

NATIONAL OPEN UNIVERSITY OF NIGERIA

FACULTY OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

COURSE CODE: CIT308

COURSE TITLE: FORMAL METHODS AND SOFTWARE DEVELOPMENT

COURSE CODE: CIT308

COURSE TITLE: FORMAL METHODS AND SOFTWARE DEVELOPMENT

COURSE TEAM: Dr. Moses Ekpenyong and Dr. Francis B. Osang (Developers)

University of Uyo and National Open University of Nigeria

COURSE

GUIDE

NATIONAL OPEN UNIVERSITY OF NIGERIA

National Open University of Nigeria Headquarters

University Village, Plot 91 Cadastral Zone, Nnnamdi Azikiwe Expressway Jabi,

Abuja

LAGOS OFFICE
14/16 Ahmadu Bello Way

Victoria Island , Lagos

E-Mail: centralinfo@nou.edu.ng

URL: www.nou.edu.ng

PUBLISHED BY:

National Open University of Nigeria

First Printed 2022

ISBN: 978-058-851-5

All Rights Reserved

mailto:centralinfo@nou.edu.ng
http://www.nou.edu.ng/

Course Guide

Introduction

CIT 308: Formal Methods and Software Development is a 3-credit unit course for

students studying towards acquiring a Bachelor of Science in Computer Science and

other related disciplines.

The course is divided into 6 modules and 23 study units. It will first take a brief review

of the concepts of Formal Methods and Software Development. This course will then

go ahead to deal with the detailed discussion on formal methods as well as Software

development. This course also introduces such other knowledge that will enable the

reader have proper understanding of how Formal methods can be used in Software

Development in order to produce high quality software product.

The course guide therefore gives you an overview of what the course; CIT 308 is all

about, the textbooks and other materials to be referenced, what you expect to know in

each unit, and how to work through the course material.

Course Competencies

The overall aim of this course, CIT 308 is to introduce you to basic concepts of Formal

Methods and Software Development in order to enable you to understand the basic

elements of Formal Methods as well as Software Development use in design of software

especially, in security and life critical applications such as aviation etc. In this course

of your studies, you will be put through the definitions of common terms in relation to

Formal Methods and Software Development, stage in software development life cycle,

requirement specification, development tools etc.

Course Objectives

It is important to note that each unit has specific objectives. Students should study them

carefully before proceeding to subsequent units. Therefore, it may be useful to refer to

these objectives in the course of your study of the unit to assess your progress. You

should always look at the unit objectives after completing a unit. In this way, you can

be sure that you have done what is required of you by the end of the unit.

However, below are overall objectives of this course. On completing this course, you

should be able to:

 State why software quality is important

 Outline some of the characteristics of a high-quality software

 Enumerate a typical software development phase

 Define formal methods

 Mention the of formal method used in Software Development

 Mention and the uses of formal methods in Software Development

 Explain and where to use Formal Methods

 Give a description on the need to used formal methods

 Give a background of formal methods

 Define the phrase formal methods

 State some advantages and disadvantages of formal methods

 Enumerate the stages of formal methods

 Enumerate the stages of SDLC

 Briefly describe each of the stage of SDLC

 Define proposition

 Identify proposition operators

 Construct and interpret propositions

 Construct truth tables

 Give a background of formal methods

 Discuss formal proof

 Mention some terminologies used in mathematical proof

 Briefly explain the four proofing methods

 Define a set

 Mention and illustrate the terminologies used to describe sets Relationship

 Differentiate between finite and infinite elements

 Discuss the operations on set with appropriate examples

 Discuss the various stages to apply formal methods

 Discuss what to do at various stages

 Discuss terminologies used in Z notation

 Outline the various functions in Z notation

 Relate software development with engineering process

 State some software evolution laws

 Discuss E-Type software evolution

 Discuss the need of Software Engineering

 Outline the characteristics of good software

 List the SDLC activities

 Explain the SDLC activities with aid of a diagram

 List and explain the Software Development Paradigm

 Identify the characteristics of a software project

 Describe a software project

 Justify the need for software project management

 Identify the job of a software project manager

 Explain the following: project planning, scope management and project

estimation

 Mention at least 3 project management tools

 List and explain the four steps in requirement engineering process

 Depict the requirement elicitation process with a diagram

 Mention at least 6 requirement elicitation techniques

 List at least 10 software requirement characteristics

 Differentiate between functional and non-functional software requirements

 Mention at 10 user interface requirements

 Outline the responsibility of a system analyst

 Differentiate between software metric and software measures

 Software design yields three levels of results. Mention and briefly describe them

 Discuss modularization and state its advantages

 Differentiate between cohesion and coupling

 List and explain any 5 types of cohesion

 Mention and discuss difference types of software design

 List and explain the different concepts of object-oriented design

 Mention and discuss two generic approaches for software design

 Mention and discuss difference types of software design

 List and explain the different concepts of object-oriented design

 Mention and discuss two generic approaches for software design

 Discuss the 3 main concept used in structured programmig

 Discuss the concepts used in functional programming

 State any 5 coding guideline

 Explain software testing

 Differentiate between validation and verification

 Identify the importance of software testing

 Differentiate between manual and automated testing

 Identify the basis of software testing

 Differentiate between Black-box testing and White-box testing

 Mention the various level of testing

 Mention and discuss different types of software maintenance

 Outline real world factors affecting software maintenance cost

 List software-end factors affecting maintenance cost

 Mention at least 5 factors

 Briefly describe CASE tool

 Mention and discuss different types of CASE tools

 Outline the concern of configuration management

Working Through this Course

To complete this course, you are required to study all the units, the recommended text

books, and other relevant materials. Each unit contains some self assessment exercises

and tutor marked assignments, and at some point, in this course, you are required to

submit the tutor marked assignments. There is also a final examination at the end of this

course. Stated below are the components of this course and what you have to do.

This course material contains six modules and twenty-four study units as follows:

MODULE 1: AN OVERVIEW OF FORMAL METHODS AND SOFTWARE

DEVELOPMENT

Unit 1: General Information

Unit 2: Approaches to formal methods and their use in software development

MODULE 2: FORMAL METHODS

Unit 1: Introduction to Formal Methods

Unit 2: Proposition

Unit 3: Predicates

Unit 4: Sets

Unit 5: Series or Sequence

MODULE 3: FORMAL METHODS CONTINUES

Unit 1: Mathematical Proof

Unit 2: Testing

Unit 3: Application to Formal Specification

Unit 4: Z Notation

MODULE 4: SOFTWARE DEVELOPMENT OVERVIEW

Unit 1: Software Development and Software Engineering

Unit 2: Software Development Life Cycle

Unit 3: Software Project Management

Unit 4: Software Requirements

MODULE 5: OVERVIEW OF SOFTWARE DESIGN, ANALYSIS AND

DESIGN TOOLS, DESIGN STRATEGIES AND USER INTERFACE BASICS

Unit 1: Software Design Basics

Unit 2: Analysis and Design tools

Unit 3: Software Design Strategies

Unit 4: Software User Interface Design

MODULE 6: OVERVIEW OF DESIGN COMPLEXITY, SOFTWARE

IMPLEMENTATION, TESTING, MAINTENANCE AND CASE TOOLS

Unit 1: Design Complexity

Unit 2: Software Implementation

Unit 3: Software Testing

Unit 4: Software Maintenance

Unit 5: Software Case Tools

References and Further Reading

Every study unit contain list of references and Further Reading. Do not hesitate to

consult them if need be.

Presentation Schedule

The Presentation Schedule included in your course material gives you important dates

for the completion of Tutor Marked Assignments and tutorial attendance. Remember,

you are required to submit all your assignments by the due date. You should guard

against falling behind in your work.

Assessment

There are two aspects to the assessment of this course. First, there are tutor marked

assignments; and second, the written examination. Therefore, you are expected to take

note of the facts, information and problem solving gathered during the course. The tutor

marked assignments must be submitted to your tutor for formal assessment, in

accordance to the deadline given. The work submitted will count for 40% of your total

course mark. At the end of the course, you will need to sit for a final written

examination. This examination will account for 60% of your total score.

How to get the Most from the Course

In distance learning, the study units replace the university lectures. This is one of the

great advantages of distance learning; you can read and work through specially designed

study materials at your own pace, and at a time and place that suits you best. Think of

it as reading the lecture instead of listening to the lecturer. In the same way a lecturer

might give you some reading to do, the study units tell you when to read, and which are

your text materials or set books. You are provided exercises to do at appropriate points,

just as a lecturer might give you an in-class exercise.

Each of the study units follows a common format. The first item is an introduction to

the subject matter of the unit, and how a particular unit is integrated with the other units

and the course as a whole. Next to this is a set of learning objectives. These objectives

let you know what you should be able to do by the time you have completed the unit.

These learning objectives are meant to guide your study. The moment a unit is finished,

you must go back and check whether you have achieved the objectives. If you make

this a habit, then you will significantly improve your chances of passing the course. The

main body of the unit guides you through the required reading from other sources. This

will usually be either from your set books or from a reading section. The following is a

practical strategy for working through this course. If you run into any trouble, telephone

your tutor. Remember that your tutor‘s job is to help you. When you need assistance,

do not hesitate to call and ask your tutor to provide it.

In addition, do the following:

1. Read this Course Guide thoroughly, it is your first assignment.

2. Organise a Study Schedule. Design a ―Course Overview‖ to guide you through the

Course. Note the time you are expected to spend on each unit and how the assignments

relate to the units. Important information, e.g. details of your tutorials, and the date of

the first day of the semester is available from the study centre. You need to gather all

the information into one place, such as your diary or a wall calendar. Decide on a

method and write in your own dates and schedule of work for each unit.

3. Once you have created your own study schedule, do everything to stay faithful to it.

The major reason students fail is that they get behind with their course work. If you get

into difficulty with your schedule, please, let your tutor know before it is tool late for

help.

4. Turn to Unit 1, and read the introduction and the objectives for the unit.

5. Assemble the study materials. You will need your set books and the unit you are

studying at any point in time.

6. Work through the unit. As you work through it, you will know what sources to consult

for further information.

7. Keep in touch with your study centre as up-to-date course information will be

continuously available there.

8. Well before the relevant due dates (about 4 weeks before due dates), keep in mind

that you will learn a lot by doing the assignments carefully. They have been designed

to help you meet the objectives of the course and therefore will help you pass the

examination. Submit all assignments not later than the due date.

9. Review the objectives for each study unit to confirm that you have achieved them. If

you fee unsure about any of the objectives, review the study materials or consult your

tutor.

10. When you are confident that you have achieved a unit’s objectives, you can start on

the next unit. Proceed unit by unit through the course and try to pace your study so that

you keep yourself on schedule.

11. When you have submitted an assignment to your tutor for marking, do not wait for

its return before starting on the next unit. Keep to your schedule. When the assignment

is returned, pay particular attention to your tutor’s comments, both on the tutor-marked

assignment form and on the ordinary assignments.

12. After completing the last unit, review the course and prepare yourself for the final

examination. Check that you have achieved the unit objectives (listed at the beginning

of each unit) and the course objectives (listed in the Course Guide).

13. Finally, ensure that you practice on the personal computer as prescribed to gain the

maximum proficiency required.

Facilitation

The dates, times and locations of these Tutorials will be made available to you, together

with the name, telephone number and address of your Tutor. Each assignment will be

marked by your tutor. Pay close attention to the comments your tutor might make on

your assignments as these will help in your progress. Make sure that assignments reach

your tutor on or before the due date.

Your tutorials are important; therefore, try not to skip any. It is an opportunity to meet

your tutor and your fellow students. It is also an opportunity to get the help of your tutor

and discuss any difficulties you might encounter when reading.

Course Information

Course Code: CIT 308

Course Title: FORMAL METHODS AND SOFTWARE DEVELOPMENT

Credit Unit:

Course Status:

Course Blurb: This course covers principal topics in Formal Methods and Software

Development. It will first take a brief review of the concepts of Formal Methods and

Software Development. This course will then go ahead to deal with the different stages

involved developing good and functional Software. The course went further to deal with

stages of SDLC. This course also introduces such other knowledge that will enable the

reader have proper understanding of developing reliable, functional, maintainable

software.

Semester:

Course Duration: Required

Hours for study

Course Team

Course Developer: xxxxxxx

Course Writer: xxxxxxxx

Department of Computer Science

University of xxxxxxx

xxxxxxx.

Content Editor: xxxxxxxx

Department of Computer Science

University of xxxxx

xxxxxx

Instructional Designer:

Learning Technologists:

Copy Editor

Xxxxxxxx

MODULE 1: AN OVERVIEW OF FORMAL METHODS AND SOFTWARE

DEVELOPMENT

This module is divided into two (2) units

Unit 1: General Information

Unit 2: Approaches to formal methods and their use in software

development

Unit 1: General Information

 Contents

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content

3.1 The importance of high-quality software

3.2 Characteristics of high-quality software

3.3 The need for precision in the specification of software

3.4 Typical software development phases

3.5 The role of formal methods

Contents

1.0 Introduction

Software is driving the society. Software is used in almost every area of endeavours, if

not all. It therefore becomes imperative, for software developers to produce software

that meets the user’s need in terms of functionality, reliability, availability etc. To

achieve this, the software developer makes use of several tools and techniques which

includes formal methods among others. In this unit, we shall be discussing some shared

characteristics of a high-quality software, the need for precision in the specification of

software, typical software development phases and the role of formal methods.

2.0 Intended Learning Outcomes (ILOs)

After studying this unit, you should be able to

 State why software quality is important

 Outline some of the characteristics of a high-quality software

 Enumerate a typical software development phase

3.0 Main Content

3.1 The importance of high-quality software

Software development is a vital activity in modern society, and is likely to have

increasing significance in the future. Software manages our bank accounts, pays our

salaries, controls the aircraft we fly in, regulates power generation and distribution,

controls our communications, etc.

3.2 Characteristics of high-quality software

High quality software shares the following obvious attributes:

 high quality software is intuitive and easy to use -- the right things happen

"automatically"

 it is efficient -- people use computers to get things done quickly

 above all, high quality software is correct -- it always produces the advertised

results and does not crash!

3.3 The need for precision in the specification of software

The notion that software components can be reused is a principal motivation of object-

oriented programming, and has virtually become a postulate of programming. To reuse

a previously written software component (or create a new one), a software engineer

must have a precise description of its behavior. This precision is essential as even a

minor misconception of the function of a component that is unapparent at the outset

may cause serious errors that are difficult and expensive to correct later in the process.

3.4 Typical software development phases

Software development models commonly subdivide the process into phases similar to

the following :

1. requirements analysis: determine user needs

2. specification: describe precisely what the role of the software will be

3. design: determine how to realize the software, and devise overall organization

4. implementation: formulate the algorithms and program(s)

5. verification: certify that the program(s) meet the specification

6. maintenance: perform ongoing changes and corrections after the software is in

use

3.5 The role of formal methods

Formal methods are intended to systematize and introduce rigor into all the phases of

software development. This helps us to avoid overlooking critical issues, provides a

standard means to record various assumptions and decisions, and forms a basis for

consistency among many related activities. By providing precise and unambiguous

description mechanisms, formal methods facilitate the understanding required to

coalesce the various phases of software development into a successful endeavour.

The programming language used for software development furnishes precise syntax and

semantics for the implementation phase, and this has been true since people began

writing programs. But precision in all but this one phase of software development must

derive from other sources. The term "formal methods" pertains to a broad collection of

formalisms and abstractions intended to support a comparable level of precision for

other phases of software development. While this includes issues currently under active

development, several methodologies have reached a level of maturity that can be of

benefit to practitioners.

There is a discernible tendency to merge discrete mathematics and formal methods for

software engineering (e.g., see the books by Denvir, Ince, and Woodcock & Loomes).

Many such topics do indeed support software engineering and it is neither possible nor

desirable to avoid these topics when pursuing formal methods. But we will not take the

approach that applying discrete mathematics to software engineering assures germane

formal methods. The overriding concern of software engineering is the creation of high

quality software systems. With "formal methods" we pursue melding those things that

nurture rigor and precision into this endeavor. While our focus on the activities that

precede the actual programming itself does lead to machine independent abstractions

often associated with mathematics, much of the material has been developed (or

tailored) to suit the context of software creation.

Some specific formalisms used in software development include:

 algebraic specification (including OBJ) -- used for specification and verification,

 predicate logic (including Z) -- used for specification and verification,

 statecharts -- used for specification of "reactive" systems

 UML -- used primarily for design, and also for requirements analysis.

4.0 Self-Assessment Exercise(s)

Answer the following questions:

1. Why is software quality important in organization?

2. Outline some of the characteristics of a high-quality software

3. Enumerate the stages in software development

4. What is the role of formal methods in software development?

5. Outline some specific formalism used in software development

5.0 Conclusion

This unit provides a general information concerning the use of formal methods in

software development.

6.0 Summary

Some of the points heighted include the importance of high-quality software,

characteristics of high-quality software, the need for precision in the specification of

software, typical software development phases and the role of formal methods

7.0 Further Reading

Formal methods - Wikipedia, the free encyclopedia [online] Available at

http://en.wikipedia.org/wiki/Formal_methods

FTMS Consultants (M) Sdn Bhd (2011) SD3049 Formal Methods in Software

Engineering Kuala Lumpur, Malaysia

L. M. Barroca, J. A. McDermid (1997) Formal Methods: Use and Relevance for the

Development of Safety-Critical Systems, THE COMPUTER JOURNAL, VOL.

35, NO. 6

Michael Jackson, Patrick Cousot, Jonathan Peter Bowen, Margaria Tiziana (2008)

Software engineering and formal methods, ACM

Mona Batra, Amit Malik, Dr. Meenu Dave (2020) Formal Methods: Benefits,

Challenges And Future Direction, Journal of Global Research in Computer

Science

Zoltán Istenes (2014) Formal Methods in Software Engineering

Unit 2: Approaches to formal methods and their use in software

development

Contents

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content

3.1 Definition

3.2 Type formal methods in Software Development

3.3 Classification of Formal Methods Semantics

3.4 Uses of Formal Methods

3.5 Applications of formal methods

3.6 In software development

http://en.wikipedia.org/wiki/Formal_methods

3.7 Software verification

3.8 Why use Formal Methods?

3.9 Some Limitations to Formal methods

3.10 When and where to use Formal Methods?

3.11 Relevant areas of research

1.0 Introduction

Formal methods in software engineering or development are mathematical techniques

that are used in the design, implementation and testing of computer systems. The

application of mathematical methods in the development and verification of software is

very labor intensive, and thus expensive. In this unit, we shall be looking at some of the

semantics used in formal methods, application areas of FM etc

2.0 Intended Learning Outcomes (ILOs)

After studying this unit, you should be able to

 Define formal methods

 Mention the of formal method used in Software Development

 Mention the uses of formal methods in Software Development

 Explain and where to use Formal Methods

 Give a description on the need to used formal methods

3.0 Main Content

3.1 Definition

Formal methods in software engineering or development are mathematical techniques

that are used in the design, implementation and testing of computer systems. The

application of mathematical methods in the development and verification of software is

very labor intensive, and thus expensive. Therefore, it is not feasible to check all the

wanted properties of a complete computer program in detail.

3.2 Type formal methods in Software Development

Formal methods include

 Formal specification

 Specification analysis and proof

 Transformational development

 Program verification

3.3 Classification of Formal Methods Semantics

As with programming language semantics, styles of formal methods may be roughly

classified as follows:

 Denotational semantics, in which the meaning of a system is expressed in the

mathematical theory of domains. Proponents of such methods rely on the well-

understood nature of domains to give meaning to the system; critics point out

that not every system may be intuitively or naturally viewed as a function.

 Operational semantics, in which the meaning of a system is expressed as a

sequence of actions of a simpler computational model. Proponents of such

methods point to the simplicity of their models as a means to express clarity;

critics counter that the problem of semantics has just been delayed.

 Axiomatic semantics, in which the meaning of the system is expressed in terms

of preconditions and post conditions which are true before and after the system

performs a task, respectively. Proponents note the connection to classical logic;

critics note that such semantics never really describe what a system does (merely

what is true before and afterwards).

3.4 Uses of Formal Methods

Formal methods can be applied at various points through the development process.

Specification

Formal methods may be used to give a description of the system to be developed, at

whatever level(s) of detail desired. This formal description can be used to guide further

development activities additionally, it can be used to verify that the requirements for

the system being developed have been completely and accurately specified. The need

for formal specification systems has been noted for years. In the ALGOL 58 report,John

Backus presented a formal notation for describing programming language syntax, later

named Backus normal form then renamed Backus–Naur form (BNF).

Development: Once a formal specification has been produced, the specification may be

used as a guide while the concrete system is developed during the design process (i.e.,

realized typically in software, but also potentially in hardware).

For example:

•If the formal specification is in an operational semantics, the observed behaviour of the

concrete system can be compared with the behaviour of the specification (which itself

should be executable). Additionally, the operational commands of the specification may

be amenable to direct translation into executable code.

•If the formal specification is in an axiomatic semantics, the preconditions and

postconditions of the specification may become assertions in the executable code.

Verification

Once a formal specification has been developed, the specification may be used as the

basis for proving properties of the specification (and hopefully by inference the

developed system).

Human-directed proof

Sometimes, the motivation for proving the correctness of a system is not the obvious

need for reassurance of the correctness of the system, but a desire to understand the

system better. Consequently, some proofs of correctness are produced in the style of

mathematical proof: handwritten (or typeset) using natural language, using a level of

informality common to such proofs. A "good" proof is one which is readable and

understandable by other human readers.

Critics of such approaches point out that the ambiguity inherent in natural language

allows errors to be undetected in such proofs; often, subtle errors can be present in the

low-level details typically overlooked by such proofs. Additionally, the work involved

in producing such a good proof requires a high level of mathematical sophistication and

expertise.

Automated proof

In contrast, there is increasing interest in producing proofs of correctness of such

systems by automated means. Automated techniques fall into three general categories:

•Automated theorem proving, in which a system attempts to produce a formal proof

from scratch, given a description of the system, a set of logical axioms, and a set of

inference rules.

•Model checking, in which a system verifies certain properties by means of an

exhaustive search of all possible states that a system could enter during its execution.

•Abstract interpretation, in which a system verifies an over-approximation of a

behavioural property of the program, using a fixpoint computation over a (possibly

complete) lattice representing it.

Some automated theorem proofers require guidance as to which properties are

"interesting" enough to pursue, while others work without human intervention.

Model checkers can quickly get bogged down in checking millions of uninteresting

states if not given a sufficiently abstract model.

Proponents of such systems argue that the results have greater mathematical certainty

than human produced proofs, since all the tedious details have been algorithmically

verified. The training required to use such systems is also less than that required to

produce good mathematical proofs by hand, making the techniques accessible to a wider

variety of practitioners.

Critics note that some of those systems are like oracles: they make a pronouncement of

truth, yet give no explanation of that truth. There is also the problem of "verifying the

verifier"; if the program which aids in the verification is itself unproven, there may be

reason to doubt the soundness of the produced results. Some modern model checking

tools produce a "proof log" detailing each step in their proof, making it possible to

perform, given suitable tools, independent verification.

The main feature of the abstract interpretation approach is that it provides a sound

analysis, i.e., no false negatives are returned. Moreover, it is efficiently scalable, by

tuning the abstract domain representing the property to be analyzed, and by applying

widening operators to get fast convergence.

3.5 Applications of formal methods

 Their principal benefits are in reducing the number of errors in systems so their

main area of applicability is critical systems:

 Air traffic control information systems,

 Railway signalling systems

 Spacecraft systems

 Medical control systems

 Formal methods are applied in different areas of hardware and software,

including routers, Ethernet switches, routing protocols, and security

applications.

 In this area, the use of formal methods is most likely to be cost-effective

 Formal methods have limited practical applicability

 It is more cost effective to first determine what the crucial components of the software

are. These parts can then be isolated and studied in detail by creating mathematical

models and verifying them.

In this course we will focus on some formal methods techniques which includes model

checking and theorem proving. The first method takes a finite transition system and

systematically checks whether all the desired properties hold for every state of the

system. Because the number of states increases exponentially with the size of the model,

this method will often have to limit itself to small variants of the system that is under

investigation. An advantage of model checking is that, when it finds a problem, it can

indicate how it got into an error state. This information can be used to improve the

model.

The second method uses general mathematical techniques to reason about the models.

This makes it possible to reason about systems of which the number states is unlimited.

For this a price must be paid: the reasoning cannot occur fully automatically. By

combining the strong points of model checking; automation and finding counter

examples, with the more general mathematical power of theorem proving, it takes less

effort to guarantee the reliability of the investigated systems. This is a methodology in

which critical software components are investigated, improved and verified, using the

earlier mentioned formal methods. Subsequently, the verified models can be used to

derive (fragments of) computer programs, which satisfy high reliability demands. These

fragments can then replace the original components.

3.6 Software development

In software development, formal methods are mathematical approaches to solving

software (and hardware) problems at the requirements, specification, and design levels.

Formal methods are most likely to be applied to safety-critical or security-critical

software and systems, such as avionics software. Software safety assurance standards,

such as DO-178B, DO-178C, and Common Criteria demand formal methods at the

highest levels of categorization.

For sequential software, examples of formal methods include the B-Method, the

specification languages used in automated theorem proving, RAISE, and the Z notation.

In functional programming, property-based testing has allowed the mathematical

specification and testing (if not exhaustive testing) of the expected behaviour of

individual functions.

The Object Constraint Language (and specializations such as Java Modeling Language)

has allowed object-oriented systems to be formally specified, if not necessarily formally

verified.

For concurrent software and systems, Petri nets, process algebra, and finite state

machines (which are based on automata theory) allow executable software specification

and can be used to build up and validate application behaviour.

3.7 Software verification

Important considerations when dealing with a formal system:

• Soundness/Correctness.

 This property states that every property that can be obtained using the formal

system/calculus is semantically true in some sense.

– Slogan: “What you can prove is also true.”

• Completeness.

 This property is the opposite implication of correctness. It states that for every true

sentence there is also a proof in the formal system/calculus.

– Slogan: “What is true can also be proven.” • Expressive power.

– Slogan: “Can I formulate all my properties in the language?”

• Decidability.

 If a formal system is decidable, then all proofs can be found automatically by a

program.

Slogan: “Can a computer do my work?”

3.8 Why use Formal Methods?

 Improve quality of software system

 Fitness for purpose

 Maintainability

 Ease of construction

 Higher confidence in software product

 Reveal ambiguity, incompleteness, and inconsistency in system

 Detect design flaws

 Determine correctness

 Incrementally grows in effective solution after each iteration.

 This model does not involve high complexity rate.

 Formal specification language semantics verify self-consistency.

3.9 Some Limitations to Formal methods

Formal methods have not become mainstream software development techniques as was

once predicted.

 The scope of formal methods is limited. They are not well-suited to specifying

and analysing user interfaces and user interaction

 Formal methods are hard to scale up to large systems

 Time consuming and expensive.

 Difficult to use this model as a communication mechanism for non-technical

personnel.

 Extensive training is required since only few developers have the essential

knowledge to implement this model.

3.9 When and where to use Formal Methods?

 Introduce FM into existing systems

 Verify critical properties

 Facilitate maintenance and reimplementation

 Introduce FM into new systems

 Capture requirements precisely

 Reduce ambiguity

 Guide software development process

 Basis for testing o Formalize requirements analysis and design

3.10 Relevant arrears of research

 Programming environments

 Formal methods in software development

 Tools that support construction of formal specifications

 Design tools that will generate formal specifications

 Problem/specification decomposition

 Procedural and data abstraction

 Synthesis of efficient code

 "Smart” user interfaces (user-friendly ones!!)

 Methods for determining reuse (of design/specifications/code)

4.0 Self-Assessment Exercise(s)

Answer the following questions:

1. Define formal methods

2. Mention some of the formal methods used in software development

3. What are the uses of formal methods in software development?

4. Differentiate between human directed proof and automated proof

5. Formal methods can be applied in the production of critical systems: Mention

any 5 of them

6. Write short notes on the following:

a) Denotational semantics

b) Operational semantics

c) Axiomatic semantics

5.0 Conclusion

The principal benefit of the application of formal methods in crafting software product

is in the reduction of errors. It is therefore advisable to deploy them in software

development, especially in life and security critical systems

6 Summary

Formal methods refer to mathematically based techniques for the specification,

development and verification of software and hardware systems. The approach is

especially important in high-integrity systems, for example where safety or security is

important, to help ensure that errors are not introduced into the development process.

