
NATIONAL OPEN UNIVERSITY OF
NIGERIA

SCHOOL OF SCIENCE AND
TECHNOLOGY

COURSE CODE: CIT 341

COURSE TITLE: DATA STRUCTURES

CIT 341 DATA STRUCTURES

CIT 341
DATA STRUCTURES

Course Developer/Writer Vivian Nwaocha
National Open University of Nigeria

Programme Leader Dr. S. Reju
National Open University of Nigeria

Course Coordinator Vivian Nwaocha
National Open University of Nigeria

NATIONAL OPEN UNIVERSITY OF NIGERIA

ii

COURSE
GUIDE

CIT 341 DATA STRUCTURES

National Open University of Nigeria
Headquarters
14/16 Ahmadu Bello Way
Victoria Island
Lagos

Abuja Office
No. 5 Dar es Salaam Street
Off Aminu Kano Crescent
Wuse II, Abuja
Nigeria

e-mail: centralinfo@nou.edu.ng
URL: www.nou.edu.ng

Published by
National Open University of Nigeria

Printed 2009

ISBN: 978-058-031-X

All Rights Reserved

iii

http://www.nou.edu.ng/
mailto:centralinfo@nou.edu.ng

CIT 341 DATA STRUCTURES

CONTENTS PAGE

Introduction……………………………………………………… 1
What this Course Will Help You Do………………….………… 1
Course Aims……………………………………..………………. 1
Course Objectives…………………………..……………………. 1
Working through this Course…………………….……………… 2
Course Materials………………………………………..……….. 2
Online Materials………………………………………………… 2
Equipment………………………………………………….……. 2
Study Units ……………………………………………………… 3
Assessment………………………………………………….…… 5
Course Overview………………………………………………... 5
How to Get the Most from this Course……………………..……. 5
Facilitators/Tutors and Tutorials………………………………… 6
Summary………………………………………………….……… 7
Introduction

The course, Data Structures, is a foundational course for students
studying towards acquiring the Bachelor of Science in Communication
Technology degree. In this course, we will study programming
techniques including data structures and basic algorithms for
manipulating them.

The overall aims of this course are to introduce you to programming
concepts as and algorithm techniques. Topics related to data structures
and storage management are equally discussed.

The bottom-up approach is adopted in structuring this course. We start
with the basic building blocks of object-oriented programming concepts
and move on to the fundamental principles of data structures and
algorithms.

What this Course Will Help You Do

The overall aims and objectives of this course provide guidance on what
you should be achieving in the course of your studies. Each unit also has
its own unit objectives which state specifically what you should be
achieving in the corresponding unit. To evaluate your progress
continuously, you are expected to refer to the overall course aims and
objectives as well as the corresponding unit objectives upon the
completion of each.

Course Aims

The overall aims and objectives of this course include:

iv

CIT 341 DATA STRUCTURES

•Develop your knowledge and understanding of the underlying
principles of foundational data structures.
•Build up your capacity to evaluate different algorithm
techniques.
•Develop your competence in analysing data structures.
•Build up your capacity to write programmes for developing
simple applications.

Course Objectives

Upon completion of the course, you should be able to:

•Describe the basic operations on stacks, lists and queue data
structures.
•Explain the notions of trees, hashing and binary search trees.
•Identify the basic concepts of object-oriented programming.
•Develop java programmes for simple applications.
•Discuss the underlying principles of basic data types: lists, stacks
and queues.
•Describe structures and algorithms for external storage: external
sorting, external search trees.
•Identify directed and undirected graphs.
•Discuss sorting: internal and external sort.
•Describe the efficiency of algorithms, recursion and recursive
programmes.
•Discuss the algorithm design techniques: greedy algorithms, divide-
and-conquer algorithms, dynamic programming.

Working through this Course

We designed this course in a systematic way, so you need to work
through it from Module one, Unit 1 through to Module 6, Unit 6. This
will enable you appreciate the course better.

Course Materials

Basically, we made use of textbooks and online materials. You are
expected to search for more literature and web references for further
understanding. Each unit has references and web references that were
used to develop them.

Online Materials

Feel free to refer to the websites provided for all the online reference

v

CIT 341 DATA STRUCTURES

materials required in this course. The website is designed to integrate
with the print-based course materials. The structure follows the structure
of the units and all the reading and activity numbers are the same in both
media.

Equipment

In order to get the most from this course, it is essential that you make
use of a computer system which has internet access.

Recommended System Specifications:

Processor

2.0 GHZ Intel compatible processor
1GB RAM
80 GB hard drive with 5 GB free disk
CD-RW drive
3.5” Floppy Disk Drive
TCP/IP (installed)

Operating System

Windows XP Professional (Service Pack)
Microsoft Office 2007
Java Programming Language
Norton Antivirus

Monitor*

19-inch
1024 X 768 resolution
16-bit high color
*Non Standard resolutions (for example, some laptops) are not
supported.

Hardware

Open Serial Port (for scanner)
120W Speakers
Mouse + pad
Windows keyboard

Laser Printer

vi

CIT 341 DATA STRUCTURES

Hardware is constantly changing and improving, causing older
technology to become obsolete. An investment in newer, more efficient
technology will more than pay for itself in improved performance
results.

If your system does not meet the recommended specifications, you may
experience considerably slower processing when working in the
application. Systems that exceed the recommended specifications will
provide better handling of database files and faster processing time,
thereby significantly increasing your productivity.

Study Units

There are 6 modules in this course. Each module comprises 5 units
which you are expected to complete in 3 hours. The 6 modules and their
units are listed below.

Module 1 Foundational Data Structures

Unit 1 Fundamentals
Unit 2 Arrays
Unit 3 The List Data Structure
Unit 4 The Stack Data Structure
Unit 5 The Queue Data Structure

Module 2 Hashing and Trees

Unit 1 Hashing
Unit 2 Trees
Unit 3 Search Trees
Unit 4 Garbage Collection
Unit 5 Memory Allocation

Module 3 Introduction to Java Programming

Unit 1 Object-Oriented Programming Concepts
Unit 2 Variables
Unit 3 Operators
Unit 4 Expressions, Statements and Blocks
Unit 5 Control Flow Statements

Module 4 Java Programming

Unit 1 Classes
Unit 2 Objects

vii

CIT 341 DATA STRUCTURES

Unit 3 Interfaces and Inheritances
Unit 4 Numbers and Strings
Unit 5 Generics

Module 5 Algorithms

Unit 1 Introduction to Algorithms
Unit 2 Vectors and Matrices
Unit 3 Greedy Algorithm
Unit 4 Divide-and-Conquer Algorithm
Unit 5 Dynamic Programming Algorithm

Module 6 Graphs and Sorting

Unit 1 Graph Algorithm
Unit 2 Sorting
Unit 3 Bubble Sort
Unit 4 Insertion Sort
Unit 5 Selection Sort
Unit 6 Merge Sorting
From the preceding, the content of the course can be divided into two
major blocks:

•Foundational Data Structures
•Introduction to Java Programming

Modules one and two describe the foundational data structures and their
underlying principles. Modules three and four define the basic concepts
of an object-oriented programming language (Java). It uses java as a
programming language to implement a variety of data structures, while
modules five and six discuss the analysis of algorithms and algorithm
techniques.

Assessment

The course, Data Structures entails attending a three-hour final
examination which contributes 50% to your final grading. The final
examination covers materials from all parts of the course with a style
similar to the Tutor-marked assignments.

The examination aims at testing your ability to apply the knowledge you
have gain throughout the course, rather than your ability to memorise
the materials. In preparing for the examination, it is essential that you
receive the activities and Tutor-marked assignments you have completed
in each unit. The other 50% will account for all the TMAs at the end of
each unit.

viii

CIT 341 DATA STRUCTURES

Course Overview

This section proposes the number of weeks that you are expected to
spend on the three modules comprising 30 units and the assignments
that follow each of the units.

We recommend that each unit with its associated TMA is completed in
one week, bringing your study period to a maximum of 30 weeks.

How to Get the Most from this Course

In order for you to learn various concepts in this course, it is essential to
practice. Independent activities and case activities which are based on a
particular scenario are presented in the units. The activities include open
questions to promote discussion on the relevant topics, questions with
standard answers and programme demonstrations on the concepts. You
may try to delve into each unit adopting the following steps:

•Read the study unit
•Read the textbook, printed or online references
•Perform the activities
•Participate in group discussions
•Complete the tutor-marked assignments
•Participate in online discussions.

This course makes intensive use of materials on the world-wide web.
Specific web address will be given for your reference. There are also
optional readings in the units. You may wish to read these to extend
your knowledge beyond the required materials. They will not be
assessed.

Facilitators/Tutors and Tutorials

About 20 hours of tutorials will be provided in support of this course.
You will be notified of the dates, time and location for these tutorials,
together with the name and phone number of your tutor as soon as you
are allotted a tutorial group.

Your tutor will mark and comment on your assignments, keep a close
watch on your progress and on any difficulties you might encounter and
provide assistance to you during the course. You must mail your TMAs
to your tutor well before the due date (at least two working days are
required). They will be marked by your tutor and returned to you as
soon as possible.

ix

CIT 341 DATA STRUCTURES

Do not hesitate to contact your tutor by phone or e-mail, if you need
help. The following might be circumstances in which you would find
help necessary. You can also contact your tutor if:

i. You do not understand any part of the study units or the assigned
readings.

ii. You have difficulty with the TMAs.
iii. You have a question or problem with your tutor’s comments on

an assignment or with the grading of an assignment.

You should try your best to attend tutorials, since it is the only
opportunity to have an interaction with your tutor and to ask questions
which are answered instantly. You can raise any problem encountered in
the course of your study. To gain maximum benefit from the course
tutorials, you are advised to prepare a list of questions before attending
the tutorial. You will learn a lot from participating in discussions
actively.

Summary

The course, Data Structures, is intended to develop your understanding
of the basic concepts of object-oriented programming, thus enabling you
acquire skills in programming using java. This course also provides you
with practical knowledge and hands-on experience in designing and
implementing foundational data structures.

We hope that you will find the course enlightening and that you will
find it both interesting and useful. In the longer term, we hope you
will get acquainted with the National Open University of Nigeria
and we wish you every success in your future.

x

CIT 341 DATA STRUCTURES

Course Code CIT 341

Course Title Data Structures

Course Developer/Writer Vivian Nwaocha
National Open University of Nigeria

Programme Leader Dr. S. Reju
National Open University of Nigeria

Course Coordinator Vivian Nwaocha
National Open University of Nigeria

NATIONAL OPEN UNIVERSITY OF NIGERIA

xi

CIT 341 DATA STRUCTURES

National Open University of Nigeria
Headquarters
14/16 Ahmadu Bello Way
Victoria Island
Lagos

Abuja Office
No. 5 Dar es Salaam Street
Off Aminu Kano Crescent
Wuse II, Abuja
Nigeria

e-mail: centralinfo@nou.edu.ng
URL: www.nou.edu.ng

Published by
National Open University of Nigeria

Printed 2009

ISBN: 978-058-031-X

All Rights Reserved

xii

http://www.nou.edu.ng/
mailto:centralinfo@nou.edu.ng

CIT 341 DATA STRUCTURES

CONTENTS PAGE

Module 1 Foundational Data Structures………………… 1

Unit 1 Fundamentals………………………….…………. 1
Unit 2 Arrays………………………………….…………. 6
Unit 3 The List Data Structure………………..………….. 11
Unit 4 The Stack Data Structure………………..………… 17
Unit 5 The Queue Data Structure………………..……….. 23

Module 2 Foundational Data Structures…………………... 30

Unit 1 Hashing………………………………………….... 30
Unit 2 Trees………………………….………….……….. 41
Unit 3 Search Trees………………………….………….. 52
Unit 4 Garbage Collection………………………...……… 66
Unit 5 Memory Allocation……………………..………… 76

Module 3 Introduction to Java Programming…………..… 81

Unit 1 Object-Oriented Programming Concepts………… 81
Unit 2 Variables…………………………………………. 91
Unit 3 Operators…………………………………………. 95
Unit 4 Expressions, Statements and Blocks………….…… 103
Unit 5 Control Flow Statements…………………………. 108

Module 4 Introduction to Java Programming……………. 118

Unit 1 Classes……………………………………….……. 118
Unit 2 Objects ……………………………………….…… 125
Unit 3 Interfaces and Inheritances……………………….. 136
Unit 4 Numbers and Strings……………………….……… 146
Unit 5 Generics………………………………….………… 154

Module 5 Algorithms…………………………….………….. 163

Unit 1 Introduction to Algorithms…………….……….….. 163
Unit 2 Vectors and Matrices………………..…………….. 168
Unit 3 Greedy Algorithms………………………..………. 173
Unit 4 Divide-and-Conquer Algorithm………………..…. 176
Unit 5 Dynamic Programming Algorithm……………..…. 179

Module 6 Algorithms………………………….…………….. 183

Unit 1 Graph Algorithm……………………………..…….. 183
Unit 2 Sorting…………………………………………..….. 187
Unit 3 Bubble Sort……………………………………….... 191
Unit 4 Insertion Sort……………………….……………… 194
Unit 5 Selection Sort…………………………….……….. 198
Unit 6 Merge Sorting……………………………………... 203

xiii

CIT 341 DATA STRUCTURES

MODULE 1 FOUNDATIONAL DATA STRUCTURES

Unit 1 Fundamentals
Unit 2 Arrays
Unit 3 The List Data Structure
Unit 4 The Stack Data Structure
Unit 5 The Queue Data Structure

UNIT 1 FUNDAMENTALS

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Data Type
3.2 Data Type Classification

3.2.1 Examples of Data Type
3.3 Abstract Data Type

3.3.1 Examples of Abstract Data Type
3.4 What is a Data Structure?
3.5 Classification of Data Structures

3.5.1 Linear Data Structure
 3.5.2 Non-Linear Data Structure
3.6 Data Structures and Programmes

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit introduces some basic concepts that the student needs to be
familiar with before attempting to develop any software. It describes
data type and data structures, explaining the operations that may be
performed on them. The unit introduces you to the fundamental notions
of data structures, thus guiding you through and facilitating your
understanding of the subsequent units.

1

CIT 341 DATA STRUCTURES

2.0 OBJECTIVES

By the end of this unit, you should be able to:

•describe and use the following notions; data type, abstract data type
and data structure
•outline the classification of data type
•give typical examples of data type
•explain the relevance of data structures in programming.

3.0 MAIN CONTENT

3.1 Data Type

In computer programming, a data type simply refers to a defined kind
of data, that is, a set of possible values and basic operations on those
values.

When applied in programming languages, a data type defines a set of
values and the allowable operations on those values.
Data types are important in computer programmes because they classify
data so that a translator (compiler or interpreter) can reserve appropriate
memory storage to hold all possible values, e.g. integers, real numbers,
characters, strings, and Boolean values, all have very different
representations in memory.

A data type consists of:

• a domain (= a set of values)
• a set of operations that may be applied to the values.

3.2 Data Type Classification

Some data items may be used singly whilst others may be combined
together and arranged to form other data items. The former are classified
as ‘simple data types’ whereas the latter are classified as ‘data
structures’. However, the following classification is appropriate for
study at this level .The simple data types are classified as follows:

a. Character
b. Numeric integer
c. Numeric real
d. Boolean (logical).

2

CIT 341 DATA STRUCTURES

3.2.1 Examples of Data Types

Almost all programming languages explicitly include the notion of data
type, though different languages may use different terminology.
Common data types in programming languages include those that
represent integers, floating point numbers, and characters, and a
language may support many more.

Example 1: Boolean or logical data type provided by most
programming languages.

• Two values: true, false.
• Many operations, including: AND, OR, NOT, etc.

Example 2: In Java programming language, the “int” type represents
the set of 32-bit integers ranging in value from -2,147, 483, 648 to
2,147, 483, 647 and the operation such as addition, subtraction and
multiplication that can be performed on integers.

3.3 Abstract Data Type

An Abstract Data Type commonly referred to as ADT, is a collection of
data objects characterized by how the objects are accessed; it is an
abstract human concept meaningful outside of computer science. (Note
that "object", here, is a general abstract concept as well, i.e. it can be an
"element" (like an integer), a data structure (e.g. a list of lists), or an
instance of a class. (e.g. a list of circles). A data type is abstract in the
sense that it is independent of various concrete implementations.

Object-oriented languages such as C++ and Java provide explicit
support for expressing abstract data types by means of classes. A first
class abstract data type supports the creation of multiple instances of
ADT and the interface normally provides a constructor, which returns an
abstract handle to new data, and several operations, which are functions
accepting the abstract handle as an argument.

3.3.1 Examples of Abstract Data Type

Common abstract data types (ADT) typically implemented in
programming languages (or their libraries) include: Arrays, Lists,
Queues, Stacks and Trees.

3.4 What is a Data Structure?

A data structure is the implementation of an abstract data type in a
particular programming language. Data structures can also be referred

3

CIT 341 DATA STRUCTURES

to as “data aggregate”. A carefully chosen data structure will allow the
most efficient algorithm to be used. Thus, a well-designed data structure
allows a variety of critical operations to be performed using a few
resources, both execution time and memory spaces as possible.

3.5 Classification of Data Structures

Data structures are broadly divided into two:

•Linear Data Structures
•Non-Linear Data Structures.

3.5.1 Linear Data Structures

Linear data structures are data structures in which individual data
elements are stored and accessed linearly in the computer memory. For
the purpose of this course, the following linear data structures would be
studied: lists, stacks, queues and arrays in order to determine how
information is processed during implementation.

3.5.2 Non-Linear Data Structures

A non-linear data structure, as the name implies, is a data structure in
which the data items are not stored linearly in the computer memory, but
data items can be processed using some techniques or rules. Typical
non-linear data structures to be studied in this course are Trees.

3.6 Data Structures and Programmes

The structure of data in the computer is very important in software
programmes, especially where the set of data is very large. When data is
properly structured and stored in the computer, the accessibility of data
is easier and the software programme routines that make do with the
data are made simpler; time and storage spaces are also reduced.

In the design of many types of programmes, the choice of data structures
is a primary design consideration, as experience in building large
systems has shown that the difficulty of implementation and the quality
and performance of the final result depends heavily on choosing the best
data structure.

SELF ASSESSMENT EXERCISE 1

Define exhaustively the term ‘Abstract Data Type’.

SELF ASSESSMENT EXERCISE 2

What are the constituents of a Data Type? Give 2 typical examples of
data types.

4

CIT 341 DATA STRUCTURES

4.0 CONCLUSION

In this unit, you have learned about the classification of abstract data
type, commonly referred to as ADT. You have also been able to
understand the meaning of some notions such as; data type, abstract data
type and data structures. Finally, you have been able to appreciate the
significance of data structures in developing high-quality programmes.

5.0 SUMMARY

What you have learned borders on the basic notions of data structures.
The subsequent units shall build upon these fundamentals.

6.0 TUTOR-MARKED ASSIGNMENT

You have just been nominated as a Programmer of a Software firm
responsible for developing software for tertiary institutions. How would
your knowledge of this course facilitate your task?

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to
Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),
199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme, (2nd
Edition). New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the
STL, (2nd Edition), New Jersey: Prentice Hall,

Shaffer, Clifford A. (1998). A Practical Introduction to Data Structures
and Algorithm Analysis, Prentice Hall, pp. 77–102.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

5

http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.indiana.edu/~ucspubs/b131/
http://www.gnu.org/manual/emacs-20.3/emacs.html

CIT 341 DATA STRUCTURES

UNIT 2 ARRAYS

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Arrays
3.2 Arrays and Programming
3.3 Declaration of Arrays
3.4 Multi-Dimensional Arrays
3.5 Classification of Arrays
3.6 Application of Arrays

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

In this unit, you will learn about arrays, their declaration, dimensionality
and applications. You will also learn how to distinguish between static
and dynamic arrays.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

•describe an array, its dimensionality and declaration
•explain the terms; element and array name
•express a two-dimensional array linearly
•distinguish between static and dynamic arrays
•explain the importance of arrays in computer applications.

3.0 MAIN CONTENT

3.1 Arrays

In Computer Science, an array is a data structure consisting of a group
of elements that are accessed by indexing. Each data item of an array is
known as an element, and the elements are referenced by a common
name known as the array name.

3.2 Arrays and Programming

6

CIT 341 DATA STRUCTURES

In Java, as in most programmeming languages, an array is a structure
that holds multiple values of the same type. A Java array is also called
an object. An array can contain data of the primitive data types. As it is
an object, an array must be declared and instantiated. For example:

int[] anArray;
anArray = new int[10];

An array can also be created using a shortcut. For example:
int[] anArray = {1,2,3,4,5,6,7,8,9,10}

An array element can be accessed using an index value. For example:
int i = anArray[5]

The size of an array can be found using the length attribute. For
example:
int len = anArray.length

Before any array is used in the computer, some memory locations have
to be created for storage of the elements. This is often done by using the
DIM instruction of BASIC programming language or DIMENSION
instruction of FORTRAN programming language. For example, the
instruction:

DIM LAGOS (45)

will create 45 memory locations for storage of the elements of the array
called LAGOS.

In most programming languages, each element has the same data type
and the array occupies a contiguous area of storage. Most programming
languages have a built-in array data type. Some programming languages
support array programming which generalises operations and functions
to work transparently over arrays as they do with scalars, instead of
requiring looping over array members.

3.3 Declaration of Arrays

Variables normally only store a single value but, in some situations, it is
useful to have a variable that can store a series of related values - using
an array. For example, suppose a programme is required that will
calculate the average age among a group of six students. The ages of the
students could be stored in six integer variables in C:

int age1;

7

CIT 341 DATA STRUCTURES

int age2;
int age3;

However, a better solution would be to declare a six-element array:

int age[6];This creates a six element array; the elements can be accessed
as age[0] through age[5] in C.

A two-dimensional array (in which the elements are arranged into rows
and columns) declared by say DIM X(3,4) can be stored as linear arrays
in the computer memory by determining the product of the subscripts.
The above can thus be expressed as DIM X (3 * 4) or DIM X (12).

Multi-dimensional arrays can be stored as linear arrays in order to
reduce the computation time and memory.

3.4 Multi-dimensional Arrays

Ordinary arrays are indexed by a single integer. Also useful, particularly
in numerical and graphics applications, is the concept of a
multi-dimensional array, in which we index into the array using an
ordered list of integers, such as in a[3,1,5]. The number of integers in
the list used to index into the multi-dimensional array is always the same
and is referred to as the array's dimensionality, and the bounds on each
of these are called the array's dimensions. An array with dimensionality
k, is often called k-dimensional. One-dimensional arrays correspond to
the simple arrays discussed thus far; two-dimensional arrays are a
particularly common representation for matrices. In practice, the
dimensionality of an array rarely exceeds three. Mapping a
one-dimensional array into memory is obvious, since memory is
logically itself a (very large) one-dimensional array. When we reach
higher-dimensional arrays, however, the problem is no longer obvious.
Suppose we want to represent this simple two-dimensional array:

It is most common to index this array using the RC-convention, where
elements are referred in row, column fashion or , such as:

8

CIT 341 DATA STRUCTURES

• Multi-dimensional arrays are typically represented by one-
dimensional arrays of references (Iliffe vectors) to other one-
dimensional arrays. The subarrays can be either the rows or columns.

3.5 Classification of Arrays

Arrays can be classified as static arrays (i.e. whose size cannot change
once their storage has been allocated), or dynamic arrays, which can be
resized.

3.6 Applications of Arrays

Arrays are employed in many computer applications in which data items
need to be saved in the computer memory for subsequent reprocessing.
Due to their performance characteristics, arrays are used to implement
other data structures, such as heaps, hash tables, deques, queues, stacks
and strings.

4.0 CONCLUSION

In this unit, you have learned about the arrays and their dimensionality.
You have also been able to understand the meaning of some notions
such as; array name, element and array declaration. Finally, you have
been able to distinguish between the static and dynamic arrays as well as
understand the applications of arrays.

5.0 SUMMARY

What you have learned in this unit is focused on arrays, their
declaration, classification and application. In the next unit, we will
discuss another data structure known as Lists.

SELF ASSESSMENT EXERCISE 1

Interpret the instruction DIM Y (80).

SELF ASSESSMENT EXERCISE 2

Given DIMENSION A (5, 20), express the array linearly.
6.0 TUTOR-MARKED ASSIGNMENT

9

http://en.wikipedia.org/wiki/Image:Array_of_array_storage.svg

CIT 341 DATA STRUCTURES

Describe a suitable data structure for details of stock items numbered in
the range 1 to 100. Each stock item may be held at each of 20 locations.
The number of items held at each location needs to be recorded.

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to
Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),
199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the
STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A, (1998). Practical Introduction to Data
Structures and Algorithm Analysis, Prentice Hall, pp. 77–102.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

UNIT 3 THE LIST DATA STRUCTURE

10

http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.indiana.edu/~ucspubs/b131/
http://www.gnu.org/manual/emacs-20.3/emacs.html

CIT 341 DATA STRUCTURES

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 What is a List?
3.2 Elements of a List
3.3 Operation

 3.4 List Implementation
3.4.1 Array List

 3.4.2 Linked List
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

What you will learn in this unit borders on Lists, their operations and
implementations. Typical examples are given to facilitate the student’s
understanding of these features.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

•describe a List
•identify the elements of a List
•explain the operations and implementations of Lists.

3.0 MAIN CONTENT

3.1 What is a List Data Structure?

A list data structure is a sequential data structure, i.e. a collection of
items accessible one after the other, beginning at the head and ending at
the tail. It is a widely used data structure for applications which do not
need random access.

Lists differ from the stacks and queues data structures in that additions
and removals can be made at any position in the list.

3.2 Elements of a List

11

CIT 341 DATA STRUCTURES

The sentence “Dupe is not a boy” can be written as a list as follows:

Fig. 1.0: Elements of a List

We regard each word in the sentence above as a data-item or datum,
which is linked to the next datum, by a pointer. Datum plus pointer
make one node of a list. The last pointer in the list is called a
terminator. It is often convenient to speak of the first item as the head
of the list, and the remainder of the list as the tail.

3.2 Operations

The main primitive operations of a list are known as:

Add adds a new node
Set updates the contents of a node
Remove removes a node
Get returns the value at a specified index
IndexOf returns the index in the list of a specified element

Additional primitives can be defined:

IsEmpty reports whether the list is empty
IsFull reports whether the list is full
Initialise creates/initialises the list
Destroy deletes the contents of the list (may be implemented by

re-initialising the list)
Initialise Creates the structure – i.e. ensures that the structure exists

but contains no elements e.g. Initialise(L) creates a new
empty queue named Q

Add

e.g. Add(1,X,L) adds the value X to list L at position 1 (the start of the
list is position 0), shifting subsequent elements up L

Fig. 1.1: List before adding value

L

DUPE IS NOT A BOY

A B C

12

CIT 341 DATA STRUCTURES

A X B C

Fig. 1.2: List after adding value

Set

e.g. Set(2,Z,L) updates the values at position 2 to be Z

L
A X Z C

Fig. 1.3: List after update

Remove

e.g. Remove(Z,L) removes the node with value Z

L
A X Z C

Fig. 1.4: List before removal

L
A X C

Fig. 1.5: List after removal

Get

e.g. Get(2,L) returns the value of the third node, i.e. C

IndexOf

e.g. IndexOf(X,L) returns the index of the node with value X, i.e. 1

3.4 List Implementation

Lists can be implemented in many ways, depending on how the
programmer will use lists in their programme. Common
implementations include:

1. Array List
2. Linked List

13

CIT 341 DATA STRUCTURES

3.4.1 Array Lists

This implementation stores the list in an array. The Array List has the
following properties:

1. The position of each element is given by an index from 0 to n-1,
where n is the number of elements.

2. Given any index, the element with that index can be accessed in
constant time – i.e. the time to access does not depend on the size
of the list.

3. To add an element at the end of the list, the time taken does not
depend on the size of the list. However, the time taken to add an
element at any other point in the list does depend on the size of
the list, as all subsequent elements must be shifted up. Additions
near the start of the list take longer than additions near the middle
or end.

4. When an element is removed, subsequent elements must be
shifted down, so removals near the start of the list take longer
than removals near the middle or end.

3.4.2 Linked List

The Linked List is stored as a sequence of linked nodes. As in the case
of the stack, each node in a linked list contains data AND a reference to
the next node. The Linked List has the following properties:

•The list can grow and shrink as needed.
•The position of each element is given by an index from 0 to n-1, where
n is the number of elements.
•Given any index, the time taken to access an element with that index
depends on the index. This is because each element of the list must be
traversed until the required index is found.
•The time taken to add an element at any point in the list does not
depend on the size of the list, as no shifts are required. It does, however,
depend on the index. Additions near the end of the list take longer than
additions near the middle or start. The same applies to the time taken to
remove an element. A list needs a reference to the front node.

There are many variations on the Linked List data structure, including:

i. Singly Linked Lists

A singly linked list is a data structure in which the data items are
chained (linked) in one direction. Figure 1 shows an example of a singly
linked list.

14

CIT 341 DATA STRUCTURES

Figure 1.6: A singly linked list

ii. Circularly Linked Lists

In a circularly linked list, the tail of the list always points to the head of
the list.

iii. Doubly Linked Lists

These permits scanning or searching of the list in both directions. (To go
backwards in a simple list, it is necessary to go back to the start and scan
forwards.) In this case, the node structure is altered to have two links:

Figure 1.7: A doubly linked list

iii. Sorted Lists

Lists can be designed to be maintained in a given order. In this case, the
Add method will search for the correct place in the list to insert a new
data item.

SELF ASSESSMENT EXERCISE 1

‘Ola studies his courses’. Represent this statement as a list, identifying
the different elements.

SELF ASSESSMENT EXERCISE 2

Mention at least two types of lists.
4.0 CONCLUSION

15

CIT 341 DATA STRUCTURES

In this unit you have learned about Lists. You have also been able to
identify the elements of a List. You should also have learned about
operations and implementations of lists.

5.0 SUMMARY

What you have learned in this unit concerns the Lists, their operations
and implementations. In the next unit, you shall learn about another
linear data structure, known as Queues.

6.0 TUTOR-MARKED ASSIGNMENT

What would the contents of a list be after the following operation?
Add (1, X, L)

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to
Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),
199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the
STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A. (1998). Practical Introduction to Data Structures
and Algorithm Analysis, Prentice Hall, pp. 77–102.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

UNIT 4 THE STACK DATA STRUCTURE

16

http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.indiana.edu/~ucspubs/b131/
http://www.gnu.org/manual/emacs-20.3/emacs.html

CIT 341 DATA STRUCTURES

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 The Stack Data Structure
3.2 Application of Stacks
3.3 Operations on a Stack
3.4 Stack Storage Modes
 3.4.1 Static Data Structures

3.4.2 Dynamic Data Structures
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

In this unit, we will look at an abstract data structure – the Stack Data
Structure.

