
 CIT 344: INTRODUCTION TO COMPUTER DESIGN

 NATIONAL OPEN UNIVERSITY OF NIGERIA

 FACULTY OF SCIENCE

 COURSE CODE: CIT344

 COURSE TITLE:

 INTRODUCTION TO COMPUTER DESIGN

CIT344

INTRODUCTION TO COMPUTER DESIGN

Course Team

Adaora Obayi (Developer/Writer) - NOUN
Dr. Oyebanji (Programme Leader) - NOUN

Vivian Nwaocha (Coordinator) -NOUN

GUIDE

CIT344 COURSE GUIDE

ii

NATIONAL OPEN UNIVERSITY OF NIGERIA

14/16 Ahmadu Bello Way

Victoria Island

Lagos

Abuja Office

5, Dar es Salaam Street

Off Aminu Kano Crescent

Wuse II, Abuja

Nigeria

e-m ail: centralinfo@nou.edu.ng

URL: www.nou.edu.ng

Published By:

National Open University of Nigeria

First Printed 2012

ISBN: 978-058-047-6

All Rights Reserved

mailto:centralinfo@nou.edu.ng
http://www.nou.edu.ng/

CIT344 COURSE GUIDE

iv

CONTENTS PAGE

Introduction… .. 1

What You Will Learn in This Course… .. 1

Course Aim ... 1

Course Objectives…... 2

Working through This Course… .. 2

Course Materials…... 2

Study Units… ... 3

Textbooks and References ... 4

Assignment File… .. 4

Presentation Schedule…... 4

Assessment… ... 4

Tutor-Marked Assignments (TMAs)… ... 4

Final Examination and Grading… ... 4

Course Marking Scheme .. 7

Course Overview… .. 7

How to Get the Most from This Course… ... 8

Facilitators/Tutors and Tutorials… ... 10

Introduction

CIT344: Introduction to Computer Design is a 3-credit unit course

for students studying towards acquiring the Bachelor of Science in

Information Technology and related disciplines.

The course is divided into 6 modules and 21 study units. It introduces

you to concepts in Computer Design and their implementations in our

everyday lives.

This course also provides information on numbers and codes in

computer design, different logic designs, memory devices,

microprocessors and finally, a type of programming called Assembly

Language Programming.

At the end of this course, it is expected that you should be able to

understand, explain and be adequately equipped with comprehensive

knowledge of logic designs and can try your hands in some designs of

your own.

This course guide therefore gives you an overview of what the course is

all about, the textbooks and other course materials to be used, what you

are expected to know in each unit, and how to work through the course

material.

Furthermore, it suggests the general strategy to be adopted and also

emphasises the need for self-assessment and tutor-marked assignment.

There are also tutorial classes that are linked to this course and you are

advised to attend them.

What You Will Learn in This Course

The overall aim of this course is to boost your knowledge of logic

designs, microprocessors and assembly language programming. In the

course of your studies, you will be equipped with definitions of common

terms, characteristics and applications of logic designs. You will also

learn number systems and codes, memory devices, microprocessors and

finally, loops and subroutines in assembly language.

Course Aim

This course aims to give you an in-depth understanding of computer

designs. It is hoped that the knowledge would enhance your expertise in

logic designs.

CIT344 INTRODUCTION TO COMPUTER DESIGN

ii

Course Objectives

It is relevant to note that each unit has its precise objectives. You should

learn them carefully before proceeding to subsequent units. Therefore, it

is useful to refer to these objectives in the course of your study of the

unit to assess your progress. You should always look at the unit

objectives after completing a unit. In this way, you can be sure that you

have done what is required of you by the end of the unit. However,

below are overall objectives of this course. On successful completion of

this course, you should be able to:

 explain the term number system and its various types

 state the various conversion from one number system to the other

 explain the various types of codes

 analyse and design a combinational logic circuit

 describe what a sequential logic circuit is

 state the differences between combinational and sequential logic

circuit

 list the types of sequential logic circuit

 describe what a latch and flip-flop is

 describe what shift register is

 discuss about finite state machines

 describe memory and the basic operations performed on it

 state the types of memory we have

 describe microprocessors

 write a program using assembly language.

Working through This Course

To complete this course, you are required to study all the units, the

recommended text books, and other relevant materials. Each unit

contains tutor-marked assignments, and at some point in this course, you

are required to submit the tutor-marked assignments. There is also a

final examination at the end of this course. Stated below are the

components of this course and what you have to do.

Course Materials

The major components of the course are:

1. Course Guide

2. Study Units

3. Text Books

4. Assignment File

5. Presentation Schedule

CIT344 INTRODUCTION TO COMPUTER DESIGN

iii

Study Units

There are 6 modules and 21 study units in this course. They are:

Module 1 Introduction to Numbers and Codes

Unit 1 Types of Number Systems I

Unit 2 Types of Number Systems II

Unit 3 Codes

Module 2 Combinational Logic Design and Application

Unit 1 Analysis and Design of a Combinational Logic Circuit

Unit 2 Typical Combinational Logic Circuit I

Unit 3 Typical Combinational Logic Circuit II

Unit 4 Typical Combinational Logic Circuit III

Module 3 Sequential Logic Design and Applications

Unit 1 Sequential Logic Circuits

Unit 2 Latches and Flip-Flops

Unit 3 Registers

Unit 4 Finite State Machines

Module 4 Memory Devices

Unit 1 Memory Organisation

Unit 2 Memory Types

Unit 3 Memory Expansion

Unit 4 Memory Summary

Module 5 Introduction to Microprocessors

Unit 1 Microprocessors

Unit 2 Central Processing Unit and Arithmetic and Logical Unit

Unit 3 Addressing Mode

Module 6 Assembly Language Programming

Unit 1 Learning to Program with Assembly Language

Unit 2 Branching Loops and Subroutines

Unit 3 Sample Programs in Assembly Language

CIT344 INTRODUCTION TO COMPUTER DESIGN

Textbooks and References

These texts listed below will be of enormous benefit to you in learning this course:

Elahi A (2018). Computer System: Digital Design, Fundamentals of Computer

Architecture and Assembly Language. Springer Nature

Patt Y. N (2019). Introduction to Computing Systems – From Bits and Gates to C and

Beyond (Online Version). Mc-Graw-Hill.

Verma A.K, Shama G and Singh K (2016). Wiley Acing The Gate: Computer Science

and Information Technology. Wiley India Pvt. Ltd.

Mano M.M, Kime C.R and Martin T (2015). Logic & Computer Design Fundamentals

(5
th
 edition). Pearson. Pg283

Faroughi N (2015). Digital Logic Design & Computer Organization: With Computer

Architecture for Security. McGraw-Hill Education.

Patterson D. A and Hennessy J.L (2016). Computer Organization & Design ARM

 Edition: The Hardware Software Interface. Morgan Kaufmann.

Unsalan C and Tar B (2017). Digital System Design with FPGA Implementation Using

 Verilog and VHDL. McGraw-Hill Education.

Null L and Lobur J (2016). The Essentials of Computer Organization and Architecture

 (4
th
 edition). Jones & Barlett Learning.

Rafiquzzaman M (2014). Fundamentals of Digital Logic and Microcontrollers. John

 Wiley & Sons.

Roth, H. C. Jr & Kinney, L. L. (2014). Fundamentals of Logic Design (7
th
 edition).

Cengage Learning.

Tanenbaum, Andrew S. (2013). Structured Computer Organization.Prentice Hall

(6th ed).

Mano M.M (2017). Digital Logic and Computer Design. Pearson India Education Services

Pvt. Ltd

Yasin M.,Rajendran J. (JV) and Sinanoglu O. (2020). Trustworthy Hardware Design:

Combinational Logic Locking TechniquesSpringer Nature

Ndjountche T. (2016). Digital Electronics 1: Combinational Logic Circuits. Wiley

Pedroni V.A (2020). Circuit Design with VHDL(3
rd

 Edition). The MIT Press Cambridge.

Sarkar S.K., De A.k., and Sarkar S (2014). Foundation of Digital Electronics and Logic
Design.

Pan Stanford

Stallings W (2016). Computer Organization and architecture: Designing for Performance (10

th

CIT344 INTRODUCTION TO COMPUTER DESIGN

vi

edition). Pearson Education Limited.

Pyeatt L.D and Ughetta W (2020). ARM 64-Bit Assembly Language. Newnes, Elsevier.

Pyeatt L.D (2016). Modern Assembly Language Programming with the Arm Processor.

 Newnes, Elsevier

Schousek T (2018). The Art of Assembly Language Programming using PIC

Technology:

Core Fundamentals. Newnes, Elsevier

Hoey J.V (2019). Beginning x64 Assembly Programming from Novice to AVX

Professional. Apress.

Kusswurm D (2018). Modern X86 Assembly Language Programming (2
nd

 edition).

Apress.

Irvine K.R (2014). Assembly Language for x86 Processors. Pearson

Dunne R (2018). Windows 64-bit Assembly Language Programming Quick Start. Gaul

Communications.

7-segment display. https://www.electronics-tutorials.ws/blog/7-segment-display-tutorial.html

The Evolution of the Revolution: Explore the Intel Technology Innovations that have

changed the world http://download.intel.com/pressroom/kits/IntelProcessorHistory.pdf

80x86 Addressing Modes:

https://www.plantationproductions.com/Webster/www.artofasm.com/DOS/ch04/CH04-

2.html

www.cs.siu.edu

www.educypedia.be/electronics

www.books.google.com

https://www.electronics-tutorials.ws/blog/7-segment-display-tutorial.html
http://download.intel.com/pressroom/kits/IntelProcessorHistory.pdf
https://www.plantationproductions.com/Webster/www.artofasm.com/DOS/ch04/CH04-2.html
https://www.plantationproductions.com/Webster/www.artofasm.com/DOS/ch04/CH04-2.html
http://www.cs.siu.edu/
http://www.educypedia.be/electronics
http://www.books.google.com/

CIT344 INTRODUCTION TO COMPUTER DESIGN

Assignment File

The assignment file will be given to you in due course. In this file, you

will find all the details of the work you must submit to your tutor for

marking. The marks you obtain for these assignments will count towards

the final mark for the course. Altogether, there are 21 tutor-marked

assignments for this course.

Presentation Schedule

The presentation schedule included in this course guide provides you

with important dates for completion of each tutor-marked assignment.

You should therefore endeavour to meet the deadlines.

Assessment

There are two aspects to the assessment of this course. First, there are

tutor-marked assignments; and second, the written examination.

You are expected to take note of the facts, information and problem

solving gathered during the course. The tutor-marked assignments must

be submitted to your tutor for formal assessment, in accordance to the

deadline given. The work submitted will count for 40% of your total

course mark. At the end of the course, you will need to sit for a final

written examination. This examination will account for 60% of your

total score.

Tutor-Marked Assignments (TMAs)

There are 21 TMAs in this course. You need to submit all the TMAs.

When you have completed each assignment, send them to your tutor as

soon as possible and make certain that it gets to your tutor on or before

the stipulated deadline. If for any reason you cannot complete your

assignment on time, contact your tutor before the assignment is due to

discuss the possibility of extension. Extension will not be granted after

the deadline, unless in extraordinary cases.

Final Examination and Grading

The final examination for CIT344 will be of last for a period of 3 hours

and have a value of 60% of the total course grade. The examination will

consist of questions which reflect the self-assessment exercise and tutor-

marked assignments that you have previously encountered. Furthermore,

all areas of the course will be examined. It would be better to use the

time between finishing the last unit and sitting for the examination, to

revise the entire course. You might find it useful to review your TMAs

CIT344 INTRODUCTION TO COMPUTER DESIGN

vii

and comment on them before the examination. The final examination

covers information from all parts of the course.

Course Marking Scheme

The following table includes the course marking scheme

Table 1: Course Marking Scheme

Assessment Marks

Assignments 1-21 21 assignments, 40% for the best 4
Total = 10% X 4 = 40%

Final Examination 60% of overall course marks

Total 100% of Course Marks

Course Overview

This indicates the units, the number of weeks required to complete them

and the assignments.

Table 2: Course Organiser

Unit Title of Work Weeks

Activity

Assessment

(End of Unit)

 Course Guide Week 1

Module 1 Introduction to Numbers and Codes

1 Types of Number Systems I Week 1 Assignment 1

2 Types of Number Systems II Week 2 Assignment 2

3 Codes Week 3 Assignment 3

Module 2 Combinational Logic Design and Applications

1 Analysis & Design of a

Combinational Logic Circuit

Week 3 Assignment 4

2 Typical Combinational
Logic Circuit I

Week 4 Assignment 5

3 Typical Combinational Logic
Circuit II

Week 4 Assignment 6

4 Typical Combinational

Logic Circuit III

Week 5 Assignment 7

Module 3 Sequential Logic Design and Applications

1 Sequential Logic Circuits Week 5 Assignment 8

2 Latches and Flip-Flops Week 6 Assignment 9

3 Registers Week 6 Assignment 10

4 Finite State Machines Week 7 Assignment 11

CIT344 INTRODUCTION TO COMPUTER DESIGN

viii

Module 4 Memory Devices

1 Memory Organisation Week 7 Assignment 12

2 Memory Types Week 8 Assignment 13

3 Memory Expansion Week 9 Assignment 14

4 Memory Summary Week 10 Assignment 15

Module 5 Introduction To Microprocessors

1 Microprocessors Week 10 Assignment 16

2 Central Processing Unit &
Arithmetic & Logical Unit

Week 11 Assignment 17

3 Addressing Mode Week 12 Assignment 18

Module 6 Assembly Language Programming

Unit
1

Learning to Program with
Assembly Language

Week 13 Assignment 19

Unit
2

Branching Loops and
Subroutine

Week 14 Assignment 20

Unit
3

Sample Programs in
Assembly Language

Week 14 Assignment 21

How to Get the Most Out of This Course

In distance learning, the study units replace the university lecturer. This

is one of the huge advantages of distance learning mode; you can read

and work through specially designed study materials at your own pace

and at a time and place that is most convenient. Think of it as reading

from the teacher, the study guide indicates what you ought to study, how

to study it and the relevant texts to consult. You are provided with

exercises at appropriate points, just as a lecturer might give you an in-

class exercise.

Each of the study units follows a common format. The first item is an

introduction to the subject matter of the unit and how a particular unit is

integrated with the other units and the course as a whole. Next to this is

a set of learning objectives. These learning objectives are meant to guide

your studies. The moment a unit is finished, you must go back and

check whether you have achieved the objectives. If this is made a habit,

then you will increase your chances of passing the course.

The main body of the units also guides you through the required

readings from other sources. This will usually be either from a set book

or from other sources. Self assessment exercises are provided

throughout the unit, to aid personal studies and answers are provided at

the end of the unit. Working through these self tests will help you to

achieve the objectives of the unit and also prepare you for tutor marked

assignments and examinations. You should attempt each self test as you

encounter them in the units.

CIT344 INTRODUCTION TO COMPUTER DESIGN

ix

Read the course guide thoroughly and organise a study schedule. Refer

to the course overview for more details. Note the time you are expected

to spend on each unit and how the assignment relates to the units.

Important details, e.g. details of your tutorials and the date of the first

day of the semester are available. You need to gather together all these

information in one place such as a diary, a wall chart calendar or an

organiser. Whatever method you choose, you should decide on and write

in your own dates for working on each unit.

Once you have created your own study schedule, do everything you can

to stick to it. The major reason that students fail is that they get behind

with their course works. If you get into difficulties with your schedule,

please let your tutor know before it is too late for help.

Turn to unit 1 and read the introduction and the objectives for the unit.

Assemble the study materials. Information about what you need for a

unit is given in the table of content at the beginning of each unit. You

will almost always need both the study unit you are working on and one

of the materials recommended for further readings, on your desk at the

same time.

Work through the unit, the content of the unit itself has been arranged to

provide a sequence for you to follow. As you work through the unit, you

will be encouraged to read from your set books.

Keep in mind that you will learn a lot by doing all your assignments

carefully. They have been designed to help you meet the objectives of

the course and will help you pass the examination.

Review the objectives of each study unit to confirm that you have

achieved them. If you are not certain about any of the objectives, review

the study material and consult your tutor.

When you are confident that you have achieved a unit‘s objectives, you

can start on the next unit. Proceed unit by unit through the course and try

to pace your study so that you can keep yourself on schedule.

When you have submitted an assignment to your tutor for marking, do

not wait for its return before starting on the next unit. Keep to your

schedule. Pay particular attention to your tutor‘s comments on the tutor-

marked assignment form and also written on the assignment when the

assignment is returned to you. Consult you tutor as soon as possible if

you have any questions or problems.

CIT344 INTRODUCTION TO COMPUTER DESIGN

After completing the last unit, review the course and prepare yourself

for the final examination. Check that you have achieved the unit

objectives (listed at the beginning of each unit) and the course objectives

(listed in this course guide).

Facilitators/Tutors and Tutorials

There are 8 hours of tutorial provided in support of this course. You will

be notified of the dates, time and location together with the name and

phone number of your tutor as soon as you are allocated a tutorial group.

Your tutor will mark and comment on your assignments, keep a close

watch on your progress and on any difficulties you might encounter and

provide assistance to you during the course. You must mail your tutor

marked assignment to your tutor well before the due date. At least two

working days are required for this purpose. They will be marked by your

tutor and returned to you as soon as possible. Do not hesitate to contact

your tutor by telephone, e-mail or discussion board if you need help.

The following might be circumstances in which you would find help

necessary:

 you do not understand any part of the study units or the assigned

readings

 you have difficulty with the self test or exercise

 you have questions or problems with an assignment, with your

tutor‘s comments on an assignment or with the grading of an

assignment.

You should try your best to attend the tutorials. This is the only chance

to have face-to-face contact with your tutor and ask questions which are

answered instantly. You can raise any problem encountered in the

course of your study. To gain the maximum benefit from the course

tutorials, prepare a question list before attending them. You will learn a

lot from participating actively in tutorial discussions.

CIT344 INTRODUCTION TO COMPUTER DESIGN

xi

Course Code CIT344

Course Title Introduction to Computer Design

Course Team Adaora Obayi (Developer/Writer) - NOUN

Dr. Oyebanji (Programme Leader) - NOUN

Vivian Nwaocha (Coordinator) -NOUN

NATIONAL OPEN UNIVERSITY OF NIGERIA

CIT344 INTRODUCTION TO COMPUTER DESIGN

xii

National Open University of Nigeria

Headquarters

14/16 Ahmadu Bello Way

Victoria Island

Lagos

Abuja Office
5, Dar es Salaam Street

Off Aminu Kano Crescent

Wuse II, Abuja

Nigeria

e-mail: centralinfo@nou.edu.ng

URL: www.nou.edu.ng

Published By:

National Open University of Nigeria

First Printed 2012

ISBN: 978-058-047-6

All Rights Reserved

mailto:centralinfo@nou.edu.ng
http://www.nou.edu.ng/

CIT344 INTRODUCTION TO COMPUTER DESIGN

xiii

CONTENTS PAGE

Module 1 Introduction to Numbers and Codes…………..… 1

Unit 1 Types of Number Systems I………………….…..… 1

Unit 2 Types of Number Systems I ---------------------------- 11

 Unit 3 Unsigned and Signed Binary Numbers ----------------- 21

Unit 3 Codes ... 31

Module 2 Combinational Logic Design and Application 38

Unit 1 Analysis and Design of a Combinational Logic Circuit 38

Unit 2 Typical Combinational Logic Circuit I 41

Unit 3 Typical Combinational Logic Circuit II 49

Unit 4 Typical Combinational Logic Circuit III 61

Module 3 Sequential Logic Design and Applications…….… 60

Unit 1 Sequential Logic Circuits………………………..….. 60

Unit 2 Latches and Flip-Flops……………………….…….. 65

Unit 3 Registers…………………………………….……… 90

Unit 4 Finite State Machines……………………..………… 105

Module 4 Memory Devices……………………………..…… 126

Unit 1 Memory Organisation……………………………… 126

Unit 2 Memory Types……………………………………... 135

Unit 3 Memory Expansion………………………………… 150

Unit 4 Memory Summary………………………………….. 154

Module 5 Introduction to Microprocessors…………………. 157

Unit 1

Unit 2

Microprocessors……………………………………..

Central Processing Unit and Arithmetic and Logical

Unit………………………………………………….

157

165

Unit 3 Addressing Mode…………………………………… 175

Module 6 Assembly Language Programming………………... 188

Unit 1 Learning to Program with Assembly Language…………... 188

Unit 2 Branching Loops and Subroutines …………................. 205
Unit 3 Sample Programs in Assembly Language…………… 222

CIT344 INTRODUCTION TO COMPUTER DESIGN

1

MODULE 1 INTRODUCTION TO NUMBERS AND

CODES

Unit 1 Types of Number Systems I

Unit 2 Types of Number Systems II

Unit 3 Unsigned and Signed Binary Numbers

Unit 4 Codes

UNIT 1 TYPES OF NUMBER SYSTEMS I

CONTENTS

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content

3.1 Decimal Number System

3.2 Binary Number System

3.2.1 Fractions in Binary Number System

3.2.2 Binary Arithmetic

3.2.3 Binary to Decimal Conversion

3.2.4 Decimal to Binary Conversion

4.0 Self- Assessment Exercise(s)

5.0 Conclusion

6.0 Summary

7.0 Further Readings

 1.0 Introduction

The number system is the basis of computing. It is a very important

foundation for understanding the way the computer system works. In

this unit, we will talk about decimal and binary number system.

Endeavour to assimilate as much as possible from this unit – especially,

the conversion from one number system to another.

 2.0 Intended Learning Outcomes (ILOs)

At the end of this unit, you should be able to:

 explain the term decimal number system

 manipulate fractions of decimal numbers

 explain the term binary number system

 manipulate binary arithmetic

 convert binary to decimal

 convert decimal to binary

CIT344 INTRODUCTION TO COMPUTER DESIGN

2

3.0 Main Content

3.1 Decimal Number System

The decimal number has a base or radix of 10 meaning that it, has 10 allowable digits

ranging from 0 through 9. Thus, the ten unique digits are as follows: 0, 1, 2, 3, 4, 5,

6, 7, 8, 9. Using these single digits, ten different values can be represented

and also forms the basis for counting as every other number above digit 9 is

gotten from systematically combining two or more of the single digits

together. Thus, ten is represented by the combination of ―1‖ and ―0‖digits

resulting to number 10, two hundred seventy five is represented by 275, etc.

The decimal number system is a positional number system as the position of

a digit represents its true magnitude. For example, 2 is less than 7, however

2 in 275 represents 200, whereas 7 represents 70. The left most digit has the

highest weight and the right most digit has the lowest weight. 275 can be

written in the form of an expression in terms of the base value of the number

system and weights.

2 x 102 + 7 x 101 + 5 x 100 = 200 + 70 + 5 = 275

where, 10 represents the base or radix,102, 101, 100 represent the

weights 100, 10 and 1 of the numbers 2, 7 and 5. Hence the general

equation form any number system is given as:

(a5a4a3a2a1a0a-1a-2a-3)r = (ai)r
Where r is the base and ai must be less than r

Fractions in Decimal Number System

In a Decimal Number System the fraction part is separated from the

integer part by a decimal point. The integer part of a number is written

on the left hand side of the decimal point. The fraction part is written on

the right side of the decimal point. The digits of the integer part on the

left hand side of the decimal point have weights 100, 101, 102 etc.

respectively starting from the digit to the immediate left of the decimal

point and moving away from the decimal point towards the most

significant digit on the left hand side. Fractions in decimal number

system are also represented in terms of the base value of the number

system and weights. The weights of the fraction part are represented by

10-1, 10-2, 10-3, etc. The weights decrease by a factor of 10 moving

right of the decimal point. The number 382.91 in terms of the base

number and weights is represented as

3 x 102 + 8 x 101 + 2 x 100 + 9 x 10
-1

 + 1 x 10
-2

 = 300 + 80 + 2 + 0.9 +

0.01 = 382.91

CIT344 INTRODUCTION TO COMPUTER DESIGN

3

3.2 Binary Number System

Binary as the name indicates is a base-2 number system having only two

numbers 0 and 1. The binary digit 0 or 1 is known as a ‗Bit‘. Below is

the decimal equivalent of the binary number system.

Table 1: Decimal Equivalents of Binary Number System

Decimal

Number

Binary

Number

Decimal

Number

Binary

Number

0 0 10 1010

1 1 11 1011

2 10 12 1100

3 11 13 1101

4 100 14 1110

5 101 15 1111

6 110 16 10000

7 111 17 10001

8 1000 18 10010

9 1001 19 10011
 20 10100

Counting in binary number system is similar to counting in decimal

number systems. In a decimal number system a value larger than 9 has

to be represented by 2, 3, 4, or more digits. Similarly, in the binary

number system a binary number larger than 1 has to be represented by 2,

3, 4, or more binary digits.

Any binary number comprising of binary 0 and 1 can be easily

represented in terms of its decimal equivalent by writing the binary

number in the form of an expression using the base value 2 and weights

20, 21, 22, etc.

The number 100112 (the subscript 2 indicates that the number is a binary

number and not a decimal number ten thousand and eleven) can be

rewritten in terms of the expression:

100112 = (1 x 24) + (0 x 23) + (0 x 22) + (1 x 21) + (1 x 20)

= (1 x 16) + (0 x 8) + (0 x 4) + (1 x 2) + (1 x 1)

= 16 + 0 + 0 + 2 + 1

= 19

CIT344 INTRODUCTION TO COMPUTER DESIGN

4

3.2.1 Fractions in Binary Number System

In a decimal number system the integer part and the fraction part of a

number are separated by a decimal point. In a binary number system the

integer part and the Fraction part of a binary number can be similarly

represented separated by a decimal point. The binary number 1011.1012

has an integer part represented by 1011 and a fraction part 101 separated

by a decimal point. The subscript 2 indicates that the number is a binary

number and not a decimal number. The binary number 1011.1012 can be

written in terms of an expression using the base value 2 and weights 23,

22, 21, 20, 2
-1

, 2
-2

 and 2
-3

.

1011.1012 = (1 x 23) + (0 x 22) + (1 x 21) + (1 x 20) + (1 x 2

-1
) + (0 x 2

-

2
) + (1 x 2

-3
)

= (1 x 8) + (0 x 4) + (1 x 2) + (1 x 1) + (1 x 1/2) + (0 x 1/4) + (1 x 1/8)

= 8 + 0 + 2 + 1 + 0.5 + 0 + 0.125

= 11.625

Computers do handle numbers such as 11.625 that have an integer part

and a fraction part. However, it does not use the binary representation

1011.101. Such numbers are represented and used in floating-point

numbers notation.

3.2.2 Binary Arithmetic

Digital systems use the binary number system to represent numbers.

Therefore these systems should be capable of performing standard

arithmetic operations on binary numbers.

Binary Addition

Binary addition is identical to decimal addition. By adding two binary

bits, a sum bit and a carry bit are generated. The only difference between

the two additions is the range of numbers used. In binary addition, four

possibilities exist when two single bits are added together. The four

possible input combinations of two single bit binary numbers and their

corresponding sum and carry outputs are specified in Table 2.

Table 2: Addition of Two Single Bit Binary Numbers

First Number Second Number Sum Carry

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

CIT344 INTRODUCTION TO COMPUTER DESIGN

5

The first three additions give a result 0, 1 and 1 respectively which can

be represented by a single binary digit (bit). The fourth addition results

in the number 2, which can be represented in binary as 102. Thus, two

digits (bits) are required. This is similar to the addition of 9 + 3 in

decimal. The answer is 12 which cannot be represented by a single digit;

thus, two digits are required. The number 2 is the sum part and 1 is the

carry part.

Any number of binary numbers having any number of digits can be

added together.

Binary Subtraction

Binary subtraction is identical to decimal subtraction. The only difference

between the two is the range of numbers. Subtracting two single bit binary

numbers results in a difference bit and a borrow bit. The four possible input

combinations of two single bit binary numbers and their corresponding

difference and borrow outputs are specified in Table 3. It is assumed that the

second number is subtracted from the first number.

Table 3: Subtraction of Two Single Bit Binary Numbers

First Number Second Number Difference Borrow

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 0

The second subtraction subtracts 1 from 0 for which a borrow is required to make

the first digit equal to 2. The difference is 1. This is similar to decimal

subtraction when 17 is subtracted from 21. The first digit 7 cannot be subtracted

from 1, therefore 10 is borrowed from the next significant digit. Borrowing a 10

allows subtraction of 7 from 11 resulting in a difference of 4.

Binary Multiplication

Binary multiplication is similar to the decimal multiplication except for the range

of numbers. Four possible combinations of two single bit binary numbers and

their products are listed in table 4.

CIT344 INTRODUCTION TO COMPUTER DESIGN

6

Table 4: Multiplication of two Single Bit Binary Numbers

First Number Second Number Product

0 0 0

0 1 0

1 0 0

1 1 1

Binary Division

Division in binary follows the same procedure as in the division of

decimal numbers. Fig 1 illustrates the division of binary numbers.

10

101 | 1101
101

011

000

11

Fig. 1 : Binary Division

3.2.3 Binary to Decimal Conversion

Most real world quantities are represented in decimal number system.

Digital systems on the other hand are based on the binary number

system. Therefore, when converting from the digital domain to the real-

world, binary numbers have to be represented in terms of their decimal

equivalents. The method used to convert from binary to decimal is the

sum-of-weights method.

Sum-of-Weights Method

Sum-of-weights as the name indicates sums the weights of the binary

digits (bits) of a binary number which is to be represented in decimal.

The sum-of-weights method can be used to convert a binary number of

any magnitude to its equivalent decimal representation.

In the sum-of-weights method an extended expression is written in terms

of the binary base number 2 and the weights of the binary number to be

converted. The weights correspond to each of the binary bits which are

multiplied by the corresponding binary value.

Binary bits having the value 0 do not contribute any value towards the

final sum expression. The binary number 101102 is therefore written in

the form of an expression having weights 2
0
, 2

1
, 2

2
, 2

3
 and 2

4

CIT344 INTRODUCTION TO COMPUTER DESIGN

7

corresponding to the bits 0, 1, 1, 0 and 1 respectively. Weights 2
0
 and 2

3

do not contribute in the final sum as the binary bits corresponding to

these weights have the value 0.

101102 = 1 x 2
4
 + 0 x 2

3
 + 1 x 2

2
 + 1 x 2

1
 + 0 x 2

0

= 16 + 0 + 4 + 2 + 0

= 22

Sum-of-Non-Zero Terms

In the sum-of-weights method, the binary bits 0 do not contribute

towards the final sum representing the decimal equivalent. Secondly, the

weight of each binary bit increases by a factor of 2 starting with a

weight of 1 for the least significant bit. For example, the binary number

101102 has weights 2
0
=1, 2

1
=2, 2

2
=4, 2

3
=8 and 2

4
=16 corresponding to

the bits 0, 1, 1, 0 and 1 respectively.

The sum-of-non-zero terms method is a quicker method to determine

decimal equivalents of binary numbers without resorting to writing an

expression. In the sum-of-non-zero terms method, the weights of non-

zero binary bits are summed, as the weights of zero binary bits do not

contribute towards the final sum representing the decimal equivalent.

The weights of binary bits starting from the right most least significant

bit is 1, The next significant bit on the left has the weight 2, followed by

4, 8, 16, 32, etc. corresponding to higher significant bits. In binary

number system the weights of successive bits increase by an order of 2

towards the left side and decrease by an order of 2 towards the right

side. Thus, a binary number can be quickly converted into its decimal

equivalent by adding weights of non-zero terms which increase by a

factor of 2. Binary numbers having an integer and a fraction part can

similarly be converted into their decimal equivalents by applying the

same method.

A quicker method is to add the weights of non-zero terms. Thus, for the

numbers:

100112 = 16 + 2 + 1 = 19

1011.1012 = 8 + 2 + 1 + ½ + 1/8 = 11 + 5/8 = 11.625

3.2.4 Decimal to Binary Conversion

Conversion from decimal to binary number system is also essential to

represent real-world quantities in terms of binary values. The sum-of-

weights and repeated division by 2 methods are used to convert a

decimal number to equivalent binary.

CIT344 INTRODUCTION TO COMPUTER DESIGN

8

Sum-of-Weights

The sum-of-weights method used to convert binary numbers into their

decimal equivalent is based on adding binary weights of the binary

number bits. Converting back from the decimal number to the original

binary number requires finding the highest weight included in the sum

representing the decimal equivalent. A binary 1 is marked to represent

the bit which contributed its weight in the sum representing the decimal

equivalent. The weight is subtracted from the sum decimal equivalent.

The next highest weight included in the sum term is found. A binary 1 is

marked to represent the bit which contributed its weight in the sum term

and the weight is subtracted from the sum term. This process is repeated

until the sum term becomes equal to zero. The binary 1s and 0s

represent the binary bits that contributed their weight and bits that did

not contribute any weight respectively.

The process of determining binary equivalent of a decimal number 392

and 411 is illustrated in a tabular form.

Table 5: Converting Decimal to Binary using Sum-of-Weights

Method

Sum Term Highest

Weight

Binary Number Sum Term

= Sum Term – Highest

Weight

392 256 100000000 136

136 128 110000000 8

8 8 110001000 0

The sum-of-weights method requires mental arithmetic and is a quick

way of converting small decimal numbers into binary. With practice

large decimal numbers can be converted into binary equivalents.

Repeated Division-by-2

Repeated division-by-2 method allows decimal numbers of any

magnitude to be converted into binary. In this method, the decimal

number to be converted into its binary equivalent is repeatedly divided

by 2. The divisor is selected as 2 because the decimal number is being

converted into binary a base-2 number system. Repeated division

method can be used to convert decimal number into any number system

by repeated division by the base-number.

In the repeated-division method the decimal number to be converted is

divided by the base number, in this particular case 2. A quotient value

and a remainder value is generated, both values are noted done. The

CIT344 INTRODUCTION TO COMPUTER DESIGN

9

remainder value in all subsequent divisions would be either a 0 or a 1. The

quotient value obtained as a result of division by 2 is divided again by 2. The

new quotient and remainder values are again noted down. In each step of the

repeated division method the remainder values are noted down and the quotient

values are repeatedly divided by the base number. The process of repeated

division stops when the quotient value becomes zero. The remainders that have

been noted in consecutive steps are written out to indicate the binary equivalent

of the original decimal number.

Table 6: Converting Decimal to Binary using Repeated

Division by 2 Method

Number Quotient after division Remainder after division

392 196 0

196 98 0

98 49 0

49 24 1

24 12 0

12 6 0

6 3 0

3 1 1

1 0 1

The process of determining the binary equivalent of a decimal number 392 is

illustrated in a tabular form above. Reading the numbers in the remainder

column from bottom to top 110001000 gives the binary equivalent of the

decimal number 392.

 4.0 Self-Assessment Exercise(s)

Explain with the aid of good examples, the different methods of

converting binary numbers to decimal numbers.

 5.0 Conclusion

The decimal number system has ten unique digits 0, 1, 2, 3… 9. Using these

single digits, ten different values can be represented. Values greater than ten can

be represented by using the same digits in different combinations. Binary

indicates a base-2 number system having only two numbers 0 and 1. The binary

digit 0 or 1 is known as a ‗Bit‘.

CIT344 INTRODUCTION TO COMPUTER DESIGN

10

6.0 Summary

In this unit, we discussed decimal and binary number systems, manipulation of

their fractions, binary arithmetic and conversion of decimal to binary and vice

versa. Hoping that you understood the topics discussed, you may now attempt the

questions below.

 7.0 Further Readings

Elahi A (2018). Computer System: Digital Design, Fundamentals of Computer

Architecture and Assembly Language. Springer Nature

Patt Y. N (2019). Introduction to Computing Systems – From Bits and Gates to C and

Beyond (Online Version). Mc-Graw-Hill.

Verma A.K, Shama G and Singh K (2016). Wiley Acing The Gate: Computer Science

and Information Technology. Wiley India Pvt. Ltd.

Mano M.M, Kime C.R and Martin T (2015). Logic & Computer Design Fundamentals

(5
th
 edition). Pearson. Pg283

Faroughi N (2015). Digital Logic Design & Computer Organization: With Computer

Architecture for Security. McGraw-Hill Education.

Patterson D. A and Hennessy J.L (2016). Computer Organization & Design ARM

 Edition: The Hardware Software Interface. Morgan Kaufmann.

Unsalan C and Tar B (2017). Digital System Design with FPGA Implementation Using

 Verilog and VHDL. McGraw-Hill Education.

Null L and Lobur J (2016). The Essentials of Computer Organization and Architecture

 (4
th
 edition). Jones & Barlett Learning.

Rafiquzzaman M (2014). Fundamentals of Digital Logic and Microcontrollers. John

 Wiley & Sons.

www.cs.siu.edu

www.educypedia.be/electronics

www.books.google.com

CIT344 INTRODUCTION TO COMPUTER DESIGN

11

UNIT 2 TYPES OF NUMBER SYSTEMS II

CONTENTS

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content

3.1 Hexadecimal Number System

3.1.1 Counting in Hexadecimal Number System

3.1.2 Binary to Hexadecimal Conversion

3.1.3 Hexadecimal to Binary Conversion

3.1.4 Decimal to Hexadecimal Conversion

3.1.5 Hexadecimal to Decimal Conversion

3.1.6 Hexadecimal Addition and Subtraction

3.2 Octal Number System

3.2.1 Counting in Octal Number System

3.2.2 Binary to Octal Conversion

3.2.3 Octal to Binary Conversion

3.2.4 Decimal to Octal Conversion

3.2.5 Octal to Decimal Conversion

3.2.6 Octal Addition and Subtraction

4.0 Self- Assessment Exercise(s)

5.0 Conclusion

6.0 Summary

7.0 Further Readings

1.0 Introduction

In this unit we shall conclude with hexadecimal and octal number

systems.

2.0 Intended Learning Outcomes (ILOs)

At the end of this unit, you should be able to:

 explain the term hexadecimal number system

 count in hexadecimal

 convert binary to hexadecimal

 convert hexadecimal to binary

 convert decimal to hexadecimal

 convert hexadecimal to decimal

 explain hexadecimal addition and subtraction

 explain the term octal number system

 explain hexadecimal addition and subtraction.

CIT344 INTRODUCTION TO COMPUTER DESIGN

12

3.0 Main Content

3.1 Hexadecimal Number System

Representing even small number such as 6918 requires a long binary

string (1101100000110) of 0s and 1s. Larger decimal numbers would

require lengthier binary strings. Writing such long string is tedious and

prone to errors.

The hexadecimal number system is a base 16 number system and

therefore has 16 digits and is used primarily to represent binary strings

in a compact manner. Hexadecimal number system is not used by a

digital system. The hexadecimal number system is for our convenience

to write binary strings in a short and concise form. Each hexadecimal

number digit can represent a 4-bit binary number. The binary numbers

and the hexadecimal equivalents are listed below:

Table 1: Hexadecimal Equivalents of Decimal and Binary Numbers

Decimal Binary Hexadecimal Decimal Binary Hexadecimal

0 0000 0 8 1000 8

1 0001 1 9 1001 9

2 0010 2 10 1010 A

3 0011 3 11 1011 B

4 0100 4 12 1100 C

5 0101 5 13 1101 D

6 0110 6 14 1110 E

7 0111 7 15 1111 F

3.1.1 Counting in Hexadecimal Number System

Counting in hexadecimal is similar to the other number systems already

discussed. The maximum value represented by a single hexadecimal

digit is F which is equivalent to decimal 15. The next higher value

decimal 16 is represented by a combination of two hexadecimal digits

1016 or 10 H. The subscript 16 indicates that the number is hexadecimal

10 and not decimal 10. Hexadecimal numbers are also identified by

appending the character H after the number. The hexadecimal numbers

for decimal numbers 16 to 39 are listed below in table 2:

CIT344 INTRODUCTION TO COMPUTER DESIGN

13

Table 2: Counting using Hexadecimal Numbers

Decimal Hexadecimal Decimal Hexadecimal Decimal Hexadecimal

16 10 24 18 32 20

17 11 25 19 33 21

18 12 26 1A 34 22

19 13 27 1B 35 23

20 14 28 1C 36 24

21 15 29 1D 37 25

22 16 30 1E 38 26

23 17 31 1F 39 27

3.1.2 Binary to Hexadecimal Conversion

Converting binary to hexadecimal is a very simple operation. The binary

string is divided into small groups of 4-bits starting from the least

significant bit. Each 4-bit binary group is replaced by its hexadecimal

equivalent.

11010110101110010110 binary number 1101 0110 1011 1001 0110

Dividing into groups of 4-bits

D 6 B 9 6 Replacing each group by its hexadecimal

equivalent

Thus, 11010110101110010110 is represented in hexadecimal by D6B96

Binary strings which cannot be exactly divided into a whole number of

4-bit groups are assumed to have 0‘s appended in the most significant

bits to complete a group.

1101100000110 Binary Number

1 1011 0000 0110 Dividing into groups of 4-bits

0001 1011 0000 0110 Appending three 0s to complete the group
1 B 0 6 Replacing each group by its hexadecimal

equivalent

3.1.3 Hexadecimal to Binary Conversion

Converting from Hexadecimal back to binary is also very simple. Each

digit of the hexadecimal number is replaced by an equivalent binary

string of 4-bits.

CIT344 INTRODUCTION TO COMPUTER DESIGN

14

F D 1 3 hexadecimal number

1111 1101 0001 0011 Replacing each hexadecimal digit by its 4-bit

binary equivalent.

