CIT 344: INTRODUCTION TO COMPUTER DESIGN

NATIONAL OPEN UNIVERSITY OF NIGERIA

FACULTY OF SCIENCE

COURSE CODE: CIT344

COURSE TITLE:

INTRODUCTION TO COMPUTER DESIGN

- 4
COURSE
GUIDE

CIT344
INTRODUCTION TO COMPUTER DESIGN

Course Team

Adaora Obayi (Developer/Writer) - NOUN
Dr. Oyebanji (Programme Leader) - NOUN
Vivian Nwaocha (Coordinator) -NOUN

CIT344 COURSE GUIDE
NATIONAL OPEN UNIVERSITY OF NIGERIA

14/16 Ahmadu Bello Way
Victoria Island
Lagos

Abuja Office

5, Dar es Salaam Street
Off Aminu Kano Crescent
Wouse |1, Abuja

Nigeria

e-mail: centralinfo@nou.edu.ng
URL: www.nou.edu.ng

Published By:
National Open University of Nigeria

First Printed 2012
ISBN: 978-058-047-6

All Rights Reserved

mailto:centralinfo@nou.edu.ng
http://www.nou.edu.ng/

CIT344 COURSE GUIDE

CONTENTS PAGE
) 0T8T LB To3 50) o WA 1
What You Will Learn in ThiS COUTSE. .. couuviiveeeiiiieiiieiiieee e 1
(O 10T £TI AN 11 SRR 1
COUISE ODJECLIVES. . . evviieiiiie ittt e st e sttt e siree et e b e b e e e e 2
Working through This Course.ccccvviiiiiiiiiniieie e 2
COUISE MALETIALS. . . eevveeiee ettt ettt e ettt e s e e e e e e e ee s e s e eeeaeessnnnaans 2
STUAY UNIES. .. eeiiiiiiiiiie ettt e e ae e 3
Textbooks and REFEIENCESoovvivceiiii e 4
ASSIGNMENT FIlE. ..o 4
Presentation Schedule.cccoovvviiii i 4
J NS0 18 =3 6 P 4
Tutor-Marked AsSIgNMENtS (TMAS). .. cocvviieriieiieseese e 4
Final Examination and Grading...ccccocvevininiinieninieieneeee e 4
Course Marking SChemeooveii i 7
COUISE OVEIVIEW. . . wevtteieiieeeeeeeetstiaiseseeseeesssaassseeesssessssrassreeessessnrraans 7
How to Get the Most from ThiS COurse.cooccvevviieieeiiiiriiiee i 8
Facilitators/Tutors and Tutorials.ccccccevecvvireiiiiiieee e 10

Introduction

CIT344: Introduction to Computer Design is a 3-credit unit course
for students studying towards acquiring the Bachelor of Science in
Information Technology and related disciplines.

The course is divided into 6 modules and 21 study units. It introduces
you to concepts in Computer Design and their implementations in our
everyday lives.

This course also provides information on numbers and codes in
computer design, different logic designs, memory devices,
microprocessors and finally, a type of programming called Assembly
Language Programming.

At the end of this course, it is expected that you should be able to
understand, explain and be adequately equipped with comprehensive
knowledge of logic designs and can try your hands in some designs of
your own.

This course guide therefore gives you an overview of what the course is
all about, the textbooks and other course materials to be used, what you
are expected to know in each unit, and how to work through the course
material.

Furthermore, it suggests the general strategy to be adopted and also
emphasises the need for self-assessment and tutor-marked assignment.
There are also tutorial classes that are linked to this course and you are
advised to attend them.

What You Will Learn in This Course

The overall aim of this course is to boost your knowledge of logic
designs, microprocessors and assembly language programming. In the
course of your studies, you will be equipped with definitions of common
terms, characteristics and applications of logic designs. You will also
learn number systems and codes, memory devices, microprocessors and
finally, loops and subroutines in assembly language.

Course Aim

This course aims to give you an in-depth understanding of computer
designs. It is hoped that the knowledge would enhance your expertise in
logic designs.

CIT344 INTRODUCTION TO COMPUTER DESIGN

Course Objectives

It is relevant to note that each unit has its precise objectives. You should
learn them carefully before proceeding to subsequent units. Therefore, it
is useful to refer to these objectives in the course of your study of the
unit to assess your progress. You should always look at the unit
objectives after completing a unit. In this way, you can be sure that you
have done what is required of you by the end of the unit. However,
below are overall objectives of this course. On successful completion of
this course, you should be able to:

explain the term number system and its various types

state the various conversion from one number system to the other
explain the various types of codes

analyse and design a combinational logic circuit

describe what a sequential logic circuit is

state the differences between combinational and sequential logic
circuit

list the types of sequential logic circuit

describe what a latch and flip-flop is

describe what shift register is

discuss about finite state machines

describe memory and the basic operations performed on it

state the types of memory we have

describe microprocessors

write a program using assembly language.

Working through This Course

To complete this course, you are required to study all the units, the
recommended text books, and other relevant materials. Each unit
contains tutor-marked assignments, and at some point in this course, you
are required to submit the tutor-marked assignments. There is also a
final examination at the end of this course. Stated below are the
components of this course and what you have to do.

Course Materials
The major components of the course are:

Course Guide

Study Units

Text Books
Assignment File
Presentation Schedule

arowdE

CIT344

Study Units

INTRODUCTION TO COMPUTER DESIGN

There are 6 modules and 21 study units in this course. They are:

Module 1

Unit 1
Unit 2
Unit 3

Module 2

Unit 1
Unit 2
Unit 3
Unit 4

Module 3

Unit 1
Unit 2
Unit 3
Unit 4

Module 4

Unit 1
Unit 2
Unit 3
Unit 4

Module 5

Unit 1l
Unit 2
Unit 3

Module 6
Unit 1l

Unit 2
Unit 3

Introduction to Numbers and Codes

Types of Number Systems |
Types of Number Systems Il
Codes

Combinational Logic Design and Application

Analysis and Design of a Combinational Logic Circuit
Typical Combinational Logic Circuit |

Typical Combinational Logic Circuit 11

Typical Combinational Logic Circuit I11

Sequential Logic Design and Applications
Sequential Logic Circuits

Latches and Flip-Flops

Registers

Finite State Machines

Memory Devices

Memory Organisation

Memory Types

Memory Expansion

Memory Summary

Introduction to Microprocessors

Microprocessors

Central Processing Unit and Arithmetic and Logical Unit

Addressing Mode
Assembly Language Programming
Learning to Program with Assembly Language

Branching Loops and Subroutines
Sample Programs in Assembly Language

CIT344 INTRODUCTION TO COMPUTER DESIGN

Textbooks and References

These texts listed below will be of enormous benefit to you in learning this course:

Elahi A (2018). Computer System: Digital Design, Fundamentals of Computer
Architecture and Assembly Language. Springer Nature

Patt Y. N (2019). Introduction to Computing Systems — From Bits and Gates to C and
Beyond (Online Version). Mc-Graw-Hill.

Verma A.K, Shama G and Singh K (2016). Wiley Acing The Gate: Computer Science
and Information Technology. Wiley India Pvt. Ltd.

Mano M.M, Kime C.R and Martin T (2015). Logic & Computer Design Fundamentals
(5" edition). Pearson. Pg283

Faroughi N (2015). Digital Logic Design & Computer Organization: With Computer
Architecture for Security. McGraw-Hill Education.

Patterson D. A and Hennessy J.L (2016). Computer Organization & Design ARM
Edition: The Hardware Software Interface. Morgan Kaufmann.

Unsalan C and Tar B (2017). Digital System Design with FPGA Implementation Using
Verilog and VHDL. McGraw-Hill Education.

Null L and Lobur J (2016). The Essentials of Computer Organization and Architecture
(4™ edition). Jones & Barlett Learning.

Rafiquzzaman M (2014). Fundamentals of Digital Logic and Microcontrollers. John
Wiley & Sons.

Roth, H. C. Jr & Kinney, L. L. (2014). Fundamentals of Logic Design (7" edition).
Cengage Learning.

Tanenbaum, Andrew S. (2013). Structured Computer Organization.Prentice Hall

(6th ed).

Mano IF\)/I.ML(%ON). Digital Logic and Computer Design. Pearson India Education Services
vt. Lt

Yasin M.,Rajendran J. (JV) and Sinanoglu O. (2020). Trustworthy Hardware Design:
Combinational Logic Locking TechniquesSpringer Nature

Ndjountche T. (2016). Digital Electronics 1: Combinational Logic Circuits. Wiley

Pedroni V.A (2020). Circuit Design with VHDL(3" Edition). The MIT Press Cambridge.

Sarkar S.K., De Ak., and Sarkar S (2014). Foundation of Digital Electronics and Logic
Design.
Pan Stanford

Stallings W (2016). Computer Organization and architecture: Designing for Performance (10"
\%

N CIT344 o INTRODUCTION TO COMPUTER DESIGN
edition). Pearson Education Limited.

Pyeatt L.D and Ughetta W (2020). ARM 64-Bit Assembly Language. Newnes, Elsevier.

Pyeatt L.D (2016). Modern Assembly Language Programming with the Arm Processor.
Newnes, Elsevier

Schousek T (2018). The Art of Assembly Language Programming using PIC
Technology:
Core Fundamentals. Newnes, Elsevier

Hoey J.V (2019). Beginning x64 Assembly Programming from Novice to AVX
Professional. Apress.

Kusswurm D (2018). Modern X86 Assembly Language Programming (2™ edition).
Apress.

Irvine K.R (2014). Assembly Language for x86 Processors. Pearson

Dunne R (2018). Windows 64-bit Assembly Language Programming Quick Start. Gaul
Communications.

7-segment display. https://www.electronics-tutorials.ws/blog/7-segment-display-tutorial.html

The Evolution of the Revolution: Explore the Intel Technology Innovations that have
changed the world http://download.intel.com/pressroom/kits/IntelProcessorHistory.pdf

80x86 Addressing Modes:
https://www.plantationproductions.com/Webster/www.artofasm.com/DOS/ch04/CH04-
2.html
WWW.CS.siu.edu

www.educypedia.be/electronics

www.books.qgoogle.com

Vi

https://www.electronics-tutorials.ws/blog/7-segment-display-tutorial.html
http://download.intel.com/pressroom/kits/IntelProcessorHistory.pdf
https://www.plantationproductions.com/Webster/www.artofasm.com/DOS/ch04/CH04-2.html
https://www.plantationproductions.com/Webster/www.artofasm.com/DOS/ch04/CH04-2.html
http://www.cs.siu.edu/
http://www.educypedia.be/electronics
http://www.books.google.com/

CIT344

INTRODUCTION TO COMPUTER DESIGN

Assignment File

The assignment file will be given to you in due course. In this file, you
will find all the details of the work you must submit to your tutor for
marking. The marks you obtain for these assignments will count towards
the final mark for the course. Altogether, there are 21 tutor-marked
assignments for this course.

Presentation Schedule

The presentation schedule included in this course guide provides you
with important dates for completion of each tutor-marked assignment.
You should therefore endeavour to meet the deadlines.

Assessment

There are two aspects to the assessment of this course. First, there are
tutor-marked assignments; and second, the written examination.

You are expected to take note of the facts, information and problem
solving gathered during the course. The tutor-marked assignments must
be submitted to your tutor for formal assessment, in accordance to the
deadline given. The work submitted will count for 40% of your total
course mark. At the end of the course, you will need to sit for a final
written examination. This examination will account for 60% of your
total score.

Tutor-Marked Assignments (TMAS)

There are 21 TMAs in this course. You need to submit all the TMAs.
When you have completed each assignment, send them to your tutor as
soon as possible and make certain that it gets to your tutor on or before
the stipulated deadline. If for any reason you cannot complete your
assignment on time, contact your tutor before the assignment is due to
discuss the possibility of extension. Extension will not be granted after
the deadline, unless in extraordinary cases.

Final Examination and Grading

The final examination for CIT344 will be of last for a period of 3 hours
and have a value of 60% of the total course grade. The examination will
consist of questions which reflect the self-assessment exercise and tutor-
marked assignments that you have previously encountered. Furthermore,
all areas of the course will be examined. It would be better to use the
time between finishing the last unit and sitting for the examination, to
revise the entire course. You might find it useful to review your TMAS

A%

CIT344 INTRODUCTION TO COMPUTER DESIGN

and comment on them before the examination. The final examination
covers information from all parts of the course.

Course Marking Scheme
The following table includes the course marking scheme

Table 1: Course Marking Scheme

Assessment Marks

Assignments 1-21 21 assignments, 40% for the best 4
Total = 10% X 4 = 40%

Final Examination 60% of overall course marks

Total 100% of Course Marks

Course Overview

This indicates the units, the number of weeks required to complete them
and the assignments.

Table 2: Course Organiser
Unit | Title of Work Weeks Assessment
Activity (End of Unit)
Course Guide Week 1
Module 1 Introduction to Numbers and Codes
1 | Types of Number Systems | | Week 1 Assignment 1
2 | Types of Number Systems Il | Week 2 Assignment 2
3 | Codes Week 3 Assignment 3
Module2 Combinational Logic Design and Applications
1 | Analysis & Design of a|Week3 Assignment 4
Combinational Logic Circuit
2 | Typical Combinational | Week 4 Assignment 5
Logic Circuit |
3 | Typical Combinational Logic | Week 4 Assignment 6
Circuit Il
4 | Typical Combinational | Week 5 Assignment 7
Logic Circuit 111
Module 3 Sequential Logic Design and Applications
1 | Sequential Logic Circuits Week 5 Assignment 8
2 | Latches and Flip-Flops Week 6 Assignment 9
3 | Registers Week 6 Assignment 10
4 | Finite State Machines Week 7 Assignment 11

vii

CIT344 INTRODUCTION TO COMPUTER DESIGN

Module 4 Memory Devices

1 | Memory Organisation Week 7 Assignment 12

2 | Memory Types Week 8 Assignment 13

3 | Memory Expansion Week 9 Assignment 14

4 | Memory Summary Week 10 Assignment 15
Module 5 Introduction To Microprocessors

1 | Microprocessors Week 10 Assignment 16

2 | Central Processing Unit & Week 11 Assignment 17
Arithmetic & Logical Unit

3 | Addressing Mode Week 12 Assignment 18
Module 6 Assembly Language Programming
Unit | Learning to Program with | Week 13 Assignment 19

1 Assembly Language

Unit | Branching Loops and | Week 14 Assignment 20
2 Subroutine

Unit | Sample Programs in | Week 14 Assignment 21
3 Assembly Language

How to Get the Most Out of This Course

In distance learning, the study units replace the university lecturer. This
Is one of the huge advantages of distance learning mode; you can read
and work through specially designed study materials at your own pace
and at a time and place that is most convenient. Think of it as reading
from the teacher, the study guide indicates what you ought to study, how
to study it and the relevant texts to consult. You are provided with
exercises at appropriate points, just as a lecturer might give you an in-
class exercise.

Each of the study units follows a common format. The first item is an
introduction to the subject matter of the unit and how a particular unit is
integrated with the other units and the course as a whole. Next to this is
a set of learning objectives. These learning objectives are meant to guide
your studies. The moment a unit is finished, you must go back and
check whether you have achieved the objectives. If this is made a habit,
then you will increase your chances of passing the course.

The main body of the units also guides you through the required
readings from other sources. This will usually be either from a set book
or from other sources. Self assessment exercises are provided
throughout the unit, to aid personal studies and answers are provided at
the end of the unit. Working through these self tests will help you to
achieve the objectives of the unit and also prepare you for tutor marked
assignments and examinations. You should attempt each self test as you
encounter them in the units.

viii

CIT344 INTRODUCTION TO COMPUTER DESIGN

Read the course guide thoroughly and organise a study schedule. Refer
to the course overview for more details. Note the time you are expected
to spend on each unit and how the assignment relates to the units.
Important details, e.g. details of your tutorials and the date of the first
day of the semester are available. You need to gather together all these
information in one place such as a diary, a wall chart calendar or an
organiser. Whatever method you choose, you should decide on and write
in your own dates for working on each unit.

Once you have created your own study schedule, do everything you can
to stick to it. The major reason that students fail is that they get behind
with their course works. If you get into difficulties with your schedule,
please let your tutor know before it is too late for help.

Turn to unit 1 and read the introduction and the objectives for the unit.

Assemble the study materials. Information about what you need for a
unit is given in the table of content at the beginning of each unit. You
will almost always need both the study unit you are working on and one
of the materials recommended for further readings, on your desk at the
same time.

Work through the unit, the content of the unit itself has been arranged to
provide a sequence for you to follow. As you work through the unit, you
will be encouraged to read from your set books.

Keep in mind that you will learn a lot by doing all your assignments
carefully. They have been designed to help you meet the objectives of
the course and will help you pass the examination.

Review the objectives of each study unit to confirm that you have
achieved them. If you are not certain about any of the objectives, review
the study material and consult your tutor.

When you are confident that you have achieved a unit’s objectives, you
can start on the next unit. Proceed unit by unit through the course and try
to pace your study so that you can keep yourself on schedule.

When you have submitted an assignment to your tutor for marking, do
not wait for its return before starting on the next unit. Keep to your
schedule. Pay particular attention to your tutor’s comments on the tutor-
marked assignment form and also written on the assignment when the
assignment is returned to you. Consult you tutor as soon as possible if
you have any questions or problems.

CIT344 INTRODUCTION TO COMPUTER DESIGN

After completing the last unit, review the course and prepare yourself
for the final examination. Check that you have achieved the unit
objectives (listed at the beginning of each unit) and the course objectives
(listed in this course guide).

Facilitators/Tutors and Tutorials

There are 8 hours of tutorial provided in support of this course. You will
be notified of the dates, time and location together with the name and
phone number of your tutor as soon as you are allocated a tutorial group.

Your tutor will mark and comment on your assignments, keep a close
watch on your progress and on any difficulties you might encounter and
provide assistance to you during the course. You must mail your tutor
marked assignment to your tutor well before the due date. At least two
working days are required for this purpose. They will be marked by your
tutor and returned to you as soon as possible. Do not hesitate to contact
your tutor by telephone, e-mail or discussion board if you need help.
The following might be circumstances in which you would find help
necessary:

o you do not understand any part of the study units or the assigned
readings

. you have difficulty with the self test or exercise

. you have questions or problems with an assignment, with your
tutor’s comments on an assignment or with the grading of an
assignment.

You should try your best to attend the tutorials. This is the only chance
to have face-to-face contact with your tutor and ask questions which are
answered instantly. You can raise any problem encountered in the
course of your study. To gain the maximum benefit from the course
tutorials, prepare a question list before attending them. You will learn a
lot from participating actively in tutorial discussions.

CIT344 INTRODUCTION TO COMPUTER DESIGN

Course Code CIT344
Course Title Introduction to Computer Design
Course Team Adaora Obayi (Developer/Writer) - NOUN

Dr. Oyebanji (Programme Leader) - NOUN
Vivian Nwaocha (Coordinator) -NOUN

|

NATIONAL OPEN UNIVERSITY OF NIGERIA

Xi

CIT344 INTRODUCTION TO COMPUTER DESIGN

National Open University of Nigeria
Headquarters

14/16 Ahmadu Bello Way

Victoria Island

Lagos

Abuja Office

5, Dar es Salaam Street
Off Aminu Kano Crescent
Wuse I, Abuja

Nigeria

e-mail; centralinfo@nou.edu.ng
URL: www.nou.edu.nqg

Published By:
National Open University of Nigeria

First Printed 2012
ISBN: 978-058-047-6

All Rights Reserved

Xii

mailto:centralinfo@nou.edu.ng
http://www.nou.edu.ng/

CIT344

INTRODUCTION TO COMPUTER DESIGN

CONTENTS PAGE
Module 1 Introduction to Numbers and Codes................. 1
Unit 1 Types of Number Systems I....................co.lll 1
Unit 2 Types of Number Systems | -------------mmmmmmmmmmmee 11
Unit 3 Unsigned and Signed Binary Numbers ----------------- 21
Unit 3 COUBS ... s 31
Module 2 Combinational Logic Design and Application............ 38
Unit 1 Analysis and Design of a Combinational Logic Circuit 38
Unit 2 Typical Combinational Logic Circuit I..........ccccoevvvevvevernenne. 41
Unit 3 Typical Combinational Logic Circuit Il............ccccovevveiennnen. 49
Unit 4 Typical Combinational Logic Circuit Hlc.cooevveernnnen. 61
Module 3 Sequential Logic Design and Applications.......... 60
Unit 1 Sequential Logic Circuits..........ocovvevviiinniiinnn.e. 60
Unit 2 Latches and Flip-Flops..........cooiiiiiiiiiiin, 65
Unit 3 RegISterS. ...t 90
Unit 4 Finite State Machines..................cccoviiiiiiin.n 105
Module 4 Memory Devices.....cccuvveiieiieiiaiiecierinrnnnnsnss 126
Unit 1 Memory Organisation..............ooeevveeireenneannnn.. 126
Unit 2 MeEMOIY TYPeS. ..., 135
Unit 3 Memory EXpansion............c.coevviiiiiiinniennnnn... 150
Unit 4 Memory SUMMATY........ooveiiiiiiiiiiieaiieiiaaneennn, 154
Module 5 Introduction to Microprocessors.........c.cceeeuvense. 157
Unit 1 MICTOPTOCESSOTS. . uuvteeteeee et eieeeaeeeaaeenann, 157
Unit 2 Central Processing Unit and Arithmetic and Logical

Unit. 165
Unit 3 Addressing Mode...........ooooiiiiiiiii 175
Module 6 Assembly Language Programming..................... 188
Unit 1 Learning to Program with Assembly Language............... 188
Unit 2 Branching Loops and Subroutinesccceoee.e... 205
Unit 3 Sample Programs in Assembly Language............... 222

Xiii

CIT344 INTRODUCTION TO COMPUTER DESIGN

MODULE 1 INTRODUCTION TO NUMBERS AND
CODES

Unit 1 Types of Number Systems |

Unit 2 Types of Number Systems Il

Unit 3 Unsigned and Signed Binary Numbers

Unit 4 Codes

UNIT1 TYPESOFNUMBERSYSTEMSII
CONTENTS

1.0 Introduction
2.0 Intended Learning Outcomes (ILOs)
3.0 Main Content
3.1 Decimal Number System
3.2 Binary Number System
3.2.1 Fractions in Binary Number System
3.2.2 Binary Arithmetic
3.2.3 Binary to Decimal Conversion
3.2.4 Decimal to Binary Conversion
4.0 Self- Assessment Exercise(s)
5.0 Conclusion
6.0 Summary
7.0 Further Readings

@ 1.0 Introduction

The number system is the basis of computing. It is a very important
foundation for understanding the way the computer system works. In
this unit, we will talk about decimal and binary number system.
Endeavour to assimilate as much as possible from this unit — especially,
the conversion from one number system to another.

‘@l 2.0 Intended Learning Outcomes (I1LOs)

At the end of this unit, you should be able to:

explain the term decimal number system
manipulate fractions of decimal numbers
explain the term binary number system
manipulate binary arithmetic

convert binary to decimal

convert decimal to binary

=
e
-
o

::i>

CIT344 INTRODUCTION TO COMPUTER DESIGN

3.0 Main Content
3.1 Decimal Number System

The decimal number has a base or radix of 10 meaning that it, has 10 allowable digits
ranging from 0 through 9. Thus, the ten unique digits are as follows: 0, 1, 2, 3, 4, 5,
6, 7, 8, 9. Using these single digits, ten different values can be represented
and also forms the basis for counting as every other number above digit 9 is
gotten from systematically combining two or more of the single digits
together. Thus, ten is represented by the combination of “1” and “0”digits
resulting to number 10, two hundred seventy five is represented by 275, etc.
The decimal number system is a positional number system as the position of
a digit represents its true magnitude. For example, 2 is less than 7, however
2 in 275 represents 200, whereas 7 represents 70. The left most digit has the
highest weight and the right most digit has the lowest weight. 275 can be
written in the form of an expression in terms of the base value of the number
system and weights.