Formal methods are particularly effective early in development at the requirements and

specification levels, but can be used for a completely formal development of an

implementation (e.g., a program). Formal methods are best described as the application

of a fairly broad variety of theoretical computer science fundamentals, in particular

logic calculi, formal languages, automata theory, and program semantics, but also type

systems and algebraic data types to problems in software and hardware specification

and verification. It is very beneficial, though it also has it demerits.

7.0 Further Reading

Formal methods - Wikipedia, the free encyclopedia [online] Available at

http://en.wikipedia.org/wiki/Formal_methods

FTMS Consultants (M) Sdn Bhd (2011) SD3049 Formal Methods in Software

Engineering Kuala Lumpur, Malaysia

L. M. Barroca, J. A. McDermid (1997) Formal Methods: Use and Relevance for the

Development of Safety-Critical Systems, THE COMPUTER JOURNAL, VOL.

35, NO. 6

Michael Jackson, Patrick Cousot, Jonathan Peter Bowen, Margaria Tiziana (2008)

Software engineering and formal methods, ACM

Mona Batra, Amit Malik, Dr. Meenu Dave (2020) Formal Methods: Benefits,

Challenges And Future Direction, Journal of Global Research in Computer

Science

Zoltán Istenes (2014) Formal Methods in Software Engineering

MODULE 2: FORMAL METHODS

This module is divided into five (5) units

Unit 1: Introduction to Formal Methods

Unit 2: Proposition

Unit 3: Predicates

Unit 4: Sets

Unit 5: Series or Sequence

Unit 1: Introduction to Formal Methods

Contents

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content

3.1 Background

3.2 Formal Method

3.3 Advantages

3.4 Disadvantages

3.5 Critical Software

3.6 Integrity Level

3.7 Stages in Formal Methods

Contents

1.0 Introduction

When creating a software there are few engineering stages that is normally followed to

ensure that the software is built within time and budget. These stages collectively are

called the software development life cycle (SDLC). The SDLC can be divided into

seven (7) stages;

Initial Study, Analysis, Design, Development, Testing, Implementation and

Implementation. To develop a high-quality software, where the number of bugs is

greatly reduced, formal method comes into play. Formal methods used in developing

computer systems are mathematically based techniques for describing system

properties. Such formal methods provide frameworks within which people can specify,

develop, and verify systems in a systematic, rather than ad hoc manner.

A method is formal if it has a sound mathematical basis, typically given by a formal

specification language. This basis provides a means of precisely defining notions like

consistency and completeness, and, more relevant, specification, implementation, and

correctness.

2.0 Intended Learning Outcomes (ILOs)

After studying this unit, you should be able to

 Give a background of formal methods

 Define the phrase formal methods

 State some advantages and disadvantages of formal methods

 Enumerate the stages of formal methods

 Enumerate the stages of SDLC

 Briefly describe each of the stage of SDLC

3.0 Main Content

3.1 Background

When a new system is to be implemented, the first step is to write a requirement

specification (usually in natural language). The specification should correctly describe

the system’s desired behaviour and it should be complete and unambiguous, which can

be hard to achieve. The specification is then transformed into code by a programmer,

who has to understand the specification correctly and handle any ambiguities. Also, the

programmer’s way of coding and solving technical challenges can introduce faults in

the code. Then there is the sheer size of the system; nowadays systems are so big that it

can be hard to keep track of all the parts to make sure that they correctly follow the

specification. Furthermore, there is often a team of programmers working together,

which also is a source of faults since they will all have their own interpretations of the

specification and of the information shared during the development process.

During and after the coding of the system, the system’s functionality is usually tested

to make sure that the resulting program satisfies the requirements and that no errors or

bugs are present. Testing big and complex systems can be very time consuming and,

due to the size of the system and the amount of code, an exhaustive testing is not

practically feasible. Nevertheless, when the system is safety and security critical, correct

functionality has to be guaranteed, which requires either exhaustive testing or a way of

proving that the code correctly implements the specification.

The concept of formal methods introduces tools to mathematically describe a system

(or parts of a system) in a specification and to prove that the resulting program meets

the requirements described in the specification. A formal specification is precise and

there is no risk for misinterpretations. Also, if there is a proof that the implementation

abides by the specification, then one can be sure that the programmers have

implemented what is described in the specification. In practice, one cannot completely

guarantee that the resulting implementation is fault free, since the formal method used

can have defects, or there might be some error in the proof. Nevertheless, increased use

of formal methods and tools will result in better and more reliable methods and tools.

To summarise: by using formal methods in the system development, errors can be found

earlier and some classes of errors can be nearly eliminated.

A limitation of formal methods is that they only can be used to prove a system’s

correctness with respect to a specification. Therefore, just because a program has been

mathematically proved to abide to the specification, there is no guarantee that the

specification in itself is correct and fault free. Nevertheless, properties can be proved

on the specification to strengthen the belief that the specification correctly represents

the desired functionality.

 A brief description of the stages of Software Development Life (SDLC) will enhance

the understanding application of formal methods in software development.

When creating a software there are few engineering stages that is normally be followed

to ensure that they software is built within the time and budget. These stages collectively

are called the software development life cycle (SDLC).

The SDLC can be divided into seven (7) stages;

1. Initial Study: This is the first time the system development team meets the clients to

collective information regarding the problem. Normally this stage delivers the proposal

and quotation to the clients.

2. Analysis: After the client has agreed to the proposal and price, the team will go in

and study the current system with the intention to discover the source of the problem.

The System analyst will use diagrams and data collection techniques (observation,

inspections, interview, etc) to aid them. Normally this stage delivers a report stating the

source of the problem and more then one alternative solutions.

3. Design: After the client agrees with the analysis findings, the client will choose one

(1) solution. From this one solution the system designer will create the specification.

Take note that different IT section will require different specification. For the software

section, the deliverables will take the form of a screen design, logic design,

representation of the codes, etc.

4. Development: Based on the given specification, the respective IT section will develop

the solution. For the software section, the deliverables will be a full running software

program created from the specification.

5. Testing: The test documents (Test Plan and Test Case) are normally created by the

System Analyst during the development stages. The tester (normally a 3rd party) will

use the Test Plan and Test Case to complete the testing. The deliverables will be a letter

from the tester stating the outcome of the test.

6. Implementation: At this stage onward the software is no longer a concern, the main

objective now will be to prepare the environment. The implementation plan will list the

tasks necessary to prepare the environment to accept new software, such as installation,

training, conversion of data, change over method, etc. There are many deliverables here

depending on what is listed in the implantation plan. For example, for user training a

user manual is normally created.

7. Review: This is the final stage where the software user and team will sit down to

review the software performance and to decide negotiate on the maintenance contract.

If all goes well normally but not necessary a sign off letter will be the last deliverables.

3.2 Formal Method

Formal method is a way to takes the specification (written in natural language) and

converts it into its mathematical equivalent. Thus, it is normally used in the SDLC

Analysis and Design stages. The natural language usually contains ambiguous,

incomplete and inconsistent statement.

Once a specification in English for example is translated to a mathematical form, it will

remove all ambiguity and uncertainty in that statement.

Formal method will also bring to light all different probable perspective to any given

variables and functions that could have been hidden behind the English language.

This can be done using a number of formal languages such as Z notation, VDM,

Algebra, Functional Programming, etc.

Creating software need not use formal method, having said that, having formal method

imbedded into the SDLC does give the software huge advantages and also a new set of

disadvantages

In computer science, formal methods are mathematically rigorous techniques and tools

for the specification, design and verification of software and hardware systems.

Mathematically rigorous means that the specification consists of well-formed

statements using mathematical logic and that a formal verification consists of rigorous

deductions in that logic. The strength of formal methods is that they allow for a

complete verification of the entire state space of the system and that the properties that

can be proved to hold in the system will hold for all possible inputs. When formal

methods cannot be used through the entire development process (due to the complexity

of the system, lack of tool or other reasons), they can still successfully be used on parts

of the system, for example for the requirements and high-level design or only on the

most safety or security critical components.

The diversity of available formal methods is a result of the different modelling methods

and proof approaches needed by different application domains. Also, different

development phases of a system might require different tools and techniques.

Although many developed formal methods are the result of research efforts in

universities, more and more tools and techniques are available outside the academic

community. Several of the standards used for system development require formal

methods at the highest levels of accreditation.

Some examples are the Common Criteria standard and the DO-178C standard Software

Considerations in Airborne Systems and Equipment Certification for software for

airborne systems in commercial aircraft.

3.3 Advantages

Some of the (plausible) advantages of the use of formal methods for software

development are as follows.

 The development of a formal specification provides insights into and an

understanding of the software requirements and software design. This reduces

requirements errors and omissions. It provides a basis for an elegant software

design.

Indeed, it is sometimes helpful to develop a formal specification of an existing

system if that system is complex, and it is to be changed or replaced, since this

can detect subtle errors that would otherwise be included in the modified (or

new) system. In some editions of his book, Pressman mentions a case involving

the development of an operating system. Here at Calgary, this technique has been

used to detect errors in VLSI chips before the chips have been fabricated.

 Formal software specifications are mathematical entities and may be analysed

using mathematical methods. In particular, it may be possible to prove

specification consistency and completeness. It may also be possible to prove that

an implementation conforms to its specification. The absence of certain classes

of errors may be demonstrated. However, program verification is expensive and

the ability to reason about the specification itself is probably more significant.

 Formal specifications may be automatically processed. Software tools can be

built to assist with their development, understanding, and debugging.

Sommerville discusses the possibility of ``animating'' formal specifications in

order to produce prototypes of systems.

 Formal specifications may be used as a guide to the tester of a component in

identifying appropriate test cases. For example, a function's preconditions and

postconditions can be used to design (black box) tests, and a class invariant can

be useful when testing a class in an object-oriented system. These can all be

written explicitly in (or deduced from) formal specifications.

NOTE: Formal Method forces the System Analyst and Designer to think carefully

about the specification as it enforces proper engineering approach using discrete

mathematics.

Formal Method forces the System Analyst and Designer to see all the different possible

states for any given variables and functions thus will avoid many faults and therefore

reduces the bugs and errors from the design stage onward.

3.4 Disadvantages

Disadvantages include the fact that these methods aren't always appropriate (there are

some kinds of requirements that really are more easily, and accurately, specified using

pictures with annotations), and involve the difficulty of adopting such methods in

industry.

 Software management is often conservative and is unwilling to adopt new

techniques for which payoff is not obvious. It is difficult to demonstrate that the

relatively high cost of developing a formal system specification will reduce

overall software development costs. In this respect, the use of mathematics in

software engineering is different from in other engineering disciplines:

Mathematical analysis of physical structures can result in cost savings in

materials and allows cheaper designs to be used.

 Some software engineers, particularly those in senior positions, have not been

trained in the techniques needed to develop formal software specifications.

Developing specifications requires a familiarity with discrete mathematics and

logic. Inexperience with these techniques makes the development of formal

specifications more difficult than it would be otherwise.

 System customers are unlikely to be familiar with formal specification

techniques. They may be unwilling to fund development activities that they

cannot easily monitor.

 Some classes of software system requirements are difficult to specify using

existing techniques. In particular, current techniques cannot be used to specify

the interactive components of user interfaces. Some classes of parallel

processing systems, such as interrupt-driven systems, are difficult to specify.

 There is a widespread ignorance of the practicality of current specification

techniques and their applicability. The techniques have been used successfully

in a significant number of nontrivial development projects.

 Most of the effort in specification research has been concerned with the

specification of languages and their theoretical underpinnings. Relatively little

effort has been devoted to method and tool support.

NOTE: Formal Method requires the person to know how to apply discrete mathematics.

It will obviously slow down the analysis and design stage resources and time therefore

also the cost of the project.

There are too many different formal methods and most of them are not compatible with

each other.

Formal methods do not guarantee that a specification is complete. For each variable and

function, it just forces the System Analyst and Designer to view the specification from

a different perspective but it does not guarantee that variable and functions will not be

left out.

3.5 Critical Software

Having known the advantages and disadvantages, most clients will see the justification

to use formal methods for critical systems, but this thinking is now slowly fading as

most clients realize the important and cost saving and convenience of having a good

specification initially in the SDLC.

There are basically three (3) different types of critical systems;

1. Business Critical System

Business Critical System refers to a system where the honesty and integrity of the

business is paramount. All data kept in the system must be accurate at all times. If a

fault is found the entire process must be stop to allow correction. Most government,

business and manufacturing company that requires payment are business critical.

2. Mission Critical System

Mission Critical System refers to a system where the continuous running of the system

is paramount. Accurate takes a lower priority compare to the running of the system.

Auto Teller Machine, Car ticketing system, Alarm Systems are mission critical.

3. Safety Critical System

Safety Critical System refers to a system where the safety of everyone directly or

indirectly affected by the system is paramount. Functionality and Accurate takes a lower

priority compare to the safety of the users. Most medical, construction and oil rig

systems are safety critical system.

Many organizations today require a combination of the above as such you may have a

business mission critical system, a business safety critical system, etc.

3.6 Integrity Level

Integrity level refers to how much cost an organization is willing to spend and how

much risk is an organization is willing to take when developing software.

3.7 Stages in Formal Methods

1. Formal Specification

This is where normal system specification is use and translated using a formal language

into a formal specification. There are basically two type of formal language; Model

Oriented (VDM, Z, etc) and Properties Oriented (Algebraic Logic, Temporal Logic,

etc). This is the cheapest way to handle formal method.

The formal specification generally does the following process.

 Get user requirement usually from the specification written in the natural

language.

 Clarify the requirement using mathematical approach. This is to remove all

ambiguous, incomplete and inconsistent statement.

 After statements are clearly identified. Then find all assumptions (Things that

must be in place before something can happen) that is state or not stated within

the clarified requirement.

 Then expose every possible logic defect (fault) or omission in the clarified

requirement.

 Identify what are the exceptions (bad things) that will arise if the defects are not

corrected.

 Find a way to test for all the possible each exception. Only when you can test for

an exception can you be able to stop that exception from happening.

2. Formal Proof

This level studies the formal specification and retrieves the goals of the formal specific.

Then fixed rules are created and with these rules step by step instructions are listed to

achieve the specified goals. This is relatively cheaper but there are more task steps.

3. Model Checking

This level studies the formal specification and formal proof deliverables to make sure

that the system or software contains ALL possible properties to be able to handle all

possible scenarios that could happen for a given specification. This stage is beginning

to be more expensive.

4. Abstraction

This level uses mathematical and physical models to create a prototype of the entire

system for simulation. This prototype is use to focus on the properties and characteristic

of the system. This is the most expensive formal method.

Integrity Level and Formal Method Stages

The integrity level decided by the organization will determine how deep to go into the

Formal Method stage.

Remember that the deeper into the formal method means more time and resources thus

more cost will be incurred.

4.0 Self-Assessment Exercise(s)

Answer the following questions:

1. Briefly discuss the background of formal methods

2. Enumerate the stages of formal methods

3. Briefly describe each of the stage of SDLC

4. Define the phrase formal methods

5. State some advantages and disadvantages of formal methods

5.0 Conclusion

Formal methods can be applied at different stage of the SDLC. It can be applied at any

stage but the earlier it is applied the better. It is very useful, most especially at the

specification and design stages. Its advantages overweigh its disadvantages.

6.0 Summary

Formal Method forces the System Analyst and Designer to think carefully about the

specification as it enforces proper engineering approach using discrete mathematics. In

this unit we discussed the following:

Background

Formal Method

Advantages

Disadvantages

Critical Software

Integrity Level

Stages in Formal Methods

7.0 Further Reading

Formal methods - Wikipedia, the free encyclopedia [online] Available at

http://en.wikipedia.org/wiki/Formal_methods

FTMS Consultants (M) Sdn Bhd (2011) SD3049 Formal Methods in Software

Engineering Kuala Lumpur, Malaysia

L. M. Barroca, J. A. McDermid (1997) Formal Methods: Use and Relevance for the

Development of Safety-Critical Systems, THE COMPUTER JOURNAL, VOL.

35, NO. 6

Michael Jackson, Patrick Cousot, Jonathan Peter Bowen, Margaria Tiziana (2008)

Software engineering and formal methods, ACM

Mona Batra, Amit Malik, Dr. Meenu Dave (2020) Formal Methods: Benefits,

Challenges And Future Direction, Journal of Global Research in Computer

Science

Zoltán Istenes (2014) Formal Methods in Software Engineering

Unit 2: Proposition

Contents

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content

3.1 Introduction to Proposition

3.2 Connectives

 3.2.1 AND Connective

3.2.2 OR Connective

3.2.3 Implies Connective (ie If... Then...)

3.2.4 Iff

3.2.5 Not Connective

3.2.6 Comments

3.2.7 Tautologies and Consistency

3.3 Truth Table

3.4 Truth Table and Proposition

3.5 Result terminology

Contents

1.0 Introduction

Proposition is a declarative statement that can result in either true or false. The statement

must be a constant thus the value cannot change.

2.0 Intended Learning Outcomes (ILOs)

After studying this unit, you should be able to

 Define proposition

 Identify proposition operators

 Construct and interpret propositions

 Construct truth tables

3.0 Main Content

3.1 Introduction to Proposition

Proposition is a declarative statement that can result in either true or false. The statement

must be a constant thus the value cannot change.

In formal methods, the natural language is scan for propositions. Each proposition

(either or false) will be translated into an expression usually joined using operators, and

all the possible value for each proposition will be listed in a truth table to cover all

possible value.

For example:

If two statements have the same meaning, that statement or proposition is considered to

the equal even if they are spoken in different format or language.

When most people say ‘logic’, they mean either propositional logic or first-order

predicate logic. However, the precise definition is quite broad, and literally hundreds of

logics have been studied by philosophers, computer scientists and mathematicians.

Any ‘formal system’ can be considered a logic if it has:

 a well-defined syntax;

 a well-defined semantics; and

 a well-defined proof-theory.

The syntax of a logic defines the syntactically acceptable objects of the language, which

are properly called well-formed formulae (wff). (We shall just call them formulae.). The

semantics of a logic associate each formula with a meaning. The proof theory is

concerned with manipulating formulae according to certain rules.

The simplest, and most abstract logic we can study is called propositional logic.

 Definition: A proposition is a statement that can be either true or false; it must be one

or the other, and it cannot be both.

EXAMPLES. The following are propositions:

 the reactor is on;

 the wing-flaps are up;

 John Major is prime minister.

whereas the following are not:

 are you going out somewhere?

 2+3

It is possible to determine whether any given statement is a proposition by prefixing it

with:

It is true that ...

and seeing whether the result makes grammatical sense.

We now define atomic propositions. Intuitively, these are the set of smallest

propositions.

Definition: An atomic proposition is one whose truth or falsity does not depend on the

truth or falsity of any other proposition. So, all the above propositions are atomic.

Now, rather than write out propositions in full, we will abbreviate them by using

propositional variables. It is standard practice to use the lower-case roman letters p, q,

r, ... to stand for propositions. If we do this, we must define what we mean by writing

something like:

Let p be John Major is prime Minister.

Another alternative is to write something like reactor is on, so that the interpretation of

the propositional variable becomes obvious.

3.2 Connectives

The study of atomic propositions is pretty boring. We therefore now introduce a number

of connectives which will allow us to build up complex propositions.

 The connectives we introduce are:

∧ and (& or .)

∨ or (|or +)

¬ not (∼)

⇒ implies (⊃or→)

⇔ iff

Some books use other notations; these are given in parentheses.

3.2.1 AND Connective

Any two propositions can be combined to form a third proposition called the

conjunction of the original propositions.

Definition: If p and q are arbitrary propositions, then the conjunction of p and q is

written p∧q and will be true iff both p and q are true

We can summarise the operation of ∧ in a truth table. The idea of a truth table for some

formula is that it describes the behaviour of a formula under all possible interpretations

of the primitive propositions the are included in the formula. If there are n different

atomic propositions in some formula, then there are 2n different lines in the truth table

for that formula. (This is because each proposition can take one 1 of 2 values — true or

false.) Let us write T for truth, and F for falsity.

Then the truth table for p∧q is:

3.2.1 OR Connective

Any two propositions can be combined by the word ‘OR’ to form a third proposition

called the disjunction of the originals.

Definition: If p and q are arbitrary propositions, then the disjunction of p and q is written

p∨q and will be true iff either p is true, or q is true, or both p and q are true.

The operation of ∨ is summarised in the following truth table:

3.2.3 Implies Connective (i.e., If... Then...)

Many statements, particularly in mathematics, are of the form: if p is true then q is true.

Another way of saying the same thing is to write:

p implies q.

In propositional logic, we have a connective that combines two propositions into a new

proposition called the conditional, or implication of the originals, that attempts to

capture the sense of such a statement.

Definition: If p and q are arbitrary propositions, then the conditional of p and q is written

p⇒q and will be trueiff either p is false or q is true.

The truth table for⇒is:

The ⇒operator is the hardest to understand of the operators we have considered so far,

and yet it is extremely important. If you find it difficult to understand, just remember

that the p⇒q means ‘if p is true, then q is true’. If p is false, then we don’t care about q,

and by default, make p⇒q evaluate to T in this case.

Terminology: if φ is the formula p⇒q, then p is the antecedent of φ and q is the

consequent.

3.2.4 Iff

•Another common form of statement in maths is: p is true if, and only if, q is true. The

sense of such statements is captured using the biconditional operator.

Definition: If p and q are arbitrary propositions, then the biconditional of p and q is

written:

p⇔q

and will be true iff either:

1. p and q are both true; or

2. p and q are both false.

The truth table for⇔is:

If p⇔q is true, then p and q are said to be logically equivalent. They will be true under

exactly the same circumstances.

3.2.5 Not Connective

All of the connectives we have considered so far have been binary: they have taken two

arguments. The final connective we consider here is unary. It only takes one argument.

Any proposition can be prefixed by the word ‘not’ to form a second proposition called

the negation of the original.

Definition: If p is an arbitrary proposition, then the negation of p is written

 ¬p

and will be true iff p is false.

Truth table for¬:

3.2.6 Comments

We can nest complex formulae as deeply as we want.

We can use parentheses i.e.,), (, to disambiguate formulae.

EXAMPLES. If p,q,r,s and t are atomic propositions, then all of the following are

formulae:

p∧q⇒r

p∧(q⇒r)

(p∧(q⇒r))∨s

((p∧(q⇒r))∨s)∧t

whereas none of the following is:

p∧

p∧q)

p¬

3.2.7 Tautologies and Consistency

Given a particular formula, can you tell if it is true or not? No, you usually need to know

the truth values of the component atomic propositions in order to be able to tell whether

a formula is true.

Definition: A valuation is a function which assigns a truth value to each primitive

proposition.

In Modula-2, we might write:

PROCEDURE Val(p : AtomicProp): BOOLEAN;

Given a valuation, we can say for any formula whether it is true or false.

EXAMPLE. Suppose we have a valuation v, such that:

v(p) = F

v(q) = T

v(r) = F

Then the truth value of (p∨q) ⇒r is evaluated by:

(v(p)∨v(q)) ⇒v(r) (1)

= (F∨T) ⇒F (2)

= T ⇒F (3)

= F (4)

Line (3) is justified since we know that F∨T = T.

Line (4) is justified since T ⇒F = F. If you can’t see this, look at the truth tables for

∨and ⇒.

When we consider formulae in terms of interpretations, it turns out that some have

interesting properties.

Definition:

1. A formula is a tautology iff it is true under every valuation;

2. A formula is consistent iff it is true under at least one valuation;

3. A formula is inconsistent iff it is not made true under any valuation. Now, each line

in the truth table of a formula corresponds to a valuation. So, we can use truth tables to

determine whether or not formulae are tautologies.

3.3 Truth Table

Truth tables is used to tell whether a propositional is true or false not only for one (1)

instance but for all possible instance of the variable.

Since proposition is either true or false thus we can use a truth table to list down all the

position state of that proposition.

Proposition: A = Ali is a boy.

Possible value: true or false therefore in a truth table.

Proposition: A = Ali is NOT a boy or NOT (Ali is a boy)

Possible value: true or false therefore in a truth table.

With a NOT operator true becomes false and false become true.

For every increase in proposition, there is a double increase in possible value.

Proposition: Ali is a boy and Mary is a girl. A = Ali is a boy M = Mary is a girl

Notice that this is actually two propositions join with the AND operator. We see it as A

^ M

Possible value: true or false for A and possible value: true or false for M

With an AND operator both statements must be true then the join statement will be true.

Once we understand the above explanation, we can use the same principal for the

remaining proposition operators.

Precedence of operation

4.0 Self-Assessment Exercise(s)

Answer the following questions:

1. State the rules that governs the results of operation resulting from the joining of

two propositions using OR, implies, and Difference

2. Illustrate tautology and consistency with an example.

3. Construct two prepositions using X, Y and Z. Determine the results using (X ^

Y) v (X ^ Z). Describe the meaning of your result(s)

4. State the importance of a truth table and connectives in prepositional logic.

5. Explain the following terms: preposition, connectives, formula disambiguation

5.0 Conclusion

Proposition is a formalism that can be used in software development to remove

ambiguity in requirement specification. It useful in hunting and removing bugs and

errors during software testing

A declarative sentence that is either true or false, but not both, is a proposition

6.0 Summary

In this unit propositional logic was introduced. Here we discussed several Connectives

which include AND, OR, NOT, etc. We also illustrated proposition with the use of truth

table.

7.0 Further Reading

Formal methods - Wikipedia, the free encyclopedia [online] Available at

http://en.wikipedia.org/wiki/Formal_methods

FTMS Consultants (M) Sdn Bhd (2011) SD3049 Formal Methods in Software

Engineering Kuala Lumpur, Malaysia

L. M. Barroca, J. A. McDermid (1997) Formal Methods: Use and Relevance for the

Development of Safety-Critical Systems, THE COMPUTER JOURNAL, VOL.

35, NO. 6

Michael Jackson, Patrick Cousot, Jonathan Peter Bowen, Margaria Tiziana (2008)

Software engineering and formal methods, ACM

Mona Batra, Amit Malik, Dr. Meenu Dave (2020) Formal Methods: Benefits,

Challenges And Future Direction, Journal of Global Research in Computer

Science

Zoltán Istenes (2014) Formal Methods in Software Engineering

Unit 3: Predicates

Contents

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content

3.1 Introduction to Predicates

3.1.2 Bound and Free (Bound) variables

3.1.1 Predicates and Truth Table

3.2 Existential

3.3 Universal

Contents

2.0 Introduction

 A predicate is a relation among objects, and it consists of a condition part and an action

part, IF (condition) and THEN (action). Predicates that have no conditional part are

facts.

2.0 Intended Learning Outcomes (ILOs)

After studying this unit, you should be able to

 Give a background of formal methods

 State some advantages and disadvantages of formal methods

 Enumerate the stages of formal methods

 Enumerate the stages of SDLC

 Briefly describe each of the stage of SDLC

3.0 Main Content

3.1 Introduction to Predicate

In formal methods, the natural language is scan for predicates. Each functions and

variables (bounded or free) will be translated into an expression also usually joined

using operators. Then all possible qualifiers will be listed. Sometime a truth table is

used to cover all possible value.

But this is not practical as most statement actually contains variables and changes in the

variables will change the validity of the statement to true or false, because some

statement refers to a set of different elements.

Therefore we use predicate to handle such statement. For this subject we will use First-

Order Logic only.

To use predicate there must at least two (2) elements;

1. A variable or a constant

2. A function that will be performed on or by the variable(s)

For example:

An ostrich has wing can fly, a eagle has wing can fly

The constant object here is “Wing”

The variable object here is either “Ostrich” or “Eagle”

The function here is “Fly”

Predicate quantifiers

The following are quantifiers that can be use with a predicate;

Qualifier is normally place with an object (variable or constant)

Assuming a function call fly with only one (1) set of object Airplane, therefore using

the above qualifier we can have two (2) different statements.

∀Airplane Fly (Airplane) = All airplane can fly

∃Airplane Fly (Airplane) = Some airplane can fly

If we have two sets of Airplane (Plane A and Plane B) using the above “Fly Faster”

function we can have four (4) different statements. Plane A is denoted as A and Plane

B is denoted as

B.

If we have two sets of different object Boys and Girls using the above “Run Faster”

function we also have four (4) different statements. Boys is denoted as B and Girls is

denoted as G.

Predicates and Operators

All the operators used with proposition can be use to join different predicates.

3.1.1 Predicates and Truth Table

Because the result of a predict function can be true or false, Truth tables can also be

used with predicates.

For example:

For a one function predict A = ⌐ Fly (Airplane)

For a two (2) function predict Fly (Airplane) ^ Fly (Birds)

A = ∀Airplane Fly (Airplane)

B = ∀Birds Fly (Birds)

3.1.2 Bound and Free (Bound) variables

This term is use in mathematics, in formal languages (mathematical logic and computer

science).