This structure stores and accesses data in different ways, which are
useful in different applications. In all cases, the stack data structure
follows the principle of data abstraction (the data representation can be
inspected and updated only by the abstract data type’s operations). Also,
the algorithms used to implement the operations do not depend on the
type of data to be stored.

2.0 OBJECTIVES

By the end of this unit, the student should be able to:

•describe the stack data structure
•identify two basic modes of implementing a stack
•outline the applications of stacks in computing
•explain the two methods of storing a stack.

3.0 MAIN CONTENT

3.1 The Stack Data Structure

 A stack is a linear data structure in which all insertions and deletions of
data are made only at one end of the stack, often called the top of the
stack. For this reason, a stack is referred to as a LIFO (last-in-first-out)
structure.

17

CIT 341 DATA STRUCTURES

Figure 1.0 shows a stack.

Fig. 1.0: Simple representation of a stack

A frequently used metaphor is the idea of a stack of plates in a spring
loaded cafeteria stack. In such a stack, only the top plate is visible and
accessible to the user, all other plates remain hidden. As new plates are
added, each new plate becomes the top of the stack, hiding each plate
below, pushing the stack of plates down. As the top plate is removed
from the stack, the plates pop back up, and the second plate becomes the
top of the stack.

3.2 Application of Stacks

Stacks are used extensively at every level of a modern computer system.
For example, a modern PC uses stacks at the architecture level, which
are used in the basic design of an operating system for interrupt handling
and operating system function calls. Among other uses, stacks are used
to run a Java Virtual Machine, and the Java language itself has a class
called "Stack", which can be used by the programmer.

Stacks have many other applications. For example, as processor
executes a programme, when a function call is made, the called function
must know how to return back to the programme, so the current address
of programme execution is pushed onto a stack. Once the function is
finished, the address that was saved is removed from the stack, and
execution of the programme resumes. If a series of function calls occur,
the successive return values are pushed onto the stack in LIFO order so
that each function can return back to calling programme. Stacks support
recursive function calls, subroutine calls, especially when “reverse
polish notation” is involved.

Solving a search problem, regardless of whether the approach is
exhaustive or optimal, needs stack space. Examples of exhaustive search
methods are bruteforce and backtracking. Examples of optimal search
exploring methods are branch and bound and heuristic solutions. All of

18

http://en.wikipedia.org/wiki/Image:Data_stack.svg

CIT 341 DATA STRUCTURES

these algorithms use stacks to remember the search nodes that have been
noticed but not explored yet.

Another common use of stacks at the architecture level is as a means of
allocating and accessing memory.

Fig. 1.1: Basic Architecture of a Stack

3.3 Operations on a Stack

The stack is usually implemented with two basic operations known as
"push" and "pop". Thus, two operations applicable to all stacks are:

•A push operation, in which a data item is placed at the location pointed
to by the stack pointer and the address in the stack pointer is adjusted by
the size of the data item; Push adds a given node to the top of the stack
leaving previous nodes below.
•A pop or pull operation, in which a data item at the current location
pointed to by the stack pointer is removed, and the stack pointer is
adjusted by the size of the data item. Pop removes and returns the
current top node of the stack.

The main primitives of a stack are known as:

Push adds a new node
Pop removes a node

Figure 1.2 shows the insertion of three data X, Y and Z to a stack and
the removal of two data, Z and Y, from the stack.

19

http://en.wikipedia.org/wiki/Image:ProgramCallStack2.png

CIT 341 DATA STRUCTURES

 To
p

X To
p

Y
X

 To
p

Z
Y
X

 To
p

Y
X

 To
p

X

Empty Push X Push Y Push Z Pop Z Pop Y

Stack
Fig. 1. 2: Insertion and removal of data from stack

Additional primitives can be defined:

IsEmpty reports whether the stack is empty
IsFull reports whether the stack is full
Initialise creates/initialises the stack
Destroy deletes the contents of the stack

(may be implemented by
re-initialising the stack)

Initialise
Creates the structure – i.e. ensures that the structure exists but contains
no elements
e.g. Initialise(S) creates a new empty stack named S

e.g. Push(X,S) adds the value X to the Top of the stacks, S

 S
Fig 1.4: Stack after adding the value X

Pop

 X

20

CIT 341 DATA STRUCTURES

e.g. Pop(S) removes the TOP node and returns its value

 S
Fig. 1.5: Stack after removing the top node

3.4 Stack Storage Modes

A stack can be stored in two ways:

•a static data structure
OR
•a dynamic data structure

3.4.1 Static Data Structures

These define collections of data which are fixed in size when the
programme is compiled. An array is a static data structure.

3.4.2 Dynamic Data Structures

These define collections of data which are variable in size and structure.
They are created as the programme executes, and grow and shrink to
accommodate the data being stored.

SELF ASSESSMENT EXERCISE 1

 A stack is referred to as a LIFO structure, true or false? Give reasons
for your answer.

SELF ASSESSMENT EXERCISE 2

Write on two applications of stacks.

4.0 CONCLUSION

In this unit, you have learned about the stack data structure. You have
also been able to understand the basic operations on a stack. You should
also have learned about applications of stacks in computing.

5.0 SUMMARY

21

CIT 341 DATA STRUCTURES

What you have learned in this unit concerns the stack data structure,
their operations and applications. In the next unit, you shall learn about
another linear data structure, known as Queues.

6.0 TUTOR-MARKED ASSIGNMENT

Applying the LIFO principle to the third stack S, what would be the
state of the stack S, after the operation S. POP () is executed? Illustrate
this with a simple diagram.

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to
Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),
199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the
STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A, (1998). Practical Introduction to Data Structures
and Algorithm Analysis, Prentice Hall, pp. 77–102.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/
UNIT 5 THE QUEUE DATA STRUCTURE

22

http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.indiana.edu/~ucspubs/b131/
http://www.gnu.org/manual/emacs-20.3/emacs.html

CIT 341 DATA STRUCTURES

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 The Queue Data Structure
3.2 Application of Queues
3.3 Operations on a Queue

3.3.1 Other Queue Operations
3.4 Storing a Queue in a Static Data Structure
3.5 Storing a Queue in a Dynamic Data Structure

3.5.1 Adding a Node
 3.5.2 Removing a Node

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

In this unit, the student will gain knowledge of the queue data structure
as well as its applications and operations. Typical examples are given to
facilitate your understanding of these concepts.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

•describe a queue data structure
•give at least three applications of queues
•explain the operations on a queue
•describe two basic modes of queue storage.

3.0 MAIN CONTENT

3.1 The Queue Data Structure

 The queue data structure is characterised by the fact that additions are
made at the end, or tail, of the queue while removals are made from the
front, or head of the queue. For this reason, a queue is referred to as a
FIFO structure (First-In First-Out). Figure 1.0 shows a queue of part of
English alphabets.

Insertion Deletion

23

CIT 341 DATA STRUCTURES

 Last data First data

Fig. 1.0: Example of a Queue

3.2 Application of Queues

Queues are very important structures in computer simulations, data
processing, information management, and in operating systems.
In simulations, queue structures are used to represent real-life events
such as car queues at traffic light junctions and petrol filling stations,
queues of people at the check-out point in super markets, queues of bank
customers, etc.

In operating systems, queue structures are used to represent different
programmes in the computer memory in the order in which they are
executed. For example, if a programme, J is submitted before
programme K, then programme J is queued before programme K in the
computer memory and programme J is executed before programme K.

3.3 Operations on a Queue

The main primitive operations on a queue are known as:

Add adds a new node
Remove removes a node

Additional primitives can be defined thus:

IsEmpty reports whether the queue is empty
IsFull reports whether the queue is full
Initialise creates/initialises the queue
Destroy deletes the contents of the queue (may be implemented by
 re-initialising the queue)
Initialise

Creates the structure – i.e. ensures that the structure exists but contains
no elements.

e.g. Initialise(Q) creates a new empty queue named Q

Add

24

CIT 341 DATA STRUCTURES

e.g. Add(X,Q) adds the value X to the tail of Q

Fig. 1.1: Queue after adding the value X to the tail of Q

then, Add (Y, Q) adds the value Y to the tail of Q

Fig. 1.2: Queue after adding the value Y to the tail of Q

Remove

e.g. Remove(Q) removes the head node and returns its value

Fig. 1.3: Queue after removing Q from the head node

3.3.1 Other Queue Operations

Action Contents of queue Q after operation Return value
Initialise (Q) empty
Add (A,Q) A -
Add (B,Q) A B -
Add(C,Q) A B C -
Remove (Q) B C A
Add (F,Q) B C F -
Remove (Q) C F B
Remove (Q) F C
Remove (Q) empty F

3.4 Storing a Queue in a Static Data Structure

This implementation stores the queue in an array. The array indices at
which the head and tail of the queue are currently stored must be
maintained. The head of the queue is not necessarily at index 0. The
array can be a “circular array” in which the queue “wraps round” if the
last index of the array is reached.
Figure 1.4 below is an example of storing a queue in an array of length
5:

25

CIT 341 DATA STRUCTURES

3.5 Storing a Queue in a Dynamic Data Structure

A queue requires a reference to the head node AND a reference to the
tail node. The following diagram describes the storage of a queue called
Queue. Each node consists of data (DataItem) and a reference
(NextNode).

•The first node is accessed using the name Queue.Head.
•Its data is accessed using Queue.Head.DataItem
•The second node is accessed using Queue.Head.NextNode
•The last node is accessed using Queue.Tail

26

CIT 341 DATA STRUCTURES

3.5.1 Adding a Node (Add)

The new node is to be added at the tail of the queue. The reference
Queue.Tail should point to the new node, and the NextNode reference
of the node previously at the tail of the queue should point to the
DataItem of the new node.

3.5.2 Removing a Node (Remove)

The value of Queue.Head.DataItem is returned. A temporary reference
Temp, is declared and set to point to head node in the queue (Temp =
Queue.Head). Queue.Head is then set to point to the second node
instead of the top node. The only reference to the original head node is
now Temp and the memory used by this node can then be freed.

27

CIT 341 DATA STRUCTURES

SELF ASSESSMENT EXERCISE 1

Why is a queue referred to as a FIFO structure?

SELF ASSESSMENT EXERCISE 2

Describe at least three applications of queues.

4.0 CONCLUSION

In this unit, you have learned about the queue data structure. Queue
applications and operations were equally considered. You should also
have learned about the queue storage in static and dynamic data
structures.

5.0 SUMMARY

What you have learned in this unit concerns queues, their operations and
applications. The units that follow shall build upon issues discussed in
this unit.

6.0 TUTOR-MARKED ASSIGNMENT

Taking up again the example given in figure 1.4 above, show the state of
the queue after the following operations:

Add (E,Q)
Remove (Q)

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to
Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),
199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the
STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A. (1998). Practical Introduction to Data Structures
and Algorithm Analysis, Prentice Hall, pp. 77–102.

28

CIT 341 DATA STRUCTURES

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

29

http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.indiana.edu/~ucspubs/b131/
http://www.gnu.org/manual/emacs-20.3/emacs.html

CIT 341 DATA STRUCTURES

MODULE 2 HASHING AND TREES

Unit 1 Hashing
Unit 2 Trees
Unit 3 Search Trees
Unit 4 Garbage Collection and Other Heap
Unit 5 Memory Allocation

UNIT 1 HASHING

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Hashing-The Basic Idea
3.2 Hash Keys and Functions
3.3 Hash Function Implementation
3.4 What is a Hash Table?

3.4.1 Abstract Hash Tables
3.5 Separate Chaining
3.6 Applications

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings
1.0 INTRODUCTION

In this unit, we will examine the basic idea of hashing. Hash keys and
functions are equally described, giving the basic implementation of hash
functions. We then define hash tables and give their applications.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

•explain the basic idea of hashing
•describe hash keys and functions
•give the basic implementation of hash functions
•define a hash table
•explain the applications of hash tables.

3.0 MAIN CONTENT

30

CIT 341 DATA STRUCTURES

3.1 Hashing – The Basic Idea

Ideally we would build a data structure for which both the insertion and
find operations are O (1) in the worst case. However, this kind of
performance can only be achieved with complete a priori knowledge.
We need to know beforehand specifically which items are to be inserted
into the container. Unfortunately, we do not have this information in the
general case. So, if we cannot guarantee O (1) performance in the worst
case, then we make it our design objective to achieve O(1) performance
in the average case.

The constant time performance objective immediately leads us to the
following conclusion: Our implementation must be based in some way
on an array rather than a linked list. This is because we can access the

element of an array in constant time, whereas the same operation in a
linked list takes O(k) time.

In the previous chapter, we considered two searchable containers--the
ordered list and the sorted list. In the case of an ordered list, the cost of
an insertion is O(1) and the cost of the find operation is O(n). For a
sorted list, the cost of insertion is O(n) and the cost of the find operation
is for the array implementation.

Clearly, neither the ordered list nor the sorted list meets our performance
objectives. The essential problem is that a search, either linear or binary,
is always necessary. In the ordered list, the find operation uses a linear
search to locate the item. In the sorted list, a binary search can be used
to locate the item because the data is sorted. However, in order to keep
the data sorted, insertion becomes O(n).

In order to meet the performance objective of constant time insert and
find operations, we need a way to do them without performing a search.
That is, given an item x, we need to be able to determine directly from x
the array position where it is to be stored.

Example

We wish to implement a searchable container which will be used to
contain character strings from the set of strings K,

Suppose we define a function as given by the following table:

31

CIT 341 DATA STRUCTURES

x h(x)
"ett" 1
"två" 2
"tre" 3
"fyra" 4
"fem" 5
"sex" 6
"sju" 7
"åtta" 8
"nio" 9
"tio" 10
"elva" 11
"tolv" 12

Table 1.0 Defining a Hash Function

Then, we can implement a searchable container using an array of length
n=12. To insert item x, we simply store it at position h(x)-1 of the array.
Similarly, to locate item x, we simply check to see if it is found at
position h(x)-1. If the function can be evaluated in constant time,
then both the insert and the find operations are O(1).

We expect that any reasonable implementation of the function will
run in constant time, since the size of the set of strings, K, is a constant!
This example illustrates how we can achieve O(1) performance in the
worst case when we have complete, a priori knowledge.

3.2 Hash Keys and Functions

We are designing a container which will be used to hold some number
of items of a given set, K. In this context, we call the elements of the set
K keys. The general approach is to store the keys in an array. The
position of a key in the array is given by a function , called a hash
function, which determines the position of a given key directly from that
key.

In the general case, we expect the size of the set of keys, |K|, to be
relatively large or even unbounded. For example, if the keys are 32-bit

integers, then . Similarly, if the keys are arbitrary character
strings of arbitrary length, then |K| is unbounded.

32

CIT 341 DATA STRUCTURES

On the other hand, we also expect the actual number of items stored in
the container to be significantly less than |K|. That is, if n is the number
of items actually stored in the container, then . Therefore, it
seems prudent to use an array of size M, where M is as least as great at
the maximum number of items to be stored in the container.

Consequently, what we need is a function .
This function maps the set of values to be stored in the container to
subscripts in an array of length M. This function is called a hash
function .

In general, since , the mapping defined by hash function will be
a many-to-one mapping . That is, there will exist many pairs of distinct

keys, x and y, such that , for which h(x)=h(y). This situation is
called a collision. Several approaches for dealing with collisions are
explored in the following sections.

What are the characteristics of a good hash function?

•A good hash function avoids collisions.
•A good hash function tends to spread keys evenly in the array.
•A good hash function is easy to compute.

3.3 Hash Function Implementation

In reality, we cannot expect that the keys will always be integers.
Depending on the application, the keys might be letters, character strings
or even more complex data structures such as Associations or
Containers.

In general, given a set of keys, K, and a positive constant, M, a hash
function is a function of the form

In practice, it is convenient to implement the hash function, h, as the
composition of two functions, f and g. The function, f, maps keys into
integers:

where is the set of integers. The function, g, maps non-negative
integers into :

33

CIT 341 DATA STRUCTURES

Given appropriate functions, f and g, the hash function, h, is simply
defined as the composition of those functions:

That is, the hash value of a key, x, is given by g(f(x)).

By decomposing the function, h, in this way, we can separate the
problem into two parts: The first involves finding a suitable mapping
from the set of keys, K, to the non-negative integers. The second
involves mapping non-negative integers into the interval [0,M-1].
Ideally, the two problems would be unrelated. That is, the choice of the
function, f, would not depend on the choice of g and vice versa.
Unfortunately, this is not always the case. However, if we are careful,

we can design the functions in such a way that is a good hash
function.

This is precisely the domain of the function g. Consequently, we have
already examined several different alternatives for the function, g. On
the other hand, the choice of a suitable function for f depends on the
characteristics of its domain.

In the following sections, we consider various different domains (sets of
keys) and develop suitable hash functions for each of them. Each
domain considered corresponds to a Java class. Recall that every Java
class is ultimately derived from the Object class and that the Object
class declares a method called hashCode:

public class Object
{
public int hashCode ();
 // ...
}
The hashCode method corresponds to the function, f, which maps
keys into integers.

3.4 What is a Hash Table?

A hash table is a searchable container. As such, its interface provides
methods for putting an object into the container, finding an object in the
container, and removing an object from the container. The HashTable
interface extends the SearchableContainerInterface defined
in programme 1.0 below. One additional method, called
getLoadFactor, is declared.

34

CIT 341 DATA STRUCTURES

Programme 1.0: HashTable interface.

3.4.1 Abstract Hash Tables

As shown in Figure 1.0, we define an AbstractHashTable class
from which several concrete realizations are derived.

Fig. 1.0: Object class hierarchy

Programme 1.1 introduces the AbstracHashTable class. The
AbstractHashTable class extends the
AbstractSearchableContainer class introduced in
Programme 1.1 and it implements the HashTable interface.

Programme1.1: AbstractHashTable methods.

35

CIT 341 DATA STRUCTURES

Programme 1.1 introduces four methods--getLength, f, g, and h.
The getLength method is an abstract method. This function returns
the length of a hash table.

The methods f, g, and h correspond to the composition
discussed. The f method takes as an object and calls the hashCode
method on that object to compute an integer. The g method uses the
division method of hashing defined to map an integer into the interval
[0,M-1], where M is the length of the hash table. Finally, the h method
computes the composition of f and g.

We will consider various ways of implementing hash tables. In all cases,
the underlying implementation makes use of an array. The position of an
object in the array is determined by hashing the object. The main
problem to be resolved is how to deal with collisions--two different
objects cannot occupy the same array position at the same time. In the
following section, we consider an approach which solves the problem of
collisions by keeping objects that collide in a linked list.

3.5 Separate Chaining

Figure 1.1, shows a hash table that uses separate chaining to resolve
collisions. The hash table is implemented as an array of linked lists. To
insert an item into the table, it is appended to one of the linked lists. The
linked list to which it is appended is determined by hashing that item.

Figure 1.1: Hash table using separate chaining.

36

CIT 341 DATA STRUCTURES

Figure 1.1 illustrates an example in which there are M=16 linked lists.
The twelve character strings "ett"-"tolv" have been inserted into
the table using the hashed values and in the order given in Table 1.1.
Notice that in this example, since M=16, the linked list is selected by the
least significant four bits of the hashed value given in Table 1.0. In
effect, it is only the last letter of a string which determines the linked list
in which that string appears.

 3.6 Applications

Hash and Scatter tables have many applications. The principal
characteristic of such applications is that keyed information needs to be
frequently accessed and the access pattern is either unknown or known
to be random. For example, hash tables are often used to implement the
symbol table of a programming language compiler. A symbol table is
used to keep track of information associated with the symbols (variable
and method names) used by a programmer. In this case, the keys are
character strings and each key has, associated with it, some information
about the symbol (e.g., type, address, value, lifetime, scope).

This section presents a simple application of hash and scatter tables.
Suppose we are required to count the number of occurrences of each
distinct word contained in a text file. We can do this easily using a hash
or scatter table. Programme gives an implementation.

37

CIT 341 DATA STRUCTURES

Programme 1.2: Hash/scatter table application--counting words.

The static inner class Counter extends the class Int defined in
Section . In addition to the functionality inherited from the base class,
the Counter class adds the method increment which increases the
value by one.

The wordCounter method does the actual work of counting the words
in the input file. The local variable table refers to a
ChainedHashTable that is used to keep track of the words and
counts. The objects which are put into the hash table are all instances of
the class Association. Each association has as its key a String
class instance, and as its value a Counter class instance.

38

http://www.brpreiss.com/books/opus5/html/page117.html#secadtswrappers

CIT 341 DATA STRUCTURES

The wordCounter method reads words from the input stream one at a
time. As each word is read, a find operation is done on the hash table
to determine if there is already an association for the given key. If none
is found, a new association is created and inserted into the hash table.
The given word is used as the key of the new association and the value
is a counter which is initialised to one. On the other hand, if there is
already an association for the given word in the hash table, the
corresponding counter is incremented. When the wordCounter
method reaches the end of the input stream, it simply prints the hash
table on the given output stream.

The running time of the wordCounter method depends on a number
of factors, including the number of different keys, the frequency of
occurrence of each key, and the distribution of the keys in the overall
space of keys. Of course, the hash/scatter table implementation chosen
has an effect as does the size of the table used. For a reasonable set of
keys we expect the hash function to do a good job of spreading the keys,
uniformly in the table. Provided a sufficiently large table is used, the
average search and insertion time is bounded by a constant. Under these
ideal conditions, the running time should be O(n), where n is the number
of words in the input file.

SELF ASSESSMENT EXERCISE 1

What is a Hash table?

SELF ASSESSMENT EXERCISE 2

Describe at least one application of Hash Tables.

4.0 CONCLUSION

In this unit, you have learned about hashing, hash keys and functions.
You have also been able to understand what hash tables are and how to
implement hash functions. Finally, you have been able to appreciate the
applications of hash tables.

5.0 SUMMARY

What you have learned borders on the basic notions of hashing, hash
functions and hash tables and their applications.

6.0 TUTOR-MARKED ASSIGNMENT

What are the characteristics of a good hash function?

39

CIT 341 DATA STRUCTURES

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to
Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),
199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the
STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A. (1998). Practical Introduction to Data
Structures and Algorithm Analysis, Prentice Hall, pp. 77–102.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

40

http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.indiana.edu/~ucspubs/b131/
http://www.gnu.org/manual/emacs-20.3/emacs.html

CIT 341 DATA STRUCTURES

UNIT 2 TREES

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Trees
3.2 Tree- Basics
3.3 Binary Trees
3.4 Tree Traversals

3.4.1 Preorder Traversal
3.4.2 Postorder Traversal
3.4.3 Inorder Traversal

3.5 Implementing Trees
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

In this unit, we will consider different kinds of trees as well as different
tree traversal algorithms. In addition, we show how trees can be used to
represent arithmetic expressions and how we can evaluate an arithmetic
expression by doing a tree traversal.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

•give a basic definition of a tree
•describe binary trees
•explain tree traversals
•evaluate arithmetic expressions by means of tree traversals.

3.0 MAIN CONTENT

3.1 Trees

A tree is often used to represent a hierarchy. This is because the
relationships between the items in the hierarchy suggest the branches of
a botanical tree. For example, a tree-like organisation chart is often
used to represent the lines of responsibility in a business as shown in

41

CIT 341 DATA STRUCTURES

Figure 1.0. The president of the company is shown at the top of the tree
and the vice-presidents are indicated below her. Under the vice-
presidents, we find the managers and below the managers the rest of the
clerks. Each clerk reports to a manager, each manager reports to a vice-
president, and each vice-president reports to the president.

Fig. 1.0: Representing a hierarchy using a tree

It just takes a little imagination to see the tree in Figure 1.0. Of course,
the tree is upside-down. However, this is the usual way the data
structure is drawn. The president is called the root of the tree and the
clerks are the leaves.

A tree is extremely useful for certain kinds of computations. For
example, suppose we wish to determine the total salaries paid to
employees by division or by department. The total of the salaries in
division A can be found by computing the sum of the salaries paid in
departments A1 and A2 plus the salary of the vice-president of
division A. Similarly, the total of the salaries paid in department A1 is
the sum of the salaries of the manager of department A1 and of the two
clerks below her.

Clearly, in order to compute all the totals, it is necessary to consider the
salary of every employee. Therefore, an implementation of this
computation must visit all the employees in the tree. An algorithm that
systematically visits all the items in a tree is called a tree traversal.

3.2 Tree-Basics

The following is a mathematical definition of a tree:

Definition (Tree) A tree, T, is a finite, non-empty set of nodes,

with the following properties:

1. A designated node of the set, r, is called the root of the tree; and

42

CIT 341 DATA STRUCTURES

2. The remaining nodes are partitioned into subsets, , , ...,
, each of which is a tree.

For convenience, we shall use the notation to
denote the tree T.

Notice that this definition is recursive—that is, a tree is defined in terms
of itself! Fortunately, we do not have a problem with infinite recursion
because every tree has a finite number of nodes and because in the base
case, a tree has n=0 subtrees.

It follows from the definition that the minimal tree is a tree comprising a
single root node. For example is such a tree. When there is
more than one node, the remaining nodes are partitioned into subtrees.
For example, the is a tree which comprises of the root
node, B, and the subtree . Finally, the following is also a tree

How do , , and resemble their arboreal namesake? The similarity
becomes apparent when we consider the graphical representation of
these trees shown in Figure 1.1. To draw such a pictorial representation
of a tree, , the following recursive procedure is
used: First, we first draw the root node, r. Then, we draw each of the
subtrees, , , ..., , beside each other below the root. Finally, lines
are drawn from r to the roots of each of the subtrees.

Fig. 1.1: Examples of trees.

Of course, trees drawn in this fashion are upside down. Nevertheless,
this is the conventional way in which tree data structures are drawn. In
fact, it is understood that when we speak of ``up'' and ``down,'' we do so

43

CIT 341 DATA STRUCTURES

with respect to this pictorial representation. For example, when we move
from a root to a subtree, we will say that we are moving down the tree.
The inverted pictorial representation of trees is probably due to the way
that genealogical lineal charts are drawn. A lineal chart is a family tree
that shows the descendants of some person. And it is from genealogy
that much of the terminology associated with tree data structures is
taken.

Terminology

Consider a tree , , as given by the definition:

•The degree of a node is the number of subtrees associated with that
node. For example, the degree of tree T is n.
•A node of degree zero has no subtrees. Such a node is called a leaf .
•Each root of subtree of tree T is called a child of r. The term
grandchild is defined in a similar manner.
•The root node, r, of tree T, is the parent of all the roots of the
subtrees , . The term, grandparent, is defined in a similar
manner.
•Two roots and of distinct subtrees and of tree T are called
siblings.

There is still more terminology to be introduced, but in order to do that,
we need the following definition:

Definition (Path and Path Length) Given a tree, T, containing the set
of nodes R, a path in T is defined as a non-empty sequence of nodes

where , for such that the node in the sequence, , is

the parent of the node in the sequence . The length of path P
is k-1.

For example, consider again the tree shown in Figure 1.1. This tree
contains many different paths. In fact, if you count carefully, you should
find that there are exactly 29 distinct paths in tree . This includes the
path of length zero, ; the path of length one, ; and the path of
length three, .

3.3 Binary Trees

In this section, we will consider an extremely important and useful
category of tree structure--binary trees. A binary tree is an N-ary tree

44

CIT 341 DATA STRUCTURES

for which N is two. Since a binary tree is an N-ary tree, all of the results
derived in the preceding section apply to binary trees. However, binary
trees have some interesting characteristics that arise from the restriction
that N is two. For example, there is an interesting relationship between
binary trees and the binary number system. Binary trees are also very
useful for the representation of mathematical expressions involving the
binary operations such as addition and multiplication.

Binary trees are defined as follows:

Definition (Binary Tree) A binary tree, T, is a finite set of nodes with
the following properties:

1. Either the set is empty, ; or
2. The set consists of a root, r, and exactly two distinct binary trees

and , .

The tree, is called the left subtree of T, and the tree, is called the
right subtree of T.

Binary trees are almost always considered to be ordered trees.
Therefore, the two subtrees and are called the left and right
subtrees, respectively. Consider the two binary trees shown in
Figure 1.2. Both trees have a root with a single non-empty subtree.
However, in one case, it is the left subtree which is non-empty; in the
other case, it is the right subtree that is non-empty. Since the order of the
subtrees matters, the two binary trees shown in Figure 1.2 are different.

Fig. 1.2: Two distinct binary trees

We can determine some of the characteristics of binary trees from the
theorems given in the preceding section by letting N=2. For example, we
know that a binary tree with internal nodes contains n+ 1 external
node. This result is true regardless of the shape of the tree.
Consequently, we expect that the storage overhead associated with the
empty trees will be O(n).

45

CIT 341 DATA STRUCTURES

We thus learn that a binary tree of height has at most
internal nodes. Conversely, the height of a binary tree with n internal
nodes is at least . That is, the height of a binary tree with
n nodes is .

Finally, a binary tree of height has at most leaves. Conversely,
the height of a binary tree with l leaves is at least . Thus, the
height of a binary tree with l leaves is

3.4 Tree Traversals

There are many different applications of trees. As a result, there are
many different algorithms for manipulating them. However, many of the
different tree algorithms have in common the characteristic that they
systematically visit all the nodes in the tree. That is, the algorithm walks
through the tree data structure and performs some computation at each
node in the tree. This process of walking through the tree is called a tree
traversal.

There are essentially two different methods in which to visit
systematically all the nodes of a tree--depth-first traversal and
breadth-first traversal. Certain depth-first traversal methods occur
frequently enough that they are given names of their own: preorder
traversal, inorder traversal and postorder traversal.

The discussion that follows uses the tree in Figure 1.3 as an example.
The tree shown in the figure is a general tree:

However, we can also consider the tree in Figure 1.3 to be an N-ary tree
(specifically, a binary tree if we assume the existence of empty trees at
the appropriate positions:

Fig. 1.3: Sample tree

46

CIT 341 DATA STRUCTURES

3.4.1 Preorder Traversal

The first depth-first traversal method we consider is called preorder
traversal. Preorder traversal is defined recursively as follows: To do a
preorder traversal of a general tree:

1. Visit the root first; and then
2. Do a preorder traversal each of the subtrees of the root

one-by-one in the order given.

Preorder traversal gets its name from the fact that it visits the root first.
In the case of a binary tree, the algorithm becomes:

1. Visit the root first; and then
2. Traverse the left subtree; and then
3. Traverse the right subtree.

For example, a preorder traversal of the tree visits the nodes in the
following order:

Notice that the preorder traversal visits the nodes of the tree in precisely
the same order in which they are written. A preorder traversal is often
done when it is necessary to print a textual representation of a tree.

