory is slower than the main memory but has a
larger capacity True False

97

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

3. In random access memory any memory location can be accessed
independently. True False

4. Bandwidth is defined as the information that is stored or
retrieved in the memory per second. True False

3.3 Random Access Memory

In this section, we will confine our discussions in general to the random
access memory, including the discussion on the main memory. The main
memory is a random access memory. It is normally organised (logically)
as words of fixed length. The length of a word is called word length.
Each of these memory words has an independent address and each has
the same number of bits. Normally the total numbers of words in the
memory are some power of 2. Some typical memory word sizes are 8
bits, 16 bits, 32 bits, etc. The main memory can be both read and write
into, therefore, it is called read-write memory.

The access time and cycle time in RAMs are constant and independent
of the location accessed. How does this happen? To answers it, let us
first discuss how a bit can be stored using a sequential circuit. Figure
38(a) shows the logic diagram of a binary cell.

Figure 38(a) Bit Inputs

98

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Figure 38(b): Logic diagram of RAM

Figure 38(c): A typical 16 megabit DRAM (4M x 4)

The construction shown is made from one J-K flip-flop and three AND
gates. The two inputs to the system are one input bit and read/write
signal. Input is fed in complemented form to AND gate ‘a’. The
read/write signal has a value 1 if it is a read operation. Therefore, during
the read operation the AND gate ‘c’ has the read/write input as 1. Since
AND gate ‘a’ and ‘b’ have 0 read/write inputs, and if the select is 1, i.e.,
this cell is currently being selected, then the output will become equal to
the state of flip-flop. In other words the date value stored in flip-flop has
been read. In write operation only ‘a’ & ‘b’ gates get a read/write value
1 and they set or clear the JK flip-flop depending on the data input
value. Please note that in case data input is 0, the flip-flop will go to the
clear state and if data input is 1, the flip-flop will go to the set state. In
effect, the input data is reflected in the state of the flip-flop. Thus, we
say that the input data has been stored in the flip-flop or binary cell.

99

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Figure 38(b) is the extension of this binary cell to an IC RAM circuit
where a 2 x 4 bit decoder is used. Please note that each decoder output is
connected to a 4-bit word and the read/write signal is supplied to each
binary cell. The output is derived using an OR gate, since all the non-
selected cells will produce a zero output. The word that is selected will
determine the overall output.

Figure 38(c) is a modified organisation of figure 38(b). It shows a
typical organisation of 2048 x 2048 x 4 bit DRAM chip. The memory
array in this organisation is a square array, that is (2048 x 2048) words
of 4 bits each.

Each element (which consists of 4 bits) of array is connected/identified
by horizontal row lines and vertical column lines. The horizontal lines
are connected to the select input in a row, whereas the vertical lines are
connected to the output signal through a sense amplifier or data in signal
through the data bit line driver. Please note that selection of input from
this chip involves the understated:

• Row address selection specifying the present address values A0 to
A10. For the rows, it is stored in the row address buffer through the
decoder.

• The row decoder selects the required row.

• The column address buffer is loaded with the column address values,
which are also applied through A0 to A10 lines only. Please note that
these lines should contain value for the column. This job will be
done through change in external signal RAS .

• CAS causes the column address to be loaded with these values.

• Each column is of 4 bits, these require 4 bit data lines from
input/output buffer. On memory write operation data in bit lines
being activated while on read sense lines being activated.

• This chip requires 11 address lines (instead of 22), 4 data in and out
lines and other control lines.

• Refreshing of the chip is done periodically using a fresh counter.
One simple technique of refreshing may be to disable read-write for
some time and refresh all the rows one by one.

• The size of the chip is 211 x 211 x 4 = 2048 x 2048 = 16M bits. On
increasing address lines from 11 to 12 we have 1212 x 1212 x 4 = 64M

100

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

bits, an increase of a factor of 4. Thus, possible sizes of such chip
may be 16K, 256K, 1M, 4M, 16M, and so on.

Having discussed the general configuration of RAMs, we will go on to
discuss a few technologies and techniques used in RAMs.

3.3.1 Ferrite-core Memories

Ferrite core memories were used as main memory in computers before
the semiconductor memories were invented. The ferrite core memories
are based on the magnetic properties of the ferrite material. The core is a
ring shaped ferrite material, which is used for storing binary
information. The core can be magnetised clockwise or anti-clockwise
thus representing logical 0 and 1. Electronic current is used to magnetise
the core, and even after the current is removed the ferrite material stays
in the specific magnetic state. This implies that the ferrite core memories
were non-volatile. Large RAMs can be made from ferrite core by
arranging them in multidimensional arrays.

The ferrite core memory requires two wires - one for writing the data
and the other for reading or sensing. The reading process is a destructive
readout hence it requires writing along with a reading operation. The
core determines the cycle time. The smaller the core, the lower the cycle
time, but the more complex are the writings. The main disadvantages of
ferrite-core memories were:

1. They were incompatible with the processor technology, which are
semiconductor-based logic circuits.

2. They were difficult to construct because of difficult wiring
patterns. These wires are needed for magnetisation.

3.3.2 Semiconductor Memories

The semiconductors were used for making high-speed CPU registers
since 1950, but it was economic to construct RAM chip only in 1970
with the development of VLSI technology. At present RAMs are
manufactured in a wide range of sizes i.e., from a few hundred bits to a
megabit or more. The present limit on technology does not allow for
constructing one giga bits on a single chip. To construct large memories
the small IC RAMs can be combined. The semiconductor memories fall
under two main technologies- bipolar semiconductor memories and
metal oxide semiconductor (MOS) transistor semiconductor memories.
For larger RAM chips normally MOS is used. At present there are two
main categories of semiconductor RAMs - static and dynamic. The
larger chips are normally constructed as dynamic RAMs because the

101

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

dynamic RAM require less number of transistors than the static RAM
and hence can be packed more densely on a single chip. Thus, dynamic
RAMs can achieve higher storage density.

On the other hand, dynamic RAMs tend to loose their charge with time
and need periodic refreshing; thus, requiring extra control circuitry and
interleaving of normal memory access with refreshing operations. Thus,
the dynamic RAMs although can be packed more densely yet are more
difficult to use than static RAMs. In contrast to ferrite core memory the
semiconductor RAMs are volatile in nature.

These memories which we have discussed are both read/write type. But
what about a memory in which we have only one of the operations
possible, e.g., if we only allow writing in the memory and no reading
then how can we use that memory? Probably it is wastage of memory,
but what about having a memory where we cannot change the
information in normal case and only read the information from the
memory. This memory might have a lot of uses; for example, an
important bit of the computer’s operating system that normally does not
change can be stored in these kinds of memory so that one cannot
change the operating system accidentally. These memories are called
ROMs (Read Only Memories).

3.3.3 Read Only Memories

A ROM is basically a combinational circuit and can be constructed as:

Figure 39: A sample ROM

Thus, using this hardwired combinational circuit we can create a ROM.
Please note that on applying an input I0 = 0, I1=0, the 00 line of the
decoder is selected and we will get O0 = 0 and O1 = 1; on applying I 0=0

102

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

and I 1=1 we will get O1 = 1 and O1 = 0. This same logic can be used for
constructing larger ROMs.

ROMs (Read Only Memories) are the memories on which it is not
possible to write the data when they are online to the computer. They
can only be read. The ROMs can be used for storing micro-programs,
system programs, and subroutines. ROMs are non-volatile in nature and
need not be loaded in secondary storage devices. ROMs are fabricated in
large numbers in a way where there is no room for even a single error.
But, this is an inflexible process and requires mass production.
Therefore, a new kind of ROM called PROM was designed which is
also non-volatile and can be written only once and hence the name
programmable ROM (PROM). The supplier or the customer can
perform the writing process in PROM electrically. Special equipment is
needed to perform this writing operation. Therefore, PROMs are more
flexible and convenient than ROMs.

The ROMs/PROMs can be written just once (in ROMs at the time of
manufacture and PROMs at any time later), but in both cases whatever
is written once cannot be changed. But, what about a case in which you
read mostly but write only very few times. This led to the concept of
read mostly memories and the best examples of these are EPROMs
(Erasable PROMs) and EEPROMS (Electrically Erasable ROMs). The
EPROMs can be read and written electrically but, the write operation is
not simple. It requires erasure of whole storage cells by exposing the
chip to ultra violet light, thus bringing them to the same initial state.
This erasure is a time consuming process. Once all the cells have been
brought to the same initial state, the EPROM can be written electrically.

EEPROMs are becoming increasingly popular, as they do not require
prior erasure of previous contents. However, in EEPROMs writing time
is considerably higher than reading time. The biggest advantage of the
EEPROM is that it is a non-volatile memory and can be updated easily,
while the disadvantages are the high cost and that at present they are not
completely non-volatile, and the write operation takes considerable time.
But all these disadvantages are disappearing with the growth in
technology. In general, ROMs are made of cheaper and slower
technology than RAMs. Table 4 summarises the features of these read
only and read mostly memories.

103

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Table 4: Features of read only and read mostly memories

Memory Type Write Time Order of Read
Time

Number of
Write Cycles
allowed

ROM Once Nano seconds ONE
PROM Hours Nano seconds TENS
EPROM Minutes (including

time of erasure)
Nano seconds HUNDREDS

EEPROM Milliseconds Nano seconds THOUSANDS

One of the new memory technologies is flash memory. These memories
can be reprogrammed at high speed and hence the name flash. The flash
memory characteristics such as cost and write time, etc., fall in between
those of EPROM and EEPROM. In flash memories the entire memory
can be erased in a few seconds (compare it to EPROM) by using electric
erasing technology. There is another possibility in flash memory in
which erasure of a block is possible. Flash memories are used for some
of these chips where writing mode is not disabled in personal computers.
BIOS may be written over/destroyed by some viruses.

We have discussed semiconductor memories; we will now discuss the
chip organisation of these memories.

3.3.4 Chip Organisation

Most of the semiconductor memories are packaged in chips. As
discussed earlier these memory chips may store information ranging
from 64K bits to 1M bits. There are several memory organisation
techniques used for a chip and the most common of these are 2D and
2½ D organisation.

2 D Memory Organisation: In this organisation the memory on a chip is
considered to be a list of words in which any word can be accessed
randomly e.g., the memory of PCs used to have 16 bit words and
normally in a chip it has 64KB memory = 32K words. Figure 40(a)
shows a typical 2-D organisation.

104

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

(a) 2D organisation

(b) 2½ D organisation

Figure 40: 2 and 2½ chip organisation

The memory in 2D chip is organised as an array of words. The
horizontal lines are connected to the select input of the binary cell. This
circuit is a simplified form of the circuit given in Figure 38(b). Each
vertical bit line is connected to the data-in (or input) and sense (or

105

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

output) terminal of each cell in its respective column. Each decoded line
of decoder drives a word line. A complete word can be an input or
output from the memory simultaneously.

On write operation (input to memory) the address decoder selects the
required word and the bit lines are activated for a value 0 or 1 according
to the data lines values. Thus, enabling input of data to memory or in
other words completes the write operation. On read (output from
memory) the value of each bit line is passed through a sense amplifier
and passed on to the data lines, thus, enabling the read operation. The
word line identifies the word that has been selected for reading or
writing. Usually, ROMs and read mostly memories use 2 D chip
organisation.

Another chip organisation, which is popular presently, is 2½ D
organisation. In 2½ D organisation, bits of a word are spread over a
number of chips. For example a 32 bit word can be stored on four chips
containing 8 bits of the word. But the ideal organisation in this will be to
have 1 bit of a word on a single chip. A 2½ D organisation is given in
Figure 40(b). The figure is a square array of cells (also refer to figure
38(c)). A row line and a column line are connected to each memory cell.
The addresses supplied to this chip are divided into row and column
addresses lines and is then used to input or output bit/bits from this
memory chip. The other similar memory chips can deliver the rest of the
bits of this word.

Comparison of 2D and 2½ D Organisation

The 2½ D organisation of chips is supplied to be more advantageous
because:

1. It requires less circuitry and gates. (Why? Find out from further
readings).

2. The chip has only one input/output pin in 2½ D while in 2 D it
has to have 16 or 32 input/output pins, thus in the chip packages
less number of pins are required for 2½ D organisation which is
a desirable feature.

3. In the 2-D organisation the error correction codes cannot be used
effectively. For example, if electromagnetic disturbances have
affected a chip, in 2½ D we can rectify the errors as only one bit
of the word is lost but it does not happen in a 2-D organisation.

106

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Orthogonal Memory

Orthogonal memory can be accessed either by a word or by a bit-slice.
A bit-slice is a set of all the bits of the same bit position of a specific set
of words. The user may request for a word and on his request a word
will be read. But on the other hand, if user requests a bit-slice read or
write for a bit-slice, he will be allowed to do so. Figure 41 shows a bit-
slice for a 4-bit word. Such memories may be advantageous in situations
where set type operations are to be performed.

 Bit Position Bit Position Bit Position Bit Position

 3 2 1 0

 Word 1 0 1
 Word 2 1 0
 Word 3 0 1
 Word 4 0 1

Bit slice at bit Bit slice at bit

 position 3 position 1

 The most significant bit for the given word

Figure41: Bit-slice for a 4-bit word

3.4 External/Auxiliary Memory

As discussed earlier, the cost of RAM is very high and the semi-
conductor RAMs are mostly volatile, therefore, it is highly likely that a
secondary cheap media should be used which should show some sort of
permanence of storage and should be relatively inexpensive. The
magnetic material which was found to be inexpensive and quite long-
lasting, therefore, became an ideal choice to do so. Magnetic tapes and
magnetic disks are commonly used as storage media. With the
advancement in optical technology now the optical disks are trying to
make an inroad as one of the major external memory. We will discuss
the characteristics of these memories in this subsection.

3.4.1 The Magnetic Disk

A magnetic disk is a circular platter of plastic that is coated with
magnetisable material. One of the key components of a magnetic disk is
a conducting coil named the head, that performs the job of reading and

1
0
1
1

1
1
0
0

107

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

writing on the magnetic surface. The head remains stationary while the
disk rotates below it for reading or writing operations.

For writing data on the magnetic disk, current is passed through the
head, which produces the magnetic field. This magnetic field causes
magnetic patterns to be recorded on the magnetic surface. These
recorded magnetic patterns depend on the direction of the current in the
head. While for reading the magnetic field recorded on the disk surface
moves relative to the head resulting in the generation of electric current
of the same polarity in the head. The capacities of magnetic disks range
from 1MB (for floppy disks) to several MB.

Data Organisation and Format

The head of the disk is a small coil and reads or writes on the position of
the disk rotating below it, therefore, the data is stored in a concentric set
of rings (refer Figure 42). These are called tracks. The width of a track is
equal to the width of the head. To minimise the interference of magnetic
fields and to minimise the errors of misalignment of the head, the
adjacent tracks are separated by inter-track gaps.

As we go towards the outer tracks the size of a track increases but to
simplify electronics, same numbers of bits are stored on each track.
Therefore, the linear storage density from the outer to the inner track
increases per linear inch. Figure 42 gives the details of a disk.

Figure 42: Logical layout of Magnetic Disk

The data is transferred from and to the disks in blocks. A block is a
section of disk data and is normally equal to one or more sector(s). A
track is divided into 10 – 100 sectors and these sectors should be either

108

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

fixed or variable length sectors. Two adjacent sectors are separated by
intra-track gaps. This helps in reducing the precision requirements of
sectors. To identify the sector position normally there may be a starting
point of a track and a starting and end point of each sector. But how is a
sector of a track recognised? A disk is formatted to record control data
on it such that some extra data is stored on it for identification purposes.
This control data is accessible only to the disk drive and not to the user.
For example, Figure 43 shows the format of a Winchester disk.

Thus, in the Winchester disk a sector of 600 bytes can contain only 512
bytes of data. The rest is control information. The synchronisation byte
is a special byte that signifies the starting of a field. Both the data and
identification field start with synchronisation byte, and have 2 bytes for
error-detecting codes. The identification field contains the basic
information such as the track number, sector number and head number
(as multiple platter are there in the Winchester disk) which are needed to
identify a sector.

Figure 43: Format of two adjacent sectors on a Winchester disk

Various characteristics of disks can be classified as:

Fixed Head/Movable Head Disks: The disks in which the head does
not move are called fixed head. Such disks require one read/write head
per track. Heads can be mounted on a rigid arm, which extends to the
centre of the disk. On the movable head disk normally we have one
read/write head, which is fitted on an arm. This arm allows the head to
position on any track of the platter. Figure 44 shows these fixed and
movable head schemes.

109

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Figure 44: Fixed and movable head disks

Removable and Non-removable Disks: The disks are normally
mounted in a disk drive that consists of an arm and a shift along with the
electronic circuitry for input-output of data. The disk rotates along with
the shaft. A non-removable disk is permanently mounted on the disk
drive. An example of a non-removable disk is the hard disk of a PC. The
removable disks can be replaced by a similar disk on to the same or a
different computer, thus, providing enormous data storage that is not
limited by the size of the disk. Examples of such disks are floppy
diskettes.

Sides: If the magnetic coating is applied to both sides of the platter, the
disk is called a double-sided disk. The data can be recorded on either
side of these disks. Some inexpensive disks were initially single-sided.

Platters: Some of disks have a single platter (e.g., floppy disks) while
some disks have multiple platters that are stacked vertically, normally at
a distance of an inch. This is known as a disk pack. In disk a pack is one
cylinder. It is the ring of all concentric tracks. A disk pack can contain
multiple heads mounted with the same arm.

Head Mechanism

The head mechanism can broadly be categorised in three categories:

Contact: In this mechanism the head is in physical contact with the
platter. This mechanism is used for floppy the disk that is a small
flexible platter and is of the least expensive type. But with this type of
head mechanism the chances of errors from impurities and imperfection
are more.

The Fixed Gap: Traditionally the read-write heads are placed at a fixed
distance from the platter, allowing an air gap. The gap of platter and
head plays an important role. The smaller the size of the head the closer
it should be to the platter surfaces in order to read and write properly. A

110

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

smaller head allows greater data density on the disk, but on the other
hand, this head should be closer to the platter surface, therefore, it is
prone to errors because of impurities. Other types of disks were
developed which are commonly called Winchester disks.

The Aerodynamic Gap (Winchester): In the Winchester disks the
heads are used in sealed drive assemblies which are almost free from
contaminants. The heads operate closer to the disk surface thus allowing
a high data density. In these disks, the head is in the form of an
aerodynamic foil that rests on the platter surface when the disk is
stationary. On rotating the disk an air pressure is generated because of
the rotation. This air pressure results in the displacement of the head
slightly above the disk surface. The term Winchester was initially used
for an IBM disk model but now it is commonly used for any sealed unit
disk drive which uses the aerodynamic head mechanism.

Access Time on Disks

Disks operate in a semi-random mode and normally are referenced
blockwise. The data access time on a disk consists of two main
components:

• Seek time: This is the time to position the head on a specific track.
On a fixed head disk, it is the time taken by the electronic circuit to
select the required head while on a movable head disk, it is the time
required to move the head to a particular track.

• Latency time: This is the time required by a sector to reach below
the read/write head. On the average it is half of the time taken for a
rotation by the disk.

In addition to these two times, the time taken to read a block of words
can be considered but normally it is too small in comparison to latency
and seek time and in general the disk access time is considered to be
sum of seek time and latency time. Since access time of disks is large, it
is advisable to read a sizeable portion of data in a single go and that is
why the disks are referenced blockwise. In fact, you will find that in
most computer systems, the input/output-involving disk is given a very
high priority. The basic reason for such priority is the latency time that
is once the block which is to be read passes below the read-write head; it
may take the time of the order of milliseconds to do that again, in turn
delaying the input/output.

111

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

RAID

The technology of the processor and memory is improving at a very fast
pace in comparison to the secondary storage technology. Thus, the main
performance bottleneck for the computer system is the performance of
the secondary storage devices and their interfacing with the CPU. One
such attempt in the direction of improving disk performance is to have
multiple components in parallel. Some basic questions for such a system
are:

1. How are the disks organised?
Maybe as an array of disks

2. Can separate I/O requests be handled by such a system in
parallel?
Yes, but only if the disk accesses are from separate disks.

3. Can a single I/O request be handled in parallel?
Yes, but the data block requested should be available on separate
disks.

4. Can this array of disks be used for increasing reliability?
Yes, but for that, redundancy of data is essential.

One such industrial standard which exists for multiple-disk database
schemes is termed RAID i.e. Redundant Array of Independent Disks.
The basic characteristics of RAID disks are:

• The operating system considers the physical disks as a single logical
drive.

• Data is distributed across the physical disks.
• In case of failure of a disk, the parity information that is kept on

redundant disks is used to recover the data.

The term RAID was coined by researchers at University of Beckley. In
this paper the meaning of RAID was Redundant Array of Inexpensive
Disks. However, later the term Independent was adopted instead of
Inexpensive to signify performance and reliability gains.

RAID has been proposed at various levels, which are basically aimed to
cater for the widening gap between the processor and on-line secondary
storage technology.

The basic strategy used in RAID is to replace large capacity disk drives
with multiple smaller capacity disks. The data on these disks is

112

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

distributed such as to allow simultaneous access, thus, improving the
overall input/output performance. It also allows for an easy way of
incrementing the capacity of the disk. Please note that one of the main
features of the design is to compensate for the increase in the probability
of failure of multiple disks through the use of parity information. The
six levels of RAID are given in Figure 45. Please note that RAID level 2
are not commercially offered.

Figure 45: The six RAID levels

113

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

The features of these RAID levels are:

RAID Level 0

• It distributes the data over the disk array in the form of strips, which
may be a block, a sector or any other unit of a disk. Please note the
mapping of strips (Figure 45 (a)) on various disks.

• Such layout of strips may result in reading/writing of different blocks
of a single file from different physical disks in parallel, thus greatly
reducing the input/output time.

• Array management software is needed to keep track of what
block/strip is on which disk.

• For high data transfer capacity, there should be a high capacity path
between memory and individual disk drives, and strip size should be
small compared to input/output request size.

• If large numbers of input/output requests are to be processed relating
to records, then it is advisable to have strips to cater for multiple
requests in a single input/output.

• It is most useful in applications requiring high performance of non-
critical data.

RAID Level 1

• Duplicate the data on all the disks also called mirroring. (Please refer
Figure 45(b)). Thus, every disk of the array has a mirror disk.

• Any read request can be serviced by any of the two disks, involving
minimum seek and latency time of the two.

• Writing will require two parallel writing operations and the time
taken is the larger of the two disks access timing.

• Recovery from failure is done using the mirrored disk.

• It is costly but provides real time back up.

• For read operation data, transfer rate and input/output request
fulfilment is quite high, for writing, no appreciable gain.

• It is useful for applications such as system drives and critical data
files.

114

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

RAID Level 2

• This level uses parallel access technique, i.e. the member disks
participate for execution of a single input/output request by
synchronising the spindles of all disks to the same position at a time;
therefore data strips are very small sometimes, of the order of a byte
or a word.

• An error correcting code is used that corrects single-bit errors and
does double error detection.

• On a single read operation, all the disks are activated and the
requested data along with the error-correcting code are delivered
simultaneously.

• Error correction feature on a single bit corrects the error
instantaneously on a read operation.

• RAID 2 would be an effective choice in cases where data errors are
many. However, as present day disks are highly reliable such
systems are not industrially accepted.

RAID Level 3

• It requires only a single redundant disk, which is used as parity bit.

• It also employs parallel access as that of level 2 with small data
strips.

• Parity bit may be used for reconstruction of data in case a disk fails.

• As the data strips are small, level 3 may achieve a very high data
transfer rate. However, only one request can be processed at a time
so there is low input/output request fulfilment rate.

• It is most useful for applications where a single input/output request
is of a large size, such as imaging or CAD application.

RAID Level 4

115

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

• It uses the independent access technique, where each of the physical
disks may be accessed independently, thus, enabling fulfilment of
separate input/output requests in parallel.

• Data strip is large and bit by bit parity strip is created for bits of each
disk.

• Write operation requires updating of parity bit also. This causes user
software to read old strips of data as well as old parity strips.

• Parity disk is a bottleneck in level 4 as all input/output will use it. It
is industrially not an accepted standard.

RAID level 5

• In level 5, the level 4 bottleneck of parity disk is avoided by
distributing the parity strips on the disk as per diagram shown.

• This RAID level is useful for applications where high input/output
request rates are there, where one is having read-intensive or data
lookup type operations.

3.4.2 Magnetic Tapes

 Magnetic tapes consist of tapes constructed from a plastic material and
covered with a magnetic oxide layer. These tapes are mounted on reels.

Storage Format: The data is stored as one byte at a time. Normally data
representation on tapes allows 9 bits inclusive on one parity bit with
each byte; therefore, a tape has 9 tracks, each track representing a bit
position. Figure 46 shows the format of a magnetic tape. In addition to
tracks, data on tapes are written in contiguous blocks. This is also
termed a physical record on a tape. These records are separated by gaps
known as inter-record gaps.

Characteristics

The tape is called a sequential access device, that is, to read a record N,
if tape is presently at record 1 then it has to pass through all the records
till N-1 sequentially. In case the tape head is positioned beyond Nth
record then the tape needs to be re-wound to a particular distance and
then forward reading is done to read Nth record. A tape moves only if a
read or write operation is requested.

The tape is one of the earliest storage devices. Tapes are low cost, low
speed, portable and are still widely used because of their low cost.

116

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Figure 46: Logical format of a magnetic tape

34.3 Charge-Coupled Devices (CCDs)

CCDs are used for storing information. They have arrays of cells that
can hold charge packets of electron. A word is represented by a set of
charge packets; the presence of each charge packet represents the bit-
value 1. The charge packets do not remain stationary and the cells pass
the charge to the neighbouring cells with the next clock pulse.
Therefore, cells are organised in tracks, with a circuitry for writing the
data at the beginning and a circuitry for reading the data at the end.
Logically the tracks (one for each bit position) may be conceived as
loops since the read circuitry, pass the information back to the write
circuit, which then re-creates the bit values in the tracks unless new data
is written to the circuit.

These devices come under the category of semi-random operation since
the devices must wait till the data has reached the circuit for detecting of
change packets. The access time to these devices is not very high. At
present this technology is used only in specific application and
commercial products are not available.

3.4.4 Magnetic Bubble Memories

On applying the magnetic field in certain material such as garnets,
certain cylindrical areas whose direction of magnetisation is opposite to
that of the magnetic field are created. These are called magnetic bubbles.
The diameter of these bubbles is found to be in the range of 1
micrometer. These bubbles can be moved at high speed by applying
parallel magnetic field to the plate surface. Thus, the rotating field can
be generated by an electromagnetic field and no mechanical motion is
required.
In these devices deposition of a soft magnetic material called permalloy
is made as a predetermined path, thus, it makes a track. Bubbles are

117

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

forced to move continuously in a fixed direction on these tracks. In these
memories the presence of a bubble represents a 1 while its absence
represents a 0 state. For writing data into a cell, a bubble generator (to
introduce a bubble) and an annihilator (to remove a bubble) are required.
A bubble detector performs the read operation. Magnetic bubble
memories having capacity of 1M or more bits per chip have been
manufactured. The cost and performance of these memories fall between
semi-conductor RAMs and magnetic disks.

These memories are non-volatile in contrast to semi-conductor RAMs.
In addition, since there are no moving parts, they are more reliable than
the magnetic disk; but, these memories are difficult to manufacture and
difficult to interface with conventional processors. These memories at
present are used in specialised applications, e.g. as secondary memory
of air or space borne computers, where extremely high reliability is
required.

3.4.5 Optical Memories

Optical memories are alternate mass storage devices with huge capacity.
The advent of the compact disk digital audio system, a non-erasable
optical disk, paved the way for the development of a new low cost
storage technology. In optical storage devices the information is written
using later beam. These memories can store large amounts of data. We
will discuss some of the optical memory devices that are now becoming
increasingly popular in various computer applications.

The CD-ROM

The CD-ROM (compact disk read-only memory) is a direct extension of
audio CD. CD-ROM players are more rugged and have error-correction
facility. This ensures proper data transfer form CD-ROM to the main
memory of the computer. The CD-ROM disk is normally formed from a
resin named polycarbonate that is coated with aluminium to form a
highly reflective surface. The information on the CD-ROM is stored as a
series of microscopic pits on this reflective surface. A high-intensity
laser beam is focused to create pits on the master disk. This master disk
is then used to make a disk that is used to make copies. A topcoat of
clear lacquer is applied on the CD-ROM’s surface to protect it from dust
and scratches.

For information retrieval from a CD-ROM, a low-powered laser, which
is generated in an optical disk drive unit, is used. The disk is rotated and
the laser beam is aimed at the disk on a particular mark. The intensity of
the reflected laser beam changes as it encounters a pit. A photosensor

118

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

detects the charge in intensity, thus, recognising the digital signals
recorded on the CD-ROM surface.

