NATIONAL OPEN UNIVERSITY OF NIGERIA

SCHOOL OF SCIENCE AND TECHNOLOGY

COURSE CODE: CIT381

COURSE TITLE: File Processing and Management

CIT381 COURSE GUIDE

COURSE
GUIDE

CIT381
FILE PROCESSING AND MANAGEMENT

Course Team Ismaila O. Mudasiru (Developer/WriedAU

Mu.
NATIONAL OPEN UNIVERSITY OF NIGERIA

CIT381

National Open University of Nigeria
Headquarters

14/16 Ahmadu Bello Way

Victoria Island

Lagos

Abuja Office

No. 5 Dar es Salaam Street
Off Aminu Kano Crescent
Wuse Il, Abuja

Nigeria

e-mail: centralinfo@nou.edu.ng
URL: www.nou.edu.ng

Published By:
National Open University of Nigeria

First Printed 2011
ISBN: 978-058-525-7

All Rights Reserved

CONTENTS

COURSE GUIDE

PAGE

CIT381 COURSE GUIDE

INtrOAUCTION ...t e e e e e et e e e aee e 1

What You Will Learn in thisS COUISE......cvviiiiiiii e, 1
(O] U TSI A 1 2

Course Objectives .. : 4
Working through thls Course 3
The Course Materials.. . |
StUAY UNIES. ..t e 3

Presentation SChedule..........c.ooiiiiiiii e 4
A S S S SN . ..t e e e e 5
Tutor-Marked AsSSIgNMeNt..........cocvviiiiiiiiiiicci e eeeees. D
Final Examination and Grading.............cocvvviiiiiiie e 6
Course Marking Scheme............cooviiiiiiiiiiiiii i, O
Facilitators/Tutors and TutorialS............ccoveeiieviiiiiicieeeee.. 6
Y1 [] 0= Y 7

CIT381 FILE PROCESG AND MANAGEMENT

Introduction

File Processing and Management is a second senuestese. It is a 2-
credit course that is available to students ofteachelor of Science,
B. Sc., Computer Science, Information Systems dhdd®degrees.

Computers can store information on several diffetgpes of physical
media. Magnetic tape, magnetic disk and opticak dise the most
common media. Each of these media has its own deaistics and
physical organisation.

For convenience use of the computer system, theabtpg system

provides a uniform logical view of information sagre. The operating
system abstracts from the physical properties ©fibrage devices to
define a logical storage unit, the file. The opegtsystem maps files
onto physical media and accesses these files @iattiiage devices.

A file is a collection of related information deéid by its creator.
Commonly, files represent programs (both sourcedjelct forms) and
data. File processing refers to an environment imckv data are
physically organised into files.

The operating system implements the abstract conckm file by
managing mass storage media and the devices whitlotthem. Also,
files are normally organised into directories t@eedheir use. Finally,
when multiple users have access to files, it maydmrable to control
by whom and in what ways files may be accessed. rRinagement is
software processes concerned with the overall nenagt of files.

What You Will Learn in this Course

This course consists of units and a course guitles. dourse guide tells
you briefly what the course is about, what coursdgemal you will be

using and how you can work through these materlalsaddition, it

advocates some general guidelines for the amounefyou are likely

to spend on each unit of the course in order topteta it successfully.

It gives you guidance in respect of your Tutor-MadkAssignments
which will be made available in the assignment. fildhere will be
regular tutorial classes that are related to these It is advisable for
you to attend these tutorial sessions. The couilé@nepare you for the
challenges you will meet in the understanding apglieation of file
processing and management principles.

CIT381 FILE PROCESG AND MANAGEMENT

Course Aims

The aim of the course is not a complex one. CIT&81s to furnish you
with enough knowledge so as to understand the bpsitciples
underlining file processing and management, botimfthe technical
and end-user points of view.

Course Objectives

To achieve the aims set out, the course has & sbjexrtives. Each unit
has specific objectives which are included at tbgitning of the unit.
You may wish to refer to them during your studycteeck on your
progress. You should always look at the unit olyestafter completion
of each unit. By doing so, you would know whetheuyhave followed
the instruction in the unit.

Below are the comprehensive objectives of the @ais a whole. By

meeting these objectives, you should have achigkiedaims of the

course as a whole. In addition to the aims easliated, this course sets
to achieve some objectives. Thus, after going fthnothe course, you

should be able to:

. differentiate between file management and file pssng
concepts

. explain file naming, extensions and attributes

. explain the relationship between computer or ebeotr files and
operating system

. describe file management architecture, operatamd functions

. explain various file organisation and access method

. know the relationship between files and directories

. explain techniques of record blocking

. explain how operating systems manage used spaceniputer
memory

. describe the various techniques in improving system
performance, reliability, and security

. explain various data validation techniques

. discuss and identify many file processing and mamemnt
products

. manage files and directories on a Microsoft Winddased
system

. discuss various file sorting, searching, and meygfgorithms
and applications

. have idea of how programming languages handle angss files

for input and output.

CIT381 FILE PROCESG AND MANAGEMENT

Working through this Course

To complete this course, you are required to reauh estudy unit, read
the textbooks and read other materials which maprogided by the
National Open University of Nigeria.

Each unit contains self-assessment exercises acertain point in the
course you would be required to submit assignmémtsassessment
purposes. At the end of the course there is a #xamination. The
course should take you about a total of 17 weeksotaplete. Below
you will find listed all the components of the ceey what you have to
do and how you should allocate your time to each umorder to

complete the course on time and successfully.

This course entails that you spend a lot time readiwould advise that
you avail yourself the opportunity of comparing ydenowledge with
that of other learners.

Course Materials
The major components of the course are:

Course Guide

Study Units

Presentation Schedule
Tutor-Marked Assignments
References/Further Reading

arwpPE

Study Units

The study units in this course are as follows:

Module 1 File Fundamentals

Unit 1 Basic File Concepts

Unit 2 File Organisation and Access Methods
Unit 3 File Management

Unit 4 File Directories

Unit 5 File and Directory Operations

Module 2 File Storage Management

Unit 1 File Allocation

Unit 2 Record Blocking

Unit 3 Free Space Management

Unit 4 File System Performance and Reliability
Unit 5 File System Security and Integrity

CIT381 FILE PROCESG AND MANAGEMENT

Module 3 File Processing and Applications

Unit 1 Data Validation

Unit 2 File Managers

Unit 3 Managing Files in Windows

Unit 4 File Sorting, Searching, and Merging
Unit 5 File Handling in High Level Languages

The first module teaches some basic concepts ditesiand directories,
like file naming, essence of file extensions, htttes, how files are
organised on disks, how to access files. The variaocess rights
granted to a user and standard operations thatbeaperformed on
electronic files and directories are also discussed

Module Two discusses how files are allocated in pater memory. It

teaches that file allocation method will determtihe kind of access, and
that a file may be scattered all over the storagk dut the operating
systems know how to logically harmonize the pietegether. The

methods used to manage unused spaces in storagésardiscussed.
The techniques used by file system designers inrawipg system

performance, reliability, security and integrityeaxtensively discussed
in this module.

The last module tries to look at file processing amnagement from a
subtle angle. It discusses few of the ways endsusateract with

computer file system, from data validation througging commercial

software to manage files, operations like sortsggarching, and merging
of files and finally to using high level computetrogramming codes to
manipulate electronic files.

Each unit consists of one or two weeks' work andlude an
introduction, objectives, reading materials, ex&¥s] conclusion,
summary, tutor-marked assignments (TMAs), refereneed other
resources. The units direct you to work on exescisdated to the
required reading. In general, these exercisesymston the materials
you have just covered or require you to apply itsome way and
thereby assist you to evaluate your progress andeitforce your
comprehension of the material. Together with TM&®wse exercises
will help you in achieving the stated learning abiges of the individual
units and of the course as a whole.

Presentation Schedule
Your course materials have important dates forghdy and timely

completion and submission of your TMAs and attegdimorials. You
should remember that you are required to submiy@lir assignments

CIT381 FILE PROCESG AND MANAGEMENT

by the stipulated time and date. You should gugtsrest falling behind
in your work.

Assessment

There are three aspects to the assessment of uhgecéirst is made up
of self-assessment exercises. Second, consistsheoftutor-marked
assignments and third is the written examinatioth/esf course
examination.

You are advised to do the exercises. In tacklimgassignments, you are
expected to apply information, knowledge and teghes you have
gathered during the course. The assignments mustitiaitted to your
facilitator for formal assessment in accordancé e deadline stated
in the presentation schedule and the assessmentThle work you
submit to your tutor for assessment will count 82% of your total
course mark. At the end of the course, you willcheesit for a final or
end of course examination of about three hour @urat This
examination will count for 70% of your total counsark.

Tutor-Marked Assignment (TMAS)

The TMA is a continuous assessment component of gourse. It

accounts for 30% of the total score. You will beegi four TMAS to

answer. Three of these must be answered beforangallowed to sit
for end of course examination. The TMAs would beegi to you by

your facilitator and should be returned after yoavén done the
assignment. Assignment questions for the units his tourse are
contained in the assignment file. You will be albdecomplete your
assignments from the information and material doeth in your

reading, references and study units. However,degrable in all degree
level of education to demonstrate that you havel r&ad researched
more into your references, which will give a widéew point and may
provide you with a deeper understanding of theestibj

Make sure that each assignment reaches your &eilibn or before the
deadline given in the presentation schedule anigrasent file. If for
any reason you cannot complete your work on tinentact your
facilitator before the assignment is due to disabhsspossibility of an
extension. Extension will not be granted after thee date unless in
exceptional circumstances.

CIT381 FILE PROCESG AND MANAGEMENT

Final Examination and Grading

The end of course examination for File Processind Blanagement
(CIT381) will be for three (3) hours and it has @ue of 70% of the
total course score. The examination will consistjoéstions, which will
reflect the type of self-testing, practice exercised tutor-marked
assignment problems you have previously encountéiereas of the
course will be assessed.

Use the time between finishing the last unit antding for the
examination to revise the whole course. You might fit useful to
review your self-test, TMAs and comments on thenfolge the
examination. The end of course examination covémsmation from all
parts of the course.

Course Marking Scheme

Assignment Marks

Assignment 1 - 4 For assignment, best three mérkseofour
counts at 10% each, i.e., 30% of Course
Marks.

End of Course 70% Of the overall Course Marks

Examination

Total 100% of Course Material

Facilitators/Tutors and Tutorials

There are 16 hours of tutorials provided in suppdrthis course. You
will be notified of the dates, time, and locatidntleese tutorials as well
as the name and phone number of your facilitaters@n as you are
allocated to a tutorial group.

Your facilitator will mark and comment on your ggsnents, keep a
close watch on your progress and any difficultiesi ynight face and
provide assistance to you during the course. Yeueapected to mail
your Tutor-Marked Assignments to your facilitataftwre the schedule
date (at least two working days are required). Thdlybe marked by
your tutor and returned to you as soon as possible.

Do not delay to contact your facilitator by telepkoor e-mail if you
need assistance.

The following might be circumstances in which yowul find
assistance necessary, hence you would have toctgotar facilitator if:

CIT381 FILE PROCESG AND MANAGEMENT

. You do not understand any part of the study oigagsl readings

. You have difficulty with self-tests

. You have question or problem with an assignmentitin the
grading of an assignment.

You should endeavour to attend the tutorials. Thike only chance to
have face to face contact with your course fatditaand to ask
guestions which may be answered instantly. Yourege any problem
encountered in the course of your study.

To have more benefits from course tutorials, yauadvised to prepare
a list of questions before attending them. You Wekrn a lot from
participating actively in discussions.

Summary

File processing and management is a course thatdstto intimate the
learner with basic facts on file systems both ftechnical and end-user
point of view. Upon completing this course, youlwié equipped with
the knowledge of file fundamentals, how operatiggtems process and
manage files, and also the techniques users caim nsanipulating files
through many commercially available file managemsattware. In
addition, you will be able to answer the followitypes of questions:

. What is the meaning of file management?

. How does operating system distinguish one file feorother?

. Explain different operations supported by file mge@ment
systems.

. What is the relationship between file organisaaowl file access
method?

. Explain directory structure and its examples.

. What is the difference between absolute pathnanderalative
pathname?

. Outline and discuss briefly the various accesstsighat can be
granted to a file user.

. List some of the strategies that can be used ie Bpace
fragmentation

. Compare and contrast different file allocation noetih

. Compare and contrast the different techniques aickohg
records

. Why is managing space so important?

. List different techniques that can be used in imprg system
performance

. What are the measures available in improving system
performance?

CIT381

FILE PROCESG AND MANAGEMENT

State some of the design principles for securingomputing
environment

What do you understand by system and program g#eat
What do you understand by “Safe Computing”?

What is the difference between data validity ant @&curacy?
What are the useful tips that can assist in effiiciaformation
storage and retrieval?

Why merge algorithm is not as popular as sort aedrch
algorithm?

Explain how memory problem can be averted duringirsp
operation

Of course, the list of questions that you can anssvaeot limited to the
above list. To gain the most from this course, gbould endeavour to
apply the principles you have learnt to your untderding of file
processing and management in computing.

| wish you success in the course and | hope yadiifivery interesting.

Course Code CIT381
Course Title File Processing and Management

Course Team Ismaila O. Mudasiru (Developer/WriedAU

NATIONAL OPEN UNIVERSITY OF NIGERIA

CIT381

National Open University of Nigeria
Headquarters

14/16 Ahmadu Bello Way

Victoria Island

Lagos

Abuja Office

No. 5 Dar es Salaam Street
Off Aminu Kano Crescent
Wuse Il, Abuja

Nigeria

e-mail: centralinfo@nou.edu.ng
URL: www.nou.edu.ng

Published By:
National Open University of Nigeria

First Printed 2011
ISBN: 978-058-525-7

All Rights Reserved

FILE PROCESG AND MANAGEMENT

CIT381

CONTENTS

Module 1 File Fundamentalscocooiiiiii i,
Unit 1 Basic File Concepts... e e
Unit 2 File Organisation and Access Methods
Unit 3 File Management...
Unit 4 File DIreCtories.ovvvviveiiii i e,

Unit 5 File and Directory Operations.....................
Module 2 File Storage Management
Unit 1 File Allocation.............ccooiiiiiiiiiiiiien,
Unit 2 Record BIOCKING.......coovv i
Unit 3 Free Space Management............c.cceevveenen.
Unit 4 File System Performance and Reliability............
Unit 5 File System Security and Integrity...............
Module 3 File Processing and Applications................
Unit 1 Data Validation..............ccoocie e iiiiii i
Unit 2 File Managers...

Unit 3 ManagmgFﬁb5|nVWndom5 e
Unit 4 File Sorting, Searching, and Merglng
Unit 5 File Handling in High Level Languages..............

FILE PROCESG AND MANAGEMENT

PAGE

88

... 107
116

127

CIT381 FILE PROCESG AND MANAGEMENT

MODULE 1 FILE FUNDAMENTALS

Unit 1 Basic File Concepts

Unit 2 File Organisation and Access Methods
Unit 3 File Management

Unit 4 File Directories

Unit 5 File and Directory Operations

UNIT 1 BASIC FILE CONCEPTS
CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content
3.1 Elements of a File
3.1.1 Logical Components of File
3.1.2 Field
3.1.3 Record
3.1.4 File
3.2 File Naming
3.2.1 Naming Convention
3.2.2 File Name Extension
3.3 File Attributes
3.3.1 File Name
3.3.2 File Type
3.3.3 Location
3.3.4 Size
3.3.5 Protection
3.3.6 Usage Count
3.3.7 Time, Date and Process Identification
3.4 Attribute Values
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION

In most applications, the file is the central elem@efore data can be
processed by a Computer-Based Information SystdBhiS)C it must be
systematically organised. The most common methdd erange data
into fields, records, files and databases. Fileskmaconsidered to be the
framework around which data processing revolve® plwrpose of this

CIT381 FILE PROCESG AND MANAGEMENT

unit is to look at the general concepts before gan to discuss the
different methods of organising and accessing them.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

. define a file

. describe the structure of file system

. list the techniques of naming files and the impaetaof various
extensions

. discuss various attributes of a file.

3.0 MAIN CONTENT
3.1 Elements of a File

A file consists of a number of records. Each reasragnade up of a
number of fields and each field consists of a nunalbeharacters.

3.1.1 Logical Components of File

The logical components deal with the real-world ecbs the data
represent. These are field, record and file. Howewe today’s an
information system, files most often exist as pavfsdatabase, or
organised collections of interrelated data.

3.1.2 Field

A field is the basic element of data. An individual fielwhtains a single
value, such as an employee’s last name, a datbgoralue of a sensor
reading. It is characterised by its length and dgpe (e.g., ASCII,

string, decimal). Depending on the file design|dsemay be fixed

length or variable length. In the latter case, fietd often consists of
two or three subfields: the actual value to beestpthe name of the
field, and, in some cases, the length of the fidhd.other cases of
variable-length fields, the length of the fieldimglicated by the use of
special demarcation symbols between fields.

3.1.3 Record

A record is a collection of related fields that can be t&€eahs a unit by
some application program. For example, an emplageerd would

contain such fields as name, identification numjmdr,designation, date
of employment, and so on. Again, depending on desgrords may be
of fixed length or variable length. A record wik lof variable length if

CIT381 FILE PROCESG AND MANAGEMENT

some of its fields are of variable length or if thember of fields may
vary. In the latter case, each field is usuallyomepanied by a field
name. In either case, the entire record usuallydss a length field.

3.1.4 File

A file is a collection of related records. The file isatezl as a single
entity by users and applications and may be reteeioy name. Files
have names and may be created and deleted. Acmeisslaestrictions
usually apply at the file level. That is, in a sfdhrsystem, users and
programs are granted or denied access to entes. fih some more
sophisticated systems, such controls are enfortéaearecord or even
the field level.

3.2 File Naming

Files are abstraction mechanisms. They provide & Wa store

information and read it back later. This must b@ealin a way as to
shield the user from the details of how and whéee information is

stored, and how the disks actually work. When &gse creates a file, it
gives the file a name. When the process termingtesiile continue to

exist, and can be accessed by other processesiissiragme.

The exact rules for file naming vary somewhat freystem to system,
but all operating systems allow strings of oneitiheletters as legal file
names. The file name is chosen by the person ogedti usually to
reflect its contents. There are few constraintghenformat of the file
name: It can comprise the letters A-Z, numbers @rdl special
characters $# &+ @ ! ()-{}' _ ~ as well szace. The only symbols
that cannot be used to identify a file are * | <=2 /[]"';, plus
control characters. The main caveat on chosereanéime is that there
are different rules for different operating systethsit can present
problems when files are moved from computer to laotFor example,
Microsoft Windows is case insensitive, so fileseliMYEBOOKS,
myebooks, MyEbooks are all the same to Microsoftnddivs.
However, under the UNIX operating system, all threeild be different
files as, in this instance, file names are cassises

3.2.1 Naming Convention

Usually a file would have two parts with “.” septng them. The part
on the left side of the period character is calleimain name while the

part on the right side is called tle&tension A good example of a file
name is “course.doc.” The main namecairse while the extension is
doc. File extension differentiates between differeypess of files. We
can have files with same names but different extessand therefore

CIT381 FILE PROCESG AND MANAGEMENT

we generally refer to a file with its name alonghwits extension and
that forms a complete file name.

3.2.2 File Name Extension

A filename extension is a suffito the_nameof a computer fileapplied

to indicate the encoding convention or file fornwdtits contents. In
some operating systems (for example UNIKis optional, while in
some others (such as DPiIBis a requirementSome operating systems
limit the length of the extension (such as D@Bd OS/2 to three
characters) while others (such_as UNB6 not. Some operating systems
(for example RISC OSdo not use file extensions.

The following tables, which are extracted from Misoff® Encarta
(2007), show examples of some common filename siias:

Table 1: Filename extension of Textual Files
TEXT
FILE TYPE CONTENT APPLICATION
.html Hypertext Mark-Up Internet browser such
Language, the code ohs Internet Exploret,
simple Web pages.Crazy Browser
Usually plain texts filg Mozilla Firefox and
with embedded Opera.
formatting instructions
pdf Portable DocumentAdobe Acrobat

Format, a document
presentation format,
downloads as binary.
rtf Rich Text Format, aAny word processing
document format thatapplication
can be shared between

different word
processors.
Axt A plain and simple textAny word processing
file application
.doc Word processing filesMicrosoft Word
.dot created with popular(.doc), the related .dot
.abw packages. extension for
dwp Microsoft Word

Template, Abiword
(.abw), and Lotus
WordPro (.lwp)

CIT381 FILE PROCESG AND MANAGEMENT

Table 2: Filename extension of Image Files
IMAGES
FILE TYPE |CONTENT APPLICATION
.gif General InterchangeLview and many
Format, though not theothers
most economical, the
most common graphigs
format not found on the
Internet.
Jpg Joint Picture ExpertsLview and many
Jpeg Group, a 24 bit graphicothers
format
.mpg Moving Picture Experts Sparle, Windows
.mpeg Group, a standargMedia Player, Quick
internet movie platform| Time, and many
others
.mov Quick time Movie,| Sparle, Windows
apple Macintosh, nativeMedia Player, Quick
movie platform Time, and many
others
Table 3: Filename extension of Sound Files
SOUND
FILE TYPE CONTENT APPLICATION
.mp3 Audio Files on both Windows Media
PC and Mac Player
wav Audio Files on PC Real Player
ra Real Audio, a
proprietary system for
delivering and playing
streaming audio on the
Web
aiff Audio Files on Mac.
Table 4: Filename extension of Utility type programme
UTILITIES
FILE TYPE |CONTENT APPLICATION
.ppt A presentation file (for Microsoft Powerpoint
slide shows)
XIs Spreadsheet files Microsoft Excel, Lotus
123 123
.mdb A database file Microsoft Access

CIT381 FILE PROCESG AND MANAGEMENT

Table 5: Filename extension of other types of files
OTHERS
FILE TYPE |CONTENT APPLICATION
Al Dynamic Link| This is a compiled

Library. This is & system file-one that
compiled set of should not be moved or
procedures and/qraltered
drivers called by
another program.

.exe A DOS/ Windows Downloads and
program or a DOS/launches it in its own
windows Self| temporary directory
Extracting Archive

.Zip Various popular WinZip, Ziplt, PKzip,

Sit compression formatsand others

tar for the PC,

Macintosh, and

UNIX respectively

SELF-ASSESSMENT EXERCISE 1

1. What is a file?

2. What are the terms commonly used in discussingtsirel of a
file?

3. How can you distinguish one file from another?

3.3 File Attributes

The particular information kept for each file variédrom operating
system to operating system. No matter what operatystem one might
be using, files always have certain attributesharacteristics. Different
file attributes are discussed as follow.

3.3.1 File Name

The symbolic file name is the only information kept human-read
form. As it is obvious, a file name helps userdglifferentiate between
various files.

3.3.2 File Type

A file type is required for the systems that suppmbfferent types of
files. As discussed earlier, file type is a partlod complete file name.
We might have two different files; say “cit381.doahd “cit381.txt".
Therefore the file type is an important attributéhiehh helps in

CIT381 FILE PROCESG AND MANAGEMENT

differentiating between files based on their typEsge types indicate
which application should be used to open a pasrdiike.

3.3.3 Location

This is a pointer to the device and location on tlevice of the file. As
it is clear from the attribute name, it specifidsane the file is stored.

3.3.4 Size

Size attribute keeps track of the current size bleain bytes, words or
blocks. The size of a file is measured in bytefloppy disk holds about
1.44 Mb; a Zip disk holds 100 Mb or 250 Mb; a CDdsoabout 800
Mb; a DVD holds about 4.7 Gb.

3.3.5 Protection

Protection attribute of a file keeps track of thecess-control
information that controls who can do reading, wgti executing, and so
on.

3.3.6 Usage Count

This value indicates the number of processes tratcarrently using
(have opened) a particular file.

3.3.7 Time, Date and Process ldentification

This information may be kept for creation, last mhgdtion, and last
use. Data provided by this attribute is often hdlbr protection and
usage monitoring. Each process has its own ideatiin number which
contains information about file hierarchy.

3.4 Attribute Values

In addition, all operating systems associate oitmf@rmation with each
file. The list of attributes varies considerablprr system to system.
The table below shows some of the possibilitied, dibher ones also
exist. No existing system has all of these, buhdacpresent in some
system.

CIT381 FILE PROCESG AND MANAGEMENT

Table 6: Fields and various attribute values

FIELD MEANING

Protection Who can access the file and in what way?

Password Password needed to access the file

Creator Identity of the person who created the file

Owner Current owner

Read-only flag 0 for read/write, 1 for read only

Hidden flag 0 for normal, 1 for do not display isting

System flag 0 for normal file, 1 for system file

Archive flag 0 has been backed up, 1 for needsetp b
backed up

ASCll/binary file 0 for ASCII file, 1 for binary fe
Random access file 0 for sequential access onflgr landom

access
Temporary flag 0 for normal, 1 for delete on pracesit
Lock flags 0 for unlocked, nonzero for locked
Record length Number of bytes in a record

Key position Offset of the key within each record
Key length Number of bytes in the key field
Creation time Date and time file was created

Time of last access| Date and time file was lastssed
Time of last change Date and time file was lashgled
Current size Number of bytes in the file
Maximum size Maximum size file may grow

Source: Modern Operating Systems,"2ed. by Andrew S.
Tanenbaum (2006).

The first four attributes relate to the file’s pgotion and tell who may
access it and who may not. All kinds of schemepassible; in some
systems the user must present a password to axdssin which case
the password must be one of the attributes.

The flags are bits or short fields that controlemrable some specific
property. Hidden files, for example, do not appeadisting of the files.
The archive flag is a bit that keeps track of wketthe file has been
backed up. The backup program clears it, and tieeatipg system sets
it whenever a file is changed. In this way, theKkogcprogram can tell
which files need backing up. The temporary flagpwat a file to be
marked for automatic deletion when the process tbraated it
terminates.

CIT381 FILE PROCESG AND MANAGEMENT

The record length, key position, and key lengtldere only present in
files whose records can be looked up using a kéeyTprovide the
information required to find the keys.

The various times keep track of when the file wasated, most recently
accessed and most recently modified. These arelusefa variety of

purposes. For example, a source file that has besdfified after the

creation of the corresponding object file needbdaecompiled. These
fields provide the necessary information.

The current size tells how big the file is at prdas&Some mainframe
operating systems require the maximum size to leeispd when the
file is created, to let the operating system resdéine maximum amount
of storage in advance. Minicomputers and persooaiptiter systems
are clever enough to do without this item.

SELF-ASSESSMENT EXERCISE 2

1. What do you understand by file attributes?
2. List out some attributes a file could possess.

4.0 CONCLUSION

This unit has shed light on the importance of fiescomputing. The
relevance of the use of files cannot be over enmpéasand the study on
files is a worthwhile one.

5.0 SUMMARY

In this unit, you have learnt that:

. File is the basic unit of storage that enables mprger to
distinguish one set of information from another.
. In naming a file, a file would have two parts wigh period

character separating them. The part on the le# sfdhe period
character is called thmain namewhile the part on the right side
is called theextension

. File extension shows the type of file and the ajaion that the
Operating System will use in opening it.

