CiT401 COURSE GUIDE

NATIONAL OPEN UNIVERSITY OF NIGERIA

FACULTY OF SCIENCES
DEPARTMENT OF COMPUTER SCIENCE

COURSE CODE: CIT401

COURSE TITLE: ORGANIZATION OF PROGRAMMING LANGUAGES

CIT401 COURSE GUIDE

; i
T

NOUN

National Open University of Nigeria
University Village, Plot 91

Jabi Cadastral Zone

Nnamdi Azikiwe Expressway

Jabi, Abuja

Lagos Office

14/16 Ahmadu Bello Way

Victoria Island, Lagos

Departmental email: computersciencedepartment@adumg
NOUN e-mail: centralinfo@noun.edu.ng

URL: www.nou.edu.ng

First Printed 2022

ISBN: 978-058-557-5

All Rights Reserved

Printed byNOUN PRESS
January 2022

CIT401 COURSE GUIDE

COURSE
GUIDE

CiT401
ORGANIZATION OF PROGRAMMING LANGUAGES (PL)

Course Team:
Developer/Writer: Dr. Afolakemi Simbo OGUNBANWO
Content Editor: Prof. Julius Olatunji OKESOLA

Dr. Francis B. Osang — HOD/Internal Quality Control Expert

CIT401 COURSE GUIDE

Table of Contents

T goTo (8 ox 1T] o OO USROS PP Xi
COUSE JUSHIICALION:cueiiiieie ettt ettt ettt e sttt be et e et e te e st esseenseesseenaessseenneenseeneennns Xi
(070101 (=TI @] o][=Tox 1177= RSP Xi
COUISE AIMS ...ttt ettt ettt ettt e a bttt a bt et e ea b e e abeeat e eh b e eateeh b e s st e ehbenbeesbe e beenbeanbeesbeanbeenbeenes Xii
WOorking through thiS COUISEcociiiiiie ettt e be e s abe e sabe e ebaeesbaeesbeessbaeans Xii
COUISE MALETIAIS. ...ttt ettt ettt b e et eh e st e bt e st eshe e beesbeenteesaeebeenbeenee Xii
SHUAY UNIES .ottt e e et e e et e e e s te e et e e sbbe e stbeeeabeeeabeessreaasbeesatassataeebaeensesennns Xii
TeXtDOOKS aNd REFEIENCES.....ccuiiieiieeeee ettt et ettt e et e s e e e e seaesneeseeens Xiii
ASSIGNMENES FlB.....uiieiiiiiit et e e et e et e e s te e e s s eessbeessteessteessseesnsesansesasseeans Xiv
Presentation SCHEUUIE...........ooi ittt ettt et aeenbesnteeneeeneas Xiv
AASSESSIMEINL. ...ttt ettt ettt bt e e ettt e e sttt e e s b bt e e s a bt e e e sabae e e e bt e e e ehbb e e e abeeeesabbeeeanbteeesnbeeenan xiv
TULOr-Marked ASSIGNMENTcccviiiiiiiicie ettt ettt e ere e et e e b e e e be e sabeeebaeebaeesteeesbseestseesbeessseesseeensns XV
EXamination and Grading..........cccueeiiiiiieiiiieeiiee ettt et eeieeestae e s tve e s tve e taeasabeasabaeestasebaesssaesaresssseeans XV
CoUrse MarkiNg SCNEIME........cociiiiiiieiie et e et e st te e ste e sae e s beessteesnteeanseeenseeesreeenens Xvi
How to Get the Best from thiS COUISE..........ooiiriiiiiiiieeee ettt e XVi
SUMIMIATY eeeeeiittte ettt ettt ettt e e ste et e e s bt ee e sut bt e e aube e e s sabbeeeabeaeeeabeeessabeeeesabseeesabeeeesabeeessanbeeesanbaeeeanbeeassan xviii
Module 1: Concept of Programming Languagec.ccocceviivieivee e cnieesieenns 1
Unit1 Introduction to Programming LANQUAGEcceereeeeeeerereriieesieesreesieesseeeseeeessneessneesssessnns 3
A [011 o To [8o 1o o H OO RUPRUPRUPRRRURROTRN 3
2 Intended Learning OULCOMES (ILOS).....uiiiiiiiiieriieiieerieesreeeieessteeeteeseteesbeseseeesseesseeensseessseens 3
I Y b 11 I @o]] (=] | OO TSROSO RRPRR 3
3.1 Introduction to Programming lanQUAQE............ceciieiiiieiiiieniiecrtieecteeeree e esre e sare et eevae e 3
3.2 Classification of Programming lanQUAGE..........cccuverereriierieerieesieecveereeesre e sereeseneesveeeeees 4
3.2.1 MaAChINE LANQUAGE:cctiieeiie ettt ettt ette e et e et e te e stbe e s tb e e eabeesabaessbeseataesaaseessaeessnas 4
3.2.2 ASSEMDBIY [ANQUAGE:.......cciieiieeeiee ettt et e et te e be s be e e tbe e s ab e e earaeearaeeans 4
3.2.3 High [eVEl [aNQUAGE..........ei ittt ettt e st e s e e sneeeneeas 4