3.1.4 Decimal to Hexadecimal Conversion

There are two methods to convert from decimal to hexadecimal. The

first method is the indirect method and the second method is the

repeated division method.

Indirect Method

A decimal number can be converted into its hexadecimal equivalent

indirectly by first converting the decimal number into its binary

equivalent and then converting the binary to Hexadecimal.

Repeated Division-by-16 Method

The repeated division method has been discussed earlier and used to

convert decimal numbers to binary by repeatedly dividing the decimal

number by 2. A decimal number can be directly converted into

hexadecimal by using repeated division. The decimal number is

continuously divided by 16 (base value of the hexadecimal number

system).

The conversion of decimal 2096 to hexadecimal using the repeated

division-by-16 method is illustrated in Table 3. The hexadecimal

equivalent of 209610 is 83016.

Table 3: Hexadecimal Equivalent of Decimal Numbers Using

Repeated Division

Number Quotient after division Remainder after division

2096 131 0

131 8 3

8 0 8

3.1.5 Hexadecimal to Decimal Conversion

Converting hexadecimal numbers to decimal is done using two methods.

The first method is the indirect method and the second method is the

sum-of-weights method.

CIT344 INTRODUCTION TO COMPUTER DESIGN

15

Indirect Method

The indirect method of converting hexadecimal number to decimal

number is to first convert hexadecimal number to binary and then binary

to decimal.

Sum-of-Weights Method

A hexadecimal number can be directly converted into decimal by using

the sum of weights method. The conversion steps using the sum-of-

weights method are shown.

CA02 hexadecimal number

C x 16
3
 + A x 16

2
 + 0 x 16

1
 + 2 x 16

0
 Writing the number in an

expression

(C x 4096) + (A x 256) + (0 x 16) + (2 x 1)
(12 x 4096) + (10 x 256) + (0 x 16) + (2 x 1) Replacing hexadecimal

values with

decimal equivalents

49152 + 2560 + 0 + 2 Summing the weights

51714 Decimal equivalent

3.1.6 Hexadecimal Addition and Subtraction

Numbers represented in hexadecimal can be added and subtracted

directly without having to convert them into decimal or binary

equivalents. The rules of addition and subtraction that are used to add

and subtract numbers in decimal or binary number systems apply to

hexadecimal addition and subtraction. Hexadecimal addition and

subtractions allows large binary numbers to be quickly added and

subtracted.

Hexadecimal Addition

Carry 1

Number 1 2 AC 6
Number 2 9 2 B 5

Sum B D 7 B

Hexadecimal Subtraction

Borrow 1 1 1

Number 1 9 2 B 5

Number 2 2 A C 6

Difference 6 7 E F

CIT344 INTRODUCTION TO COMPUTER DESIGN

16

3.2 Octal Number System

Octal number system also provides a convenient way to represent long

string of binary numbers. The octal number is a base 8 number system

with digits ranging from 0 to 7. Octal number system was prevalent in

earlier digital systems and is not used in modern digital systems

especially when the hexadecimal number is available. Each octal

number digit can represent a 3-bit binary number. The binary numbers

and the octal equivalents are listed below

Table 4: Octal Equivalents of Decimal and Binary Numbers

Decimal Binary Octal

0 000 0

1 001 1

2 010 2

3 011 3

4 100 4

5 101 5

6 110 6

7 111 7

3.2.5 Counting in Octal Number System

Counting in octal is similar to counting in any other number system. The

maximum value represented by a single octal digit is 7. For representing

larger values a combination of two or more octal digits has to be used.

Thus, decimal 8 is represented by a combination of108. The subscript 8

indicates the number is octal 10 and not decimal ten. The octal numbers

for decimal numbers 8 to 30 are listed below:

Table 5: Counting using Octal Numbers

Decimal l Octal Decimal Octal Decimal Octal

8 10 16 20 24 30

9 11 17 21 25 31

10 12 18 22 26 32

11 13 19 23 27 33

12 14 20 24 28 34

13 15 21 25 29 35

14 16 22 26 30 36

15 17 23 27 31 37

CIT344 INTRODUCTION TO COMPUTER DESIGN

17

3.2.6 Binary to Octal Conversion

Converting binary to octal is a very simple. The binary string is divided

into small groups of 3-bits starting from the least significant bit. Each 3-

bit binary group is replaced by its octal equivalent.

111010110101110010110 Binary number

111 010 110 101 110 010 110 Dividing into groups of 3-bits

7 2 6 5 6 2 6 Replacing each group by its octal

equivalent

Thus, 111010110101110010110 is represented in octal by 7265626

Binary strings which cannot be exactly divided into a whole number of

3-bit groups are assumed to have 0‘s appended in the most significant

bits to complete a group.

1101100000110 Binary number

1 101 100 000 110 Dividing into groups of 3-bits

001 101 100 000 110 Appending three 0s to complete the group

1 5 4 0 6 Replacing each group by its octal equivalent

3.2.7 Octal to Binary Conversion

Converting from octal back to binary is also very simple. Each digit of

the octal number is replaced by an equivalent binary string of 3-bits.

1 7 2 6 Octal number

001 111 010 110 Replacing each octal digit by its 3-bit binary

equivalent.

3.2.8 Decimal to Octal Conversion

There are two methods to convert from decimal to octal. The first

method is the

Indirect Method and the second method is the repeated division method.

Indirect Method

A decimal number can be converted into its octal equivalent indirectly

by first converting the decimal number into its binary equivalent and

then converting the binary to octal.

CIT344 INTRODUCTION TO COMPUTER DESIGN

18

Repeated Division-by-8 Method

The repeated division method has been discussed earlier and used to

convert decimal numbers to binary and hexadecimal by repeatedly

dividing the decimal number by 2 and 16 respectively. A decimal

number can be directly converted into octal by using repeated division.

The decimal number is continuously divided by 8 (base value of the

Octal number system).

The conversion of decimal 2075 to octal using the repeated division-by-

8 method is illustrated in Table 6. The octal equivalent of 207510 is

40338.

Table 6: Octal Equivalent of Decimal Numbers Using Repeated

Division

Number Quotient after Division Remainder after Division

2075 259 3

259 32 3

32 4 0

4 0 4

3.2.5 Octal to Decimal Conversion

Converting octal numbers to decimal is done using two methods. The

first method is the indirect method and the second method is the sum-of-

weights method.

Indirect Method

The indirect method of converting octal number to decimal number is to

first convert octal number to binary and then binary to decimal.

Sum-of-Weights Method

An octal number can be directly converted into decimal by using the

sum of weights method. The conversion steps using the sum-of-weights

method are shown.

4033 octal number

4 x 8
3
 + 0 x 8

2
 + 3 x 8

1
 + 3 x 8

0
 Writing the number in an expression

(4 x 512) + (0 x 64) + (3 x 8) + (3 x 1)

2048 + 0 + 24 + 3 Summing the weights

2075 Decimal equivalent

CIT344 INTRODUCTION TO COMPUTER DESIGN

19

3.2.6 Octal Addition and Subtraction

Numbers represented in octal can be added and subtracted directly

without having to convert them into decimal or binary equivalents. The

rules of addition and subtraction that are used to add and subtract

numbers in decimal or binary number systems apply to octal addition

and subtraction. Octal addition and subtractions allows large binary

numbers to be quickly added and subtracted.

1. Octal Addition

Carry 1

Number 1 7 6 0 2

Number 2 5 7 7 1

Sum 1 5 5 7 3

2. Octal Subtraction

Borrow 1 1

Number 1 7 6 0 2

Number 2 5 7 7 1

Difference 1 6 1 1

4.0 Self-Assessment Exercise(s)

Explain how you can convert hexadecimal and octal numbers to binary

and decimal numbers and vice versa.

5.0 Conclusion

In this unit we talked about hexadecimal and octal number systems,

counting in hexadecimal and octal, hexadecimal & octal arithmetic,

conversion of hexadecimal to binary and vice versa, hexadecimal to

decimal and vice versa.

6.0 Summary

In this unit we talked about hexadecimal and octal number systems,

counting in hexadecimal and octal, hexadecimal and octal arithmetic,

conversion of hexadecimal to binary and vice versa, hexadecimal to

decimal and vice versa.

CIT344 INTRODUCTION TO COMPUTER DESIGN

20

7.0 Further Readings

Elahi A (2018). Computer System: Digital Design, Fundamentals of Computer

Architecture and Assembly Language. Springer Nature

Patt Y. N (2019). Introduction to Computing Systems – From Bits and Gates to C and
Beyond (Online Version). Mc-Graw-Hill.

Verma A.K, Shama G and Singh K (2016). Wiley Acing The Gate: Computer Science and

Information Technology. Wiley India Pvt. Ltd.

Mano M.M, Kime C.R and Martin T (2015). Logic & Computer Design Fundamentals (5
th

edition). Pearson. Pg283

Faroughi N (2015). Digital Logic Design & Computer Organization: With Computer
Architecture for Security. McGraw-Hill Education.

Patterson D. A and Hennessy J.L (2016). Computer Organization & Design ARM

 Edition: The Hardware Software Interface. Morgan Kaufmann.

Unsalan C and Tar B (2017). Digital System Design with FPGA Implementation Using

 Verilog and VHDL. McGraw-Hill Education.

Null L and Lobur J (2016). The Essentials of Computer Organization and Architecture (4
th

 edition). Jones & Barlett Learning.

Rafiquzzaman M (2014). Fundamentals of Digital Logic and Microcontrollers. John

 Wiley & Sons.

www.cs.siu.edu

www.educypedia.be/electronics

www.books.google.com

CIT344 INTRODUCTION TO COMPUTER DESIGN

21

UNIT 3 Unsigned and Signed Binary Numbers

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content

3.1 Unsigned and Signed Binary Numbers

 3.1.1 Singed-magnitude approach

 3.1.2 Complements Techniques

 3.1.3 One‘s complement addition and subtraction

 3.1.4 Two‘s complement addition and subtraction

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 Introduction

We will be considering in this unit the unsigned and signed binary

number operations and usefulness in computing. Although, brief

introduction to complements of numbers generally with few examples

will be highlighted but more emphasis will be on binary number

operations because that forms the basis of our modern computer designs.

2.0 Intended Learning Outcomes (ILOs)

At the end of this unit, you should be able to:

 understand the concept of signed and unsigned number representations

 understand the concept of complement techniques

 understand how computers performs arithmetic operations

3.0 Main Content

3.1 Unsigned and Signed Binary Numbers

We have looked at the decimal number system and the binary number system in the

previous units, but it is also important for us to understand how each of the number

systems mentioned above could be represented using signs.

CIT344 INTRODUCTION TO COMPUTER DESIGN

22

An unsigned decimal or binary number has no arithmetic sign and is always positive.

Examples of unsigned decimal number are the numbers on your mobile phone

keypads,

your age and many more one can think of without sign. Also, an 8-bit unsigned

binary integer are numbers represented from 0016 through FF16 (010 through 25510).

In sign magnitude representation, plus (+) and minus (-) signs are used to represent

signed decimal numbers while in binary, we use 0 for positive and 1 for negative

binary signed representation. However, every signed representation is always placed

to the left side of the number for instance, in binary system, ‗0‘ and ‗1‘ is placed to

the left of the most significant bit position to represent negative and positive number

respectively. In other words, the extra bit (0 or 1) placed at the left side of the Most

Significant Digit (MSD), represents the sign of the binary number.

Example

+210 – 0 0 1 02

-210 1 0 1 02

-2510 0 001 10012

+2510 1 001 10012

Table 1 shows 4-bit integers represented in Sign-magnitude form. With four bits, we

can only represent numbers ranging from -7 ≤ a ≤ +7. In general, if there are n bits of

a binary number, it then means that its range spans from within ± (2
n-1

 - 1). This

means that with n – 1 bits, accommodates any value from 0 to 2
n-1

 (can be

comfortably represented). Although, with this position, it then means that the value

zero (0) will then have two representation (i.e 0000 for +0 and 1000 for -0) which

sometimes appears confusing in the eye of the reader. This is because in binary,

―1000‖ represents the number eight (8) in decimal but once clearly specified as

signed bit then ―1000‖ is now a negative zero (-0).

In complement approach, positive numbers are represented the same manner as they

do in sign-magnitude representation whereas, negative numbers have different

representation.

Magnitude

Sign

CIT344 INTRODUCTION TO COMPUTER DESIGN

23

Table 1: Sign-magnitude of 4-bit integer representation

3.1.2 Complement Techniques

The complement of a number X, always denoted as ̅ is obtained from X by taking

its bit-by-bit complement. In essence, each 0 in X is changed to 1 and each 1 in X is

changed to 0.

Example: find the complements of the following binary numbers:

 11001012 === 00110102

 0001112 ===== 1110002

 1111112 ===== 0000002

Before we proceed further with binary complements, it would be rather necessary we

look at how to obtain the complements of some decimal numbers.

9’s Complement

The 9‘s complement of a decimal number is obtained by subtracting each digit of the

number from 9. Table 2, shows the decimal numbers 0 to 9 and its equivalent 9‘s

complements.

CIT344 INTRODUCTION TO COMPUTER DESIGN

24

Table 2: 9‘s complements of decimal numbers

Decimal

number

9‘s

Complement

Decimal

number

9‘s

Complement

0 9 5 4

1 8 6 3

2 7 7 2

3 6 8 1

4 5 9 0

Example

Obtain the 9‘s complement of the following numbers: (a) 13 (b) 33 (c) 563

(a) 9 9 (b) 9 9 (c) 9 9 9

+ 1 3 + 3 3 + 5 6 3

 8 6 6 6 4 3 6

9’s Complement Subtraction

The usefulness of the 9‘s complement is seen from the fact that subtraction of large

number from smaller number is accomplished by addition of the 9‘s complement of

the subtrahend to the minuend to the smaller number and adding the end-around

carry (if any) to the result. For subtraction of larger decimal number from the smaller

decimal number, no carry results and the result becomes negative of the

complemented form.

Example : perform subtraction using 9‘s complement of the following numbers:

 8 = 8 Minuend

- 3 = + 6 Subtrahend

 1 4

 + 1

 5 Result

 16 = 16 Minuend

- 29 = + 70 Subtrahend

 86

 - 13 Result

CIT344 INTRODUCTION TO COMPUTER DESIGN

25

10’s complement

The 10‘s complement of any decimal number is equal to -9‘s complement + 1

Example

Obtain 10‘s complement of the number (a) 14 (b) 563 (c) 3497

(a) 9 9 (b) 9 9 9 (c) 9 9 9 9

-

 1 2 - 5 6 2 - 3 4 3 7

 8 7 4 3 7 6 5 6 2

 + 1 + 1 + 1

 8 8 4 3 8 6 5 6 3

10’s Complement Subtraction

In 10‘s complement subtraction, the minuend is added to the 0‘s complement of the

subtrahend while dropping the carry. Situations that the subtrahend is of a larger

number than the minuend, no carry results. Take the 9‘s complement of the

resulting value after adding the minuend to the subtrahend of the 10‘s complement

and then add 1 to convert back to 10‘s complement (see example b) Hence, the

answer is negative in the 10‘s complemented form.

Example

 8 = 8

- 3 = + 7

 5

 16 = 16

- 29 = + 81 10‘s Complement

 86

 1 3

 + 1

 - 1 4 10‘s Complement Result

CIT344 INTRODUCTION TO COMPUTER DESIGN

26

3.1.3 One’s Complement

One‘s complement operation of binary numbers is simply taking the complements of

each bits as contained in a binary number individually. As mentioned earlier in this

unit, the complement of 0 is 1 and the complement of 1 is 0.

Example: find the 1‘s complement of 101101

 101101 === 0100102

One’s Complement Addition

In performing 1‘s complement addition/subtraction, it is important to determine the

number bits required to perform the operation. This means that there should be a

method to align properly the number of bits of both the minuend and the subtrahend

equally.

 Assume 2-decimal numbers N1 and N2, the number of bits required to convert

them in binary system, is based on the principle:

 (2
n-1

 - 1) ≥ N1 or N2 (whichever is larger in magnitude) only if N1 and N2 are of

opposite signs.

 If the 2-decimal numbers are of same sign, the required number of bits is

gotten by adding N1 and N2. Thus,

(2
n-1

 - 1) ≥ N1 + N2 gives the number of bits needed to convert the decimal

numbers to binary system.

 In performing 1‘s complement arithmetic operation, if carry, add to the Least

Significant Bit (LSB) position.

 MSB of the addition indicates the sign (MSB = 1(negative), MSB = 0

(positive).

 Final result is obtained by taking 1‘s complement of the addition, if addition is

negative

 For subtraction, if subtrahend is negative, write the magnitude only.

CIT344 INTRODUCTION TO COMPUTER DESIGN

27

Example

Add 3D to -5D (where the D stands for decimal)

+3 = 0 011 (2
n-1

 - 1) > 5, n = 4 0 011

+5 = 0 101

-5 = 1 010 i.e 1‘s complement of +5 1 010

 1 101 Result = -1‘s complement of 1101

 i.e = -0010 = -2D

One’s complement subtraction

Subtraction in 1‘s complement is nothing but the addition of the subtrahend to the

minuend.

Example

Subtract -8D from -3D

(2n-1 - 1) > 11, n = 5 = number of bits

+8 = 01000, -8 = ̅ = 10111,

- ̅ = 01000, + 3 = 00011, ̅ = 11100,

 11100 = ̅

 01000 = 8

 100100

+

 1

Result = 00101 = 5D

3.1.1.4 Two’s Complement

The 2‘s complement of a number is simply == 1‘s complement + 1

Example

The 2‘s complement of 101011 is: 010100 (1‘s complement) + 1 = 010101

Find the 2‘s complement of 10000: 01111(complement) + 1 = 10000

CIT344 INTRODUCTION TO COMPUTER DESIGN

28

Two’s complement Addition and Subtraction

In performing 2‘s complement addition/subtraction, it is important to determine the

number bits required to perform the operation. This means that there should be a

method to align properly the number of bits of both the minuend and the subtrahend

equally.

 Assume 2-decimal numbers N1 and N2, the number of bits required to convert

them in binary system, is based on the principle:

(2
n-1

 - 1) ≥ N1 or N2 (whichever is larger in magnitude) only if N1 and N2 are of

opposite signs.

 If the 2-decimal numbers are of same sign, the required number of bits is

gotten by adding N1 and N2. Thus,

 (2
n-1

 - 1) ≥ N1 + N2 gives the number of bits needed to convert the decimal

numbers to binary system.

 In performing 2‘s complement arithmetic operation, if carry,

ignore/discard.

 MSB of the addition indicates the sign (MSB = 1 (negative), MSB = 0

(positive).

 Final result is obtained by taking 1‘s complement of the addition, if addition is

negative

 For subtraction, if subtrahend is negative, write the magnitude only.

Two’s Complement Addition

Add 3D to -5D (where the D stands for decimal)

+3 = 0 011 (2
n-1

 - 1) > 5, n = 4 0 011

+5 = 0 101

-5 = 1 010 + 1 i.e 2‘s complement of +5 1 011

 1 110

Result = -1‘s complement of 1110

i.e = -0001 + 1 = -0010 =

 -2D

CIT344 INTRODUCTION TO COMPUTER DESIGN

29

One’s complement subtraction

Subtraction in 1‘s complement is nothing but the addition of the subtrahend to the

minuend.

Example

Subtract -8D from -3D

(2n-1 - 1) > 11, n = 5 = number of bits

+8 = 01000, -8 = ̅ = 10111,

- ̅ (i.e – (-8)) = 01000, + 3 = 00011, ̅ = 11100 + 1,

 11101 = ̅

 01000 = 8

 100101

 Ignore/discard

 Result = 0 0101 = 5D

Example:

Subtract B = 110101 from A = 101010.

Two‘s complement of B is 001010 + 1 = 001011.

Add two‘s complement of B to A.

 001011

 +

 101010

 110101

As we can see, adding two 6-bit number results in a 6-bit answer. There is no carry; we just

take the two‘s complement of the result.

Two‘s Complement of 110101 = 001010 + 1 = -001011

CIT344 INTRODUCTION TO COMPUTER DESIGN

30

4.0 Self-Assessment Exercise(s)

Perform the subtraction of 1‘s and 2‘s complement on the following:

 -108D from 93D

 45D from 119D

 -9D from -4D

5.0 Conclusion

Binary numbers could be a signed or unsigned number, where 0 is used to

represent positive binary number and 1 is used to represent negative binary

number conventionally for every signed binary number. For signed binary

numbers, the MSB number (0 or 1) represents the sign of the binary number.

However, in an unsigned number, all bits of a number are used to represent the

number.

Complement techniques mostly one‘s and two‘s complement were initiated in

order to enable computers understand and operate arithmetic operations the same

way humans understand it, thus giving us as output the expected result. Most

modern computers are designed with two‘s complement to effectively carry out

its arithmetic operations.

6.0 Summary

This unit has been able to explore on the concept of unsigned and signed

numbers, complement techniques and the arithmetic operation of the computer

based complements techniques.

7.0 Further Readings

Elahi A (2018). Computer System: Digital Design, Fundamentals of Computer

Architecture and Assembly Language. Springer Nature

Patt Y. N (2019). Introduction to Computing Systems – From Bits and Gates to C and

Beyond (Online Version). Mc-Graw-Hill.

Verma A.K, Shama G and Singh K (2016). Wiley Acing The Gate: Computer Science and

Information Technology. Wiley India Pvt. Ltd.

Mano M.M, Kime C.R and Martin T (2015). Logic & Computer Design Fundamentals (5

th

edition). Pearson. Pg283

Faroughi N (2015). Digital Logic Design & Computer Organization: With Computer

Architecture for Security. McGraw-Hill Education.

Patterson D. A and Hennessy J.L (2016). Computer Organization & Design ARM Edition:

The Hardware Software Interface. Morgan Kaufmann.

CIT344 INTRODUCTION TO COMPUTER DESIGN

31

Unsalan C and Tar B (2017). Digital System Design with FPGA Implementation Using

 Verilog and VHDL. McGraw-Hill Education.

Null L and Lobur J (2016). The Essentials of Computer Organization and Architecture (4
th

 edition). Jones & Barlett Learning.

Rafiquzzaman M (2014). Fundamentals of Digital Logic and Microcontrollers. John

 Wiley & Sons.

CIT344 INTRODUCTION TO COMPUTER DESIGN

32

UNIT 4 CODES

CONTENTS

1.0 Introduction

2.0 Intended
Learning
Outcomes
(ILOs)

3.0 Main Content

3.1 Codes

3.1.1

The Excess Code
 3.1.2 BCD Code
 3.1.3 Gray Code
 3.1.4 Alphanumeric Code
 3.1.5 ASCII Code
 3.1.6 Extended ASCII Code

4.0 Self-Assessment Exercise(s)

5.0 Conclusion

6.0 Summary

7.0 Further Readings

1.0 Introduction

We have different types of code a few are briefly discussed below they

include: Excess code, BCD code, Gray code, alphanumeric code, ASCII

code, Extended ASCII code.

2.0 Intended Learning Outcomes (ILOs)

At the end of this unit, you should be able to:

 define code

 explain the various types of codes.

3.0 Main Content

3.1 Codes

A code in computer parlance is a generic term for program instructions,

used in two general senses. The first sense refers to human-readable

source code, which include the instructions written by the programmer

in a programming language. The second refers to executable machine

code, which include the instructions of a program that were converted

from source code to instructions that the computer can understand.

CIT344 INTRODUCTION TO COMPUTER DESIGN

33

3.1.1 The Excess Code

Consider the decimal number range +7 to -8. These positive and

negative decimal numbers can be represented by the 2‘s complement

representation. The magnitude of positive and negative numbers cannot

be easily compared as the positive and negative numbers represented in

2‘s complement form are not represented on a uniformly increasing

scale.

The decimal number range +7 to -8 is represented using an excess-8

code that assigns 0000 to -8 the lowest number in the range and 1111 to

+7 the highest number in the range. Excess-8 code is obtained by adding

a number to the lowest number -8 in the range such that the result is

zero. The number is 8. The number 8 is added to all the remaining

decimal numbers from -7 up to the highest number +7. The excess-8

represented is presented below.

Table 1: Excess-8 Code Representation of Decimal Numbers in the

Range 7 to 8

Decimal 2‘sComplement Excess-

8
Decimal 2‘sComplement Excess-

8

0 0000 1000 -8 1000 0000

1 0001 1001 -7 1001 0001

2 0010 1010 -6 1010 0010

3 0011 1011 -5 1011 0011

4 0100 1100 -4 1100 0100

5 0101 1101 -3 1101 0101

6 0110 1110 -2 1110 0110

7 0111 1111 -1 1111 0111

3.1.2 BCD Code

Binary Coded Decimal (BCD) code is used to represent decimal digits in

binary. BCD code is a 4-bit binary code; the first 10 combinations

represent the decimal digits 0 to 9. The remaining six 4-bit combinations

1010, 1011, 1100, 1101, 1110 and 1111 are considered to be invalid and

do not exist.

The BCD code representing the decimal digits 0 to 9 is shown in the

Table below:

CIT344 INTRODUCTION TO COMPUTER DESIGN

34

Table 2: BCD Representation of Decimal Digits 0 to 9

Decimal BCD Decimal BCD

0 0000 5 0101

1 0001 6 0110

2 0010 7 0111

3 0011 8 1000

4 0100 9 1001

To write 17, two BCD code for 1 and 7 are used 0001 and 0111. The

two digits are considered to be separate. The conventional method of

representing decimal 17 using unsigned binary is 10001. A telephone

keypad having the digits 0 to 9 generates BCD codes for the keys

pressed.

Most digital systems display a count value or the time in decimal on 7-

segment LED display panels. Since the numbers displayed are in

decimal, therefore the BCD Code is used to display the decimal

numbers. Consider a 2-digit 7-segment display that can display a count

value from 0 to 99. To display the two decimal digits two separate BCD

codes are applied at the two 7-segment display circuit inputs.

BCD Addition

Multi-digit BCD numbers can be added together.

23 0010 0011

45 0100 0101
68 0110 1000

The two 2-digit BCD numbers are added and generate a result in BCD.

In the example, the least significant digits 3 and 5 add up to 8 which is a

valid BCD representation. Similarly, the most significant digits 2 and 4

add up to 6 which also is a valid BCD representation.

Consider the next example where the least significant numbers add up to

a number greater than 9 for which there is no valid BCD code

23 0010 0011

48 0100 1000

71 0110 1011

For BCD numbers that add up to an invalid BCD number or generate a

carry the number 6(0110) is added to the invalid number. If a carry

results, it is added to the next most significant digit. Thus:

CIT344 INTRODUCTION TO COMPUTER DESIGN

35

0011

1000

1011 11 is generated which is an invalid BCD number

0110 6 is added

1 0001

A carry is generated which is added to the result of the next most

significant digits

1

0110

0111

The answer is 0111 0001

3.1.3 Gray Code

The Gray code also known as reflected code, does not have any weights

assigned to its bit positions. The Gray code is not a positional code. The

Gray code is different from the unsigned binary code as successive

values of Gray code differ by only one bit. The advantage of the Gray

code over pure binary numbers is that a number in the gray code

changes by only one bit as it proceeds from one number to another. A

typical application of the gray code occurs when an analog data is

represented by a continuous change of a shaft position, where the shaft

is partitioned into segments with individual numbers assigned to every

segment. The method of assigning adjacent segments to the

corresponding adjacent gray-code helps to reduce ambiguity, when

detection is sensed in the line that separates any two segments. Table 3

shows the Gray code representation of decimal numbers 0 to 15. To

obtain a gray code different code from the next, starting from any

combination, only one bit is changed either from 0 to 1 or 1 to 0 in any

desire random order, as long as two numbers do not have identical code

assignments.

Table 3: Gray Code Representation of Decimal Values

Decimal Gray Binary

0 0000 0000

1 0001 0001

2 0011 0010

3 0010 0011

4 0110 0100

5 0111 0101

6 0101 0110

7 0100 0111

8 1100 1000

CIT344 INTRODUCTION TO COMPUTER DESIGN

36

9 1101 1001

10 1111 1010

11 1110 1011

12 1010 1100

13 1011 1101

14 1001 1110

15 1000 1111

3.1.4 Alphanumeric Code

All the representation studied so far allow decimal numbers to be represented in binary.

Digital systems also process text information as in editing of documents. Thus, each

letter of the alphabet, upper case and lower case, along with the punctuation marks

should have a representation. Numbers are also written in textual form such as 2
nd

 June

2003. The ASCII code is a universally accepted code that allows 128 characters and

symbols to be represented.

3.1.5 ASCII Code

The ASCII code (American Standard Code for Information Interchange)

is a 7-bit code representing 128 unique codes which represent the

alphabet characters A to Z in lower case and upper case, the decimal

numbers 0 to 9, punctuation marks and control characters.

ASCII codes 011 0000 (30h) to 011 1001 (39h) represents numbers 0 to

9

ASCII codes 1100001 (61h) to 1111010(7Ah) represent lower case

alphabets a to z

ASCII codes 100 0001 (41h) to 101 1010 (5Ah) represent upper case

alphabets A to Z

ASCII codes 000 0000 (0h) to 001 1111 (1Fh) represent the 32 Control

characters.

3.1.6 Extended ASCII Code

The 7-bit ASCII code only has 128 unique codes which are not enough

to represent some graphical characters displayed on computer screens.

An 8-bit code extended ASCII code gives 256 unique codes. The

extended 128 unique codes represent graphic symbols which have

become an unofficial standard as vendors use their own interpretation of

these graphic codes.

CIT344 INTRODUCTION TO COMPUTER DESIGN

37

4.0 Self-Assessment Exercise(s)
Write short notes on the following:

(a) Excess code

(b) BCD code

(c) Gray code

(d) Alphanumeric code

(e) ASCII code

(f) Extended ASCII code.

5.0 Conclusion

Excess-8 code is obtained by adding a number to the lowest number -8

in the range such that the result is zero. Binary Coded Decimal (BCD)

code is used to represent decimal digits in binary. BCD code is a 4-bit

binary code; the first 10 combinations represent the decimal digits 0 to

9.

The Gray code does not have any weights assigned to its bit positions, is

not a positional code and is different from the unsigned binary code as

successive values of Gray code differ by only one bit.

The ASCII Code (American Standard Code for Information

Interchange) is a 7-bit code representing 128 unique codes which

represent the alphabet characters A to Z in lower case and upper case,

the decimal numbers 0 to 9, punctuation marks and control characters.

6.0 Summary

In this unit, we defined code as a program instruction and have also

talked about various codes such as BCD cod, Gray code, ASCII code,

Alphanumeric code, Excess code, their characteristics and how they can

be used.

7.0 Further Readings

Elahi A (2018). Computer System: Digital Design, Fundamentals of Computer

Architecture and Assembly Language. Springer Nature

Patt Y. N (2019). Introduction to Computing Systems – From Bits and Gates to C and
Beyond (Online Version). Mc-Graw-Hill.

Verma A.K, Shama G and Singh K (2016). Wiley Acing The Gate: Computer Science and

Information Technology. Wiley India Pvt. Ltd.

CIT344 INTRODUCTION TO COMPUTER DESIGN

38

Mano M.M, Kime C.R and Martin T (2015). Logic & Computer Design Fundamentals (5

th

edition). Pearson. Pg283

Faroughi N (2015). Digital Logic Design & Computer Organization: With Computer
Architecture for Security. McGraw-Hill Education.

Patterson D. A and Hennessy J.L (2016). Computer Organization & Design ARM

 Edition: The Hardware Software Interface. Morgan Kaufmann.

Unsalan C and Tar B (2017). Digital System Design with FPGA Implementation Using

 Verilog and VHDL. McGraw-Hill Education.

Null L and Lobur J (2016). The Essentials of Computer Organization and Architecture (4
th

 edition). Jones & Barlett Learning.

Rafiquzzaman M (2014). Fundamentals of Digital Logic and Microcontrollers. John

 Wiley & Sons.

CIT344 INTRODUCTION TO COMPUTER DESIGN

39

MODULE 2 COMBINATIONAL LOGIC DESIGN &

APPLICATIONS

Unit 1 Analysis and Design of a Combinational Logic Circuit

Unit 2 Typical Combinational Logic Circuit I

Unit 3 Typical Combinational Logic Circuit II

Unit 4 Typical Combinational Logic Circuit III

UNIT 1 ANALYSIS AND DESIGN OF A

COMBINATIONAL LOGIC CIRCUIT

CONTENTS

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content

3.1 Analysis of a Combinational Logic Circuit

3.2 Design of a Combinational Logic Circuit

4.0 Self-Assessment Exercise(s)

5.0 Conclusion

6.0 Summary

7.0 Further Readings

1.0 Introduction

Digital logic circuits can be classified into two types: Combinational and Sequential logic circuits.

Combinational logic circuit is designed using logic gates whose outputs at a time is determined

directly from the present combination of inputs at a time without consideration to the previous

inputs. A combinational circuit does not require memory so the output depends only on the current

inputs. Combinational circuits help in reducing design complexity and reduce the chip count in a

circuit.

2.0 Intended Learning Outcomes (ILOs)

At the end of this unit, you should be able to:

 analyse a combinational logic circuit

 design a combinational logic circuit.

CIT344 INTRODUCTION TO COMPUTER DESIGN

40

3.0 Main Content

3.1 Analysis of a Combinational Logic Circuit

A block diagram of combinational logic circuit is shown in figure 1 and consists of inputs

variable, logic gates, and output variables.

Fig. 1: Block diagram of a combinational circuit

For n–input variables from the block diagram, there are only 2
n
 possible binary input

combinations of the variables which results to only one possible m output from each n-

combination. Thus, combinational circuit could be analysed by:

 identifying the number of inputs and outputs

 expressing the output functions in terms of the inputs, and

 determining the truth table for the logic diagram.

3.2 Design of a Combinational Logic Circuit

A combinational circuit can be designed using three steps as follows:

 determine the inputs and the outputs from the problem definition

and then derive the truth table

 use k-maps to minimize the number of inputs in order to express

the outputs - this reduces the number of gates and thus the

implementation cost

 draw the logic diagrams.

4.0 Self-Assessment Exercise(s)
Briefly explain the term combinational logic circuit, how it is analysed and designed

5.0 Conclusion

Combinational logic circuit is designed using logic gates in which

applications of inputs generate the outputs at any time. It does not

require memory so the output depends only on the current inputs.

CIT344 INTRODUCTION TO COMPUTER DESIGN

41

6.0 Summary

 In this unit, we discussed combinational logic circuit, its analysis and

how it can be designed.

7.0 Further Readings

Mano M.M (2017). Digital Logic and Computer Design. Pearson India Education Services Pvt.
Ltd

Yasin M.,Rajendran J. (JV) and Sinanoglu O. (2020). Trustworthy Hardware Design:
Combinational Logic Locking TechniquesSpringer Nature

Ndjountche T. (2016). Digital Electronics 1: Combinational Logic Circuits. Wiley

Elahi A (2018). Computer System: Digital Design, Fundamentals of Computer Architecture
and Assembly Language. Springer Nature

Patt Y. N (2019). Introduction to Computing Systems – From Bits and Gates to C and Beyond
(Online Version). Mc-Graw-Hill.

Verma A.K, Shama G and Singh K (2016). Wiley Acing The Gate: Computer Science and
Information Technology. Wiley India Pvt. Ltd.

Mano M.M, Kime C.R and Martin T (2015). Logic & Computer Design Fundamentals (5

th

edition). Pearson. Pg283

Faroughi N (2015). Digital Logic Design & Computer Organization: With Computer
Architecture for Security. McGraw-Hill Education.

Patterson D. A and Hennessy J.L (2016). Computer Organization & Design ARM Edition:

The Hardware Software Interface. Morgan Kaufmann.

Unsalan C and Tar B (2017). Digital System Design with FPGA Implementation Using

Verilog and VHDL. McGraw-Hill Education.

Null L and Lobur J (2016). The Essentials of Computer Organization and Architecture (4
th

edition). Jones & Barlett Learning.

Rafiquzzaman M (2014). Fundamentals of Digital Logic and Microcontrollers. John Wiley &

Sons.

Roth, H. C. Jr & Kinney, L. L. (2014). Fundamentals of Logic Design (7
th
 edition). Cengage

Learning.

Tanenbaum, Andrew S. (2013). Structured Computer Organization.Prentice Hall (6th

ed).

CIT344 INTRODUCTION TO COMPUTER DESIGN

42

CIT344 INTRODUCTION TO COMPUTER DESIGN

43

UNIT 2 TYPICAL COMBINATIONAL LOGIC CIRCUIT I

CONTENTS

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content

3.1 Typical Combinational Logic Circuit I

3.1.1 Adders

3.1.1.1 Half-adder

3.1.1.2 Half-adder Function Table

3.1.1.3 Half-adder Sum & Carry out Boolean Expression

3.1.1.4 Full-adder

3.1.1.5 Full-adder Function Table

3.1.1.6 Full-adder Sum & Carry out Boolean Expression

3.1.1.7 Forming a Full-adder Using Half-adders

3.1.1.8 Parallel Binary Adders

4.0 Self-Assessment Exercise(s)

5.0 Conclusion

6.0 Summary

7.0 Further Readings

 1.0 Introduction

In this unit we shall discuss Adders, types and their implementation.

 2.0 Intended Learning Outcomes (ILOs)

At the end of this unit, you should be able to:

 name the two types of adders we have

 discuss the half-adder, its function table, sum and carry out

Boolean expression

 discuss the full-adder, its function table, sum and carry out

Boolean expression

 form a full-adder using half-adders

 discuss about the parallel binary adder.

CIT344 INTRODUCTION TO COMPUTER DESIGN

44

3.0 Main Content

3.1 Typical Combinational Logic Circuit I

3.1.1 Adders

We have two types of adder: Half-adder and Full-adder

3.1.1.1 Half-adder

A single bit binary adder circuit basically adds two bits. The output of

the single bit adder circuit generates a sum bit. An adder circuit that only

has two bit input representing the two single bit numbers A and B and

does not have the carry bit input from the least significant digit is

regarded as a half-adder. The block diagram below represents a half-

adder.

Fig. 1: Block Representation of Half-Adder

A half-adder can be fully described in terms of its function table and the

circuit implementation.

3.1.1.2 Half-Adder Function Table

The half-adder has a 2-bit input and a 2-bit output. The function table of

the half-adder has two input columns representing the two single bit

numbers A and B. The function table also has two output columns

representing the sum bit and carry out bit.

CIT344 INTRODUCTION TO COMPUTER DESIGN

45

Fig. 2: Half-Adder Function Table and Circuit Implementation

3.1.1.3 Half-adder Sum & Carry Out Boolean Expression

The sum and carry out expressions of the half-adder can be determined

from the function table. The half-adder sum and carry out outputs are

defined by the expressions:

Sum = AB + AB = A B

Carry out = AB

3.1.1.4 Full-Adder

An adder circuit which has three inputs, one representing single bit

number A, the other representing the single bit number B and the third

bit represents the single bit carry is referred to as a full-adder. The single

bit binary adder has two bit output. One bit represents the Sum between

numbers A and B. The other bit represents the carry bit generated due to

addition. The diagram below represents the block diagram of a full-

adder.

Fig. 3: Block Representation of a Full-Adder

CIT344 INTRODUCTION TO COMPUTER DESIGN

46

3.1.1.5 Full-adder Function Table

The full-adder has a 3-bit input and a 2-bit output. The function table of

the full-adder has three input columns representing the two single bit

numbers A, B and the carry in bit. The function table also has two

output columns representing the sum bit and carry out bit.

Fig. 4: Full-adder Function Table and Circuit Implementation

3.1.1.6 Full-adder Sum & Carry out Boolean Expression

The sum and carry out expressions of the full-adder can be determined

from the function table. The full-adder sum and carry out outputs are

defined by the expressions:

Sum = A B C + ABC + ABC + ABC

Sum = A(BC +BC) + A(BC +BC)

Sum = A(B C) + A(B C)
Sum = A B C

CarryOut = ABC + ABC + ABC + ABC

CarryOut = C(AB + AB) + AB(C + C)
CarryOut = C(A B) + AB

3.1.1.7 Forming a Full-Adder using Half-adders

A 1-bit full-adder can be implemented by combining together two half-

adders.

CIT344 INTRODUCTION TO COMPUTER DESIGN

47

Fig. 5: Implementing a Full-Adder using Two Half-Adders

 The sum output of the first half-adder is (A ⊕ B)

The carry out of the first half-adder is AB

The sum output of the second half-adder is (A B) Cin = (A B Cin)

The carry out of the second half-adder is (A B) ⊕Cin

 The output of the OR gate is in AB + (A ⊕ B) ⊕ Cin

3.1.1.8 Parallel Binary Adders

Single bit full or half-adders do not perform any useful function. To add

two 4-bit numbers a 4-bit adder is required. Four single bit full-adders

are connected together to form a 4-bit parallel adder capable of adding

two 4-bit binary numbers. A 4-bit binary adder can be formed with four

full-adders as follows:

Fig. 6: A 4-Bit Binary Adder

CIT344 INTRODUCTION TO COMPUTER DESIGN

48

The connection diagram and logic symbols are shown below:

Connection Diagram Logic Symbol

Fig.7: Connection Diagram and Logic Symbol of a 4-Bit Binary Adder

4.0 Self-Assessment Exercise(s)

1. Explain with the aid of diagrams how you can form a full-adder from

half-adders.