A free variable is a notation that specifies places in an expression where substitution

may take place.

A bound variable is a notation that specifies places in an expression no changes can take

place.

The idea is related to a symbol that will later be replaced with strings or values. It can

also be represented by a wildcard character that stands for an unspecified symbol.

Based on the example, below:

1. ∀x, function (x, y)

2. ∃x, function (x, y)

If symbol x in the function represents a bound variable because it is stated in the

qualifier. The symbol y in the function represents a free variable because it is not stated

in the qualifier. The symbol w (or any other value) is a neither bound nor free as it was

never use in the function.

∀x on the left refers to an instance of x

 function (x, y) on the right should also refers to an instance of x

But technically the left x and right x could mean something else but this will cause a lot

of confusion, thus the symbol on the left is usually kept in consistent with the symbol

on the right

4.0 Self-Assessment Exercise(s)

Answer the following questions:

1. Explain bound and free variables

2. What are predicate, operators and truth sets?

3. Illustrate a first-order logic with appropriate predicates

4. List the predicates quantifiers for each of universal and existential statements.

5. Explain Universal and Existential statements

6. Explain the different stages of SDLC

5.0 Conclusion

A predicate is a relation among objects, and it consists of a condition part and an action

part, IF (condition) and THEN (action). Predicates that have no conditional part are

facts.

6.0 Summary

An introduction to Predicates was discussed as well as bound and Free variables,

predicates and Truth Table. Predicate quantifiers such existential and universal was

highlighted’

7.0 Further Reading

Formal methods - Wikipedia, the free encyclopedia [online] Available at

http://en.wikipedia.org/wiki/Formal_methods

FTMS Consultants (M) Sdn Bhd (2011) SD 3049 Formal Methods in Software

Engineering

Kuala Lumpur, Malaysia

Zoltán Istenes (2014) Formal Methods in Software Engineering

Unit 4: Sets

Contents

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content

3.1 Universe (U)

3.2 Elements

3.3 Finite Elements

3.4 Infinite Elements

3.5 Cardinality

3.6 Reserve Letter used by Mathematician

3.7 Terminology used to describe sets Relationship

3.8 Terminology used to describe sets Operation

Contents

1.0 Introduction

Set is very basic mathematical concept use to group objects. It is basically used to show

the relationship between each type of objects. The Venn diagram is always used to

picture the set theory graphically. A set is a group that may contain none or one (1) or

more elements.

In formal methods, there are many ways to use set theory. One example will be to

categories many types of objects available in a system mostly in the form of data. Base

on the purpose of the particular system or software the objects are properly grouped and

then related to one another.

2.0 Intended Learning Outcomes (ILOs)

After studying this unit, you should be able to

 Define a set

 Mention and illustrate the terminologies used to describe sets Relationship

 Differentiate between finite and infinite elements

 Discuss the operations on set with appropriate examples

3.0 Main Content

Set is very basic mathematical concept use to group objects. It is basically used to show

the relationship between each type of objects. The Venn diagram is always used to

picture the set theory graphically. A set is a group that may contain none or one (1) or

more elements.

In formal methods, there are many ways to use set theory. One example will be to

categories many types of objects available in a system mostly in the form of data. Base

on the purpose of the particular system or software the objects are properly grouped and

then related to one another.

3.1 Universe (U)

The Universe represents the scope of the system. All elements that is within the universe

is considered necessary and elements not mentioned in the universe is considered none

existence. Thus, it is very important that we define the universe accurately.

3.3 Elements

All elements in a set must be unique. In the Venn Diagrams the individual small letter

element name are prefix with a dot. Capital Letter names is use to group many

duplicates elements (sets) do not have a dot. The sequence or arrangement of the

elements is not important.

There are two (2) ways to describe elements in a set.

1. Using a rule or semantic description:

A is the set whose members are the first four positive integers.

B is the set of colours of the Malaysian flag.

2. Listing each member of the set or extensional definition. Elements in a list are

enclosed inside curly brackets separated by commas.

3.3 Finite Elements

Some elements may be finite (with a starting and ending value) thus it can be

representation as:

To show a value from 1 to 100 is represented as {1, 2, 3, ..., 100}

To show a value between 1 to 100 is represented as {2, 3, ..., 99}

F contains a number power by 2 minus 4 such that (: or |) all the numbers are integer

starting from 0 to 19 is represented as

F = {n2 − 4 | n is an integer; and 0 ≤ n ≤ 19}

Or

F = {n2 − 4 : n is an integer; and 0 ≤ n ≤ 19}

3.4 Infinite Elements

Some elements may be infinite (no ending value) thus it can be representation as:

To show a integer value above 1 is represented as {1, 2, 3, ...}

F contains all the teachers in FTMS Global KL is represented as

F = { F | F all the teachers in FTMS Global KL }

Or

F = { F : F all the teachers in FTMS Global KL }

3.5 Cardinality

Cardinality means the number of elements in a set. Cardinality is denoted by vertical

bars around the set.

For example

| {1, 3, 9, 15} | = 4

 | {1, 2, 3, . . .} | = ∞

3.6 Reserve Letter used by Mathematician

P Set of all primes: P = {2, 3, 5, 7, 11, 13, 17, ...}

N Set of all natural numbers: N = {1, 2, 3, . . .}

Z Set of all integers (positive/ negative / zero): Z = {..., −2, −1, 0, 1, 2, ...}

Q Set of all rational numbers (that is, the set of all proper and improper fractions):

R Set of all real numbers (rational numbers, irrational numbers)

C Set of all complex numbers: C = {a + bi: a, b ∈ R}.

H Set of all Quaternions: For example, 1 + i + 2j − k ∈ H.

3.7 Terminology used to describe sets Relationship

Membership (∈)

Membership happens when one element or a set is found inside another set. This symbol

is normally used in describing a set for example

A = {A ∈ Color of the rainbow}

If A is a member of B, this is denoted A ∈ B.

If A is not a member of B then A ∉ B

A = {1, 2, 3, 4} therefore 4 ∈ A but 9 ∉ A

B = {blue, white, red} therefore “blue” ∈ B but “pink” ∉ B

Subsets (⊆)/ Supersets (⊇)

If every member of set A is found inside set B, then A is a subset of B (A ⊆ B). If set

B has every member of A and more then B is a super set of A (B ⊇ A) This kind of

relationship is also known as inclusion or containment.

If B is not a subset of A then we use the not a subset ⊊

If A is not a superset of B then we use the not a subset ⊋

We call “A“ a proper subset of “B” if A ⊆ B and A ≠ B

Let A = {1, 2, 3}, B = {1, 2, 3, 4}, then A ⊆ B and also A ⊂B

Let A = {1, 2, 3}, B = {3, 2, 1}, then A ⊆ B because A = B

Disjoint Sets

If every member of set A has no relation with set B and vice versa then we say that A

disjoint B. There is no special symbol to show this relationship.

NULL Set (∅)

Every universe or set or subset contains a NULL set. A null set is an empty set ({ })

that carries no elements. We can say that the NULL set is a subset for every set.

Family Sets

There are times when a set does not contain individual elements but it contains many

subsets. Conveniently this is called a family set and is it describes using the curly

bracket within a curly bracket.

A = { {1, 2, 3, 4, 5} , {6, 7, 8, 9, 10} , {11, 12, 13, 14, 15} }

Power Sets (P(setName))

Remember that a set is a group that may contain none or one (1) or more elements. A

power set means to show how many possible different ways to group all the elements

in a set. In other words, power set is the set of all subsets of a given set.

A = {1, 2, 3}, A has 3 elements, there is 8 possible ways to arrange this 23 = 8.

P(A) = { ∅ , {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1, 2, 3} }

3.8 Terminology used to describe sets Operation

Given the following sets:

U = {-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

A = {-1, 0, 1, 2, 5, 6, 9, 10}

B = {1, 2, 4, 6, 8, 10}

C = {1, 3, 5, 7, 9}

Union (∪): Add in all elements that are found in both sets.

A ∪ B = {-1, 0, 1, 2, 4, 5, 6, 8, 9, 10}

A ∪ C = {-1, 0, 1, 2, 3, 5, 6, 7, 9, 10}

B ∪ C = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

A ∪ B ∪ C = U

Intersect (∩): Show only elements that is found only in both sets

A ∩ B = {1, 2, 6, 10} A ∩ C = {1, 5, 9} B ∩ C = {1}

Difference (-): Also known as subtract, this show only elements that is found in this set

but NOT found in another sets

A - B = {-1, 0, 5, 9} A - C = {-1, 0, 2, 6, 10} B ∩ C = {2, 4, 6, 8, 10}

B - A = {4, 8} C - A = {3, 7}

Complement (‘): Show only elements that is found NOT found this sets

A’ = {3, 4, 7, 8} B’ = {-1, 0, 3, 5, 7, 9} C’ = {-1, 0, 2, 4, 6, 8, 10}

(A ∪ B)’ = {3, 7} (A ∩ B)’ = {-1, 0, 3, 4, 5, 7, 8, 9}

Difference can be seen as the same as complement.

Equality: Both sets must have exactly the same number of elements with exactly the

same value. Take note that sequence and duplication does not affect the set.

A = {3, 4, 7, 8} Z = {4, 3, 7, 8} therefore A = Z

B = {3, 4, 7, 8, 4} Y = {3, 4, 7, 8, 7} therefore B = Y

A = B = Y = Z

Compatible: Two sets are compatible if all element in one of the set can fit nicely inside

another set.

A = {x, b} Z = {x, b, c} therefore A is compatible to Z Because elements in A (x

and b) can fit inside element in Z also have (x, b)

A = {x, b} Y = {b, c} therefore A is not compatible to Y Because elements in Y

cannot contain (x) and A cannot contain (c).

 4.0 Self-Assessment Exercise(s)

Answer the following questions:

1. How is set theory useful in formal methods?

2. List the terminologies used to describe sets relationship

3. State the differences between a finite and infinite element of set

4. Discuss three operations on set with appropriate examples

5. Illustrate the difference between a null set and a singleton using set notation only.

5.0 Conclusion

Set is a mathematical concept used in grouping objects. It could also be used to model

relation between two sets or among several sets.

6.0 Summary

A set is a group of elements. In this unit we have examined Universality of set,

Cardinality of set, elements of set (ie Finite Elements and Infinite Elements),

relationships, set operations/operators

7.0 Further Reading

Formal methods - Wikipedia, the free encyclopedia [online] Available at

http://en.wikipedia.org/wiki/Formal_methods

FTMS Consultants (M) Sdn Bhd (2011) SD3049 Formal Methods in Software

Engineering Kuala Lumpur, Malaysia

L. M. Barroca, J. A. McDermid (1997) Formal Methods: Use and Relevance for the

Development of Safety-Critical Systems, THE COMPUTER JOURNAL, VOL.

35, NO. 6

Michael Jackson, Patrick Cousot, Jonathan Peter Bowen, Margaria Tiziana (2008)

Software engineering and formal methods, ACM

Mona Batra, Amit Malik, Dr. Meenu Dave (2020) Formal Methods: Benefits,

Challenges And Future Direction, Journal of Global Research in Computer

Science

Zoltán Istenes (2014) Formal Methods in Software Engineering

Unit 5: Series or Sequence

Contents

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content

3.1 Background

3.2 Type of sequence

3.3 How to find a SEQUENCE for a given term

Contents

1.0 Introduction

It is sometimes necessary to record the order in which objects are arranged: for example,

data may be indexed by an ordered collection of keys; messages may be stored in order

of arrival; tasks may be performed in order of importance. In this chapter, we introduce

the notion of a sequence: an ordered collection of objects. We examine the ways in

which sequences may be combined, and how the information contained within a

sequence may be extracted. We show that the resulting theory of sequences falls within

our existing theory of sets, and provide formal definitions for all of the operators used.

The chapter ends with a proof method for universal statements about sequences.:

2.0 Intended Learning Outcomes (ILOs)

After studying this unit, you should be able to

1. Define a sequence using natural and notation

2. Mention different types of sequence

3. Find a term in a given sequence

4. Find a sum in sequence

3.0 Main Content

3.1 Background

A sequence is simply a list, such as 2, 4, 6, ... where the numbers 2, 4, etc. are the terms

of the sequence.

Please take time to understand this terminology:

Terms (usually represented with a subscript italic letter “n”) refers to the index for a

given sequence starting from 0 to infinite. The sequence (usually represented with any

small letter “a”) refers to the value for a specific term. For example:

The term 0 has the number 0

The term 1 has the number 2

The term 2 has the number 4

The term 3 has the number 6

The formula for this sequence will be 2n (2 multiple by Terms)

3.2 Type of sequence

There are two type of sequence;

Finite sequence A finite sequence has both a starting value and an ending value.

E.g. 1, 2, 3, 4, 5 and 6

Infinite sequence An infinite sequence has both a starting value but no ending value

E.g. 1, 2, 3, 4, 5, 6 …

Sequences can be applied in two areas;

Arithmetic sequence

Arithmetic sequence a.k.a. Arithmetic progression or is a sequence of numbers that goes

from one term to the next by always adding (or subtracting) the same value.

Geometric sequence

Geometric sequence a.k.a. geometric progression is a sequence of numbers that goes

from one term to the next by always multiplying (or dividing) by the same value. Value

multiple by the same value, Value divided by the same value.

3.3 How to find a SEQUENCE for a given term

Arithmetic sequence

Finite or Infinite Sequence

a = the number for the first term in the sequence

d = the common difference (first term - second term)

n = the number of terms in the sequence needed

Geometric sequence

Finite or Infinite Sequence

a = the number for the first term in the sequence

r = ratio for the sequence

n = the number of terms in the sequence needed

4.0 Self-Assessment Exercise(s)

Answer the following questions:

1. Mention the different types of sequence

2. Describe Arithmetic and Geometrical Sequences with appropriate examples.

3. Find a sum in the following sequence 1, 4, 9…10000.

5.0 Conclusion

A sequence is list of numbers or terms generated used a particular expression or

construct. There are basically two types of sequence namely: arithmetic and geometric.

6.0 Summary

The concept of sequence was introduced. Different types of sequence were elaborated

upon, i.e., finite and infinite. Examples of Arithmetic and Geometric sequence were

illustrated. Arithmetic and Geometric sequence associated with addition (subtraction)

and multiplication (division) respectively.

77.0 Further Reading

Formal methods - Wikipedia, the free encyclopaedia [online] Available at

http://en.wikipedia.org/wiki/Formal_methods

FTMS Consultants (M) Sdn Bhd (2011) SD3049 Formal Methods in Software

Engineering Kuala Lumpur, Malaysia

L. M. Barroca, J. A. McDermid (1997) Formal Methods: Use and Relevance for the

Development of Safety-Critical Systems, THE COMPUTER JOURNAL, VOL.

35, NO. 6

Michael Jackson, Patrick Cousot, Jonathan Peter Bowen, Margaria Tiziana (2008)

Software engineering and formal methods, ACM

Mona Batra, Amit Malik, Dr. Meenu Dave (2020) Formal Methods: Benefits,

Challenges And Future Direction, Journal of Global Research in Computer

Science

Zoltán Istenes (2014) Formal Methods in Software Engineering

MODULE 3: FORMAL METHODS CONTINUES

This module is divided into four (4) units

Unit 1: Mathematical Proof

Unit 2: Testing

Unit 3: Application to Formal Specification

Unit 4: Z Notation

Unit 1: Mathematical Proof

Contents

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content

3.1 What is proof?

3.2 Terminology

3.3 Proofing Methods

Contents

1.0 Introduction

Proof simply means to be able to show that a statement is correct or true. No matter how

the statement is twisted and turned or set against many different scenario, that statement

comes up with the constant answer.

2.0 Intended Learning Outcomes (ILOs)

After studying this unit, you should be able to

1. Discuss formal proof

2. Mention some terminologies used in mathematical proof

3. Briefly explain the four proofing methods

3.0 Main Content

3.1 What is proof?

Proof simply means to be able to show that a statement is correct or true. No matter how

the statement is twisted and turned or set against many different scenario, that statement

comes up with the constant answer.

Before a statement can be proof it can have two (2); the conditions followed by the

result. For example, if it rains then I will be wet. This can then express in a using

proposition symbols as;

 Rain → I am wet (if it rains then I will be wet)

3.2 Terminology

1) Conjecture/ Hypothesis

This is a statement that is believe to be true but has yet to C be proven.

2) Axiom/ Postulate

If the statement is taken for granted to be true even though it was never tested, but base

on logic it is assume to be true.

3) Paradox/ Antinomy

This is a statement which appears to contradict itself or contrary to expectations

4) Theorem

This is a statement that has been proven to be true.

5) Un-decidable

This is a statement that cannot be proven right or wrong.

6) Lemma

A proven theorem that is used to prove other statements

7) Converse

Theorem that is reversed or turned upside down or inward out thus a converse of a

theorem need not be always true.

3.3 Proofing Methods

1. Direct Proof

In direct proof, the conclusion is established by logically combining the axioms,

definitions, and earlier theorems. From the expression one can directly see the answer.

For example: Rain →I am wet

2. Contradiction Proof

In proof by contradiction, if that statement is true and we logically contradict it then it

will not be true anymore.

 For example: Rain → I am wet

 No Rain →I am Dry

3. Contra-positive/ Transposition Proof

Proof by transposition or contra-positive turns the statement inside out and upside

down. This method swaps the result into the condition and negates both the result and

condition.

 For example: Rain →I am wet

I am Not wet →No Rain

4. Induction Proof

This proof method insists that if the statement is true for one instance, it should be true

for every instance.

For example: Rain →I am wet

On Monday (Rain →I am wet)

On Tuesday (Rain →I am wet)

On Wednesday (Rain →I am wet)

On Thursday (Rain →I am wet)

On Friday (Rain →I am wet)

4.0 Self-Assessment Exercise(s)

Answer the following questions:

1. State at least four proofing methods.

2. Illustrate induction proof with example.

3. Explain the following terms: Conjecture/ Hypothesis, Axiom/ postulate, Lemma

4. Explain the concept of formal proof.

5. Describe the contradiction proof.

5.0 Conclusion

Proofs are the heart and soul of mathematics, no matter how simple or complicated they

are. They play a central role in the development of mathematics and guarantee the

correctness of mathematical results and algorithms. No mathematical results or

computer algorithms are accepted as correct unless they are proved using logical

reasoning.

6.0 Summary

Proofs are meant to show the correctness or otherwise of a statement. In software

development, it could be used correctness of program statement or algorithm. We have

examined some terminologies used in proof and the various proofing methods.

7.0 Further

7.0 Further Reading

Formal methods - Wikipedia, the free encyclopedia [online] Available at

http://en.wikipedia.org/wiki/Formal_methods

FTMS Consultants (M) Sdn Bhd (2011) SD3049 Formal Methods in Software

Engineering Kuala Lumpur, Malaysia

L. M. Barroca, J. A. McDermid (1997) Formal Methods: Use and Relevance for the

Development of Safety-Critical Systems, THE COMPUTER JOURNAL, VOL.

35, NO. 6

Michael Jackson, Patrick Cousot, Jonathan Peter Bowen, Margaria Tiziana (2008)

Software engineering and formal methods, ACM

Mona Batra, Amit Malik, Dr. Meenu Dave (2020) Formal Methods: Benefits,

Challenges And Future Direction, Journal of Global Research in Computer

Science

Zoltán Istenes (2014) Formal Methods in Software Engineering

Unit 2: Testing

Contents

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content

3.1 Software Development Life Cycle

3.1.1 Revise Formal Method Process

3.2 Testing stage

3.3 Test plan

3.4 Test Case

3.5 Testing Concept

3.5.1 Test Flow

3.5.2 Test Size

3.6 Test Depth

3.7 Other Tests

Contents

1.0 Introduction

Test is a way of validating and verifying software. This ensures the removal and/ or

reduction of errors to the barest minimum. It further ensures that the right product is

crafted and that it meets user’s requirement specifications. Formal methods can be used

to achieve this to a higher extent.

2.0 Intended Learning Outcomes (ILOs)

After studying this unit, you should be able to

1. Outline stages in SDLC

2. Identify the focus of both validation and verification during software testing

3. Discuss test plan

4. Produce a sample of test plan

5. State the content of a test case

6. Discuss test in terms of size

3.0 Main Content

3.1 Software Development Life Cycle

The SDLC can be divided into seven (7) stages;

1. Initial Study: Team collects information regarding the problem.

2. Analysis: Team discover the source of the problem.

3. Design: Team creates the specification for the solution.

4. Development: Team built the solution base on the given specification.

5. Testing: Test the software to make sure it solves the problem.

6. Implementation: Team prepare the environment to accept software.

7. Review: Team and client review the software.

3.1.1 Revise Formal Method Process

The formal specification generally does the following process.

1. Get user requirement usually from the specification written in the natural language.

2. Clarify the requirement using mathematical approach. This is to remove all

ambiguous, incomplete and inconsistent statement.

3. After statements are clearly identified. Then find all assumptions (Things that must

be in place before something can happen) that is state or not stated within the clarified

requirement.

4. Then expose every possible logic defect (fault) or omission in the clarified

requirement.

5. Identify what are the exceptions (bad things) that will arise if the defects are not

corrected.

7. Find a way to test for all the possible each exception. Only when you can test for an

exception can you be able to stop that exception from happening.

3.2 Testing stage

A test stage has only one (1) important purpose, that is to ensure that they software

solution built solves the problem as specified in the analyst report and the specification.

Validation focuses on building the right solution and Verification focuses on building

the product correctly are two terms used a lot during testing.

No software is 100% bugs free and testing cannot guarantee that there are no bugs, it

can only ensure to a certain reasonable level that the system is able to perform the task

it was created to do. It does not mean there are no more bugs in the system.

Once the testing is done, the tester will write a letter to give their opinion on the testing

and the test result.

This letter will be given to the SA who then decides the following action, which may

take the form of returning to:

1) The development stage where the programmer will debug the problem.

2) The design stage to redesign the specification then later continue to the development

stage.

3) Worst case scenario, to return to the Analyst stage to redo the analyst for that given

module which will then continue into the design and development stage again.

The same test document is reuse when the software returns to the testing stage. The SA

may add in new test item in the test plan and new test case but the previous test

document must remain intact. The tester will then repeat the testing for the failed

modules and the new modules.

After a successful test, if there are future changes, the same test document is also reuse,

thus the test plan can be use to audit the changes to ensure changes do not introduce

new problem.

The test document consist of a test plan that list down all the test item, each test item

will then be reflected in one (1) or more test case.

For example; Test plan will have many test items. In one (1) of the test item there is a

test for the customer name. There may be three (3) test cases for that test item;

1) To test if the customer name can be save.

2) To test if the customer name can be numeric.

3) To test if the customer name can be blank.

3.3 Test plan

A test plan is a document that state down clearly every step (test item) that will be taken

during testing, basically a systematic approach to testing a system.

The Test Plan is created first by the System Analyst (SA) using the Analyst and Design

deliverables. This is done during the development stage when the work load has been

transferred to the software programmers.

In order to create the Test Plan, the SA must understand the testing concept, because

the strategy applied by the SA can easily be seen in the test plan.

The test plan will normally contain:

1. A sequence number call the test plan no.

2. The general description of the test item.

3. The date for the completion of each test plan no. One (1) test item can hold many test

cases and each test case has a different purpose.

The tested date is inserted only after ALL the test cases for one (1) test item is

successfully tested. If after the testing is done and the test plan date remains blank means

that the software fails the testing.

This is sample of a test plan

3.4 Test Case

After completing the test plan the SA will then create a test case. There will be at least

one (1) test case for each of the test in the test plan. Each test case can contain only one

(1) set of instruction and one (1) outcome.

There will always be a BLANK table inserted in the test case to be use by the tester to

fill in the result of that particular testing.

The test case will normally contain:

1. The test plan no to tally back to the test plan and a test case number for that given

test case.

2. The test instruction explains to the tester exactly how to run that particular test.

3. The expected result for that given test usually with a simple screen design or simple

sentences to describe the result.

Please remember, SA creates the test cases for the tester.

This is a sample of a test case

3.5 Testing Concept

3.5.1 Test Flow

1. Top Down

This is a test flow that starts from a general level down to the specific detail level.

Example for an inventory system will be to start from a main menu and slowly make

the way down to the product module.

2. Bottom Up

This is a test flow that starts from a detail specific level up to the general level. Example

for an inventory system will be to start from the products and slowly make the way up

to the main menu.

3.5.2 Test Size

1. Unit Testing

This is a test that focuses on an individual specific independent module. Example for

an inventory system will be to start test the products module alone and then the customer

module alone.

2. Integration Testing

This is a test that starts to join individual module. Example for an inventory system will

be after testing out the product and customer module to test out the sales invoice

module.

3. System Testing

This is a test that starts to studies the system environment surrounding the software.

Example for an inventory system will be to test if the bar code reader at the POS can

read the barcode label on the product.

4. User Acceptance Testing

This is the final a test where the end user will physically tested out the system

themselves using real life data but still in a control testing environment. Example for an

inventory system will be to ask the POS staff to test out the POS system and enter 100

products and produce the correct balance on the receipt.

3.6 Test Depth

1. Black box testing

This is commonly known as a validation testing. This is an effectiveness test that is

result base, input is given and output is produce and compared. Example for an

inventory system will be to scan a barcode label on the product and see it appear on the

POS interface with the correct total.

2. White box testing

This is commonly known as a verification testing. This is an efficiency test, to test out

how much resources and time is required to complete a process. Example for an

inventory system will be to see how much time and processing resources to list and

print a sales report for 1000 products.

3. Grey box testing

This is partial effective and an efficiency test. Basic processing information is needed

to discover how a process works. This test is normally use to create the test case.

3.7 Other Test

1. Boundary Testing

This is a test done usually with a black box that can be done at the unit testing or

integration testing stage. The main objective of this test is to make sure that the software

can make the correct decision. All the possible result and alternative value is determined

for the condition. Then extreme test data are generated to see if the software can produce

a correct result.

2. Stress Testing

This is a test done usually with a black box, unit testing approach. The main objective

will be to break the system. Thus, this test will take along time as it will continue until

the system breaks down. From the break down, a safe level can be reach for contingency

planning.

4.0 Self-Assessment Exercise(s)

Answer the following questions:

1. Identify the stages in SDLC

2. Explain the importance of validation and verification during software testing

3. Discuss at least three test plans in software development.

4. State the content of a test plan and test case

5. Discuss test in terms of size

5.0 Conclusion

Testing is carried out in software to eliminate errors or at least to reduce it to the barest

minimum. Different proofing methods can be used to achieve this.

6.0 Summary

In this unit we have explain different types of testing including unt testing, integration

testing, system testing etc.

7.0 Further Reading

Formal methods - Wikipedia, the free encyclopedia [online] Available at

http://en.wikipedia.org/wiki/Formal_methods

FTMS Consultants (M) Sdn Bhd (2011) SD3049 Formal Methods in Software

Engineering Kuala Lumpur, Malaysia

L. M. Barroca, J. A. McDermid (1997) Formal Methods: Use and Relevance for the

Development of Safety-Critical Systems, THE COMPUTER JOURNAL, VOL.

35, NO. 6

Michael Jackson, Patrick Cousot, Jonathan Peter Bowen, Margaria Tiziana (2008)

Software engineering and formal methods, ACM

Mona Batra, Amit Malik, Dr. Meenu Dave (2020) Formal Methods: Benefits,

Challenges And Future Direction, Journal of Global Research in Computer

Science

Zoltán Istenes (2014) Formal Methods in Software Engineering

Unit 3: Application to Formal Specification

Contents

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content

3.1 Formal method

3.2 Formal Specification

3.3 Formal Specification in the SDLC

3.3.1 Analyst Stage

3.3.2 Design Stage

3.3.3 Development Stage

3.3.4 Testing Stage

Contents

1.0 Introduction

Formal methods are used at various stages of software development to improve the

quality of the software.

2.0 Intended Learning Outcomes (ILOs)

After studying this unit, you should be able to

1. Discuss the various stages to apply formal methods

2. Discuss what to do at various stages

3.0 Main Content

3.1 Formal method

Formal methods are a way to apply mathematically-based techniques to the

specification, development and verification of software for computer science or

software engineering. When Formal method is applied it is likely to produce a more

reliability and robustness specification design.

Thus, it is important to stress that Formal Method in itself cannot guarantee perfect

software. It depends very much on how the formal methods are interpreted and applied

into the specification.

Formal Method stages consist of; Formal Specification, Formal Proof, Model Checking

and Abstraction.