. Files have attributes which vary considerably fregstem to
system. No existing operating system has all ode¢hbut each is
present in some systems.

. A file might or might not be stored in human-redéaform, but
it is invariably the “glue” that binds a conglomeoa of
instructions, numbers, words, or images into a &iteunit that a

CIT381 FILE PROCESG AND MANAGEMENT

user can retrieve, delete, save, sometimes changend to an
output device.

6.0 TUTOR-MARKED ASSIGNMENT

1. Explain how Operating System differentiates dile from
another.

2. What types of file extensions will the followiegntain:

a. A movie in a Video CD

b. A word processed file

C. A file in a Musical CD

d. A Scanned image

e. A picture taken with a digital camera.

w

Discuss how to name a file and give examplewvadid and
invalid filenames.

7.0 REFERENCES/FURTHER READING

Davis, W. S. & Rajkumar, T. M. (2001)Operating System:A
Systematic Views5th Edition). New Jersey: Addison-Wesley.

Deitel, H. M. (2004). Operating System@rd Edition). New Jersey:
Prentice Hall.

Microsoft® Encarta (2007) http://en.www.wikipedia.com.

Stallings, Williams. (2004). Operating Systemmternal and Design
Principles,(5th Edition). New Jersey: Prentice Hall.

Tanenbaum, A. S. (2006Modern Operating Systen{3rd Edition).
New Jersey: Prentice Hall.

Williams, B. K. (1999).Using Information Technology: A Practical

Information to Computers and Communicatiof@d Edition).
Boston: McGraw Hill.

10

CIT381 FILE PROCESG AND MANAGEMENT

UNIT 2 FILE ORGANISATION AND ACCESS
METHODS

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content
3.1 File Organisation and Access Methods
3.1.1 File Organisation Criteria
3.2 File Organisation Methods
3.2.1 The Pile/Serial
3.2.2 The Sequential File
3.2.3 The Indexed Sequential File
3.2.4 The Indexed File
3.2.5 The Direct or Hashed File
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION

Data files are organised so as to facilitate act®esscords and to ensure
their efficient storage. A trade-off between thdse requirements
generally exists: if rapid access is required, mst&rage must be
expended to make it possible (for example, by glog indexes to the
data records). Access to a record for readingnd @metimes updating
it) is the essential operation on data. On secgndtorage devices
where files are kept, these are two types of acsesgiential and direct.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

. define file organisation

. list various file organisation methods available

. explain different file organisation methods

. state the differences between one file organisatiethod from
another

. list the merits and demerits of each file organsastyle.

11

CIT381 FILE PROCESG AND MANAGEMENT

3.0 MAIN CONTENT

3.1 File Organisation and Access Methods

In this unit, we use the terfile organisationto refer to the structure of
a file (especially a data file) defined in termgtefcomponents and how
they are mapped onto backing store. Any given blganisation
supports one or more file access methods. Orgamset thus closely
related to but conceptually distinct from accessho@s. Access method
Is any algorithm used for the storage and retriefaécords from a data
file by determining the structural characterisinéghe file on which it is
used.

3.1.1 File Organisation Criteria

In choosing a file organisation, several criter@ ianportant:

. Short access time

. Ease of update

. Economy of storage
. Simple maintenance

. Reliability.

The relative priority of these criteria will depead the applications that
will use the file. For example, if a file is onlg be processed in batch
mode, with all of the records accessed every tiitmen) rapid access for
retrieval of a single record is of minimal concefnfile stored on CD-
ROM will never be updated, and so ease of updatetisin issue. These
criteria may conflict. For example, for economystdrage, there should
be minimum redundancy in the data. On the othed hadundancy is a
primary means of increasing the speed of accedatto An example of
this is the use of indexes.

3.2 File Organisation Methods

The number of alternative file organisations thetdbeen implemented
or just proposed is unmanageably large. In thisflsurvey, we will
outline five fundamental organisations. Most stunes used in actual
systems either fall into one of these categoriesaaorbe implemented or
a combination of these organisations. The five wigions, the first
four of which are depicted in Figure 01, are:

12

CIT381
. The pile/serial

. The sequential file

. The indexed sequential file
. The indexed file

. The direct,

or hashed, file

FILE PROCESG AND MANAGEMENT

Table 7 Summarises relative performance aspects of tligse
organisations.

Variable-

length records

Variable set of fields
Chronelogical order

A

Index /\
levels
5 ilndcx\
J \

(a) Pile file

Fixed-length records
Fixed set of fields in fixed order
Sequential order based on key field

(b} Sequential file

Exhaustive Exhaustive Partial
index index index

Main file

Owverflow

file

4 /\
P

Fa—]

(¢} Indexed sequential file

Primary file
{variable-length records)

(d} Indexed file

Fig 3: Common File Organisation Gource: Operating
Systems by Stalling).

Source: Operating Systems; Internal and Design Prinatpléh ed.
by William Stallings (2004).

13

CIT381 FILE PROCESG AND MANAGEMENT

Table 7: Grade of Performances for Five Basic File Orgarosat
Space Update
Attributes Record Size Retrieval
File Single
Method | Variable Fixed Equal Greater | record Subset Exhaustive
Pile A B A E E D B
Sequential F A D F F D /
Indexed F B B D B D B
sequential
Indexed B C i £ !
Hashed F B B F B F E
A= Excellent, well suited to this purpose = O(r}
B = Good = 0{o %)
C = Adequate = O(r log i)
D = Requires some extra effort = 0in)
E = Possible with extreme effort = O(r %X n}
F = Nol reasonable for this purpose = 0(n™Y

where
r=size of the result
o = number of records that overflow

= number of records in file

Source: Operating Systems; Internal and Design Principlg” ed.
by William Stallings (2004).

SELF-ASSESSMENT EXERCISE 1

1. What is file organisation?

2. What is the relationship between file organisatamd access
method?

3. What are the important issues to consider wherctetea file
organisation?

3.2.1 The Pile/Serial

The least-complicated form of file organisation mibg termed the
pile/serial Data are collected in the order in which theyvatr Each
record consists of one burst of data. The purpdsthe pile/serial is
simply to accumulate the mass of data and sawReitords may have
different fields, or similar fields in different d@ers. Thus, each field
should be self-describing, including a field narseagll as a value. The
length of each field must be implicitly indicated delimiters, explicitly
included as a subfield, or known as default fot field type. Because
there is no structure to the pile/serial file, iecaccess is by exhaustive
search. That is, if we wish to find a record thantains a particular field

14

CIT381 FILE PROCESG AND MANAGEMENT

with a particular value, it is necessary to exangaeh record in the pile
until the desired record is found or the entire filas been searched. If
we wish to find all records that contain a parieuield or contain that
field with a particular value, then the entire fifeist be searched.

Pile/serial files are encountered when data areaeld and stored prior
to processing or when data are not easy to orgamtse type of file

uses space well when the stored data vary in sizk séructure; is
perfectly adequate for exhaustive searches, andasy to update.
However, beyond these limited uses, this type lef iE unsuitable for
most applications.

3.2.2 The Sequential File

The most common form of file structure is the sexiaéfile. In this file
organisation, a fixed format is used for recordB.récords are of the
same length, consisting of the same number of {figadth fields in a
particular order. Because the length and positibreach field are
known, only the values of fields need to be stotbd; field name and
length for each field are attributes of the fileusture. One particular
field, usually the first field in each record, eferred to as thkey field.
The key field uniquely identifies the record; ttkey values for different
records are always different. Further, the recaads stored in key
sequence: alphabetical order for a text key, andemical order for a
numerical key.

Sequential files are typically used in batch agtians and are generally
optimum for such applications if they involve theogessing of all the

records (e.g., a billing or payroll application)ellsequential file

organisation is the only one that is easily stavadape as well as disk.
For interactive applications that involve queriesd/ar updates of

individual records, the sequential file providesopaerformance.

Access requires the sequential search of thedileafkey match. If the

entire file, or a large portion of the file, can beought into main

memory at one time, more efficient search techrague possible.

Nevertheless, considerable processing and delayeaceuntered to
access a record in a large sequential file. Addtido the file also

present problems. Typically, a sequential file tered in simple

sequential ordering of the records within blockkafis, the physical
organisation of the file on tape or disk directhatoches the logical
organisation of the file. In this case, the usuakpdure is to place new
records in a separate pile file, called a log fie transaction file.

Periodically, a batch update is performed that mertpe log file with

the master file to produce a new file in corregt Kequence.

15

CIT381 FILE PROCESG AND MANAGEMENT

An alternative is to organize the sequential fileygically as a linked
list. One or more records are stored in each phisilock. Each block
on disk contains a pointer to the next block. Theertion of new
records involves pointer manipulation but doesneguire that the new
records occupy a particular physical block positibhus, some added
convenience is obtained at the cost of additionadcgssing and
overhead.

3.2.3 The Indexed Sequential File

A popular approach to overcoming the disadvantajgeke sequential
file is the indexed sequential file. The indexedusmtial file maintains
the key characteristic of the sequential file: relsoare organised in
sequence based on a key field. Two features amrdadd

. anindex to the file to support random access, and
. anoverflow file.

The index provides a lookup capability to quick®ach the vicinity of a
desired record. The overflow file is similar to tlog file used with a
sequential file but is integrated so that a redarthe overflow file is
located by following a pointer from its predecessmord.

In the simplest indexed sequential structure, glsitevel of indexing is
used. The index in this case is a simple sequefiigalEach record in
the index file consists of two fields: a key fieldhich is the same as the
key field in the main file, and a pointer into th&ain file. To find a
specific record, the index is searched to findhiggest key value that is
equal to or precedes the desired key value. Thelseantinues in the
main file at the location indicated by the pointer.

To see the effectiveness of this approach, considequential file with
1 million records. To search for a particular keyjue will require on
average one-half million record accesses. Now ssppbat an index
containing 1000 entries is constructed, with thgskie the index more
or less evenly distributed over the main file. Nibwill take on average
500 accesses to the index file followed by 500 s®ee to the main file
to find the record. The average search lengthdsaed from 500,000 to
1000.

Additions to the file are handled in the followinganner: Each record in
the main file contains an additional field not kisi to the application,
which is a pointer to the overflow file. When a neecord is to be
inserted into the file, it is added to the overflGie. The record in the
main file that immediately precedes the new recgorbbgical sequence
is updated to contain a pointer to the new recorthe overflow file. If

16

CIT381 FILE PROCESG AND MANAGEMENT

the immediately preceding record is itself in therdlow file, then the
pointer in that record is updated. As with the setjial file, the indexed
sequential file is occasionally merged with the riiegv file in batch
mode.

The indexed sequential file greatly reduces the tieguired to access a
single record, without sacrificing the sequentiatune of the file. To
process the entire file sequentially, the recortighe main file are
processed in sequence until a pointer to the awerfile is found, then
accessing continues in the overflow file until allnpointer is
encountered, at which time accessing of the méndiresumed where
it left off.

To provide even greater efficiency in access, Ipldtievels of indexing
can be used. Thus the lowest level of index filzeated as a sequential
file and a higher-level index file is created fbat file. Consider again a
file with 1 million records. A lower-level index #i 10,000 entries is
constructed. A higher-level index into the lowewdke index of 100
entries can then be constructed. The search bagittse higher-level
index (average length = 50 accesses) to find ary guuint into the
lower-level index. This index is then searched fage length = 50) to
find an entry point into the main file, which isetn searched (average
length = 50). Thus the average length of searchbkas reduced from
500,000 to 1000 to 150.

3.2.4 The Indexed File

The indexed sequential file retains one limitatairthe sequential file:
effective processing is limited to that which ised on a single field of
the file. For example, when it is necessary todeé&or a record on the
basis of some other attributes than the key figddh forms of sequential
file are inadequate. In some applications, theilfiety of efficiently
searching by various attributes is desirable.

To achieve this flexibility, a structure is needbddt employs multiple

indexes, one for each type of field that may bestiigect of a search. In
the general indexed file, the concept of sequetytiahd a single key are
abandoned. Records are accessed only throughirtdexes. The result
is that there is now no restriction on the placeinoémecords as long as
a pointer in at least one index refers to that neécd-urthermore,

variable-length records can be employed.

Two types of indexes are used. An exhaustive irae#rains one entry
for every record in the main file. The index itsédf organized as a
sequential file for ease of searching. A partialelx contains entries to
records where the field of interest exists. Withiatsle-length records,

17

CIT381 FILE PROCESG AND MANAGEMENT

some records will not contain all fields. When avrmecord is added to
the main file, all of the index files must be upzthtIindexed files are
used mostly in applications where timeliness obinfation is critical
and where data are rarely processed exhaustivegmples are airline
reservation systems and inventory control systems.

3.2.5 The Direct or Hashed File

The direct or hashed file exploits the capabildyrid on disks to access
directly any block of a known address. As with sagial and indexed

sequential files, a key field is required in eaebard. However, there is
no concept of sequential ordering here. The difdetmakes use of

hashing on the key value. Direct files are ofteadus/here very rapid

access is required, where fixed length records used, and where
records are always accessed one at a time. Exarapdedirectories,

pricing tables, schedules, and name lists.

SELF-ASSESSMENT EXERCISE 2

1. List the different file organisation methods.
2. In what situation will a particular file access imad be useful?
3. Outline the shortfalls of each of the file orgatiisa.

4.0 CONCLUSION

Although there are two principal types of accesxqjugntial and direct,
many more ways to organise data files exist nameiles/serial,
sequential, indexed sequential, indexed and direct.

5.0 SUMMARY

In this unit, you have learnt that:

. File organisation refers to the logical structurofghe records as
determined by the way in which they are accessed.
. Short access time, ease of update, economy ofgstosample

maintenance and reliability are important critériachoosing a
file organisation

. Major types of file organisation methods are psequential file,
indexed sequential file, indexed file, direct/hakhie.

. File organisation determines the applicable accesthods.
Access methods are principally sequential and direc

. Each file organisation method has its peculiar athges and

disadvantages.

18

CIT381 FILE PROCESG AND MANAGEMENT

6.0 TUTOR-MARKED ASSIGNMENT

1. Make a diagrammatic representation of the dsffetypes of file
organisation methods.

2. What is the importance of index and overflove fih indexed
sequential file?

3. Evaluate the performance of each file orgarosatnethod.

7.0 REFERENCES/FURTHER READING

Davis, W. S. & Rajkumar, T.M. (2001)Operating Systems: A
Systematic Vie\ibth Edition). New Jersey: Addison-Wesley.

Deitel, H. M. (2004).Operating Systemg3rd Edition). New Jersey:
Prentice Hall.

Microsoft® Encarta (2007http://en.www.wikipedia.com

Stallings, Williams (2004). Operatin§ystems; Internal and Design
Principles,(5th Edition). New Jersey: Prentice Hall.

Tanenbaum, A. S. (2006Modern Operating Systen{3rd Edition).
New Jersey: Prentice Hall.

Williams, B. K. (1999).Using Information Technology: A Practical
Information to Computersand Communications(3rd Edition).
Boston: McGraw Hill.

ftp2.bentley.com/dist/collateral/userstory/Bamb&f®8.pdf

www.encyclopedia.com/doc/1011-fileorganisation.html

19

CIT381 FILE PROCESG AND MANAGEMENT

UNIT 3 FILE MANAGEMENT
CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content
3.1 File Management System
3.2 Objectives of File Management System
3.3 File Management Functions
3.4 File System Architecture
3.4.1 Device Drivers
3.4.2 Basic File System
3.4.3 Basic I/O Supervisor
3.4.4 Logical /O
3.5 Elements of File Management
3.6 Operations Supported By File Management System
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION

The operating system implements the abstract conckm file by
managing mass storage media and the devices wbithotthem. Also
files are normally organized into directories tsedheir use. Finally,
when multiple users have access to files, it maydmrable to control
by whom and in what ways files may be accessed. lRdnagement is
software processes concern with the overall manageaof files.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

. define file management

. list the various objectives of file management

. explain the various functions a file managementtesyscan
perform

. describe file system architecture

. explain the operations that must be supportedleyrfanagement
system.

20

CIT381 FILE PROCESG AND MANAGEMENT

3.0 MAIN CONTENT

3.1 File Management System

The file management system, FMS the subsystem of an operating
system that manages the data storage organisatisacmndary storage,
and provides services to processes related todhe@ss. In this sense, it
interfaces the application programs with the lowelemedia-I/O (e.g.
disk 1/0) subsystem, freeing on the application ggaonmers from
having to deal with low-level intricacies and allogg them to
implement I/O using convenient data-organisati@fetractions such as
files and records. On the other hand, the FMS seswoften are the only
ways through which applications can access the statad in the files,
thus achieving an encapsulation of the data themselhich can be
usefully exploited for the purposes of data prategtmaintenance and
control.

Typically, the only way that a user or applicatioray access files is
through the file management system. This relievee tiser or
programmer of the necessity of developing speaiabqse software for
each application and provides the system with @istant, well-defined
means of controlling its most important asset.

3.2 Objectives of File Management System

We can summarise the objectives of a File ManagerSgstem as
follows:

. Data Management An FMS should provide data management
services to applications through convenient abStnas,
simplifying and making device-independent of themomon
operations involved in data access and modification

. Generality with respect to storage devicesThe FMS data
abstractions and access methods should remain ngetha
irrespective of the devices involved in data sterag

. Validity. An FMS should guarantee that at any given monfent t
stored data reflect the operations performed omtlregardless
of the time delays involved in actually performingose
operations. Appropriate access synchronization am@sh
should be used to enforce validity when multipleesses from
independent processes are possible.

. Protection. lllegal or potentially dangerous operations on the
data should be controlled by the FMS, by enforcagvell
defined data protection policy.

. Concurrency. In multiprogramming systems, concurrent access
to the data should be allowed with minimal diffezes with

21

CIT381 FILE PROCESG AND MANAGEMENT

respect to single-process access, save for acgessranization
enforcement.

. Performance The above functionalities should be offered
achieving at the same a good compromise in ternasiaf access
speed and data transferring rate.

3.3 File Management Functions

With respect to meeting user requirements, the néxtaf such
requirements depends on the variety of applicatemmsthe environment
in which the computer system will be used. Forraeractive, general-
purpose system, the under listed constitutes a nmainiset of
requirements:

. Each user should be able to create, delete, ra@d, and modify
files.

. Each user may have controlled access to other’ digess

. Each user may control what types of accesses lawgeal to the
user’s files.

. Each user should be able to restructure the ufkrssin a form
appropriate to the problem.

. Each user should be able to move data between files

. Each user should be able to back up and recoversires files in
case of damage.

. Each user should be able to access his or herbiylemme rather

than by numeric identifier.
3.4 File System Architecture
One way of getting a feel for the scope of file mg@ment is to look at
a depiction of a typical software organisationsaggested in Figure 2.

Of course, different systems will be organised aféghtly, but this
organisation is reasonably representative.

22

CIT381 FILE PROCESG AND MANAGEMENT

User program

-

w

File Sequential \‘E:i::ﬁf:{l Indexed Hashed
Logical 1L/Cy
Basic LA supervisor
Basic file syvstem
Disk device driver Tape device driver
Fig 2: File System Software Architecture
Source: Operating Systems; Internal and Design Princ:r;,pléh ed.

by William Stallings (2004).
3.4.1 Device Drivers

At the lowest level, device drivers communicate directly with
peripheral devices or their controllers or chann@lsdevice driver is
responsible for starting 1/0O operations on a dewnd processing the
completion of an I/O request. For file operatioti®e typical devices
controlled are disk and tape drives. Device driven® usually
considered to be part of the operating system.

3.4.2 Basic File System

The next level is referred to as thasic file system or thephysical /0
level. This is the primary interface with the elmviment outside of the
computer system. It deals with blocks of data Hrat exchanged with
disk or tape systems. Thus, it is concerned withpglacement of those
blocks on the secondary storage device and on ufferimg of those
blocks in main memory. It does not understand th@ents of the data
or the structure of the files involved. The basie system is often
considered part of the operating system.

3.4.3 Basic I/O Supervisor

The basic 1/0 supervisoris responsible for all file 1/0O initiation and
termination. At this level, control structures araintained that deal
with device 1/0, scheduling, and file status. Thasib I/O supervisor
selects the device on which file I/O is to be perfed, based on the
particular file selected. It is also concerned wsttheduling disk and
tape accesses to optimize performance. 1/0O bufieesassigned and

23

CIT381 FILE PROCESG AND MANAGEMENT

secondary memory is allocated at this level. TredoHO supervisor is
part of the operating system.

3.4.4 Logical I/O

Logical 1/0 enables users and applications to access recotuss, T
whereas the basic file system deals with blockdaté, the logical I/O
module deals with file records. Logical I/O prowsda general-purpose
record I/O capability and maintains basic data albities. The level of
the file system closest to the user is often terthedccess methodit
provides a standard interface between applicatmusthe file systems
and devices that hold the data. Different accesbads reflect different
file structures and different ways of accessing pratessing the data.
Some of the most common access methods are shokigure 01, and
they have been described in the previous unit.

SELF-ASSESSMENT EXERCISE 1

1. What is a file management system?

2. Give examples of devices controlled by device asve
3. What are the different functions performed by filnagement
systems?

3.5 Elements of File Management

Another way of viewing the functions of a file sgst is shown in

Figure 03. Let us follow this diagram from left tgght. Users and
application programs interact with the file systdmy means of

commands for creating and deleting files and fafgeeing operations

on files. Before performing any operation, the 8lestem must identify
and locate the selected file. This requires the ofsesome sort of

directory that serves to describe the location Ibffiees, plus their

attributes. In addition, most shared systems eafaser access control:
Only authorised users are allowed to access phatifiles in particular

ways.

24

CIT381 FILE PROCESG AND MANAGEMENT

Physical blocks Physical blocks

Records in main memory in secondary
SCords s]

buffers storage (disk)
File =
2 structure I:I
Directory Access —_—
anagenms methoed X
e S e I:I Blocking scheduling
User & program \ |:| J l
commands Operation, File Tiy Free storage
file name manipulation I:I managemant
functions
File
I:I allocation
User access
control
File management concerns
Operating systern concerns
Fig 3: Elements of File Management $ource: Operating
System by Stalling)
Source: Operating Systems; Internal and Design Princ:r;,pléh ed.

by William Stallings (2004).

The basic operations that a user or application psatform on a file are
performed at the record level. The user or appboaviews the file as
having some structure that organises the recoras) as a sequential
structure (e.g., personnel records are stored bgtitally by last name).
Thus, to translate user commands into specific fil@nipulation
commands, the access method appropriate to teistiiicture must be
employed. Whereas users and applications are aoedtavith records or
fields, 1/0O is done on a block basis. Thus, therds or fields of a file
must be organised as a sequence of blocks for patpdi unblocked
after input. To support block I/O of files, sevefahctions are needed.
The secondary storage must be managed. This irvvallMecating files
to free blocks on secondary storage and manage®ydtorage so as to
know what blocks are available for new files andvgh in existing
files. In addition, individual block 1/O requestaust be scheduled. Both
disk scheduling and file allocation are concerneith woptimising
performance. As might be expected, these functioeiefore need to be
considered together. Furthermore, the optimisatmidhdepend on the
structure of the files and the access patternsoriagly, developing an
optimum file management system from the point okwi of
performance is an exceedingly complicated task.

25

CIT381 FILE PROCESG AND MANAGEMENT

Figure 3 suggests a division between what mightctsesidered the
concerns of the file management system as a sepsysttem utility and
the concerns of the operating system, with thetpafimtersection being
record processing. This division is arbitrary; eas approaches are
taken in various systems

3.6 Operations Supported by File Management System

Users and applications wish to make use of filggpidal operations that
must be supported include the following:

. Retrieve _All

Retrieve all the records of a file. This will bequgred for an application
that must process all of the information in thee fdt one time. For
example, an application that produces a summatieinformation in
the file would need to retrieve all records. Thigemtion is often

equated with the terrsequential processindecause all of the records
are accessed in sequence.

. Retrieve _One

This requires the retrieval of just a single recoidteractive,
transaction-oriented applications need this opemati

. Retrieve _Next
This requires the retrieval of the record that next” in some logical
sequence to the most recently retrieved record. eSomeractive

applications, such as filling in forms, may requstech an operation. A
program that is performing a search may also useofteration.

. Retrieve _Previous

Similar to Retrieve_Next, but in this case the rddbat is “previous” to
the currently accessed record is retrieved.

. Insert _One

Insert a new record into the file. It may be neaggshat the new record
fit into a particular position to preserve a seduieq of the file.

. Delete_One

Delete an existing record. Certain linkages or otaa structures may
need to be updated to preserve the sequencing dieh

26

CIT381 FILE PROCESG AND MANAGEMENT

. Update_One

Retrieve a record, update one or more of its fieltsd rewrite the
updated record back into the file. Again, it mayneeessary to preserve
sequencing with this operation. If the length ¢ tecord has changed,
the update operation is generally more difficularthif the length is
preserved.

. Retrieve Few

Retrieve a number of records. For example, an egimin or user may
wish to retrieve all records that satisfy a cersenof criteria.

The nature of the operations that are most commuoetiormed on a file
will influence the way the file is organized, asalissed under file
organisation, which in the next unit. It should m@ed that not all file
systems exhibit the sort of structure discussethis subsection. On
UNIX and UNIX-like systems, the basic file struaus just astreamof
bytes. For example, a C program is stored as abtitedoes not have
physical fields, records, and so on.

SELF-ASSESSMENT EXERCISE 2

1. List different operations supported by a file magragnt system.
2. What are the objectives of a file management sygtem

4.0 CONCLUSION

A file management system is that set of systemnswé that provides
services to users and applications in the useled. frypically, the only
way that a user or application may access fileshrsugh the file
management system. This relieves the user or progea of the
necessity of developing special-purpose softwareesch application
and provides the system with a consistent, welir@ef means of
controlling its most important asset.

50 SUMMARY
In this unit, you have learnt that:

. File management system is the subsystem of an topesystem
that manages the data storage organisation on g&gostorage,
and provides services to processes related tadiess.

. FMS objectives include data management, protectibriiles
against dangerous operations, control over, etc.

27

CIT381 FILE PROCESG AND MANAGEMENT

. Different operations are supported by FMS whichlude
retrieve_one, retrieve_all, and so on.
. To a user, FMS serves as an interface to file icreaand

deletion, file ownership and access control, ldgidantification

of data and technical failure preventi@s a result of data
redundancy.

6.0 TUTOR-MARKED ASSIGNMENT
1. Draw a diagram to represent the file systemnsoft architecture.
2. List and explain different operations that avpmrted by file

management system.
3. Discuss in detail the objectives of file managenssstem.

7.0 REFERENCES/FURTHER READING

Davis, W. S. & Rajkumar, T.M. (2001)Operating Systems: A
Systematic Viewibth edition). New Jersey: Addison-Wesley.

Deitel, H. M. (2004).Operating Systemg3rd edition). New Jersey:
Prentice Hall.