2. Write short notes with diagrams where necessary on the following:

 half-adder, its function table and sum & carry out Boolean expression.

 full-adder, its function table and sum & carry out Boolean expression.

5.0 Conclusion

An adder circuit that only has two-bit input representing the two single

bit numbers A and B and does not have the carry bit input from the least

significant digit is regarded as a half-adder. An adder circuit which has

three inputs, one representing single bit number A, the other

representing the single bit number B and the third bit represents the

single bit carry is referred to as a full-adder.

6.0 Summary

In this unit we talked about types of adder, half-adder, half-adder

function table, half-adder sum and carry out Boolean expression, full-

adder, full-adder function table, full-adder sum and carry out Boolean

expression.

CIT344 INTRODUCTION TO COMPUTER DESIGN

49

7.0 Further Readings

Mano M.M (2017). Digital Logic and Computer Design. Pearson India Education Services Pvt.
Ltd

Yasin M.,Rajendran J. (JV) and Sinanoglu O. (2020). Trustworthy Hardware Design:
Combinational Logic Locking TechniquesSpringer Nature

Ndjountche T. (2016). Digital Electronics 1: Combinational Logic Circuits. Wiley

Elahi A (2018). Computer System: Digital Design, Fundamentals of Computer Architecture
and Assembly Language. Springer Nature

Patt Y. N (2019). Introduction to Computing Systems – From Bits and Gates to C and Beyond
(Online Version). Mc-Graw-Hill.

Verma A.K, Shama G and Singh K (2016). Wiley Acing The Gate: Computer Science and
Information Technology. Wiley India Pvt. Ltd.

Mano M.M, Kime C.R and Martin T (2015). Logic & Computer Design Fundamentals (5

th

edition). Pearson. Pg283

Faroughi N (2015). Digital Logic Design & Computer Organization: With Computer
Architecture for Security. McGraw-Hill Education.

Patterson D. A and Hennessy J.L (2016). Computer Organization & Design ARM Edition:

The Hardware Software Interface. Morgan Kaufmann.

Unsalan C and Tar B (2017). Digital System Design with FPGA Implementation Using

Verilog and VHDL. McGraw-Hill Education.

Null L and Lobur J (2016). The Essentials of Computer Organization and Architecture (4
th

edition). Jones & Barlett Learning.

Rafiquzzaman M (2014). Fundamentals of Digital Logic and Microcontrollers. John Wiley &

Sons.

Roth, H. C. Jr & Kinney, L. L. (2014). Fundamentals of Logic Design (7
th
 edition). Cengage

Learning.

Tanenbaum, Andrew S. (2013). Structured Computer Organization.Prentice Hall (6th

ed).

CIT344 INTRODUCTION TO COMPUTER DESIGN

50

UNIT 3 TYPICAL COMBINATIONAL LOGIC CIRCUIT

II

CONTENTS

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content

3.1 Typical Combinational Logic Circuit II

3.1.1 Multiplexers

3.1.1.1 Using Pass Gate

3.1.1.2 Design with Multiplexers

3.1.1.3 Applications of Multiplexers

3.1.2 Demultiplexers

3.1.2.1 Applications of Demultiplexers

4.0 Self-Assessment Exercise(s)

5.0 Conclusion

6.0 Summary

7.0 Further Readings

1.0 Introduction

In this unit we shall discuss multiplexers, demultiplexers and their

applications in our everyday live.

2.0 Intended Learning Outcomes (ILOs)

At the end of this unit, you should be able to:

 state what a multiplexer is

 state how a multiplexer is designed

 discuss the applications of multiplexers

 state what a demultiplexer is

 discuss the applications of demultiplexers.

3.0 Main Content

3.1 Typical Combinational Logic Circuit II

3.1.1 Multiplexers

Multiplexer is a digital switch that has several inputs and a single

output. The Multiplexer also has select inputs that allow any one of the

multiple inputs can be selected to be connected to the output.

Multiplexers are also known as Data Selectors. The main use of the

CIT344 INTRODUCTION TO COMPUTER DESIGN

51

Multiplexer is to select data from multiple sources and to route it to a

single destination. In a computer, the ALU combinational circuit has

two inputs to allow arithmetic operations to be performed on two

quantities. The two quantities are usually stored in different set of

registers.

The inputs of the two multiplexers are connected to the output of each of

the multiple registers.

The outputs of the two multiplexers are connected to the two inputs of

the ALUs. The multiplexers are used to route the contents of any two

registers to the ALU inputs.

Fig. 1: A 4 X 1 Multiplexers and its Truth Table

4-data input multiplexer selects one of many inputs to be directed to an

output.

Fig. 2: 4-Data Input MUX Implementation

CIT344 INTRODUCTION TO COMPUTER DESIGN

52

3.1.1.1 Using Pass Gate

The 4 x 1 MUX can be implemented with pass gates as follows:

Fig. 3: Implementation of the 4x1 MUX with Pass Gates

Multiplexers can be efficiently implemented using the majority function

and even- parity function.

Table 1: Majority Function

CIT344 INTRODUCTION TO COMPUTER DESIGN

53

Table 2: Even-Parity Function

3.1.1.2 Design with Multiplexers

Any Boolean function can be implemented by setting the inputs

corresponding to the function and the selectors as the variables as shown

below:

Fig. 4: Design with Multiplexers

3.1.1.4 Applications of Multiplexers

Multiplexers are used in a wide variety of applications. Their primary

use is to route data from multiple sources to a single destination. Other

than its use as a data router, the following are other applications:

 It can be used to realize any given LF and TT without minimizing

it.

CIT344 INTRODUCTION TO COMPUTER DESIGN

54

 It can be used as a universal logic gate.

 It can be used for parallel to serial converter.

 It can be used for the design of the sequence generator.

Data Routing

A two - digit 7-Segment display uses two 7-Segments Display digits

connected to two BCD to 7-Segment display circuits. To display the

number 29 the BCD number 0010 representing the MSD is applied at

the inputs of the BCD to 7-Segment display circuit connected to the

MSD 7-Segment Display Digit. Similarly, the BCD input 1001

representing the numbers 9 is applied at the inputs of the LSD display

circuit. The circuit uses two BCD to 7-Segment decoder circuits to

decode each of the two BCD inputs to the respective 7-Segment display

outputs. The display circuit can be implemented using a single CD to 7-

Segment IC and a multiplexer.

Parallel to Series Conversion

In a digital system, binary data is used and represented in parallel.

Parallel data is a set of multiple bits. For example, a nibble is a parallel

set of 4-bits, a byte is a parallel set of 8 bits. When two binary numbers

are added, the two numbers are represented in parallel and the parallel

adder works and generates a sum term which is also in parallel.

Transmission of information to remote locations through a piece of wire

requires that the parallel information (data) be converted into serial

form. In a serial data representation, data is represented by a sequence of

single bits. An 8-bit parallel data can be transmitted through a single

piece of wire 1-bit at a time. Transmitting 8-bits simultaneously (in

parallel form) requires 8 separate wires for the 8-bits. Laying of 8 wires

across two remote locations for data transfer is expensive and is

therefore not practical. All communication systems set up across remote

locations use serial transmission.

An 8-bit parallel data can be converted into serial data by using an 8-to-

1 multiplexer such as 74X151 which has 8 inputs and a single output.

The 8-bit data which is to be transmitted serially is applied at the 8

inputs I0-7 of the multiplexer. A three bit counter which counts from 0

to 7 is connected to the three select inputs S0, S1 and S2. The counter is

connected to a clock which sends a clock pulse to the counter every 1

millisecond. Initially, the counter is reset to 000, the I0 input is selected

and the data at input I0 is routed to the output of the multiplexer. On

receiving the clock signal after 1 millisecond the counter increments its

count from 000 to 001 which selects I1 input of the multiplexer and

routes the data present at the input to the output. Similarly, at the next

clock pulse the counter increments to 010, selecting I2 input and routing

the data to the output. Thus, after 8 milliseconds the parallel data is

CIT344 INTRODUCTION TO COMPUTER DESIGN

55

routed to the output 1-bit at a time. The output of the multiplexer is

connected to the wire through which the serial data is transmitted.

Fig. 5: Serial to Parallel Conversion

Logic Function Generator

Multiplexers can be used to implement a logic function directly from the

function table without the need for simplification. The select inputs of

the multiplexer are used as the function variables. The inputs of the

multiplexer are connected to logic 1 and 0 to represent the missing and

available terms. The three variable function table and its 8-to-1

multiplexer based function implementation is shown in the figure below:

Fig. 6: Logic Function Generator Based on 3-Variable Logic

Function Table

CIT344 INTRODUCTION TO COMPUTER DESIGN

56

Operation Sequencing

Many industrial applications have processes that run in a sequence. A

paint manufacturing plant might have a four step process to manufacture

paint. Each of the four steps runs in a sequence one after the other. The

second step cannot start before the first step has completed. Similarly,

the third and fourth steps of the paint manufacturing process cannot

proceed unless steps two and three have completed. It is not necessary

that each of the manufacturing steps is of the same duration. Each

manufacturing step can have different time duration and can be variable

depending upon the quantity of paint manufactured or other parameters.

Normally, the end of each step in the manufacturing process is indicated

by a signal which is actuated by some machine which has completed its

part of the manufacturing process. On receiving the signal, the next step

of the manufacturing process is initiated. The entire sequence of

operations is controlled by a multiplexer and a decoder circuit.

The manufacturing processes are started by resetting the 2-bit counter to
00. The counter output is connected to the select input of the multiplexer

and the inputs of the decoder which selects the multiplexer input I0 is

and activates the Decoder output Y0. The decoder output is connected to

initiate the first process. When the process completes it indicates the

completion of the process by setting its output to logic 1. The output of

Process 1 is connected to I0 input of the Multiplexer. When Process 1

sets its output to 1 to indicate its completion, the logic 1 is routed by the

Multiplexer to the clock input of the 2-it counter. The counter on

receiving logic 1 increments its count to 01, which selects I1 input of the

Multiplexer and the Y1 output of the Decoder. The input to Process 1 is

deactivated and Process 2 is activated by Y1. On completion of Process

2 its output is set to logic 1, which is routed by the multiplexer to the

clock input of the 2-bit counter which increments to the next count. This

continues until Process 4 signals its completion after which the Decoder

and the Multiplexer is deselected completing the manufacturing process.

CIT344 INTRODUCTION TO COMPUTER DESIGN

57

Fig. 7: Control of Manufacturing Process through Operation

Sequencing

3.1.2 Demultiplexer

A multiplexer has several inputs. It selects one of the inputs and routes

the data at the selected input to the single output. Demultiplexer has an

opposite function to that of the multiplexer. It has a single input and

several outputs. The demultiplexer selects one of the several outputs and

routes the data at the single input to the selected output. A demultiplexer

is also known as a data distributor.

CIT344 INTRODUCTION TO COMPUTER DESIGN

58

Fig. 8: A 1 x 4 Demultiplexer

The circuit if compared to that of the 2-to-4 decoder. The decoder enable

input is used as the demultiplexer data input. A demultiplexer is not

available commercially. A demultiplexer is available as a

decoder/demultiplexer chip which can be configured to operate as a

demultiplexer or a decoder.

The circuit of the 1-to-4 demultiplexer is similar to the 2-to-4 binary

decoder. The only difference between the two is the addition of the data

input line, which is used as enable line in the 2-to-4 decoder circuit.

3.1.2.1 Applications of Demultiplexer

Demultiplexer is used to connect a single source to multiple destinations

as shown in the figure below:

Fig. 9: Demultiplexer Used to Connect a Single Source to

Multiple Destinations

CIT344 INTRODUCTION TO COMPUTER DESIGN

59

It is used at the output of the ALU circuit. The output of the ALU has to

be stored in one of the multiple registers or storage units. The Data input

of the demultiplexer is connected to the output of the ALU. Each output

of the demultiplexer is connected to each of the multiple registers. By

selecting the appropriate output data from the ALU is routed to the

appropriate register for storage.

The second use of the demultiplexer is the reconstruction of parallel data

from the incoming serial data stream. Serial data arrives at the data input

of the demultiplexer at fixed time intervals. A counter attached to the

Select inputs of the demultiplexer routes the incoming serial bits to

successive outputs where each bit is stored. When all the bits have been

stored, data can be read out in parallel.

Fig. 10: DeMUX as a Serial to Parallel Converter

4.0 Self-Assessment Exercise(s)
Discuss briefly on the following:

i. MUX

ii. DeMUX

iii. 4 Differences b/w MUX and DeMUX

iv. Designing with multiplexers and demultiplexers
Applications of MUX and DeMUX.

5.0 Conclusion

Multiplexer is a digital switch that has several inputs and a single output. It also has

select inputs that allow any one of the multiple inputs can be selected to be connected to

the output. They are also known as data selectors. Multiplexers are used in a wide

variety of applications. Their primary use is to route data from multiple sources to a

CIT344 INTRODUCTION TO COMPUTER DESIGN

60

single destination. Other than its use as a data router, they are used as a parallel to serial

converter, logic function generator and also for operation sequencing.

Demultiplexer has an opposite function to that of the Multiplexer. It has a single input

and several outputs. It selects one of the several outputs and routes the data at the single

input to the selected output. A demultiplexer is also known as a data distributor. It is

used to connect a single source to multiple destinations. It is also

 used for the reconstruction of parallel data from the incoming serial data stream.

 6.0 Summary

In this unit, we explained about multiplexers and demultiplexers, how

they are designed and their applications.

 7.0 Further Readings

Mano M.M (2017). Digital Logic and Computer Design. Pearson India Education Services Pvt.
Ltd

Yasin M.,Rajendran J. (JV) and Sinanoglu O. (2020). Trustworthy Hardware Design:
Combinational Logic Locking TechniquesSpringer Nature

Ndjountche T. (2016). Digital Electronics 1: Combinational Logic Circuits. Wiley

Elahi A (2018). Computer System: Digital Design, Fundamentals of Computer Architecture
and Assembly Language. Springer Nature

Patt Y. N (2019). Introduction to Computing Systems – From Bits and Gates to C and Beyond
(Online Version). Mc-Graw-Hill.

Verma A.K, Shama G and Singh K (2016). Wiley Acing The Gate: Computer Science and
Information Technology. Wiley India Pvt. Ltd.

Mano M.M, Kime C.R and Martin T (2015). Logic & Computer Design Fundamentals (5

th

edition). Pearson. Pg283

Faroughi N (2015). Digital Logic Design & Computer Organization: With Computer
Architecture for Security. McGraw-Hill Education.

Patterson D. A and Hennessy J.L (2016). Computer Organization & Design ARM Edition:

The Hardware Software Interface. Morgan Kaufmann.

Unsalan C and Tar B (2017). Digital System Design with FPGA Implementation Using

Verilog and VHDL. McGraw-Hill Education.

Null L and Lobur J (2016). The Essentials of Computer Organization and Architecture (4
th

edition). Jones & Barlett Learning.

CIT344 INTRODUCTION TO COMPUTER DESIGN

61

Rafiquzzaman M (2014). Fundamentals of Digital Logic and Microcontrollers. John Wiley &

Sons.

Roth, H. C. Jr & Kinney, L. L. (2014). Fundamentals of Logic Design (7
th
 edition). Cengage

Learning.

Tanenbaum, Andrew S. (2013). Structured Computer Organization.Prentice Hall (6th

ed).

CIT344 INTRODUCTION TO COMPUTER DESIGN

62

UNIT 4 TYPICAL COMBINATIONAL LOGIC CIRCUIT

III

CONTENTS

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content

3.1 Typical Combinational Logic Circuit III

3.1.1 Decoders

3.1.1.1 Decoders with Enable Line

3.1.1.2 Designing with Decoders

3.1.1.3 Decoder Networks

3.1.1.4 Applications of Decoders

3.1.2 Encoders

3.1.2.1 Designing with Encoders

3.1.2.2 Priority Encoders

3.1.2.3 Designing with P-Encoders

3.1.2.4 Designing with P-Encoders

4.0 Self-Assessment Exercise(s)

5.0 Conclusion

6.0 Summary

7.0 Further Readings

 1.0 Introduction

In this unit, we shall discuss decoders and encoders, designing with

them and their applications in our everyday lives.

 2.0 Intended Learning Outcomes (ILOs)

At the end of this unit, you should be able to:

 define a decoder

 design with decoders

 discuss the decoder networks and applications of decoders

 define an encoder

 define a priority encoder.

CIT344 INTRODUCTION TO COMPUTER DESIGN

63

3.0 Main Content

3.1 Typical Combinational Logic Circuit III

3.1.1 Decoders

A decoder has multiple inputs and multiple outputs. The decoder device

accepts as an input a multi-bit code and activates one or more of its

outputs to indicate the presence of the multi-bit code. A standard

decoder is an m-to-n line where m≤2
n
.

Fig. 1: Truth Table, Logic Symbol and Circuit Implementation of a 2-

to-4 Decoder

3.1.1.1 Decoders with Enable Line

Often, decoders have an enable line that turns on outputs or leaves them

off. The figure below shows a 3-to-8 decoder with enable and its truth

table.

CIT344 INTRODUCTION TO COMPUTER DESIGN

64

Fig. 2: A 2-to-4 Decoder with Enable and its Truth Table

3.1.1.2 Designing with Decoders

Any Boolean function can be implemented using a decoder and OR

gates as shown in the figure below:

Fig. 3: Implementation of a Boolean Function

3.1.1.3 Decoder Networks

We can use multiple decoders to form a larger decoder. Below is a 3-to-

8 decoder implemented with two 2-to-4 decoders.

CIT344 INTRODUCTION TO COMPUTER DESIGN

65

Fig. 4: A 3-to-8 Decoder Implemented with Two 2-to-4 Decoders

3.1.1.4 Applications of Decoders

Decoders have two major uses in Computer Systems.

Selection of Peripheral Devices

Computers have different internal and external devices like the Hard

Disk, CD Drive, Modem, Printer, etc. Each of these different devices is

selected by specifying different codes. A decoder is used to uniquely

select or deselect the appropriate devices.

Instruction Decoder

Computer programs are based on instructions which are decoded by the

computer hardware and implemented. The codes 1100010, 1100011,

1110000 and 1000101 represent - add two numbers, subtract two

numbers, clear the result and store the result instructions.

These instruction codes are decoded by an instruction decoder to

generate signals that control different logic circuits like the ALU and

memory to perform these operations.

3.1.1.5 Seven Segment LED Display

It consists of 7-LED arranged in a rectangular form, where each of the seven LEDs is

known as a segment. Segment forms part of a numerical digit to be displayed when

illuminated. Two or more 7 segment display could be connected to display numbers

greater that ten. An additional 8
th

 LED is sometimes used for decimal point within the

same package as it also enables two or more 7-segment display to be connected together

in order to display numbers greater than ten.

A positional segment is attached to each one of the seven LEDs in the display with one

CIT344 INTRODUCTION TO COMPUTER DESIGN

66

of its connection legs brought out from the chip package of the segment display. The

individual pins are labeled with the letters a-g while the other leg pins are connected

together and wire to form a common pin.

The operation of 7-segment display works with a forward bias reaction where

appropriate forward biasing the pins of the LED segment in a systematic order,

automatically lights the pins and others remains dark allowing the exact character

pattern of number to be generated and display accordingly. Thus, this allows us to

display digits from 0 through 9 on the seven segment display.

There are two types of seven segment displays:

 Common anode display

 Common cathode display

Fig 5: (a) Pin of 7-segment (b) Seven segment LED

In figure 5(b), all the seven segments have LED attached to them as well as the dot segment

which has a very small LED. The dot is used to represent a decimal number.

The Common Cathode (CC)

In the common cathode display, all the cathode connections of the LED segments are joined

together to logic ―0‖ or ground. The individual segments are illuminated by application of a

―HIGH‖, or logic ―1‖ signal via a current limiting resistor to forward bias the individual

Anode terminals (a-g).

Common cathode means that the cathodes of all of the LEDs are common and connected to

a single pin. The anode for each LED has its own pin. So driving one of these means

running a current from the particular anode (positive) pin for the desired segment to the

common cathode pin.

CIT344 INTRODUCTION TO COMPUTER DESIGN

67

 Fig: Common cathode 7-segment display

The Common Anode (CA)

In the common anode display, all the anode connections of the LED segments are joined

together to logic ―1‖. The individual segments are illuminated by applying a ground, logic

―0‖ or ―LOW‖ signal via a suitable current limiting resistor to the Cathode of the particular

segment (a-g).

Common anode means that the anode (positive) side of all of the LEDs are electrically

connected at one pin, and each LED cathode has its own pin. So turning on any particular

segment will involve running a current from this common anode (positive) pin to the

particular cathode (negative) pin for the desired segment.

CIT344 INTRODUCTION TO COMPUTER DESIGN

68

Fig: (a) Common Anode 7-segment Display (b) Common Anode 7-segment connection

In general, common anode displays are more popular as many logic circuits can sink more

current than they can source. Also note that a common cathode display is not a direct

replacement in a circuit for a common anode display and vice versa, as it is the same as

connecting the LEDs in reverse, and hence light emission will not take place.

Depending upon the decimal digit to be displayed, the particular set of LEDs is forward

biased. For instance, to display the numerical digit 0, we will need to light up six of the LED

segments corresponding to a, b, c, d, e and f.

3.1.2 Encoders

An encoder functional device performs an operation which is the opposite of the

decoder function. The encoder accepts an active level at one of its inputs and at its

output generates a BCD or binary output representing the selected input. A standard

binary encoder is an m-to-n- line encoder, where m≤2
n.

CIT344 INTRODUCTION TO COMPUTER DESIGN

69

Fig. 5: An 8-to-3-Line Encoder with its Truth Table

Example: An input of 00010000 in an encoder will give

CIT344 INTRODUCTION TO COMPUTER DESIGN

70

3.1.2.1 Designing with Encoders

Encoders are useful when the occurance of one of several disjoint events

needs to be represented by an integer identifying the event.

3.1.2.2 Priority Encoders

A priority encoder takes the input of 1 with the highest index and

translates that index to the output.

Fig. 6: Truth Table and Circuit Implementation of a Priority

Encoder

CIT344 INTRODUCTION TO COMPUTER DESIGN

71

3.1.2.3 Designing with P-Encoders

Priority encoders are useful when inputs have a predefined priority and

we wish to select the input with the highest priority. An example is in

resolving interrupt requests.

Fig. 7: Resolving Interrupt Requests

 4.0 Self-Assessment Exercise(s)

Write on the applications of decoders and encoders.

Discuss briefly on the following:

i. decoders

ii. encoders

iii. differences between decoders and encoders

iv. designing with decoders and encoders

v. applications of decoders and encoders.

 5.0 Conclusion

A decoder has multiple inputs and multiple outputs. The decoder device

accepts as an input a multi-bit code and activates one or more of its

outputs to indicate the presence of the multi-bit code. Decoders have

two major uses in computer systems: selection of peripheral devices and

instruction decoder.

An encoder functional device performs an operation which is the

CIT344 INTRODUCTION TO COMPUTER DESIGN

72

opposite of the decoder function. The encoder accepts an active level at

one of its inputs and at its output generates a BCD or binary output

representing the selected input.

6.0 Summary

In this unit, we examined decoders and encoders and also how to design

with them.

CIT344 INTRODUCTION TO COMPUTER DESIGN

73

7.0 Further Readings

Mano M.M (2017). Digital Logic and Computer Design. Pearson India Education Services Pvt.
Ltd

Yasin M.,Rajendran J. (JV) and Sinanoglu O. (2020). Trustworthy Hardware Design:
Combinational Logic Locking TechniquesSpringer Nature

Ndjountche T. (2016). Digital Electronics 1: Combinational Logic Circuits. Wiley

Elahi A (2018). Computer System: Digital Design, Fundamentals of Computer Architecture
and Assembly Language. Springer Nature

Patt Y. N (2019). Introduction to Computing Systems – From Bits and Gates to C and Beyond
(Online Version). Mc-Graw-Hill.

Verma A.K, Shama G and Singh K (2016). Wiley Acing The Gate: Computer Science and
Information Technology. Wiley India Pvt. Ltd.

Mano M.M, Kime C.R and Martin T (2015). Logic & Computer Design Fundamentals (5

th

edition). Pearson. Pg283

Faroughi N (2015). Digital Logic Design & Computer Organization: With Computer
Architecture for Security. McGraw-Hill Education.

Patterson D. A and Hennessy J.L (2016). Computer Organization & Design ARM Edition:

The Hardware Software Interface. Morgan Kaufmann.

Unsalan C and Tar B (2017). Digital System Design with FPGA Implementation Using

Verilog and VHDL. McGraw-Hill Education.

Null L and Lobur J (2016). The Essentials of Computer Organization and Architecture (4
th

edition). Jones & Barlett Learning.

Rafiquzzaman M (2014). Fundamentals of Digital Logic and Microcontrollers. John Wiley &

Sons.

Roth, H. C. Jr & Kinney, L. L. (2014). Fundamentals of Logic Design (7
th
 edition). Cengage

Learning.

Tanenbaum, Andrew S. (2013). Structured Computer Organization.Prentice Hall (6th

ed).

7-segment display. https://www.electronics-tutorials.ws/blog/7-segment-display-tutorial.html

https://www.electronics-tutorials.ws/blog/7-segment-display-tutorial.html

CIT344 INTRODUCTION TO COMPUTER DESIGN

74

MODULE 3 SEQUENTIAL LOGIC DESIGN &

APPLICATIONS

Unit 1 Sequential Logic Circuits

Unit 2 Latches and Flip-Flops

Unit 3 Registers

Unit 4 Finite State Machines

UNIT 1 SEQUENTIAL LOGIC CIRCUITS

CONTENTS

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content

3.1 Sequential Logic Circuits

3.1.1 Overview

4.0 Self-Assessment Exercise(s)

5.0 Conclusion

6.0 Summary

7.0 Further Readings

1.0 Introduction

Digital logic circuits can be classified into two types: Combinational and

Sequential logic circuits. We shall in this module explain the sequential

logic circuit and its numerous applications.

2.0 Intended Learning Outcomes (ILOs)

At the end of this unit, you should be able to:

4.1.1 describe what a sequential logic circuit is

4.1.2 state the differences between combinational and sequential logic

circuit

4.1.3 list and explain the types of sequential logic circuit.

CIT344 INTRODUCTION TO COMPUTER DESIGN

75

3.0 Main Content

3.1 Sequential Logic Circuits

3.1.1 Overview

The combinational digital circuits have no storage element; therefore

combinational circuits handle only instantaneous inputs. The outputs of

the combinational circuits also cannot be stored. The absence of a

memory element restricts the use of digital combinational circuits to

certain application areas. The use of a memory element which is capable

of storing digital inputs and outputs is an important part of all practical

digital circuits.

Consider an ALU which performs arithmetic and logical operations. An

ALU cannot perform its operations unless it is connected to memory

elements that store the inputs applied at the inputs of the ALU and

outputs from the ALU. Consider an ALU that performs addition

operation on a set of numbers, 2, 3, 4 and 5. The ALU can add two

numbers at a time; therefore the ALU has to add the four numbers two at

a time. The four numbers have to be stored temporarily; the partial

results after adding two numbers also need to be stored. To add the four

numbers, the first two numbers 2 and 3 are stored in two separate

memory elements are added together, the result (5) has to be added to

the next number 4. The result (5) is temporarily stored in one of the two

memory elements used to store the numbers 2 and 3. The result (5) is

added to the third number 4 to provide another partial sum result 9

which has to be stored and then added with the fourth number 5.

Digital circuits that use memory elements for their operation are known

as Sequential circuits. Thus, sequential circuits are implemented by

combining combinational circuits with memory elements as shown

below:

CIT344 INTRODUCTION TO COMPUTER DESIGN

76

Fig. 1: Block Diagram of a Sequential Circuit

We have two types of sequential circuits namely:

Synchronous sequential circuits – Their behaviour is determined by

the values of the signals at only discrete instants of time.

Asynchronous sequential circuits – Their behaviour is immediately

affected by the input signal changes.

4.0 Self-Assessment Exercise(s)

1. Write in details the two types of sequential circuits we have.

2. Extensively discuss sequential logic circuit and its types using diagrams

and good examples.

5.0 Conclusion

Digital circuits that use memory elements for their operation are known

as sequential circuits. Thus, sequential circuits are implemented by

combining combinational circuits with memory elements.

We have two types of sequential circuits namely: Synchronous

sequential circuits and asynchronous sequential circuits.

CIT344 INTRODUCTION TO COMPUTER DESIGN

77

 6.0 Summary

In this unit we explained sequential logic circuit and its types.

CIT344 INTRODUCTION TO COMPUTER DESIGN

78

7.0 Further Readings

Pedroni V.A (2020). Circuit Design with VHDL(3

rd
 Edition). The MIT Press Cambridge.

Sarkar S.K., De A.k., and Sarkar S (2014). Foundation of Digital Electronics and Logic
Design.

Pan Stanford

Mano M.M (2017). Digital Logic and Computer Design. Pearson India Education Services Pvt.

Ltd

Yasin M.,Rajendran J. (JV) and Sinanoglu O. (2020). Trustworthy Hardware Design:

Combinational Logic Locking TechniquesSpringer Nature

Ndjountche T. (2016). Digital Electronics 1: Combinational Logic Circuits. Wiley

Elahi A (2018). Computer System: Digital Design, Fundamentals of Computer Architecture
and

Assembly Language. Springer Nature

Patt Y. N (2019). Introduction to Computing Systems – From Bits and Gates to C and Beyond
(Online Version). Mc-Graw-Hill.

Verma A.K, Shama G and Singh K (2016). Wiley Acing The Gate: Computer Science and

Information Technology. Wiley India Pvt. Ltd.

Mano M.M, Kime C.R and Martin T (2015). Logic & Computer Design Fundamentals (5
th

edition). Pearson. Pg283

Faroughi N (2015). Digital Logic Design & Computer Organization: With Computer
Architecture for Security. McGraw-Hill Education.

Patterson D. A and Hennessy J.L (2016). Computer Organization & Design ARM Edition:

The

 Hardware Software Interface. Morgan Kaufmann.

Unsalan C and Tar B (2017). Digital System Design with FPGA Implementation Using

Verilog

 and VHDL. McGraw-Hill Education.

Null L and Lobur J (2016). The Essentials of Computer Organization and Architecture (4
th

 edition). Jones & Barlett Learning.

Rafiquzzaman M (2014). Fundamentals of Digital Logic and Microcontrollers. John Wiley &

 Sons.

Roth, H. C. Jr & Kinney, L. L. (2014). Fundamentals of Logic Design (7
th
 edition). Cengage

Learning.

CIT344 INTRODUCTION TO COMPUTER DESIGN

79

Tanenbaum, Andrew S. (2013). Structured Computer Organization.Prentice Hall (6th

ed).

CIT344 INTRODUCTION TO COMPUTER DESIGN

80

UNIT 2 LATCHES AND FLIP-FLOPS

CONTENTS

1.0 Introduction

2.0 Intended learning Outcomes (ILOs)

3.0 Main Content

3.1 Latches and Flip-Flops

3.1.1 Latches

3.1.1.1 The NAND Gate Based S-R Latch

3.1.1.2The NOR Gate Based S-R (Set-Reset) Latch

3.1.1.3Applications of S-R Latch

3.1.1.4 The Gated S-R Latch

3.1.1.5 The Gated D Latch

3.1.2 Flip-Flops

3.1.2.1 S-R Edge-Triggered Flip-Flops

3.1.2.2 Edge-Triggered D Flip-Flops

3.1.2.3 Edge-Triggered J-K Flip-Flops

3.1.2.4 Asynchronous Preset and Clear Inputs

3.1.2.5 Master-Slave Flip-Flops

3.1.2.6 Flip-Flops Operating Characteristics
3.1.2.7 Applications of Edge-Triggered D Flip-

Flops

3.1.2.8 Applications of Edge-Triggered J-K Flip-

Flops

4.0 Self-Assessment Exercise(s)

5.0 Conclusion

6.0 Summary

7.0 Further Readings

1.0 Introduction

In this unit, we shall extensively discuss latches and flip-flops.

2.0 Intended Learning Outcomes (ILOs)

At the end of this unit, you should be able to:

 describe what a latch and flip-flop is

 describe how a latch and flip-flop are designed

 explain the various types of latch and flip-flop

 explain how the types of latch and flip-flop are designed

 state the various uses of latches and flip-flops

CIT344 INTRODUCTION TO COMPUTER DESIGN

81

 explain the various applications of the latch and flip-flop.

3.0 Main Content

3.1 Latches and Flip-Flops

Latches and flip-flops collectively are capable of storing information

hence, they are collectively known as ―register‖. However the

commonly used logical memory element in sequential circuits is flip-

flop.

3.1.1 Latches

A latch is a temporary storage device that has two stable states. A latch

output can change from one state to the other by applying appropriate

inputs. A latch normally has two inputs, the binary input combinations

at the latch input allows the latch to change its state. A latch has two

outputs Q and its complement Q. The latch is said to be in logic high

state when Q=1 and Q=0 and it is in the logic low state when Q=0 and

Q=1. When the latch is set to a certain state it retains its state unless the

inputs are changed to set the latch to a new state.

Thus, a latch is a memory element which is able to retain the

information stored in it.

3.1.1.1 The NAND Gate Based S-R (Set-Reset) Latch

An S-R Latch is implemented by connecting two NAND gates together.

The output of each NAND gate is connected to the input of the other

NAND gate. The unconnected inputs of the two NAND gates are the Set

S and Reset R inputs. The outputs of the two NAND gates are the Q and

its complement Q. The circuit diagram of the NAND based S-R latch is

shown in figure 1.

CIT344 INTRODUCTION TO COMPUTER DESIGN

82

Fig. 1: NAND Based S-R Latch

CIT344 INTRODUCTION TO COMPUTER DESIGN

83

A truth-table shows the operation of the S-R NAND based latch. The

Output Qt+1 represents the Q output of NAND gate 1 at time interval

t+1.When inputs are S = 1 and R = 1 the next state output Qt+1 remains

the same as the previous state output Qt. When inputs are S = 0 and R =

1 the output Q is set to 1. When inputs are S = 1 and R = 0 the output Q

is set to 0. Inputs S = 0 and R = 0 are not applied as they place the latch

in an invalid state.

The NAND gate based S-R latch has active-low inputs.

Table 1: Truth-Table of NAND based S-R Latch

Input Output

S R Qt+1

0 0 invalid

0 1 1

1 0 0

1 1 Qt

3.1.1.2 The NOR Gate Based S-R (Set-Reset) Latch

A NOR based S-R latch is implemented using NOR gates instead of

NAND gates.

Connections are identical to that of the NAND based latch. The S and R

inputs have been switched.

Fig. 2: NOR Based S-R Latch

The truth table of the NOR gate based latch is shown. When inputs are S
=0 and R = 0 the next state output Qt+1 remains the same as the

previous state output Qt. When inputs are S = 0 and R = 1 the output Q

is set to 0. When inputs are S = 1 and R = 0 the output Q is set to 1.

Inputs S = 1 and R = 1 are not applied as they place the latch in an

invalid state. The NOR gate based S-R latch has active-high inputs.

CIT344 INTRODUCTION TO COMPUTER DESIGN

84

Table 2: Truth-Table of NOR based S-R Latch

Input Output

S R Qt+1

0 0 Qt

0 1 0

1 0 1

1 1 invalid

Comparing the operation of the NOR based and NAND based S-R

latches.

The NAND based latch has active-low inputs, whereas NOR based latch

has active-high inputs. Both the S-R latches are set to logic 1 when the

set input is activated and the reset input is inactive.

Both the latches are set to logic 0 when the reset input is activated and

the set input is inactive. The latches maintain the output state when both

the set and reset inputs are inactive.

For both the latches both the set and reset inputs cannot be activated

simultaneously as this leads to invalid output states. The logic symbols

of the two latches are shown below.

Fig. 3: NOR Based Active-High and NAND Based Active-Low

S-R Latches

3.1.1.3 Application of S-R Latch

Digital systems use switches to input values and to control the output.

For example, a keypad uses 10 switches to enter decimal numbers 0 to 9.

When a switch is closed the switch contacts physically vibrate or

‗bounce‘ before making a solid contact. The switch bounce causes the

voltage at the output of the switch to vary between logic low and high

CIT344 INTRODUCTION TO COMPUTER DESIGN

85

for a very short duration before it settles to a steady state. The variation

in the voltage causes the digital circuit to operate in an erratic manner.

An S-R latch connected between the switch and the digital circuit

prevents the varying switch output from reaching the digital circuit.

In figure 3 above, when the switch is moved up to connect the resistor

to the ground, the output voltage fluctuates between logic 1 and 0 for a

very brief period of time when the switch vibrates before making a solid

contact. The output voltage settles to logic 0 when a solid contact is

made. The active-low input S-R latch shown in figure 4 prevents the

output signal from varying between logic 1 and 0. When the switch is

moved from down position to up position, the R input is set to 1 and S

input is set to 0, which sets the Q output of the S-R latch to 1. The S

input varies between 0 and 1 due to switch ‗bounce‘, however the S-R

latch doesn‘t change its output state Q when S = 1 and R = 1.

Fig. 4: The Output of a Switch Connected to Logic High

Fig. 5: The Switch Connected through an S-R Latch

CIT344 INTRODUCTION TO COMPUTER DESIGN

86

The S-R NAND gate based latch is available in the form of an Integrated

Circuit. The 74LS279 IC has four S-R latches which can be used

independently.

3.1.1.4 The Gated S-R Latch

The gated S-R latch has an enable input which has to be activated to

operate the latch. The circuit diagram of the gated S-R latch is shown in

figure 6. In the gated S-R circuit, the S and R inputs are applied at the

inputs of the NAND gates 1 and 2 when the enable input is set to active-

high. If the enable input is disabled by setting it to logic low the output

of NAND gates 3 and 4 remains logic 1, whatever the state of S and R

inputs. Thus, logic 1 applied at the inputs of NAND gates 1 and 2 keeps

the Q and Q outputs to the previous state. The logic symbol of a gated S-

R latch is shown in figure 6.

Fig. 6: Gated S-R Latch

Fig. 7: Logic Symbol of a Gated S-R Latch

CIT344 INTRODUCTION TO COMPUTER DESIGN

87

Table 3: Truth-Table of a Gated S-R Latch

Input Output

EN S R Qt+1

0 x x Qt

1 0 0 Qt

1 0 1 0

1 1 0 1

1 1 1 invalid

3.1.1.5 The Gated D Latch

One way to eliminate the undesirable condition of the indeterminate

state in the SR latch is to ensure that inputs S and R are never equal to 1

at the same time. This is done by the D latch. Thus, the D latch has the

ability to hold data in its internal storage. The output follows changes in

the data input as long as the control input is gated. The circuit is often

called a transparent latch.

Fig. 8: Gated D Latch

Table 4: Truth Table of a Gated D Latch

CIT344 INTRODUCTION TO COMPUTER DESIGN

88

Fig. 9: Logic Symbol of a Gated D Latch

3.1.2 Flip-Flops

When latches are used for the memory elements in sequential circuits, a

serious difficulty arises. Recall that latches have the property of

immediate output responses (i.e., transparency).Because of this the

output of a latch cannot be applied directly (or through logic) to the

input of the same or another latch when all the latches are triggered by a

common clock source. Flip-flops are used to overcome this difficulty.

Flip-flops are synchronous bi-stable devices, known as bi-stable

multivibrators. Flip-flops have a clock input instead of a simple enable

input. The output of the flip-flop can only change when appropriate

inputs are applied at the inputs and a clock signal is applied at the clock

input. Flip-flops with enable inputs can change their state at any instant

when the enable input is active. Digital circuits that change their outputs

when the enable input is active are difficult to design and debug as

different parts of the digital circuit operate at different times.

In synchronous systems, the output of all the digital circuits changes

when a clock signal is applied instead of the enable signal. The change

in the state of the digital circuit occurs either at the low-to-high or high-

to-low transition of the clock signal. Since the transition of the clock

signal is for a very short and precise time intervals; thus, all digital parts

of a digital system change their states simultaneously. The low to high

or high to low transition of the clock is considered to be an edge. Three

different types of edge-triggered flip-flops are generally used in digital

logic circuits.

• S-R edge-triggered flip-flop

• D edge-triggered flip-flop

• J-K edge-triggered flip-flop

CIT344 INTRODUCTION TO COMPUTER DESIGN

89

Each flip-flop has two variations, that is, it is either positive edge-

triggered or negative edge triggered. A positive edge-triggered flip-flop

changes its state on a low-to-high transition of the clock and a negative

edge-triggered flip-flop changes its state on a high-to-low transition of

the clock. The edge-detection circuit which allows a flip-flop to change

its state on either the positive or the negative transition of the clock is

implemented using a simple combinational circuit. The edge detection

circuit that detects the positive and the negative clock transition are

shown in figure 11.

Fig. 10: Positive Clock Edge Detection Circuit

Fig. 11: Negative Clock Edge Detection Circuit

3.1.2.1 S-R Edge-Triggered Flip-Flops

The logic symbols of a positive edge and a negative edge triggered S-R

flip-flops are shown in figure 12 below.

CIT344 INTRODUCTION TO COMPUTER DESIGN

90

Fig. 12: Logic Symbol of Positive and Negative Edge -Triggered

S-R Flip-Flops

The truth tables of the two S-R flip-flops are also shown below in table

5.