3.4.2 Postorder Traversal

The second depth-first traversal method we consider is postorder
traversal. In contrast with preorder traversal, which visits the root first,
postorder traversal visits the root last. To do a postorder traversal of a
general tree:

1. Do a postorder traversal each of the subtrees of the root one-
by-one in the order given; and then

2. Visit the root.

To do a postorder traversal of a binary tree

1. Traverse the left subtree; and then
2. Traverse the right subtree; and then
3. Visit the root.

A postorder traversal of the tree shown in Figure visits the nodes in
the following order:

47

http://www.brpreiss.com/books/opus5/html/page259.html#figtree5

CIT 341 DATA STRUCTURES

3.4.3 Inorder Traversal

The third depth-first traversal method is inorder traversal. Inorder
traversal only makes sense for binary trees. Whereas preorder traversal
visits the root first and postorder traversal visits the root last, inorder
traversal visits the root in between visiting the left and right subtrees:

1. Traverse the left subtree; and then
2. Visit the root; and then
3. Traverse the right subtree.

An inorder traversal of the tree visits the nodes in the following order:

3.5 Implementing Trees

In this section, we will consider the implementation of trees including
general trees, N-ary trees, and binary trees. The implementations
presented have been developed in the context of the abstract data type
framework. That is, the various types of trees are viewed as classes of
containers as shown in Figure 1.4.

Fig. 1.4: Object class hierarchy

Programme 1.0 defines the Tree interface. The Tree interface extends
the Container interface defined in Programme 1.0.

Programme 1.0: Tree interface.

48

http://www.brpreiss.com/books/opus5/html/page268.html#figclasses5

CIT 341 DATA STRUCTURES

The Tree interface adds the following methods to those inherited from
the Container interface:

getKey

This method returns the object contained in the root node of a tree.

getSubtree

This method returns the subtree of the given tree.

isEmpty

This boolean-valued method returns true if the root of the tree is an
empty tree, i.e., an external node.

isLeaf

This boolean-valued method returns true if the root of the tree is a
leaf node.

getDegree

This method returns the degree of the root node of the tree. By
definition, the degree of an external node is zero.

getHeight

This method returns the height of the tree. By definition, the height of an
empty tree is -1.

depthFirstTraversal and breadthFirstTraversal

These methods are like the accept method of the container class (see
Section). Both of these methods perform a traversal. That is, all the
nodes of the tree are visited systematically. The former takes a
PrePostVisitor and the latter takes a Visitor. When a node is
visited, the appropriate methods of the visitor are applied to that node.

SELF ASSESSMENT EXERCISE 1

What do you understand by the term tree traversals?

49

http://www.brpreiss.com/books/opus5/html/page118.html#secadtscontainers

CIT 341 DATA STRUCTURES

SELF ASSESSMENT EXERCISE 2

Give a brief description of the implementation of trees.

4.0 CONCLUSION

In this unit, you have learned about trees. You have also learned about
binary trees and tree traversals. Finally, you have been able to learn how
to implement trees.

5.0 SUMMARY

What you have learned in this unit is focused on trees, the common
types and implementation of trees.

6.0 TUTOR-MARKED ASSIGNMENT

Describe trees and illustrate further by means of a diagram.

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to
Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),
199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the
STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A. (1998). Practical Introduction to Data Structures
and Algorithm Analysis, Prentice Hall, pp. 77–102.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

50

http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.indiana.edu/~ucspubs/b131/
http://www.gnu.org/manual/emacs-20.3/emacs.html

CIT 341 DATA STRUCTURES

UNIT 3 SEARCH TREES

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Search Tree-Basics
3.2 Searching a Search Tree

3.2.1 Searching an M-way Tree
3.2.2 Searching a Binary Tree

3.3 Successful Search
3.4 Unsuccessful Search

51

CIT 341 DATA STRUCTURES

3.5 AVL Search Trees
3.6 Implementing AVL Trees

3.6.1 Inserting Items into AVL Trees
3.6.2 Removing Items from an AVL Tree

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit introduces Search Trees, describing successful and
unsuccessful searching. In addition, we show the implementation of
AVL search trees.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

•explain what a search tree is
•describe a successful search
•describe an unsuccessful search
•explain the implementation of AVL search trees.

3.0 MAIN CONTENT

3.1 Search Tree-Basics

A tree which supports efficient search, insertion, and withdrawal
operations is called a search tree. In this context, the tree is used to store
a finite set of keys drawn from a totally ordered set of keys, K. Each
node of the tree contains one or more keys and all the keys in the tree
are unique, i.e., no duplicate keys are permitted. What makes a tree into
a search tree is that the keys do not appear in arbitrary nodes of the tree.
Instead, there is a data ordering criterion which determines where a
given key may appear in the tree in relation to the other keys in that tree.
The subsequent sections present two related types of search trees,
M-way search trees and binary search trees.

3.2 Searching a Search Tree

The main advantage of a search tree is that the data ordering criterion
ensures that it is not necessary to do a complete tree traversal in order to
locate a given item. Since search trees are defined recursively, it is easy
to define a recursive search method.

52

CIT 341 DATA STRUCTURES

3.2.1 Searching an M-way Tree

Consider the search for a particular item, say x, in an M-way search tree.
The search always begins at the root. If the tree is empty, the search
fails. Otherwise, the keys contained in the root node are examined to
determine if the object of the search is present. If it is, the search
terminates successfully. If it is not, there are three possibilities: Either
the object of the search, x, is less than , in which case subtree is
searched; or x is greater than , in which case subtree is
searched; or there exists an i such that for which

, in which case subtree is searched.

Notice that when x is not found in a given node, only one of the n
subtrees of that node is searched. Therefore, a complete tree traversal is
not required. A successful search begins at the root and traces a
downward path in the tree, which terminates at the node containing the
object of the search. Clearly, the running time of a successful search is
determined by the depth in the tree of object of the search.

When the object of the search is not in the search tree, the search method
described above traces a downward path from the root which terminates
when an empty subtree is encountered. In the worst case, the search path
passes through the deepest leaf node. Therefore, the worst-case running
time for an unsuccessful search is determined by the height of the search
tree.

3.2.2 Searching a Binary Tree

The search method described above applies directly to binary search
trees. As above, the search begins at the root node of the tree. If the
object of the search, x, matches the root r, the search terminates
successfully. If it does not, then if x is less than r, the left subtree is
searched; otherwise x must be greater than r, in which case the right
subtree is searched.

Figure 1.0 shows two binary search trees. The tree is an example of a
particularly bad search tree because it is not really very tree-like at all.
In fact, it is topologically isomorphic with a linear, linked list. In the
worst case, a tree which contains n items has height O(n). Therefore, in
the worst case an unsuccessful search must visit O(n) internal nodes.

53

CIT 341 DATA STRUCTURES

 s

Figure1.0: Examples of search trees

On the other hand, tree in Figure 1.0 is an example of a particularly
good binary search tree. This tree is an instance of a perfect binary tree .
Definition (Perfect Binary Tree) A perfect binary tree of height
is a binary tree with the following properties:

1. If h=0, then and .
2. Otherwise, h>0, in which case both and are both perfect binary

trees of height h-1.

It is fairly easy to show that a perfect binary tree of height h, has exactly

internal nodes. Conversely, the height of a perfect binary tree
with n internal nodes is . If we have a search tree that has the
shape of a perfect binary tree, then every unsuccessful search visits
exactly h+1 internal nodes, where . Thus, the worst case
for unsuccessful search in a perfect tree is .

3.3 Successful Search

When a search is successful, exactly d+1 internal nodes are visited,
where d is the depth in the tree of object of the search. For example, if
the object of the search is at the root which has depth zero, the search
visits just one node--the root itself. Similarly, if the object of the search
is at depth one, two nodes are visited, and so on. We shall assume that it
is equally likely for the object of the search to appear in any node of the

54

http://www.brpreiss.com/books/opus5/html/page304.html#figtree13

CIT 341 DATA STRUCTURES

search tree. In that case, the average number of nodes visited during a
successful search is 1+d , where is the average of the depths of the
nodes in a given tree. That is, given a binary search tree with n>0 nodes,

where is the depth of the node of the tree.

The quantity is called the internal path length . The internal path
length of a tree is simply the sum of the depths (levels) of all the internal
nodes in the tree. Clearly, the average depth of an internal node is equal
to the internal path length divided by n, the number of nodes in the tree.
Unfortunately, for any given number of nodes n, there are many
different possible search trees. Furthermore, the internal path lengths of
the various possibilities are not equal. Therefore, to compute the average
depth of a node in a tree with n nodes, we must consider all possible
trees with n nodes. In the absence of any contrary information, we shall
assume that all trees having n nodes are equiprobable and then compute
the average depth of a node in the average tree containing n nodes.

Let I(n) be the average internal path length of a tree containing n nodes.
Consider first the case of n=1. Clearly, there is only one binary tree that
contains one node--the tree of height zero. Therefore, I(1)=0.

Now consider an arbitrary tree, , having internal nodes
altogether, l of which are found in its left subtree, where . Such
a tree consists of a root, the left subtree with l internal nodes and and a
right subtree with n-l-1 internal nodes. The average internal path length
for such a tree is the sum of the average internal path length of the left
subtree, I(l), plus that of the right subtree, I(n-l-1), plus n-1 because the
nodes in the two subtrees are one level lower in .

In order to determine the average internal path length for a tree with n
nodes, we must compute the average of the internal path lengths of the
trees average over all possible sizes, l, of the (left) subtree,

.

To do this we consider an ordered set of n distinct keys,
. If we select the key, , to be the root of a binary

search tree, then there are l keys, , , ..., , in its left subtree and
n-l-1 keys, , , ..., in its right subtree.

55

CIT 341 DATA STRUCTURES

If we assume that it is equally likely for any of the n keys to be selected
as the root, then all the subtree sizes in the range are equally
likely. Therefore, the average internal path length for a tree with
nodes is

Thus, in order to determine I(n), we need to solve the recurrence

To solve this recurrence, we consider the case n>1 and then multiply
Equation by n to get

Since this equation is valid for any n>1, by substituting n-1 for n, we
can also write

which is valid for n>2. Subtracting Equation from Equation gives

which can be rewritten as:

Thus, we have shown the solution to the recurrence in the equation is the
same as the solution of the recurrence

56

http://www.brpreiss.com/books/opus5/html/page306.html#eqnsrchtreerecurrence
http://www.brpreiss.com/books/opus5/html/page306.html#eqnsrchtreeb
http://www.brpreiss.com/books/opus5/html/page306.html#eqnsrchtreea

CIT 341 DATA STRUCTURES

3.4 Unsuccessful Search

All successful searches terminate when the object of the search is found.
Therefore, all successful searches terminate at an internal node. In
contrast, all unsuccessful searches terminate at an external node. In
terms of the binary tree shown in Figure 1.0, a successful search
terminates in one of the nodes which are drawn as circles and an
unsuccessful search terminates in one of the boxes.

The preceding analysis shows that the average number of nodes visited
during a successful search depends on the internal path length, which is
simply the sum of the depths of all the internal nodes. Similarly, the
average number of nodes visited during an unsuccessful search depends
on the external path length, which is the sum of the depths of all the
external nodes. Fortunately, there is a simple relationship between the
internal path length and the external path length of a binary tree.

Theorem: Consider a binary tree T with n internal nodes and an internal
path length of I. The external path length of T is given by

In other words, Theorem says that the difference between the internal
path length and the external path length of a binary tree with n internal
nodes is E-I=2n.

extbfProof (By induction).

Base Case: Consider a binary tree with one internal node and internal
path length of zero. Such a tree has exactly two empty subtrees
immediately below the root and its external path length is two.
Therefore, the theorem holds for n=1.

Inductive Hypothesis: Assume that the theorem holds for
for some . Consider an arbitrary tree, , that has k

internal nodes. According to Theorem , has k+1 external nodes. Let
and be the internal and external path length of , respectively,

According to the inductive hypothesis, .

Consider what happens when we create a new tree by removing an
external node from and replacing it with an internal node that has two
empty subtrees. Clearly, the resulting tree has k+1 internal nodes.
Furthermore, suppose the external node we remove is at depth d. Then

57

http://www.brpreiss.com/books/opus5/html/page308.html#theoremsrchtreei
http://www.brpreiss.com/books/opus5/html/page257.html#theoremtreesi

CIT 341 DATA STRUCTURES

the internal path length of is and the external path
length of is .

The difference between the internal path length and the external path
length of is

Therefore, by induction on k, the difference between the internal path
length and the external path length of a binary tree with n internal nodes
is 2n for all .

Since the difference between the internal and external path lengths of
any tree with n internal nodes is 2n, then we can say the same thing
about the average internal and external path lengths average over all
search trees. Therefore, E(n), the average external path length of a
binary search tree is given by

A binary search tree with internal n nodes has n+1 external nodes. Thus,
the average depth of an external node of a binary search tree with n
internal nodes, , is given by

These very nice results are the raison d'être for binary search trees.
What they say is that the average number of nodes visited during either
a successful or an unsuccessful search in the average binary search tree
having n nodes is . We must remember, however, that these
results are premised on the assumption that all possible search trees of n
nodes are equiprobable. It is important to be aware that in practice, this
may not always be the case.

3.5 AVL Search Trees

The problem with binary search trees is that while the average running
times for search, insertion, and withdrawal operations are all ,

58

CIT 341 DATA STRUCTURES

any one operation is still O(n) in the worst case. This is so because we
cannot say anything in general about the shape of the tree.

For example, consider the two binary search trees shown in Figure .
Both trees contain the same set of keys. The tree, is obtained by
starting with an empty tree and inserting the keys in the following order

The tree is obtained by starting with an empty tree and inserting the
keys in this order

Clearly, is a better search tree than . In fact, since is a perfect
binary tree, its height is . Therefore, all three operations,
search, insertion, and withdrawal, have the same worst case asymptotic
running time .

The reason that is better than is that it is the more balanced tree. If
we could ensure that the search trees we construct are balanced, then the
worst-case running time of search, insertion, and withdrawal, could be
made logarithmic rather than linear. But under what conditions is a tree
balanced?

If we say that a binary tree is balanced if the left and right subtrees of
every node have the same height, then the only trees which are balanced
are the perfect binary trees. A perfect binary tree of height h, has exactly

internal nodes. Therefore, it is only possible to create perfect
trees with n nodes for . Clearly, this is an
unsuitable balance condition because it is not possible to create a
balanced tree for every n.

What are the characteristics of a good balance condition?

1. A good balance condition ensures that the height of a tree with n
nodes is .

2. A good balance condition can be maintained efficiently. That is, the
additional work necessary to balance the tree when an item is
inserted or deleted is O(1).

59

http://www.brpreiss.com/books/opus5/html/page304.html#figtree13

CIT 341 DATA STRUCTURES

Adelson-Velskii and Landis were the first to propose the following
balance condition and show that it has the desired characteristics.

Definition (AVL Balance Condition): An empty binary tree is AVL
balanced. A non-empty binary tree, , is AVL balanced if
both and are AVL balanced and

where is the height of and is the height of .

Clearly, all perfect binary trees are AVL balanced. What is not so clear
is that heights of all trees that satisfy the AVL balance condition are
logarithmic in the number of internal nodes.

Theorem: The height, h, of an AVL balanced tree with n internal nodes
satisfies

extbfProof: The lower bound follows directly from Theorem . It is in
fact true for all binary trees regardless of whether they are AVL
balanced or not.

To determine the upper bound, we turn the problem around and ask the
question, what is the minimum number of internal nodes in an AVL
balanced tree of height h?

Let represent an AVL balanced tree of height h which has the smallest
possible number of internal nodes, say . Clearly, must have at least
one subtree of height h-1 and that subtree must be . To remain AVL
balanced, the other subtree can have height h-1 or h-2. Since we want
the smallest number of internal nodes, it must be . Therefore, the
number of internal nodes in is , where .

Clearly, contains a single internal node, so . Similarly,
contains exactly two nodes, so . Thus, is given by the
recurrence

60

http://www.brpreiss.com/books/opus5/html/page257.html#theoremtreesii

CIT 341 DATA STRUCTURES

The remarkable thing about Equation is its similarity with the
definition of Fibonacci numbers (Equation). In fact, it can easily be
shown by induction that

for all , where is the Fibonacci number.

Base Cases

Inductive Hypothesis: Assume that for .
Then

Therefore, by induction on k, , for all .

According to Theorem , the Fibonacci numbers are given by

where and . Furthermore, since

, .
Therefore,

This completes the proof of the upper bound.

So, we have shown that the AVL balance condition satisfies the first
criterion of a good balance condition--the height of an AVL balanced
tree with n internal nodes is . What remains to be shown is that
the balance condition can be efficiently maintained. To see that it can,
we need to look at an implementation.

3. 6 Implementing AVL Trees

61

http://www.brpreiss.com/books/opus5/html/page319.html#eqnsrchtreeavl
http://www.brpreiss.com/books/opus5/html/page75.html#eqnasymptoticfibonacci
http://www.brpreiss.com/books/opus5/html/page75.html#theoremasymptoticfibonacci

CIT 341 DATA STRUCTURES

Having already implemented a binary search tree class,
BinarySearchTree, we can make use of much of the existing code
to implement an AVL tree class. Programme introduces the
AVLTree class which extends the BinarySearchTree class
introduced in Programme . The AVLTree class inherits most of its
functionality from the binary tree class. In particular, it uses the
inherited insert and withdraw methods! However, the inherited
balance, attachKey and detachKey methods are overridden and
a number of new methods are declared.

Programme1.0: AVLTree fields.

Programme indicates that an additional field is added in the
AVLTree class. This turns out to be necessary because we need to be
able to determine quickly, i.e., in O(1) time, that the AVL balance
condition is satisfied at a given node in the tree. In general, the running
time required to compute the height of a tree containing n nodes is O(n).
Therefore, to determine whether the AVL balance condition is satisfied
at a given node, it is necessary to traverse completely the subtrees of the
given node. But this cannot be done in constant time.

To make it possible to verify the AVL balance condition in constant
time, the field, height, has been added. Thus, every node in an
AVLTree keeps track of its own height. In this way, it is possible for
the getHeight method to run in constant time--all it needs to do is to
return the value of the height field. And this makes it possible to test
whether the AVL balanced condition is satisfied at a given node in
constant time.

3.6.1 Inserting Items into an AVL Tree

Inserting an item into an AVL tree is a two-part process. First, the item
is inserted into the tree using the usual method for insertion in binary
search trees. After the item has been inserted, it is necessary to check
that the resulting tree is still AVL balanced and to balance the tree when
it is not.

62

http://www.brpreiss.com/books/opus5/html/page320.html#progAVLTreea
http://www.brpreiss.com/books/opus5/html/page311.html#progBinarySearchTreea
http://www.brpreiss.com/books/opus5/html/page320.html#progAVLTreea

CIT 341 DATA STRUCTURES

Just as in a regular binary search tree, items are inserted into AVL trees
by attaching them to the leaves. To find the correct leaf, we pretend that
the item is already in the tree and follow the path taken by the find
method to determine where the item should go. Assuming that the item
is not already in the tree, the search is unsuccessful and terminates at an
external, empty node. The item to be inserted is placed in that external
node.

Inserting an item in a given external node affects potentially the heights
of all of the nodes along the access path , i.e., the path from the root to
that node. Of course, when an item is inserted in a tree, the height of the
tree may increase by one. Therefore, to ensure that the resulting tree is
still AVL balanced, the heights of all the nodes along the access path
must be recomputed and the AVL balance condition must be checked.

Sometimes increasing the height of a subtree does not violate the AVL
balance condition. For example, consider an AVL tree .
Let and be the heights of and , respectively. Since T is an AVL
tree, then . Now, suppose that . Then, if we
insert an item into , its height may increase by one to . The
resulting tree is still AVL balanced since . In fact, this
particular insertion actually makes the tree more balanced! Similarly if

initially, an insertion in either subtree will not result in a
violation of the balance condition at the root of T.

On the other hand, if and the insertion of an item into the
left subtree increases the height of that tree to , the AVL
balance condition is no longer satisfied because . Therefore,
it is necessary to change the structure of the tree to bring it back into
balance.

3.6.2 Removing Items from an AVL Tree

The method for removing items from an AVL tree is inherited from the
BinarySearchTree class in the same way as AVL insertion. All the
differences are encapsulated in the detachKey and balance
methods. The balance method is discussed above. The detachKey
method is defined in the programme below:

63

CIT 341 DATA STRUCTURES

Programme 1.1: AVLTree class detachKey method

SELF ASSESSMENT EXERCISE

When is a search said to be successful?

4.0 CONCLUSION

In this unit, you have learned about trees. You have also learned about
binary trees and tree traversals. Finally, you have been able to learn how
to implement trees.

5.0 SUMMARY

What you have learned in this unit is focused on trees, the common
types and implementation of trees.

6.0 TUTOR-MARKED ASSIGNMENT

What are the characteristics of a good balance condition?

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to
Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),
199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.
Ford, W. and Topp, W. (2002). Data Structures with C++ Using the

STL (2nd Edition), New Jersey: Prentice Hall.

64

CIT 341 DATA STRUCTURES

Shaffer, Clifford A. A. (1998). Practical Introduction to Data
Structures and Algorithm Analysis, Prentice Hall, pp. 77–102.

Bruno, R. P. Data Structures and Algorithms with Object-Oriented
Design Patterns in Java.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

UNIT 4 GARBAGE COLLECTION AND OTHER HEAP

CONTENTS

65

http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.indiana.edu/~ucspubs/b131/
http://www.gnu.org/manual/emacs-20.3/emacs.html

CIT 341 DATA STRUCTURES

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 What is Garbage?
3.2 Reduce, Reuse, Recycle
3.3 Helping the Garbage Collector
3.4 Reference Counting Garbage Collection
3.5 Mark-and-Sweep Garbage Collection
3.6 The Fragmentation Problem

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit describes garbage and garbage collection. It describes three
strategies for reducing garbage cost. Finally, it discusses the
fragmentation problem.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

•describe garbage
•explain garbage collection
•describe the mark-and-sweep garbage collection
•explain the fragmentation problem.

3.0 MAIN CONTENT

3.1 What is Garbage?

While Java provides the means to create an object, the language does
not provide the means to destroy an object explicitly. As long as a
programme contains a reference to some object instance, the Java virtual
machine is required to ensure that the object exists. If the Java language
provided the means to destroy objects, it would be possible for a
programme to destroy an object even when a reference to that object still
existed. This situation is unsafe because the programme could attempt
later to invoke a method on the destroyed object, leading to
unpredictable results.

The situation which arises when a programme contains a reference (or
pointer) to a destroyed object is called a dangling reference (or dangling

66

CIT 341 DATA STRUCTURES

pointer). By disallowing the explicit destruction of objects, Java
eliminates the problem of dangling references.

Languages that support the explicit destruction of objects typically
require the programme to keep track of all the objects it creates and to
destroy them explicitly when they are not longer needed. If a
programme somehow loses track of an object it has created then that
object cannot be destroyed. And if the object is never destroyed, the
memory occupied by that object cannot be used again by the
programme.

A programme that loses track of objects before it destroys them suffers
from a memory leak. If we run a programme that has a memory leak for
a very long time, it is quite possible that it will exhaust all the available
memory and eventually fail because no new objects can be created. It
would seem that by disallowing the explicit destruction of objects, a
Java programme is doomed to eventual failure due to memory
exhaustion. Indeed, this would be the case, were it not for the fact that
the Java language specification requires the Java virtual machine to be
able to find unreferenced objects and to reclaim the memory locations
allocated to those objects.

An unreferenced object is called garbage and the process of finding all
the unreferenced objects and reclaiming the storage is called garbage
collection. Just as the Java language does not specify precisely how
objects are to be represented in the memory of a virtual machine, the
language specification also does not stipulate how the garbage collection
is to be implemented or when it should be done.

Garbage collection is usually invoked when the total amount of memory
allocated to a Java programme exceeds some threshold. Typically, the
programme is suspended while the garbage collection is done.

In the analyses presented in the preceding chapters, we assume that the
running time of the new operator is a fixed constant, and we
completely ignore the garbage collection overhead. In reality, neither
assumption is valid. Even if sufficient memory is available, the time
required by the Java virtual machine to locate an unused region of
memory depends very much on the data structures used to keep track of
the memory regions allocated to a programme as well as on the way in
which a programme uses the objects it creates. Furthermore, invoking
the new operator may trigger the garbage collection process. The
running time for garbage collection can be a significant fraction of the
total running time of a programme.

67

CIT 341 DATA STRUCTURES

3.2 Reduce, Reuse, Recycle

Modern societies produce an excessive amount of waste. The costs of
doing so include the direct costs of waste disposal as well as the damage
to the environment caused by the manufacturing, distribution, and
ultimate disposal of products. The slogan ``reduce, reuse, recycle,''
prescribes three strategies for reducing the environmental costs
associated with waste materials.

These strategies apply equally well to Java programmes! A Java
programme that creates excessive garbage may require more frequent
garbage collection than a programme that creates less garbage. Since
garbage collection can take a significant amount of time to do, it makes
sense to use strategies that decrease the cost of garbage collection.

3.3 Helping the Garbage Collector

The preceding section presents strategies for avoiding garbage
collection. However, there are times when garbage collection is actually
desirable. Imagine a programme that requires a significant amount of
memory. Suppose the amount of memory required is very close to the
amount of memory available for use by the Java virtual machine. The
performance of such a programme is going to depend on the ability of
the garbage collector to find and reclaim as much unused storage as
possible. Otherwise, the garbage collector will run too often. In this
case, it pays to help out the garbage collector.

How can we help out the garbage collector? Since the garbage collector
collects only unreferenced objects it is necessary to eliminate all
references to objects which are no longer needed. This is done by
assigning the value null to every variable that refers to an object that is
no longer needed. Consequently, helping the garbage collector requires
a programme to do a bit more work.

3.4 Reference Counting Garbage Collection

The difficulty in garbage collection is not the actual process of
collecting the garbage--it is the problem of finding the garbage in the
first place. An object is considered to be garbage when no references to
that object exist. But how can we tell when no references to an object
exist?
A simple expedient is to keep track in each object, the total number of
references to that object. That is, we add a special field to each object
called a reference count. The idea is that the reference count field is not
accessible to the Java programme. Instead, the reference count field is
updated by the Java virtual machine itself.

68

CIT 341 DATA STRUCTURES

Consider the statement:

Object p = new Integer (57);
which creates a new instance of the Integer class. Only a single
variable, p, refers to the object. Thus, its reference count should be one.

Figure: Objects with reference counters.

Now consider the following sequence of statements:
Object p = new Integer (57);
Object q = p;

This sequence creates a single Integer instance. Both p and q refer to
the same object. Therefore, its reference count should be two.

In general, every time one reference variable is assigned to another, it
may be necessary to update several reference counts. Suppose p and q
are both reference variables. The assignment
p = q;
would be implemented by the Java virtual machine as follows:

if (p != q)
{
if (p != null)
--p.refCount;
p = q;
if (p != null)
++p.refCount;
}

For example, suppose p and q are initialised as follows:

Object p = new Integer (57);
Object q = new Integer (99);

As shown in Figure (a), two Integer objects are created, each with
a reference count of one. Now, suppose we assign q to p using the code
sequence given above. Figure (b) shows that after the assignment,
both p and q refer to the same object--its reference count is two. And

69

http://www.brpreiss.com/books/opus5/html/page421.html#figgarbage2
http://www.brpreiss.com/books/opus5/html/page421.html#figgarbage2

CIT 341 DATA STRUCTURES

the reference count on Integer (57) has gone to zero which
indicates that it is garbage.

Figure: Reference counts before and after the assignment p = q.

The costs of using reference counts are twofold: First, every object
requires the special reference count field. Typically, this means an extra
word of storage must be allocated in each object. Second, every time
one reference is assigned to another, the reference counts must be
adjusted as above. This increases significantly the time taken by
assignment statements.

The advantage of using reference counts is that garbage is easily
identified. When it becomes necessary to reclaim the storage from
unused objects, the garbage collector needs only to examine the
reference count fields of all the objects that have been created by the
programme. If the reference count is zero, the object is garbage.

It is not necessary to wait until there is insufficient memory before
initiating the garbage collection process. We can reclaim memory used
by an object immediately when its reference goes to zero. Consider what
happens if we implement the Java assignment p = q in the Java virtual
machine as follows:

if (p != q)
{
if (p != null)
if (--p.refCount == 0)
heap.release (p);
p = q;
if (p != null)
++p.refCount;
}
Notice that the release method is invoked immediately when the
reference count of an object goes to zero, i.e., when it becomes garbage.
In this way, garbage may be collected incrementally as it is created.

70

CIT 341 DATA STRUCTURES

3.5 Mark-and-Sweep Garbage Collection

This section presents the mark-and-sweep garbage collection
algorithm. The mark-and-sweep algorithm was the first garbage
collection algorithm to be developed that is able to reclaim cyclic data
structures. Variations of the mark-and-sweep algorithm continue to be
among the most commonly used garbage collection techniques.

When using mark-and-sweep, unreferenced objects are not reclaimed
immediately. Instead, garbage is allowed to accumulate until all
available memory has been exhausted. When that happens, the
execution of the programme is suspended temporarily while the mark-
and-sweep algorithm collects all the garbage. Once all unreferenced
objects have been reclaimed, the normal execution of the programme
can resume.

The mark-and-sweep algorithm is called a tracing garbage collector
because is traces out the entire collection of objects that are directly or
indirectly accessible by the programme. The objects that a programme
can access directly are those objects which are referenced by local
variables on the processor stack as well as by any static variables that
refer to objects. In the context of garbage collection, these variables are
called the roots. An object is indirectly accessible if it is referenced by a
field in some other (directly or indirectly) accessible object. An
accessible object is said to be live. Conversely, an object which is not
live is garbage.

The mark-and-sweep algorithm consists of two phases: In the first
phase, it finds and marks all accessible objects. The first phase is called
the mark phase. In the second phase, the garbage collection algorithm
scans through the heap and reclaims all the unmarked objects. The
second phase is called the sweep phase. The algorithm can be expressed
as follows:

for each root variable r
mark (r);
sweep ();

In order to distinguish the live objects from garbage, we record the state
of an object in each object. That is, we add a special boolean field to
each object called, say, marked. By default, all objects are unmarked
when they are created. Thus, the marked field is initially false.
An object p and all the objects indirectly accessible from p can be
marked by using the following recursive mark method:

71

CIT 341 DATA STRUCTURES

void mark (Object p)

if (!p.marked)

p.marked = true;
for each Object q referenced by p
mark (q);

Notice that this recursive mark algorithm does nothing when it
encounters an object that has already been marked. Consequently, the
algorithm is guaranteed to terminate. And it terminates only when all
accessible objects have been marked.