2x102+7x101+5x100=200+70+5=275

where, 10 represents the base or radix,102, 101, 100 represent the
weights 100, 10 and 1 of the numbers 2, 7 and 5. Hence the general
equation form any number system is given as:

(asasazdd180a.980a.3), = (&)
Where r is the base and a; must be less than r

Fractions in Decimal Number System

In a Decimal Number System the fraction part is separated from the
integer part by a decimal point. The integer part of a number is written
on the left hand side of the decimal point. The fraction part is written on
the right side of the decimal point. The digits of the integer part on the
left hand side of the decimal point have weights 100, 101, 102 etc.
respectively starting from the digit to the immediate left of the decimal
point and moving away from the decimal point towards the most
significant digit on the left hand side. Fractions in decimal number
system are also represented in terms of the base value of the number
system and weights. The weights of the fraction part are represented by
10-1, 10-2, 10-3, etc. The weights decrease by a factor of 10 moving
right of the decimal point. The number 382.91 in terms of the base
number and weights is represented as

3x102+8x101+2x100+9x101+1x10%2=300+80+2+0.9+
0.01 =382.91

CIT344 INTRODUCTION TO COMPUTER DESIGN

3.2 Binary Number System
Binary as the name indicates is a base-2 number system having only two
numbers 0 and 1. The binary digit O or 1 is known as a ‘Bit’. Below is

the decimal equivalent of the binary number system.

Table 1: Decimal Equivalents of Binary Number System

Decimal Binary Decimal Binary
Number Number Number Number
0 0 10 1010
1 1 11 1011
2 10 12 1100
3 11 13 1101
4 100 14 1110
5 101 15 1111
6 110 16 10000
7 111 17 10001
8 1000 18 10010
9 1001 19 10011
20 10100

Counting in binary number system is similar to counting in decimal
number systems. In a decimal number system a value larger than 9 has
to be represented by 2, 3, 4, or more digits. Similarly, in the binary
number system a binary number larger than 1 has to be represented by 2,
3, 4, or more binary digits.

Any binary number comprising of binary 0 and 1 can be easily
represented in terms of its decimal equivalent by writing the binary
number in the form of an expression using the base value 2 and weights
20, 21, 22, etc.

The number 10011, (the subscript 2 indicates that the number is a binary
number and not a decimal number ten thousand and eleven) can be
rewritten in terms of the expression:

10011, =(1x24) +(0x23) +(0x22) + (1 x 21) + (1 x 20)
=(1x16)+(0x8)+(0x4)+(1x2)+(1x1)
=16+0+0+2+1

=19

CIT344 INTRODUCTION TO COMPUTER DESIGN

3.2.1 Fractions in Binary Number System

In a decimal number system the integer part and the fraction part of a
number are separated by a decimal point. In a binary number system the
integer part and the Fraction part of a binary number can be similarly
represented separated by a decimal point. The binary number 1011.101,
has an integer part represented by 1011 and a fraction part 101 separated
by a decimal point. The subscript 2 indicates that the number is a binary
number and not a decimal number. The binary number 1011.101, can be
written in terms of an expression using the base value 2 and weights 23,
22,21,20,2", 2% and 2°.

1011.101, = (1 x 23) + (0x 22) + (1 x 21) + (1 x 20) + (L x 21) + (0 x 2°
2+ (1 x 2%
=(1x8)+(0x4)+(1x2)+(1x1)+(1x1/2)+(0x1/4)+(1x1/8)
=8+0+2+1+05+0+0.125

=11.625

Computers do handle numbers such as 11.625 that have an integer part
and a fraction part. However, it does not use the binary representation
1011.101. Such numbers are represented and used in floating-point
numbers notation.

3.2.2 Binary Arithmetic

Digital systems use the binary number system to represent numbers.
Therefore these systems should be capable of performing standard
arithmetic operations on binary numbers.

Binary Addition

Binary addition is identical to decimal addition. By adding two binary
bits, a sum bit and a carry bit are generated. The only difference between
the two additions is the range of numbers used. In binary addition, four
possibilities exist when two single bits are added together. The four
possible input combinations of two single bit binary numbers and their
corresponding sum and carry outputs are specified in Table 2.

Table 2: Addition of Two Single Bit Binary Numbers

First Number | Second Number | Sum Carry
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

CIT344 INTRODUCTION TO COMPUTER DESIGN

The first three additions give a result 0, 1 and 1 respectively which can
be represented by a single binary digit (bit). The fourth addition results
in the number 2, which can be represented in binary as 102. Thus, two
digits (bits) are required. This is similar to the addition of 9 + 3 in
decimal. The answer is 12 which cannot be represented by a single digit;
thus, two digits are required. The number 2 is the sum part and 1 is the
carry part.

Any number of binary numbers having any number of digits can be
added together.

Binary Subtraction

Binary subtraction is identical to decimal subtraction. The only difference
between the two is the range of numbers. Subtracting two single bit binary
numbers results in a difference bit and a borrow bit. The four possible input
combinations of two single bit binary numbers and their corresponding
difference and borrow outputs are specified in Table 3. It is assumed that the
second number is subtracted from the first number.

Table 3: Subtraction of Two Single Bit Binary Numbers
First Number | Second Number | Difference | Borrow
0 0 0 0
0 1 1 1
1 0 1 0
1 1 0 0

The second subtraction subtracts 1 from O for which a borrow is required to make
the first digit equal to 2. The difference is 1. This is similar to decimal
subtraction when 17 is subtracted from 21. The first digit 7 cannot be subtracted
from 1, therefore 10 is borrowed from the next significant digit. Borrowing a 10
allows subtraction of 7 from 11 resulting in a difference of 4.

Binary Multiplication
Binary multiplication is similar to the decimal multiplication except for the range

of numbers. Four possible combinations of two single bit binary numbers and
their products are listed in table 4.

CIT344 INTRODUCTION TO COMPUTER DESIGN

Table 4: Multiplication of two Single Bit Binary Numbers

First Number | Second Number | Product
0 0 0
0 1 0
1 0 0
1 1 1

Binary Division

Division in binary follows the same procedure as in the division of
decimal numbers. Fig 1 illustrates the division of binary numbers.

10

1011101
101

011

000

11
Fig. 1 : Binary Division
3.2.3 Binary to Decimal Conversion

Most real world quantities are represented in decimal number system.
Digital systems on the other hand are based on the binary number
system. Therefore, when converting from the digital domain to the real-
world, binary numbers have to be represented in terms of their decimal
equivalents. The method used to convert from binary to decimal is the
sum-of-weights method.

Sum-of-Weights Method

Sum-of-weights as the name indicates sums the weights of the binary
digits (bits) of a binary number which is to be represented in decimal.
The sum-of-weights method can be used to convert a binary number of
any magnitude to its equivalent decimal representation.

In the sum-of-weights method an extended expression is written in terms
of the binary base number 2 and the weights of the binary number to be
converted. The weights correspond to each of the binary bits which are
multiplied by the corresponding binary value.

Binary bits having the value 0 do not contribute any value towards the
final sum expression. The binary number 10110, is therefore written in
the form of an expression having weights 2°, 2*, 22, 2°* and 2*

6

CIT344 INTRODUCTION TO COMPUTER DESIGN

corresponding to the bits 0, 1, 1, 0 and 1 respectively. Weights 2° and 2°
do not contribute in the final sum as the binary bits corresponding to
these weights have the value 0.

10110, =1x2*+0x 22+ 1x 22+ 1 x 2t + 0 x 2°
=16+0+4+2+0
=22

Sum-of-Non-Zero Terms

In the sum-of-weights method, the binary bits 0 do not contribute
towards the final sum representing the decimal equivalent. Secondly, the
weight of each binary bit increases by a factor of 2 starting with a
weight of 1 for the least significant bit. For example, the binary number
101102 has weights 2°=1, 2'=2, 2°=4, 2°=8 and 2=16 corresponding to
the bits 0, 1, 1, 0 and 1 respectively.

The sum-of-non-zero terms method is a quicker method to determine
decimal equivalents of binary numbers without resorting to writing an
expression. In the sum-of-non-zero terms method, the weights of non-
zero binary bits are summed, as the weights of zero binary bits do not
contribute towards the final sum representing the decimal equivalent.

The weights of binary bits starting from the right most least significant
bit is 1, The next significant bit on the left has the weight 2, followed by
4, 8, 16, 32, etc. corresponding to higher significant bits. In binary
number system the weights of successive bits increase by an order of 2
towards the left side and decrease by an order of 2 towards the right
side. Thus, a binary number can be quickly converted into its decimal
equivalent by adding weights of non-zero terms which increase by a
factor of 2. Binary numbers having an integer and a fraction part can
similarly be converted into their decimal equivalents by applying the
same method.

A quicker method is to add the weights of non-zero terms. Thus, for the
numbers:

10011,=16+2+1=19

1011.101,=8+2+1+%+1/8=11+5/8 = 11.625

3.2.4 Decimal to Binary Conversion

Conversion from decimal to binary number system is also essential to
represent real-world quantities in terms of binary values. The sum-of-
weights and repeated division by 2 methods are used to convert a
decimal number to equivalent binary.

CIT344 INTRODUCTION TO COMPUTER DESIGN

Sum-of-Weights

The sum-of-weights method used to convert binary numbers into their
decimal equivalent is based on adding binary weights of the binary
number bits. Converting back from the decimal number to the original
binary number requires finding the highest weight included in the sum
representing the decimal equivalent. A binary 1 is marked to represent
the bit which contributed its weight in the sum representing the decimal
equivalent. The weight is subtracted from the sum decimal equivalent.
The next highest weight included in the sum term is found. A binary 1 is
marked to represent the bit which contributed its weight in the sum term
and the weight is subtracted from the sum term. This process is repeated
until the sum term becomes equal to zero. The binary 1s and 0s
represent the binary bits that contributed their weight and bits that did
not contribute any weight respectively.

The process of determining binary equivalent of a decimal number 392
and 411 is illustrated in a tabular form.

Table 5: Converting Decimal to Binary using Sum-of-Weights

Method
Sum Term | Highest Binary Number Sum Term
Weight = Sum Term — Highest
Weight
392 256 100000000 136
136 128 110000000 8
8 8 110001000 0

The sum-of-weights method requires mental arithmetic and is a quick
way of converting small decimal numbers into binary. With practice
large decimal numbers can be converted into binary equivalents.

Repeated Division-by-2

Repeated division-by-2 method allows decimal numbers of any
magnitude to be converted into binary. In this method, the decimal
number to be converted into its binary equivalent is repeatedly divided
by 2. The divisor is selected as 2 because the decimal number is being
converted into binary a base-2 number system. Repeated division
method can be used to convert decimal number into any number system
by repeated division by the base-number.

In the repeated-division method the decimal number to be converted is
divided by the base number, in this particular case 2. A quotient value
and a remainder value is generated, both values are noted done. The

8

CIT344 INTRODUCTION TO COMPUTER DESIGN

remainder value in all subsequent divisions would be either a 0 or a 1. The
quotient value obtained as a result of division by 2 is divided again by 2. The
new quotient and remainder values are again noted down. In each step of the
repeated division method the remainder values are noted down and the quotient
values are repeatedly divided by the base number. The process of repeated
division stops when the quotient value becomes zero. The remainders that have
been noted in consecutive steps are written out to indicate the binary equivalent
of the original decimal number.

Table 6: Converting Decimal to Binary using Repeated
Division by 2 Method

Number | Quotient after division | Remainder after division

392 196 0

196 98 0 4

98 49 0
49 24 1

24 12 0

12 6 0

6 3 0

3 1 1

1 0 1

The process of determining the binary equivalent of a decimal number 392 is
illustrated in a tabular form above. Reading the numbers in the remainder
column from bottom to top 110001000 gives the binary equivalent of the
decimal number 392.

| xl 4.0 Self-Assessment Exercise(s)

Explain with the aid of good examples, the different methods of
converting binary numbers to decimal numbers.

|V‘c,»‘/|
5.0 Conclusion

The decimal number system has ten unique digits 0, 1, 2, 3... 9. Using these
single digits, ten different values can be represented. VValues greater than ten can
be represented by using the same digits in different combinations. Binary
indicates a base-2 number system having only two numbers 0 and 1. The binary
digit 0 or 1 is known as a ‘Bit’.

CIT344 INTRODUCTION TO COMPUTER DESIGN

6.0 Summary

In this unit, we discussed decimal and binary number systems, manipulation of
their fractions, binary arithmetic and conversion of decimal to binary and vice
versa. Hoping that you understood the topics discussed, you may now attempt the
questions below.

7.0 Further Readings

Elahi A (2018). Computer System: Digital Design, Fundamentals of Computer
Architecture and Assembly Language. Springer Nature

Patt Y. N (2019). Introduction to Computing Systems — From Bits and Gates to C and
Beyond (Online Version). Mc-Graw-Hill.

Verma A.K, Shama G and Singh K (2016). Wiley Acing The Gate: Computer Science
and Information Technology. Wiley India Pvt. Ltd.

Mano M.M, Kime C.R and Martin T (2015). Logic & Computer Design Fundamentals
(5" edition). Pearson. Pg283

Faroughi N (2015). Digital Logic Design & Computer Organization: With Computer
Architecture for Security. McGraw-Hill Education.

Patterson D. A and Hennessy J.L (2016). Computer Organization & Design ARM
Edition: The Hardware Software Interface. Morgan Kaufmann.

Unsalan C and Tar B (2017). Digital System Design with FPGA Implementation Using
Verilog and VHDL. McGraw-Hill Education.

Null L and Lobur J (2016). The Essentials of Computer Organization and Architecture
(4™ edition). Jones & Barlett Learning.

Rafiquzzaman M (2014). Fundamentals of Digital Logic and Microcontrollers. John
Wiley & Sons.

WWW.CS.Siu.edu

www.educypedia.be/electronics

www.books.qgoogle.com

10

UNIT 2

CIT344

INTRODUCTION TO COMPUTER DESIGN

TYPES OF NUMBER SYSTEMS 11

CONTENTS

1.0
2.0
3.0

4.0
5.0
6.0
7.0

Introduction
Intended Learning Outcomes (ILOs)
Main Content
3.1 Hexadecimal Number System
3.1.1 Counting in Hexadecimal Number System
3.1.2 Binary to Hexadecimal Conversion
3.1.3 Hexadecimal to Binary Conversion
3.1.4 Decimal to Hexadecimal Conversion
3.1.5 Hexadecimal to Decimal Conversion
3.1.6 Hexadecimal Addition and Subtraction
3.2 Octal Number System
3.2.1 Counting in Octal Number System
3.2.2 Binary to Octal Conversion
3.2.3 Octal to Binary Conversion
3.2.4 Decimal to Octal Conversion
3.2.5 Octal to Decimal Conversion
3.2.6 Octal Addition and Subtraction
Self- Assessment Exercise(s)
Conclusion
Summary
Further Readings

@ 1.0 Introduction

In this unit we shall conclude with hexadecimal and octal number
systems.

©)

2.0

Intended Learning Outcomes (ILOs)

At the end of this unit, you should be able to:

explain the term hexadecimal number system
count in hexadecimal
convert binary to hexadecimal
convert hexadecimal to binary
convert decimal to hexadecimal
convert hexadecimal to decimal
explain hexadecimal addition and subtraction
explain the term octal number system
explain hexadecimal addition and subtraction.
11

CIT344 INTRODUCTION TO COMPUTER DESIGN

3.0 Main Content
3.1 Hexadecimal Number System

Representing even small number such as 6918 requires a long binary
string (1101100000110) of Os and 1s. Larger decimal numbers would
require lengthier binary strings. Writing such long string is tedious and
prone to errors.

The hexadecimal number system is a base 16 number system and
therefore has 16 digits and is used primarily to represent binary strings
in a compact manner. Hexadecimal number system is not used by a
digital system. The hexadecimal number system is for our convenience
to write binary strings in a short and concise form. Each hexadecimal
number digit can represent a 4-bit binary number. The binary numbers
and the hexadecimal equivalents are listed below:

Table 1: Hexadecimal Equivalents of Decimal and Binary Numbers

Decimal | Binary |[Hexadecimal Decimal | Binary |Hexadecimal
0 0000 0 8 1000 8
1 0001 1 9 1001 9
2 0010 2 10 1010 A
3 0011 3 11 1011 B
4 0100 4 12 1100 C
5 0101 5 13 1101 D
6 0110 6 14 1110 E
7 0111 7 15 1111 F

3.1.1 Counting in Hexadecimal Number System

Counting in hexadecimal is similar to the other number systems already
discussed. The maximum value represented by a single hexadecimal
digit is F which is equivalent to decimal 15. The next higher value
decimal 16 is represented by a combination of two hexadecimal digits
10,6 or 10 H. The subscript 16 indicates that the number is hexadecimal
10 and not decimal 10. Hexadecimal numbers are also identified by
appending the character H after the number. The hexadecimal numbers
for decimal numbers 16 to 39 are listed below in table 2:

12

CIT344 INTRODUCTION TO COMPUTER DESIGN

Table 2: Counting using Hexadecimal Numbers

Decimal | Hexadecimal | Decimal | Hexadecimal | Decimal | Hexadecimal
16 10 24 18 32 20
17 11 25 19 33 21
18 12 26 1A 34 22
19 13 27 1B 35 23
20 14 28 1C 36 24
21 15 29 1D 37 25
22 16 30 1E 38 26
23 17 31 1F 39 27

3.1.2 Binary to Hexadecimal Conversion

Converting binary to hexadecimal is a very simple operation. The binary
string is divided into small groups of 4-bits starting from the least
significant bit. Each 4-bit binary group is replaced by its hexadecimal
equivalent.

11010110101110010110 binary number 1101 0110 1011 1001 0110
Dividing into groups of 4-bits

D 6 B 9 6 Replacing each group by its hexadecimal
equivalent

Thus, 11010110101110010110 is represented in hexadecimal by D6B96

Binary strings which cannot be exactly divided into a whole number of
4-bit groups are assumed to have 0’s appended in the most significant
bits to complete a group.

1101100000110 Binary Number

1 1011 0000 0110 Dividing into groups of 4-bits

0001 1011 0000 0110 Appending three Os to complete the group

1 B 0 6 Replacing each group by its hexadecimal
equivalent

3.1.3 Hexadecimal to Binary Conversion
Converting from Hexadecimal back to binary is also very simple. Each

digit of the hexadecimal number is replaced by an equivalent binary
string of 4-bits.

13

CIT344 INTRODUCTION TO COMPUTER DESIGN

F D 1 3 hexadecimal number

1111 1101 0001 0011 Replacing each hexadecimal digit by its 4-bit
binary equivalent.

3.1.4 Decimal to Hexadecimal Conversion

There are two methods to convert from decimal to hexadecimal. The
first method is the indirect method and the second method is the
repeated division method.

Indirect Method

A decimal number can be converted into its hexadecimal equivalent
indirectly by first converting the decimal number into its binary
equivalent and then converting the binary to Hexadecimal.

Repeated Division-by-16 Method

The repeated division method has been discussed earlier and used to
convert decimal numbers to binary by repeatedly dividing the decimal
number by 2. A decimal number can be directly converted into
hexadecimal by using repeated division. The decimal number is
continuously divided by 16 (base value of the hexadecimal number
system).

The conversion of decimal 2096 to hexadecimal using the repeated
division-by-16 method is illustrated in Table 3. The hexadecimal
equivalent of 20964 is 8304.

Table 3: Hexadecimal Equivalent of Decimal Numbers Using
Repeated Division

Number |Quotient after division |Remainder after division
2096 131 0
131 8 3
8 0 8

3.1.5 Hexadecimal to Decimal Conversion
Converting hexadecimal numbers to decimal is done using two methods.

The first method is the indirect method and the second method is the
sum-of-weights method.

14

CIT344 INTRODUCTION TO COMPUTER DESIGN

Indirect Method

The indirect method of converting hexadecimal number to decimal
number is to first convert hexadecimal number to binary and then binary
to decimal.

Sum-of-Weights Method

A hexadecimal number can be directly converted into decimal by using
the sum of weights method. The conversion steps using the sum-of-
weights method are shown.

CAO02 hexadecimal number

Cx16%+ Ax 16%+ 0 x 16" + 2 x 16° Writing the number in an
expression

(C x 4096) + (A x 256) + (0x 16) + (2 x 1)

(12 x 4096) + (10 x 256) + (0 x 16) + (2 x 1) Replacing hexadecimal
values with

decimal equivalents

49152 + 2560 + 0 + 2 Summing the weights

51714 Decimal equivalent

3.1.6 Hexadecimal Addition and Subtraction

Numbers represented in hexadecimal can be added and subtracted
directly without having to convert them into decimal or binary
equivalents. The rules of addition and subtraction that are used to add
and subtract numbers in decimal or binary number systems apply to
hexadecimal addition and subtraction. Hexadecimal addition and
subtractions allows large binary numbers to be quickly added and
subtracted.

Hexadecimal Addition

Carry 1
Number1l 2 AC6
Number2 92B5
Sum BD7B

Hexadecimal Subtraction

Borrow 111
Numberl 92B5
Number2 2AC6H
Difference 6 7TEF

15

CIT344 INTRODUCTION TO COMPUTER DESIGN

3.2 Octal Number System

Octal number system also provides a convenient way to represent long
string of binary numbers. The octal number is a base 8 number system
with digits ranging from 0 to 7. Octal number system was prevalent in
earlier digital systems and is not used in modern digital systems
especially when the hexadecimal number is available. Each octal
number digit can represent a 3-bit binary number. The binary numbers
and the octal equivalents are listed below

Table 4: Octal Equivalents of Decimal and Binary Numbers

Decimal | Binary Octal
0 000 0
001
010
011
100
101
110
111

~NOoOOBAWN -
~NOoOORWN -

3.2.5 Counting in Octal Number System

Counting in octal is similar to counting in any other number system. The
maximum value represented by a single octal digit is 7. For representing
larger values a combination of two or more octal digits has to be used.
Thus, decimal 8 is represented by a combination of10g. The subscript 8
indicates the number is octal 10 and not decimal ten. The octal numbers
for decimal numbers 8 to 30 are listed below:

Table 5: Counting using Octal Numbers

Decimal| Octall Decimal Octall Decimal| Octal
8 10 16 20 24 30
9 11 17 21 25 31
10 12 18 22 26 32
11 13 19 23 27 33
12 14 20 24 28 34
13 15 21 25 29 35
14 16 22 26 30 36
15 17 23 27 31 37

16

CIT344 INTRODUCTION TO COMPUTER DESIGN

3.2.6 Binary to Octal Conversion

Converting binary to octal is a very simple. The binary string is divided
into small groups of 3-bits starting from the least significant bit. Each 3-
bit binary group is replaced by its octal equivalent.

111010110101110010110 Binary number

111 010110101 110 010 110 Dividing into groups of 3-bits

7 2 6 5 6 2 6 Replacing each group by its octal
equivalent

Thus, 111010110101110010110 is represented in octal by 7265626

Binary strings which cannot be exactly divided into a whole number of
3-bit groups are assumed to have 0’s appended in the most significant
bits to complete a group.

1101100000110 Binary number

1 101 100 000 110 Dividing into groups of 3-bits

001 101 100 000 110 Appending three Osto complete the group
1 5 4 0 6 Replacing each group by its octal equivalent

3.2.7 Octal to Binary Conversion

Converting from octal back to binary is also very simple. Each digit of
the octal number is replaced by an equivalent binary string of 3-bits.

1 7 2 6 Octal number
001 111 010 110 Replacing each octal digit by its 3-bit binary
equivalent.

3.2.8 Decimal to Octal Conversion

There are two methods to convert from decimal to octal. The first
method is the

Indirect Method and the second method is the repeated division method.
Indirect Method

A decimal number can be converted into its octal equivalent indirectly

by first converting the decimal number into its binary equivalent and
then converting the binary to octal.

17

CIT344 INTRODUCTION TO COMPUTER DESIGN

Repeated Division-by-8 Method

The repeated division method has been discussed earlier and used to
convert decimal numbers to binary and hexadecimal by repeatedly
dividing the decimal number by 2 and 16 respectively. A decimal
number can be directly converted into octal by using repeated division.
The decimal number is continuously divided by 8 (base value of the
Octal number system).