Table 5: Truth-Table of Positive and Negative Edge -Triggered S-

R Flip-Flops

3.1.2.2 Edge-Triggered D Flip-Flops

The logic symbols of a positive edge and a negative edge triggered D

flip-flops are shown in figure 13 below.

CIT344 INTRODUCTION TO COMPUTER DESIGN

91

Fig. 13: Logic Symbol of Positive and Negative Edge Triggered

D Flip-Flops

The truth tables of the two D flip-flops are also shown.

Table 6: Truth-Table of Positive and Negative Edge Triggered

D Flip-Flops

3.1.2.3 Edge-Triggered J-K Flip-Flops

The J-K flip-flop is widely used in digital circuits. Its operation is

similar to that of the SR flip-flop except that the J-K flip-flop doesn‘t

have an invalid state; instead it toggles its state.

CIT344 INTRODUCTION TO COMPUTER DESIGN

92

The circuit diagram of a J-K edge-triggered flip-flop is shown in figure

14.

Fig. 14: Edge-Triggered J-K Flip-Flop

Consider the Q and Q output of the J-K flip-flop set to 1 and 0

respectively and 0 and 1 respectively. Four set of inputs are applied at J

and K, the effect on the outputs is as follows.

J = 0 and K =0

With Q=1 and Q=0, on a clock transition the outputs of NAND gates 3

and 4 are set to logic 1. With logic 1 value at the inputs of NAND gates

1 and 2 the output Q and Q remains unchanged. With Q=0 and Q=1, on

a clock transition the outputs of the NAND gates 3 and 4 are set to logic

1. With logic 1 value at the inputs of NAND gates 1 and 2 the output Q

and Q remains unchanged.

Thus, when J=0 and K=0 the previous state is maintained and there is no

change in the output.

J = 0 and K =1

With Q=1 and Q=0, on a clock transition the output of NAND gate 3 is

set to logic 1.

The output of the NAND gate 4 is set to 0 as all three of its inputs are at

logic 1. The logic 1 and 0 at the inputs of the NAND gates 3 and 4

respectively resets the Q output to 0 and Q to 1. With Q=0 and Q=1, on

a clock transition the output of NAND gate 3 is set to logic 1. The

CIT344 INTRODUCTION TO COMPUTER DESIGN

93

output of the NAND gate 4 is also set to 1 as the input of the NAND

gate 4 is connected to Q=0. The logic 1 and 1 at the inputs of the NAND

gates 3 and 4 respectively retains the Q and Q to 0 and 1 respectively.

Thus, when J=0 and K=1 the J-K flip-flop irrespective of its earlier state

is rest to state Q=0 and Q=1.

J = 1 and K =0

With Q=1 and Q=0, on a clock transition the output of NAND gate 4 is

set to logic 1.

The output of the NAND gate 3 is also set to 1 as its input connected to

Q is at logic 0. Thus, inputs 1 and 1 at inputs of NAND gates 1 and 2

retain the Q and Q output to 1 and 0 respectively. With Q=0 and Q=1,

on a clock transition the output of NAND gate 4 is set to logic 1. The

output of the NAND gate 3 is set to 0 as all its input are at logic 1. Thus,

inputs 0 and 1 at inputs of NAND gates 1 and 2 sets the flip-flop to Q=1

and Q=0.

Thus, when J=1 and K=0 the J-K flip-flop irrespective of its output state

is set to state Q=1 and Q=0.

J = 1 and K =1

With Q=1 and Q=0, on a clock transition the output of the NAND gates

3 and 4 depend on the outputs Q and Q. The output of NAND gate 3 is

set to 1 as Q is connected to its input. The output of NAND gate 4 is set

to 0 as all its inputs including Q is at logic 1. A logic 1 and 0 at the input

of gates 1 and 2 toggles the outputs Q and Q from logic 1 and 0 to 0 and

1 respectively. With Q=0 and Q=1, on a clock transition the output of

NAND gate 3 is set to 0 as Q and the output of NAND gate 4 is set to 1.

A logic 0 and 1 at the input toggles the outputs Q and Q from logic 0

and 1 to 1 and 0 respectively.

In summary, when J-K inputs are both set to logic 0, the output remains

unchanged. At J=0 and K=1 the J-K flip-flop is reset to Q=0 and Q=1.

At J=1 and K=0 the flip-flop is set to Q=1 and Q=0. With J=1 and K=1

the output toggles from the previous state.

The truth tables of the positive and negative edge triggered J-K flip-

flops are shown in Table 7.

CIT344 INTRODUCTION TO COMPUTER DESIGN

94

Table 7: Truth-Table of Positive and Negative Edge Triggered J-K

Flip-Flops

The logic symbols of the J-K flip-flops are shown in figure 15.

Fig. 15: Logic Symbol of Positive and Negative Edge Triggered J-

K Flip-Flops

3.1.2.4 Asynchronous Preset and Clear Inputs

The S-R, J-K and D inputs are known as synchronous inputs because the

outputs change when appropriate input values are applied at the inputs

and a clock signal is applied at the clock input. If there is no clock

transition then the inputs have no effect on the output.

Digital circuits require that the flip-flops be set or reset to some initial

state before a new set of inputs is applied for changing the output. The

flip-flops are set-reset to some initial state by using asynchronous inputs

known as Preset and Clear inputs. Since these inputs change the output

CIT344 INTRODUCTION TO COMPUTER DESIGN

95

to a known logic level independently of the clock signal therefore these

inputs are known as asynchronous inputs. The circuit diagram of a J-K

flip-flop with Preset and Set is shown below.

Asynchronous inputs are shown. The asynchronous inputs override the

synchronous inputs. Thus, to operate the flip-flop in the synchronous

mode the asynchronous inputs have to be disabled. To preset the flip-

flop to Q=1 and Q=0 the PRE input is set to 0 which sets the Q output to

1 and the output of NAND gate 4 to 1. The CLR input is set to 1 which

sets the Q output to 0 as all three inputs of the NAND gate 2 are set to 1.

The flip-flop is cleared to Q=0 and Q=1 by setting the PRE input is set

to 1 and the CLR input is to 0. The CLR input set to 0 sets Q=1 it also

sets the output of NAND gate 3 to 1. The PRE input set to1 sets the

output Q to 0. When the PRE and the CLR inputs are used inputs J and

K have no effect on the operation of the flip-flop. To use the flip-flop

with synchronous inputs J-K, the PRE and the CLR inputs are set to

logic 1. Setting PRE and the CLR to logic 0 is not allowed.

Fig. 16: J-K Flip-Flop with Asynchronous Preset and Clear

Inputs

Figure 17 shows the logic symbol of a J-K edge-triggered flip-flop with

synchronous and asynchronous inputs.

CIT344 INTRODUCTION TO COMPUTER DESIGN

96

Fig. 17: Logic Symbol of a J-K Flip-Flop with Asynchronous

Inputs

The truth table of a J-K flip-flop with asynchronous inputs is shown in

Table 8.

Table 8: Truth Table of J-K Flip-Flop with Asynchronous

Inputs

The 74HC74 Dual Positive-Edge triggered D Flip-Flop

The edge-triggered D flip-flop with asynchronous inputs is available as

an Integrated Circuit. The 74HC74 has dual D-flip-flops with

independent clock inputs, synchronous and asynchronous inputs.

The 74HC112 Dual Positive-Edge triggered J-K flip-flop

The edge-triggered D flip-flop with asynchronous inputs is available as

an Integrated Circuit. The 74HC112 has dual J-K-flip-flops with

independent clock inputs, synchronous and asynchronous inputs.

CIT344 INTRODUCTION TO COMPUTER DESIGN

97

3.1.2.5 Master-Slave Flip-Flops

Master-Slave flip-flops have become obsolete and are being replaced by

edge triggered flip-flops. Master-Slave flips have two stages each stage

works in one half of the clock signal. The inputs are applied in the first

half of the clock signal. The outputs do not change until the second half

of the clock signal. As mentioned earlier the use of edge-triggered flip-

flop is to synchronise the operation of a digital circuit with a common

clock signal. The master-slave setup also allows digital circuits to

operate in synchronisation with a common clock signal. The circuit

diagram of the master-slave J-K flip-flop is shown in figure 18 below.

The Master-Slave flip-flop is composed of two parts the Master and the

Slave. Both the Master and the Slave are Gated S-R flip-flops. The

Master-Slave flip-flop is not synchronised with the clock positive or

negative transition, rather it known as a pulse triggered flip-flop as it

operates at the positive and negative clock cycles.

Fig. 18: Master-Slave Flip-Flop

The truth-table of the master-slave flip-flop is shown in table 9 below.

Table 9: Truth Table of the Master-Slave J-K Flip-Flop

CIT344 INTRODUCTION TO COMPUTER DESIGN

98

3.1.2.6 Flip-Flop Operating Characteristics

The performance of the flip-flop is specified by several operating

characteristics.

The important operating characteristics are

• Propagation Delay

• Set-up Time

• Hold Time

• Maximum Clock frequency

• Pulse width

• Power Dissipation

Propagation Delay

The propagation delay time is the interval of time when the input is

applied and the output changes. Four different types of Propagation

Delays are measured.

1. Propagation delay tPLH measured with respect to the triggering

edge of the clock to the low-to-high transition of the output. On a

positive or negative clock transition the flip-flop changes its

output state. The propagation delay is measured at 50% transition

mark on the triggering edge of the clock and the 50% mark on the

low-to-high transition of the output that occurs due to the clock

transition.

2. Propagation delay tPHL measured with respect to the triggering

edge of the clock to the high-to-low transition of the output. On a

positive or negative clock transition the flip-flop changes its

output state. The propagation delay is measured at 50% transition

mark on the triggering edge of the clock and the 50% mark on the

high-to-low transition of the output that occurs due to the clock

transition.

3. Propagation Delay tPLH measured with respect to the leading edge

of the preset input to the low-to-high transition of the output. On

a high-to-low transition of the preset signal the flip-flop changes

its output state to logic high. The propagation delay is measured

at 50% transition mark on the triggering edge of the preset signal

and the 50% mark on the low-to-high transition of the output that

occurs due to the preset signal.

4. Propagation delay tPHL measured with respect to the leading edge

of the clear input to the high-to-low transition of the output. On a

CIT344 INTRODUCTION TO COMPUTER DESIGN

99

high-to-low transition of the clear signal the flip-flop changes its

output state to logic low. The propagation delay is measured at

50% transition mark on the triggering edge of the clear signal and

the 50% mark on the high-to-low transition of the output that

occurs due to the preset signal.

Set-Up Time

When a clock transition occurs at the clock input of a flip-flop the output

of the flip-flop is set to a new state based on the inputs. For the flip-flop

to change its output to a new state at the clock transition, the input

should be stable. The minimum time required for the input logic levels

to remain stable before the clock transition occurs is known as the set-up

time

Hold Time

The input signal maintained at the flip-flop input has to be maintained

for a minimum time after the clock transition for the flip-flop to reliably

clock in the input signal. The minimum time for which the input signal

has to be maintained at the input is the hold time of the flip-flop.

Maximum Clock Frequency

A flip-flop can be operated at a certain clock frequency. If the clock

frequency is increased beyond a certain limit the flip-flop will be unable

to respond to the fast changing clock transitions, therefore the flip-flop

will be unable to function. The maximum clock frequency fmax is the

highest rate at which the flip-flop operates reliably.

Pulse Width

A flip-flop uses the clock, preset and clear inputs for its operation. Each

signal has to be of a specified duration for correct operation of the flip-

flop. The manufacturer specifies the minimum pulse width tw for each of

the three signals. The clock signal is specified by minimum high time

and minimum low time.

Power Dissipation

A flip-flop consumes power during its operation. The power consumed

by a flip-flop is defined by P = Vcc x Icc. The flip-flop is connected to +5

volts and it draws 5 mA of current during its operation, therefore the

power dissipation of the flip-flop is 25 mW.

CIT344 INTRODUCTION TO COMPUTER DESIGN

100

A digital circuit is made of a number of gates, functional units and flip-

flops. The total power requirement of each device should be known so

that an appropriate dc power source is used to supply power to the

digital circuit.

3.1.2.7 Applications of Edge-Triggered D Flip-Flops

1. Data Storage using D-Flip-Flop

A multiplexer based parallel-to-serial converter needs to have stable

parallel data at its inputs as it converts it to serial data. Latches are used

to maintain stable data at the input of the multiplexer. The time required

to convert parallel data to serial data depends upon the number of

parallel bits. A byte parallel data requires 8-bit storage and 8 clocks are

required to convert it into serial data. The demerit in a gated D-latch

based circuit is the extended enable time. During the time in which the

D-latches are enabled data applied at the input of the latches can change.

D-latch is said to work in transparent mode when the enable signal is

activated. D-latch operates in the latched mode when the enable signal is

inactive. The conversion should only start when the enable signal has

been deactivated and the 8-bit data has been stored in the latches. A

better and a precise parallel to serial converter circuit uses edge

triggered D-flip-flops. The 8-bit data to be converted into serial data is

stored precisely at the clock transition. Thus, if the data changes after

the clock transition it has no effect on the data stored in the D flip-flop.

Fig. 19: D-Flip-Flops used for Parallel Data Storage

CIT344 INTRODUCTION TO COMPUTER DESIGN

101

2. Synchronising Asynchronous inputs using D Flip-Flop

In synchronised digital systems all the circuits change their state with

respect to a common clock and all the input and output signals are

synchronised. However, external inputs that are applied to digital

circuits through switches and keypads are not synchronised with the

clock. The asynchronous inputs can occur at any instant of time

3. Parallel Data Transfer using D flip-flop

Microprocessor use multi-bit flip-flops to store information. These

multi-bit flip-flops are known as registers. These registers for example,

can store data generated at the output of the ALU. The registers can also

be used to exchange or copy data, see figure 21. A register is a set of

flip-flops connected in parallel to store multi-bit binary information. The

clock inputs of all the flip-flops are connected together, to allow

simultaneous latching of the multi-bit input data.

3.1.2.8 Applications of Edge-Triggered J-K Flip-Flops

1. J-K Flip-Flop used as Sequence Detector

Some digital applications require that the inputs be applied in a certain

sequence to activate an output. This is possible with J-K flip-flops.

Fig. 20: J-K Flip-Flop Connected to Respond to a Particular Input

Sequence

2. J-K Flip-Flop used as Frequency Divider

In digital circuit different parts of the circuit can operate at different

frequencies obtained from the master clock frequency. For example,

three different parts of a digital system might operate at 4 MHZ, 2 MHZ

CIT344 INTRODUCTION TO COMPUTER DESIGN

102

and 1 MHZ clock frequency respectively. Same clock source should be

used (instead of three separate clock sources) to maintain

synchronization between the three parts. A clock frequency can be

divided by 2 using a J-K flip flop. The J-K inputs of the flip-flop are

connected to logic high (1). At each clock transition the output of the

flip-flop toggles to the alternate state. A 4MHz clock signal can be

divided into 2

MHZ and 1 MHZ signal using two J-K flip-flops connected together.

Fig. 21: J-K Flip-Flop Connected as Frequency Divider

Fig. 22: J-K Flip-Flop Connected as Divide-by-4 Frequency

Divider

3. J-K Flip-Flop used as a Shift Register

Binary numbers can be multiplied or divided by a constant 2 by shifting

the binary numbers left or right by 1-bit respectively. Multiplication and

division by a factor of 2n, (where n= 1, 2, 3, 4 ….) can be achieved by

shifting the binary by n bits to the left or right respectively. Binary

CIT344 INTRODUCTION TO COMPUTER DESIGN

103

numbers can be easily shifted in the left or right direction by using J-K

flip-flop based shift registers.

Fig. 23: 4-Bit Right Shift Register

4. J-K Flip-Flop used as a Counter

Counters which count up or countdown are commonly used in digital

circuits. An up counter counts up from 0 to 10 increments to the next

higher count value on the application of each clock signal. Similarly, a

down-counter counts down to the next lower count value on the

application of each clock pulse.

Fig. 24: 2-Bit Up-Counter

4.0 Self-Assessment Exercise(s)
Extensively discuss latches and flip-flops and their types using diagrams and

good examples.

5.0 Conclusion

CIT344 INTRODUCTION TO COMPUTER DESIGN

104

A latch is a temporary storage device that has two stable states. A latch

output can change from one state to the other by applying appropriate

inputs. A latch normally has two inputs, the binary input combinations at

the latch input allows the latch to change its state.

The basic logic element that provides memory in many sequential circuits is the flip-

flop. Flip-flops are synchronous bi-stable devices, known as bi-stable multivibrators.

Flip-flops have a clock input instead of a simple enable input. The output of the flip-flop

can only change when appropriate inputs are applied at the inputs and a clock signal is

applied at the clock input.

Three different types of edge-triggered flip-flops generally used in digital logic circuits

are:

 S-R edge-triggered flip-flop

 D edge-triggered flip-flop

 J-K edge-triggered flip-flop.

6.0 Summary

In this unit we explained about latches and flip-flops. Digital systems

use switches to input values and to control the output. For example, a

keypad uses 10 switches to enter decimal numbers 0 to 9. When a switch

is closed the switch contacts physically vibrate or ‗bounce‘ before

making a solid contact. The switch bounce causes the voltage at the

output of the switch to vary between logic low and high for a very short

duration before it settles to a steady state. The variation in the voltage

causes the digital circuit to operate in an erratic manner. An S-R latch

connected between the switch and the digital circuit prevents the varying

switch output from reaching the digital circuit.

7.0 Further Readings

Pedroni V.A (2020). Circuit Design with VHDL(3

rd
 Edition). The MIT Press Cambridge.

Sarkar S.K., De A.k., and Sarkar S (2014). Foundation of Digital Electronics and Logic
Design.

Pan Stanford

Mano M.M (2017). Digital Logic and Computer Design. Pearson India Education Services Pvt.

Ltd

Yasin M.,Rajendran J. (JV) and Sinanoglu O. (2020). Trustworthy Hardware Design:

Combinational Logic Locking TechniquesSpringer Nature

Ndjountche T. (2016). Digital Electronics 1: Combinational Logic Circuits. Wiley

Elahi A (2018). Computer System: Digital Design, Fundamentals of Computer Architecture
and

CIT344 INTRODUCTION TO COMPUTER DESIGN

105

Assembly Language. Springer Nature

Patt Y. N (2019). Introduction to Computing Systems – From Bits and Gates to C and Beyond
(Online Version). Mc-Graw-Hill.

Verma A.K, Shama G and Singh K (2016). Wiley Acing The Gate: Computer Science and

Information Technology. Wiley India Pvt. Ltd.

Mano M.M, Kime C.R and Martin T (2015). Logic & Computer Design Fundamentals (5
th

edition). Pearson. Pg283

Faroughi N (2015). Digital Logic Design & Computer Organization: With Computer
Architecture for Security. McGraw-Hill Education.

Patterson D. A and Hennessy J.L (2016). Computer Organization & Design ARM Edition:

The

 Hardware Software Interface. Morgan Kaufmann.

Unsalan C and Tar B (2017). Digital System Design with FPGA Implementation Using

Verilog

 and VHDL. McGraw-Hill Education.

Null L and Lobur J (2016). The Essentials of Computer Organization and Architecture (4
th

 edition). Jones & Barlett Learning.

Rafiquzzaman M (2014). Fundamentals of Digital Logic and Microcontrollers. John Wiley &

 Sons.

Roth, H. C. Jr & Kinney, L. L. (2014). Fundamentals of Logic Design (7
th
 edition). Cengage

Learning.

Tanenbaum, Andrew S. (2013). Structured Computer Organization.Prentice Hall (6th

ed).

CIT344 INTRODUCTION TO COMPUTER DESIGN

106

UNIT 3 REGISTERS

CONTENTS

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content

3.1 Registers

3.1.1 Shift Registers

3.1.2 Shift Register Counters

3.1.3 Applications of Shift Registers

4.0 Self-Assessment Exercise(s)

5.0 Conclusion

6.0 Summary

7.0 Further Readings

1.0 Introduction

In this unit we shall discuss registers. We shall look at the shift register,

shift register counters and the applications of shift registers.

2.0 Intended Learning Outcomes (ILOs)

At the end of this unit, you should be able to:

4.1.4 define shift register

4.1.5 explain its various types

4.1.6 explain its various applications.

3.0 Main Content

3.1 Registers

Information is stored in a CPU memory location called a register.

Registers can be thought of as the CPU‘s tiny scratchpad, temporarily

storing instructions or data. When a program is running, one special

register called the program counter keeps track of which program

instruction comes next by maintaining the memory location of the next

program instruction to be executed. The CPU‘s control unit coordinates

and times the CPU‘s functions, and it uses the program counter to locate

and retrieve the next instruction from memory.

CIT344 INTRODUCTION TO COMPUTER DESIGN

107

3.1.1 Shift Registers

In digital circuits multi-bit data has to be stored temporarily until it is

processed. A flip-flop is able to store a single binary bit of information.

Multiple bits of data are stored by using multiple flip-flops which have

their clock inputs connected together. Thus, by activating the clock

signal multiple-bits of data are stored.

Technically, a register performs two basic functions. It stores data and it

moves or shifts data. The shifting of data involves shifting of bits from

one flip-flop to the other within the register or moving data in and out of

the register. The shift operation of the binary data is carried out by

applying clock signals. Several different kinds of shift operations can be

identified. The different shift operations are described using a 4-bit shift

register.

Serial In/Shift Right/Serial Out Operation

Data is shifted in the right-hand direction one bit at a time with each

transition of the clock signal. The data enters the shift register serially

from the left hand side and after four clock transitions the 4-bit register

has 4-bits of data. The data is shifted out serially one bit at a time from

the right hand side of the register if clock signals are continuously

applied. Thus, after 8 clock signals the 4-bit data is completely shifted

out of the shift register.

Fig. 1: Serial In/Serial Right/Serial Out Operation

Serial In/Shift Left/Serial Out Operation

Data is shifted in the left-hand direction one bit at a time with each

transition of the clock signal. The data enters the shift register serially

from the right hand side and after four clock transitions the 4-bit register

has 4-bits of data. The data is shifted out serially one bit at a time from

CIT344 INTRODUCTION TO COMPUTER DESIGN

108

the left hand side of the register if clock signals are continuously

applied. Thus, after 8 clock signals the 4-bit data is completely shifted

out of the shift register.

Fig. 2: Serial In/Serial Left/Serial Out Operation

Serial shift registers can be implemented using any type of flip-flops. A

serial shift register implemented using D flip-flops with the serial data

applied at the D input of the first flip-flop and serial data out obtained at

the Q output of the last flip-flop is shown. At each clock transition 1–bit

of serial data is shifted in and at the same instant 1-bit of serial data is

shifted out. For a 4-bit shift register, 8 clock transitions are required to

shift in 4-bit data and completely shift out the 4-bit data. As the data is

shifted out 1-bit at a time, a logic 0 value is usually shifted in to fill up

the vacant bits in the shift register.

Fig. 3: Serial In/Shift Right/Serial Out Register

The shift left and shift right shift registers are identical in their working.

They are connected differently for shift left and shift right operations.

Bidirectional Shift Registers are available which allow data to be shifted

CIT344 INTRODUCTION TO COMPUTER DESIGN

109

left or right. The 4-bit register is configured to shift left or right by

setting the RIGHT /LEFT signal to logic high or low respectively. When

the register is configured to shift right, the AND gates marked 1 are

enabled. The input of the first flip-flop is connected to the serial Input,

the inputs of the next three flip-flops are connected to the Q outputs of

the previous flip-flops. Thus, on a clock transition data is shifted 1-bit

towards the right. The serial data is shifted out of the register through

output Q3. When the register is configured to shift left the AND gates

marked 2 are enabled, connecting the Q outputs of the flip-flop on the

right hand side to the D input of the flip-flop on the left hand side. Thus,

on each clock transition data is shifted 1-bit towards left. Serial date out

is available through the Q0 output. Serial data is input through the Serial

Data in line which is connected to the fourth AND gate marked 2 on the

extreme right hand side.

Fig. 4: Bi-Directional, 4-Bit Shift Register

Serial In/Parallel Out Operation

Data is shifted in the left-hand direction one bit at a time with each

transition of the clock signal. The data enters the shift register serially

from the right hand side and after four clock transitions the 4-bit register

has 4-bits of data. The data is shifted out in parallel by the application of

a single clock signal. The shift register has 4 parallel outputs. The circuit

diagram of the Serial In/Parallel Out register is shown.

CIT344 INTRODUCTION TO COMPUTER DESIGN

110

Fig. 5: Serial In/Parallel Out Operation

Parallel In/Serial Out Operation

The register has parallel inputs, data bits are loaded into the register in

parallel by activating a load signal. The data is shifted out serially by

application of clock signals. Thus, in a 4-bit shift register, after 4 clock

signals the 4-bit data is completely shifted out of the shift register.

Fig. 6: Parallel In/Serial Out Operation

The internal circuit of a 4-bit Parallel In/Serial Out Shift register is

shown. The 4-bit data is initially loaded in Parallel into the shift register

by setting the SHIFT /LOAD input to logic low. The AND gates marked

2 are enabled allowing data to be applied at the inputs of the respective

D flip-flops. On a positive clock transition the data is latched by the

CIT344 INTRODUCTION TO COMPUTER DESIGN

111

respective flip-flops. To shift the data, the SHIFT /LOAD is set to logic

high which enables AND gates marked 1 connecting the Q outputs of

the each flip-flop connected to the D input of the next flip-flop.

Fig. 7: 4-Bit Parallel In/Serial Out Shift Register

Parallel In/Parallel Out Operation

The register has parallel inputs and parallel outputs. Data is entered in

parallel by applying a single clock pulse. Data is latched by the flip-

flops on the clock transition and is available in parallel form at the flip-

flop outputs.

The internal circuit of 4-bit Parallel In/Parallel Out Register is shown.

The Parallel In/Parallel Out register stores Parallel data and usually does

not allows any shift operations.

Fig. 8: Parallel In/Parallel Out Operation

CIT344 INTRODUCTION TO COMPUTER DESIGN

112

Fig. 9: A D-Flip-Flop based 4-Bit Parallel In/Parallel Out

Register

Rotate Right Operation

The serial output of the register is connected to the serial input of the

register. By applying clock pulses data is shifted right. The data shifted

out of the serial out pin at the right hand side is re-circulated back into

the shift register input at the left hand side. Thus, the data is rotated right

within the register.

Fig. 10: Rotate Right Operation

Rotate Left Operation

The serial output of the register is connected to the serial input of the

register. By applying clock pulses data is shifted left. The data shifted

out of the serial out pin at the left hand side is re-circulated back into the

shift register input at the right hand side. Thus, the data is rotated left

within the register.

CIT344 INTRODUCTION TO COMPUTER DESIGN

113

Fig. 11: Rotate Left Operation

3.1.2 Shift Register Counters

Shift register counters are basically, shift registers connected to perform

rotate left and rotate right operations. When data is rotated through a

register counter a specific sequence of states is repeated. Two commonly

used register counters in digital logic are the Johnson Counter and the

Ring Counter.

Johnson Counter

In a Johnson counter, the Q output of the last flip-flop of the shift

register is connected to the data input of the first flip-flop. The circuit of

a 4-bit, D flip-flop based Johnson Counter is shown in the figure below.

The sequence of states that are implemented by a n-bit Johnson counter

are 2n. Thus, a 4-bit Johnson counter sequences through 8 states and a 5-

bit Johnson counter sequences through 10 states.

Fig. 12: 4-Bit Johnson Counter

CIT344 INTRODUCTION TO COMPUTER DESIGN

114

Table 1: Sequence of States of a 4-Bit Johnson Counter

Ring Counter

The Ring Counter is similar to the Johnson Counter, except that the Q

output of the last flip-flop of the shift register is connected to the data

input of the first flip-flop of the shift register. All the flip-flops of the

counter are cleared to logic low except for the first flip-flop which is

preset to logic high.

Fig. 13: 4-Bit Ring Counter

After the initialisation of the counter, the logic high set at the output of

the first flip-flop is shifted right at each clock transition. With a Ring

Counter circuit no decoding gates are required. Each state of the ring

counter has a unique output.

CIT344 INTRODUCTION TO COMPUTER DESIGN

115

Table 2: Sequence of States of a 4-Bit Ring Counter

3.1.3 Applications of Shift Registers

The major application of a shift register is to convert between parallel

and serial data. Shift registers are also used as keyboard encoders. The

two applications of the shift registers are discussed.

Serial-to-Parallel Converter

Earlier, Multiplexer and Demultiplexer based Parallel to Serial and

Serial to Parallel converters were discussed. The Multiplexer and

Demultiplexer require registers to store the parallel data that is converted

into serial data and parallel data which is obtained after converting the

incoming serial data. A Parallel In/Serial Out shift register offers a better

solution instead of using a Multiplexer-Register combination to convert

parallel data into serial data. Similarly, a Serial In/Parallel Out shift

register replaces a Demultiplexer-Register combination.

In Asynchronous Serial data transmission mode, a character which is

constituted of 8-bits (which can include a parity bit) is transmitted. To

separate one character from another and to indicate when data is being

transmitted and when the serial transmission line is idle (no data is being

transmitted) a set of start bit and stop bits are appended at both ends of

the 8-bit character. A character is preceded by a logic low start bit.

When the line is idle it is set to logic high, when a character is about to

be transmitted the start bit sets the line to logic low. The logic low start

bit is an indication that 8 character bits are to follow and the

transmission line is no longer in an idle state. After 8-character bits have

been transmitted, the end of the character is indicated by two stop bits

that are at logic high. The two logic bits indicate the end of the character

and also set the transmission line to the idle state.

CIT344 INTRODUCTION TO COMPUTER DESIGN

116

Therefore, a total of 11 bits are transmitted to send one character from

one end to the other. The logic low start bit is also a signal for the

receiver circuit to start receiving the 8 character bits that are following

the start bit. The 11-bit serial character format is shown.

Fig. 14: 11-Bit Serial Data Format

A Serial to Parallel converter circuit based on shift registers is shown

below. The serial data is preceded by a logic low start bit which triggers

the J-K flip-flop. The output of the flip-flop is set to logic high which

enables the clock generator. The clock pulses generated are connected to

the clock input of a Serial In/Parallel Out shift register and also to the

clock input of an 8-bit counter. On each clock transition, the Serial

In/Parallel Out shift register shifts in one bit data. When the 8-bit

counter reaches its terminal count 111, the terminal count output signal

along with the clock signal trigger the One-Shot and also allow the

Parallel In/Parallel Out register to latch in the Parallel data at the output

of the Serial In/Parallel Out shift register. The One-shot resets the J-K

flip-flop output Q to logic 0 disabling the clock generator and also clears

the 8-bit counter to count 000.

Fig. 15: Series-to-Parallel Converter

CIT344 INTRODUCTION TO COMPUTER DESIGN

117

Keyboard Encoder

We have a simple keypad encoder circuit where the 0 to 9 digit keypad

was connected through a decade to BCD encoder. Pressing any keypad

key enables the corresponding input of the encoder circuit which

encodes the input as a 4-bit BCD output.

Computer keyboards which have more keys employ a keyboard encoder

circuit that regularly scans the keyboard to check for any key press. The

scanning is done by organising the keys in the form of rows and

columns. With the help of a shift register based ring counter one row is

selected at a time. The two counters are connected as an 8-bit Ring

counter which sequences through a bit pattern having all 1‘s and a single

0. The 8 state sequence selects one row at a time by setting it to logic 0.

If a key is pressed, the corresponding column also becomes logic 0 as it

connected to the selected row. The row and column which are selected

are encoded by the row and column encoders. When a key is pressed,

the selected column which is set to logic 0 sets the output of the NAND

gate to logic 1 which triggers two One Shots. The first One Shot inhibits

the clock signal to the ring counters for a short interval until the Key

Code is stored. The One Shot also triggers the second One-Shot that

sends a pulse to the clock input of the Key Code register. The Key Code

Register stores the key ID represented as 3-bit column and 3-bit row

code.

CIT344 INTRODUCTION TO COMPUTER DESIGN

118

Fig. 16: Keyboard Encoder Circuit

4.0 Self-Assessment Exercise(s)

1. Give a detailed explanation of the different shift operations you know.

2. State in not less than four pages what you know about registers.

5.0 Conclusion

A register performs two basic functions. It stores data and it moves or

shifts data. The shifting of data involves shifting of bits from one flip-

flop to the other within the register or moving data in and out of the

register.

The different shift operations are:

1. Serial In/Shift Right/Serial Out Operation

CIT344 INTRODUCTION TO COMPUTER DESIGN

119

2. Serial In/Shift Left/Serial Out Operation

3. Serial In/Parallel Out Operation

4. Parallel In/Serial Out Operation

5. Parallel In/Parallel Out Operation

6. Rotate Right Operation

7. Rotate Left Operation.

Shift register counters are shift registers connected to perform rotate left

and rotate right operations. When data is rotated through a register counter

a specific sequence of states is repeated. Two commonly used register

counters in digital logic are the Johnson Counter and the Ring Counter.

The applications of a shift register are used to convert between parallel

and serial data. They are also used as keyboard encoders.

6.0 Summary

In this unit we discussed registers. Information from an input device or

from the computer‘s memory is communicated via the bus to the central

processing unit (CPU), which is the part of the computer that translates

commands and runs programs. The CPU is a microprocessor chip—that

is, a single piece of silicon containing millions of tiny, microscopically

wired electrical components. Information is stored in a CPU memory

location called a register. Registers can be thought of as the CPU‘s tiny

scratchpad, temporarily storing instructions or data.

7.0 Further Readings

Pedroni V.A (2020). Circuit Design with VHDL(3

rd
 Edition). The MIT Press Cambridge.

Sarkar S.K., De A.k., and Sarkar S (2014). Foundation of Digital Electronics and Logic
Design.

Pan Stanford

Mano M.M (2017). Digital Logic and Computer Design. Pearson India Education Services Pvt.

Ltd

Yasin M.,Rajendran J. (JV) and Sinanoglu O. (2020). Trustworthy Hardware Design:

Combinational Logic Locking TechniquesSpringer Nature

Ndjountche T. (2016). Digital Electronics 1: Combinational Logic Circuits. Wiley

Elahi A (2018). Computer System: Digital Design, Fundamentals of Computer Architecture
and

CIT344 INTRODUCTION TO COMPUTER DESIGN

120

Assembly Language. Springer Nature

Patt Y. N (2019). Introduction to Computing Systems – From Bits and Gates to C and Beyond
(Online Version). Mc-Graw-Hill.

Verma A.K, Shama G and Singh K (2016). Wiley Acing The Gate: Computer Science and

Information Technology. Wiley India Pvt. Ltd.

Mano M.M, Kime C.R and Martin T (2015). Logic & Computer Design Fundamentals (5
th

edition). Pearson. Pg283

Faroughi N (2015). Digital Logic Design & Computer Organization: With Computer
Architecture for Security. McGraw-Hill Education.

Patterson D. A and Hennessy J.L (2016). Computer Organization & Design ARM Edition:

The

 Hardware Software Interface. Morgan Kaufmann.

Unsalan C and Tar B (2017). Digital System Design with FPGA Implementation Using

Verilog

 and VHDL. McGraw-Hill Education.

Null L and Lobur J (2016). The Essentials of Computer Organization and Architecture (4
th

 edition). Jones & Barlett Learning.

Rafiquzzaman M (2014). Fundamentals of Digital Logic and Microcontrollers. John Wiley &

 Sons.

Roth, H. C. Jr & Kinney, L. L. (2014). Fundamentals of Logic Design (7
th
 edition). Cengage

Learning.

Tanenbaum, Andrew S. (2013). Structured Computer Organization.Prentice Hall (6th

ed).

CIT344 INTRODUCTION TO COMPUTER DESIGN

121

UNIT 4 FINITE STATE MACHINES

CONTENTS

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content

3.1 Finite State Machines

3.2 Finite State Machines as a Restrictive Turing Machines

3.3 Modeling the Behaviour of Finite State Machine

3.4 Functional Program View of Finite State Machines

3.5 Imperative Program View of Finite State Machines

3.6 Feedback System View of Finite State Machines

3.7 Tabular Description of Finite State Machines

3.8 Classifiers, Acceptors, Transducers & Sequencers

3.9 Description of Finite State Machines using Graphs

4.0 Self-Assessment Exercise(s)

5.0 Conclusion

6.0 Summary

7.0 Further Readings

1.0 Introduction

This unit introduces finite state machines, a primitive, but useful

computational model for both hardware and certain types of software.

We also discuss regular expressions, the correspondence between non-

deterministic and deterministic machines, and more on grammars.

Finally, we describe typical hardware components that are essentially

physical realisations of finite-state machines.

2.0 Intended Learning Outcomes (ILOs)

At the end of this unit, you should be able to:

 discuss finite state machines

 define hardware

 distinguish between a Mealy or Moore machine.

3.0 Main Content

3.1 Finite State Machines

Finite state machines provide a simple computational model with many

CIT344 INTRODUCTION TO COMPUTER DESIGN

122

applications. Recall the definition of a Turing machine: a finite-state

controller with a movable read/write head on an unbounded storage tape.

If we restrict the head to move in only one direction, we have the

general case of a finite-state machine. The sequence of symbols being

read can be thought to constitute the input, while the sequence of

symbols being written could be thought to constitute the output. We can

also derive output by looking at the internal state of the controller after

the input has been read. Finite-state machines, also called finite-state

automata (singular: automaton) or just finite automata are much more

restrictive in their capabilities than Turing machines. The basic

operation of a Finite State Machine system is this: as the system is in

one of the defined states at any instant of time, it will react to specified

(external) inputs or (internal) conditions with specified actions, and

transition to another defined state, or remain in its current state,

depending on the design. For example, we can show that it is not

possible for a finite-state machine to determine whether the input

consists of a prime number of symbols. Much simpler languages, such

as the sequences of well-balanced parenthesis strings, also cannot be

recognised by finite-state machines. Still there are the following

applications:

• Simple forms of pattern matching (precisely the patterns

definable by "regular expressions‖).

• Models for sequential logic circuits, of the kind on which every

present-day computer and many device controllers is based.

• An intimate relationship with directed graphs having arcs labeled

with symbols from the input alphabet.

Even though each of these models can be depicted in a different setting,

they have a common mathematical basis.

Fig. 1: The Interrelationship of Various Models with Respect to

Computational or Representational Power

CIT344 INTRODUCTION TO COMPUTER DESIGN

123

(The arrows move in the direction of restricting power. The bi-

directional arrows show equivalences).

Finite State Machines are generally depicted as a state diagram,

represented graphically with two symbols: the state bubble and the

transition arrow. States are labeled or numbered and both inputs and

outputs are described textually. At any instant of time, a state machine is

in its current state. Depending on the specified input events and

conditions, a transition to the next state will occur. Finite State

Machines are considered deterministic if all transitions to next states are

unique to a given state and its inputs. Most useful FSMs are fully

deterministic, making them ideal for embedded systems software and

the process of validation and verification.

It is common to distinguish Finite State Machines as either a Mealy or

Moore machine. The difference between the two machines, as we shall

explore later, are noteworthy, but not necessarily paramount to

successful Finite State Machine design for software application

architecture, but likely important in sequential circuit design.

Finite State Machines are defined as sharing the following

characteristics:

 a finite set of defined states, one of which being defined as the

initial state of the machine

 a set of defined inputs

 a set of defined outputs

 a set of transitions between selected states, and

 the machine is said to be in a single state at any instant of time

3.2 Finite State Machines as Restrictive Turing Machines

One way to view the finite-state machine model as a more restrictive

Turing machine is to separate the input and output halves of the tapes, as

shown below.

CIT344 INTRODUCTION TO COMPUTER DESIGN

124

Fig. 2: Finite State Machine as a One-Way Moving Turing

Machine

Fig. 3: Finite-State Machine as Viewed with Separate Input and

Output

Fig. 4: Finite-State Machine Viewed as a Stationary-Head,

Moving-Tape, Device

CIT344 INTRODUCTION TO COMPUTER DESIGN

125

Since the motion of the head over the tape is strictly one-way, we can

abstract away the idea of a tape and just refer to the input sequence read

and the output sequence produced, as suggested in the next diagram. A

machine of this form is called a transducer, since it maps input

sequences to output sequences. The term Mealy machine, after George

H. Mealy (1965), is also often used for transducer.

Fig. 5: A Transducer Finite-State Machine Viewed as a Tapeless

"Black Box" Processing an Input Sequence to Produce an

Output Sequence

On the other hand, occasionally, we are not interested in the sequence of

outputs produced but just an output associated with the current state of

the machine. This simpler model is called a classifier, or Moore

machine, after E.F. Moore (1965).

Fig. 6: Classifier Finite State Machine. Output is a function of

current state, rather than being a Sequence

CIT344 INTRODUCTION TO COMPUTER DESIGN

110

For a Mealy machine, the transition will be associated with an output. For a

Moore machine, the output occurs within the next state. For this reason,

Finite State Machines are often called 'reactive' systems. Inputs are also

called events. Typical events may be: a message received from another

state machine, a simple event flag set by another state machine, or the

expiration of a time interval. Likewise, outputs may be: sending a message

to another state machine, setting an event flag for another state machine to

respond to, or starting a timed interval. Also, multiple unique transitions

are allowed from one state to other defined states. For software FSMs, each

state will have its unique source code logic to process events, perform

actions and output, and to effect state transitions. A complete system may

be comprised of one or more Finite State Machines, as determined by the

partitioning process performed during the initial design or analysis.