In its second phase, the mark-and-sweep algorithm scans through all the
objects in the heap, in order to locate all the unmarked objects. The
storage allocated to the unmarked objects is reclaimed during the scan.
At the same time, the marked field on every live object is set back to
false in preparation for the next invocation of the mark-and-sweep
garbage collection algorithm:

void sweep ()

for each Object p in the heap

if (p.marked)
p.marked = false
else
heap.release (p);

Figure illustrates the operation of the mark-and-sweep garbage
collection algorithm. Figure (a) shows the conditions before garbage
collection begins. In this example, there is a single root variable.
Figure (b) shows the effect of the mark phase of the algorithm. At this
point, all live objects have been marked. Finally, Figure (c) shows the
objects left after the sweep phase has been completed. Only live objects
remain in memory and the marked fields have all been set to false
again.

72

http://www.brpreiss.com/books/opus5/html/page424.html#figgarbage5
http://www.brpreiss.com/books/opus5/html/page424.html#figgarbage5
http://www.brpreiss.com/books/opus5/html/page424.html#figgarbage5
http://www.brpreiss.com/books/opus5/html/page424.html#figgarbage5

CIT 341 DATA STRUCTURES

Figure: Mark-and-sweep garbage collection

Because the mark-and-sweep garbage collection algorithm traces out the
set of objects accessible from the roots, it is able to correctly identify
and collect garbage even in the presence of reference cycles. This is the
main advantage of mark-and-sweep over the reference counting
technique presented in the preceding section. A secondary benefit of the
mark-and-sweep approach is that the normal manipulations of reference
variables incur no overhead.

The main disadvantage of the mark-and-sweep approach is the fact that
normal programme execution is suspended while the garbage collection
algorithm runs. In particular, this can be a problem in a programme that
interacts with a human user or that must satisfy real-time execution
constraints. For example, an interactive application that uses mark-and-
sweep garbage collection becomes unresponsive periodically.

73

CIT 341 DATA STRUCTURES

3.6 The Fragmentation Problem

Fragmentation is a phenomenon that occurs in a long-running
programme that has undergone garbage collection several times. The
problem is that objects tend to become spread out in the heap. Live
objects end up being separated by many, small unused memory regions.
The problem in this situation is that it may become impossible to
allocate memory for an object. While there may indeed be sufficient
unused memory, the unused memory is not contiguous. Since objects
typically occupy consecutive memory locations, it is impossible to
allocate storage.

The mark-and-sweep algorithm does not address fragmentation. Even
after reclaiming the storage from all garbage objects, the heap may still
be too fragmented to allocate the required amount of space. The next
section presents an alternative to the mark-and-sweep algorithm that
also defragments (or compacts) the heap.

SELF ASSESSMENT EXERCISE 1

What do you understand by garbage collection?

SELF ASSESSMENT EXERCISE 2

Describe three strategies for reducing garbage cost.

4.0 CONCLUSION

In this unit, you have learned about garbage and garbage collection. You
have also been able to learn about reference counting garbage collection
and mark-and-sweep garbage collection. Finally, you have been able to
understand the fragmentation problem.

5.0 SUMMARY

What you have learned borders on the garbage, garbage collection and
the fragmentation problem.

6.0 TUTOR-MARKED ASSIGNMENT

The mark-and-sweep algorithm is referred to as a tracing garbage
collection. True or False? Discuss.

74

CIT 341 DATA STRUCTURES

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to
Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),
199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the
STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A. (1998). Practical Introduction to Data
Structures and Algorithm Analysis, Prentice Hall, pp. 77–102.

Bruno, R. P. Data Structures and Algorithms with Object-Oriented
Design Patterns in Java.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

75

http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.indiana.edu/~ucspubs/b131/
http://www.gnu.org/manual/emacs-20.3/emacs.html

CIT 341 DATA STRUCTURES

UNIT 5 MEMORY ALLOCATION

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Memory Allocation
3.2 First Fit
3.3 Best Fit
3.4 Fragmentation
3.5 Buddy System
3.6 Suballocators

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit describes the process of memory allocation. Different
techniques of memory allocation are equally considered.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

•explain the concept of memory allocation
•discuss the first fit allocation technique
•explain the best fit allocation technique
•describe the buddy system.

3.0 MAIN CONTENT

3.1 Memory Allocation

Memory allocation is the process of assigning blocks of memory on
request. Typically, the allocator receives memory from the operating
system in a small number of large blocks that it must divide up to satisfy
the requests for smaller blocks. It must also make any returned blocks
available for reuse. There are many common ways to perform this, with
different strengths and weaknesses. A few are described briefly here:

•First fit

76

http://www.memorymanagement.org/articles/alloc.html#first.fit%23first.fit
http://www.memorymanagement.org/glossary/a.html#allocator

CIT 341 DATA STRUCTURES

•Best fit
•Buddy system
•Suballocators

These techniques can often be used in combination.

3.2 First Fit

In the first fit algorithm, the allocator keeps a list of free blocks (known
as the free list) and, on receiving a request for memory, scans along the
list for the first block that is large enough to satisfy the request. If the
chosen block is significantly larger than that requested, then it is usually
split, and the remainder added to the list as another free block.

The first fit algorithm performs reasonably well, as it ensures that
allocations are quick. When recycling free blocks, there is a choice as to
where to add the blocks to the list effectively in order the free list is
kept:

3.3 Best Fit

The best fit is the allocation policy that always allocates from the
smallest suitable free block. Suitable allocation mechanisms include
sequential fit searching for a perfect fit, first fit on a size-ordered free
block chain, segregated fits, and indexed fits. Many good fit allocators
are also described as best fit.

In theory, best fit may exhibit bad fragmentation, but in practice, this is
not commonly observed.

3.4 Fragmentation

Fragmentation is the inability to use memory because of the
arrangement of memory already in use. It is usually divided into external
fragmentation and internal fragmentation.

3.5 Buddy System

In a buddy system, the allocator will only allocate blocks of certain
sizes, and has many free lists, one for each permitted size. The permitted
sizes are usually either powers of two, or form a Fibonacci sequence
(see below for example), such that any block except the smallest, can be
divided into two smaller blocks of permitted sizes.

When the allocator receives a request for memory, it rounds the
requested size off to a permitted size, and returns the first block from

77

http://www.memorymanagement.org/glossary/i.html#internal.fragmentation
http://www.memorymanagement.org/glossary/e.html#external.fragmentation
http://www.memorymanagement.org/glossary/e.html#external.fragmentation
http://www.memorymanagement.org/glossary/m.html#memory-1
http://www.memorymanagement.org/glossary/f.html#fragmentation
http://www.memorymanagement.org/glossary/b.html#best.fit%23best.fit
http://www.memorymanagement.org/glossary/g.html#good.fit
http://www.memorymanagement.org/glossary/i.html#indexed.fit
http://www.memorymanagement.org/glossary/s.html#segregated.fit
http://www.memorymanagement.org/glossary/f.html#free.block.chain
http://www.memorymanagement.org/glossary/f.html#free.block.chain
http://www.memorymanagement.org/glossary/f.html#first.fit
http://www.memorymanagement.org/glossary/p.html#perfect.fit
http://www.memorymanagement.org/glossary/s.html#sequential.fit
http://www.memorymanagement.org/glossary/f.html#free.block
http://www.memorymanagement.org/glossary/a.html#allocation.policy
http://www.memorymanagement.org/glossary/f.html#free.list
http://www.memorymanagement.org/glossary/f.html#first.fit
http://www.memorymanagement.org/articles/alloc.html#suballocator%23suballocator
http://www.memorymanagement.org/articles/alloc.html#buddy.system%23buddy.system

CIT 341 DATA STRUCTURES

that size's free list. If the free list for that size is empty, the allocator
splits a block from a larger size and returns one of the pieces, adding the
other to the appropriate free list.

When blocks are recycled, there may be some attempt to merge adjacent
blocks into ones of a larger permitted size (coalescence). To make this
easier, the free lists may be stored in order of address. The main
advantage of the buddy system is that coalescence is cheap because the
"buddy" of any free block can be calculated from its address.

A binary buddy heap before allocation

A binary buddy heap after allocating a 8 kB block

A binary buddy heap after allocating a 10 kB block; note the 6 kB
wasted because of rounding off

For example, an allocator in a binary buddy system might have sizes of
16, 32,... 64 kB. It might start off with a single block of 64 kB. If the
application requests a block of 8 kB, the allocator would check its 8 kB
free list and find no free blocks of that size. It would then split the 64 kB
block into two block of 32 kB, split one of them into two blocks of 16
kB, and split one of them into two blocks of 8 kB. The allocator would
then return one of the 8 kB blocks to the application and keep the
remaining three blocks of 8 kB, 16 kB, and 32 kB on the appropriate
free lists. If the application then requested a block of 10 kB, the
allocator would round this request off to 16 kB, and return the 16 kB
block from its free list, wasting 6 kB in the process.

A Fibonacci buddy system might use block sizes 16, 32, 48, 80, 128,
208,... bytes, such that each size is the sum of the two preceding sizes.
When splitting a block from one free list, the two parts get added to the
two preceding free lists.

A buddy system can work very well or very badly, depending on how
the chosen sizes interact with typical requests for memory and what the

78

http://www.memorymanagement.org/glossary/c.html#coalesce

CIT 341 DATA STRUCTURES

pattern of returned blocks is. The rounding typically leads to a
significant amount of wasted memory, which is called internal
fragmentation. This can be reduced by making the permitted block sizes
closer together.

3.6 Suballocators

There are many examples of application programmes that include
additional memory management code called a suballocator. A
suballocator obtains large blocks of memory from the system memory
manager and allocates the memory to the application in smaller pieces.
Suballocators are usually written for one of the following reasons:

•To avoid general inefficiency in the system memory manager;
•To take advantage of special knowledge of the application's memory
requirements that cannot be expressed to the system memory manager;
•To provide memory management services that the system memory
manager does not supply.

In general, suballocators are less efficient than having a single memory
manager that is well-written and has a flexible interface. It is also harder
to avoid memory management bugs if the memory manager is composed
of several layers, and if each application has its own variation of
suballocator.

Many applications have one or two sizes of blocks that form the vast
majority of their allocations. One of the most common uses of a
suballocator is to supply the application with objects of one size. This
greatly reduces the problem of external fragmentation. Such a
suballocator can have a very simple allocation policy.

There are dangers involved in making use of special knowledge of the
application's memory requirements. If those requirements change, then
the performance of the suballocator is likely to be much worse than that
of a general allocator. It is often better to have a memory manager that
can respond dynamically to changing requirements.

SELF ASSESSMENT EXERCISE 1

State the main advantage of the buddy system

SELF ASSESSMENT EXERCISE 2

What do you understand by the phrase ‘first fit’?
4.0 CONCLUSION

79

http://www.memorymanagement.org/glossary/e.html#external.fragmentation
http://www.memorymanagement.org/glossary/i.html#internal.fragmentation
http://www.memorymanagement.org/glossary/i.html#internal.fragmentation

CIT 341 DATA STRUCTURES

In this unit, you have learned about memory allocation. You have also
been able to learn about the first fit, best fit and buddy systems of
memory allocation.

5.0 SUMMARY

What you have learned borders on memory allocation and the
techniques of memory allocation.

6.0 TUTOR-MARKED ASSIGNMENT

Describe the buddy system.

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to
Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),
199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the
STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A, (1998). Practical Introduction to Data Structures
and Algorithm Analysis, Prentice Hall, pp. 77–102.

Bruno, R. P. Data Structures and Algorithms with Object-Oriented
Design Patterns in Java.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

MODULE 3 INTRODUCTION TO JAVA
PROGRAMMING

80

http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.indiana.edu/~ucspubs/b131/
http://www.gnu.org/manual/emacs-20.3/emacs.html

CIT 341 DATA STRUCTURES

Unit 1 Object-Oriented Programming Concepts
Unit 2 Variables
Unit 3 Operators
Unit 4 Expressions, Statements and Blocks
Unit 5 Control Flow Statements

UNIT 1 OBJECT-ORIENTED PROGRAMMING
CONCEPTS

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Objects
3.2 What is a Class?
3.3 Inheritance
3.4 What is an Interface?
3.5 What is a Package?
3.6 Object-Oriented Programming

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

If you've never used an object-oriented programming language before,
you'll need to learn a few basic concepts before you can begin writing
any code. This unit will introduce you to objects, classes, inheritance,
interfaces, and packages. Each discussion focuses on how these
concepts relate to the real world, while simultaneously providing an
introduction to the syntax of the Java programming language.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

•describe an object
•explain what a class is
•define an Inheritance
•explain the term ‘object-oriented programming’.
3.0 MAIN CONTENT

81

CIT 341 DATA STRUCTURES

3.1 Objects

An object is a software bundle of related state and behaviour. Software
objects are often used to model the real-world objects that you find in
everyday life. This unit explains how state and behaviour are
represented within an object, introduces the concept of data
encapsulation, and explains the benefits of designing your software in
this manner.

Objects are key to understanding object-oriented technology. Look
around right now and you'll find many examples of real-world objects:
your dog, your desk, your television set, your bicycle.

Real-world objects share two characteristics: They all have state and
behaviour. Dogs have state (name, colour, breed, hungry) and behaviour
(barking, fetching, wagging tail). Bicycles also have state (current gear,
current pedal cadence, current speed) and behaviour (changing gear,
changing pedal cadence, applying brakes). Identifying the state and
behaviour for real-world objects is a great way to begin thinking in
terms of object-oriented programming.

Take a minute right now to observe the real-world objects that are in
your immediate area. For each object that you see, ask yourself two
questions: "What possible states can this object be in?" and "What
possible behaviour can this object put up?” Make sure to write down
your observations. As you do, you'll notice that real-world objects vary
in complexity; your desktop lamp may have only two possible states (on
and off) and two possible behaviours (turn on, turn off), but your
desktop radio might have additional states (on, off, current volume,
current station) and behaviour (turn on, turn off, increase volume,
decrease volume, seek, scan, and tune). You may also notice that some
objects, in turn, will also contain other objects. These real-world
observations all translate into the world of object-oriented programming.

A software object
Software objects are conceptually similar to real-world objects: they too
consist of state and related behaviour. An object stores its state in fields

82

CIT 341 DATA STRUCTURES

(variables in some programming languages) and exposes its behaviour
through methods (functions in some programming languages). Methods
operate on an object's internal state and serve as the primary mechanism
for object-to-object communication. Hiding internal state and requiring
all interaction to be performed through an object's methods is known as
data encapsulation – a fundamental principle of object-oriented
programming.

Consider a bicycle, for example:

A bicycle modeled as a software object

By attributing state (current speed, current pedal cadence, and current
gear) and providing methods for changing that state, the object remains
in control of how the outside world is allowed to use it. For example, if
the bicycle only has six gears, a method to change gears could reject any
value that is less than 1 or greater than 6.

Bundling code into individual software objects provides a number of
benefits, including:

1. Modularity: The source code for an object can be written and
maintained independently of the source code for other objects. Once
created, an object can be easily passed around inside the system.

2. Information-hiding: By interacting only with an object's methods,
the details of its internal implementation remain hidden from the
outside world.

3. Code re-use: If an object already exists (perhaps written by another
software developer), you can use that object in your programme.
This allows specialists to implement/test/debug complex, task-
specific objects, which you can then trust to run in your own code.

4. Pluggability and debugging ease: If a particular object turns out to
be problematic, you can simply remove it from your application and
plug in a different object as its replacement. This is analogous to

83

CIT 341 DATA STRUCTURES

fixing mechanical problems in the real world. If a bolt breaks, you
replace it, not the entire machine.

3.2 What is a Class?

A class is a blueprint or prototype from which objects are created.
This section defines a class that models the state and behaviour of a
real-world object. It intentionally focuses on the basics, showing how
even a simple class can clearly model state and behaviour.

In the real world, you'll often find many individual objects all of the
same kind. There may be thousands of other bicycles in existence, all of
the same make and model. Each bicycle was built from the same set of
blueprints and therefore contains the same components. In
object-oriented terms, we say that your bicycle is an instance of the
class of objects known as bicycles. A class is the blueprint from which
individual objects are created.

The following Bicycle class is one possible implementation of a
bicycle:

class Bicycle {
int cadence = 0;
int speed = 0;
int gear = 1;

void changeCadence(int newValue) {
cadence = newValue;
}

void changeGear(int newValue) {
gear = newValue;
}

void speedUp(int increment) {
speed = speed + increment;
}

void applyBrakes(int decrement) {
speed = speed - decrement;
}

void printStates() {
System.out.println("cadence:"+cadence+"speed:"+speed+" gear:"+gear);
}

84

http://java.sun.com/docs/books/tutorial/java/concepts/class.html

CIT 341 DATA STRUCTURES

}

The syntax of the Java programmeming language will look new to you.
The fields cadence, speed, and gear represent the object's state,
and the methods (changeCadence, changeGear, speedUp etc.)
define its interaction with the outside world.

You may have noticed that the Bicycle class does not contain a main
method. That's because it's not a complete application; it's just the
blueprint for bicycles that might be used in an application. The
responsibility of creating and using new Bicycle objects belongs to
some other class in your application.

Here's a BicycleDemo class that creates two separate Bicycle
objects and invokes their methods:

class BicycleDemo {
public static void main(String[] args) {

// Create two different Bicycle objects
Bicycle bike1 = new Bicycle();
Bicycle bike2 = new Bicycle();

// Invoke methods on those objects
bike1.changeCadence(50);
bike1.speedUp(10);
bike1.changeGear(2);
bike1.printStates();
bike2.changeCadence(50);
bike2.speedUp(10);
bike2.changeGear(2);
bike2.changeCadence(40);
bike2.speedUp(10);
bike2.changeGear(3);
bike2.printStates();
}
}

The output of this test prints the ending pedal cadence, speed, and gear
for the two bicycles:

cadence:50 speed:10 gear:2
cadence:40 speed:20 gear:3

85

CIT 341 DATA STRUCTURES

3.3 Inheritance

Inheritance provides a powerful and natural mechanism for organising
and structuring your software. This section explains how classes inherit
state and behaviour from their superclasses, and explains how to derive
one class from another using the simple syntax provided by the Java
programming language.

Different kinds of objects often have a certain amount in common with
each other. Mountain bikes, road bikes, and tandem bikes, for example,
all share the characteristics of bicycles (current speed, current pedal
cadence, current gear). Yet, each also defines additional features that
make them different: tandem bicycles have two seats and two sets of
handlebars; road bikes have drop handlebars; some mountain bikes have
an additional chain ring, giving them a lower gear ratio.

Object-oriented programming allows classes to inherit commonly used
state and behaviour from other classes. In this example, Bicycle now
becomes the superclass of MountainBike, RoadBike, and
TandemBike. In the Java programming language, each class is
allowed to have one direct superclass, and each superclass has the
potential for an unlimited number of subclasses:

A hierarchy of bicycle classes

The syntax for creating a subclass is simple. At the beginning of your
class declaration, use the extends keyword, followed by the name of
the class to inherit from:

86

http://java.sun.com/docs/books/tutorial/java/concepts/inheritance.html

CIT 341 DATA STRUCTURES

class MountainBike extends Bicycle {

// new fields and methods defining a mountain bike would go here

}
This gives MountainBike all the same fields and methods as
Bicycle, yet allows its code to focus exclusively on the features that
make it unique. This makes code for your subclasses easy to read.
However, you must take care to properly document the state and
behaviour that each superclass defines, since that code will not appear in
the source file of each subclass.

3.4 What is an Interface?

An interface is a contract between a class and the outside world. When a
class implements an interface, it promises to provide the behaviour
published by that interface. This section defines a simple interface and
explains the necessary changes for any class that implements it.

In its most common form, an interface is a group of related methods
with empty bodies. A bicycle's behaviour, if specified as an interface,
might appear as follows:

interface Bicycle {

void changeCadence(int newValue);

void changeGear(int newValue);

void speedUp(int increment);

void applyBrakes(int decrement);

}
To implement this interface, the name of your class would change (to
ACMEBicycle, for example), and you'd use the implements
keyword in the class declaration:

class ACMEBicycle implements Bicycle {

// remainder of this class implemented as before

}
Implementing an interface allows a class to become more formal about
the behaviour it promises to provide. Interfaces form a contract between
the class and the outside world, and this contract is enforced at build

87

http://java.sun.com/docs/books/tutorial/java/concepts/interface.html

CIT 341 DATA STRUCTURES

time by the compiler. If your class claims to implement an interface, all
methods defined by that interface must appear in its source code before
the class will successfully compile.

3.5 What is a Package?

A package is a namespace for organising classes and interfaces in a
logical manner. Placing your code into packages makes large software
projects easier to manage. This section explains why this is useful, and
introduces you to the Application Programming Interface (API)
provided by the Java platform.

Conceptually, you can think of packages as being similar to different
folders on your computer. You might keep HTML pages in one folder,
images in another, and scripts or applications in yet another. Because
software written in the Java programming language can be composed of
hundreds or thousands of individual classes, it makes sense to keep
things organised by placing related classes and interfaces into packages.
The Java platform provides an enormous class library (a set of
packages) suitable for use in your own applications. This library is
known as the "Application Programming Interface” or “API for short.
Its packages represent the tasks most commonly associated with
general-purpose programming. For example, a String object contains
state and behaviour for character strings; a File object allows a
programmer to easily create, delete, inspect, compare, or modify a file
on the file system; a Socket object allows for the creation and use of
network sockets; various GUI objects control buttons and checkboxes
and anything else related to graphical user interfaces. There are literally
thousands of classes to choose from. This allows you, the programmer,
to focus on the design of your particular application, rather than the
infrastructure required to make it work.

3.6 Object-Oriented Programming

Object-oriented programming (OOP) is a programming language model
organised around "objects" rather than "actions" and data rather than
logic.

Historically, a programme has been viewed as a logical procedure that
takes input data, processes it, and produces output data. The
programming challenge was seen as how to write the logic, not how to
define the data. Object-oriented programming takes the view that what
we really care about are the objects we want to manipulate rather than
the logic required to manipulate them. Examples of objects range from
human beings (described by name, address, and so forth) to buildings
and floors (whose properties can be described and managed) down to

88

CIT 341 DATA STRUCTURES

the little widgets on your computer desktop (such as buttons and scroll
bars).

The first step in OOP is to identify all the objects you want to
manipulate and how they relate to each other, an exercise often known
as data modeling. Once you've identified an object, you generalise it as a
class of objects (think of Plato's concept of the "ideal" chair that stands
for all chairs) and define the kind of data it contains and any logic
sequences that can manipulate it. Each distinct logic sequence is known
as a method. A real instance of a class is called (no surprise here) an
"object" or, in some environments, an "instance of a class." The object
or class instance is what you run in the computer. Its methods provide
computer instructions and the class object characteristics provide
relevant data. You communicate with objects - and they communicate
with each other - with well-defined interfaces called messages.

The concepts and rules used in object-oriented programming provide
these important benefits:

•The concept of a data class makes it possible to define subclasses of
data objects that share some or all of the main class characteristics.
Called inheritance, this property of OOP forces a more thorough data
analysis, reduces development time, and ensures more accurate coding.
•Since a class defines only the data it needs to be concerned with, when
an instance of that class (an object) is run, the code will not be able to
accidentally access other programme data. This characteristic of data
hiding provides greater system security and avoids unintended data
corruption.
•The definition of a class is reusable not only by the programme for
which it is initially created but also by other object-oriented programmes
(and, for this reason, can be more easily distributed for use in networks).
•The concept of data classes allows a programmer to create any new
data type that is not already defined in the language itself.One of
the first object-oriented computer languages was called Smalltalk. C++
and Java are the most popular object-oriented languages today.
The Java programming language is designed especially for use in
distributed applications on corporate networks and the Internet.

4.0 CONCLUSION

In this unit you have learned about the object-oriented programming
concepts-objects, class, inheritance, interface and package. You have
also been able to understand object-oriented programming in general.
5.0 SUMMARY

89

CIT 341 DATA STRUCTURES

What you have learned borders on the basic concepts of object-oriented
programming. The subsequent units shall build upon these
fundamentals.

SELF ASSESSMENT EXERCISE 1

Define a class.

SELF ASSESSMENT EXERCISE 2

What is an inheritance?

6.0 TUTOR-MARKED ASSIGNMENT

What do you understand by object-oriented programming?

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to
Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),
199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the
STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A. (1998). Practical Introduction to Data
Structures and Algorithm Analysis, Prentice Hall, pp. 77–102.

Bruno, R. P. Data Structures and Algorithms with Object-Oriented
Design Patterns in Java.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/
UNIT 2 VARIABLES

90

http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.indiana.edu/~ucspubs/b131/
http://www.gnu.org/manual/emacs-20.3/emacs.html

CIT 341 DATA STRUCTURES

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Basics
3.2 Java Programming Variables
3.3 Naming Conventions

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

In this unit, you will learn about variables and their naming conventions.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

•define a variable
•describe types of java programming variables
•explain the naming conventions of variables.

3.0 MAIN CONTENT

3.1 Basics

In computer science, a variable (sometimes called an object or
identifier) is a symbolic representation used to denote a quantity or
expression.

However, in computer programming, a variable is a special value (also
often called a reference) that has the property of being able to be
associated with another value (or not). What is variable across time is
the association. Obtaining the value associated with a variable is often
called dereferencing, and creating or changing the association is called
assignment.

Variables are usually named by an identifier, but they can be
anonymous, and variables can be associated with other variables. In the
computing context, variable identifiers often consist of alphanumeric
strings. These identifiers are then used to refer to values in computer
memory. This convention of matching identifiers to values is but one of

91

http://en.wikipedia.org/wiki/Computer_memory
http://en.wikipedia.org/wiki/Computer_memory
http://en.wikipedia.org/wiki/Value_(computer_science)
http://en.wikipedia.org/wiki/String_(computer_science)

CIT 341 DATA STRUCTURES

several alternative programmatic conventions for accessing values in
computer memory.

3.2 Java Programming Variables

In the Java programming language, the terms "field" and "variable" are
both used; this is a common source of confusion among new developers,
since both often seem to refer to the same thing.

The Java programming language defines the following kinds of
variables:

•Instance Variables (Non-Static Fields): Technically speaking, objects
store their individual states in "non-static fields", that is, fields declared
without the static keyword. Non-static fields are also known as
instance variables because their values are unique to each instance of a
class (to each object, in other words); the currentSpeed of one
bicycle is independent of the currentSpeed of another.

•Class Variables (Static Fields): A class variable is any field declared
with the static modifier; this tells the compiler that there is exactly
one copy of this variable in existence, regardless of how many times the
class has been instantiated. A field defining the number of gears for a
particular kind of bicycle could be marked as static since
conceptually, the same number of gears will apply to all instances. The
code, static int numGears = 6; would create such a static
field. Additionally, the keyword final could be added to indicate that
the number of gears will never change.

•Local Variables: Similar to how an object stores its state in fields, a
method will often store its temporary state in local variables. The syntax
for declaring a local variable is similar to declaring a field (for example,
int count = 0;). There is no special keyword designating a
variable as local; that determination comes entirely from the location in
which the variable is declared — which is between the opening and
closing braces of a method. As such, local variables are only visible to
the methods in which they are declared; they are not accessible from the
rest of the class.

•Parameters: You've already seen examples of parameters, both in the
Bicycle class and in the main method of the "Hello World!"
application. Recall that the signature for the main method is public
static void main (String [] args). Here, the args
variable is the parameter to this method. The important thing to

92

CIT 341 DATA STRUCTURES

remember is that parameters are always classified as "variables" not
"fields". This applies to other parameter-accepting constructs as well
(such as constructors and exception handlers) that you'll learn about later
in the tutorial.

3.3 Naming Conventions

Every programming language has its own set of rules and conventions
for the kinds of names that you're allowed to use, and the Java
programming language is no different. The rules and conventions for
naming your variables can be summarised as follows:

•Variable names are case-sensitive. A variable's name can be any legal
identifier — an unlimited-length sequence of Unicode letters and digits,
beginning with a letter, the dollar sign "$", or the underscore character
"_". The convention, however, is to always begin your variable names
with a letter, not "$" or "_". Additionally, the dollar sign character, by
convention, is never used at all. You may find some situations where
auto-generated names will contain the dollar sign, but your variable
names should always avoid using it. A similar convention exists for the
underscore character; while it's technically legal to begin your variable's
name with "_", this practice is discouraged. White space is not
permitted.

•Subsequent characters may be letters, digits, dollar signs, or underscore
characters. Conventions (and common sense) apply to this rule as well.
When choosing a name for your variables, use full words instead of
cryptic abbreviations. Doing so will make your code easier to read and
understand. In many cases, it will also make your code self-
documenting; fields named cadence, speed, and gear, for example,
are much more intuitive than abbreviated versions, such as s, c, and g.
Also keep in mind that the name you choose must not be a keyword or
reserved word.

SELF ASSESSMENT EXERCISE 1

What do you understand by variables? Give at least two examples.

4.0 CONCLUSION

In this unit, you have learned about variables, types of Java
programming language variable as well as their naming conventions.

5.0 SUMMARY

93

CIT 341 DATA STRUCTURES

What you have learned in this unit is based on variables and the
conventions for naming them.

6.0 TUTOR-MARKED ASSIGNMENT

Variable names are case-sensitive. True or False? Discuss.

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to
Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),
199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the
STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A. (1998). Practical Introduction to Data
Structures and Algorithm Analysis, Prentice Hall, pp. 77–102.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

UNIT 3 OPERATORS

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

94

http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.indiana.edu/~ucspubs/b131/
http://www.gnu.org/manual/emacs-20.3/emacs.html

CIT 341 DATA STRUCTURES

3.1 Operators
3.2 The Simple Assignment Operators
3.3 The Arithmetic Operators
3.4 The Unary Operators
3.5 The Equality and Relational Operators
3.6 The Conditional Operators

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

What you will learn in this unit borders on operators. The common types
of operators will equally be discussed.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

•explain the term ‘operators’
•describe simple assignment operators
•explain arithmetic operators
•discuss unary operators
•explain equality and relational operators
•discuss the conditional operators.

3.0 MAIN CONTENT

3.1 Operators

Operators are special symbols that perform specific operations on one,
two, or three operands, and then return a result.