Figure 47: Layout of a CAV disk

Now, let us consider the rotation of a disk. A point that is closer to the
circle rotates at a slower rate in comparison to a point that is near to the
periphery of the disk. Therefore, a pit, which is closer to the center of a
rotating disk passes the laser beam slower than that of a pit that is on the
outside. How can this variation of speed be compensated for? One of the
solutions is by increasing the spacing between bits of information stored
(same as in magnetic disks) as we move towards the outside of the disk.
This information should be scanned at the same rate irrespective of
distance from the centre, on rotating the disk at a constant speed. This
mechanism is known as the constant angular velocity (CAV). Figure 47
shows the sectors of a disk using CAV. Please note that the density of
information will decrease as we move towards outside of the disk. The
main advantage of having CAV is that individual blocks of data can be
accessed at semi-random mode. Thus, the head can be moved from its
current location to a desired track and wait for specific sector to spin
under it. The basic disadvantage of the CAV disk is that a lot of storage
space is wasted, since the longer outer tracks are storing the data only
equal to that of shorter innermost track.

Because of this disadvantage, the CAV method is not recommended for
use on CD-ROMs. In CD-ROMs the information is stored evenly across
the disk in segments of the same size. But here the pits need to be read
by the laser beam at the same rate. This is achieved by rotating the disk
at variable speed. This is referred to as constant linear velocity (CLV).
In CD-ROMs data stored on a track increases as we go towards outer
surface of the disk. The addresses in CLV disks are represented by units
of minutes (0 to 59), seconds (0to 59) and blocks (0 to 74). This address
information is carried at the beginning of each block. A 60 minutes CD-

119

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

ROM can hold 60 x 60 x 75 = 270,000 blocks. Each of these blocks can
store 2048 bytes or 2K of data. Thus, a usual CD-ROM can store 553
MB of data. The block format of a CD-ROM is shown in Figure 48.

Figure 48: Block format for CD-ROM

The beginning of a block is marked by one byte of all 0s, followed by
ten bytes of all 1s, followed by one byte of all 0s.

The block address is indicated by 4 bytes, one each for recording
minute, second and sector and the fourth byte specifies a mode of data
storage. For example, mode 0 indicates a blank data field, while mode 1
indicates that the last 288 bytes are used as error-detecting codes. Mode
2 indicates that the last field is used as an additional data field.
Therefore, in mode 2, the block of CD-Rom stores 2048 +288 = 2336
bytes of data.

The identification field is followed by 2KB of user data, followed by
288 bytes of additional data that may be used as an error-correcting code
or as an additional data field, depending on the mode.

Figure 49: CLV CD-ROM’s disk layout

120

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Figure 49 indicates the layout used for CD-ROMS. As discussed earlier,
the data is stored sequentially along a spiral track. In this disk random
access becomes more difficult because locating a desired address
involves first moving the head to the specific area then adjusting the
rotation speed and then reading the address, and then finding and
accessing the specific sector.

CD-ROMs are very good for distributing large amounts of information
or data to large numbers of users. The three main advantages of CD-
ROMs are:

• Large data/information storage capacity
• Mass replication is inexpensive and fast
• These are removable disks, thus, are suitable for archival storage.

The disadvantages of the CD-ROM are:

• It is read-only therefore, cannot be updated.
• Access time is longer than that of a magnetic disk.

WORM

In certain applications only a few copies of compact disks are to be
made which makes the CD-ROMs production economically unviable.
For such cases the write-once read-many CD has been developed.
WORM disks are prepared in such a way that they can be written only
once by a laser beam of modest intensity. The disk controller of WORM
is more expensive than that of the CD-ROM. WORM uses CAV
mechanism to provide rapid access on account of some capacity. The
WORM disk is first prepared by high-power laser. For example, a
typical technique for preparing the disk is to produce a series of blisters
in the disk using high-power laser. A low-powered laser then can be
used to generate just enough heat to burst these blisters, wherever
desired, in a WORM drive. The read operation is carried out by a laser
in the WORM drive that illuminates the disk’s surface. These burst
blisters provide higher contrast to that of the surrounding area, thus, are
recognised easily.

The Erasable Optical Disk

The data in these disks can be changed repeatedly as the case with any
magnetic disk. A feasible technology that has proved commercially
feasible for the erasable optical disk is the magnetic-optical system. In
such systems, a laser beam is used along with a magnetic field to read or
write the information on a disk that is coated with a magnetic material.
The laser beam is used to beat a specific spot on the magnetic coated

121

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

medium. At the elevated temperature, the magnetic field is then applied;
thus, the polarisation of that spot can be changed in turn recording the
desired data. This process does not cause any physical change in the
disk, therefore it can be repeated many times. The read operation is
performed by detecting the degree of rotation of the polarised laser beam
reflected from the surface.

The erasable optical disk is a true secondary storage device (unlike CD-
ROMs and WORM). The main advantages of the erasable optical disk
over the magnetic disk are:

1. The erasable optical disks are portable while a Winchester disk is
not.

2. The erasable optical disks are highly reliable and have a longer
life.

3. The erasable optical disk also uses constant angular velocity,
thus, making semi-random access feasible.

The only disadvantage of this disk is the high cost. This disadvantage
will disappear in the near future.

Archival/back-up Storage Technologies

Many such proprietary/commercial technologies such as ZIP drives,
cartridge tape drives, read-write CDs are available presently in the
market. You can find more information on them from the further
readings or the World Wide Web.

3.5 High Speed Memories

The Need: Why the high speed memories? Is the main memory not a
high-speed memory? The answer to the second question is definitely
“No”. But why so? Well for this we have to go to the fundamentals of
semiconductor technology, which is beyond the scope of the unit. Then,
if the memories are slower then how slow are they? On the average it
has been found that the operating speed of main memories lack by a
factor of 5 than that of the speed of processors (such as the CPU or input
output processors).

In addition each instruction requires several memory accesses (It may
range from 2 to 7 or even more sometimes). If an instruction requires
even 2 memory accesses even then almost 80% time of executing an
instruction, processor waits for memory access.

122

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

What can be done to increase this processor-memory interface
bandwidth?

There are four possible answers to the questions. These are:

1. Decrease the memory access time, use a faster but expensive
technology for the main memory, probably it will be feasible
after few years.

2. Access more words in a single memory access cycle. That is
instead of accessing one word from the memory in a memory
access cycle, access more words.

3. Insert a high-speed memory known as Cache between the main
memory and the processor.

4. Use associative addressing in place of random access.

Hardware researchers are taking care of the first point. Let us discuss the
schemes for the remaining three points.

3.5.1 Interleaved Memories

The interleaved memories are the implementation of the concept of
“accessing more words in a single memory access cycle”. But the
question is how can it be achieved? By partitioning the memory into
say, N separate memory modules. Thus N accesses can be carried out to
the memory simultaneously. Figure 50 gives a block diagram for the
interleaved memory system. But what are the requirements for such a
system? For such a system we will be requiring:

• An independent addressing circuitry for each of the N modules.
• An appropriate bus controls mechanism, in case the physical buses

between the process and memory are shared by the modules.
• Sufficient buffer storage in the “processor” to control the increased

flow of information.

Where can this memory be useful? Well, this kind of interleaved
memory has found application in multi-processor systems where many
processors require access to common memory simultaneously. But
different processors can access the memory simultaneously only if they
desire access to different modules of the memory. For utilising such a
system effectively, the memory references generated by referencing
processors should be distributed evenly among the N module. In an ideal
case for a set of N consecutive references to the memory every reference
should be to a separate module. In such a case simultaneously memory

123

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

access can be carried out. In case two or more than two references are to
the same module then these memory accesses cannot be carried out
simultaneously. The maximum processor memory bandwidth in
interleaved memory can be equal to the number of modules i.e., N
words per memory cycle.

To achieve the address, interleaving consecutive addresses are
distributed among the N interleaved modules. For example, if we have
consecutive addresses and 4 interleaved memory modules then the 1st,
5th, 13th… address will be assigned to the first memory module and so
on.

1, 5, 9, 13, 17 Addresses to Memory Module 1

2, 6, 10, 14, 18 Addresses to Memory Module 2

3, 7, 11, 15, 19 Addresses to Memory Module 3

4, 8, 12, 16, 20 Addresses to Memory Module 4

For example, CRAY 1 supercomputers have a CPU cycle time (which is
defined as the shortest time in executing a micro-operation by the CPU)
of 12.5 ns and main memory of cycle time 50 ns and word size of 64
bits. Since one instruction in CRAY normally reads one instruction
word, two operand words and one result word i.e. 4 words, therefore, 4
memory cycles are required for a CPU cycle. Since 1 memory cycle = 4
CPU cycle time, therefore, at least 4x4 = 16 memory modules are used
to make it 16 module interleaving for executing the instruction. This
way CPU wait time is minimised.

Figure 50: Interleaved memories

3.6.2 Cache Memories

CPU

Processor

Memory
Switching
Module

 0

 1

 2

 N

.

.

124

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

These are small fast memories placed between the processor and the
main memory (see Figure 51). Caches are faster than the main memory.
Then why do we need the main memory at all? Well once again it is the
cost which determines this. The caches although are fast yet are very
expensive memories and are used in only small sizes. For example,
caches of sizes 128K, 256K etc. are normally used in typical Pentium
based systems, whereas they can have 4 to 128 MB RAMs or even
more. Thus, small cache memories are intended to provide fast speed of
memory retrieval without sacrificing the size of memory (because of
main memory size). If we have such a small size of fast memory how
can it be advantageous in increasing the overall speed of memory
references? The answer lies in the “principle of locality”, which says
that if a particular memory location is accessed at a time then it is highly
likely that its nearby locations will be accessed in the near future.

 Cache contains a copy of certain portions of main memory. The
memory read or writes operation is first checked with the cache and if
the desired location data is available in cache then it is used by the CPU
directly. Otherwise, a block of words is read from the main memory to
cache and the word is used by the CPU from cache. Since cache has
limited space, for this incoming block a portion called a slot needs to be
vacated in cache. The contents of this vacating block are written back to
the main memory at the position it belongs to. The reason for bringing a
block of words to cache is once again locality of reference. We expect
that the next few addresses will be close to this address and therefore,
the block of words is transferred from the main memory to cache. Thus,
for the word, which is not in cache, access time is slightly more than the
access time for main memory without cache. But because of locality of
references, the next few words may be in the cache, thus, enhancing the
overall speed of memory references. For example, if memory read cycle
takes 100 ns and a cache read cycle takes 20 ns, then for four continuous
references (first one brings the main memory contents to cache and next
three from cache).

The time taken with cache = (100+20) + 20 x 3
for the first for last three
read operation read operation

 = 120+60 = 180
Time taken without cache = 100x4 = 400 ns

Thus, the closer the reference interval, the better the performance of
cache and that is why a structured code is considered a good
programming practice, since it provides maximum possible locality.

125

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

The performance of cache is closely related to the nature of the
programs being executed; therefore, it is very difficult to say what
should be the optimum size of cache, but in general a cache size
between 128k to 256k is considered to be optimum for most of the
cases. Another important aspect in cache is the size of the block (refer
Figure 51) that is normally equivalent to 4 to 8 addressable units (which
may be words, bytes etc). Figure 51 gives the cache memory
organisation.

Figure 51: Cache memory organisation

A cache consists of a number of slots. As mentioned earlier, the cache
size is smaller than that of the main memory; therefore, there is no
possibility of one mapping of the contents of the main memory to cache.
So how will the computer identify which block is residing in cache?
This is achieved by storing the block address to the tag number. In the
above figure four consecutive words are put in a single block. Thus if
we have 2n words in the main memory then the total number of blocks
which exist in the main memory are =2n/4 = 2n-2 (size of one block is 4
byte). Therefore, we need at least (n-2) bits as the size of the tag field.
The important feature in cache memory is how the main memory block
can be mapped in cache. There are three ways of doing so: direct,
associative and set associative.

Direct Mapping: In this mapping each block of memory is mapped in a
fixed slot of cache only. For example, if a cache has four slots then the
main memory blocks 0 or 4 or 8 or 12 or 16…can be found in slot 0,
while 1 or 5 or 9 or 13 or 17…can be found in slot 1; 2 or 6 or 10 or 14
or 18…in slot 2: and 3 or 7 or 11 15 or 19…in slot 3. This can be
mathematically defined as:

Cache slot number = Block number Modulo Total number of slots
 of main memory Operator in cache

126

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

In this technique, it can be easily determined whether a block is in cache
or not. (How?)
This technique is simple, but there is a disadvantage of this scheme.
Suppose two words which are referenced alternately repeatedly are
falling in the same slot then the swapping of these two blocks will take
place in the cache, thus, resulting in reduced efficiency of the cache. A
direct mapping example is shown in Figure 52(a). Please note the
mapping of main memory address to cache tag and slot. All addresses
are in hexadecimal notation.

Associative Mapping: In associative mapping any block of the memory
can be mapped on to any location of the cache. But here the main
difficulty is to determine “Whether a block is in cache or not.” This
process of determination is normally carried out simultaneously. The
main disadvantage of this mapping is the complex circuitry required to
examine all the cache slots in parallel to determine the presence or
absence of a block in cache. An associative mapping example is shown
in figure 52(b).

Set Associative Mapping: This is a compromise between the above
mentioned two types of mapping. Here the advantages of both direct and
associative cache can be obtained. The cache is divided in some sets,
let’s say t. the scheme is that a direct mapping is used to map the main
memory blocks in one of the “t” sets and within this set any slot can be
assigned to this block. Thus, we have associative mapping inside each
set of the sets. Please refer to Figure 52(c) for an example.

Another important feature for cache is the replacement algorithm. For
direct mapping no algorithm is needed since only one slot can be
occupied by a block in cache but in associative and set associative
mapping many slots may be used by a block. So which slot should be
vacated for this new block? One of the common strategies used is to
vacate the least recently used slot for this new block. The reason is just
the probability of accessing a block, which was used quite long ago, is
less in comparison to those of blocks which are used afterwards (or
recently). This scheme is also derived from the principle of locality.

Other schemes, which may not be as effective as the least frequently
used, can be:

First in First Out : Replace the block, which has entered first in
cache, and free its slot for the incoming block

Random : Replace any block at random

Least Frequently : Replace block, which is referenced the least
used number of times

127

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Figure 52(b): An example of associative mapping

128

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Figure 52(c): A two way set associative mapping

Write Policy: The data in the cache and the main memory can be
written by processors or input/output devices. The main problems faced
in writing with cache memories are:

1. The content of a cache and the main memory can be altered by
more than one devices e.g., the CPU can write to caches and the
input/output module can directly write memory. This can result in
inconsistencies in the values of cache and main memory.

2. In the case of multiple CPUs with different caches a word altered
in one cache automatically invalidates the word in other cache.

The suggested techniques for writing in systems with caches are:

a) Write through: Write the data in cache as well as main memory.
The other CPUs – cache combination (in multiprocessor system)
have to watch the traffic to the main memory and make suitable

129

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

amendment in the contents of cache. The disadvantage of this
technique is that a bottleneck is created due to large numbers of
accesses to the main memory by various CPUs.

b) Write block: In this method updates are made only in the cache,
setting a bit-called update bit. Only those blocks whose update bit
is set is replaced in the main memory. But here all the accesses to
the main memory whether from the CPUs or input/output
modules need to be from the cache resulting in complex circuitry.

Research shows that only 15% of memory references are write
references and, therefore, write through policies being simple can be
utilised.

c) Instruction Cache: An instruction cache is the one which is
employed for accessing only the instructions and nothing else.
The advantage of such a cache is dart; as the instructions do not
change we need not write the instruction cache back to memory.
This is unlike data storage cache.

3.5.3 Associative Memories

In associative memories any stored items can be accessed directly by
assigning the contents of the item in question, such as name of a person,
account number, number etc., as an address. Associative memories are
also known as content addressable memories (CAMs). The entity chosen
to address the memory is known as the key.

Figure 53: Strcuture of a simple word-organised associative memory

130

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Figure 53 shows the structure of a simple associative memory. The
information is stored in CAMs as fixed-length words. Any entity of the
word may be chosen by the key field. The desired key is indicated by
the mask register. Then, the key is compared simultaneously with all
stored words. The words that match the key issue a match signal. This
match signal then enters a select circuit. The select circuit in turn helps
for the access of the required data field. In case more than one entry
have the same by then it is the responsibility of the select circuit to
determine the data field to be read.

 For example, the select circuit read out all the matching entries in a pre-
determined order. Each word is provided with its own match circuit, as
all the words in the memory need to compare their keys with the desired
key simultaneously. The match and select circuits thus, make these
associative memories very complex and more expensive than any
conventional memory. The VLSI technology has made these associative
memories economically feasible. Even now the cost considerations limit
the applications of associative memories to relatively small amounts of
information, which need to be accessed very rapidly. An example of
CAM use is in memory address mapping.

You can refer to further readings for more details in CAMs

4.0 CONCLUSION

This unit has dealt with the key characteristics of the computer memory
system: the various types of random access memories, external/anxillary
memories, high speed memories and their importance, the hierarchy of
computer memory and the characteristics of memory technologies.

5.0 SUMMARY

Thus far, we have taken a complete view of the memory system of the
computer system along with the various technologies. The unit has
outlined the importance of the memory system, the memory hierarchy,
the main memory and its technologies, the secondary memories and
their technologies and the high-speed memories.

We have also discussed the key characteristics of these memories and
the technologies which are used for constructing these memories. One of
the key concepts given in this unit is the data storage format of various
secondary storage devices. There are several other concepts such as
virtual memory; these have been taken up in the course on the system
software. For more details on the memory system, you can go through
the further readings.

131

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

6.0 TUTOR -MARKED ASSIGNMENT

1. What is the head of a disk? List the various head mechanisms.
2. Find out the average access time for a fixed head head disk

rotating at 3000 rpm and contains 10 sectors in a track.
3. Match the following pairs:

CAV Magnetic bubble memories
CLV Magnetic tape
Low cost low speed devices Magnetic disk
Space-borne applications CD-ROM

4. High-speed memories are needed to bridge the gap of speed
between I/O device memory True False

5. Interleaved memory will not contribute in increasing the
memory-processor bandwidth if all the accesses are aimed at the
same memory module. True False

6. Cray 1 supercomputer uses 16-way memory interleaving as it
requires 16-memory access in all the instructions.
 True False

7. The direct mapping of the main memory to cache is achieved by
mapping a block of the main memory to any slot of cache.

 True False
8. A replacement algorithm is needed only for associative and set

associative mapping of cache. True False
9. Write policy is not needed for instruction cache True False
10. CAMs are addressed by their contents. True False

7.0 REFERENCES/FURTHER READINGS

Mano, M. Morris (1993).Computer System Architecture (4th ed).
Prentice Hall of India.

Hayes, John, P. (1988). Computer Architecture and Organisation (2nd

ed). McGraw-Hill International.

Stallings William. Computer Organisation and Architecture (3rd ed).
Maxwell Macmillan International Editions.

Baron, Robert J. and Higbie Lee. Computer Architecture. Addison-
Wesley Publishing Company.

Tanenbaum, Andrew, S (1993). Structural Computer Organisation (3rd

ed). Prentice Hall of India.

132

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

UNIT 4 INPUT/OUTPUT ORGANISATION

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Input/Output Module
3.1.1 Functions of I/O Module
3.1.2 Structure of I/O Module

3.2 Input/out Techniques
3.2.1 Programmed Input/output
3.2.2 Interrupt-Driven Input/output

3.3 Direct Memory Access
3.4 Input/output processors
3.5 External Interface

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

Till now we have discussed the various components and the memory
system of a computer. We have also discussed one interconnecting
structure called the Bus. In this unit we will briefy discuss input/output
devices, then move on to the function and structure of an input/output
module, then we will discuss input/output techniques and at the end we
will discuss the input/output processors which were quite common in
mainframe computers. Finally, we will examine two popular device
interfaces. This unit is the last unit of the module and further discussion
on the Central Processing Unit will be taken up in the next module i.e.,
Module-2 of the course.

2.0 OBJECTIVES

At the end of this unit you should be able to:

• identify the structure of the input/output module;
• describe the three types of input/output techniques, viz., programmed

input/output interrupt-driven input/output and direct memory
access;

• define an input-output processor; and
• identify the serial and parallel interfaces.

133

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

3.0 MAIN CONTENT

3.1 Input/Output Module

The input/output module (I/O module) is normally connected to the
system bus of the system on one end and one or more input/output
devices on the other. Normally an I/O module can control one or more
peripheral devices.

Is the I/O module merely a connector of input/output (I/O) devices to the
system bus?

No, it performs additional functions such as communicating with the
CPU as well as with the peripherals. But why use the I/O module at all;
why not connect peripheral devices directly to the system bus? There are
three main reasons for this:

1. Diversity and variety of I/O devices makes it difficult to
incorporate all the peripheral devices logic (i.e. its control
commands, data format etc.) into the CPU. This in turn will also
reduce the flexibility of using any new development.

2. The I/O devices are normally slower than that of the memory and
the CPU, therefore, do not use them on high-speed bus directly
for communication purposes.

3. The data format and word length used by the peripheral may be
quite different than that of the CPU.

3.1.1 Functions of the I/O Module

An I/O module is a mediator between the processor and the I/O devices.
It controls the data exchange between the external devices and the main
memory; or external devices and CPU registers. Therefore, an I/O
module provides an interface internal to the computer which connects it
to the CPU and the main memory and an interface external to the
computer, connecting it to an external device or peripheral. The I/O
module should not only communicate the information from the CPU to
the I/O device, but it should also coordinate these two. In addition, since
there are speed differences between the CPU and I/O devices, the I/O
module should have facilities like buffer (storage area) and error
detection mechanisms. Therefore, the functional requirements of an I/O
module are:

134

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

1. It should be able to provide control and timing signals

The need of I/O from various I/O devices by the CPU is quite
unpredictable. In fact it depends on I/O needs of particular programs and
normally does not follow any pattern, since the I/O module also shares
system bus and memory for data input/output. Therefore, control and
timing are needed to coordinate the flow of data from/to external devices
to/from CPU or memory. A typical control cycle for transfer of data
from I/O device to CPU is this:

• Enquire the status of an attached device from I/O module. The status
can be busy, ready or out of order.

• I/O module responds with the status of the device.
• If the device is ready, CPU commands I/O module to transfer data

from the I/O device.
• I/O module accepts data from the I/O device.
• The data is then transferred from I/O module to the CPU.

2. It should communicate with the CPU

The example given above clearly specifies the need of communication
between the CPU and I/O module. This communication can be:
commands such as READ SECTOR, WRITE SECTOR, SEEK track
number (which are issued by the CPU to the I/O module); or data
(which may be required by the CPU or transferred out); or status
information such as BUSY or READY or any error condition from I/O
modules. The status recognition is necessary because of the speed gap
between the CPU and I/O device. An I/O device might be busy in doing
the I/O of previous instructions when it is needed again.

Another important communication from the CPU is the unique address
of the peripheral from which I/O is expected or is to be controlled.

3. It should communicate with the I/O device

Communication between the I/O module and the I/O device is needed to
complete the I/O operation. This communication involves commands,
status or data.

4. It should have a provision for data buffering

Data buffering is quite useful for the purpose of smoothing out the gaps
in speed of CPU and I/O devices. The data buffers are registers, which
hold the I/O information temporarily. The I/O is performed in short
bursts in which data is stored in buffer a area while the device can take
its own time to accept it. In I/O device to CPU transfer, data is first

135

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

transferred to the buffer and then passed on to the CPU from these
buffer registers. Thus, the I/O operation does not tie up the bus for the
slower I/O devices.

5. Error detection mechanisms should be in-built

The error detection mechanisms may involve checking the mechanical
as well as data communication errors. These errors should be reported to
the CPU. Examples of the kind of mechanical errors that can occur in
devices are paper jam in printer, mechanical failure, electrical failure,
etc. data communication errors may be checked by using parity bit.

3.1.2 Structure of I/O Module

Let us now focus our attention on the question. What should be the
structure of an I/O module? Although, there is no standard structure of
the I/O module, let us try to visualise certain general characteristics of
the structure.

• There is a need for I/O logic, which should interpret and execute the
dialogue between the CPU and I/O module. Therefore, there need to
be control lines between the CPU and this I/O module. In addition,
the address lines are needed to recognise the address of the I/O
module and its specific device.

• The data lines connecting the I/O module to the system bus must
exist. These lines serve the purpose of data transfer.

• Data registers may act as buffer between the CPU and the I/O
module.

• The interface of the I/O module with the device should have
interface logic to control the device, to get the status information and
transfer of data.

Figure 54 shows the diagram of a typical I/O module which in addition
to all the above have status/control registers which might be used to pass
on the status information or can store control information.

136

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Figure 54: The general structure of the I/O Module

The data is stored or buffered in data registers. The status registers are
used to indicate the current state of a device, e.g., the device is busy, the
system BUS is busy, the device is out of order etc. If an I/O module
takes more processing burden then it is called an I/O channel or a
processor. The primitive I/O module which requires detailed control by
the processor is called the I/O controller or device controller. Theses I/O
controllers are normally used in micro-computers while I/O processors
are mainly used for mainframes because the I/O work for the micro-
computer is normally limited to single user’s job, therefore, we do not
expect a very huge amount of I/O to justify the investment in I/O
processors, which are expensive. Once we have defined a general
structure for an I/O module, the next question is how actually are the I/O
operations performed? The next section tries to answer this basic query
in a general way.

SELF-ASSESSMENT EXERCISE 1

State whether True or False

1. The devices are normally connected directly to system bus.
 True False

2. The input/output module is needed for slower I/O devices
True False

3. Data buffering is helpful for smoothing out the speed differences
between CPU and input/output devices. True False

4. What is a device controller?

3.2 Input/Output Techniques

The input/output operations can be performed by three basic techniques.
These are:

• Programmed input/output
• Interrupt-driven input/output

137

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

• Direct memory access

Figure 55 gives an overview of these three techniques.

Interrupt Required I/O Module to/from
Memory Transfer

Programmed I/O No Through CPU
 interrupt-driven I/O Yes Through CPU
DMA Yes Direct to memory

Figure 55: An overview of the three input/out techniques

In programmed I/O, the I/O operations are completely controlled by the
CPU. The CPU executes programs that initiate, direct and terminate an
I/O operation. It requires a little special I/O hardware, but is quite time
consuming for the CPU, since the CPU has to wait for slower I/O
operations.

Another technique suggested to reduce the waiting by the CPU is
interrupt-driven I/O. The CPU issues the I/O command to I/O module
and starts doing other work, which may be the execution of a separate
program. When the I/O operation is complete, the I/O module interrupts
the CPU by informing it that I/O has finished. The CPU then, may
proceed with execution of this program.

In both programmed I/O and interrupt-driven I/O, the CPU is
responsible for extracting data from the memory for output and storing
data in the memory for input. Such a requirement does not exist in DMA
where the memory can be accessed directly by the I/O module. Thus, the
I/O module can store or extract data in/from the memory. We will
discuss programmed I/O and interrupt-driven I/O in this section and
DMA in the next section.

A situation in which the I/O is solely looked after by a separate
dedicated processor is referred to as I/O channel or I/O processor. The
basic advantage of these devices is that they free the CPU of the burden
of input/output. Thus, during this time, the CPU can do other work,
therefore, effectively increasing the CPU utilisation. We will discuss I/O
channels and I/O processors in the next section.

3.2.1 Programmed Input/Output

Programmed input/output is a useful I/O method for computers where
hardware costs need to be minimised. The input or output in such cases
may involve:

138

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

• Transfer of data from I/O device to the CPU registers.
• Transfer of data from CPU registers to memory.

In addition, in a programmed I/O method the responsibility of the CPU
is to constantly check the status of the I/O device to check whether it has
become free (in case output is desired) or it has finished inputting the
current series of data (in case input is going on). Thus, programmed I/O
is a very time consuming method where the CPU wastes lot of time for
checking and verifying the status of an I/O device. Let us now try to
focus how this input-output is performed. Figure 56(a) gives the block
diagram of transferring a block of data word by word using programmed
I/O technique.

(a) program I/O

Execute next
instruction

CPU issues a read or write
command to I/O module

I/O module information
about its status to CPU

Status
?

CPU reads word from I/O module
and writes it to memory or CPU reads
word from memory and writes it to I/
O module (for write operation)

Is block
transfer
complete?

Yes

No

Busy

Ready

Error

139

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

(b) interrupt-driven I/O

 (c) DMA
Figure 56: Three techniques of input/output

CPU issues a read or write
command to I/O module

I/O module information
about its status to CPU

Status
?

CPU reads word from I/O module
and writes it to memory or CPU reads
word from memory and writes it to I/
O module (for write operation)

Is block
transfer
complete?

Yes

No

Ready

Error

Interrupt

Execute next
Instruction

CPU issues a command to
DMA for reading block

CPU keeps on
doing other work

CPU reads the status of
DMA module Interrupt

CPU performs the
next instruction

140

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

I/O Instructions: To carry out input/output CPU issues I/O related
instructions. These instructions consist of two components:

• The address of the input/output device specifying the I/O device and
I/O module; and

• An input/output command.

There are four types of I/O Commands, which can be classified as:

CONTROL, TEST, READ and WRITE.