3.3 Attribute of good Programming LanguUAagE............cccveeuieeiieeiieeciee e ciee e sireeeveeevee e 4
3.3.1 Clarity, SIMplcity and UNItY:ccoiieiiiiiiiieeiccee ettt re et s 4

IR T © 1 o To o] g = 111 TSR RRR USRS 5
3.3.3 SUPPOrt fOr ADSIIACON: ...cccviiiee et et be e 5
3.3.4 Programming ENVIFONMENT:cocieeiiieiiiceeeeeeeseeestteesete e e eeneesae e sereessseesnneesnsessnns 5
3.3.5 Ease of program verification/Reusability:...........cccccueeviiiiiee i e 5

CIT401 COURSE GUIDE

3.3.6 Portability Of PrOgramS:cuio ittt ae e tae e 5

3.4 Program performance and features of programming laguages........cc.ccccevvevrereceecnreeennnn. 5

4 Self-ASSESSMENT EXEICISES. .. uiiiieiietieieeie ettt et eee et st e st eseaeseesstesneesseesseesaeesseesseesseenneenseenses 6
5 Answer to Self-ASSESSMENT EXEICISES.coiieiieiieiie et te et ste ettt sae e seeenes 6
LS @ o Tod U1 o o P 7
A S 11111 0= T 2 PSP SPRP 7
Unit2 Programming Language Evolution and Paradigms...........cccoeeveevieeniieniecsiee e eiee e 8
A 110 T [Tox 1o o TSR PTIRRN 9
2 Intended Learning OULCOMES (ILOS)......coiiiiiiiiiie et cieecreeetee et ete e teeetaeetae e ste e esteaesaveesabe e 9
I b 11 I @0 1 (=] | OO TSP SRRRORPRR 9
3.1 Programming Language EVOIULION...........ceciiiiiiiie ettt sve st evae e neas 9
3.1.1 1883: The BegINNINGttt sttt srae e raeeens 9
3.1.2 1949: ASSEMDBIY LANQUAGE........eeieiieriieeriieesieeeteesteessie e eteesbeesreessseesssesssteesssneesseeensnes 9
3.1.3 1954 - i FORTRAN. ..ottt sttt ettt ettt tesbeete e entesseesaesaeeseesaensesseeneesessennes 9
.14 1958: ALGOL ..ttt ettt bbbttt st e e e 10
.15 1959: COBOL..cuiiiieiieiiieeiesie sttt ettt ettt e ste b e ae et be st et et et nt et sbeeneeneennens 10
.16 L9641 BASIC....o ettt ettt bbb sttt nens 10
.17 L970: PASCAL ...ttt e et sb et shee b e 10
.18 LO72: Gttt et he et et e be et et et e eseeteenbenteereeneennens 11
3.1.9 Other Programming LANQUAGES.........ccueerveeriierieesieesieesieeestesssseessseessseesssessssesssseeens 11

3.2 Programming Language ParadigM..........ccccccuiiiieeriieiieeeieecieeesiee e siessiee e esene s seeeenens 12
3.2.1 Categories of Programming Paradigm............cccceevuieiiiieiiie et 12
3.2.2 Overview of Main Programming Paradigm............cccceeuveriiiiiiiiiiie e ciie e sies e 13

4 Self-ASSESSMENT EXEICISES. .. .ieitieiieitieiiesteeite st ete et esteeate st e setesaesntesstesseeesseensesssesnsesnsesseseeans 14
5 ANnswer to Self-ASSESSMENT EXEICISES.oocuieiiiieeieerie et eie ettt ste e seeasseenseesseeneenes 14
(I @ o Tod U1 o o ST 15
A S 1V 11111 0= T 2P PPPPPPRRN 15
8 References/FUrther REAAING.........ccocviiiie ittt re e ve e ebe e et e e sbbe e etreeaans 15
Unit3 Structured/Unstructured Programming LanguUage............ccceeevuveeviveenieeecieesieeeieeevee e 16
N 110 T [Tox 1o o ST 17
2 Intended Learning OUtCOMES (ILOS).....uiiiiiiiiiiiiieeieeeiieesieeseieesreesreesreesebeessreessseessseessseeennns 17
I I /- 11 @0] (=] oL S SRR 17
3.1 Elementary structures of structured programsS2.......ccccvevieeicieeirerenieeere e esere e seeeenens 17

iv

CIT401 COURSE GUIDE

3.2 Difference between structured and unstructured progamming languages...................... 18
3.3 Types of structured programming..........ccccceereveeriieeroeeniereee e e seesreesreseeeeeseeesseesseeeenns 19
3.3.1 Procedural programming..........c..cocuieiieeiieeeiie e esieeereeseeesireesireesrreesvaesssaesnsesessneens 19
3.3.2 Object-oriented programming (OOP)........cocvieiiieiiie e ciee e et s e sre e ebee e 19
3.3.3 Model-based programming.........cccueiiieiieeiiieeiie et esreesre e sbeesreessraeesreeeaseeens 19