As we explore the operators of the Java programming language, it may
be helpful for you to know ahead of time which operators have the
highest precedence. The operators in the following table are listed
according to precedence order. The closer to the top of the table an
operator appears, the higher its precedence. Operators with higher
precedence are evaluated before operators with relatively lower
precedence. Operators on the same line have equal precedence. When
operators of equal precedence appear in the same expression, a rule must
govern which is evaluated first. All binary operators except for the
assignment operators are evaluated from left to right; assignment
operators are evaluated from right to left.

95

CIT 341 DATA STRUCTURES

Operator Precedence

Operators Precedence

Postfix expr++ expr--

Unary ++expr --expr +expr -expr ~ !

Multiplicative * / %

Additive + -

Shift << >> >>>

Relational < > <= >= instanceof

Equality == !=

bitwise AND &

bitwise exclusive OR ^

bitwise inclusive OR |

logical AND &&

logical OR ||

Ternary ? :

assignment = += -= *= /= %= &= ^= |= <<= >>= >>>=

In general-purpose programming, certain operators tend to appear more
frequently than others; for example, the assignment operator "=" is far
more common than the unsigned right shift operator ">>>". With that in
mind, the following discussion focuses first on the operators that you're
most likely to use on a regular basis, and ends focusing on those that are
less common. Each discussion is accompanied by sample code that you
can compile and run. Studying its output will help reinforce what you've
just learned.

3.2 The Simple Assignment Operator

One of the most common operators that you'll encounter is the simple
assignment operator "=". You saw this operator in the Bicycle class; it
assigns the value on its right to the operand on its left:

 int cadence = 0;

96

CIT 341 DATA STRUCTURES

 int speed = 0;
 int gear = 1;
This operator can also be used on objects to assign object references, as
discussed in Creating Objects.

3.3 The Arithmetic Operators

The Java programming language provides operators that perform
addition, subtraction, multiplication, and division. There's a good chance
you'll recognize them by their counterparts in basic mathematics. The
only symbol that might look new to you is "%", which divides one
operand by another and returns the remainder as its result.

+ additive operator (also used for String concatenation)
- subtraction operator
* multiplication operator
/ division operator
% remainder operator

The following programme, ArithmeticDemo, tests the arithmetic
operators.

class ArithmeticDemo {
public static void main (String[] args){

int result = 1 + 2; // result is now 3
System.out.println(result);

result = result - 1; // result is now 2
System.out.println(result);

result = result * 2; // result is now 4
System.out.println(result);

result = result / 2; // result is now 2
System.out.println(result);

result = result + 8; // result is now 10
result = result % 7; // result is now 3
System.out.println(result);
}
}
You can also combine the arithmetic operators with the simple
assignment operator to create compound assignments. For example, x
+=1; and x=x+1; both increment the value of x by 1.

97

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/examples/ArithmeticDemo.java
http://java.sun.com/docs/books/tutorial/java/javaOO/objectcreation.html

CIT 341 DATA STRUCTURES

The + operator can also be used for concatenating (joining) two strings
together, as shown in the following ConcatDemo programme:

class ConcatDemo {
public static void main(String[] args){
String firstString = "This is";
String secondString = “a concatenated string.”;
String thirdString = firstString+secondString;
System.out.println(thirdString);

}
}
By the end of this programme, the variable, thirdString, contains
"This is a concatenated string.", which gets printed to standard output.

3.4 The Unary Operators

The unary operators require only one operand; they perform various
operations such as incrementing/decrementing a value by one, negating
an expression, or inverting the value of a boolean.

+ Unary plus operator; indicates positive value (numbers are
positive without this, however)

- Unary minus operator; negates an expression
++ Increment operator; increments a value by 1
-- Decrement operator; decrements a value by 1
! Logical complement operator; inverts the value of a boolean

The following programme, UnaryDemo, tests the unary operators:
class UnaryDemo {

public static void main(String[] args){
int result = +1; // result is now 1
System.out.println(result);
result--; // result is now 0
System.out.println(result);
result++; // result is now 1
System.out.println(result);
result = -result; // result is now -1
System.out.println(result);
boolean success = false;
System.out.println(success); // false
System.out.println(!success); // true

}
}

98

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/examples/UnaryDemo.java
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/examples/ConcatDemo.java

CIT 341 DATA STRUCTURES

The increment/decrement operators can be applied before (prefix) or
after (postfix) the operand. The code, result++; and ++result;
will both end in result being incremented by one. The only difference
is that the prefix version (++result) evaluates to the incremented
value, whereas the postfix version (result++) evaluates to the
original value. If you are just performing a simple increment/decrement,
it doesn't really matter which version you choose. But if you use this
operator in part of a larger expression, the one that you choose may
make a significant difference.

The following programme, PrePostDemo, illustrates the
prefix/postfix unary increment operator:

class PrePostDemo {
public static void main(String[] args){
int i = 3;
i++;
System.out.println(i); // "4"
++i;
System.out.println(i); // "5"
System.out.println(++i); // "6"
System.out.println(i++); // "6"
System.out.println(i); // "7"
}
}

3.5 The Equality and Relational Operators

The equality and relational operators determine if one operand is greater
than, less than, equal to, or not equal to another operand. The majority
of these operators will probably look familiar to you as well. Keep in
mind that you must use "==", not "=", when testing if two primitive
values are equal.

== equal to
!= not equal to
> greater than
>= greater than or equal to
< less than
<= less than or equal to
The following programme, ComparisonDemo, tests the comparison
operators:

class ComparisonDemo {

public static void main(String[] args){

99

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/examples/ComparisonDemo.java
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/examples/PrePostDemo.java

CIT 341 DATA STRUCTURES

int value1 = 1;
int value2 = 2;
if(value1 == value2) System.out.println("value1 == value2");
if(value1 != value2) System.out.println("value1 != value2");
if(value1 > value2) System.out.println("value1 > value2");
if(value1 < value2) System.out.println("value1 < value2");
if(value1 <= value2) System.out.println("value1 <= value2");

}
}
Output:
value1 != value2
value1 < value2
value1 <= value2

3.6 The Conditional Operators

The && and || operators perform Conditional-AND and Conditional-
OR operations on two boolean expressions. These operators exhibit
"short-circuiting" behaviour, which means that the second operand is
evaluated only if needed.

&& Conditional-AND
|| Conditional-OR

The following programme, ConditionalDemo1, tests these
operators:

class ConditionalDemo1 {

public static void main(String[] args){
int value1 = 1;
int value2 = 2;
if((value1 == 1) && (value2 == 2)) System.out.println("value1 is 1
AND value2 is 2");
if((value1 == 1) || (value2 == 1)) System.out.println("value1 is 1 OR
value2 is 1");

}
}
Another conditional operator is?:, which can be thought of as shorthand
for an if-then-else statement (discussed in the Control Flow
Statements section of this lesson). This operator is also known as the
ternary operator because it uses three operands. In the following
example, this operator should be read as: "If someCondition is

100

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/flow.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/flow.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/examples/ConditionalDemo1.java

CIT 341 DATA STRUCTURES

true, assign the value of value1 to result. Otherwise, assign the
value of value2 to result."

The following programme, ConditionalDemo2, tests the?:
operator:

class ConditionalDemo2 {

public static void main(String[] args){
int value1 = 1;
int value2 = 2;
int result;
boolean someCondition = true;
result = someCondition ? value1 : value2;

System.out.println(result);

}
}
Because someCondition is true, this programme prints "1" to the
screen. Use the?: operator instead of an if-then-else statement if
it makes your code more readable; for example, when the expressions
are compact and without side-effects (such as assignments).

SELF ASSESSMENT EXERCISE

 Discuss the term, operators.

4.0 CONCLUSION

In this unit you have learned about operators. You have also been able to
identify the common types of operators.

5.0 SUMMARY

What you have learned in this unit concerns operators and the common
types.

6.0 TUTOR-MARKED ASSIGNMENT

Mention 4 common types of operators, stating their functions.

7.0 REFERENCES/FURTHER READINGS

101

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/examples/ConditionalDemo2.java

CIT 341 DATA STRUCTURES

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to
Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),
199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the
STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A. (1998). Practical Introduction to Data
Structures and Algorithm Analysis, Prentice Hall, pp. 77–102.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

UNIT 4 EXPRESSIONS, STATEMENTS AND BLOCKS

CONTENTS

1.0 Introduction
2.0 Objectives

102

http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.indiana.edu/~ucspubs/b131/
http://www.gnu.org/manual/emacs-20.3/emacs.html

CIT 341 DATA STRUCTURES

3.0 Main Content
3.1 Expressions
3.2 Statements
3.3 Blocks

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

Now that you understand variables and operators, it's time to learn about
expressions, statements, and blocks. Operators may be used in building
expressions, which compute values; expressions are the core
components of statements; statements may be grouped into blocks.

2.0 OBJECTIVES

By the end of this unit, the student should be able to:

•define an expression
•describe statements, giving typical examples of expression statements
•discuss the concept of blocks.

3.0 MAIN CONTENT

3.1 Expressions

An expression is a construct made up of variables, operators, and
method invocations, which are constructed according to the syntax of
the language that evaluates to a single value.

You've already seen examples of expressions, illustrated in bold below:

int cadence = 0;
anArray[0] = 100;
System.out.println("Element 1 at index 0: " + anArray[0]);

int result = 1 + 2; // result is now 3
if(value1 == value2) System.out.println("value1 == value2");
The data type of the value returned by an expression depends on the
elements used in the expression. The expression, cadence = 0,
returns an int because the assignment operator returns a value of the
same data type as its left-hand operand; in this case, cadence is an
int. As you can see from the other expressions, an expression can
return other types of values as well, such as boolean or String.

103

CIT 341 DATA STRUCTURES

The Java programming language allows you to construct compound
expressions from various smaller expressions as long as the data type
required by one part of the expression matches the data type of the other.
Here's an example of a compound expression:

1 * 2 * 3

In this particular example, the order in which the expression is evaluated
is unimportant because the result of multiplication is independent of
order; the outcome is always the same, no matter in which order you
apply the multiplications. However, this is not true of all expressions.
For example, the following expression gives different results, depending
on whether you perform the addition or the division operation first:

x + y / 100 // ambiguous

You can specify exactly how an expression will be evaluated using
balanced parenthesis: (and). For example, to make the previous
expression unambiguous, you could write the following:

(x + y) / 100 // unambiguous, recommended

If you don't explicitly indicate the order for the operations to be
performed, the order is determined by the precedence assigned to the
operators in use within the expression. Operators that have a higher
precedence get evaluated first. For example, the division operator has a
higher precedence than does the addition operator. Therefore, the
following two statements are equivalent:

x + y / 100

x + (y / 100) // unambiguous, recommended

When writing compound expressions, be explicit and indicate with
parentheses which operators should be evaluated first. This practice
makes code easier to read and to maintain.

3.2 Statements

Statements are roughly equivalent to sentences in natural languages. A
statement forms a complete unit of execution.

104

CIT 341 DATA STRUCTURES

The following types of expressions can be made into a statement by
terminating the expression with a semicolon (;).

• Assignment expressions
• Any use of ++ or --
• Method invocations
• Object creation expressions.

Such statements are called expression statements. Here are some
examples of expression statements.

aValue = 8933.234; // assignment statement
aValue++; // increment statement
System.out.println("Hello World!"); // method invocation statement
Bicycle myBike = new Bicycle (); // object creation statement

In addition to expression statements, there are two other kinds of
statements: declaration statements and control flow statements. A
declaration statement declares a variable. You've seen many examples
of declaration statements already:

double aValue = 8933.234; //declaration statement
Finally, control flow statements regulate the order in which statements
get executed. You'll learn about control flow statements in the next
section, Control Flow Statements

3.3 Blocks

A block is a group of zero or more statements between balanced braces
and can be used anywhere a single statement is allowed. The following
example, BlockDemo, illustrates the use of blocks:

class BlockDemo {
public static void main(String[] args) {
boolean condition = true;
if (condition) { // begin block 1
System.out.println("Condition is true.");
} // end block one
else { // begin block 2
System.out.println("Condition is false.");
} // end block 2
}
}
SELF ASSESSMENT EXERCISE 1

What are the core components of statements?

105

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/examples/BlockDemo.java
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/flow.html

CIT 341 DATA STRUCTURES

SELF ASSESSMENT EXERCISE 2

Distinguish between statements and sentences.

4.0 CONCLUSION

In this unit you have learned about the expressions. You have also been
able to distinguish between statements and sentences. You should also
have learned about blocks.

5.0 SUMMARY

What you have learned in this unit concerns expressions, statements and
blocks. In the next unit, you shall learn about control flow statements.

6.0 TUTOR-MARKED ASSIGNMENT

Identify the following kinds of expression statements:

•aValue = 8933.234;
•aValue++;
•System.out.println("Hello World!");
•Bicycle myBike = new Bicycle();

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to
Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),
199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the
STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A. (1998). Practical Introduction to Data
Structures and Algorithm Analysis, Prentice Hall, pp. 77–102.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

106

http://www.indiana.edu/~ucspubs/b131/
http://www.gnu.org/manual/emacs-20.3/emacs.html

CIT 341 DATA STRUCTURES

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

UNIT 5 CONTROL FLOW STATEMENTS

CONTENTS

1.0 Introduction

107

http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html

CIT 341 DATA STRUCTURES

2.0 Objectives
3.0 Main Content

3.1 The Control Flow Statements
3.2 The If-Then Statements
3.3 The If-Then-Else Statements
3.4 The Switch Statements
3.5 The While and Do-While Statements
3.6 The For Statements

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

In this unit, the student will gain knowledge of control flow statements.
The unit describes the decision-making statements (if-then, if-
then-else, switch) and the looping statements (for, while, do-
while), supported by the Java programming language.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

•describe control flow statements
•gain knowledge of the decision-making statements
•explain the looping statements.

3.0 MAIN CONTENT

3.1 The Control Flow Statement

The statements inside your source files are generally executed from top
to bottom, in the order that they appear. Control flow statements,
however, break up the flow of execution by employing decision making,
looping, and branching, enabling your programme to conditionally
execute particular blocks of code.

3.2 The If-Then Statements

The if-then statement is the most basic of all the control flow
statements. It tells your programme to execute a certain section of code
only if a particular test evaluates to true. For example, the Bicycle

108

CIT 341 DATA STRUCTURES

class could allow the brakes to decrease the bicycle's speed only if the
bicycle is already in motion. One possible implementation of the
applyBrakes method could be as follows:

void applyBrakes(){
if (isMoving){ // the "if" clause: bicycle must be moving
currentSpeed--; // the "then" clause: decrease current speed
}
}

If this test evaluates to false (meaning that the bicycle is not in
motion), control jumps to the end of the if-then statement.

In addition, the opening and closing braces are optional, provided that
the "then" clause contains only one statement:
void applyBrakes(){
if (isMoving) currentSpeed--; // same as above, but without braces
}

Deciding when to omit the braces is a matter of personal taste. Omitting
them can make the code more brittle. If a second statement is later added
to the "then" clause, a common mistake would be forgetting to add the
newly required braces. The compiler cannot catch this sort of error;
you'll just get the wrong results.

3.3 The If-Then-Else Statement

The if-then-else statement provides a secondary path of execution
when an "if" clause evaluates to false. You could use an if-then-
else statement in the applyBrakes method to take some action if
the brakes are applied when the bicycle is not in motion. In this case, the
action is to simply print an error message stating that the bicycle has
already stopped.

void applyBrakes(){
if (isMoving) {
currentSpeed--;
} else {
System.err.println("The bicycle has already stopped!");
}
}
The following programme, IfElseDemo, assigns a grade based on the
value of a test score: an A for a score of 90% or above, a B for a score of
80% or above, and so on.

class IfElseDemo {

109

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/examples/IfElseDemo.java

CIT 341 DATA STRUCTURES

public static void main(String[] args) {

int testscore = 76;
char grade;

if (testscore >= 90) {
grade = 'A';
} else if (testscore >= 80) {
grade = 'B';
} else if (testscore >= 70) {
grade = 'C';
} else if (testscore >= 60) {
grade = 'D';
} else {
grade = 'F';
}
System.out.println("Grade = " + grade);
}
}
The output from the programme is:

Grade = C

You may have noticed that the value of testscore can satisfy more
than one expression in the compound statement: 76 >= 70 and 76
>= 60. However, once a condition is satisfied, the appropriate
statements are executed (grade = 'C';) and the remaining
conditions are not evaluated.

3.4 The Switch Statement

Unlike if-then and if-then-else, the switch statement allows
for any number of possible execution paths. A switch works with the
byte, short, char, and int primitive data types. It also works with
enumerated types (discussed in Classes and Inheritance) and a few
special classes that "wrap" certain primitive types: Character, Byte,
Short, and Integer (discussed in Simple Data Objects.)

The following programme, SwitchDemo, declares an int named
month whose value represents a month out of the year. The programme
displays the name of the month, based on the value of month, using the
switch statement.

110

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/examples/SwitchDemo.java
http://java.sun.com/docs/books/tutorial/java/data/index.html
http://java.sun.com/javase/6/docs/api/java/lang/Integer.html
http://java.sun.com/javase/6/docs/api/java/lang/Short.html
http://java.sun.com/javase/6/docs/api/java/lang/Byte.html
http://java.sun.com/javase/6/docs/api/java/lang/Character.html
http://java.sun.com/docs/books/tutorial/java/javaOO/enum.html

CIT 341 DATA STRUCTURES

class SwitchDemo {
public static void main(String[] args) {

int month = 8;
switch (month) {
case 1: System.out.println("January"); break;
case 2: System.out.println("February"); break;
case 3: System.out.println("March"); break;
case 4: System.out.println("April"); break;
case 5: System.out.println("May"); break;
case 6: System.out.println("June"); break;
case 7: System.out.println("July"); break;
case 8: System.out.println("August"); break;
case 9: System.out.println("September"); break;
case 10: System.out.println("October"); break;
case 11: System.out.println("November"); break;
case 12: System.out.println("December"); break;
default: System.out.println("Invalid month.");break;
}
}
}

In this case, "August" is printed to standard output.

The body of a switch statement is known as a switch block. Any
statement immediately contained by the switch block may be labeled
with one or more cases or default labels. The switch statement
evaluates its expression and executes the appropriate case.

Of course, you could also implement the same thing with if-then-
else statements:

int month = 8;
if (month == 1) {
System.out.println("January");
} else if (month == 2) {
System.out.println("February");
}
. . . // and so on

Deciding whether to use if-then-else statements or a switch
statement is sometimes a judgment call. You can decide which one to
use based on readability and other factors. An if-then-else
statement can be used to make decisions based on ranges of values or

111

CIT 341 DATA STRUCTURES

conditions, whereas a switch statement can make decisions based only
on a single integer or enumerated value.

Another point of interest is the break statement after each case. Each
break statement terminates the enclosing switch statement. Control
flow continues with the first statement following the switch block.
The break statements are necessary because without them, case
statements fall through; that is, without an explicit break, control will
flow sequentially through subsequent case statements. The following
programme, SwitchDemo2, illustrates why it might be useful to have
case statements fall through:

class SwitchDemo2 {
public static void main(String[] args) {

int month = 2;
int year = 2000;
int numDays = 0;

switch (month) {
case 1:
case 3:
case 5:
case 7:
case 8:
case 10:
case 12:
numDays = 31;
break;
case 4:
case 6:
case 9:
case 11:
numDays = 30;
break;
case 2:
if (((year % 4 == 0) && !(year % 100 == 0))
|| (year % 400 == 0))
numDays = 29;
else
numDays = 28;
break;
default:
System.out.println("Invalid month.");

break;

112

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/examples/SwitchDemo2.java

CIT 341 DATA STRUCTURES

}
System.out.println("Number of Days = " + numDays);
}
}

This is the output from the programme.

Number of Days = 29

Technically, the final break is not required because flow would fall out
of the switch statement anyway. However, we recommend using a
break so that modifying the code is easier and less error-prone. The
default section handles all values that aren't explicitly handled by
one of the case sections.

3.5 The While and Do-While Statements

The while statement continually executes a block of statements while
a particular condition is true. Its syntax can be expressed as:
while (expression) {
statement(s)
}

The while statement evaluates expression, which must return a
boolean value. If the expression evaluates to true, the while
statement executes the statement(s) in the while block. The while
statement continues testing the expression and executing its block until
the expression evaluates to false. Using the while statement to print
the values from 1 through 10 can be accomplished as in the following
WhileDemo programme:

class WhileDemo {
public static void main(String[] args){
int count = 1;
while (count < 11) {
System.out.println("Count is: " + count);
count++;
}
implement an infinite loop using the while statement as follows:

while (true){
// your code goes here
}
The Java programming language also provides a do-while statement,
which can be expressed as follows:

113

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/examples/WhileDemo.java

CIT 341 DATA STRUCTURES

do {
statement(s)
} while (expression);

The difference between do-while and while is that do-while
evaluates its expression at the bottom of the loop instead of the top.
Therefore, the statements within the do block are always executed at
least once, as shown in the following DoWhileDemo programme:

class DoWhileDemo {
public static void main(String[] args){
int count = 1;
do {
System.out.println("Count is: " + count);
count++;
} while (count <= 11);
}
}

3.6 The For Statement

The For Statement provides a compact way to iterate over a range of
values. Programmers often refer to it as the "for loop" because of the
way in which it repeatedly loops until a particular condition is satisfied.
The general form of the for-statement can be expressed as follows:

for (initialization; termination; increment) {
statement(s)
}

When using this version of the for-statement, keep in mind that:

•The initialisation expression initialises the loop; it's executed once, as
the loop begins.
•When the termination expression evaluates to false, the loop
terminates.
•The increment expression is invoked after each iteration through the
loop; it is perfectly acceptable for this expression to increment or
decrement a value.
The following programme, ForDemo, uses the general form of the for
statement to print the numbers 1 through 10 to standard output:
class ForDemo {
public static void main(String[] args){
for(int i=1; i<11; i++){
System.out.println("Count is: " + i);

114

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/examples/ForDemo.java
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/examples/DoWhileDemo.java

CIT 341 DATA STRUCTURES

}
}
}

The output of this programme is:

Count is: 1
Count is: 2
Count is: 3
Count is: 4
Count is: 5
Count is: 6
Count is: 7
Count is: 8
Count is: 9
Count is: 10

Notice how the code declares a variable within the initialisation
expression. The scope of this variable extends from its declaration to the
end of the block governed by the for-statement, so it can be used in the
termination and increment expressions as well. If the variable that
controls a for-statement is not needed outside of the loop, it's best to
declare the variable in the initialisation expression. The names i, j, and
k are often used to control for loops; declaring them within the
initialisation expression limits their life span and reduces errors.

The three expressions of the for-loop are optional; an infinite loop can
be created as follows:

for (; ;) { // infinite loop

// your code goes here
}
The for-statement also has another form designed for iteration through
Collections and arrays. This form is sometimes referred to as the
enhanced for statement, and can be used to make your loops more
compact and easy to read. To demonstrate, consider the following array,
which holds the numbers 1 through 10:

int[] numbers = {1,2,3,4,5,6,7,8,9,10};
The following programme, EnhancedForDemo, uses the enhanced
for to loop through the array:

class EnhancedForDemo {
public static void main(String[] args){
int[] numbers = {1,2,3,4,5,6,7,8,9,10};

115

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/examples/EnhancedForDemo.java
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/arrays.html
http://java.sun.com/docs/books/tutorial/collections/index.html

CIT 341 DATA STRUCTURES

for (int item : numbers) {
System.out.println("Count is: " + item);
}
}
}

In this example, the variable item holds the current value from the
numbers array. The output from this programme is the same as before:

Count is: 1
Count is: 2
Count is: 3
Count is: 4
Count is: 5
Count is: 6
Count is: 7
Count is: 8
Count is: 9
Count is: 10

We recommend using this form of the for-statement instead of the
general form whenever possible.

SELF ASSESSMENT EXERCISE 1

Explain the If-Then-Statement.

SELF ASSESSMENT EXERCISE 2

Distinguish between the Do-While statement and the While statement

4.0 CONCLUSION

The if-then statement is the most basic of all the control flow
statements. It tells your programme to execute a certain section of code
only if a particular test evaluates to true. The if-then-else
statement provides a secondary path of execution when an "if" clause
evaluates to false. Unlike if-then and if-then-else, the
switch statement allows for any number of possible execution paths.
The while and do-while statements continually execute a block of
statements while a particular condition is true. The difference between
do-while and while is that do-while evaluates its expression at
the bottom of the loop instead of the top. Therefore, the statements
within the do block are always executed at least once. The for-
statement provides a compact way to iterate over a range of values.

116

CIT 341 DATA STRUCTURES

5.0 SUMMARY

What you have learned in this unit concerns control flow statements.

6.0 TUTOR-MARKED ASSIGNMENT

How do you write an infinite loop using the for-statement?

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to
Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),
199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the
STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A. (1998). Practical Introduction to Data
Structures and Algorithm Analysis, Prentice Hall, pp. 77–102.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

MODULE 4 JAVA PROGRAMMING

Unit 1 Classes
Unit 2 Objects
Unit 3 Interfaces and Inheritances
Unit 4 Numbers and Strings
Unit 5 Generics

117

http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.indiana.edu/~ucspubs/b131/
http://www.gnu.org/manual/emacs-20.3/emacs.html

CIT 341 DATA STRUCTURES

UNIT 1 CLASSES

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Classes
3.2 Declaring Classes
3.3 Declaring Member Variables
3.4 Access Modifiers
3.5 Types
3.6 Variable Names

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

With the knowledge you now have of the basics of the Java
programming language, you can learn to write your own classes. In this
unit, you will find information about defining your own classes,
including declaring member variables, methods, and constructors. This
unit also covers nesting classes within other classes, enumerations, and
annotations

2.0 OBJECTIVES

By the end of this unit, you should be able to:

•define your own classes
•describe how to declare member variables
•explain how to nest classes within other classes.

3.0 MAIN CONTENT

3.1 Classes

The introduction to object-oriented concepts in the unit titled
Object-Oriented Programming Concepts, used a bicycle class as an
example, with racing bikes, mountain bikes, and tandem bikes as

118

http://java.sun.com/docs/books/tutorial/java/concepts/index.html

CIT 341 DATA STRUCTURES

subclasses. Here is a sample code for a possible implementation of a
Bicycle class, to give you an overview of a class declaration.
Subsequent sections of this lesson will back up and explain class
declarations step by step. For the moment, don't concern yourself with
the details.
public class Bicycle {

// the Bicycle class has three fields
public int cadence;
public int gear;
public int speed;

// the Bicycle class has one constructor
public Bicycle(int startCadence, int startSpeed, int startGear) {
gear = startGear;
cadence = startCadence;
speed = startSpeed;
}

// the Bicycle class has four methods
public void setCadence(int newValue) {
cadence = newValue;
}

public void setGear(int newValue) {
gear = newValue;
}

public void applyBrake(int decrement) {
speed -= decrement;
}

public void speedUp(int increment) {
speed += increment;
}

}
A class declaration for a MountainBike class that is a subclass of
Bicycle might look like this:
public class MountainBike extends Bicycle {

// the MountainBike subclass has one field
public int seatHeight;

// the MountainBike subclass has one constructor

119

CIT 341 DATA STRUCTURES

public MountainBike(int startHeight, int startCadence, int startSpeed, int
startGear) {
super(startCadence, startSpeed, startGear);
seatHeight = startHeight;
}

// the MountainBike subclass has one method
public void setHeight(int newValue) {
seatHeight = newValue;
}

}
MountainBike inherits all the fields and methods of Bicycle and
adds the field seatHeight, and a method to set it (mountain bikes
have seats that can be moved up and down as the terrain demands).

3.2 Declaring Classes

You've seen classes defined in the following way:

class MyClass {

//field, constructor, and method declarations

}
This is a class declaration. The class body (the area between the braces)
contains all the code that provides for the life cycle of the objects
created from the class: constructors for initialising new objects,
declarations for the fields that provide the state of the class and its
objects, and methods to implement the behaviour of the class and its
objects.

The preceding class declaration is a minimal one—it contains only those
components of a class declaration that are required. You can provide
more information about the class, such as the name of its superclass,
whether it implements any interfaces, and so on, at the start of the class
declaration. For example,

class MyClass extends MySuperClass implements YourInterface {
//field, constructor, and method declarations
}
means that MyClass is a subclass of MySuperClass and that it
implements the YourInterface interface.

You can also add modifiers like public or private at the very beginning
—so you can see that the opening line of a class declaration can become

120

CIT 341 DATA STRUCTURES

quite complicated. The modifiers public and private, which determine
what other classes can access MyClass, are discussed later in this
lesson. The lesson on interfaces and inheritance will explain how and
why you would use the extends and implements keywords in a class
declaration. For the moment, you do not need to worry about these extra
complications.

In general, class declarations can include these components, in order:

1. Modifiers such as public, private, and a number of others that you
will encounter later.

2. The class name, with the initial letter capitalised by convention.
3. The name of the class's parent (superclass), if any, preceded by the

keyword extends. A class can only extend (subclass) one parent.
4. A comma-separated list of interfaces implemented by the class, if

any, preceded by the keyword, implements. A class can implement
more than one interface.

5. The class body, surrounded by braces, {}.

3.3 Declaring Member Variables

There are several kinds of variables:

•Member variables in a class—these are called fields.
•Variables in a method or block of code—these are called local
variables.
•Variables in method declarations—these are called parameters.

The Bicycle class uses the following lines of code to define its fields:

public int cadence;
public int gear;
public int speed;

Field declarations are composed of three components, in order:

1. Zero or more modifiers, such as public or private.
2. The field's type.
3. The field's name.
The fields of Bicycle are named cadence, gear, and speed and
are all of data type integer (int). The public keyword identifies these
fields as public members, accessible by any object that can access the
class.

121

CIT 341 DATA STRUCTURES

3.4 Access Modifiers

The first (left-most) modifier used lets you control what other classes
have access to, a member field. For the moment, consider only public
and private. Other access modifiers will be discussed later.

• public modifier—the field is accessible from all classes.
• private modifier—the field is accessible only within its own

class.

In the spirit of encapsulation, it is common to make fields private. This
means that they can only be directly accessed from the Bicycle class.
We still need access to these values, however. This can be done
indirectly by adding public methods that obtain the field values for us:

public class Bicycle {

private int cadence;
private int gear;
private int speed;

public Bicycle(int startCadence, int startSpeed, int startGear) {
gear = startGear;
cadence = startCadence;
speed = startSpeed;
}

public int getCadence() {
return cadence;
}

public void setCadence(int newValue) {
cadence = newValue;
}

public int getGear() {
return gear;
}

public void setGear(int newValue) {
gear = newValue;
}

public int getSpeed() {
return speed;
}

122

CIT 341 DATA STRUCTURES

public void applyBrake(int decrement) {
speed -= decrement;
}

public void speedUp(int increment) {
speed += increment;
}

}

3.5 Types

All variables must have a type. You can use primitive types such as
int, float, boolean, etc. Or you can use reference types, such as
strings, arrays, or objects.