The conversion of decimal 2075 to octal using the repeated division-by-
8 method is illustrated in Table 6. The octal equivalent of 20754, is
4033s.

Table 6: Octal Equivalent of Decimal Numbers Using Repeated
Division
Number | Quotient after Division | Remainder after Division
2075 259 3
259 32 3
32 4 0
4 0 4

3.2.5 Octal to Decimal Conversion

Converting octal numbers to decimal is done using two methods. The
first method is the indirect method and the second method is the sum-of-
weights method.

Indirect Method

The indirect method of converting octal number to decimal number is to
first convert octal number to binary and then binary to decimal.

Sum-of-Weights Method

An octal number can be directly converted into decimal by using the
sum of weights method. The conversion steps using the sum-of-weights
method are shown.

4033 octal number

4x 8 +0x8+3x8" + 3 x 8% Writing the number in an expression
(4x512)+ (0x64)+(3x8)+(3x1)

2048 + 0 + 24 + 3 Summing the weights

2075 Decimal equivalent

18

CIT344 INTRODUCTION TO COMPUTER DESIGN

3.2.6 Octal Addition and Subtraction

Numbers represented in octal can be added and subtracted directly
without having to convert them into decimal or binary equivalents. The
rules of addition and subtraction that are used to add and subtract
numbers in decimal or binary number systems apply to octal addition
and subtraction. Octal addition and subtractions allows large binary
numbers to be quickly added and subtracted.

1. Octal Addition

Carry 1
Numberl 7602
Number2 5771
Sum 15573

2. Octal Subtraction

Borrow 11

Numberl 7602
Number2 5771
Difference 1611

4.0 Self-Assessment Exercise(s)

Explain how you can convert hexadecimal and octal numbers to binary
and decimal numbers and vice versa.

5.0 Conclusion

In this unit we talked about hexadecimal and octal number systems,
counting in hexadecimal and octal, hexadecimal & octal arithmetic,
conversion of hexadecimal to binary and vice versa, hexadecimal to
decimal and vice versa.

6.0 Summary

In this unit we talked about hexadecimal and octal number systems,
counting in hexadecimal and octal, hexadecimal and octal arithmetic,
conversion of hexadecimal to binary and vice versa, hexadecimal to
decimal and vice versa.

19

CIT344 INTRODUCTION TO COMPUTER DESIGN

@ 7.0 Further Readings

Elahi A (2018). Computer System: Digital Design, Fundamentals of Computer
Architecture and Assembly Language. Springer Nature

Patt Y. N (2019). Introduction to Computing Systems — From Bits and Gates to C and
Beyond (Online Version). Mc-Graw-Hill.

Verma A.K, Shama G and Singh K (2016). Wiley Acing The Gate: Computer Science and
Information Technology. Wiley India Pvt. Ltd.

Mano M.M, Kime C.R and Martin T (2015). Logic & Computer Design Fundamentals (5"
edition). Pearson. Pg283

Faroughi N (2015). Digital Logic Design & Computer Organization: With Computer
Architecture for Security. McGraw-Hill Education.

Patterson D. A and Hennessy J.L (2016). Computer Organization & Design ARM
Edition: The Hardware Software Interface. Morgan Kaufmann.

Unsalan C and Tar B (2017). Digital System Design with FPGA Implementation Using
Verilog and VHDL. McGraw-Hill Education.

Null L and Lobur J (2016). The Essentials of Computer Organization and Architecture (4™
edition). Jones & Barlett Learning.

Rafiquzzaman M (2014). Fundamentals of Digital Logic and Microcontrollers. John
Wiley & Sons.

WWW.CS.Siu.edu
www.educypedia.be/electronics
www.books.google.com

20

CIT344 INTRODUCTION TO COMPUTER DESIGN

UNIT 3 Unsigned and Signed Binary Numbers
CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content
3.1 Unsigned and Signed Binary Numbers
3.1.1 Singed-magnitude approach
3.1.2 Complements Techniques
3.1.3 One’s complement addition and subtraction
3.1.4 Two’s complement addition and subtraction
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

@1.0 Introduction

We will be considering in this unit the unsigned and signed binary
number operations and usefulness in computing. Although, brief
introduction to complements of numbers generally with few examples
will be highlighted but more emphasis will be on binary number
operations because that forms the basis of our modern computer designs.

@lz.o Intended Learning Outcomes (1LOs)

At the end of this unit, you should be able to:

e understand the concept of signed and unsigned number representations
e understand the concept of complement techniques
e understand how computers performs arithmetic operations

)

=]
e |
o

3.0 Main Content

3.1 Unsigned and Signed Binary Numbers

We have looked at the decimal number system and the binary number system in the
previous units, but it is also important for us to understand how each of the number
systems mentioned above could be represented using signs.

21

CIT344 INTRODUCTION TO COMPUTER DESIGN
An unsigned decimal or binary number has no arithmetic sign and is always positive.
Examples of unsigned decimal number are the numbers on your mobile phone
keypads,

your age and many more one can think of without sign. Also, an 8-bit unsigned
binary integer are numbers represented from 00,¢ through FF (019 through 255,).

In sign magnitude representation, plus (+) and minus (-) signs are used to represent
signed decimal numbers while in binary, we use O for positive and 1 for negative
binary signed representation. However, every signed representation is always placed
to the left side of the number for instance, in binary system, ‘0’ and ‘1’ is placed to
the left of the most significant bit position to represent negative and positive number
respectively. In other words, the extra bit (0 or 1) placed at the left side of the Most
Significant Digit (MSD), represents the sign of the binary number.

Example Magnitude

+210 — f 01 0,
Sign

-210 1 01 0

2550 O 001 1001,

+25,0 1 001 1001,

Table 1 shows 4-bit integers represented in Sign-magnitude form. With four bits, we
can only represent numbers ranging from -7 < a < +7. In general, if there are n bits of
a binary number, it then means that its range spans from within = (2" - 1). This
means that with n — 1 bits, accommodates any value from 0 to 2"' (can be
comfortably represented). Although, with this position, it then means that the value
zero (0) will then have two representation (i.e 0000 for +0 and 1000 for -0) which
sometimes appears confusing in the eye of the reader. This is because in binary,
“1000” represents the number eight (8) in decimal but once clearly specified as
signed bit then “1000” is now a negative zero (-0).

In complement approach, positive numbers are represented the same manner as they
do in sign-magnitude representation whereas, negative numbers have different
representation.

22

CIT344 INTRODUCTION TO COMPUTER DESIGN

Table 1: Sign-magnitude of 4-bit integer representation

. . Interpretation using sign-
Four-bit integers pret: £ SIg

magnitude
0000 +0
0001 +1
0010 +2
0o11 +3
0100 +4
0101 +5
0110 +6
0111 +7
1000 0
1001 —1
1010 2
1011 -3
1100 —4
1101 5
1110 —6&

1111 !

3.1.2 Complement Techniques
The complement of a number X, always denoted as X is obtained from X by taking
its bit-by-bit complement. In essence, each 0 in X is changed to 1 and each 1 in X is
changed to 0.
Example: find the complements of the following binary numbers:

e 1100101, === 0011010,

e (000111, =====111000,

e 111111, =====000000,

Before we proceed further with binary complements, it would be rather necessary we
look at how to obtain the complements of some decimal numbers.

9°s Complement
The 9’s complement of a decimal number is obtained by subtracting each digit of the

number from 9. Table 2, shows the decimal numbers 0 to 9 and its equivalent 9’s
complements.

23

CIT344 INTRODUCTION TO COMPUTER DESIGN

Table 2: 9°s complements of decimal numbers

Decimal 9’s Decimal 9’s

number Complement | number Complement
0 9 5 4

1 8 6 3

2 7 7 2

3 6 8 1

4 5 9 0

Example

Obtain the 9’s complement of the following numbers: (a) 13 (b) 33 (c) 563

@ 99 (b) 99 (c) 999
+ 13 +33 + 563
8 6 6 6 436

9°s Complement Subtraction

The usefulness of the 9°’s complement is seen from the fact that subtraction of large
number from smaller number is accomplished by addition of the 9’s complement of
the subtrahend to the minuend to the smaller number and adding the end-around
carry (if any) to the result. For subtraction of larger decimal number from the smaller
decimal number, no carry results and the result becomes negative of the

complemented form.

Example : perform subtraction using 9’s complement of the following numbers:

8 = 8 Minuend
- 3 = +6 Subtrahend
14
— +1
5 Result
16 = 16 Minuend
- 29 = + 70 Subtrahend

—> 86

- 13 Result

24

CIT344 INTRODUCTION TO COMPUTER DESIGN
10’s complement
The 10°s complement of any decimal number is equal to -9’s complement + 1
Example

Obtain 10’s complement of the number (a) 14 (b) 563 (c) 3497

(@ 99 (b) 999 (c) 9999
_i - 562 -3437
8 7 437 6562
+ 1 + 1 + 1
8 8 438 6563

10’s Complement Subtraction

In 10’s complement subtraction, the minuend is added to the 0’s complement of the
subtrahend while dropping the carry. Situations that the subtrahend is of a larger
number than the minuend, no carry results. Take the 9’s complement of the
resulting value after adding the minuend to the subtrahend of the 10’s complement
and then add 1 to convert back to 10’s complement (see example b) Hence, the
answer is negative in the 10’s complemented form.

Example

oo

16
+ 81 10’s Complement
— 86

16
- 29

13
+ 1
-1 4 10’s Complement Result

25

CIT344 INTRODUCTION TO COMPUTER DESIGN

3.1.3 One’s Complement

One’s complement operation of binary numbers is simply taking the complements of
each bits as contained in a binary number individually. As mentioned earlier in this
unit, the complement of 0 is 1 and the complement of 1 is 0.
Example: find the 1’s complement of 101101

101101 === 010010,

One’s Complement Addition

In performing 1°s complement addition/subtraction, it is important to determine the
number bits required to perform the operation. This means that there should be a
method to align properly the number of bits of both the minuend and the subtrahend
equally.

e Assume 2-decimal numbers N; and N,, the number of bits required to convert
them in binary system, is based on the principle:

(2"* - 1) > Ny or N, (whichever is larger in magnitude) only if N; and N, are of
opposite signs.

e If the 2-decimal numbers are of same sign, the required number of bits is
gotten by adding N; and N,. Thus,

(2" - 1) > N; + N, gives the number of bits needed to convert the decimal
numbers to binary system.

e In performing 1’s complement arithmetic operation, if carry, add to the Least
Significant Bit (LSB) position.
o MSB of the addition indicates the sign (MSB = 1(negative), MSB = 0
(positive).

e Final result is obtained by taking 1’s complement of the addition, if addition is
negative

e For subtraction, if subtrahend is negative, write the magnitude only.

26

CIT344 INTRODUCTION TO COMPUTER DESIGN
Example
Add 3D to -5D (where the D stands for decimal)

+3=0011(2"*-1)>5n=4 0011
+5=0101
-5=10101.e 1’s complement of +5 1010
1101 Result=-1’s complement of 1101
I.e =-0010 =-2D
One’s complement subtraction

Subtraction in 1’s complement is nothing but the addition of the subtrahend to the
minuend.

Example
Subtract -8D from -3D

(2n-1-1)>11,n

5 = number of bits
+8 = 01000, -8 =

8 =10111,
-8 =01000, + 3=00011, 3 =11100,
11100 =3

01000 =8

100100
-
1

Result = 00101 = 5D

3.1.1.4 Two’s Complement

The 2’s complement of a number is simply == 1’s complement + 1
Example

The 2’s complement of 101011 1s: 010100 (1’s complement) + 1 =010101

Find the 2’s complement of 10000: 01111(complement) + 1 = 10000

27

CIT344 INTRODUCTION TO COMPUTER DESIGN

Two’s complement Addition and Subtraction

In performing 2’s complement addition/subtraction, it is important to determine the
number bits required to perform the operation. This means that there should be a
method to align properly the number of bits of both the minuend and the subtrahend
equally.

Assume 2-decimal numbers N; and N,, the number of bits required to convert
them in binary system, is based on the principle:

(2"* - 1) > Ny or N, (whichever is larger in magnitude) only if N; and N, are of
opposite signs.

If the 2-decimal numbers are of same sign, the required number of bits is
gotten by adding N; and N,. Thus,

(2" - 1) > N; + N, gives the number of bits needed to convert the decimal
numbers to binary system.

o In performing 2’s complement arithmetic operation, if carry,
ignore/discard.

o MSB of the addition indicates the sign (MSB = 1 (negative), MSB =0
(positive).

Final result is obtained by taking 1’s complement of the addition, if addition is
negative
For subtraction, if subtrahend is negative, write the magnitude only.

Two’s Complement Addition

Add 3D to -5D (where the D stands for decimal)

+3=0011(2""-1)>5,n=4 0011
+5=0101
-5=1010+1i.e2’s complement of +5 1011

1110
Result = -1°s complement of 1110
i.e =-0001+1=-0010 =
-2D

28

CIT344 INTRODUCTION TO COMPUTER DESIGN
One’s complement subtraction

Subtraction in 1’s complement is nothing but the addition of the subtrahend to the
minuend.

Example
Subtract -8D from -3D

(2n-1-1) > 11, n =5 = number of bits
+8 = 01000, -8 =8 =10111,

-8 (i.e—(-8)) = 01000, + 3=00011, 3 =11100 + 1,

11101 =3
01000 =38
100101
L» Ignore/discard
Result =0 0101 =5D
Example:

Subtract B = 110101 from A = 101010.
Two’s complement of B is 001010 + 1 = 001011.
Add two’s complement of B to A.
001011
+
101010
110101

As we can see, adding two 6-bit number results in a 6-bit answer. There is no carry; we just
take the two’s complement of the result.

Two’s Complement of 110101 =001010 + 1 =-001011

29

CIT344 INTRODUCTION TO COMPUTER DESIGN

‘ 5(|4.0 Self-Assessment Exercise(s)

Perform the subtraction of 1’s and 2’s complement on the following:
e -108D from 93D
e 45D from 119D
e -9D from -4D

‘V‘»’/l 5.0 Conclusion

Binary numbers could be a signed or unsigned number, where 0 is used to
represent positive binary number and 1 is used to represent negative binary
number conventionally for every signed binary number. For signed binary
numbers, the MSB number (0 or 1) represents the sign of the binary number.
However, in an unsigned number, all bits of a number are used to represent the
number.

Complement techniques mostly one’s and two’s complement were initiated in
order to enable computers understand and operate arithmetic operations the same
way humans understand it, thus giving us as output the expected result. Most
modern computers are designed with two’s complement to effectively carry out
its arithmetic operations.

” 6.0 Summary

This unit has been able to explore on the concept of unsigned and signed
numbers, complement techniques and the arithmetic operation of the computer
based complements techniques.

M;—J 7.0 Further Readings

Elahi A (2018). Computer System: Digital Design, Fundamentals of Computer
Architecture and Assembly Language. Springer Nature

Patt Y. N (2019). Introduction to Computing Systems — From Bits and Gates to C and
Beyond (Online Version). Mc-Graw-Hill.

Verma A.K, Shama G and Singh K (2016). Wiley Acing The Gate: Computer Science and
Information Technology. Wiley India Pvt. Ltd.

Mano M.M, Kime C.R and Martin T (2015). Logic & Computer Design Fundamentals (5"
edition). Pearson. Pg283

Faroughi N (2015). Digital Logic Design & Computer Organization: With Computer
Architecture for Security. McGraw-Hill Education.

Patterson D. A and Hennessy J.L (2016). Computer Organization & Design ARM Edition:
The Hardware Software Interface. Morgan Kaufmann.

30

CIT344 INTRODUCTION TO COMPUTER DESIGN
Unsalan C and Tar B (2017). Digital System Design with FPGA Implementation Using
Verilog and VHDL. McGraw-Hill Education.
Null L and Lobur J (2016). The Essentials of Computer Organization and Architecture (4™
edition). Jones & Barlett Learning.

Rafiguzzaman M (2014). Fundamentals of Digital Logic and Microcontrollers. John
Wiley & Sons.

31

CIT344 INTRODUCTION TO COMPUTER DESIGN

UNIT 4 CODES
CONTENTS

1.0 Introduction
2.0 Intended
Learning
Outcomes
(ILOs)
3.0 Main Content
3.1 Codes
3.1.1 The Excess Code
3.1.2 BCD Code
3.1.3 Gray Code
3.1.4 Alphanumeric Code
3.1.5 ASCII Code
3.1.6 Extended ASCII Code
4.0 Self-Assessment Exercise(s)
5.0 Conclusion
6.0 Summary
7.0 Further Readings

Introduction

@

We have different types of code a few are briefly discussed below they
include: Excess code, BCD code, Gray code, alphanumeric code, ASCII
code, Extended ASCII code.

2.0 Intended Learning Outcomes (ILOs)

@

At the end of this unit, you should be able to:

o define code
. explain the various types of codes.

)

4|i

J1itd 3.0Main Content

3.1Codes

A code in computer parlance is a generic term for program instructions,
used in two general senses. The first sense refers to human-readable
source code, which include the instructions written by the programmer
in a programming language. The second refers to executable machine
code, which include the instructions of a program that were converted
from source code to instructions that the computer can understand.

32

CIT344

INTRODUCTION TO COMPUTER DESIGN

3.1.1 The Excess Code

Consider the decimal number range +7 to -8. These positive and
negative decimal numbers can be represented by the 2’s complement
representation. The magnitude of positive and negative numbers cannot
be easily compared as the positive and negative numbers represented in
2’s complement form are not represented on a uniformly increasing
scale.

The decimal number range +7 to -8 is represented using an excess-8
code that assigns 0000 to -8 the lowest number in the range and 1111 to
+7 the highest number in the range. Excess-8 code is obtained by adding
a number to the lowest number -8 in the range such that the result is
zero. The number is 8. The number 8 is added to all the remaining
decimal numbers from -7 up to the highest number +7. The excess-8
represented is presented below.

Table 1: Excess-8 Code Representation of Decimal Numbers in the
Range 7to 8
Decimal | 2’sComplement Excess- | Decimal | 2’sComplement Excess-
8 8

0 0000 1000 | -8 1000 0000
1 0001 1001 | -7 1001 0001
2 0010 1010 | -6 1010 0010
3 0011 1011 | -5 1011 0011
4 0100 1100 | -4 1100 0100
5 0101 1101 | -3 1101 0101
6 0110 1110 |-2 1110 0110
7 0111 1111 | -1 1111 0111

3.1.2 BCD Code

Binary Coded Decimal (BCD) code is used to represent decimal digits in
binary. BCD code is a 4-bit binary code; the first 10 combinations
represent the decimal digits 0 to 9. The remaining six 4-bit combinations
1010, 1011, 1100, 1101, 1110 and 1111 are considered to be invalid and
do not exist.

The BCD code representing the decimal digits 0 to 9 is shown in the
Table below:

33

CIT344 INTRODUCTION TO COMPUTER DESIGN

Table 2: BCD Representation of Decimal Digits 0 to 9

Decimal BCD | Decimal BCD
0 0000 5 0101
1 0001 6 0110
2 0010 7 0111
3 0011 8 1000
4 0100 9 1001

To write 17, two BCD code for 1 and 7 are used 0001 and 0111. The
two digits are considered to be separate. The conventional method of
representing decimal 17 using unsigned binary is 10001. A telephone
keypad having the digits 0 to 9 generates BCD codes for the keys
pressed.

Most digital systems display a count value or the time in decimal on 7-
segment LED display panels. Since the numbers displayed are in
decimal, therefore the BCD Code is used to display the decimal
numbers. Consider a 2-digit 7-segment display that can display a count
value from 0 to 99. To display the two decimal digits two separate BCD
codes are applied at the two 7-segment display circuit inputs.

BCD Addition
Multi-digit BCD numbers can be added together.
23 00100011

45 01000101
68 01101000

The two 2-digit BCD numbers are added and generate a result in BCD.
In the example, the least significant digits 3 and 5 add up to 8 which is a
valid BCD representation. Similarly, the most significant digits 2 and 4
add up to 6 which also is a valid BCD representation.

Consider the next example where the least significant numbers add up to
a number greater than 9 for which there is no valid BCD code

23 00100011
48 0100 1000
/71 0110 1011

For BCD numbers that add up to an invalid BCD number or generate a
carry the number 6(0110) is added to the invalid number. If a carry
results, it is added to the next most significant digit. Thus:

34

CIT344

INTRODUCTION TO COMPUTER DESIGN

0011

1000

1011 11 is generated which is an invalid BCD number
0110 6 is added

1 0001

A carry is generated which is added to the result of the next most
significant digits

1

0110

0111

The answer is 0111 0001

3.1.3 Gray Code

The Gray code also known as reflected code, does not have any weights
assigned to its bit positions. The Gray code is not a positional code. The
Gray code is different from the unsigned binary code as successive
values of Gray code differ by only one bit. The advantage of the Gray
code over pure binary numbers is that a number in the gray code
changes by only one bit as it proceeds from one number to another. A
typical application of the gray code occurs when an analog data is
represented by a continuous change of a shaft position, where the shaft
Is partitioned into segments with individual numbers assigned to every
segment. The method of assigning adjacent segments to the
corresponding adjacent gray-code helps to reduce ambiguity, when
detection is sensed in the line that separates any two segments. Table 3
shows the Gray code representation of decimal numbers 0 to 15. To
obtain a gray code different code from the next, starting from any
combination, only one bit is changed either from 0 to 1 or 1 to 0 in any
desire random order, as long as two numbers do not have identical code
assignments.

Table 3: Gray Code Representation of Decimal Values
Decimal | Gray | Binary
0 0000 | 0000
1 0001 | 0001
2 0011 | 0010
3 0010 | 0011
4 0110 | 0100
5 0111 | 0101
6 0101 | 0110
7 0100 | 0111
8 1100 | 1000

35

CIT344 INTRODUCTION TO COMPUTER DESIGN

9 1101 | 1001
10 1111 | 1010
11 1110 | 1011
12 1010 | 1100
13 1011 | 1101
14 1001 | 1110
15 1000 | 1111

3.1.4 Alphanumeric Code

All the representation studied so far allow decimal numbers to be represented in binary.
Digital systems also process text information as in editing of documents. Thus, each
letter of the alphabet, upper case and lower case, along with the punctuation marks
should have a representation. Numbers are also written in textual form such as 2™ June
2003. The ASCII code is a universally accepted code that allows 128 characters and
symbols to be represented.

3.1.5 ASCII Code

The ASCII code (American Standard Code for Information Interchange)
Is a 7-bit code representing 128 unique codes which represent the
alphabet characters A to Z in lower case and upper case, the decimal
numbers 0 to 9, punctuation marks and control characters.

ASCII codes 011 0000 (30h) to 011 1001 (39h) represents numbers 0 to
9

ASCII codes 1100001 (61h) to 1111010(7Ah) represent lower case
alphabets ato z

ASCII codes 100 0001 (41h) to 101 1010 (5Ah) represent upper case
alphabets A to Z

ASCII codes 000 0000 (Oh) to 001 1111 (1Fh) represent the 32 Control
characters.

3.1.6 Extended ASCII Code

The 7-bit ASCII code only has 128 unique codes which are not enough
to represent some graphical characters displayed on computer screens.
An 8-bit code extended ASCII code gives 256 unique codes. The
extended 128 unique codes represent graphic symbols which have
become an unofficial standard as vendors use their own interpretation of
these graphic codes.

36

CIT344 INTRODUCTION TO COMPUTER DESIGN

‘xl 4.0 Self-Assessment Exercise(s)

Write short notes on the following:

(@ Excess code

(b) BCD code

(c) Graycode

(d) Alphanumeric code
() ASCII code

()] Extended ASCII code.

o/ 5.0 Conclusion

Excess-8 code is obtained by adding a number to the lowest number -8
in the range such that the result is zero. Binary Coded Decimal (BCD)
code is used to represent decimal digits in binary. BCD code is a 4-bit
binary code; the first 10 combinations represent the decimal digits O to
9.