Although the Mealy Machine model may be more flexible than Moore

Machine, it is the need of the system being analysed or designed that

determines which of the two is most suitable. Note that a given state

machine may be comprised of both Mealy and Moore models, if such a

design meets functional requirements of the system. Also, be aware that

both Mealy and Moore Machines can be logically converted to the other.

The point here is that the correct state logic required for efficient operation

is what‘s important; the resulting machine archetype (Mealy or Moore)

should be only a secondary observation.

3.3 Modeling the Behaviour of Finite State Machines

Concentrating initially on transducers, there are several different

notations we can use to capture the behaviour of finite-state machines:

• as a functional program mapping one list into another

• as a restricted imperative program, reading input a single

character at a time and producing output a single character at a

time

• as a feedback system

• representation of functions as a table

• representation of functions by a directed labeled graph.

For concreteness, we shall use the sequence-to-sequence model of the

machine, although the other models can be represented similarly. Let us

give an example that we can use to show the different notations:

Example: An Edge-Detector

The function of an edge detector is to detect transitions between two

symbols in the input sequence, say 0 and 1. It does this by outputting 0

as long as the most recent input symbol is the same as the previous one.

However, when the most recent one differs from the previous one, it

CIT344 INTRODUCTION TO COMPUTER DESIGN

111

outputs a 1. By convention, the edge detector always outputs 0 after

reading the very first symbol. Thus, we have the following input output

sequence pairs for the edge-detector, among an infinite number of

possible pairs:

3.4 Functional Program View of Finite State Machines

In this view, the behaviour of a machine is as a function from lists to

lists.

Each state of the machine is identified with such a function.

The initial state is identified with the overall function of the machine.

The functions are interrelated by mutual recursion: when a function

processes an input symbol, it calls another function to process the

remaining input.

Each function: looks at its input by one application of first, produces an

output by one application of cons, the first argument of which is

determined purely by the input obtained from first, and calls another

function (or itself) on rest of the input.

We make the assumptions that:
The result of cons, in particular the first argument, becomes partially

available even before its second argument is computed.

Each function will return NIL if the input list is NIL, and we do not

show this explicitly.

CIT344 INTRODUCTION TO COMPUTER DESIGN

112

Functional code example for the edge-detector

We will use three functions, f, g, and h. The function f is the overall

representation of the edge detector.

f([0 | Rest]) => [0 | g(Rest)];

f([1 | Rest]) => [0 | h(Rest)];

f([]) => [];

g([0 | Rest]) => [0 | g(Rest)];

g([1 | Rest]) => [1 | h(Rest)];

g([]) => [];

h([0 | Rest]) => [1 | g(Rest)];

h([1 | Rest]) => [0 | h(Rest)];

h([]) => [];

Notice that f is never called after its initial use. Its only purpose is to

provide the proper output (namely 0) for the first symbol in the input.

Example of f applied to a specific input:

f([0, 1, 1, 1, 0]) ==> [0, 1, 0, 0, 1]

An alternative representation is to use a single function, say k, with an

extra argument, treated as just a symbol. This argument represents the

name of the function that would have been called in the original

representation. The top-level call to k will give the initial state as this

argument:

k("f", [0 | Rest]) => [0 | k("g", Rest)];
k("f", [1 | Rest]) => [0 | k("h", Rest)];

k("f", []) => [];

k("g", [0 | Rest]) => [0 | k("g", Rest)];

k("g", [1 | Rest]) => [1 | k("h", Rest)];

k("g", []) => [];

k("h", [0 | Rest]) => [1 | k("g", Rest)];
k("h", [1 | Rest]) => [0 | k("h", Rest)];

k("h", []) => [];

The top level call with input sequence x is k ("f", x) since "f" is the

initial state.

3.5 Imperative Program View of Finite State Machines

In this view, the input and output are viewed as streams of characters.

The program repeats the processing cycle:

CIT344 INTRODUCTION TO COMPUTER DESIGN

113

read character,

select next state,

write character,

go to next state

ad infinitum. The states can be represented as separate "functions", as in

the functional view, or just as the value of one or more variables.

However the allowable values must be restricted to a finite set. No

stacks or other extendible structures can be used, and any arithmetic

must be restricted to a finite range.

The following is a transliteration of the previous program to this view.

The program is started by calling f(). Here we assume that read() is a

method that returns the next character in the input stream and write(c)

writes character c to the output stream.

void f() // initial function

{

switch(read())

{

case '0': write('0'); g(); break;

case '1': write('0'); h(); break;

}

Finite-State Machines 477

}

void g() // previous input was 0

{

switch(read())

{

case '0': write('0'); g(); break;

case '1': write('1'); h(); break; // 0 -> 1 transition

}

}

void h() // previous input was 1

{

switch(read())

{

case '0': write('1'); g(); break; // 1 -> 0 transition

case '1': write('0'); h(); break;

}

}

[Note that this is a case where all calls can be "tail recursive", i.e. could

be implemented as gotos by a smart compiler.]

CIT344 INTRODUCTION TO COMPUTER DESIGN

114

The same task could be accomplished by eliminating the functions and

using a single variable to record the current state, as shown in the

following program. As before, we assume read() returns the next

character in the input stream and write(c) writes character c to the output

stream.

static final char f = 'f'; // set of states

static final char g = 'g';

static final char h = 'h';

static final char initial_state = f;

main()

{

char current_state, next_state;

char c;

current_state = initial_state;

while((c = read()) != EOF)

{

switch(current_state)

{

case f: // initial state

switch(c)

{
case '0': write('0'); next_state = g; break;

case '1': write('0'); next_state = h; break;

}

break;
case g: // last input was 0

switch(c)

{

case '0': write('0'); next_state = g; break;

case '1': write('1'); next_state = h; break; // 0 -> 1

}

break;

case h: // last input was 1

switch(c)

{
case '0': write('1'); next_state = g; break; // 1 -> 0

case '1': write('0'); next_state = h; break;

}

break;

}

current_state = next_state;

}

}

CIT344 INTRODUCTION TO COMPUTER DESIGN

115

3.6 Feedback System View of Finite State Machines

The feedback system view abstracts the functionality of a machine into

two functions, the next-state or state-transition function F, and the

output function G.

F: States x Symbols States state-transition function

G: States x Symbols Symbols output function

The meaning of these functions is as follows:

F(q, σ) is the state to which the machine goes when currently in state q

and σ is read

G(q, σ) is the output produced when the machine is currently in state q

and σ is read

The relationship of these functions is expressible by the following

diagram.

Fig. 7: Feedback Diagram of Finite State Machine Structure

From F and G, we can form two useful functions

F*: States x Symbols* States extended state-transition function

G*: States x Symbols* Symbols extended output function where

Symbols* denotes the set of all sequences of symbols. This is done by

induction:

CIT344 INTRODUCTION TO COMPUTER DESIGN

116

F*(q, λ) = q
F*(q, xσ) = F(F*(q, x), σ)

G*(q, λ) = λ

G*(q, xσ) = G*(q, x) G(F*(q, x), σ)

In the last equation, juxtaposition is like cons‘ing on the right. In other

words, F*(q, x) is the state of the machine after all symbols in the

sequence x have been processed, whereas G*(q, x) is the sequence of

outputs produced along the way. In essence, G* can be regarded as the

function computed by a transducer. These definitions could be

transcribed into rex rules by representing the sequence xσ as a list [σ | x]

with λ corresponding to [].

3.7 Tabular Description of Finite State Machines

This description is similar to the one used for Turing machines, except

that the motion is left unspecified, since it is implicitly one direction. In

lieu of the two functions F and G, a finite-state machine could be

specified by a single function combining F and G of the form:

States x Symbols States x Symbols analogous to the case of a

Turing machine, where we included the motion:

States x Symbols Symbols x Motions x States

These functions can also be represented succinctly by a table of 4-tuples,

similar to what we used for a Turing machine, and again called a state

transition table:

State1, Symbol1, State2, Symbol2

Such a 4-tuple means the following:

If the machine's control is in State1 and reads Symbol1, then machine

will write Symbol2 and the next state of the controller will be State2.

The state-transition table for the edge-detector machine is:

CIT344 INTRODUCTION TO COMPUTER DESIGN

117

Table 1: State Transition Table for the Edge-Detector Machine

Unlike the case of Turing machines, there is no particular halting

convention. Instead, the machine is always read to proceed from

whatever current state it is in. This does not stop us from assigning our

own particular meaning of a symbol to designate, for example, end-of-

input.

3.8 Classifiers, Acceptors, Transducers, and Sequencers

In some problems we don't care about generating an entire sequence of

output symbols as do the transducers discussed previously. Instead, we

are only interested in categorizing each input sequence into one of a

finite set of possibilities. Often these possibilities can be made to derive

from the current state.

So we attach the result of the computation to the state, rather than

generate a sequence. In this model, we have an output functionc:

Q C which gives a category or class for each state. We call this

type of machine a classifier or controller. In the simplest non-trivial

case of classifier, there are two categories. The states are divided up into

the "accepting" states (class 1, say) and the "rejecting" states (class 0).

The machine in this case is called an acceptor or recogniser.

The sequences it accepts are those given by c(F*(q0, x)) = 1 that is, the

sequences x such that, when started in state q0, after reading x, the

machine is in a state q such that c(q) = 1. The set of all such x, since it is

a set of strings, is a language. If A designates a finite-state acceptor,

then L(A) = { x in Σ* | c(F*(q0, x)) = 1} is the language accepted by A.

The structure of a classifier is simpler than that of a transducer, since the

output is only a function of the state and not of both the state and input.

The structure is shown as follows:

CIT344 INTRODUCTION TO COMPUTER DESIGN

118

Fig. 8: Feedback Diagram of Classifier Finite State Machine

Structure

A final class of machine, called a sequencer or generator, is a special

case of a transducer or classifier that has a single-letter input alphabet.

Since the input symbols are unchanging, this machine generates a fixed

sequence, interpreted as either the output sequence of a transducer or the

sequence of classifier outputs. An example of a sequencer is a MIDI

(Musical Instrument Digital Interface) sequencer, used to drive

electronic musical instruments. The output alphabet of a MIDI

sequencer is a set of 16-bit words, each having a special interpretation as

pitch, note start and stop, amplitude, etc. Although most MIDI

sequencers are programmable, the program typically is of the nature of

an initial setup rather than a sequential input.

3.9 Description of Finite State Machines using Graphs

Any finite state machine can be shown as a graph with a finite set of

nodes. The nodes correspond to the states. There is no other memory

implied other than the state shown. The start state is designated with an

arrow directed into the corresponding node, but otherwise unconnected.

Fig. 9: An Unconnected In-Going Arc Indicates that the Node is

the Start State

CIT344 INTRODUCTION TO COMPUTER DESIGN

119

The arcs and nodes are labeled differently, depending on whether we are

representing a transducer, a classifier, or an acceptor. In the case of a

transducer, the arcs are labeled σ/δ as shown below, where σ is the

input symbol and δ is the output symbol. The state transition is

designated by virtue of the arrow going from one node to another.

Fig. 10: Transducer Transition from q1 to q2, based on Input σ,

Giving Output δ

In the case of a classifier, the arrow is labeled only with the input

symbol. The categories are attached to the names of the states after /.

Fig. 11: Classifier Transition from q1 to q2, based on Input σ

In the case of an acceptor, instead of labeling the states with categories

0 and 1, we sometimes use a double-lined node for an accepting state

and a single-lined node for a rejecting state.

Fig. 12: Acceptor, an Accepting State

CIT344 INTRODUCTION TO COMPUTER DESIGN

120

Transducer Example

The edge detector is an example of a transducer. Here is its graph:

Fig. 13: Directed Labeled Graph for the Edge Detector

Let us also give examples of classifiers and acceptors, building on this

example.

Classifier Example

Suppose we wish to categorise the input as to whether the input so far

contains 0, 1, or more than 1 "edges" (transitions from 0 to 1, or 1 to 0).

The appropriate machine type is classifier, with the outputs being in the

set {0, 1, more}. The name "more" is chosen arbitrarily. We can sketch

how this classifier works with the aid of a graph. The construction

begins with the start state. We don't know how many states there will be

initially. Let us use a, b, c, ... as the names of the states, with a as the

start state. Each state is labeled with the corresponding class as we go.

The idea is to achieve a finite closure after some number of states have

been added. The result is shown below:

Fig. 14: Classifier for Counting 0, 1, or more than 1 Edges

CIT344 INTRODUCTION TO COMPUTER DESIGN

121

Acceptor Example

Let us give an acceptor that accepts those strings with exactly one edge.

We can use the state transitions from the previous classifier. We need

only designate those states that categorise there being one edge as

accepting states and the others as rejecting states.

Fig. 15: Acceptor for Strings with Exactly One Edge. Accepting

States are d and e

Sequencer Example

The following sequencer, where the sequence is that of the outputs

associated with each state, is that for a naive traffic light:

Fig. 16: A Traffic Light Sequencer

Inter-Convertibility of Transducers and Classifiers

We can describe a relationship between classifiers and transducers, so

that most of the theory developed for one will be applicable to the other.

One possible connection is, given an input sequence x, record the

outputs corresponding to the states through which a classifier goes in

processing x. Those outputs could be the outputs of an appropriately-

defined transducer. However, classifiers are a little more general in this

sense, since they give output even for the empty sequence λ, whereas the

CIT344 INTRODUCTION TO COMPUTER DESIGN

122

output for a transducer with input λ is always just λ. Let us work in

terms of the following equivalence:

A transducer T started in state q0 is equivalent to a classifier C started in

state q0 if, for any non-empty sequence x, the sequence of outputs

emitted by T is the same as the sequence of outputs of the states through

which C passes.

With this definition in mind, the following would be a classifier

equivalent to the edge detector transducer.

Fig. 17: A Classifier Formally Equivalent to the Edge-Detector

Transducer

To see how we constructed this classifier, observe that the output

emitted by a transducer in going from a state q to a state q', given an

input symbol σ, should be the same as the output attached to state q' in

the classifier. However, we can't be sure that all transitions into a state q'

of a transducer produce the same output. For example, there are two

transitions to state g in the edge-detector that produce 0 and one that

produces 1, and similarly for state h. This makes it impossible to attach a

fixed input to either g or h. Therefore we need to "split" the states g and

h into two, a version with 0 output and a version with 1 output. Call

these resulting states g0, g1, h0, h1. Now we can construct an output-

consistent classifier from the transducer. We don't need to split f, since it

has a very transient character. Its output can be assigned arbitrarily

without spoiling the equivalence of the two machines. The procedure for

converting a classifier to a transducer is simpler. When the classifier

goes from state q to q', we assign to the output transition the state output

value c(q'). The following diagram shows a transducer equivalent to the

classifier that reports 0, 1, or more edges.

CIT344 INTRODUCTION TO COMPUTER DESIGN

123

Fig. 18: A Transducer Formally Equivalent to the Edge-Counting

Classifier

4.0 Self-Assessment Exercise(s)

1. Write short notes with the aid of diagrams on the following terms:

(a) classifiers (b) acceptors (c) transducers (d) sequencers.

2. State in not less than 800 words, all you know about finite state

machines.

5.0 Conclusion

Finite State Machines provide a simple computational model with many

applications. The basic operation of a Finite State Machine system is

this: as the system is in one of the defined states at any instant of time, it

will react to specified (external) inputs or (internal) conditions with

specified actions, and transition to another defined state, or remain in its

current state, depending on the design. State Machines are generally

depicted as a State Diagram, represented graphically with two symbols:

the state bubble and the transition arrow.

It is common to distinguish Finite State Machines as either a Mealy or

Moore machine. Finite State Machines are defined as sharing the

following characteristics:

1. a finite set of defined states, one of which being defined as the

initial state of the machine

2. a set of defined inputs

3. a set of defined outputs

4. a set of transitions between selected states, and

CIT344 INTRODUCTION TO COMPUTER DESIGN

124

5. the machine is said to be in a single state at any instant of time

 6.0 Summary

In this unit we discussed extensively about finite state machines.

 7.0 Further Readings

Pedroni V.A (2020). Circuit Design with VHDL(3

rd
 Edition). The MIT Press Cambridge.

Sarkar S.K., De A.k., and Sarkar S (2014). Foundation of Digital Electronics and Logic
Design.

Pan Stanford

Mano M.M (2017). Digital Logic and Computer Design. Pearson India Education Services Pvt.

Ltd

Yasin M.,Rajendran J. (JV) and Sinanoglu O. (2020). Trustworthy Hardware Design:

Combinational Logic Locking TechniquesSpringer Nature

Ndjountche T. (2016). Digital Electronics 1: Combinational Logic Circuits. Wiley

Elahi A (2018). Computer System: Digital Design, Fundamentals of Computer Architecture
and

Assembly Language. Springer Nature

Patt Y. N (2019). Introduction to Computing Systems – From Bits and Gates to C and Beyond
(Online Version). Mc-Graw-Hill.

Verma A.K, Shama G and Singh K (2016). Wiley Acing The Gate: Computer Science and

Information Technology. Wiley India Pvt. Ltd.

Mano M.M, Kime C.R and Martin T (2015). Logic & Computer Design Fundamentals (5
th

edition). Pearson. Pg283

Faroughi N (2015). Digital Logic Design & Computer Organization: With Computer
Architecture for Security. McGraw-Hill Education.

Patterson D. A and Hennessy J.L (2016). Computer Organization & Design ARM Edition:

The

 Hardware Software Interface. Morgan Kaufmann.

Unsalan C and Tar B (2017). Digital System Design with FPGA Implementation Using

Verilog

 and VHDL. McGraw-Hill Education.

CIT344 INTRODUCTION TO COMPUTER DESIGN

125

Null L and Lobur J (2016). The Essentials of Computer Organization and Architecture (4
th

 edition). Jones & Barlett Learning.

Rafiquzzaman M (2014). Fundamentals of Digital Logic and Microcontrollers. John Wiley &

 Sons.

Roth, H. C. Jr & Kinney, L. L. (2014). Fundamentals of Logic Design (7
th
 edition). Cengage

Learning.

Tanenbaum, Andrew S. (2013). Structured Computer Organization.Prentice Hall (6th

ed).

CIT344 INTRODUCTION TO COMPUTER DESIGN

126

MODULE 4 MEMORY

Unit 1 Memory Organisation

Unit 2 Memory Types

Unit 3 Memory Expansion

Unit 4 Memory Summary

UNIT 1 MEMORY ORGANISATION

CONTENTS

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content

3.1 Memory Organisation

3.1.1 Memory Capacity & Density

3.1.2 Memory Signals & Basic Operations on Memory

3.1.2.1 Read & Write Signals

3.1.2.2 Address Signals

3.1.2.3 Data Signals

3.1.2.4 Memory Select or Enable Signal

3.1.2.5 Memory Read Operation

3.1.2.6 Memory Write Operation

4.0 Self-Assessment Exercise(s)

5.0 Conclusion

6.0 Summary

7.0 Further Readings

1.0 Introduction

Memory is only one of the required hardware components of a PC. It is

not more important, nor less important than the other components of

your PC. But much of our modern day software will not operate

efficiently, if at all, without "gobs" of memory. Sequential circuits

cannot operate without a memory element. Memory elements used in

Sequential circuits are relatively small and store few binary bits of

information. Large memories capable of storing very large amounts of

information are used in computer systems.

A computer which executes an application program has the application

stored in the form of program instructions in large memories.

CIT344 INTRODUCTION TO COMPUTER DESIGN

127

Memories store data in units that have one, four, eight or higher number

of bits.

Smallest unit of binary data is a bit. Data is also handled in a 4-bit unit

called a Nibble. In many applications the data is handled as an 8-bit unit

called a byte, which is a combination of two 4-bit units that are called

Nibbles. A complete unit of information is sometimes called a Word and

consists of one or more bytes.

Each storage element of a memory can either store a logic 0 or a logic 1

and is called a cell. Memories are arranged in an array and each cell can

be identified by specifying a row and a column number. Each square in

the diagram represents a memory cell capable of storing a binary 1 or 0.

The first eight bits of binary information 11001010 in the first row are

stored in eight cells. The addresses of the eight consecutive cells staring

from the left most cell are (1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (1,7) and

(1,8) representing the first row and columns 1 to 8 respectively.

Individual cells at row 5 and column 3 have a binary 1 and a cell at row

6 and column 7 have a binary 0 stored.

Fig. 1: 64-Cell Memory Array

2.0 Intended Learning Outcomes (ILOs)

At the end of this unit, you should be able to:

 define memory and the basic operations performed on it

 state the functions of Read/Write signals.

CIT344 INTRODUCTION TO COMPUTER DESIGN

128

3.0 Main Content

3.1 Memory Organisation

The memory array can be organised in several ways depending on the

unit of data. The 64-cell array organised as 8 x 8 cell array is considered

as an 8 byte memory, that is, it has eight locations and each location

stores a single byte. The 64-cell array organised as 4 x 16 cell array

stores 16 nibbles and if organised as 1 x 64 stores 64 single bit values.

The 4 x 16 memory array allows data to be accessed in the form of 4-bit

nibbles. The 1 x 64 array allows data to be accessed in units of 1 bit.

Fig. 2: Memory Organised as 4 x 16 and 1 x 64 Arrays

A memory is identified by the number of units it can store times the unit

size. Thus, the 8 x 8 memory is identified as an 8 Byte memory, the 16 x

4 memory is used as a 16 Nibble memory and the 64 x 1 is known as a

64 bit memory. Practical memory chips are organised as 16 K x 8

memory, storing 16K bytes or 16 x 1024 = 16384 bytes. A 32 K x 4

memory stores 32K nibbles or 32 x 1024 = 32768 nibbles.

3.1.1 Memory Capacity and Density

Each memory array has a maximum capacity to store information in the

form of bits. Thus, a 16 K x 8 memory, stores 16K bytes or 16 x 1024 =

16384 bytes or 131072 bits. A 32 K x 4 memory stores 32K nibbles or

32 x 1024 = 32768 nibbles or 131072 bits. The total number of cells in

each case is 131072. Memory density on the other hand specifies the

number of bits stored per unit area. More the number of bits stored in a

CIT344 INTRODUCTION TO COMPUTER DESIGN

129

unit area more dense the memory, that is, more bits are stored in less

space. The capacity and the density of a memory are determined by the

total number of cells implemented in a unit area.

3.1.2 Memory Signals and Basic Operations on Memory

Two basic operations are performed on memories, that is, reading of

information from the memory and writing of data to the memory. To

support the two read and write operations memories provide several

signals.

Fig. 3: Block Diagram of a Read-Write Memory

3.1.2.1 Read and Write Signals

Read/Write signals are required to configure the memory for read and

write operation. Memory chips have a single Read/Write signal. When

the signal is set to high it allows data to be read from the memory. When

the signal is set to low data is written into the memory. Some memory

chips have two separate Read and Write signals. The read and write

signals are separately asserted to control the Read and Write operation.

3.1.2.2 Address Signals

Address signals are required to specify the location in the memory from

which information is accessed (read or written). A set of parallel address

lines known as the address bus carry the address information. The

number of bits (lines) comprising the address bus depends upon the size

of the memory. For example, a memory having four locations to store

data has four unique addresses (00, 01, 10, 11) specified by a 2-bit

address bus. The size of the address bus depends upon the total

CIT344 INTRODUCTION TO COMPUTER DESIGN

130

addressable locations specified by the formula 2n, where n is the number

of bits. Thus, 24=16 (n=4) specifies 4 bits to uniquely identify 16

different locations.

3.1.2.3 Data Signals

Data lines are required to retrieve the information from the memory

array during a read operation and to provide the data that is to be stored

in the memory during a write operation. As the memory reads or writes

one data unit at a time therefore the data lines should be equal to the

number of data bits stored at each addressable location in the memory. A

memory organised as a byte memory reads or writes byte data values,

therefore the number of data lines or the size of the data bus should be 8-

bits or 1 byte. A memory organised to store nibble data values requires a

4-bit wide data bus. Generally, the wider the data bus more data can be

accessed at each read or write operation.

3.1.2.4 Memory Select or Enable Signal

In a computer system there are more than one memory chips to store

program information. At any particular instant a read or write operation

is carried out on a single addressable location. The unique location can

only be accessed in one of the several memory chips; thus, a single

memory chip has to be selected before a read or write operation can be

carried out. All memory chips have a chip enable or chip select signal

which has to be activated before the memory can be accessed.

3.1.2.5 Memory Read Operation

Memory Read operation is carried out by first selecting the memory chip

by activating the Memory Select signal. The Read signal is asserted to

configure the memory circuitry for reading data from the memory. An

address (100) is applied on the Address Lines. The internal address

decoder of the memory decodes the address and selects one unique row

from which data is read.

CIT344 INTRODUCTION TO COMPUTER DESIGN

131

Fig. 4: Memory Read Operation

The address of the location in the memory from which data is to be read

is supplied by the microprocessor. The microprocessor stores the

address in its address buffer. The data read from the memory is stored in

a data buffer inside the microprocessor. In the diagram shown, a

microprocessor places an address 100 on its external address bus

connected to the address lines of the memory. The internal address

decoder of the memory decodes the address 100 and activates a row

select line which selects the row location 4. The dat (00110001) at the

location is read from the memory and placed on the data bus where it is

latched by the microprocessor and stored in its data buffer.

3.1.2.6 Memory Write Operation

Memory Write operation is carried out by first selecting the memory

chip by activating the Memory Select signal. The Write signal is

asserted to configure the memory circuitry for writing data to the

memory. An address (011) is placed on the Address Lines by the

microprocessor. The internal address decoder of the memory decodes

the address and selects one unique row select line which selects the row

location 3. The data (10110010) to be written to the selected memory

location is placed on the external data bus by the microprocessor which

is stored in the selected location.

CIT344 INTRODUCTION TO COMPUTER DESIGN

132

Fig. 5: Memory Write Operation

4.0 Self-Assessment Exercise(s)
Write short notes on the following

(a) memory organisation

(b) memory signals

(c) read & write signals

(d) memory read operation

(e) memory write operation.

5.0 Conclusion

Memory is only one of the required hardware components of a PC. It is

not more important, nor less important than the other components of

your PC.

A computer which executes an application program has the application

stored in the form of program instructions in large memories.

The memory array can be organised in several ways depending on the

unit of data.

A memory is identified by the number of units it can store times the unit

size.

Each memory array has a maximum capacity to store information in the

form of bits. The capacity and the density of a memory are determined

CIT344 INTRODUCTION TO COMPUTER DESIGN

133

by

the total number of cells implemented in a unit area.

Two basic operations are performed on memories, that is, reading of information from

the memory and writing of data to the memory.

6.0 Summary

In this unit we discussed about memory organisation. The memory array can be

organised in several ways depending on the unit of data. The 64- cell array organised as

8 x 8 cell array is considered as an 8 byte memory, that is, it has eight locations and each

location stores a single byte. The 64-cell array organised as 4 x 16 cell array stores 16

nibbles and if organised as 1 x 64 stores 64 single bit values. The 4 x 16 memory array

allows data to be accessed in the form of 4-bit nibbles. The 1 x 64 array allows data to

be accessed in units of 1 bit.

7.0 Further Readings

Stallings W (2016). Computer Organization and architecture: Designing for Performance (10

th

edition). Pearson Education Limited.

Pedroni V.A (2020). Circuit Design with VHDL(3

rd
 Edition). The MIT Press Cambridge.

Sarkar S.K., De A.k., and Sarkar S (2014). Foundation of Digital Electronics and Logic
Design.

Pan Stanford

Mano M.M (2017). Digital Logic and Computer Design. Pearson India Education Services Pvt.

Ltd

Yasin M.,Rajendran J. (JV) and Sinanoglu O. (2020). Trustworthy Hardware Design:

Combinational Logic Locking TechniquesSpringer Nature

Ndjountche T. (2016). Digital Electronics 1: Combinational Logic Circuits. Wiley

Elahi A (2018). Computer System: Digital Design, Fundamentals of Computer Architecture
and

Assembly Language. Springer Nature

Patt Y. N (2019). Introduction to Computing Systems – From Bits and Gates to C and Beyond
(Online Version). Mc-Graw-Hill.

Verma A.K, Shama G and Singh K (2016). Wiley Acing The Gate: Computer Science and

Information Technology. Wiley India Pvt. Ltd.

Mano M.M, Kime C.R and Martin T (2015). Logic & Computer Design Fundamentals (5
th

edition). Pearson. Pg283

Faroughi N (2015). Digital Logic Design & Computer Organization: With Computer
Architecture for Security. McGraw-Hill Education.

CIT344 INTRODUCTION TO COMPUTER DESIGN

134

Patterson D. A and Hennessy J.L (2016). Computer Organization & Design ARM Edition:

The

 Hardware Software Interface. Morgan Kaufmann.

Unsalan C and Tar B (2017). Digital System Design with FPGA Implementation Using

Verilog

 and VHDL. McGraw-Hill Education.

Null L and Lobur J (2016). The Essentials of Computer Organization and Architecture (4
th

 edition). Jones & Barlett Learning.

Rafiquzzaman M (2014). Fundamentals of Digital Logic and Microcontrollers. John Wiley &

 Sons.

Roth, H. C. Jr & Kinney, L. L. (2014). Fundamentals of Logic Design (7
th
 edition). Cengage

Learning.

Tanenbaum, Andrew S. (2013). Structured Computer Organization.Prentice Hall (6th

ed).

CIT344 INTRODUCTION TO COMPUTER DESIGN

135

UNIT 2 MEMORY TYPES

CONTENTS

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content

3.1 Classifications of Memory

3.1.1 Random Access Memory

3.1.1.1 Static Ram

3.1.1.2 Dynamic Ram

3.1.1.3 Types of Drams

3.1.2 Read Only Memory

3.1.2.1 Rom Application

3.1.3 Flash Memory

3.1.3.1 Flash Memory Operations

4.0 Self-Assessment Exercise(s)

5.0 Conclusion

6.0 Summary

7.0 References/Further Reading

1.0 Introduction

This unit introduces us to the types of memory we have. It goes further

to explain them and their applications.

2.0 Intended Learning Outcomes (ILOs)

At the end of this unit, you should be able to:

 state the types of memory we have

 state the sub-types of memory

 explain their operations and application.

3.0 Main Content

3.1 Classifications Memory

Memories are classified according to their functions, content retention

and data access method. Its performance is measured against each other

in terms of speed, cost per bit and power dissipation. Figure 1 shows the

classifications of memory.

CIT344 INTRODUCTION TO COMPUTER DESIGN

136

Fig 1: Classification of memories

Three basic types of memories are:

 Semiconductor memories

 Magnetic memories

 Optical medium-based memories.

Semiconductor Memories

This type of memory, is made up of semiconductor devices whose basic

storage cells are transistor circuits. There are basically two types of

semiconductor memories:

 Random Access Memory (RAM) and

 Read-Only Memory (ROM).

RAM allows a read or write operation to be carried out at any address.

All locations are accessible in equal time. RAM memories do not store

permanent data. As soon as the power supply to the memory chip is

turned off, the entire data stored in the memory is lost permanently.

CIT344 INTRODUCTION TO COMPUTER DESIGN

137

RAM memories are also known as volatile memories as they lose data

when the power is turned off.

ROM chips retain data permanently even if the power to a ROM chip is

turned off. ROM chips are also known as non-volatile memory chips

due to their ability to retain data permanently. Since ROM chips are read

only, therefore user cannot write any information to ROM chips. ROM

chips are programmed by the manufacturer and contain important

information which is required to start (Boot Up) the computer.

3.1.1 Random Access Memory (RAM)

RAM is divided into two types, Static RAM which uses flip-flops as

storage elements and Dynamic RAM which uses capacitors to store

binary information. In a Static RAM each cell which is capable of

storing a binary 0 or 1 is made up of a flip-flop which retains

information as long as power continues to be supplied to the flip-flop.

Dynamic RAM on the other hand uses a capacitor to store a single bit of

data. To store binary 1, the capacitor is charged and to store binary 0, the

capacitor is in the uncharged state. Capacitors over a period of time lose

their charge and unless the capacitors are refreshed the information

stored by the capacitor is lost. Dynamic memories periodically charge

their capacitors by implementing a refresh cycle. Static memories are

faster than Dynamic memories therefore data access in Static memories

is faster as compared to dynamic memories. Dynamic memories on the

other hand have a high density and can store much more data per unit

area and at a lesser cost. Dynamic memories have a high storage density,

as capacitors are simpler to implement and occupy a very small

semiconductor area as compared to flip-flops.

3.1.1.1 Static RAM

Each cell of a Static RAM is implemented using a flip-flop which is

implemented using several MOSFET transistors. External power is

required to operate the transistors. As long as the external power is

applied the static memory cell retains the data. The circuit of a single

flipflop based cell which can store a binary 0 or 1 is shown.

CIT344 INTRODUCTION TO COMPUTER DESIGN

138

Fig. 1: Circuit Diagram of a Static Memory Cell based on a Flip-

Flop

The flip-flop used to store a binary bit works like a latch. When the SEL

signal is activated, the output buffer is enabled allowing data to be read

out from the memory cell. When both the SEL and W(rite) signals are

activated the latch is configured in the transparent mode and the data

applied at the Data In line flows through the latch to the output. The

Data In and Data Out lines can be connected together to form a bi-

directional line which does not cause any problems with the reading or

writing of data. This is possible as the read and write operations takes

place at different time intervals. The flip-flop based cells are combined

to form an array. Additional logic is added to select cells at appropriate

locations and to read and write data. A 3 x 8 decoder decodes a 3-bit

address to select any one of the eight locations comprising of a group of

4-cells. For example, when the address is 000, the first output line of the

3 x 8 decoder is activated which is connected to the SEL input of the

four latches in the first row.

Similarly, address 111 activates the eighth output line of the 3 x 8

decoder which selects the four latches in the last row (location). The

memory array has four Data In lines to store the 4-bit data values at the

eight locations. Data In 3 and Data In 0 represents the most and least

significant bits of the 4- bit data respectively. The four Data In lines

connect the Data In inputs of all the latches in each column respectively.

The memory array also has four Data Out lines, each data line connects

the output of each latch in a column. The read and write operations are

controlled through the three signals W, CS and OE. The Chip Select

(CS) signal along with the Output Enable (OE) signal enable each of the

four tri-state buffers connected to end of each Data Out line. When data

is to be read from a memory array, the memory chip is selected and the

output enabled. The Write (W) signal along with the CS signal are used

to write data into any 4-bit location.

To write data 1001 at the 6th memory location, the address A2, A1 and

A0 bits are set to 110 which select the 6th row of the memory array. The

data 1001 is placed at the four Data In lines respectively. The CS and W

CIT344 INTRODUCTION TO COMPUTER DESIGN

139

signals are activated which set the four latches in the sixth row to

transparent mode allowing data 1001 applied at the four Data In lines to

be available at the Q outputs of the four latches respectively. As soon as

the CS and W signals are deactivated, the latches store the data value. A

16K x 8 memory is shown. The memory is capable of storing byte

values in 16 x 1024 locations. To address these unique locations,

fourteen address lines are required. The memory has eight bi-directional

data lines through which data is read/written at selected memory

locations. The three CS, WE and OE are shown to be active low.

Fig. 2: Internal Structure of an 8 x 4 Static RAM

CIT344 INTRODUCTION TO COMPUTER DESIGN

140

Fig. 3: 16K x 8 Static RAM

RAM chips are subdivided into Asynchronous RAM (ASRAM) and

Synchronous Burst RAM (SB SRAM). The Static memory described is

an Asynchronous SRAM, the operation of which does not depend upon

the clock signal. The read and write operations are carried out

asynchronously. Synchronous SRAM uses a clock signal which is used

by the microprocessor to synchronise its activities to synchronise the

read and write operations for faster operation. The block diagram of a

Synchronous Burst SRAM is shown.

Fig. 4: Block Diagram of a Synchronous Burst RAM

CIT344 INTRODUCTION TO COMPUTER DESIGN

141

Synchronous RAM is very similar to the Asynchronous RAM, in terms

of the memory array, the address decoders, read/write and enable inputs.

In the Asynchronous memory the various input signals are asynchronous

and are not tied to the clock, whereas in the Synchronous memory all the

inputs are synchronised with respect to the clock and are latched into

their various registers on an active clock pulse edge. In the diagram, the

external address, the WE and the CS external signals are latched in on a

positive clock transition simultaneously. The data that is to be written

into the memory is also latched into the Data Input Register at the same

positive clock transition. For a read operation the data is latched in the

Data Output register on the positive clock transition. There are two

variations of the Synchronous SRAM, the Flow-through and the

Pipelined SRAM. In the Flow-through SRAM there is no Data Output

Register so the data is asynchronously available on the data lines during

a read operation. In the Pipelined version there is a Data Output Register

which latches in the data read from the memory array.

3.1.1.2 Dynamic RAM

A static RAM uses a latch to store a single bit of information. Four gates

are used to implement a latch. In terms of transistors, 4 to 6 transistors

are required to implement a single storage cell. In order to build

memories with higher densities, a single transistor is used to store a

binary value. A single transistor cannot store a binary value however it

is used to charge and discharge a capacitor. A single memory cell is thus

implemented using a single transistor and a capacitor which occupy

lesser space as compared to the six transistors which are used to

implement a single Static RAM cell. Thus, the density of the capacitor

based memory is significantly increased. The capacitor based memory is

known as a Dynamic RAM (DRAM). The drawback of DRAM is the

discharging of the capacitor over a period of time. Unless the capacitor

is periodically recharged all the information stored in terms of binary

bits in a capacitor based memory array is lost. The extra circuitry

required to refresh the capacitor complicates the operation of the

DRAM. The circuit diagram of a single DRAM capacitor based memory

cell is shown. The capacitor is connected through a MOSFET which

connects or disconnects the column line at B to the capacitor at D. If the

row is set at logic high the MOSFET connects the column line to the

capacitor. If the row line is set to logic low the MOSFET disconnects

the column line form the capacitor.

CIT344 INTRODUCTION TO COMPUTER DESIGN

140

Fig. 5: Writing a 1 or 0 into the DRAM Cell

A write operation allows a logic 1 or 0 to be stored in a DRAM cell

(capacitor). The appropriate cell is selected by specifying the address of

the memory location which is decoded and the row connecting the

desired cell is activated. The R/W signal is set to logic low indicating a

write operation which enables the tri-state Input Buffer. The logic 1

which is to be stored in the memory cell is applied at the DIN data line

which is available at A on the column line. The row line is selected (set

to logic high) which allows the MOSFET to connect column B to

capacitor D. The capacitor is charged to logic 1 voltage level via ABD.

A Write operation to store logic 0 in a DRAM cell is similar. The

appropriate row is selected by specifying the storage location address.

The R/W signal is set to logic low which enables the Input Buffer.

The logic 0 to be stored in the DRAM cell is applied at the DIN which is

stored on the capacitor via ABD. The thick line in the diagram indicates

the data path from DIN to the storage capacitor. The read operation is

accomplished by specifying the address of the location from which data

is to be read. The DRAM address decoder activates the appropriate row.

The R/W signal is set to logic high which enables the output buffer. The

logic 1 or 0 stored on the capacitor is available at DOUT through path

DBA.

The capacitor cannot retain the charge; therefore it has to be periodically

charged through a refresh cycle. The Refresh Buffer is enabled by

setting the Refresh signal to high. The input of the Refresh Buffer is

connected to the output buffer/sense amplifier. The R/W signal is set to

logic high during the Refresh cycle allowing the information stored on

the capacitor to be available at the output of the Output Buffer/Sense

CIT344 INTRODUCTION TO COMPUTER DESIGN

142

amplifier. The information is feed back to the capacitor through the

Refresh Buffer via path CBD.

Fig. 6: Reading a 0 or 1 from a DRAM Cell

3.1.1.3 Types of DRAMS

There are several different types of DRAMS available.

• Fast Page Mode DRAM: Compared to random access read/write,

FAST Page Mode is faster where successive columns on the

same row are read/written in successively by asserting the CAS

strobe signal. The CAS signal when de-asserted, disables the

DOUT data line, therefore the next column address cannot occur

unless the data at the current address is latched by the external

system reading data from the DRAM. The access speed of the

DRAM during read operation is therefore limited by the external

system latching the data available on the DOUT line.

• Extended Data Output (EDO) DRAM: The memory in its

operation is similar to the FPMDRAM; however the CAS signal

doesn‘t disable the DOUT when it goes to its non-asserted state.

Thus, the valid data on the DOUT line can be remain until the CAS

signal is asserted again to access the next column. Thus, the next

column address can be accessed before the external system

accepts the current data.

• Synchronous DRAM: The DRAM operations are tied to a clock

signal that also times the microprocessor operations. This allows

the DRAM to closely synchronise with the microprocessor.

CIT344 INTRODUCTION TO COMPUTER DESIGN

143

3.1.2 Read-Only Memory (ROM)

A ROM contains permanent data that cannot be changed. Thus, ROM

memory does not allow write operation. A ROM stores data that are

used repeatedly in system applications, such as tables, conversions,

programmed instructions for system initialisation and operation. ROMs

retain data when the power is turned off.

Fig. 7: General Architecture of a ROM

A 16 x 8 ROM is shown. A 4-bit address is decoded by a 4 x 16 decoder

which selects the appropriate row line. The MOSFETs connected to the

selected row output logic 1 on the respective column lines. The

MOSFETs that are not connected output logic 0.The terminating resistor

connected to the end of each column line ensures that the output line

stays low when a MOSFET outputs logic 0.