CONTROL commands are specific devices and are used to control the
specific instructions to the device; e.g., a magnetic tape requires
rewinding or moving forward by a block. TEST command checks the
status such as, if a device is ready or not or is in error condition. The
READ command is used for input of data from input device and the
WRITE command is used for output of data to input device.

The other part of I/O instruction is the address of the I/O device. In
systems with programmed I/O the I/O module, the main memory and the
CPU normally share the system bus. Thus, each I/O module should
interpret the address lines to determine if the command is for itself. Or
in other words: How does CPU specify which device to access? There
are two methods of doing so. These are called memory mapped I/O and
I/O-mapped I/O.

If we use the single address space for memory locations and I/O devices,
i.e., the CPU treats the status and data registers of the I/O module as
memory locations, and then memory and I/O devices can be accessed
using the same instructions. This is referred to as memory mapped I/O.
For a memory mapped I/O, only a single READ and a single WRITE
line are needed for memory or I/O module read or write operations.
These lines are activated by the CPU for either memory access or I/O
device access. Figure 57 shows the memory mapped I/O system
structure. This scheme is used in Motorola 68000.

141

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Figure 57: Structure of a memory- mapped I/O

In I/O-mapped I/O, the I/O devices and memory are addressed
separately (Refer Figure 58). There are separate control lines for
memory and I/O device read or write operations, thus, a memory
reference instruction does not affect an I/O device. Here separate
input/output instructions are needed which cause data transfer between
addressed I/O module and the CPU. This structure is used in Intel 8085
& 8086 series.

Figure 58: Structure of an I/O-mapped I/O

Please note the difference of requirements: in the case of memory-
mapped I/O the READ instruction may bring data to or from memory or
I/O module, while in I/O-mapped I/O we need to have separate
instructions for input/output.

Data bus
Address
bus

READ line

WRIE line

Main
Memory

CPU I/O
Module 1

I/O
Module 2

I/O Devices
I/O Device

●●●

I/O Device

Main
Memory

CPU

Memory
Read Line

Memory
Write
 Line

Data bus

Address bus

I/O
Module 1

I/O
Module 2

I/O
Read

I/O
Write

I/O Devices

●●●

142

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

3.2.2 Interrupt-driven Input/Output

What is the basic drawback of the programmed I/O? The speed of I/O
devices is much slower in comparison to that of the CPU and because
the CPU has to repeatedly check whether a device is free; or wait till the
completion of I/O, the performance of CPU in programmed I/O goes
down tremendously. What is the solution? What about the CPU going
back to do other useful work without waiting for the I/O device to
complete (what it is currently doing) or get freed up? But how will the
CPU be intimated about the completion of I/O or that a device is ready
for I/O? A well-designed mechanism was conceived for this, which is
referred to as interrupt-driven I/O. In this mechanism, provision of
interruption of CPU work, once I/O device has finished the I/O or when
it is ready for the I/O, has been provided.

The interrupt-driven I/O mechanism for transferring a block of data is
shown in Figure 56(b). Please note that after issuing a READ command
(for input) the CPU goes off to do other useful work (it may be the
execution of a difference program) while I/O module proceeds for
reading of data from the associated device. At the completion of an
instruction cycle (already discussed in Unit 1 of this module) the CPU
checks for interrupts (which will occur when data is in data register of I/
O module and it now needs the CPU’s attention).

Now the CPU saves the important register and processor status of the
executing program in a stack and requests the I/O device to provide its
data, which is placed on the data bus by the I/O device. After taking the
required action with the data, the CPU can go back to the program it was
executing before the interrupt.

Interrupt: As discussed in Unit 1, the term interrupt is loosely used for
any exceptional event that causes a temporary transfer of control of the
CPU from one program to the other which is causing the interrupt.
Interrupts are primarily issued on:

• the initiation of an input/output operation
• the completion of an input/output operation
• the occurrence of hardware or software errors.

An interrupt can be generated by various sources, internal and external
to the CPU. An interrupt generated internally by the CPU is sometimes
termed “Traps”. The traps are normally results of programming errors
(such as division by zero) which occur during the execution of a
program.

143

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

The two key issues in interrupt-driven input/output are:

• to determine the device which has issued an interrupt
• in the case of the occurrence of multiple interrupts, which one to be

processed first.

There are several solutions to these problems. The simplest of them is to
provide multiple interrupt lines, which will result in the immediate
recognition of the interrupting device. The priorities can be assigned to
various interrupts and the interrupt with the highest priority should be
selected for service in case multiple interrupt occurs. But providing
multiple interrupt lines is an impractical approach because only a few
lines of the system bus can be devoted for the interrupt. Other methods
for this are software poll, daisy chaining, etc.

Software Poll: In this scheme, on the occurrence of an interrupt, the
CPU starts executing a software routine known as interrupt service
program or routine which polls to each I/O module to determine which
I/O module has caused the interrupt. This may be achieved by reading
the status register of the I/O modules. The priority here can be
implemented easily by defining the polling sequence, since the device
polled first will have higher priority. Please note that after identifying
the device, the next set of instructions to be executed will be the device
service routines of that device, resulting in the desired input or output.

As far as daisy chaining is concerned, we have one interrupt
acknowledge line, which is chained through various interrupt devices.
(The mechanism is similar, as we have discussed in Unit 2). There is
just one interrupt request line. On receiving an interrupt request, the
interrupt acknowledge line is activated which in turn passes this signal
device by device. The first device which has made the interrupt request
thus grasps the signal and responds by putting a word which is normally
an address of the interrupt servicing program or a unique identifier on
the data lines. This word is also referred to as interrupt vector. This
address or identifier in turn is used for selecting an appropriate interrupt-
servicing program. The daisy chaining has an in-built priority scheme,
which is determined by the sequence of devices on the interrupt
acknowledge line.

In bus arbitration technique, the I/O module first needs to control the
bus and only after that can it request for an interrupt. In this scheme,
since only one of the modules can control the bus, only one request can
be made at a time. The interrupt request is acknowledge by the CPU in
response to which the I/O module places the interrupt vector on the data
lines. An interrupt vector normally contains the address of the interrupt
servicing program.

144

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

You can refer to further readings for more details on some typical
interrupt structures of interrupt controllers.

3.3 Direct Memory Access (DMA)

When a large amount of data is to be transferred from the CPU, a DMA
module can be used. But why? In both interrupt-driven and programmed
I/O the CPU is tied up in executing input/output instructions while
DMA acts as if it has taken over control from the CPU. The DMA
operates in the following way:

When an I/O is requested, the CPU instructs the DMA module about the
operation by providing the information:

• Which operation to be performed (read or write).
• The address of the I/O device which is to be used.
• The starting location on the memory where the information will be

read or written to the number of words to be written or to be read.

The DMA module transfers the requested block byte by byte directly to
the memory without intervening the CPU.

On completion of the request the DMA module sends an interrupt signal
to the CPU.

Thus, in DMA the CPU involvement can be restricted at the beginning
and end of the transfer. But what does the CPU do while the DMA is
doing input/output? It may execute another program or it may be
another part of the same program. Figure 59 shows registers of a general
DMA module. Please note that it contains additional registers for
counting the data bytes and also note that address register and data count
registers are fed with the data lines.

Data Count Register

Data Register

Address Register

Control Logic

Data lines

Control
lines

145

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Figure 59: The registers on the DMA module

Let us now see how this DMA mechanism works. Since the DMA
module shares the system bus, it needs to have some way to take control
of the bus such that the data is transferred to/from memory from/to the
DMA module. A DMA module transfers an entire block of data or one
word at a time directly to/from memory. But when should the DMA take
control of the bus?

For this we will recall the phenomena of the execution of an instruction
by the CPU. Figure 60 shows the five cycles for an instruction
execution. The figure also shows the five points where a DMA request
can be responded to and a point where the interrupt request can be
responded to. Please note that an interrupt request is acknowledged
only at one point of an instruction cycle.

 DMA breakpoints Interrupt breakpoint

Figure 60: DMA and interrupt breakpoints

Address lines

Interrupt
Cycle

Store
results

Execute
the
instruction

Operand
fetch

Instruction
decoding

Instruction
fetch

146

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Let us now discuss the data transfer modes of DMA. The first mode is
the block transfer of data after taking control of the bus. The CPU may
not use the bus during this time. In such a mode a complete block of
data, for example a complete sector in a disk is transferred in a single
continuous burst. During this transfer, the DMA controller/module
remains master of the bus. Such a transfer is quite useful in cases where
we have fast secondary memory such as the magnetic disk where a delay
of one or two pulses may result in a delay by a rotation, thus, the burst
of data is preferred through the DMA. The drawback in such a scheme is
that the CPU has to wait for the bus for quite some time.

Alternatively, instead of transferring a complete block, a few words or a
single word is transferred through the system bus to the memory through
the DMA. In this mode the DMA forces the CPU to suspend its
operations temporarily. After this transfer the control is returned to the
CPU. This technique is called cycle stealing. In this scheme, although
the rate of I/O by the DMA goes down but on the other hand it reduces
the interference caused by the DMA to the CPU operation.

It is possible to minimise this interference of the CPU by the DMA
controller such that the cycles are stolen only when the CPU is not using
system bus. This is called a transparent DMA.

Finally, let us find out how the DMA can be configured., There are
many ways in which this can be done; we will discuss some of them.

The simplest possibility is to allow the DMA, I/O and all the modules to
share the system bus. This structure is shown in Figure 61(a). In this
kind of configuration the DMA may act as a supportive processor and
can use programmed I/O for exchanging data between the memory and
I/O module through DMA module. But once again this spoils the basic
advantage of the DMA in not using extra cycles for transferring
information from memory to/from the DMA and the DMA from/to the I/
O module.

The Figure 61(b) configuration suggests clear-cut advantages over the
one shown in Figure 61(a). In these systems a path is provided between
the I/O module and the DMA module, which does not include the
system bus. The DMA logic may become a part of an I/O module and
can control one or more I/O modules. In an extended concept an I/O bus
can be connected to this DMA module. Such a configuration (shown in
Figure 61(c) is quite flexible and can be extended very easily. In both
these configurations the added advantage is that the data between the I/
O module and the DMA module is transferred off the system bus. Thus,
eliminating the disadvantage we have witnessed in the first
configuration.

147

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

 (a) (b)

(c)

Figure 61: Some of the DMA configurations

3.4 Input/Output Processors

Before discussing I/O processors, let us briefly recapitulate the
development in the area of input/output functions. These can be
summarised as:

Step 1: Direct control of CPU on I/O device. Limited number of I/
O devices

Step 2: Introduction of I/O controller or I/O module. Use of
programmed I/O. CPU was separated from the details of
external I/O interfaces.

Step 3: Contained use of I/O controllers but with interrupts. CPU
need not wait for I/O operation to complete (increased
efficiency)

Step 4: Direct access of I/O module to the memory via DMA.
CPU involvement reduced at the beginning and at the end
of DMA operation.

CPU DMA
Module

I/O
Module

Main
Memory

CPU DMA Main
Memory

I/O
Module

I/O
Module

CPU DMA
Module

Main
Memory

I/O
Module 1

I/O
Module 2

I/O
Module 3

I/O Bus

148

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

The concept of an I/O processor is an extension of the concept of a
DMA. The I/O processor can execute the specialised I/O programs
residing in the memory without the intervention of the CPU. Thus, the
CPU only needs to specify a sequence of I/O activity to the I/O
processor. The I/O processor then executes the necessary I/O
instructions which are required for the task; and interrupt the CPU only
after the entire sequence of I/O activity as specified by CPU has been
completed. An advanced I/O processor can have its own memory,
enabling a large set of I/O devices to be controlled without much
involvement from the CPU. Thus, an I/O processor has the additional
ability to execute I/O instructions, which provide a complete control on
I/O operations. Thus, the I/O processor is much more powerful than the
DMA which provides only a limited control of I/O device. For example,
if an I/O device is busy then the DMA will only interrupt the CPU and
will inform the CPU again when the device is free while the I/O
processor’s responsibility will be to keep on checking the status of the I/
O device and once it has found it to be free go ahead with I/O and when
I/O finishes, communicate it to the CPU.

 The communication between I/O processor and CPU can be achieved
by writing a message in the memory area shared by the two processors.
The CPU instructs the I/O processor to execute an I/O program in the
memory. The program will then specify the device or devices and the
area of the memory where the I/O data is stored or to be stored. In
addition, this program also contains the actions that are to be taken in
case of errors, or what priority is to be given to various I/O devices.

In a computer system which has IOPs the CPU normally does not
execute the I/O data transfer instruction. I/O instructions are stored in
the memory and are executed by IOPs. The IOP can be provided with
the direct access to the memory and can control the system bus. An IOP
can execute a sequence of data transfer instructions involving different
memory regions and different devices without the intervention of the
CPU. The I/O processor is known as the channel in IBM machines.

Later on several other computers used the term “channel” also. The
earlier channels did not have any memory but the present channels may
have large cache memory, which may be used for data buffering. The
Control Data Corporation (CDC) computers and some other computers
use relatively sophisticated I/O systems. These are called peripheral
processing units (PPUs). These PPUs also perform the job of the I/O
processor. PPUs in themselves are complete, simple computers with
their own memory. In addition to I/O they are capable of performing
some additional data manipulations, which include data formatting,
character translation and buffering.

149

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Let us now discuss two common types of I/O channels. For high-speed
devices a selector channel is used. This channel can transfer data from
one high-speed device at a time. I/O modules can in turn handle each of
these high-speed devices. Thus, we effectively have an I/O processor
taking the place of CPU in controlling various I/O modules. Figure 62
(a) shows the selector channel.

Figure 62: Architecture for input/output channel

The second type of channel is a multiplexer channel, which can handle
input/output with a number of devices at the same time. If the devices
are slow then byte multiplexing is used. Let us explain this with an
example. If we have three slow devices which need to send individual
bytes as:

Address and data
to/from main
memory

Selector
Channel

Control Signal
from/to CPU I/O

Module/
Controller

I/O
Module/
Controller

High speed I/O Devices High speed Devices

(a) Selector Channel

Address and data to/from
main memory

Multiplexer
Channel

Control Signal
from/to CPU

I/O
Module/
Controller

I/O
Module/
Controller

(b) Multiple Channels

150

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

B1 B2 B3 B4 B5 …
Y1 Y2 Y3 Y4 Y5 …
T1 T2 T3 T4 T5 …

Then on a byte multiplexer channel they may send the bytes as B1 Y1 T1

B2 Y2 T2 B3 Y3 T3 ……for high-speed device blocks of data from
several devices is interleaved. These are called block multiplexer
channels.

We are not including the example of an input/output processor here but
you are advised to look into these examples after you have completed
first two modules, from the further readings.

3.5 External Interface

Our discussion on I/O system will not be complete if we do not discuss
external interfaces. The external interface is the interface between the I/
O module and the peripheral devices. This interface can be divided into
two main categories: parallel interface, and serial interface.

In parallel interface multiple bits can be transferred simultaneously. The
parallel interface is normally used for high-speed peripherals such as
tapes and disks. The dialogues that take place across the interface
include the exchange of control information and data. A common
parallel interface is centronics.

In serial interface only one line is used to transmit data, therefore, only
one bit is transferred at a time. Serial interface is used for serial printers
and terminals. The most common serial interface is RS-232C. A new
standard, which is becoming very popular and allows multiple devices
to be connected, is Universal Synchronous Bus (USB). It is an industrial
standard today.

Irrespective of the type of interface the I/O module has to communicate
with the peripheral in the following way for a read or write operation.

• A control signal is sent by the I/O module to the peripheral
requesting the permission to send (for write operation) or receive (for
read operation) data.

• The peripheral device acknowledges this request for data transfer.

• The data is transferred from the I/O module to peripheral (for write)
or from peripheral to I/O module (for read).

151

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

• The acknowledgement of receipt of data is issued by the receiver of
data.

Both serial and parallel transmission can be in two modes-- synchronous
and asynchronous. In the synchronous mode several characters are
transmitted in a single transmission while in asynchronous mode only
few bits are transmitted at a time.

4.0 CONCLUSION

Here, you have been introduced to the structure of input/output module
and the three types of input/output techniques, viz: programmed
input/output, interrupt-driven input/output and direct memory access.
You have also been introduced to the input/output processor and the
external (serial and parallel) interfaces and you should be able to
describe these.

5.0 SUMMARY

This unit is the last unit of this module. In this module we have covered
the three major points, which include I/O devices, memory and
interconnection structure. The last of the components i.e., the CPU will
be discussed in Module 2. This unit was devoted mainly towards I/O of
computer systems. We have discussed the I/O module, I/O techniques,
external I/O interfaces, etc. The design details of these have been
covered in this unit. For details on the design aspect you can refer to the
further readings.

6.0 TUTOR- MARKED ASSIGNMENT

State whether True or False

1. I/O mapped I/O scheme require no additional line from CPU to I/
O device except for system bus. True False

2. Memory mapped I/O scheme uses a separate instruction for data
transfer from/to memory; and from/to I/O module.

True False
3. The advantages of interrupt-driven I/O over programmed I/O is

that in interrupt-driven I/O the interrupt mechanisms free I/O
devices quickly. True False

4. In the transparent DMA the cycles are stolen only when the CPU
is not using the bus. True False

152

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

5. Most of the I/O processors have their own memory while a DMA
module does not have its own memory except for register or a
simple buffer area. True False

6. Parallel interfaces are commonly used for connecting printers to a
computer. True False

7.0 REFERENCES/FURTHER READINGS

Mano, M. Morris (1993).Computer System Architecture (3rd ed) Prentice
Hall of India,

Hayes, John P. (1988).Computer Architecture and Organisation (2nd ed)
McGraw-Hill International Editions.

Stallings William. Computer Organisation and Architecture (3rd ed).
Maxwell Macmillan International Editions.

Baron, Robert J. and Higbie Lee. Computer Architecture. Addison-
Wesley Publishing Company.

Tanenbaum, Andrew S. (1993).Structural Computer Organisation (3rd

ed). Prentice Hall of India.

153

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

MODULE 2

Unit 1 Instruction Sets
Unit 2 Register Organisation and Micro-Operations
Unit 3 ALU and Control Unit Organisation
Unit 4 Microprogrammed Control Unit

UNIT 1 INSTRUCTION SETS

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Instruction Set Characteristics
3.1.1 Operand Data Types
3.1.2 Number of Addresses in an Instruction
3.1.3 Operation Types

3.2 Addressing Schemes
3.2.1 Immediate Addressing
3.2.2 Direct Addressing
3.2.3 Indirect Addressing
3.2.4 Register Addressing
3.2.5 Register Indirect Addressing
3.2.6 Displacement Addressing
3.2.7 Stack Addressing Scheme

3.3 Instruction Format Design
3.3.1 Instruction Length
3.3.2 Allocation of Bits
3.3.3 Variable Length of Instructions

3.4 Examples of Instruction Sets
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

In the previous module, we discussed the structure of the computer and
data representation. One term which we have commonly used is the
instruction. In this respect, a few questions which still need to be
answered are: what is an instruction? What are its components? How is
the instruction executed by the CPU? This unit is an attempt to answer
the first two questions, while, the third question is a complex one and is
explained in the later units. In this unit we will discuss in detail the

154

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

instructions, their types, and the operands. We will also discuss the
various addressing schemes which are popular among various PC’s and
how the effective address is calculated for these schemes. In addition we
are also trying to highlight the basic design issues related to the
instruction in the unit. We have presented here the instruction set of
IBM System/370 as an example. However, you can study the details on
the other instruction sets- for example the VAX machine- from the
further readings. We have not included discussions on the instruction set
of popular INTEL microprocessor.

2.0 OBJECTIVES

At the end of this unit a student should be able to:

• discuss various elements of an instruction;
• distinguish various types of instructions;
• differentiate various types of operands;
• define a classification of computers on the basis of the number of

addresses in instructions sets;
• discuss various operations which are performed by the instructions;
• identify various addressing schemes;
• calculate effective addresses for various schemes; and
• discuss the instruction format design characteristics.

3.0MAIN CONTENT

3.1 Instruction Set Characteristics

Till now, we have discussed instruction in an abstract way. Now let us
discuss in detail various characteristics of instructions. However we wil
first of all find out the significance of the instructions set. One thing
which should be kept in mind is that the instruction set is a boundary
which is looked upon in the same fashion by a computer designer and
the programmer. From the computer designer’s point of view, the
instruction set provides the functional requirements of the CPU. In fact,
for implementing the CPU design, one of the main tasks is to implement
the instruction set for that CPU. However, from the user’s point of view
machine instructions or assembly instructions are needed for low level
programming. In addition, a user should also be aware of registers, the
data types supported by the machine and the functioning of the ALU.
We will discuss the registers in Unit 2 and the ALU in Unit 3 of this
module.

Explanation on the machine instruction set gives extensive details about
the CPU of a machine. In fact, the operations which a CPU can perform

155

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

can be determined by the machine instructions. Now, let us answer some
introductory questions about the instruction set.

What is an instruction set?

An instruction set is a collection of all the instructions a CPU can
execute. Therefore, if we define all the instructions of a computer, we
can say we have defined the instruction set. Each instruction consists of
several elements. An instruction element is a unit of information
required by the CPU for execution.

What are the elements of an instruction?

• An operation code, also termed an opcode which specifies the
operation to be performed

• A reference to the operands on which data processing is to be
performed. For example, an address of an operand

• A reference to the operands which may store the results of data
processing operations performed by the instruction.

• A reference for the next instruction, to be fetched and executed.

The next instruction which is to be executed is normally the next
instruction following the current instruction in the memory. Therefore,
no explicit reference to the next instruction is provided. What if we do
not want this normal flow of execution? You will find the answer to this
question in this unit.

An important aspect, of the references to operands and results is: where
are those operands located? In the memory or in the CPU registers or in
the I/O device. If the operands are located in the registers then an
instruction can be executed faster than that of the operands located in the
memory. The main reason here is that memory access time is higher in
comparison to the register access time.

How is an instruction represented?

Instructions are represented as sequence of bits. An instruction is
divided into a number of fields. Each of these fields corresponds to a
constituent element of instruction. A layout of instruction is known as
instruction format. For example, the following is the instruction format
for an IAS computer. It uses four bits for opcode and only two operand
references are provided here. No explicit reference is provided for the
next instruction to be executed.

 0 3 4 9 10 15
Opcode

Reference
to operand

Reference
to operand

4 bits 6 bits 6 bits

Most significant bit Least significant bit

156

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Figure63: A sample instruction format

In most instruction sets, many instruction formats are used. An
instruction is first read into an instruction register (IR), and then the
CPU decodes the instruction and extracts the required operands on the
basis of references made through the instruction fields, and processes it.
Since the binary representation of the instruction is difficult to
comprehend and is seldom used for representations, we will be using
symbolic representations to these instructions in this unit along with the
comments wherever desired.

What are the types of instructions?

The instructions can be catagorised under the following:

• Data Processing Instructions: These instructions are used for
arithmetical and logic operations in a machine. Examples of data
processing instructions are: Arithmetic, Boolean, shift, character and
string processing instructions, stack and register, manipulation
instructions, vector instructions, etc.

• Data Storage/Retrieval Instructions: Since the data processing
operations are normally performed on the data stored in CPU
registers, we need instructions to bring data to and from memory to
registers. These are called data storage/retrieval instructions.
Examples of data storage and retrieval instructions are load and store
instructions.

• Data Movement Instructions: These are basically input/output
instructions. They are required to bring in programs and data from
various devices to memory or to communicate the results to the
input/output devices. Some of these instructions can be: start
input/output, halt input/output, TEST input/output etc.

• Control Instructions: These instructions are used for testing the
status of computation through Processor Status Word (PSW). This
register will be discussed in greater details in unit 2. Another of such

157

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

instruction is the branch instruction used for transfer of control. We
will discuss in more details about these instructions.

• Miscellaneous Instructions: These instructions do not fit in any of
the above categories. Some of these instructions are: interrupt or
supervisory call, swapping, return from interrupt, halt instruction or
some privileged instruction of operating systems.

What are the factors which play important roles for
selection/designing of instruction sets for a machine?

Instruction set design is the most complex yet interesting and very much
analysed aspect of computer design. The instruction set plays an
important role in the design of the CPU as it defines many functions of
it. Since instruction sets are the means by which a programmer can
control the CPU, therefore, users’ views must be considered while
designing the instruction set. Some of the important design issues
relating to instruction design are:

• How many and what operations should be provided?
• What are the operand data types to be provided?
• What should be the instruction format? This includes issues like:

instruction length, number of address, length of various elements of
instructions, etc.

• What is the number of registers which can be referenced by an
instruction and how are they used?

• What are the modes of specifying an operand address?

We will try to analyse these issues in some detail in this and subsequent
sections. However, we have kept the level of discussion very general. A
special example of an instruction set is given at the end of this unit.

3.1.1 Operand Data Types

An operand data type specifies the type of data on which a particular
operation can be performed. For example, for an arithmetical operation,
numbers are to be used as data types. In general the operands which can
be used in an instruction can be categorised into four general categories.
These are:

• Addresses
• Numbers
• Characters
• Logical data
Addresses: Addresses are treated as a form of data which is used in the
calculation of actual physical memory address of an operand. In most of

158

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

the cases, the addresses provided in instruction are operand references
and not the actual physical memory addresses.

Numbers: All machines provide numeric data types. One special feature
of numbers used in computers is that they are limited in magnitude, and
hence the underflow and overflow may occur during arithmetical
operations on these numbers. The maximum and minimum magnitude is
fixed for an integer number while a limit of precision of numbers and
exponent exist in the floating point numbers. The three numeric data
types which are common in computers are:

- Fixed point numbers or Integers (signed or unsigned)
- Floating point numbers
- Decimal numbers

All the machines provide instructions for performing arithmetical
operations on fixed point and floating point numbers. Many machines
provide arithmetical instructions which perform operations on packed
decimal digits.

Characters: Another very common data type is the character or string
of characters. The most widely used character representation is ASCII
(American National Standard Code of Information Interchange). It has 7
bits for coding data pattern which implies 128 different characters.
Some of these characters are control characters which may be used in
data communication. The eighth bit of ASCII may be used as a parity
bit. One special mention about ASCII which facilitates the conversion of
a 7 bit ASCII and a 4 bit packed decimal number is that the last four
digits of ASCII number are binary equivalents of digits 0-9.

That is

Decimal Binary ASCII

 0 0000 011 0000
 1 0001 011 0001
 2 0010 011 0010
 3 0011 011 0011
 : : :
 : : :
 9 1001 011 1001

Figure 64: Decimal digits in ASCII

The other important code is Extended Binary Coded Decimal
Interchange Code (EBCDIC). This is an 8-bit code and is compatible

159

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

with packed decimal in a similar way as that of ASCII. The digits 0
through 9 in this can be represented as 1111 0000 through 1111 1001.

Logical Data: In general a data word or any other addressable unit such
as byte, half word etc. are treated as a single unit of data. But can we
consider an n-bit data unit consisting of n items of 1 bit each? If we treat
each bit of an n-bit data as an item then it can be considered to be logical
data. Each of these n items can have a value 0 or 1.

What are the advantages of such a bit oriented view of data? The
advantages of such a view will be:

• We can store an array of Boolean or binary data items most
efficiently.

• We will be in a position to manipulate the bits of any data item.

But where do we need to manipulate bits of a data item? The example of
such a case is shifting of significance bits in a floating point operation or
for converting ASCII to packed decimals where we need only the 4
rights most bits of ASCII’s byte.

Please note that for extracting decimal from ASCII, first the data is
treated as logical data and then it can be used in arithmetical operations
as numeric data. Thus, the operation performed on a unit of data
determines the types of the unit of data at that instance. This statemetn
may be true for high level language, but holds good for machine level
language.

SELF-ASSESSMENT EXERCISE 1

State whether True or False

1. An instruction set is meant only for the programmer and is not
needed at the time of the implementation of a machine

True False

2. Explicit operand references are a must for an instruction?
True False

3. You can use only one instruction format for an instruction set of a
machine. True False

4. Data movement instructions are used for bringing in data from
the memory to CPU registers. True False

5. Numbers represented in computers are limited in magnitude.
True False

160

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

6. A data value in a machine language can be treated as of one type
only. True False

3.1.2 Number of Addresses in an Instruction

The fewer number of addresses in an instruction lead to reduced length
of instructions; however, it also limits the range of functions that can be
performed by the instructions. In a sense this implies that a machine
instruction set having less number of addresses have longer programs,
which means longer execution time. However, more addresses may lead
to more complex decoding and processing circuits.

Most of the instructions do not require more than three operand
addresses. In instructions having fewer addresses than three, normally
some of the operand locations are implicitly defined. Many computers
have a range of instructions of different lengths and number of
addresses. The following table gives an example of zero, one, two and
three address instruction along with their interpretations.

Number of Instruction Interpretation
 Addresses
3 ADD A, B, C Operation A=B+C is executed

2 ADD A,B Two plausible interpretations

(i) AC = A + B
(ii) A = A + B. In this case the

 original content of operand
 location A is lost

1 ADD A AC = AC + A
 A is added to accumulator

0 ADD Top of stack contains the

addition to top two values of
the stack.