3.2 Formal Specification

Formal Specification is the initial part of formal method that describes what the system

must do without saying how it is to be done. It is totally language independent and

focuses only on the abstract rather than detail logic.

A formal specification can serve as a single, reliable reference point for those who

investigate the customer's needs, those who implement programs to satisfy those needs,

those who test the results, and those who write instruction manuals for the system.

3.3 Formal Specification in the SDLC

Two (2) things are very important during requirement gathering; the data and the

process done on the data. Formal specification will be applied directly on these things.

If formal Specification is used during the Analysis and Design stage, there is no need

to use them again. If formal specification is not used by the SA and SD then the only

window of opportunity to apply it will be during the pre-development stage.

If no formal specification was ever applied, and it is applied in the testing stage, this

will expose a lot of possible bugs not catered for and the problem will loop back to the

design and possibly the analysis stage.

3.3.1 Analyst Stage

The main purpose of Analyze is to find the source of the problem. During this stage the

System Analyst (SA) would collect all the data and processes (observation, document

inspection, interview, etc…). The SA would then express the requirements into some

form of diagrams such as DFD or Rich Picture, Use Cases and Case Diagram, etc…

Then the SA will write a report (in English – common natural language) to indicate the

source of the problem and some alternative solution.

When studying the current system, the SA could apply proposition and predicate to

every client’s statement thus translating them into mathematical equivalent. This will

remove ambiguity and expose all possible hidden state of the process and data. Proof is

then use to be sure if the statement given by the client is correct. The SA can also apply

set theories and series to categories and view data from different perspective. This is

very helpful when SA needs to understand how reports are generated.

By doing this the SA can be to a certain degree confident to cover all possible alternative

to a given statement.

3.3.2 Design Stage

The main purpose of Design is to create a specification for the selected solution. It

should be stressed that, the specification will be use to built the solution, thus a good

specification will create a good software and a bad specification will create a bad

software.

During this stage the System Designer (SD) uses the analyze report to create the

specification. The SD also expresses their specification into some form of diagrams

sometimes similar to those used by the SA.

Before creating the specification, the SD could translate all the natural language found

in the analyze report into mathematical equivalent (proposition and predicates) that will

remove all ambiguity and uncertainty. Proof can be use here to ensure that every

statement given is logically correct. Set theories and series are use to categories and

view data from different perspective and to create relevant reports.

Then studying the mathematical form, the SD will be able to create the new system

environment and also the solution that can cater for all possible scenario and state for

each data and processes.

3.3.3 Development Stage

The main purpose of Development is to find built the solution base on the specification.

During this stage the Senior Programmer (SP) will study the specification, create the

relevant data structure, study the modules and delegate the programming team to

develop the solution.

To apply formal specification at this stage will be a bit late but a small window of

opportunity still exists.

During this stage the Senior Programmer (SP) will study the specification. The SP could

translate all the natural language found in the specification into mathematical equivalent

(proposition and predicates) that will remove all ambiguity and uncertainty. Proof can

be use here to ensure that every statement given is logically correct. Set theories and

series are use to categories and view data from different perspective and to create

relevant reports.

The SP can then verify that the specification is complete before starting out the

development.

If there is any problem with the design, the SP will stop the development and return the

specification to the SD for correction. Worst case scenario, the entire specification is

drop and the system is reanalyzed.

3.3.4 Testing Stage

The main purpose of Testing is to make sure that the solution solves the problem found

in the analysis and created base on the specification. Before this stage the (SA) will

have already created the test plan and test case. In this stage the tester will then use the

test plan and test case to execute the testing.

To apply formal specification at this stage is really very late.

During this stage the SA will revise the specification built during by the SD. The SA

could then translate all the natural language found in the specification into mathematical

equivalent (proposition and predicates) that will remove all ambiguity and uncertainty.

Proof can be use here to ensure that every statement given is logically correct. Set

theories and series are use to categories and view data from different perspective and to

create relevant reports.

After studying the specification, then the SA can create a Test Plan that will cover all

aspect of the system. Using what is learnt from the Formal specification, the SA will be

able to create a test case for each test item to test out all the different exception.

If there is any problem with the testing, the SA will stop the testing and return the

specification to the SD for correction. Worst case scenario, the entire specification is

drop and the system is reanalyzed.

Notice that this will not return to the development, because development only follows

the specification created during the design stage.

Formal Specification should not be use during the Implementation stage

4.0 Self-Assessment Exercise(s)

Answer the following questions:

1. Explain the various stages in software development that formal methods is

applied.

2. State the deliverables at various stages of software development life cycle

3. Describe how formal method is implemented in system development.

4. List the available tools used by the systems analysts during software

development.

5. Explain why formal specification is considered to be late at the testing phase

of system development.

5.0 Conclusion

Formal methods are applied at various stages of software development in order to

precisely specify the requirement of the system being developed and to find and remove

errors. The application of formal methods assists in crafting error free, safe and reliable

software.

6.0 Summary

The application of formal methods at several stages of software development are

discussed.

7.0 Further Reading

Formal methods - Wikipedia, the free encyclopedia [online] Available at

http://en.wikipedia.org/wiki/Formal_methods

FTMS Consultants (M) Sdn Bhd (2011) SD3049 Formal Methods in Software

Engineering Kuala Lumpur, Malaysia

L. M. Barroca, J. A. McDermid (1997) Formal Methods: Use and Relevance for the

Development of Safety-Critical Systems, THE COMPUTER JOURNAL, VOL.

35, NO. 6

Michael Jackson, Patrick Cousot, Jonathan Peter Bowen, Margaria Tiziana (2008)

Software engineering and formal methods, ACM

Mona Batra, Amit Malik, Dr. Meenu Dave (2020) Formal Methods: Benefits,

Challenges And Future Direction, Journal of Global Research in Computer

Science

Zoltán Istenes (2014) Formal Methods in Software Engineering

MODULE 4: SOFTWARE DEVELOPMENT OVERVIEW

This module is divided into four (4) units

Unit 1: Software Development and Software Engineering

Unit 2: Software Development Life Cycle

Unit 3: Software Project Management

Unit 4: Software Requirements

Unit 1: Software Development and Software Engineering

Contents

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content

3.1 Definitions

 3.1.1 Software

 3.1.2 Engineering

 3.1.3 Software Development

 3.1.4 Software Developer

3.1.5 Software Engineering

3.2 Software Evolution

3.2.1 Software Evolution Laws

3.2.2 E-Type software evolution

3.3 Software Paradigms

3.3.1 Software Development Paradigm

3.3.2 Software Design Paradigm

3.3.4 Programming Paradigm

3.4 Need of Software Development

3.5 Characteristics of good software

3.5.1 Operational

3.5.2 Transitional

3.5.3 Maintenance

Contents

2.0 Introduction

Much of our endeavour in software development is the design and construction of

software to meet some recognised need – of people, organisations or society at large –

with tangible effect on the real world. Software Development process is the practice of

organising the design and construction of software and its deployment in context. Note

that Software development and Software Engineering can be used interchangeably. In

this unit, we shall be give some definitions and shall be discussing Software Evolution,

Software Paradigms, Need of Software Engineering, and Characteristics of good

software

2.0 Intended Learning Outcomes (ILOs)

After studying this unit, you should be able to

1. Relate software development with engineering process

2. State some software evolution laws

3. Discuss E-Type software evolution

4. Discuss the need of Software Engineering

5. Outline the characteristics of good software

3.0 Main Content

3.1 Definitions

3.1.1 Software

Software is more than just a program code. A program is an executable code, which

serves some computational purpose. Software is considered to be collection of

executable programming code, associated libraries and documentations. Software,

when made for a specific requirement is called software product.

3.1.2 Engineering

Engineering on the other hand, is all about developing products, using well-defined,

scientific principles and methods.

3.1.3 Software Development

Software development refers to a set of computer science activities dedicated to the

process of creating, designing, deploying and supporting software. Software itself is the

set of instructions or programs that tell a computer what to do. It is independent of

hardware and makes computers programmable. There are three basic types:

System software to provide core functions such as operating systems, disk

management, utilities, hardware management and other operational necessities.

Programming software to give programmers tools such as text editors, compilers,

linkers, debuggers and other tools to create code.

Application software (applications or apps) to help users perform tasks. Office

productivity suites, data management software, media players and security programs

are examples. Applications also refers to web and mobile applications like those used

to shop on Amazon.com, socialize with Facebook or post pictures to Instagram.1

3.1.4 Software Developer

Software developers have a less formal role than engineers and can be closely involved

with specific project areas — including writing code. At the same time, they drive the

overall software development lifecycle — including working across functional teams

to transform requirements into features, managing development teams and processes,

and conducting software testing and maintenance.3

3.1.5 Software Engineering

Software engineering is an engineering branch associated with development of

software product using well-defined scientific principles, methods and procedures. The

outcome of software engineering is an efficient and reliable software product.

Definitions

IEEE defines software engineering as:

(1) The application of a systematic, disciplined, quantifiable approach to the

development, operation and maintenance of software; that is, the application of

engineering to software.

(2) The study of approaches as in the above statement.

Fritz Bauer, a German computer scientist, defines software engineering as:

Software engineering is the establishment and use of sound engineering principles in

order to obtain economically viable software that is reliable and work efficiently on

real machines.

https://www.ibm.com/topics/software-development#citation1
https://www.ibm.com/topics/software-development#citation3

3.2 Software Evolution

The process of developing a software product using software engineering principles

and methods is referred to as software evolution. This includes the initial development

of software and its maintenance and updates, till desired software product is developed,

which satisfies the expected requirements.

Evolution starts from the requirement gathering process. After which developers create

a prototype of the intended software and show it to the users to get their feedback at

the early stage of software product development. The users suggest changes, on which

several consecutive updates and maintenance keep on changing too. This process

changes to the original software, till the desired software is accomplished.

Even after the user has desired software in hand, the advancing technology and the

changing requirements force the software product to change accordingly. Re-creating

software from scratch and to go one-on-one with requirement is not feasible. The only

feasible and economical solution is to update the existing software so that it matches

the latest requirements.

3.2.1 Software Evolution Laws

Lehman has given laws for software evolution. He divided the software into three

different categories:

1. S-type (static-type) - This is a software, which works strictly according to

defined specifications and solutions. The solution and the method to achieve it,

both are immediately understood before coding. The s-type software is least

subjected to changes hence this is the simplest of all. For example, calculator

program for mathematical computation.

2. P-type (practical-type) - This is a software with a collection of procedures. This

is defined by exactly what procedures can do. In this software, the specifications

can be described but the solution is not obvious instantly. For example, gaming

software.

3. E-type (embedded-type) - This software works closely as the requirement of

real-world environment. This software has a high degree of evolution as there

are various changes in laws, taxes etc. in the real world situations. For example,

Online trading software.

3.2.2 E-Type software evolution

Lehman has given eight laws for E-Type software evolution -

 Continuing change - An E-type software system must continue to adapt to the

real-world changes, else it becomes progressively less useful.

 Increasing complexity - As an E-type software system evolves, its complexity

tends to increase unless work is done to maintain or reduce it.

 Conservation of familiarity - The familiarity with the software or the

knowledge about how it was developed, why was it developed in that particular

manner etc. must be retained at any cost, to implement the changes in the system.

 Continuing growth- In order for an E-type system intended to resolve some

business problem, its size of implementing the changes grows according to the

lifestyle changes of the business.

 Reducing quality - An E-type software system declines in quality unless

rigorously maintained and adapted to a changing operational environment.

 Feedback systems- The E-type software systems constitute multi-loop, multi-

level feedback systems and must be treated as such to be successfully modified

or improved.

 Self-regulation - E-type system evolution processes are self-regulating with the

distribution of product and process measures close to normal.

 Organizational stability - The average effective global activity rate in an

evolving E-type system is invariant over the lifetime of the product.

3.3 Software Paradigms

Software paradigms refer to the methods and steps, which are taken while designing

the software. There are many methods proposed and are in work today, but we need to

see where in the software engineering these paradigms stand. These can be combined

into various categories, though each of them is contained in one another:

Programming paradigm is a subset of Software design paradigm which is further a

subset of Software development paradigm.

3.3.1 Software Development Paradigm

This Paradigm is known as software engineering paradigms where all the engineering

concepts pertaining to the development of software are applied. It includes various

researches and requirement gathering which helps the software product to build. It

consists of –

 Requirement gathering

 Software design

 Programming

3.3.2 Software Design Paradigm

This paradigm is a part of Software Development and includes –

 Design

 Maintenance

 Programming

3.3.4 Programming Paradigm

This paradigm is related closely to programming aspect of software development. This

includes –

 Coding

 Testing

 Integration

3.4 Need of Software development

The need of software development arises because of higher rate of change in user

requirements and environment on which the software is working.

 Large software - It is easier to build a wall than to a house or building, likewise,

as the size of software become large engineering has to step to give it a scientific

process.

 Scalability- If the software process were not based on scientific and engineering

concepts, it would be easier to re-create new software than to scale an existing

one.

 Cost- As hardware industry has shown its skills and huge manufacturing has

lower down he price of computer and electronic hardware. But the cost of

software remains high if proper process is not adapted.

 Dynamic Nature- The always growing and adapting nature of software hugely

depends upon the environment in which user works. If the nature of software is

always changing, new enhancements need to be done in the existing one. This is

where software engineering plays a good role.

 Quality Management- Better process of software development provides better

and quality software product.

3.5 Characteristics of good software

A software product can be judged by what it offers and how well it can be used. This

software must satisfy on the following grounds:

 Operational

 Transitional

 Maintenance

Well-engineered and crafted software is expected to have the following characteristics:

3.5.1 Operational

This tells us how well software works in operations. It can be measured on:

 Budget

 Usability

 Efficiency

 Correctness

 Functionality

 Dependability

 Security

 Safety

3.5.2 Transitional

This aspect is important when the software is moved from one platform to another:

 Portability

 Interoperability

 Reusability

 Adaptability

3.5.3 Maintenance

This aspect briefs about how well a software has the capabilities to maintain itself in

the ever-changing environment:

 Modularity

 Maintainability

 Flexibility

 Scalability

In short, Software engineering is a branch of computer science, which uses well-

defined engineering concepts required to produce efficient, durable, scalable, in-

budget and on-time software products.

4.0 Self-Assessment Exercise(s)

Answer the following questions:

1. List and explain the basic concepts in Z notation.

2. Explain the following terms: formal specification, Formal Verification and

Theorem Proves

3. Explain maintainability, scalability and modularity

4. Compare and contrast interoperability and reusability

5. State the characteristics of a good software

6. Explain the basic concepts of software paradigm.

5.0 Conclusion

Definitions of some software development concepts are given. Software has gone

through evolutionary processes which has been highlighted

6.0 Summary

In this unit software evolution, some paradigms, characteristics of good software etc

have been discussed. The need of Software Development is also examined.

7.0 Further

Barry Boehm (1996)., "A Spiral Model of Software Development and Enhancement".

In: ACM SIGSOFT Software Engineering Notes (ACM)

Barry W. Boehm (2000). Software cost estimation with Cocomo II: Volume 1.

https://en.m.wikipedia.org/wiki/Barry_Boehm
http://doi.acm.org/10.1145/12944.12948

Charles S. Wasson (2006) System Analysis, Design, and Development Concepts,

Principles, and Practices, Published by John Wiley & Sons, Inc., Hoboken, New

Jersey.

Hans-Petter Halvorsen (2020) Software Development A Practical Approach!

https://halvorsen.blog

Pressman Roger S: “Software Engineering”- A Practitioner’s Approach”, McGraw Hill,

5th edition. 2000.

Richard H. Thayer, Barry W. Boehm (1986). Tutorial: software engineering project

management. Computer Society Press of the IEEE. p.130

Rushby John: Formal Methods and the Certification of Critical Systems. Tech. Rep.

SRI-CSL-93-7, Computer Science Laboratory, SRI International, Menlo Park, CA,

Dec. 1993.

Woodcock Jim, Larsen Peter Gorm, Bicarregui Juan and Fitzgerald John: Formal

Methods: Practice and Experience, ACM Computing Surveys (CSUR), Volume 41

Issue 4, 2009 Article No. 19.

Unit 2: Software Development Life Cycle

Contents

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content

3.1 SDLC Activities

3.2 Software Development Paradigm

 3.2.1 Waterfall Model

 3.2.2 Iterative Model

 3.2.3 Spiral Model

 3.2.4 V – model

 3.2.5 Big Bang Model

 Contents

3.0 Introduction

Software Development Life Cycle, SDLC allows the software developer or engineer to

follow well-defined phases or stages to achieve quality in the design and construction

of software product that will meet user’s need. That is, in terms of functionality,

reliability, maintainability, availability etc. SDLC comes in different flavours. This

https://halvorsen.blog/

includes among others – waterfall model, iterative model, spiral mmodel, V-model etc.

The stages and various models will be discussed in this unit.

2.0 Intended Learning Outcomes (ILOs)

After studying this unit, you should be able to

6. List the SDLC activities

7. Ecplain the SDLC activities with aid of a diagram

8. List and explain the Software Development Paradigm

3.0 Main Content

Software Development Life Cycle, SDLC for short, is a well-defined, structured

sequence of stages in software development to develop the intended software product.

3.1 SDLC Activities

SDLC provides a series of steps to be followed to design and develop a software

product efficiently. SDLC framework includes the following steps:

1. Communication: This is the first step where the user initiates the request for a

desired software product. He contacts the service provider and tries to negotiate the

terms. He submits his request to the service providing organization in writing.

2. Requirement Gathering: This step onwards the software development team works

to carry on the project. The team holds discussions with various stakeholders from

problem domain and tries to bring out as much information as possible on their

requirements. The requirements are contemplated and segregated into user

requirements, system requirements and functional requirements. The requirements

are collected using a number of practices as given -

 studying the existing or obsolete system and software,

 conducting interviews of users and developers,

 referring to the database or

 collecting answers from the questionnaires.

3. Feasibility Study: After requirement gathering, the team comes up with a rough plan

of software process. At this step the team analyzes if a software can be made to fulfil

all requirements of the user and if there is any possibility of software being no more

useful. It is found out, if the project is financially, practically and technologically

feasible for the organization to take up. There are many algorithms available, which

help the developers to conclude the feasibility of a software project.

4. System Analysis: At this step the developers decide a roadmap of their plan and try

to bring up the best software model suitable for the project. System analysis includes

Understanding of software product limitations, learning system related problems or

changes to be done in existing systems beforehand, identifying and addressing the

impact of project on organization and personnel etc. The project team analyzes the

scope of the project and plans the schedule and resources accordingly.

5. Software Design: Next step is to bring down whole knowledge of requirements and

analysis on the desk and design the software product. The inputs from users and

information gathered in requirement gathering phase are the inputs of this step. The

output of this step comes in the form of two designs; logical design and physical design.

Engineers produce meta-data and data dictionaries, logical diagrams, data-flow

diagrams and in some cases pseudo codes.

6. Coding: This step is also known as programming phase. The implementation of

software design starts in terms of writing program code in the suitable programming

language and developing error-free executable programs efficiently.

7. Testing: An estimate says that 50% of whole software development process should be

tested. Errors may ruin the software from critical level to its own removal. Software

testing is done while coding by the developers and thorough testing is conducted by

testing experts at various levels of code such as module testing, program testing,

product testing, in-house testing and testing the product at user’s end. Early discovery

of errors and their remedy is the key to reliable software.

7.Integration: Software may need to be integrated with the libraries, databases and other

program(s). This stage of SDLC is involved in the integration of software with outer

world entities.

8. Implementation: This means installing the software on user machines. At times,

software needs post-installation configurations at user end. Software is tested for

portability and adaptability and integration related issues are solved during

implementation.

9. Operation and Maintenance: This phase confirms the software operation in terms of

more efficiency and less errors. If required, the users are trained on, or aided with the

documentation on how to operate the software and how to keep the software

operational. The software is maintained timely by updating the code according to the

changes taking place in user end environment or technology. This phase may face

challenges from hidden bugs and real-world unidentified problems.

10 Disposition: As time elapses, the software may decline on the performance front. It may

go completely obsolete or may need intense up gradation. Hence a pressing need to

eliminate a major portion of the system arises. This phase includes archiving data and

required software components, closing down the system, planning disposition activity and

terminating system at appropriate end-of-system time.

 3.2 Software Development Paradigm

The software development paradigm helps developer to select a strategy to develop the

software. A software development paradigm has its own set of tools, methods and

procedures, which are expressed clearly and defines software development life cycle. A

few of software development paradigms or process models are defined as follows:

3.2.1 Waterfall Model

Waterfall model is the simplest model of software development paradigm. It says the all

the phases of SDLC will function one after another in linear manner. That is, when the

first phase is finished then only the second phase will start and so on.

This model assumes that everything is carried out and taken place perfectly as planned

in the previous stage and there is no need to think about the past issues that may arise

in the next phase. This model does not work smoothly if there are some issues left at

the previous step. The sequential nature of model does not allow us go back and undo

or redo our actions.

This model is best suited when developers already have designed and developed

similar software in the past and are aware of all its domains.

3.2.2 Iterative Model

This model leads the software development process in iterations. It projects the process

of development in cyclic manner repeating every step after every cycle of SDLC

process.

The software is first developed on very small scale and all the steps are followed which

are taken into consideration. Then, on every next iteration, more features and modules

are designed, coded, tested and added to the software. Every cycle produces a software,

which is complete in itself and has more features and capabilities than that of the

previous one.

After each iteration, the management team can do work on risk management and

prepare for the next iteration. Because a cycle includes small portion of whole software

process, it is easier to manage the development process but it consumes more

resources.

3.2.3 Spiral Model

Spiral model is a combination of both, iterative model and one of the SDLC model. It

can be seen as if you choose one SDLC model and combine it with cyclic process

(iterative model).

This model considers risk, which often goes un-noticed by most other models. The

model starts with determining objectives and constraints of the software at the start of

one iteration. Next phase is of prototyping the software. This includes risk analysis.

Then one standard SDLC model is used to build the software. In the fourth phase of

the plan of next iteration is prepared.

3.2.4 V – model

The major drawback of waterfall model is we move to the next stage only when the

previous one is finished and there was no chance to go back if something is found

wrong in later stages. V-Model provides means of testing of software at each stage in

reverse manner.

At every stage, test plans and test cases are created to verify and validate the product

according to the requirement of that stage. For example, in requirement gathering stage

the test team prepares all the test cases in correspondence to the requirements. Later,

when the product is developed and is ready for testing, test cases of this stage verify

the software against its validity towards requirements at this stage.

This makes both verification and validation go in parallel. This model is also known

as verification and validation model.

3.2.5 Big Bang Model

This model is the simplest model in its form. It requires little planning, lots of

programming and lots of funds. This model is conceptualized around the big bang of

universe. As scientists say that after big bang lots of galaxies, planets and stars evolved

just as an event. Likewise, if we put together lots of programming and funds, you may

achieve the best software product.

For this model, very small amount of planning is required. It does not follow any

process, or at times the customer is not sure about the requirements and future needs.

So, the input requirements are arbitrary.

This model is not suitable for large software projects but good one for learning and

experimenting.

4.0 Self-Assessment Exercise(s)

Answer the following questions:

1. List at least four types of software

development models.

2. State the weaknesses and strengths of each of

the named model in (1) above.

3. Describe the iterative model of software

development.

4. Explain the importance of model verification and validation in software

development.

5. With the aid of a diagram, illustrate the stages

involved in waterfall model.

5.0 Conclusion

Software Development Life Cycle consist of steps or phases in developing a software.

The steps are as follows: Communication, requirement gathering, feasibility study,

system analysis, system design, coding, iteration, implementation, operation and

maintenance and disposition. There are quite a number of paradigms used in software

development. This includes among others: water fall model, spiral model, V-model

Iterative model etc.

6.0 Summary

The Software Development Life Cycle (SDLC) has been discussed. Also discussed are

the various software paradigms, among which are: water fall model, spiral model, V-

model Iterative model etc.

7.0 Further Reading

Barry Boehm (1996)., "A Spiral Model of Software Development and Enhancement".

In: ACM SIGSOFT Software Engineering Notes (ACM)

Barry W. Boehm (2000). Software cost estimation with Cocomo II: Volume 1.

Charles S. Wasson (2006) System Analysis, Design, and Development Concepts,

Principles, and Practices, Published by John Wiley & Sons, Inc., Hoboken, New

Jersey.

Hans-Petter Halvorsen (2020) Software Development A Practical Approach!

https://halvorsen.blog

Pressman Roger S: “Software Engineering”- A Practitioner’s Approach”, McGraw Hill,

5th edition. 2000.

Richard H. Thayer, Barry W. Boehm (1986). Tutorial: software engineering project

management. Computer Society Press of the IEEE. p.130

Rushby John: Formal Methods and the Certification of Critical Systems. Tech. Rep.

SRI-CSL-93-7, Computer Science Laboratory, SRI International, Menlo Park, CA,

Dec. 1993.

Woodcock Jim, Larsen Peter Gorm, Bicarregui Juan and Fitzgerald John: Formal

Methods: Practice and Experience, ACM Computing Surveys (CSUR), Volume 41

Issue 4, 2009 Article No. 19.

Unit 3: Software Project Management

Contents

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content

3.1 Software Project

3.1.1 Need for software project management

3.2 Software Project Manager

3.2.1 Managing People

3.2.2 Managing Project

 3.3 Software Management Activities

3.3.1 Project Planning

https://en.m.wikipedia.org/wiki/Barry_Boehm
http://doi.acm.org/10.1145/12944.12948
https://halvorsen.blog/

3.3.2 Scope Management

3.3.3 Project Estimation

3.4 Project Estimation Techniques

3.4 .1 Decomposition Technique

3.4.2 Empirical Estimation Technique

3.5 Project Scheduling

3.6 Resource management

3.7 Project Risk Management

3.7.1 Risk Management Process

3.8 Project Execution & Monitoring

3.9 Project Communication Management

3.10 Configuration Management

3.10,1 Baseline

3.10.2 Change Control

3.11 Project Management Tools

3.11,1 Gantt Chart

3.11.2 PERT Chart

3.11.3 Resource Histogram

3.11.4 Critical Path Analysis

Contents

1.0 Introduction

The job pattern of an IT company engaged in software development can be seen split

in two parts:

 Software Creation

 Software Project Management

A project is well-defined task, which is a collection of several operations done in order

to achieve a goal (for example, software development and delivery). A Project can be

characterized as:

 Every project may have a unique and distinct goal.

 Project is not routine activity or day-to-day operations.

 Project comes with a start time and end time.

 Project ends when its goal is achieved hence it is a temporary phase in the

lifetime of an organization.

 Project needs adequate resources in terms of ti

 me, manpower, finance, material and knowledge-bank.

2.0 Intended Learning Outcomes (ILOs)

After studying this unit, you should be able to

1. Identify the characteristics of a software project

2. Describe a software project

3. Justify the need for software project management

4. Identify the job of a software project manager

5. Explain the following: project planning, scope management and project

estimation

6. Mention at least 3 project management tools

3.0 Main Content

3.1 Software Project

A Software Project is the complete procedure of software development from

requirement gathering to testing and maintenance, carried out according to the

execution methodologies, in a specified period of time to achieve intended software

product.

3.1.1 Need for software project management

Software is said to be an intangible product. Software development is a kind of all new

stream in world business and there’s very little experience in building software

products. Most software products are tailor made to fit client’s requirements. The most

important is that the underlying technology changes and advances so frequently and

rapidly that experience of one product may not be applied to the other one. All such

business and environmental constraints bring risk in software development hence it is

essential to manage software projects efficiently.

The image above shows triple constraints for software projects. It is an essential part

of software organization to deliver quality product, keeping the cost within client’s

budget constrain and deliver the project as per scheduled. There are several factors,

both internal and external, which may impact this triple constrain triangle. Any of three

factors can severely impact the other two.

Therefore, software project management is essential to incorporate user requirements

along with budget and time constraints.

3.2 Software Project Manager

A software project manager is a person who undertakes the responsibility of executing

the software project. Software project manager is thoroughly aware of all the phases

of SDLC that the software would go through. Project manager may never directly

involve in producing the end product but he controls and manages the activities

involved in production.

A project manager closely monitors the development process, prepares and executes

various plans, arranges necessary and adequate resources, maintains communication

among all team members in order to address issues of cost, budget, resources, time,

quality and customer satisfaction.