Fig. 8: ROM Cell Storing a Logic 1 and Logic 0

CIT344 INTRODUCTION TO COMPUTER DESIGN

144

Fig. 9: Internal Structure of a 264 x 4 ROM

ROMs are of different types:

• Mask ROM: Data is permanently stored during the

manufacturing process.

• PROM: Programmable ROM allows storage of data by the user

using a PROM programmer. The PROM once programmed stores

the data permanently.

• EPROM: Erasable PROM allows erasing of stored data and

reprogramming.

• UV EPROM: Is a programmable ROM. Data is erased by

exposing the PROM to Ultraviolet light.

• EEPROM: Electrically Erasable PROM is erased electrically.

EEPROM allows in-circuit programming and doesn‘t need to be

removed from the circuit for erasure or programming.

3.1.2.1 ROM Application

The 264 x 4 ROM can be used as conversion table to convert 4-bit

binary values to 4-bit equivalent Gray Code values. The 4-bit code

which is to be converted is applied as an address at the 4-bit address

input of the ROM. At each of the 256 locations corresponding to the 256

addresses 256 Gray Code values are stored. The 4-bit Gray Code

contents stored at the first 16 locations of the ROM are shown. ROM

can also be used as a simple table. Each location in the ROM stores a

value which can be accessed by specifying the location address. Look-

Up tables used in computers can be implemented using ROMs.

CIT344 INTRODUCTION TO COMPUTER DESIGN

145

Table 1: ROM Programmed to Convert 4-Bit Binary to 4-Bit Gray

Code

3.1.3 Flash Memory

An ideal memory should have high density, have read/write capability,

should be nonvolatile, have fast access time and should be cost effective.

The ROM, PROM, EPROM, EEPROM, SRAM and DRAM all exhibit

some of these characteristics; however, none of these memories have all

the mentioned characteristics except for the FLASH memory.

FLASH memories have high density, that is, they store more

information per unit area as more storage cells are implemented per unit

area. These memories have read/write capability and are non-volatile

and can store data for indefinite time period. The high density FLASH

memory cell is implemented using a single floating-gate MOS transistor.

A data bit is stored as a charge (logic 0) or the absence of a charge (logic

1) on the floating gate. The amount of charge present o the floating gate

determines if the transistor will turn and conduct current from the drain

to the source when a control voltage is applied at the Control rate during

the read operation.

CIT344 INTRODUCTION TO COMPUTER DESIGN

146

Fig. 10: MOS Transistor with Charge (logic 0) and no Charge

(logic 1)

3.1.3.1 Flash Memory Operations

FLASH memory operations are classified into

• Programming Operation

• Read Operation

• Erase Operation

Programming Operation

Initially, all cells are at the logic 1 state - that is with no charge. The

programming operation adds charge to the floating gate of those cells

that are to store a logic 0. No charge is added to those gates that are to

store logic 1. The charges are stored by applying a positive voltage at

the Control Gate with respect to the Source which attracts electrons to

the floating gate. Once the gate is charged it retains the charge for years.

Read Operation

During the read operation a positive voltage is applied to the MOS

transistor control gate. If a negative charge is stored on the gate then the

positive read voltage is not sufficient to overcome the negative charge

therefore the transistor is not turned on. On the other hand if there is no

or small amount of negative charge stored, the positive read voltage is

sufficient to overcome the negative charge turning on the transistor.

When the transistor is turned on there is a current from the drain to the

source of the cell transistor. The presence of this current is sensed to

indicate a 1. The absence of this current indicates a 0.

CIT344 INTRODUCTION TO COMPUTER DESIGN

147

Erase Operation

During the erase operation charge is removed from the memory cell. A

sufficiently large positive voltage is applied at the source with respect to

the control gate. The voltage applied across the control gate and source

is opposite to the voltage applied during programming. If charges are

present on the gate, the positive voltage supply at the source attracts the

electrons depleting the gate. A flash memory is erased prior to

programming.

4.0 Self-Assessment Exercise(s)
1. Extensively discuss the different types of ROM we have.

2. Discuss extensively with diagrams and examples, the two types of memory we

have.

5.0 Conclusion

Two major categories of memory chips are the Random Access Memory

(RAM) and Read-Only Memory (ROM). RAM allows a read or write

operation to be carried out at any address. All locations are accessible in

equal time. RAM memories do not store permanent data. As soon as the

power supply to the memory chip is turned off, the entire data stored in

the memory is lost permanently.

ROM chips retain data permanently even if the power to a ROM chip is

turned off.

RAM is divided into two types, Static RAM which uses flip-flops as

storage elements and Dynamic RAM which uses capacitors to store

binary information.

Static Memories are faster than Dynamic memories therefore data access

in Static Memories is faster as compared to Dynamic Memories.

Dynamic memories on the other hand have a high density and can store

much more data per unit area and at a lesser cost. ROMs are of different

types: Mask ROM, PROM, EPROM, UV EPROM & EEPROM.

FLASH memories have high density, that is, they store more

information per unit area as more storage cells are implemented per unit

area.

FLASH Memory operations are classified into: Programming Operation,

Read Operation and Erase Operation.

CIT344 INTRODUCTION TO COMPUTER DESIGN

150

6.0 Summary

In this unit, we discussed about the types of memory, their applications

and operations.

7.0 Further Readings

Stallings W (2016). Computer Organization and architecture: Designing for Performance (10

th

edition). Pearson Education Limited.

Pedroni V.A (2020). Circuit Design with VHDL(3

rd
 Edition). The MIT Press Cambridge.

Sarkar S.K., De A.k., and Sarkar S (2014). Foundation of Digital Electronics and Logic
Design.

Pan Stanford

Mano M.M (2017). Digital Logic and Computer Design. Pearson India Education Services Pvt.

Ltd

Yasin M.,Rajendran J. (JV) and Sinanoglu O. (2020). Trustworthy Hardware Design:

Combinational Logic Locking TechniquesSpringer Nature

Ndjountche T. (2016). Digital Electronics 1: Combinational Logic Circuits. Wiley

Elahi A (2018). Computer System: Digital Design, Fundamentals of Computer Architecture
and

Assembly Language. Springer Nature

Patt Y. N (2019). Introduction to Computing Systems – From Bits and Gates to C and Beyond
(Online Version). Mc-Graw-Hill.

Verma A.K, Shama G and Singh K (2016). Wiley Acing The Gate: Computer Science and

Information Technology. Wiley India Pvt. Ltd.

Mano M.M, Kime C.R and Martin T (2015). Logic & Computer Design Fundamentals (5
th

edition). Pearson. Pg283

Faroughi N (2015). Digital Logic Design & Computer Organization: With Computer
Architecture for Security. McGraw-Hill Education.

Patterson D. A and Hennessy J.L (2016). Computer Organization & Design ARM Edition:

The

 Hardware Software Interface. Morgan Kaufmann.

Unsalan C and Tar B (2017). Digital System Design with FPGA Implementation Using

Verilog

 and VHDL. McGraw-Hill Education.

CIT344 INTRODUCTION TO COMPUTER DESIGN

151

Null L and Lobur J (2016). The Essentials of Computer Organization and Architecture (4
th

 edition). Jones & Barlett Learning.

Rafiquzzaman M (2014). Fundamentals of Digital Logic and Microcontrollers. John Wiley &

 Sons.

Roth, H. C. Jr & Kinney, L. L. (2014). Fundamentals of Logic Design (7
th
 edition). Cengage

Learning.

Tanenbaum, Andrew S. (2013). Structured Computer Organization.Prentice Hall (6th

ed).

CIT344 INTRODUCTION TO COMPUTER DESIGN

150

UNIT 3 MEMORY EXPANSION

CONTENTS

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content

3.1 Memory Expansion

4.0 Self-Assessment Exercise(s)

5.0 Conclusion

6.0 Summary

7.0 Further Readings

1.0 Introduction

This unit exposes us to the various ways and reasons memory is

expanded.

2.0 Intended Learning Outcomes (ILOs)

At the end of this unit, you should be able to:

5.1.1 state why memory is expanded

5.1.2 explain the roles of microprocessors in a computer system.

3.0 Main Content

3.1 Memory Expansion

Digital systems require different amounts of memory in the form of

RAM and ROM memory depending upon specific applications. A

computer requires large amounts of RAM memory to store multiple

application programs, data and the operating system.

In a computer, part of the RAM is reserved to support the Video

Memory, Stack and I/O buffers. The ROM used by a computer is

relatively very small as it stores few bytes of code used to Boot the

Computer system on power up.

Micro-controller based digital system designed for specific applications

do not have large memory requirement, in fact the total memory

requirement of such micro-controller systems is met by on-board RAM

and ROM having a total storage capacity of few hundred kilobytes.

CIT344 INTRODUCTION TO COMPUTER DESIGN

151

Computer and digital systems have the capability to allow RAM memory to be

expanded as the needed arises by inserting extra memory in dedicated memory sockets

on the computer motherboard. The total amount of memory that is supported by any

digital system depends upon the size of the address bus of the microprocessor or a

micro-controller. A microprocessor having an address bus of 16 bits can generate 216 or

65536 unique addresses to access 65536 locations which allows either a single 65536

location RAM or a combination of RAM and ROM totaling 65536 memory locations to

be connected to the microprocessor. It is also possible to initially have a 32768 location

RAM connected to the microprocessor with the remaining 32768 address locations

unoccupied allowing the microprocessor to execute a program that can be stored in

32768 locations.

The remaining memory space can be utilised latter by connecting

another 32768 location RAM.

Microprocessors used in computer systems have memory spaces of the

order of 232 and larger. The data unit size accessed by a microprocessor

when it issues an address to either read or write from or to a memory

also depends upon the microprocessor architecture more specifically the

number of the data lines. A microprocessor having an 8-bit data bus can

access a byte of information from any unique memory location. A

microprocessor having a 16- bit data bus allows two bytes to be

accessed from a memory location. Practically, microprocessors used in

computer systems have up to 64 bit wide data buses allowing up to 8

bytes of data to be accessed simultaneously. A microprocessor that

accesses 64-bits of data simultaneously requires RAM to be organised in

such a way that allows 8 bytes of data to be accessed when ever any

unique address is selected. On the other hand a microprocessor having a

data bus of only 8-bits requires RAM that allows only a single byte of

data to be accessed when ever any single address location is selected.

The total memory requirement of a computer or digital system is

determined by the size of the address and data bus of a microprocessor.

Microprocessors which have small address bus and a data bus have a

small memory space. Microprocessors which have wide address and

data buses have very large memory spaces which are rarely fully

occupied by RAM and ROM devices.

Memory, both RAM and ROM are implemented in fixed data unit sizes

of 1, 4 or 8 bits. Similarly, these memory devices are implemented

having sizes in terms of total addressable locations which are restricted

to address ranges between few hundred kilobytes to megabytes.

The memories that are available in fixed sizes have to be connected

together to form larger memories having appropriate data unit sizes and

total number of addressable locations to fulfill the memory space

requirements of a digital or computer system.

CIT344 INTRODUCTION TO COMPUTER DESIGN

152

Another important aspect of the RAM and ROM memories that are

manufactured are the addresses of each memory location. For example,

two 32Kbyte RAM chips have 215 locations each. The first addressable

locations in both the RAM chips have an address 0. Similarly, the

second and third locations in both the memory chips have addresses 1

and 2 respectively. If the two RAM chips are connected together to form

a 64 Kbyte RAM then one of 32Kbyte memory chips should respond to

the address between 0 and 32767 and the other 32Kbyte memory chip

should respond to the address 32768 and 65535. The two memory chips

have bases address 0 and 32768 respectively.

4.0 Self-Assessment Exercise(s)
State and explain 5 reasons we need to expand memory

5.0 Conclusion

Digital systems require different amounts of memory in the form of

RAM and ROM Memory depending upon specific applications. A

computer requires large amounts of RAM memory to store multiple

application programs, data and the operating system. The ROM used by

a computer is relatively very small as it stores few bytes of code used to

Boot the computer system on power up. The total memory requirement

of a computer or digital system is determined by the size of the address

and data bus of a microprocessor.

 6.0 Summary

In this unit we talked about ways and reasons why we should expand our

memory.

 7.0 Further Readings

Stallings W (2016). Computer Organization and architecture: Designing for Performance (10

th

edition). Pearson Education Limited.

Pedroni V.A (2020). Circuit Design with VHDL(3

rd
 Edition). The MIT Press Cambridge.

Sarkar S.K., De A.k., and Sarkar S (2014). Foundation of Digital Electronics and Logic
Design.

Pan Stanford

CIT344 INTRODUCTION TO COMPUTER DESIGN

153

Mano M.M (2017). Digital Logic and Computer Design. Pearson India Education Services Pvt.
Ltd

Yasin M.,Rajendran J. (JV) and Sinanoglu O. (2020). Trustworthy Hardware Design:

Combinational Logic Locking TechniquesSpringer Nature

Ndjountche T. (2016). Digital Electronics 1: Combinational Logic Circuits. Wiley

Elahi A (2018). Computer System: Digital Design, Fundamentals of Computer Architecture
and

Assembly Language. Springer Nature

Patt Y. N (2019). Introduction to Computing Systems – From Bits and Gates to C and Beyond
(Online Version). Mc-Graw-Hill.

Verma A.K, Shama G and Singh K (2016). Wiley Acing The Gate: Computer Science and

Information Technology. Wiley India Pvt. Ltd.

Mano M.M, Kime C.R and Martin T (2015). Logic & Computer Design Fundamentals (5
th

edition). Pearson. Pg283

Faroughi N (2015). Digital Logic Design & Computer Organization: With Computer
Architecture for Security. McGraw-Hill Education.

Patterson D. A and Hennessy J.L (2016). Computer Organization & Design ARM Edition:

The

 Hardware Software Interface. Morgan Kaufmann.

Unsalan C and Tar B (2017). Digital System Design with FPGA Implementation Using

Verilog

 and VHDL. McGraw-Hill Education.

Null L and Lobur J (2016). The Essentials of Computer Organization and Architecture (4
th

 edition). Jones & Barlett Learning.

Rafiquzzaman M (2014). Fundamentals of Digital Logic and Microcontrollers. John Wiley &

 Sons.

Roth, H. C. Jr & Kinney, L. L. (2014). Fundamentals of Logic Design (7
th
 edition). Cengage

Learning.

Tanenbaum, Andrew S. (2013). Structured Computer Organization.Prentice Hall (6th

ed).

CIT344 INTRODUCTION TO COMPUTER DESIGN

154

UNIT 4 MEMORY SUMMARY

CONTENTS

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content

3.1 Memory Summary

4.0 Self-Assessment Exercise(s)

5.0 Conclusion

6.0 Summary

7.0 Further Readings

1.0 Introduction

This unit summarises all that we have talked about memory. It does it in

a clear and concise manner for easy understanding.

2.0 Intended Learning Outcomes (ILOs)

At the end of this unit, you should be able to:

5.1.3 define memory

5.1.4 list the different memory types.

3.0 Main Content

3.1 Memory Summary

A summary of memory types and their characteristics are shown. The

Static Ram (SRAM) is non-volatile and is not a high density memory as

a latch is required to store a single bit of information. Implementation of

a latch requires almost six transistors. The Dynamic Ram is also non-

volatile however it offers high density memories as each storage cell

requires a single transistor and a capacitor. ROMs and PROMs retain

information permanently even if the supply voltage is removed. Since a

single transistor is used to store a logic 0 or 1 therefore ROMS and

PROMs are high density memories. EEPROMs allow data to be read or

written however the ability to change the data without having to remove

the EEPROM chip from a circuit board requires extra logic. Thus,

EEPROM memories are not high density memories.

CIT344 INTRODUCTION TO COMPUTER DESIGN

155

Table 1: A Summary of Memory Types

4.0 Self-Assessment Exercise(s)

1. Mention five memory types you know and give five differences

among them.

2. Write a detailed essay on what you have learned in this module.

5.0 Conclusion

Memory is of various types which have various characteristics and they

are summarised in this unit.

 6.0 Summary

This unit summarises the various memory types. The Static Ram

(SRAM) is non-volatile and is not a high density memory as a latch is

required to store a single bit of information.

7.0 Further Readings

Stallings W (2016). Computer Organization and architecture: Designing for Performance (10

th

edition). Pearson Education Limited.

Pedroni V.A (2020). Circuit Design with VHDL(3

rd
 Edition). The MIT Press Cambridge.

Sarkar S.K., De A.k., and Sarkar S (2014). Foundation of Digital Electronics and Logic
Design.

CIT344 INTRODUCTION TO COMPUTER DESIGN

156

Pan Stanford

Mano M.M (2017). Digital Logic and Computer Design. Pearson India Education Services Pvt.

Ltd

Yasin M.,Rajendran J. (JV) and Sinanoglu O. (2020). Trustworthy Hardware Design:

Combinational Logic Locking TechniquesSpringer Nature

Ndjountche T. (2016). Digital Electronics 1: Combinational Logic Circuits. Wiley

Elahi A (2018). Computer System: Digital Design, Fundamentals of Computer Architecture
and

Assembly Language. Springer Nature

Patt Y. N (2019). Introduction to Computing Systems – From Bits and Gates to C and Beyond
(Online Version). Mc-Graw-Hill.

Verma A.K, Shama G and Singh K (2016). Wiley Acing The Gate: Computer Science and

Information Technology. Wiley India Pvt. Ltd.

Mano M.M, Kime C.R and Martin T (2015). Logic & Computer Design Fundamentals (5
th

edition). Pearson. Pg283

Faroughi N (2015). Digital Logic Design & Computer Organization: With Computer
Architecture for Security. McGraw-Hill Education.

Patterson D. A and Hennessy J.L (2016). Computer Organization & Design ARM Edition:

The

 Hardware Software Interface. Morgan Kaufmann.

Unsalan C and Tar B (2017). Digital System Design with FPGA Implementation Using

Verilog

 and VHDL. McGraw-Hill Education.

Null L and Lobur J (2016). The Essentials of Computer Organization and Architecture (4
th

 edition). Jones & Barlett Learning.

Rafiquzzaman M (2014). Fundamentals of Digital Logic and Microcontrollers. John Wiley &

 Sons.

Roth, H. C. Jr & Kinney, L. L. (2014). Fundamentals of Logic Design (7
th
 edition). Cengage

Learning.

Tanenbaum, Andrew S. (2013). Structured Computer Organization.Prentice Hall (6th

ed).

CIT344 INTRODUCTION TO COMPUTER DESIGN

157

MODULE 5 INTRODUCTION TO

MICROPROCESSORS

Unit 1 Microprocessors

Unit 2 Central Processing Unit & Arithmetic and Logical Unit

Unit 3 Addressing Mode

UNIT 1 MICROPROCESSORS

CONTENTS

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content

3.1 Microprocessors

3.1.1 Microprocessor History

3.1.2 Microprocessor Design

3.1.3 Microprocessor Speed

3.1.4 Microprocessor Architecture

4.0 Self-Assessment Exercise(s)

5.0 Conclusion

6.0 Summary

7.0 Further Readings

1.0 Introduction

In this unit, we shall be discussing about microprocessors, their history,

design, speed and finally architecture.

2.0 Intended Learning Outcomes (ILOs)

At the end of this unit, you should be able to:

 define microprocessors

 state the history of microprocessors

 explain their architecture, speed and design.

CIT344 INTRODUCTION TO COMPUTER DESIGN

158

3.0 Main Content

3.1 Microprocessors

3.1.1 Microprocessor History

A microprocessor (also known as a CPU or central processing unit) is a

complete computation engine that is fabricated on a single chip. The

first microprocessor was the Intel 4004, introduced in 1971. The 4004

was not very powerful all it could do was add and subtract, and it could

only do that 4 bits at a time. But it was amazing that everything was on

one chip. Prior to the 4004, engineers built computers either from

collections of chips or from discrete components (transistors wired one

at a time). The 4004 powered one of the first portable electronic

calculators.

The first microprocessor to make it into a home computer was the Intel

8080, a complete 8-bit computer on one chip, introduced in 1974. The

first microprocessor to make a real splash in the market was the Intel

8088, introduced in 1979 and incorporated into the IBM PC (which first

appeared around 1982). If you are familiar with the PC market and its

history, you know that the PC market moved from the 8088 to the 80286

to the 80386 to the 80486 to the Pentium to the Pentium II to the

Pentium III to the Pentium 4. All of these microprocessors are made by

Intel and all of them are improvements on the basic design of the 8088.

The Pentium 4 can execute any piece of code that ran on the original

8088, but it does it about 5,000 times faster!

The following table helps you to understand the differences between the

different processors that Intel has introduced over the years.

CIT344 INTRODUCTION TO COMPUTER DESIGN

159

Table 1: Different Processors Produced over Time by Intel

Name
width

Date Transistors Microns Clock speed Data

8080 1974 6,000 6 2 MHz 8 bits

8088
8-bit bus

1979 29,000 3 5 MHz 16 bits,

80286 1982 134,000 1.5 6 MHz 16 bits

80386 1985 275,000 1.5 16 MHz 32 bits

80486 1989 1,200,000 1 25 MHz 32 bits

Pentium
64-bit bus

1993 3,100,000 0.8 60 MHz 32 bits,

Pentium II 1997 7,500,000 0.35 233 MHz 32 bits,
64-bit bus

Pentium III 1999 9,500,000 0.25 450 MHz 32 bits,
64-bit bus

Pentium 4 2000 42,000,000 0.18 1.5 GHz 32 bits,
64-bit bus

Xeon 2001 42,000,000 0.18 1.7GHz

Pentium M 2003 55,000,000 90nm 1.7GHz
32-bits

Core‖2 Duo 2006 291,000,000 65nm 266GHz

Core‖2 Duo 2008 410,000,000 45nm 2.4GHz

Atom 2008 47,000,000 45nm 1.86GHz

2nd generation 2010 1.16billion 32nm 3.8GHz
Intel Core
Next generation 64-bit

3
rd

 generation
Intel Core

64-bit 2012 1.4billion 22nm 2.9GHz

3.1.2 Microprocessor Design

A microprocessor executes programs including the operating system

itself and user applications all of which perform useful work. From the

microprocessor‘s point of view, a program is simply a group of low-

level instructions that the microprocessor executes more or less in

sequence as it receives them. How efficiently and effectively the

microprocessor executes instructions is determined by its internal

design, also called its architecture. The CPU architecture, in conjunction

with CPU speed, determines how fast the CPU executes instructions of

various types. The external design of the microprocessor, specifically its

CIT344 INTRODUCTION TO COMPUTER DESIGN

160

external interfaces, determines how fast it communicates information

back and forth with external cache, main memory, the chipset, and other

system components.

Microprocessor Components

Modern microprocessors have the following internal components:

1. Execution unit

The core of the CPU, the execution unit processes instructions.

2. Branch predictor

The branch predictor attempts to guess where the program will jump (or

branch) next, allowing the prefetch and decode unit to retrieve

CIT344 INTRODUCTION TO COMPUTER DESIGN

161

instructions and data in advance so that they will already be available

when the CPU requests them.

3. Floating-point unit

The floating-point unit (FPU) is a specialised logic unit optimised to

perform non-integer calculations much faster than the general-purpose

logic unit can perform them.

4. Primary cache

Also called Level 1 or L1 cache, primary cache is a small amount of

very fast memory that allows the CPU to retrieve data immediately,

rather than waiting for slower main memory to respond.

5. Bus interfaces

Bus interfaces are the pathways that connect the microprocessor to

memory and other components. For example, modern microprocessors

connect to the chipset Northbridge via a dedicated bus called the

frontside bus (FSB) or host bus.

3.1.3 Microprocessor Speed

The microprocessor clock coordinates all CPU and memory operations

by periodically generating a time reference signal called a clock cycle or

tick. Clock frequency is specified in megahertz (MHz), which specifies

millions of ticks per second, or gigahertz (GHz), which specifies billions

of ticks per second. Clock speed determines how fast instructions

execute. Some instructions require one tick, others multiple ticks, and

some processors execute multiple instructions during one tick. The

number of ticks per instruction varies according to micro processor

architecture, its instruction set, and the specific instruction.

Complex Instruction Set Computer (CISC)

Microprocessors use complex instructions. Each requires many clock

cycles to execute, but accomplishes a lot of work.

Reduced Instruction Set Computer (RISC)

Microprocessors use fewer, simpler instructions. Each takes few ticks

but accomplishes relatively little work.

These differences in efficiency mean that one CPU cannot be directly

compared to another purely on the basis of clock speed. For example, an

CIT344 INTRODUCTION TO COMPUTER DESIGN

160

AMD Athlon XP 3000+, which actually runs at 2.167 GHz, may be

faster than an Intel Pentium 4 running at 3.06 GHz, depending on the

application. The comparison is complicated because different CPUs

have different strengths and weaknesses. For example, the Athlon is

generally faster than the Pentium 4 clock for clock on both integer and

floating-point operations (that is, it does more work per CPU tick), but

the Pentium 4 has an extended instruction set that may allow it to run

optimised software literally twice as fast as the Athlon. The only safe

use of direct clock speed comparisons is within a single family. Also,

even within a family, processors with similar names may differ

substantially internally.

3.1.4 Microprocessor Architecture

Clock speeds increase every year, but the laws of physics limit how fast

CPUs can run. If designers depended only on faster clock speeds for

better performance, CPU performance would have hit the wall years

ago. Instead, designers have improved internal architectures while also

increasing clock speeds. Recent CPUs run at more than 650 times the

clock speed of the PC/XT‘s 8088 processor, but provide 6,500 or more

times the performance. Here are some major architectural improvements

that have allowed CPUs to continue to get faster every year:

 Wider data busses and registers

For a given clock speed, the amount of work done depends on the

amount of data processed in one operation. Early CPUs processed data

in 4-bit (nibble) or 8-bit (byte) chunks, whereas current CPUs process 32

or 64 bits per operation.

 FPUs

All CPUs work well with integers, but processing floating-point

numbers to high precision on a general-purpose CPU requires a huge

number of operations.

All modern CPUs include a dedicated FPU that handles floating-point

operations efficiently.

 Pipelining

Early CPUs took five ticks to process an instruction—one each to load

the instruction, decode it, retrieve the data, execute the instruction, and

write the result. Modern CPUs use pipelining, which dedicates a

separate stage to each process and allows one full instruction to be

executed per clock cycle.

CIT344 INTRODUCTION TO COMPUTER DESIGN

162

 Superscalar architecture

If one pipeline is good, more are better. Using multiple pipelines allows

multiple instructions to be processed in parallel, an architecture called

superscalar. A superscalar processor processes multiple instructions per

tick.

4.0 Self-Assessment Exercise(s)

1. Explain in details with the aid of diagrams, the components of a

modern microprocessor.

2. Write short notes with diagrams on the following terms as it relates

to microprocessors:

(a) Pipelining (b) Execution Unit (c) Primary cache (d)Complex

Instruction Set Computer (CISC).

5.0 Conclusion

A microprocessor also known as a CPU or central processing unit is a

complete computation engine that is fabricated on a single chip.

A Microprocessor executes programs including the operating system

itself and user applications all of which perform useful work.

How efficiently and effectively the microprocessor executes instructions

is determined by its internal design, also called its architecture.

Modern microprocessors have the following internal components:

execution unit, branch predictor, floating-point unit, primary cache &

bus interfaces.

The microprocessor clock coordinates all CPU and memory operations

by periodically generating a time reference signal called a clock cycle or

tick.

6.0 Summary

This unit discusses microprocessors and the basic information about

them.

CIT344 INTRODUCTION TO COMPUTER DESIGN

163

7.0 Further Readings

Stallings W (2016). Computer Organization and architecture: Designing for Performance (10

th

edition). Pearson Education Limited.

Pedroni V.A (2020). Circuit Design with VHDL(3

rd
 Edition). The MIT Press Cambridge.

Sarkar S.K., De A.k., and Sarkar S (2014). Foundation of Digital Electronics and Logic
Design.

Pan Stanford

Mano M.M (2017). Digital Logic and Computer Design. Pearson India Education Services Pvt.

Ltd

Yasin M.,Rajendran J. (JV) and Sinanoglu O. (2020). Trustworthy Hardware Design:

Combinational Logic Locking TechniquesSpringer Nature

Ndjountche T. (2016). Digital Electronics 1: Combinational Logic Circuits. Wiley

Elahi A (2018). Computer System: Digital Design, Fundamentals of Computer Architecture
and

Assembly Language. Springer Nature

Patt Y. N (2019). Introduction to Computing Systems – From Bits and Gates to C and Beyond
(Online Version). Mc-Graw-Hill.

Verma A.K, Shama G and Singh K (2016). Wiley Acing The Gate: Computer Science and

Information Technology. Wiley India Pvt. Ltd.

Mano M.M, Kime C.R and Martin T (2015). Logic & Computer Design Fundamentals (5
th

edition). Pearson. Pg283

Faroughi N (2015). Digital Logic Design & Computer Organization: With Computer
Architecture for Security. McGraw-Hill Education.

Patterson D. A and Hennessy J.L (2016). Computer Organization & Design ARM Edition:

The

 Hardware Software Interface. Morgan Kaufmann.

Unsalan C and Tar B (2017). Digital System Design with FPGA Implementation Using

Verilog

 and VHDL. McGraw-Hill Education.

Null L and Lobur J (2016). The Essentials of Computer Organization and Architecture (4
th

 edition). Jones & Barlett Learning.

Rafiquzzaman M (2014). Fundamentals of Digital Logic and Microcontrollers. John Wiley &

 Sons.

CIT344 INTRODUCTION TO COMPUTER DESIGN

164

Roth, H. C. Jr & Kinney, L. L. (2014). Fundamentals of Logic Design (7
th
 edition). Cengage

Learning.

Tanenbaum, Andrew S. (2013). Structured Computer Organization.Prentice Hall (6th

ed).

The Evolution of the Revolution: Explore the Intel Technology Innovations that have

changed the world http://download.intel.com/pressroom/kits/IntelProcessorHistory.pdf

http://download.intel.com/pressroom/kits/IntelProcessorHistory.pdf

CIT344 INTRODUCTION TO COMPUTER DESIGN

165

UNIT 2 CENTRAL PROCESSING UNIT &

ARITHMETIC AND LOGIC UNIT

CONTENTS

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content

3.1 Central Processing Unit &Arithmetic and Logical Unit

3.1.1 Central Processing Unit

3.1.2 CPU Registers

3.1.3 Polling Loops and Interrupts

3.1.4 Arithmetic & Logical Unit

4.0 Self-Assessment Exercise(s)

5.0 Conclusion

6.0 Summary

7.0 Further Readings

1.0 Introduction

This unit exposes us to the Central Processing Unit and the Arithmetic

& Logical Unit.

2.0 Intended Learning Outcomes (ILOs)

At the end of this unit, you should be able to:

 explain what the CPU is

 state the various terms associated with the CPU

 explain what the ALU is.

3.0 Main Content

3.1 Central Processing Unit & Arithmetic & Logical Unit

3.1.1 Central Processing Unit

A computer is a complex system consisting of many different

components. But at the heart or the brain of the computer is a single

component that does the actual computing. This is the Central

Processing Unit (CPU). In a modern desktop computer, the CPU is a

single "chip" on the order of one square inch in size. The job of the CPU

is to execute programs.

CIT344 INTRODUCTION TO COMPUTER DESIGN

166

A program is simply a list of unambiguous instructions meant to be

followed mechanically by a computer. A computer is built to carry out

instructions that are written in a very simple type of language called

machine language. Each type of computer has its own machine

language, and it can directly execute a program only if it is expressed in

that language. (It can execute programs written in other languages if

they are first translated into machine language.)

When the CPU executes a program, that program is stored in the

computer's main memory (also called the RAM or random access

memory). In addition to the program, memory can also hold data that is

being used or processed by the program. Main memory consists of a

sequence of locations. These locations are numbered, and the sequence

number of a location is called its address. An address provides a way of

picking out one particular piece of information from among the millions

stored in memory. When the CPU needs to access the program

instruction or data in a particular location, it sends the address of that

information as a signal to the memory; the memory responds by sending

back the data contained in the specified location. The CPU can also store

information in memory by specifying the information to be stored and

the address of the location where it is to be stored.

Fig. 1: CPU ―Fetch-Execute‖ Cycle

The CPU ―fetch-execute‖ cycle include:

 fetch instruction from memory

 decode instruction

 perform operations required by the instruction.

CIT344 INTRODUCTION TO COMPUTER DESIGN

167

A simple program for the above cycle is shown below:

function fetch- execute {

pc=init_pc();
while (not_done) {
opcode = fetch_instr(memory[pc]);

execute(opcode);

pc=pc+1;

}

}
function execute(opcode) {

decop = decode(opcode);

if need_data(decop) {

data = get_data(decop);

}
result = compute(decop, data);

if save_result(decop) {

save_result(decop, result);

}

}

3.1.2 CPU Registers

CPU registers are very special memory locations constructed from flip-

flops. They are not part of main memory; the CPU implements them on-

chip. Various members of the 80 x 86 family have different register

sizes. The 886, 8286, 8486, and 8686 (x86 from now on) CPUs have

exactly four registers, all 16 bits wide. All arithmetic and location

operations occur in the CPU registers.

Because the x86 processor has so few registers, we'll give each register

its own name and refer to it by that name rather than its address. The

names for the x86 registers are:

AX - The accumulator register

BX - The base address register

CX - The count register

DX - The data register.

Besides the above registers, which are visible to the programmer, the

x86 processors also have an instruction pointer register which contains

the address of the next instruction to execute. There is also a flags

register that holds the result of a comparison. The flags register

remembers if one value was less than, equal to, or greater than another

value.

CIT344 INTRODUCTION TO COMPUTER DESIGN

168

Because registers are on-chip and handled specially by the CPU, they

are much faster than memory. Accessing a memory location requires

one or more clock cycles. Accessing data in a register usually takes zero

clock cycles. Therefore, you should try to keep variables in the registers.

Register sets are very small and most registers have special purposes

which limit their use as variables, but they are still an excellent place to

store temporary data.

3.1.3 Polling Loops and Interrupts

The CPU spends almost all its time fetching instructions from memory

and executing them. However, the CPU and main memory are only two

out of many components in a real computer system. A complete system

contains other devices such as:

 A hard disk for storing programs and data files. (Note that main

memory holds only a comparatively small amount of information,

and holds it only as long as the power is turned on. A hard disk is

necessary for permanent storage of larger amounts of

information, but programs have to be loaded from disk into main

memory before they can actually be executed.)

 A keyboard and mouse for user input.

 A monitor and printer which can be used to display the

computer's output.

 A network interface that allows the computer to communicate

with other computers that are connected to it on a network.

 A scanner that converts images into coded binary numbers that

can be stored and manipulated on the computer.

The list of devices is entirely open ended, and computer systems are

built so that they can easily be expanded by adding new devices.

Somehow the CPU has to communicate with and control all these

devices. The CPU can only do this by executing machine language

instructions (which is all it can do, period). So, for each device in a

system, there is a device driver, which consists of software that the CPU

executes when it has to deal with the device. Installing a new device on

a system generally has two steps: plugging the device physically into the

CIT344 INTRODUCTION TO COMPUTER DESIGN

169

computer, and installing the device driver software. Without the device

driver, the actual physical device would be useless, since the CPU would

not be able to communicate with it.

A computer system consisting of many devices is typically organised by

connecting those devices to one or more busses. A bus is a set of wires

that carry various sorts of information between the devices connected to

those wires. The wires carry data, addresses, and control signals. An

address directs the data to a particular device and perhaps to a particular

register or location within that device. Control signals can be used, for

example, by one device to alert another that data is available for it on the

data bus.

Now, devices such as keyboard, mouse, and network interface can

produce input that needs to be processed by the CPU. How does the

CPU know that the data is there? One simple idea, which turns out to be

not very satisfactory, is for the CPU to keep checking for incoming data

over and over. Whenever it finds data, it processes it. This method is

called polling, since the CPU polls the input devices continually to see

whether they have any input data to report. Unfortunately, although

polling is very simple, it is also very inefficient. The CPU can waste an

awful lot of time just waiting for input.

To avoid this inefficiency, interrupts are often used instead of polling.

An interrupt is a signal sent by another device to the CPU. The CPU

responds to an interrupt signal by putting aside whatever it is doing in

order to respond to the interrupt. Once it has handled the interrupt, it

returns to what it was doing before the interrupt occurred. For example,

when you press a key on your computer keyboard, a keyboard interrupt

is sent to the CPU. The CPU responds to this signal by interrupting what

is doing, reading the key that you pressed, processing it, and then

returning to the task it was performing before you pressed the key.

Again, you should understand that this is purely mechanical process: A

device signals an interrupt simply by turning on a wire. The CPU is built

so that when that wire is turned on, it saves enough information about

what it is currently doing so that it can return to the same state later.

This information consists of the contents of important internal registers

such as the program counter. Then the CPU jumps to some

predetermined memory location and begins executing the instructions

stored there. Those instructions make up an interrupt handler that does

the processing necessary to respond to the interrupt. (This interrupt

handler is part of the device driver software for the device that signalled

the interrupt.) At the end of the interrupt handler is an instruction that

tells the CPU to jump back to what it was doing; it does that by restoring

its previously saved state.

CIT344 INTRODUCTION TO COMPUTER DESIGN

170

Interrupts allow the CPU to deal with asynchronous events. In the

regular fetch-and-execute cycle, things happen in a predetermined order;

everything that happens is "synchronised" with everything else.

Interrupts make it possible for the CPU to deal efficiently with events

that happen "asynchronously", that is, at unpredictable times.

As another example of how interrupts are used, consider what happens

when the CPU needs to access data that is stored on the hard disk. The

CPU can only access data directly if it is in main memory. Data on the

disk has to be copied into memory before it can be accessed.

Unfortunately, on the scale of speed at which the CPU operates, the disk

drive is extremely slow. When the CPU needs data from the disk, it

sends a signal to the disk drive telling it to locate the data and get it

ready. (This signal is sent synchronously, under the control of a regular

program.) Then, instead of just waiting the long and unpredictable

amount of time the disk drive will take to do this, the CPU goes on with

some other task. When the disk drive has the data ready, it sends an

interrupt signal to the CPU. The interrupt handler can then read the

requested data.

All modern computers use multitasking to perform several tasks at once.

Some computers can be used by several people at once. Since the CPU

is so fast, it can quickly switch its attention from one user to another,

devoting a fraction of a second to each user in turn. This application of

multitasking is called timesharing. But even modern personal computers

with a single user use multitasking. For example, the user might be

typing a paper while a clock is continuously displaying the time and a

file is being downloaded over the network.

Each of the individual tasks that the CPU is working on is called a

thread. (Or a process; there are technical differences between threads

and processes, but they are not important here.) At any given time, only

one thread can actually be executed by a CPU. The CPU will continue

running the same thread until one of several things happens:

 the thread might voluntarily yield control, to give other threads a

chance to run

 the thread might have to wait for some asynchronous event to

occur. For example, the thread might request some data from the

disk drive, or it might wait for the user to press a key. While it is

waiting, the thread is said to be blocked, and other threads have a

chance to run. When the event occurs, an interrupt will "wake up"

the thread so that it can continue running

 the thread might use up its allotted slice of time and be suspended

to allow other threads to run.

CIT344 INTRODUCTION TO COMPUTER DESIGN

171

Not all computers can "forcibly" suspend a thread in this way; those that

can are said to use preemptive multitasking. To do preemptive

multitasking, a computer needs a special timer device that generates an

interrupt at regular intervals, such as 100 times per second. When a

timer interrupt occurs, the CPU has a chance to switch from one thread

to another, whether the thread that is currently running likes it or not.

Ordinary users, and indeed ordinary programmers, have no need to deal

with interrupts and interrupt handlers. They can concentrate on the

different tasks or threads that they want the computer to perform; the

details of how the computer manages to get all those tasks done are not

relevant to them. In fact, most users, and many programmers, can ignore

threads and multitasking altogether. However, threads have become

increasingly important as computers have become more powerful and as

they have begun to make more use of multitasking. Indeed, threads are

built into the Java programming language as a fundamental

programming concept.

Just as important in Java and in modern programming in general is the

basic concept of asynchronous events. While programmers don't

actually deal with interrupts directly, they do often find themselves

writing event handlers, which, like interrupt handlers, are called

asynchronously when specified events occur. Such "event-driven

programming" has a very different feel from the more traditional

straight-though, synchronous programming.

By the way, the software that does all the interrupt handling and the

communication with the user and with hardware devices is called the

operating system. The operating system is the basic, essential software

without which a computer would not be able to function. Other

programs, such as word processors and World Wide Web browsers, are

dependent upon the operating system. Common operating systems

include UNIX, DOS, Windows, and the Macintosh OS.

3.1.4 Arithmetic and Logical Unit (ALU)

The Arithmetic and Logical Unit (ALU) is where most of the action

takes place inside the CPU. Microprocessors have Arithmetic and Logic

Units, a combinational circuit that can perform any of the arithmetic

operations and logic operations on two input values. The operation to be

performed is selected by set of inputs known as function select inputs.

There are different MSI ALUs available that have two 4-bit inputs a 4-

bit output and three to five function select inputs that allows up to 32

different functions to be performed.

CIT344 INTRODUCTION TO COMPUTER DESIGN

172

Three commercially available 4-bit ALUs are:

• 74XX181: The 4-bit ALU has five function select inputs allowing

it to perform 32 different Arithmetic and Logic operations.

• 74XX381: The 4-bit ALU only has three function select inputs

allowing only 8 different arithmetic and logic functions.