The Gray code does not have any weights assigned to its bit positions, is
not a positional code and is different from the unsigned binary code as
successive values of Gray code differ by only one bit.

The ASCII Code (American Standard Code for Information
Interchange) is a 7-bit code representing 128 unique codes which
represent the alphabet characters A to Z in lower case and upper case,
the decimal numbers 0 to 9, punctuation marks and control characters.

p 6.0 Summary

M

In this unit, we defined code as a program instruction and have also
talked about various codes such as BCD cod, Gray code, ASCII code,
Alphanumeric code, Excess code, their characteristics and how they can
be used.

7.0 Further Readings

Elahi A (2018). Computer System: Digital Design, Fundamentals of Computer
Architecture and Assembly Language. Springer Nature

Patt Y. N (2019). Introduction to Computing Systems — From Bits and Gates to C and
Beyond (Online Version). Mc-Graw-Hill.

Verma A.K, Shama G and Singh K (2016). Wiley Acing The Gate: Computer Science and
Information Technology. Wiley India Pvt. Ltd.

37

CIT344 INTRODUCTION TO COMPUTER DESIGN

Mano M.M, Kime C.R and Martin T (2015). Logic & Computer Design Fundamentals (5"
edition). Pearson. Pg283

Faroughi N (2015). Digital Logic Design & Computer Organization: With Computer
Architecture for Security. McGraw-Hill Education.

Patterson D. A and Hennessy J.L (2016). Computer Organization & Design ARM
Edition: The Hardware Software Interface. Morgan Kaufmann.

Unsalan C and Tar B (2017). Digital System Design with FPGA Implementation Using
Verilog and VHDL. McGraw-Hill Education.

Null L and Lobur J (2016). The Essentials of Computer Organization and Architecture (4"
edition). Jones & Barlett Learning.

Rafiquzzaman M (2014). Fundamentals of Digital Logic and Microcontrollers. John
Wiley & Sons.

38

CIT344

INTRODUCTION TO COMPUTER DESIGN

MODULE 2 COMBINATIONAL LOGIC DESIGN &

Unit 1
Unit 2
Unit 3
Unit 4

APPLICATIONS

Analysis and Design of a Combinational Logic Circuit
Typical Combinational Logic Circuit |

Typical Combinational Logic Circuit Il

Typical Combinational Logic Circuit Il1

UNIT 1 ANALYSIS AND DESIGN OF A

COMBINATIONAL LOGIC CIRCUIT

CONTENTS

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content
3.1 Analysis of a Combinational Logic Circuit
3.2 Design of a Combinational Logic Circuit

4.0 Self-Assessment Exercise(s)

5.0 Conclusion

6.0 Summary

7.0 Further Readings

Digital logic circuits can be classified into two types: Combinational and Sequential logic circuits.

Combinational logic circuit is designed using logic gates whose outputs at a time is determined
directly from the present combination of inputs at a time without consideration to the previous
inputs. A combinational circuit does not require memory so the output depends only on the current
inputs. Combinational circuits help in reducing design complexity and reduce the chip count in a

circuit.

Introduction

‘@l 2.0 Intended Learning Outcomes (1LOs)

At the end of this unit,

you should be able to:

e analyse a combinational logic circuit
e design a combinational logic circuit.

39

CIT344 INTRODUCTION TO COMPUTER DESIGN

Main Content
3.1 Analysis of a Combinational Logic Circuit

A block diagram of combinational logic circuit is shown in figure 1 and consists of inputs
variable, logic gates, and output variables.

5 nout .- DDI'I'II:II'I_dlIDI‘IdI L moutput
nput Logic ; variables
variables - Circuit :

L | —

Fig. 1: Block diagram of a combinational circuit

For n—input variables from the block diagram, there are only 2" possible binary input
combinations of the variables which results to only one possible m output from each n-
combination. Thus, combinational circuit could be analysed by:

¢ identifying the number of inputs and outputs

e expressing the output functions in terms of the inputs, and

e determining the truth table for the logic diagram.

3.2 Design of a Combinational Logic Circuit

A combinational circuit can be designed using three steps as follows:

. determine the inputs and the outputs from the problem definition
and then derive the truth table
. use k-maps to minimize the number of inputs in order to express

the outputs - this reduces the number of gates and thus the
implementation cost
o draw the logic diagrams.

‘x 4.0 Self-Assessment Exercise(s)

Briefly explain the term combinational logic circuit, how it is analysed and designed

')/| 5.0 Conclusion

Combinational logic circuit is designed using logic gates in which
applications of inputs generate the outputs at any time. It does not
require memory so the output depends only on the current inputs.

40

” CIT344 INTRODUCTION TO COMPUTER DESIGN

6.0 Summary

In this unit, we discussed combinational logic circuit, its analysis and
how it can be designed.

7.0 Further Readings

E/Igno M.M (2017). Digital Logic and Computer Design. Pearson India Education Services Pvt.
t

Yasin M., Rajendran J. (JV) and Sinanoglu O. (2020). Trustworthy Hardware Design:
Combinational Logic Locking TechniquesSpringer Nature

Ndjountche T. (2016). Digital Electronics 1: Combinational Logic Circuits. Wiley

Elahi A (2018). Computer System: Digital Design, Fundamentals of Computer Architecture
and Assembly Language. Springer Nature

Patt Y. N (2019;. Introduction to Computing Systems — From Bits and Gates to C and Beyond
(Online Version). Mc-Graw-Hill.

Verma A.K, Shama G and Singh K (2016). Wiley Acing The Gate: Computer Science and
Information Technology. Wiley India Pvt. Ltd.

Mano M.M, Kime C.R and Martin T (2015). Logic & Computer Design Fundamentals 5"
edition). Pearson. Pg283

Faroughi N (2015). Digital Logic Design & Computer Organization: With Computer
Architecture for Security. McGraw-Hill Education.

Patterson D. A and Hennessy J.L (2016). Computer Organization & Design ARM Edition:
The Hardware Software Interface. Morgan Kaufmann.

Unsalan C and Tar B (2017). Digital System Design with FPGA Implementation Using
Verilog and VHDL. McGraw-Hill Education.

Null L and Lobur J (2016). The Essentials of Computer Organization and Architecture (4"
edition). Jones & Barlett Learning.

Rafiguzzaman M (2014). Fundamentals of Digital Logic and Microcontrollers. John Wiley &
Sons.

Roth, H. C. Jr & Kinney, L. L. (2014). Fundamentals of Logic Design (7" edition). Cengage
Learning.

Tanenbaum, Andrew S. (2013). Structured Computer Organization.Prentice Hall ~ (6th
ed).

41

CIT344 INTRODUCTION TO COMPUTER DESIGN

42

@

CIT344 INTRODUCTION TO COMPUTER DESIGN

UNIT 2 TYPICAL COMBINATIONAL LOGIC CIRCUIT |
CONTENTS

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content

3.1 Typical Combinational Logic Circuit |

3.1.1 Adders

3.1.1.1 Half-adder
3.1.1.2 Half-adder Function Table
3.1.1.3 Half-adder Sum & Carry out Boolean Expression
3.1.1.4 Full-adder
3.1.1.5 Full-adder Function Table
3.1.1.6 Full-adder Sum & Carry out Boolean Expression
3.1.1.7 Forming a Full-adder Using Half-adders
3.1.1.8 Parallel Binary Adders

4.0 Self-Assessment Exercise(s)

5.0 Conclusion

6.0 Summary

7.0 Further Readings

1.0 Introduction
In this unit we shall discuss Adders, types and their implementation.
2.0 Intended Learning Outcomes (I1LOs)

At the end of this unit, you should be able to:

. name the two types of adders we have

. discuss the half-adder, its function table, sum and carry out
Boolean expression

. discuss the full-adder, its function table, sum and carry out
Boolean expression

. form a full-adder using half-adders

o discuss about the parallel binary adder.

43

CIT344 INTRODUCTION TO COMPUTER DESIGN

3.0 Main Content

3.1 Typical Combinational Logic Circuit I

3.1.1 Adders

We have two types of adder: Half-adder and Full-adder

3.1.1.1 Half-adder

A single bit binary adder circuit basically adds two bits. The output of
the single bit adder circuit generates a sum bit. An adder circuit that only
has two bit input representing the two single bit numbers A and B and
does not have the carry bit input from the least significant digit is
regarded as a half-adder. The block diagram below represents a half-
adder.

-~ >
“—

CouT ~-a— HA

Carry-out
S
Sum
Fig. 1: Block Representation of Half-Adder

A half-adder can be fully described in terms of its function table and the
circuit implementation.

3.1.1.2 Half-Adder Function Table

The half-adder has a 2-bit input and a 2-bit output. The function table of
the half-adder has two input columns representing the two single bit
numbers A and B. The function table also has two output columns
representing the sum bit and carry out bit.

44

CIT344 INTRODUCTION TO COMPUTER DESIGN

A B{Sm C,, ‘D
— J Su
000 0y

LTy
101 0 }c
110 1 ’

Fig. 2: Half-Adder Function Table and Circuit Implementation

3.1.1.3 Half-adder Sum & Carry Out Boolean Expression

The sum and carry out expressions of the half-adder can be determined
from the function table. The half-adder sum and carry out outputs are
defined by the expressions:

Sum=AB+AB=A®$ B
Carry out = AB

3.1.1.4 Full-Adder

An adder circuit which has three inputs, one representing single bit
number A, the other representing the single bit number B and the third
bit represents the single bit carry is referred to as a full-adder. The single
bit binary adder has two bit output. One bit represents the Sum between
numbers A and B. The other bit represents the carry bit generated due to
addition. The diagram below represents the block diagram of a full-
adder.

i

CourT««— FA |fa+—CiN

Carry-out Carry-in
S
Sum
Fig. 3: Block Representation of a Full-Adder

45

CIT344 INTRODUCTION TO COMPUTER DESIGN

3.1.1.5 Full-adder Function Table

The full-adder has a 3-bit input and a 2-bit output. The function table of
the full-adder has three input columns representing the two single bit
numbers A, B and the carry in bit. The function table also has two
output columns representing the sum bit and carry out bit.

A B Cy|Sum Cgy C.

00010 0 e "_\)Di Sum
001 |1 0 B ﬂD

0101 0

01 1|0 1 L

100 |1 0

101 [0 1 C.,
1100 1

111 |1 1

Fig. 4: Full-adder Function Table and Circuit Implementation

3.1.1.6 Full-adder Sum & Carry out Boolean Expression

The sum and carry out expressions of the full-adder can be determined
from the function table. The full-adder sum and carry out outputs are
defined by the expressions:

Sum=ABC +ABC + ABC + ABC
Sum = A(BC +BC) + A(BC +BC)

Sum = A(B&C) + A(BDC)
Sum=A®B®C

CarryOut = ABC + ABC + ABC + ABC
CarryOut = C(AB + AB) + AB(C + C)
CarryOut = C(A©B) + AB

3.1.1.7 Forming a Full-Adder using Half-adders

A 1-bit full-adder can be implemented by combining together two half-
adders.

46

CIT344 INTRODUCTION TO COMPUTER DESIGN

Half-adder Half-adder

Fig. 5: Implementing a Full-Adder using Two Half-Adders

The sum output of the first half-adder is (A @ B)

The carry out of the first half-adder is AB

The sum output of the second half-adder is (A $B) &Ci, = (A 6B & C;,)
The carry out of the second half-adder is (A & B) @Cin

The output of the OR gate isin AB + (A @ B) @ Cin

3.1.1.8 Parallel Binary Adders

Single bit full or half-adders do not perform any useful function. To add
two 4-bit numbers a 4-bit adder is required. Four single bit full-adders
are connected together to form a 4-bit parallel adder capable of adding
two 4-bit binary numbers. A 4-bit binary adder can be formed with four
full-adders as follows:

A By A, By A1 By

R R N

Cs C Cy
FA fe— FA |«— FA le— FA (e—C

v

S S $1 S

fest—— >
(=]
-—

Fig. 6: A 4-Bit Binary Adder

47

CIT344

INTRODUCTION TO COMPUTER DESIGN

The connection diagram and logic symbols are shown below:

S, 1] ~ 116 Vee
B, 2] 115 B,
A 30 114 A,
Sy 4] 113 S,
74283
Ay 5] 112 Ay
By 6] 111 B;
Co 70 110 S4
GND 8[| 19 C4

Connection Diagram

— B3 3

— A2 S -

— Al s L

— Bl 1

— CO C4 I
Logic Symbol

Fig.7: Connection Diagram and Logic Symbol of a 4-Bit Binary Adder

‘ xl 4.0 Self-Assessment Exercise(s)

1. Explain with the aid of diagrams how you can form a full-adder from

half-adders.

2. Write short notes with diagrams where necessary on the following:

e half-adder, its function table and sum & carry out Boolean expression.
e full-adder, its function table and sum & carry out Boolean expression.

V()/ 5.0 Conclusion

An adder circuit that only has two-bit input representing the two single
bit numbers A and B and does not have the carry bit input from the least
significant digit is regarded as a half-adder. An adder circuit which has
three inputs, one representing single bit number A, the other
representing the single bit number B and the third bit represents the

” 6.0 Summary

In this unit we talked about types of adder, half-adder, half-adder
function table, half-adder sum and carry out Boolean expression, full-
adder, full-adder function table, full-adder sum and carry out Boolean

expression.

48

single bit carry is referred to as a full-adder.

CIT344 INTRODUCTION TO COMPUTER DESIGN

LJ} 7.0 Further Readings

E/Igno M.M (2017). Digital Logic and Computer Design. Pearson India Education Services Pvt.
t

Yasin M., Rajendran J. (JV) and Sinanoglu O. (2020). Trustworthy Hardware Design:
Combinational Logic Locking TechniquesSpringer Nature

Ndjountche T. (2016). Digital Electronics 1: Combinational Logic Circuits. Wiley

Elahi A (2018). Computer System: Digital Design, Fundamentals of Computer Architecture
and Assembly Language. Springer Nature

Patt Y. N (2019;. Introduction to Computing Systems — From Bits and Gates to C and Beyond
(Online Version). Mc-Graw-Hill.

Verma A.K, Shama G and Singh K (2016). Wiley Acing The Gate: Computer Science and
Information Technology. Wiley India Pvt. Ltd.

Mano M.M, Kime C.R and Martin T (2015). Logic & Computer Design Fundamentals (5"
edition). Pearson. Pg283

Faroughi N (2015). Digital Logic Design & Computer Organization: With Computer
Architecture for Security. McGraw-Hill Education.

Patterson D. A and Hennessy J.L (2016). Computer Organization & Design ARM Edition:
The Hardware Software Interface. Morgan Kaufmann.

Unsalan C and Tar B (2017). Digital System Design with FPGA Implementation Using
Verilog and VHDL. McGraw-Hill Education.

Null L and Lobur J (2016). The Essentials of Computer Organization and Architecture (4"
edition). Jones & Barlett Learning.

Rafiguzzaman M (2014). Fundamentals of Digital Logic and Microcontrollers. John Wiley &
Sons.

Roth, H. C. Jr & Kinney, L. L. (2014). Fundamentals of Logic Design (7" edition). Cengage
Learning.

Tanenbaum, Andrew S. (2013). Structured Computer Organization.Prentice Hall ~ (6th
ed).

49

CIT344 INTRODUCTION TO COMPUTER DESIGN
UNIT 3 TYPICAL COMBINATIONAL LOGIC CIRCUIT

CONTENTS

1.0 Introduction
2.0 Intended Learning Outcomes (ILOs)
3.0 Main Content
3.1 Typical Combinational Logic Circuit 1l
3.1.1 Multiplexers
3.1.1.1 Using Pass Gate
3.1.1.2 Design with Multiplexers
3.1.1.3 Applications of Multiplexers
3.1.2 Demultiplexers
3.1.2.1 Applications of Demultiplexers
4.0 Self-Assessment Exercise(s)
5.0 Conclusion
6.0 Summary
7.0 Further Readings

@1.0 Introduction

In this unit we shall discuss multiplexers, demultiplexers and their
applications in our everyday live.

@ 2.0 Intended Learning Outcomes (ILOs)

At the end of this unit, you should be able to:

state what a multiplexer is

state how a multiplexer is designed
discuss the applications of multiplexers
state what a demultiplexer is

discuss the applications of demultiplexers.

3.0 Main Content
3.1 Typical Combinational Logic Circuit Il

3.1.1 Multiplexers

Multiplexer is a digital switch that has several inputs and a single
output. The Multiplexer also has select inputs that allow any one of the
multiple inputs can be selected to be connected to the output.
Multiplexers are also known as Data Selectors. The main use of the

50

CIT344

INTRODUCTION TO COMPUTER DESIGN

Multiplexer is to select data from multiple sources and to route it to a
single destination. In a computer, the ALU combinational circuit has
two inputs to allow arithmetic operations to be performed on two
guantities. The two quantities are usually stored in different set of
registers.

The inputs of the two multiplexers are connected to the output of each of
the multiple registers.

The outputs of the two multiplexers are connected to the two inputs of

the ALUs. The multiplexers are used to route the contents of any two
registers to the ALU inputs.

Modulie Enable

Inputs Output
- XY A Ay A Ay, F
Ag—0 00 X X X 0 [Ag0
. 01 X X 0 X [A=0
Al 8 10 X 0 X X |A=0
X o L 2
A2 vg 11 0 X X X |Az=0
3
Az 2 00 X X X 1 |A&=1
01 X X 1 X [A=
3|1 SIO 10 X 1 X X |As=t
X Y 11 1 X X X |A=
Fig. 1: A 4 X 1 Multiplexers and its Truth Table

4-data input multiplexer selects one of many inputs to be directed to an
output.

Si So

o
1>

Ip

I,

—

I

URURURW

I3

Fig. 2: 4-Data Input MUX Implementation

o1

CIT344 INTRODUCTION TO COMPUTER DESIGN

3.1.1.1 Using Pass Gate

The 4 x 1 MUX can be implemented with pass gates as follows:

Y
Y

T
Arﬁ—
A—HE]

T

—O0ut (f)

X% X%

Only one of A, gets passed to output.

A
F Depends on the value of X and Y.

Fig. 3: Implementation of the 4x1 MUX with Pass Gates

Multiplexers can be efficiently implemented using the majority function
and even- parity function.

Table 1: Majority Function

Original truth table New truth table

A B CE A BE

00 00 0 060

00 1[0 2 B

0 1 OT g 1|¢€ l ‘

01 1|1 N

1 0 00 1 0|C c—1, M
o1 c—n ¥ O "
1 1 01 1 1]1 1 —1;

1 1 1]1 .

52

CIT344

INTRODUCTION TO COMPUTER DESIGN

Table 2: Even-Parity Function

Original truth table New truth table

ABCE ABE

0000 0 0[C

0011 A B
0101 01|C H

01 1[0 _105‘50

10 0]1 1o|cC c—, M ;
IOIL _—1220 '
1 10][0 1 1/|cC c—1,

11 1)1 1

3.1.1.2 Design with Multiplexers

Any Boolean function can be implemented by setting the inputs
corresponding to the function and the selectors as the variables as shown
below:

Example; ,#=<==y Module Enable

XY z) F

—— - E

000 0 0—0

001/ 1 1—;)

010/ 0 0= x
1—3 <& f

100 0 o5 3

1010 0 —{6

110/ 0 1—7825180

1441 3 T T1
— X YL

Fig. 4: Design with Multiplexers

3.1.1.4 Applications of Multiplexers

Multiplexers are used in a wide variety of applications. Their primary
use is to route data from multiple sources to a single destination. Other
than its use as a data router, the following are other applications:
e [t can be used to realize any given LF and TT without minimizing
it.
53

CIT344 INTRODUCTION TO COMPUTER DESIGN
e |t can be used as a universal logic gate.
e |t can be used for parallel to serial converter.
« It can be used for the design of the sequence generator.

Data Routing

A two - digit 7-Segment display uses two 7-Segments Display digits
connected to two BCD to 7-Segment display circuits. To display the
number 29 the BCD number 0010 representing the MSD is applied at
the inputs of the BCD to 7-Segment display circuit connected to the
MSD 7-Segment Display Digit. Similarly, the BCD input 1001
representing the numbers 9 is applied at the inputs of the LSD display
circuit. The circuit uses two BCD to 7-Segment decoder circuits to
decode each of the two BCD inputs to the respective 7-Segment display
outputs. The display circuit can be implemented using a single CD to 7-
Segment IC and a multiplexer.

Parallel to Series Conversion

In a digital system, binary data is used and represented in parallel.
Parallel data is a set of multiple bits. For example, a nibble is a parallel
set of 4-bits, a byte is a parallel set of 8 bits. When two binary numbers
are added, the two numbers are represented in parallel and the parallel
adder works and generates a sum term which is also in parallel.

Transmission of information to remote locations through a piece of wire
requires that the parallel information (data) be converted into serial
form. In a serial data representation, data is represented by a sequence of
single bits. An 8-bit parallel data can be transmitted through a single
piece of wire 1-bit at a time. Transmitting 8-bits simultaneously (in
parallel form) requires 8 separate wires for the 8-bits. Laying of 8 wires
across two remote locations for data transfer is expensive and is
therefore not practical. All communication systems set up across remote
locations use serial transmission.

An 8-bit parallel data can be converted into serial data by using an 8-to-
1 multiplexer such as 74X151 which has 8 inputs and a single output.
The 8-bit data which is to be transmitted serially is applied at the 8
inputs 10-7 of the multiplexer. A three bit counter which counts from 0
to 7 is connected to the three select inputs SO, S1 and S2. The counter is
connected to a clock which sends a clock pulse to the counter every 1
millisecond. Initially, the counter is reset to 000, the 10 input is selected
and the data at input 10 is routed to the output of the multiplexer. On
receiving the clock signal after 1 millisecond the counter increments its
count from 000 to 001 which selects 11 input of the multiplexer and
routes the data present at the input to the output. Similarly, at the next
clock pulse the counter increments to 010, selecting 12 input and routing
the data to the output. Thus, after 8 milliseconds the parallel data is

54

CIT344 INTRODUCTION TO COMPUTER DESIGN
routed to the output 1-bit at a time. The output of the multiplexer is
connected to the wire through which the serial data is transmitted.

0
1 EJN = Serial Transmission Line
L
R
- 74X151
=0
0
— 14 Al
:
— A1
0
— A2
’
Counter
c2
—P|clock C1
co
Fig. 5: Serial to Parallel Conversion

Logic Function Generator

Multiplexers can be used to implement a logic function directly from the
function table without the need for simplification. The select inputs of
the multiplexer are used as the function variables. The inputs of the
multiplexer are connected to logic 1 and O to represent the missing and
available terms. The three variable function table and its 8-to-1
multiplexer based function implementation is shown in the figure below:

bo
1 P TR N
; Input Qutput

=T A_[B Jc v

1 T4X151 0 0 0]

; I RE
=k 0 1 o T
Mg 5 R

" [0 Jo To
—1" M= 1 0 1 1

] b A 1 | 0 0
al, W | ERE

ABC
Fig. 6: Logic Function Generator Based on 3-Variable Logic

Function Table

55

CIT344 INTRODUCTION TO COMPUTER DESIGN

Operation Sequencing

Many industrial applications have processes that run in a sequence. A
paint manufacturing plant might have a four step process to manufacture
paint. Each of the four steps runs in a sequence one after the other. The
second step cannot start before the first step has completed. Similarly,
the third and fourth steps of the paint manufacturing process cannot
proceed unless steps two and three have completed. It is not necessary
that each of the manufacturing steps is of the same duration. Each
manufacturing step can have different time duration and can be variable
depending upon the quantity of paint manufactured or other parameters.
Normally, the end of each step in the manufacturing process is indicated
by a signal which is actuated by some machine which has completed its
part of the manufacturing process. On receiving the signal, the next step
of the manufacturing process is initiated. The entire sequence of
operations is controlled by a multiplexer and a decoder circuit.