 .
 ● AC is an accumulator register.
 A, B, C are operand locations.

Figure 65: Examples of zero, one, two and three address instructions

The register architecture, that is a general classification which is based
on register set of the computer, is sometimes classified according to the
number of addresses in instructions. These classifications are:

161

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Evaluation-Stack Architecture: These machines are Zero address
machines and their operands are taken from top of the stack implicitly.
The ALU of such machines directly references a stack which can be
implemented in main memory or registers or both. These machines
contain instructions like PUSH and POP to load a value on stack and
store a value in the memory respectively. Please note that PUSH, POP
are not zero address instructions but contain one address.

The main advantages of such architecture are:

• Very short instructions
• Since stacks are normally made within CPU in such an architecture

machine, the operands are close to the ALU, thus effecting fast
execution of instructions

• Excellent support for subroutines.

While the main disadvantages of this architecture are:

• Not very general in nature, in comparison to other architectures
• Difficult to program for applications like text and string processing.

One example of such a machine is Burroughs B6700. However, these
machines are not very common today because of the general nature of
machines desired. The stack machine uses Polish notations for
evaluation of arithmetical expressions. Polish notation was introduced
by a Polish logician, Jan Lukasiewicz. The main theme of this notation
is that an arithmetical expression AxB can be expressed as:

either xAB (Prefix notation)

or ABx (Suffix or reverse polish notation)

In stacks we use suffix or reverse polish notation for evaluating
expression. The rule here is to push all the variable values on the top of
stack and do the operation with the top elements of stack as an operand
is encountered. The priority of operand is kept in mind for generation of
reverse polish notation. For example, an expression AxB+CxD/E will be
represented in reverse polish notation as:

ABxCDxE/+

Thus, the execution program for evaluation of F=AxB+CxD/E will be:

PUSH A /Transfer the value of A on to the top of stack/
PUSH B /Transfer the value of B on to the top of stack/

162

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

MULT /Multiply. It will remove the value of A and B from the
stack and multiply A x B/

PUSH C /Transfer C on the top of stack/
PUSH D /Transfer D on the top of stack/
MULT /Remove the values of C & D from the stack and multiply
A x D/
PUSH E /Transfer E on the top of stack/
DIV /C x D/E /
ADD /Add the top two values on the stack/
POP F /Transfer the results back to memory location F/

Figure 66: Sample program for evaluating AxB+CxD/E using zero address
instructions.

Please note that PUSH and POP are not zero-address instructions.

The execution of the above program using stack is represented
diagrammatically in figure 67.

Accumulator Machines: These machines contain a special register
called accumulator which holds the results of arithmetical, logical or
shift operations. The accumulator is an implicit address. The instructions
in such machines are normally one-address instructions. The basic
advantage of the one address machines is that the instructions are shorter
than 2 and 3 address machines. However, the performances of these
machines are somewhat slow because the machines require frequent
memory accesses. These machines are made by various vendors.

For example, a program for evaluating the expression F=AxB+CxD/E
written in this accumulator based machine is given in figure 68.

163

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Assumption: TOS is top of stack is pointing to an empty location

Figure 67: Evaluation using a stack

LOAD A /Transfer A to Accumulator/
MULT B /Multiply Accumulator with B, keep the result of/

/multiplication in B/
STORE T /Store the intermediate result temporarily in a

location T/
LOAD C /Transfer C to Accumulator/
MULT D /Accumulator = Accumulator X D/
DIV E /Accumulator = Accumulator/E /
ADD T /Accumulator = Accumulator + T/
STORE F /Store the Accumulator value to location F/

Figure 68: Sample program for evaluating AxBxCxD/E using one address
instruction.

General Purpose Register Set Machines: Many computers have been
designed to have sets of registers known as general purpose registers.
These general purpose register machines normally have multiple address
instructions. In these machines any of the registers of the register set can
be used as accumulator or an address register or an index register or a
stack pointer, or even (in some cases) as a program counter. In such
machines, each instruction specifies itself about the use of registers.
Some examples of such computers are IBM system 370 & Digital VAX
families.

164

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

The instructions in such machines can specify as many register operands
as desired. Therefore, several operations can be performed solely on
registers. This may increase the program execution speed as register
references are faster than memory references. For the purpose of
flexibility and the ability to use multiple registers, these computers may
use two and three address instructions. Some of these computers have
instructions for register to memory transfer, and memory to memory
transfer. Since numbers of registers are few, these instructions are
normally shorter.

The program for F = CxB + CxD/E for 2 address and 3 address
machines will look like:

MOVE T, A /Move T A/ MULT F, A, B / F=AxB /
MULT T, B /Multiply T=TxB / MULT T, C, D / T=CxD /
MOVE F, C / Move F C / DIV T, T, E / T=T/E /
MULT F, D / Multipy F=FxD/ ADD F, F, T / F=F+T /
DIV F, E /Divide F=F/E /
ADD F, T /Add F=F+T/

Figure 69 Sample program for evaluating F=B+CxD/E using two and
three instructions.

Special-Purpose Register Set Machines: The main problem with this
type of machine is too much of generality. In several machines, sets of
registers may be used for only special purposes. For example, one set of
registers may be used as index registers, another set for holding
arithmetic, operands etc. Computers like CDC6000/7000 family fall
under this category.

Many a machines fall in between the above mentioned two categories.
They have some special purpose and some general purpose register sets.
These machines are nowadays quite popular

3.1.3 Operation Types

Different Computers use a wide variety of opcodes and number of
addresses. Some of the operations which are specified on one machine
may not exist on a second machine. However, certain categories of
operations exist on all the machines. We will try to provide details on
some of the typical categories of operation. Broadly the operations
specified in instructions, irrespective of the number of addresses in an
instruction, can be categorised as:

- Data transfer operations
- Arithmetical operations

165

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

- Logical and shift operations
- Input/output operations
- Conversion operations
- System control operations
- Transfer of control operations

Data Transfer Operations: This is the most fundamental type of
operation. A data transfer instruction needs to furnish the following
information:

• The location of source and destination operands (This could be
memory or register or stack-top). This will be clearer after you go
through the next subsection.

• The length of data transfer

• The mode of address for each operand. These address modes are
discussed in greater details in the next section.

Some of the common data transfer operations are:

Operation Description

MOVE or TRANSFER Transfers a word or a block of data from
source to destination.

STORE Transfers a word from the processor to a
specified location in the main memory.

LOAD or FETCH Brings a word from a location of the main
memory to the processor.

EXCHANGE Exchange the contents of the source with the
destination.

CLEAR or RESET Transfers a word containing all 0’s to the
destination.

SET Transfers a word containing all 1’s to the
destination.

PUSH Transfers a word from a source to top of
stack.

POP Transfers a word from the top of stack to a
destination.

Figure 70: Common data transfer operations

For all these instructions the choice of source or destination can be a
location in the main memory or a register or the top of stack. This

166

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

location can be indicated either in opcode or in the specification of an
operand.

Arithmetical Operations: Almost all the machines provide the four
basic arithmetical operations on signed fixed point integers. Some
machines provide operations on floating point and packed decimal
numbers. Some other arithmetical operations such as absolute of a
number, negation of a number, incrementing or decrementing a number
are also included as instructions in several machines. The execution of
an arithmetical instruction requires bringing in the operands in the
operational registers such that the data can be processed by the ALU.
The arithmetical operations which can be provided in a machine in
general are:

ADD, SUBTRACT, MULTIPLY, DIVIDE
ABSOLUTE, NEGATE, INCREMENT, DECREMENT

Logical and Shift Operations: The logical operations are based on
Boolean operations performed on binary data. Some of the logical
operations are: AND, OR, NOT, Exclusive-OR.

In addition to these bitwise logical operations, machines provide a
variety of shifting operations. A shift operation is performed either to
the left or to the right. In a shift operation, all the bits move towards the
left or right as desired. (Please refer to Figure71).

Figure71: Shift operations schematic for an 8 bit register

The following are some observations about shift operations.

• In logical left/right shift the “bit in” is a 0 bit
• An Arithmetical shift is the same as logical shift except for the sign

bit which is not shifted
• A circular shift uses the “bit out” bit as the “bit in” bit.

 Bit in
(for right shift) (Right shift)

 Bit out
(for right shift)

 Bit out
(for left shift)

(left shift) Bit in
(for left shift)

167

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

The main usages of these shifts are:

• The logical shift is used in extracting fields from a word. How?

• The arithmetical shift if performed on numbers represented in
signed 2’s complement notation cause multiplication by 2 or
division by 2, depending on left or right arithmetical, shift,
provided there is no overflow or underflow.

• The circular shift preserves all the bits.

Conversion Operations: The conversion operations are needed to
convert the format of the data. For example changing format from
decimal to binary or ASCII to EBCDIC or vice versa. In general the two
conversion operations are:

Let us give an example of each of these. A common example for
TRANSLATE instruction is conversion of ASCII to EBCDIC. This can
be achieved by creating a table which is 256 byte long. We can call it as
an array of EBCDIC equivalent values. Each index of this array
represents the ASCII value, while the content of that location is the
equivalent EBCDIC. For example, if 00110011 in ASCII is equivalent
to 11001100 then

ARRAY location 00110011 contains 11001100
That is TRANS [00110011] = 11001100

However, the conversion instruction converts the format based on
certain rules; for example, decimal to binary.

Input/Output Operations: There is a lot of variety as far as
input/output operations are connected as they depend on the type of
input/output such as programmed I/O, DMA, etc. we have given some I/
O operations in the unit 4 of Block 1. However, some of the common
input/output instructions are:

TRANSLATE This instruction translates a given piece of data
depending on a table of correspondence.

CONVERT It converts the contents of a word from one format to
the other.

168

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

READ (or INPUT) This command is used for transferring data
from input/output module or part to a
destination which may be the main memory or
processor register.

WRITE(or OUTPUT) This command transfers data from a specified
source to input/output module.

TEST I/O It transfers the input/output systems status
information to a specified destination.

System Control Operations: The system control operations generally
come under the category of privileged instructions, that is, these
instructions are executed only when the processor is in certain privileged
state or the processor is executing a program which is stored in a special
privileged area of memory. In general, these instructions are used by the
operating system. A typical system control instruction is OSCALL. This
instruction causes the interruption of execution of current program and
passes the control to the operating system.

Transfer of Control Operations: In general, in a program execution
the next instruction in sequence is executed next. However, in certain
cases such as looping, decision-making and subroutine call, the next
instruction to be executed may not be the next instruction in sequence.
The instructions that disturb the normal flow of instruction execution are
called transfer of control instructions. The most common transfer of
control instructions which are found in instruction sets are:

- Branch
- Skip
- Subroutine Call

Branch Instruction: A branch instruction causes a jump to the new
instruction to be executed. A branch instruction is also known as jump
instruction. This instruction has one operand, that is, the address of the
instruction to which branch is desired. The branch instruction, in
general, is used as a conditional branch instruction; that is the branch is
made only if a specified condition is satisfied, otherwise the next
instruction in the normal sequence is executed.

But how is the condition tested? Most of the machines provided a 1-bit
or a multiple-bit conditional code, which in certain cases can be treated
as a user visible register (we will discuss user visible registers more in
Unit 2 of this module). For example, a typical machine performing on an
arithmetical operation can set a 2 bit condition code to either zero,
positive, negative or overflow condition. On such a machine, we can
have the conditional jump instructions as:

169

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Conditional
Code (C.C)

Meaning Instruction Meaning

00 Resultant is
positive

BRP X Branch to memory
location X if the result is
positive

01 Resultant is
negative

BRN X Branch to memory
location X if the
resultant is negative.

10 Resultant is
zero

BRZ X Branch to X if resultant
is Zero.

11 Overflow has
occurred

BRO X Branch to X overflow
has occurred.

All these branches may be implemented by assigning a program counter
(PC) to the address of the location to which the branch is desired.

Figure 72: An example of conditional branch instructions

As the changes in condition code may take place on execution of each
instruction, the branch instruction will depend on the most recent
instructions which have modified the condition code. All the above four
branches take place when a condition, is fulfilled, otherwise the next
instruction in sequence is executed. Another type of conditional branch
instruction which has the condition in itself can be devised for a three
address instruction. For example:

BUN R1, R2, C (Branch to a memory location address “C” if
the content of R1 is not equal to content of R2)

Here the condition is tested and the branch is determined in a single
instruction. Please note that the branch can take place to a higher
address or to a lower address

Skip Instruction: This instruction skips the next instruction to be
executed in sequence. In other words this instruction increments the
address of “next instruction to be executed” (in many computers it is the
program counter) by one instruction length. The skip instruction can
also be used with conditions; for example, ISZ instruction skips the next
instruction only if the condition code indicates that the resultant of the
most recent operation is zero. This instruction along with the branch
instruction is used for implementing looping structures.

Subroutine Call: A subroutine is a self contained user program which
contains the code often used repeatedly in a large program. This
program is incorporated in a bigger program.

170

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

A subroutine is called explicitly by a program statement. This is
explained in the following figure.

Assumption for the present flow of control: No transfer of control
instruction in the subroutine.

Figure 73: A subroutine call

Two most important instructions related to the subroutine call are CALL
and RETURN statements. CALL causes jump to the first instruction of
subroutine, however, this jump must remember from where it has started
as RETURN brings the control back to the instruction following the
CALL instruction. The logic of subroutine call is similar to that of
interrupt processing. The subroutine call is implemented in many cases
by storing the contents of the program counter (PC) which in fact is the
pointer to the return address.

But where do we store the return address? In general, the return address
can be stored in a register or memory location specifically used for this
purpose. In such a system the following steps will be followed on
encountering a subroutine call.

171

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

• Store the content of PC in a predetermined memory location or
register. Let us, call this register or memory location “R”

• Transfer the starting address of the subroutine which has been called
in the PC.

• Execute the subroutine

• On encountering RETURN statement of this subroutine load the
contents of R into the PC.

A second approach can be to store the return address at the start of the
subroutine. For example, a call instruction CALL X will initiate the
following steps:

• Store the contents of PC into memory location X.

• Place address X+1 in the PC, as subroutine statements start from this
memory location only, as the Xth location is reserved for storing the
return address

• Execute the subroutine

• On encountering RETURN statement, load the contents stored in
memory location X to the PC.

However, these two approaches are not valid when more than one
person wants to execute the same subroutine simultaneously, and when
a subroutine calls itself. The reason is that in both cases, the location
where the return address is stored will be rewritten by the new calling
address, in turn, canceling the previously stored address.

Thus, a very general approach utilising stacks is used for subroutine call.
The return address on a subroutine call is pushed on the top of the stack.
On encountering a RETURN statement the POP operation is used to
retrieve the most recent return address. This method also works for
recursive subroutine calls.

Another important aspect of the subroutine call is the parameter passing.
With a subroutine call, in general, parameters are passed. There are three
approaches for parameter passing:

• Parameter passing through registers
• Parameter passing through memory location just after the call

instruction location. The return address in such a scheme should be
the memory location after these memory-based parameters.

172

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

• Use of stacks for parameter passing in addition to return address.

The drawback of the first approach is that proper utilisation of registers
is to be ensured by the calling program. The second method fails in
cases where variable numbers of parameters are to be passed. The third
approach is quite general in nature. Stacks are used for not only storing
the return address but are also used for storing the parameters which are
to be passed to the subroutine which is called.

SELF-ASSESSMENT EXERCISE 2

1. Match the following pairs:

(a) Zero address instruction (i) General purpose register set
(b) One address instruction (ii) Stacks
(c) Two address instruction (iii) Accumulator machine

2. What are the advantages and disadvantages of evaluation-stack
architecture?

3. Match the following:

(i) MOVE (a) Data transfer operation
(ii) WRITE (b) I/O operation
(iii) LOAD (c) Conversion operation
(iv) READ (d) System control operation
(v) TRANSLATE

4. How is a subroutine call different from branching?
5. What are the three methods for calling a subroutine?

3.2 Addressing Schemes

As discussed earlier, the main function of a computer is to execute
instructions. An instruction contains an operation code (opcode) and
operand(s) in coded form. The opcode field specifies the operation to be
carried out and the operand(s) field specifies the location of the
operand(s) in the memory. An operand may be specified as the part of
the instruction, or the reference of the memory location where the value
stored may be given. The term “addressing scheme” refers to the
mechanism employed for specifying operands. The arrangement of
opcodes and operands and their numbers within the instructions
determines the form or the format of an instruction. We will discuss
addressing formats more in the next section.

The choice of addressing schemes and instruction formats are governed
by the efficiency, (time as well as space) economy and programming

173

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

flexibility considerations. All the available machines in the market
today, therefore, employ more than one addressing scheme. In the
subsequent sections, we describe the most common addressing schemes
and show how the contents of operand (address) are mapped to the
physical memory location where the operand being addressed is actually
stored.

In the description that follows, the symbols A, A1, A2…..etc. denote the
content of an operand field. Thus A1 may refer to a data or a memory
address. In case the operand field is a register address, then the symbols
R, R1, R2….. etc., are used. If C denotes the contents (either of an
operand field or a register or of a memory location), the (C) denotes the
content of the memory location whose address is C.

The symbol EA (Effective Address) refers to a physical address in a non-
virtual memory environment and refers to a register in a virtual memory
address environment. This register address is then mapped to a physical
memory address. What is a virtual address? Von Neumann had
suggested that the execution of a program is possible only if the program
and data reside in the memory. In such a situation the program length
along with data and other space needed for execution cannot exceed the
total memory. However, it was found that at the time of execution, the
complete portion of data and instruction is not needed as most of the
time only few areas of program are being referenced. Keeping this in
mind a new idea was put forward where only a required portion is kept
in the memory while the rest of the program and data reside in
secondary storage. The data or program portion which is stored on
secondary storage is brought to memory whenever needed and the
portion of memory which is not needed is returned to the secondary
storage. Thus, a program with a size bigger than the actual physical
memory can be executed on that machine. This is called virtual memory.

The typicality of virtual addresses is that:

• They are longer than the physical addresses as total addressed
memory in virtual memory is more than the actual physical memory.

• If a virtual addressed operand is not in the memory then the
operating system brings that operand to the memory.

The symbols D, D1, D2… etc refer to actual operands to be used by
instructions for their execution. Now let us examine the various
addressing schemes.

3.2.1 Immediate Addressing

174

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Under this addressing scheme, the actual operand D is A, the content of
the operand field: i.e.

D = A

This addressing mode is used to initialise the value of a variable. The
advantage of this mode is that no additional memory accesses are
required for executing the instruction. However, as the size of
instruction and operand field are limited, the type of data specified under
this addressing scheme also gets restricted.

3.2.2 Direct Addressing

Under this addressing scheme, the content A of the operand field
specifies EA, the effective address of the operand: i.e.

EA = A, and
D = (EA)

The second statement implies that the data is stored in the memory
location specified by an effective address. In this addressing scheme
only one memory reference is required. This simple addressing scheme
provides a limited address space. If the address field has n bits then the
address space available is 2n memory locations.

3.2.3 Indirect Addressing

Under this addressing scheme the effective address EA and the contents
of the operand field are related by

EA = (A) and
D = (EA)

The disadvantage of this addressing scheme is that it requires two
memory references to fetch the operand. The first memory reference is
used to fetch the effective address from the memory and the second is
for fetching the operand using EA. In this scheme the addressed space is
determined by word length. In many machines multiple levels of
indirection may be used where EA = (… (A)…) gives the relationship
between A and EA. In such a case a bit (generally the most significant
bit) in the word address specifies the indirection. If this bit is ‘1’, then
the contents of the word represent the address of the address of the
operand and if it is ‘0’ then the contents of the field represent the
address of the operand. If the size of the address field is n then the

175

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

address space available under multiple indirections addressing scheme is
2n-1.

3.2.4 Register Addressing

In this addressing scheme, the instruction specifies the address of the
register containing the operand:

EA = R
D = (EA)

Please note that EA here is a register address and not a memory address.
The advantage here is that only a few bits are needed to address the
operand. For example, for a machine having 16 general purpose
registers only 4 bits are needed to address a register.

In some cases the address of the register containing the operand may not
be explicitly specified but is understood implicitly. This is generally the
case where one of the operands is in a special register called the
accumulator.

Register access is faster than memory access. So register addressing
provides faster instruction execution. However, this statement is valid
only if the registers are employed efficiently. For example, if an operand
is moved into a register and processed only once and then returned to
the memory, then no saving occurs, however if an operand is used
repeatedly after bringing it into registers then we have saved few
memory references. Thus the task of using registers efficiently deals
with the task of finding what operand values should be kept in registers
such that memory references are minimised. Normally, this task is done
by a compiler of a high level language while translating the program to
machine language.

3.2.5 Register Indirect Addressing

Under this addressing scheme the operand field specifies the registers
which contain the address of the operand.

EA = (R) and
D = (EA)

The address capability of register indirect addressing scheme is
determined by the size of the register.

176

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

3.2.6 Displacement Addressing

This is a very powerful scheme. It contains both the direct addressing as
well as the register indirect addressing schemes. Here the content A of
the operand field is related to EA by

EA = A+(R)

The register address R may be specified explicitly or implicitly in the
instruction. Depending on the use and the implementation this address
scheme may be known as:

Indexed Addressing Scheme: This addressing scheme is generally
used to address the consecutive locations of memory (which may store
the elements of an array). The interpretation of the expression EA = A+
(R) is as follows:

The contents of the operand field A is taken to be the address of the
initial or the reference location (or the first element of array). The
contents of register R gives the displacement with respect to the
reference location. For example, to address an element Bi of an array B1,
B2……Bn, with each element of the array stored in two consecutive
locations and the starting address of the array being 101, the operand
field A shall contain the number 101 and the register R will contain the
value of the expression (i-1) x 2. Thus, for the first element of the array
the register will contain 0. For addressing the 5th element of the array,
the A =101 whereas register will contain (5-1) x 2 = 8. Therefore, the
address of the 5th element of array B5 = 101 +8 = 109. The B5 however,
is stored in location 109 and 110. To address any other element of the
array, changing the content of the register (let us call it index register)
will suffice. As the index registers are used for iterative applications,
therefore, an index register is incremented or decremented after each
reference to it. In several systems this operation is performed
automatically during the course of an instruction cycle. This feature is
known as autoindexing. Autoindexing can be autoincrementing or
autodecrementing. The choice of the register to be used as an index
register differs from machine to machine. Some machines employ
general purpose registers for this purpose while other machines may
specify special purpose registers referred to as index registers.

Another related addressing scheme which couples the indirect
addressing with indexing is also utilised by several systems. Here, there
are two possibilities:

Indexing is performed after indirection (post-indexing):

177

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

In this scheme the memory address specified by opcode addresses the
location that contains a direct address which is to be indexed. That is:

DA = (A)
EA = DA + (R)
D = (EA)
 (DA is direct address)

Indexing performed before indirection (pre-indexing):

This means that the address generated after indexing is the address of
the location of operand. That is

IA = A + (R)
EA = (IA)
D = (EA)

(IA is indexed address)

In normal circumstances both pre-indexing and post-indexing are not
used in an instruction set simultaneously.

Base Addressing Scheme: This addressing scheme is generally
employed to relocate the program in the memory especially in a
multiprogramming environment. Here the register R, referred to as base
register contains the initial address in the memory (referred to as the
base address) of the program segment being relocated. The operand field
A contains the displacement of an instruction or data with respect to the
base address. In this case:

EA = A + (B); D = (EA)
(B) refers to the contents of a base register B.

The contents of the base register may be changed in the privileged mode
only, i.e. in the user mode the contents of the base register cannot be
changed.

The base addressing scheme while on one hand provides the enhanced
addressable space on the other hand it provides protection of users from
one another.

In a base addressing scheme the address of an index addressed element
is given by:

EA = A + (B) + (I), where B and I are base register and index register
respectively.

178

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Like the index register a base register may be a general purpose register
or a special register reserved for base addressing.

Relative Addressing Scheme: In this addressing scheme, the register R
is the program counter (PC) containing the address of the current
instruction being executed. The operand field A contains the
displacement (positive or negative) of an instruction or data with respect
to the current instruction. These addressing schemes have advantages if
the memory references are nearer to the current instruction being
executed.

3.2.7 Stack Addressing Scheme

This is not a very common addressing scheme. In this addressing
scheme, the address of an operand is not specified explicitly. It is
implied. The operand is found on the top of a stack. In some machines
the top two elements of stack and top of stack pointer are kept in the
CPU registers, while the rest of the elements may reside in the memory.
Figure 74 sums up the operating principles of all these addressing
schemes.

Figure 74: Basic addressing modes

179

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

In general not all of the above modes are used for all applications.
However, some of the common areas where compilers of high level
languages use them are:

Autoindex mode → For pushing or popping the parameters of a
procedure

Direct mode → Normally used for global variables (used a
little bit less than local variables)

Register → For holding local variables of procedures
(frequently used)

Index → Accessing iterative local variables such as
arrays

Immediate → For moving constants, initialisation of
variables.

Register indirect → For holding pointers to structure in
programming languages such as records in
Pascal.

3.3 Instruction Format Design

As discussed earlier an instruction consists of an opcode and one or
more operands which are addressed implicitly or explicitly. An
instruction format is used to define the layout of the bits allocated to
these elements of instructions. In addition, the instruction format
explicitly or implicitly indicates the addressing modes used for each
operand in that instruction.

As far as the designing of instruction format goes, it is a complex art.
The computers have a variety of instruction designed for them in the last
so many years. We will discuss in this section, the design issues for
instruction sets of the machines. We will discuss only pointwise details
of these issues.

3.3.1 Instruction Length

Significance: It is the most basic issue of the format design. It
determines the richness and flexibility of a machine.

Basic Tradeoff: Smaller instruction (less space) vs. desire for more
powerful instruction repertoire.

180

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Normally programmers desire:

• More opcode and operands: as they result in smaller programs.

• More Addressing modes: for greater flexibility in implementing
functions like table manipulations, multiple branching.

However, a 32 bit instruction although will occupy double the space and
can be fetched at double the rate of a 16 bit instruction, but cannot be
doubly useful.

Factors which must be considered for deciding instruction length

Memory size : If larger memory range is to be addressed,
then more bits may be required in the address
field.

Memory
organisation

: If the addressed memory is virtual memory
then memory range which is to be addressed
by the instruction is larger than physical
memory size.

Memory transfer
length (in bus
system is equal to
the data bus
length)

: Instruction length should normally be equal
to data bus length or a multiple of it.

Memory transfer : The data transfer rate from the memory
ideally should be equivalent to the processor
speed. It can become a bottleneck if the
processor executes instructions faster than the
rate of fetching the instructions. One solution
for such a problem is to use cache memory or
another solution can be to keep the
instruction short.

Normally an instruction length is kept as a multiple of the length of a
character (that is 8 bits), and equal to the length of a fixed point number.
The term word is often used in this context. Usually the word size is
equal to the length of a fixed point number or equal to memory-transfer
size. In addition, a word should store an integral number of characters.
Thus, word sizes of 16 bits, 64 bit are becoming very common and
hence the similar lengths of instructions are normally being used.

3.3.2 Allocation of Bits

The tradeoff here is between the numbers of opcode versus the
addressing capabilities. An interesting development in this regard is the

181

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

development of variable length opcode. An opcode has a minimum
length and then depending on the instructions which require fewer
operands or less powerful addressing mode, the opcode can be changed.

Let us discuss the factors which are considered for selection of
addressing bits:

• Number of Addressing Modes: The more the explicit addressing
modes used, the more bits are needed for mode selection. However,
some machines have implicit modes of addressing.

• Number of Operands: Fewer numbers of operand references in an
instruction although require less bits yet result in longer programs.
Nowadays many of the machines are having two operand references
in an instruction. Each of these operands may need a mode indicator
field of its own or both the operands may have the same addressing
mode indicator field that is the same addressing mode.

• Register Addressing versus Memory Addresses: If more and
more registers can be used for operand references then instructions
are bound to be smaller as the number of registers is far less than the
memory size, therefore, they require only a few bits in comparison to
the bits needed for the memory addresses. In general, the number of
user visible registers provided is 8 to 16. This number is found to be
an optimum number of registers by several studies.

• Register Sets: Even in the case of registers addresses the trend is
moving from a large number of general purpose registers to two or
more sets of registers, for specialised data storage. For example, one
special register set can store only the data for calculation, while the
other can store only the addresses. These results in further decrease
in the size of instruction bits for register addressing. For example, if
a machine has 16 general purpose registers then a register address of
it requires at least 4 bits; however, if these 16 registers are used as
two specialised sets of registers then one of the 8 registers need to be
addressed at a time, thus requiring only 3 bits for the register
addressing mode.

• Range of Addresses: The range of main memory addresses which
need to be addressed directly or indirectly are involved for having a
specific number of bits in instructions. For example, if direct
addressing is used then the addressed memory determines directly
the number of instruction bits required. However, in displacement
index addressing schemes it is the offset which can control the
number of bits desired in the instruction.