• 74XX382: The 4-bit ALU is similar to the 74XX381, the only

difference is that 74XX 381 provides group-carry look-ahead

outputs and 74XX382 provides ripple carry and overflow outputs

Table 1: Function Table of 74XX381 4-Bit ALU

Input

S2 S1 S0 Function

0 0 0 F = 0000

0 0 1 F = B-A-1+Cin

0 1 0 F = A-B-1+Cin

1 0 0 F = A+B+Cin

1 0 0 F = A⊕B

1 0 1 F = A + B

1 1 0 F = A.B

1 1 1 F = 1111

4.0 Self-Assessment Exercise(s)

Write short notes on the following registers:

(a) the accumulator register

(b) the base address register

(c) the count register

(d) the data register.

5.0 Conclusion

The CPU ―fetch-execute‖ cycle include:

fetch instruction from memory,

decode instruction and

perform operations required by the instruction.

The Arithmetic and Logical Unit (ALU) is where most of the action

takes place inside the CPU. Microprocessors have Arithmetic and Logic

Units, a combinational circuit that can perform any of the arithmetic

CIT344 INTRODUCTION TO COMPUTER DESIGN

173

operations and logic operations on two input values.

6.0 Summary

This unit talks extensively on Central Processing Unit and Arithmetic &

Logical Unit of a computer system.

CIT344 INTRODUCTION TO COMPUTER DESIGN

174

7.0 Further Readings

Stallings W (2016). Computer Organization and architecture: Designing for Performance (10

th

edition). Pearson Education Limited.

Pedroni V.A (2020). Circuit Design with VHDL(3

rd
 Edition). The MIT Press Cambridge.

Sarkar S.K., De A.k., and Sarkar S (2014). Foundation of Digital Electronics and Logic
Design.

Pan Stanford

Mano M.M (2017). Digital Logic and Computer Design. Pearson India Education Services Pvt.

Ltd

Yasin M.,Rajendran J. (JV) and Sinanoglu O. (2020). Trustworthy Hardware Design:

Combinational Logic Locking TechniquesSpringer Nature

Ndjountche T. (2016). Digital Electronics 1: Combinational Logic Circuits. Wiley

Elahi A (2018). Computer System: Digital Design, Fundamentals of Computer Architecture
and

Assembly Language. Springer Nature

Patt Y. N (2019). Introduction to Computing Systems – From Bits and Gates to C and Beyond
(Online Version). Mc-Graw-Hill.

Verma A.K, Shama G and Singh K (2016). Wiley Acing The Gate: Computer Science and

Information Technology. Wiley India Pvt. Ltd.

Mano M.M, Kime C.R and Martin T (2015). Logic & Computer Design Fundamentals (5
th

edition). Pearson. Pg283

Faroughi N (2015). Digital Logic Design & Computer Organization: With Computer
Architecture for Security. McGraw-Hill Education.

Patterson D. A and Hennessy J.L (2016). Computer Organization & Design ARM Edition:

The

 Hardware Software Interface. Morgan Kaufmann.

Unsalan C and Tar B (2017). Digital System Design with FPGA Implementation Using

Verilog

 and VHDL. McGraw-Hill Education.

Null L and Lobur J (2016). The Essentials of Computer Organization and Architecture (4
th

 edition). Jones & Barlett Learning.

Rafiquzzaman M (2014). Fundamentals of Digital Logic and Microcontrollers. John Wiley &

 Sons.

CIT344 INTRODUCTION TO COMPUTER DESIGN

175

Roth, H. C. Jr & Kinney, L. L. (2014). Fundamentals of Logic Design (7
th
 edition). Cengage

Learning.

Tanenbaum, Andrew S. (2013). Structured Computer Organization.Prentice Hall (6th

ed).

UNIT 3 ADDRESSING MODES

CONTENTS

1.0 Introduction

2.0 Intended Learning Outcomes

3.0 Main Content

3.1 Addressing Modes

3.1.1 Register Addressing Mode

3.1.2 Memory Addressing Mode

3.1.3 The Displacement Only Addressing Mode

3.1.4 Register Indirect Addressing Mode

3.1.5 Indexed Addressing Mode

3.1.6 Based Index Addressing Mode

3.1.7 80386 Scaled Indexed Addressing Mode

4.0 Self-Assessment Exercise(s)

5.0 Conclusion

6.0 Summary

7.0 Further Readings

1.0 Introduction

Processors let you access memory in many different ways. Memory

addressing modes provide flexible access to memory, allowing you to

easily access variables, arrays, records, pointers, and other complex data

types. Mastery of the addressing modes is the first step towards

mastering assembly language.

2.0 Intended Learning Outcomes (ILOs)

At the end of this unit, you should be able to:

 explain what addressing modes are

 state the types of addressing modes we have

 outline the operations and applications of modes.

3.0 Main Content

CIT344 INTRODUCTION TO COMPUTER DESIGN

176

3.1 Addressing Modes

3.1.1 Register Addressing Mode

Most 80386 instructions can operate on the general purpose register set.

By specifying the name of the register as an operand to the instruction,

CIT344 INTRODUCTION TO COMPUTER DESIGN

177

you may access the contents of that register. Consider the mov (move)

instruction:

mov destination, source

This instruction copies the data from the source operand to the

destination operand. The 32- bit registers are certainly valid operands for

this instruction. The only restriction is that both operands must be the

same size. Now let's look at some actual mov instructions:

mov eax, ebx; Copies the value from EBX into EAX

mov edl, eal ; Copies the value from EAL into EDL

mov esi,edx ; Copies the value from EDX into ESI

mov esp, ebp; Copies the value from EBP into ESP

mov edh, ecx; Copies the value from ECX into EDH

mov eax, eax ;Yes, this is legal!

Remember, the registers are the best place to keep often used variables.

Instructions using the registers are shorter and faster than those that

access memory.

In addition to the general purpose registers, many instructions (including

the mov instruction) allow you to specify one of the segment registers as

an operand. There are two restrictions on the use of the segment

registers with the mov instruction. First of all, you may not specify ecs

as the destination operand; second, only one of the operands can be a

segment register. You cannot move data from one segment register to

another with a single mov instruction. To copy the value of ecx to edx,

you'd have to use some sequence like:

mov eax, ecx

mov edx, eax

You should never use the segment registers as data registers to hold

arbitrary values. They should only contain segment addresses.

3.1.2 Memory Addressing Mode

The key to good assembly language programming is the proper use of

memory addressing modes. The 80386 processor generalised the

memory addressing modes. Whereas the 8086 only allowed you to use

bx or bp as base registers and si or di as index registers, the 80386 lets

you use almost any general purpose 32 bit register as a base or index

register. Furthermore, the 80386 introduced new scaled indexed

addressing modes that simplify accessing elements of arrays. Beyond

the increase to 32 bits, the new addressing modes on the 80386 are

probably the biggest improvement to the chip over earlier processors.

CIT344 INTRODUCTION TO COMPUTER DESIGN

178

3.1.3 The Displacement Only Addressing Mode

The most common addressing mode, and the one that's easiest to

understand, is the displacement-only (or direct) addressing mode. The

displacement-only addressing mode consists of a 16 bit constant that

specifies the address of the target location. The instruction mov

al,ds:[8088h] loads the al register with a copy of the byte at memory

location 8088h. Likewise, the instruction mov ds:[1234h],dl stores the

value in the dl register to memory location 1234h:

The displacement-only addressing mode is perfect for accessing simple

variables. Of course, you'd probably prefer using names like "I" or "J"

rather than "DS:[1234h]" or "DS:[8088h]". Well, fear not, you'll soon

see it's possible to do just that.

Intel named this the displacement-only addressing mode because a 16

bit constant (displacement) follows the mov opcode in memory. In that

respect it is quite similar to the direct addressing mode on the x86

processors. There are some minor differences, however. First of all, a

displacement is exactly that - some distance from some other point. On

the x86, a direct address can be thought of as a displacement from

address zero. On the 80x86 processors, this displacement is an offset

from the beginning of a segment (the data segment in this example). For

now, you can think of the displacement-only addressing mode as a direct

addressing mode. The examples in this unit will typically access bytes in

memory. Note also, that you can also access words on the 8086

processors:

CIT344 INTRODUCTION TO COMPUTER DESIGN

179

By default, all displacement-only values provide offsets into the data

segment. If you want to provide an offset into a different segment, you

must use a segment override prefix before your address. For example, to

access location 1234h in the extra segment (es) you would use an

instruction of the form mov ax,es:[1234h]. Likewise, to access this

location in the code segment you would use the instruction mov ax,

cs:[1234h]. The ds: prefix in the previous examples is not a segment

override. The CPU uses the data segment register by default. These

specific examples require ds: because of MASM's syntactical

limitations.

3.1.4 Register Indirect Addressing Modes

The 80x86 CPUs let you access memory indirectly through a register

using the register indirect addressing modes. There are four forms of this

addressing mode on the 8086, best demonstrated by the following

instructions:

mov al, [bx]

mov al, [bp]

mov al, [si]

mov al, [di]

As with the x86 [bx] addressing mode, these four addressing modes

reference the byte at the offset found in the bx, bp, si, or di register,

respectively. The [bx], [si], and [di] modes use the ds segment by

default. The [bp] addressing mode uses the stack segment (ss) by

default.

CIT344 INTRODUCTION TO COMPUTER DESIGN

180

You can use the segment override prefix symbols if you wish to access

data in different segments. The following instructions demonstrate the

use of these overrides:

mov al, cs:[bx]

mov al, ds:[bp]

mov al, ss:[si]

mov al, es:[di]

Intel refers to [bx] and [bp] as base addressing modes and bx and bp as

base registers (in fact, bp stands for base pointer). Intel refers to the [si]

and [di] addressing modes as indexed addressing modes (si stands for

source index, di stands for destination index). However, these

addressing modes are functionally equivalent. This text will call these

forms register indirect modes to be consistent.

Note: the [si] and [di] addressing modes work exactly the same way, just

substitute si and di for bx above.

On the 80386 you may specify any general purpose 32 bit register when

using the register indirect addressing mode. [eax], [ebx], [ecx], [edx],

CIT344 INTRODUCTION TO COMPUTER DESIGN

181

[esi], and [edi] all provide offsets, by default, into the data segment. The

[ebp] and [esp] addressing modes use the stack segment by default.

Note that while running in 16 bit real mode on the 80386, offsets in

these 32 bit registers must still be in the range 0...0FFFFh. You cannot

use values larger than this to access more than 64K in a segment. Also

note that you must use the 32 bit names of the registers. You cannot use

the 16 bit names. The following instructions demonstrate all the legal

forms:

mov

mov
mov

al, [eax]

al, [ebx]
al, [ecx]

mov

mov

mov

al, [edx]

al, [esi]
al, [edi]

mov al, [ebp] ;Uses SS by default.

mov al, [esp] ;Uses SS by default.

3.1.5 Indexed Addressing Mode

The indexed addressing modes use the following syntax:

mov al, disp[bx]

mov al, disp[bp]

mov al, disp[si]

mov al, disp[di]

If bx contains 1000h, then the instruction mov cl,20h[bx] will load cl

from memory location ds:1020h. Likewise, if bp contains 2020h, mov

dh,1000h[bp] will load dh from location ss:3020.

The offsets generated by these addressing modes are the sum of the

constant and the specified register. The addressing modes involving bx,

si, and di all use the data segment, the disp[bp] addressing mode uses the

stack segment by default. As with the register indirect addressing

modes, you can use the segment override prefixes to specify a different

segment:

mov al, ss:disp[bx]

mov al, es:disp[bp]

mov al, cs:disp[si]

mov al, ss:disp[di]

CIT344 INTRODUCTION TO COMPUTER DESIGN

182

You may substitute si or di in the figure above to obtain the [si+disp]

and [di+disp] addressing modes.

Note that Intel still refers to these addressing modes as based addressing

and indexed addressing. Intel's literature does not differentiate between

these modes with or without the constant. If you look at how the

hardware works, this is a reasonable definition. From the programmer's

point of view, however, these addressing modes are useful for entirely

different things.

3.1.6 Based Indexed Addressing Modes

The based indexed addressing modes are simply combinations of the

register indirect addressing modes. These addressing modes form the

offset by adding together a base register (bx or bp) and an index register

(si or di). The allowable forms for these addressing modes are:

mov al, [bx][si]

CIT344 INTRODUCTION TO COMPUTER DESIGN

183

mov al, [bx][di]

mov al, [bp][si]

mov al, [bp][di]

Suppose that bx contains 1000h and si contains 880h. Then the

instruction moval, [bx][si] would load al from location DS:1880h.

Likewise, if bp contains 1598h and di contains 1004, mov ax,[bp+di]

will load the 16 bits in ax from locations SS:259C and SS:259D.

The addressing modes that do not involve bp use the data segment by

default. Those that have bp as an operand use the stack segment by

default.

You substitute di in the figure above to obtain the [bx+di] addressing

mode.

You substitute di in the figure above for the [bp+di] addressing mode.

Based Indexed Plus Displacement Addressing Mode

These addressing modes are a slight modification of the base/indexed

addressing modes with the addition of an eight bit or sixteen bit

constant. The following are some examples of these addressing modes:

CIT344 INTRODUCTION TO COMPUTER DESIGN

184

mov al, disp[bx][si]

mov al, disp[bx+di]

mov al, [bp+si+disp]

mov al, [bp][di][disp]

You may substitute di in the figure above to produce the [bx+di+disp]

addressing mode.

You may substitute di in the figure above to produce the [bp+di+disp]

addressing mode.

Suppose bp contains 1000h, bx contains 2000h, si contains 120h, and di

contains 5. Then mov al,10h[bx+si] loads al from address DS:2130; mov

ch,125h[bp+di] loads ch from location SS:112A; and mov

bx,cs:2[bx][di] loads bx from location CS:2007.

80386 Indexed, Base/Indexed, and Base/Indexed/Disp Addressing

Modes

The indexed addressing modes (register indirect plus a displacement)

allow you to mix a 32 bit register with a constant. The base/indexed

addressing modes let you pair up two 32 bit registers. Finally, the

base/indexed/displacement addressing modes let you combine a constant

and two registers to form the effective address. Keep in mind that the

offset produced by the effective address computation must still be 16

CIT344 INTRODUCTION TO COMPUTER DESIGN

185

bits long when operating in real mode. On the 80386 the terms base

register and index register actually take on some meaning. When

combining two 32 bit registers in an addressing mode, the first register

is the base register and the second register is the index register. This is

true regardless of the register names. Note that the 80386 allows you to

use the same register as both a base and index register, which is actually

useful on occasion. The following instructions provide representative

samples of the various base and indexed address modes along with

syntactical variations:

mov al, disp[eax] ;Indexed addressing

mov
mov

al, [ebx+disp]
al, [ecx][disp]

;modes.

mov

mov

mov

al, disp[edx]

al, disp[esi]

al, disp[edi]

mov al, disp[ebp] ;Uses SS by default.

mov al, disp[esp] ;Uses SS by default.

The following instructions all use the base+indexed addressing mode.

The first register in the second operand is the base register, the second is

the index register. If the base register is esp or ebp the effective address

is relative to the stack segment. Otherwise the effective address is

relative to the data segment. Note that the choice of index register does

not affect the choice of the default segment.

mov al, [eax][ebx] ;Base+indexed addressing

mov

mov

mov

al, [ebx+ebx]

al, [ecx][edx]
al, [edx][ebp]

;modes.

;Uses DS by default.

mov

mov

mov

al, [esi][edi]

al, [edi][esi]

al, [ebp+ebx]

;Uses SS by default.

mov al, [esp][ecx] ;Uses SS by default.

Naturally, you can add a displacement to the above addressing modes to

produce the base+indexed+displacement addressing mode. The

following instructions provide a representative sample of the possible

addressing modes:

mov al, disp[eax][ebx] ;Base+indexed addressing

mov

mov

mov

al, disp[ebx+ebx]

al, [ecx+edx+disp]

al, disp[edx+ebp]

;modes.

;Uses DS by default.

mov

mov

al, [esi][edi][disp]
al, [edi][disp][esi]

CIT344 INTRODUCTION TO COMPUTER DESIGN

186

mov al, disp[ebp+ebx] ;Uses SS by default.

mov al, [esp+ecx][disp] ;Uses SS by default.

There is one restriction the 80386 places on the index register. You

cannot use the esp register as an index register. It's okay to use esp as the

base register, but not as the index register.

3.1.7 80386 Scaled Indexed Addressing Modes

The indexed, base/indexed, and base/indexed/disp addressing modes

described above are really special instances of the 80386 scaled indexed

addressing modes. These addressing modes are particularly useful for

accessing elements of arrays, though they are not limited to such

purposes. These modes let you multiply the index register in the

addressing mode by one, two, four, or eight. The general syntax for

these addressing modes is

disp[index*n]

[base][index*n]

or

disp[base][index*n]

where "base" and "index" represent any 80386 32 bit general purpose

registers and "n" is the value one, two, four, or eight.

The 80386 computes the effective address by adding disp, base, and

index*n together. For example, if ebx contains 1000h and esi contains 4,

then

mov al,8[ebx][esi*4] ;Loads AL from location 1018h

mov al,1000h[ebx][ebx*2] ;Loads AL from location 4000h

mov al,1000h[esi*8] ;Loads AL from location 1020h

Note that the 80386 extended indexed, base/indexed, and

base/indexed/displacement addressing modes really are special cases of

this scaled indexed addressing mode with "n" equal to one. That is, the

following pairs of instructions are absolutely identical to the 80386:

mov al, 2[ebx][esi*1] mov al, 2[ebx][esi]

mov al, [ebx][esi*1] mov al, [ebx][esi]

mov al, 2[esi*1] mov al, 2[esi]

CIT344 INTRODUCTION TO COMPUTER DESIGN

187

4.0 Self-Assessment Exercise(s)
Mention and explain the different types of addressing modes we have.

5.0 Conclusion

The effective address is the final offset produced by an addressing mode

computation. There is even a special instruction load effective address

(lea) that computes effective addresses.

Not all addressing modes are created equal! Different addressing modes

may take differing amounts of time to compute the effective address.

The exact difference varies from processor to processor. Generally,

though, the more complex an addressing mode is, the longer it takes to

compute the effective address. Complexity of an addressing mode is

directly related to the number of terms in the addressing mode.

The displacement field in all addressing modes except displacement-

only can be a signed eight bit constant or a signed 16 bit constant. If

your offset is in the range -128...+127 the instruction will be shorter

(and therefore faster) than an instruction with a displacement outside

that range. The size of the value in the register does not affect the

execution time or size. So if you can arrange to put a large number in the

register(s) and use a small displacement that is preferable over large

constant and small values in the register(s). If the effective address

calculation produces a value greater than 0FFFFh, the CPU ignores the

overflow and the result wraps around back to zero.

6.0 Summary

In this unit, we discussed addressing modes, their various types and how

they are used.

7.0 Further Readings

Pyeatt L.D and Ughetta W (2020). ARM 64-Bit Assembly Language. Newnes, Elsevier.

Pyeatt L.D (2016). Modern Assembly Language Programming with the Arm Processor.

 Newnes, Elsevier

CIT344 INTRODUCTION TO COMPUTER DESIGN

188

Stallings W (2016). Computer Organization and architecture: Designing for Performance (10
th

edition). Pearson Education Limited.

Pedroni V.A (2020). Circuit Design with VHDL(3

rd
 Edition). The MIT Press Cambridge.

Sarkar S.K., De A.k., and Sarkar S (2014). Foundation of Digital Electronics and Logic
Design.

Pan Stanford

Mano M.M (2017). Digital Logic and Computer Design. Pearson India Education Services Pvt.

Ltd

Yasin M.,Rajendran J. (JV) and Sinanoglu O. (2020). Trustworthy Hardware Design:

Combinational Logic Locking TechniquesSpringer Nature

Ndjountche T. (2016). Digital Electronics 1: Combinational Logic Circuits. Wiley

Elahi A (2018). Computer System: Digital Design, Fundamentals of Computer Architecture
and

Assembly Language. Springer Nature

Patt Y. N (2019). Introduction to Computing Systems – From Bits and Gates to C and Beyond
(Online Version). Mc-Graw-Hill.

Verma A.K, Shama G and Singh K (2016). Wiley Acing The Gate: Computer Science and

Information Technology. Wiley India Pvt. Ltd.

Mano M.M, Kime C.R and Martin T (2015). Logic & Computer Design Fundamentals (5
th

edition). Pearson. Pg283

Faroughi N (2015). Digital Logic Design & Computer Organization: With Computer
Architecture for Security. McGraw-Hill Education.

Patterson D. A and Hennessy J.L (2016). Computer Organization & Design ARM Edition:

The

 Hardware Software Interface. Morgan Kaufmann.

Unsalan C and Tar B (2017). Digital System Design with FPGA Implementation Using

Verilog

 and VHDL. McGraw-Hill Education.

Null L and Lobur J (2016). The Essentials of Computer Organization and Architecture (4
th

 edition). Jones & Barlett Learning.

Rafiquzzaman M (2014). Fundamentals of Digital Logic and Microcontrollers. John Wiley &

 Sons.

Roth, H. C. Jr & Kinney, L. L. (2014). Fundamentals of Logic Design (7
th
 edition). Cengage

Learning.

Tanenbaum, Andrew S. (2013). Structured Computer Organization.Prentice Hall (6th

ed).

CIT344 INTRODUCTION TO COMPUTER DESIGN

189

80x86 Addressing Modes:

https://www.plantationproductions.com/Webster/www.artofasm.com/DOS/ch04/CH

04-2.html

https://www.plantationproductions.com/Webster/www.artofasm.com/DOS/ch04/CH04-2.html
https://www.plantationproductions.com/Webster/www.artofasm.com/DOS/ch04/CH04-2.html

CIT344 INTRODUCTION TO COMPUTER DESIGN

190

MODULE 6 ASSEMBLY LANGUAGE

PROGRAMMING

Unit 1 Learning to Program with Assembly Language

Unit 2 Branching Loops and Subroutines

Unit 3 Sample Programs in Assembly Language

UNIT 1 LEARNING TO PROGRAM WITH ASSEMBLY

LANGUAGE

CONTENTS

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content

3.1 Learning to Program with Assembly Language

3.1.1 Availability

3.1.2 Why Learn Assembly Language

3.1.3 Assembly Language Statements

3.1.4 Assembly Language Structure

3.1.5 Using Debug Program

3.1.6 Creating Basic Assembly Programs

3.1.7 Building Assembly Language Programs

3.1.8 Assembly Language Programming

3.1.9 Assembly Process

4.0 Self-Assessment Exercise(s)

5.0 Conclusion

6.0 Summary

7.0 Further Readings

1.0 Introduction

Unlike the other programming languages, assembly language is not a

single language, but rather a group of languages. Each processor family

(and sometimes individual processors within a processor family) has its

own assembly language.

In contrast to high level languages, data structures and program

structures in assembly language are created by directly implementing

them on the underlying hardware. So, instead of cataloguing the data

structures and program structures that can be built (in assembly

language you can build any structures you so desire, including new

structures nobody else has ever created), we will compare and contrast

the hardware capabilities of various processor families.

CIT344 INTRODUCTION TO COMPUTER DESIGN

191

Assembly languages have the same structure and set of commands as

machine languages, but they enable a programmer to use names instead

of numbers.

Each type of CPU has its own machine language and assembly

language, so an assembly language program written for one type of CPU

won‘t run on another. In the early days of programming, all programs

were written in assembly language. Now, most programs are written in

high-level language. Programmers still use assembly language when

speed is essential or when they need to perform an operation that isn't

possible in a high-level language.

Assembly language teaches how a computer works at the machine level

(i.e. registers).The foundation of many abstract issues in software lies in

assembly language. Assembly language is not used just to illustrate

algorithms, but to demonstrate what is actually happening inside the

computer.

2.0 Intended Learning Outcomes (ILOs)

At the end of this unit, you should be able to:

 define assembly language

 write programs using assembly language.

3.0 Main Content

3.1 Learning to Program with Assembly Language

3.1.1 Availability

Assemblers are available for just about every processor ever made.

Native assemblers produce object code on the same hardware that the

object code will run on. Cross assemblers produce object code on

different hardware that the object code will run on.

3.1.2 Why Learn Assembly Language

The first reason to work with assembler is that it provides the

opportunity of knowing more the operation of your PC, which allows

the development of software in a more consistent manner.

The second reason is the total control of the PC which you can have

with the use of the assembler.

CIT344 INTRODUCTION TO COMPUTER DESIGN

190

Another reason is that the assembly programs are quicker, smaller, and

have larger capacities than ones created with other languages.

Lastly, the assembler allows an ideal optimization in programs, be it on

their size or on their execution.

3.1.3 Assembly Language Statements

Assembly language statements in a source file use the following format:

{Label} {Mnemonic} {Operand}} {;Comment}

Each entity above is a field. The four fields above are the label field, the

mnemonic field, the operand field, and the comment field.

The label field is (usually) an optional field containing a symbolic label

for the current statement. Labels are used in assembly language, just as

in HLLs, to mark lines as the targets of GOTOs (jumps). You can also

specify variable names, procedure names, and other entities using

symbolic labels. Most of the time the label field is optional, meaning a

label need be present only if you want a label on that particular line.

Some mnemonics, however, require a label, others do not allow one. In

general, you should always begin your labels in column one as it makes

your programs easier to read.

A mnemonic is an instruction name (e.g., mov, add, etc.). The word

mnemonic means memory aid. mov is much easier to remember than the

binary equivalent of the mov instruction! The braces denote that this

item is optional. Note, however, that you cannot have an operand

without a mnemonic.

The mnemonic field contains an assembler instruction. Instructions are

divided into three classes: 80x86 machine instructions, assembler

directives, and pseudo opcodes. 80x86 instructions, of course, are

assembler mnemonics that correspond to the actual 80x86 instructions.

Assembler directives are special instructions that provide information to

the assembler but do not generate any code. Examples include the

segment directive, equ, assume, and end. These mnemonics are not valid

80x86 instructions. They are messages to the assembler, nothing else.

A pseudo-opcode is a message to the assembler, just like an assembler

directive, however a pseudo-opcode will emit object code bytes.

Examples of pseudo-opcodes include byte, word, dword, qword, and

tbyte. These instructions emit the bytes of data specified by their

operands but they are not true 80X86 machine instructions.

CIT344 INTRODUCTION TO COMPUTER DESIGN

191

The operand field contains the operands, or parameters, for the

instruction specified in the mnemonic field. Operands never appear on

lines by themselves. The type and number of operands (zero, one, two,

or more) depend entirely on the specific instruction.

The comment field allows you to annotate each line of source code in

your program. Note that the comment field always begins with a

semicolon. When the assembler is processing a line of text, it completely

ignores everything on the source line following a semicolon.

Each assembly language statement appears on its own line in the source

file. You cannot have multiple assembly language statements on a single

line. On the other hand, since all the fields in an assembly language

statement are optional, blank lines are fine. You can use blank lines

anywhere in your source file. Blank lines are useful for spacing out

certain sections of code, making them easier to read.

The Microsoft Macro Assembler is a free form assembler. The various

fields of an assembly language statement may appear in any column (as

long as they appear in the proper order). Any number of spaces or tabs

can separate the various fields in the statement. To the assembler, the

following two code sequences are identical:

mov ax, 0

mov bx, ax

add ax, dx

mov cx, ax

mov ax, 0

mov bx, ax

add ax, dx

mov cx, ax

The first code sequence is much easier to read than the second. With

respect to readability, the judicial use of spacing within your program

can make all the difference in the world.

Assembly language programs are hard enough to read as it is.

Formatting your listings to help make them easier to read will make

them much easier to maintain.

You may have a comment on the line by itself. In such a case, place the

semicolon in column one and use the entire line for the comment,

examples:

; The following section of code positions the cursor to the upper

; left hand position on the screen:

CIT344 INTRODUCTION TO COMPUTER DESIGN

192

mov X, 0

mov Y, 0

; Now clear from the current cursor position to the end of the

; screen to clear the video display:

; etc.

3.1.4 Assembly Language Structure

In assembly language code lines have two parts, the first one is the name

of the instruction which is to be executed, and the second one are the

parameters of the command. For example: add ah bh

Here "add" is the command to be executed; in this case an addition, and

"ah" as well as "bh" are the parameters.

For example: mov al, 25

In the above example, we are using the instruction mov, it means move

the value 25 to al register.

The name of the instructions in this language is made of two, three or

four letters. These instructions are also called mnemonic names or

operation codes, since they represent a function the processor will

perform.

Sometimes instructions are used as follows:

add al,[170]

The brackets in the second parameter indicate to us that we are going to

work with the content of the memory cell number 170 and not with the

170 value; this is known as direct addressing.

3.1.5 Using Debug Program

Program Creation Process

For the creation of a program it is necessary to follow five steps:

Design of the algorithm, stage the problem to be solved is established

and the best solution is proposed, creating squematic diagrams used for

the better solution proposal. Coding the algorithm, consists in writing

the program in some programming language; assembly language in this

specific case, taking as a base the proposed solution on the prior step.

Translation to machine language is the creation of the object program, in

CIT344 INTRODUCTION TO COMPUTER DESIGN

193

other words, the written program as a sequence of zeros and ones that

can be interpreted by the processor. Test the program, after the

translation the program into machine language, execute the program in

the computer machine. The last stage is the elimination of detected

faults on the program on the test stage. The correction of a fault

normally requires the repetition of all the steps from the first or second.

Debug Program

To create a program in assembler two options exist, the first one is to

use the TASM or Turbo Assembler, of Borland, and the second one is to

use the debugger - on this first section we will use this last one since it is

found in any PC with the MS-DOS, which makes it available to any user

who has access to a machine with these characteristics.

Debug can only create files with a .COM extension, and because of the

characteristics of these kinds of programs they cannot be larger than 64

kb, and they also must start with displacement, offset, or 0100H memory

direction inside the specific segment.

Debug provides a set of commands that lets you perform a number of

useful operations:

A Assemble symbolic instructions into machine code

D Display the contents of an area of memory

E Enter data into memory, beginning at a specific location

G Run the executable program in memory

N Name a program
P Proceed, or execute a set of related instructions

Q Quit the debug program

R Display the contents of one or more registers

T Trace the contents of one instruction

U Unassembled machine code into symbolic code

W Write a program onto disk

It is possible to visualise the values of the internal registers of the CPU

using the Debug program. To begin working with Debug, type the

following prompt in your computer:

C:/>Debug [Enter]

On the next line a dash will appear, this is the indicator of Debug, at this

moment the instructions of Debug can be introduced using the following

command:

-r[Enter]

CIT344 INTRODUCTION TO COMPUTER DESIGN

194

AX=0000 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000

DI=0000

DS=0D62 ES=0D62 SS=0D62 CS=0D62 IP=0100 NV EI PL NZ NA

PO NC

0D62:0100 2E CS:

0D62:0101 803ED3DF00 CMP BYTE PTR [DFD3],00 CS:DFD3=03

All the contents of the internal registers of the CPU are displayed; an

alternative of viewing them is to use the "r" command using as a

parameter the name of the register whose value wants to be seen. For

example:

-rbx

BX 0000

:

This instruction will only display the content of the BX register and the

Debug indicator changes from "-" to ":"

When the prompt is like this, it is possible to change the value of the

register which was seen by typing the new value and [Enter], or the old

value can be left by pressing [Enter] without typing any other value.

3.1.6 Creating Basic Assembly Language Program

The first step is to initiate the Debug, this step only consists of typing

debug [Enter] on the operative system prompt.

To assemble a program on the Debug, the "a" (assemble) command is

used; when this command is used, the address where you want the

assembling to begin can be given as a parameter, if the parameter is

omitted the assembling will be initiated at the locality specified by

CS:IP, usually 0100h, which is the locality where programs with .COM

extension must be initiated. And it will be the place we will use since

only Debug can create this specific type of programs.

Even though at this moment it is not necessary to give the "a" command

a parameter, it is recommendable to do so to avoid problems once the

CS:IP registers are used, therefore we type:

a 100[enter]

mov ax,0002[enter]

mov bx,0004[enter]

add ax,bx[enter]

nop[enter][enter]

CIT344 INTRODUCTION TO COMPUTER DESIGN

195

What does the program do?, move the value 0002 to the ax register,

move the value 0004 to the bx register, add the contents of the ax and bx

registers, the instruction, no operation, to finish the program.

In the debug program.

After to do this, appear on the screen some like the follow lines:

C:\>debug

-a 100

0D62:0100 mov ax,0002

0D62:0103 mov bx,0004

0D62:0106 add ax,bx

0D62:0108 nop

0D62:0109

Type the command "t" (trace), to execute each instruction of this

program, example:

-t

AX=0002 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000

DI=0000

DS=0D62 ES=0D62 SS=0D62 CS=0D62 IP=0103 NV EI PL NZ NA

PO NC

0D62:0103 BB0400 MOV BX,0004

You see that the value 2 move to AX register. Type the command "t"

(trace), again, and you see the second instruction is executed.

-t
AX=0002 BX=0004 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000

DI=0000

DS=0D62 ES=0D62 SS=0D62 CS=0D62 IP=0106 NV EI PL NZ NA

PO

NC

0D62:0106 01D8 ADD AX,BX

Type the command "t" (trace) to see if the instruction add is executed,

you will see the follow lines:

-t

AX=0006 BX=0004 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000

DI=0000

CIT344 INTRODUCTION TO COMPUTER DESIGN

196

DS=0D62 ES=0D62 SS=0D62 CS=0D62 IP=0108 NV EI PL NZ NA

PE NC

0D62:0108 90 NOP

The possibility that the registers contain different values exists, but AX

and BX must be the same, since they are the ones we just modified.

To exit Debug use the "q" (quit) command.

Storing and Loading the Programs

It would not seem practical to type an entire program each time it is

needed, and to avoid this it is possible to store a program on the disk,

with the enormous advantage that by being already assembled it will not

be necessary to run Debug again to execute it.

The steps to save a program that it is already stored on memory are:

Obtain the length of the program subtracting the final address from the

initial address, naturally in hexadecimal system. Give the program a

name and extension. Put the length of the program on the CX register.

Order Debug to write the program on the disk.

By using as an example the following program, we will have a clearer

idea of how to take these steps:

When the program is finally assembled it would look like this:

0C1B:0100 mov ax,0002

0C1B:0103 mov bx,0004

0C1B:0106 add ax,bx

0C1B:0108 int 20

0C1B:010A

To obtain the length of a program the "h" command is used, since it will

show us the addition and subtraction of two numbers in hexadecimal. To

obtain the length of ours, we give it as parameters the value of our

program's final address (10A), and the program's initial address (100).

The first result the command shows us is the addition of the parameters

and the second is the subtraction.

-h 10a 100

020a 000a

CIT344 INTRODUCTION TO COMPUTER DESIGN

197

The "n" command allows us to name the program.

-n test.com

The "rcx" command allows us to change the content of the CX register

to the value we obtained from the size of the file with "h", in this case

000a, since the result of the subtraction of the final address from the

initial address.

-rcx

CX 0000

:000a

Lastly, the "w" command writes our program on the disk, indicating

how many bytes it wrote.

-w

Writing 000A bytes

To save an already loaded file two steps are necessary:

Give the name of the file to be loaded.

Load it using the "l" (load) command.

To obtain the correct result of the following steps, it is necessary that the

above program be already created.

Inside Debug we write the following:

-n test.com

-l

-u 100 109

0C3D:0100 B80200 MOV AX,0002

0C3D:0103 BB0400 MOV BX,0004

0C3D:0106 01D8 ADD AX,BX

0C3D:0108 CD20 INT 20

The last "u" command is used to verify that the program was loaded on

memory. What it does is that it disassembles the code and shows it

disassembled. The parameters indicate to Debug from where and to

where to disassemble.

Debug always loads the programs on memory on the address 100H,

otherwise indicated.

CIT344 INTRODUCTION TO COMPUTER DESIGN

198

3.1.7 Building Assembly Language Programs

In order to be able to create a program, several tools are needed:

First, an editor to create the source program; second, a compiler, which

is nothing more than a program that "translates" the source program into

an object program. And third, a linker that generates the executable

program from the object program.

The editor can be any text editor at hand, and as a compiler we will use

the TASM macro assembler from Borland, and as a linker we will use

the Tlink program.

The extension used so that TASM recognises the source programs in

assembler is .ASM; once translated the source program, the TASM

creates a file with the .OBJ extension, this file contains an "intermediate

format" of the program, called like this because it is not executable yet

but it is not a program in source language either anymore. The linker

generates, from a.OBJ or a combination of several of these files, an

executable program, whose extension usually is .EXE though it can also

be .COM, depending of the form it was assembled.

3.1.8 Assembly Language Programming

To build assembler programs using TASM programs is a different

program structure than from using debug program.

It's important to include the following assembler directives:

.MODEL SMALL
Assembler directive that defines the memory model to use in the

program

.CODE

Assembler directive that defines the program instructions

.STACK
Assembler directive that reserves a memory space for program

instructions

in the stack

END

Assembler directive that finishes the assembler program

Let's program

CIT344 INTRODUCTION TO COMPUTER DESIGN

199

First Step

use any editor program to create the source file. Type the following

lines:

first example

; use ; to put comments in the assembler program

.MODEL SMALL; memory model

.STACK; memory space for program instructions in the stack

.CODE; the following lines are program instructions

mov ah,1h; moves the value 1h to register ah

mov cx,07h;moves the value 07h to register cx

int 10h;10h interruption

mov ah,4ch;moves the value 4 ch to register ah

int 21h;21h interruption

END; finishes the program code

This assembler program changes the size of the computer cursor.

Second Step

Save the file with the following name: examp1.asm Don't forget to save

this in ASCII format.

Third Step

Use the TASM program to build the object program.

Example:

C:\>tasm exam1.asm

Turbo Assembler Version 2.0 Copyright (c) 1988, 1990 Borland

International

Assembling file: exam1.asm

Error messages: None

Warning messages: None

Passes: 1

Remaining memory: 471k

The TASM can only create programs in .OBJ format, which are not

executable by themselves, but rather it is necessary to have a linker

which generates the executable code.

CIT344 INTRODUCTION TO COMPUTER DESIGN

200

Fourth Step

Use the TLINK program to build the executable program example:

C:\>tlink exam1.obj

Turbo Link Version 3.0 Copyright (c) 1987, 1990 Borland International

C:\>

Where exam1.obj is the name of the intermediate program, .OBJ. This

generates a file directly with the name of the intermediate program and

the .EXE extension.

Fifth Step

Execute the executable program

C:\>exam1[enter]

Remember, this assembler program changes the size of the cursor.

Another example

First Step

use any editor program to create the source file. Type the following

lines:

;example11

.model small

.stack

.code

mov ah,2h ;moves the value 2h to register ah

mov dl,2ah ;moves de value 2ah to register dl

;(Its the asterisk value in ASCII format)

int 21h ;21h interruption

mov ah,4ch ;4ch function, goes to operating system

int 21h ;21h interruption

end ;finishes the program code

Second Step

Save the file with the following name: exam2.asm

Don't forget to save this in ASCII format.

CIT344 INTRODUCTION TO COMPUTER DESIGN

201

Third Step

Use the TASM program to build the object program.

C:\>tasm exam2.asm

Turbo Assembler Version 2.0 Copyright (c) 1988, 1990 Borland

International

Assembling file: exam2.asm

Error messages: None

Warning messages: None

Passes: 1

Remaining memory: 471k

Fourth Step

Use the TLINK program to build the executable program

C:\>tlink exam2.obj

Turbo Link Version 3.0 Copyright (c) 1987, 1990 Borland International

C:\>

Fifth Step

Execute the executable program

C:\>ejem11[enter]

*

C:\>

This assembler program shows the asterisk character on the computer

screen

3.1.9 Assembly Process

Segments

The architecture of the x86 processors forces to the use of memory

segments to manage the information, the size of these segments is of

64kb.

The reason of being of these segments is that, considering that the

maximum size of a number that the processor can manage is given by a

word of 16 bits or register, it would not be possible to access more than

65536 localities of memory using only one of these registers, but now, if

the PC's memory is divided into groups or segments, each one of 65536

localities, and we use an address on an exclusive register to find each

segment, and then we make each address of a specific slot with two

registers, it is possible for us to access a quantity of 4294967296 bytes

CIT344 INTRODUCTION TO COMPUTER DESIGN

202

of memory, which is, in the present day, more memory than what we

will see installed in a PC.

In order for the assembler to be able to manage the data, it is necessary

that each piece of information or instruction be found in the area that

corresponds to its respective segments. The assembler accesses this

information taking into account the localisation of the segment, given by

the DS, ES, SS and CS registers and inside the register the address of the

specified piece of information. It is because of this that when we create a

program using the Debug on each line that we assemble, something like

this appears:

1CB0:0102 MOV AX, BX

Where the first number, 1CB0, corresponds to the memory segment

being used, the second one refers to the address inside this segment, and

the instructions which will be stored from that address follow. The way

to indicate to the assembler with which of the segments we will work

with is with the .CODE, .DATA and .STACK directives.

The assembler adjusts the size of the segments taking as a base the

number of bytes each assembled instruction needs, since it would be a

waste of memory to use the whole segments. For example, if a program

only needs 10kb to store data, the data segment will only be of 10kb and

not the 64kb it can handle.