The manufacturing processes are started by resetting the 2-bit counter to
00. The counter output is connected to the select input of the multiplexer
and the inputs of the decoder which selects the multiplexer input 10 is
and activates the Decoder output YO. The decoder output is connected to
initiate the first process. When the process completes it indicates the
completion of the process by setting its output to logic 1. The output of
Process 1 is connected to 10 input of the Multiplexer. When Process 1
sets its output to 1 to indicate its completion, the logic 1 is routed by the
Multiplexer to the clock input of the 2-it counter. The counter on
receiving logic 1 increments its count to 01, which selects 11 input of the
Multiplexer and the Y1 output of the Decoder. The input to Process 1 is
deactivated and Process 2 is activated by Y1. On completion of Process
2 its output is set to logic 1, which is routed by the multiplexer to the
clock input of the 2-bit counter which increments to the next count. This
continues until Process 4 signals its completion after which the Decoder
and the Multiplexer is deselected completing the manufacturing process.

56

CIT344 INTRODUCTION TO COMPUTER DESIGN

resel co

2-bit ¢t
Counter

MO 10—
W 4to-1 1
MUX i b—

uuuuu

£

L L]
>

|

[o]

4

4

f

Process
1
N—po vo
o1 2-to-4 v

Process
Decoderv: 2
v3

]

Process
3

Process
4

Fig. 7: Control of Manufacturing Process through Operation
Sequencing

3.1.2 Demultiplexer

A multiplexer has several inputs. It selects one of the inputs and routes
the data at the selected input to the single output. Demultiplexer has an
opposite function to that of the multiplexer. It has a single input and
several outputs. The demultiplexer selects one of the several outputs and
routes the data at the single input to the selected output. A demultiplexer
Is also known as a data distributor.

Module Enable

| Inputs Outputs
: XY W |Dy D Dy D
0D, 00 0 [0 0 0 WD
x 01 0 |0 0 W00
ud 32 T 10 0 fow00 o
*g obp, 11 0 (w00 00
“alp, 00 1|0 0 0 W
01 1 [0 0WA0
3|1 SIO 10 1 [0ow10 0
5 11 1 (W40 0 0

S7

CIT344 INTRODUCTION TO COMPUTER DESIGN

S Sy

[0

1»—‘>o
(0]
I L/ !
L/ N
) 0,
J 0,

Fig. 8: A 1 x 4 Demultiplexer

The circuit if compared to that of the 2-to-4 decoder. The decoder enable
input is used as the demultiplexer data input. A demultiplexer is not
available commercially. A demultiplexer is available as a
decoder/demultiplexer chip which can be configured to operate as a
demultiplexer or a decoder.

The circuit of the 1-to-4 demultiplexer is similar to the 2-to-4 binary

decoder. The only difference between the two is the addition of the data
input line, which is used as enable line in the 2-to-4 decoder circuit.

3.1.2.1 Applications of Demultiplexer

Demultiplexer is used to connect a single source to multiple destinations
as shown in the figure below:

1
I
E
_/" Processing Unit0 —
- 0
@
x 3 %
% 1~ Processing Unit1 —*
Input Data—d E =
& 2
g [\ Processing Unit2 ——*
3
S, S \" Processing Unit3 —*
120
Selects which PU to send)I(¢
the input data. —*
Fig. 9: Demultiplexer Used to Connect a Single Source to

Multiple Destinations

58

CIT344

INTRODUCTION TO COMPUTER DESIGN

It is used at the output of the ALU circuit. The output of the ALU has to
be stored in one of the multiple registers or storage units. The Data input
of the demultiplexer is connected to the output of the ALU. Each output
of the demultiplexer is connected to each of the multiple registers. By
selecting the appropriate output data from the ALU is routed to the
appropriate register for storage.

The second use of the demultiplexer is the reconstruction of parallel data
from the incoming serial data stream. Serial data arrives at the data input
of the demultiplexer at fixed time intervals. A counter attached to the
Select inputs of the demultiplexer routes the incoming serial bits to
successive outputs where each bit is stored. When all the bits have been
stored, data can be read out in parallel.

. Lo
Serial =
—1 b Do [—
Transmission 2
Line o —
D2 [—
D3 [—
AD pafl—
A1 s |—
A2 D6 [——
F |
] Register
Counter
oo b
— | clock ci |—
(o]

Fig. 10: DeMUX as a Serial to Parallel Converter

\KI 4.0Self-Assessment Exercise(s)

Discuss briefly on the following:

i
ii.
iii.
iv.

DeMUX
4 Differences b/w MUX and DeMUX
Designing with multiplexers and demultiplexers

Applications of MUX and DeMUX.

\l’/‘n/|
5.0 Conclusion

Multiplexer is a digital switch that has several inputs and a single output. It also has
select inputs that allow any one of the multiple inputs can be selected to be connected to
the output. They are also known as data selectors. Multiplexers are used in a wide
variety of applications. Their primary use is to route data from multiple sources to a

59

CIT344 INTRODUCTION TO COMPUTER DESIGN
single destination. Other than its use as a data router, they are used as a parallel to serial
converter, logic function generator and also for operation sequencing.

Demultiplexer has an opposite function to that of the Multiplexer. It has a single input
and several outputs. It selects one of the several outputs and routes the data at the single
input to the selected output. A demultiplexer is also known as a data distributor. It is
used to connect a single sourceto multiple destinations. It IS also
used for the reconstruction of parallel data from the incoming serial data stream.

@

In this unit, we explained about multiplexers and demultiplexers, how
they are designed and their applications.

M

E/Igno M.M (2017). Digital Logic and Computer Design. Pearson India Education Services Pvt.
t

6.0 Summary

7.0 Further Readings

Yasin M. Rajendran J. (JV) and Sinanoglu O. (2020). Trustworthy Hardware Design:
Combinational Logic Locking TechniquesSpringer Nature

Ndjountche T. (2016). Digital Electronics 1: Combinational Logic Circuits. Wiley

Elahi A (2018). Computer System: Digital Design, Fundamentals of Computer Architecture
and Assembly Language. Springer Nature

Patt Y. N (2019). Introduction to Computing Systems — From Bits and Gates to C and Beyond
(Online Version). Mc-Graw-Hill.

Verma A.K, Shama G and Singh K (2016). Wiley Acing The Gate: Computer Science and
Information Technology. Wiley India Pvt. Ltd.

Mano M.M, Kime C.R and Martin T (2015). Logic & Computer Design Fundamentals (5"
edition). Pearson. Pg283

Faroughi N (2015). Digital Logic Design & Computer Organization: With Computer
Architecture for Security. McGraw-Hill Education.

Patterson D. A and Hennessy J.L (2016). Computer Organization & Design ARM Edition:
The Hardware Software Interface. Morgan Kaufmann.

Unsalan C and Tar B (2017). Digital System Design with FPGA Implementation Using
Verilog and VHDL. McGraw-Hill Education.

Null L and Lobur J (2016). The Essentials of Computer Organization and Architecture (4"
edition). Jones & Barlett Learning.

60

CIT344 INTRODUCTION TO COMPUTER DESIGN
Rafiquzzaman M (2014). Fundamentals of Digital Logic and Microcontrollers. John Wiley &

Sons.

Roth, H. C. Jr & Kinney, L. L. (2014). Fundamentals of Logic Design (7" edition). Cengage
Learning.

Tanenbaum, Andrew S. (2013). Structured Computer Organization.Prentice Hall ~ (6th
ed).

61

CIT344 INTRODUCTION TO COMPUTER DESIGN
UNIT 4 TYPICAL COMBINATIONAL LOGICCIRCUIT

Il
CONTENTS

1.0 Introduction
2.0 Intended Learning Outcomes (ILOs)
3.0 Main Content
3.1 Typical Combinational Logic Circuit Il
3.1.1 Decoders
3.1.1.1 Decoders with Enable Line
3.1.1.2 Designing with Decoders
3.1.1.3 Decoder Networks
3.1.1.4 Applications of Decoders
3.1.2 Encoders
3.1.2.1 Designing with Encoders
3.1.2.2 Priority Encoders
3.1.2.3 Designing with P-Encoders
3.1.2.4 Designing with P-Encoders
4.0 Self-Assessment Exercise(s)
5.0 Conclusion
6.0 Summary
7.0 Further Readings

@ 1.0 Introduction

In this unit, we shall discuss decoders and encoders, designing with
them and their applications in our everyday lives.

@ 2.0 Intended Learning Outcomes (ILOs)
At the end of this unit, you should be able to:

define a decoder

design with decoders

discuss the decoder networks and applications of decoders
define an encoder

define a priority encoder.

62

CIT344 INTRODUCTION TO COMPUTER DESIGN

3.0 Main Content
3.1 Typical Combinational Logic Circuit 11

3.1.1 Decoders

A decoder has multiple inputs and multiple outputs. The decoder device
accepts as an input a multi-bit code and activates one or more of its
outputs to indicate the presence of the multi-bit code. A standard
decoder is an m-to-n line where m<2".

I, I4/0;0,0,0
0 0[0 0 0 1 I
0 10 0 1 0 1 {>c J—— 0o
1 0of0o 1 00 T, >0
11100 0) 0,
Og_ 02
o) :
Encoded — I 2 O, [— | Decoded
data in 7102017 data out
0, F—— o,

Fig. 1: Truth Table, Logic Symbol and Circuit Implementation of a 2-
to-4 Decoder

3.1.1.1 Decoders with Enable Line

Often, decoders have an enable line that turns on outputs or leaves them
off. The figure below shows a 3-to-8 decoder with enable and its truth

table.
Ag—zo O_DO
1Dy
A1—21 0 2—D2
8% D
g D T
A "8 skn,
6F—Dg
Module Enable—E =D,

63

CIT344 INTRODUCTION TO COMPUTER DESIGN

Inputs Outputs
Ay AjAg E D; Dg Ds Dy Dj D» D4 Dg
XX X 0 0 0 0 0 0 0 0 0
0 00 1 0 0 0 0 0 0 0 1
0 0 1 1 0 0 0 0 0 0 1 0
010 1 0 0 0 0 0 1 0 0
01 1 1 0 0 0 0 1 0 0 0
100 1 0 0 0 1 0 0 0 0
101 1 0 0 1 0 0 0 0 0
110 1 0 1 0 0 0 0 0 0
11 1 1 1 0 0 0 0 0 0 0

Fig. 2: A 2-to-4 Decoder with Enable and its Truth Table

3.1.1.2 Designing with Decoders

Any Boolean function can be implemented using a decoder and OR
gates as shown in the figure below:

Inputs | Outputs

A At Ag| Fi Ry Ol—
000] 0 0 A 1
i 2 1 F1

001 1 1 @
010 0 1 A2 23

m® 4
01 1] 1 0 o 5—‘

2
100 0 1 A 6_| _‘j_Fz
10 1 0 1 7 —=
1 % D 0 0
149 1 1 0
Fig. 3: Implementation of a Boolean Function

3.1.1.3 Decoder Networks

We can use multiple decoders to form a larger decoder. Below is a 3-to-
8 decoder implemented with two 2-to-4 decoders.

64

CIT344 INTRODUCTION TO COMPUTER DESIGN

A, used with enable input T35 1 LD
: T 1

to control which decoder Ay —% 2' 28 lp,
will output the 1. N2 £
A)—4 Do—— - 3D
A¢ and Ay used to select 20 . 0Dy
which output on specific , I8 1}-Ds
decoder will output 1. 2" 28 3
~ & 2Dsg
E° 3D

Fig. 4: A 3-t0-8 Decoder Implemented with Two 2-to-4 Decoders

3.1.1.4 Applications of Decoders
Decoders have two major uses in Computer Systems.

Selection of Peripheral Devices

Computers have different internal and external devices like the Hard
Disk, CD Drive, Modem, Printer, etc. Each of these different devices is
selected by specifying different codes. A decoder is used to uniquely
select or deselect the appropriate devices.

Instruction Decoder

Computer programs are based on instructions which are decoded by the
computer hardware and implemented. The codes 1100010, 1100011,
1110000 and 1000101 represent - add two numbers, subtract two
numbers, clear the result and store the result instructions.

These instruction codes are decoded by an instruction decoder to
generate signals that control different logic circuits like the ALU and
memory to perform these operations.

3.1.1.5 Seven Segment LED Display

It consists of 7-LED arranged in a rectangular form, where each of the seven LEDs is
known as a segment. Segment forms part of a numerical digit to be displayed when
illuminated. Two or more 7 segment display could be connected to display numbers
greater that ten. An additional 8" LED is sometimes used for decimal point within the
same package as it also enables two or more 7-segment display to be connected together
in order to display numbers greater than ten.

A positional segment is attached to each one of the seven LEDs in the display with one
65

CIT344

The operation of 7-segment display works with a forward bias reaction where
appropriate forward biasing the pins of the LED segment in a systematic order,
automatically lights the pins and others remains dark allowing the exact character
pattern of number to be generated and display accordingly. Thus, this allows us to
display digits from 0 through 9 on the seven segment display.

There are two types of seven segment displays:

e Common anode display
e Common cathode display

g f comma b

[pin of 7-segment h

AL

i

Fig 5: (a) Pin of 7-segment (b) Seven segment LED

In figure 5(b), all the seven segments have LED attached to them as well as the dot segment

H

cong o dot

INTRODUCTION TO COMPUTER DESIGN
of its connection legs brought out from the chip package of the segment display. The
individual pins are labeled with the letters a-g while the other leg pins are connected
together and wire to form a common pin.

| T

which has a very small LED. The dot is used to represent a decimal number.

The Common Cathode (CC)

In the common cathode display, all the cathode connections of the LED segments are joined
together to logic “0” or ground. The individual segments are illuminated by application of a
“HIGH”, or logic “1” signal via a current limiting resistor to forward bias the individual

Anode terminals (a-g).

Common cathode means that the cathodes of all of the LEDs are common and connected to
a single pin. The anode for each LED has its own pin. So driving one of these means
running a current from the particular anode (positive) pin for the desired segment to the

common cathode pin.

66

CIT344 INTRODUCTION TO COMPUTER DESIGN

Common Cathode 7-segment Display

a e Pl 2 —— a
bo—H% bee— 5 3
ce >|: c—.:fl Ib
de H" der
e e H,‘ e—:e’ ’c
fo H,' f—— _dD':
g e H' g = b
"‘\\‘ Common

Fig: Common cathode 7-segment display

The Common Anode (CA)

In the common anode display, all the anode connections of the LED segments are joined
together to logic “1”. The individual segments are illuminated by applying a ground, logic
“0” or “LOW?” signal via a suitable current limiting resistor to the Cathode of the particular
segment (a-g).

Common anode means that the anode (positive) side of all of the LEDs are electrically
connected at one pin, and each LED cathode has its own pin. So turning on any particular
segment will involve running a current from this common anode (positive) pin to the
particular cathode (negative) pin for the desired segment.

67

CIT344 INTRODUCTION TO COMPUTER DESIGN
Common Anode 7-segment Display

W ST

a I" A e— a
b s . b —— "
c .," C — fl Ib
d .": d —— L
< v,. —1 E=—e ’c
£ .1»’ |_‘ d oo

» H Pp— —_— .

COMMON

AMODE

R

Fig: (@) Common Anode 7-segment Display (b) Common Anode 7-segment connection

In general, common anode displays are more popular as many logic circuits can sink more
current than they can source. Also note that a common cathode display is not a direct
replacement in a circuit for a common anode display and vice versa, as it is the same as
connecting the LEDs in reverse, and hence light emission will not take place.

Depending upon the decimal digit to be displayed, the particular set of LEDs is forward
biased. For instance, to display the numerical digit 0, we will need to light up six of the LED
segments corresponding to a, b, ¢, d, e and f.

3.1.2 Encoders

An encoder functional device performs an operation which is the opposite of the
decoder function. The encoder accepts an active level at one of its inputs and at its
output generates a BCD or binary output representing the selected input. A standard
binary encoder is an m-to-n- line encoder, where m<2"

68

CIT344 INTRODUCTION TO COMPUTER DESIGN

Module Enable

|
E
Dy—] 0
D1—1 20| Ao
D>—2
o &
e By 21 s
Dy—4 oo 2
—_ (|
Ds S 52 A
DG—‘S 2
D—7
4 Ac
| :
Module Active
D, Dg Ds D, Dy D, Dy Dy | AAA
0 0 0 0 0 0 0 1 000
0 0 0 0 0 0 1 0 001
0 0 0 0 0 1 0 0 010
0 0 0 0 1 0 0 0 011
0 0 0 1 0 0 0 0 100
0 0 1 0 0 0 0 0 101
0 1 0 0 0 0 0 0 110
1 0 0 0 0 0 0 0 111
Fig. 5: An 8-t0-3-Line Encoder with its Truth Table

Example: An input of 00010000 in an encoder will give

O O
O 1 20 0
O 2
1 4 < S

< =
o —5 L 5
o 6 - 1
O 7

69

CIT344 INTRODUCTION TO COMPUTER DESIGN

3.1.2.1 Designing with Encoders

Encoders are useful when the occurance of one of several disjoint events
needs to be represented by an integer identifying the event.

Example: Wind direction encoder |

0 E

1 201 1
2

4 & ©

5 uw

6 210
E

3.1.2.2 Priority Encoders

A priority encoder takes the input of 1 with the highest index and
translates that index to the output.

;
;

Enable Input active Input acFive
input 513 Iy 11 19]010¢ controlsignal control signal
0XXXX[00: 0 > }
Lioooojooi o BT I DOO
Lioootoor 1 T L
Lioorxor: 1 b D H
RURD S (IR T — ‘ J
| i1xxx[t1; 1 Dbl }

input

Fig. 6: Truth Table and Circuit Implementation of a Priority
Encoder

70

CIT344 INTRODUCTION TO COMPUTER DESIGN

3.1.2.3 Designing with P-Encoders

Priority encoders are useful when inputs have a predefined priority and
we wish to select the input with the highest priority. An example is in
resolving interrupt requests.

-

Request 1
Lines |
Device A Lowest E
Priority
, ()
N T N R
» Y EU
2 8% 0) Processor
Highest §
L c
'—‘{ Device D ey
Fig. 7: Resolving Interrupt Requests

LI:: 4.0 Self-Assessment Exercise(s)

Write on the applications of decoders and encoders.
Discuss briefly on the following:

I. decoders

ii. encoders

iii. differences between decoders and encoders
iv. designing with decoders and encoders

V. applications of decoders and encoders.

19

A decoder has multiple inputs and multiple outputs. The decoder device
accepts as an input a multi-bit code and activates one or more of its
outputs to indicate the presence of the multi-bit code. Decoders have
two major uses in computer systems: selection of peripheral devices and
instruction decoder.

5.0 Conclusion

An encoder functional device performs an operation which is the
71

CIT344 INTRODUCTION TO COMPUTER DESIGN
opposite of the decoder function. The encoder accepts an active level at

one of its inputs and at its output generates a BCD or binary output
representing the selected input.

’ ‘6.0 Summary

In this unit, we examined decoders and encoders and also how to design
with them.

72

CIT344 INTRODUCTION TO COMPUTER DESIGN

M

t/lgno M.M (2017). Digital Logic and Computer Design. Pearson India Education Services Pvt.
t

Yasin M., Rajendran J. (JV) and Sinanoglu O. (2020). Trustworthy Hardware Design:
Combinational Logic Locking TechniquesSpringer Nature

7.0 Further Readings

Ndjountche T. (2016). Digital Electronics 1: Combinational Logic Circuits. Wiley

Elahi A (2018). Computer System: Digital Design, Fundamentals of Computer Architecture
and Assembly Language. Springer Nature

Patt Y. N (2Q193. Introduction to Computing Systems — From Bits and Gates to C and Beyond
(Online Version). Mc-Graw-Hill.

Verma A.K, Shama G and Singh K (2016). Wiley Acing The Gate: Computer Science and
Information Technology. Wiley India Pvt. Ltd.

Mano M.M, Kime C.R and Martin T (2015). Logic & Computer Design Fundamentals 5"
edition). Pearson. Pg283

Faroughi N (2015). Digital Logic Design & Computer Organization: With Computer
Architecture for Security. McGraw-Hill Education.

Patterson D. A and Hennessy J.L (2016). Computer Organization & Design ARM Edition:
The Hardware Software Interface. Morgan Kaufmann.

Unsalan C and Tar B (2017). Digital System Design with FPGA Implementation Using
Verilog and VHDL. McGraw-Hill Education.

Null L and Lobur J (2016). The Essentials of Computer Organization and Architecture (4"
edition). Jones & Barlett Learning.

Rafiquzzaman M (2014). Fundamentals of Digital Logic and Microcontrollers. John Wiley &
Sons.

Roth, H. C. Jr & Kinney, L. L. (2014). Fundamentals of Logic Design (7" edition). Cengage
Learning.

Tanenbaum, Andrew S. (2013). Structured Computer Organization.Prentice Hall ~ (6th
ed).

7-segment display. https://www.electronics-tutorials.ws/blog/7-segment-display-tutorial.html
73

https://www.electronics-tutorials.ws/blog/7-segment-display-tutorial.html

CIT344 INTRODUCTION TO COMPUTER DESIGN

MODULE 3 SEQUENTIAL LOGIC DESIGN &
APPLICATIONS

Unit1l Sequential Logic Circuits
Unit2 Latches and Flip-Flops
Unit3 Registers

Unit4 Finite State Machines

UNIT1 SEQUENTIAL LOGIC CIRCUITS
CONTENTS

1.0 Introduction
2.0 Intended Learning Outcomes (ILOs)
3.0 Main Content
3.1 Sequential Logic Circuits
3.1.1 Overview
4.0 Self-Assessment Exercise(s)
5.0 Conclusion
6.0 Summary
7.0 Further Readings

@1.0 Introduction

Digital logic circuits can be classified into two types: Combinational and
Sequential logic circuits. We shall in this module explain the sequential
logic circuit and its numerous applications.

@lz.o Intended Learning Outcomes (ILOs)

At the end of this unit, you should be able to:

4.1.1 describe what a sequential logic circuit is

4.1.2 state the differences between combinational and sequential logic
circuit

4.1.3 list and explain the types of sequential logic circuit.

74

CIT344 INTRODUCTION TO COMPUTER DESIGN

3.0 Main Content
3.1 Sequential Logic Circuits

3.1.1 Overview

The combinational digital circuits have no storage element; therefore
combinational circuits handle only instantaneous inputs. The outputs of
the combinational circuits also cannot be stored. The absence of a
memory element restricts the use of digital combinational circuits to
certain application areas. The use of a memory element which is capable
of storing digital inputs and outputs is an important part of all practical
digital circuits.

Consider an ALU which performs arithmetic and logical operations. An
ALU cannot perform its operations unless it is connected to memory
elements that store the inputs applied at the inputs of the ALU and
outputs from the ALU. Consider an ALU that performs addition
operation on a set of numbers, 2, 3, 4 and 5. The ALU can add two
numbers at a time; therefore the ALU has to add the four numbers two at
a time. The four numbers have to be stored temporarily; the partial
results after adding two numbers also need to be stored. To add the four
numbers, the first two numbers 2 and 3 are stored in two separate
memory elements are added together, the result (5) has to be added to
the next number 4. The result (5) is temporarily stored in one of the two
memory elements used to store the numbers 2 and 3. The result (5) is
added to the third number 4 to provide another partial sum result 9
which has to be stored and then added with the fourth number 5.

Digital circuits that use memory elements for their operation are known
as Sequential circuits. Thus, sequential circuits are implemented by
combining combinational circuits with memory elements as shown
below:

75

CIT344 INTRODUCTION TO COMPUTER DESIGN

hots——| » (Outputs
p Combmational P
clrut
— o Memory
elements
Fig. 1: Block Diagram of a Sequential Circuit

We have two types of sequential circuits namely:

Synchronous sequential circuits — Their behaviour is determined by
the values of the signals at only discrete instants of time.

Asynchronous sequential circuits — Their behaviour is immediately
affected by the input signal changes.

LI::4.0 Self-Assessment Exercise(s)

1. Write in details the two types of sequential circuits we have.
2. Extensively discuss sequential logic circuit and its types using diagrams
and good examples.

7N

19

5.0 Conclusion
Digital circuits that use memory elements for their operation are known
as sequential circuits. Thus, sequential circuits are implemented by
combining combinational circuits with memory elements.