182

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

• Granularity of Address: As far as memory references are
concerned, granularity implies whether an address is referencing a
byte or a word at a time. This is more relevant for machines which
have 16 bit, 32 bit and higher bit words. Byte addressing although
may be better for character manipulation, however, requires more
bits in an address. For example, if a memory of 4K words (1 word =
16 bit) is to be addressed directly then it requires:

WORD Addressing = 4 K words
 = 212 Words
 ⇒ 12 bits are required for word addressing.

Byte Addressing = 212 Words
 = 213 Bytes
 ⇒ 13 bits are required for byte addressing.

3.3.3 Variable-length of Instructions

With the better understanding of computer instruction sets, the designers
came up with the idea of having a variety of instruction formats of
different lengths. What could be the advantages of such a scheme? The
advantages of such a scheme are:

• Large numbers of operations can be provided which have different
lengths of instructions.

• Flexibility in addressing schemes can be provided efficiently and
compactly.

The basic disadvantage of such a scheme is to have a complex CPU.
However, the advances in technology and increase in basic
understanding about CPU designing may reduce the overheads required
for the added complexity of such a scheme. However, one condition
which still holds for the length of instructions is that all the possible
instruction lengths should be multiple of word size.

An important aspect of these variable length instructions is: “The CPU
is not aware of the length of the next instruction which is to be fetched”.
This problem can be handled if each instruction fetch is made equal to
the size of the longest instruction. Thus, sometimes in a single fetch
multiple instructions can be fetched.

After discussing various concepts, let us look at the instruction set of
IBM S/370 machine in the next section.

3.4 Examples of Instruction Sets

183

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

In this section we will look at the instruction set of a very important
vendor- the IBM. We have not included instruction set details of any of
the INTEL microprocessors in this unit. The other instruction sets can be
studied by you from the further readings.

IBM 370 Architecture: The IBM S/370 is a popular architecture. Let
us discuss the features provided in this architecture.

Data Types: It provides the following data types:

Data Type Allows Length Characteristics

Binary Integers 16 and 32 bits Unsigned i.e. non-negative
numbers or signed binary
integer in signed 2’s
complement notation.

Floating Point 32, 64 and 128
bits

A 7-bit exponent with all the
formats.

Decimal
Numbers

1 to 16 bytes Rightmost 4 bits are used for
sign. Thus, 1 to 31 digit decimal
numbers can be represented.
Arithmetic on these packed
decimal integers is provided.

Binary logical 8, 32 and 64 bits
and variable
length logic data
till 256 byte

Logic operations are defined for
the data units of the given
length.

Character 8 bits EBCDIC is used.

Operation Types: Although the IBM/370 principal operation manual
classifies the machine instructions in six broad categories, yet for the
sake of simplicity they have been separated according to function by
Stallings. This classification categorises the instruction type in 12
categories.

Instruction Type Description

Fixed Point
Arithmetic

One register is used for storing one of the
operands and the result, while the second

184

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Instructions operand can be in another register or in the
memory. It provides operations in either
unsigned 16 or 32 bit integer operands or 16 or
32 bit 2’s complemented integer numbers

Logical instruction Provides bitwise AND, OR and XOR
operations.

General Register
Shifting Instructions

Provides 8 shift instructions pairing the
following options:
(1) Left or right shift
(2) Use of a single or double register
(3) Signed or logical shift.
For example, two of the eight shift instructions
will be a left, single register, logical shift
instruction and a left, double register, signed
shift instruction. A second operand is used in
the instruction to specify the amount of shift.
The shift instruction affects either a single
register or this can affect an even-odd register
pair. The arithmetic shift instruction leaves the
sign bit intact.

General Register –
Load and Store
Instructions

Provided transfer operations are:
- Register to register transfer
- Register to memory transfer
- Memory to register transfer

Compare
Instructions

It performs the comparing and testing functions.
A condition code of 2-bit is set by the
instructions.

Branching
Instructions

The value of conditional code determines the
branch. A special instruction called Branch and
link is used for subroutine call and return. The
user needs to specify the register to be used for
storing return address.

Conversion
Instructions

Converts various forms of data for example,
from decimal to binary

Decimal Instructions Provided for providing operations on decimal
data. These instructions include arithmetic
operations, shifting operations and unpacking
operations.

Floating Point
Instructions

Add, subtract, multiply and divide instructions
are provided on 4 byte, 8 byte and 16 byte
floating point numbers.

Special Purpose
Control Instructions

These instructions cause a control passing. A
example of one such instruction is the
supervisory call which causes an interrupt those
results in passing the control to the operating
system.

185

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Privileged I/O
Instructions

These instructions are used for starting
input/output using an I/O channels. One such
command is start I/O.

Privileged System
Control Instructions

These instructions are issued only by the
operating system for controlling registers and
data structures which are needed by the
operating system.

IBM 370 Addressing

In IBM 370 the memory is addressable at byte level. However, all the
addresses are virtual addresses. In the system S/370 the length of virtual
address is 24 bits whereas, the length in the case of IBM S/370 XA is
31 bits. In this system only three basic addressing modes are supported.
These are:

• Immediate Addressing: It is a 1 byte operand, provided within the
instruction.

• Register Addressing: In this mode a register operand is addressed.
This register operand can be in one of the 16 32-bit general purpose
register or 4 64-bit floating point registers. A register address
consists of 4 bits as we are referencing a floating point register which
can be referenced by 2 bits (4 floating point registers), 4 bits are used

• Displacement Addressing: In this mode the operand is stored
 in the virtual memory. Here two types of formats are used:

The base register format: The operand reference in such a
scheme consists of two components:

The displacement provided in the instruction:

The 4-bit register address is one of the general purpose registers and will
be used as a base register. However, only the right most 24 bits of a 32
bit register are used for computing addresses in IBM/360 whereas only
rightmost 31 bits are used in IBM 370 XA model. A register address 0
specifies that no register has been used and the displacement becomes
the direct address of memory location in that case.

The use of the index registers along with the base register:

In this scheme the instruction reference consists of the displacement, a
four-bit reference to a general purpose register to be used as base

186

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

register and a general purpose register to be used as index register. The
feature of autoindexing is also provided.

Let us summarise the addressing modes used in IBM/370

Addressing Mode Calculation of effective address

Immediate Operand = A

Register EA = R

Displacement:

Base Register EA = A + (B)

Index on base register EA = A + (B) + (I)

 I → Indicates address of index register. It will be 4 bit long.
 B → Indicated address of the base register. It will be 4 bit long

Figure 75: A summary of IBM S/370 addressing modes

The addressing schemes provided by this system although are simple
and easy, yet a programmer must understand how to use the segments in
IBM system/370. This discussion is beyond the scope of this unit. You
can refer to further readings for more details.

Instruction Format

We will present a simplified tabular representation for the instruction
format of IBM system/370.

Features:

• Variable length instructions : bytes, 4 bytes, 6 bytes

instructions

• Variable op-code length : 1 byte and 2 byte

• Eight different instruction formats are used.

• Mostly two operand instructions, however, one and three operands

are also used in some instructions.

• First two bits of instructions specifies:

 length of the instruction and

187

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

 format of the instruction

First two bits of opcode Instructions length (bytes) Instruction opcode format

 00 2 RR
 01 4 RX
 10 4 RRE/RS/S/SI
 11 6 S S/S S E

The instruction formats are:

Register-Register
(R R)

: A compact representation
Instruction length
Opcode
Register addresses

:
:
:

2 bytes
1 byte
2 nos of 4 bit each.

Register
Register
Extended
(R R E)

: Used for privileged
instructions Used by the
operating system.
Instruction length
Opcode
Register addresses

:
:
:

4 bytes
2 bytes
2 of 4 bit each

Register_Indexed
(R X)

: Instruction Length
Opcode
First operand
Register operand
Second operand
Virtual memory operand

:
:

:

:

4 bytes
1 byte

One of 4 bits

One 4 bit index
register
4 bit base register
12 bit displacement

Register_Storage
(R S)

: Instruction length
Number of operands

Opcode
First operand and third
operand

Second operand

:
:

:
:

:

4 byte
3 (the only three
operand instruction
format)
1 byte
Register operands
require 4 bit each for
register reference.
Virtual memory
operand using a base
register (4 bit) and
displacement (12 bits)

188

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Storage
Immediate (S I)

: Instruction length
Opcode
First operand

Second operand

:
:
:

:

4 bytes
1 byte
Virtual memory
operand using a base
register (4 bit) and
displacement (12 bits)
Immediate operand of
one byte

Storage (S)
:

Used for representing
privileged instructions for I/
O or system control.
Instruction length
Opcode
Number of operands

:
:
:

4 bytes
2 bytes
One

Operand address is virtual address using a base register
(4 bits) and displacement (12 bits)

Storage-Storage
:
(S S)

Instruction length
Opcode
Number of operands

:
:
=

6 bytes
1 byte
2

Both operands are virtual memory operands specified by
base register (4 bits) and displacement (12 bits)
Use of remaining 1 byte :
One length format: The remaining byte specifies the
number of bytes to be operated upon. Used for moving a
block of characters from one location to another.
Two length format: two length fields of 4 bits each
specifying the size of each of the two operands
Used for operations on BCD.
Register specifications: The byte designates two general
purpose registers which contain the control information
or length specifications. Used for privileged instructions.

Storage-Storage
Extended (S S E)
:

Used for privileged
instructions
Instruction length
Opcode

:
:

6 bytes
2 bytes

Two operands both in the form of base register

Thus, IBM System/370 formats tries to make efficient use of instruction
lengths. Figure 76 gives the summary of instruction formats of this
system.

189

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Figure 76: A summary of IBM system/370 instruction formats

4.0 CONCLUSION

In discussing the structure of the computer and data representation in the
previous module, we mentioned the term “instruction” which is a
paramount term in computer operation.

This unit has therefore been dedicated to exposing you to what an
instruction is and its components. To this end, you have been taken
through the characteristics of instruction sets, types of instructions,
addresses, types of operands, types of operations, addressing schemes,
instruction format design, etc.

190

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

5.0 SUMMARY

In this unit, we have introduced you to various concepts relating to
“instructions”. We have discussed the basic characteristics, the number
of addresses, type of operands and operations in instructions and various
addressing modes. We have also highlighted the basic issues while
designing instruction formats and presented details on the instruction set
of IBM S/370. Please note that we have not provided you with the
detailed instructions which this machine provides,but only the
conceptual model behind this instruction set. You can refer to further
reading for more details on instruction set for various machines.

6.0 TUTOR-MARKED ASSIGNMENT

1. Find out the memory references required to get the data for the
following addressing modes:

• Direct addressing
• Indirect addressing
• Register indirect addressing
• Immediate addressing

2. What are the differences between preindexing and postindexing?
3. What are the differences between base and relative addressing

schemes?
4. State whether True or False

(a) Immediate addressing is best suited for storing floating point
numbers True False

(b) Indirect addressing requires fewer memory accesses than
that of index addressing True False

(c) Index addressing is used for addressing arrays.
 True False

5. A long instruction can be executed faster than short instructions.
True False

6. Virtual addresses require more bits for the address part of
instructions in comparison to non-virtual addresses.

True False

7. The speed gap between processor and memory suggests that
instruction size should be as big as possible. True False

191

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

8. In general, the instruction length is kept equal to the size of
floating point storage. True False

9. Large numbers of operand addresses in instruction leads to
smaller programs. True False

10. Register addresses for specialised register set machines are
smaller than that of the machines which have general purpose
register sets. True False

11. A machine using direct addressing mode having a memory
addressing capability of 8 K bytes, requires 13 bits for byte
addressing. True False

12. In a variable length instruction format, an instruction fetch must
fetch the words equal to the size of the smallest instruction.

True False

7.0 REFERENCES/FURTHER READINGS

Mano, M. Morris (1993).Computer System Architecture (3rd ed).
Prentice Hall of India.

Hayes, John P. (1988) Computer Architecture and Organisation (2nd ed).
McGraw-Hill International editions.

Stallings, William. Computer Organisation and Architecture (3rd ed)
Maxwell Macmillan International Editions.

Baron, Robert J. and Higbie Lee. Computer Architecture. Addison-
Wesley Publishing Company.

Tanenbaum, Andrew S.(1993). Structural Computer Organisation (3rd

ed) Prentice Hall of India.

192

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

UNIT 2 REGISTER ORGANISATION AND MICRO-
OPERATIONS

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Basic Structure of the CPU
3.2 An Advanced Structure
3.3 Register Organisation

3.3.1 Program Visible Registers
3.3.2 Status and Control Registers

3.4 Micro-Operations
3.4.1 Register Transfer Micro-Operations
3.4.2 Arithmetic Micro-Operations
3.4.3 Logic Micro-Operations
3.4.4 Shift Micro-Operations
3.4.5 Implementation of a Simple Arithmetic, Logic and

Shift Unit
3.5 Instruction Execution and Micro-operations

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

As we discussed earlier, the main task performed by the CPU is the
execution of instructions. In the previous unit, we discussed the
instruction set of the computer system. But one thing which remained
unanswered is: how will these instructions be executed by the CPU?

The above question can be broken down into two slightly simpler
questions. These are:

• What are the steps required for the execution of an instruction?

• How are these steps performed by the CPU?

The answer to the first question lies in the fact that each instruction
execution consists of several steps. Together they constitute an
instruction cycle. We have already given a state diagram about
instruction cycle in Unit 1, Module 1 of this course. In this unit we will
present a more structured view of the instruction cycle. We will also

193

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

discuss the micro-operations, the smallest operations performed by the
CPU.

In order to answer the second question, we must have an understanding
of the basic structure of a computer. As discussed earlier, the CPU
consists of an arithmetic logic unit, the control unit and operational
registers. We will examine the register organisation in this unit, but we
will discuss the arithmetic-logic unit and control unit organisation in the
subsequent unit.

However, we have sequenced this unit by starting from the very basic
structure about the CPU and following it with the discussion of the
register organisation in general. This is followed by the discussion on
micro-operations and their implementation. The discussion on micro-
operations will gradually lead us towards the discussion of a very simple
ALU structure. We will finally wind up the unit with the discussion on
the instruction cycle.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

• describe the register organisation of the CPU;
• differentiate among various structures of the CPU;
• define a micro-operation;
• differentiate among various micro-operations;
• discuss how the micro-operations can be implemented; and
• discuss an instruction cycle.

3.0 MAIN CONTENT

3.1 Basic Structure of the CPU

As discussed earlier, the CPU basically consists of two main
components.

• An arithmetic and logic unit to perform the arithmetic or logic
operation on data

• A control unit which plays an important role for the functioning of
the CPU itself and in the transfer of data/information from/to another
device to/from CPU.

In addition the CPU contains several operational registers. The basic
task performed by the CPU is the instruction execution. An instruction is
executed using several small operations called micro-operations.

194

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

The basic issues relating to the CPU can be:

• It should be as fast as possible; only the available technology should
limit the CPU’s speed but the number of components should be
small in a good CPU.

• The capacity of the main memory needed by the CPU should be
quite large. Since it is large, therefore, it should be constructed using
a slower technology than that of a CPU.

Let us define the cycle time of the CPU (tcpu) as the time taken by the
CPU to execute a well-defined shortest micro-operation, and memory
cycle time as the speed at which the memory can be accessed by the
CPU. It has been found that the memory cycle time (tmem) is
approximately 1 – 10 times higher than that of the CPU cycle time. That
is tmem/tcpu = 1 to 10. Therefore, within the CPU temporary storage is
provided in the form of CPU registers. The CPU registers are used to
store instructions and operands within the CPU. The CPU registers can
be accessed almost instantaneously. In other words, the ratio of the time
to access a register by the CPU in comparison to the time to access
memory by the CPU is approximately equal to tmem/tcpu. Thus, the
instructions whose operands are stored in the fast CPU registers can be
executed rapidly in comparison to the instructions whose operands are in
the main memory of a computer. Thus, the instruction execution is
implemented as:

• Bring in the operands required by the instruction from the main
memory to the CPU registers.

• Perform the operation desired by the instruction on the operands
stored in the registers.

• Finally, the results are transferred back to the memory if needed.

The input/output from the devices can also be carried out in the same
way using I/O controllers.

The design of the CPU in modern form was first proposed by John von
Neumann and his colleagues for the IAS computer. The IAS computer
had a minimal number of registers along with the essential circuits. This
computer had a small set of instructions and an instruction was allowed
to contain only one operand address. A register called “accumulator”
was used as a key register for the execution of most of the instructions
as it was used for storing the input operand for the arithmetic logic unit.

Figure 77 gives the structure of the IAS computer.

195

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

This type of architecture is used in some modern mini and micro-
computers. The structure shown in Figure 77consists of the following
registers.

Accumulator (AC): It interacts with ALU and stores the input or output
operand.

Data Register (DR): It acts as a buffer storage between the main
memory and the CPU. It also stores the operand for the instructions such
as ADD DR or AC → AC + DR, that is, the content of AC and the data
register are added by ALU and the results are stored in the accumulator.
Thus, data register can also store one of the input operands.

Program Counter (PC): It contains the address of the next instruction
word to be executed.

Instruction Register (IR): It holds the current instruction.

Memory Address Register (MAR): It is used to provide address of
memory location from where data is to be retrieved or to which data is
to be stored.

The contents of the PC are modified either after fetching an instruction
or by a branch or skip instructions. MAR and DR play important roles in
transfer of data between CPU and the memory. In the computer systems
which use system bus, MAR is directly connected to address bus, while
DR is directly connected to data bus. DR is also used to interchange data
among several other registers.

Figure 77: Basic Structure of the CPU

196

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

So, we have a simple basic CPU which can perform various
computational tasks easily. How to make this simple structure more
powerful in terms of processing efficiency and instructional style. In the
next section we will discuss how the simple structure can be made more
powerful.

3.2 An Advanced Structure

Let us have a few additional features in the simple structure of the CPU
such that it can be made more powerful. Some of these aspects are:

• Provide additional registers for storing operands and addresses, thus,
replacing a single accumulator by a set of registers. These registers
can be used as general purpose registers which are multi-purpose in
nature (e.g. can store either operands or addresses). A set of these
general registers is called a register file. One of the key functions of
these registers is to store the operands which are needed for
calculation of memory addresses. The IBM S/360 computers had this
general register organisation. In some microprocessor, some special
address registers namely index register, base register, etc. are used.
An example of such is Motorola 68020 microprocessor which has a
set of 8 data registers along with a matching set of 8 address
registers.

• Increase the capabilities of ALU circuits. For example, most
microprocessors have capabilities for performing addition and
subtraction on fixed point numbers. This capability with only little
extra circuitry can be used for multiplication and division on fixed
point numbers also. However for implementing arithmetic on
floating point numbers a substantial increase of circuitry is needed.

• Include special register to facilitate conditional jumps within a
program. A status register which gives information about various
conditions such as the sign of the result, whether the results is zero,
arithmetic overflow, etc. in the proceeding instruction execution, can
be used. This status register can be checked for typical condition for
execution of a branch instruction.

• Include special registers for transfer of control between different
subroutines or subprograms or interrupts. One such register used in
IBM 360/370 series is called PSW (Program Status Word) which
stores program counters and various condition flags. Thus, PSW can
record the execution status of the program. On occurrence of
interrupt or a call to subroutine this PSW is stored in a specific area
in the memory and is restored when the execution of this program is
to be resumed. Many computers use a stack in the main memory for

197

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

controlling transfer of control. This is a very flexible approach. It
uses a special area in the main memory and a register called stack
pointer (SP) points to the top of the stack. The stack is a LIFO (Last
In First Out) data structure. It has been found to be very useful for
implementing program transfer of control, very efficiently.

• Provisions for execution of more than one instruction
simultaneously. These provisions are not discussed at present but
will be taken up in a later course.

Considering the requirements, let us have a more enhanced view of the
CPU. Figure 78 gives the detailed view of the CPU.

Figure 78: The CPU with a general register organisation

The general purpose registers can be in general 8-16. ALU performs
operations on the data stored in these general purpose registers and also
stores results in these registers only. There are few special-purpose
address registers. Two of these are the program counter (PC) and the
stack pointer (SP). The status register stores the key characteristics or
conditions of the result of the last ALU operation. A special simple
arithmetic logic unit can be attached as an address generation logic
performing the simple fixed point computations. The inputs to the
control unit are from the instruction register which contains the
operation code of the instruction to be executed and from the status
register which helps in generating proper control signals on branch
operations. The system bus plays the role of the communication media.
Please note the direction of arrows on the address bus. There are several

198

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

intermediate buffer registers also which help in intermediate storage of
information. In this organisation of CPU parallelism can be
implemented within the ALU operation or through the overlapped
operations of data processing and program control unit.

We will now discuss the components of the CPU. In the subsequent
sections we will discuss about the Register organization in details
followed by the discussions on microoperations. This will lay a
foundation for discussions on arithmetic logic unit and control unit
organisation which are the topics in Units 3 and 4 of this Module.

SELF-ASSESSMENT EXERCISE

1. The program counter (PC) register is used for storing an
instruction

True False

2. Program Status Word (PSW) is used for storing the instruction
which is to be executed next.

True False

3. Accumulator machines may require more memory references
than that of a general purpose machine for executing an
optimised program.

True False

4 Stack pointer points to the top of register file.
True False

3.3 Register Organisation

In the previous subsection, we have given some hints to the types of
registers a modern day CPU must have. Let us take a more general view
on register organisation in this section. The internal processor memory
of a CPU is served by its registers. One the key difference among
various computers is the difference in their register sets. Some
computers have very large sets while some have smaller sets. But on the
whole, from a user’s point of view the register set can be classified
under two basic categories.

• Programmer Visible Registers: These registers can be used by
machine or assembly language programmers to minimise the
references to main memory.

199

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

• Status Control and Registers: These registers cannot be used by the
programmers but are used to control the CPU or the execution of a
program.

Different vendors have used some of these registers interchangeably,
therefore you should not stick to these definitions rigidly. Yet this
categorisation will help in a better understanding of register sets of
machine. We will discuss these categories.

3.3.1 Program Visible Registers

These registers can be accessed using machine language. In general we
encounter four types of program visible registers.

• General Purpose Registers

• Data Registers

• Address Registers

• Condition Code Registers

The general purpose registers are used for various functions desired by
the processor. A true general purpose register can contain operands or
can be used for calculation of the addresses of operands for any
operation code of an instruction. But trends in today’s machines show a
drift towards dedicated registers. For example, some registers may be
dedicated to floating point operations. In some machines there is a
distinct separation between data and address registers.

The data registers are used only for storing intermediate results or data.
These data registers are not used for the calculation of the address of the
operand.

An address register may be a general purpose register, but some
dedicated address registers are also used in several machines. Examples
of dedicated address registers can be:

Segment Pointer : Used to point out a segment of memory

Index Register : These are used for index addressing
schemes.

Stack Pointer (when program visible stack addressing is used)

200

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

There are several issues related to program visible registers. Some of the
issues are:

Do we use general purpose registers or dedicated register in a machine?

Does the number of registers affect the design of an instruction of a
computer?

Well, in the case of a specialised register the number of bits needed for
register specific details are reduced as here we need to specify only a
few registers out of a set of registers. However, this specialisation does
not allow much flexibility to the program. Although there is no best
solution to this problem, yet the trends are in favour of use of specialised
registers.

Another issue related to the register set design is the number of general
purpose registers or data and address registers to be provided in a micro-
processor. The number of registers also affects the instruction design as
the number of registers determines the number of bits needed in an
instruction to specify a register reference. In general, it has been found
that optimum number of registers in a CPU is in the range 8 to 32. In
case registers fall below the range then more memory references per
instruction on an average will be needed, as some of the intermediate
results then have to be stored in the memory. On the other hand, if the
numbers of registers go above 32, then there is no appreciable reduction
in memory references. However, in some computers, hundreds of
registers are used. These systems have special characteristics. Reduced
instruction set computers (RISC) exhibit this property. What is the
importance of having less memory references? As the time required for
memory reference is more than that of a register reference, therefore, the
increased number of memory references results in slower execution of a
program.

Register Length: Another important characteristic related to registers is
the length of a register. Normally, the length of a register is dependent
on its use. For example, a register which is used to calculate address
must be long enough to hold the maximum possible address. Similarly,
the length of data register should be long enough to hold the data type it
is supposed to hold. In certain cases two consecutive registers may be
used to hold data whose length is double of the register length.

Condition code registers may only be partially available to the
programs. These register contains condition codes which are also known
as flags. These flags are set by the CPU hardware while performing an
operation. For example, an addition operation may set the overflow flag
or on a division by 0 the overflow flag can be set etc. these codes may

201

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

be tested by a program for a typical conditional branch operation. The
condition codes are collected in one or more registers. RISC machines
have several set of conditional code bits. In these machines an
instruction specifies the set of condition codes which is to be used.
Independent sets of condition code enable the provisions of having
parallelism within the instruction execution unit.

One of the key operations which are needed with the program usable
registers happens when a subroutine call is issued. On a subroutine call
all the registers are saved by the call statement itself and restored on
encountering a return statement from the subroutine. This operation in
most machines is automatic yet in certain machines this is done by the
programs. Similarly while writing interrupts service routine you need to
save some or call program unusable registers.

3.3.2 Status and Control Registers

For the control of various operations several registers are used. These
registers cannot be used in data manipulations; however, the content of
some of these registers can be used by the program. Some of the control
registers for a von Neumann machine can be the Program Counter (PC).
Memory Addressing Register (MAR) and Data Register (DR).

Almost all the CPUs, as discussed earlier, have status registers, a part of
which may be program visible. A register which may be formed by
condition codes is called condition code register. Some of the commonly
used flags or condition codes in such a register may be:

Sign Flag : This indicates whether the sign of a previous
arithmetic operation was positive (0) or
negative (1)

Zero Flag : This flag bit will be set if the result of last
arithmetic operation was zero.

Carry Flag : This flag is set, if a carry results from the
addition of the highest order bits or a borrow is
taken on subtraction of the highest order bit.

Equal Flag : This bit flag will be set if a logic comparison
operation finds out that both of its operands are
equal

Overflow Flag : This flag is used to indicate the condition of an
arithmetic overflow.

Interrupt
Enable/disable
Flag

: This flag is used for enabling or disabling
interrupts.

Supervisor Flag : This flag is used in certain computers to
determine whether the CPU is executing in

202

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

supervisor or user mode. In case the CPU is in
the supervisor mode it will be allowed to
execute certain privileged instructions.

In most CPUs, on encountering a subroutine call or interrupt handling
routine, it is desired that the status information such as conditional codes
and other register information be stored and restored on initiation and
end of these routines respectively. The register often known as program
status Word (PSW) contains condition codes plus other status
information. There can be several other status and control registers such
as interrupt vector register in the machine using vectored interrupt, stack
pointer if a stack is used to implement subroutine calls, etc.

The status and control register design is also dependent on the operating
system (OS) support. The functional understanding of OS helps in
tailoring the register organisation. In fact, some control information is
only of specific use to the operating system.

One major decision to be taken for designing status and control registers
organisation is: how to allocate control information between registers
and the memory. Generally first few hundreds or thousands of words of
memory are allocated for storing control information. It is the
responsibility of the designer to determine how much control
information should be in registers and how much should be in the
memory. This in fact is a tradeoff between the cost and the speed.

3.4 Micro-Operations

After discussing structure and register organisation. Our next task is to
examine the functionality of ALU and control unit. However as the main
task of the computer is instruction execution, the details on how
instructions can be executed will help in understanding the functionality
of ALU and control unit. In this section, we will first define the various
micro-operations and their hardware implementation from where we
will move on to the design of a very simple circuit of an arithmetic logic
unit as it will logically follow the discussion. This discussion will be
followed by a new look at instruction execution in the next section.

A micro-operation, in general, is a primitive action performed by a
machine on the data stored in the registers. In digital computers in
general, there are four types of micro-operations:

• Register transfer micro-operations

• Arithmetic micro-operations

203

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

• Logic micro-operations

• Shift micro-operations.

3.4.1 Register Transfer Micro-Operations

These micro-operations as the name suggests transfer information from
one register to another. The information does not change during this
micro-operation. A register transfer micro-operation may be designed
as:

R1 ← R2

Which implies that transfer the content of register R2 to register R1. R2
here is a source register while R1 is a destination register. We will use
this notation through out this section. For a register transfer micro-
operation there must be a path for data transfer from the output of the
source register to the input of the destination register. In addition, the
destination register should have a parallel load capability, as we expect
the register transfer to occur in a pre-determined control condition. We
will discuss the control in the later units of this module.

A common path for connecting various registers is through a common
internal data bus of the processor. In general the size of this data bus
should be equal to the number of bits in a general register.

Let us briefly find out how this internal bus can be constructed. We will
give you a very simple way of constructing the bus for four bit registers
using 4 x 1 multiplexers (please refer to Figure 79).