Symbols Chart

Each one of the parts on code line in assembler is known as token, for

example on the code line:

MOV AX,Var

We have three tokens, the MOV instruction, the AX operator, and the

VAR operator. What the assembler does to generate the OBJ code is to

read each one of the tokens and look for it on an internal "equivalence"

chart known as the reserved words chart, which is where all the

mnemonic meanings we use as instructions are found. Following this

process, the assembler reads MOV, looks for it on its chart and identifies

it as a processor instruction. Likewise it reads AX and recognises it as a

register of the processor, but when it looks for the Var token on the

reserved words chart, it does not find it, so then it looks for it on the

symbols chart which is a table where the names of the variables,

constants and labels used in the program where their addresses on

memory are included and the sort of data it contains, are found.

Sometimes the assembler comes on a token which is not defined on the

CIT344 INTRODUCTION TO COMPUTER DESIGN

203

program, therefore what it does in these cased is to pass a second time

by the source program to verify all references to that symbol and place it

on the symbols chart. There are symbols which the assembler will not

find since they do not belong to that segment and the program does not

know in what part of the memory it will find that segment, and at this

time the linker comes into action, which will create the structure

necessary for the loader so that the segment and the token be defined

when the program is loaded and before it is executed.

4.0 Self-Assessment Exercise(s)
1. Explain extensively in your own words the processes/steps to take in

writing a program in assembly language.

2. Explain in your own words what the program below does: a

100[enter]

mov ax,0002[enter]

mov bx,0004[enter]

add ax,bx[enter]

nop[enter][enter].

Then write a similar program and explain what the program does.

3. What provides a set of commands that lets you perform a number

of useful operations? Name the operations and explain what they

do.

5.0 Conclusion

Assemblers are available for just about every processor ever made.

Native assemblers produce object code on the same hardware that the

object code will run on. Cross assemblers produce object code on

different hardware that the object code will run on.

The first reason to work with assembler is that it provides the

opportunity of knowing more the operation of your PC, which allows

the development of software in a more consistent manner.

The second reason is the total control of the PC which you can have

with the use of the assembler. Another reason is that the assembly

programs are quicker, smaller, and have larger capacities than ones

created with other languages. Lastly, the assembler allows an ideal

optimisation in programs, be it on their size or on their execution.

CIT344 INTRODUCTION TO COMPUTER DESIGN

204

Assembly language statements in a source file use the following format:

{Label} {Mnemonic} {Operand}} {; Comment}

Each assembly language statement appears on its own line in the source

file. You cannot have multiple assembly language statements on a single

line.

In assembly language, code lines have two parts, the first one is the

name of the instruction which is to be executed, and the second one are

the parameters of the command.

In order to be able to create a program, several tools are needed: First an

editor to create the source program. Second a compiler, which is nothing

more than a program that "translates" the source program into an object

CIT344 INTRODUCTION TO COMPUTER DESIGN

205

program. And third, a linker that generates the executable program from

the object program.

6.0 Summary

In this unit we introduced assembly languages, what they are and how to

write programs using assembly language.

7.0 Further Readings

Schousek T (2018). The Art of Assembly Language Programming using

PIC Technology: Core Fundamentals. Newnes, Elsevier

Hoey J.V (2019). Beginning x64 Assembly Programming from Novice

to AVX Professional. Apress.

Kusswurm D (2018). Modern X86 Assembly Language Programming

(2
nd

 edition). Apress.

Irvine K.R (2014). Assembly Language for x86 Processors. Pearson

Dunne R (2018). Windows 64-bit Assembly Language Programming

Quick Start. Gaul Communications.

www.cs.siu.edu

www.educypedia.be/electronics

www.books.google.com

http://www.cs.siu.edu/
http://www.educypedia.be/electronics
http://www.books.google.com/

CIT344 INTRODUCTION TO COMPUTER DESIGN

206

UNIT 2 BRANCHING LOOPS & SUBROUTINES

CONTENTS

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content

3.1 Branching Loops & Subroutines

3.1.1 Types of Instruction

3.1.2 Jumps, Loops and Procedure

3.1.3 Program Flow Control Instructions

4.0 Self-Assessment Exercise(s)

5.0 Conclusion

6.0 Summary

7.0 Further Readings

 1.0 Introduction

This unit discusses program flow control instructions in assembly

language.

 2.0 Intended Learning Outcomes (ILOs)

At the end of this unit, you should be able to:

 describe the program flow control instructions of assembly

language

 state the program flow control instructions.

3.0 Main Content

3.1 Branching Loops & Subroutines

3.1.1 Types of Instruction

Data Movement

In any program it is necessary to move the data in the memory and in the

CPU registers; there are several ways to do this: it can copy data in the

memory to some register, from register to register, from a register to a

stack, from a stack to a register, to transmit data to external devices as

well as vice versa.

CIT344 INTRODUCTION TO COMPUTER DESIGN

207

This movement of data is subject to rules and restrictions. The following

are some of them:

It is not possible to move data from a memory locality to another directly; it is necessary

to first move the data of the origin locality to a register and then from the register to the

destiny locality.

It is not possible to move a constant directly to a segment register; it first must be moved

to a register in the CPU.

It is possible to move data blocks by means of the movs instructions, which copies a

chain of bytes or words; movsb which copies n bytes from a locality to another; and

movsw copies n words from a locality to another. The last two instructions take the

values from the defined addresses by DS:SI as a group of data to move and ES:DI as the

new localisation of the data.

To move data there are also structures called batteries, where the data is introduced with

the push instruction and are extracted with the pop instruction.

In a stack the first data to be introduced is the last one we can take, this is, if in our

program we use these instructions:

PUSH AX

PUSH BX

PUSH CX

To return the correct values to each register at the moment of taking

them from the stack it is necessary to do it in the following order:

POP CX

POP BX

POP AX

For the communication with external devices the out command is used

to send information to a port and the in command to read the

information received from a port.

The syntax of the out command is:

OUT DX,AX

Where DX contains the value of the port which will be used for the

communication and AX contains the information which will be sent.

The syntax of the in command is:

IN AX,DX

CIT344 INTRODUCTION TO COMPUTER DESIGN

208

Where AX is the register where the incoming information will be kept

and DX contains the address of the port by which the information will

arrive.

3.1.2 Jumps, Loops and Procedure

The unconditional jumps in a written program in assembler language are

given by the jmp instruction; a jump is to moves the flow of the

execution of a program by sending the control to the indicated address.

A loop, known also as iteration, is the repetition of a process a certain

number of times until a condition is fulfilled.

A procedure is a collection of instructions to which we can direct the

flow of our program, and once the execution of these instructions is over

control is given back to the next line to process of the code which called

on the procedure.

3.1.3 Program Flow Control Instructions

The instructions discussed thus far execute sequentially; that is, the CPU

executes each instruction in the sequence it appears in your program. To

write real programs requires several control structures, not just the

sequence. Examples include the if statement, loops, and subroutine

invocation (a call). Since compilers reduce all other languages to

assembly language, it should come as no surprise that assembly

language supports the instructions necessary to implement these control

structures. 80x86 program control instructions belong to three groups:

unconditional transfers, conditional transfers, and subroutine call and

return instructions. The following sections describe these instructions:

1. Unconditional Jumps

The jmp (jump) instruction unconditionally transfers control to another

point in the program. There are six forms of this instruction: an

intersegment/direct jump, two intrasegment/direct jumps, an

intersegment/indirect jump, and two intrasegment/indirect jumps.

Intrasegment jumps are always between statements in the same code

segment. Intersegment jumps can transfer control to a statement in a

different code segment.

These instructions generally use the same syntax, it is jmp target.

For example, the following short little loop continuously reads the

parallel printer data port and inverts the L.O. bit. This produces a square

wave electrical signal on one of the printer port output lines:

CIT344 INTRODUCTION TO COMPUTER DESIGN

209

mov dx,378h ;Parallel printer port address.

LoopForever: in al, dx ;Read character from input port.

xor al,1 ;Invert the L.O. bit.

out dx, al ;Output data back to port.

jmp LoopForever ;Repeat forever.

2. The CALL and RET Instructions

The call and ret instructions handle subroutine calls and returns. There

are five different call instructions and six different forms of the return

instruction:

call disp16 ;direct intrasegment, 16 bit relative.

call adrs32 ;direct intersegment, 32 bit segmented address.

call mem16 ;indirect intrasegment, 16 bit memory pointer.

call reg16 ;indirect intrasegment, 16 bit register pointer.

call mem32 ;indirect intersegment, 32 bit memory pointer.

ret
retn

 ;near or far return
;near return

retf

ret

disp
;far return
;near or far return and pop

retn disp ;near return and pop

retf disp ;far return and pop

The call instructions take the same forms as the jmp instructions except

there is no short (two byte) intrasegment call.

The far call instruction does the following:

 It pushes the cs register onto the stack.
 It pushes the 16 bit offset of the next instruction following the

call onto the stack.

 It copies the 32 bit effective address into the cs:ip registers. Since

the call instruction allows the same addressing modes as jmp, call

can obtain the target address using a relative, memory, or register

addressing mode.

 Execution continues at the first instruction of the subroutine. This

first instruction is the opcode at the target address computed in

the previous step.

CIT344 INTRODUCTION TO COMPUTER DESIGN

210

The near call instruction does the following:

 It pushes the 16 bit offset of the next instruction following the

call onto the stack.

 It copies the 16 bit effective address into the ip register. Since the

call instruction allows the same addressing modes as jmp, call

can obtain the target address using a relative, memory, or register

addressing mode.

 Execution continues at the first instruction of the subroutine. This

first instruction is the opcode at the target address computed in

the previous step.

The ret (return) instruction returns control to the caller of a subroutine. It

does so by popping the return address off the stack and transferring

control to the instruction at this return address. Intrasegment (near)

returns pop a 16 bit return address off the stack into the ip register. An

intersegment (far) return pops a 16 bit offset into the ip register and then

a 16 bit segment value into the cs register. These instructions are

effectively equal to the following:

retn: pop ip

retf: popd cs:ip

Clearly, you must match a near subroutine call with a near return and a

far subroutine call with a corresponding far return. If you mix near calls

with far returns or vice versa, you will leave the stack in an inconsistent

state and you probably will not return to the proper instruction after the

call. Of course, another important issue when using the call and ret

instructions is that you must make sure your subroutine doesn't push

something onto the stack and then fail to pop it off before trying to

return to the caller. Stack problems are a major cause of errors in

assembly language subroutines. Consider the following code:

Subroutine: push ax

push bx

.

.

.

pop bx

ret

.

.

.

call Subroutine

CIT344 INTRODUCTION TO COMPUTER DESIGN

211

The call instruction pushes the return address onto the stack and then

transfers control to the first instruction of subroutine. The first two push

instructions push the ax and bx registers onto the stack, presumably in

order to preserve their value because subroutine modifies them.

Unfortunately, a programming error exists in the code above, subroutine

only pops bx from the stack, it fails to pop ax as well. This means that

when subroutine tries to return to the caller, the value of ax rather than

the return address is sitting on the top of the stack. Therefore, this

subroutine returns control to the address specified by the initial value of

the ax register rather than to the true return address. Like the call

instruction, it is very easy to simulate the ret instruction using two

80x86 instructions. All you need to do is pop the return address off the

stack and then copy it into the ip register. For near returns, this is a very

simple operation, just pop the near return address off the stack and then

jump indirectly through that register:

pop ax

jmp ax

Simulating a far return is a little more difficult because you must load

cs:ip in a single operation. The only instruction that does this (other than

a far return) is the jmp mem32 instruction.

3. The Conditional Jump Instructions

Although the jmp, call, and ret instructions provide transfer of control,

they do not allow you to make any serious decisions. The 80x86's

conditional jump instructions handle this task. The conditional jump

instructions are the basic tool for creating loops and other conditionally

executable statements like the ―if … then‖ statement.

The conditional jumps test one or more flags in the flags register to see

if they match some particular pattern (just like the setcc instructions). If

the pattern matches, control transfers to the target location. If the match

fails, the CPU ignores the conditional jump and execution continues

with the next instruction. Some instructions, for example, test the

conditions of the sign, carry, overflow, and zero flags.

One thing nice about conditional jumps is that you do not flush the

pipeline or the prefetch queue if you do not take the branch. If one

condition is true far more often than the other, you might want to use the

conditional jump to transfer control to a jmp nearby, so you can continue

to fall through as before. For example, if you have a je target instruction

and target is out of range, you could convert it to the following code:

je GotoTarget

CIT344 INTRODUCTION TO COMPUTER DESIGN

210

.

.

.

GotoTarget: jmp Target

Although a branch to target now requires executing two jumps, this is

much more efficient than the standard conversion if the zero flag is

normally clear when executing the je instruction.

The 80386 and later processor provide an extended form of the

conditional jump that is four bytes long, with the last two bytes

containing a 16 bit displacement. These conditional jumps can transfer

control anywhere within the current code segment. Therefore, there is no

need to worry about manually extending the range of the jump. If you've

told MASM you're using an 80386 or later processor, it will

automatically choose the two byte or four byte form, as necessary. The

80x86 conditional jump instruction give you the ability to split program

flow into one of two paths depending upon some logical condition.

Suppose you want to increment the ax register if bx is or equal to cx.

You can accomplish this with the following code:

cmp bx, cx
jne SkipStmts

inc ax

SkipStmts:

The trick is to use the opposite branch to skip over the instructions you

want to execute if the condition is true. Always use the "opposite branch

(N/no N)" rule given earlier to select the opposite branch. You can make

the same mistake choosing an opposite branch here as you could when

extending out of range jumps.

You can also use the conditional jump instructions to synthesise loops.

For example, the following code sequence reads a sequence of

characters from the user and stores each character in successive

elements of an array until the user presses the Enter key (carriage

return):

mov di, 0
ReadLnLoop: mov ah, 0 ;INT 16h read key opcode.

int 16h

mov Input[di], al

inc di

cmp al, 0dh ;Carriage return ASCII code.

jne ReadLnLoop

mov Input[di-1],0 ;Replace carriage return with zero.

CIT344 INTRODUCTION TO COMPUTER DESIGN

212

1. The LOOP Instruction

This instruction decrements the cx register and then branches to the

target location if the cx register does not contain zero. Since this

instruction decrements cx then checks for zero, if cx originally contained

zero, any loop you create using the loop instruction will repeat 65,536

times. If you do not want to execute the loop when cx contains zero, use

jcxz to skip over the loop.

There is no "opposite" form of the loop instruction, and like the

jcxz/jecxz instructions the range is limited to ±128 bytes on all

processors. If you want to extend the range of this instruction, you will

need to break it down into discrete components:

; "loop lbl" becomes:

dec cx

jne lbl

You can easily extend this jne to any distance.

There is no eloop instruction that decrements ecx and branches if not

zero (there is a loope instruction, but it does something else entirely).

The reason is quite simple. As of the 80386, Intel's designers stopped

wholeheartedly supporting the loop instruction. Oh, it's there to ensure

compatibility with older code, but it turns out that the dec/jne

instructions are actually faster on the 32 bit processors. Problems in the

decoding of the instruction and the operation of the pipeline are

responsible for this strange turn of events.

Although the loop instruction's name suggests that you would normally

create loops with it, keep in mind that all it is really doing is

decrementing cx and branching to the target address if cx does not

contain zero after the decrement. You can use this instruction anywhere

you want to decrement cx and then check for a zero result, not just when

creating loops. Nonetheless, it is a very convenient instruction to use if

you simply want to repeat a sequence of instructions some number of

times. For example, the following loop initialises a 256 element array of

bytes to the values 1, 2, 3, ...

mov ecx, 255

ArrayLp: mov Array[ecx], cl

loop ArrayLp

mov Array[0], 0

CIT344 INTRODUCTION TO COMPUTER DESIGN

213

The last instruction is necessary because the loop does not repeat when

cx is zero. Therefore, the last element of the array that this loop

processes is Array[1], hence the last instruction.

The loop instruction does not affect any flags.

2. The LOOPE/LOOPZ Instruction

Loope/loopz (loop while equal/zero, they are synonyms for one another)

will branch to the target address if cx is not zero and the zero flag is set.

This instruction is quite useful after cmp or cmps instruction, and is

marginally faster than the comparable 80386/486 instructions if you use

all the features of this instruction. However, this instruction plays havoc

with the pipeline and superscalar operation of the Pentium so you're

probably better off sticking with discrete instructions rather than using

this instruction. This instruction does the following:

cx := cx - 1

if ZeroFlag = 1 and cx 0, goto target

The loope instruction falls through on one of two conditions. Either the

zero flag is clear or the instruction decremented cx to zero. By testing

the zero flag after the loop instruction (with a je or jne instruction, for

example), you can determine the cause of termination.

This instruction is useful if you need to repeat a loop while some value

is equal to another, but there is a maximum number of iterations you

want to allow. For example, the following loop scans through an array

looking for the first non-zero byte, but it does not scan beyond the end

of the array:

mov cx, 16 ;Max 16 array elements.
mov bx, -1 ;Index into the array (note next inc).

SearchLp: inc bx ; Move on to next array element.

cmp Array[bx], 0 ;See if this element is zero.

loope SearchLp ;Repeat if it is.

je AllZero ;Jump if all elements were zero.

Note that this instruction is not the opposite of loopnz/loopne. If you

need to extend this jump beyond ±128 bytes, you will need to synthesise

this instruction using discrete instructions. For example, if loope target

is out of range, you would need to use an instruction sequence like the

following:

jne quit

dec cx

CIT344 INTRODUCTION TO COMPUTER DESIGN

214

je Quit2

jmp Target

quit: dec cx ;loope decrements cx, even if ZF=0.

quit2:

The loope/loopz instruction does not affect any flags.

3. The LOOPNE/LOOPNZ Instruction

This instruction is just like the loope/loopz instruction except

loopne/loopnz (loop while not equal/not zero) repeats while cx is not

zero and the zero flag is clear. The algorithm is

cx := cx - 1

if ZeroFlag = 0 and cx 0, goto target

You can determine if the loopne instruction terminated because cx was

zero or if the zero flag was set by testing the zero flag immediately after

the loopne instruction. If the zero flag is clear at that point, the loopne

instruction fell through because it decremented cx to zero. Otherwise it

fell through because the zero flag was set.

This instruction is not the opposite of loope/loopz. If the target address

is out of range, you will need to use an instruction sequence like the

following:

je quit

dec cx

je Quit2

jmp Target

quit: dec cx ;loopne decrements cx, even if ZF=1.

quit2:

You can use the loopne instruction to repeat some maximum number of

times while waiting for some other condition to be true. For example,

you could scan through an array until you exhaust the number of array

elements or until you find a certain byte using a loop like the following:

mov cx, 16 ;Maximum # of array elements.

mov bx, -1 ;Index into array.

LoopWhlNot0: inc bx ;Move on to next array element.

cmp Array[bx],0 ;Does this element contain zero?

loopne LoopWhlNot0 ;Quit if it does, or more than 16 bytes.

Although the loope/loopz and loopne/loopnz instructions are slower than

the individual instruction from which they could be synthesised, there is

CIT344 INTRODUCTION TO COMPUTER DESIGN

215

one main use for these instruction forms where speed is rarely

important; indeed, being faster would make them less useful - timeout

loops during I/O operations. Suppose bit #7 of input port 379h contains

a one if the device is busy and contains a zero if the device is not busy.

If you want to output data to the port, you could use code like the

following:

mov dx, 379h
WaitNotBusy: in al, dx ;Get port

test al, 80h ;See if bit #7 is one

jne WaitNotBusy ;Wait for "not busy"

The only problem with this loop is that it is conceivable that it would

loop forever. In a real system, a cable could come unplugged, someone

could shut off the peripheral device, and any number of other things

could go wrong that would hang up the system. Robust programs

usually apply a timeout to a loop like this. If the device fails to become

busy within some specified amount of time, then the loop exits and

raises an error condition. The following code will accomplish this:

mov dx, 379h ;Input port address
mov cx, 0 ;Loop 65,536 times and then quit.

WaitNotBusy: in al, dx ;Get data at port.

test al, 80h ;See if busy

loopne WaitNotBusy ;Repeat if busy and no time out.

jne TimedOut ;Branch if CX=0 becos we timed out.

You could use the loope/loopz instruction if the bit were zero rather than

one.

The loopne/loopnz instruction does not affect any flags.

Program loops consist of three components: an optional initialisation

component, a loop termination test, and the body of the loop. The order

with which these components are assembled can dramatically change the

way the loop operates. Three permutations of these components appear

over and over again. Because of their frequency, these loop structures

are given special names in HLLs: while loops, repeat..until loops

(do..while in C/C++), and loop..endloop loops.

4. While Loops

The most general loop is the while loop. It takes the following form:

WHILE boolean expression DO statement;

CIT344 INTRODUCTION TO COMPUTER DESIGN

216

There are two important points to note about the while loop. First, the

test for termination appears at the beginning of the loop. Second as a

direct consequence of the position of the termination test, the body of

the loop may never execute. If the termination condition always exists,

the loop body will always be skipped over.

Consider the following Pascal while loop:

I := 0;

WHILE (I<100) do I := I + 1;

I := 0; is the initialisation code for this loop. I is a loop control variable,

because it controls the execution of the body of the loop. (I<100) is the

loop termination condition. That is, the loop will not terminate as long

as I is less than 100. I:=I+1; is the loop body. This is the code that

executes on each pass of the loop. You can convert this to 80x86

assembly language as follows:

WhileLp:
mov
cmp

I, 0
I, 100

 jge WhileDone
 inc

jmp

I

WhileLp

WhileDone:

Note that a Pascal while loop can be easily synthesised using an if and a

goto statement. For example, the Pascal while loop presented above can

be replaced by:

I := 0;

1: IF (I<100) THEN BEGIN

I := I + 1;

GOTO 1;

END;

More generally, any while loop can be built up from the following:

optional initialisation code

1: IF not termination condition THEN BEGIN

loop body

GOTO 1;

END;

CIT344 INTRODUCTION TO COMPUTER DESIGN

217

5. Repeat..Until Loops

The repeat..until (do..while) loop tests for the termination condition at

the end of the loop rather than at the beginning. In Pascal, the

repeat..until loop takes the following form:

optional initialisation code

REPEAT

loop body

UNTIL termination condition

This sequence executes the initialisation code, the loop body, then tests

some condition to see if the loop should be repeated. If the boolean

expression evaluates to false, the loop repeats; otherwise the loop

terminates. The two things to note about the repeat..until loop is that the

termination test appears at the end of the loop and, as a direct

consequence of this, the loop body executes at least once.

Like the while loop, the repeat..until loop can be synthesised with an if
statement and a goto . You would use the following: initialisation code

1: loop body

IF NOT termination condition THEN GOTO 1

Based on the example above, you can easily synthesise

repeat..until loops in assembly language.

6. LOOP..ENDLOOP Loops

If while loops test for termination at the beginning of the loop and

repeat..until loops check for termination at the end of the loop, the only

place left to test for termination is in the middle of the loop. Although

Pascal and C/C++ don't directly support such a loop, the loop..endloop

structure can be found in HLL languages like Ada. The loop..endloop

loop takes the following form:

LOOP

loop body

ENDLOOP;

Note that there is no explicit termination condition. Unless otherwise

provided for, the loop..endloop construct simply forms an infinite loop.

Loop termination is handled by an if and goto statement. Consider the

following (pseudo) Pascal code which employs a loop..endloop

construct:

CIT344 INTRODUCTION TO COMPUTER DESIGN

218

LOOP

READ(ch)

IF ch = '.' THEN BREAK;

WRITE(ch);

ENDLOOP;

In real Pascal, you'd use the following code to accomplish this:

1:

READ(ch);
IF ch = '.' THEN GOTO 2; (* Turbo Pascal supports BREAK! *)

WRITE(ch);

GOTO 1

2:

In assembly language you'd end up with something like:

LOOP1: getc

cmp al, '.'

je EndLoop

putc

jmp LOOP1

EndLoop:

7. FOR Loops

The for loop is a special form of the while loop which repeats the loop

body a specific number of times. In Pascal, the for loop looks something

like the following:

FOR var := initial TO final DO stmt

or

FOR var := initial DOWNTO final DO stmt

Traditionally, the for loop in Pascal has been used to process arrays and
other objects accessed in sequential numeric order. These loops can be
converted directly into assembly language as follows:

In Pascal:

FOR var := start TO stop DO stmt;

In Assembly:

mov var, start

FL: mov ax, var

cmp ax, stop

jg EndFor

CIT344 INTRODUCTION TO COMPUTER DESIGN

219

; code corresponding to stmt goes here.

inc var

jmp FL

EndFor:

Fortunately, most for loops repeat some statement(s) a fixed number of

times. For example,

FOR I := 0 to 7 do write(ch);

In situations like this, it's better to use the 80x86 loop instruction (or

corresponding dec cx/jne sequence) rather than simulate a for loop:

mov cx, 7

LP: mov al, ch

call putc

loop LP

Keep in mind that the loop instruction normally appears at the end of a

loop whereas the for loop tests for termination at the beginning of the

loop. Therefore, you should take precautions to prevent a runaway loop

in the event cx is zero (which would cause the loop instruction to repeat

the loop 65,536 times) or the stop value is less than the start value. In

the case of

FOR var := start TO stop DO stmt;

assuming you don't use the value of var within the loop, you'd probably

want to use the assembly code:

mov cx, stop

sub cx, start

jl SkipFor

inc cx
LP: stmt

loop LP

SkipFor:

Remember, the sub and cmp instructions set the flags in an identical

fashion. Therefore, this loop will be skipped if stop is less than start. It

will be repeated (stop-start)+1 times otherwise. If you need to reference

the value of var within the loop, you could use the following code:

CIT344 INTRODUCTION TO COMPUTER DESIGN

222

mov ax, start

mov var, ax

mov cx, stop

sub cx, ax

jl SkipFor

inc cx

LP: stmt

inc var

loop LP

SkipFor:

4.0 Self-Assessment Exercise(s)

 Mention all the program flow instructions you know and write

short notes on each.

 Mention and explain the different types of program flow control

we have.

5.0 Conclusion

In any program, it is necessary to move the data in the memory and in

the CPU registers; there are several ways to do this: it can copy data in

the memory to some register, from register to register, from a register to

a stack, from a stack to a register, to transmit data to external devices as

well as vice versa.

The unconditional jumps in a written program in assembler language are

given by the jmp instruction; a jump is to moves the flow of the

execution of a program by sending the control to the indicated address.

A loop, known also as iteration, is the repetition of a process a certain

number of times until a condition is fulfilled.

A procedure is a collection of instructions to which we can direct the

flow of our program, and once the execution of these instructions is over

control is given back to the next line to process of the code which called

on the procedure.

Program control instructions belong to three groups: unconditional

transfers, conditional transfers, and subroutine call and return

instructions.

CIT344 INTRODUCTION TO COMPUTER DESIGN

223

6.0 Summary

In this unit, we learnt about program flow control instructions in

assembly language. The movement of data is subject to rules and

restrictions. It is not possible to move data from a memory locality to

another directly; it is necessary to first move the data of the origin

locality to a register and then from the register to the destiny locality. It

is not possible to move a constant directly to a segment register; it first

must be moved to a register in the CPU. It is possible to move data

blocks by means of the movs instructions, which copies a chain of bytes

or words; movsb which copies n bytes from a locality to another; and

movsw copies n words from a locality to another.

7.0 Further Readings

Schousek T (2018). The Art of Assembly Language Programming using

PIC Technology: Core Fundamentals. Newnes, Elsevier

Hoey J.V (2019). Beginning x64 Assembly Programming from Novice

to AVX Professional. Apress.

Kusswurm D (2018). Modern X86 Assembly Language Programming

(2
nd

 edition). Apress.

Irvine K.R (2014). Assembly Language for x86 Processors. Pearson

Dunne R (2018). Windows 64-bit Assembly Language Programming

Quick Start. Gaul Communications.

www.cs.siu.edu

www.educypedia.be/electronics

www.books.google.com

http://www.cs.siu.edu/
http://www.educypedia.be/electronics
http://www.books.google.com/

CIT344 INTRODUCTION TO COMPUTER DESIGN

224

UNIT 3 SAMPLE PROGRAMS IN ASSEMBLY

LANGUAGE

CONTENTS

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content

3.1 Sample Programs in Assembly Language

3.1.1 Simple Arithmetic I

3.1.2 Simple Arithmetic II

3.1.3 Logical Operations

3.2 Comparison of Assembly & High Level Languages

4.0 Self-Assessment Exercise(s)

5.0 Conclusion

6.0 Summary

7.0 Further Readings

1.0 Introduction

This unit gives some simple programs used to demonstrate the use of

various instructions in assembly language. It also compares assembly

language with high level languages.

2.0 Intended Learning Outcomes (ILOs)

At the end of this unit, you should be able to:

 write some simple programs in assembly language

 compare assembly language and highlevel languages.

3.0 Main Content

3.1 Sample Programs in Assembly Language

The following simple programs demonstrate the use of the various

instructions and logical operations in assembly language.

3.1.1 Simple Arithmetic I

This program demonstrates some simple arithmetic instructions in

assembly language. The comments after the semi-colon explain each

line of program.

CIT344 INTRODUCTION TO COMPUTER DESIGN

225

; Simple Arithmetic

; This program demonstrates some simple arithmetic instructions.

.386 ;So we can use extended registers
option segment:use16 ; and addressing modes.

dseg segment para public 'data'

; Some type definitions for the variables we will declare:

uint typedef word ;Unsigned integers.
integer typedef sword ;Signed integers.

; Some variables we can use:

j integer ?

k integer ?

l integer ?

u1 uint ?

u2 uint ?

u3 uint ?

dseg ends

cseg segment para public 'code'

assume cs:cseg, ds:dseg

Main proc

mov ax, dseg

mov ds, ax

mov es, ax

; Initialise our variables:

mov j, 3

mov k, -2

mov u1, 254

mov u2, 22

; Compute L := j+k and u3 := u1+u2

mov ax, J

add

mov

ax, K

L, ax

mov ax, u1 ;Note that we use the "ADD"

add ax, u2 ; instruction for both signed

CIT344 INTRODUCTION TO COMPUTER DESIGN

226

mov u3, ax ; and unsigned arithmetic.

; Compute L := j-k and u3 := u1-u2

mov
sub

ax, J
ax, K

mov L, ax

mov ax, u1 ;Note that we use the "SUB"

sub ax, u2 ; instruction for both signed

mov u3, ax ; and unsigned arithmetic.

; Compute L := -L

neg L

; Compute L := -J

mov ax, J ;Of course, you would only use the

neg
mov

ax
L, ax

; NEG instruction on signed values.

; Compute K := K + 1 using the INC instruction.

inc K

; Compute u2 := u2 + 1 using the INC instruction.

; Note that you can use INC for signed and unsigned values.

inc u2

; Compute J := J - 1 using the DEC instruction.

dec J

; Compute u2 := u2 - 1 using the DEC instruction.
; Note that you can use DEC for signed and unsigned values.

dec u2

Quit: mov ah, 4ch ;DOS opcode to quit program.

int 21h ;Call DOS.

Main endp

cseg ends

CIT344 INTRODUCTION TO COMPUTER DESIGN

227

sseg segment para stack 'stack'

stk byte 1024 dup ("stack ")

sseg ends

zzzzzzseg segment para public 'zzzzzz'

LastBytes byte 16 dup (?)

zzzzzzseg ends

end Main

3.1.2 Simple Arithmetic II

This program demonstrates some simple arithmetic instructions in

assembly language. The comments after the semi-colon explain each

line of program.

; Simple Arithmetic

; This program demonstrates some simple arithmetic instructions.

.386 ; So we can use extended registers

option segment:use16 ; and addressing modes.

dseg segment para public 'data'

; Some type definitions for the variables we will declare:

uint typedef word ;Unsigned integers.
integer typedef sword ;Signed integers.

; Some variables we can use:

j integer ?

k integer ?

l integer ?

u1 uint ?

u2 uint ?

u3 uint ?

dseg ends

cseg segment para public 'code'

assume cs:cseg, ds:dseg

Main proc

 mov ax, dseg
 mov

mov
ds, ax
es, ax

CIT344 INTRODUCTION TO COMPUTER DESIGN

228

; Initialise our variables:

mov j, 3

mov k, -2

mov u1, 254

mov u2, 22

; Extended multiplication using 8086 instructions.

;

; Note that there are separate multiply instructions for signed and

; unsigned operands.

;

; L := J * K (ignoring overflow)

mov ax, J

imul K ;Computes DX:AX := AX * K

mov L, ax ;Ignore overflow into DX.

; u3 := u1 * u2

mov ax, u1

mul u2 ;Computes DX:AX := AX * U2

mov u3, ax ;Ignore overflow in DX.

; Extended division using 8086 instructions.

;

; Like multiplication, there are separate instructions for signed

; and unsigned operands.

;

; It is absolutely imperative that these instruction sequences sign

; extend or zero extend their operands to 32 bits before dividing.

; Failure to do so will may produce a divide error and crash the

; program.

;

; L := J div K

mov ax, J

cwd

idiv

K
;*MUST* sign extend AX to DX:AX!
;AX := DX:AX/K, DX := DX:AX mod K

mov L, ax

; u3 := u1/u2

mov
mov

ax, u1
dx, 0

;Must zero extend AX to DX:AX!

div u2 ;AX := DX:AX/u2, DX := DX:AX

CIT344 INTRODUCTION TO COMPUTER DESIGN

229

mod u2

mov u3, ax

; Special forms of the IMUL instruction available on 80286, 80386, and

; later processors. Technically, these instructions operate on signed
; operands only, however, they do work fine for unsigned operands as

well.

; Note that these instructions produce a 16-bit result and set the overflow

; flag if overflow occurs.

;

; L := J * 10 (80286 and later only)

imul ax, J, 10 ;AX := J*10

mov L, ax

; L := J * K (80386 and later only)

Quit:

mov

imul

mov

mov

ax, J

ax, K

L, ax

ah, 4ch

;DOS opcode to quit program.

Main
int

endp

21h ;Call DOS.

cseg ends

sseg segment para stack 'stack'

stk byte 1024 dup ("stack ")

sseg ends

zzzzzzseg segment para public 'zzzzzz'

LastBytes byte 16 dup (?)

zzzzzzseg ends

end Main

3.1.3 Logical Operations

This program demonstrates some logical instructions in assembly

language. The comments after the semi-colon explain each line of

program.

; Logical Operations

; This program demonstrates the AND, OR, XOR, and NOT instructions

.386 ;So we can use extended registers

CIT344 INTRODUCTION TO COMPUTER DESIGN

230

option segment:use16 ; and addressing modes.

Dseg segment para public 'data'

; Some variables we can use:

j

k

l

word

word

word

0FF00h

0FFF0h

?

c1 byte 'A'

c2 byte 'a'

LowerMask byte 20h

dseg ends

cseg segment para public 'code'

assume cs:cseg, ds:dseg

Main proc

 mov

mov

mov

ax, dseg

ds, ax

es, ax

; Compute L := J and K (bitwise AND operation):

mov ax, J

and ax, K

mov L, ax

; Compute L := J or K (bitwise OR operation):

mov ax, J

or ax, K

mov L, ax

; Compute L := J xor K (bitwise XOR operation):

mov ax, J

xor ax, K
mov L, ax

; Compute L := not L (bitwise NOT operation):

not L

CIT344 INTRODUCTION TO COMPUTER DESIGN

231

; Compute L := not J (bitwise NOT operation):

mov ax, J

not ax
mov L, ax

; Clear bits 0..3 in J:

and J, 0FFF0h

; Set bits 0..3 in K:

or K, 0Fh

; Invert bits 4..11 in L:

xor L, 0FF0h

; Convert the character in C1 to lower case:

mov al, c1

or al, LowerMask

mov c1, al

; Convert the character in C2 to upper case:

 mov

and
al, c2
al, 5Fh

;Clears bit 5.

mov c2, al

Quit: mov ah, 4ch ;DOS opcode to quit program.

Main

int

endp

21h ;Call DOS.

cseg ends

sseg segment para stack 'stack'

stk byte 1024 dup ("stack ")

sseg ends

zzzzzzseg segment para public 'zzzzzz'

LastBytes byte 16 dup (?)

zzzzzzseg ends

end Main

CIT344 INTRODUCTION TO COMPUTER DESIGN

230

3.2 Comparison of Assembly and High Level Languages

Perhaps the most glaring difference among the three types of languages [high level,

assembly, and machine] is that as we move from high-level languages to lower levels,

the code gets harder to read (with understanding). The major advantages of high-level

languages are that they are easy to read and are machine independent. The instructions

are written in a combination of English and ordinary mathematical notation, and

programs can be run with minor, if any, changes on different computers.

Assembly languages are close to a one to one correspondence between symbolic

instructions and executable machine codes. Assembly languages also include directives

to the assembler, directives to the linker, directives for organising data space, and

macros. Macros can be used to combine several assembly language instructions into a

high level language-like construct (as well as other purposes). There are cases where a

symbolic instruction is translated into more than one machine instruction. But in

general, symbolic assembly language instructions correspond to individual executable

machine instructions.

High level languages are abstract. Typically a single high level instruction is translated

into several (sometimes dozens or in rare cases even hundreds) executable machine

language instructions. Some early high level languages had a close correspondence

between high level instructions and machine language instructions. For example, most

of the early COBOL instructions translated into a very obvious and small set of machine

instructions. The trend over time has been for high level languages to increase in

abstraction. Modern object oriented programming languages are highly abstract

(although, interestingly, some key object oriented programming constructs do translate

into a very compact set of machine instructions).

Assembly language is much harder to program than high level languages. The

programmer must pay attention to far more detail and must have an intimate knowledge

of the processor in use. But high quality hand crafted assembly language programs can

run much faster and use much less memory and other resources than a similar program

written in a high level language. Speed increases of two to 20 times faster are fairly

common, and increases of hundreds of times faster are

CIT344 INTRODUCTION TO COMPUTER DESIGN

231

occasionally possible. Assembly language programming also gives

direct access to key machine features essential for implementing certain

kinds of low level routines, such as an operating system kernel or

microkernel, device drivers, and machine control.

High level programming languages are much easier for less skilled

programmers to work in and for semi-technical managers to supervise.

And high level languages allow faster development times than work in

assembly language, even with highly skilled programmers. Development

time increases of 10 to 100 times faster are fairly common. Programs

written in high level languages (especially object oriented programming

languages) are much easier and less expensive to maintain than similar

programs written in assembly language (and for a successful software

project, the vast majority of the work and expense is in maintenance, not

initial development).

Assembly languages occupy a unique place in the computing world.

Since most assembler-language statements are symbolic of individual

machine-language instructions, the assembler-language programmer has

the full power of the computer at his disposal in a way that users of other

languages do not. Because of the direct relationship between assembler

language and machine language, assembler language is used when high

efficiency of programs is needed, and especially in areas of application

that are so new and amorphous that existing program-oriented languages

are ill-suited for describing the procedures to be followed.‖

If one has a choice between assembly language and a high-level

language, why choose assembly language? The fact that the amount of

programming done in assembly language is quite small compared to the

amount done in high-level languages indicates that one generally doesn‘t

choose assembly language. However, there are situations where it may

not be convenient, efficient, or possible to write programs in high-level

languages. Programs to control and communicate with peripheral

devices (input and output devices) are usually written in assembly

language because they use special instructions that are not available in

high-level languages, and they must be very efficient. Some systems

programs are written in assembly language for similar reasons. In

general, since high-level languages are designed without the features of

a particular machine in mind and a compiler must do its job in a

standardised way to accommodate all valid programs, there are

situations where to take advantage of special features of a machine, to

program some details that are inaccessible from a high-level language,

or perhaps to increase the efficiency of a program, one may reasonably

choose to write in assembly language.

CIT344 INTRODUCTION TO COMPUTER DESIGN

232

In situations where programming in a high-level language is not appropriate, it is clear

that assembly language is to be preferred to machine language. Assembly language has a

number of advantages over machine code aside from the obvious increase in readability.

One is that the use of symbolic names for data and instruction labels frees the

programmer from computing and recomputing the memory locations whenever a change

is made in a program. Another is that assembly languages generally have a feature,

called macros, that frees the [programmer] from having to repeat similar sections of

code used in several places in a program. Often compilers translate into assembly

language rather than machine code.

4.0 Self-Assessment Exercise(s)

1. Write in detail what you understood these three programs do.

2. Try to write a simple program in assembly language that can do

anything you choose explaining each line of the program.

3. Write 6 differences between assembly and high-level languages.

5.0 Conclusion

The most glaring difference among the three types of languages [high

level, assembly, and machine] is that as we move from high-level

languages to lower levels, the code gets harder to read (with

understanding). The major advantages of high-level languages are that

they are easy to read and are machine independent.

6.0 Summary

In this unit we saw some simple programs in assembly language and

also made some comparison between assembly and high level

languages.

7.0 Further Readings

Schousek T (2018). The Art of Assembly Language Programming using

PIC Technology: Core Fundamentals. Newnes, Elsevier

Hoey J.V (2019). Beginning x64 Assembly Programming from Novice

to AVX Professional. Apress.

CIT344 INTRODUCTION TO COMPUTER DESIGN

233

Kusswurm D (2018). Modern X86 Assembly Language Programming

(2
nd

 edition). Apress.

Irvine K.R (2014). Assembly Language for x86 Processors. Pearson

Dunne R (2018). Windows 64-bit Assembly Language Programming

Quick Start. Gaul Communications.

www.cs.siu.edu

www.educypedia.be/electronics

www.books.google.com

http://www.cs.siu.edu/
http://www.educypedia.be/electronics
http://www.books.google.com/