We have two types of sequential circuits namely: Synchronous
sequential circuits and asynchronous sequential circuits.

76

CIT344 INTRODUCTION TO COMPUTER DESIGN

In this unit we explained sequential logic circuit and its types.

6.0 Summary

77

CIT344 INTRODUCTION TO COMPUTER DESIGN

M

Pedroni V.A (2020). Circuit Design with VHDL(3" Edition). The MIT Press Cambridge.

%arlgar S.K., De Ak, and Sarkar S (2014). Foundation of Digital Electronics and Logic
esign.
| Pan Stanford

7.0 Further Readings

Mano II_/IdM (2017). Digital Logic and Computer Design. Pearson India Education Services Pvt.
t

Yasin M.,Rajendran J. (JV) and Sinanoglu O. (2020). Trustworthy Hardware Design:
Combinational Logic Locking TechniquesSpringer Nature

Ndjountche T. (2016). Digital Electronics 1: Combinational Logic Circuits. Wiley

Elzéhi A (2018). Computer System: Digital Design, Fundamentals of Computer Architecture
an
Assembly Language. Springer Nature

Patt Y. N (2019). Introduction to Computing Systems — From Bits and Gates to C and Beyond
(Online Version). Mc-Graw-Hill.

Verma A.K, Shama G and Singh K (2016). Wiley Acing The Gate: Computer Science and
Information Technology. Wiley India Pvt. Ltd.

Mano M.M, Kime C.R and Martin T (2015). Logic & Computer Design Fundamentals (5"
edition). Pearson. Pg283

Faroughi N (2015). Digital Logic Design & Computer Organization: With Computer
Architecture for Security. McGraw-Hill Education.

Patterson D. A and Hennessy J.L (2016). Computer Organization & Design ARM Edition:
The
Hardware Software Interface. Morgan Kaufmann.

Unsalan C and Tar B (2017). Digital System Design with FPGA Implementation Using
Verilog
and VHDL. McGraw-Hill Education.

Null L and Lobur J (2016). The Essentials of Computer Organization and Architecture (4™
edition). Jones & Barlett Learning.

Rafiqguzzaman M (2014). Fundamentals of Digital Logic and Microcontrollers. John Wiley &
Sons.

Roth, H. C. Jr & Kinney, L. L. (2014). Fundamentals of Logic Design (7" edition). Cengage
Learning.

78

CIT344 INTRODUCTION TO COMPUTER DESIGN

Tanenbaum, Andrew S. (2013). Structured Computer Organization.Prentice Hall ~ (6th
ed).

79

CIT344 INTRODUCTION TO COMPUTER DESIGN

UNIT 2 LATCHES AND FLIP-FLOPS

CONTENTS
1.0 Introduction
2.0 Intended learning Outcomes (ILOs)
3.0 Main Content
3.1 Latches and Flip-Flops
3.1.1 Latches
3.1.1.1 The NAND Gate Based S-R Latch
3.1.1.2The NOR Gate Based S-R (Set-Reset) Latch
3.1.1.3Applications of S-R Latch
3.1.1.4 The Gated S-R Latch
3.1.1.5 The Gated D Latch
3.1.2 Flip-Flops
3.1.2.1 S-R Edge-Triggered Flip-Flops
3.1.2.2 Edge-Triggered D Flip-Flops
3.1.2.3 Edge-Triggered J-K Flip-Flops
3.1.24 Asynchronous Preset and Clear Inputs
3.1.25 Master-Slave Flip-Flops
3.1.2.6 Flip-Flops Operating Characteristics
3.1.2.7 Applications of Edge-Triggered D Flip-
Flops
3.1.28 Applications of Edge-Triggered J-K Flip-
Flops
4.0 Self-Assessment Exercise(s)
5.0 Conclusion
6.0 Summary
7.0 Further Readings

@1.0 Introduction

In this unit, we shall extensively discuss latches and flip-flops.

@2.0 Intended Learning Outcomes (I1LOs)

At the end of this unit, you should be able to:

describe what a latch and flip-flop is

describe how a latch and flip-flop are designed

explain the various types of latch and flip-flop

explain how the types of latch and flip-flop are designed
state the various uses of latches and flip-flops

80

CIT344
°

INTRODUCTION TO COMPUTER DESIGN

explain the various applications of the latch and flip-flop.

3.0 Main Content
3.1 Latches and Flip-Flops

Latches and flip-flops collectively are capable of storing information
hence, they are collectively known as “register”. However the
commonly used logical memory element in sequential circuits is flip-
flop.

3.1.1 Latches

A latch is a temporary storage device that has two stable states. A latch
output can change from one state to the other by applying appropriate
inputs. A latch normally has two inputs, the binary input combinations
at the latch input allows the latch to change its state. A latch has two
outputs Q and its complement Q. The latch is said to be in logic high
state when Q=1 and Q=0 and it is in the logic low state when Q=0 and
Q=1. When the latch is set to a certain state it retains its state unless the
Inputs are changed to set the latch to a new state.

Thus, a latch is a memory element which is able to retain the
information stored in it.

3.1.1.1 The NAND Gate Based S-R (Set-Reset) Latch

An S-R Latch is implemented by connecting two NAND gates together.
The output of each NAND gate is connected to the input of the other
NAND gate. The unconnected inputs of the two NAND gates are the Set
S and Reset R inputs. The outputs of the two NAND gates are the Q and
its complement Q. The circuit diagram of the NAND based S-R latch is
shown in figure 1.

5= 1) Q
1
LN -

<y 2 b

R— :

81

CIT344 INTRODUCTION TO COMPUTER DESIGN
Fig. 1: NAND Based S-R Latch

82

CIT344 INTRODUCTION TO COMPUTER DESIGN

A truth-table shows the operation of the S-R NAND based latch. The
Output Q.1 represents the Q output of NAND gate 1 at time interval
t+1.When inputs are S = 1 and R = 1 the next state output Q. remains
the same as the previous state output Q;. When inputsare S=0and R =
1 the output Q is set to 1. When inputs are S = 1 and R = 0 the output Q
is set to 0. Inputs S = 0 and R = 0 are not applied as they place the latch
in an invalid state.

The NAND gate based S-R latch has active-low inputs.

Table 1: Truth-Table of NAND based S-R Latch
Input Output
S R Qw1
0 0 invalid
0 1 1
1 0 0
1 1 Qi

3.1.1.2 The NOR Gate Based S-R (Set-Reset) Latch

A NOR based S-R latch is implemented using NOR gates instead of
NAND gates.

Connections are identical to that of the NAND based latch. The S and R
inputs have been switched.

A K"
i 7
_\r\\ —
| 2 p+—0Q
S 7
Fig. 2: NOR Based S-R Latch

The truth table of the NOR gate based latch is shown. When inputs are S
=0 and R = 0 the next state output Qt+1 remains the same as the
previous state output Qt. When inputs are S = 0 and R = 1 the output Q
is set to 0. When inputs are S = 1 and R = 0 the output Q is set to 1.
Inputs S = 1 and R = 1 are not applied as they place the latch in an
invalid state. The NOR gate based S-R latch has active-high inputs.

83

CIT344 INTRODUCTION TO COMPUTER DESIGN

Table 2: Truth-Table of NOR based S-R Latch

Input Output
S| R Qt+1
010 Qt
0 |1 0
1|0 1
1|1 invalid

Comparing the operation of the NOR based and NAND based S-R
latches.

The NAND based latch has active-low inputs, whereas NOR based latch
has active-high inputs. Both the S-R latches are set to logic 1 when the
set input is activated and the reset input is inactive.

Both the latches are set to logic 0 when the reset input is activated and
the set input is inactive. The latches maintain the output state when both
the set and reset inputs are inactive.

For both the latches both the set and reset inputs cannot be activated
simultaneously as this leads to invalid output states. The logic symbols
of the two latches are shown below.

S— Aclve-high —Q S Actve-ow —Q

Input Input

i

SR SR
Latch Latch
R—1 —Q R— —Q
Fig. 3: NOR Based Active-High and NAND Based Active-Low
S-R Latches

3.1.1.3 Application of S-R Latch

Digital systems use switches to input values and to control the output.
For example, a keypad uses 10 switches to enter decimal numbers 0 to 9.
When a switch is closed the switch contacts physically vibrate or
‘bounce’ before making a solid contact. The switch bounce causes the
voltage at the output of the switch to vary between logic low and high

84

CIT344 INTRODUCTION TO COMPUTER DESIGN

for a very short duration before it settles to a steady state. The variation
in the voltage causes the digital circuit to operate in an erratic manner.
An S-R latch connected between the switch and the digital circuit
prevents the varying switch output from reaching the digital circuit.

In figure 3 above, when the switch is moved up to connect the resistor
to the ground, the output voltage fluctuates between logic 1 and O for a
very brief period of time when the switch vibrates before making a solid
contact. The output voltage settles to logic 0 when a solid contact is
made. The active-low input S-R latch shown in figure 4 prevents the
output signal from varying between logic 1 and 0. When the switch is
moved from down position to up position, the R input is set to 1 and S
input is set to 0, which sets the Q output of the S-R latch to 1. The S
input varies between 0 and 1 due to switch ‘bounce’, however the S-R
latch doesn’t change its output state Q when S=1and R = 1.

+hy
0
c')
' Output
0
[]/
I |
Fig. 4: The Output of a Switch Connected to Logic High
f5 v
l; Output
pe S—< Active-low Q
Input
i SR
Latch .

)+5V
Fig. 5: The Switch Connected through an S-R Latch

85

CIT344 INTRODUCTION TO COMPUTER DESIGN

The S-R NAND gate based latch is available in the form of an Integrated
Circuit. The 74LS279 IC has four S-R latches which can be used
independently.

3.1.1.4 The Gated S-R Latch

The gated S-R latch has an enable input which has to be activated to
operate the latch. The circuit diagram of the gated S-R latch is shown in
figure 6. In the gated S-R circuit, the S and R inputs are applied at the
inputs of the NAND gates 1 and 2 when the enable input is set to active-
high. If the enable input is disabled by setting it to logic low the output
of NAND gates 3 and 4 remains logic 1, whatever the state of S and R
inputs. Thus, logic 1 applied at the inputs of NAND gates 1 and 2 keeps
the Q and Q outputs to the previous state. The logic symbol of a gated S-
R latch is shown in figure 6.

S .\ A

3 T b Q
1/ 4‘[o
' 3 A

! |
| 4\,%1:— : :[2 \:D- Q
R/ —J

Fig. 6: Gated S-R Latch

S— —Q

Gated

— SR
EN Lateh
R— 0
Fig. 7: Logic Symbol of a Gated S-R Latch

86

CIT344 INTRODUCTION TO COMPUTER DESIGN

Table 3: Truth-Table of a Gated S-R Latch

Input Output
EN|] S| R Qt+1
0 X | X Qt
1 0] 0 Qt
1 0| 1 0
1 110 1
1 1 1 invalid

3.1.1.5 The Gated D Latch

One way to eliminate the undesirable condition of the indeterminate
state in the SR latch is to ensure that inputs S and R are never equal to 1
at the same time. This is done by the D latch. Thus, the D latch has the
ability to hold data in its internal storage. The output follows changes in
the data input as long as the control input is gated. The circuit is often
called a transparent latch.

Fig. 8: Gated D Latch

Table 4: Truth Table of a Gated D Latch

Input Qutput i Ol
0 X Qt 0 X Qt
—] [
| | |

87

CIT344 INTRODUCTION TO COMPUTER DESIGN

D— —Q
Gated
EN
D
Latch —
0—0Q
Fig. 9: Logic Symbol of a Gated D Latch

3.1.2 Flip-Flops

When latches are used for the memory elements in sequential circuits, a
serious difficulty arises. Recall that latches have the property of
Immediate output responses (i.e., transparency).Because of this the
output of a latch cannot be applied directly (or through logic) to the
input of the same or another latch when all the latches are triggered by a
common clock source. Flip-flops are used to overcome this difficulty.

Flip-flops are synchronous bi-stable devices, known as bi-stable
multivibrators. Flip-flops have a clock input instead of a simple enable
input. The output of the flip-flop can only change when appropriate
inputs are applied at the inputs and a clock signal is applied at the clock
input. Flip-flops with enable inputs can change their state at any instant
when the enable input is active. Digital circuits that change their outputs
when the enable input is active are difficult to design and debug as
different parts of the digital circuit operate at different times.

In synchronous systems, the output of all the digital circuits changes
when a clock signal is applied instead of the enable signal. The change
in the state of the digital circuit occurs either at the low-to-high or high-
to-low transition of the clock signal. Since the transition of the clock
signal is for a very short and precise time intervals; thus, all digital parts
of a digital system change their states simultaneously. The low to high
or high to low transition of the clock is considered to be an edge. Three
different types of edge-triggered flip-flops are generally used in digital
logic circuits.

. S-R edge-triggered flip-flop

. D edge-triggered flip-flop
. J-K edge-triggered flip-flop

88

CIT344 INTRODUCTION TO COMPUTER DESIGN

Each flip-flop has two variations, that is, it is either positive edge-
triggered or negative edge triggered. A positive edge-triggered flip-flop
changes its state on a low-to-high transition of the clock and a negative
edge-triggered flip-flop changes its state on a high-to-low transition of
the clock. The edge-detection circuit which allows a flip-flop to change
its state on either the positive or the negative transition of the clock is
implemented using a simple combinational circuit. The edge detection
circuit that detects the positive and the negative clock transition are
shown in figure 11.

V _CLKPULSE
J

Fig. 10: Positive Clock Edge Detection Circuit

il

—_—

NG
VC , CLKPULSE
T

Fig. 11: Negative Clock Edge Detection Circuit

3.1.2.1 S-R Edge-Triggered Flip-Flops

The logic symbols of a positive edge and a negative edge triggered S-R
flip-flops are shown in figure 12 below.

89

INTRODUCTION TO COMPUTER DESIGN

CIT344
SR . oR
CLK Fiip-Flop CLK—(Fiip-Flop
R H—Q R —Q
Fig. 12: Logic Symbol of Positive and Negative Edge -Triggered
S-R Flip-Flops
The truth tables of the two S-R flip-flops are also shown below in table
5.
Table 5: Truth-Table of Positive and Negative Edge -Triggered S-
R Flip-Flops
e | | it
S S — (o — —
1 0 0 Q f 8 ? 8‘
— R
} 1 1 invalid L L L Ivalkd

3.1.2.2 Edge-Triggered D Flip-Flops

The logic symbols of a positive edge and a negative edge triggered D
flip-flops are shown in figure 13 below.

90

CIT344 INTRODUCTION TO COMPUTER DESIGN

f— —Q D — - Q
OLK— i CLK—OD g
Flip-Flop U Flip-Flop
04 4
Fig. 13: Logic Symbol of Positive and Negative Edge Triggered
D Flip-Flops

The truth tables of the two D flip-flops are also shown.

Table 6: Truth-Table of Positive and Negative Edge Triggered
D Flip-Flops
i ol Iput Outpt
(K 10 |Gy
CI.K D 0t+1
0 X |G
01X 10 ,
, D
D T
ol :]
oo :

3.1.2.3 Edge-Triggered J-K Flip-Flops
The J-K flip-flop is widely used in digital circuits. Its operation is

similar to that of the SR flip-flop except that the J-K flip-flop doesn’t
have an invalid state; instead it toggles its state.

91

CIT344 INTRODUCTION TO COMPUTER DESIGN

The circuit diagram of a J-K edge-triggered flip-flop is shown in figure
14,

Fig. 14: Edge-Triggered J-K Flip-Flop

Consider the Q and Q output of the J-K flip-flop set to 1 and 0
respectively and 0 and 1 respectively. Four set of inputs are applied at J
and K, the effect on the outputs is as follows.

J=0and K =0

With Q=1 and Q=0, on a clock transition the outputs of NAND gates 3
and 4 are set to logic 1. With logic 1 value at the inputs of NAND gates
1 and 2 the output Q and Q remains unchanged. With Q=0 and Q=1, on
a clock transition the outputs of the NAND gates 3 and 4 are set to logic
1. With logic 1 value at the inputs of NAND gates 1 and 2 the output Q
and Q remains unchanged.

Thus, when J=0 and K=0 the previous state is maintained and there is no
change in the output.

J=0and K =1

With Q=1 and Q=0, on a clock transition the output of NAND gate 3 is
set to logic 1.

The output of the NAND gate 4 is set to 0 as all three of its inputs are at
logic 1. The logic 1 and 0 at the inputs of the NAND gates 3 and 4
respectively resets the Q output to 0 and Q to 1. With Q=0 and Q=1, on
a clock transition the output of NAND gate 3 is set to logic 1. The

92

CIT344 INTRODUCTION TO COMPUTER DESIGN

output of the NAND gate 4 is also set to 1 as the input of the NAND
gate 4 is connected to Q=0. The logic 1 and 1 at the inputs of the NAND
gates 3 and 4 respectively retains the Q and Q to 0 and 1 respectively.

Thus, when J=0 and K=1 the J-K flip-flop irrespective of its earlier state
is rest to state Q=0 and Q=1.

J=1land K=0

With Q=1 and Q=0, on a clock transition the output of NAND gate 4 is
set to logic 1.

The output of the NAND gate 3 is also set to 1 as its input connected to
Q is at logic 0. Thus, inputs 1 and 1 at inputs of NAND gates 1 and 2
retain the Q and Q output to 1 and 0 respectively. With Q=0 and Q=1,
on a clock transition the output of NAND gate 4 is set to logic 1. The
output of the NAND gate 3 is set to 0 as all its input are at logic 1. Thus,
inputs 0 and 1 at inputs of NAND gates 1 and 2 sets the flip-flop to Q=1
and Q=0.

Thus, when J=1 and K=0 the J-K flip-flop irrespective of its output state
is set to state Q=1 and Q=0.

J=1land K =1

With Q=1 and Q=0, on a clock transition the output of the NAND gates
3 and 4 depend on the outputs Q and Q. The output of NAND gate 3 is
set to 1 as Q is connected to its input. The output of NAND gate 4 is set
to 0 as all its inputs including Q is at logic 1. A logic 1 and 0 at the input
of gates 1 and 2 toggles the outputs Q and Q from logic 1 and 0 to 0 and
1 respectively. With Q=0 and Q=1, on a clock transition the output of
NAND gate 3 is set to 0 as Q and the output of NAND gate 4 is set to 1.
A logic 0 and 1 at the input toggles the outputs Q and Q from logic 0
and 1 to 1 and O respectively.

In summary, when J-K inputs are both set to logic 0, the output remains
unchanged. At J=0 and K=1 the J-K flip-flop is reset to Q=0 and Q=1.
At J=1 and K=0 the flip-flop is set to Q=1 and Q=0. With J=1 and K=1
the output toggles from the previous state.

The truth tables of the positive and negative edge triggered J-K flip-
flops are shown in Table 7.

93

CIT344 INTRODUCTION TO COMPUTER DESIGN

Table 7: Truth-Table of Positive and Negative Edge Triggered J-K

Flip-Flops
Input Quiput | | Input QOutput
ClK |J K Q1 Clk |J K Qi
0 X X Qt 0 X X Q1
| X X (1 X X)
! 0 0 Q | 0 0 Q4
1 0 l 0 | 0 1 0
1 1 0 1 | 1 0 |
! 1 I 61 | l 1 Q

The logic symbols of the J-K flip-flops are shown in figure 15.

- N o S - Q
CLK—p p,i;:gop CLK—C Flig:gop

K —Q K —| +—Q

Fig. 15: Logic Symbol of Positive and Negative Edge Triggered J-
K Flip-Flops

3.1.2.4 Asynchronous Preset and Clear Inputs

The S-R, J-K and D inputs are known as synchronous inputs because the
outputs change when appropriate input values are applied at the inputs
and a clock signal is applied at the clock input. If there is no clock
transition then the inputs have no effect on the output.

Digital circuits require that the flip-flops be set or reset to some initial
state before a new set of inputs is applied for changing the output. The
flip-flops are set-reset to some initial state by using asynchronous inputs
known as Preset and Clear inputs. Since these inputs change the output

94

CIT344 INTRODUCTION TO COMPUTER DESIGN

to a known logic level independently of the clock signal therefore these
inputs are known as asynchronous inputs. The circuit diagram of a J-K
flip-flop with Preset and Set is shown below.

Asynchronous inputs are shown. The asynchronous inputs override the
synchronous inputs. Thus, to operate the flip-flop in the synchronous
mode the asynchronous inputs have to be disabled. To preset the flip-
TIop to Q=1 and Q=0 the PRE input is set to 0 whichsets the Q output to
1 and the output of NAND gate 4 to 1. The CLR input is set to 1 which
sets the Q output to O as all three inputsof the NAND gate 2 are set to 1.
TheTlip-flop is cleared to Q=0 and Q=1 by setting the PRE input is set
to 1 and the CLR input is to 0. The CLR input set to 0 sets Q=1 it also
sets the output of NAND gate 3 to 1. The PRE input set tol sets the
output Q to 0. When the PRE and the CLR inputs are used inputs J and
K have no effect on the operation of the flip-flop. To use the flip-flop
with synchronous inputs J-K, the PRE and the CLR inputs are set to
logic 1. Setting PRE and the CLR to logic 0 is not allowed.

¢+ PRE
Vo ‘_ 5 _ :
J I —‘ 3\;}»— 1 4 \‘b— Q
g I
LK~y —
j_ 4\'0_—— 2 L——()—a
S
?CLR

Fig. 16: J-K Flip-Flop with Asynchronous Preset and Clear
Inputs

Figure 17 shows the logic symbol of a J-K edge-triggered flip-flop with
synchronous and asynchronous inputs.

95

CIT344 INTRODUCTION TO COMPUTER DESIGN

| PRE
O

CLK——> ki Fiop

O
Ter
Fig. 17: Logic Symbol of a J-K Flip-Flop with Asynchronous

Inputs

The truth table of a J-K flip-flop with asynchronous inputs is shown in
Table 8.

Table 8: Truth Table of J-K Flip-Flop with Asynchronous
Inputs

Input Qutput
G

0 0 Invalid

0 'I 'I

1 0 0

I 1 Clocked operation

The 74HC74 Dual Positive-Edge triggered D Flip-Flop
The edge-triggered D flip-flop with asynchronous inputs is available as

an Integrated Circuit. The 74HC74 has dual D-flip-flops with
independent clock inputs, synchronous and asynchronous inputs.

The 74HC112 Dual Positive-Edge triggered J-K flip-flop
The edge-triggered D flip-flop with asynchronous inputs is available as

an Integrated Circuit. The 74HC112 has dual J-K-flip-flops with
independent clock inputs, synchronous and asynchronous inputs.

96

CIT344 INTRODUCTION TO COMPUTER DESIGN

3.1.2.5 Master-Slave Flip-Flops

Master-Slave flip-flops have become obsolete and are being replaced by
edge triggered flip-flops. Master-Slave flips have two stages each stage
works in one half of the clock signal. The inputs are applied in the first
half of the clock signal. The outputs do not change until the second half
of the clock signal. As mentioned earlier the use of edge-triggered flip-
flop is to synchronise the operation of a digital circuit with a common
clock signal. The master-slave setup also allows digital circuits to
operate in synchronisation with a common clock signal. The circuit
diagram of the master-slave J-K flip-flop is shown in figure 18 below.
The Master-Slave flip-flop is composed of two parts the Master and the
Slave. Both the Master and the Slave are Gated S-R flip-flops. The
Master-Slave flip-flop is not synchronised with the clock positive or
negative transition, rather it known as a pulse triggered flip-flop as it
operates at the positive and negative clock cycles.

== \pJJ 1 R 7 -\b_— 5 .\D_+ Q

- J i J j_/ /

V] |
I~ =0 -
1= 4 b] 2 b 8 b | 6 be
K—_J J 1
MASTER SLAVE
Fig. 18: Master-Slave Flip-Flop

The truth-table of the master-slave flip-flop is shown in table 9 below.