Figure 79: A four bit system for four bit four registers

204

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Please note that the logic circuit of Figure 79 uses four multiplexers
(MUX), two selection lines and four registers. Also note that the output
of a MUX is one of the four inputs, that is, for ith bit MUX the output
can be either Ai or Bi or Ci or Di, that is the ith bit of any one of the four
registers. The select line determines which of these register bits is to be
selected. This is shown as follows:

S1 S0 Decimal equivalent of S1 S0 Output bit selected
(Decimal Select (DS))

0 0 0 Ai

0 1 1 Bi

1 0 2 Ci

1 1 3 Di

Since, the same control bits S1S0 are passed to all the multiplexers, all
the MUX will output bits of the same register. Thus, on having Decimal
Select (DS) as 0 bus will output register A, on DS as 1 bus will output B
and so on.

For receiving the data from this bus all the register input should be
connected to this bus and all these registers should have a parallel load
capability. Thus, by enabling load signal, a register can take data from
the bus.

Now, let us focus on another important transfer which does not take
place through the internal data bus, but through the system bus. These
transfers are related to memory and input/output modules. The data
transfer from input/output module to CPU or vice-versa is not very
different from the transfer from memory to CPU or vice-versa. For a
special case of memory mapped i/o both are handled in the same way.
Also, the input/output operation is treated as a separate activity, where
normally a program and therefore, instructions are executed. Let us
focus our discussion on memory transfer which is the most important
transfer for instruction execution as it has to take place at least once for
every instruction.

Memory Transfer: Memory transfer is achieved via a system bus. Since
the main memory is a random access memory, the address of the
location which is to be used is to be supplied. This address is supplied
by the CPU on the address bus. There are two memory transfer
operations: Read and Write. Let us consider the CPU structure as shown
in Figure 77, then the two memory operations will be performed as:

205

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Memory Read:

• Put the memory address in the memory address register (MAR)

• Read the data of the location. This operation is achieved by putting
the MAR data on the address bus along with a memory read control
signal on the control bus. The resultant of memory read is put into
the data bus which in turn stores the read data in the data register
(DR). This whole operation can be shown as:

DR ← M (MAR)

Memory Write:

• Put the desired memory address in MAR and the data to be written in
the DR.

• Write the data into the location: MAR puts the address on address
bus and DR puts the data on data bus. A write control signal along
with these two signals enables the data on data to be written into the
memory location addressed by MAR.

M(MAR) ← DR

Normally, a memory read or write operation requires more cycles than a
typical register transfer operation. The logic circuit of a memory is
shown in Unit 3 of Module 1 of this course.

3.4.2 Arithmetic Micro-Operations

These micro-operations perform some basic arithmetical operations on
the numeric data stored in the registers. These basic operations may be:
addition, subtraction, incrementing a number, decrementing a number
and arithmetical shift operation. An “add” micro-operation can be
specified as:

R3 ← R1 + R2

It implies: add the contents of registers R1 and R2 and store them in
register R3.

The add operation mentioned above requires three registers along with
the addition circuit at the ALU. An alternate add micro-operation for the
structure shown in Figure 77 will be:

AC ← AC + DR.

206

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Subtraction in many machines is implemented through complement and
addition operation as:

R3 ← R1 - R2
 ⇒ R3 ← R1 + (2’s complement of R2)
 ⇒ R3 ← R1 + (1’s complement of R2 + 1)
 ⇒ R3 ← R1 + R2 + 1

An increment operation can be symbolised as:

 R1 ← R1 + 1

While a decrement operation can be symbolised as:

 R1 ← R1 - 1

These increment and decrement operations can be implemented by using
a combinational circuit or binary up/down counter. What about the
multiplication and division operations? Are they not micro-operations?
In most computers multiplication and division are implemented using
add/subtract and shift micro-operations. If a digital system has
implemented division and multiplication by means of combinational
circuits then we can call these the micro-operations for that system.

Implementation of Arithmetic Circuits for Arithmetic Micro-
operations

An arithmetic circuit is normally implemented using parallel adder
circuits. Figure 80 shows a logical implementation of a 4 bit arithmetic
circuit. The circuit is constructed by using 4 full adders and 4
multiplexers.

207

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Figure 80: A four-bit arithmetic circuit

Please note that each multiplexer (MUX) of the given circuit has two
select inputs. S0 and S1. We have drawn separate selection lines for each
MUX for simplifying the circuit.

The two selection lines to the MUX along with the overall carry in (Cin)
bit determine the type of micro-operation to be performed by the circuit.
How?

This four-bit circuit takes an input of two 4-bit data values and a carry in
bit and outputs the four resultant data bits and a carry out bit. Please
note in the circuit that one input, that is x is fed directly to the full adder,

x
0
 c

i

Full
Adder

y
0
 c

0

4 x 1
MUX

(a)

0

1
2
3

S
1

S
0

o

I
0

Ī
0

0
1

 C
in

Data
Out bit

 x
0

 I
0

 0
 1

 D
0

x
1
 c

i

Full
Adder

y
1
 c

0

4 x 1
MUX

(b)

0

1
2
3

S
1

S
0

o

I
1

Ī
1

 x
1

 I
1

 0
 1

 D
1

x
2
 c

i

Full
Adder

y
2
 c

0

4 x 1
MUX

(c)

0

1
2
3

S
1

S
0

o

I
2

Ī
2

 x
2

 I
2

 0
 1

 D
2

x
3
 c

i

Full
Adder

y
3
 c

0

4 x 1
MUX

(d)

0

1
2
3

S
1

S
0

o

I
3

Ī
3

 x
3

 I
3

 0
 1

 D
3

 C
out

208

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

while the second input I is fed through a multiplexer. The S0 and S1

inputs to the multiplexer determines what type of y input is to be
selected for the full adder. Let us see how S0 and S1 determine the y
input through the multiplexer with the help of the following truth table.

S1 S0 Output of 4 x 1 MUX = y input Comments
 MUX MUX MUX MUX

 (a) (b) (c) (d)
0 0 I0 I1 I2 I3 I The data word I is input to Full Adder
0 1 Ī0 Ī1 Ī2 Ī3 Ī 1’s complement of I is input to Full Adder
1 0 0 0 0 0 0 Data word 0 is input to Full Adder.

1 1 1 1 1 1 FH Data Word 1111 is input to Full Adder.

Figure 81: Multiplexer inputs and output of the arithmetic circuit of Figure 80

Now let us discuss how by couping Cin input bit with the selection input
values we can obtain various micro-operations.

S1 S0 Cin x y Equivalent Equivalent Micro-operation
 Function Micro-operation name
0 0 0 x I F = x + I R ← R1 + R2 Add

0 0 1 x I F = x + I + I R ← R1 + R2 + 1 Add with carry

0 1 0 x Ī F = x + Ī R ← R1 + R 2 Subtract with borrow

0 1 1 x Ī F = x + (Ī + 1) R ← R 1
 + 2’s Subtract

Complement of R2

1 0 0 x 0 F = x R ← R1 Transfer

1 0 1 x 0 F = x + 1 R ← R1 + 1 Increment

1 1 0 x FH F = x + FH R ← R1 + (All is) Decrement

1 1 1 x FH F = x R ← R1 Transfer

Figure 82: Micro-operations which can be performed using the Arithmetic of
Figure 80

Some of the micro-operations given above need no explanation but let
us discuss few of them.

In subtract with borrow we have:

F = x + Ī
 Or F = (x – 1) + (Ī + 1)

(Ī + 1) is 2’s complement notation for – I
F = (x – 1) – I

209

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

This implies that we are taking a borrow out of x before subtraction of I.

In decrement x we have function as

F = x + FH

 Or F = x + (FH + 1) – 1

For this four bit words
FH = 1111

 + 0001
(1) 0000

 carry out (ignored)
Therefore, F = x + 0000 - 1

 ⇒ F = x – 1

3.4.3 Logic Micro-operations

Logic operations are basically the binary operations which are
performed on the string of bits stored in the registers. For a logic micro-
operation each bit of a register is treated as a variable. A logic
microoperation:

R1← R1.R2 specifies AND operation to be performed on the contents
of R1 and R2 and store the results in R1. For example, if R1 and R2 are
8 bits registers and

R1 contains 10010011 and
R2 contains 01010101

Then R1 will contain 00010001 after AND operation.

Some of the common logic micro-operations are AND, OR, NOT or
Complement. Exclusive OR, NOR, NAND.

Implementation of Logic Micro-operations

For implementation, let us first ask how many logic operations can be
performed with two binary variables. We can have four possible
combinations of the input of two variables. These are 00, 01, 10 and 11.
Now, for all these 4 input combinations we can have 24 = 16 output
combinations of a function. This implies that for two variables we can
have 16 logical operations. The above stated fact will be clearer by
going through the following figure.

210

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Output for Combination Equivalent Equivalent Micro-operation
 (xy) Boolean Micro-operation Name
00 01 10 11 Function Function

0 0 0 0 F0 F0 = 0 R ← 0 Clear
0 0 0 1 F1 F1 = x .y R ← R1Ù R2 AND

0 0 1 0 F2 F2 = x y R ← R1Ù R 2 R1

AND with

complement R2

0 0 1 1 F3 F3 = x R ← R1
Transfer of R1

0 1 0 0 F4 F4 = x .y R ← R 1⋀ R2 R2

AND with

complement R1

0 1 0 1 F5 F5 = y R ← R2
Transfer of R2

0 1 1 0 F6 F6 = xÅ y R ← R1 ⊕ R2
Exclusive OR
0 1 1 1 F7 F7 = x+y R ← R1 ⋁ R2 OR

1 0 0 0 F8 F8 = (x y)+ R ← R1⋁R2 NOR
1 0 0 1 F9 F9 = (x ⊕ y) R ← (R1⊕ R 2)
Exclusive NOR
1 0 1 0 F10 F10 = y R ← R 2
Complement of R2

1 0 1 1 F11 F11 = x + y R ← R1⋁ R 2 R1 OR
with

complement R2

1 1 0 0 F12 F12 = x R ← R 1
Complement of R1

1 1 0 1 F13 F13 = x + y R ← R ⋁R2 R2 OR
with

Complement R1

1 1 1 0 F14 F14 = (x. y) R ← (R1⋀R2) NAND
1 1 1 1 F15 F15 = 1 R ← All 1’s Set all
the bits to 1

Figure 83: Logic micro-operations on two inputs

211

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Please note that in the figure above the micro-operations are derived by
replacing the x and y of Boolean function with registers R1 and R2 on
each corresponding bit of the registers R1 and R2. Each of these bits will
be treated as binary variables.

In many computers only four: AND, OR, XOR (exclusive OR) and
complement micro-operations are implemented. Other 12 micro-
operations can be derived from these four micro-operations. Figure 84
shows one bit, that is the ith bit stage of the four logic operations. Please
note that the circuit consists of 4 gates and a 4 x 1 MUX. The ith bits of
register R1 and R2 are passed through the circuit. On the basis of
selection inputs S0 and S1 the desired micro-operation is obtained.

Figure 84: The logic diagram of one stage of logic circuit

Let us now discuss how these four micro-operations can be used in
implementing some of the important applications of manipulation of bits
of a word, such as, changing some bit values or deleting a group of bits.
We are assuming that the result of logic micro-operations goes back to
Register R1 and R2 contain the second operand.

We will play a trick with the manipulations we are performing. Let us
select 1010 as 4 bit data for register R1 and 1100 data for register R2.
Why? Because if you see the bit combinations of R1 and R2 they
represent the truth table entries 00, 01, 10 and 11. Thus the resultant of
the logical operation on them will tell us which logical micro-operation
is needed to be performed for that data manipulation. The following
table gives details on some of these operations.

212

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Operation name What is the operation?

Selective Set
1010 (R1)
1100 (R2)
1110

Sets those bits in Register
R1 for which the corresponding
R2 bit is 1.

The value 1110 suggests that a selective set can
be done using logic OR micro-operation. Please
note that all those bits of R1, for which we have 0
bit in R2 have remained unchanged. The bits in
R1 which need to be set selectively must have the
corresponding R2 bits as 1.

Selective Clear
1010 (R1)
1100 (R2)
0010

Clear those bits in register R1
for which corresponding
R2 bits are 1.

The R1 value after the operations is 0010 which
suggests that corresponding micro-operation is R1

← R1 AND R 2. The bits in R1 which need to be
cleared selectively must have corresponding R2

bits as 1.
Selective
Compliment
1010 (R1)
1100 (R2)
0110

Complement those bits in
register R1 for which
the corresponding R2 bits are 1.

The R1 value 0110 after the operation suggests
that the selective complement can be done using
exclusive – OR micro-operation. The bits in R1

which need to be complemented selectively must
have the corresponding R2 bit as 1.

Mask Operations
1010 (R1)
1100 (R2)
1000

Clears those bits in
Register R1 for which the
Corresponding R2 bits are 0.

The R1 value the operation is 1000 which
suggests that the mask operation can be
performed using AND micro-operation.
However, the bits in R1 which are cleared or
masked correspond to the bits on R2 having a 0
value. The mask operation is preferred over
selective clear as most of the computers provide
AND micro-operation while the micro-operation
required for implementing selective clear is
normally not provided in computers.

Insert : For inserting a new value in a bit. It is a two step
process:

213

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

step 1: Mask out the existing bit value
step 2: Insert the bit using OR micro-operation

with the bit which is to be inserted.

Example:

Say contents of R1 = 0011 1011
 Suppose, we want to insert 0110 in place
 of left most 0011 then:

 0011 1011 (R1 before)
 0000 1111 (R2 for masking)
 ______ Perform AND
operation (mask)
 0000 1011 (R1 after)
Now insert: 0110 0000 (R2 for insertion)
 ________ Perform OR
operation
 01101011 R1 after insert

Clear Clear all the bits. Implemented by taking
exclusive OR with the same number.
1101 (R1 before)
1101 (R2)
0000 (R1 after clear by using exclusive OR)
The exclusive OR, thus, can also be used for
checking whether two numbers are equal or not.

3.4.4 Shift Micro-operations

Shift is a useful operation which can be used for serial transfer of data.
Shift operations can also be used along with other (arithmetic, logic,
etc.) operations. For example, for implementing a multiply operation
arithmetic micro-operation (addition) can be used along with shift
operation. The shift operation may result in shifting the contents of a
register to the left or right. In a shift operation a bit of data is input at the
right most flip-flop while in shift right a bit of data is input at the left
most flip-flop. In both cases a bit of data enters the shift register.
Depending on what bit enters the register and where the shift out bit
goes, the shifts are classified in three types. These are:

• Logical

• Arithmetic and

• Circular

214

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

In logical shift the data entering by serial input to left most or right most
flip-flop (depending on right or left shift operations respectively) is a
zero (0).

If we connect the serial output of a shift register to its serial input then
we encounter a circular shift. In circular shift left or circular shift right
information is not lost, but is circulated.

In an arithmetic shift a signed binary number is shifted to the left or the
right. Thus, an arithmetic shift-left causes a number to be multiplied by
2; on the other hand a shift-right causes a division by 2. But as in
division or multiplication by 2 the sign of a number should not be
changed. Therefore, arithmetic shift must leave the sign bit unchanged.
We have already discussed shift operations in Unit 1.

Implementation of a Shift Micro-operation
As far as implementation of shift micro-operation is concerned it can be
implemented by a left-right shift register having parallel load
capabilities. Shift registers have already been discussed in Unit 2 of
Module 1 of this course.

SELF-ASSESSMENT EXERCISE 2

1. Draw a logic diagram for a 2 bit bus for 2 bit 2 register.
2. How is the memory read and write operation carried out using

system bus?
3. Are multiplication and division arithmetic micro-operations?
4. What will be the value for R2 operand if:

(a) Mask operation, clears register R1

(b) Bits 1011 0001 is to be inserted in an 8 bit R1 register

5. What are the differences between circular and logical shift micro-
operations?

3.4.5 Implementation of a Simple Arithmetic, Logic and Shift
Unit

As it is, we have discussed how all the micro-operations can be
implemented individually. If we combine all these circuits, somehow,
we can have a simple structure of ALU. In effect ALU is a
combinational circuit whose inputs are contents of specific registers.
The ALU performs the desired micro-operation as determined by
control signals on the input and places the results in an output or
destination register. The whole operation of ALU can be performed in a
single clock pulse as it is a combinational circuit. The shift operation

215

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

can be performed in a separate unit but sometimes it can be made as a
part of overall ALU. The following figure gives a simple structure of
one state of an ALU.

Figure 85: One stage of ALU with shift capacity

Please note that in this figure we have given reference to two previous
figures for arithmetic and logic circuits. This stage of ALU has two data
inputs: the ith bits of the registers to be manipulated. However, the i-1th

or i+1th bit is also fed for the case of shift micro-operation of only one
register. There are four selection lines which determine what micro-
operation (arithmetic, logic or shift) on the input. The Fi is the resultant
bit after a desired micro-operation. Let us see how the value of Fi

changes on the basis of the four select inputs. This is shown in Figure
86.

Please note that in Figure 86, arithmetic micro-operations have both S3

and S2 bits as zero. Input Ci is important for only arithmetic micro-
operations. For logic micro-operations S3S2 values are 01. The values 10
and 11 cause shift micro-operations. For this shift micro-operation S1

One stage of
arithmetic

circuit
(ith stage)

One stage
of Logic
Circuit

(ith stage)

4 x 1
MUX

0

1

2

3

F

C
i+1

A
i

S
3

S
2

S
1

S
0

 x
i

 y
i

x
i-1

x
i+1

 Shift left

Shift right

B
i

C
i

216

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

and S0 values and Ci values do not play any role. Now let us wind up our
discussions about the micro-operations with the discussion on
instruction execution using micro-instructions.

S3 S2 S1 S0 Ci F Micro-operation Name

0 0 0 0 0 F = x R ← R1 Transfer
0 0 0 0 1 F = x + 1 R ← R1 + 1 Increment
0 0 0 1 0 F = x + y R ← R1 + R2 Addition
0 0 0 1 1 F =x+y+1 R ← R1 + R2 + 1 Addition
Arithmetic
 with carry
Micro-operations
0 0 1 0 0 F = x + y R ← R1 + R 2 Subtract

 with borrow
0 0 1 0 1 F=x + (y +1) R ← R1-R2 Subtract
0 0 1 1 0 F=x-1 R ← R1- 1 Decrement
0 0 1 1 1 F=x R ← R1 Transfer

0 1 0 0 - F=x.y R ← R1⋀R2 AND
0 1 0 1 - F= x+y R ← R1⋁R2 OR Logic
0 1 1 0 - F= x ⊕ y R ← R1⊕R2 Exclusive OR
Micro-
0 1 1 1 - F= x R ← R 1 Complement
operations

1 0 - - - F=Shl(x) R ← Shl(R1) Shift left Shift
Micro-
1 1 - - - F=Shr(x) R ← Shr(R1) Shift right
operations

Figure 86: Micro-operation performed by ALU shown in Figure 85

3.5 Instruction Execution and Micro-Operations

Let us once again look at the instruction cycle since we have discussed
instructions, registers sets and micro-operations. A simple instruction
cycle will consist of the following steps:

• Fetching the instruction from the memory. This is also known as the
fetch-cycle

• Decoding the instruction
• Finding out the effective address of the operand
• Executing the instructions. Normally decoding is also performed in

an execution cycle
• Performing an interrupt cycle if an interrupt request is pending.

217

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Let us explain how these steps of instruction can be broken down to
micro-operations. For simplifying the discussion, let us assume that the
machine has the structure as shown in Figure 77. In addition, the
instruction set of the machine has only two addressing modes: direct and
indirect memory addresses.

An instruction cycle in such a machine may consist of four sub-cycles.
These four cycles are:

The Fetch Cycle: During this cycle the instruction which is to be
executed next is brought from the memory to the CPU. The steps
performed here are:

• The next instruction address is transferred from PC to MAR. MAR
← PC (Register transfer Micro-operation)

• MAR puts this signal on the address bus for main memory location
selection, whereas the control unit uses a memory read signal. The
result so obtained is placed on the data bus where it is accepted by
the data register DR. DR ← (M) (M) → represents a memory read).

• The PC is incremented by one memory word length (Memory-read
using bus. It may take more than one clock pulse depending on the
tcpu and tmem). PC ← PC + 1

This operation can be carried out in parallel to the above micro-
operation.

• The instruction so obtained is transferred to the Instruction Register.
IR ← DR.

Indirect Cycle: Once the instruction is fetched, the next step is to
determine whether it requires memory references or register references
or it is an input/output instruction. An input/output instruction can be
used for: a transfer of information from or to AC; or checking the status
of the I/O module; or enabling or disabling interrupts; or any other I/O
related activity. We will not give details on these micro-operations in
this unit. You can refer to further readings for details on these micro-
operations. These instructions can go directly to execute the cycle.

The register reference instructions such as complement AC, clear AC
etc. normally do not require any memory reference (assuming register
indirect addressing is not being used) and can directly go to the execute
cycle.

However, the memory reference instruction can use several addressing
modes, depending on the type of addressing the effective address (EA)

218

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

of operands in the memory are calculated. In certain cases, the
calculation of effective addresses requires one memory reference (for
example in the case of indirect addressing). In such cases a special cycle
which converts all the indirect addresses to direct addresses is required.
This cycle is called as an indirect cycle.

The steps involved in the direct cycle are:

• Transfer the address bus of instruction to the MAR. This transfer can
be achieved using DR only as DR and IR at this point of time contain
the same value.

MAR ← DR (Address)

• Once again a memory read operation as done in the fetch cycle is
performed and the desired address of the operand is obtained in the
DR.

DR ← (M)

• Transfer the address part so obtained in DR as the address part of
instruction.

IR (Address) ← DR (Address)

Thus, the purpose of the indirect cycle is to remove the indirection by
converting the indirect address to the direct address.

The “Execute” Cycle: After the fetch and indirect cycle (if required) an
instruction is ready to be executed. In the execute cycle the instruction
gets actually executed. An execution cycle depends on the opcode. A
different opcode will require different sequence of steps for the
execution cycle. Therefore, let us discuss a few examples of the
“execute” cycle of some simple instructions for the purpose of
identifying some of the steps needed during this cycle. Let us start the
discussions with a simple case of addition instruction. Suppose, we have
an instruction: Add A which adds the content of memory location A to
AC storing the result in AC. This instruction will be executed, following
the steps:

• Transfer the address portion (this address in symbolic form is A) of
the instruction to the MAR.

(Register transfer) MAR ← PC

• Read the memory location A and bring the operand in the DR.
(memory-read) DR ← (M)

• Add the DR with AC using ALU and bring the results back to AC.
(Add micro-operation) AC ← AC + DR

219

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Now let us try a complex instruction: a conditional jump instruction.
Suppose the instruction ISZ A increments A and skips the next
instruction if the contents of A have become zero. This is a complex
instruction and requires intermediate decision making. The steps
involved in this scheme are:

• Transfer the address portion of IR to the MAR.
MAR ← IR (Address) (Register transfer)

• Read memory as we have done earlier. DR contains the operand A.
DR ← (M) (Memory read)

• Transfer the contents of DR to AC as all the operation in the
machine can be performed on AC.

AC ← DR (Register transfer)

• Increment the AC.
AC ← AC + 1 (Increment micro-operation)

• Transfer the content of Ac to DR.
DR ← AC (Register transfer)

• Store the contents of DR into the location A using MAR. This
operation proceeds through as: Address bits are applied on address
bus by MAR. The data is put into the data bus. The control unit
providing control signal for memory write. Thus, resulting in a
memory write at a location specified by MAR.

(M) ← DR (Memory write)

• If the content of AC is zero then increment PC by one, thus skipping
the next instruction. If AC = 0 then PC ← PC + 1 (Increment on a
condition).

This operation can be performed in parallel to the memory write. Please
note in the last step a comparison and an action is taken as a single step.
This is possible as it is a simple comparison based on status flags.

Let us now take an example of a branching operation. Suppose, we are
using the first location of subroutine to store the return address then the
steps involved in this sub-routine call (CALL A) can be:

• Transfer the content of the address portion of IR to MAR.
MAR ← IR (Address) (Register Transfer)

• Transfer the return address, which is the content of PC to DR.

220

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

DR ← PC (Register transfer)
This micro-operation can be performed in parallel to the previous
micro-operation.

• Transfer the branch address that is A to program counter.
PC ← IR (address) (Register transfer)

• Store the DR using MAR. Thus, the return address is stored at
location A.

(M) ← DR (Memory write)

This micro-operation can be performed in parallel to the previous
micro-operation.

• Increment the PC as it contains address A, whereas the first
instruction of subroutine starts from the next location.

PC ← PC + 1 (Increment)

Thus, the execute cycle is not a predictable cycle.

The Interrupt Cycle: After the completion of the execute cycle, the
machine checks whether an interrupt that was enabled has occurred or
not. If an enabled interrupt has occurred then an interrupt cycle is
performed. The nature of the interrupt cycle varies from machine to
machine. However, let us discuss one of the simplest illustrations of
interrupt cycle events. Simple steps followed in interrupt cycle are:

• Transfer the contents of PC to DR as this is the return address from
the interrupt and it is to be saved.

DR ← PC (Register transfer)

• Place the address of location, where the return address is to be saved,
into MAR. Please note that this address is normally predetermined in
computers.

MAR ← Address of location for saving return addresses.

• Store the contents of the PC in the memory using DR and MAR.
(M) ← DR (Memory write)

• Transfer the address of the first instruction of the interrupt serving
routine to the PC.

PC ← service programs first instruction address interrupt
This micro-operation can be performed in parallel to the second
micro-operation.

221

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

After completing the interrupt cycle the CPU will fetch the next
instruction. During this time the CPU might be doing the interrupt
processing or executing the user program. Please note that each
instruction of an interrupt service routine is executed as an instruction in
an instruction cycle. Please note that the instruction cycle discussed here
involves many of the register transfer micro-operations. However, for an
advanced structure, this requirement will be reduced because of the
general nature of the registers.

Please note that for a complex machine the instruction cycle will not be
as easy as this. You can refer to further readings for more complex
instruction cycles.

4.0 CONCLUSION

In this unit, you have learnt the various possible structures of the CPU
and the register organisation of the CPU. Also, you have learnt about
various micro-operations. For better understanding an illustration of the
implementation of a simple arithmetic, logic and shift unit was given.

5.0 SUMMARY

In this unit, we have discussed in details the register organisation and a
simple structure of the CPU. After this we have discussed in details the
micro-operations and their implementation in hardware, using simple
logical circuits. While discussing micro-operations, our main emphasis
was on simple arithmetic, logic and shift micro-operations, in addition to
register transfer and memory transfer. However, the knowledge we have
acquired about register sets and conditional codes, helped in giving us
an idea, that conditional micro-operations can be implemented by
simply checking flags and conditional codes. This idea will be clearer
after we go through Units 3 and unit 4. We have completed the
discussions on this unit with providing a simple approach of instruction
execution with micro-operations. We will be using this approach for
discussing control unit details in Units 3 and unit 4. You can refer to
further readings for register organisation examples and for more details
on the micro-operations and instruction execution.

6.0 TUTOR -MARKED ASSIGNMENT

1. What is an address register?

222

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

2. A machine has 20 general purpose registers. How many bits will
be needed for the register address of this machine?

3. What is the advantage of having an independent set of
conditional codes?

4. Can we store status and control information in the memory?
State whether True or False:

5. An instruction cycle does not include an indirect cycle if the
operands are stored in the register.

True False

6. For variable length instructions, each instruction fetched is of
length = maximum instruction length/word size.

True False

7. Register transfer micro-operations are not needed for instruction
execution.

True False

8. Interrupt cycle results only in jumping to an interrupt service
routine. The actual processing of the instructions of this routine is
performed in the instruction cycle.

True False

7.0 REFERENCES/FURTHER READINGS

Mano, M. Morris (1993).Computer System Architecture (4th ed).
Prentice Hall of India.

Hayes, John, P.(1988). Computer Architecture and Organisation (2nd

ed). McGraw-Hill International.

Stallings William. Computer Organisation and Architecture (3rd ed).
Maxwell Macmillan International Editions.

Baron, Robert J. and Higbie Lee. Computer Architecture. Addison-
Wesley Publishing Company.

223

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

UNIT 3 ALU AND CONTROL UNIT ORGANISATION

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 ALU Organisation
3.1.1 A Simple ALU Organisation
3.1.2 Floating Point ALU
3.1.3 Arithmetic Processors

3.2 Control Unit Organisation
3.2.1 Functional Requirements of a Control Unit
3.2.2 Structure of Control Unit
3.2.3 An Illustration of Control
3.2.4 Hardware Control Unit

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

By now we have discussed the instruction sets and register organisation
followed by a discussion on the micro-operations and a simple
arithmetic logic unit circuit. In all the previous units, we have used a
term, “control signals”, without any definition. In this unit we will first
of all discuss the ALU organisation. We will also discuss the floating
point ALU and arithmetic co-processors which are commonly used for
floating point computations. This discussion will be followed by the
discussions on the control unit, a component which causes all the
components of the computer to behave effectively to achieve the basic
objective, i.e. program execution. The control unit causes all the things
to happen in the computer.

We will discuss the functions of a control unit, its structure, followed by
the hardwired type of control unit. We will introduce the micro-
programmed based control unit in the next unit. The details provided in
Units 3 and 4 about control units can be supplemented by the details
given in the further readings of the module.