3.6 Variable Names

All variables, whether they are fields, local variables, or parameters,
follow the same naming rules and conventions that were covered in the
Language Basics lesson, Variables—Naming.

Note that the same naming rules and conventions are used for method
and class names, except that

•the first letter of a class name should be capitalised
•the first (or only) word in a method name should be a verb.

SELF ASSESSMENT EXERCISE 1

Enumerate three kinds of variables.

SELF ASSESSMENT EXERCISE 2

What are parameters?

4.0 CONCLUSION

In this unit, you have learned about classes. You have also been able to
understand how to declare classes and member variables.
5.0 SUMMARY

What you have learned borders on classes and their declarations.

6.0 TUTOR-MARKED ASSIGNMENT

123

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/variables.html#naming

CIT 341 DATA STRUCTURES

What are the components of field declarations?

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to
Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),
199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the
STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A. (1998). Practical Introduction to Data
Structures and Algorithm Analysis, Prentice Hall, pp. 77–102.

Bruno, R. P. Data Structures and Algorithms with Object-Oriented
Design Pattern in Java.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

UNIT 2 OBJECTS

CONTENTS

1.0 Introduction

124

http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.indiana.edu/~ucspubs/b131/
http://www.gnu.org/manual/emacs-20.3/emacs.html

CIT 341 DATA STRUCTURES

2.0 Objectives
3.0 Main Content

3.1 Objects
3.2 Creating Objects
3.3 Declaring a Variable to Refer to an Object
3.4 Instantiating a Class
3.5 Initialising an Object
3.6 Referencing an Object’s Fields
3.7 Calling an Object’s Methods
3.8 The Garbage Collector

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit covers creating and using objects. You will learn how to
instantiate an object, and, once instantiated, how to use the dot operator
to access the object's instance variables and methods.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

•describe how to create objects
•write a programme to create objects
•explain how to initialise objects
•describe the process of garbage collection.

3.0 MAIN CONTENT

3.1 Objects

A typical Java programme creates many objects, which as you know,
interact by invoking methods. Through these object interactions, a
programme can carry out various tasks, such as implementing a GUI,
running an animation, or sending and receiving information over a
network. Once an object has completed the work for which it was
created, its resources are recycled for use by other objects.
Here's a small programme, called CreateObjectDemo, that creates
three objects: one Point object and two Rectangle objects. You
will need all three source files to compile this programme.
public class CreateObjectDemo {

125

http://java.sun.com/docs/books/tutorial/java/javaOO/examples/Rectangle.java
http://java.sun.com/docs/books/tutorial/java/javaOO/examples/Point.java
http://java.sun.com/docs/books/tutorial/java/javaOO/examples/CreateObjectDemo.java

CIT 341 DATA STRUCTURES

public static void main(String[] args) {

//Declare and create a point object
//and two rectangle objects.
Point originOne = new Point(23, 94);
Rectangle rectOne = new Rectangle(originOne, 100, 200);
Rectangle rectTwo = new Rectangle(50, 100);

//display rectOne's width, height, and area
System.out.println("Width of rectOne: " + rectOne.width);
System.out.println("Height of rectOne: " + rectOne.height);
System.out.println("Area of rectOne: " + rectOne.getArea());

//set rectTwo's position
rectTwo.origin = originOne;

//display rectTwo's position
System.out.println("X Position of rectTwo: " + rectTwo.origin.x);
System.out.println("Y Position of rectTwo: " + rectTwo.origin.y);

//move rectTwo and display its new position
rectTwo.move(40, 72);
System.out.println("X Position of rectTwo: " + rectTwo.origin.x);
System.out.println("Y Position of rectTwo: " + rectTwo.origin.y);
}
}

This programme creates, manipulates, and displays information about
various objects. Here's the output:

Width of rectOne: 100
Height of rectOne: 200
Area of rectOne: 20000
X Position of rectTwo: 23
Y Position of rectTwo: 94
X Position of rectTwo: 40
Y Position of rectTwo: 72

The following three sections use the above example to describe the life
cycle of an object within a programme. From them, you will learn how
to write code that creates and uses objects in your own programmes.
You will also learn how the system cleans up after an object when its
life has ended.

3.2 Creating Objects

126

CIT 341 DATA STRUCTURES

As you know, a class provides the blueprint for objects; you create an
object from a class. Each of the following statements taken from the
CreateObjectDemo programme creates an object and assigns it to a
variable:

Point originOne = new Point(23, 94);
Rectangle rectOne = new Rectangle(originOne, 100, 200);
Rectangle rectTwo = new Rectangle(50, 100);

The first line creates an object of the Point class, and the second and
third lines each create an object of the Rectangle class.
Each of these statements has three parts (discussed in detail below):

1. Declaration: The code set in bold are all variable declarations that
associate a variable name with an object type.

2. Instantiation: The new keyword is a Java operator that creates the
object.

3. Initialisation: The new operator is followed by a call to a
constructor, which initializes the new object.

3.3 Declaring a Variable to Refer to an Object

Previously, you learned that to declare a variable, you write:
type name;

This notifies the compiler that you will use name to refer to data whose
type is type. With a primitive variable, this declaration also reserves the
proper amount of memory for the variable.

You can also declare a reference variable on its own line. For example:

Point originOne;

If you declare originOne like this, its value will be undetermined
until an object is actually created and assigned to it. Simply declaring a
reference variable does not create an object. For that, you need to use the
new operator, as described in the next section. You must assign an
object to originOne before you use it in your code. Otherwise, you
will get a compiler error.
A variable in this state, which currently references no object, can be
illustrated as follows (the variable name, originOne, plus a reference
pointing to nothing):

127

http://java.sun.com/docs/books/tutorial/java/javaOO/examples/Rectangle.java
http://java.sun.com/docs/books/tutorial/java/javaOO/examples/Point.java
http://java.sun.com/docs/books/tutorial/java/javaOO/examples/CreateObjectDemo.java

CIT 341 DATA STRUCTURES

3.4 Instantiating a Class

The new operator instantiates a class by allocating memory for a new
object and returning a reference to that memory. The new operator also
invokes the object constructor.

Note: The phrase "instantiating a class" means the same thing as
"creating an object." When you create an object, you are creating an
"instance" of a class, therefore "instantiating" a class.

The new operator requires a single, postfix argument: a call to a
constructor. The name of the constructor provides the name of the class
to instantiate.

The new operator returns a reference to the object it created. This
reference is usually assigned to a variable of the appropriate type, like:

Point originOne = new Point (23, 94);

The reference returned by the new operator does not have to be assigned
to a variable. It can also be used directly in an expression. For example:
int height = new Rectangle().height;
This statement will be discussed in the next section.

3.5 Initialising an Object

Here's the code for the Point class:

public class Point {
public int x = 0;
public int y = 0;
//constructor
public Point(int a, int b) {
x = a;
y = b;
}
}

This class contains a single constructor. You can recognise a constructor
because its declaration uses the same name as the class and it has no
return type. The constructor in the Point class takes two integer
arguments, as declared by the code (int a, int b). The following
statement provides 23 and 94 as values for those arguments:

Point originOne = new Point(23, 94);

128

CIT 341 DATA STRUCTURES

The result of executing this statement can be illustrated in the next
figure:

Here's the code for the Rectangle class, which contains four
constructors:

public class Rectangle {
public int width = 0;
public int height = 0;
public Point origin;

// four constructors
public Rectangle() {
origin = new Point(0, 0);
}
public Rectangle(Point p) {
origin = p;
}
public Rectangle(int w, int h) {
origin = new Point(0, 0);
width = w;
height = h;
}
public Rectangle(Point p, int w, int h) {
origin = p;
width = w;
height = h;
}

// a method for moving the rectangle
public void move(int x, int y) {
origin.x = x;
origin.y = y;
}

// a method for computing the area of the rectangle

129

CIT 341 DATA STRUCTURES

public int getArea() {
return width * height;
}
}

Each constructor lets you provide initial values for the rectangle's size
and width, using both primitive and reference types. If a class has
multiple constructors, they must have different signatures. The Java
compiler differentiates the constructors based on the number and the
type of the arguments. When the Java compiler encounters the following
code, it knows to call the constructor in the Rectangle class that
requires a Point argument followed by two integer arguments:

Rectangle rectOne = new Rectangle(originOne, 100, 200);
This calls one of Rectangle's constructors that initialises origin to
originOne. Also, the constructor sets width to 100 and height to
200. Now, there are two references to the same Point object— an
object can have multiple references to it, as shown in the next figure:

The following line of code calls the Rectangle constructor that
requires two integer arguments, which provide the initial values for
width and height. If you inspect the code within the constructor, you
will see that it creates a new Point object whose x and y values are
initialised to 0:
Rectangle rectTwo = new Rectangle(50, 100);

The Rectangle constructor used in the following statement doesn't
take any arguments, so it's called a no-argument constructor:
Rectangle rect = new Rectangle();

130

CIT 341 DATA STRUCTURES

All classes have at least one constructor. If a class does not explicitly
declare any, the Java compiler automatically provides a no-argument
constructor, called the default constructor. This default constructor calls
the class parent's no-argument constructor, or the Object constructor if
the class has no other parent. If the parent has no constructor (Object
does have one), the compiler will reject the programme.

Using Objects

Once you've created an object, you probably want to use it for
something. You may need to use the value of one of its fields, change
one of its fields, or call one of its methods to perform an action.

3.6 Referencing Object’s Fields

Object fields are accessed by their name. You must use a name that is
unambiguous.

You may use a simple name for a field within its own class. For
example, we can add a statement within the Rectangle class that
prints the width and height:

System.out.println("Width and height are: " + width + ", " + height);
In this case, width and height are simple names.

Code that is outside the object's class must use an object reference or
expression, followed by the dot (.) operator, followed by a simple field
name, as in:

objectReference.fieldName

For example, the code in the CreateObjectDemo class is outside the
code for the Rectangle class. So to refer to the origin, width, and
height fields within the Rectangle object named rectOne, the
CreateObjectDemo class must use the names rectOne.origin,
rectOne.width, and rectOne.height, respectively. The
programme uses two of these names to display the width and the
height of rectOne:

System.out.println("Width of rectOne: " + rectOne.width);
System.out.println("Height of rectOne: " + rectOne.height);
Attempting to use the simple names - width and height, from the
code in the CreateObjectDemo class doesn't make sense — those
fields exist only within an object — and results in a compiler error.

131

CIT 341 DATA STRUCTURES

Later, the programme uses similar code to display information about
rectTwo. Objects of the same type have their own copy of the same
instance fields. Thus, each Rectangle object has fields named
origin, width, and height. When you access an instance field
through an object reference, you reference that particular object's field.
The two objects, rectOne and rectTwo, in the
CreateObjectDemo programme have different origin, width,
and height fields.

To access a field, you can use a named reference to an object, as in the
previous examples, or you can use any expression that returns an object
reference. Recall that the new operator returns a reference to an object.
So you could use the value returned from new to access a new object's
fields:

int height = new Rectangle().height;

This statement creates a new Rectangle object and immediately gets
its height. In essence, the statement calculates the default height of a
Rectangle. Note that after this statement has been executed, the
programme no longer has a reference to the created Rectangle,
because the programme never stored the reference anywhere. The object
is unreferenced, and its resources are free to be recycled by the Java
Virtual Machine.

3.7 Calling an Object's Methods

An object reference is used to invoke an object's method. You append
the method's simple name to the object reference, with an intervening
dot operator (.). Also, you provide, within enclosing parentheses, any
arguments to the method. If the method does not require any arguments,
use empty parentheses.

objectReference.methodName(argumentList);
 or
objectReference.methodName();

The Rectangle class has two methods: getArea() to compute the
rectangle's area and move() to change the rectangle's origin. Here's the
CreateObjectDemo code that invokes these two methods:
System.out.println("Area of rectOne: " + rectOne.getArea());
...
rectTwo.move(40, 72);
The first statement invokes rectOne's getArea() method and
displays the results. The second line moves rectTwo because the

132

CIT 341 DATA STRUCTURES

move() method assigns new values to the object's origin.x and
origin.y.

As with instance fields, objectReference must be a reference to an
object. You can use a variable name, but you also can use any
expression that returns an object reference. The new operator returns an
object reference, so you can use the value returned from new to invoke a
new object's methods:

new Rectangle(100, 50).getArea()

The expression new Rectangle(100, 50) returns an object
reference that refers to a Rectangle object. As shown, you can use
the dot notation to invoke the new Rectangle's getArea() method
to compute the area of the new rectangle.

Some methods, such as getArea(), return a value. For methods that
return a value, you can use the method invocation in expressions. You
can assign the return value to a variable, use it to make decisions, or
control a loop. This code assigns the value returned by getArea() to
the variable areaOfRectangle:

int areaOfRectangle = new Rectangle(100, 50).getArea();

Remember, invoking a method on a particular object is the same as
sending a message to that object. In this case, the object that
getArea() is invoked on is the rectangle returned by the constructor.

3.8 The Garbage Collector

Some object-oriented languages require that you keep track of all the
objects you create and that you explicitly destroy them when they are no
longer needed. Managing memory explicitly is tedious and error-prone.
The Java platform allows you to create as many objects as you want
(limited, of course, by what your system can handle), and you don't have
to worry about destroying them. The Java runtime environment deletes
objects when it determines that they are no longer being used. This
process is called garbage collection.

An object is eligible for garbage collection when there are no more
references to that object. References that are held in a variable are
usually dropped when the variable goes out of scope. Or, you can
explicitly drop an object reference by setting the variable to the special
value, null. Remember that a programme can have multiple references

133

CIT 341 DATA STRUCTURES

to the same object; all references to an object must be dropped before
the object is eligible for garbage collection.

The Java runtime environment has a garbage collector that periodically
frees the memory used by objects that are no longer referenced. The
garbage collector does its job automatically when it determines that the
time is right.

SELF ASSESSMENT EXERCISE

What do you understand by the phrase ‘instantiating a class’?

4.0 CONCLUSION

In this unit, you have learned about objects. You have also learned how
to create and initialise objects. Finally, you have been able to learn the
process of garbage collections.

5.0 SUMMARY

What you have learned in this unit is focused on objects, creating,
initialising and using these objects.

6.0 TUTOR-MARKED ASSIGNMENT

Explain the process of garbage collection.

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to
Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),
199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the
STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A. (1998). Practical Introduction to Data
Structures and Algorithm Analysis, Prentice Hall, pp. 77–102.

Bruno, R. P. Data Structures and Algorithms with Object-Oriented
Design Pattern in Java.

134

CIT 341 DATA STRUCTURES

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

UNIT 3 INTERFACES AND INHERITANCE

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

135

http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.indiana.edu/~ucspubs/b131/
http://www.gnu.org/manual/emacs-20.3/emacs.html

CIT 341 DATA STRUCTURES

3.1 Interfaces-Basics
3.2 Interfaces in Java
3.3 Interfaces as APIs
3.4 Interfaces and Multiple Inheritance
3.5 Inheritance
3.6 Definitions
3.7 The Java Platform Class Hierarchy
3.8 What You can Do in a Subclass
3.9 Private Members in a Superclass
3.10 Casting Objects

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit describes the way in which you can derive one class from
another. That is, how a subclass can inherit fields and methods from a
superclass. You will learn that all classes are derived from the Object
class, and how to modify the methods that a subclass inherits from
superclasses. This unit also covers interface-like abstract classes.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

•derive one class from another
•describe how to modify methods that a subclass inherits from
superclasses
•define subclass and superclass
•explain what an interface is.

3.0 MAIN CONTENT

3.1 Interface-Basics

There are a number of situations in software engineering when it is
important for disparate groups of programmemers to agree to a
"contract" that spells out how their software interacts. Each group
should be able to write their code without any knowledge of how the
other group's code is written. Generally speaking, interfaces are such
contracts. For example, imagine a futuristic society where
computer-controlled robotic cars transport passengers through city
streets without a human operator. Automobile manufacturers write
software (Java, of course) that operates the automobile – stop, start,
accelerate, turn left, and so forth. Another industrial group, electronic

136

CIT 341 DATA STRUCTURES

guidance instrument manufacturers, make computer systems that receive
GPS (Global Positioning Satellite) position data and wireless
transmission of traffic conditions and use that information to drive the
car.

The auto manufacturers must publish an industry-standard interface that
spells out in detail what methods can be invoked to make the car move
(any car, from any manufacturer). The guidance manufacturers can then
write software that invokes the methods described in the interface to
command the car. Neither industrial group needs to know how the other
group's software is implemented. In fact, each group considers its
software highly proprietary and reserves the right to modify it at any
time, as long as it continues to adhere to the published interface.

3.2 Interfaces in Java

In the Java programming language, an interface is a reference type,
similar to a class that can contain only constants, method signatures, and
nested types. There are no method bodies. Interfaces cannot be
instantiated—they can only be implemented by classes or extended by
other interfaces. Extension is discussed later in this lesson.

Defining an interface is similar to creating a new class:

public interface OperateCar {

// constant declarations, if any

// method signatures
int turn(Direction direction, // An enum with values RIGHT, LEFT
double radius, double startSpeed, double endSpeed);
int changeLanes(Direction direction, double startSpeed, double
endSpeed);
int signalTurn(Direction direction, boolean signalOn);
int getRadarFront(double distanceToCar, double speedOfCar);
int getRadarRear(double distanceToCar, double speedOfCar);
......
// more method signatures
}
Note that the method signatures have no braces and are terminated with
a semicolon.

To use an interface, you write a class that implements the interface.
When an instantiable class implements an interface, it provides a
method body for each of the methods declared in the interface. For
example,

137

CIT 341 DATA STRUCTURES

public class OperateBMW760i implements OperateCar {

// the OperateCar method signatures, with implementation --
// for example:

int signalTurn(Direction direction, boolean signalOn) {
//code to turn BMW's LEFT turn indicator lights on
//code to turn BMW's LEFT turn indicator lights off
//code to turn BMW's RIGHT turn indicator lights on
//code to turn BMW's RIGHT turn indicator lights off
}

// other members, as needed -- for example, helper classes
// not visible to clients of the interface

}
In the robotic car example above, it is the automobile manufacturers
who will implement the interface. Chevrolet's implementation will be
substantially different from that of Toyota, of course, but both
manufacturers will adhere to the same interface. The guidance
manufacturers, who are the clients of the interface, will build systems
that use GPS data on a car's location, digital street maps, and traffic data
to drive the car. In so doing, the guidance systems will invoke the
interface methods: turn, change lanes, brake, accelerate, and so forth.

3.3 Interfaces as APIs

The robotic car example shows an interface being used as an industry
standard Application Programming Interface (API). APIs are also
common in commercial software products. Typically, a company sells a
software package that contains complex methods that another company
wants to use in its own software product. An example would be a
package of digital image processing methods that are sold to companies
making end-user graphics programmes. The image processing company
writes its classes to implement an interface, which it makes public to its
customers. The graphics company then invokes the image processing
methods using the signatures and return types defined in the interface.
While the image processing company's API is made public (to its
customers), its implementation of the API is kept as a closely guarded
secret—in fact, it may revise the implementation at a later date as long
as it continues to implement the original interface that its customers
have relied on.

3.4 Interfaces and Multiple Inheritance

138

CIT 341 DATA STRUCTURES

Interfaces have another very important role in the Java programming
language. Interfaces are not part of the class hierarchy, although they
work in combination with classes. The Java programming language does
not permit multiple inheritance (inheritance is discussed later in this
lesson), but interfaces provide an alternative.

In Java, a class can inherit from only one class but it can implement
more than one interface. Therefore, objects can have multiple types: the
type of their own class and the types of all the interfaces that they
implement. This means that if a variable is declared to be a type of an
interface, its value can reference any object that is instantiated from any
class that implements the interface. This is discussed later in this lesson,
in the section titled "Using an Interface as a Type."

3.5 Inheritance

In the preceding units, you have seen inheritance mentioned several
times. In the Java language, classes can be derived from other classes,
thereby inheriting fields and methods from those classes.

3.6 Definitions

A class that is derived from another class is called a subclass (also a
derived class, extended class, or child class). The class from which the
subclass is derived is called a superclass (also a base class or a parent
class).

Excepting Object, which has no superclass, every class has one and
only one direct superclass (single inheritance). In the absence of any
other explicit superclass, every class is implicitly a subclass of Object.

Classes can be derived from classes that are derived from classes that
are derived from classes, and so on, and ultimately derived from the
topmost class, Object. Such a class is said to be descended from all
the classes in the inheritance chain stretching back to Object.

The idea of inheritance is simple but powerful: When you want to create
a new class and there is already a class that includes some of the code
that you want, you can derive your new class from the existing class. In
doing this, you can reuse the fields and methods of the existing class
without having to write (and debug!) them yourself.

A subclass inherits all the members (fields, methods, and nested classes)
from its superclass. Constructors are not members, so they are not
inherited by subclasses, but the constructor of the superclass can be
invoked from the subclass.

139

CIT 341 DATA STRUCTURES

3.7 The Java Platform Class Hierarchy

The Object class, defined in the java.lang package, defines and
implements behaviour common to all classes—including the ones that
you write. In the Java platform, many classes derive directly from
Object, other classes derive from some of those classes, and so on,
forming a hierarchy of classes.

Fig. 1.0: All Classes in the Java Platform are Descendants of Object

At the top of the hierarchy, Object is the most general of all classes.
Classes near the bottom of the hierarchy provide more specialised
behaviour.

An Example of Inheritance

Here is the sample code for a possible implementation of a Bicycle
class that was presented in the Classes and Objects lesson:
public class Bicycle {

// the Bicycle class has three fields
public int cadence;
public int gear;
public int speed;

// the Bicycle class has one constructor
public Bicycle(int startCadence, int startSpeed, int startGear) {
gear = startGear;
cadence = startCadence;
speed = startSpeed;
}

140

http://java.sun.com/javase/6/docs/api/java/lang/Object.html

CIT 341 DATA STRUCTURES

// the Bicycle class has four methods
public void setCadence(int newValue) {
cadence = newValue;
}

public void setGear(int newValue) {
gear = newValue;
}

public void applyBrake(int decrement) {
speed -= decrement;
}

public void speedUp(int increment) {
speed += increment;
}

}
A class declaration for a MountainBike class that is a subclass of
Bicycle might look like this:

public class MountainBike extends Bicycle {

// the MountainBike subclass adds one field
public int seatHeight;

// the MountainBike subclass has one constructor
public MountainBike(int startHeight, int startCadence, int startSpeed, int
startGear) {
super(startCadence, startSpeed, startGear);
seatHeight = startHeight;
}

// the MountainBike subclass adds one method
public void setHeight(int newValue) {
seatHeight = newValue;
}

}
MountainBike inherits all the fields and methods of Bicycle and
adds the field seatHeight and a method to set it. Except for the
constructor, it is as if you had written a new MountainBike class
entirely from scratch, with four fields and five methods. However, you
didn't have to do all the work. This would be especially valuable if the

141

CIT 341 DATA STRUCTURES

methods in the Bicycle class were complex and had taken substantial
time to debug.

3.8 What You Can Do in a Subclass

A subclass inherits all of the public and protected members of its parent,
no matter what package the subclass is in. If the subclass is in the same
package as its parent, it also inherits the package – private members of
the parent. You can use the inherited members as follows: replace them,
hide them, or supplement them with new members:

•The inherited fields can be used directly, just like any other field.
•You can declare a field in the subclass with the same name as the one
in the superclass, thus hiding it (not recommended).
•You can declare new fields in the subclass that are not in the
superclass.
•The inherited methods can be used directly as they are.
•You can write a new instance method in the subclass that has the same
signature as the one in the superclass, thus overriding it.
•You can write a new static method in the subclass that has the same
signature as the one in the superclass, thus hiding it.
•You can declare new methods in the subclass that are not in the
superclass.
•You can write a subclass constructor that invokes the constructor of the
superclass, either implicitly or by using the keyword, super.

The following sections in this unit will expand on these topics.

3.9 Private Members in a Superclass

A subclass does not inherit the private members of its parent class.
However, if the superclass has public or protected methods for accessing
its private fields, these can also be used by the subclass.

A nested class has access to all the private members of its enclosing
class—both fields and methods. Therefore, a public or protected nested
class inherited by a subclass has indirect access to all of the private
members of the superclass.
3.10 Casting Objects

We have seen that an object is of the data type of the class from which it
was instantiated. For example, if we write
public MountainBike myBike = new MountainBike();
then myBike is of type MountainBike.

142

CIT 341 DATA STRUCTURES

MountainBike is descended from Bicycle and Object.
Therefore, a MountainBike is a Bicycle and is also an Object,
and it can be used wherever Bicycle or Object objects are called
for.

The reverse is not necessarily true: a Bicycle may be a
MountainBike, but it isn't necessarily. Similarly, an Object may be
a Bicycle or a MountainBike, but it isn't necessarily.

Casting shows the use of an object of one type in place of another type,
among the objects permitted by inheritance and implementations. For
example, if we write

Object obj = new MountainBike();
then obj is both an Object and a Mountainbike (until such time
as obj is assigned another object that is not a Mountainbike). This
is called implicit casting.

If, on the other hand, we write

MountainBike myBike = obj;
we would get a compile-time error because obj is not known to the
compiler to be a MountainBike. However, we can tell the compiler
that we promise to assign a MountainBike to obj by explicit
casting:

MountainBike myBike = (MountainBike)obj;

This cast inserts a runtime check that obj is assigned a
MountainBike so that the compiler can safely assume that obj is a
MountainBike. If obj is not a Mountainbike at runtime, an
exception will be thrown.

Note: You can make a logical test as to the type of a particular object
using the instanceof operator. This can save you from a runtime
error owing to an improper cast. For example:
if (obj instanceof MountainBike) {
MountainBike myBike = (MountainBike)obj;
}
Here, the instanceof operator verifies that obj refers to a
MountainBike so that we can make the cast with knowledge that
there will be no runtime exception thrown.

SELF ASSESSMENT EXERCISE 1

143

CIT 341 DATA STRUCTURES

Is the following interface valid?
public interface Marker {
}

SELF ASSESSMENT EXERCISE 2

What do you understand by the term, interface?

4.0 CONCLUSION

In this unit you have learned about inheritance. You have also learned
about interfaces. Finally, you have been able to learn how to modify
methods.

5.0 SUMMARY

What you have learned in this unit borders on inheritance and interfaces.

6.0 TUTOR-MARKED ASSIGNMENT

What is wrong with the following interface?

public interface SomethingIsWrong {
void aMethod(int aValue){
System.out.println("Hi Mom");
}
}

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to
Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),
199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the
STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A. (1998). Practical Introduction to Data
Structures and Algorithm Analysis, Prentice Hall, pp. 77–102.

144

CIT 341 DATA STRUCTURES

Bruno, R. P. Data Structures and Algorithms with Object-Oriented
Design Pattern in Java.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

UNIT 4 NUMBERS AND STRINGS

CONTENTS

1.0 Introduction
2.0 Objectives

145

http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.indiana.edu/~ucspubs/b131/
http://www.gnu.org/manual/emacs-20.3/emacs.html

CIT 341 DATA STRUCTURES

3.0 Main Content
3.1 The Number Classes
3.2 Creating Strings
3.3 String Length
3.4 Concatenating Strings
3.5 Creating Format Strings

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit begins with a discussion of the Number class in the
java.lang package, its subclasses, and the situations where you
would use instantiations of these classes rather than the primitive
number types. It also presents the PrintStream and
DecimalFormat classes, which provide methods for writing
formatted numerical output. Finally, the Math class in java.lang is
discussed.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

•describe number classes
•explain how to create strings
•explain concatenating of strings.

3.0 MAIN CONTENT

3.1 The Number Classes

When working with numbers, most of the time you use the primitive
types in your code. For example:
int i = 500;
float gpa = 3.65;
byte mask = 0xff;
There are, however, reasons to use objects in place of primitives, and the
Java platform provides wrapper classes for each of the primitive data
types. These classes "wrap" the primitive in an object. Often, the
wrapping is done by the compiler—if you use a primitive where an
object is expected, the compiler boxes the primitive in its wrapper class
for you. Similarly, if you use a number object when a primitive is
expected, the compiler unboxes the object for you.

146

http://java.sun.com/javase/6/docs/api/java/text/DecimalFormat.html

CIT 341 DATA STRUCTURES

Here is an example of boxing and unboxing:

Integer x, y;
x = 12;
y = 15;
System.out.println(x+y);

When x and y are assigned integer values, the compiler boxes the
integers because x and y are integer objects. In the println()
statement, x and y are unboxed so that they can be added as integers.
All of the numeric wrapper classes are subclasses of the abstract class
Number:

Note: There are four other subclasses of Number that are not discussed
here. BigDecimal and BigInteger are used for high-precision
calculations. AtomicInteger and AtomicLong are used for
multi-threaded applications.

There are three reasons why you might use a Number object rather than
a primitive:

1. As an argument of a method that expects an object (often used when
manipulating collections of numbers).

2. To use constants defined by the class, such as MIN_VALUE and
MAX_VALUE, that provide the upper and lower bounds of the data
type.

3. To use class methods for converting values to and from other
primitive types, for converting to and from strings, and for
converting between number systems (decimal, octal, hexadecimal,
binary).

The following table lists the instance methods that all the subclasses of
the Number class implement.

Methods Implemented by all Subclasses of Number

147

CIT 341 DATA STRUCTURES

Method Description

byte byteValue()
short shortValue()
int intValue()
long longValue()
float floatValue()
double doubleValue()

Converts the value of this Number
object to the primitive data type
returned.

int compareTo(Byte
anotherByte)
int compareTo(Double
anotherDouble)
int compareTo(Float
anotherFloat)
int compareTo(Integer
anotherInteger)
int compareTo(Long
anotherLong)
int compareTo(Short
anotherShort)

Compares this Number object to
the argument.

boolean equals(Object
obj)

Determines whether this number
object is equal to the argument.
The methods return true if the
argument is not null and is an
object of the same type and with the
same numeric value.
There are some extra requirements
for Double and Float objects
that are described in the Java API
documentation.

Each Number class contains other methods that are useful for
converting numbers to and from strings and for converting between
number systems. The following table lists these methods in the
Integer class. Methods for the other Number subclasses are similar:

Conversion Methods, Integer Class

Method Description

static Integer
decode(String s)

Decodes a string into an integer.
Can accept string representations of
decimal, octal, or hexadecimal
numbers as input.