Table 9: Truth Table of the Master-Slave J-K Flip-Flop
Input Qufput
LK |J K [Qy
Pulse |0 0 (4
Puse |0 1 0
Pulse |1 0 |
Pulse |1 | 3

97

CIT344

INTRODUCTION TO COMPUTER DESIGN

3.1.2.6 Flip-Flop Operating Characteristics

The performance of the flip-flop is specified by several operating
characteristics.

The important operating characteristics are

Propagation Delay

Set-up Time

Hold Time

Maximum Clock frequency
Pulse width

Power Dissipation

Propagation Delay

The propagation delay time is the interval of time when the input is
applied and the output changes. Four different types of Propagation
Delays are measured.

1.

98

Propagation delay tp y measured with respect to the triggering
edge of the clock to the low-to-high transition of the output. On a
positive or negative clock transition the flip-flop changes its
output state. The propagation delay is measured at 50% transition
mark on the triggering edge of the clock and the 50% mark on the
low-to-high transition of the output that occurs due to the clock
transition.

Propagation delay tpy, measured with respect to the triggering
edge of the clock to the high-to-low transition of the output. On a
positive or negative clock transition the flip-flop changes its
output state. The propagation delay is measured at 50% transition
mark on the triggering edge of the clock and the 50% mark on the
high-to-low transition of the output that occurs due to the clock
transition.

Propagation Delay tp 4 measured with respect to the leading edge
of the preset input to the low-to-high transition of the output. On
a high-to-low transition of the preset signal the flip-flop changes
its output state to logic high. The propagation delay is measured
at 50% transition mark on the triggering edge of the preset signal
and the 50% mark on the low-to-high transition of the output that
occurs due to the preset signal.

Propagation delay tp, measured with respect to the leading edge
of the clear input to the high-to-low transition of the output. On a

CIT344 INTRODUCTION TO COMPUTER DESIGN

high-to-low transition of the clear signal the flip-flop changes its
output state to logic low. The propagation delay is measured at
50% transition mark on the triggering edge of the clear signal and
the 50% mark on the high-to-low transition of the output that
occurs due to the preset signal.

Set-Up Time

When a clock transition occurs at the clock input of a flip-flop the output
of the flip-flop is set to a new state based on the inputs. For the flip-flop
to change its output to a new state at the clock transition, the input
should be stable. The minimum time required for the input logic levels
to remain stable before the clock transition occurs is known as the set-up
time

Hold Time

The input signal maintained at the flip-flop input has to be maintained
for a minimum time after the clock transition for the flip-flop to reliably
clock in the input signal. The minimum time for which the input signal
has to be maintained at the input is the hold time of the flip-flop.

Maximum Clock Frequency

A flip-flop can be operated at a certain clock frequency. If the clock
frequency is increased beyond a certain limit the flip-flop will be unable
to respond to the fast changing clock transitions, therefore the flip-flop
will be unable to function. The maximum clock frequency f..x IS the
highest rate at which the flip-flop operates reliably.

Pulse Width

A flip-flop uses the clock, preset and clear inputs for its operation. Each
signal has to be of a specified duration for correct operation of the flip-
flop. The manufacturer specifies the minimum pulse width t,, for each of
the three signals. The clock signal is specified by minimum high time
and minimum low time.

Power Dissipation

A flip-flop consumes power during its operation. The power consumed
by a flip-flop is defined by P = V. X l... The flip-flop is connected to +5
volts and it draws 5 mA of current during its operation, therefore the
power dissipation of the flip-flop is 25 mW.

99

CIT344 INTRODUCTION TO COMPUTER DESIGN

A digital circuit is made of a number of gates, functional units and flip-
flops. The total power requirement of each device should be known so
that an appropriate dc power source is used to supply power to the
digital circuit.

3.1.2.7 Applications of Edge-Triggered D Flip-Flops

1. Data Storage using D-Flip-Flop

A multiplexer based parallel-to-serial converter needs to have stable
parallel data at its inputs as it converts it to serial data. Latches are used
to maintain stable data at the input of the multiplexer. The time required
to convert parallel data to serial data depends upon the number of
parallel bits. A byte parallel data requires 8-bit storage and 8 clocks are
required to convert it into serial data. The demerit in a gated D-latch
based circuit is the extended enable time. During the time in which the
D-latches are enabled data applied at the input of the latches can change.
D-latch is said to work in transparent mode when the enable signal is
activated. D-latch operates in the latched mode when the enable signal is
inactive. The conversion should only start when the enable signal has
been deactivated and the 8-bit data has been stored in the latches. A
better and a precise parallel to serial converter circuit uses edge
triggered D-flip-flops. The 8-bit data to be converted into serial data is
stored precisely at the clock transition. Thus, if the data changes after
the clock transition it has no effect on the data stored in the D flip-flop.

Do SET <o
- I'b o l—
=
CLR O
T
or L T = al o 5
@
o
= =
—— =
=
R
% kS
T 2
=
oz Lt 1™ o ez =
o
=]
™ =
— 2
e o
CLR ==
o
S
D3 SET Q3
SN S Q
cLK - >
CLR O
CLR ?

Fig. 19: D-Flip-Flops used for Parallel Data Storage

100

CIT344 INTRODUCTION TO COMPUTER DESIGN

2. Synchronising Asynchronous inputs using D Flip-Flop

In synchronised digital systems all the circuits change their state with
respect to a common clock and all the input and output signals are
synchronised. However, external inputs that are applied to digital
circuits through switches and keypads are not synchronised with the
clock. The asynchronous inputs can occur at any instant of time

3. Parallel Data Transfer using D flip-flop

Microprocessor use multi-bit flip-flops to store information. These
multi-bit flip-flops are known as registers. These registers for example,
can store data generated at the output of the ALU. The registers can also
be used to exchange or copy data, see figure 21. A register is a set of
flip-flops connected in parallel to store multi-bit binary information. The
clock inputs of all the flip-flops are connected together, to allow
simultaneous latching of the multi-bit input data.

3.1.2.8 Applications of Edge-Triggered J-K Flip-Flops

1. J-K Flip-Flop used as Sequence Detector

Some digital applications require that the inputs be applied in a certain
sequence to activate an output. This is possible with J-K flip-flops.

A J SETQ ;
B—
KCLR 6

Fig. 20: J-K Flip-Flop Connected to Respond to a Particular Input
Sequence

2. J-K Flip-Flop used as Frequency Divider
In digital circuit different parts of the circuit can operate at different

frequencies obtained from the master clock frequency. For example,
three different parts of a digital system might operate at 4 MHZ, 2 MHZ

101

CIT344 INTRODUCTION TO COMPUTER DESIGN

and 1 MHZ clock frequency respectively. Same clock source should be
used (instead of three separate clock sources) to maintain
synchronization between the three parts. A clock frequency can be
divided by 2 using a J-K flip flop. The J-K inputs of the flip-flop are
connected to logic high (1). At each clock transition the output of the
flip-flop toggles to the alternate state. A 4MHz clock signal can be
divided into 2

MHZ and 1 MHZ signal using two J-K flip-flops connected together.

1

SET

el
CLK——D>
K CLR Q

Fig. 21: J-K Flip-Flop Connected as Frequency Divider

iy SET Qﬁ_J SET Q—F1
CLK—> b

— K@ _KCLRQ

CLR

JK flip-flop 1 JK flip-flop 2

Fig. 22: J-K Flip-Flop Connected as Divide-by-4 Frequency
Divider

3. J-K Flip-Flop used as a Shift Register
Binary numbers can be multiplied or divided by a constant 2 by shifting
the binary numbers left or right by 1-bit respectively. Multiplication and

division by a factor of 2n, (where n= 1, 2, 3, 4) can be achieved by
shifting the binary by n bits to the left or right respectively. Binary

102

CIT344 INTRODUCTION TO COMPUTER DESIGN

numbers can be easily shifted in the left or right direction by using J-K
flip-flop based shift registers.

Q Q, SET Q SET Q

Dlan‘a— JF ol s ® el ®ollly¥ o

7
/

[Ta =l 2]

K, QH- K, Q1K QK

CLR
J-Kflipflop 1 | J-K flip-flop 2 | J-K flip-flop 3 | J-K flip-flop 4
CLK_ . i

CLR

Fig. 23: 4-Bit Right Shift Register

4. J-K Flip-Flop used as a Counter

Counters which count up or countdown are commonly used in digital
circuits. An up counter counts up from 0 to 10 increments to the next
higher count value on the application of each clock signal. Similarly, a
down-counter counts down to the next lower count value on the
application of each clock pulse.

1 1
IJSETQFO ;JSETQH
CLK o> | o>

Ky Q _KCLRQ

CIR |
JK flip-flop 1 J-K flipflop 2

Fig. 24: 2-Bit Up-Counter

| x| 4.0 Self-Assessment Exercise(s)

Extensively discuss latches and flip-flops and their types using diagrams and
good examples.

V()/ 5.0 Conclusion

103

CIT344 INTRODUCTION TO COMPUTER DESIGN
A latch is a temporary storage device that has two stable states. A latch
output can change from one state to the other by applying appropriate
inputs. A latch normally has two inputs, the binary input combinations at
the latch input allows the latch to change its state.

The basic logic element that provides memory in many sequential circuits is the flip-
flop. Flip-flops are synchronous bi-stable devices, known as bi-stable multivibrators.
Flip-flops have a clock input instead of a simple enable input. The output of the flip-flop
can only change when appropriate inputs are applied at the inputs and a clock signal is
applied at the clock input.

Three different types of edge-triggered flip-flops generally used in digital logic circuits
are:

e S-R edge-triggered flip-flop

e D edge-triggered flip-flop

e J-K edge-triggered flip-flop.

j’G.O Summary

In this unit we explained about latches and flip-flops. Digital systems
use switches to input values and to control the output. For example, a
keypad uses 10 switches to enter decimal numbers 0 to 9. When a switch
is closed the switch contacts physically vibrate or ‘bounce’ before
making a solid contact. The switch bounce causes the voltage at the
output of the switch to vary between logic low and high for a very short
duration before it settles to a steady state. The variation in the voltage
causes the digital circuit to operate in an erratic manner. An S-R latch
connected between the switch and the digital circuit prevents the varying
switch output from reaching the digital circuit.

[

“’J} 7.0 Further Readings

Pedroni VA (2020). Circuit Design with VHDL (3" Edition). The MIT Press Cambridge.

Sarkar S.K., De Ak., and Sarkar S (2014). Foundation of Digital Electronics and Logic

Design.
Pan Stanford

Mano MdM (2017). Digital Logic and Computer Design. Pearson India Education Services Pvt.
Lt

Yasin M.,Rajendran J. (JV) and Sinanoglu O. (2020). Trustworthy Hardware Design:
Combinational Logic Locking TechniquesSpringer Nature

Ndjountche T. (2016). Digital Electronics 1: Combinational Logic Circuits. Wiley

El?jhi A (2018). Computer System: Digital Design, Fundamentals of Computer Architecture
an

104

CIT344 _ INTRODUCTION TO COMPUTER DESIGN
Assembly Language. Springer Nature

Patt Y. N (2019). Introduction to Computing Systems — From Bits and Gates to C and Beyond
(Online Version). Mc-Graw-Hill.

Verma A.K, Shama G and Singh K_§2016)._Wiley Acing The Gate: Computer Science and
Information Technology. Wiley India Pvt. Ltd.

Mano M.M, Kime C.R and Martin T (2015). Logic & Computer Design Fundamentals (5"
edition). Pearson. Pg283

Faroughi N (2015). Digital Logic Design & Computer Organization: With Computer
Architecture for Security. McGraw-Hill Education.

Patterson D. A and Hennessy J.L (2016). Computer Organization & Design ARM Edition:
The
Hardware Software Interface. Morgan Kaufmann.

Unsalan C and Tar B (2017). Digital System Design with FPGA Implementation Using
Verilog
and VHDL. McGraw-Hill Education.

Null L and Lobur J (2016). The Essentials of Computer Organization and Architecture (4™
edition). Jones & Barlett Learning.

Rafiqguzzaman M (2014). Fundamentals of Digital Logic and Microcontrollers. John Wiley &
Sons.

Roth, H. C. Jr & Kinney, L. L. (2014). Fundamentals of Logic Design (7" edition). Cengage
Learning.

Tanenbaum, Andrew S. (2013). Structured Computer Organization.Prentice Hall ~ (6th
ed).

105

)

]
|

CIT344 INTRODUCTION TO COMPUTER DESIGN

UNIT 3 REGISTERS
CONTENTS

1.0 Introduction
2.0 Intended Learning Outcomes (ILOs)
3.0 Main Content
3.1 Registers
3.1.1 Shift Registers
3.1.2 Shift Register Counters
3.1.3 Applications of Shift Registers
4.0 Self-Assessment Exercise(s)
5.0 Conclusion
6.0 Summary
7.0 Further Readings

@1.0 Introduction

In this unit we shall discuss registers. We shall look at the shift register,
shift register counters and the applications of shift registers.

@ 2.0 Intended Learning Outcomes (ILOs)

At the end of this unit, you should be able to:

4.1.4 define shift register
4.1.5 explain its various types
4.1.6 explain its various applications.

3.0 Main Content

3.1 Registers

Information is stored in a CPU memory location called a register.
Registers can be thought of as the CPU’s tiny scratchpad, temporarily
storing instructions or data. When a program is running, one special
register called the program counter keeps track of which program
instruction comes next by maintaining the memory location of the next
program instruction to be executed. The CPU’s control unit coordinates
and times the CPU’s functions, and it uses the program counter to locate
and retrieve the next instruction from memory.

106

CIT344 INTRODUCTION TO COMPUTER DESIGN

3.1.1 Shift Registers

In digital circuits multi-bit data has to be stored temporarily until it is
processed. A flip-flop is able to store a single binary bit of information.
Multiple bits of data are stored by using multiple flip-flops which have
their clock inputs connected together. Thus, by activating the clock
signal multiple-bits of data are stored.

Technically, a register performs two basic functions. It stores data and it
moves or shifts data. The shifting of data involves shifting of bits from
one flip-flop to the other within the register or moving data in and out of
the register. The shift operation of the binary data is carried out by
applying clock signals. Several different kinds of shift operations can be
identified. The different shift operations are described using a 4-bit shift
register.

Serial In/Shift Right/Serial Out Operation

Data is shifted in the right-hand direction one bit at a time with each
transition of the clock signal. The data enters the shift register serially
from the left hand side and after four clock transitions the 4-bit register
has 4-bits of data. The data is shifted out serially one bit at a time from
the right hand side of the register if clock signals are continuously
applied. Thus, after 8 clock signals the 4-bit data is completely shifted
out of the shift register.

Data I i put

-
-

Fig. 1: Serial In/Serial Right/Serial Out Operation

Serial In/Shift Left/Serial Out Operation

Data is shifted in the left-hand direction one bit at a time with each
transition of the clock signal. The data enters the shift register serially

from the right hand side and after four clock transitions the 4-bit register
has 4-bits of data. The data is shifted out serially one bit at a time from

107

CIT344 INTRODUCTION TO COMPUTER DESIGN

the left hand side of the register if clock signals are continuously
applied. Thus, after 8 clock signals the 4-bit data is completely shifted
out of the shift register.

Datg i Dataln

4 4 4
¥ w w | —

Fig. 2: Serial In/Serial Left/Serial Out Operation

Serial shift registers can be implemented using any type of flip-flops. A
serial shift register implemented using D flip-flops with the serial data
applied at the D input of the first flip-flop and serial data out obtained at
the Q output of the last flip-flop is shown. At each clock transition 1-bit
of serial data is shifted in and at the same instant 1-bit of serial data is
shifted out. For a 4-bit shift register, 8 clock transitions are required to
shift in 4-bit data and completely shift out the 4-bit data. As the data is
shifted out 1-bit at a time, a logic 0 value is usually shifted in to fill up
the vacant bits in the shift register.

‘ 00 ‘01' 02 00
D’E:]@_DSETQ_._DSHQ+DSETQ+DSETO_I[)033?

ool [Motnd hoked|

pop

=

(LR

(K

Fig. 3: Serial In/Shift Right/Serial Out Register
The shift left and shift right shift registers are identical in their working.

They are connected differently for shift left and shift right operations.
Bidirectional Shift Registers are available which allow data to be shifted

108

CIT344 INTRODUCTION TO COMPUTER DESIGN

left or right. The 4-bit register is configured to shift left or right by
setting the RIGHT /LEFT signal to logic high or low respectively. When
the register is configured to shift right, the AND gates marked 1 are
enabled. The input of the first flip-flop is connected to the serial Input,
the inputs of the next three flip-flops are connected to the Q outputs of
the previous flip-flops. Thus, on a clock transition data is shifted 1-bit
towards the right. The serial data is shifted out of the register through
output Q3. When the register is configured to shift left the AND gates
marked 2 are enabled, connecting the Q outputs of the flip-flop on the
right hand side to the D input of the flip-flop on the left hand side. Thus,
on each clock transition data is shifted 1-bit towards left. Serial date out
is available through the QO output. Serial data is input through the Serial
Data in line which is connected to the fourth AND gate marked 2 on the
extreme right hand side.

RIGHT/LEFT

> . ’

Serial Ler1 = bl I ' EJWIL[\

Datar1.\2 Mzﬁ 11,[2] 1 Lz
\/ ik N Nt N2 i NG

In LlFJ o Llj T
Y Hh U

SET

D

Y
7 [sglle

0 i 2

OO
—<
=z
r—<

O
)
Q[_]
=
O
O

Q

cL

>flip-flop 1
Q

CLR

flip-flop 2
Q

CLR

flip-flo
CLR

p4
Q

>flip-flop 3
CLR Q

T

Fig. 4: Bi-Directional, 4-Bit Shift Register

Serial In/Parallel Out Operation

Data is shifted in the left-hand direction one bit at a time with each
transition of the clock signal. The data enters the shift register serially
from the right hand side and after four clock transitions the 4-bit register
has 4-bits of data. The data is shifted out in parallel by the application of
a single clock signal. The shift register has 4 parallel outputs. The circuit
diagram of the Serial In/Parallel Out register is shown.

109

CIT344 INTRODUCTION TO COMPUTER DESIGN

Dataln

Data Out

Fig. 5: Serial In/Parallel Out Operation

Parallel In/Serial Out Operation

The register has parallel inputs, data bits are loaded into the register in
parallel by activating a load signal. The data is shifted out serially by
application of clock signals. Thus, in a 4-bit shift register, after 4 clock
signals the 4-bit data is completely shifted out of the shift register.

Data In

Data put

Fig. 6: Parallel In/Serial Out Operation

The internal circuit of a 4-bit Parallel In/Serial Out Shift register is
shown. The 4-bit data is initially loaded in Parallel into the shift register
by setting the SHIFT /LOAD input to logic low. The AND gates marked
2 are enabled allowing data to be applied at the inputs of the respective
D flip-flops. On a positive clock transition the data is latched by the

110

CIT344 INTRODUCTION TO COMPUTER DESIGN

respective flip-flops. To shift the data, the SHIFT /LOAD is set to logic
high which enables AND gates marked 1 connecting the Q outputs of
the each flip-flop connected to the D input of the next flip-flop.

D Dz D3
SHIFT/[OAD fL] | ‘L | ‘
g g Uoaiole
Y v
- Q
SET SET SET S 3
fD QJ D™ Qr T D™ Q J I D [
Q, Q, Q, Serial
>ﬂip-ﬂop 1 flip-flop 2 flip- ﬂ°P 3 fip-iop 4 %aljf
CLR Q CLR O CLR Q
CLY

Fig. 7: 4-Bit Parallel In/Serial Out Shift Register

Parallel In/Parallel Out Operation

The register has parallel inputs and parallel outputs. Data is entered in
parallel by applying a single clock pulse. Data is latched by the flip-
flops on the clock transition and is available in parallel form at the flip-
flop outputs.

The internal circuit of 4-bit Parallel In/Parallel Out Register is shown.
The Parallel In/Parallel Out register stores Parallel data and usually does
not allows any shift operations.

e

1 2 3 |

b

Parallel In/Parallel Out Operation

l Data Out

Fig. 8:

111

CIT344 INTRODUCTION TO COMPUTER DESIGN

D,

| EZ Ea
—DSETQ——DSETQ DSETQ— DSETQ

]
]

iipflop 1 _O)flip-ﬂopZ Wiplop 3. | fip-fop 4

CLR Q CLR Q CLR Q CLR Q
CLK \
G Q, G, G,
Fig. 9: A D-Flip-Flop based 4-Bit Parallel In/Parallel Out
Register

Rotate Right Operation

The serial output of the register is connected to the serial input of the
register. By applying clock pulses data is shifted right. The data shifted
out of the serial out pin at the right hand side is re-circulated back into
the shift register input at the left hand side. Thus, the data is rotated right
within the register.

Fig. 10: Rotate Right Operation

Rotate Left Operation

The serial output of the register is connected to the serial input of the
register. By applying clock pulses data is shifted left. The data shifted
out of the serial out pin at the left hand side is re-circulated back into the
shift register input at the right hand side. Thus, the data is rotated left
within the register.

112

CIT344 INTRODUCTION TO COMPUTER DESIGN

Fig. 11: Rotate Left Operation
3.1.2 Shift Register Counters

Shift register counters are basically, shift registers connected to perform
rotate left and rotate right operations. When data is rotated through a
register counter a specific sequence of states is repeated. Two commonly
used register counters in digital logic are the Johnson Counter and the
Ring Counter.

Johnson Counter

In a Johnson counter, the Q output of the last flip-flop of the shift
register is connected to the data input of the first flip-flop. The circuit of
a 4-bit, D flip-flop based Johnson Counter is shown in the figure below.
The sequence of states that are implemented by a n-bit Johnson counter
are 2n. Thus, a 4-bit Johnson counter sequences through 8 states and a 5-
bit Johnson counter sequences through 10 states.

SET SET

LDSETO DSETO D Q—D Q

q>flip-ﬂop1 fioflop 2| | ¥ flipflop 3 >f|ip-ﬂ0p4
Q 0r

CLR CLR CLR CLR

CIK

Fig. 12: 4-Bit Johnson Counter

113

CIT344 INTRODUCTION TO COMPUTER DESIGN

Table 1: Sequence of States of a 4-Bit Johnson Counter

Clock Qg Q Oy Qs

Pulse
0 0 0 0 0
[1 0 0 0
2 [| 0 0
3 | | | 0
4 | | | I
4] 0 | [I
b 0 0 | I
1 0 0 0 I

Ring Counter

The Ring Counter is similar to the Johnson Counter, except that the Q
output of the last flip-flop of the shift register is connected to the data
input of the first flip-flop of the shift register. All the flip-flops of the
counter are cleared to logic low except for the first flip-flop which is
preset to logic high.

PRE
s%r s% s% ‘ s% J
-0 Q—D Q—D Q—D Q
Vhivtont| Piptp| T hidond| [iphop
CI_K' C(L)R Q | CéR Q ' C§R Q . C%R Q
m + +
Fig. 13: 4-Bit Ring Counter

After the initialisation of the counter, the logic high set at the output of
the first flip-flop is shifted right at each clock transition. With a Ring
Counter circuit no decoding gates are required. Each state of the ring
counter has a unique output.

114

CIT344 INTRODUCTION TO COMPUTER DESIGN

Table 2: Sequence of States of a 4-Bit Ring Counter

v W

'Clock 0y () 02' '03
Pule
0

| — o T
el =l I s i Y —

0 o | o | —
O O —

‘\
!
J

3.1.3 Applications of Shift Registers

The major application of a shift register is to convert between parallel
and serial data. Shift registers are also used as keyboard encoders. The
two applications of the shift registers are discussed.

Serial-to-Parallel Converter

Earlier, Multiplexer and Demultiplexer based Parallel to Serial and
Serial to Parallel converters were discussed. The Multiplexer and
Demultiplexer require registers to store the parallel data that is converted
into serial data and parallel data which is obtained after converting the
incoming serial data. A Parallel In/Serial Out shift register offers a better
solution instead of using a Multiplexer-Register combination to convert
parallel data into serial data. Similarly, a Serial In/Parallel Out shift
register replaces a Demultiplexer-Register combination.