Microsoft® Encarta (2007http://en.www.wikipedia.com

Stallings, Williams (2004)Operating Systems; Internal and Design
Principles, 6th edition). New Jersey: Prentice Hall.

Tanenbaum, A. S. (2008Ylodern Operating Syster(8rd edition). New
Jersey: Prentice Hall.

Williams, B. K. (1999).Using Information Technology: A Practical
Information to Computers and Communicatio(3rd edition).
Boston: McGraw Hill.

rpu.dumgal.gov.uk/xpedio/help/esearch/searchingmc.h

www.ecolore.leeds.ac.uk/xml/materials/file managetxenl

www.webopedia.com/TERM/F/file management system.htm

28

CIT381 FILE PROCESG AND MANAGEMENT

UNIT 4 FILE DIRECTORIES
CONTENTS

1.0 Introduction
1.0 Objectives
3.0 Main Content
3.1 Concept of File Directory
3.3 Contents of File Directory
3.2.1 File Directory Structure
3.2.2 Single-Level Directory
3.2.3 Two-Level Directory
3.2.4 Tree-Level Structural Directories
3.2.5 Acyclic-Graph Directories
3.3 Path Names
3.3.1 Absolute Path Name
3.3.2 Relative Path Name
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION

Associated with any file management system ancdecindin of files is a
file directory. The directory contains informatioabout the files,
including attributes, location, and ownership. Mwighhis information,
especially those that concern storage, is managedhé operating
system. The directory is itself a file, accessilidg various file
management routines. Although some of the inforomaith directories is
available to users and applications, this is gdlyepaovided indirectly
by system routines.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

. state and explain the meaning and importance eflffectory

. illustrate the different directory structure possib

. demonstrate how a file can be referenced throudferent
pathways.

29

CIT381 FILE PROCESG AND MANAGEMENT

3.0 MAIN CONTENT

3.1 Concept of File Directory

To keep track of files, the file system normallyoyides directories,

which, in many systems are themselves files. Thacwstre of the

directories and the relationship among them arentaen areas where
file systems tend to differ, and it is also theaatbat has the most
significant effect on the user interface providgdhe file system.

3.2 Contents of File Directory

Table 8 on next page suggests the information &yistored in the
directory for each file in the system. From therisspoint of view, the
directory provides a mapping between file nameswknto users and
applications, and the files themselves. Thus, ééekentry includes the
name of the file. Virtually all systems deal witliferent types of files
and different file organisations, and this informoatis also provided.
An important category of information about eacle fitoncerns its
storage, including its location and size. In shasgdtems, it is also
important to provide information that is used taicol access to the file.
Typically, one user is the owner of the file andyngaant certain access
privileges to other users. Finally, usage inforomais needed to manage
the current use of the file and to record the Inystd its usage.

30

Starting Address

Size Used
Size Allocated

Owner
Access Information

Permitted Actions

Date Created

Identity of Creator

Dhate Last Read Access
Identity of Last Reader
Date Last Modified
Identity of Last Modifier
Diate of Last Backup
Current Usage

CIT381 FILE PROCHSG AND MANAGEMENT
Table 8: Information Elements of a File Directory
Basic Information
File Name MName as chosen by creator (user or program). Must be unigue within a specific
directory.
File Type For example: text. binary. load module, efc.
File Organization For systems that support different organizations
Address Information
Yolume Indicates device on which file is stored

Starting physical address on secondary storage (e.g., cylinder. track, and block
number on disk)

Current size of the file in bytes, words, or blocks
The maximum size of the file

Access Control Information

User who is assigned control of this file. The owner may be able to grant/deny
access to other users and to change these privileges.

A simple version of this element would include the user's name and password
for each authorized user.

Controls reading, writing, executing, transmitting over a network

Usage Information
When file was first placed in directory
Usually but not necessarily the current owner
Date of the last time a record was read
User who did the reading
Date of the last update. insertion, or deletion
User who did the modifying
Date of the last time the file was backed up on another storage medium

Information about current activity on the file. such as process or processes that
have the file open, whether it is locked by a process, and whether the file has
been updated in main memory but not vet on disk

Source:

Operating Systems; Internal and Design Princ:i;pléh ed.

by William Stallings (2004).

3.2.1 File Directory Structure

The number of directories varies from one operasiygfem to another.
In this section, we describe the most common schdoredefining the
logical structure of a directory. These are:

. Single-Level Directory
. Two-Level Directory
. Tree-Structured Directory

. Acyclic Graph Directory

31

CIT381 FILE PROCESG AND MANAGEMENT

3.2.2 Single-Level Directory

In a single-level directory system, all the filese aplaced in one
directory. This is very common on single-user opegasystems. A

single-level directory has significant limitatiomghen the number of
files increases or when there is more than one Gsece all files are in
the same directory, they must have unique namekelté are two users
who call their data file “cit381note.doc”, then thaique-name rule is
violated. Even with a single user, as the numbefile$ increases, it
becomes difficult to remember the names of all fites in order to

create only files with uniqgue names.

The Figure 5 below shows the structure of a sitgle} directory
system.

arectory [cat | bo | a [test | cata | mai | cont [nex [recors|
|._.{ _l.__l_;_ _l_ L _l_ 2 LB _l_,_ _l_ L_.I. _'__l__'_ _l__’
Fig 5: Single Level Directory

Source: Operating System Concepts with JavV&.e@. by Abraham
Silberschatz and Others. (2004)

3.2.3 Two-Level Directory

In the two-level directory system, the system n@img a master block
that has one entry for each user. This master blomktains the
addresses of the directory of the users. Therestlieproblems with
two-level directory structure. This structure effeely isolates one user
from another. This design eliminates name conflatsong users and
this is an advantage because users are comple@dpendent, but a
disadvantage when the users want to cooperatera sk and access
files of other users. Some systems simply do rotvalocal files to be
accessed by other users. It is also unsatisfadtwrysers with many
files because it is quite common for users to wangroup their files
together in a logical way.

32

CIT381 FILE PROCESG AND MANAGEMENT

Figure 6 below shows the double-level directory.

MAaSsIer . S——

filex usar | user 2 user 3 user <

user file | 3] EE g = S
R ey caf bo test a AA1A
| l

Fig 6: Two-Level Directory

Source: Operating System Concepts with JavV&.e@. by Abraham
Silberschatz and Others. (2004).

3.2.4 Tree-Level Structural Directories

In the tree-structured directory, the directoryntiselves are considered
as files. This leads to the possibility of havingbslirectories that can
contain files and sub-subdirectories. An intergspolicy decision in a
tree-structured directory structure is how to hantlle deletion of a
directory. If a directory is empty, its entry ii$ itontaining directory can
simply be deleted. However, suppose the directorige deleted is not
empty, but contains several files or sub-direc®tleen it becomes a bit
problematic. Some systems will not delete a dimgctmless it is empty.
Thus, to delete a directory, someone must firsttdedll the files in that
directory. If there are any subdirectories, thisggdure must be applied
recursively to them so that they can be deleted Tbes approach may
result in a substantial amount of work. An altewe@approach is just to
assume that when a request is made to delete etatyeall of that
directory’s files and sub-directories are also &deleted. This is the
most common directory structure.

33

CIT381 FILE PROCESG AND MANAGEMENT

A typical tree-structured directory system is showfigure 7.

| I sl Lirs progranis
| EY i HLrE T
= = l \\\\“
..... - == 114 ST A (TR TR AT o) ; -
'! shat b =TT | fe I firgd | feze TRT 1 hex |re?ﬂrdr_-".r | o 1] | it
e 128 E it ES il LFLET i ‘F"_ S l_ L 1 24y l 4 5 : \‘
- ! 4
| \ . v oA \ -
¥ IIIHI - A7 = ;/ 'Ill,|
1 /‘f \
R RTINS,
I [I I |
| prog I ooy | arf | £ | recitier b=i |) =5 EoLiny
| - = | ST TN _| 1 | — = i
~— -
\\\ \\\..\ ““N\. L] l_ l |l
i K | y
- y SN SRS e i
| a

Wl | by
1

PRe TRt

o

Fig. 7: Tree-Structure System

Source: Operating System Concepts with JavV&.e@l. by Abraham
Silberschatz and Others. (2004)

3.2.5 Acyclic-Graph Directories

The acyclic directory structure is an extensiontlué tree-structured
directory structure. In the tree-structured diregtdiles and directories
starting from some fixed directory are owned by paeticular user. In
the acyclic structure, this prohibition is takert and thus a directory or
file under directory can be owned by several users.

34

CIT381 FILE PROCESG AND MANAGEMENT

The figure 8 shows an acyclic-graph directory gtrcee

root CICE =
[1

pelf
|
o
o = \\x

-
L . sl . _ i ety S W

ligt af .| w | Bt count | words ligt
| | | | I |

- L_ ¢ Epredile s A i EHHHH‘ / B2 |7 _,L

Fig 8: Acyclic Graph Directory

Source: Operating System Concepts with JavV&.e@l. by Abraham
Silberschatz and others. (2004)

SELF-ASSESSMENT EXERCISE 1

1. Explain briefly what you understand by directomusture.
2. Outline the different directory structure.

3.3 Path Names

When a file system is organised as a directory, seme way is needed
for specifying the filenames. The use of a treaettired directory
minimizes the difficulty in assigning unique namésy file in the
system can be located by following a path from tbet or master
directory down various branches until the file éached. The series of
directory names, culminating in the file name itselonstitutes a
pathnamefor the file. Two different methods commonly used:a

. Absolute Path name
. Relative Path name

35

CIT381 FILE PROCESG AND MANAGEMENT

3.3.1 Absolute Path Name

With this path name, each file is given a path ®insf the path from
the root directory to the file. As an example, fihe in the lower left-
hand corner of Figure 09 has the pathname User_RIMWoit_ A/ABC.
The slash is used to delimit names in the sequertve.name of the
master directory is implicit, because all pathstsiathat directory. Note
that it is perfectly acceptable to have severasfivith the same file
name, as long as they have unique pathnames, waiefuivalent to
saying that the same file name may be used inrdiftedirectories. In
this example, there is another file in the systeih the file name ABC,
but that has the pathname /User_B/Draw/ABC.

Master directory
Swstem
Llser A
Lser_ B
User O

L]
L]
-

Drrectory I Dhirectory
"lger T Diirectory "User_B" "User_ A"
-

-

Drraw . —
— Word
-
-

Diirectory "Word" - Diirectory "Diraw"

Unit_A — ABC
- -
- -
- -

Drirectory "Unic_ A"

e File
- “ABRC"
File = Pathname: User_B/Draw /ABC
TABC"
Pathname: Mser B/ Word/UTnit_ASABC
Fig 9: Another Representation of a Tree-StructureDirectory
Source: Operating Systems; Internal and Design Principlg” ed.

by William Stallings (2004).

Note that absolute file names always start at ttod directory and are
unique. In UNIX the file components of the path aeparated by /. In
MS-DOS the separator is \. In MULTICS it is >. Nocatter which

36

CIT381 FILE PROCESG AND MANAGEMENT

character is used, if the first character of théh peame is the separator,
then the path is absolute.

3.3.2 Relative Path Name

Although the pathname facilitates the selectiorilef names, it would
be awkward for a user to have to spell out theremathname every
time a reference is made to a file. Typically, atetiactive user or a
process has associated with it a current directitgn referred to as the
working directory or current directory. Files are then referenced
relative to the working directory. For examplethe working directory
for user B is “Word,” then the pathname Unit_A/ABE sufficient to
identify the file in the lower left-hand corner &fgure 09. When an
interactive user logs on, or when a process is@deshe default for the
working directory is the user home directory. Dgregxecution, the user
can navigate up or down in the tree to change diffarent working
directory.

SELF-ASSESSMENT EXERCISE 2

1. What is a path name?
2. What is the difference between relative and absglath names?

4.0 CONCLUSION
Directories are used to keep track of files andetlage different types of
directory structure in use by different operatiygtems. Each directory

structure has its own peculiar way through whichfila can be
referenced.

5.0 SUMMARY

In this unit, you have learnt that:

. That directories are to keep track of files

. The directory contains information about the filescluding
attributes, location, and ownership

. The most common directory structures in use arglesilevel,
two-level, tree-structured, and acyclic graph doges

. A file can be referenced through absolute or netgpiath name.

37

CIT381 FILE PROCESG AND MANAGEMENT

.0 TUTOR-MARKED ASSIGNMENT
Construct directory diagrams for the following:

6

1

a. Single-Level Directory

b. Two-Level Directory

C Tree-Structured Directory
d Acyclic Graph Directory

2

How is it possible to have same file name in a ueectory
structure? What is the condition for such?

3. Differentiate between absolute and relative patimesm with
appropriate examples.
4. Use the diagram below to answer the following goeast
NOUN
— FILE-1
— FILE-2
STUDENTS— P&6— TEST.TXT
. EXAM.DOC
. DEPT.RTF
—— STAFF—— ASUU—— SALARY.XLS

—— |ID.MDB
- NASU— ARREARS.REC

a. Write out the absolute pathname for EXAM.DOC, TERAT,
SALARY.XLS, and ARREARS.REC

b. Write out the relative pathname for DEPT.RTF andMDB
using STUDENTS and STAFF as the working directory
respectively.

7.0 REFERENCES/FURTHER READING

Davis, W. S. & Rajkumar, T.M. (2001)Operating Systems: A
Systematic Viewbth edition). New Jersey: Addison-Wesley.

Deitel, H. M. (2004).Operating Systemg3rd edition). New Jersey:
Prentice Hall.

Stallings, Williams (2004)Operating Systems; Internal and Design
Principles,(5th edition). New Jersey: Prentice Hall.

Tanenbaum, A. S. (2006Ylodern Operating Syster(8rd edition). New
Jersey: Prentice Hall.

Williams, Brian K. (1999)Using Information Technology: A Practical
Information to Computers and Communicatio(3;d edition).
Boston: McGraw Hill.

38

CIT381 FILE PROCESG AND MANAGEMENT

UNIT 5 FILE AND DIRECTORY OPERATIONS
CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content
3.1 Operations on Files and Directories

3.1.1 Repositioning a File

3.2 Directory Operations
3.3 File Sharing

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

A file is an abstract data type. To define a fil®gerly we need to
consider the operations that can be performedles. fin this unit, we
discuss the most common system calls relatinglés &ind directories.
File sharing is also discussed with regards to sscceghts and
simultaneous access to file.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

. list the different types of operations that canpleeformed on a
file

. describe operations on directories

. distinguish between the two sets of operations

. identify and explain the different types of acceghts a user of a

file may be granted.
3.0 MAIN CONTENT
3.1 Operations on Files and Directories
The operating system provides systems calls totesrearite, read,
reposition, truncate and delete files. The follogvgub-units discuss the

specific duties a file system must do for eachhef following basic file
operations.

39

CIT381 FILE PROCESG AND MANAGEMENT

File Operations
The following are various operations that can falleee on file:
a. Creating a File

When creating a file, a space in the file systenstrbe found for the file
and then an entry for the new file must be mad&éendirectory. The
directory entry records the name of the file anel ldcation in the file
system.

b. Opening a File

Before using a file, a process must open it. Theogae of the OPEN

call is to allow the system to fetch the attribuges list of secondary

storage disk addresses into main memory for raqudss on subsequent
calls.

C. Closing a File

When all the accesses are finished, the attribanessecondary storage
addresses are no longer needed, so the file stheutdosed to free up
internal table space. Many systems encourage thisniposing a
maximum number of open files on processes.

d. Writing a File

To write a file, a system call is made specifyirmghothe name of the file
and the information to be written to the file. Qivéhe name of the file,
the system searches the directory to find the iocadf the file. The
directory entry will need to store a pointer to therent block of the file
(usually the beginning of the file). Using this piar, the address of the
next block can be computed where the informatiolh lva written. The
write pointer must be updated ensuring successiesvthat can be
used to write a sequence of blocks to the filas lalso important to
make sure that the file is not overwritten in caan append operation,
i.e. when we are adding a block of data at thea#rah already existing
file.

e. Reading a File

To read a file, a system call is made that spectie name of the file
and where (in memory) the next block of the fil@wd be put. Again,

the directory is searched for the associated dirgcentry, and the

directory will need a pointer to the next blocka® read. Once the block
Is read, the pointer is updated.

40

CIT381 FILE PROCESG AND MANAGEMENT

3.1.1 Repositioning a File

When repositioning a file, the directory is seartier the appropriate
entry, and the current file position is set to &egi value. This file
operation is also callefile seek

a. Truncating a File

The user may erase some contents of a file but ike@gtributes. Rather
than forcing the user to delete the file and themreate it, this operation
allows all the attributes to remain unchanged, pitiee file size.

b. Deleting a File

To delete a file, the directory is searched for tlzened file. Having
found the associated directory entry, the spaceatiéd to the file is
released (so it can be reused by other files) avaidates the directory
entry.

C. Renaming a File

It frequently happens that user needs to changedhe of an existing
file. This system call makes that possible. It =t @lways strictly
necessary, because the file can always be copiachtw file with the
new name, and the old file then deleted.

d. Appending a File

This call is a restricted form of WRITE call. Itrcanly add data to the
end of the file. System that provide a minima detystem calls do not
generally have APPEND, but many systems providetipielways of
doing the same thing, and these systems sometiavesAPPEND.

The ten operations described comprise only themahset of required
file operations. Others may include copying, andceing a file. Also
of use are facilities to lock sections of an opeile ffor
multiprogramming access, to share sections, and &venap sections
into memory or virtual-memory systems. This lastdiion allows a part
of the virtual address to be logically associatath wsection of a file.
Reads and writes to that memory region are theatddeas reads and
writes to the file.

SELF-ASSESSMENT EXERCISE 1

1. Write briefly on the five types of operation thaincbe performed
on a file.
2. What is the difference between appending and wriitile?

41

CIT381 FILE PROCESG AND MANAGEMENT

3.2 Directory Operations

When considering a particular directory structuwe, need to keep in
mind the operations that are to be performed oneztory.

a. Create a File
New files need to be created and added to thetdimec
b. Delete a File

When a file is no longer needed, we want to remavéom the
directory. Only an empty directory can be deleted.

C. Open a File

Directories can be read. For example, to list ibdisfin a directory, a
listing program opens the directory to read outrthmes of all the files
it contains. Before a directory can be read, it in@sopened.

d. Close a File

When a directory has been read, it should be clesdcee up internal
table space.

e. Read a File

This call returns the next entry in an open dirgcté-ormerly, it was
possible to read directories using the usual REA&esn call, but that
approach has the disadvantage of forcing the pnogeer to know and
deal with the internal structure of directories. dontrast, READDIR
always returns one entry in a standard format, aten which of the
possible directory structure is being used.

f. Rename a File

Because the name of a file represents its contents uses, the name
must be changeable when the contents or use offilthechanges.
Renaming a file may also allow its position withthe directory
structure to be changed.

g. Search for a File

We need to be able to search a directory stru¢tufd the entry for a
particular file.

42

CIT381 FILE PROCESG AND MANAGEMENT

h. List a Directory

We need to list the files in a directory and thateats of the directory
entry for each file in the list.

Note that the above list gives the most importgrgrations, but there
are a few others as well, for example, for manadimg protection
information associated with a directory.

3.3 File Sharing

In a multiuser system, there is almost always airement for allowing
files to be shared among a number of users. Tweesssirise: access
rights and the management of simultaneous access.

Access Right

The file system should provide a flexible tool &lowing extensive file
sharing among users. The file system should proddeumber of
options so that the way in which a particular fdeaccessed can be
controlled. Typically, users or groups of usersguanted certain access
rights to a file. A wide range of access rights iareise. The following
list is representative of access rights that caadségned to a particular
user for a particular file:

. None: The user may not even know of the existence offiteg
not to talk of accessing it. To enforce this resion, the user
would not be allowed to read the user directory tmatains this
file.

. Knowledge: The user can determine that the file exists and who
its owner is. The user is then able to petition dvener for
additional access rights.

. Execution: The user can load and execute a program but cannot
copy it. Proprietary programs are often made addeswith this
restriction.

. Reading: The user can read the file for any purpose, inogdi

copying and execution. Some systems are able toranfa
distinction between viewing and copying. In thenfier case, the
contents of the file can be displayed to the uset the user has
no means for making a copy.

. Appending: The user can add data to the file, often only at th
end, but cannot modify or delete any of the filetstents. This
right is useful in collecting data from a numbeisotirces.

. Updating: The user can modify, delete, and add to the fdats.
This normally includes writing the file initiallyrewriting it

43

CIT381 FILE PROCESG AND MANAGEMENT

completely or in part, and removing all or a partiof the data.
Some systems distinguish among different degreapadting.

. Changing protection: The user can change the access rights
granted to other users. Typically, this right iddhenly by the
owner of the file. In some systems, the owner ceeral this
right to others. To prevent abuse of this mechanigma file
owner will typically be able to specify which rightcan be
changed by the holder of this right.

. Deletion: The user can delete the file from the file system.

These rights can be considered to constitute aiaigy, with each right
implying those that precede it. Thus, if a paréculiser is granted the
updating right for a particular file, then that use also granted the
following rights: knowledge, execution, readingdappending.

One user is designated as owner of a given fileallisthe person who
initially created the file. The owner has all oktlccess rights listed
previously and may grant rights to others. Accems lbe provided to
different classes of users:

. Specific user:Individual users who are designated by user ID.

. User groups: A set of users who are not individually defined.
The system must have some way of keeping track hef t
membership of user groups.

. All: All users who have access to this system. Thes@urkc
files.

Simultaneous Access

When access is granted to append or update a fiteote than one user,
the operating system or file management system emistce discipline.

A brute-force approach is to allow a user to Idok entire file when it is

to be updated. A finer grain of control is to loridividual records

during update.

SELF-ASSESSMENT EXERCISE 2

1. How can access to files in networked environmentdygrolled?
2. What are the different groups of people accesseagranted to?

4.0 CONCLUSION

User programs communicate with the operating sysssmh request
services from it by making system calls. Correspagdo each call is a
library procedure that user program can call. Semwh user wants to
perform an operation on a file or directory, appiaie system call is
invoked. Some rights are put in place by file mamgnt system with
regards to access to files in a networked envirarhme

44

CIT381 FILE PROCESG AND MANAGEMENT

5.0 SUMMARY

In this unit, you have learnt that:

. Different operations can be performed on files dineictories

. Examples of operations on files include creatingading,
closing, writing, opening, repositioning, renamiagd others

. Creating, deleting, opening, closing and readireggsome of the
operations that can be performed on directories

. File system provides a number of options with rdgdo right to
accessing a file so as to control the way in wilaigharticular file
is accessed

. More than one user can be granted access to laufileith some

level of discipline.
6.0 TUTOR-MARKED ASSIGNMENT

1. Discuss exhaustively different types of operatithreg a user can
perform on directories.

2. Differentiate between the following with regarde files
operations

Truncating and deleting
Writing and appending
Reading and repositioning
Creating and opening.

w 20Ty

Outline and discuss briefly the various accesstsighat can be
granted to a file user.
7.0 REFERENCES/FURTHER READING

Davis, W. S. & Rajkumar, T. M. (2001)Operating Systems: A
Systematic Viewbth edition). New Jersey: Addison-Wesley.

Deitel, H. M. (2004).Operating Systemg3rd edition). New Jersey:
Prentice Hall.

Stallings, Williams (2004)Operating Systems; Internal and Design
Principles,(5th edition). New Jersey: Prentice Hall.

Tanenbaum, A. S. (2008Ylodern Operating Syster(8rd edition). New
Jersey: Prentice Hall.

Williams, B. K. (1999).Using Information Technology: A Practical
Information to Computers and Communicatio(3;d edition).
Boston: McGraw Hill.

45

CIT381 FILE PROCHSG AND MANAGEMENT
MODULE 2 FILE STORAGE MANAGEMENT
Unit 1 File Allocation
Unit 2 Record Blocking
Unit 3 Free Space Management
Unit 4 File System Performance and Reliability
Unit 5 File System Security and Integrity
UNIT 1 FILE ALLOCATION
CONTENTS
1.0 Introduction
2.0 Objectives
3.0 Main Content

4.0
5.0
6.0
7.0

1.0

The main purpose of a computer system is to exqmatgrams. Those

3.1 File Allocation
3.1.1 Preallocation versus Dynamic Allocation
3.2 Portion Size
3.3 File Allocation Methods
3.3.1 Contiguous Allocation
3.3.2 Linked/Chained Allocation
3.3.3 Indexed Allocation
Conclusion
Summary

Tutor-Marked Assignment
References/Further Reading

INTRODUCTION

programs together with the data they access must to@in memory (at
least partially) during execution. Since main meyn@ usually too
small to accommodate all the data and programs qenily, the
computer system must provide secondary storageatk lup main
memory. Most modern computer systems use disk egiimary on-
line storage medium for information (both prograamsl data).

We explore ways to allocate disk space.

46

CIT381 FILE PROCESG AND MANAGEMENT

2.0 OBJECTIVES

At the end of this unit, you should be able to:

. explain the issues involved in file allocation

. differentiates between the different types of fiédlocation
methods

. list the advantages and disadvantages of eachHeohlibcation
methods

. clearly distinguish difference between dynamic edkion and

preallocation methods.
3.0 MAIN CONTENT
3.1 File Allocation

In allocating disk space, several issues are irlv

. When a new file is created, is the maximum spaqgeired for
the file allocated at once?
. Is space allocated to a file as one or more coatigwnits? We

shall refer to these units as portions. That iqogion is a
contiguous set of allocated blocks. The size ofoaign can
range from a single block to the entire file. Whate of portion
should be used for file allocation?

. What sort of data structure or table is used tqkeack of the
portions assigned to a file? An example of suclractire is a
file allocation table (FAT), found on DOS and some other
systems.

Let us examine these issues in turn.
3.1.1 Preallocation versus Dynamic Allocation

A pre-allocation policy requires that the maximumesof a file be

declared at the time of the file creation requésta number of cases,
such as program compilations, the production ofreany data files, or
the transfer of a file from another system over ammunications

network, this value can be reliably estimated. Hesve for many

applications, it is difficult if not impossible testimate reliably the
maximum potential size of a file. In those casersi and application
programmers would tend to overestimate file sizasaoot to run out of
space. This clearly is wasteful from the point aéw of secondary
storage allocation. Thus, the dynamic allocatiomcWiallocates space to
a file in portions as needed.

a7

CIT381 FILE PROCESG AND MANAGEMENT

3.2 Portion Size

The second issue listed is that of the size ofpiition allocated to a
file. At one extreme, a portion large enough todhttie entire file is
allocated. At the other extreme, space on the idigilocated one block
at a time. In choosing a portion size, there israddoff between
efficiency from the point of view of a single fikeersus overall system
efficiency.

Below is a list of four items to be consideredhe tradeoff:
. Contiguity of space increases performance, espgcitr

Retrieve_Next operations, and greatly for transastirunning in
a transaction-oriented operating system.

. Having a large number of small portions increases dize of
tables needed to manage the allocation information.

. Having fixed-size portions (for example, blocksinplifies the
reallocation of space.