148

CIT 341 DATA STRUCTURES

static int
parseInt(String s) Returns an integer (decimal only).

static int
parseInt(String s, int
radix)

Returns an integer, given a string
representation of decimal, binary,
octal, or hexadecimal (radix
equals 10, 2, 8, or 16 respectively)
numbers as input.

String toString()
Returns a String object
representing the value of this
Integer.

static String
toString(int i)

Returns a String object
representing the specified integer.

static Integer
valueOf(int i)

Returns an Integer object
holding the value of the specified
primitive.

static Integer
valueOf(String s)

Returns an Integer object
holding the value of the specified
string representation.

static Integer
valueOf(String s, int
radix)

Returns an Integer object
holding the integer value of the
specified string representation,
parsed with the value of radix. For
example, if s = "333" and radix = 8,
the method returns the base-ten
integer equivalent of the octal
number 333.

3.2 Creating Strings

The most direct way to create a string is to write:
String greeting = "Hello world!";
In this case, "Hello world!" is a string literal—a series of characters in
your code that is enclosed in double quotes. Whenever it encounters a
string literal in your code, the compiler creates a String object with its
value—in this case, Hello world!.

As with any other object, you can create String objects by using the
new keyword and a constructor. The String class has 11 constructors
that allow you to provide the initial value of the string using different
sources, such as an array of characters:

149

CIT 341 DATA STRUCTURES

char[] helloArray = { 'h', 'e', 'l', 'l', 'o',
'.'};
String helloString = new String(helloArray);
System.out.println(helloString);
The last line of this code snippet displays hello.
Note: The String class is immutable, so that once it is created, a
String object cannot be changed. The String class has a number of
methods, some of which will be discussed below, that appear to modify
strings. Since strings are immutable, what these methods really do is
create and return a new string that contains the result of the operation.

3.3 String Length

Methods used to obtain information about an object are known as
accessor methods. One accessor method that you can use with strings is
the length() method, which returns the number of characters
contained in the string object. After the following two lines of code have
been executed, len equals 17:
String palindrome = "Dot saw I was Tod";
int len = palindrome.length();

A palindrome is a word or sentence that is symmetric—it is spelled the
same forward and backward, ignoring case and punctuation. Here is a
short and inefficient programme to reverse a palindrome string. It
invokes the String method charAt(i), which returns the ith

character in the string, counting from 0.

public class StringDemo {
public static void main(String[] args) {
String palindrome = "Dot saw I was Tod";
int len = palindrome.length();
char[] tempCharArray = new char[len];
char[] charArray = new char[len];

// put original string in an array of chars
for (int i = 0; i < len; i++) {
tempCharArray[i] = palindrome.charAt(i);
}
// reverse array of chars
for (int j = 0; j < len; j++) {
charArray[j] = tempCharArray[len - 1 - j];
}

String reversePalindrome =
new String(charArray);
System.out.println(reversePalindrome);

150

CIT 341 DATA STRUCTURES

}
}

Running the programme produces this output:
doT saw I was toD

To accomplish the string reversal, the programme had to convert the
string to an array of characters (first for loop), reverse the array into a
second array (second for loop), and then convert back to a string. The
String class includes a method, getChars(), to convert a string, or
a portion of a string, into an array of characters so we could replace the
first for loop in the programme above with
palindrome.getChars(0, len - 1, tempCharArray,
0);

3.4 Concatenating Strings

The String class includes a method for concatenating two strings:
string1.concat(string2);
This returns a new string that is string1 with string2 added to it at the
end.

You can also use the concat() method with string literals, as in:

"My name is ".concat("Rumplestiltskin");
Strings are more commonly concatenated with the + operator, as in
"Hello," + " world" + "!"
which results in
"Hello, world!"
The + operator is widely used in print statements. For example:
String string1 = "saw I was ";
System.out.println("Dot " + string1 + "Tod");
which prints
Dot saw I was Tod
Such a concatenation can be a mixture of any objects. For each object
that is not a String, its toString() method is called to convert it to
a String.
Note: The Java programming language does not permit literal strings to
span lines in source files, so you must use the + concatenation operator
at the end of each line in a multi-line string. For example,
String quote = "Now is the time for all good” +
"men to come to the aid of their country.";

Breaking strings between lines using the + concatenation operator is,
once again, very common in print statements.

151

http://java.sun.com/javase/6/docs/api/java/lang/String.html

CIT 341 DATA STRUCTURES

3.5 Creating Format Strings

You have seen the use of the printf() and format() methods to
print output with formatted numbers. The String class has an
equivalent class method, format(), that returns a String object
rather than a PrintStream object.

Using String's static format() method allows you to create a
formatted string that you can reuse, as opposed to a one-time print
statement. For example, instead of

System.out.printf("The value of the float
variable is %f, while the value of the " +
"integer variable is %d, and the string is %s",
floatVar, intVar, stringVar);
you can write
String fs;
fs = String.format("The value of the float
variable is %f, while the value of the " +
"integer variable is %d, and the string is %s",
floatVar, intVar, stringVar);

System.out.println(fs);

SELF ASSESSMENT EXERCISE 1

What would be the result of concatenating these strings with the +
operator?
"Hello," + " world" + "!"

SELF ASSESSMENT EXERCISE 2

State three reasons why might use a Number object rather than a
primitive

4.0 CONCLUSION

In this unit you have learned about number classes. You have also
learned how to create and concatenate strings.

5.0 SUMMARY

What you have learned in this unit is focused on numbers and strings.

6.0 TUTOR-MARKED ASSIGNMENT

152

CIT 341 DATA STRUCTURES

What Integer method would you use to convert a string expressed in
base 5 into the equivalent int? For example, how would you convert
the string "230" into the integer value 65?

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to
Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),
199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the
STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A. (1998). Practical Introduction to Data
Structures and Algorithm Analysis, Prentice Hall, pp. 77–102.

Bruno, R. P. Data Structures and Algorithms with Object-Oriented
Design Pattern in Java.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

UNIT 5 GENERICS

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Generics–Basics
3.2 A Simple Box Class

153

http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.indiana.edu/~ucspubs/b131/
http://www.gnu.org/manual/emacs-20.3/emacs.html

CIT 341 DATA STRUCTURES

3.3 Generic Types
3.4 Type Parameter Naming Conventions
3.5 Generic Methods and Constructors

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit will focus primarily on simple "collections-like" examples that
we'll design from scratch. This hands-on approach will teach you the
necessary syntax and terminology while demonstrating the various kinds
of problems that generics were designed to solve.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

•explain the notion of generics
•identify generic types
•list the type parameter naming conventions
•describe generic methods.

3.0 MAIN CONTENT

3.1 Generics – Basics

In any nontrivial software project, bugs are simply a fact of life. Careful
planning, programming, and testing can help reduce their pervasiveness,
but somehow, somewhere, they'll always find a way to creep into your
code. This becomes especially apparent as new features are introduced
and your code base grows in size and complexity.

Fortunately, some bugs are easier to detect than others. Compile-time
bugs, for example, tell you immediately that something is wrong; you
can use the compiler's error messages to figure out what the problem is
and fix it, right then and there. Runtime bugs, however, can be much
more problematic; they don't always surface immediately, and when
they do, it may be at a point in time that's far removed from the actual
cause of the problem.

Generics add stability to your code by making more of your bugs
detectable at compile time. Some programmers choose to learn generics
by studying the Java Collections Framework; after all, generics are
heavily used by those classes.

154

CIT 341 DATA STRUCTURES

3.2 A Simple Box Class

Let's begin by designing a nongeneric Box class that operates on objects
of any type. It need only provide two methods: add, which adds an
object to the box, and get, which retrieves it:

public class Box {

private Object object;

public void add(Object object) {
this.object = object;
}

public Object get() {
return object;
}
}

Since its methods accept or return Object, you're free to pass in
whatever you want, provided that it's not one of the primitive types.
However, should you need to restrict the contained type to something
specific (like Integer), your only option would be to specify the
requirement in documentation (or in this case, a comment), which of
course the compiler knows nothing about:

public class BoxDemo1 {

public static void main(String[] args) {

// ONLY place Integer objects into this box!
Box integerBox = new Box();

integerBox.add(new Integer(10));
Integer someInteger = (Integer)integerBox.get();
System.out.println(someInteger);
}
}

The BoxDemo1 programme creates an Integer object, passes it to
add, then assigns that same object to someInteger by the return
value of get. It then prints the object's value (10) to standard output.
We know that the cast from Object to Integer is correct because
we have honoured the "contract" specified in the comment. But
remember, the compiler knows nothing about this — it just trusts that

155

http://java.sun.com/docs/books/tutorial/java/generics/examples/BoxDemo1.java

CIT 341 DATA STRUCTURES

our cast is correct. Furthermore, it will do nothing to prevent a careless
programmer from passing in an object of the wrong type, such as
String:

public class BoxDemo2 {

public static void main(String[] args) {

// ONLY place Integer objects into this box!
Box integerBox = new Box();

// Imagine this is one part of a large
application
// modified by one programmer.

integerBox.add("10"); // note how the type is
now String

// ... and this is another, perhaps written
// by a different programmer
Integer someInteger = (Integer)integerBox.get();
System.out.println(someInteger);
}
}

In BoxDemo2 we've stored the number 10 as a String, which could
be the case when, say, a GUI collects input from the user. However, the
existing cast from Object to Integer has mistakenly been
overlooked. This is clearly a bug, but because the code still compiles,
you wouldn't know anything is wrong until runtime, when the
application crashes with a ClassCastException:

Exception in thread "main"
java.lang.ClassCastException:
java.lang.String cannot be cast to
java.lang.Integer
at BoxDemo2.main(BoxDemo2.java:6)
If the Box class had been designed with generics in mind, this mistake
would have been caught by the compiler, instead of crashing the
application at runtime.

3.3 Generic Types

Let's update our Box class to use generics. We'll first create a generic
type declaration by changing the code "public class Box" to
"public class Box<T>"; this introduces one type variable, named

156

http://java.sun.com/docs/books/tutorial/java/generics/examples/BoxDemo2.java

CIT 341 DATA STRUCTURES

T, that can be used anywhere inside the class. This same technique can
be applied to interfaces as well. There's nothing particularly complex
about this concept. In fact, it's quite similar to what you already know
about variables in general. Just think of T as a special kind of variable,
whose "value" will be whatever type you pass in; this can be any class
type, any interface type, or even another type variable. It just can't be
any of the primitive data types. In this context, we also say that T is a
formal type parameter of the Box class.

/**
* Generic version of the Box class.
*/
public class Box<T> {
private T t; // T stands for "Type"
public void add(T t) {
this.t = t;
}

public T get() {
return t;
}
}

As you can see, we've replaced all occurrences of Object with T. To
reference this generic class from within your own code, you must
perform a generic type invocation, which replaces T with some concrete
value, such as Integer:

Box<Integer> integerBox;

You can think of a generic type invocation as being similar to an
ordinary method invocation, but instead of passing an argument to a
method, you're passing a type argument — Integer in this case — to
the Box class itself. Like any other variable declaration, this code does
not actually create a new Box object. It simply declares that
integerBox will hold a reference to a "Box of Integer", which is
how Box<Integer> is read.

An invocation of a generic type is generally known as a parameterized
type.

To instantiate this class, use the new keyword, as usual, but place
<Integer> between the class name and the parenthesis:

157

CIT 341 DATA STRUCTURES

integerBox = new Box<Integer>();

Or, you can put the entire statement on one line, such as:

Box<Integer> integerBox = new Box<Integer>();

Once integerBox is initialised, you're free to invoke its get method
without providing a cast, as in BoxDemo3:

public class BoxDemo3 {

public static void main(String[] args) {
Box<Integer> integerBox = new Box<Integer>();
integerBox.add(new Integer(10));
Integer someInteger = integerBox.get(); // no
cast!
System.out.println(someInteger);
}
}

Furthermore, if you try adding an incompatible type to the box, such as
String, compilation will fail, alerting you to what previously would
have been a runtime bug:

BoxDemo3.java:5: add(java.lang.Integer) in
Box<java.lang.Integer>
cannot be applied to (java.lang.String)
integerBox.add("10");
 ^
1 error

It's important to understand that type variables are not actually types
themselves. In the above examples, you won't find T.java or
T.class anywhere on the filesystem. Furthermore, T is not a part of
the Box class name. In fact, during compilation, all generic information
will be removed entirely, leaving only Box.class on the filesystem.
We'll discuss this later in the section on Type Erasure.
Also note that a generic type may have multiple type parameters, but
each parameter must be unique within its declaring class or interface. A
declaration of Box<T,T>, for example, would generate an error on the
second occurrence of T, but Box<T,U>, however, would be allowed.

3.4 Type Parameter Naming Conventions

158

http://java.sun.com/docs/books/tutorial/java/generics/erasure.html
http://java.sun.com/docs/books/tutorial/java/generics/examples/BoxDemo3.java

CIT 341 DATA STRUCTURES

By convention, type parameter names are single, uppercase letters. This
stands in sharp contrast to the variable naming conventions that you
already know about, and with good reason: Without this convention, it
would be difficult to tell the difference between a type variable and an
ordinary class or interface name.

The most commonly used type parameter names are:

• E - Element (used extensively by the Java Collections Framework)
• K - Key
• N - Number
• T - Type
• V - Value
• S,U,V etc. - 2nd, 3rd, 4th types.

You will see these names used throughout the Java SE API and the rest
of this tutorial.

3.5 Generic Methods and Constructors

Type parameters can also be declared within method and constructor
signatures to create generic methods and generic constructors. This is
similar to declaring a generic type, but the type parameter's scope is
limited to the method or constructor in which it's declared.

/**
* This version introduces a generic method.
*/
public class Box<T> {
private T t;

public void add(T t) {
this.t = t;
}
public T get() {
return t;
}
public <U> void inspect(U u){
System.out.println("T: " +
t.getClass().getName());
System.out.println("U: " +
u.getClass().getName());
}
public static void main(String[] args) {

159

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/variables.html#naming

CIT 341 DATA STRUCTURES

Box<Integer> integerBox = new Box<Integer>();
integerBox.add(new Integer(10));
integerBox.inspect("some text");
}
}

Here, we have added one generic method, named inspect, that
defines one type parameter, named U. This method accepts an object and
prints its type to standard output. For comparison, it also prints out the
type of T. For convenience, this class now also has a main method so
that it can be run as an application.

The output from this programme is:

T: java.lang.Integer
U: java.lang.String

By passing in different types, the output will change accordingly.

A more realistic use of generic methods might be something like the
following, which defines a static method that stuffs references to a
single item into multiple boxes:

public static <U> void fillBoxes(U u,
List<Box<U>> boxes) {
for (Box<U> box : boxes) {
box.add(u);
}
}

To use this method, your code would look something like the following:

Crayon red = ...;
List<Box<Crayon>> crayonBoxes = ...;

The complete syntax for invoking this method is:

Box.<Crayon>fillBoxes(red, crayonBoxes);
Here, we have explicitly provided the type to be used as U, but more
often than not, this can be left out and the compiler will infer the type
that's needed:

Box.fillBoxes(red, crayonBoxes); // compiler
infers that U is Crayon

160

CIT 341 DATA STRUCTURES

This feature, known as type inference, allows you to invoke a generic
method as you would an ordinary method, without specifying a type
between angle brackets.

SELF ASSESSMENT EXERCISE

List at least three commonly used type parameter names.

4.0 CONCLUSION

Specifically, you learned that generic type declarations can include one
or more type parameters; you supply one type argument for each type
parameter when you use the generic type. You also learned that type
parameters can be used to define generic methods and constructors.
Bounded type parameters limit the kinds of types that can be passed into
a type parameter; they can specify an upper bound only. Wildcards
represent unknown types, and they can specify an upper or lower bound.

5.0 SUMMARY

What you have learned in this unit is focused on generics, their methods
and constructors.

6.0 TUTOR-MARKED ASSIGNMENT

Distinguish between the type parameter and the variable naming
conventions.

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to
Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),
199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.

161

CIT 341 DATA STRUCTURES

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the
STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A. (1998). Practical Introduction to Data
Structures and Algorithm Analysis, Prentice Hall, pp. 77–102.

Bruno, R. P. Data Structures and Algorithms with Object-Oriented
Design Pattern in Java.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

MODULE 5 ALGORITHMS

Unit 1 Introduction to Algorithms
Unit 2 Vectors and Matrices
Unit 3 Greedy Algorithm
Unit 4 Divide-and-Conquer Algorithm
Unit 5 Dynamic Programming Algorithm

UNIT 1 INTRODUCTION TO ALGORITHMS

162

http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.indiana.edu/~ucspubs/b131/
http://www.gnu.org/manual/emacs-20.3/emacs.html

CIT 341 DATA STRUCTURES

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 What is an Algorithm?
3.2 Algorithm’s Performance
3.3 Algorithm Analysis

3.3.1 Worst-Case Complexity
3.3.2 Average-Case Complexity

3.4 Optimality
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit will introduce you to algorithms, their performance and
analysis. You will also be introduced to the concept of an optimal
algorithm.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

•define an algorithm
•explain an algorithm’s performance
•describe algorithm analysis
•explain the notion of an optimal algorithm.

3.0 MAIN CONTENT

3.1 What is an Algorithm?

An algorithm can be defined as a finite step-by-step procedure to
achieve a required result.

In terms of data structures, an algorithm can be described as a sequence
of operations performed on data that have to be organised in data

163

CIT 341 DATA STRUCTURES

structures. An algorithm is also an abstraction of a programme to be
executed on a physical machine (model of Computation).

The most famous algorithm in history dates well before the time of the
ancient Greeks: this is Euclid's algorithm for calculating the greatest
common divisor of two integers.

3.2 Algorithm’s Performance

Two important ways to characterise the effectiveness of an algorithm are
its space complexity and time complexity. Time complexity of an
algorithm concerns determining an expression of the number of steps
needed as a function of the problem size. Since the step count measure is
somewhat coarse, one does not aim at obtaining an exact step count.
Instead, one attempts only to get asymptotic bounds on the step count.
Asymptotic analysis makes use of the O (Big Oh) notation. Two other
notational constructs used by computer scientists in the analysis of
algorithms are Θ (Big Theta) notation and Ω (Big Omega) notation.
The performance evaluation of an algorithm is obtained by totalling the
number of occurrences of each operation when running the algorithm.
The performance of an algorithm is evaluated as a function of the input
size, n, and is to be considered modulo, a multiplicative constant.

The following notations are commonly used notations in performance
analysis and used to characterize the complexity of an algorithm.

Θ-Notation (Same order)

This notation bounds a function to within constant factors. We say f(n) =
Θ(g(n)) if there exist positive constants n0, c1 and c2 such that to the right
of n0 the value of f(n) always lies between c1g(n) and c2g(n) inclusive.

c
2
g(n)

f(n)

c
1
g(n)

f(n) = Θ(g(n))
n

o

n

164

CIT 341 DATA STRUCTURES

O-Notation (Upper Bound)

This notation gives an upper bound for a function to within a constant
factor. We write f(n) = O(g(n)) if there are positive constants n0 and c
such that to the right of n0, the value of f(n) always lies on or below
cg(n).

 Ω-Notation (Lower Bound)

This notation gives a lower bound for a function to within a constant
factor. We write f(n) = Ω(g(n)) if there are positive constants n0 and c
such that to the right of n0, the value of f(n) always lies on or above
cg(n).

3.3 Algorithm Analysis

Analysis of algorithms is a field in computer science whose overall goal
is an understanding of the complexity of algorithms. The complexity of
an algorithm is a function g(n) that gives the upper bound of the number
of operation (or running time) performed by an algorithm when the
input size is n.

There are two interpretations of upper bound.

cg(n)

f(n)

nn
o f(n) = O(g(n))

f(n)

cg(n)

f(n) = Ω(g(n))n
o

n

165

CIT 341 DATA STRUCTURES

3.3.1 Worst-case Complexity

The running time for any given size input will be lower than the upper
bound except possibly for some values of the input where the maximum
is reached.

3.3.2 Average-case Complexity

The running time for any given size input will be the average number of
operations over all problem instances for a given size.

Because, it is quite difficult to estimate the statistical behaviour of the
input, we mostly content ourselves to a worst case behaviour. Most of
the time, the complexity of g(n) is approximated by its family o(f(n))
where f(n) is one of the following functions. n (linear complexity), log n
(logarithmic complexity), na where a≥2 (polynomial complexity), an

(exponential complexity).

3.4 Optimality

Once the complexity of an algorithm has been estimated, the question
arises whether this algorithm is optimal. An algorithm for a given
problem is optimal if its complexity reaches the lower bound over all the
algorithms solving this problem. For example, any algorithm solving
“the intersection of n segments” problem will execute at least n2

operations in the worst case even if it does nothing but print the output.
This is abbreviated by saying that the problem has Ω(n2) complexity. If
one finds an O(n2) algorithm that solves this problem, it will be optimal
and of complexity Θ(n2).

SELF ASSESSMENT EXERCISE 1

What do you understand by algorithm analysis?

SELF ASSESSMENT EXERCISE 2

List three notations used to characterise the complexity of an algorithm.
4.0 CONCLUSION

In this unit you have learned about algorithms, their performance and
analysis. You have also been able to understand the optimality of an
algorithm.

5.0 SUMMARY

What you have learned borders on algorithms, their performance and
analysis.

166

CIT 341 DATA STRUCTURES

6.0 TUTOR-MARKED ASSIGNMENT

When is an algorithm said to be optimal?

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to
Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),
199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the
STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A. (1998). Practical Introduction to Data
Structures and Algorithm Analysis, Prentice Hall, pp. 77–102.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

http://java.sun.com/docs/books/tutorial/java/concepts/index.html

http://cs.wwc.edu/~aabyan/OOP/

UNIT 2 VECTORS AND MATRICES

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Vectors
3.2 Addition of Two Vectors
3.3 Multiplication of a Vector by a Scalar

167

http://cs.wwc.edu/~aabyan/OOP/
http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.indiana.edu/~ucspubs/b131/
http://www.gnu.org/manual/emacs-20.3/emacs.html

CIT 341 DATA STRUCTURES

3.4 Dot Product and Norm
3.5 Matrices
3.6 Matrix Addition
3.7 Matrix Multiplication
3.8 Transpose

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

In this unit, you will learn about vectors and matrices. Simple arithmetic
operations will also be carried out on the vectors and matrices.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

•identify a vector
•identify a matrix
•add and multiply vectors
•add and multiply matrices
•determine the transpose of a matrix.

3.0 MAIN CONTENT

3.1 Vectors

A vector, u, means a list (or n-tuple) of numbers:
u = (u1, u2, . . . , un)

where ui are called the components of u. If all the ui are zero i.e., ui = 0,
then u is called the zero vector.
Given vectors u and v are equal i.e., u = v, if they have the same number
of components and if corresponding components are equal.

3.2 Addition of Two Vectors

If two vectors, u and v, have the number of components, their sum, u +
v, is the vector obtained by adding corresponding components from u
and v.

u + v = (u1, u2, . . . , un) + (v1, v2, . . . , vn)
 = (u1 + v1 + u2 + v2, . . . , un + vn)

168

CIT 341 DATA STRUCTURES

3.3 Multiplication of a Vector by a Scalar

The product of a scalar, k, and a vector, u, i.e., ku, is the vector obtained
by multiplying each component of u by k:

ku = k(u1, u2, . . . , un)
 = ku1, ku2, . . . , kun

Here, we define -u = (-1)u and u-v = u +(-v)

It is not difficult to see k(u + v) = ku + kv where k is a scalar and u and v
are vectors.

3.4 Dot Product and Norm

The dot product or inner product of vectors u = (u1, u2, . . . , un) and v =
(v1, v2, . . . , vn) is denoted by u.v and defined by

u.v = u1v1 + u2v2 + . . . + unvn

The norm or length of a vector, u, is denoted by ||u|| and defined by

3.5 Matrices

Matrix, A, means a rectangular array of numbers.

 A =
The m horizontal n-tuples are called the rows of A, and the n vertical
m-tuples, its columns. Note that the element, aij, called the ij-entry,
appear in the ith row and the jth column.

In algorithmic (study of algorithms), we like to write a matrix A, as
A(aij).

3.6 Matrix Addition

169

CIT 341 DATA STRUCTURES

Let A and B be two matrices of the same size. The sum of A and B is
written as A + B and obtained by adding corresponding elements from A
and B.

 A+B =

 =

3.7 Matrix Multiplication

Suppose A and B are two matrices such that the number of columns of
A is equal to number of rows of B. Say matrix A is an m×p matrix and
matrix B is a p×n matrix. Then the product of A and B is the m×n matrix
whose ij-entry is obtained by multiplying the elements of the ith row of
A by the corresponding elements of the jth column of B and then adding
them.

It is important to note that if the number of columns of A is not equal to the
number of rows of B, then the product, AB, is not defined.

3.8 Transpose

The transpose of a matrix A is obtained by writing the row of A, in
order, as columns and denoted by AT. In other words, if A - (Aij), then B
= (bij) is the transpose of A if bij - aji for all i and j.
It is not hard to see that if A is an m×n matrix, then AT is an n×m matrix.

For example if A = , then AT =

SELF ASSESSMENT EXERCISE

Find the product of any two matrices of your choice.

170

CIT 341 DATA STRUCTURES

4.0 CONCLUSION

In this unit, you have learned about vectors and matrices. You have also
learned how to carry out addition and multiplication on vectors and
matrices.

5.0 SUMMARY

You have considered vectors and matrices in this unit.

6.0 TUTOR-MARKED ASSIGNMENT

Find the transpose of the matrix 







653
784

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to
Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),
199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the
STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A. (1998). Practical Introduction to Data
Structures and Algorithm Analysis, Prentice Hall, pp. 77–102.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

http://www.purplemath.com/modules/variable.htm

171

http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.indiana.edu/~ucspubs/b131/
http://www.gnu.org/manual/emacs-20.3/emacs.html

CIT 341 DATA STRUCTURES

UNIT 3 GREEDY ALGORITHM

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Greedy Algorithm Overview
3.2 Greedy Algorithm Approach
3.3 Features of Problems Solved by Greedy Algorithm

172

CIT 341 DATA STRUCTURES

3.4 Structure Greedy Algorithm
3.5 Definitions of Feasibility

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

What you will learn in this unit borders on greedy algorithms. The
greedy algorithm approach and functions will equally be discussed.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

•explain the merits of greedy algorithm
•describe greedy algorithm approach
•list four functions of greedy algorithm.

3.0 MAIN CONTENT

3.1 Greedy Algorithm – Overview

Greedy algorithms are simple and straightforward algorithms. They are
shortsighted in their approach in the sense that they take decisions on the
basis of information at hand without worrying about the effect these
decisions may have in the future. They are easy to invent, easy to
implement and most of the time, quite efficient. Greedy algorithms are
used to solve optimization problems.

3.2 Greedy Algorithm Approach

Greedy Algorithm works by making the decision that seems most
promising at any moment; it never reconsiders this decision, whatever
situation may arise later.

3.3 Features of Problems solved by Greedy Algorithms

To construct the solution in an optimal way, an algorithm maintains two
sets. One contains chosen items and the other contains rejected items.

173

CIT 341 DATA STRUCTURES

The greedy algorithm consists of four (4) functions.

1. A function that checks whether chosen set of items provide a
solution.

2. A function that checks the feasibility of a set.
3. The selection function tells which of the candidates is the most

promising.
4. An objective function, which does not appear explicitly, gives the

value of a solution.

3.4 Structure Greedy Algorithm

i. Initially the set of chosen items is empty i.e., solution set.
ii. At each step

•item will be added in a solution set by using selection function.
•IF the set would no longer be feasible
- reject items under consideration (and is never considered again).

•ELSE IF set is still feasible THEN
- add the current item.

3.5 Definitions of Feasibility

A feasible set (of candidates) is promising if it can be extended to
produce not merely a solution, but an optimal solution to the problem. In
particular, the empty set is always promising why? (because an optimal
solution always exists).

Unlike Dynamic Programming, which solves the subproblems
bottom-up, a greedy strategy usually progresses in a top-down fashion,
making one greedy choice after another, reducing each problem to a
smaller one.

SELF ASSESSMENT EXERCISE

 List four functions of greedy algorithms.

4.0 CONCLUSION

In this unit, you have learned about greedy algorithms. You have also
been able to identify a promising feasible set.

5.0 SUMMARY

174

CIT 341 DATA STRUCTURES

What you have learned in this unit concerns greedy algorithms.

6.0 TUTOR-MARKED ASSIGNMENT

When is a feasible set said to be promising?

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to
Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),
199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the
STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A. (1998). Practical Introduction to Data
Structures and Algorithm Analysis, Prentice Hall, pp. 77–102.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

UNIT 4 DIVIDES AND CONQUER ALGORITHM

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Divide-and-Conquer Algorithm
3.2 Binary Search
3.3 Sequential Search
3.4 Analysis

175

http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.indiana.edu/~ucspubs/b131/
http://www.gnu.org/manual/emacs-20.3/emacs.html

CIT 341 DATA STRUCTURES

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit introduces the divide-and-conquer algorithm as a design
technique. It explains the phases involved in this technique of design.

2.0 OBJECTIVES

By the end of this unit, the student should be able to:

•describe the divide-and-conquer design technique
•explain the phases involved in the divide-and-conquer paradigm
•describe the application of divide-and-conquer.

3.0 MAIN CONTENT

3.1 Divide-and-Conquer Algorithm

Divide-and-conquer is a top-down technique for designing algorithms
that consists of dividing the problem into smaller subproblems hoping
that the solutions of the subproblems are easier to find and then
composing the partial solutions into the solution of the original problem.

Little more formally, divide-and-conquer paradigm consists of the
following major phases:

•Breaking the problem into several sub-problems that are similar to the
original problem but smaller in size,
•Solve the sub-problem recursively (successively and independently),
and then
•Combine these solutions to subproblems to create a solution to the
original problem.
3.2 Binary Search (simplest application of divide-and-conquer)

Binary Search is an extremely well-known instance of divide-and-
conquer paradigm. Given an ordered array of n elements, the basic idea
of binary search is that for a given element, we "probe" the middle
element of the array. We continue in either the lower or upper segment
of the array, depending on the outcome of the probe until we reach the
required (given) element.

Problem Let A[1 . . . n] be an array of non-decreasing sorted order;

176

CIT 341 DATA STRUCTURES

that is A [i] ≤ A [j] whenever 1 ≤ i ≤ j ≤ n. Let 'q' be the query point.
The problem consists of finding 'q' in the array A. If q is not in A, then
find the position where 'q' might be inserted.

Formally, find the index i such that 1 ≤ i ≤ n+1 and A[i-1] < x ≤ A[i].