In Asynchronous Serial data transmission mode, a character which is
constituted of 8-bits (which can include a parity bit) is transmitted. To
separate one character from another and to indicate when data is being
transmitted and when the serial transmission line is idle (no data is being
transmitted) a set of start bit and stop bits are appended at both ends of
the 8-bit character. A character is preceded by a logic low start bit.
When the line is idle it is set to logic high, when a character is about to
be transmitted the start bit sets the line to logic low. The logic low start
bit is an indication that 8 character bits are to follow and the
transmission line is no longer in an idle state. After 8-character bits have
been transmitted, the end of the character is indicated by two stop bits
that are at logic high. The two logic bits indicate the end of the character
and also set the transmission line to the idle state.

115

CIT344 INTRODUCTION TO COMPUTER DESIGN

Therefore, a total of 11 bits are transmitted to send one character from
one end to the other. The logic low start bit is also a signal for the
receiver circuit to start receiving the 8 character bits that are following
the start bit. The 11-bit serial character format is shown.

0 (0100 (00 (OO0 (0100100 |1 |
o) Databis SXop b
i

Fig. 14: 11-Bit Serial Data Format

A Serial to Parallel converter circuit based on shift registers is shown
below. The serial data is preceded by a logic low start bit which triggers
the J-K flip-flop. The output of the flip-flop is set to logic high which
enables the clock generator. The clock pulses generated are connected to
the clock input of a Serial In/Parallel Out shift register and also to the
clock input of an 8-bit counter. On each clock transition, the Serial
In/Parallel Out shift register shifts in one bit data. When the 8-bit
counter reaches its terminal count 111, the terminal count output signal
along with the clock signal trigger the One-Shot and also allow the
Parallel In/Parallel Out register to latch in the Parallel data at the output
of the Serial In/Parallel Out shift register. The One-shot resets the J-K
flip-flop output Q to logic 0 disabling the clock generator and also clears
the 8-bit counter to count 000.

Serial Data In Serial InfParallel Out
Register
1% a Clock | CLK
Generator
)>
I K CLR Q .
LOAD_ [Parallel In/Parallel Out
= _ Register
8-bit | TC e
Counter -
\. Q Q

Fig. 15: Series-to-Parallel Converter

116

CIT344 INTRODUCTION TO COMPUTER DESIGN

Keyboard Encoder

We have a simple keypad encoder circuit where the 0 to 9 digit keypad
was connected through a decade to BCD encoder. Pressing any keypad
key enables the corresponding input of the encoder circuit which
encodes the input as a 4-bit BCD output.

Computer keyboards which have more keys employ a keyboard encoder
circuit that regularly scans the keyboard to check for any key press. The
scanning is done by organising the keys in the form of rows and
columns. With the help of a shift register based ring counter one row is
selected at a time. The two counters are connected as an 8-bit Ring
counter which sequences through a bit pattern having all 1’s and a single
0. The 8 state sequence selects one row at a time by setting it to logic 0.
If a key is pressed, the corresponding column also becomes logic 0 as it
connected to the selected row. The row and column which are selected
are encoded by the row and column encoders. When a key is pressed,
the selected column which is set to logic O sets the output of the NAND
gate to logic 1 which triggers two One Shots. The first One Shot inhibits
the clock signal to the ring counters for a short interval until the Key
Code is stored. The One Shot also triggers the second One-Shot that
sends a pulse to the clock input of the Key Code register. The Key Code
Register stores the key ID represented as 3-bit column and 3-bit row
code.

117

CIT344 INTRODUCTION TO COMPUTER DESIGN

CLK I I I !(I74Lc195q

74HC185 =
(5KHz) |9 L9 =
al EL
TEL

+
<

|

VWA—e

Wh—e

ANA
AN

SRR R I B
f}g{

r 3

S
1 SN ReNenee |

MO NI I
£
&8 ;
vt it d

o
A 2 3 ¥ 3 3

i I

Row Encoder Column Encoder
T4HC147 74HC147

4 e

o

One One Key Code Register

Shot Shot T4HC174A

L

Fig. 16: Keyboard Encoder Circuit

\KL.O Self-Assessment Exercise(s)

1. Give a detailed explanation of the different shift operations you know.
2. State in not less than four pages what you know about registers.

19,

5.0 Conclusion

A register performs two basic functions. It stores data and it moves or
shifts data. The shifting of data involves shifting of bits from one flip-
flop to the other within the register or moving data in and out of the
register.

The different shift operations are:

1. Serial In/Shift Right/Serial Out Operation
118

CIT344 INTRODUCTION TO COMPUTER DESIGN
Serial In/Shift Left/Serial Out Operation

Serial In/Parallel Out Operation

Parallel In/Serial Out Operation

Parallel In/Parallel Out Operation

Rotate Right Operation

Rotate Left Operation.

Nookowd

Shift register counters are shift registers connected to perform rotate left
and rotate right operations. When data is rotated through a register counter
a specific sequence of states is repeated. Two commonly used register
counters in digital logic are the Johnson Counter and the Ring Counter.

The applications of a shift register are used to convert between parallel
and serial data. They are also used as keyboard encoders.

@

In this unit we discussed registers. Information from an input device or
from the computer’s memory is communicated via the bus to the central
processing unit (CPU), which is the part of the computer that translates
commands and runs programs. The CPU is a microprocessor chip—that
IS, a single piece of silicon containing millions of tiny, microscopically
wired electrical components. Information is stored in a CPU memory
location called a register. Registers can be thought of as the CPU’s tiny
scratchpad, temporarily storing instructions or data.

M

Pedroni V.A (2020). Circuit Design with VHDL(3" Edition). The MIT Press Cambridge.

Sarkar S.K., De Ak., and Sarkar S (2014). Foundation of Digital Electronics and Logic
Design.
Pan Stanford

6.0 Summary

7.0 Further Readings

Mano MdM (2017). Digital Logic and Computer Design. Pearson India Education Services Pvt.
Lt

Yasin M.,Rajendran J. (JV) and Sinanoglu O. (2020). Trustworthy Hardware Design:
Combinational Logic Locking TechniquesSpringer Nature
Ndjountche T. (2016). Digital Electronics 1: Combinational Logic Circuits. Wiley

Elzhi A (2018). Computer System: Digital Design, Fundamentals of Computer Architecture
an

119

CIT344 _ INTRODUCTION TO COMPUTER DESIGN
Assembly Language. Springer Nature

Patt Y. N (2019). Introduction to Computing Systems — From Bits and Gates to C and Beyond
(Online Version). Mc-Graw-Hill.

Verma A.K, Shama G and Singh K_§2016)._Wiley Acing The Gate: Computer Science and
Information Technology. Wiley India Pvt. Ltd.

Mano M.M, Kime C.R and Martin T (2015). Logic & Computer Design Fundamentals (5"
edition). Pearson. Pg283

Faroughi N (2015). Digital Logic Design & Computer Organization: With Computer
Architecture for Security. McGraw-Hill Education.

Patterson D. A and Hennessy J.L (2016). Computer Organization & Design ARM Edition:
The
Hardware Software Interface. Morgan Kaufmann.

Unsalan C and Tar B (2017). Digital System Design with FPGA Implementation Using
Verilog
and VHDL. McGraw-Hill Education.

Null L and Lobur J (2016). The Essentials of Computer Organization and Architecture (4™
edition). Jones & Barlett Learning.

Rafiqguzzaman M (2014). Fundamentals of Digital Logic and Microcontrollers. John Wiley &
Sons.

Roth, H. C. Jr & Kinney, L. L. (2014). Fundamentals of Logic Design (7" edition). Cengage
Learning.

Tanenbaum, Andrew S. (2013). Structured Computer Organization.Prentice Hall ~ (6th
ed).

120

CIT344 INTRODUCTION TO COMPUTER DESIGN

UNIT 4 FINITE STATE MACHINES
CONTENTS

1.0 Introduction

2.0 Intended Learning Outcomes (ILOs)

3.0 Main Content
3.1 Finite State Machines
3.2 Finite State Machines as a Restrictive Turing Machines
3.3 Modeling the Behaviour of Finite State Machine
3.4 Functional Program View of Finite State Machines
3.5 Imperative Program View of Finite State Machines
3.6 Feedback System View of Finite State Machines
3.7 Tabular Description of Finite State Machines
3.8 Classifiers, Acceptors, Transducers & Sequencers
3.9 Description of Finite State Machines using Graphs

4.0 Self-Assessment Exercise(s)

5.0 Conclusion

6.0 Summary

7.0 Further Readings

@1.0 Introduction

This unit introduces finite state machines, a primitive, but useful
computational model for both hardware and certain types of software.
We also discuss regular expressions, the correspondence between non-
deterministic and deterministic machines, and more on grammars.
Finally, we describe typical hardware components that are essentially
physical realisations of finite-state machines.

@lz.o Intended Learning Outcomes (I1LOs)

At the end of this unit, you should be able to:

. discuss finite state machines
. define hardware
distinguish between a Mealy or Moore machine.

Main Content
3.1 Finite State Machines

Finite state machines provide a simple computational model with many

121

CIT344 INTRODUCTION TO COMPUTER DESIGN

applications. Recall the definition of a Turing machine: a finite-state
controller with a movable read/write head on an unbounded storage tape.
If we restrict the head to move in only one direction, we have the
general case of a finite-state machine. The sequence of symbols being
read can be thought to constitute the input, while the sequence of
symbols being written could be thought to constitute the output. We can
also derive output by looking at the internal state of the controller after
the input has been read. Finite-state machines, also called finite-state
automata (singular: automaton) or just finite automata are much more
restrictive in their capabilities than Turing machines. The basic
operation of a Finite State Machine system is this: as the system is in
one of the defined states at any instant of time, it will react to specified
(external) inputs or (internal) conditions with specified actions, and
transition to another defined state, or remain in its current state,
depending on the design. For example, we can show that it is not
possible for a finite-state machine to determine whether the input
consists of a prime number of symbols. Much simpler languages, such
as the sequences of well-balanced parenthesis strings, also cannot be
recognised by finite-state machines. Still there are the following
applications:

. Simple forms of pattern matching (precisely the patterns
definable by "regular expressions”).

. Models for sequential logic circuits, of the kind on which every
present-day computer and many device controllers is based.

. An intimate relationship with directed graphs having arcs labeled

with symbols from the input alphabet.

Even though each of these models can be depicted in a different setting,

they have a common mathematical basis.

Turing Machines

Context-Free Grammars

Sequential l

Logic Switching F!n!te-jtate Machines,
Circuits Finite-State Automata

| | I

Combinational ;)
i i Finite Directed < » Regular Expressions,
(I.;g;ﬁf)utchmg Labelled Graphs Regular Languages

Finite-State Grammars

Fig. 1: The Interrelationship of Various Models with Respect to

Computational or Representational Power

122

CIT344 INTRODUCTION TO COMPUTER DESIGN

(The arrows move in the direction of restricting power. The bi-
directional arrows show equivalences).

Finite State Machines are generally depicted as a state diagram,
represented graphically with two symbols: the state bubble and the
transition arrow. States are labeled or numbered and both inputs and
outputs are described textually. At any instant of time, a state machine is
in its current state. Depending on the specified input events and
conditions, a transition to the next state will occur. Finite State
Machines are considered deterministic if all transitions to next states are
unique to a given state and its inputs. Most useful FSMs are fully
deterministic, making them ideal for embedded systems software and
the process of validation and verification.

It is common to distinguish Finite State Machines as either a Mealy or
Moore machine. The difference between the two machines, as we shall
explore later, are noteworthy, but not necessarily paramount to
successful Finite State Machine design for software application
architecture, but likely important in sequential circuit design.

Finite State Machines are defined as sharing the following
characteristics:

o a finite set of defined states, one of which being defined as the
initial state of the machine

a set of defined inputs

a set of defined outputs

a set of transitions between selected states, and

the machine is said to be in a single state at any instant of time

3.2 Finite State Machines as Restrictive Turing Machines
One way to view the finite-state machine model as a more restrictive

Turing machine is to separate the input and output halves of the tapes, as
shown below.

123

CIT344

Output written so far

L d

Input to be read

»

INTRODUCTION TO COMPUTER DESIGN

| <

Finite State Machine as a One-Way Moving Turing

A

Direction of head motion

—

Input to be read

<

|
>

Finite-State Machine as Viewed with Separate Input and

Direction of head motion
—_—

Direction of tape motion

-

I

1<

Fig. 2:
Machine
L
Output written so fa'r |
Fig. 3:
Output
writing

<q> reading

L

Direction of tape motion

o~

Fig. 4:

124

Finite-State Machine Viewed as a Stationary-Head,
Moving-Tape, Device

CIT344 INTRODUCTION TO COMPUTER DESIGN

Since the motion of the head over the tape is strictly one-way, we can
abstract away the idea of a tape and just refer to the input sequence read
and the output sequence produced, as suggested in the next diagram. A
machine of this form is called a transducer, since it maps input
sequences to output sequences. The term Mealy machine, after George
H. Mealy (1965), is also often used for transducer.

Output sequence
Y1 Yo Yo ¥

Input sequence

X1 XZ Xs X4...

L Finite set of

intemal states

Fig. 5: A Transducer Finite-State Machine Viewed as a Tapeless
"Black Box" Processing an Input Sequence to Produce an
Output Sequence

On the other hand, occasionally, we are not interested in the sequence of
outputs produced but just an output associated with the current state of
the machine. This simpler model is called a classifier, or Moore
machine, after E.F. Moore (1965).

Output
associated
with current
state

Input sequence

$%%%-

Finite set of
intemal states

Fig. 6: Classifier Finite State Machine. Output is a function of
current state, rather than being a Sequence

125

CIT344 INTRODUCTION TO COMPUTER DESIGN

For a Mealy machine, the transition will be associated with an output. For a
Moore machine, the output occurs within the next state. For this reason,
Finite State Machines are often called 'reactive’ systems. Inputs are also
called events. Typical events may be: a message received from another
state machine, a simple event flag set by another state machine, or the
expiration of a time interval. Likewise, outputs may be: sending a message
to another state machine, setting an event flag for another state machine to
respond to, or starting a timed interval. Also, multiple unique transitions
are allowed from one state to other defined states. For software FSMs, each
state will have its unique source code logic to process events, perform
actions and output, and to effect state transitions. A complete system may
be comprised of one or more Finite State Machines, as determined by the
partitioning process performed during the initial design or analysis.
Although the Mealy Machine model may be more flexible than Moore
Machine, it is the need of the system being analysed or designed that
determines which of the two is most suitable. Note that a given state
machine may be comprised of both Mealy and Moore models, if such a
design meets functional requirements of the system. Also, be aware that
both Mealy and Moore Machines can be logically converted to the other.
The point here is that the correct state logic required for efficient operation
1s what’s important; the resulting machine archetype (Mealy or Moore)
should be only a secondary observation.

3.3 Modeling the Behaviour of Finite State Machines

Concentrating initially on transducers, there are several different
notations we can use to capture the behaviour of finite-state machines:

. as a functional program mapping one list into another

. as a restricted imperative program, reading input a single
character at a time and producing output a single character at a
time

. as a feedback system

. representation of functions as a table

. representation of functions by a directed labeled graph.

For concreteness, we shall use the sequence-to-sequence model of the
machine, although the other models can be represented similarly. Let us
give an example that we can use to show the different notations:

Example: An Edge-Detector

The function of an edge detector is to detect transitions between two
symbols in the input sequence, say 0 and 1. It does this by outputting 0
as long as the most recent input symbol is the same as the previous one.
However, when the most recent one differs from the previous one, it

110

CIT344 INTRODUCTION TO COMPUTER DESIGN

outputs a 1. By convention, the edge detector always outputs O after
reading the very first symbol. Thus, we have the following input output
sequence pairs for the edge-detector, among an infinite number of
possible pairs:

input output
O O

00 00

01 01
011 010
0111 0100
01110 01001
1 O

10 01
101 011
1010 0111
10100 01110
efc.

3.4 Functional Program View of Finite State Machines

In this view, the behaviour of a machine is as a function from lists to
lists.

Each state of the machine is identified with such a function.

The initial state is identified with the overall function of the machine.
The functions are interrelated by mutual recursion: when a function
processes an input symbol, it calls another function to process the
remaining input.

Each function: looks at its input by one application of first, produces an
output by one application of cons, the first argument of which is
determined purely by the input obtained from first, and calls another
function (or itself) on rest of the input.

We make the assumptions that:
The result of cons, in particular the first argument, becomes partially
available even before its second argument is computed.

Each function will return NIL if the input list is NIL, and we do not
show this explicitly.

111

CIT344 INTRODUCTION TO COMPUTER DESIGN

Functional code example for the edge-detector

We will use three functions, f, g, and h. The function f is the overall
representation of the edge detector.

f([0 | Rest]) => [0 | g(Rest)];
f([1 | Rest]) => [0 | h(Rest)];
f() =>[0;
g([0 | Rest]) => [0 | g(Rest)];
g([1 | Rest]) => [1 | h(Rest)];
g(lD => 1[I,
h([0 | Rest]) => [1 | g(Rest)];
h([1 | Rest]) => [0 | h(Rest)];
h([D) => [I;

Notice that f is never called after its initial use. Its only purpose is to
provide the proper output (namely 0) for the first symbol in the input.

Example of f applied to a specific input:
([0, 1,1,1,0]) ==>[0,1,0,0, 1]

An alternative representation is to use a single function, say k, with an
extra argument, treated as just a symbol. This argument represents the
name of the function that would have been called in the original
representation. The top-level call to k will give the initial state as this
argument:

k("f", [0 | Rest]) => [0 | k("g", Rest)];
k("f", [1| Rest]) => [0 | k("h", Rest)];
k("f", [1) =>[I;
k("g", [0 | Rest]) => [0 | k("g", Rest)];
k("g", [1| Rest]) =>[1 | k("h", Rest)];
k("g", [) => [I;
k("h", [0 | Rest]) =>[1 | k("g", Rest)];
k("h", [1| Rest]) => [0 | k("h", Rest)];
k("h", [1) => [I;

The top level call with input sequence x is k ("f", x) since "f" is the
initial state.

3.5 Imperative Program View of Finite State Machines

In this view, the input and output are viewed as streams of characters.
The program repeats the processing cycle:

112

CIT344 INTRODUCTION TO COMPUTER DESIGN

read character,
select next state,
write character,
go to next state

ad infinitum. The states can be represented as separate "functions”, as in
the functional view, or just as the value of one or more variables.
However the allowable values must be restricted to a finite set. No
stacks or other extendible structures can be used, and any arithmetic
must be restricted to a finite range.

The following is a transliteration of the previous program to this view.
The program is started by calling f(). Here we assume that read() is a
method that returns the next character in the input stream and write(c)
writes character c to the output stream.

void f() // initial function

{
switch(read())

{

case '0": write('0"); g(); break;
case '1": write('0"); h(); break;
¥

Finite-State Machines 477

}

void g() // previous input was 0

{
switch(read())

{

case '0": write('0"); g(); break;

case '1": write('1"); h(); break; // 0 -> 1 transition
ks

¥

void h() // previous input was 1

{
switch(read())

{

case '0": write('1"); g(); break; // 1 -> 0 transition
case '1": write('0"); h(); break;

ks

b

[Note that this is a case where all calls can be "tail recursive", i.e. could
be implemented as gotos by a smart compiler.]

113

CIT344 INTRODUCTION TO COMPUTER DESIGN

The same task could be accomplished by eliminating the functions and
using a single variable to record the current state, as shown in the
following program. As before, we assume read() returns the next
character in the input stream and write(c) writes character c to the output
stream.

static final char f ='f'; // set of states
static final char g ='g’;

static final char h ="h’;

static final char initial_state = f;

main()

{

char current_state, next_state;

charc;

current_state = initial_state;

while((c =read()) '= EOF)

{

switch(current_state)

{

case f: // initial state

switch(c)

{

case '0": write('0"); next_state = g; break;
case '1": write('0"); next_state = h; break;
}

break;

case g: // last input was 0

switch(c)

{

case '0": write('0"); next_state = g; break;
case '1": write('1"); next_state = h; break; /0 -> 1
}

break;

case h: // last input was 1

switch(c)

{

case '0": write('1"); next_state = g; break; //1->0
case '1": write('0"); next_state = h; break;
}

break;

¥

current_state = next_state,

}
}

114

CIT344 INTRODUCTION TO COMPUTER DESIGN

3.6 Feedback System View of Finite State Machines

The feedback system view abstracts the functionality of a machine into
two functions, the next-state or state-transition function F, and the
output function G.

F: States x Symbols States state-transition function

G: States x Symbols Symbols output function

The meaning of these functions is as follows:

F(q, o) is the state to which the machine goes when currently in state q
and o is read

G(q, o) is the output produced when the machine is currently in state g
and o is read

The relationship of these functions is expressible by the following
diagram.

output function
output

< G [

| ———

next-state function
M

E] input

p A

delay or memory
The current
state

Fig. 7: Feedback Diagram of Finite State Machine Structure

From F and G, we can form two useful functions

F*: States x Symbols* States extended state-transition function

G*: States X Symbols* Symbols extended output function where

Symbols* denotes the set of all sequences of symbols. This is done by
induction:

115

CIT344 INTRODUCTION TO COMPUTER DESIGN

F*(q,4) =q

F*(q, x0) = F(F*(q, x), 5)

G*(q,) =A

G*(q, x0) = G*(q, x) G(F*(q, x), 5)

In the last equation, juxtaposition is like cons’ing on the right. In other
words, F*(g, x) is the state of the machine after all symbols in the
sequence X have been processed, whereas G*(q, x) is the sequence of
outputs produced along the way. In essence, G* can be regarded as the
function computed by a transducer. These definitions could be
transcribed into rex rules by representing the sequence xc as a list [o | X]
with A corresponding to [].

3.7 Tabular Description of Finite State Machines

This description is similar to the one used for Turing machines, except
that the motion is left unspecified, since it is implicitly one direction. In
lieu of the two functions F and G, a finite-state machine could be
specified by a single function combining F and G of the form:

States x Symbols — States x Symbols analogous to the case of a
Turing machine, where we included the motion:

States x Symbols —Symbols x Motions x States
These functions can also be represented succinctly by a table of 4-tuples,
similar to what we used for a Turing machine, and again called a state

transition table:

Statel, Symbol1l, State2, Symbol2
Such a 4-tuple means the following:

If the machine's control is in Statel and reads Symbol1, then machine

will write Symbol2 and the next state of the controller will be State2.
The state-transition table for the edge-detector machine is:

116

CIT344 INTRODUCTION TO COMPUTER DESIGN

Table 1: State Transition Table for the Edge-Detector Machine

current state | iput symbol | nextstate | output symbol
start state f 0 g 0
f l h 0
g 0 g 0
g l h l
h 0 g l
h l h 0

Unlike the case of Turing machines, there is no particular halting
convention. Instead, the machine is always read to proceed from
whatever current state it is in. This does not stop us from assigning our
own particular meaning of a symbol to designate, for example, end-of-
input.

3.8 Classifiers, Acceptors, Transducers, and Sequencers

In some problems we don't care about generating an entire sequence of
output symbols as do the transducers discussed previously. Instead, we
are only interested in categorizing each input sequence into one of a
finite set of possibilities. Often these possibilities can be made to derive
from the current state.

So we attach the result of the computation to the state, rather than
generate a sequence. In this model, we have an output functionc:

Q —— C which gives a category or class for each state. We call this
type of machine a classifier or controller. In the simplest non-trivial
case of classifier, there are two categories. The states are divided up into
the "accepting” states (class 1, say) and the "rejecting"” states (class 0).
The machine in this case is called an acceptor or recogniser.

The sequences it accepts are those given by c(F*(q0, x)) = 1 that is, the
sequences x such that, when started in state O, after reading X, the
machine is in a state g such that c(q) = 1. The set of all such x, since it is
a set of strings, is a language. If A designates a finite-state acceptor,
then L(A) = { x in £* | ¢(F*(q0, x)) = 1} is the language accepted by A.

The structure of a classifier is simpler than that of a transducer, since the
output is only a function of the state and not of both