. Having variable-size or small fixed-size portiongnimizes

waste of unused storage due to over-allocation.

Of course, these listed items interact and mustdmsidered together.
The result is that there are two major alternativesriable, large
contiguous portions and blocks.

a. Variable, Large Contiguous Portions

This will provide better performance. The variakiee avoids waste,
and the file allocation tables are small. Howesgpgce is hard to reuse.

b. Blocks

Small fixed portions provide greater flexibilityh&y may require large
tables or complex structures for their allocati@untiguity has been
abandoned as a primary goal; blocks are allocaertaded.

Both options are compatible with pre-allocation alydamic allocation.
In the case of variable, large contiguous porti@n8le is pre-allocated
one contiguous group of blocks. This eliminates tieed for a file
allocation table; all that is required is a poirtiethe first block and the
number of blocks allocated. In the case of bloeédkof the portions
required are allocated at one time. This means ttiaffile allocation
table for the file will remain of fixed size, besauthe number of blocks
allocated is fixed.

48

CIT381 FILE PROCESG AND MANAGEMENT

With variable-size portions, we need to be conariveth the
fragmentation of free space. The following are pmssalternative
strategies:

. First fit: Choose the first unused contiguous group of blafks
sufficient size from a free block list.

. Best fit: Choose the smallest unused group that is of seffici
size.

. Nearest fit: Choose the unused group of sufficient size that is

closest to the previous allocation for the filartorease locality.

It is not clear which strategy is best. The diffiguin modeling

alternative strategies is that so many factorgaacte including types of
files, pattern of file access, degree of multipeppgming, other
performance factors in the system, disk cachirngk dcheduling, and so
on.

SELF-ASSESSMENT EXERCISE 1

1. What are some of the issues involved in file alimre

2. What do you understand by pre-allocation policy?

3. List some of the strategies that can be used ie Bpace
fragmentation.

3.3 File Allocation Methods

The direct-access nature of disks allows us flégbiin the
implementation of files. In almost every case,sfileill be stored on the
same disk. The main problem is how to allocate spgadhese files so
that disk space is utilised effectively and filendae accessed quickly.
Three major methods of allocating disk space arewide use:
contiguous, linked and indexed. Table 9 summarisesie of the
characteristics of each method.

Table 9 File Allocation Methods

T

Contiguous Chair Linked/Chained ndexed
Preallocation? MNecessary Possibl_ Possible
Fixed or variable size portions? Variable Fixed blocks Fixed blocks Variable
Portion size Large Small Small Medinm
Allocation frequency Once Low to high High Low
Time to allocate Medium Long Short Medium
File allocation table size One entry One entry Large Medium

Source: Operating Systems; Internal and Design Principlg” ed.

by William Stallings (2004).

49

CIT381 FILE PROCESG AND MANAGEMENT

3.3.1 Contiguous Allocation

With contiguous allocation a single contiguous set of blocks is
allocated to a file at the time of file creatiorigifire 11). Thus, this is a
pre-allocation strategy, using variable-size poioThe file allocation
table needs just a single entry for each file, shgwhe starting block
and the length of the file. Contiguous allocatienthie best from the
point of view of the individual sequential file. Miple blocks can be
read in at a time to improve 1/O performance fajusmntial processing.
It is also easy to retrieve a single block.

For example, if a file starts at blodk and theith block of the file is
wanted, its location on secondary storage is siraptyi - 1. Contiguous
allocation presents some problems. External fragatem will occur,

making it difficult to find contiguous blocks of ape of sufficient
length. From time to time, it will be necessaryp@form a compaction
algorithm to free up additional space on the disgire 12). Also, with
preallocation, it is necessary to declare the sizibe file at the time of
creation, with the problems mentioned earlier.

\h________—_ﬁ__y___,/ File Allocation Table
File A File Name Start Block Length
I T NSNS RETNNN NN File & : 3
e -
_ File C 18 8
5| | h| | | | 3| | '-Jl | F":JCD 10 2
File B File E 26 3
w] el] el e[] ‘
s Jwe[[s vl
File C
20 1 7 2 3V 1l
File E
257 26 SR
File D
10 RES 31 BRY 32 al |]
x___________ -
Fig 11: Contiguous File Allocation
Source: Operating Systems; Internal and Design PrincipB" ed.

By William Stallings (2004).

50

CIT381 FILE PROCESG AND MANAGEMENT

C File Allecation Table

File A File Mame Start Block Length
SRS
i I [o W I 7 R S S
7 nlllcz 134 14 nie bk 0 3
1577) 16 | 1?]|E”LE| 18| | 19%

20 R 21 | |22[] 23] | 24| |
25| | 26| |27[] 28] | 29/ |
ol _Jarl Js2[a3l [34] __IJ_/
Fig 12: Contiguous File Allocation (After Compaction)
Source: Operating Systems; Internal and Design Prinatpléh ed.

By William Stallings (2004).

3.3.2 Linked/Chained Allocation

At the opposite extreme from contiguous allocatien chained
allocation (Figure 13). Typically, allocation is on an indivial block
basis. Each block contains a pointer to the neathkolin the chain.
Again, the file allocation table needs just a stnghtry for each file,
showing the starting block and the length of the fi

/_/———‘——\\\.
\-_\—_//—/ File Allocation Table
File B File Mame Start Block Length
] I N -1 N (O oY cee e cse
e — File B 1 5
sl 1ol 7L] sl Jiol | s =" se-
=
wl Jul Je2[e[]
] 7 (T
20| | 21] | 22] | 23] [|24] |
A
-
a5 Jae[Jo7[Jes[29[|
Lo I O T =1 I == ==
x._ﬂ_q_________ - - ____________/
Fig 13: Linked/Chained File Allocation
Source: Operating Systems; Internal and Design Prinatpléh ed.

By William Stallings (2004).

51

CIT381 FILE PROCESG AND MANAGEMENT

Although pre-allocation is possible, it is more eoon simply to
allocate blocks as needed. The selection of blaskeow a simple
matter: any free block can be added to a chainrele no external
fragmentation to worry about because only one blatka time is
needed. This type of physical organisation is lsesied to sequential
files that are to be processed sequentially. Tecseln individual block
of a file requires tracing through the chain to desired block.

One consequence of linking/chaining, as descrilbef@ss is that there is
no accommodation of the principle of locality. Thifgt is necessary to

bring in several blocks of a file at a time, assaguential processing,
then a series of accesses to different parts ofligtieare required. This
is perhaps a more significant effect on a singkrgystem but may also
be of concern on a shared system. To overcomeptioislem, some

systems periodically consolidate files.

T .
““‘H_________—_________F-f’f File Allocation Table
File B File Name Start Block Length
l‘J| | l| | 2| | .‘~| | -L| | see s see
T T T T File B 0 5
] Y I T O L L A
ol Jul Jezl el el]
HE G
0 |a| |22 o3| ||]
25 26 27 |28 |29 |
o |z 32 33 E
"\\.___ — o __'_'_'__-f
Fig 14: Chained File Allocation (After Consolidation)
Source: Operating Systems; Internal and Design Principlg” ed.

by William Stallings (2004).

3.3.3 Indexed Allocation

Indexed allocationaddresses many of the problems of contiguous and
linked/chained allocation. In this case, the file@ation table contains a
separate one-level index for each file; the indag dne entry for each
portion allocated to the file. Typically, the filerdexes are not physically
stored as part of the file allocation table. Ratliee file index for a file

52

CIT381

FILE PROCESG AND MANAGEMENT

Is kept in a separate block and the entry for tleeiri the file allocation

table points to that block. Allocation may be oa thasis of either fixed-
size blocks (Figure 15) or variable-size portioRgy(re 16). Allocation

by blocks eliminates external fragmentation, wher@docation by

variable-size portions improves locality. In eitlvase, file consolidation
may be done from time to time. File consolidatieduces the size of
the index in the case of variable-size portiong, fiat in the case of
block allocation. Indexed allocation supports bs#lguential and direct
access to the file and thus is the most populan firfile allocation.

_

File Allocation Table

”_,_,.-F'"__'_'_'_'_'_'_'—____—_‘_‘—N_‘\
&,__________—______ﬁ__,‘/
File B
o Je[] 2] s 4[]
— |
sl el J 7Ll s 9
\R_“.
wol a2l sl el]
"‘-.
sl Tl Jpr [Jls[Jho[|
h.) e
w21 2 |23 |24
5[J2e[Jor[Jos[[2e[|
o[Ja[Js2[Js[Ja[]
e . R —
Fig 15: Indexed Allocation with Block Portions
Source:

File Mame Index Block
ane anw
Fil: B 24
amw anw

|

b

14
" 28

Operating Systems; Internal and Design Princ:tpléh ed.
by William Stallings (2004).

53

CIT381 FILE PROCESG AND MANAGEMENT

/’f’ B
\‘-u___j______________) File Allocation Table
File B File Mame Index Block
1N T O - I | Y
‘i_\ Fil: B 24
sl el Jj7L] sl | o[|
ol Jul fp2[[[l |
‘l\l
sl Jas[Jur[J s Jue[]]
h (?L-=="""] Start Block Length
0 Ja[Ja2[23 Joal] | -
’ ~Ts. 28 4
25| Jesl o] es| ee|] o 14 1
ol sl s s a4 |
. . - -
Fig 16: Indexed Allocation with Variable-Length Portions
Source: Operating Systems; Internal and Design PrincipE" ed
By William Stallings (2004).
SELF-ASSESSMENT EXERCISE 2
1. Relate size of file to be allocated to disk space.
2. List the different methods of file allocation yoodw.

3. What is FAT?

4.0 CONCLUSION

There are many key issues of interest in the saidtlocation of disk
blocks to files. A proper understanding of the @liéint methods of file
allocation available will go a long way in userispaeciation of the file
handling capabilities of any type of operating eyst

5.0 SUMMARY

In this unit, you have learnt that:

. A pre-allocation policy requires that the maximuizesof a file
be declared at the time of the file creation reques

. In choosing a portion size, there are tradeoffsvben efficiency
from the point of view of a single file versus oakrsystem
efficiency.

. The methods of file allocation that are in commose ware
contiguous, linked/chained, and indexed.

. Each file allocation method has its peculiar mearid demerits.

54

CIT381 FILE PROCESG AND MANAGEMENT

6.0 TUTOR-MARKED ASSIGNMENT

1. List and briefly discuss any three file allocatimethods.

2. What are the different strategies possible in fregace
fragmentation and why is it that none of the sgee can be
considered as the best?

3. What are the tradeoffs to consider in allocatingrmoey blocks to
file?

7.0 REFERENCES/FURTHER READING

Davis, W S. & Rajkumar, T. M. (2001)Operating Systems: A
Systematic View(5th edition). New Jersey: Addison-Wesley.

Deitel, H. M. (2004).Operating Systemdq3rd Edition).New Jersey:
Prentice Hall.

Stallings, Williams (2004)Operating Systems; Internal and Design
Principles,(5th Edition). New Jersey: Prentice Hall,

Tanenbaum, A. S. (2006Modern Operating Systen{3rd Edition).
New Jersey: Prentice Hall.

Williams, B. K. (1999).Using Information Technology: A Practical

Information to Computers and Communicatiof@d Edition).
Boston: McGraw Hill.

55

CIT381 FILE PROCESG AND MANAGEMENT

UNIT 2 RECORD BLOCKING
CONTENTS

1.0 Introduction
2.0 Objectives
4.0 Main Content

4.1 Record Blocking

3.1.1 Methods of Blocking

4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION

It has been said that file is a body of stored aatanformation in an

electronic format. Almost all information stored oamputers is in the
form of files. Files reside on mass storage devgesh as hard disks,
optical disks, magnetic tapes, and floppy disks.ewlihe Central

Processing Unit (CPU) of a computer needs data &dile, or needs to
write data to a file, it temporarily stores theefih its main memory, or
Random Access Memory (RAM), while it works on tretad

2.0 OBJECTIVES

At the end of this unit, you should be able to:

. define record blocking
. list the different types of record blocking techueg
. discuss the merits and demerits of each recordcinigstyle.

3.0 MAIN CONTENT

3.1 Record Blocking

As indicated in Figure 03, records are the logizait of access of a
structured file, whereas blocks are the unit of M@h secondary
storage. For I/O to be performed, records mustrbarized as blocks.
There are several issues to consider.

First, should blocks be of fixed or variable lerigtbn most systems,

blocks are of fixed length. This simplifies I/O,ffer allocation in main
memory, and the organisation of blocks on seconstamnage.

56

CIT381 FILE PROCESG AND MANAGEMENT

Next, what should the relative size of a block lmmpared to the
average record size? The tradeoff is this: Theelatige block, the more
records that are passed in one I/O operationfileas being processed
or searched sequentially, this is an advantageusecthe number of I/O
operations is reduced by using larger blocks, tlspeeding up
processing. On the other hand, if records are bagugssed randomly
and no particular locality of reference is observiben larger blocks
result in the unnecessary transfer of unused record

However, combining the frequency of sequential apens with the
potential for locality of reference, we can sayttie 1/O transfer time is
reduced by using larger blocks. The competing conce that larger
blocks require larger 1/O buffers, making buffer magement more
difficult.

3.1.1 Methods of Blocking

Given the size of a block, there are three metlodddocking that can
be used, namely; fixed, variable-length and vaeidbhgth unspanned
spanning.

a. Fixed Blocking

Fixed-length records are used, and an integral eurob records are
stored in a block. There may be unused space artieof each block.
This is referred to as internal fragmentation. Hitagmentation is
defined as a condition in which files are brokearapn disk into small,
physically separated segments.

b. Variable-Length Spanned Blocking

Variable-length records are used and are packed dlttcks with no

unused space. Thus, some records must span twdasblacth the

continuation indicated by a pointer to the succebkirk.

C. Variable-Length Unspanned Blocking

Variable-length records are used, but spanningti®€mployed. There is
wasted space in most blocks because of the inalidit use the
remainder of a block if the next record is largeart the remaining
unused space.

SELF-ASSESSMENT EXERCISE 1

1. Give examples of storage devices on which data inhigistored

2. How can buffer management be made difficult?

57

CIT381 FILE PROCESG AND MANAGEMENT

The following figure 17 illustrates these methodsuaning that a file is
stored in sequential blocks on a disk.

7
Rl R2 % R3 R4 Track |

/)
RS Ro R7 RE § Track 2
Fixed blocking
/
Rl R2 R3 R4 R4 RS R6 § Track |
}
i
_ NV
Ré R7 R3 R9 R9| RIO RIl | RI2 Rl_ﬁ\ § Track 2
A\
Wariable blocking: spanned
W
Rl R2 R3 R4 RS / Track |
N i

v,
R6 R7 // R& R9 R10 // Track 2
/) ,

Variable blocking: unspanned

]) .
D Data Waste due to record fit to blocksize
D Gaps due to hardware design @ Waste due to blocksize constraint

from fixed record size

Waste due to block fit to track size
Fig 17: Record Blocking Methods
Source: Operating Systems; Internal and Design Prinatpléh ed.

By William Stallings (2004).

The figure assumes that the file is large enougéptm two tracks. The
effect would not be changed if some other file cdkion schemes were
used as discussed under secondary storage mandgertinennext unit.

Fixed blocking is the common mode for sequentibdsfiwith fixed-
length records. Variable-length spanned blockingfikient of storage

58

CIT381 FILE PROCESG AND MANAGEMENT

and does not limit the size of records. Howevers tlechnique is
difficult to implement. Records that span two blsdakequire two 1/O
operations, and files are difficult to update, medgss of the
organisation. Variable-length unspanned blockingults in wasted
space and limits record size to the size of a block

The record-blocking technique may interact with thgual memory
hardware, if such is employed. In a virtual memenyironment, it is
desirable to make the page as the basic unit ofsfiea Pages are
generally quite small, so that it is impracticaltteat a page as a block
for unspanned blocking. Accordingly, some systemsilmne multiple
pages to create a larger block for file 1/0 purgose

SELF-ASSESSMENT EXERCISE 2

1. What do you understand by blocking of records?

2. What is the advantage of fixed blocking over vadeadength
blocking?

4.0 CONCLUSION

A file consists of a collection of blocks and thpeaating system is
responsible for allocating blocks to files.

7.0 SUMMARY

In this unit, you have learnt that:

. Records are the logical unit of access of a stradttile, whereas
blocks are the unit of I/O with secondary storage
. There are three methods of blocking that can bd.uBeey are

fixed, variable-length and variable-length unspahsganning.

8.0 TUTOR-MARKED ASSIGNMENT

1. Compare and contrast the different techniquesbloitking
records.

2. Draw a well labeled diagram to illustrate th@dy of records
blocking.

59

CIT381 FILE PROCESG AND MANAGEMENT

7.0 REFERENCES/FURTHER READING

Claybrook, Billy G. (1991)File Management TechniqueNew York:
John Wiley.

Davis, W. S. & Rajkumar, T.M. (2001)Operating Systems; A
Systematic Viewibth Edition). New Jersey: Addison-Wesley.

Grosshans, D. (1986File Systems; Design and Implementatibiew
Jersey: Prentice Hall.

Livadas, P. (1990). File Structures: Theory andcttta. New Jersey:
Prentice Hall.

Silberschatz, Abraham. (2004)perating System Concepts with Java,
(6th Edition). New Jersey: John Wiley.

Stallings, Williams (2004)Operating Systems; Internal and Design
Principles,(5th Edition). New Jersey: Prentice Hall.

Tanenbaum, A. S. (2006Modern Operating Systen{3rd Edition).
New Jersey: Prentice Hall.

60

CIT381 FILE PROCESG AND MANAGEMENT

UNIT 3 FREE SPACE MANAGEMENT
CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content
3.1 Free Space Management
3.1.1 Techniques Used in Space Management
3.1.2 Bit Tables
3.1.3 Linked List/Chained Free Portions
3.1.4 Indexing
3.1.5 Free Block List
3.2 Volume
3.3 Disk Quotas
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION

Since there is only a limited amount of disk spdtes necessary to
reuse the space from deleted files for new fillespssible.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

. state reasons why management of space is impoirafite
system management

. list the various techniques of managing space

. explain the concepts of volume and disk quotas wagpect to

file management.
3.0 MAIN CONTENT

3.1 Free Space Management

Files are normally stored on disk, so managemendisk space is a
major concern to the file system designers. To Keagk of free disk

space, the system maintains a free space listfr€bespace list records
all disk blocks that are free — those that areatiocated to some file or
directory.

61

CIT381 FILE PROCESG AND MANAGEMENT

To create a file, we search the free space andaadicdhat space to the
new file. This space is then removed from the Bpaee list. When a
file is deleted, its disk space is added to the-fpace list. The free-
space list, despite its name, might not be impldeteas a list, as we
shall discuss.

3.1.1 Techniques Used in Space Management

Four different techniques of free space managearendiscussed in this
unit. The methods are:

. Bit tables

. Chained free portion
. Indexing, and
. Free block list.

3.1.2 Bit Tables

This method uses a vector containing one bit fehddock on the disk.
Each entry of a O corresponds to a free block,eawth 1 corresponds to
a block in use. For example, for the disk layouEgjure 11 (reproduced
as Figure 17), a vector of length 35 is needed wodld have the
following value:

00111000011111000011111111111011000

Mu;/ File Allocation Table
File & File Name Start Block Length
0 A R NNNEEINNN BN E : 3
ne =
. File C 18 8
_';| | lf"| | | | '?‘| | '-;'Il | F:JCD 30 2
File B File E 26 3
wl el ezl sl el]
s el][]2 vl
File C
2wl 0 200 23V 247
File E
w26 o Ja2s| 2o]
File D
0B 1R 32 [[l]
~— -
Fig 18: Contiguous File Allocation
Source: Operating Systems; Internal and Design Principlg” ed.

By William Stallings (2004).

62

CIT381 FILE PROCESG AND MANAGEMENT

A bit table has the advantage that it is relativedgy to find one or a
contiguous group of free blocks. Thus, a bit tatdeks well with any of
the file allocation methods outlined.

Another advantage is that it is as small as posshtbwever, it can still
be sizeable. The amount of memory (in bytes) reguiior a block
bitmap is

disk size in bytes
8 X file system block size

Thus, for a 16-Gbyte disk with 512-byte blocks, thetable occupies
about 4 Mbytes. Can we spare 4 Mbytes of main mgnar the bit
table? If so, then the bit table can be searchdédowi the need for disk
access. But even with today’s memory sizes, 4 Mbigea hefty chunk
of main memory to devote to a single function. “Hiternative is to put
the bit table on disk. But a 4-Mbyte bit table wbuéquire about 8000
disk blocks. We can'’t afford to search that amaointlisk space every
time a block is needed.

Even when the bit table is in main memory, an eshiae search of the
table can slow file system performance to an unatetdée degree. This
is especially true when the disk is nearly full ahére are few free
blocks remaining. Accordingly, most file systemsttluse bit tables
maintain auxiliary data structures that summarise ¢ontents of sub-
ranges of the bit table. For example, the tablddcba divided logically
into a number of equal-size sub-ranges. A sumnabletcould include,
for each sub-range, the number of free blocks aerdmaximum-sized
contiguous number of free blocks. When the fileeysneeds a number
of contiguous blocks, it can scan the summary tdblefind an
appropriate sub-range and then search that sule-rang

3.1.3 Linked List/Chained Free Portions

The free portions may be chained together by usipginter and length
value in each free portion. This method has ndgkgspace overhead
because there is no need for a disk allocatioretabérely for a pointer
to the beginning of the chain and the length of fir& portion. This
method is suited to all of the file allocation matk. If allocation is a
block at a time, simply choose the free block attikad of the chain and
adjust the first pointer or length value. If alltioa is by variable-length
portion, a first-fit algorithm may be used: The ties from the portions
are fetched one at a time to determine the nexaldei free portion in
the chain. Again, pointer and length values arasidp.

63

CIT381 FILE PROCESG AND MANAGEMENT

This method has its own problems. After some usedtsk will become
guite fragmented and many portions will be a sifglxck long. Also,

note that every time you allocate a block, you rnieead the block first
to recover the pointer to the new first free bldekore writing data to
that block. If many individual blocks need to béehted, at one time,
for a file operation, this greatly slows file creat Similarly, deleting

highly fragmented files is very time consuming.

3.1.4 Indexing

The indexing approach treats free space as arfdeuaes an index table
as described under file allocation. For efficienitye index should be on
the basis of variable-size portions rather tharchkdo Thus, there is one
entry in the table for every free portion on thekdiThis approach
provides efficient support for all of the file adlation methods.

3.1.5 Free Block List

In this method, each block is assigned a numbaresg@lly and the list
of the numbers of all free blocks is maintainegineserved portion of
the disk. Depending on the size of the disk, eit¥eor 32 bits will be

needed to store a single block number, so theddiitee free block list is

24 or 32 times the size of the corresponding lotetand thus must be
stored on disk rather than in main memory. Howewulis is a

satisfactory method. Consider the following points:

. The space on disk devoted to the free block listgs than 1% of
the total disk space. If a 32-bit block number s&d; then the
space penalty is 4 bytes for every 512-byte block.

. Although the free block list is too large to stamemain memory,
there are two effective techniques for storing alsipart of the
list in main memory.

a. The list can be treated as a push-down stack \Wehfitst few
thousand elements of the stack kept in main memflyen a
new block is allocated, it is popped from the tdptle stack,
which is in main memory. Similarly, when a blockdisallocated,
it is pushed onto the stack. There has to be asfeametween
disk and main memory when the in-memory portionhef stack
becomes either full or empty. Thus, this techniguees almost
zero-time access most of the time.

b. The list can be treated as a FIFO queue, with atfewsand
entries from both the head and the tail of the quiaumain
memory. A block is allocated by taking the firstrgnfrom the
head of the queue and deallocated by adding hecend of the
tail of the queue. There only has to be a trants¢ween disk and

64

CIT381 FILE PROCESG AND MANAGEMENT

main memory when either the in-memory portion af tread of
the queue becomes empty or the in-memory portichetail of
the queue becomes full.

In either of the strategies listed in the precedmomt (stack or FIFO
gueue), a background thread can slowly sort th@emory list or lists
to facilitate contiguous allocation.

SELF-ASSESSMENT EXERCISE 1

1. Why is managing space so important?
2. List the different methods operating systems capleynn space
management.

3.2 Volume

The termvolumeis used somewhat differently by different operating
systems and file management systems, but in essena#ume is a
logical disk. Volume is defined as follows:

. “a collection of addressable sectors in secondasnary that an
OS or application can use for data storage. Théorsedn a
volume need not be consecutive on a physical stodmyice;
instead they need only appear that way to the O&pplication.
A volume may be the result of assembling and megrgmaller
volumes.”

In the simplest case, a single disk equals onenwellrrequently, a disk
is divided into partitions, with each partition fitironing as a separate
volume. It is also common to treat multiple disksaasingle volume of
partitions on multiple disks as a single volume.

3.3 Disk Quotas

To prevent people from hogging too much disk spaoe|tiuser

operating systems, such as UNIX, often provide ahaeism for

enforcing disk quotas. The idea is that the systdministrator assigns
each user a maximum allotment of files and bloeks] the operating
system makes sure that the users do not exceedgtatias. A typical

mechanism is described below.

When a user opens a file, the attributes and diskesses are located
and put into an open file table in main memory. Aigohe attributes is
an entry telling who the owner is. Any increasedile’s size will be
charged to the owner’s quota.

65

CIT381 FILE PROCESG AND MANAGEMENT

A second table contains the quota record for eusgy with a currently

open file, even if the file was open by someone.€l$is table is shown

in the figure 19. It is an extract from a quota fdn disk for the users
whose files are currently open. When all the fdes closed, the records
written back to the quota file.

Quota Table
Attributes Soft block limit
Disk addresses
User =8 Hard block limit
Quota pointer
Current # of blocks
Block warnings left >F?eucc§f:j
_ N For user B
R N
Soft file limit
Hard file limit
Current # of files |
File warnings left
=N N
Fig 19: Quotas are kept track of on a per-user basis in aupta
table
Source: Modern Operating Systems by Andrew S. Tanenbaum
(2006)

When a new entry is made in the open file tablegiater to the owner’s
guota record is entered into it, to make easynd the various limits.
Every time a block is added to the file, the tatalmber of blocks
charged to the owner is incremented, and a chenkae against both
the hard and soft limits. The soft limit may be exded, but the hard
limit may not. An attempt to append to a file whee hard block limit

66

CIT381 FILE PROCESG AND MANAGEMENT

has been reached will result in an error. Analoghexks also exist for
the number of files.

When a user attempts to log in, the system chdekguota file to see if
the user has exceeded the soft limit for either lmemof files or number
of disk blocks. If either limit has been violatedwarning is displayed,
and the count of warnings remaining is reducedn®y. ¢&f the count ever
gets to zero, the user has ignored the warningioretoo many, and is
not permitted to log in. Getting permission to iagagain will require
some discussion with the system administrator.