Let us see few responsibilities that a project manager shoulders:

3.2.1 Managing People

 Act as project leader

 Liaison with stakeholders

 Managing human resources

 Setting up reporting hierarchy etc

3.2.2 Managing Project

 Defining and setting up project scope

 Managing project management activities

 Monitoring progress and performance

 Risk analysis at every phase

 Take necessary step to avoid or come out of problems

 Act as project spokesperson

3.3 Software Management Activities

Software project management comprises of a number of activities, which contains

planning of project, deciding scope of software product, estimation of cost in various

terms, scheduling of tasks and events, and resource management. Project management

activities may include:

 Project Planning

 Scope Management

 Project Estimation

3.3.1 Project Planning

Software project planning is task, which is performed before the production of software

actually starts. It is there for the software production but involves no concrete activity

that has any direction connection with software production; rather it is a set of multiple

processes, which facilitates software production. Project planning may include the

following:

3.3.2 Scope Management

It defines the scope of project; this includes all the activities; process need to be done

in order to make a deliverable software product. Scope management is essential

because it creates boundaries of the project by clearly defining what would be done in

the project and what would not be done. This makes project to contain limited and

quantifiable tasks, which can easily be documented and in turn avoids cost and time

overrun.

During Project Scope management, it is necessary to -

 Define the scope

 Decide its verification and control

 Divide the project into various smaller parts for ease of management.

 Verify the scope

 Control the scope by incorporating changes to the scope

3.3.3 Project Estimation

For an effective management accurate estimation of various measures is a must. With

correct estimation managers can manage and control the project more efficiently and

effectively.

Project estimation may involve the following:

 Software size estimation

Software size may be estimated either in terms of KLOC (Kilo Line of Code)

or by calculating number of function points in the software. Lines of code

depend upon coding practices and Function points vary according to the user or

software requirement.

 Effort estimation

The managers estimate efforts in terms of personnel requirement and man-hour

required to produce the software. For effort estimation software size should be

known. This can either be derived by managers’ experience, organization’s

historical data or software size can be converted into efforts by using some

standard formulae.

 Time estimation

Once size and efforts are estimated, the time required to produce the software

can be estimated. Efforts required is segregated into sub categories as per the

requirement specifications and interdependency of various components of

software. Software tasks are divided into smaller tasks, activities or events by

Work Breakthrough Structure (WBS). The tasks are scheduled on day-to-day

basis or in calendar months.

The sum of time required to complete all tasks in hours or days is the total time

invested to complete the project.

 Cost estimation

This might be considered as the most difficult of all because it depends on more

elements than any of the previous ones. For estimating project cost, it is required

to consider -

o Size of software

o Software quality

o Hardware

o Additional software or tools, licenses etc.

o Skilled personnel with task-specific skills

o Travel involved

o Communication

o Training and support

3.4 Project Estimation Techniques

We discussed various parameters involving project estimation such as size, effort, time

and cost.

Project manager can estimate the listed factors using two broadly recognized

techniques:

3.4 .1 Decomposition Technique

This technique assumes the software as a product of various compositions.

There are two main models -

 Line of Code Estimation is done on behalf of number of line of codes in the

software product.

 Function Points Estimation is done on behalf of number of function points in

the software product.

3.4.2 Empirical Estimation Technique

This technique uses empirically derived formulae to make estimation.These formulae

are based on LOC or FPs.

 Putnam Model

This model is made by Lawrence H. Putnam, which is based on Norden’s

frequency distribution (Rayleigh curve). Putnam model maps time and efforts

required with software size.

 COCOMO

COCOMO stands for COnstructive COst MOdel, developed by Barry W.

Boehm. It divides the software product into three categories of software:

organic, semi-detached and embedded.

3.5 Project Scheduling

Project Scheduling in a project refers to roadmap of all activities to be done with

specified order and within time slot allotted to each activity. Project managers tend to

define various tasks, and project milestones and arrange them keeping various factors

in mind. They look for tasks lie in critical path in the schedule, which are necessary to

complete in specific manner (because of task interdependency) and strictly within the

time allocated. Arrangement of tasks which lies out of critical path are less likely to

impact over all schedule of the project.

For scheduling a project, it is necessary to -

 Break down the project tasks into smaller, manageable form

 Find out various tasks and correlate them

 Estimate time frame required for each task

 Divide time into work-units

 Assign adequate number of work-units for each task

 Calculate total time required for the project from start to finish

3.6 Resource management

All elements used to develop a software product may be assumed as resource for that

project. This may include human resource, productive tools and software libraries.

The resources are available in limited quantity and stay in the organization as a pool

of assets. The shortage of resources hampers the development of project and it can lag

behind the schedule. Allocating extra resources increases development cost in the end.

It is therefore necessary to estimate and allocate adequate resources for the project.

Resource management includes -

 Defining proper organization project by creating a project team and allocating

responsibilities to each team member

 Determining resources required at a particular stage and their availability

 Manage Resources by generating resource request when they are required and

de-allocating them when they are no more needed.

3.7 Project Risk Management

Risk management involves all activities pertaining to identification, analyzing and

making provision for predictable and non-predictable risks in the project. Risk may

include the following:

 Experienced staff leaving the project and new staff coming in.

 Change in organizational management.

 Requirement change or misinterpreting requirement.

 Under-estimation of required time and resources.

 Technological changes, environmental changes, business competition.

3.7.1 Risk Management Process

There are following activities involved in risk management process:

 Identification - Make note of all possible risks, which may occur in the project.

 Categorize - Categorize known risks into high, medium and low risk intensity

as per their possible impact on the project.

 Manage - Analyze the probability of occurrence of risks at various phases. Make

plan to avoid or face risks. Attempt to minimize their side-effects.

 Monitor - Closely monitor the potential risks and their early symptoms. Also

monitor the effects of steps taken to mitigate or avoid them.

3.8 Project Execution & Monitoring

In this phase, the tasks described in project plans are executed according to their

schedules.

Execution needs monitoring in order to check whether everything is going according

to the plan. Monitoring is observing to check the probability of risk and taking

measures to address the risk or report the status of various tasks.

These measures include -

 Activity Monitoring - All activities scheduled within some task can be

monitored on day-to-day basis. When all activities in a task are completed, it is

considered as complete.

 Status Reports - The reports contain status of activities and tasks completed

within a given time frame, generally a week. Status can be marked as finished,

pending or work-in-progress etc.

 Milestones Checklist - Every project is divided into multiple phases where

major tasks are performed (milestones) based on the phases of SDLC. This

milestone checklist is prepared once every few weeks and reports the status of

milestones.

3.9 Project Communication Management

Effective communication plays vital role in the success of a project. It bridges gaps

between client and the organization, among the team members as well as other stake

holders in the project such as hardware suppliers.

Communication can be oral or written. Communication management process may have

the following steps:

 Planning - This step includes the identifications of all the stakeholders in the

project and the mode of communication among them. It also considers if any

additional communication facilities are required.

 Sharing - After determining various aspects of planning, manager focuses on

sharing correct information with the correct person on correct time. This keeps

everyone involved the project up to date with project progress and its status.

 Feedback - Project managers use various measures and feedback mechanism

and create status and performance reports. This mechanism ensures that input

from various stakeholders is coming to the project manager as their feedback.

 Closure - At the end of each major event, end of a phase of SDLC or end of the

project itself, administrative closure is formally announced to update every

stakeholder by sending email, by distributing a hardcopy of document or by other

mean of effective communication.

After closure, the team moves to next phase or project.

3.10 Configuration Management

Configuration management is a process of tracking and controlling the changes in

software in terms of the requirements, design, functions and development of the

product.

IEEE defines it as “the process of identifying and defining the items in the system,

controlling the change of these items throughout their life cycle, recording and

reporting the status of items and change requests, and verifying the completeness and

correctness of items”.

Generally, once the SRS is finalized there is less chance of requirement of changes

from user. If they occur, the changes are addressed only with prior approval of higher

management, as there is a possibility of cost and time overrun.

3.10.1 Baseline

A phase of SDLC is assumed over if it is base lined, i.e. baseline is a measurement that

defines completeness of a phase. A phase is base lined when all activities pertaining to

it are finished and well documented. If it was not the final phase, its output would be

used in next immediate phase.

Configuration management is a discipline of organization administration, which takes

care of occurrence of any change (process, requirement, technological, strategical etc.)

after a phase is base lined. CM keeps check on any changes done in software.

3.10.2 Change Control

Change control is function of configuration management, which ensures that all

changes made to software system are consistent and made as per organizational rules

and regulations.

A change in the configuration of product goes through following steps -

 Identification - A change request arrives from either internal or external source.

When change request is identified formally, it is properly documented.

 Validation - Validity of the change request is checked and its handling

procedure is confirmed.

 Analysis - The impact of change request is analyzed in terms of schedule, cost

and required efforts. Overall impact of the prospective change on system is

analyzed.

 Control - If the prospective change either impacts too many entities in the

system or it is unavoidable, it is mandatory to take approval of high authorities

before change is incorporated into the system. It is decided if the change is

worth incorporation or not. If it is not, change request is refused formally.

 Execution - If the previous phase determines to execute the change request, this

phase take appropriate actions to execute the change, does a thorough revision

if necessary.

 Close request - The change is verified for correct implementation and merging

with the rest of the system. This newly incorporated change in the software is

documented properly and the request is formally is closed.

3.11 Project Management Tools

The risk and uncertainty rises multifold with respect to the size of the project, even

when the project is developed according to set methodologies.

There are tools available, which aid for effective project management. A few are

described:

3.11.1 Gantt Chart

Gantt charts was devised by Henry Gantt (1917). It represents project schedule with

respect to time periods. It is a horizontal bar chart with bars representing activities and

time scheduled for the project activities.

3.11.2 PERT Chart

PERT (Program Evaluation & Review Technique) chart is a tool that depicts project

as network diagram. It is capable of graphically representing main events of project in

both parallel and consecutive way. Events, which occur one after another, show

dependency of the later event over the previous one.

Events are shown as numbered nodes. They are connected by labeled arrows depicting

sequence of tasks in the project.

3.11.3 Resource Histogram

This is a graphical tool that contains bar or chart representing number of resources

(usually skilled staff) required over time for a project event (or phase). Resource

Histogram is an effective tool for staff planning and coordination.

3.11.4 Critical Path Analysis

This tool is useful in recognizing interdependent tasks in the project. It also helps to

find out the shortest path or critical path to complete the project successfully. Like

PERT diagram, each event is allotted a specific time frame. This tool shows

dependency of event assuming an event can proceed to next only if the previous one is

completed.

The events are arranged according to their earliest possible start time. Path between

start and end node is critical path which cannot be further reduced and all events require

to be executed in same order.

4.0 Self-Assessment Exercise(s)

Answer the following questions:

1. List the characteristics of a software project

2. Explain software project

3. Explain the need for software project management

4 Give the detail description of the job of a software project manager.

5. Explain the terms: project planning, scope management and project estimation

6. Mention at least 3 project management tools

5.0 Conclusion

Software project management involves both software development skills and

managerial skills. It is therefore imperative for project managers to acquire technical

skills in software development such communication skill, requirement elicitation skill,

specification writing skill, analysis skill, design skill, coding skill etc. And managerial

skills such as leadership skill, cost estimation skill, scheduling skill etc.

6.0 Summary

This unit has highlighted need for software project management, the duties of Software

Project Manager, Software Management Activities (i.e. Project Planning, Scope

Management, Project Estimation) and Project Estimation Techniques. We have also

discussed Project Scheduling, Resource management, Project Risk Management,

Execution and Monitoring, Project Communication Management, Configuration

Management, Project Management Tools etc

7.0 Further Reading

Barry Boehm (1996)., "A Spiral Model of Software Development and Enhancement".

In: ACM SIGSOFT Software Engineering Notes (ACM)

Barry W. Boehm (2000). Software cost estimation with Cocomo II: Volume 1.

https://en.m.wikipedia.org/wiki/Barry_Boehm
http://doi.acm.org/10.1145/12944.12948

Charles S. Wasson (2006) System Analysis, Design, and Development Concepts,

Principles, and Practices, Published by John Wiley & Sons, Inc., Hoboken, New

Jersey.

Hans-Petter Halvorsen (2020) Software Development A Practical Approach!

https://halvorsen.blog

Pressman Roger S: “Software Engineering”- A Practitioner’s Approach”, McGraw Hill,

5th edition. 2000.

Richard H. Thayer, Barry W. Boehm (1986). Tutorial: software engineering project

management. Computer Society Press of the IEEE. p.130

Rushby John: Formal Methods and the Certification of Critical Systems. Tech. Rep.

SRI-CSL-93-7, Computer Science Laboratory, SRI International, Menlo Park, CA,

Dec. 1993.

Woodcock Jim, Larsen Peter Gorm, Bicarregui Juan and Fitzgerald John: Formal

Methods: Practice and Experience, ACM Computing Surveys (CSUR), Volume 41

Issue 4, 2009 Article No. 19.

Unit 4 Software Requirements

Contents

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content

3.1 Requirement Engineering

3.1.1 Requirement Engineering Process

3.2 Software Requirement Validation

3.3 Requirement Elicitation Process

3.4 Requirement Elicitation Techniques

3.5 Software Requirements Characteristics

3.6 Software Requirements

3.6.1 Functional Requirements

 3.6.2 Non-Functional Requirements

3.7 User Interface requirements

3.8 Software System Analyst

3.9 Software Metrics and Measures

Contents

1.0 Introduction

https://halvorsen.blog/

The software requirements are description of features and functionalities of the target

system. Requirements convey the expectations of users from the software product. The

requirements can be obvious or hidden, known or unknown, expected or unexpected

from client’s point of view.

2.0 Intended Learning Outcomes (ILOs)

After studying this unit, you should be able to

1. List and explain the four steps in requirement engineering process

2. Depict the requirement elicitation process with a diagram

1. Mention at least 6 requirement elicitation techniques

2. List at least 10 software requirement characteristics

3. Differentiate between functional and non-functional software requirements

4. Mention at 10 user interface requirements

5. Outline the responsibility of a system analyst

6. Differentiate between software metric and software measures

3.0 Main Content

3.1 Requirement Engineering

The process to gather the software requirements from client, analyze and document

them is known as requirement engineering.

The goal of requirement engineering is to develop and maintain sophisticated and

descriptive ‘System Requirements Specification’ document.

3.1.1 Requirement Engineering Process

It is a four step process, which includes –

 Feasibility Study

 Requirement Gathering

 Software Requirement Specification

 Software Requirement Validation

Let us see the process briefly -

Feasibility study

When the client approaches the organization for getting the desired product developed,

it comes up with rough idea about what all functions the software must perform and

which all features are expected from the software.

Referencing to this information, the analysts does a detailed study about whether the

desired system and its functionality are feasible to develop.

This feasibility study is focused towards goal of the organization. This study analyzes

whether the software product can be practically materialized in terms of

implementation, contribution of project to organization, cost constraints and as per

values and objectives of the organization. It explores technical aspects of the project

and product such as usability, maintainability, productivity and integration ability.

The output of this phase should be a feasibility study report that should contain

adequate comments and recommendations for management about whether or not the

project should be undertaken.

Requirement Gathering

If the feasibility report is positive towards undertaking the project, next phase starts

with gathering requirements from the user. Analysts and engineers communicate with

the client and end-users to know their ideas on what the software should provide and

which features they want the software to include.

Software Requirement Specification

SRS is a document created by system analyst after the requirements are collected from

various stakeholders.

SRS defines how the intended software will interact with hardware, external interfaces,

speed of operation, response time of system, portability of software across various

platforms, maintainability, speed of recovery after crashing, Security, Quality,

Limitations etc.

The requirements received from client are written in natural language. It is the

responsibility of system analyst to document the requirements in technical language so

that they can be comprehended and useful by the software development team.

SRS should come up with following features:

 User Requirements are expressed in natural language.

 Technical requirements are expressed in structured language, which is used

inside the organization.

 Design description should be written in Pseudo code.

 Format of Forms and GUI screen prints.

 Conditional and mathematical notations for DFDs etc.

3.2 Software Requirement Validation

After requirement specifications are developed, the requirements mentioned in this

document are validated. User might ask for illegal, impractical solution or experts may

interpret the requirements incorrectly. This results in huge increase in cost if not nipped

in the bud. Requirements can be checked against following conditions -

 If they can be practically implemented

 If they are valid and as per functionality and domain of software

 If there are any ambiguities

 If they are complete

 If they can be demonstrated

3.3 Requirement Elicitation Process

Requirement elicitation process can be depicted using the following diagram:

 Requirements gathering - The developers discuss with the client and end users

and know their expectations from the software.

 Organizing Requirements - The developers prioritize and arrange the

requirements in order of importance, urgency and convenience.

 Negotiation & discussion - If requirements are ambiguous or there are some

conflicts in requirements of various stakeholders, if they are, it is then

negotiated and discussed with stakeholders. Requirements may then be

prioritized and reasonably compromised.

The requirements come from various stakeholders. To remove the ambiguity

and conflicts, they are discussed for clarity and correctness. Unrealistic

requirements are compromised reasonably.

 Documentation - All formal & informal, functional and non-functional

requirements are documented and made available for next phase processing.

3.4 Requirement Elicitation Techniques

Requirements Elicitation is the process to find out the requirements for an intended

software system by communicating with client, end users, system users and others who

have a stake in the software system development.

There are various ways to discover requirements

Interviews

Interviews are strong medium to collect requirements. Organization may conduct

several types of interviews such as:

 Structured (closed) interviews, where every single information to gather is

decided in advance, they follow pattern and matter of discussion firmly.

 Non-structured (open) interviews, where information to gather is not decided in

advance, more flexible and less biased.

 Oral interviews

 Written interviews

 One-to-one interviews which are held between two persons across the table.

 Group interviews which are held between groups of participants. They help to

uncover any missing requirement as numerous people are involved.

Surveys

Organization may conduct surveys among various stakeholders by querying about their

expectation and requirements from the upcoming system.

Questionnaires

A document with pre-defined set of objective questions and respective options is

handed over to all stakeholders to answer, which are collected and compiled.

A shortcoming of this technique is, if an option for some issue is not mentioned in the

questionnaire, the issue might be left unattended.

Task analysis

Team of engineers and developers may analyze the operation for which the new system

is required. If the client already has some software to perform certain operation, it is

studied and requirements of proposed system are collected.

Domain Analysis

Every software falls into some domain category. The expert people in the domain can

be a great help to analyze general and specific requirements.

Brainstorming

An informal debate is held among various stakeholders and all their inputs are recorded

for further requirements analysis.

Prototyping

Prototyping is building user interface without adding detail functionality for user to

interpret the features of intended software product. It helps in giving better idea of

requirements. If there is no software installed at client’s end for developer’s reference

and the client is not aware of its own requirements, the developer creates a prototype

based on initially mentioned requirements. The prototype is shown to the client and

the feedback is noted. The client feedback serves as an input for requirement gathering.

Observation

Team of experts visit the client’s organization or workplace. They observe the actual

working of the existing installed systems. They observe the workflow at client’s end

and how execution problems are dealt. The team itself draws some conclusions which

aid to form requirements expected from the software.

3.5 Software Requirements Characteristics

Gathering software requirements is the foundation of the entire software development

project. Hence, they must be clear, correct and well-defined.

A complete Software Requirement Specifications must be:

 Clear

 Correct

 Consistent

 Coherent

 Comprehensible

 Modifiable

 Verifiable

 Prioritized

 Unambiguous

 Traceable

 Credible source

3.6 Software Requirements

We should try to understand what sort of requirements may arise in the requirement

elicitation phase and what kinds of requirements are expected from the software

system.

Broadly software requirements should be categorized in two categories:

3.6.1 Functional Requirements

Requirements, which are related to functional aspect of software fall into this category.

They define functions and functionality within and from the software system.

Examples -

 Search option given to user to search from various invoices.

 User should be able to mail any report to management.

 Users can be divided into groups and groups can be given separate rights.

 Should comply business rules and administrative functions.

 Software is developed keeping downward compatibility intact.

3.6.2 Non-Functional Requirements

Requirements, which are not related to functional aspect of software, fall into this

category. They are implicit or expected characteristics of software, which users make

assumption of.

Non-functional requirements include -

 Security

 Logging

 Storage

 Configuration

 Performance

 Cost

 Interoperability

 Flexibility

 Disaster recovery

 Accessibility

Requirements are categorized logically as

 Must Have: Software cannot be said operational without them.

 Should have: Enhancing the functionality of software.

 Could have: Software can still properly function with these requirements.

 Wish list: These requirements do not map to any objectives of software.

While developing software, ‘Must have’ must be implemented, ‘Should have’ is a

matter of debate with stakeholders and negation, whereas ‘could have’ and ‘wish list’

can be kept for software updates.

3.7 User Interface requirements

UI is an important part of any software or hardware or hybrid system. A software is

widely accepted if it is -

 easy to operate

 quick in response

 effectively handling operational errors

 providing simple yet consistent user interface

User acceptance majorly depends upon how user can use the software. UI is the only

way for users to perceive the system. A well performing software system must also be

equipped with attractive, clear, consistent and responsive user interface. Otherwise, the

functionalities of software system cannot be used in convenient way. A system is said

be good if it provides means to use it efficiently. User interface requirements are briefly

mentioned below:

 Content presentation

 Easy Navigation

 Simple interface

 Responsive

 Consistent UI elements

 Feedback mechanism

 Default settings

 Purposeful layout

 Strategical use of colour and texture.

 Provide help information

 User centric approach

 Group based view settings.

3.8 Software System Analyst

System analyst in an IT organization is a person, who analyzes the requirement of

proposed system and ensures that requirements are conceived and documented

properly & correctly. Role of an analyst starts during Software Analysis Phase of

SDLC. It is the responsibility of analyst to make sure that the developed software meets

the requirements of the client.

System Analysts have the following responsibilities:

 Analyzing and understanding requirements of intended software

 Understanding how the project will contribute in the organization objectives

 Identify sources of requirement

 Validation of requirement

 Develop and implement requirement management plan

 Documentation of business, technical, process and product requirements

 Coordination with clients to prioritize requirements and remove and ambiguity

 Finalizing acceptance criteria with client and other stakeholders

3.9 Software Metrics and Measures

Software Measures can be understood as a process of quantifying and symbolizing

various attributes and aspects of software.

Software Metrics provide measures for various aspects of software process and

software product.

Software measures are fundamental requirement of software engineering. They not

only help to control the software development process but also aid to keep quality of

ultimate product excellent.

According to Tom DeMarco, a (Software Engineer), “You cannot control what you

cannot measure.” By his saying, it is very clear how important software measures are.

Let us see some software metrics:

 Size Metrics - LOC (Lines of Code), mostly calculated in thousands of

delivered source code lines, denoted as KLOC.

Function Point Count is measure of the functionality provided by the software.

Function Point count defines the size of functional aspect of software.

 Complexity Metrics - McCabe’s Cyclomatic complexity quantifies the upper

bound of the number of independent paths in a program, which is perceived as

complexity of the program or its modules. It is represented in terms of graph

theory concepts by using control flow graph.

 Quality Metrics - Defects, their types and causes, consequence, intensity of

severity and their implications define the quality of product.

The number of defects found in development process and number of defects

reported by the client after the product is installed or delivered at client-end,

define quality of product.

 Process Metrics - In various phases of SDLC, the methods and tools used, the

company standards and the performance of development are software process

metrics.

 Resource Metrics - Effort, time and various resources used, represents metrics

for resource measurement.

4.0 Self-Assessment Exercise(s)

Answer the following questions:

1. Explain the four steps in requirement engineering process

2. Illustrate requirement elicitation process with a diagram only.

3. List at least 6 requirement elicitation techniques

4. Name at least 10 software requirement characteristics

5. Differentiate between functional and non-functional software requirements

6. Explain the user interface requirements

7. Outline the responsibility of a system analyst

8. Differentiate between software metric and software measures

5.0 Conclusion

Software requirements specify the needs or expectation of the user or client. They are

captured through the process of elicitation. Both functional and non-functional

requirements are captured or elicited. This involves the interaction between the user or

client and the System Analyst and/or the development team.

6.0 Summary

In this unit we discussed the following:

 Requirement Engineering Process

 Software Requirement Validation

 Requirement Elicitation Process

 Requirement Elicitation Techniques

 Software Requirements Characteristics

 Software Requirements

 User Interface requirements

 Software System Analyst

 Software Metrics and Measures

7.0 Further Reading

Barry Boehm (1996)., "A Spiral Model of Software Development and Enhancement".

In: ACM SIGSOFT Software Engineering Notes (ACM)

Barry W. Boehm (2000). Software cost estimation with Cocomo II: Volume 1.

Charles S. Wasson (2006) System Analysis, Design, and Development Concepts,

Principles, and Practices, Published by John Wiley & Sons, Inc., Hoboken, New

Jersey.

Hans-Petter Halvorsen (2020) Software Development A Practical Approach!

https://halvorsen.blog

Pressman Roger S: “Software Engineering”- A Practitioner’s Approach”, McGraw Hill,

5th edition. 2000.

Richard H. Thayer, Barry W. Boehm (1986). Tutorial: software engineering project

management. Computer Society Press of the IEEE. p.130

Rushby John: Formal Methods and the Certification of Critical Systems. Tech. Rep.

SRI-CSL-93-7, Computer Science Laboratory, SRI International, Menlo Park, CA,

Dec. 1993.

Woodcock Jim, Larsen Peter Gorm, Bicarregui Juan and Fitzgerald John: Formal

Methods: Practice and Experience, ACM Computing Surveys (CSUR), Volume 41

Issue 4, 2009 Article No. 19.

https://en.m.wikipedia.org/wiki/Barry_Boehm
http://doi.acm.org/10.1145/12944.12948
https://halvorsen.blog/

MODULE 5: OVERVIEW OF SOFTWARE DESIGN, ANALYSIS AND

DESIGN TOOLS, DESIGN STRATEGIES AND USER INTERFACE

BASICS

This module is divided into four (4) units

Unit 1: Software Design Basics

Unit 2: Analysis and Design tools

Unit 3: Software Design Strategies

Unit 4: Software User Interface Design

Unit 1: Software Design Basics

Contents

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content

3.1 Software Design Levels

3.2 Modularization

3.2.1 Advantage of modularization

3.3 Concurrency

3.4 Coupling and Cohesion

3.4.1 Cohesion

3.4.2 Coupling

3.5 Design Verification

Contents

1.0 Introduction

Software design involves describing, conceptually, a software solution that meets the

requirements of the problem. Before proffering solution, the problem must be analysed

adequately to have good understanding of the problem. The intent is to solve the

problem, that is, the requirement in context, with validation as the means to check that

understanding.

Software design is a creative activity in which you identify software components and

their relationships, based on a customer’s requirements.

2.0 Intended Learning Outcomes (ILOs)

After studying this unit, you should be able to

1. Software design yields three levels of results. Mention and briefly describe them

2. Discuss modularization and state its advantages in software development

3. Differentiate between cohesion and coupling in software

4. List and explain any 5 types of cohesion

3.0 Main Content

Software design is a process to transform user requirements into some suitable form,

which helps the programmer in software coding and implementation.

For assessing user requirements, an SRS (Software Requirement Specification)

document is created whereas for coding and implementation, there is a need of more

specific and detailed requirements in software terms. The output of this process can

directly be used into implementation in programming languages.

Software design is the first step in SDLC (Software Design Life Cycle), which moves

the concentration from problem domain to solution domain. It tries to specify how to

fulfil the requirements mentioned in SRS.

3.1 Software Design Levels

Software design yields three levels of results:

 Architectural Design - The architectural design is the highest abstract version

of the system. It identifies the software as a system with many components

interacting with each other. At this level, the designers get the idea of proposed

solution domain.

 High-level Design- The high-level design breaks the ‘single entity-multiple

component’ concept of architectural design into less-abstracted view of sub-

systems and modules and depicts their interaction with each other. High-level

design focuses on how the system along with all of its components can be

implemented in forms of modules. It recognizes modular structure of each sub-

system and their relation and interaction among each other.

 Detailed Design- Detailed design deals with the implementation part of what is

seen as a system and its sub-systems in the previous two designs. It is more

detailed towards modules and their implementations. It defines logical structure

of each module and their interfaces to communicate with other modules.

3.2 Modularization

Modularization is a technique to divide a software system into multiple discrete and

independent modules, which are expected to be capable of carrying out task(s)

independently. These modules may work as basic constructs for the entire software.

Designers tend to design modules such that they can be executed and/or compiled

separately and independently.

Modular design unintentionally follows the rules of ‘divide and conquer’ problem-

solving strategy this is because there are many other benefits attached with the modular

design of a software.