224

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

2.0 OBJECTIVES

At the end of this unit, you will be able to:

• discuss the basic organisation of ALU;
• discuss the requirements of a floating point ALU;
• define the term “arithmetic coprocessor”;
• define a control unit and its functions;
• describe a simple control unit organization; and
• define a hardwire control unit.

3.0 MAIN CONTENT

3.1 ALU Organisation

As discussed earlier, an ALU performs the simple arithmetic-logic and
shift operations. The complexity of an ALU depends on the type of
instruction set which has been realised for it. The simple ALUs can be
constructed for fixed point numbers, on the other hand the floating point
arithmetic implementation require more complex control logic and data
processing capabilities, i.e. the hardware. Several micro-processor
families utilise only fixed point arithmetic capabilities in the ALUs and
for floating point arithmetic or other complex functions they may utilise
an auxiliary special purpose unit. This unit is called arithmetic co-
processor. Let us discuss all these in greater detail in this section.

3.1.1 A Simple ALU Organisation

An ALU consists of various circuits which are used for execution of
data processing micro-operations. But how are these ALU circuits are
used in conjunction with other registers and control units? The simplest
organisation in this respect for fixed a point ALU was suggested by John
von Neumman in his IAS computer design. The structure of this simple
organisation is given in Figure 87.

225

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Figure 87: The structure of a fixed point Arithmetic logic unit

The organisations have three one word registers- AC, MQ and DR-
which are used for data storage. Please note that the arithmetic, logic
circuits have two inputs and only one output. In the present case the two
inputs are AC and DR registers, while the output is AC register. AC and
MQ are generally organised as a single AC.MQ register. This register is
capable of left or right shift operations. Some of the micro-operations
which can be defined on this unit are:

Addition : AC ← AC + DR
Subtraction : AC ← AC – DR
AND : AC ← AC ⋀DR
OR : AC ← AC ⋁DR
Exclusive OR : AC ← AC ⊕ DR
NOT : AC ← AC

In this ALU organisation the multiplication and division are
implemented using shift-add/subtract operations. The MQ (Multiplier-
Quotient register) is a special register used for the implementation of
multiplication and division. We are not giving the details of how this
register can be used for implementing multiplication and division
algorithms. For more details on these algorithms please refer to further
readings. The MQ register stores the multiplier if multiplication is to be
performed or the quotient if division is to be performed. For
multiplication or division operations DR register stores the multiplicand
or divisor respectively. The result of multiplication or division on
applying certain algorithms can finally be obtained in an AC.MQ
register combination. These operations can be represented as:

Multiplication : AC.MQ ← DR x MQ
Division : AC.MQ ← MQ ÷ DR

Accumulator
Register
(AC)

Bus

Multiplier
Quotient
Register (MQ)

Data
Register (DR)

Parallel
Adder and
Other Logic
Circuits

Control
Unit

Flags

•
•
• Control

Signals

226

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

DR is another important register which is used for storing a second
operand. In fact, it acts as a buffer register which stores the data brought
from the memory for an instruction. In machines where we have general
purpose registers, for example Motorola 68020, any of the registers can
be utilised as AC, MQ and DR.

Bit Slice ALUs

It was feasible to manufacture smaller bits such as 4 or 8 bits fixed point
ALUs on a single IC chip. If these chips are designed as expandable
types then using these 4 or 8 bit ALU chips we can make 16, 32, 64 bit
array like circuits. These are called bit-slice ALUs. The basic advantage
of such ALUs is that they can be constructed for the desired word size.
More details on bit-slice ALUs can be obtained from further readings.

SELF ASSESSMENT EXERCISE 1

State whether True or False

1. A multiplication operation can be implemented as a logical
operation. True False

2. The multiplier-quotient register stores the remainder for a
division operation. True False

3. A word is processed sequentially on a bit slice ALU
True False

3.1.2 Floating Point ALU

A floating point ALU can implement floating point operations. But
before discussing such a unit, let us first discuss briefly the floating
point operations to get an idea of the requirements of such a unit.

Floating Point Arithmetic

Here is a brief introduction to floating point arithmetic and floating
number representation.

A binary floating point number is represented in a normalised form, that
is, the number is of the form ± 0. (Significand starting with a non-zero
bit) x 2± (Exponent Value). Figure 88 shows a format of a 32 bit floating point
number.

 0 1 8 9 31

227

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Sign Biased Exponent = 8 bits Significand = 23 bits
Sign bit is for the signficand.

Figure 88: A floating pointnumber representation

The characteristics of a typical floating point representation of 32 bit in
the above figure are:

- The leftmost bit is the sign bit of the number
- Mantissa or significand should be in normalised form
- The base of the number is 2
- A value of 128 is added to the exponent. (Why?) This is called a

bias.

A normal exponent of 8-bit normally can represent exponent values as 0
to 255. However, as we are adding 128 in the biased exponent, thus, the
actual exponent values represented will be – 128 to 127.
Now, let us define the range which a normalised mantissa can represent.
As for a normalised mantissa the leftmost bit cannot be zero, therefore,
it has to be 1. Thus, it is not necessary to store this first bit and it is
assumed implicitly for the number. Therefore, a 23-bit mantissa can
represent 23 + 1 = 24-bit significand.

Minimum value of the significand:

The implicit first bit as 1 followed by 23 zero’s

0.1000 0000 0000 0000 0000 0000

Decimal equivalent = 1 x 2-1 = 0.5

Maximum value of the significand:

The implicit first bit 1 followed by 23 one’s

0.1111 1111 1111 1111 1111 1111

Decimal equivalent:
 Binary: 0.1111 1111 1111 1111 1111 1111
 + 0.0000 0000 0000 0000 0000 0000 = 2-24

 1.0000 0000 0000 0000 0000 0000 = 1
 So decimal equivalent of mantissa = (1 – 2-24)

Therefore, in normalised mantissa and biased exponent form, the format
of Figure 88 can represent a binary floating point number in the range:

228

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Lowest negative number: Maximum significand and maximum
exponent

 = - (1 – 2-24) x 2127

Highest negative number: Minimum significand and Minimum exponent
 = - 0.5 x 2-128

Lowest positive number: 0.5 x 10-128

Highest positive number: (1-2-24) x 10127

 -(1-2-24) x 2127 -0.5 x 2-128 +0.5 x 2-128 (1-2-24) x 2127

 Zero

Figure 89: Binary floating point number range for a 32 bit format

In floating point numbers, the basic trade off is between the range of the
numbers and accuracy or precision of numbers. If in a 32 bit format we
increase the exponent bits, the range can be increased, however the
accuracy of numbers will go down as significand will become smaller.
Let us examine an example which will clarify the term precision.
Suppose we have one bit binary significand then we can represent only
0.10 and 0.11 in a normalised form. The values such as 0.101, 0.1011
and so on can not be represented as complete numbers. Either they have
to be approximated or truncated and will be represented as either 0.10 or
0.11. Thus, it will create an error. The higher the number of bits in
significand the better the precision will be.

In floating point numbers for increasing both precision and range more
numbers of bits are needed. This can be achieved by using rhe double
precision format which is normally of 64 bits.

Institute of Electrical and Electronics Engineers (IEEE), a society which
has created a lot of standards regarding various aspects of computer, has
created IEEE standard 754 for floating point representations and
arithmetic. The basic objective of developing this standard was to
facilitate the portability of programs from one computer to another. This
standard has resulted in the development of some standard numerical
capabilities in various micro-processors. This representation is shown in
Figure 90.
 0 1 8 9 31

S Biased
Exponent (E)

 Significand
 (N)

 Single precision = 32 bits

N
eg

at
iv

e
un

de
rf

lo
w

Po
si

tiv
e

un
de

rf
lo

w

Negative
overflow

Positive
numbers
expressible

Negative
numbers
expressible

Positive
overflow

• Implied base = 2
• Significand is in

normalised form
i.e. the first bit is
implied and is 1

• S is sign bit

229

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

 0 1 11 12 63

S Biased Exponent
(E)

Significand
(N)

 Double precision = 64 bits

Figure90: IEEE Standard 754 format

Figure 91 gives the floating point numbers specified by the IEEE
standard 754.

Single Precision Numbers (32 bits)

Exponent (E) Significand (N) Value/Comments

255 Not equal to 0 Do not represent a number
255 0 - or + ∞ depending on sign bit
0<E<255 Any + (1.N) 2E-127

For example, if S is zero that is the
positive number;
N = 101 (rest 20 zeros) and E = 207
then the number is = +(1.101)2207-127

= + 1.101x280

0 Not equal to 0 + (0.N)2-126

0 0 + 0 depending on the sign bit.

Double Precision Numbers (64 bits)

Exponent (E) Significand (N) Value / Comments

2047 Not equal to 0 Do not represent a number
2047 0 - or + ∞ depending on the sign bit
0 < E < 2047 Any + (1.N) 2E-1023

0 Not equal to 0 + (0.N)2-1022

0 0 + 0 depending on the sign bit.

Figure 91: Values of floating point numbers as per IEEE standard 754

Please note that IEEE standard 754 specifies plus zero and minus zero
and plus infinity and minus infinity. Floating point arithmetic is stickier
than fixed point arithmetic. For floating point addition and subtraction
we have to:

• Check whether a typical operand is zero

230

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

• Align the significand such that both significands have same exponent
• Add or subtract the signficand only and finally
• Ensure the significand is normalised again

These operations can be represented as:

x + y = (Nx x 2Ex – Ey + Ny) x 2Ey

And x – y = (Nx x 2Ex – Ey – Ny) x 2Ey

Here, the assumption is that exponent of x (Ex) is greater than exponent
by y (Ey). Nx and Ny represent mantissa of x and y respectively.

While for multiplication and division operations the significand needs to
be multiplied or divided respectively however, the exponent is to be
added or to be subtracted respectively. In case we are using a bias of 128
or any other bias for exponent then on addition of exponents since both
the exponents have bias, the bias gets doubled. Therefore, we must
subtract the bias from the exponent on addition of exponents. However,
a bias is to be added if we are subtracting the exponents. The division
and multiplication operation can be represented as:

x × y = (Nx × Ny) × 2Ex + Ey

 x ÷ y = (Nx ÷ Ny) × 2Ex – Ey

For more details on floating point arithmetic you can refer to the further
readings.

Floating Point ALU

A floating point ALU is implemented using two loosely coupled fixed
point arithmetic circuits. Figure 92 shows a simple structure of such a
unit.

Exponent
Unit

Siginificand/
Mantissa

Unit

Data bus

Control Unit

231

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Figure 92: A floating point arithmetic unit

The two units can be termed as exponent and mantissa units. The
mantissa unit has to perform all the four arithmetic operations on the
mantissa. Therefore, a general purpose fixed-point mantissa unit may be
used for this purpose. However, for the exponent unit we only need
circuits to add, subtract and compare the exponents. Thus, a simple
circuit containing these functions will be sufficient. The comparison can
be performed by a comparator or by simple subtraction operation.

The implementation details of floating point arithmetic on floating point
ALUs can be seen from the further readings.

3.1.3 Arithmetic Processors

The very first question in this regard is: “What is an arithmetic
processor?” and, “What is the need for arithmetic processors”. A typical
CPU needs most of the control and data processing hardware for
implementing non-arithmetic functions. As the hardware costs are
directly related to chip area, a floating point circuit being complex in
nature is costly to implement. They are normally not included in the
instruction set of a CPU. In such systems, floating point operations are
implemented by using software routines. This implementation of
floating point arithmetic is definitely slower than the hardware
implementation. Now, the question is whether a processor can be
constructed only for arithmetic operations. A processor if devoted
exclusively to arithmetic functions can be used to implement a full range
of arithmetic functions in the hardware at a relatively low cost. This can
be done in a single IC. Thus, a special purpose arithmetic processor, for
performing only the arithmetic operations, can be constructed.
Although, this processor physically is separate, yet it will be utilised by
the CPU to execute a class of arithmetic instructions. Please note that in
the absence of arithmetic processors, these instructions may be executed
using the slower software routines by the CPU itself. Thus, this auxiliary
processor enhances the speed of execution of programs having lot of
complex arithmetic computations. In addition, it also helps in reducing
program complexity, as it provides more instructions to a machine.
Some of the instructions which can be assigned to arithmetic processors
can be: add, subtract, multiply and divide fixed and floating point

232

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

numbers of various lengths, exponentiation; logarithms and
trigonometric functions.

How can this arithmetic processor be connected to the CPU? Two
mechanisms are used for connecting an arithmetic processor to the CPU.

If an arithmetic processor is treated as one of the I/O or peripheral unit
then it is known as a peripheral processor. The CPU sends data and
instruction to the peripheral processor which performs the required
operations on the data and communicates the results back to the CPU.
Peripheral processors have several registers to communicate with the
CPU. These registers may be addressed by the CPU as input/output
register addresses. The CPU and peripheral processors are normally
quite independent and communicate with each other by exchange of
information using data transfer instructions. This data transfer
instructions must be specific instructions in the CPU. This type of
connection is called a loosely coupled processor.

On the other hand if the arithmetic processor has a register and
instruction set which can be considered an extension of the CPU
registers and an instruction set then it is called a tightly coupled
processor. Here the CPU reserves a special subtract of code for the
arithmetic processor. In such a system the instructions meant for the
arithmetic processor are fetched by the CPU and decoded jointly by the
CPU and the arithmetic processor, and finally executed by the arithmetic
processor. Thus, these processors can be considered a logical extension
of the CPU. Such attached arithmetic processors are termed as co-
processors. Let us discuss them in more details.

The Peripheral Processor

An example of one such arithmetic processor is the AMD 9511/12 one
chip floating point processor. The advantage of this processor is that it
can be utilised with any CPU, while the disadvantages are that it needs
explicitly programmed and slow communication links with the CPU.
These processors can be utilised as given in the following figure.

Performe
r

Instructions executed Processing Details

1. CPU Data-transfer
instructions

These instructions help in
sending a set of input
operands and commands,
e.g. arithmetic operations,

233

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

to the peripheral processor.
2. Peripheral

Processor
Decodes & executes the
command received
from CPU using the
operands.

Results are generated and
placed in registers directly
accessible to the CPU

3. CPU Checks status by
polling a status register
or by receiving
interrupt from the
peripheral processor.

It determines whether the
peripheral processor has
completed the task.

4. CPU Data transfer
instruction is executed

CPU obtains the results
from the peripheral
processor by executing this
data transfer instruction.

Figure 93: Communication between the CPU and the peripheral processor

In certain implementations the CPU has to wait for the peripheral
processor to finish, therefore, it remains idle for that time.

Coprocessors

Coprocessors, unlike peripheral processors, are tailor made for a
particular family of CPUs. Normally, each CPU is designed to have a
coprocessor interface. The control signal circuit of the CPU is designed
for the interface beforehand. Special instructions are earmarked for
execution by the coprocessors. These coprocessors instructions can
appear in any assembly or machine language program similar to any
other instruction. The CPU hardware takes care of the instruction
execution by the coprocessors. The coprocessor instruction can be
executed even if a coprocessor is not present, by already stored software
routines at pre-determined memory locations. If a coprocessor is not
attached, then the CPU issues a software (coprocessor) trap which
executes a desired software location routine for the instruction. Thus,
without changing the source or object code we can execute the
coprocessor instructions by the CPU even if the coprocessor is not
present. Figure 94 shows a general structure, along with some of the
control lines between the CPU and the coprocessor.

C
PU

Decoder

A
rit

hm
et

ic
C

op
ro

ce
ss

or

∶

Select

Busy Signal

Interrupt Request

Synchronisation bits234

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Structure Figure 94: General of CPU-Co-processor

As both processors are directly linked, they can be synchronised easily.
The control lines between them are few. The data transfer between the
processors can take place through the system bus. The CPU may act as
the master of coprocessor. The registers of coprocessor can be written
into or read by the CPU directly as they do for the main memory.
Sometimes it is useful to allow the coprocessor to control the bus as in
such cases it can control data transfer from memory or it can initiate data
transfer to the CPU.

In case the coprocessor can control the system bus, then it is allowed to
decode and identify the instructions at the same time the CPU is doing
so. The coprocessor then can execute the instructions meant for it
directly. This type of approach is followed in 8087 arithmetic
coprocessor of 8086; while in some CPUs, only the CPU can decode the
coprocessor instructions. This is the case for the 68881 floating point
coprocessor of Motorola 68000 series. A CPU can employ more than
one different coprocessor.

3.2 Control Unit Organisation

Having discussed the ALU, we will move on to a very important
component of the CPU i.e. the control unit.

The basic responsibilities of the control unit are to control:

235

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

• data exchange of the CPU with the memory or I/O modules
• internal operations in the CPU such as:

• moving data between registers (register transfer operations)
• making ALU to perform a particular operation on the data
• regulating other internal operations.

But how does a control unit control the above operations? What are the
functional requirements of the control unit? What is its structure? Let us
explore answers to these questions in the subsequent sub-sections.

3.2.1 Functional Requirements of a Control Unit

Let us first try to define the functions which a control unit must perform
in order to get the things to happen. However in order to define the
functions of a control unit, one must know what resources and means it
has at its disposal. A control unit must know about the:

1. basic components of the CPU
2. micro-operation the CPU performs

The CPU of a computer consists of the following basic function
components:

• The Arithmetic-Logic Unit (ALU): which performs the basic
arithmetical and logical operations?

• Registers: which are used for information storage within the CPU.

• Internal Data Paths: These paths are useful for moving the data
between two registers or between a register and the ALU.

• External Data Paths: The roles of these data paths are normally to
link the CPU registers with the memory or I/O modules. This role is
normally fulfilled by the system bus.

• The Control Unit: which causes all the operations to happen in the
CPU?

The micro-operations performed by the CPU can be classified as:

• Micro-operations for register to register data transfer
• Micro-operations for register to external interface (i.e. in most cases

system bus data transfer)
• Micro-operations for external interface to register data transfer

236

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

• Micro-operations for performing arithmetic and logic operations.
These micro-operations involve the use of registers for input and
output.

The basic responsibility of the control unit is the fact that the control
unit must be able to guide the various components of the CPU to
perform a specific sequence of micro-operations to achieve the
execution of an instruction.

What are the functions which a control unit performs to make an
instruction execution feasible? The instruction execution is achieved by
executing micro-operations in a specific sequence. For different
instructions this sequence may be different. Thus, the control unit must
perform two basic functions:

• Cause the execution of a micro-operation.
• Enable the CPU to execute a proper sequence of micro-operations

which is determined by the instruction to be executed.

But how are these two tasks achieved? The control unit generates
control signals which in turn are responsible for achieving both tasks.
But how are these control signals generated? We will answer this
question in the later sections. But first let us discuss a simple structure of
a control unit.

3.2.2 The Structure of Control Unit

A control unit has a set of input values on the basis of which it produces
an output control signal which in turn performs micro-operations. These
output signals control the execution of a program. A general model of a
control unit is shown in Figure 95.

Instruction
Register

CONTROL
UNIT

•
•

•
•

Various
Flags
of ALU
operation

Control Signal within the CPU
for:
• Register to Regist transfer
• ALU operation

Control Signals to
Control Bus

Control
Bus

Control signals from the control bus

237

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Figure 95: A general model of the control unit

In the model given above the control unit is a black box which has
certain inputs and outputs.

The inputs to the control unit are:

• The Master Clock Signal: This signal causes micro-operations to be
performed. In a single clock cycle either a single or a set of
simultaneous micro-operations can be performed. The time taken in
performing a single micro-operation is also called the processor
cycle time in some machines. However, some micro-operations, such
as the memory read, may require more than one clock cycle if tmem/
tcpu is greater than one.

• The Instruction Register: The operation code (opcode) which
normally includes the addressing mode bits of the instruction helps
in determining the various cycles to be performed and hence
determines the related micro-operations which are needed to be
performed.

• Flags: Flags are used by the control unit for determining the status of
the CPU. The outcomes of a previous operation on ALU can also be
detected using flags. For example, a zero flag will help the control
unit while executing an instruction ISZ (skip the next instruction if
zero flag is set). In case the zero flag is set then the control unit will
issue control signals which will cause program counter (PC) to be
incremented by 1. In effect, skipping the instruction, which the CPU
was supposed to execute next.

• Control Signals from the Control Bus: Some of the control signals
are provided for the control unit through the control bus. These
signals are issued from outside the CPU. Some of these signals are
interrupt signals and acknowledgment signals.

Master clock

238

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

On the basis of the input signals the control unit activates certain output
signals which in turn are responsible for the execution of an instruction.
These output control signals are:

• Control Signals which are required within the CPU: These
control signals cause two types of micro-operations, viz. for data
transfer from one register to another; and for performing an ALU
operation using input and output registers.

• Control Signals to the Control Bus: The basic purpose of these
control signals is to bring or to transfer data from the CPU register to
the memory or I/O modules. These control signals are issued on the
control bus to activate a data path.

Now, let us discuss the requirements from such a unit. A prime
requirement for the control unit is that it must know all the instructions
to be executed and also the nature of the results along with the
indication of possible errors. All this is achieved with the help of flags,
opcodes, clock and some control signals to itself.

A control unit contains a clock portion, whose job is to provide clock
pulses. This clock signal of the control unit is used for measuring the
timing of the micro-operations. In general, the timing signals from the
control unit are kept sufficiently long keeping in mind the propogational
delays of signals within the CPU along various data paths. As within the
same instruction cycle, different control signals are generated at
different times for performing different micro-operations, therefore, a
counter can be utilised with the clock to keep the count. However, at the
end of each instruction cycle the counter should be reset to the initial
condition. Thus, the clock to the control unit must provide counted
timing signals. Examples, of the functionality of control units along with
timing diagrams are given in the further readings. We will not discuss
the timing diagrams in this module.

How are these control signals applied to achieve the particular
operation? The control signals are applied directly as the binary inputs
to the logic gates of the logic circuits. Do you remember the enable
input defined in Unit 2 of Module-1 or the select inputs of multiplexers?
All these inputs are the control signals which are applied to select a
circuit (in case of enable) or a path (in case of MUX) or any other
operation in the logical circuits.
One of the responsibilities of the control unit is to keep track of the
instruction cycle. Therefore, the control unit can determine when which
micro-operation is to be performed. Let us discuss this with the help of
an example in the following subsection.

239

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

3.2.3 An Illustration of Control

Suppose we have an accumulator machine with the following registers
(in the usual functions they do)

• Accumulator (AC)
• Instruction Register (IR)
• The Program Counter (PC)
• Memory Address Register (MAR)
• Data Register (DR)

Figure 96 is a simple representation of such a machine with the
requirement of control signals.

Figure 96: A typical CPU with some control signals

The register transfers for this machine are:

Register Input
from

Output
to

Comments

AC ALU, DR DR, AC receives and sends data to DR or

240

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

ALU to ALU.
IR DR CU Instruction register receives

instruction fetched in DR. The op-
code of the instruction is used by the
control unit for generating control
signals for instruction execution.

PC DR MAR,
DR

Program counter is loaded by the
address supplied by DR. However, it
can send the next instruction address
to MAR; or it can send the current
address for storage, through DR in
the case of a subroutine call.

MAR. DR, PC System
Bus

MAR stores the address of the
memory unit or the I/O module
which is in turn passed on to the
system bus. It can be loaded by PC
or DR

DR System
Bus
AC

System
Bus,
ALU,
AC, IR,
MAR,
PC

DR can receive data on system bus
from memory unit or I/O module or
data for storage from AC. However,
it can output data to system bus for
storage or to ALU as second
operand or to AC as first operand or
MAR in case of address or to the
program counter when it contains
the address of a called subroutine.

Thus, the various sets of data transfer for the machine in Figure 96 are:
(Source → Destination)

AC → ALU : AC → DR : DR → AC : ALU → AC;
IR → CU : DR → IR :
PC → MAR : PC → DR : DR → PC :
MAR → (BUS) : (PC → MAR) : DR → MAR :
DR → (BUS) : DR → ALU : (DR → AC) : (DR → IR);
(DR → MAR) : (DR → PC) : BUS → DR : (AC →
DR).

Each of the above transfers requires a control signal. However, the data
transfer entries given in branches are occurring again. Thus, we require
14 control signals as shown in Figure 10. A connection line in this figure
does not indicate a control signal but it indicates a data path which exists
between the two components. The direction of the arrow indicates the
direction of data transfer. All the keys on the data transfer paths are
triggered by a control signal which is marked there. Please note that for
purposes of simplicity we have not shown how these control signals

241

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

come from the control unit. However, you must keep in mind that all
these fourteen control signals are only a subset of control signals
generated by the control unit. These control signals can go to their
separate destinations. The control signals which are normally needed for
different destinations can be categorised as:

• Control signals activating a data path: These control signals open a
gate temporarily. This allows a flow of data on the path controlled by
that gate. Some of these control signals are shown in the figure given
above.

• Control signals activating a function/operation of ALU: These
signals open various logic devices and gates inside the ALU. These
signals are shown as a group of signals in Figure 96.

• Control signals activating the system bus: These control signals may
activate a control line for a simple add instruction, where indirect
addressing has been used.

Fetch Cycle

Timi
ng

Micro-operation Comment Control Signals
needed

t1 MAR ← PC Memory address
register is assigned
the content of the
programme
counter.

C6

t2 DR ← (BUS)

PC ← PC + 1

Read the contents.
An additional
control signal (not
shown here) is
needed to active
memory read.

Increment program
 counter

C13 and control
signal for memory
read. MAR
address input is
applied on the
system bus.

Control signal for
incrementing PC

t3 IR ← DR Transfer the
fetched instruction
into instruction
register.

C5.

Indirect Cycle

t1 MAR ← IR
 (ADDRESS)

Assign address
from the
instruction register

C10

242

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

to MAR. This
content can be
acquired from DR
as it stores same
contents as of IR at
present.

t2 DR ← (BUS) - C13 and control signal
for memory read.
MAR address input is
applied on the system
bus.

t3 IR (ADDRESS ← DR
(ADDRESS)

C5

Execute Cycle

t1 MAR ← IR (ADDRESS) C10

t2 DR ← (BUS) C13 and control signal
for memory read and
address is applied on
the BUS.

t3 AC ← AC + DR Control signals for
performing this
operation along with
C0, C3 and C12

Interrupt Cycle

t1 DR ← PC Store the
content of PC
in the
memory at an
address
specified by
machine

C7

t2 MAR ←
ADDRESS
 OF
 LOCATI
ON
 OF
 STORING
 RETURN
 ADDRESS

Control signals for
performing these
operations.

PC ← Address
of the
interrupt
service

243

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

program’s
 first
instruction

t3 (BUS) ← DR Save the DR
contents

C11 and control signal
which enables
memory write

 But do we have an internal CPU organisation as shown in Figure 96?
Such an organisation will have a large range of data paths hence it will
be very complex if more registers are there in the CPU. A simple yet
effective solution in such a case will be to use an internal data bus
within CPU. This type of organisation is used in microprocessors, such
as INTEL 8085. The organisation of the machine which we have shown
in Figure 96, if developed with the internal data bus will be very much
simplified. This is shown in Figure 97.

Figure 97: A bus based CPU with same control signals

In the case above, for each register one input and one output line is
controlled by a gate and is connected to the data bus (except for IR
where we have only input). The required data transfer can be initiated by
activating two gates (one output and one input). We have provided two
temporary storage with the ALU; otherwise the output of the ALU will
go back to its input, as both input and output gates of the ALU are open
for processing, which is undesirable.

The advantages of using internal bus arrangements are:

• Simple data path interconnections which mean easy layout for
control

• Saving of CPU space as inter-register connection space is minimised.
This is very useful in the case of microprocessors.

244

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

The next question about the control unit is: How can we implement a
control unit such that it generates the necessary control signals? The
control units are implemented using two general approaches. These are
called:

 Hardwired control unit, and

 Micro-programmed control unit

We will give only a very brief account of hardwired control units in this
unit. The micro-programmed control unit is discussed in details in the
next unit of this module.

3.2.4 The Hardwired Control Unit

A hardwired control unit is implemented as logic circuits in the
hardware. The inputs to control unit are: the instruction register, flags,
timing signals and control bus signals. On the basis of these inputs the
output signal sequences are generated. Thus, output control signals are
functions of inputs. Thus, we can derive a logical function for each
control signal. This, however, will be very complicated if we have a
large control unit. The implementation of all the combinational circuits
may be very difficult. Therefore, a new approach microprogramming
was used. This approach will be discussed in the next unit.

4.0 CONCLUSION

This unit has discussed two basic organisations of the ALU and the
control unit. To understand these better you were also taken through the
structure of the control unit, types of control unit, classes of ALU such
as floating point ALU, arithmetic processors, etc.

5.0 SUMMARY

In this unit, we have discussed two main components of the CPU, the
ALU and the control unit. We have explained the concepts of the basic
ALU structure, floating point ALUs and coprocessors. Coprocessors, in
today’s computers, are used widely and help in implementing graphical
and other computation intensive applications. As far as control unit is
concerned, we have discussed a simple structure of a control unit along
with an example. More details on these aspects with examples can be
seen from the further readings. In this unit we have also introduced the
concept of a hardwired control unit. A microprogrammed control unit
which is more commonly used is the topic of the next unit.