This method has the property that the users magplgve their soft
limits during a terminal session, provided they oemthe excess before
logging out. The hard limits may never be exceeded.
SELF-ASSESSMENT EXERCISE 2

What do you understand by the following:

a. Disk quotas

b. Volume

C. Bit tables

4.0 CONCLUSION

Disk space management is a very important servigehnany operating
system must provide so as to efficiently managé amemory and
optimize service.

7.0 SUMMARY

In this unit, you have learnt that:

. Space management is an essential feature provigegdrating
system

. Techniques of free space management are bit tables,
linked/chained free portion, indexing, and freecklgst.

. In bit table, each entry of a O corresponds toeg folock, and
each 1 corresponds to a block in use

. In indexing, free space is treated as a file aras @ index table
as described under file allocation

. In free block list, each block is assigned a nundexjuentially

and the list of the numbers of all free blocks igimmined in a
reserved portion of the disk.

. In linked/chained free portion, free portions ahaioed together
by using a pointer and length value in each freiqno

67

CIT381 FILE PROCESG AND MANAGEMENT

. Multiuser operating systems prevent people fromghay too
much disk space by providing a mechanism for eirigralisk
guotas.

. When a disk is divided into partitions, each pemitfunctions as

a separate volume.
8.0 TUTOR-MARKED ASSIGNMENT

1. Write briefly on the following in the context of €fe space

management.
a. Bit table
b. Indexing
C. Free block list
2. Explain how a multiuser operating system ensures tiser do

not use too much unnecessary space.
3. What do you understand by volume with respect twragke
management?

7.0 REFERENCES/FURTHER READING

Claybrook, Billy G. (1991)File Management TechniqueNew York:
John Wiley.

Davis, W.S. & Rajkumar, T.M. (2001)Operating Systems; A
Systematic Viewibth Edition). New Jersey: Addison-Wesley.

Grosshans, D. (1986File Systems; Design and Implementatidlew
Jersey: Prentice Hall.

Livadas, P. (1990). File Structures: Theory andcttta. New Jersey:
Prentice Hall.

Silberschatz, Abraham. (2004)perating System Concepts with Java,
(6th Edition). New Jersey: John Wiley.

Stallings, Williams. (2004)Operating Systems; Internal and Design
Principles, 6th edition). New Jersey: Prentice Hall.

Tanenbaum, A. S. (2006Modern Operating Systen{3rd Edition).
New Jersey: Prentice Hall.

filesystems.palconit.com/filesystems-free-spaceagament.html

www.cs.man.ac.uk/~rizos/CS2051/2001-02/lect15.pdf

68

CIT381 FILE PROCESG AND MANAGEMENT

UNIT 4 FILE SYSTEM PERFORMANCE AND
RELIABILITY

CONTENTS

1.0 Introduction
1.1 Objectives
3.0 Main Content
3.1 File System Performance
1.1.1 Methods of Improving Performance
1.2 File System Reliability
1.2.1 Techniques to Improve Reliability
1.2.2 File System Consistency
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION

It is very essential that a file system is relialidmg-lasting and perform
optimally. The loss of valuable data due to a §i{stem failure could
lead to catastrophic consequences. In this unitwilldook at some of
the issues involved in safeguarding the data andrawe system
performance.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

. explain why a system may not perform optimally

. discuss the methods employed by file system designe
improving system performance

. explain why a system has to be reliable

. discuss various techniques through which a systambe made
more reliable.

3.0 MAIN CONTENT
3.1 File System Performance
Access to disk is much slower than access to meniReading a

memory word typically takes a few hundred nanosdsoat most.
Reading a disk block takes tens of millisecond$acior of 100,000

69

CIT381 FILE PROCESG AND MANAGEMENT

slower. As a result of this difference in accesseti many file systems
have been designed to reduce the number of digsses needed.

3.1.1 Methods of Improving Performance
a. Block Caching

The most common technique used to reduce disk seseas théblock
cache or buffer cache (Cache is pronounced “cash,” and is derived
from the Frencltacher meaning to hide.) In this context, a cache is a
collection of blocks that logically belong on thisld but are being kept

in memory for performance reasons.

Various algorithms can be used to manage the cacih& common one
Is to check all read requests to see if the nebtiak is in the cache. If
it is, the read request can be satisfied withodisk access. If the disk is
not in the cache, it is first read into the cachad then copied to
wherever it is needed. Subsequent requests fosahee block can be
satisfied from the cache.

b. Reduction in Disk Motion

Caching is not the only way to increase the peréoroe of a file system.
Another important technique is to reduce the amofilisk arm motion
by putting blocks that are likely to be accesseseguence close to each
other, preferably in the same cylinder. When oufpatis written, the
file system has to allocate the blocks one at a,tes they are needed. If
the free blocks are recorded in a bit map, andM@e bit map is in the
main memory, it is easy enough to choose a freekbls close as
possible to the previous block. With a free lidrtpof which is on disk,
it is much harder to allocate blocks close togetHewever, even with a
free list, some block clustering can be done. Tiok is to keep track of
disk storage not in blocks, but in groups of consige blocks. If a track
consists of 64 sectors of 512 bytes, the systendame 1K blocks (2
sectors), but allocate disk storage in units ofdzks (4 sectors). This is
not the same as having a 2K disk block, since #ohe would still use
1K but reading a file sequentially on an otherwidle system would
reduce the number of seeks by a factor of two, idensbly improving
performance.

A variation on the same scheme is to take accodntotational

positioning. When allocating blocks, the systemerafits to place
consecutive blocks in a file in the same cylindaut interleaved for
maximum throughput. Thus, if a disk has a rotatiare of 16.67 msec
and it takes about 4 msec for a user process est@nd get a disk

70

CIT381 FILE PROCESG AND MANAGEMENT

block, each block should be placed at least atguaf the way around
from its predecessor.

Another performance bottleneck in systems that usede or the
equivalent is that reading even a short file rezpiitwo disk accesses:
one for the i-node and one for the block. The usualde placement is
shown in Figure 20(a) below.

Disk is divided into
cylinder groups, each
with its own i-nodes

|-nodes are
located near
the start
of the disk

0 Cylinder group

Fig 20: (@) I-nodes placed at the start of the disk
(b) Disk divided into cylinder groups, each witts i
own blocks and i-nodes

Source: Modern Operating Systems by Andrew S. Tanenbaum
(2006)

Here all the i-nodes are near the beginning ofdis&, so the average
distance between i-node and its blocks will be albalf the number of
cylinders, requiring long seeks.

One easy performance improvement is to put thedesan the middle

of the disk, rather than at the start, thus redydime average seek
between the i-node and the first block by a factfoiwo. Another idea,

shown in Figure 20(b) is to divide the disk intdigler groups, each
with its own i-nodes, blocks, and free list. Wheeating a new file, any
I-node can be chosen, but having done this, ampttes made to find a
block in the same cylinder group as the i-nod@olfe is available, then
a block in a cylinder group close by is used.

71

CIT381 FILE PROCESG AND MANAGEMENT

3.2 File System Reliability

Destruction of a file system is often a far greatksaster than
destruction of a computer. If computer is destropgdfire, lightning
surges, or a cup of coffee poured onto the keyhotirsl annoying and
will cost money, but generally a replacement campbehased with a
minimum of fuss. Inexpensive personal computersesam be replaced
within a few hours.

If a computer file system is irrevocably lost, whiat due to hardware,
software or any other means, restoring all the rmaiion will be
difficult, time consuming, and in many cases, ingiole. For the people
whose programs, documents, customer files, taxrdscodatabases,
marketing plans, or other data are gone foreverctinsequences can be
catastrophic. While the file system cannot offey gnotection against
any physical destruction of the equipment and meti@an help protect
the information. Let's look at some of the issues/olved in
safeguarding the file system.

SELF-ASSESSMENT EXERCISE 1

1. What is system performance?
2. List different techniques that can be used in imprg system
performance

3.2.1 Techniques to Improve Reliability
a. Bad Block Management

Disks often have bad blocks. Floppy disks are gadlyeperfect when
they leave the factory, but they can develop badKs during use. Hard
disks frequently have bad blocks from the staris just too expensive
to manufacture them completely free of all defettstact, most hard
disk manufacturers supply with each drive a listr@ bad blocks their
tests have discovered.

Two solutions to the bad block problems are used,lmrdware and the
other software.

. The hardware solution is to dedicate a sector on the disk to the
bad block list. When the controller is first inltied, it reads the
bad block list and picks a space block (or trackydplace the
defective ones, recording the mapping in the baatkbllist.
Henceforth, all requests for the bad block will tse spare.

72

CIT381 FILE PROCESG AND MANAGEMENT

. Software solution requires the user or file system to carefully
construct a file containing all the bad blocks. sTikechnique
removes them from the free list, so they will negecur in data
files. As long as the bad block file is never readwritten, no
problem will arise. Care has to be taken during diackups to
avoid reading this file.

b. Backups

Even with a clever strategy for dealing with baddd, it is important
to back up files frequently. After all, automatigaswitching to a spare
track after a crucial data block has been ruinedomewhat akin to
locking the barn door after the prized race hoesedscaped.

Backup technique is as simple as it sounds. Itlueskeeping another
copy of the data on some other machine or devidhatahe copy could
be used in case of a system failure. There aretyywes of backup
techniques, namely full dump and incremental dump.

. Full dump simply refers to making a backup copy of the whole
disk on another disk or machine. It is pretty olngiahat the
process of full dumping is time consuming as wellmemory
consuming.

. Incremental dump has some advantages over full dump. The
simplest form of incremental dumping is to makeuld dump
periodically (say monthly or weekly) and to makeéaily dump
of only those files that have been modified sinice last full
dump. A better scheme could be to change only tffitese that
have been changed since the last full dump. Susbhame of
data backup is time efficient as well as memorycedit. To
implement this method, a list of dump times forteéite must be
kept on disk. The dump program should then checleéeh file
on the hard disk and if it finds that the file Hasen modified
since it was last dumped, it dumps the file yetiragad changes
the file’s time of last dump to the current time.

MS-DOS provides some assistance in making backAgmsociated with

each file is an attribute bit called thehkive bit. When the file system is
backed up, the archive bits of all the files areactd. Subsequently,
whenever a file is modified, the operating systenomatically sets its
archive bit. When it is time for the next backupe tbackup program
checks all the archive bits and only backs up thibse whose bit is set.
It also clears all these bits to monitor furtheages of the files.

73

CIT381 FILE PROCESG AND MANAGEMENT

3.2.2 File System Consistency

Another way of safeguarding data is to check fte ¢ionsistency. The
directory information in the main memory is moredafed than that
residing on the disk. In case of a system malfonctif the table of open
files is lost, all the changes made in the direetoof open files are lost
too. Hence, there arises an inconsistency betweestate of some files
and the directory structure. Many systems employcansistency

checker" program that checks and corrects disk nisistencies.

Therefore, a file management system should havee scomsistency
checking mechanism associated with it.

SELF-ASSESSMENT EXERCISE 2

1. What are the types of backups available?
2. What is an archive bit?

4.0 CONCLUSION
File system designers have various measures ire placoperating
system to make sure that a system performs optinaadtl that it is

reliable as much as technically possible.

5.0 SUMMARY

In this unit, you have learnt that:

. The loss of valuable data due to a file systenuffaitould lead to
catastrophic consequences

. System performance could be improved by block carland
reduction in disk motion

. Systems can be made more reliable by efficient bbutk

management, timely backups and checking for filesten
consistency

6.0 TUTOR-MARKED ASSIGNMENT

1. In your own words define the following terms:
a. System reliability

b. System performance

C. Disk bad block

Discuss the various backup technigues.

What are the measures available in improving system
performance?

W N

74

CIT381 FILE PROCESG AND MANAGEMENT

7.0 REFERENCES/FURTHER READING

Claybrook, B. G. (1991)File Management Techniqueblew York:
John Wiley.

Davis, W.S. & Rajkumar, T.M. (2001)Operating Systems: A
Systematic Viewbth Edition). New Jersey: Addison-Wesley.

Grosshans, D. (1986File Systems; Design and Implementatibiew
Jersey: Prentice Hall.

Livadas, P. (1990). File Structures: Theory andcttta. New Jersey:
Prentice Hall.

Silberschatz, Abraham. (2004)perating System Concepts with Java,
(6th Edition). New Jersey: John Wiley.

Stallings, Williams (2004)Operating Systems; Internal and Design
Principles,(5th edition). New Jersey: Prentice Hall.

Tanenbaum, A. S. (2006Modern Operating Systen{3rd Edition).
New Jersey: Prentice Hall.

75

CIT381 FILE PROCESG AND MANAGEMENT

UNIT 5 FILE SYSTEM SECURITY AND INTEGRITY
CONTENTS

1.0 Introduction
2.0 Objectives
4.0 Main Content
4.1 The Security Environment
3.1.1 System Protection
4.2 Intrusion/Categories of Intruders
3.2.1 Intrusion Detection
4.3 Design Principles for Security
4.4 User Authentication
4.4.1 Passwords
4.4.2 Biometrics
4.5 Programme Threats
3.5.1 Trojan Horse
3.5.2 Trap Door
3.5.3 Stack and Buffer Overflow
3.6 System Threats
3.6.1 Worms
3.6.2 Viruses
3.6.3 Denial of Services
3.7 File Protection
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION

File systems often contain information that is hyghaluable to their
users. Therefore, prevention of or protection agfaif@) access to
information or (b) intentional but unauthorised tdestion or alteration
of that information is a major concern. In this tuwe will look at a
variety of issues concerned with security and intgg

2.0 OBJECTIVES

At the end of this unit, you should be able to:

. state and explain two reasons why computing enment needs
to be secured

. identify different categories of intrusion and maoitsm to detect
them

. list and discuss some design principles for securi

76

CIT381 FILE PROCESG AND MANAGEMENT

. explain different methods that can be used to auittete a user
such as: password, biometrics
. list and explain different types of threats in catipg

environment.
3.0 MAIN CONTENT

3.1 The Security Environment

Security has many facets. Two of the more importenats relate tdata
lossandintrusion Some of the common causes of data loss are:

. Natural phenomenon such as: fire, flood, earthgsakars, riots
or attacks from rodents

. Hardware or software errors: CPU malfunctions, adable
disks or tapes, telecommunication errors, progragsb

. Human errors: incorrect data entry, wrong tapeisk chounted,

wrong program run, lost disk or tape.

Most of these can be dealt with by maintaining adée backups,
preferably far away from the original data.

3.1.1 System Protection

To protect the system, we must take security measatrfour levels:

. Physical: The site or sites containing the computer systemst m
be physically secured against armed or surrepstientry by
intruders.

. Human: Users must be screened carefully to reduce thecelsan

of authorising a user who then gives access tonander (in
exchange for a bribe, for example).

. Network: Much computer data in modern systems travels over
private leased lines, shared lines such as: tlenet, or dial-up
lines. Intercepting these data could be just amharas breaking
into a computer; and interruption of communicatioosuld
constitute a remotdenial-of-service attack diminishing users'
use of and trust in the system.

. Operating system: The system must protect itself from
accidental or purposeful security breaches.

Security at the first two levels must be maintaimfedperating-system
security is to be ensured. A weakness at a higlel le¥ security
(physical or human) allows circumvention of stimiv-level (operating-
system) security measures.

77

CIT381 FILE PROCESG AND MANAGEMENT

Furthermore, the system hardware must provide glioteto allow the
implementation of security features. Most conterapproperating
systems are now designed to provide security featur

3.2 Intrusion/Categories of Intruders

Intrusion is a set of actions that attempt to campse the integrity,
confidentiality, or availability of any resource arcomputing platform.

Categories of Intruders

. Casual prying by non technical users Many people have
terminals to timesharing systems on their desksl Aoman
nature being what it is, some of them will readeotpeople’s
electronic mails and other files if no barriers ataced in the
way.

. Snooping by insiders Students, system programmers, operators,
and other technical personnel often consider ibdoa personal
challenge to break the security of a local compsystem. They
are often highly skilled and are willing to devaesubstantial
amount of time to the effort.

. Determined attempt to make moneySome bank programmers
have attempted banking system to steal from th&.fachemes
vary from changing software to truncating ratheantlrounding
off interest, keeping the fraction of money for riselves,
siphoning off accounts not used for years, to bizak (“pay me
or | will destroy all the bank’s records.”)

. Commercial or military espionage. Espionage refers to a
serious and well funded by a competitor or a foretguntry to
steal programs, trade secrets, patents, technatogyjt designs,
marketing plans, and so forth. Often this attemgt involve
wiretapping or even erecting antennas at the cosnpgatpick up
its electromagnetic radiation.

The amount of effort that one puts into securitg @notection clearly
depends on who the enemy is thought to be. Abs@idtection of the
system from malicious abuse is not possible, bt thst to the
perpetrator can be made sufficiently high to detesst, if not all,
unauthorised attempts to access the informatiadingsin the system.

3.2.1 Intrusion Detection

Intrusion detection strives to detect attempted or successful intnssio
into computer systems and to initiate appropriagsponses to the
intrusions. Intrusion detection encompasses a \aiday of techniques
that vary on a number aikes These axes include:

78

CIT381

FILE PROCESG AND MANAGEMENT

The time that detection occurs. Detection can oatueal time
(while the intrusion is occurring) or after.

The types of inputs examined to detect intrusiveviy.

The range of response capabilities. Simple formgesponse
include alerting an administrator to the potenti@rusion or
somehow halting the potentially intrusive activitjerexample,
killing a process engaged in apparently intrusictevay.

Intrusion can be detected through:

3.3

Auditing and Logging. A common method of intrusion detection
is audit-trail processing, in which security-relevant events are
logged to an audit trail and then matched agattstlasignatures
(in signature-based detection) or analyzed for atous
behavior (in anomaly detection).

Tripwire operates on the premise that many intrusions tr@sul
anomalous modification of system directories atesfi
System-Call Monitoring is a more recent and speculative form
of anomaly detection. This approach monitors precggstem
calls to detect in real time when a process isatag from its
expected system-call behavior.

Design Principles for Security

Some researchers have identified several genaradipes that can be
used as guide to designing secure systems. A bueimary of their
ideas is given below:

System design should be public.

The default should be no access. Errors in whidititeate
access is refused will be reported much faster taars in
which unauthorised access is allowed.

Check for current authority. The system should w©beck
permission, determine that access is permitted. yMeystems
check for permission when a file is opened andaitgrwards.
This means that a user who opens a file and keepgen for
weeks will continue to have access, even if the emwras long
changed the file protection.

Give each process the least privilege possible.

The protection mechanism should be simple, unifand build
to the lowest layers of the system.

The scheme chosen must be psychologically accepthblisers
feel that protecting their files is too much wotlkey just will not
do it.

79

CIT381 FILE PROCESG AND MANAGEMENT

3.4 User Authentication

A major security problem for operating systems ughantication. The

protection system depends on the ability to idgniife programs and
processes currently executing, which in turn depemu the ability to

identify each user of the system. The process aftifying users when

they log on is called user authentication. How dodetermine whether
a user's identity is authentic? Generally, autlcatibn is based on one
or more of three items:

. User possession (a key or card)
. User knowledge (a user identifier and password)
. User attributes (fingerprint, retina pattern, @nsiture).

SELF-ASSESSMENT EXERCISE 1

1. What is intrusion and how can it be detected?

2. State some of the design principles for securingomputing
environment

3. What is user authentication and how can it be implated?

3.4.1 Passwords

The most common approach to authenticating a akssttity is the use
of passwords When a user identifies herself by user ID or aoto
name, she is asked for a password. If the usenisdppassword
matches the password stored in the system, thersya$sumes that the
user is legitimate. Passwords are often used ttegrmbjects in the
computer system, in the absence of more completiegion schemes.
Different passwords may be associated with diffeemtess rights. For
example, different passwords may be used for regafilies, appending
files, and updating files.

Password Vulnerabilities

Passwords are extremely common because they aydceasderstand
and use. Unfortunately, passwords can often besgdesaccidentally
exposed, sniffed, or illegally transferred from authorized user to an
unauthorised one.

There are two common ways to guess a password.

. One way is for the intruder (either human or progrdao know
the user or to have information about the user.

80

CIT381 FILE PROCESG AND MANAGEMENT

. The use of brute force, trying enumeration, or pdissible
combinations of letters, numbers, and punctuationtil the
password is found.

Short passwords are especially vulnerable to tls¢ taethod. For
example, a four-digit password provides only 10,0@0iations. On

average, guessing 5,000 times would produce aatdnie A program

that could try a password every 1 millisecond wouakie only about 5
seconds to guess a four-digit password. Enumeratioat as successful
at finding passwords in systems that allow longaesswords, that
differentiate between uppercase and lowercasedetad that allow use
of numbers and all punctuation characters in pasisvo

In addition to being guessed, passwords can besexipas a result of
visual or electronic monitoring. An intruder camkoover the shoulder
of a user ghoulder surfing) when the user is logging in and can learn
the password easily by watching the keystrokeserAétively, anyone
with access to the network on which a computer dessicould
seamlessly add a network monitor, allowing her &dch all data being
transferred on the networkriffing), including user IDs and passwords.
Encrypting the data stream containing the passwolees this problem.
Exposure is a particularly severe problem if thesspard is written
down where it can be read or lost. Some systent® fosers to select
hard-to-remember or long passwords, which may causger to record
the password. As a result, such systems providérass security than
systems that allow easy passwords!

The final method of password compromise/illegahsfar is the result
of human nature. Most computer installations havela that forbids
users to share accounts. This rule is sometimedemgnted for
accounting reasons but is often aimed at improsewyrity.

3.4.2 Biometrics

There are many other variations to the use of passvy for
authentication. Palmor hand-readers are commonbd u® secure
physical access—for example, access to a datarcértiese readers
match stored parameters against what is being fread hand-reader
pads. The parameters can include a temperature asapell as finger
length, finger width, and line patterns. These dewviare currently too
large and expensive to be used for normal comautirentication.

Fingerprint readers have become accurate and ffestiee and should
become more common in the future. These devicas year finger's
ridge patterns and convert them into a sequenceimibers. Over time,
they can store a set of sequences to adjust fdodation of the finger

81

CIT381 FILE PROCESG AND MANAGEMENT

on the reading pad and other factors. Softwarettoam scan a finger on
the pad and compare its features with these steemliences to
determine if the finger on the pad is the samehasstored one. Of
course, multiple users can have profiles stored, #w@ scanner can
differentiate among them. A very accurate two-facaithentication

scheme can result from requiring a password asagedl user name and
fingerprint scan. If this information is encrypted transit, the system
can be very resistant to spoofing or replay attack.

3.5 Programme Threats
When a program written by one user may be usednbyhar, misuse

and unexpected behavior may result. Some commohaagtoy which
users gain access to the programs of others are:

. Trojan horses
. Trap doors
. Stack and buffer overflow.

3.5.1 Trojan Horse

Many systems have mechanisms for allowing prograniten by users
to be executed by other users. If these prograreseaecuted in a
domain that provides the access rights of the awegwser, the other
users may misuse these rights. A text-editor progfar example, may
include code to search the file to be edited fotate keywords. If any
are found, the entire file may be copied to a spleriea accessible to the
creator of the text editor. A code segment thauses its environment is
called aTrojan horse.

A variation of the Trojan horse is a program thatutates a login
program. An unsuspecting user starts to log in t@rminal and notices
that he has apparently mistyped his password. s @gain and is
successful. What has happened is that his autl#otic key and

password have been stolen by the login emulatoichwhvas left

running on the terminal by the thief. The emulastored away the
password, print out a login error message, and thét user was then
provided with a genuine login prompt.

3.5.2 Trap Door

The designer of a program or system might leavela in the software
that only he/she is capable of using. This typesedurity breach is
calledtrap door. Programmers have been arrested for embezzlomg fr
banks by including rounding errors in their coded amaving the
occasional half-cent credited to their accountss Htcount crediting

82

CIT381 FILE PROCESG AND MANAGEMENT

can add up to a large amount of money, considettiegnumber of
transactions that a large bank executes. Trap dpose a difficult
problem because, to detect them, we have to analiyfee source code
for all components of a system. Given that softveystems may consist
of millions of lines of code, this analysis is mbne frequently, and
frequently it is not done at all!

3.5.3 Stack and Buffer Overflow

This is the most common way for an attacker outeidiie system, on a
network or dial-up connection, to gain unauthoriaedess to the target
system. An authorized user of the system may agothis exploit for
privilege escalation to gain privileges beyond those allowed for that
user. Essentially, the attack exploits a bug imag@m. The bug can be
a simple case of poor programming, in which theggammer neglected
to code bounds checking on an input field. Thedmudiverflow attack is
especially pernicious, as it can be run within ateyn and can travel
over allowed communications channels. Such attaeksoccur within
protocols that are expected to be used to commieneigh the machine,
and they can therefore be hard to detect and preVéey can even
bypass the security added by firewalls. One satutethis problem is
for the CPU to have a feature that disallows exenuif code in a stack
section of memory.

3.6 System Threats

Most operating systems provide a means by whichgages can spawn
other processes. In such an environment, it is ijplesso create a

situation where operating system resources andfilesrare misused.
The two most common methods for achieving this sesare worms

and viruses. We discuss each below, along withnaesdhat different

form of system threatlenial of service

3.6.1 Worms

A worm is a process that uses thgawnmechanism to ravage system
performance. The worm spawns copies of itself, gisup system

resources and perhaps locking out all other preses®n computer

networks, worms are particularly potent, since thegy reproduce

themselves among systems and thus shut down tine petwork.

3.6.2 Viruses
Like worms, viruses are designed to spread intergpinogrammes and

can wreck havoc in a system by modifying or destgyfiles and
causing system crashes and programme malfunctdhereas a worm

83

CIT381 FILE PROCESG AND MANAGEMENT

Is structured as a complete, standalone prograrmamieys is a fragment
of code embedded in a legitimate programme. Viruses a major
problem for computer users, especially users ofenmmputer systems.
Multiuser computers generally are not susceptibleituses because the
executable programs are protected from writingh@ydperating system.
Even if a virus does infect a programme, its povegeslimited because
other aspects of the system are protected. Sirggle-systems have no
such protections and, as a result, a virus hagtireeViruses are usually
spread when users download viral programmes froiligupulletin
boards or exchange disks containing an infection.

In recent years, a common form of virus transmiss$ias been via the
exchange of Microsoft Office files, such as Micrast&Word documents.
These documents can contain so-calie@cros (or Visual Basic

Programmes) that programmes in the Office suiter@/M8owerPoint, or
Excel) will execute automatically.

Most commercial antivirus packages are effectivairesg only particular
known viruses. They work by searching all the paogmes on a system
for the specific pattern of instructions known take up the virus.
When they find a known pattern, they remove thetruasions,
disinfectingthe programme. These commercial packages haveogatal
of thousands of viruses for which they search. $&siand the antivirus
software continue to become more sophisticated.eSanmises modify
themselves as they infect other software to avmdoiasic pattern-match
approach of antivirus software. The antivirus saftsvin turn now looks
for families of patterns rather than a single patte identify a virus.