3.2.1 Advantages of modularization:

 Smaller components are easier to maintain

 Program can be divided based on functional aspects

 Desired level of abstraction can be brought in the program

 Components with high cohesion can be re-used again

 Concurrent execution can be made possible

 Desired from security aspect

3.3 Concurrency

Back in time, all software are meant to be executed sequentially. By sequential

execution we mean that the coded instruction will be executed one after another

implying only one portion of program being activated at any given time. Say, a

software has multiple modules, then only one of all the modules can be found active at

any time of execution.

In software design, concurrency is implemented by splitting the software into multiple

independent units of execution, like modules and executing them in parallel. In other

words, concurrency provides capability to the software to execute more than one part

of code in parallel to each other.

It is necessary for the programmers and designers to recognize those modules, which

can be made parallel execution.

Example

The spell check feature in word processor is a module of software, which runs along

side the word processor itself.

3.4 Coupling and Cohesion

When a software program is modularized, its tasks are divided into several modules

based on some characteristics. As we know, modules are set of instructions put together

in order to achieve some tasks. They are though, considered as single entity but may

refer to each other to work together. There are measures by which the quality of a

design of modules and their interaction among them can be measured. These measures

are called coupling and cohesion.

3.4.1 Cohesion

Cohesion is a measure that defines the degree of intra-dependability within elements

of a module. The greater the cohesion, the better is the program design.

There are seven types of cohesion, namely –

 Co-incidental cohesion - It is unplanned and random cohesion, which might be

the result of breaking the program into smaller modules for the sake of

modularization. Because it is unplanned, it may serve confusion to the

programmers and is generally not-accepted.

 Logical cohesion - When logically categorized elements are put together into a

module, it is called logical cohesion.

 Temporal Cohesion - When elements of module are organized such that they

are processed at a similar point in time, it is called temporal cohesion.

 Procedural cohesion - When elements of module are grouped together, which

are executed sequentially in order to perform a task, it is called procedural

cohesion.

 Communicational cohesion - When elements of module are grouped together,

which are executed sequentially and work on same data (information), it is called

communicational cohesion.

 Sequential cohesion - When elements of module are grouped because the output

of one element serves as input to another and so on, it is called sequential

cohesion.

 Functional cohesion - It is considered to be the highest degree of cohesion, and

it is highly expected. Elements of module in functional cohesion are grouped

because they all contribute to a single well-defined function. It can also be

reused.

3.4.2 Coupling

Coupling is a measure that defines the level of inter-dependability among modules of

a program. It tells at what level the modules interfere and interact with each other. The

lower the coupling, the better the program.

There are five levels of coupling, namely:

 Content coupling - When a module can directly access or modify or refer to the

content of another module, it is called content level coupling.

 Common coupling- When multiple modules have read and write access to some

global data, it is called common or global coupling.

 Control coupling- Two modules are called control-coupled if one of them

decides the function of the other module or changes its flow of execution.

 Stamp coupling- When multiple modules share common data structure and

work on different part of it, it is called stamp coupling.

 Data coupling- Data coupling is when two modules interact with each other by

means of passing data (as parameter). If a module passes data structure as

parameter, then the receiving module should use all its components.

Ideally, no coupling is considered to be the best.

3.5 Design Verification

The output of software design process is design documentation, pseudo codes, detailed

logic diagrams, process diagrams, and detailed description of all functional or non-

functional requirements.

The next phase, which is the implementation of software, depends on all outputs

mentioned above.

It then becomes necessary to verify the output before proceeding to the next phase. The

early any mistake is detected, the better it is or it might not be detected until testing of

the product. If the outputs of design phase are in formal notation form, then their

associated tools for verification should be used otherwise a thorough design review

can be used for verification and validation.

By structured verification approach, reviewers can detect defects that might be caused

by overlooking some conditions. A good design review is important for good software

design, accuracy and quality.

4.0 Self-Assessment Exercise(s)

Answer the following questions:

1. Mention and briefly describe the result of software development.

2. Discuss modularization and state its advantages in software development

3. Differentiate between cohesion and coupling in software

4. List and explain any five types of cohesion

5. Explain the activities involved in software design verification.

5.0 Conclusion

Software design is the art of finding solution to business problem(s). This in three

different levels, namely: architectural design, high level design and detailed design. The

design is carried out in modules which performs simple function. The interactions

between and within modules are design with coupling and cohesion in mind.

6.0 Summary

In this unit we discussed the following:

 Software Design Levels

 Modularization

 Concurrency

 Coupling and Cohesion

 Design Verification

7.0 Further Reading

Barry Boehm (1996)., "A Spiral Model of Software Development and Enhancement".

In: ACM SIGSOFT Software Engineering Notes (ACM)

Barry W. Boehm (2000). Software cost estimation with Cocomo II: Volume 1.

Charles S. Wasson (2006) System Analysis, Design, and Development Concepts,

Principles, and Practices, Published by John Wiley & Sons, Inc., Hoboken, New

Jersey.

Hans-Petter Halvorsen (2020) Software Development A Practical Approach!

https://halvorsen.blog

Pressman Roger S: “Software Engineering”- A Practitioner’s Approach”, McGraw Hill,

5th edition. 2000.

Richard H. Thayer, Barry W. Boehm (1986). Tutorial: software engineering project

management. Computer Society Press of the IEEE. p.130

Rushby John: Formal Methods and the Certification of Critical Systems. Tech. Rep.

SRI-CSL-93-7, Computer Science Laboratory, SRI International, Menlo Park, CA,

Dec. 1993.

Woodcock Jim, Larsen Peter Gorm, Bicarregui Juan and Fitzgerald John: Formal

Methods: Practice and Experience, ACM Computing Surveys (CSUR), Volume 41

Issue 4, 2009 Article No. 19.

https://en.m.wikipedia.org/wiki/Barry_Boehm
http://doi.acm.org/10.1145/12944.12948
https://halvorsen.blog/

Unit 2: Analysis and Design tools

Contents

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content

3.1 Data Flow Diagram

3.1 Data Flow Diagram

3.1.1 Types of DFD

3.1.2 Levels of DFD

3.2 Structure Charts

3.3 HIPO Diagram

3.4 Structured English

3.5 Pseudo-Code

3.6 Decision Tables

 3.6.1 Creating Decision Table

3.7 Data Dictionary

3.7.1 Requirement of Data Dictionary

3.7.2 Contents

3.8 Data Elements

3.9 Data Store

3.10 Data Processing

Contents

1.0 Introduction

Analysis involves understanding the problem which the software is intended to

solve it while design is the solution to problem. Software analysis and design tools are

tools used to convert requirement specifications into a software product. As the name

implies, they are used for both analysis and design. We shall be discussing some of

these tools in this unit.

2.0 Intended Learning Outcomes (ILOs)

After studying this unit, you should be able to

1. Explain what data flow is

2. Describe the following: Logical DFD, Physical DFD

3. Describe the components of DFD with their corresponding symbols

4. Differentiate between a data flow and control flow in a structure chart

5. Compare and contrast between HIPO and IPO

6. State the steps needed to create a decision table

7. List the content of a data dictionary

3.0 Main Content

Software analysis and design includes all activities, which help the transformation of

requirement specification into implementation. Requirement specifications specify all

functional and non-functional expectations from the software. These requirement

specifications come in the shape of human readable and understandable documents, to

which a computer has nothing to do.

Software analysis and design is the intermediate stage, which helps human-readable

requirements to be transformed into actual code.

Let us see few analysis and design tools used by software designers:

3.1 Data Flow Diagram

Data flow diagram is graphical representation of flow of data in an information system.

It is capable of depicting incoming data flow, outgoing data flow and stored data. The

DFD does not mention anything about how data flows through the system.

There is a prominent difference between DFD and Flowchart. The flowchart depicts

flow of control in program modules. DFDs depict flow of data in the system at various

levels. DFD does not contain any control or branch elements.

3.1.1 Types of DFD

Data Flow Diagrams are either Logical or Physical.

 Logical DFD - This type of DFD concentrates on the system process, and flow

of data in the system. For example, in a Banking software system, how data is

moved between different entities.

 Physical DFD - This type of DFD shows how the data flow is actually

implemented in the system. It is more specific and closer to the implementation.

DFD Components

DFD can represent Source, destination, storage and flow of data using the following

set of components -

 Entities - Entities are source and destination of information data. Entities are

represented by rectangles with their respective names.

 Process - Activities and action taken on the data are represented by Circle or

Round-edged rectangles.

 Data Storage - There are two variants of data storage - it can either be

represented as a rectangle with absence of both smaller sides or as an open-sided

rectangle with only one side missing.

 Data Flow - Movement of data is shown by pointed arrows. Data movement is

shown from the base of arrow as its source towards head of the arrow as

destination.

3.1.2 Levels of DFD

 Level 0 - Highest abstraction level DFD is known as Level 0 DFD, which depicts

the entire information system as one diagram concealing all the underlying

details. Level 0 DFDs are also known as context level DFDs.

 Level 1 - The Level 0 DFD is broken down into more specific, Level 1 DFD.

Level 1 DFD depicts basic modules in the system and flow of data among various

modules. Level 1 DFD also mentions basic processes and sources of information.

 Level 2 - At this level, DFD shows how data flows inside the modules

mentioned in Level 1.

Higher level DFDs can be transformed into more specific lower level DFDs

with deeper level of understanding unless the desired level of specification is

achieved.

3.2 Structure Charts

Structure chart is a chart derived from Data Flow Diagram. It represents the system in

more detail than DFD. It breaks down the entire system into lowest functional modules,

describes functions and sub-functions of each module of the system to a greater detail

than DFD.

Structure chart represents hierarchical structure of modules. At each layer a specific

task is performed.

Here are the symbols used in construction of structure charts -

 Module - It represents process or subroutine or task. A control module branches

to more than one sub-module. Library Modules are re-usable and invokable from

any module.

 Condition - It is represented by small diamond at the base of module. It depicts

that control module can select any of sub-routine based on some condition.

 Jump - An arrow is shown pointing inside the module to depict that the control

will jump in the middle of the sub-module.

 Loop - A curved arrow represents loop in the module. All sub-modules covered

by loop repeat execution of module.

 Data flow - A directed arrow with empty circle at the end represents data flow.

 Control flow - A directed arrow with filled circle at the end represents control

flow.

3.3 HIPO Diagram

HIPO (Hierarchical Input Process Output) diagram is a combination of two organized

method to analyze the system and provide the means of documentation. HIPO model

was developed by IBM in year 1970.

HIPO diagram represents the hierarchy of modules in the software system. Analyst

uses HIPO diagram in order to obtain high-level view of system functions. It

decomposes functions into sub-functions in a hierarchical manner. It depicts the

functions performed by system.

HIPO diagrams are good for documentation purpose. Their graphical representation

makes it easier for designers and managers to get the pictorial idea of the system

structure.

In contrast to IPO (Input Process Output) diagram, which depicts the flow of control

and data in a module, HIPO does not provide any information about data flow or

control flow.

Example

Both parts of HIPO diagram, Hierarchical presentation and IPO Chart are used for

structure design of software program as well as documentation of the same.

3.4 Structured English

Most programmers are unaware of the large picture of software so they only rely on

what their managers tell them to do. It is the responsibility of higher software

management to provide accurate information to the programmers to develop accurate

yet fast code.

Other forms of methods, which use graphs or diagrams, may are sometimes interpreted

differently by different people.

Hence, analysts and designers of the software come up with tools such as Structured

English. It is nothing but the description of what is required to code and how to code

it. Structured English helps the programmer to write error-free code.

Other form of methods, which use graphs or diagrams, may are sometimes interpreted

differently by different people. Here, both Structured English and Pseudo-Code tries

to mitigate that understanding gap.

Structured English uses plain English words in structured programming paradigm. It

is not the ultimate code but a kind of description what is required to code and how to

code it. The following are some tokens of structured programming.

IF-THEN-ELSE,

DO-WHILE-UNTIL

Analyst uses the same variable and data name, which are stored in Data Dictionary,

making it much simpler to write and understand the code.

Example

We take the same example of Customer Authentication in the online shopping

environment. This procedure to authenticate customer can be written in Structured

English as:

Enter Customer_Name

SEEK Customer_Name in Customer_Name_DB file

IF Customer_Name found THEN

 Call procedure USER_PASSWORD_AUTHENTICATE()

ELSE

 PRINT error message

 Call procedure NEW_CUSTOMER_REQUEST()

ENDIF

The code written in Structured English is more like day-to-day spoken English. It

cannot be implemented directly as a code of software. Structured English is

independent of programming language.

3.5 Pseudo-Code

Pseudo code is written closer to programming language. It may be considered as

augmented programming language, full of comments and descriptions.

Pseudo code avoids variable declaration but they are written using some actual

programming language’s constructs, like C, Fortran, Pascal etc.

Pseudo code contains more programming details than Structured English. It provides

a method to perform the task, as if a computer is executing the code.

Example

Program to print Fibonacci up to n numbers.

void function Fibonacci

Get value of n;

Set value of a to 1;

Set value of b to 1;

Initialize I to 0

for (i=0; i< n; i++)

{

 if a greater than b

 {

 Increase b by a;

 Print b;

 }

 else if b greater than a

 {

 increase a by b;

 print a;

 }

}

3.6 Decision Tables

A Decision table represents conditions and the respective actions to be taken to address

them, in a structured tabular format.

It is a powerful tool to debug and prevent errors. It helps group similar information

into a single table and then by combining tables it delivers easy and convenient

decision-making.

3.6.1 Creating Decision Table

To create the decision table, the developer must follow basic four steps:

1. Identify all possible conditions to be addressed

2. Determine actions for all identified conditions

3. Create Maximum possible rules

4. Define action for each rule

Decision Tables should be verified by end-users and can lately be simplified by

eliminating duplicate rules and actions.

Example

Let us take a simple example of day-to-day problem with our Internet connectivity.

We begin by identifying all problems that can arise while starting the internet and their

respective possible solutions.

We list all possible problems under column conditions and the prospective actions

under column Actions.

Table: Decision Table – In-house Internet Troubleshooting

 Conditions/Actions Rules

Conditions

Shows Connected N N N N Y Y Y Y

Ping is Working N N Y Y N N Y Y

Opens Website Y N Y N Y N Y N

Actions

Check network cable X

Check internet router X X X X

Restart Web Browser X

Contact Service provider X X X X X X

Do no action

3.8 Entity-Relationship Model

Entity-Relationship model is a type of database model based on the notion of real-

world entities and relationship among them. We can map real world scenario onto ER

database model. ER Model creates a set of entities with their attributes, a set of

constraints and relation among them.

ER Model is best used for the conceptual design of database. ER Model can be

represented as follows:

 Entity - An entity in ER Model is a real world being, which has some properties

called attributes. Every attribute is defined by its corresponding set of values,

called domain.

For example, Consider a school database. Here, a student is an entity. Student

has various attributes like name, id, age and class etc.

 Relationship - The logical association among entities is called relationship.

Relationships are mapped with entities in various ways. Mapping cardinalities

define the number of associations between two entities.

Mapping cardinalities:

o one to one

o one to many

o many to one

o many to many

3.7 Data Dictionary

Data dictionary is the centralized collection of information about data. It stores

meaning and origin of data, its relationship with other data, data format for usage etc.

Data dictionary has rigorous definitions of all names in order to facilitate user and

software designers.

Data dictionary is often referenced as meta-data (data about data) repository. It is

created along with DFD (Data Flow Diagram) model of software program and is

expected to be updated whenever DFD is changed or updated.

3.7.1 Requirement of Data Dictionary

The data is referenced via data dictionary while designing and implementing software.

Data dictionary removes any chances of ambiguity. It helps keeping work of

programmers and designers synchronized while using same object reference

everywhere in the program.

Data dictionary provides a way of documentation for the complete database system in

one place. Validation of DFD is carried out using data dictionary.

3.7.2 Contents

Data dictionary should contain information about the following

 Data Flow

 Data Structure

 Data Elements

 Data Stores

 Data Processing

Data Flow is described by means of DFDs as studied earlier and represented in

algebraic form as described.

= Composed of

{} Repetition

() Optional

+ And

[/] Or

Example

Address = House No + (Street / Area) + City + State

Course ID = Course Number + Course Name + Course Level + Course Grades

3.8 Data Elements

Data elements consist of Name and descriptions of Data and Control Items, Internal or

External data stores etc. with the following details:

 Primary Name

 Secondary Name (Alias)

 Use-case (How and where to use)

 Content Description (Notation etc.)

 Supplementary Information (preset values, constraints etc.)

3.8 Data Store

It stores the information from where the data enters into the system and exists out of

the system. The Data Store may include -

 Files

o Internal to software.

o External to software but on the same machine.

o External to software and system, located on different machine.

 Tables

o Naming convention

o Indexing property

3.9 Data Processing

There are two types of Data Processing:

 Logical: As user sees it

 Physical: As software sees it

4.0 Self-Assessment Exercise(s)

Answer the following questions:

1. Illustrate data flow diagram using diagram only.

2. Explain the following: Logical DFD, Physical DFD

3. Describe the components of DFD with their corresponding symbols

4. Differentiate between a data flow and control flow in a structure chart

5. Compare and contrast between HIPO and IPO

8. State the steps needed to create a decision table

9. List the content of a data dictionary

5.0 Conclusion

As stated in the previous module software design is concerned with finding or proffering

solution to business problem(s). To achieve this feat, the designer will need some

software design tools. These tools include among others: Data Flow Diagram, Structure

Charts, HIPO Diagram, Structured English, Pseudo-Code

6.0 Summary

In this unit we discussed the following:

 Data Flow Diagram

 Structure Charts

 HIPO Diagram

 Structured English

 Pseudo-Code

 Decision Tables

 Data Dictionary

7.0 Further Reading

Barry Boehm (1996)., "A Spiral Model of Software Development and Enhancement".

In: ACM SIGSOFT Software Engineering Notes (ACM)

Barry W. Boehm (2000). Software cost estimation with Cocomo II: Volume 1.

https://en.m.wikipedia.org/wiki/Barry_Boehm
http://doi.acm.org/10.1145/12944.12948

Charles S. Wasson (2006) System Analysis, Design, and Development Concepts,

Principles, and Practices, Published by John Wiley & Sons, Inc., Hoboken, New

Jersey.

Hans-Petter Halvorsen (2020) Software Development A Practical Approach!

https://halvorsen.blog

Pressman Roger S: “Software Engineering”- A Practitioner’s Approach”, McGraw Hill,

5th edition. 2000.

Richard H. Thayer, Barry W. Boehm (1986). Tutorial: software engineering project

management. Computer Society Press of the IEEE. p.130

Rushby John: Formal Methods and the Certification of Critical Systems. Tech. Rep.

SRI-CSL-93-7, Computer Science Laboratory, SRI International, Menlo Park, CA,

Dec. 1993.

Woodcock Jim, Larsen Peter Gorm, Bicarregui Juan and Fitzgerald John: Formal

Methods: Practice and Experience, ACM Computing Surveys (CSUR), Volume 41

Issue 4, 2009 Article No. 19.

Unit 3: Software Design Strategies

Contents

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content

3.1 Structured Design

3.2 Function Oriented Design

3.3 Object Oriented Design

3.4 Design Process

3.5 Software Design Approaches

3.5.1 Top-down Design

3.5.2 Bottom-up Design

Contents

1.0 Introduction

Software design is a process to conceptualize the software requirements into software

implementation. Software design takes the user requirements as challenges and tries to

find optimum solution. While the software is being conceptualized, a plan is chalked

out to find the best possible design for implementing the intended solution.

https://halvorsen.blog/

2.0 Intended Learning Outcomes (ILOs)

After studying this unit, you should be able to

1. Mention and discuss difference types of software design

2. List and explain the different concepts of object-oriented design

3. Mention and discuss two generic approaches for software design

3.0 Main Content

Software design is a process to conceptualize the software requirements into software

implementation. Software design takes the user requirements as challenges and tries to

find optimum solution. While the software is being conceptualized, a plan is chalked

out to find the best possible design for implementing the intended solution.

There are multiple variants of software design. Let us study them briefly:

3.1 Structured Design

Structured design is a conceptualization of problem into several well-organized

elements of solution. It is basically concerned with the solution design. Benefit of

structured design is, it gives better understanding of how the problem is being solved.

Structured design also makes it simpler for designer to concentrate on the problem

more accurately.

Structured design is mostly based on ‘divide and conquer’ strategy where a problem is

broken into several small problems and each small problem is individually solved until

the whole problem is solved.

The small pieces of problem are solved by means of solution modules. Structured

design emphasis that these modules be well organized in order to achieve precise

solution.

These modules are arranged in hierarchy. They communicate with each other. A good

structured design always follows some rules for communication among multiple

modules, namely -

Cohesion - grouping of all functionally related elements.

Coupling - communication between different modules.

A good structured design has high cohesion and low coupling arrangements.

3.2 Function Oriented Design

In function-oriented design, the system is comprised of many smaller sub-systems

known as functions. These functions are capable of performing significant task in the

system. The system is considered as top view of all functions.

Function oriented design inherits some properties of structured design where divide

and conquer methodology is used.

This design mechanism divides the whole system into smaller functions, which

provides means of abstraction by concealing the information and their operation. These

functional modules can share information among themselves by means of information

passing and using information available globally.

Another characteristic of functions is that when a program calls a function, the function

changes the state of the program, which sometimes is not acceptable by other modules.

Function oriented design works well where the system state does not matter and

program/functions work on input rather than on a state.

Design Process

 The whole system is seen as how data flows in the system by means of data flow

diagram.

 DFD depicts how functions changes data and state of entire system.

 The entire system is logically broken down into smaller units known as functions

on the basis of their operation in the system.

 Each function is then described at large.

3.3 Object Oriented Design

Object oriented design works around the entities and their characteristics instead of

functions involved in the software system. This design strategy focuses on entities and

its characteristics. The whole concept of software solution revolves around the engaged

entities.

Let us see the important concepts of Object-Oriented Design:

 Objects - All entities involved in the solution design are known as objects. For

example, person, banks, company and customers are treated as objects. Every

entity has some attributes associated to it and has some methods to perform on

the attributes.

 Classes - A class is a generalized description of an object. An object is an

instance of a class. Class defines all the attributes, which an object can have and

methods, which defines the functionality of the object.

In the solution design, attributes are stored as variables and functionalities are

defined by means of methods or procedures.

 Encapsulation - In OOD, the attributes (data variables) and methods (operation

on the data) are bundled together and this is called encapsulation. Encapsulation

not only bundles important information of an object together, but also restricts

access of the data and methods from the outside world. This is called information

hiding.

 Inheritance - OOD allows similar classes to stack up in hierarchical manner

where the lower or sub-classes can import, implement and re-use allowed

variables and methods from their immediate super classes. This property of OOD

is known as inheritance. This makes it easier to define specific class and to create

generalized classes from specific ones.

 Polymorphism - OOD languages provide a mechanism where methods

performing similar tasks but vary in arguments, can be assigned same name. This

is called polymorphism, which allows a single interface performing tasks for

different types. Depending upon how the function is invoked, respective portion

of the code gets executed.

3.4 Design Process

Software design process can be perceived as series of well-defined steps. Though it

varies according to design approach (function oriented or object oriented, yet it may

have the following steps involved:

 A solution design is created from requirement or previously used system and/or

system sequence diagram.

 Objects are identified and grouped into classes on behalf of similarity in attribute

characteristics.

 Class hierarchy and relation among them is defined.

 Application framework is defined.

3.5 Software Design Approaches

Here are two generic approaches for software designing:

3.5.1 Top-Down Design

We know that a system is composed of more than one sub-system and it contains a

number of components. Further, these sub-systems and components may have their

onset of sub-system and components and creates hierarchical structure in the system.

Top-down design takes the whole software system as one entity and then decomposes

it to achieve more than one sub-system or component based on some characteristics.

Each sub-system or component is then treated as a system and decomposed further.

This process keeps on running until the lowest level of system in the top-down

hierarchy is achieved.

Top-down design starts with a generalized model of system and keeps on defining the

more specific part of it. When all components are composed the whole system comes

into existence.

Top-down design is more suitable when the software solution needs to be designed

from scratch and specific details are unknown.

3.5.2 Bottom-up Design

The bottom-up design model starts with most specific and basic components. It

proceeds with composing higher level of components by using basic or lower-level

components. It keeps creating higher level components until the desired system is not

evolved as one single component. With each higher level, the amount of abstraction is

increased.

Bottom-up strategy is more suitable when a system needs to be created from some

existing system, where the basic primitives can be used in the newer system.

Both, top-down and bottom-up approaches are not practical individually. Instead, a

good combination of both is used.

4.0 Self-Assessment Exercise(s)

Answer the following questions:

1. Explain the types of software design

2. Explain the different concepts of object-oriented design

3. Mention and discuss two generic approaches for software design

4. Describe the bottom-up design approach.

5. Describe the fundamental concepts of object-oriented design.

5.0 Conclusion

It is pertinent to note that in the design of software certain strategies need to be applied.

Some of these strategies include: Structured Design, Function Oriented Design, Object

Oriented Design, Design Process, Software Design Approaches (Top-down Design,

Bottom-up Design).

6.0 Summary

In this unit we discussed the following:

 Structured Design

 Function Oriented Design

 Object Oriented Design

 Design Process

 Software Design Approaches

7.0 Further

Barry Boehm (1996)., "A Spiral Model of Software Development and Enhancement".

In: ACM SIGSOFT Software Engineering Notes (ACM)

Barry W. Boehm (2000). Software cost estimation with Cocomo II: Volume 1.

Charles S. Wasson (2006) System Analysis, Design, and Development Concepts,

Principles, and Practices, Published by John Wiley & Sons, Inc., Hoboken, New

Jersey.

Hans-Petter Halvorsen (2020) Software Development A Practical Approach!

https://halvorsen.blog

Pressman Roger S: “Software Engineering”- A Practitioner’s Approach”, McGraw Hill,

5th edition. 2000.

Richard H. Thayer, Barry W. Boehm (1986). Tutorial: software engineering project

management. Computer Society Press of the IEEE. p.130

Rushby John: Formal Methods and the Certification of Critical Systems. Tech. Rep.

SRI-CSL-93-7, Computer Science Laboratory, SRI International, Menlo Park, CA,

Dec. 1993.

Woodcock Jim, Larsen Peter Gorm, Bicarregui Juan and Fitzgerald John: Formal

Methods: Practice and Experience, ACM Computing Surveys (CSUR), Volume 41

Issue 4, 2009 Article No. 19.

Unit 4: Software User Interface Design

Contents

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content

3.1 Broad Classification of User Interface

3.1.1 Command Line Interface (CLI)

3.1.2 Graphical User Interface

3.2 GUI Elements

3.3 Application specific GUI components

3.4 Other impressive GUI components are

3.5 User Interface Design Activities

3.6 GUI Implementation Tools

3.7 User Interface Golden rules

https://en.m.wikipedia.org/wiki/Barry_Boehm
http://doi.acm.org/10.1145/12944.12948
https://halvorsen.blog/

Contents

1.0 Introduction

User interface is part of software and is designed such a way that it is expected to

provide the user insight of the software. UI provides fundamental platform for human-

computer interaction.

2.0 Intended Learning Outcomes (ILOs)

After studying this unit, you should be able to

1. Mention some qualities of a user interface that make a software more

popular

2. Give a broad classification of user interface

3. Mention and explain 3 elements of a text-based command line interface

 4. Briefly describe graphical user interface

5. Mention at least 5 Application specific GUI components

6. State at least 5 user Interface Golden rules

3.0 Main Content

User interface is the front-end application view to which user interacts in order to use

the software. User can manipulate and control the software as well as hardware by

means of user interface. Today, user interface is found at almost every place where

digital technology exists, right from computers, mobile phones, cars, music players,

airplanes, ships etc.

User interface is part of software and is designed such a way that it is expected to

provide the user insight of the software. UI provides fundamental platform for human-

computer interaction.

UI can be graphical, text-based, audio-video based, depending upon the underlying

hardware and software combination. UI can be hardware or software or a combination

of both.

The software becomes more popular if its user interface is:

 Attractive

 Simple to use

 Responsive in short time

 Clear to understand

 Consistent on all interfacing screens

3.1 Broad Classification of User Interface

UI is broadly divided into two categories:

 Command Line Interface

 Graphical User Interface

3.1.1 Command Line Interface (CLI)

CLI has been a great tool of interaction with computers until the video display monitors

came into existence. CLI is first choice of many technical users and programmers. CLI

is minimum interface a software can provide to its users.

CLI provides a command prompt, the place where the user types the command and

feeds to the system. The user needs to remember the syntax of command and its use.

Earlier CLI were not programmed to handle the user errors effectively.

A command is a text-based reference to set of instructions, which are expected to be

executed by the system. There are methods like macros, scripts that make it easy for

the user to operate.