3.3 Sequential Search

Look sequentially at each element of A until either we reach the end of
an array A or find an item no smaller than 'q'.

Sequential search for 'q' in array A

for i = 1 to n do
 if A [i] ≥ q then
return index i
return n + 1

3.4 Analysis

This algorithm clearly takes a θ(r), where r is the index returned. This is
Ω(n) in the worst case and O(1) in the best case.

If the elements of an array A, are distinct and query point q is indeed in
the array, then loop executed (n + 1) / 2 average number of times. On
average (as well as the worst case), sequential search takes θ(n) time.

SELF ASSESSMENT EXERCISE

Describe at least one application of divide-and-conquer.

4.0 CONCLUSION

In this unit, you have learned about divide-and-conquer algorithm. You
have also gained knowledge of binary and sequential search.

5.0 SUMMARY

What you have learned in this unit concerns divide-and-conquer
algorithm.

6.0 TUTOR-MARKED ASSIGNMENT

Divide-and-conquer is a top-down design technique. True or False?
Discuss

177

CIT 341 DATA STRUCTURES

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to
Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),
199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the
STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A. (1998). Practical Introduction to Data
Structures and Algorithm Analysis, Prentice Hall, pp. 77–102.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

UNIT 5 ALGORITHMS

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Dynamic Programming
3.2 The Principle of Optimality

178

http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.indiana.edu/~ucspubs/b131/
http://www.gnu.org/manual/emacs-20.3/emacs.html

CIT 341 DATA STRUCTURES

3.3 Dynamic Programming Algorithm
3.4 Analysis

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit introduces dynamic programming as opposed to the
divide-and-conquer. It explains the bottom-up technique and states the
principle of optimality.

2.0 OBJECTIVES

By the end of this unit, the student should be able to:

•explain the dynamic programming method
•identify four design steps in dynamic programming
•distinguish between divide-and-conquer and dynamic programming
•explain the concept of bottom-up
•state the principle of optimality.

3.0 MAIN CONTENT

3.1 Dynamic Programming

Dynamic programming is a stage-wise search method suitable for
optimisation problems whose solutions may be viewed as the result of a
sequence of decisions. The most attractive property of this strategy is
that during the search for a solution, it avoids full enumeration by
pruning early partial decision solutions that cannot possibly lead to
optimal solution. In many practical situations, this strategy hits the
optimal solution in a polynomial number of decision steps. However, in
the worst case, such a strategy may end up performing full enumeration.

Dynamic programming design involves four major steps:

1. Develop a mathematical notation that can express any solution and
subsolution for the problem at hand.

2. Prove that the Principle of Optimality holds.
3. Develop a recurrence relation that relates a solution to its

subsolutions, using the math notation of step 1. Indicate what the
initial values are for that recurrence relation, and which term
signifies the final solution.

4. Write an algorithm to compute the recurrence relation.

179

CIT 341 DATA STRUCTURES

Dynamic programming takes advantage of the duplication and arrange
to solve each subproblem only once, saving the solution (in table or
something) for later use. The underlying idea of dynamic
programming is: avoid calculating the same stuff twice, usually by
keeping a table of known results of subproblems. Unlike divide-and-
conquer, which solves the subproblems top-down, a dynamic
programming is a bottom-up technique.

Bottom-up means

i.Start with the smallest subproblems.
ii.Combining these solutions, obtain the solutions to subproblems of

increasing size.
iii.Until the solution of the original problem is arrived at.

3.2 The Principle of Optimality

The dynamic programming relies on a principle of optimality. This
principle states that in an optimal sequence of decisions or choices, each
subsequence must also be optimal. For example, in matrix chain
multiplication problem, not only the value we are interested in is optimal
but all the other entries in the table are also optimal.

The principle can be related as follows: the optimal solution to a
problem is a combination of optimal solutions to some of its
subproblems.

The difficulty in turning the principle of optimality into an algorithm is
that it is not usually obvious which subproblems are relevant to the
problem under consideration.

3.3 Dynamic-Programming Algorithm

The finishing times are in a sorted array f[i] and the starting times are in
array s[i]. The array m[i] will store the value mi, where mi is the size of
the largest of mutually compatible activities among activities {1, 2, . . . ,
i}. Let BINARY-SEARCH(f, s) returns the index of a number i in the
sorted array f such that f(i) ≤ s ≤ f[i + 1].

for i =1 to n
do m[i] = max(m[i-1], 1+ m [BINARY-SEARCH(f, s[i])])
We have P(i] = 1 if activity i is in optimal selection, and P[i] = 0
otherwise

180

CIT 341 DATA STRUCTURES

 i = n
while i > 0
do if m[i] = m[i-1]
then P[i] = 0
 i = i – 1
else
i = BINARY-SEARCH (f, s[i])
P[i] = 1

3.4 Analysis

The running time of this algorithm is O(n lg n) because of the binary
search which takes lg(n) time as opposed to the O(n) running time of the
greedy algorithm. This greedy algorithm assumes that the activities are
already sorted by increasing time.

SELF ASSESSMENT EXERCISE 1

List four design steps in dynamic programming.

SELF ASSESSMENT EXERCISE 2

State the principle of optimality.

4.0 CONCLUSION

In this unit, you have learned about dynamic programming. You have
also gained insight of bottom-up technique and the principle of
optimality.

5.0 SUMMARY

What you have learned in this unit concerns dynamic programming and
its analysis.
6.0 TUTOR-MARKED ASSIGNMENT

Explain the dynamic programming method.

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to
Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),
199-217.

181

CIT 341 DATA STRUCTURES

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd
Edition), New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the
STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A. (1998). Practical Introduction to Data
Structures and Algorithm Analysis, Prentice Hall, pp. 77–102.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

MODULE 6 GRAPHS AND SORTING

Unit 1 Graph Algorithm
Unit 2 Sorting
Unit 3 Bubble Sort
Unit 4 Insertion Sort
Unit 5 Selection Sort
Unit 6 Merge Sorting

UNIT 1 GRAPH ALGORITHM

182

http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.indiana.edu/~ucspubs/b131/
http://www.gnu.org/manual/emacs-20.3/emacs.html

CIT 341 DATA STRUCTURES

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 The Graph Theory
3.2 Digraph
3.3 Algorithm Transpose
3.4 Algorithm Matrix Transpose

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

In this unit, the student will gain knowledge of the graph theory and its
applications. The unit describes the digraph and determines the
transpose of an algorithm.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

•describe the graph theory, stating some of its applications
•gain knowledge of a digraph
•explain the algorithmic transpose.

183

CIT 341 DATA STRUCTURES

3.0 MAIN CONTENT

3.1 The Graph Theory

Graph Theory is an area of mathematics that deals with the following
types of problems:

•Connection problems
•Scheduling problems
•Transportation problems
•Network analysis
•Games and Puzzles.

However, the graph theory has important applications in Critical path
analysis, Social psychology, Matrix theory, Set theory, Topology, Group
theory, Molecular Chemistry, and Searching.

3.2 Digraph

A directed graph, or digraph, G, consists of a finite nonempty set of
vertices V, and a finite set of edges E, where an edge is an ordered pair
of vertices in V. Vertices are also commonly referred to as nodes. Edges
are sometimes referred to as arcs.

As an example, we could define a graph G=(V, E) as follows:

V = {1, 2, 3, 4}
E = { (1, 2), (2, 4), (4, 2) (4, 1)}

Here is a pictorial representation of this graph.

The definition of graph implies that a graph can be drawn just knowing
its vertex-set and its edge-set. For example, our first example

184

CIT 341 DATA STRUCTURES

has vertex set V and edge set E where: V = {1,2,3,4} and E = {(1,2),
(2,4),(4,3),(3,1),(1,4),(2,1),(4,2),(3,4),(1,3),(4,1). Notice that each edge
seems to be listed twice.

Another example, the following Petersen Graph G=(V,E) has vertex set,
V, and edge set E where: V = {1,2,3,4}and E ={(1,2),(2,4),(4,3),(3,1),
(1,4),(2,1),(4,2),(3,4),(1,3),(4,1)}.

3.3 Algorithm Transpose

If graph G = (V, E) is a directed graph, its transpose, GT = (V, ET) is the
same as graph G with all arrows reversed. We define the transpose of
adjacency matrix A = (aij) to be the adjacency matrix AT = (Taij) given by
Taij = aji. In other words, rows of matrix A become columns of matrix AT

and columns of matrix A become rows of matrix AT. Since in an
undirected graph, (u, v) and (v, u) represented the same edge, the
adjacency matrix A of an undirected graph is its own transpose: A = AT.

Formally, the transpose of a directed graph G = (V, E) is the graph GT

(V, ET), where ET = {(u, v)  V×V: (u, v)E. Thus, GT is G with all its
edges reversed.

We can compute GT from G in the adjacency matrix representations and
adjacency list representations of graph G.

Algorithm for computing GT from G in representation of graph G is:

3.4 Algorithm Matrix Transpose (G, GT)

For i = 0 to i < V[G]
For j = 0 to j V[G]
GT (j, i) = G(i, j)
j = j + 1;
i = i + 1

SELF ASSESSMENT EXERCISE

Edges are also referred to as arcs. True or False?

185

CIT 341 DATA STRUCTURES

4.0 CONCLUSION

The graph theory and digraph were considered in this unit. You have
also learned about algorithmic transpose.

5.0 SUMMARY

What you have learned in this unit concerns graph theory and
algorithms.

6.0 TUTOR-MARKED ASSIGNMENT

List two applications of the graph theory.

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to
Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),
199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the
STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A. (1998). Practical Introduction to Data
Structures and Algorithm Analysis, Prentice Hall, pp. 77–102.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

186

http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.indiana.edu/~ucspubs/b131/
http://www.gnu.org/manual/emacs-20.3/emacs.html

CIT 341 DATA STRUCTURES

UNIT 2 SORTING

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Sorting
3.2 Internal Sort
3.3 External Sort
3.4 Memory Requirement
3.5 Stability
3.6 Classes of Sorting Algorithms

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignments
7.0 References/Further Readings

1.0 INTRODUCTION

This unit considers sorting algorithm. It delves into the two kinds of
sorting as well as the classes of sorting.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

•explain the aim of sorting algorithm
•describe the types of sorting
•explain the classes of sorting algorithm.

3.0 MAIN CONTENT

3.1 Sorting

The objective of the sorting algorithm is to rearrange the records so that
their keys are ordered according to some well-defined ordering rule.
Problem: Given an array of n real number A[1.. n].
Objective: Sort the elements of A in ascending order of their values.

3.2 Internal Sort

If the file to be sorted will fit into memory or equivalently, if it will fit
into an array, then the sorting method is called internal. In this method,
any record can be accessed easily.

187

CIT 341 DATA STRUCTURES

3.3 External Sort

•Sorting files from tape or disk.
•In this method, an external sort algorithm must access records
sequentially, or at least in the block.

3.4 Memory Requirement

1. Sort in place and use no extra memory except perhaps for a small
stack or table.

2. Algorithms that use a linked-list representation and so use N extra
words of memory for list pointers.

3. Algorithms that need enough extra memory space to hold another
copy of the array to be sorted.

3.5 Stability

A sorting algorithm is called stable if it preserves the relative order of
equal keys in the file. Most of the simple algorithms are stable, but most
of the well-known sophisticated algorithms are not.

3.6 Classes of Sorting Algorithms

There are two classes of sorting algorithms namely, O(n2)-algorithms
and O(n log n)-algorithms. O(n2)-class includes bubble sort, insertion
sort, selection sort and shell sort. O(n log n)-class includes heap sort,
merge sort and quick sort.

188

CIT 341 DATA STRUCTURES

O(n2) Sorting Algorithms

O(n log n) Sorting Algorithms

SELF ASSESSMENT EXERCISE 1

Name two classes of sorting algorithm.

SELF ASSESSMENT EXERCISE 2

Describe the internal sort.

4.0 CONCLUSION

In this unit, you have learned about sorting algorithm. You have also
been able to identify classes of sorting algorithm.

5.0 SUMMARY

What you have learned borders on sorting algorithms and their classes.

6.0 TUTOR-MARKED ASSIGNMENT

What do you understand by sorting algorithm?

900

800

700

600

500

400

300

200

100

0

Se
co

nd
s

10 100 1000 10000 25000 50000 75000 100000
n

 Bubble Insertion Selection Shell

189

CIT 341 DATA STRUCTURES

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to
Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),
199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the
STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A. (1998). Practical Introduction to Data
Structures and Algorithm Analysis, Prentice Hall, pp. 77–102.

Bruno, R. P. Data Structures and Algorithms with Object-Oriented
Design Patterns in Java.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

190

http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.indiana.edu/~ucspubs/b131/
http://www.gnu.org/manual/emacs-20.3/emacs.html

CIT 341 DATA STRUCTURES

UNIT 3 BUBBLE SORT

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Bubble Sort
3.2 Memory Requirement
3.3 Implementation

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit covers bubble sort, its implementation and memory
requirement.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

•describe the bubble sort
•explain the memory requirement
•state the implementation of a bubble sort.

3.0 MAIN CONTENT

3.1 Bubble Sort

Bubble Sort is an elementary sorting algorithm. It works by repeatedly
exchanging adjacent elements, if necessary. When no exchanges are
required, the file is sorted.

191

CIT 341 DATA STRUCTURES

Figure 1.0 n2 nature of the bubble sort

Clearly, the graph shows the n2 nature of the bubble sort.

In this algorithm, the number of comparison is irrespective of data set
i.e., input whether best or worst.

3.2 Memory Requirement

Clearly, bubble sort does not require extra memory.

3.3 Implementation

void bubbleSort(int numbers[], int array_size)
{
int i, j, temp;
for (i = (array_size - 1); i >= 0; i--)
{
for (j = 1; j <= i; j++)
{
if (numbers[j-1] > numbers[j])
{
temp = numbers[j-1];
numbers[j-1] = numbers[j];
numbers[j] = temp;
}
}
}
}

192

CIT 341 DATA STRUCTURES

SELF ASSESSMENT EXERCISE

Bubble sort requires extra memory. True or False?

4.0 CONCLUSION

In this unit, you have learned about bubble sort. You have also learned
about its memory requirement and implementation.

5.0 SUMMARY

What you have learned in this unit borders on bubble sort.

6.0 TUTOR-MARKED ASSIGNMENT

What do you understand by bubble sort?

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to
Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),
199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the
STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A. (1998). Practical Introduction to Data
Structures and Algorithm Analysis, Prentice Hall, pp. 77–102.

Bruno, R. P. Data Structures and Algorithms with Object-Oriented
Design Patterns in Java.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

193

http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.indiana.edu/~ucspubs/b131/
http://www.gnu.org/manual/emacs-20.3/emacs.html

CIT 341 DATA STRUCTURES

UNIT 4 INSERTION SORT

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Insertion Sort
3.2 Analysis
3.3 Stability
3.4 Extra Memory
3.5 Implementation

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit considers insertion and its analysis. You will equally learn
about the stability and implementation of insertion sort.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

•describe the insertion sort
•analyse an insertion sort
•describe the stability of an insertion sort
•state how insertion sort is implemented.

3.0 MAIN CONTENT

3.1 Insertion Sort

If the first few objects are already sorted, an unsorted object can be
inserted in the sorted set in proper place. This is called insertion sort. An
algorithm considers the elements one at a time, inserting each in its
suitable place among those already considered (keeping them sorted).

Insertion sort is an example of an incremental algorithm; it builds the
sorted sequence one number at a time.

194

CIT 341 DATA STRUCTURES

Insertion Sort (A)

1. For j = 2 to length [A] do
2. key = A[j]
3. {Put A[j] into the sorted sequence A[1 . . j-1]
4. i ← j -1
5. while i > 0 and A[i] > key do
6. A[i+1] = A[i]
7. i = i-1
8. A[i+1] = key

3.2 Analysis

On examining the statements above, we discover the following cases

Best-Case

The while-loop in line 5 executed only once for each j. This happens if
given array A is already sorted.
T(n) = an + b = O(n)
It is a linear function of n.

Worst-Case

The worst-case occurs, when line 5 executed j times for each j. This can
happen if array A starts out in reverse order
T(n) = an2 + bc + c = O(n2)
It is a quadratic function of n.

The graph shows the n2 complexity of the insertion sort.

195

CIT 341 DATA STRUCTURES

 3.3 Stability

Since multiple keys with the same value are placed in the sorted array in
the same order that they appear in the input array, Insertion sort is
stable.

3.4 Extra Memory

This algorithm does not require extra memory.

•For Insertion sort we say the worst-case running time is θ(n2), and the
best-case running time is θ(n).
•Insertion sort uses no extra memory it sorts in place.
•The time of Insertion sort depends on the original order of an input. It
takes a time Ω(n2) in the worst-case, despite the fact that a time in order
of n is sufficient to solve large instances in which the items are already
sorted.

3.5 Implementation

void insertionSort(int numbers[], int array_size)
{
int i, j, index;

for (i=1; i < array_size; i++)
{
index = numbers[i];
j = i;
while ((j > 0) && (numbers[j-1] > index))
{
numbers[j] = numbers[j-1];
j = j - 1;
}
numbers[j] = index;
}
}

SELF ASSESSMENT EXERCISE

Discuss memory requirement of insertion sort.

4.0 CONCLUSION

In this unit you have learned about insertion sort. You have also learned
about the analysis stability and implementation of insertion sort.

196

CIT 341 DATA STRUCTURES

5.0 SUMMARY

What you have learned in this unit borders on insertion sort, its analysis
and implementation.

6.0 TUTOR-MARKED ASSIGNMENT

Why is an insertion sort said to be stable?

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to
Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),
199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the
STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A. (1998). Practical Introduction to Data
Structures and Algorithm Analysis, Prentice Hall, pp. 77–102.

Bruno, R. P. Data Structures and Algorithms with Object-Oriented
Design Patterns in Java.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

197

http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.indiana.edu/~ucspubs/b131/
http://www.gnu.org/manual/emacs-20.3/emacs.html

CIT 341 DATA STRUCTURES

UNIT 5 ALGORITHMS

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Selection Sorting
3.2 Straight Selection Sorting
3.3 Implementation of the Selection Sort

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

In this unit, we will consider selection sort, distinguishing it from
insertion sort. The implementation of selection sort is also discussed.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

•discuss selection sort
•distinguish selection sort from insertion sort
•describe the straight selection sort
•explain the implementation of selection sort.

3.0 MAIN CONTENT

3.1 Selection Sorting

Selection sorting is a class of sorting algorithm that comprises
algorithms that sort by selection. Such algorithms construct the sorted
sequence one element at a time by adding elements to the sorted
sequence in order. At each step, the next element to be added to the
sorted sequence is selected from the remaining elements.

Because the elements are added to the sorted sequence in order, they are
always added at one end. This is what makes selection sorting different
from insertion sorting. In insertion sorting, elements are added to the
sorted sequence in an arbitrary order. Therefore, the position in the

198

CIT 341 DATA STRUCTURES

sorted sequence at which each subsequent element is inserted is
arbitrary.
The sorts are implemented by exchanging array elements. Nevertheless,
selection differs from exchange sorting because at each step, we select
the next element of the sorted sequence from the remaining elements
and then we move it into its final position in the array by exchanging it
with whatever happens to be occupying that position.

3.2 Straight Selection Sorting

The simplest of the selection sorts is called straight selection. Figure
1.0 illustrates how straight selection works. In the version shown, the
sorted list is constructed from the right (i.e., from the largest to the
smallest element values).

Figure 1.0: Straight selection sorting

At each step of the algorithm, a linear search of the unsorted elements is
made in order to determine the position of the largest remaining

199

CIT 341 DATA STRUCTURES

element. That element is then moved into the correct position of the
array by swapping it with the element which currently occupies that
position.

For example, in the first step shown in Figure 1.0, a linear search of the
entire array reveals that 9 is the largest element. Since 9 is the largest
element, it belongs in the last array position. To move it there, we swap
it with the 4 that initially occupied that position. The second step of the
algorithm identifies 6 as the largest remaining element and moves it next
to the 9. Each subsequent step of the algorithm moves one element into
its final position. Therefore, the algorithm is done after n-1 such steps.

3.3 Implementation of the Selection Sort

Programme 1.0 defines the StraightSelectionSorter class.
This class is derived from the AbstractSorter base and it provides
an implementation for the no-arg sort method. The sort method
follows directly from the algorithm discussed above. In each iteration of
the main loop (lines 6-13), exactly one element is selected from the
unsorted elements and moved into the correct position. A linear search
of the unsorted elements is done in order to determine the position of the
largest remaining element (lines 9-11). That element is then moved into
the correct position (line 12).

Programme 1.0: StraightSelectionSorter class sort
method

In all n-1, iterations of the outer loop are needed to sort the array. Notice
that exactly one swap is done in each iteration of the outer loop.
Therefore, n-1 data exchanges are needed to sort the list.

200

CIT 341 DATA STRUCTURES

Furthermore, in the iteration of the outer loop, i-1 iterations of the
inner loop are required and each iteration of the inner loop does one data

comparison. Therefore, data comparisons are needed to sort the
list.

The total running time of the straight selection sort method is .
Because the same number of comparisons and swaps are always done,
this running time bound applies in all cases. That is, the best-case,

average-case and worst-case running times are all .

SELF ASSESSMENT EXERCISE

What do you understand by straight selection sort.

4.0 CONCLUSION

In this unit you have learned about selection sort and its implementation.
You have also learned about straight selection sort.

5.0 SUMMARY

What you have learned in this unit borders on selection sort and its
implementation.

6.0 TUTOR-MARKED ASSIGNMENT

Distinguish between insertion sort and selection sort.

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to
Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),
199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the
STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A. (1998). Practical Introduction to Data
Structures and Algorithm Analysis, Prentice Hall, pp. 77–102.

201

CIT 341 DATA STRUCTURES

Bruno, R. P. Data Structures and Algorithms with Object-Oriented
Design Patterns in Java.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

202

http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.indiana.edu/~ucspubs/b131/
http://www.gnu.org/manual/emacs-20.3/emacs.html

CIT 341 DATA STRUCTURES

UNIT 6 MERGE SORTING

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content

3.1 Merge Sorting
3.2 Implementation
3.3 Merging

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Readings

1.0 INTRODUCTION

This unit will focus primarily on merge sorting. It gives an outline of
steps to be adopted in sorting a sequence of elements. We will also
consider how to implement a TwoWayMergeSorter.

2.0 OBJECTIVES

By the end of this unit, you should be able to:

•describe merge sorting
•outline the steps to be taken in sorting a sequence of n > 1 elements
•show how to implement a two-way merge sorting
•define the merge method of a TwoWayMergeSorter class.

3.0 MAIN CONTENT

3.1 Merge Sorting

Another class of sorting algorithm which we will consider comprises
algorithms that sort by merging. Merging is the combination of two or more
sorted sequences into a single sorted sequence.

Figure 1.0 illustrates the basic, two-way merge operation. In a two-way
merge, two sorted sequences are merged into one. Clearly, two sorted
sequences each of length n can be merged into a sorted sequence of
length 2n in O(2n)=O(n) steps. However, in order to do this, we need
space in which to store the result. That is, it is not possible to merge the
two sequences in place in O(n) steps.

203

CIT 341 DATA STRUCTURES

Figure 1.0: Two-way merging

Sorting by merging is a recursive, divide-and-conquer strategy. In the
base case, we have a sequence with exactly one element in it. Since such
a sequence is already sorted, there is nothing to be done. To sort a
sequence of n>1 elements:

1. Divide the sequence into two sequences of length and ;
2. Recursively sort each of the two subsequences; and then,
3. Merge the sorted subsequences to obtain the final result.

Figure 1.1 illustrates the operation of the two-way merge sort algorithm.

Figure 1.1: Two-way merge sorting

204

CIT 341 DATA STRUCTURES

3.2 Implementation

Programme 1.0 declares the TwoWayMergeSorter class. The
TwoWayMergeSorter class extends the AbstractSorter class
defined in Programme 1.0. A single field, tempArray, is declared.
This field is an array of Comparable objects. Since merge operations
cannot be done in place, a second, temporary array is needed. The
tempArray field keeps track of that array.

Programme 1.0: TwoWayMergeSorter fields.

3.3 Merging

The merge method of the TwoWayMergeSorter class is defined in
Programme 1.1. Altogether, this method takes three integer parameters,
left, middle, and right. It is assumed that

Furthermore, it is assumed that the two subsequences of the array,

and

are both sorted. The merge method merges the two sorted
subsequences using the temporary array, tempArray. It then copies
the merged (and sorted) sequence into the array at

205

CIT 341 DATA STRUCTURES

Programme 1.1: TwoWayMergeSorter class merge method

In order to determine the running time of the merge method, it is
necessary to recognise that the total number of iterations of the two
loops (lines 11-17, lines 18-19) is , in the worst case.
The total number of iterations of the third loop (lines 20-21) is the same.
Since all the loop bodies do a constant amount of work, the total running
time for the merge method is O(n), where is the
total number of elements in the two subsequences that are merged.

SELF ASSESSMENT EXERCISE 1

Describe the two-way merge operation.

SELF ASSESSMENT EXERCISE 2

What is the basic assumption in a merge method of the
TwoWayMergeSorter class?

206

CIT 341 DATA STRUCTURES

4.0 CONCLUSION

Specifically, you learned about merge sorting. You would have also
learned about steps to be adopted in sorting a sequence of elements. The
implementation of TwoWayMergeSorter was also considered.

5.0 SUMMARY

What you have learned in this unit is focused on merge sorting and its
implementation.

6.0 TUTOR-MARKED ASSIGNMENT

What steps are to be adopted to sort a sequence of n >1 elements?

7.0 REFERENCES/FURTHER READINGS

Cormen, T.H., Leiserson, C.E, and Rivest, R.L. (1989). Introduction to
Algorithms, New York: McGraw-Hill.

French C. S. (1992). Computer Science, DP Publications, (4th Edition),
199-217.

Deitel, H.M. and Deitel, P.J. (1998). C++ How to Programme (2nd

Edition), New Jersey: Prentice Hall.

Ford, W. and Topp, W. (2002). Data Structures with C++ Using the
STL (2nd Edition), New Jersey: Prentice Hall.

Shaffer, Clifford A. A. (1998). Practical Introduction to Data
Structures and Algorithm Analysis, Prentice Hall, pp. 77–102.

Bruno, R. P. Data Structures and Algorithms with Object-Oriented
Design Patterns in Java.

Online Resources

http://www.gnu.org/manual/emacs-20.3/emacs.html

http://www.indiana.edu/~ucspubs/b131

http://yoda.cis.temple.edu:8080/UGAIWWW/help

http://www.cs.sunysb.edu/~skiena/214/lectures/

207

http://yoda.cis.temple.edu:8080/UGAIWWW/help/emacs-tutorial.html
http://www.indiana.edu/~ucspubs/b131/
http://www.gnu.org/manual/emacs-20.3/emacs.html

	3.4.1 	Array Lists
	3.4.2 	Linked List
	3.5	Storing a Queue in a Dynamic Data Structure
	3.5.1 	Adding a Node (Add)
	Example
	Terminology

	3.3	Binary Trees
	3.4	Tree Traversals
	3.4.1	Preorder Traversal
	3.4.2	Postorder Traversal
	3.4.3 	Inorder Traversal

	3.5	Implementing Trees
	3.2	Searching a Search Tree
	3.2.1 	Searching an M-way Tree
	3.2.2 	Searching a Binary Tree
	3.3 	Successful Search
	3.4 	Unsuccessful Search

	3.5	AVL Search Trees
	3. 6	Implementing AVL Trees
	3.6.1 	Inserting Items into an AVL Tree
	3.6.2 	Removing Items from an AVL Tree
	3.2	Reduce, Reuse, Recycle
	3.3 	Helping the Garbage Collector

	3.4	Reference Counting Garbage Collection
	3.5	Mark-and-Sweep Garbage Collection
	3.6	The Fragmentation Problem
	3.2	What is a Class?
	3.3 	Inheritance
	3.4 	What is an Interface?
	3.5 	What is a Package?
	3.3 	Naming Conventions
	3.3	The If-Then-Else Statement

	3.5	The While and Do-While Statements
	3.4	Access Modifiers
	
3.5	Types
	3.6 	Variable Names
	3.3	Declaring a Variable to Refer to an Object
	3.4	Instantiating a Class
	3.5	Initialising an Object
	3.6	Referencing Object’s Fields
	3.7	Calling an Object's Methods
	3.8	The Garbage Collector
	
Some object-oriented languages require that you keep track of all the objects you create and that you explicitly destroy them when they are no longer needed. Managing memory explicitly is tedious and error-prone. The Java platform allows you to create as many objects as you want (limited, of course, by what your system can handle), and you don't have to worry about destroying them. The Java runtime environment deletes objects when it determines that they are no longer being used. This process is called garbage collection.
	3.2	Interfaces in Java
	3.3	Interfaces as APIs
	3.4	Interfaces and Multiple Inheritance
	3.7 	The Java Platform Class Hierarchy
	An Example of Inheritance
	
3.8	What You Can Do in a Subclass
	3.9 	Private Members in a Superclass
	3.10 	Casting Objects
	3.2	Creating Strings
	
The most direct way to create a string is to write:

	3.3	String Length
	3.4	Concatenating Strings

	
3.5	Creating Format Strings
	3.2	A Simple Box Class
	3.4	Type Parameter Naming Conventions
	3.5	Generic Methods and Constructors
	3.2	Algorithm’s Performance
	3.3	Algorithm Analysis
	3.4	Optimality
	3.2	Addition of Two Vectors
	3.3	Multiplication of a Vector by a Scalar
	3.5	Matrices
	3.6	Matrix Addition
	Greedy Algorithm works by making the decision that seems most promising at any moment; it never reconsiders this decision, whatever situation may arise later.
	
	3.5	Definitions of Feasibility
	A feasible set (of candidates) is promising if it can be extended to produce not merely a solution, but an optimal solution to the problem. In particular, the empty set is always promising why? (because an optimal solution always exists).

	
	3.3	Sequential Search
	
	3.4	Analysis
	
	3.2	The Principle of Optimality
	3.3	Dynamic-Programming Algorithm
	
	3.2	Internal Sort
	3.3	External Sort
	
	3.4 	Memory Requirement
	3.5 	Stability
	
	3.2	Memory Requirement
	3.3	Implementation
	
	3.2	Analysis

	On examining the statements above, we discover the following cases

Best-Case
	
	Worst-Case
	3.4	Extra Memory
	3.5 	Implementation
	3.2	Straight Selection Sorting
	3.3	Implementation of the Selection Sort
	3.2	Implementation
	3.3 	Merging