The best protection against computer viruses is/gmton, or the
practice of safe computing Purchasing unopened software from
vendors and avoiding free or pirated copies fromlipuisources or disk
exchange is the safest route to preventing infectiBor macro viruses,
one defense is to exchange Word documents in amattve file format
calledrich text format (RTF). Unlike the native Word format, RTF
does not include the capability to attach macrasother defense is to
avoid opening any e-mail attachments from unknogerst

3.6.3 Denial of Service

The last attack categorglenial of service is aimed not at gaining
information or stealing resources but rather atughsng legitimate use
of a system or facility. An intruder could deletethe files on a system,
for example. Most denial-of-service attacks invobygstems that the
attacker has not penetrated. Indeed, launchingttackathat prevents
legitimate use is frequently easier than breakingp ia machine or
facility.

84

CIT381 FILE PROCESG AND MANAGEMENT

3.7 File Protection
There are three most popular implementations efdibtection:
. File Naming

It depends upon the inability of a user to accefikede cannot name.
This can be implemented by allowing only usersde the files they
have created. But since most file systems allow arlimited number of
characters for filenames, there is no guaranteehiltausers will not use
the same filenames.

. Password Protection

This scheme associates a password to each féeuser does not know
the password associated to a file then he canmessadt. This is a very
effective way of protecting files but for a userambwns many files, and
constantly changes the password to make sure thaddy accesses
these files will require that users have some syate way of keeping
track of their passwords.

. Access Control

An access list is associated with each file oraling. The access list
contains information on the type of users and amthat they can do
on a directory or file. An example is the followiagcess list associated
to a UNIX file or directory:

drwXxrwxrwx

Thed indicates that this is an access list for a dinggtthe first
rwx indicates that it can be read, written, and exetig the
owner of the file, the seconavx is an access information for
users belonging to the same group as the ownere{sbare on
the system is a list of users belonging to sameigras the
owner), and the lastwx for all other users. Thewx can be
changed to just - - indicating that it can only be read, or — w -
for write-only, - - x for execute only.

SELF-ASSESSMENT EXERCISE 2
1. Write short notes on the following:
a. Viruses

b. Worms
C. Denial of service

85

CIT381

4.0

FILE PROCESG AND MANAGEMENT

Trojan horse
Trap door

What are the different ways through which a fdeuld be
protected?

CONCLUSION

The data stored in the computer system must beegisat from
unauthorised access, malicious destruction oraditer, and accidental
introduction of inconsistency. It is easier to pEitagainst accidental
loss of data consistency than to protect againdicimas access to the
data. Absolute protection of the information stored computer system
from malicious abuse is not possible; but the tmshe perpetrator can
be made sufficiently high to deter most, if not attempts to access that
information without proper authority.

Methods of preventing or detecting security incideinclude intrusion-
detection systems, auditing and logging of systeants, monitoring of
system software changes, and system-call monitoring

5.0

SUMMARY

In this unit, you have learnt that:

PoONPE

86

Data loss could be caused by natural tragedy (as@&arthquake,
flood), hardware or software failure and humanrsrro

Users can be authenticated by the use of passwanhetrics,
etc

Computer files can be attacked through System thr@aojan
horse, trap doors, stack and overflow buffer) arayam threats
(Worms and Virus)

Files can be protected through password, file ngramd access
control

Passwords are vulnerable to attack and may giveeketype of
file/ system protection.

TUTOR-MARKED ASSIGNMENT

Compare and contrast viruses and worms.

Write all that you know about intrusion.

What do you understand by System and Program ##eat
What do you understand by “Safe Computing”?

CIT381 FILE PROCESG AND MANAGEMENT

7.0 REFERENCES/FURTHER READING

Claybrook, B. G. (1991)File Management Techniquedlew York:
John Wiley.

Davis, W.S. & Rajkumar, T.M. (2001pperating System: A Systematic
View, (5th Edition). New Jersey: Addison-Wesley.

Deitel, H. M. (2004).Operating Systems, (3rddition). New Jersey:
Prentice Hall.

Stallings, Williams. (2004)Operating Systems; Internal and Design
Principles,(5th Editior). New Jersey: Prentice Hall.

Tanenbaum, A. S. (2006Modern Operating Systen{3rd Edition).
New Jersey: Prentice Hall.

87

CIT381 FILE PROCESG AND MANAGEMENT

MODULE 3 FILE PROCESSING AND APPLICATIONS

Unit 1 Data Validation

Unit 2 File Managers

Unit 3 Managing Files in Windows

Unit 4 File Sorting, Searching, and Merging
Unit 5 File Handling in High Level Languages

UNIT 1 DATA VALIDATION
CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content
3.1 Data Validation
3.2 Validation Methods
3.3 Validation Rule
3.4 Validation Criteria
3.5 Data Dictionary
3.6 Data Corruption
4.0 Conclusion
50 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION

It is very essential that data being input to aadatocessing task are
accurate and meet all conditions for its usagea@atld be in form of
numbers, text, images, or sounds. A computer camaiice errors in
the data being processed in the way that human¥Valmation checks
are an attempt to build into the computer prograrpmeer of judgment
so that incorrect items of data are detected gnorted.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

. explain data validation concepts

. explain different data validation procedures
. discuss validation rule and validation criteria
. define what data dictionary is

. explain data corruption.

88

CIT381 FILE PROCESG AND MANAGEMENT

3.0 MAIN CONTENT
3.1 Data Validation

In compuing, data validation is the process of ensuring that a
programme operates on clean, correct and apprepdata. It uses
routines, often calledvalidation rule$ or “check routin€s that check
for correctness, meaningfulness, and security tf theat are input to the
system. The rules may be implemented through thenaated facilities
of a data dictionary or by the inclusion of explicit_application
progranme validation logic.

The checks can be made at two steps:

a. Input — when data is first input to the computeffedent checks
can be applied to prevent errors going forwardpfocessing.
b. Update — further checking is possible when datautingre

matched with master files.
3.2 Validation Methods

. Format or picture check

Checks that the data is in a specified format (tatep e.g., dates are in
the format DD/MM/YYYY.

. Data type checks

Checks the data type of the input and give an enegsage if the input
data does not match with the chosen data type,le.gn input box
accepting numeric data, if the letter 'O" was typestiead of the number

zero, or letter ‘I’ is entered instead of figure, ‘dn error message would
appear.

. Range check

Checks that the data lie within a specified ranfevadues, e.g., the
month of a person's date of birth should lie betwkand 12.

. Limit check

Unlike range checks, data is checked for one liomty, upper OR
lower, e.g., data should not be greater than 2 (>2)

89

CIT381 FILE PROCESG AND MANAGEMENT

. Presence check

Checks that important data are actually present lzance not been
missed out, e.g., customers may be required to hiaeie telephone
numbers listed.

. Check digits

Used for numerical data. An extra digit is addedhtoumber which is
calculated from the digits. The computer checks tdlculation when
data are entered, e.g., The ISBN (Internationahd@&ted Book Number)
for a book. The last digit is a check digit caltathusing a modulu$l
method.

. Batch totals

Check for missing records. Numerical fields mayalleled together for
all records in a batch. The batch total is entesdithe computer checks
that the total is correct, e.g., add the 'Total tCiosld of a number of
transactions together.

. Hash totals

This is just a batch total done on one or more mignfeelds which
appears in every record,g, add the Telephone Numbers together for a
number of Customers.

. Spelling and grammar check

Look for spelling and grammatical errors.

. Consistency Checks

Checks fields to ensure data in these fields cpomds, e.qg., If Title =
“Mr.”, then Gender = "M".

. Cross-system Consistency Checks

Compares data in different systems to ensure g¢bissistent, e.g., the
address for the customer with the same id is theesa both systems.
The data may be represented differently in differgystems and may
need to be transformed to a common format to bepeoad, e.g., one
system may store customer name in a single nangk d& 'Yaradua,
Shehu M', while another in three different fiel#srst Name (Shehu),
Last Name (Yaradua) and Middle_Name (Musa); to ampghe two,

the validation engine would have to transform datan the second

90

CIT381 FILE PROCESG AND MANAGEMENT

system to match the data from the first, for examplsing SQL:
Last Name || ', ' || First Name || substr(Middlenbdlal, 1) would
convert the data from the second system to loak tile data from the
first “Yaradua, Shehu M.

. File existence check

Checks that a file with a specified name existas Theck is essential
for programs that use file handling.

. Logic check

Checks that an input does not yield a logic ereog,, an input value
should not be 0 when there will be a number thadds it somewhere
in a programme.

3.3 Validation Rule

A validation rule is a criterion used in the praced data validation
carried out after the data has been encoded ontopam medium and
involves a data vet or validation programme. Thidistinct fromformal

verification, where the operation of a programme is determioebte

that which was intended, and that meets the purpose

The method is to check that data falls into thereypate parameters
defined by the systems analyst. A judgment as tetlér data is valid is
made possible by the validation program, but incdrensure complete
accuracy. This can only be achieved through theofisdl the clerical
and computer controls built into the system atdbgign stage.

The difference between data validity and accuraay be illustrated
with a trivial example. A company has establishgaeesonnel file and
each record contains a field for the Job Grade.pdrenitted values are
A, B, C, or D. An entry in a record may be validdasmccepted by the
system if it is one of these characters, but it matybe the correct grade
for the individual worker concerned. Whether a gradcorrect can only
be established by clerical checks or by referencether files. During
systems design, therefore, data definitions arabbshed which place
limits on what constitutes valid data. Using thekga definitions, a
range of software validation checks can be cawoigd

91

CIT381 FILE PROCESG AND MANAGEMENT

3.4 Validation Criteria

An example of a validation check is the proceduseduto verify an
ISBN.

. Size

The number of characters in a data item value eéslad; for example,
an ISBN must consist of 10 characters only (in revious
version--the standard for 1997 and later has betanged to 13
characters.)

. Format checks

Data must conform to a specified format. Thus, fird 9 characters
must be the digits 0 through 9' the 10th mustitteeethose digits or an
X.

. Consistency

Codes in the data items which are related in sorag @an thus be
checked for the consistency of their relationsfiipe first number of the
ISBN designates the language of publication. foxangple, books
published in French-speaking countries carry tigg di2”. This must

match the address of the publisher, as given elsanih the record.

. Range

Does not apply to ISBN, but typically data must Wé&hin maximum
and minimum preset values. For example, customeoust numbers
may be restricted within the values 10000 to 200@0Cthis is the
arbitrary range of the numbers used for the system.

. Check digit

An extra digit calculated on, for example, an actomumber, can be
used as a self-checking device. When the numbenpst to the

computer, the validation program carries out audation similar to that
used to generate the check digit originally andstblnecks its validity.
This kind of check will highlight transcription @ns where two or more
digits have been transposed or put in the wrongerordhe 10th

character of the 10- character ISBNhe check digit.

92

CIT381 FILE PROCESG AND MANAGEMENT

SELF-ASSESSMENT EXERCISE 1

1. Briefly explain what you understand by data valioia®

2. State at least seven data validation methods yoawkand
explain five of them.

3. What is the difference between data validity ant @ecuracy?

3.5 Data Dictionary

Data Dictionary, in computer science, is the desiom of the data
stored in a database. The content of the dataodaiy may best be
thought of as “data about the data”—that is, desom of all of the

other objects (files, programs, and so on) in §ystesn. In particular, a
data dictionary stores all the various schemasfiédpecifications and
their locations. A complete data dictionary alscludes information

about which programs use which data and which wm@rsnterested in
which reports. The data dictionary is frequentlyegrated into the
system it describes.

3.6 Data Corruption

Data corruption refers to errors in_computata that occur during

transmission or retrieval, introducing unintendédrgges to the original
data. In general, when there is a data corruptlmfile containing that

data would be inaccessible, and the system oretheed application will

give an error. For example, if a Microsoft Wordefis corrupted, when
you try to open that file with MS Word, you will gan error message,
and the file would not be opened. Some programgyoana suggestion
to repair the file automatically. It depends on lidaeel of corruption, and

the in-built functionality of the application to idle the error. There are
various causes of the corruption.

Data corruption during transmission has a variétyanses. Interruption
of data transmission causedormation loss Environmental conditions
can interfere with data transmission, especiallyemvidealing with
wireless transmission methods. Heavy clouds -carckbleatellite
transmissions. Wireless networks are susceptiblenterference from
devices such as microwave ovens.

Data lossduring storage has two broad causes: hardwareseaiihdare
failure. Head crashesnd general wear and tear of media fall into the
former category, while software failure typicallgaurs due to_bugm

the code.

When data corruption behaves as a poigasacess, where each lat
data has an independently low probability of beitltanged, data

93

CIT381 FILE PROCESG AND MANAGEMENT

corruption can generally be detected by the usehetksumsand can
often be corrected by the use of error correctodes

If an uncorrectable data corruption is detectecyc@rdures such as
automatic retransmission or restoration from baeskcgin be applied.
Certain levels of RAIDdisk arrays have the ability to store and evaluate
parity bits for data across a set of hard disks aad reconstruct
corrupted data upon the failure of a single or pldtdisks, depending
on the level of RAID implemented.

If appropriate mechanisms are employed to detedt remedy data
corruption, data integrity can be maintained. Tls particularly
important in_bankingwhere an undetected error can drastically aHact
account balance, and in the use of encryptedompressedata, where
a small error can make an extensive dataset ureisabl

SELF-ASSESSMENT EXERCISE 2

1. What is data dictionary?

2. What are the various factors that can be respandin data
corruption?

4.0 CONCLUSION

Various methods by which data can be validated haen discussed. It
Is always essential that data to be used in dateepsing are accurate
and falls within the allowed limit. Accuracy andpappriateness of data
ensure integrity of the system and all processatsg around it.

5.0 SUMMARY

In this unit, you have learnt that:

. Data validation is the process of ensuring thatogmam operates
on clean, correct and appropriate data.

. Various methods are available to make sure that al&t accurate

. Validation rule is a criterion used in the procetgdata validation

. Data dictionary is a description of the data stonea database

. Data corruption refers to errors in_computdgita that occur

during transmission or retrieval.
6.0 TUTOR-MARKED ASSIGNMENT

1 Write exhaustively on the various methods of datigdation
2. Discuss validation rules and validation criteria

3. What is the importance of data dictionary?

4 What do you understand by data corruption?

CIT381 FILE PROCESG AND MANAGEMENT

7.0 REFERENCES/FURTHER READING

www.http://en.wikipedia.org/wiki/Data corruption

www.http://en.wikipedia.org/wiki/Validation rufe

www.http://en.wikipedia.org/wiki/Data validati®n

Microsoft ® Encarta ® 2007. © 1993-2006 Microsofirgoration.

95

CIT381 FILE PROCESG AND MANAGEMENT

UNIT 2 FILE MANAGERS
CONTENTS

1.0 Introduction
2.0 Objectives
5.0 Main Content
5.1 File Manager
5.1.1 Orthodox File Managers
5.1.2 Features of Orthodox File Managers
5.2 File-List File Manager
5.3 Directory Editors
5.4 Navigational File Manager
5.4.1 Features of Navigational File Manager
5.5 Spatial File Manager
5.5.1 Features of Spatial File Manager
5.5.2 Dysfunctional Spatial File Managers
5.6 3D File Managers
5.7 Web-Based File Managers
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION
Various implementations of file management routiaesavailable. The
utility software, as they are called is either greged with operating

system or available as off-the-shelf software. Timst illustrates file
management software with various examples.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

. list the different types of file managers
. discuss peculiar features of each of the file marsag
. identify which file is in use on any computer syste

3.0 MAIN CONTENT

3.1 File Manager
A file manageror file browseris a computer program that provides a

user interface to work with file systems. The mo@inmon operations
are create open edit, view, print, play, rename move copy, delete

96

CIT381 FILE PROCESG AND MANAGEMENT

attributes properties search/find and permissions Files are typically
displayed in a hierarchy. Some file managers confi@atures inspired
by web browsers, including forward and back navaoyetl buttons.
Some file managers provide network connectivitynsas FTP, NFS,
SMB or WebDAV. This is achieved either by allowitige user to
browse for a file server, connect to it and actbesserver's file system
like a local file system, or by providing its ownullf client
implementations for file server protocols.

3.1.1 Orthodox File Managers

Orthodox file managers or “Commander-like” file nragers have three
windows (two panels and one command line windowth@lox file
managers are one of the older families of file ng@ns. They develop
and further extend the interface introduced by J8wmcha’'s famous
Norton Commander for DOS. The concept is more themty years old
as Norton Commander version 1.0 was released i6.198spite their
age they are actively developed and dozens of mmgheations exist for
DOS, UNIX and Microsoft Windows.

3.1.2 Features of Orthodox File Managers
The following features define the class of orthofitexmanagers.

. They present the user with a two-panel directoegywconsisting
of one active and one passive panel. The lattesysvgerves as a
target for file operations. Panels are shrinkabi@ i shrunk they
expose the terminal window hidden behind them. Naigmronly
the last line of the terminal window (the commaine) is visible.

. They provide close integration with an underlyingpe@ating
System shell via command line and associated tatmvmdow
that permits viewing the results of executing thellscommand
entered on the command line (e.g., via Ctrl-O shubrin Norton

Commander).

. They provide the user with extensive keyboard slubst

. The file manager can be used without or with midiose of the
mouse.

. Users can create their own file associations amigtscthat are

invoked for certain file types and organize thesepss into a
hierarchical tree (e.g., as a user script libraryser menu).

. Users can extend the functionality of the managerthe so
called User menuor Start menuand extensions menu. Norton
Commander introduced the concept of user-definel@ fi
associations that is now used in all modern fileaggrs.

97

CIT381 FILE PROCESG AND MANAGEMENT

Other common features include:

. Information on the “active” and “passive” panelsyntee used for
constructing commands on the command line. Examptdgde
current file, path to left panel, path to right piretc.

. They provide an in-built viewer for (at least) thmst basic file
types.
. They have a built-in editor. In many cases, theéoedian extract

certain elements of the panels into the text bemhted.

. Many support virtual file systems (VFS) such aswingy
compressed archives, or via an FTP connection.

. They often have the wol@bmmandein the name.

An orthodox file manager typically has three windowwo of the
windows are called panels and are symmetricallytipogd at the top of
the screen. The third is the command line whichessentially a
minimised command (shell) window that can be expdrd full screen.
Only one of the panels is active at a given timbe Tactive panel
contains the “file cursor”. Panels are resizablachE panel can be
hidden. Files in the active panel serve as theceoof file operations
performed by the manager. For example, files cacopéd or moved to
the passive panel. This gives the user the abibtyuse only the
keyboard with the convenience of the mouse interfabe active panel
shows information about the current working diregtand the files that
it contains. The passive (inactive) panel showsctirgents of the same
or other directory (the default target for file ogions). Users may
customize the display of columns that show reledatinformation.
The active panel and passive panel can be swit(dfésh by pressing
the tab key). Other user interface elements include

1. Path: shows the source/destination location ofittextory in use

2. Information about directory size, disk usage andk dname
(usually at the bottom of the panels)

3. Panel with information about file name, extensidate and time
of creation, last modification, permissions (atit#s) and others

4. Info panel with number of files in directory, suni size of

selected files

Tabbed interface (usually GUI file managers)

Function keys: F1 to F10 has all the same functionder all
orthodox file managers. Examples: F5 always copie) from
the active to the inactive panel, while F6 movesfile.

S

The introduction of tabbed panels in some file ngena (for example
Total Commander) made it possible to manipulateentiban one active
and passive directory at a time.

98

CIT381 FILE PROCESG AND MANAGEMENT

Orthodox file managers are among the most portéldemanagers.
Examples are available on almost any platform Both command-line
interface and graphical user interface. This isahly type of command
line managers that have a published standard ofirttezface (and
actively supported by developers). This makes ssgie to do the same
work on different platforms without much relearnioigthe interface.

Sometimes they are called dual-pane managersmathat is typically

used for programs such as the Windows File Expldtas technically

incorrect since they have three windows includingaammand line
window below (or hidden behind) two symmetric pan€ommand line
windows play a very prominent role in the functibtyaof this type of

file manager. Furthermore, most of these progradiog/aising just one
pane with the second one hidden. Focusing on 'gaaks' may be
misleading; it is the combination of all of theseatures which is
important.

In summary, a chief distinguishing feature is theespnce of the
command line window and direct access to shelltvig window - not
the presence of two symmetric panes which is xalbtisuperficial.

Notable examples include:

» Altap Salamandere File Commander <« PathMinder

 Demos » FreeCommander <« SE-Explorer
Commander e Krusader * Total Commander

« Directory Opus « Midnight * Volkov

* Dos Navigator Commander Commander

* Double « muCommander * WinSCP
Commander * Norton Commandere ZTreeWin

* FAR Manager

3.2 File-List File Manager

Less well-known, but older are the so-call@é-list file managers.
Examples includeflist which was in use since 1981 on the
Conversational Monitor System. This is a variant folist which
originated before late 1978 according to commentstd author Theo
Alkema.

The flist program provides a list of files in the user's riisk” and
allows sorting by any of the file attributes. Thie fattributes could be
passed to scripts or function-key definitions, makit simple to use flist
as part of CMS EXEC, EXEC 2 or xedit scripts.

99

CIT381 FILE PROCESG AND MANAGEMENT

This program ran only on IBM VM/SP CMS, but was thspiration for
other programs, for exampféelist (a script run via the Xedit editor),
and programs running on other operating systemg&s&hnclude a
program also calledlist running on OpenVMS andfllist (from the
name of the corresponding internal IBM programUsrix.[*"

3.3 Directory Editors

While this category is known as file managers, lderoterm isdirectory
editor, which dates back at least to 1978. There wasextdry editor
written for EXEC 8 at the University of Marylandyalable to other
users at that time. The term was used by otherdess, e.g., thdired
program written by Jay Lepreau in 1980, which rarB&D. This was in
turn inspired by an older program with the same eawnmning on
TOPS-20.Dired inspired other programs, e.g., dired the editaipsc
(for emacs and similar editors) as welldesl.

SELF-ASSESSMENT EXERCISE 1

1. What is a file browser?
2. What are some of the features of orthodox file gens?
3. Write briefly on file-list file manager.

3.4 Navigational File Manager

A navigational file manageralso called aExplorer type manager, is a
newer type of file manager which became prominestabse of its
integration in Microsoft Windows. The Windows Expdo is a classic
representative of the type, using a "navigatiomadétaphor to represent
file system locations. Since the advent of GUIsh@s become the
dominant type of file manager for desktop computbeng used, for
example, in all Microsoft Windows products.

Typically it has two panes, with the file systeraetiin the left pane and

the current directory in the right one. For Mac ®Sthe Finder is an
example of a navigational file manager.

100

CIT381 FILE PROCESG AND MANAGEMENT

Fig 21: The Miller Column Browser from GNUstep isa type of
Navigational File Manager.

Source: www.en.wikipedia.com

3.4.1 Features of Navigational File Manager

. The window displays the location currently beingwed.

. The location being viewed (the current directorgih de changed
by the user, by opening folders, pressinigaak buttontyping a
location, or using additional pane with the navigattree
representing part or all the file system.

. Icons represent files, programs, and directories.

The interface in a navigational file manager oftesembles a web
browser, complete witlhack forward buttons that work with history,
and maybe evereload buttons. Sometimes there is also an address bar
where the file or directory path (or URL) can bpdy.

Moving from one location to another need not opere& window. At
the same time several file manager instances campeeed, and they
can communicate with each other via drag-and-drog elipboard
operations, so it is possible to view several doees simultaneously
and perform cut-and paste operations between icessan

Most navigational managers have two panes withlgftepane a tree
view of the file system. The latter serves as thestmcommon
instrument for file system navigation. This mealnat tunlike orthodox
managers, the two panes are asymmetrical: the (ustally left)
provides the tree view of file system and the sddosually right) gives
file view of the current directory.

101

CIT381 FILE PROCESG AND MANAGEMENT

When a directory of the tree is selected it becomasent and the
content of the second (right) pane changes' tdfitbe in the current
directory. File operations are based on drag-aog-dand editor
metaphors: users can select and copy files or tdiies into the
clipboard and then paste them in a different placthe file system or
even in a different instance of file manager.

Example of Navigational File Manager

Notable examples include:

Windows Explorer
Mac OS X Finder

XTree /| ZTreeWin
XYplorer

3.5 Spatial File Manager

 — T —
Fig 22: The Nautilus File Manager
Source: www.en.wikipedia.com

Spatial file managers use a spatial metaphor toesept files and
folders as if they were real physical objects. Ats) file manager
imitates the way people interact with physical otge

3.5.1 Features of Spatial File Manager

Some ideas behind the concept of a spatial fileaganare:

. A single window represents each opened folder.

. Each window is unambiguously and irrevocably tieml &
particular folder.

. Stability: files, folders, and windows go where thger moves

them, stay where the user puts them (“preserver theatial
state”), and retain all their other “physical” cheteristics (such
as size, shape, color and location).

. The same item can only be viewed in one windowtaha.

102

CIT381 FILE PROCESG AND MANAGEMENT

As in navigational managers, when a folder is ogenghe icon
representing the folder changes—perhaps from argenshowing a
closed drawer to an opened one, perhaps the ®lo®n turns into a
silhouette filled with a pattern—and a new wind@wpened.

Examples of Spatial File Manager

Examples of file managers that to some extent uspaial metaphor
include:

. Apple’s Finder 5 to 9 (versions up to Mac OS X)

. RISC OS Filer

. Amiga’s Workbench

. GNOME'’s Nautilus from version 2.6 onwards

. BeOS's Tracker

. 0S/2’s Workplace Shell

. Digital Research's GEM (implemented in Atari TOS] aas a
somewhat reduced version for PCs)

. ZDESKTOP and FILEMAGE Zoomable File-System Viewers
(spatial view of hierarchical data)

3.5.2 Dysfunctional Spatial File Managers

. Windows Explorer in Windows 95 was set as a spdilel
manager model by default; but because it also wbrae a
navigational file manager, folders could be opemednultiple
windows, which made it fail all the above criteriater versions
gradually abandoned the spatial model.

. Apple's Finder in Mac OS X — much like in Explorghe
integration of spatial and navigational mode med#mst the
spatial mode does not actually work.

3.6 3D File Managers

Some projects have attempted to implement a threergsional method
of displaying files and directory structures. Thea& implementation
tends to differ between projects, as three-dimenadi@le browsing has
not yet become popular and thus there are no constenmdards to
follow.

103

CIT381 FILE PROCESG AND MANAGEMENT

Fig 23: File System Visualizer, One example of &D File
Manager.
Source: www.en.wikipedia.com

Examples of 3D File Managers

Examples of three-dimensional file managers include

. fsn, for Silicon Graphics' IRIX systems, notablyatigred
prominently in one scene from the film JurassickPas a
representation of Unix systems.

. File System Visualizer, or fsv, an open source €lof fsn for
modern Unix-like systems.
. BumpTop, a file manager using a three dimensional

representation of a desktop with realistic physinggended for
use with a stylus and touchscreen.