CLI uses less amount of computer resource as compared to GUI.

CLI Elements

A text-based command line interface can have the following elements:

 Command Prompt - It is text-based notifier that is mostly shows the context in

which the user is working. It is generated by the software system.

 Cursor - It is a small horizontal line or a vertical bar of the height of line, to

represent position of character while typing. Cursor is mostly found in blinking

state. It moves as the user writes or deletes something.

 Command - A command is an executable instruction. It may have one or more

parameters. Output on command execution is shown inline on the screen. When

output is produced, command prompt is displayed on the next line.

3.1.2 Graphical User Interface

Graphical User Interface provides the user graphical means to interact with the system.

GUI can be combination of both hardware and software. Using GUI, user interprets

the software.

Typically, GUI is more resource consuming than that of CLI. With advancing

technology, the programmers and designers create complex GUI designs that work

with more efficiency, accuracy and speed.

3.2 GUI Elements

GUI provides a set of components to interact with software or hardware.

Every graphical component provides a way to work with the system. A GUI system

has following elements such as:

 Window - An area where contents of application are displayed. Contents in a

window can be displayed in the form of icons or lists, if the window represents

file structure. It is easier for a user to navigate in the file system in an exploring

window. Windows can be minimized, resized or maximized to the size of

screen. They can be moved anywhere on the screen. A window may contain

another window of the same application, called child window.

 Tabs - If an application allows executing multiple instances of itself, they

appear on the screen as separate windows. Tabbed Document Interface has

come up to open multiple documents in the same window. This interface also

helps in viewing preference panel in application. All modern web-browsers use

this feature.

 Menu - Menu is an array of standard commands, grouped together and placed

at a visible place (usually top) inside the application window. The menu can be

programmed to appear or hide on mouse clicks.

 Icon - An icon is small picture representing an associated application. When

these icons are clicked or double clicked, the application window is opened.

Icon displays application and programs installed on a system in the form of

small pictures.

 Cursor - Interacting devices such as mouse, touch pad, digital pen are

represented in GUI as cursors. On screen cursor follows the instructions from

hardware in almost real-time. Cursors are also named pointers in GUI systems.

They are used to select menus, windows and other application features.

3.3 Application specific GUI components

A GUI of an application contains one or more of the listed GUI elements:

 Application Window - Most application windows uses the constructs supplied

by operating systems but many use their own customer created windows to

contain the contents of application.

 Dialogue Box - It is a child window that contains message for the user and

request for some action to be taken. For Example: Application generate a

dialogue to get confirmation from user to delete a file.

 Text-Box - Provides an area for user to type and enter text-based data.

 Buttons - They imitate real life buttons and are used to submit inputs to the

software.

 Radio-button - Displays available options for selection. Only one can be

selected among all offered.

 Check-box - Functions similar to list-box. When an option is selected, the box

is marked as checked. Multiple options represented by check boxes can be

selected.

 List-box - Provides list of available items for selection. More than one item can

be selected.

3.4 Other impressive GUI components are:

 Sliders

 Combo-box

 Data-grid

 Drop-down list

3.5 User Interface Design Activities

There are a number of activities performed for designing user interface. The process

of GUI design and implementation is alike SDLC. Any model can be used for GUI

implementation among Waterfall, Iterative or Spiral Model.

A model used for GUI design and development should fulfil these GUI specific steps.

 GUI Requirement Gathering - The designers may like to have list of all

functional and non-functional requirements of GUI. This can be taken from user

and their existing software solution.

 User Analysis - The designer studies who is going to use the software GUI. The

target audience matters as the design details change according to the knowledge

and competency level of the user. If user is technical savvy, advanced and

complex GUI can be incorporated. For a novice user, more information is

included on how-to of software.

 Task Analysis - Designers have to analyze what task is to be done by the

software solution. Here in GUI, it does not matter how it will be done. Tasks

can be represented in hierarchical manner taking one major task and dividing it

further into smaller sub-tasks. Tasks provide goals for GUI presentation. Flow

of information among sub-tasks determines the flow of GUI contents in the

software.

 GUI Design & implementation - Designers after having information about

requirements, tasks and user environment, design the GUI and implements into

code and embed the GUI with working or dummy software in the background.

It is then self-tested by the developers.

 Testing - GUI testing can be done in various ways. Organization can have in-

house inspection, direct involvement of users and release of beta version are

few of them. Testing may include usability, compatibility, user acceptance etc.

3.6 GUI Implementation Tools

There are several tools available using which the designers can create entire GUI on a

mouse click. Some tools can be embedded into the software environment (IDE).

GUI implementation tools provide powerful array of GUI controls. For software

customization, designers can change the code accordingly.

There are different segments of GUI tools according to their different use and platform.

Example

Mobile GUI, Computer GUI, Touch-Screen GUI etc. Here is a list of few tools which

come handy to build GUI:

 FLUID

 AppInventor (Android)

 LucidChart

 Wavemaker

 Visual Studio

3.7 User Interface Golden rules

The following rules are mentioned to be the golden rules for GUI design, described by

Shneiderman and Plaisant in their book (Designing the User Interface).

 Strive for consistency - Consistent sequences of actions should be required in

similar situations. Identical terminology should be used in prompts, menus, and

help screens. Consistent commands should be employed throughout.

 Enable frequent users to use short-cuts - The user’s desire to reduce the

number of interactions increases with the frequency of use. Abbreviations,

function keys, hidden commands, and macro facilities are very helpful to an

expert user.

 Offer informative feedback - For every operator action, there should be some

system feedback. For frequent and minor actions, the response must be modest,

while for infrequent and major actions, the response must be more substantial.

 Design dialog to yield closure - Sequences of actions should be organized into

groups with a beginning, middle, and end. The informative feedback at the

completion of a group of actions gives the operators the satisfaction of

accomplishment, a sense of relief, the signal to drop contingency plans and

options from their minds, and this indicates that the way ahead is clear to

prepare for the next group of actions.

 Offer simple error handling - As much as possible, design the system so the

user will not make a serious error. If an error is made, the system should be able

to detect it and offer simple, comprehensible mechanisms for handling the error.

 Permit easy reversal of actions - This feature relieves anxiety, since the user

knows that errors can be undone. Easy reversal of actions encourages

exploration of unfamiliar options. The units of reversibility may be a single

action, a data entry, or a complete group of actions.

 Support internal locus of control - Experienced operators strongly desire the

sense that they are in charge of the system and that the system responds to their

actions. Design the system to make users the initiators of actions rather than the

responders.

 Reduce short-term memory load - The limitation of human information

processing in short-term memory requires the displays to be kept simple,

multiple page displays be consolidated, window-motion frequency be reduced,

and sufficient training time be allotted for codes, mnemonics, and sequences of

actions.

4.0 Self-Assessment Exercise(s)

Answer the following questions:

1. Mention some qualities of a user interface that make a software more popular

2. Give a broad classification of user interface

3. Mention and explain 3 elements of a text-based command line interface

 4. Briefly describe the tools used for development of graphical user interface

5. Mention at least 5 Application specific GUI components

5.0 Conclusion

User interface is the means through which a user (Operator) interact with the computer

(software). UI provides a platform for the user to manipulate the software. It becomes

imperative that while developing a software, the user interface must of necessity be

design and incorporated into the greater whole. The user interface could be command

line based or graphical.

6.0 Summary

In this unit we discussed the following:

 Broad Classification of User Interface

 GUI Elements

 Application specific GUI components

 Other impressive GUI components are

 User Interface Design Activities

 GUI Implementation Tools

 User Interface Golden rules

7.0 Further Reading

Barry Boehm (1996)., "A Spiral Model of Software Development and Enhancement".

In: ACM SIGSOFT Software Engineering Notes (ACM)

Barry W. Boehm (2000). Software cost estimation with Cocomo II: Volume 1.

Charles S. Wasson (2006) System Analysis, Design, and Development Concepts,

Principles, and Practices, Published by John Wiley & Sons, Inc., Hoboken, New

Jersey.

Hans-Petter Halvorsen (2020) Software Development A Practical Approach!

https://halvorsen.blog

Pressman Roger S: “Software Engineering”- A Practitioner’s Approach”, McGraw Hill,

5th edition. 2000.

Richard H. Thayer, Barry W. Boehm (1986). Tutorial: software engineering project

management. Computer Society Press of the IEEE. p.130

https://en.m.wikipedia.org/wiki/Barry_Boehm
http://doi.acm.org/10.1145/12944.12948
https://halvorsen.blog/

Rushby John: Formal Methods and the Certification of Critical Systems. Tech. Rep.

SRI-CSL-93-7, Computer Science Laboratory, SRI International, Menlo Park, CA,

Dec. 1993.

Woodcock Jim, Larsen Peter Gorm, Bicarregui Juan and Fitzgerald John: Formal

Methods: Practice and Experience, ACM Computing Surveys (CSUR), Volume 41

Issue 4, 2009 Article No. 19.

MODULE 6: OVERVIEW OF DESIGN COMPLEXITY, SOFTWARE

IMPLEMENTATION, TESTING, MAINTENANCE AND CASE

TOOLS

This module is divided into five (5) units

Unit 1: Design Complexity

Unit 2: Software Implementation

Unit 3: Software Testing

Unit 4: Software Maintenance

Unit 5: Software Case Tools

Unit 1: Design Complexity

Contents

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content

3.1 Halstead's Complexity Measures

3.2 Cyclomatic Complexity Measures

3.3 Function Point

3.3.1 Parameters of function point

3.3.2 Characteristics for system Description

Contents

1.0 Introduction

The term complexity stands for state of events or things, which have multiple

interconnected links and highly complicated structures. In software programming, as

the design of software is realized, the number of elements and their interconnections

gradually emerge to be huge, which becomes too difficult to understand at once.

2.0 Intended Learning Outcomes (ILOs)

After studying this unit, you should be able to

 Discuss

o Halstead's Complexity Measures

o Cyclomatic Complexity Measures

o Function Point

 State the formula for each of the following meaning of each parameter:

o Halstead's Complexity Measures

o Cyclomatic Complexity Measures

o Function Point

 Mention any 3 parameter of function point

 Mention any 10 characteristics for system Description

3.0 Main Content

The term complexity stands for state of events or things, which have multiple

interconnected links and highly complicated structures. In software programming, as

the design of software is realized, the number of elements and their interconnections

gradually emerge to be huge, which becomes too difficult to understand at once.

Software design complexity is difficult to assess without using complexity metrics and

measures. Let us see three important software complexity measures.

3.1 Halstead's Complexity Measures

In 1977, Mr. Maurice Howard Halstead introduced metrics to measure software

complexity. Halstead’s metrics depends upon the actual implementation of program

and its measures, which are computed directly from the operators and operands from

source code, in static manner. It allows to evaluate testing time, vocabulary, size,

difficulty, errors, and efforts for C/C++/Java source code.

According to Halstead, “A computer program is an implementation of an algorithm

considered to be a collection of tokens which can be classified as either operators or

operands”. Halstead metrics think a program as sequence of operators and their

associated operands.

He defines various indicators to check complexity of module.

Parameter Meaning

n1 Number of unique operators

n2 Number of unique operands

N1 Number of total occurrence of operators

N2 Number of total occurrence of operands

When we select source file to view its complexity details in Metric Viewer, the

following result is seen in Metric Report:

Metric Meaning Mathematical Representation

n Vocabulary n1 + n2

N Size N1 + N2

V Volume Length * Log2 Vocabulary

D Difficulty (n1/2) * (N1/n2)

E Efforts Difficulty * Volume

B Errors Volume / 3000

T Testing time Time = Efforts / S, where S=18 seconds.

3.2 Cyclomatic Complexity Measures

Every program encompasses statements to execute in order to perform some task and

other decision-making statements that decide, what statements need to be executed.

These decision-making constructs change the flow of the program.

If we compare two programs of same size, the one with more decision-making

statements will be more complex as the control of program jumps frequently.

McCabe, in 1976, proposed Cyclomatic Complexity Measure to quantify complexity

of a given software. It is graph driven model that is based on decision-making

constructs of program such as if-else, do-while, repeat-until, switch-case and goto

statements.

Process to make flow control graph:

 Break program in smaller blocks, delimited by decision-making constructs.

 Create nodes representing each of these nodes.

 Connect nodes as follows:

o If control can branch from block i to block j

Draw an arc

o From exit node to entry node

Draw an arc.

To calculate Cyclomatic complexity of a program module, we use the formula

V(G) = e – n + 2

Where

e is total number of edges

n is total number of nodes

The Cyclomatic complexity of the above module is

e = 10

n = 8

Cyclomatic Complexity = 10 - 8 + 2

 = 4

According to P. Jorgensen, Cyclomatic Complexity of a module should not exceed 10.

3.3 Function Point

It is widely used to measure the size of software. Function Point concentrates on

functionality provided by the system. Features and functionality of the system are used

to measure the software complexity.

Function point counts on five parameters, named as External Input, External Output,

Logical Internal Files, External Interface Files, and External Inquiry. To consider the

complexity of software each parameter is further categorized as simple, average or

complex.

Let us see parameters of function point:

3.3.1 Parameters of function point

External Input

Every unique input to the system, from outside, is considered as external input.

Uniqueness of input is measured, as no two inputs should have same formats. These

inputs can either be data or control parameters.

 Simple - if input count is low and affects less internal files

 Complex - if input count is high and affects more internal files

 Average - in-between simple and complex.

External Output

All output types provided by the system are counted in this category. Output is

considered unique if their output format and/or processing are unique.

 Simple - if output count is low

 Complex - if output count is high

 Average - in between simple and complex.

Logical Internal Files

Every software system maintains internal files in order to maintain its functional

information and to function properly. These files hold logical data of the system. This

logical data may contain both functional data and control data.

 Simple - if number of record types are low

 Complex - if number of record types are high

 Average - in between simple and complex.

External Interface Files

Software system may need to share its files with some external software or it may need

to pass the file for processing or as parameter to some function. All these files are

counted as external interface files.

 Simple - if number of record types in shared file are low

 Complex - if number of record types in shared file are high

 Average - in between simple and complex.

External Inquiry

An inquiry is a combination of input and output, where user sends some data to inquire

about as input and the system responds to the user with the output of inquiry processed.

The complexity of a query is more than External Input and External Output. Query is

said to be unique if its input and output are unique in terms of format and data.

 Simple - if query needs low processing and yields small amount of output data

 Complex - if query needs high process and yields large amount of output data

 Average - in between simple and complex.

Each of these parameters in the system is given weight according to their class and

complexity. The table below mentions the weight given to each parameter:

Parameter Simple Average Complex

Inputs 3 4 6

Outputs 4 5 7

Enquiry 3 4 6

Files 7 10 15

Interfaces 5 7 10

The table above yields raw Function Points. These function points are adjusted

according to the environment complexity. System is described using fourteen different

characteristics.

3.3.2 Characteristics for system Description

 Data communications

 Distributed processing

 Performance objectives

 Operation configuration load

 Transaction rate

 Online data entry,

 End user efficiency

 Online update

 Complex processing logic

 Re-usability

 Installation ease

 Operational ease

 Multiple sites

 Desire to facilitate changes

These characteristics factors are then rated from 0 to 5, as mentioned below:

 No influence

 Incidental

 Moderate

 Average

 Significant

 Essential

All ratings are then summed up as N. The value of N ranges from 0 to 70 (14 types of

characteristics x 5 types of ratings). It is used to calculate Complexity Adjustment

Factors (CAF), using the following formulae:

CAF = 0.65 + 0.01N

Then,

Delivered Function Points (FP)= CAF x Raw FP

This FP can then be used in various metrics, such as:

Cost = $ / FP

Quality = Errors / FP

Productivity = FP / person-month

4.0 Self-Assessment Exercise(s)

Answer the following questions:

1. Explain the following terms:

(i) Halstead's Complexity Measures

(ii) Cyclomatic Complexity Measures

(iii) Function Point

2. Describe the formula for each of the 1(i), (ii), and (iii) above.

3. Mention any 10 characteristics for system description

4. Explain any three parameters of function point

5.0 Conclusion

Any enterprise software of value has some level of complexity. As components or

modules are developed and incorporated into the system, the complexity increases.

Software design complexity is difficult to assess without using complexity metrics and

measures. These metrics and measures are discussed in this unit.

6.0 Summary

In this unit we discussed the following:

 Halstead's Complexity Measures

 Cyclomatic Complexity Measures

 Function Point

 Characteristics for system Description

7.0 Further Reading

Barry Boehm (1996)., "A Spiral Model of Software Development and Enhancement".

In: ACM SIGSOFT Software Engineering Notes (ACM)

Barry W. Boehm (2000). Software cost estimation with Cocomo II: Volume 1.

Charles S. Wasson (2006) System Analysis, Design, and Development Concepts,

Principles, and Practices, Published by John Wiley & Sons, Inc., Hoboken, New

Jersey.

Hans-Petter Halvorsen (2020) Software Development A Practical Approach!

https://halvorsen.blog

Pressman Roger S: “Software Engineering”- A Practitioner’s Approach”, McGraw Hill,

5th edition. 2000.

Richard H. Thayer, Barry W. Boehm (1986). Tutorial: software engineering project

management. Computer Society Press of the IEEE. p.130

Rushby John: Formal Methods and the Certification of Critical Systems. Tech. Rep.

SRI-CSL-93-7, Computer Science Laboratory, SRI International, Menlo Park, CA,

Dec. 1993.

https://en.m.wikipedia.org/wiki/Barry_Boehm
http://doi.acm.org/10.1145/12944.12948
https://halvorsen.blog/

Woodcock Jim, Larsen Peter Gorm, Bicarregui Juan and Fitzgerald John: Formal

Methods: Practice and Experience, ACM Computing Surveys (CSUR), Volume 41

Issue 4, 2009 Article No. 19.

Unit 2: Software Implementation

Contents

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content

3.1 Structured Programming

3.2 Functional Programming

3.3 Programming style

3.4 Coding Guidelines

3.5 Software Implementation Challenges

3.6 Software Documentation

Contents

1.0 Introduction

The implementation phase plays a very important role in the software development

process. It is at this stage that the physical source code of the system being built is

created. Programmer’s code the IT system on the basis of the collected requirements

and the developed project documentation. They are based on experience and proven

software development techniques. Implementation is the process of realizing the design

as a program.

2.0 Intended Learning Outcomes (ILOs)

After studying this unit, you should be able to

1. Discuss the 3 main concepts used in structured programming

2. Discuss the concepts used in functional programming

3. State any five-coding guideline

3.0 Main Content

In this unit, we will study about programming methods, documentation and challenges

in software implementation.

3.1 Structured Programming

In the process of coding, the lines of code keep multiplying, thus, size of the software

increases. Gradually, it becomes next to impossible to remember the flow of program.

If one forgets how software and its underlying programs, files, procedures are

constructed it then becomes very difficult to share, debug and modify the program. The

solution to this is structured programming. It encourages the developer to use

subroutines and loops instead of using simple jumps in the code, thereby bringing

clarity in the code and improving its efficiency Structured programming also helps

programmer to reduce coding time and organize code properly.

Structured programming states how the program shall be coded. Structured

programming uses three main concepts:

 Top-down analysis - A software is always made to perform some rational work.

This rational work is known as problem in the software parlance. Thus, it is very

important that we understand how to solve the problem. Under top-down

analysis, the problem is broken down into small pieces where each one has some

significance. Each problem is individually solved and steps are clearly stated

about how to solve the problem.

 Modular Programming - While programming, the code is broken down into

smaller group of instructions. These groups are known as modules,

subprograms or subroutines. Modular programming based on the understanding

of top-down analysis. It discourages jumps using ‘goto’ statements in the

program, which often makes the program flow non-traceable. Jumps are

prohibited and modular format is encouraged in structured programming.

 Structured Coding - In reference with top-down analysis, structured coding

sub-divides the modules into further smaller units of code in the order of their

execution. Structured programming uses control structure, which controls the

flow of the program, whereas structured coding uses control structure to

organize its instructions in definable patterns.

3.2 Functional Programming

Functional programming is style of programming language, which uses the concepts

of mathematical functions. A function in mathematics should always produce the same

result on receiving the same argument. In procedural languages, the flow of the

program runs through procedures, i.e. the control of program is transferred to the called

procedure. While control flow is transferring from one procedure to another, the

program changes its state.

In procedural programming, it is possible for a procedure to produce different results

when it is called with the same argument, as the program itself can be in different state

while calling it. This is a property as well as a drawback of procedural programming,

in which the sequence or timing of the procedure execution becomes important.

Functional programming provides means of computation as mathematical functions,

which produces results irrespective of program state. This makes it possible to predict

the behaviour of the program.

Functional programming uses the following concepts:

 First class and High-order functions - These functions have capability to

accept another function as argument or they return other functions as results.

 Pure functions - These functions do not include destructive updates, that is,

they do not affect any I/O or memory and if they are not in use, they can easily

be removed without hampering the rest of the program.

 Recursion - Recursion is a programming technique where a function calls itself

and repeats the program code in it unless some pre-defined condition matches.

Recursion is the way of creating loops in functional programming.

 Strict evaluation - It is a method of evaluating the expression passed to a

function as an argument. Functional programming has two types of evaluation

methods, strict (eager) or non-strict (lazy). Strict evaluation always evaluates

the expression before invoking the function. Non-strict evaluation does not

evaluate the expression unless it is needed.

 λ-calculus - Most functional programming languages use λ-calculus as their

type systems. λ-expressions are executed by evaluating them as they occur.

Common Lisp, Scala, Haskell, Erlang and F# are some examples of functional

programming languages.

3.3 Programming style

Programming style is set of coding rules followed by all the programmers to write the

code. When multiple programmers work on the same software project, they frequently

need to work with the program code written by some other developer. This becomes

tedious or at times impossible, if all developers do not follow some standard

programming style to code the program.

An appropriate programming style includes using function and variable names relevant

to the intended task, using well-placed indentation, commenting code for the

convenience of reader and overall presentation of code. This makes the program code

readable and understandable by all, which in turn makes debugging and error solving

easier. Also, proper coding style helps ease the documentation and updating.

3.4 Coding Guidelines

Practice of coding style varies with organizations, operating systems and language of

coding itself.

The following coding elements may be defined under coding guidelines of an

organization:

 Naming conventions - This section defines how to name functions, variables,

constants and global variables.

 Indenting - This is the space left at the beginning of line, usually 2-8 whitespace

or single tab.

 Whitespace - It is generally omitted at the end of line.

 Operators - Defines the rules of writing mathematical, assignment and logical

operators. For example, assignment operator ‘=’ should have space before and

after it, as in “x = 2”.

 Control Structures - The rules of writing if-then-else, case-switch, while-until

and for control flow statements solely and in nested fashion.

 Line length and wrapping - Defines how many characters should be there in

one line, mostly a line is 80 characters long. Wrapping defines how a line should

be wrapped, if is too long.

 Functions - This defines how functions should be declared and invoked, with

and without parameters.

 Variables - This mentions how variables of different data types are declared and

defined.

 Comments - This is one of the important coding components, as the comments

included in the code describe what the code actually does and all other

associated descriptions. This section also helps creating help documentations

for other developers.

3.5 Software Implementation Challenges

There are some challenges faced by the development team while implementing the

software. Some of them are mentioned below:

 Code-reuse - Programming interfaces of present-day languages are very

sophisticated and are equipped huge library functions. Still, to bring the cost

down of end product, the organization management prefers to re-use the code,

which was created earlier for some other software. There are huge issues faced

by programmers for compatibility checks and deciding how much code to re-

use.

 Version Management - Every time a new software is issued to the customer,

developers have to maintain version and configuration related documentation.

This documentation needs to be highly accurate and available on time.

 Target-Host - The software program, which is being developed in the

organization, needs to be designed for host machines at the customers end. But

at times, it is impossible to design a software that works on the target machines.

3.6 Software Documentation

Software documentation is an important part of software process. A well written

document provides a great tool and means of information repository necessary to know

about software process. Software documentation also provides information about how

to use the product.

A well-maintained documentation should involve the following documents:

 Requirement documentation - This documentation works as key tool for

software designer, developer and the test team to carry out their respective tasks.

This document contains all the functional, non-functional and behavioural

description of the intended software.

Source of this document can be previously stored data about the software,

already running software at the client’s end, client’s interview, questionnaires

and research. Generally, it is stored in the form of spreadsheet or word

processing document with the high-end software management team.

This documentation works as foundation for the software to be developed and

is majorly used in verification and validation phases. Most test-cases are built

directly from requirement documentation.

 Software Design documentation - These documentations contain all the

necessary information, which are needed to build the software. It

contains: (a) High-level software architecture, (b) Software design

details, (c) Data flow diagrams, (d) Database design

These documents work as repository for developers to implement the software.

Though these documents do not give any details on how to code the program,

they give all necessary information that is required for coding and

implementation.

 Technical documentation - These documentations are maintained by the

developers and actual coders. These documents, as a whole, represent

information about the code. While writing the code, the programmers also

mention objective of the code, who wrote it, where will it be required, what it

does and how it does, what other resources the code uses, etc.

The technical documentation increases the understanding between various

programmers working on the same code. It enhances re-use capability of the

code. It makes debugging easy and traceable.

There are various automated tools available and some comes with the

programming language itself. For example, java comes JavaDoc tool to

generate technical documentation of code.

 User documentation - This documentation is different from all the above

explained. All previous documentations are maintained to provide information

about the software and its development process. But user documentation

explains how the software product should work and how it should be used to

get the desired results.

These documentations may include, software installation procedures, how-to

guide, user-guides, un-installation method and special references to get more

information like license updating etc.

4.0 Self-Assessment Exercise(s)

Answer the following questions:

1. Discuss the three main concepts used in structured programming

2. Discuss the basic concepts used in functional programming

3. State any five coding guidelines

4. Describe the importance of software documentation

5. Explain the challenges associated with software implementation

5.0 Conclusion

Implementation phase is a very important phase of the SDLC. This is when and where

the actual coding is carried out. That is, after the requirements have been elicited and

specified, analysis and design has been done. We have examined some waynthrough

which this can be accomplished.

6.0 Summary

In this unit we discussed the following:

 Structured Programming

 Functional Programming

 Programming style

 Coding Guidelines

 Software Implementation Challenges

 Software Documentation

7.0 Further

Barry Boehm (1996)., "A Spiral Model of Software Development and Enhancement".

In: ACM SIGSOFT Software Engineering Notes (ACM)

Barry W. Boehm (2000). Software cost estimation with Cocomo II: Volume 1.

Charles S. Wasson (2006) System Analysis, Design, and Development Concepts,

Principles, and Practices, Published by John Wiley & Sons, Inc., Hoboken, New

Jersey.

Hans-Petter Halvorsen (2020) Software Development A Practical Approach!

https://halvorsen.blog

Pressman Roger S: “Software Engineering”- A Practitioner’s Approach”, McGraw Hill,

5th edition. 2000.

Richard H. Thayer, Barry W. Boehm (1986). Tutorial: software engineering project

management. Computer Society Press of the IEEE. p.130

Rushby John: Formal Methods and the Certification of Critical Systems. Tech. Rep.

SRI-CSL-93-7, Computer Science Laboratory, SRI International, Menlo Park, CA,

Dec. 1993.

Woodcock Jim, Larsen Peter Gorm, Bicarregui Juan and Fitzgerald John: Formal

Methods: Practice and Experience, ACM Computing Surveys (CSUR), Volume 41

Issue 4, 2009 Article No. 19.

Unit 3: Software Testing

Contents

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content

3.1 Software Validation

3.2 Software Verification

3.3 Manual Vs Automated Testing

3.4 Testing Approaches

3.4.1 Black-box testing

3.4.2 White-box testing

https://en.m.wikipedia.org/wiki/Barry_Boehm
http://doi.acm.org/10.1145/12944.12948
https://halvorsen.blog/

3.5 Testing Levels

3.5.1 Unit Testing

3.5.2 Integration Testing

3.5.3 System Testing

3.6 Acceptance Testing

3.7 Regression Testing

3.8 Testing Documentation

3.9 Testing vs. Quality Control, Quality Assurance and Audit

Contents

1.0 Introduction

Software testing is a critical element of software development life cycles which is called

software quality control or software quality assurance. It basic goals are for validation

and verification. Validation helps us to know whether we are building the right product.

Verification helps us to know whether our product meet its specification. The product

could be code, a model, a design diagram, a requirement etc. At each stage, we need to

verify that the thing we produce accurately represents its specification

2.0 Intended Learning Outcomes (ILOs)

After studying this unit, you should be able to

 Explain software testing

 Differentiate between validation and verification

 Identify the importance of software testing

 Differentiate between manual and automated testing

 Identify the basis of software testing

 Differentiate between Black-box testing and White-box testing

 Mention the various level of testing

3.0 Main Content

Software Testing is evaluation of the software against requirements gathered from

users and system specifications. Testing is conducted at the phase level in software

development life cycle or at module level in program code. Software testing comprises

of Validation and Verification.