245

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

6.0 TUTOR-MARKED ASSIGNMENT

1. Find out the range of a number of the following floating point
representation:

Base → 2
Sign → 1 bit
Exponent → 4 bits. Bias of 8 is used
Significand → 3 bits

Assume the normalised mantissa representation

2. State whether True or False

(a) A double precision number is used when accuracy requirements
are higher. True False

(b) A zero cannot be represented in IEEE standard 754 formats.
True False

(c) On multiplication of floating point numbers, the value of bias
needs to be subtracted after adding the two exponents.

True False
(d) The exponent unit of floating point ALU must perform all the

four arithmetical operations. True False

3. What is an arithmetic processor? Compare the co-processor with
the peripheral processor.

4. What are the inputs to the control unit?
5. How does a control unit control the instruction cycle?
6. What is the importance of an internal data bus?
7. What is a hardwired control unit?

7.0 REFERENCES/FURTHER READINGS

Mano, M. Morris (1993).Computer System Architecture (3rd ed).
Prentice Hall of India.

Hayes, John P. (1988). Computer Architecture and Organisation (2nd

ed). McGraw-Hill International Editions,

Stallings, William. Computer Organisation and Architecture (3rd ed).
Maxwell Macmillan International Editions.

Baron, Robert J. and Higbie Lee. Computer Architecture. Addison-
Wesley Publishing Company.

246

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Tanenbaum, Andrew S. (1993).Structural Computer Organisation (3rd

ed). Prentice Hall of India.

247

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

UNIT 4 MICROPROGRAMMED CONTROL UNIT

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 What is a Micro-Programmed Control Unit?
3.2 Wikes Control
3.3 The Microinstruction

3.3.1 Types of Microinstruction
3.3.2 Control Memory Organisation
3.1.3 Microinstruction

3.4 A Simple Structure of Control Unit
3.5 Microinstruction Sequencing
3.6 Microinstruction Execution
3.7 Machine Startup

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This is the last unit of the module on CPU organisation. We have
already discussed in the earlier units, the instruction sets, register set,
ALU organisation and control unit organisation. In this unit, we will
discuss the microprogrammed control unit, which is quite popular in
modern computers because of flexibility by Wikes control unit. We will
also discuss microinstruction and a simple structure of such a unit.
Finally, we will visit the concepts involved in microinstruction
sequencing and execution. Finally, we will examine the aspects of a
machine startup.

The discussions given in this unit are at a conceptual level. You can
however refer to the further readings for implementation-based
examples of the microprogrammed control unit.

2.0 OBJECTIVES

At the end of this unit you should be able to:

• define the microprogrammed control unit;
• define the term “microinstruction”;
• identify types and formats microinstruction;
• discuss the control memory;

248

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

• explain the working of a microprogrammed control unit;
• define the microinstruction addressing;
• explain microinstruction; and
• identify the process of a machine startup.

3.0 MAIN CONTENT

3.1 What is a Microprogrammed Control Unit?

As discussed earlier in Unit 3, the control unit seems to be a very simple
unit; however, if we try to implement such a unit through hardware, we
are bound to face problems. The hardwired control unit lacks flexibility
in design. In addition, it is quite difficult to design, test and implement
as in many computers the number of control lines is in hundreds.

Is there any alternate approach of implementing a control unit? What
about a programming approach for implementing the control unit? Can
we somehow implement the sequence of execution of micro-operations
through a program? Such a program will consist of instructions, with
each instruction describing:

• one or more micro-operations to be executed, and
• the information about the microinstruction to be executed next.

Such an instruction is known as a microinstruction and such a program
is known as a microprogram or firmware. The firmware is a mid-way
between hardware and software. Firmware, in comparison to hardware
is easier to design, whereas in comparison to software, it is difficult to
write. A control unit provides a set of control signal lines, distributed
throughout the CPU, with each of the lines representing a zero or one.
Therefore, a microinstruction is made responsible for generating control
signals for desired control lines to implement a desired micro-operation.
For example, to implement a register to register transfer operation,
output of the source register and input of destination register need to be
enabled by the respective control signal lines via a microinstruction.
Thus, each microinstruction can generate a set of control signals on the
control lines which inturn implement one or more micro-operationss. A
set of control signals with each bit representing a single control line is
called a control word.

Thus, a microinstruction can cause execution of one or more micro-
operations, and a sequence of microinstructions, that is microprogram,
can cause execution of an instruction. The microprograms are mostly
stored in read only memory, known as control store or control memory,
as alterations in the control store are generally not required after the
production of the control unit. What about having read-write control

249

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

memory? In such a memory, the instruction set of a computer can be
changed by simply modifying the microprograms for various op-codes.
Such a computer can be tailored for specific applications on the basis of
microprograms. A computer which has a writable control memory is
said to be “dynamically microprogrammable” as the content of the
control memory for such a computer can be changed under program
control. The control memory is a word organised unit with each word
representing a microinstruction. Please note that the computers which
have microprogrammed control units, have two separate memories- a
main memory and the control memory.

How will the microprogrammed control unit control the instruction
execution?

Well, the first point to mention here is that each computer instruction
fetched from the main memory leads to the initiation of a series of
microinstructions from the control memory. These microinstructions
issue micro-orders to the CPU for an instruction fetch, the calculation of
the effective address of operands, and the execution of the instruction
and then prepare it again for fetching the next instruction from the main
memory. Thus, for each instruction, one must determine the series of
microinstructions which will be needed to get that instruction executed.
This series of microinstruction will be different for different
instructions.

Advantage of the Microprogrammed Control Unit

Since the microprograms can be changed relatively easily,
microprogrammed control units are very flexible in comparison to
hardwired control units.

Disadvantages

• Hardware costs more because of the control memory and its access
circuitry.

• This is slower than the hardwired control unit because the
microinstructions are to be fetched from the control memory which
is time consuming.

But these disadvantages are gradually getting phased out as the new
memory technologies are cheap and high-speed memories are gradually
becoming common.

250

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

3.2 Wilkes Control

In 1951, Wikes had proposed the use of microprogram control unit. In
Wikes design a microinstruction has two major components:

• The control field, and

• The address field

The control field indicates the control lines which are to be activated and
the address field provides the address of the next microinstruction to be
executed. Figure 98 shows a simple example of Wikes control unit
design.

Figure 98: Wikes control unit

The control memory is this control is organised as a program logic array
like a martrix made of diodes, a simple electronic device. This is a
partial matrix and it consists of two components- the control signals and
the address of the next microinstruction. The control memory access
register (CMAR) can be loaded by the instruction code register or by the
address field of the control matrix. The control memory address register
on taking an input from the instruction register provides a 3-bit address
to the 3 x 8 decoder. This is an entry point address to the control
memory. On the basis of this address, the decoder activates one of the
eight output lines (horizontal). This activated line in turn generates
control signals and the address of the next microinstruction to be
executed. This address is once again fed to the CMAR, resulting in the
activation of another control line and address field. This cycle is
repeated till the execution of the instruction is achieved. For example, in

251

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

the given figure, the instruction register’s op-code 000 causes the
decoder to have an entry address for a machine instruction in the control
memory at line 000. The decoder activates the lines in the sequence
given below: (Please note that this is valid only for the diagram given
here which is only an indicative example and not a complete Wikes
control unit).

Decode line
activated

Control Signals
generated

Address of next
microinstruction

000 C1, C3, C5, C7 001
001 C2, C4, C5 010
010 C1, C3 011
011 C2, C5 ?

Please note the “?” above. How do we get the address of the next
microinstructions to be executed on activating the decode line 011? We
have two possible options in the Figure 98. A typical requirement of a
control unit is that it must respond to an external control condition.
Thus, making conditional jumps possible within a microprogram. This is
demonstrated in the Wikes control of Figure 98. The external condition
switch causes the control unit to follow one of the two available paths.

EITHER

011 C2, C5 If external condition is true then 110
110 C2, C4, C7 111
111 C0 C1, C2, C3, C4, C5,

C7

This may cause loading of next
instruction in IR

OR
011 C2, C5 If external condition is false then

100
100 C1, C2, C3, C5 101
101 C1, C6, C7 111
111 C0, C1, C2, C3, C4, C5,

C7

Wikes not only proposed this control scheme but had proposed an
example structure for the first microprogrammed control processing
unit. However, we will not go into the details of this structure here. You
can refer to further readings for this structure.

252

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

SELF-ASSESSMENT EXERCISE

1. What is firmware? How is it different from software?
2. State whether True or False

(a) A microinstruction can initiate only one micro-operation
True False

(b) A control word is equal to a machine word.
True False

 (c) A dynamically microprogrammable control memory is writable
True False

(d) Microprogrammed control is faster than hardwired control.
True False

(e) Wikes control does not provide a branching microinstruction.
True False

3. What will be the sequence of decode lines activated in the Wikes
control example of Figure 98 If the entry address for a machine
instruction is 010 and the conditional bit values is true?

3.3 The Microinstruction

After discussing the Wikes control, we have some idea of the
microprogrammed control unit. The key to a microprogrammed control
unit is a microinstruction. So, let us explore the microinstruction more in
this section.

A microinstruction, as defined earlier, is an instruction of a
microprogram. It specifies one or more micro-operations, which can be
executed simultaneously. On executing a microinstruction a set of
control signals are generated which in turn cause the desired micro-
operation/micro-operations to happen.

3.3.1 Types of Microinstruction

In general, the micro-instructions can be categorized in two general
types. These are branching and non-branching. A non-branching nicro-
instruction is the one, in which the next micro-instruction which is
executed is the one following the current micro-instruction. However,
this sequence of micro-instructions is relatively small and lasts only for
3 or 4 micro-instructions.

A conditional branching micro-instruction is a desirable instruction. The
condition which is to be tested is a conditional variable or a flag
generated by an ALU operation. Normally the branch address is
contained in the microinstruction itself

253

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

3.3.2 Control Memory Organisation

The next important question about microinstructions is; how are they
organised in the control memory? One of the simplest ways to organise
the control memory is to arrange microinstructions for various sub
cycles of the machine instruction in the memory. Figure 99 shows such
an organisation.

Figure 99: The control memory organisation

Please note the use of branching microinstructions in the organisation.
Let us give an example of control unit organisation. Let us take a
machine instruction: Branch on zero. This instruction causes a branch
to a specified main memory address in case the result of the last ALU
operation is zero, that is, the zero flag is set. The pseudecode of the
microprogram for this instruction can be:

254

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Test “zero flag”. ; If SET branch to ZERO

Unconditional branch to NON-ZERO

Zero : (The microcode which causes the replacement of the
program counter with the address provided in the
instruction)

Branch to interrupt of fetch cycle

Non-zero : (The microcode which may set flags if desired,
indicating that the branch has not taken place)

Branch to interrupt or fetch cycle.

The control memory provides a concise description of the various
operations of the control unit. It may also define the sequences of micro-
operations which are to be performed during an instruction execution.

3.3.3 Microinstruction Formats

Now, let us focus on how a microinstruction may be organised. The two
widely used formats for microinstructions are horizontal and vertical. In
the horizontal microinstruction each bit of the microinstruction
represents a micro-order or a control signal which directly controls a
single bus line or sometimes a gate in the machine. However, the length
of such a microinstruction may be hundreds of bits. A typical horizontal
microinstruction with its related fields is shown in Figure 100(a) below.

(a) A horizontal microinstruction

255

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Figure 100: Microinstruction formats

In vertical microinstructions many similar control signals can be
encoded into a few microinstruction bits. For example, for 16 ALU
operations which may require 16 individual microcoders in a horizontal
microinstruction, only 4 encoded bits are needed in a vertical
microinstruction. Similarly, in a vertical microinstruction only 3 bits are
needed to select one of the 8 registers. However, these encoded bits need
to be passed from respective decoders to get the individual control
signals. This is shown in Figure 100(b). Some of the microinstructions
may be passed through a de-multiplexer causing selected bits to be used
for a few different locations in the CPU (Refer to Figure 100(c)). For
example, a 6 bit field in a microinstruction can be used as the branch
address in a branching microinstruction. However, these bits may be
utilised for some other control signals in a non-branching
microinstruction. In such a case the de-multiplexer can be used. The
vertical microinstructions are normally of the order of 32 bits. In certain
control units, several levels of control are used. For example, a field
microinstruction or the machine instruction may hold the address of a
read only memory which holds the control signals. This secondary ROM
can hold large address constants such as interrupt service routine
addresses.

256

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

In general, horizontal control units are faster yet they require wide
instruction words; whereas, vertical control units although require
decoders, however, are shorter in length. Most of the systems use neither
purely horizontal nor purely vertical microinstructions.

3.4 A Simple Structure of a Control Unit

We will now about the structure and functioning of a simple
microprogrammed control unit. This will also clarify many of the
concepts we have discussed so far. Figure 101 shows the simple
structure of such a unit.

Figure 101: A simple microprogrammed control unit.

A fetched instruction is stored in the instruction register (IR). In certain
machines the IR only holds the op-code of the instruction to be
executed. The control memory is normally implemented in the ROM
and not in the main memory. This memory is utilised for keeping the
microprograms for all op-codes. In addition, the control memory may
contain routines for instructions fetch, interrupt initiation and other
machine startup routines. The address of the next microinstruction is
computed by the address-computation circuit. We will answer this

257

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

question shortly. The role played by the microprogram counter register
is similar to that of a program counter in the CPU. The microprogram
counter holds the address of the next microinstruction to be executed.
The microinstruction buffer holds the microinstruction which is
currently being executed. The decoder of the microinstruction generates
micro-orders on the basis of the microinstruction and op-code of the
current instruction. The sequencing logic plays a key role in
synchronising all these component of the microprogrammed control
unit. The sequencing logic also plays an important role in the startup of
the machine, the circumstances, sequencing logic controls the control
unit.

How does this control unit function? In this control unit address
computation circuitry calculates the address of the next microinstruction
to be executed. The address of the microinstruction to be executed next
is stored in the microprogram counter. It can acquire this address from:

• Address computation circuitry when the clock signal (No. 5) is
enabled.

• Incrementing its own content by enabling INC signal (No. 6.). The
microinstruction buffer can be cleared this time by enabling signal
(No. 4).

Now, the control store can be read. The enable input (signal No.7)
enables the control memory to transfer the microinstruction stored in the
location addressed by the microprogram counter into the
microinstruction buffer. Please note that for this, the transfer clock
signal (No.3) should also be enabled so that the microinstruction buffer
register can be loaded. This microinstruction is then decoded and
respective micro-orders are generated in the microinstruction decoder on
receiving a control signal (No.8).

This sequence continues till one microprogram is executed; in other
words one machine instruction is executed, after this the
microinstruction decoder issues the micro-order which enables the clock
of the instruction register, control signal (No. 10). This signal causes the
loading of the next machine instruction to be executed into the
instruction register. One of the responsibilities of the control unit, once
an instruction is fetched and the operand addresses calculated, will be to
calculate the entry point address for that op-code in the control memory;
that is, the address of the first microinstruction for the microprogram for
the given op-code.

 The responsibility of calculating the entry point address of the
microprogram for a given op-code lies with the address computation

258

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

circuitry. Then, the sequencing logic increments the microprogram
counters to acquire the next microinstruction in sequence. After
executing the complete microprogram, a branch to another
microprogram routine may take place. Thus, the last instruction of a
microprogram is a branching microinstruction. This branching
microinstruction holds an address and the control signals for the address
computation circuitry. On the basis of these two pieces of information,
the address computation circuitry calculates the address of the next
microinstruction to be executed, in effect causing a branch.

Now let us discuss how the branching and non-branching
microinstruction can be implemented in Figure 101. The control signal
(No. 9) plays a key role in implementing branching and non-branching
microinstructions. This has been decoded as a non-branching (value of
signal No. 9 = 0) or a branching (value =1) microinstruction in the
following way:

If the value of signal 9 = 0 ⇒ a non-branching microinstruction
Sequencing logic activates control signal 6 which increments the
microprogram counter.

Otherwise (that is value of signal 9 = 1), ⇒ a branching microinstruction
Sequencing logic activates control signal which causes the address
calculated in the address computation circuitry to be transferred to the
microprogram counter.

But, how does the address computation circuitry calculate the address of
the next microinstruction? In order to answer this question, we will
discuss how the address computation circuitry may function.

The address computation circuitry is involved in:

• Determining the entry point address of the control store
depending on the opcode extracting the branch address indicated
by a branching microinstruction. This address is supplied on the
internal address bus.

This can be achieved by using two control signals 1 and 2 from the
sequencing logic which tells the address computation circuitry to
calculate the address of the next microinstruction on the basis of opcode
or branching microinstruction respectively. In the case of the conditional
branch, the address provided by the internal address bus may be
modified, depending on the status bits supplied by the ALU. Thus,
unconditional and conditional jumps can be implemented on the basis of
the sequencing logic signals and status bits from the ALU. The address

259

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

of the next microinstruction is calculated by using the address obtained
on the internal address bus. But, how can the address computation
circuitry modify the address it gets from the internal address bus? Well,
by using simple logical operations such as masking, ORing, etc.

3.5 Microinstruction Sequencing

As discussed earlier, the two basic functions of the control unit are
microinstruction sequencing and microinstruction execution. We have
explained some of the concepts in this regard. Let us discuss these
aspects in greater detail in this and subsequent sections. Let us first try
to find out the concerns for designing sequencing techniques.

The first concern which is applicable in general is “to minimise the size
of the control memory”. The second concern is “to execute a
microinstruction as fast as possible”. This implies that the address of the
next microinstruction should be calculated at a fast rate.

Now, let us find out how these two concerns can be achieved. The
factors responsible for reducing the size of the control memory depend
on the length of a microinstruction. The length of the microinstruction is
greatly influenced by the following three major factors:

• Degree of parallelism which is needed at the microoperation level or
in other words “the number of microoperations which can be
executed simultaneously”.

• Representation/encoding of control information

• The means of specifying the address of the next microinstruction

The number of microoperations which can be executed simultaneously
in a processor may vary from one to a hundred. This degree of
parallelism is frequently used for characterising the microprogrammable
processors. A highly encoded instruction also tends to be short. We will
discuss these more while we discuss microinstruction execution.

Let us focus this section on the calculation of the address of the next
microinstruction. In general, the address of the next microinstruction is
handled this way:

• The address of the next microinstruction in sequence
• Calculated on the basis of the op-code
• Branch address (conditional or unconditional)

260

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

The address is calculated only once from the op-code in one instruction
cycle. The machine sequences are not long and branches are common
after three or four sequences. Thus, by making branching algorithm
better we can make a microinstruction addressing more time efficient. In
general, three techniques based on the number of addresses have been
utilised for sequencing. These are:

• Two address fields in each microinstruction
• A single address field and
• A variable format microinstruction

In the two address field - microinstructions, either of the two addresses
or the address generated with the help of an op-code is selected using a
branch logic which is based on the flags and control signal. In such a
case, branching to a desired address can be made very easily. However,
in this approach a lot of control memory is wasted as at least one of the
addresses may not be needed in several microinstructions.

With some modified circuitry and added logic we can reduce the
number of addresses to one. Here, a new register called the
microprogram counter, as introduced in Figure 101 can be used. In this
case, the next microinstruction address can be the address of:

the next sequential address
OR

the address generated using an op-code
OR

the address stored in the address field of the microinstruction

The address selection signal which will be based on branch logic can
indicate which of the above mentioned addresses is to be selected.
Although this scheme saves some space, yet the space provided for even
one address is not used very often. Thus, there remains some
inefficiency in the coding scheme of the microinstruction. However, this
is a commonly used approach.

Another approach can be used to provide a variable format. In such a
case two formats are used. The first format provides the control
microinstruction, while the second format provides the branch logic and
address. In such a scheme one bit is needed in the microinstruction to
indicate whether this is a control microinstruction or a branching
microinstruction. In case the microinstruction contains control signals,
the next microinstruction address is calculated either by using the op-
code of instruction registers or it is the address of the next
microinstruction in sequence. In this approach, an extra cycle is needed

261

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

for a branch microinstruction which is undesirable. You can get more
details on sequencing techniques in the further readings.

Generation of Address

As discussed earlier, there are three ways of generating the address of
the next microinstruction to be executed. This address generation once
again depends on the number of address fields used in a
microinstruction. If we use two address fields then all the addresses are
explicit. However, in case of one field and variable format
microinstruction, the conditional branch address is calculated on the
basis of information like:

- ALU flags

- Address mode indicators

- Sign bits or portion of selected registers

- Status bits of the control unit itself

However, for an unconditional branch, address generation is direct. The
opcode for each instruction is to be interpreted once per instruction
cycle. One of the techniques which can be used for opcode interpretation
is mapping of the opcode into a microinstruction address in the control
store. Other techniques in this respect are the addition of two portions of
address and residual control. In the addition approach, one part of the
address which is fixed is added to a variable part to form a complete
address. The residual control involves the use of an address of
microinstruction which has been saved previously at a temporary
storage location inside the control unit. More details on these
approaches can be obtained from the further readings.

3.6 Microinstruction Execution

The microinstruction cycle can consist of two basic cycles; the fetch and
the execute. Here, in the fetch cycle the address of the microinstruction
is generated and this microinstruction is put in a microinstruction
register of execution. We have already dealt with this part in the
previous sections. The execution of a microinstruction simply means the
generation of control signals. These control signals may drive the CPU
(internal control signals) or the system bus. The format of
microinstruction and its contents determine the complexity of a logic
module which executes a microinstruction.

One of the key features which are incorporated in a microinstruction is
the encoding of microinstructions. What is encoding of

262

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

microinstructions? Let us recall the Wikes control unit. In Wikes control
unit, each bit of information either generates a control signal or forms a
bit of the next instruction address. Now, let us assume that a machine
needs N total number of control signals. If we follow the Wikes scheme
we require B bits, one for each control signal in the control unit. Since
we are dealing with binary control signals, therefore, an N bit
microinstruction can represent 2N combinations of control signals.

Do we need all these 2N combinations?

No, some of these 2N combinations are not used because:

1. Two sources may be connected by respective control signals to a
single destination; however, only one of these sources can be
used at a time. Thus, the combinations where both these control
signals are active for the same destination are redundant.

2. A register cannot act as the source and the destination at the same
time. Thus, such a combination of control signals is redundant.

3. We can provide only one pattern of control signals at a time to
the ALU, making some of the combinations redundant.

4. We can provide only one pattern of control signals at a time to
the external control bus also.

Therefore, we do not need all these 2N combinations. Suppose we only
need 2K (which is less than 2N) combinations then we need only K
encoded bits instead of N control signals. The K bit microinstruction is
an extreme encoded microinstruction. Let us examine the characteristics
of the extreme encoded and unencoded microinstructions:

Unencoded Microinstructions

• One bit is needed for each control signal; therefore, the numbers of
bits required on a microinstruction are high.

• They present a detailed hardware view as the control signal needed
can be determined.

• Since each of the control signals can be controlled individually, these
microinstructions are difficult to program. However, concurrency
can be exploited easily.

• We can provide only one pattern of control signals at a time to the
external control bus also

263

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Highly Encoded Microinstructions

• The encoded bits needed in microinstructions are small.

• They provide an aggregated view, that is a higher view of the CPU
as only an encoded sequence can be used for microprogramming.

• The encoding helps in the reduction of programming burden;
however, the concurrency may not be exploited to the fullest.

• A complex control logic is needed, as decoding is a must. Thus, the
execution of microinstructions has propagation delay through gates.
Therefore, the execution of microprograms takes longer time than
that of unencoded microinstructions.

• The highly encoded microinstructions are aimed at optimising
programming effort.

In most of the cases, the design is kept between the two extremes. The
LSI 11 (highly encoded) and IBM 3033 (unencoded) control units are
close examples of these two approaches. You can find the details of
these two in the further readings.

In general, in many of the microinstruction designs, more bits are used
than absolutely necessary. In this respect, many terms based on different
design characteristics were coined. The terms like horizontal or vertical
microinstructions which were introduced earlier, can also give
information about the length of the microinstruction. Typically,
horizontal microinstructions are 40 to 100 bits, whereas vertical
microinstructions are 16 to 40 bits.

Encoding Microinstructions

As mentioned earlier, that microprogrammed control unit designs are
neither completely unencoded nor highly encoded. They are slightly
coded, in general, to reduce the width of control memory and
microprogramming efforts. For encoding, a microinstruction is divided
into a set of fields such that:

• A specific control signal can be activated by only one field, thus,
making the fields independent of each other.

• Each field represents a pattern of control signals which in turn
depicts an action. As the fields are independent, the action depicted
by different fields can be performed simultaneously; that is, they are
parallel.

264

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

• A specific field specifies actions which are mutually exclusive; that
is, only one of these actions can occur at a time.

But how do we classify control signals in different fields? In this respect
two approaches have been identified. When fields are designated by
identifying various functions, we call it functional encoding. For
example, a function “transfer of data to accumulator from different
sources”, if designated by a single field will be encoded such that each
code specifies a different source.

However, if we view the machine as a set of independent sources, then
we can devote one field to one resource such as input/output module,
memory, ALU, etc. This is known as as resource encoding.

Finally, let us look at one of the responsibilities of the control unit which
has not been discussed till now, in the next section.

3.7 Machine Startup

The control unit is also responsible for initialising various registers
during the startup of the machine. The control unit loads a hardware
generated address in the program counter (PC) and starts execution of
the instruction stored in that location. This hardware generated address
may be the address of the first instruction to be executed (Refer Figure
102(a)). This address of the first instruction (The first instruction is
executed on a machine startup) is known as the reset vector. In some
machines the hardware generated address points to the reset vector in
the memory. This is the case for Figure 102(b).

In the first case, the control unit starts its normal operation immediately
after loading the reset vector in the program counter. However, in the
reset vector address machines, the control unit must first fetch the reset
vector into the program counter before beginning its normal operation.
What is the need of introducing this extra complexity? The advantage
here is that the reset vector address machines allow generality of designs
to the machine architects; that is, the machine architects will not have to
assign the stating address of the startup program to be executed in the
memory. They just need to assign the address of the reset vector in the
memory, thus, different reset vector values can be chosen on the same
machine allowing more flexibility. For example, if we have two
different startup routines for two different operating systems then by
changing the reset vector value in the memory we can change the
loading of the operating system. Both of these operating systems,
however, can reside on the main memory at the same time.

265

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

Figure 102: Loading of a machine startup program

4.0 CONCLUSION

In rounding up the discussion on CPU organisation, this unit has dealt
with the micro-programmed control unit and the concept of
microinstructions including microinstruction sequencing and execution.

5.0 SUMMARY

In this unit, we have discussed the micro-programmed control unit. The
key to such a unit is a microinstruction. A microinstruction has been
defined in the unit. In addition we have also explained the basic
structure of the microprogrammed control unit. Microinstruction
sequencing and microinstruction execution have also been discussed in
the section. Detailed examples of microprogrammed control unit have
not been included in this unit. You can refer to further readings for these
details.

With this unit, we come to the end of module 2 on CPU organisation.
Although we have tried to discuss the aspects related to the CPU in
detail, you must refer to the further readings for more details and
examples.

6.0 TUTOR- MARKED ASSIGNMENT

State whether True or False

266

CIT 246 INTRODUCTION TO COMPUTER ORGANISATION

1. A braching microinstruction can have only an unconditional
jump. True False

2. The control store stores microprograms only for opcodes.
True False

3. A true horizontal icroinstruction requires one bit for every control
signal. True False

4. A decoder is needed to find a branch address in the vertical
microinstruction. True False

5. The address computation circuit in Figure 101 is used for finding the
next sequential address of a microinstruction

 True False
6. One of the responsibilities of sequencing logic (Refer Figure 101)

is to cause the reading of the microinstruction addressed by the
microprogram counter into the microinstruction buffer.

True False
7. Status bits supplied from ALU to sequencing logic have no role

to play with the sequence of a microinstruction
True False

8. What are the possibilities for the next instruction address?
9. Compare two address field-microinstructions with a one address-

field microinstruction. Which of them is more commonly used?
10 How many address fields are there in Wikes control unit?
11. Compare and contrast unencoded and highly encoded

microinstructions.

7.0 REFERENCES/FURTHER READINGS

Mano, M. Morris, (1993).Computer System Architecture (3rd ed).
Prentice Hall of India.

Hayes, John P. (1998).Computer Architecture and Organisation (2nd ed).
McGraw-Hill International editions.

Stallings William. Computer Organisation and Architecture (3rd ed).
Maxwell Macmillan International Editions.

Baron, Robert J. and Higbie Lee. Computer Architecture. Addison-
Wesley Publishing Company.

Tanenbaum, Andrew S. (1993).Structural Computer Organisation (3rd

ed) Prentice Hall of India.

267

	INTRODUCTION TO COMPUTER ORGANISATION
	What You will Learn in this Course... 1
	Assessment..	 4
	Course Overview……………………………………………… 6
	How to Get the Best from This Course	 6
	Summary ..	 9
	Working through this Course

	Presentation Schedule
	Assessment
	Course Marking Scheme
	How to Get the Best from this Course
		
	Facilitators/Tutors and Tutorials