. Real Desktop, a desktop replacement with simigsitito
BumpTop.
. Knexus, a real-time 3D virtual library interfacBobks' in the

library act as symbolic links to files. The orgaatienal structure
Is free-form similar to a three-dimensional Mind pla

3.7 Web-Based File Manager

Web-based file managers are typically scripts amih PHP, Perl, Asp
or any other server side languages. When instalted local server or
on a remotely hosted server they allow files ardéeis located there to
be managed and edited without the need for FTP $scce

More advanced, and usually commercially distribute@b-based file
management scripts allow the administrator of the manager to
configure secure, individual user accounts, eac¢h individual account
permissions. Authorized users have access to dousnséored on the

104

CIT381 FILE PROCESG AND MANAGEMENT

server or in their individual user folders anytifmem anywhere via a
web browser.

A web-based file manager can serve as an orgamzstidigital
repository. For example, documents, digital megialishing layouts,
and presentations can be stored, managed, and dshmtveen
customers, suppliers, remote workers or just iatiérn

SELF-ASSESSMENT EXERCISE 2
1. Why is Navigational file manager very prominent?

2. Why is it that some Spatial File managers are tdrme
“Dysfunctional’?

4.0 CONCLUSION
Various file management software are available eaith its peculiar
advantages and shortfalls. Adequate knowledge edfdifferent groups

will aid the decision to acquire which one will best suited for users’
file management routines.

9.0 SUMMARY

In this unit, you have learnt that:

. A file manager or file browser is a computer pragrahat
provides a user interface to work with file systems
. The most common operations that a file managepeaiorm are

create, open, edit, view, print, play, rename, maopy, delete,
attributes, properties, search/find, and permission

. There are different types of file managers, eadh w$ peculiar
features, advantages and disadvantages.

10.0 TUTOR-MARKED ASSIGNMENT

1. Make a table and list, at least, five exampldésfige file
managers.

2. Why is it that orthodox file managers are enthggiy

3. Compare and contrast 3-D file managers and d#oigal File

managers.

105

CIT381 FILE PROCESG AND MANAGEMENT

7.0 REFERENCES/FURTHER READING

www.http://en.wikipedia.org/wiki/File managers

www.en.wikipedia.org/wiki/Comparison of file manage

www.lifehacker.com/399155/five-best-alternativeefihanagers

106

CIT381 FILE PROCESG AND MANAGEMENT

UNIT 3 MANAGING FILES IN WINDOWS
CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content
3.1 Management Files in Windows
3.2 Sorting Files
3.3 Working with More than One File
3.4 Locating Lost File
3.5 Tips for Management of Electronic Files
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION
As discussed in unit 2 of this module, there armany file managers in
the software market. In this unit, we learn hown@anage files in

Microsoft Windows Operating System. Also discusaeel some useful
tips for a successful management of electronis file

2.0 OBJECTIVES

At the end of this unit, you should be able to:

. illustrate the different ways of managing files windows
environment

. organise and manage files using Windows Explorery M
Computer and even within an application

. explain clearly why it is better to store files peoly than using

the search function.
3.0 MAIN CONTENT

3.1 Management Files in Windows

There are three ways of managing files in Windopsrating systems:

. From within a Programme
. By using My Computer and
. By using Windows Explorer.

107

CIT381 FILE PROCESG AND MANAGEMENT

a. Managing Files from within a Programme

When you choose “File” “Sawe As” from within a programme such
as Microsoft Word, a dialogue box appears with g¢hienportant
features:

“Save in” (near the top of the box)
> A dropdown box that brings up your computer's dioeg
structure, to allow you to choose where to save fitai

. “File name” (near the bottom of the box)

> Allows you to type in a name for your file.

. “Save as type” (at the bottom of the box)

> A dropdown box that allows you to choose a forngpd) for

your file. The default file format will appear withe default file
extension.

Save As I |
S j@n oooooo ts _v_i<:=|a><_|‘j§-mo_s-

|
|
Narie 1 Size [Type [Mdified |
[Corresp Folder 10/5/01 5:45 PM |
(£ Creative Folder 10/5/01 545 PM |
[ENCRIsS Folder 1/31/03 9:30 &M
1 1eep Folder 8/14/01 9:16 PM |
|
|
|
|
|
|

(23 Journal Folder 10/5/01 5:41 PM
o |20 maar Folder 6/10/0211:18 AM
[My Fictures Folder 1/6/03 10149 FM
[MewDiss Folder 1/26/02 1:45 FM
(£ Personal 1 Folder 10/11/01 1:14 FM
(271 Teaching Folder 8f14/01 9:10PM
Ca7TsP Folder 9/18/01 12:55 PM
(2] wwriting Folder 10f28j01 11:...

File: mame: jasic File Management doc =1 = 1!
avreisr'FjDE: [word Document (*.doc) l.j il 7(.%!7‘(&[|
Fig 24: Save As Dialog Box
Source: Captured from MS Windows Screen

These three options also appear when you choos®' “Fi—» “Open”
from within Microsoft Word, but they have slightl§ifferent names.
Other programs will have the same three optiongchviagain might
have slightly different names.

b. Using My Computer

Fig 25: My Computer Icon

Source: Captured from MS Windows Screen

108

CIT381 FILE PROCESG AND MANAGEMENT

Double-clicking on the My Computer icon, which agated in the upper
left-hand corner of your desktop, will open a winddabelled My
Computer. From within this window, you can open,vaocopy, and
delete files; you can also create, move, copy,dabete folders. Double-
clicking on any folder icon also opens My Computaut you will see
the contents of that directory rather than the eotstof your computer.

By Compurer |
J File Edit Miew Go Fawortes Help | !
J@-,a&v@‘%%@%
Back Fanaarnd L it Copy Fazte Unda [relete Froperties
Hame [Tipe | TotalSize | Fiee Gpace |
53 Floppy A1 3% Irich Floppy Disk
= C) Local Disk 18.3GB 9.91GB
& D) CD-ROM Disc
Frinters Sustem Folder
Control Panel Sustem Folder
Diallp Metworking Sustem Faolder
(3] Scheduled Tasks System Folder
gw’eb Folders System Folder
_|8 ob_iecﬁ IR R R R =] .%omputer 4.
Fig 26: My Computer Dialog Box
Source: Captured from MS Windows Screen
. At the “top” level of the directory structure aréet drives,

differentiated by letters:

. A:\'is your floppy disk drive

. C:\'is your hard disk

. D:\'is your Zip, CD, or DVD drive

. F:\'is probably your flash

. Go to “View” at the top of the window to change tay files
and folders are displayed within the window. Themre four
ways to view files and folders:

Large icons

Small icons

List — Choose this when you want to work with sevdiles or
folders at a time.

Details — This is a good mode to work in when yaantwto see
when the file was created, its size, and other mapd
information.

YV VYVYVY

109

CIT381 FILE PROCESG AND MANAGEMENT

. The toolbar has several buttons that enable yovote with files
and folders:

@ }}l

[

X @

[ielete: Properties

&« s wyE A

“ Bk Fanard lp [t Copy FPagle

Fig 27: Tool Bar Panel
Source: Captured from MS Windows Screen

. Up — Choosing “Up” enables you to navigate througle th
computer’s directory structure quickly. Clickingn othis
button will change the contents of the current dew, taking
you “up” in the directory structure until you get the highest
level, at which only the drives are shown.

. Cut — When you single-click on a file or folder toese it, it will
be highlighted in the window. Choosing “Cut” wiklete the
file or folder from its current location and copyto the clipboard
so that it can be pasted elsewhere.

. Copy — Choosing “Copy” will copy a selected file or delr into
the clipboard so that it can be pasted elsewheaué,will not
remove the file or folder from its current location

. Paste— Choosing “Paste” will paste a file or folder tth& stored
in the clipboard into the current location.

. Undo — Choosing “Undo” allows you to undo an actiont thau
have just performed. This is particularly usefuhem you
have just deleted something you didn’t mean totdele

. Delete — Choosing “Delete” will delete a selected file fotder
without copying it to the clipboard.

. Properties — Choosing “Properties” will bring up a box that
gives you information about a particular file otder.

To create a new folder in the current window, yam clo one of two
things:

. Go to “File” “New” “Fotder.” —>
A new folder appears in the current window, and fiblder name is

highlighted that will allow you to name it.

110

CIT381

FILE PROCESG AND MANAGEMENT

Right-click anywhere in the current window (not an icon or
filename) and choose “New” “Folder.”
—>
Right-clicking on a selected file or folder willlav you to do
several useful things, among which are the follgwin
Rename a file or folder by choosing “Rename.” Akiing cursor
will appear in the file or folder name.
Create a desktop shortcut by choosing “Send To"sKbep as
Shortcut.”
—>
Copy the file or folder to a floppy disk by choagifiSend To”
“3 Y2 Floppy (A:).”

—>

Cut, copy, paste, or print a file.

C. Using Windows Explore
Fig 28: Windows Explorer Icon
Source: Captured from MS Windows Screen

In Windows Explorer, the entire directory structuse always
available at all times in the left-hand pane. lis thespect it
differs from My Computer.

Another difference between Windows Explorer and My
Computer is that Windows

Explorer allows you to drag-and-drop files and &kl with the
mouse.

In the left-hand pane, drives, directories, anddgeltories are
visible. To expand your view of the contents of a drive or
directory, click on the- sign next to the directory name. To
collapseyour view of the contents of a drive or directoclick
on the—sign next to the directory name.

To see the contents of a drive or directory, cbcke on it (i.e.,
select it). In the right hand pane, the contentihefselected drive
or directory are then displayed. The right handegamctions just
like the windows in My Computer.

In the example below, the drive C:\ is selected] &m contents are
shown in the right-hand pane:

111

CIT381

Eile Edit

FILE PROCESG AND MANAGEMENT

Hebwork Heighborhood

55 Documents

e | =) | o5 =
Back Fmnard Llndo Lelete Froperties ST
addiess [= oy [=|
Folders > | [[Hame [Size | Tupe [Hadified -
FF) Desktop 1 3eom File Folder 3/29/01 1:55 PM
= Py Computer L1 ADOBEAPP File Folder 9/5/01 3:58 PM
=5 312 Floppw [2:] T3 ADOBEPS Fils Falder £/14/01 957 P
=1 C.] 3 Archives File Faolder 12/6/02 2:55 P
& (o] CaTl File Folder /7400 11:52 PM
Frinters (1 BACKUP File Folder 27401 11:50 P
{Z1 Contral Panel CABEGT File Folder 96501 917 P
Dial-Up M etworking [coROM File Falder 2707 11:47 PM
Scheduled Tasks I3 Cisco File Folder 8/13/01 1:23 PM
2B web Folders 7 Danny's Music File Falder 11.48/01 7:38 PM
@3 Internst Explarer A DELL File Folder 3TA01 11:43 P

My Documents

247507 11:53 P

5P Fiecycle Bin 3 Downloads File Folder 8/13/01 12:52 PM
1 ILFPFPB ackup Filz Faolder 1A15/0310:10 P
[Images File Folder 241502 1:51 FM
1 itc-wireless File: Folder SUBAIT 426 PM
[0 KPCMS Fil= Folder 8/14/01 9:52 PM
7 466 Fil= Falder 3421/02 B:55 P
3 Music Filz Faolder 8430701 10:32 P
7] NetObjects Fusion 4.0 File Folder 2414401 558 PM
F“]| M et hiects Fusion b File Falder

[EE Chieeti=] [plus 25 hidden] Z47ME [Dish liee space. 3.90GE] BT My Computer =

Fig 29: Save As Dialog Box

Source: Captured from MS Windows Screen

In the next example, the drive C:\ has been exphraied the directory
“Documents” has been selected. Its contents apagisd in the right-
hand pane:

[=
| Go |Favortes: Tools Help
J = . = [o = | ey | v =
Back Fanward Up Cuit Copy Paste Undso Delste FPropetties | Wisws
| addiess [b ocuments =]
Folders = ||[[Mame [Size | Tupe [CFadified
EZ Desktop =] |Cacomesp File Folder 10/5/01 5:45 PM
E My Computer (3 Creative File Folder 10/5/01 5:45 PM
=5 2 Floppy (2] I EMCRIES File Folder 1/31/03 9:30 &M
B () 3 ILPPP File Folder 814,01 216 PM
00 3com (3 Journal File Folder 10/5/01 5:41 PM
-{T7] ADDBEAFP O Mesp File Folder 610402 11:16 M
{1 ADOBEPS 3 My Pictures File Folder 1/6/03 10:439 PM
B3 Archives [NewDiss File Folder 1/28/02 1:45 PM
B ATl (3 Personal File Folder 1011401 1:14 P
] BACKUP (3 Teaching File Folder 214401 310 PM
-0 BEGT CaTTSP File Folder 2/18/01 12:55 P
{11 COROM (3 writing File Folder 10/28/01 11:09 &M
&1 Cisco
B0 Danny's Music
G- DELL
[E3} it
-7 Downloads
-7 ILPPPBackup
-0 Images
G- itemwireless
bR « jiid
{12 Shiecti=] (plus 1 hidden] [71E Butes [Disk liee space. 890GE] [B My Computer T

My Documents Dialog Box

Source: Captured from MS Windows Screen

3.2 Sorting Files

112

CIT381 FILE PROCESG AND MANAGEMENT

You can sort files in My Computer and Windows Exploby clicking
once on the Name, Size, Type, or Modified head#iobs. To sort the
files with the most recent listed first, for instan click once on
“Modified.” To re-sort them with the earliest listdirst, click again on
“Modified.”

3.3 Working with More than One File

To select two or more separate files, hold down‘@id” key and click

on each filename. To select a contiguous groujlex in a list, click on
the first filename, then hold down the “Shift” kepd click on the last
filename. All files in between will also be selatteYou can then
perform cut, copy, and delete functions on alldékected files.

3.4 Locating Lost File

Use the “Find File” facility of your operating sgsh by going to “Start”
— "Find” — "Files or Folders.” A box will appear that will alv
you to search for a file by name, by part of itsneguse * as a wildcard
character), by location, by date, by type, or theotriteria.

SELF-ASSESSMENT EXERCISE 1

1. Explain the steps on how you can files in My Conepuind
Windows Explorer?

2. List the different types of operations you can perf with right-
clicking?

3.7 Tips for Management of Electronic Files

It is very important to keep the files on your cartgy organized and up-
to-date. Just as with paper files, the goal of catexpfile management is
to ensure that you can find what you're looking, feven if you're
looking for it years after its creation. The follmg file management
tips will be of help in keeping your files accedsib

. Organise by file types.Make applications easier to find by
creating a folder called Program Files on your el@nd keeping
all your applications there. For instance, the atades for
Word, PowerPoint, Simply Accounting and WinZip wouall
reside in the Program Files folder.

. One place for all. Place all documents in the My Documents
folder and nowhere else. So whether it's a spresetsia letter or
a PowerPoint presentation, it goes here. This mike it easier
to find things and to run backups.

113

CIT381

FILE PROCESG AND MANAGEMENT

Create folders in My DocumentsThese are the drawers of your
computer’s filing cabinet, so to speak. Use planguage to
name your folders; you don’t want to be lookingtlas list of
folders in the future and wondering what “TFK” othatever
other interesting abbreviation you invented means.

Nest folders within folders. Create other folders within these
main folders as need arises. For instance, a fotddied
“Invoices” might contain folders called “2004”, “@6” and
“2006”. A folder named for a client might includiet folders
“customer data” and “correspondence”. The goab isave every
file in a folder rather than having a bunch of @apliiles listed.
Follow the file naming conventions.Do not use spaces in file
names, keep file names under 27 characters, anélusaver
case. So a file named for a place should be noymaather than
Noun Abuja. If you break any of these rules, bestsient about
it.

Be specific.Give files logical, specific names and include date
in file names if possible. The goal when namingdiis to be able
to tell what the file is about without having toewpit and look.
So if the document is a letter to a customer remgdhim that
payment is overdue, call it something like “overdg®206”
rather than something like “letter”. How will youn&w who the
letter is to without opening it? See the next point

File as you go-The best time to file a document is when you first
create it. So get in the habit of using the “Saw dialogue box
to file your document as well as name it, puttibgnithe right
place in the first place.

Order your files for your convenience.If there are folders or
files that you use a lot, force them to the toptd file list by
renaming them with a ! or an AA at the beginningtioé file
name.

Cull your files regularly. Sometimes what'’s old is obvious as in
the example of the folder named “Invoices” aboweit's not,
keep your folders uncluttered by clearing out the fides. Do
NOT delete business related files unless you arsolately
certain that you will never need the file againstéad, in your
main collection of folders in My Documents, createfolder
called “Old” or “Inactive” and move old files intd when you
come across them.

Back up your files regularly. Whether you're copying your files
onto another drive or onto tape, it's importantset up and
follow a regular back up regime.

The search function is a wonderful thing but itlwiéver match the ease
of being able to go directly to a folder or filé.ylou follow these file
management tips consistently, even if you don’tvkwehere something

114

CIT381 FILE PROCESG AND MANAGEMENT

IS, you know where it should be — a huge advantelgen it comes to
finding what you are looking for.

SELF-ASSESSMENT EXERCISE 2

Outline five of the activities that can be perfodneith files and folders
through Toolbar buttons

40 CONCLUSION
Working with electronic files is more efficient thavorking with paper
files but it is far more rewarding if the variouschniques and tips of

organising and, managing of such files are knowhelps in easier and
efficient information retrieval.

9.0 SUMMARY

In this unit, you have learnt that:

. We can organise and manage files in Windows throkth
Computer, Windows Explorer and even within an Aqgiion
programme.

. Various activities can be performed with right-kliay a file

. Files can be sorted and be searched for on a cemgygtem

. It is good to make use of some helpful tips inisgpof electronic
files.

10.0 TUTOR-MARKED ASSIGNMENT

1. What are the useful tips that can assist ircieffit information
storage and retrieval?

How do you manage files within an applicatioaggramme?
What is the difference between the use of Contndl &hift Keys
when copying files?

wn

7.0 REFERENCES/FURTHER READING

www.cti.itc..virginia.edu/2ttspenddasic file_management.pdf

www.westernu.edu/bin/computing/explorer mangin@sfil

UNIT 4 FILE SORTING, SEARCHING, AND MERGING

CONTENTS

115

CIT381

1.0
1.2
3.0

4.0
5.0
6.0
7.0

1.0

FILE PROCESG AND MANAGEMENT
Introduction

Objectives

Main Content

3.1 Sorting and Search Algorithms
3.1.1 Sorting Algorithms
3.2 Memory Usage Patterns and Index Sorting
3.3 Search Algorithms
3.3.1 Uninformed Search
3.3.2 Informed Search
3.4 Merge Algorithm
3.4.1 Analysis of Merge Algorithm
3.4.2 Language Support
Conclusion
Summary
Tutor-Marked Assignment
References/Further Reading

INTRODUCTION

Computer or electronic files are stored in main ragor secondary

storage devices. We may need to retrieve, arrangeaoipulate these

files for some purposes. There are, thereforepuartechniques that are
available for accomplishing all these tasks. Tm# gonsiders sorting

and search algorithms.

2.0

OBJECTIVES

At the end of this unit, you should be able to:

3.0

116

explain clearly concepts of sorting and searching

describe different Sorting algorithms

list different types of searching techniques

state the merits and shortfalls of sorting anddealgorithms
appreciate importance of memory utilisation andolagment in
search and sorting operations

discuss file merging and why it is less popularnttsrt and
search.

MAIN CONTENT

CIT381 FILE PROCESG AND MANAGEMENT

3.1 Sorting and Search Algorithms

Different types of algorithms abound in the literat with regards to file
sorting, searching, processing and so on. Beloa déscussion on two
of the popular operations on file handling.

3.1.1 Sorting Algorithm

In computer scienceand mathemati¢gsa sorting algorithm is a
prescribed set of well-defined rules or instrucsidhat puts elements of

a listin a certain_orderThe most-used orders are numerical order and
lexicographical orderEfficient sortingis important to optimizing the
use of other algorithms (such as seasstd mergealgorithms) that
require sorted lists to work correctly. It is alsften useful for
canonicalisingdata and for producing human-readable output. More
formally, the output must satisfy two conditions:

1. The output is in non-decreasing order (each elemsam smaller
than the previous element according to the desutad ordey;
2. The output is a permutatipar reordering, of the input.

Since the dawn of computing, the sorting problems &racted a great
deal of research, perhaps due to the complexigobfing it efficiently
despite its simple, familiar statement. For examblebble sortwas
analyzed as early as 1956. Although many considesolved problem,
useful new sorting algorithms are still being intezh (for example,
library sort was first published in 2004). Sorting algorithmse a
prevalent in introductory computer science classbgre the abundance
of algorithms for the problem provides a gentleadtction to a variety
of core algorithm concepts, such _as big O notatitiwide and conquer
algorithms data structuresrandomized algorithmsbest, worst and
average casanalysis, time-space tradeqgfésd lower bounds.

Summaries of Popular Sorting Algorithms are asofed:
. Bubble Sort

This is a sorting algorithm that continuously stepsough a list,
swapping items until they appear in the correcenrBubble sortis a
straightforward and simplistic method of sortingtadaéhat is used in
computer science education. The algorithm startiseabeginning of the
data set. It compares the first two elements, atiekifirst is greater than
the second, it swaps them. It continues doing tbiseach pair of
adjacent elements to the end of the data seteit ¢larts again with the
first two elements, repeating until no swaps haveuoed on the last
pass. While simple, this algorithm is highly ineféint and is rarely used

117

CIT381 FILE PROCESG AND MANAGEMENT

except in education. For example, if we have 1@ehts then the total
number of comparisons will be 10000. A slightlytbetvariant, cocktail

sort, works by inverting the ordering criteria ahe pass direction on
alternating passes.

. Insertion Sort

This is a simple sorting algorithm that is relalyvefficient for small
lists and mostly-sorted lists, and often used asgfanore sophisticated
algorithms. It works by taking elements from thst lone by one and
inserting them in their correct position into a nserted list. In arrays,
the new list and the remaining elements can sherairay's space, but
insertion is expensive, requiring shifting all fsling elements over by
one. Shell sort is a variant of insertion sort teahore efficient.

. Shell Sort

Shell sort was invented by Donald Shell in 1959iniproves upon
bubble sort and insertion sort by moving out ofesrélements more
than one position at a time. One implementation lbardescribed as
arranging the data sequence in a two-dimensionay @and then sorting
the columns of the array using insertion sort. dlthh this method is
inefficient for large data sets, it is one of thestest algorithms for
sorting small numbers of elements.

. Merge Sort

Merge sort takes advantage of the ease of merdiegdy sorted lists

into a new sorted list. It starts by comparing gugro elements (i.e., 1
with 2, then 3 with 4...) and swapping them if tlist should come after

the second. It then merges each of the resultstg df two into lists of

four, then merges those lists of four, and so onij at last two lists are

merged into the final sorted list. Of the algorighdescribed here, this is
the first that scales well to very large list.

. Heap Sort

Heap sort is a much more efficient version of daacsort. It also
works by determining the largest (or smallest) @emof the list,
placing that at the end (or beginning) of the lisgn continuing with the
rest of the list, but accomplishes this task effatly by using a data
structure called aeap a special type dbinary tree Once the data list
has been made into a heap, the root node is geardht be the largest
(or smallest) element. When it is removed and plaatethe end of the
list, the heap is rearranged so the largest elersemining moves to the
root.

118

CIT381 FILE PROCESG AND MANAGEMENT

. Quick Sort

Quick sort is a divide and conquer algorithm whiehes on gpartition
operation: to partition an array, we choose an el@mcalled givot,
move all smaller elements before the pivot, and ena¥ greater
elements after it. This can be done efficientlyimear time and in-place.
We then, recursively sort the lesser and greatérlists. Efficient
implementations of quick sort (with in-place pastiting) are typically
unstable sorts and somewhat complex, but are artih@enfastest sorting
algorithms in practice. Because of its modest spesege, quick sort is
one of the most popular sorting algorithms, avédab many standard
libraries. The most complex issue in quick sorthsosing a good pivot
element; consistently poor choices of pivots casultein drastically
slower performance, but if at each step we chobeamiedianas the
pivot then it works with better performance.

. Bucket Sort

Bucket sort is a sorting algorithm that works bytpianing an array

into a finite number of buckets. Each bucket istBerted individually,

either using a different sorting algorithm, or l@gursively applying the
bucket sorting algorithm. Thus this is most effeetion data whose
values are limited (e.g. a sort of a million integeanging from 1 to
1000). A variation of this method called the singiéfered count sort is
faster than quick sort and takes about the saneethnnun on any set of
data.

. Radix Sort

Radix sort is an algorithm that sorts a list ofefixsize numbers of
length k by treating them as bit strings. We fastt the list by the least
significant bit while preserving their relative erdusing a stable sort.
Then we sort them by the next bit, and so on fraghtrto left, and the

list will end up sorted. Most often, the countirggtsalgorithm is used to
accomplish the bitwise sorting, since the numberaddies a bit can have
is minimal - only ‘1’ or ‘O’.

. Distribution Sort

Distribution sort refers to any sorting algorithrheve data is distributed
from its input to multiple intermediate structureghich are then
gathered and placed on the output. It is typically considered to be
very efficient because the intermediate structaessd to be created, but
sorting in smaller groups is more efficient thartisg one larger group.

119

CIT381 FILE PROCESG AND MANAGEMENT

. Shuffle Sort

Shuffle sort is a type of distribution sort algbnt that begins by
removing the first 1/8 of thie items to be sorted, sorts them recursively,
and puts them in an array. This creates n/8 “bwstk&t which the
remaining 7/8 of the items are distributed. Eachcket” is then sorted,
and the “buckets” are concatenated into a sortexy ar

3.2 Memory Usage Patterns and Index Sorting

When the size of the array to be sorted approachesxceeds the
available primary memory, so that (much slowerkds swap space
must be employed, the memory usage pattern of ngoalgorithm
becomes important, and an algorithm that might hbeen fairly
efficient when the array fit easily in RAM may b@ee impractical. In
this scenario, the total number of comparisons imeso(relatively) less
important, and the number of times sections of mgmuust be copied
or swapped to and from the disk can dominate thdomeance
characteristics of an algorithm. Thus, the numblepasses and the
localisation of comparisons can be more importaantthe raw number
of comparisons, since comparisons of nearby elesnenbne another
happen atsystem busspeed (or, with caching, even at CPU speed),
which, compared to disk speed, is virtually instaeous.

For example, the popular recursive quick sort allgor provides quite
reasonable performance with adequate RAM, but duthd recursive
way that it copies portions of the array it becomesch less practical
when the array does not fit in RAM, because it rnayse a number of
slow copy or move operations to and from disk hiat tscenario, another
algorithm may be preferable even if it requires enmtal comparisons.

One way to work around this problem, which workdlwen complex

records (such as in a relational database) arg Iseied by a relatively
small key field, is to create an index into theagrand then sort the
index, rather than the entire array. (A sorted ivaref the entire array
can then be produced with one pass, reading frarnihex, but often

even that is unnecessary, as having the sortedx igleadequate.)
Because the index is much smaller than the entieg/ @it may fit easily

in memory where the entire array would not, effegiyi eliminate the

disk-swapping problem. This procedure is someticadied ‘tag sort.