3.1 Software Validation

Validation is process of examining whether or not the software satisfies the user

requirements. It is carried out at the end of the SDLC. If the software matches

requirements for which it was made, it is validated.

 Validation ensures the product under development is as per the user

requirements.

 Validation answers the question – "Are we developing the product which

attempts all that user needs from this software?".

 Validation emphasizes on user requirements.

3.2 Software Verification

Verification is the process of confirming if the software is meeting the business

requirements, and is developed adhering to the proper specifications and

methodologies.

 Verification ensures the product being developed is according to design

specifications.

 Verification answers the question– "Are we developing this product by firmly

following all design specifications?"

 Verifications concentrates on the design and system specifications.

Target of the test are -

 Errors - These are actual coding mistakes made by developers. In addition,

there is a difference in output of software and desired output, is considered as

an error.

 Fault - When error exists fault occurs. A fault, also known as a bug, is a result

of an error which can cause system to fail.

 Failure - failure is said to be the inability of the system to perform the desired

task. Failure occurs when fault exists in the system.

3.3 Manual Vs Automated Testing

Testing can either be done manually or using an automated testing tool:

 Manual - This testing is performed without taking help of automated testing

tools. The software tester prepares test cases for different sections and levels of

the code, executes the tests and reports the result to the manager.

Manual testing is time and resource consuming. The tester needs to confirm

whether or not right test cases are used. Major portion of testing involves

manual testing.

 Automated This testing is a testing procedure done with aid of automated

testing tools. The limitations with manual testing can be overcome using

automated test tools.

A test needs to check if a webpage can be opened in Internet Explorer. This can be

easily done with manual testing. But to check if the web-server can take the load of 1

million users, it is quite impossible to test manually.

There are software and hardware tools which helps tester in conducting load testing,

stress testing, regression testing.

3.4 Testing Approaches

Tests can be conducted based on two approaches –

 Functionality testing

 Implementation testing

When functionality is being tested without taking the actual implementation in concern

it is known as black-box testing. The other side is known as white-box testing where

not only functionality is tested but the way it is implemented is also analyzed.

Exhaustive tests are the best-desired method for a perfect testing. Every single possible

value in the range of the input and output values is tested. It is not possible to test each

and every value in real world scenario if the range of values is large.

3.4.1 Black-box testing

It is carried out to test functionality of the program. It is also called ‘Behavioural’

testing. The tester in this case, has a set of input values and respective desired results.

On providing input, if the output matches with the desired results, the program is tested

‘ok’, and problematic otherwise.

In this testing method, the design and structure of the code are not known to the tester,

and testing engineers and end users conduct this test on the software.

3.4.2 Black-box testing techniques:

 Equivalence class - The input is divided into similar classes. If one element of

a class passes the test, it is assumed that all the class is passed.

 Boundary values - The input is divided into higher and lower end values. If

these values pass the test, it is assumed that all values in between may pass too.

 Cause-effect graphing - In both previous methods, only one input value at a

time is tested. Cause (input) – Effect (output) is a testing technique where

combinations of input values are tested in a systematic way.

 Pair-wise Testing - The behaviour of software depends on multiple parameters.

In pairwise testing, the multiple parameters are tested pair-wise for their

different values.

 State-based testing - The system changes state on provision of input. These

systems are tested based on their states and input.

3.4.2 White-box testing

It is conducted to test program and its implementation, in order to improve code

efficiency or structure. It is also known as ‘Structural’ testing.

In this testing method, the design and structure of the code are known to the tester.

Programmers of the code conduct this test on the code.

The below are some White-box testing techniques:

 Control-flow testing - The purpose of the control-flow testing to set up test

cases which covers all statements and branch conditions. The branch conditions

are tested for both being true and false, so that all statements can be covered.

 Data-flow testing - This testing technique emphasis to cover all the data

variables included in the program. It tests where the variables were declared and

defined and where they were used or changed.

3.5 Testing Levels

Testing itself may be defined at various levels of SDLC. The testing process runs

parallel to software development. Before jumping on the next stage, a stage is tested,

validated and verified.

Testing separately is done just to make sure that there are no hidden bugs or issues left

in the software. Software is tested on various levels -

3.5.1 Unit Testing

While coding, the programmer performs some tests on that unit of program to know if

it is error free. Testing is performed under white-box testing approach. Unit testing

helps developers decide that individual units of the program are working as per

requirement and are error free.

3.5.2 Integration Testing

Even if the units of software are working fine individually, there is a need to find out

if the units if integrated together would also work without errors. For example,

argument passing and data updating, etc.

3.5.3 System Testing

The software is compiled as product and then it is tested as a whole. This can be

accomplished using one or more of the following tests:

 Functionality testing - Tests all functionalities of the software against the

requirement.

 Performance testing - This test proves how efficient the software is. It tests the

effectiveness and average time taken by the software to do desired task.

Performance testing is done by means of load testing and stress testing where

the software is put under high user and data load under various environment

conditions.

 Security & Portability - These tests are done when the software is meant to

work on various platforms and accessed by number of persons.

3.6 Acceptance Testing

When the software is ready to hand over to the customer it has to go through last phase

of testing where it is tested for user-interaction and response. This is important because

even if the software matches all user requirements and if user does not like the way it

appears or works, it may be rejected.

 Alpha testing - The team of developer themselves perform alpha testing by

using the system as if it is being used in work environment. They try to find out

how user would react to some action in software and how the system should

respond to inputs.

 Beta testing - After the software is tested internally, it is handed over to the

users to use it under their production environment only for testing purpose. This

is not as yet the delivered product. Developers expect that users at this stage

will bring minute problems, which were skipped to attend.

3.7 Regression Testing

Whenever a software product is updated with new code, feature or functionality, it is

tested thoroughly to detect if there is any negative impact of the added code. This is

known as regression testing.

3.8 Testing Documentation

Testing documents are prepared at different stages -

Before Testing

Testing starts with test cases generation. Following documents are needed for reference

–

 SRS document - Functional Requirements document

 Test Policy document - This describes how far testing should take place before

releasing the product.

 Test Strategy document - This mentions detail aspects of test team,

responsibility matrix and rights/responsibility of test manager and test engineer.

 Traceability Matrix document - This is SDLC document, which is related to

requirement gathering process. As new requirements come, they are added to

this matrix. These matrices help testers know the source of requirement. They

can be traced forward and backward.

While Being Tested

The following documents may be required while testing is started and is being done:

 Test Case document - This document contains list of tests required to be

conducted. It includes Unit test plan, Integration test plan, System test plan and

Acceptance test plan.

 Test description - This document is a detailed description of all test cases and

procedures to execute them.

 Test case report - This document contains test case report as a result of the test.

 Test logs - This document contains test logs for every test case report.

After Testing

The following documents may be generated after testing:

 Test summary - This test summary is collective analysis of all test reports and

logs. It summarizes and concludes if the software is ready to be launched. The

software is released under version control system if it is ready to launch.

3.9 Testing vs. Quality Control, Quality Assurance and Audit

We need to understand that software testing is different from software quality

assurance, software quality control and software auditing.

 Software quality assurance - These are software development process

monitoring means, by which it is assured that all the measures are taken as per

the standards of organization. This monitoring is done to make sure that proper

software development methods were followed.

 Software quality control - This is a system to maintain the quality of software

product. It may include functional and non-functional aspects of software

product, which enhance the goodwill of the organization. This system makes

sure that the customer is receiving quality product for their requirement and the

product certified as ‘fit for use’.

 Software audit - This is a review of procedure used by the organization to

develop the software. A team of auditors, independent of development team

examines the software process, procedure, requirements and other aspects of

SDLC. The purpose of software audit is to check that software and its

development process, both conform standards, rules and regulations.

4.0 Self-Assessment Exercise(s)

Answer the following questions:

1. Explain software testing

2. Compare validation and verification

3. State the importance of software testing

4. Differentiate between manual and automated testing

5. Identify the basis of software testing

6. Differentiate between Black-box testing and White-box testing

7. Mention the various level of testing in software development

8. Explain the following terms: software quality assurance, software quality control

and system audit

5.0 Conclusion

Software testing is basically carried out fish out errors and bugs in the software before

it is delivered or deployed. It is aimed producing functional, reliable and maintainable

software. It helps in the production of quality and cost-effective software. Software

testing is concerned with the validation and verification of software.

6.0 Summary

In this unit we discussed the following:

 Software Validation

 Software Verification

 Manual Vs Automated Testing

 Testing Approaches

 Testing Levels

 Acceptance Testing

 Regression Testing

 Testing Documentation

 Testing vs. Quality Control, Quality Assurance and Audit

7.0 Further Reading

Barry Boehm (1996)., "A Spiral Model of Software Development and Enhancement".

In: ACM SIGSOFT Software Engineering Notes (ACM)

Barry W. Boehm (2000). Software cost estimation with Cocomo II: Volume 1.

Charles S. Wasson (2006) System Analysis, Design, and Development Concepts,

Principles, and Practices, Published by John Wiley & Sons, Inc., Hoboken, New

Jersey.

Hans-Petter Halvorsen (2020) Software Development A Practical Approach!

https://halvorsen.blog

Pressman Roger S: “Software Engineering”- A Practitioner’s Approach”, McGraw Hill,

5th edition. 2000.

Richard H. Thayer, Barry W. Boehm (1986). Tutorial: software engineering project

management. Computer Society Press of the IEEE. p.130

Rushby John: Formal Methods and the Certification of Critical Systems. Tech. Rep.

SRI-CSL-93-7, Computer Science Laboratory, SRI International, Menlo Park, CA,

Dec. 1993.

Woodcock Jim, Larsen Peter Gorm, Bicarregui Juan and Fitzgerald John: Formal

Methods: Practice and Experience, ACM Computing Surveys (CSUR), Volume 41

Issue 4, 2009 Article No. 19.

Unit 4: Software Maintenance

Contents

https://en.m.wikipedia.org/wiki/Barry_Boehm
http://doi.acm.org/10.1145/12944.12948
https://halvorsen.blog/

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content

3.1 Types of maintenance

3.2 Cost of Maintenance

3.3 Factors Influencing Software Maintenance Cost

3.3.1 Real-world factors affecting Maintenance Cost

3.3.2 Software-end factors affecting Maintenance Cost

3.5 Maintenance Activities

3.6 Software Re-engineering

3.6.1 Re-Engineering Process

3.6.2 Terminologies in Software Re-Engineering

3.7 Reverse Engineering

3.8 Program Restructuring

3.9 Forward Engineering

3.10 Component reusability

3.11 Reuse Process

Contents

1.0 Introduction

Software maintenance is widely accepted part of SDLC now a days. It stands for all the

modifications and updates done after the delivery of software product.

2.0 Intended Learning Outcomes (ILOs)

After studying this unit, you should be able to

 Mention and discuss different types of software maintenance

 Outline real world factors affecting software maintenance cost

 List software-end factors affecting maintenance cost

 Mention at least 5 factors

3.0 Main Content

Software maintenance is widely accepted part of SDLC now a days. It stands for all

the modifications and updates done after the delivery of software product. There are

number of reasons, why modifications are required, some of them are briefly

mentioned below:

 Market Conditions - Policies, which changes over the time, such as taxation

and newly introduced constraints like, how to maintain bookkeeping, may

trigger need for modification.

 Client Requirements - Over the time, customer may ask for new features or

functions in the software.

 Host Modifications - If any of the hardware and/or platform (such as operating

system) of the target host changes, software changes are needed to keep

adaptability.

 Organization Changes - If there is any business level change at client end, such

as reduction of organization strength, acquiring another company, organization

venturing into new business, need to modify in the original software may arise.

3.1 Types of maintenance

In a software lifetime, type of maintenance may vary based on its nature. It may be just

a routine maintenance tasks as some bug discovered by some user or it may be a large

event in itself based on maintenance size or nature. Following are some types of

maintenance based on their characteristics:

 Corrective Maintenance - This includes modifications and updates done in

order to correct or fix problems, which are either discovered by user or

concluded by user error reports.

 Adaptive Maintenance - This includes modifications and updates applied to

keep the software product up-to date and tuned to the ever-changing world of

technology and business environment.

 Perfective Maintenance - This includes modifications and updates done in

order to keep the software usable over long period of time. It includes new

features, new user requirements for refining the software and improve its

reliability and performance.

 Preventive Maintenance - This includes modifications and updations to

prevent future problems of the software. It aims to attend problems, which are

not significant at this moment but may cause serious issues in future.

3.2 Cost of Maintenance

Reports suggest that the cost of maintenance is high. A study on estimating software

maintenance found that the cost of maintenance is as high as 67% of the cost of entire

software process cycle.

On an average, the cost of software maintenance is more than 50% of all SDLC phases.

3.3 Factors Influencing Software Maintenance Cost

 There are various factors, which trigger maintenance cost go high, such as:

3.3.1 Real-world factors affecting Maintenance Cost

 The standard age of any software is considered up to 10 to 15 years.

 Older software, which were meant to work on slow machines with less memory

and storage capacity cannot keep themselves challenging against newly coming

enhanced software on modern hardware.

 As technology advances, it becomes costly to maintain old software.

 Most maintenance engineers are newbie and use trial and error method to rectify

problem.

 Often, changes made can easily hurt the original structure of the software,

making it hard for any subsequent changes.

 Changes are often left undocumented which may cause more conflicts in future.

3.4 Software-end factors affecting Maintenance Cost

 Structure of Software Program

 Programming Language

 Dependence on external environment

 Staff reliability and availability

3.5 Maintenance Activities

IEEE provides a framework for sequential maintenance process activities. It can be

used in iterative manner and can be extended so that customized items and processes

can be included.

These activities go hand-in-hand with each of the following phase:

 Identification & Tracing - It involves activities pertaining to identification of

requirement of modification or maintenance. It is generated by user or system

may itself report via logs or error messages.Here, the maintenance type is

classified also.

 Analysis - The modification is analyzed for its impact on the system including

safety and security implications. If probable impact is severe, alternative

solution is looked for. A set of required modifications is then materialized into

requirement specifications. The cost of modification/maintenance is analyzed

and estimation is concluded.

 Design - New modules, which need to be replaced or modified, are designed

against requirement specifications set in the previous stage. Test cases are

created for validation and verification.

 Implementation - The new modules are coded with the help of structured

design created in the design step.Every programmer is expected to do unit

testing in parallel.

 System Testing - Integration testing is done among newly created modules.

Integration testing is also carried out between new modules and the system.

Finally the system is tested as a whole, following regressive testing procedures.

 Acceptance Testing - After testing the system internally, it is tested for

acceptance with the help of users. If at this state, user complaints some issues

they are addressed or noted to address in next iteration.

 Delivery - After acceptance test, the system is deployed all over the organization

either by small update package or fresh installation of the system. The final

testing takes place at client end after the software is delivered.

Training facility is provided if required, in addition to the hard copy of user

manual.

 Maintenance management - Configuration management is an essential part of

system maintenance. It is aided with version control tools to control versions,

semi-version or patch management.

3.6 Software Re-engineering

When we need to update the software to keep it to the current market, without

impacting its functionality, it is called software re-engineering. It is a thorough process

where the design of software is changed and programs are re-written.

Legacy software cannot keep tuning with the latest technology available in the market.

As the hardware become obsolete, updating of software becomes a headache. Even if

software grows old with time, its functionality does not.

For example, initially Unix was developed in assembly language. When language C

came into existence, Unix was re-engineered in C, because working in assembly

language was difficult.

Other than this, sometimes programmers notice that few parts of software need more

maintenance than others and they also need re-engineering.

3.6.1 Re-Engineering Process

 Decide what to re-engineer. Is it whole software or a part of it?

 Perform Reverse Engineering, in order to obtain specifications of existing

software.

 Restructure Program if required. For example, changing function-oriented

programs into object-oriented programs.

 Re-structure data as required.

 Apply Forward engineering concepts in order to get re-engineered software.

3.6.2 Terminologies in Software Re-Engineering

There are few important terms used in Software re-engineering

3.7 Reverse Engineering

It is a process to achieve system specification by thoroughly analyzing, understanding

the existing system. This process can be seen as reverse SDLC model, i.e. we try to get

higher abstraction level by analyzing lower abstraction levels.

An existing system is previously implemented design, about which we know nothing.

Designers then do reverse engineering by looking at the code and try to get the design.

With design in hand, they try to conclude the specifications. Thus, going in reverse

from code to system specification.

3.8 Program Restructuring

It is a process to re-structure and re-construct the existing software. It is all about re-

arranging the source code, either in same programming language or from one

programming language to a different one. Restructuring can have either source code-

restructuring and data-restructuring or both.

Re-structuring does not impact the functionality of the software but enhance reliability

and maintainability. Program components, which cause errors very frequently can be

changed, or updated with re-structuring.

The dependability of software on obsolete hardware platform can be removed via re-

structuring.

3.9 Forward Engineering

Forward engineering is a process of obtaining desired software from the specifications

in hand which were brought down by means of reverse engineering. It assumes that

there was some software engineering already done in the past.

Forward engineering is same as software engineering process with only one difference

– it is carried out always after reverse engineering.

3.10 Component reusability

A component is a part of software program code, which executes an independent task

in the system. It can be a small module or sub-system itself.

Example

The login procedures used on the web can be considered as components, printing

system in software can be seen as a component of the software.

Components have high cohesion of functionality and lower rate of coupling, i.e. they

work independently and can perform tasks without depending on other modules.

In OOP, the objects are designed are very specific to their concern and have fewer

chances to be used in some other software.

In modular programming, the modules are coded to perform specific tasks which can

be used across number of other software programs.

There is a whole new vertical, which is based on re-use of software component, and is

known as Component Based Software Engineering (CBSE).

Re-use can be done at various levels

 Application level - Where an entire application is used as sub-system of new

software.

 Component level - Where sub-system of an application is used.

 Modules level - Where functional modules are re-used.

Software components provide interfaces, which can be used to establish

communication among different components.

3.11 Reuse Process

Two kinds of method can be adopted: either by keeping requirements same and

adjusting components or by keeping components same and modifying requirements.

 Requirement Specification - The functional and non-functional requirements

are specified, which a software product must comply to, with the help of

existing system, user input or both.

 Design - This is also a standard SDLC process step, where requirements are

defined in terms of software parlance. Basic architecture of system as a whole

and its sub-systems are created.

 Specify Components - By studying the software design, the designers segregate

the entire system into smaller components or sub-systems. One complete

software design turns into a collection of a huge set of components working

together.

 Search Suitable Components - The software component repository is referred

by designers to search for the matching component, on the basis of functionality

and intended software requirements.

 Incorporate Components - All matched components are packed together to

shape them as complete software.

4.0 Self-Assessment Exercise(s)

Answer the following questions:

1. Mention and discuss different types of software maintenance

2. State the factors affecting software maintenance cost

3. Explain the software-end factors affecting maintenance cost

4. Explain software reuse at three levels of system development

5. Describe the following terms: Forward engineering, reverse engineering

and program restructuring.

5.0 Conclusion

Software maintenance allows for continuous modification of deployed software in order

to meet changing requirements. This elongates the life span of the software. There are

basically four types of maintenance: Corrective Maintenance, Adaptive Maintenance,

Perfective Maintenance and Preventive Maintenance

6.0 Summary

In this unit we discussed the following:

 Types of maintenance

 Cost of Maintenance

 Factors Influencing Software Maintenance Cost

 Maintenance Activities

 Software Re-engineering

 Reverse Engineering

 Program Restructuring

 Forward Engineering

 Component reusability

 Reuse Process

7.0 Further

Barry Boehm (1996)., "A Spiral Model of Software Development and Enhancement".

In: ACM SIGSOFT Software Engineering Notes (ACM)

Barry W. Boehm (2000). Software cost estimation with Cocomo II: Volume 1.

Charles S. Wasson (2006) System Analysis, Design, and Development Concepts,

Principles, and Practices, Published by John Wiley & Sons, Inc., Hoboken, New

Jersey.

Hans-Petter Halvorsen (2020) Software Development A Practical Approach!

https://halvorsen.blog

Pressman Roger S: “Software Engineering”- A Practitioner’s Approach”, McGraw Hill,

5th edition. 2000.

Richard H. Thayer, Barry W. Boehm (1986). Tutorial: software engineering project

management. Computer Society Press of the IEEE. p.130

Rushby John: Formal Methods and the Certification of Critical Systems. Tech. Rep.

SRI-CSL-93-7, Computer Science Laboratory, SRI International, Menlo Park, CA,

Dec. 1993.

Woodcock Jim, Larsen Peter Gorm, Bicarregui Juan and Fitzgerald John: Formal

Methods: Practice and Experience, ACM Computing Surveys (CSUR), Volume 41

Issue 4, 2009 Article No. 19.

https://en.m.wikipedia.org/wiki/Barry_Boehm
http://doi.acm.org/10.1145/12944.12948
https://halvorsen.blog/

Unit 5: Software CASE Tools

Contents

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content

3.1 CASE Tools

3.1.1 Components of CASE Tools

3.2 Scope of Case Tools

3.2.1 Case Tools Types

Contents

1.0 Introduction

CASE stands for Computer Aided Software Engineering. It means, development and

maintenance of software projects with help of various automated software tools.

2.0 Intended Learning Outcomes (ILOs)

After studying this unit, you should be able to

 Briefly describe CASE tool

 Mention and discuss different types of CASE tools

 Outline the concern of configuration management

3.0 Main Content

CASE stands for Computer Aided Software Engineering. It means, development and

maintenance of software projects with help of various automated software tools.

3.1 CASE Tools

CASE tools are set of software application programs, which are used to automate

SDLC activities. CASE tools are used by software project managers, analysts and

engineers to develop software system.

There are number of CASE tools available to simplify various stages of Software

Development Life Cycle such as Analysis tools, Design tools, Project management

tools, Database Management tools, Documentation tools are to name a few.

Use of CASE tools accelerates the development of project to produce desired result

and helps to uncover flaws before moving ahead with next stage in software

development.

3.1.1 Components of CASE Tools

CASE tools can be broadly divided into the following parts based on their use at a

particular SDLC stage:

 Central Repository - CASE tools require a central repository, which can serve

as a source of common, integrated and consistent information. Central

repository is a central place of storage where product specifications,

requirement documents, related reports and diagrams, other useful information

regarding management is stored. Central repository also serves as data

dictionary.

 Upper Case Tools - Upper CASE tools are used in planning, analysis and

design stages of SDLC.

 Lower Case Tools - Lower CASE tools are used in implementation, testing and

maintenance.

 Integrated Case Tools - Integrated CASE tools are helpful in all the stages of

SDLC, from Requirement gathering to Testing and documentation.

CASE tools can be grouped together if they have similar functionality, process

activities and capability of getting integrated with other tools.

3.2 Scope of Case Tools

The scope of CASE tools goes throughout the SDLC.

3.2.1 Case Tools Types

Now we briefly go through various CASE tools

Diagram tools: These tools are used to represent system components, data and control

flow among various software components and system structure in a graphical form. For

example, Flow Chart Maker tool for creating state-of-the-art flowcharts.

Process Modeling Tools: Process modeling is method to create software process

model, which is used to develop the software. Process modeling tools help the managers

to choose a process model or modify it as per the requirement of software product. For

example, EPF Composer

Project Management Tools: These tools are used for project planning, cost and effort

estimation, project scheduling and resource planning. Managers have to strictly comply

project execution with every mentioned step in software project management. Project

management tools help in storing and sharing project information in real-time

throughout the organization. For example, Creative Pro Office, Trac Project, Basecamp.

Documentation Tools: Documentation in a software project starts prior to the software

process, goes throughout all phases of SDLC and after the completion of the project.

Documentation tools generate documents for technical users and end users. Technical

users are mostly in-house professionals of the development team who refer to system

manual, reference manual, training manual, installation manuals etc. The end user

documents describe the functioning and how-to of the system such as user manual. For

example, Doxygen, DrExplain, Adobe RoboHelp for documentation.

Analysis Tools: These tools help to gather requirements, automatically check for any

inconsistency, inaccuracy in the diagrams, data redundancies or erroneous omissions.

For example, Accept 360, Accompa, CaseComplete for requirement analysis, Visible

Analyst for total analysis.

Design Tools: These tools help software designers to design the block structure of the

software, which may further be broken down in smaller modules using refinement

techniques. These tools provides detailing of each module and interconnections among

modules. For example, Animated Software Design

Configuration Management Tools: An instance of software is released under one

version. Configuration Management tools deal with:

 Version and revision management

 Baseline configuration management

 Change control management

CASE tools help in this by automatic tracking, version management and release

management. For example, Fossil, Git, Accu REV.

Change Control Tools: These tools are considered as a part of configuration

management tools. They deal with changes made to the software after its baseline is

fixed or when the software is first released. CASE tools automate change tracking, file

management, code management and more. It also helps in enforcing change policy of

the organization.

Programming Tools: These tools consist of programming environments like IDE

(Integrated Development Environment), in-built modules library and simulation tools.

These tools provide comprehensive aid in building software product and include

features for simulation and testing. For example, Cscope to search code in C, Eclipse.

Prototyping Tools: Software prototype is simulated version of the intended software

product. Prototype provides initial look and feel of the product and simulates few aspect

of actual product.

Prototyping CASE tools essentially come with graphical libraries. They can create

hardware independent user interfaces and design. These tools help us to build rapid

prototypes based on existing information. In addition, they provide simulation of

software prototype. For example, Serena prototype composer, Mockup Builder.

Web Development Tools: These tools assist in designing web pages with all allied

elements like forms, text, script, graphic and so on. Web tools also provide live preview

of what is being developed and how will it look after completion. For example, Fontello,

Adobe Edge Inspect, Foundation 3, Brackets.

Quality Assurance Tools: Quality assurance in a software organization is monitoring

the engineering process and methods adopted to develop the software product in order

to ensure conformance of quality as per organization standards. QA tools consist of

configuration and change control tools and software testing tools. For example,

SoapTest, AppsWatch, JMeter.

Maintenance Tools: Software maintenance includes modifications in the software

product after it is delivered. Automatic logging and error reporting techniques,

automatic error ticket generation and root cause Analysis are few CASE tools, which

help software organization in maintenance phase of SDLC. For example, Bugzilla for

defect tracking, HP Quality Center.

4.0 Self-Assessment Exercise(s)

Answer the following questions:

1. State the importance of CASE tool

2. Mention and discuss different types of CASE tools

3. Explain the concern of configuration management

4. Outline the task of configuration management tools

5. Provide examples of each of the following software development tools: (i)

Maintenance (ii) Quality Assurance (iii) Prototyping (iv) Quality assurance

5.0 Conclusion

CASE is an acronym for Computer Aided Software Engineering. It the application of

automated software tools in the crafting software product. They come in different

flavour depending on the task at hand: Analysis tools, Design tools, Project

management tools, Database Management tools, Documentation tools

6.0 Summary

In this unit we discussed the following:

 CASE Tools

 Components of CASE Tools

 Scope of Case Tools

 Case Tools Types

7.0 Further Reading

Barry Boehm (1996)., "A Spiral Model of Software Development and Enhancement".

In: ACM SIGSOFT Software Engineering Notes (ACM)

Barry W. Boehm (2000). Software cost estimation with Cocomo II: Volume 1.

Charles S. Wasson (2006) System Analysis, Design, and Development Concepts,

Principles, and Practices, Published by John Wiley & Sons, Inc., Hoboken, New

Jersey.

Hans-Petter Halvorsen (2020) Software Development A Practical Approach!

https://halvorsen.blog

Pressman Roger S: “Software Engineering”- A Practitioner’s Approach”, McGraw Hill,

5th edition. 2000.

Richard H. Thayer, Barry W. Boehm (1986). Tutorial: software engineering project

management. Computer Society Press of the IEEE. p.130

Rushby John: Formal Methods and the Certification of Critical Systems. Tech. Rep.

SRI-CSL-93-7, Computer Science Laboratory, SRI International, Menlo Park, CA,

Dec. 1993.

Woodcock Jim, Larsen Peter Gorm, Bicarregui Juan and Fitzgerald John: Formal

Methods: Practice and Experience, ACM Computing Surveys (CSUR), Volume 41

Issue 4, 2009 Article No. 19.

https://en.m.wikipedia.org/wiki/Barry_Boehm
http://doi.acm.org/10.1145/12944.12948
https://halvorsen.blog/