Another technique for overcoming the memory-sizebfgm is to
combine two algorithms in a way that takes advasgagf the strength
of each to improve overall performance. For insgatice array might be
subdivided into chunks of a size that will fit dgsh RAM (say, a few
thousand elements), the chunks sorted using asiezffialgorithm (such

120

CIT381 FILE PROCESG AND MANAGEMENT

as quick sort or heap sort), and the results meegegdermerge sort

This is less efficient than just doing merge sorthe first place, but it
requires less physical RAM (to be practical) thenlaquick sort on the
whole array.

Techniques can also be combined. For sorting \&gelsets of data that
vastly exceed system memory, even the index may tede sorted

using an algorithm or combination of algorithmsigeed to perform

reasonably with virtual memory, i.e., to reduce dmeount of swapping

required.

SELF-ASSESSMENT EXERCISE 1

1. List five different sorting techniques.
2. Why is radix sorting technique different from otsier

3.3 Search Algorithm

In computer sciengea search algorithm broadly speaking, is an
algorithm that takes a problem as inpaihd returns a solution to the
problem, usually after evaluating a number of guessolutions. Most
of the algorithms studied by computer scientistt Holve problems are
kinds of search algorithms. The set of all poss#oleitions to a problem
is called thesearch spaceBrute-force searchotherwise known as naive
or uninformed, algorithms use the simplest methbdhe searching
through the search space, whereas informed sedgdritiams use
heuristic functiongo apply knowledge about the structure of the dear
spaceto try to reduce the amount of time spent seagchin

3.3.1 Uninformed Search

An uninformed search algorithm is one that doestake into account
the specific nature of the problem. As such, thay lse implemented in
general, and then the same implementatian be used in a wide range
of problems due to abstractiohhe drawback is that, in actual practice,
many search spaceme extremely large, and an uninformed search
(especially of tree or graph storage structured)) take a reasonable
amount of time for even relatively small examplas. such, practical
needs usually demand something better.

a. List Search

121

CIT381 FILE PROCESG AND MANAGEMENT

Lists and sequences generally, are perhaps the masimonly
encountered data structures; search algorithmstedldpr them are
common as well. The goal is to find one elemera gkt (i.e., from the
list) by some criterion (typically called a key apdrhaps containing
other information related to it). As this is a coomproblem in
computer scienceghe computational complexityf these algorithms has
been intensively studied.

The simplest such algorithm imear search which examines each
element of the list as they are encountered. &xjgensive in running
time compared to many other algorithms. It can $edudirectly on any
unprocessed list, regardless of history, whichdmetimes useful. A
more sophisticated list search algorithm _is bingsarch This is
significantly better than linear searébr large lists, but is sometimes
useful for surprisingly small ones given its in@ean speed. But it
requires the list be sorted before searching andrgdly, that the list be
randomly accessibleThis may force lengthy reads of mass storage
before a binary search can be started. Interpolagg@archs better than
binary search for large sorted lists with ‘fairlyes’ key.

Grover’s algorithmis a quantum algorithnwhich offers quadratic
speedup over classical linear search for unsorsésl However, it runs
only on currently non-existent guantum computers

Hash tablegan also be used for list searches. They run msteot time
in the average case, but have terrible worst-dase tn addition, more
space and time is required to set up such tablesth&r search based on
specialized data structures uses self-balancingrpisearch treessuch
tree searches can be seen as extending the iddaisany search to
allow fast insertion and removal in the data strces.

Most list search algorithms, such as linear sedoamary search, and
self-balancing binary search trees, can be extendbdittle additional
cost to find all values less than or greater thgivan key, an operation
calledrange searchOne of such exception is hash tables, which danno
perform such searches efficiently.

b. Tree Search

Tree search algorithnere the likely the most used searching techniques
for structured data. They examine tredsnodes whether the tree is
explicit or implicit (i.e., generated the searchalthm'’s execution). The
basic principle is that a nodes taken from a_data structurés
successors examined and added to the data struByneanipulating

the data structure, the tree can be explored iferdifit orders. For
instance, level by level (i.e., breadth-first s reaching a leaf node

122

CIT381 FILE PROCESG AND MANAGEMENT

first and backtracking (i.e., depth-first segrcétc. Other examples of
tree-searches include iterative-deepening seatepth-limited search
bidirectional searchand uniform-cost search

The efficiency of a tree search is highly dependgan the number and
structure of nodes in relation to the number ofmgeon that node. If
there are a large number of items on one or modes)dhere may well
be a requirement to use a specific different setachnique for locating
items within that particular set to attain adequyageformance. In other
words, a tree search is not mutually exclusive vatty other search
technique that may be used for specific sets. d method of reducing
the number of relevant items to be searched toetlvashin certain
branches of the tree, thus reducing running tima. &xample, the
Greater Londorntelephone directory may contain entries for 204000
people whose surname is 'Smith' belonging on aliraech on which
are found 'surnames beginning S'. The list of nameg, or may not be,
further ordered (i.e., structured) by subscribe hames or initials. A
binary searcimay be appropriate to locate a particular persibim gwen
name 'Alice' and perhaps thereafter a linear seardbcate a particular
address for a specific Alice Smith.

C. Graph Search

Many of the problems in_graph theooan be solved using graph
traversalalgorithms, such aBijkstra’s algorithm Kruskal's algorithm
the nearest neighbour algorithyrand Prim's _algorithm These can be
seen as extensions of the tree-search algorithms.

3.3.2 Informed Search

In an informed search, a heuristi@at is specific to the problem is used
as a guide. A good heuristic will make an infornse@rch dramatically
out-perform any uninformed search. There are feswnmment informed
list-search algorithms. A possible member of thatiegory is a hash
table with a hashing function that is a heuristasdd on the problem at
hand. Most informed search algorithms explore trddsese include
best-first searchand _A* Like the uninformed algorithms, they can be
extended to work for graphs as well.

a. Adversarial Search

In games such as chegsograms typically maintain and recalculate as
needed, a game treé all possible moves by both players for the entr
position, and the resulting board configurationd are can search this
tree to find an effective playing strategy. Thipayof problem has the
unique characteristic that we must account for pogsible move our

123

CIT381 FILE PROCESG AND MANAGEMENT

opponent might make. Game-playing computer prograamswell as
other forms of_artificial intelligencdike machine planningoften use
search algorithms like the minimax algorithsearch tree pruningnd
alpha-beta pruning

b. Constraint Satisfaction

This is a type of search which solves constraitisfgetion problems
rather than looking for a data value. The soluttmught is a set of
values assigned to a set of variables. Becausevdhables can be
processed in any order, the usual tree searchithligner are not suitable.
Methods of solving constraint problems include coratorial search
and backtracking both of which take advantage of the freedom
associated with constraint problems. Common trickstechniques
involved in backtracking are 'constraint propagdatiavhich is a general
form of ‘forward checking'. Other local search aioms, such as
generic algorithm, which minimise the conflicts,yr@so be practical.

In the minmaxalgorithm one takes first all the minimum values, then --
from them -- takes the maximum value. Naturallg, tihe reverse for the
maxminalgorithm

3.4 Merge Algorithm

Merge algorithmsare a family of algorithmshat run sequentially over
multiple sortedlists, typically producing more sorted lists astpou.
This is well-suited for machines with tape drivelse has declined due
to large random access memoyiesid many applications of merge
algorithms have faster alternatives when a randocess memory is
available.

The general merge algorithm has a set of poinpgrg that point to
positions in a set of listsyL,, Initially they point to the first item in each
list. The algorithm is as follows:

. While any of g_, still point to data inside ofJ., instead of past
the end:

1. do something with the data itemg_ppoint to in their respective
lists.

2. find out which of those pointers points to the itesith the lowest
key; advance one of those pointers to the next iteits list.

3.4.1 Analysis of Merge Algorithm

124

CIT381 FILE PROCESG AND MANAGEMENT

Merge algorithms generally run in time proportiotalthe sum of the
lengths of the lists; merge algorithms that opematdarge numbers of
lists at once will multiply the sum of the lengtbisthe lists by the time
to figure out which of the pointers points to tlogvést item, which can
be accomplished with a hedpsed priority queuan O(log n) time, for
O(mlogn) time, wheren is the number of lists being merged ands
the sum of the lengths of the lists. When mergwg tists each of
lengthm, there is a lower bound ofv- 1 comparisons required in the
worst case.

The classic merge (the one used in merge) sarputs the data item
with the lowest key at each step; given some sdisésl it produces a
sorted list containing all the elements in any lué input lists, and it
does so in time proportional to the sum of the tea@f the input lists.
In parallel computingarraysof sorted values may be merged efficiently
using an all nearest smaller valEsnputation.

3.4.2 Language Support

The C++s Standard Template Librarppas the function std::merge,
which merges two sorted ranges of iterators, addirgblace merge,
which merges two consecutive sorted ranigeglace In addition, the
std::list (linked list) class has its own merge Imoet which merges
another list into itself. The type of the elememisrged must support the
less-than (<) operator, or it must be provided wittustom comparator.

PHPhas the array_merge() and array_merge_recursivag)ions.
SELF-ASSESSMENT EXERCISE 2

1. Explain the basic difference between informed anthformed
search algorithm.

In your own words, define sorting and searching.

Why is it that merge algorithm is not as popularsast and
search algorithm?

wn

4.0 CONCLUSION

There are other algorithms that are available nirgpand searching of
electronic files, but those discussed in this shibuld be sufficient for
now. Mathematical components of each algorithm watentionally
removed as they are thought to be beyond the suboitee course. The
advent of random access memories has narrow dowmetearch on
merge algorithm because there are alternativepghcations using this
algorithm.

5.0 SUMMARY

125

CIT381 FILE PROCESG AND MANAGEMENT

In this unit, you have learnt that:

. Efficient sorting is important to optimizing the use of other
algorithms.

. Examples of sorting algorithms include bubble, itieg, shell,
merge, quick, bucket, radix and distribution sorts.

. Memory utilisation and efficiency of operation afa&ctors to
consider in the choice of any sorting method.

. In searching, uninformed algorithms use the sintphesthod of
searching through the search space.

. Informed search algorithms udeeuristic functionsto apply

knowledge about the structure of the search sfzatg to reduce
the amount of time spent searching.

. Merge algorithms are a family of algorithritsat run sequentially
over multiple_sortedists, typically producing more sorted lists as
output.

. The use of merge Algorithm has declined due tadéhweelopment
of large random access memoyiesd many applications of
merge algorithms have faster alternatives.

6.0 TUTOR-MARKED ASSIGNMENT

1. Explain how memory problems can be averted durioging
operation.

2. Write short notes on any four sorting techniques.

3. Discuss briefly on the searching technique usedgame
programming.

4. Discuss merge algorithm. Does is it have any m@hstip with
sorting?

7.0 REFERENCES/FURTHER READING

Knuth, D. E. (1998).The Art of Computer Programmingyol.3.
Reading, UK: Addison-Wesley.

http://en.wikipedia.org/wiki/Merge algorithm

http://en.wikipedia.org/wiki/Sort algorithm

http://en.wikipedia.org/wiki/Search algorithm

www.citeseer.ist.psu.edu/178743.html

www.ieeexplore.ieee.org/xpls/abs_all.jsp

126

CIT381 FILE PROCESG AND MANAGEMENT

UNIT 5 FILE HANDLING IN HIGH LEVEL
LANGUAGES

CONTENTS

1.0 Introduction
2.0 Objectives
5.0 Main Content
5.1 High Level Programming Language
5.1.1 Fortran File Handling Capability
5.1.2 Testing the Fortran Programme
5.2 C File Input/Output
5.2.1 Opening a File Using Fopen
5.2.2 Closing a Stream Using Fclose
5.3 Text File Operations in C#
5.3.1 Creating a Text File
5.3.2 Reading Contents of a Text File
5.3.3 Appending Content to a Text File
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION

Programming languages have facilities embeddetiemtto read such
data values from a file stored in the computer mgnow any storage
device. The syntax differs from one programmingylsage to another.
The operating system has efficient ways of managiagous files

generated by any programming language. In thisyautwill learn how

Fortran, C, and C# (C Sharp) handle and process fil

2.0 OBJECTIVES

At the end of this unit, you should be able to:

. give reasons why it is convenient to write prograamm high
level languages than machine language

. ultimate i/o capabilities of some high level pragrae languages

. explain how and why programming languages esséntial the
same thing if not for the syntax

. write out the codes to open and close files ingheyramming
language.

127

CIT381 FILE PROCESG AND MANAGEMENT

3.0 MAIN CONTENT

3.1 High Level Programming Language

When a computer executes a programme, it execustseng of very
simple operations such as load, store, add, sup@ad multiply. The
operations are done in machine language which striag of binary
numbers, 0s and 1s. Unfortunately, we humans fiadhime language
very difficult to work with. We prefer to work witiEnglish-like
statements and algebraic equations that are exgreéssorms familiar
to us. We write out our instructions in a high leamguage and then use
special programmes calledompilers and linkers to convert the
instructions into the machine language the compuriderstands.

Programmers use many different high level languagath different

characteristics. Some of them are designed to wak for business
problems, while others are designed for generansific use. Still

others are especially suited for applications ldgeerating systems
programming. It is important to pick a proper laaga to match the
problem that one is trying to solve.

3.1.1 Fortran File Handling Capability

FORTRAN has a standard structure for holding da#t are used in its
programmes. To use files within a FORTRAN programwe will need
some way to select the desired file and to reach foy write to it.
Fortunately, FORTRAN has a wonderful flexible metho read from
and write to files. This mechanism is called thyut/output unit. The
i/o unit corresponds to the first asterisk in tHeA® (*,*) and WRITE
(*,*) statements. If the asterisk is replaced byiannumber, then the
corresponding read or write will be to the devissigned to that unit
instead of to the standard input or output devite i/o0 number must be
of integer value.

Several FORTRAN statements may be used to conisél file input
and output and are presented in the following table

128

CIT381 FILE PROCESG AND MANAGEMENT

Table 10: Fortran input/output statements

I/O Statement | Function

OPEN Associate a specific disk file with a specifec
unit number

CLOSE End the association of a specific disk filghva
specific i/o unit number

READ Read data from a specified i/o0 unit number

WRITE Write data to specified i/o unit number

REWIND Move to the beginning of a file

BACKSPACE | Move back one record in a file

The OPEN statement associates a file with a gilemnit number. Its
form is
OPEN (open_list)

Where open_list contains a series of clauses spegifthe i/o unit
number, the file name, and information about howdoess the file. The
clauses in the list are separated by commas. Trerether items in the
list but let us discuss the five most importantsne

1. AUNIT = clause indicating the i/0 unit number to assoocndth
this file. This has the form
UNIT = int_expr

wheréant_expr can be non-negative integer value.

2. A FILE = clause specifying the status of the file to benake
This clause has the form
FILE = char_expr
Wherechar_expr is a character value containing the name of
the file to be opened.

3. A STATUS=clause specifying the status of the file to benejke
This clause has the form
STATUS= char_expr
where char_expr is one of the following:OLD’ , ‘NEW’,
‘REPLACE’ , ‘'SCRATCH’, and
‘UNKNOWN:!

4. AnACTION=clause specifying whether a file is to be operted f
reading only, for writing only, or for both readiramd writing.
This clause has the form
ACTION= char_expr

129

CIT381 FILE PROCESG AND MANAGEMENT

where char_expr is one of the following: ‘READ’
WRITE’, or ‘READWRITE'. If no action is specified, the file is
opened for both reading and writing.

5. An IOSTAT= clause specifying the name of an integer variable
in which the status of the open operation can l@med. This
clause has the form

IOSTAT=int_var
whereint_var an integer variable. If the OPEN statement is
successful, a zero will be returned in the integetable. If it is
not successful, a positive number correspondiregy dgstem error
message will be returned in the variable.

The above clauses may appear in any order in tliENGatement.

Let us have some programming samples to illustifageinput/output
facility in Fortran.

The programme below reads values of x, y, and rzgulsst directed i/o
from the file INPUT.DAT and will write the values @ariables x, v,
and z to the file OUTPUT.DAT in the specified fortma

OPEN (UNIT=8, FILE=INPUT.DAT, STATUS='OLD,
IOSTAT=IERROR)

READ(8,%)X,Y,Z

OPEN(UNIT=9, FILE=’OUTPUT.DAT,
STATUS="REPLACE’, IOSTAT=IERROR)

WRITE(9,100) X,Y,Z

100 FORMAT (X =, F10.2, 'Y = *, F10.2, Z =

‘ F10.2)

The programme will write the values of the varigb}Y, and Z to the
output file OUTPUT.DAT in the specified format.

PROGRAMME reads

I This programme is written in Fortran 90/95
IPurpose

I To illustrate how to read an unknown number of
values from an ! input data file. Detecting both
any formatting errors and the ! end of file.

|

IMPLICIT NONE

I Declare variables

CHARACTER(len=20) :: filename ! Name of file to
open

130

CIT381 FILE PROCESG AND MANAGEMENT

INTEGER :: nvals =0 I Number of values

read in

INTEGER :: status I'1/0O status

REAL:: value I Real value read
in

I Get the file name and echo it back to the
owner

WRITE(*,*) ‘Please enter input file name’
READ(*,*) filename

WRITE(*,1000) filename

1000 FORMAT (* ¢, ‘The input file name is :
A)

|

I Open the file and check for errors on open.
OPEN(UNIT=3,FILE=filename, STATUS= ‘OLD’,
ACION='"READ’,IOSTAT= Status)
Openif: IF (status = 0) THEN

I OPEN was okay. Read values.

Readloop: DO

READ(3,*,|I0STAT=status) value IGet

next value

IF (status/=0) EXIT IExit
if not valid

nvals = nvals + 1 IValid:
Increase count

WRITE(*,1010) nvals, value IEcho

to the screen
1010 FORMAT(" ‘’Line °‘]16,:Value =

,F10.4)

END DO readloop
|
I The WHILE loop has terminated. Was is it
because of a READ error or ! because of the
input file?
readif: IF (status > 0) THEN ! a READ error
occurred. Tell user.

WRITE (*,1020) nvals + 1

1020 FORMAT('0’,;’An error occurred reading
line *,16)
ELSE! the end of the data was reached. Tell
user.

WRITE(*,1030) nvals

1030 FORMAT('0’,” End of file reached. There
were ‘, 16, &

‘values in the file")

END IF readif

131

CIT381 FILE PROCESG AND MANAGEMENT

ELSE openif

WRITE(*,1040) status

1040 (* ‘, ‘Error opening file: IOSTAT =
",16)
END IF openif

I Close file
CLOSE (UNIT =8)
END PROGRAMME

Note that the input file is opened wiBTATUS= ‘OLD’, since we
are reading from the file and the input data muskay exist before the
programme is executed.

3.1.2 Testing the Fortran Programme

We will create two input files: one with valid dadad one with an input
data error. We will run the programme with bothuhfiles and verify

that it works correctly both for valid data and alaontaining errors.
Also we will run the programme with an invalid filmme to show that
it can properly handle missing input files.

The valid input file is calledREAD1.DAT. It contains the following
lines:

-17.0

30.001

1.0

12000.

-0.012
The invalid input file is calledREAD2.DAT. It contains the following
lines:

-17.00

30.001

ABCDEF

12000.

-0.012
Running these files through the programme yielésdtiowing results:
C>read
Please enter input file name:

‘readl.dat’

The input file name is: readl.dat

Line 1: Value = -17.0000
Line 2: Value = 30.0000
Line 3: Value = 1.0000
Line 4: Value = 12000.0000

Line 5: Value = -.0120

132

CIT381 FILE PROCESG AND MANAGEMENT

End of file reached. There were5 values in the

file.

C> read

Please enter input file name:
‘read2.dat’

The input file name is: read2.dat
Line 1: Value = -17.0000
Line 2: Value = 30.0000

An error occurred reading line 3

Finally, let us test the programme with an invatigut file name:
C> read

Please enter input file name:

‘JUNK.DAT’

The input file name is: JUNK.DAT

Error opening file: IOSTAT =6416

The number ol OSTAT error reported by this programme will vary
from processor to processor, but it will alwaysositive.

3.2 C File Input/Output

The C programming language provides many standarary functions
for file input and output. These functions makethp bulk of the C
standard library header <stdio.h>. The I/O fundidg of C is fairly

low-level by modern standards; C abstracts all Higerations into
operations on streams of bytes, which mayibput stream%or “output

stream&. Unlike some earlier programming languages, C maglirect

support for random-access data files; to read faamcord in the middle
of a file, the programmer must create a streank sethe middle of the
file, and then read bytes in sequence from thastre

The stream model of file 1/O was popularized by theix operating
system, which was developed concurrently with thg@régramming
language itself. The vast majority of modern opetatsystems have
inherited streams from Unix, and many languagekenC programming
language family have inherited C's file 1/0O intedawith few if any
changes (for example, PHP). The C++ standard {braflects the
“stream” concept in its syntax.

3.2.1 Opening a File Usingropen

A file is opened using open, which returns an 1/O stream attached to
the specified file or other device from which reagdand writing can be

133

CIT381 FILE PROCESG AND MANAGEMENT

done. If the function fails, it returns a null ptan The related C library
functionf r eopen performs the same operation after first closing an
open stream associated with its parameters.

They are defined as:
FILE *fopen(const char *path, const char *mode);

FILE *freopen(const char *path, const char
*mode, FILE *fp);

3.2.2 Closing a Stream Usinficl ose

The fclose function takes one argument: a pointer to fHeE
structure of the stream to close.

int fclose(FILE *fp);
The function returns zero on success, or EOF duréai

The following programme opens a file namsimple.txt , writes a
string of characters to the file, then closes it.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
int main(void)
{
FILE *fp;
size_t count;
const char *str = "hello\n";
fp = fopen("sample.txt”, "w");
if(fp == NULL) {
perror(“failed to open sample.txt");
return EXIT_FAILURE;
}
count = fwrite(str, 1, strlen(str), fp);
printf("Wrote %zu bytes. fclose(fp) %s.\n",
count, fclose(fp) == 0 ? "succeeded"
"failed");
fclose(fp);//close de file
return EXIT_SUCCESS;

}

The following C program opens a binary file callegfile, reads five
bytes from it, and then closes the file.

134

CIT381 FILE PROCESG AND MANAGEMENT

#include <stdio.h>
#include <stdlib.h>

int main(void)

char buffer[5] = {0}; /* initialized to
zeroes */
int i, rc;
FILE *fp = fopen("myfile", "rb");
if (fp == NULL) {
perror("Failed to open file \"myfile\"");
return EXIT_FAILURE;
}
for (i= 0O;(rc = getc(fp))!= EOF && i < 5;
buffer[i++]=rc) ;
fclose(fp);
if i==5){
puts("The bytes read were...");
printf("%x %x %x %x %x\n", buffer[0],
buffer[1], buffer[2], buffer[3], buffer[4]);
} else
fputs("There was an error reading the
file.\n", stderr);
return EXIT_SUCCESS;

}
SELF-ASSESSMENT EXERCISE 1

1. Why do we write programmes in high level languages?

2. List the operations that can be performed on Foffitas
3. Write a line to open a file for both input and auitpn Fortran
language

3.3 Text File Operations in C#

C-Sharp provides a File class which is used in jaating text files.
The File class is within the System namespace. Alsocan use the
StreamReader and StreamWriter classes, which ar@inwithe
System.lO, namespace for reading from and writing text file. In this
article we will see examples of creating a texd,frieading contents of a
text file and appending lines to a text file.

3.3.1 Creating a Text File

For creating text file we use the CreateText Metbbdhe File Class.
The CreateText Method takes in the path of thet@lée created as an

135

CIT381 FILE PROCESG AND MANAGEMENT

argument. It creates a file in the specified pathd aeturns a
StreamWriter object which can be used to write eots to the file.

Example:

public class FileClass

{

public static void Main()

{
WriteToFile();

}
static void WriteToFile()

{
StreamWriter SW,;
SW=File.CreateText("c:\\\MyTextFile.txt");
SW.WriteLine("God is greatest of them all");
SW.WriteLine("This is second line");
SW.Close();
Console.WriteLine(“File Created
SuccessFully”);

}
}

3.3.2 Reading Contents of a Text File

For reading the contents of a text file we use@penText Method of
the File class. The OpenText Method takes in tith p&the file to be
opened as an argument. It opens the specified dfild returns a
StreamReader object which can be used to readotiterds of the file.

Example:

public class FileClass

{

public static void Main()

{
ReadFromFile("c:\\\MyTextFile.txt");

}

static void ReadFromFile(string filename)
{

StreamReader SR;

string S;

SR=File.OpenText(filename);
S=SR.ReadLine();

while(S!=null)

{
Console.WriteLine(S);

136

CIT381 FILE PROCESG AND MANAGEMENT

S=SR.ReadLine();

}
SR.Close();

}
}

3.3.3 Appending Content to a Text File

For appending content to a text file we use theehpid ext Method of
the File class. The AppendText method takes inptih of the file to
which the contents to be appended as an argumenpehs the file in
the specified path and returns a StreamWriter obyech can be used
to append contents to the file.

Example:

public class FileClass

{

public static void Main()

{
AppendToFile();

static void AppendToFile()

{

StreamWriter SW;
SW=File.AppendText("C:\\MyTextFile.txt");
SW.WriteLine("This Line Is Appended");

SW.Close();

Console.WriteLine("Text Appended
Successfully");

}
}
SELF-ASSESSMENT EXERCISE 2
1. How can you open and close a file using C language?
2. List 10 high level programming languages you know.

4.0 CONCLUSION

It could be very difficult for anyone without a priknowledge of any
programming language to understand the codes irs tinit.
Understanding the codes line by line is not impdrtaut understanding
the idea of what they are doing.

137

CIT381 FILE PROCESG AND MANAGEMENT

5.0 SUMMARY

In this unit, you have learnt that:

. It is not easy or feasible to write programme irchiae language

. There are many programming languages, but it isormapt to
choose a language that is best suited for the @gnobine is trying
to solve

. Different languages have different file handlingistures.

. In any language, to use a file it must be openedreated and
must be disconnected from the program afteciueien.

. The files are external to the programme becausedtestored in

the computer memory.

6.0 TUTOR-MARKED ASSIGNMENT

1. What is the importance of linkers and compilers &0
programmer?

2. Write out the codes to open and close files intkinee languages

discussed in the unit
3. What are the various specifiers in Fortran OPENasyh

7.0 REFERENCES/FURTHER READING

CHAPMAN, S. J. (1998). Fortraf0/95 for Scientists and Engineers
Boston: McGraw-Hill.

KING, Melvyn. (1995). A First Course in Computer Programming
Using C London: McGraw- Hill.

McGREGOR, Jim (1998)Simple C England: Addison-Wesley

www.livephysics.com/.../fortran/fortran-file-hanaddj. html

www.ruf.rice.edu/~statlab/fortran

WWW.cprogramming.com/tutorial/cfileio.html

www.cpp-home.com/archives/67.htm

www.devhood.com/Tutorials/tutorial _details.aspx

www.codequru.com/csharp/csharp/cs syntax

138