3.4 Components of structured programming.........ccceeiceeiiieeeiieeeiee e enreeesreesreeereeesrreesreeenens 20
3.5 Advantages and Disadvantages of structured programmg..........cccceeevrrrererveerveesneennns 20
3.5.1 Advantages of structured programming.........ccccceeeiueeririeriieineeeireeesieeesreesireessreesreeens 20
3.5.2 Disadvantages of structured programming.........ccccueecveeriveeicieenireesiieeesreeesreessveesneeens 21

4 Self-ASSESSMENT EXEICISES. .. .ieitietietieieertt ettt ettt et etbe st sat e s eesabesatesatesbbe st e sbae st e saeeseeseeens 21
5 ANnswer to Self-ASSESSMENE EXEICISES.oocuieiiiieeieece et eie et eee st ee e steeseesee et eeeesseeneenes 21
(SR @70] s Tod U1 o] o OO OSSR 21
T SUMIMAIY c...iiiiiee ittt ettt ettt sa e sat e sat e s bt e s ettt et e e b et e eb bt e sabeesabee st e eabbeesabeesaneeabeesabeeennne 22
8 References/FUrther REAAING.coovveiieiiiiei et st st 22
Module 2 Language Structure ... 23
Unit1 Concept of LaNQUAQE StIUCLUIE..........oovviiiieeiiee ettt st e et e e seeeesae e sereessaeesnnees 24
N [110 T [Tox 1o o ST 25
2 Intended Learning OUCOMES (ILOS).....uiiiiiiiiieeiieecieeecie e stie ettt e et e s e e re s be e sate s ebae e sbae e eraeenens 25
G b 11l @0]] (=] | OO TSSO RSP STRP 25
3.1 SHUCIUIAI LAYEIS ..eveeceeee ettt ettt ettt e e te s e ate e st e e eba e e be e eabe e ebbeebbeesaseesreaenens 25
3.1.1 ISy To= TS (U Tod (U= TSP 25
3.1.2 SYNLACHC SITUCTUIE.......vii ettt ettt et s e e s te e s be e sateeeabaeeebaeestaeeaneens 26
3.1.3 CONEXLUAI STIUCTUIE........eieeii ettt ettt saeesneeseeesseenneenes 26
314 SEMANLIC SIUCTUIE.....uiiiiit ettt ettt e e e s esaeesteessaesneeseaesneesseesneesnnens 27

3.2 Errortypes at different [EVEIS..........oeoiiiiiiiicee e 27
3.2.1 ISy (Tox= TN =T 4 o] =3 27
A Y | - (o 1 Tol = o £SO U P PUPSS 28
3.2.3 (0] 1 () (L= I =T (o] =S PS 28
.24 SEMANLIC BITOIS! . ettt ettt ettt ettt ettt et ea et e b eesateshe e saeesbeesbeesaeesbaesseesaeesaeesaeans 28
3.2.5 Examples of contextual errors and semantiC €ITOrS........c.coecveerveeeiieeeiiessereseeesneens 28

3.3 Application of BNF Notation and Syntax Graph........ccccccceeeviieiiieiciee et 30
.31 BNF NOALON ...ttt st st st sb e st sate b e see e 30

IR T Y/ o = Vo - o] USRS 32

CIT401 COURSE GUIDE

4 Self-ASSESSMENT EXEICISES. .. uiiitieiieitieieeste et e st et et et eatestesetesaessbesntesseeessesnsesssesssesnsesseseeans 34
5 Answer to Self-ASSESSMENT EXEICISES.cocuiiiiiieeieeie ettt ettt ettt b e 35
(I @ o Tod U1 o o SR 36
A S 1V 15 111 0= T 2P PPPPPPPRN 36
8 References/FUrther REAAING.........ccociiiiie ettt et te e ve e e be e etae e stbe e streeas 36
L0 01 A V4 | r-) USROS 37
A [011 0T [8o 1o o SRV 38
2 Intended Learning OUCOMES (ILOS).....uiiiiiiiiieeciee ettt ettt ettt re e save e eate e etae e sbae e staeeaens 38
G I /- 11 @0] (=1 o | SRS 38
Tt R Y 0| = 1 G TSRS 38
3.2 The General Problem of Describing SYNtaX........ccccoveviiiiiiie et 39
3.2.1 LaNQUAQE RECOGNIZEIS.....cccuiecieeiiieiiee ettt ete e stte e sttt esteeeeeessseesesessrseessseesssesenseeenseeens 40
3.2.2 LaNQUAQE GENEIALOIS. iteeiiiieeeetiee ettt eesrtte e estte e e sttt e e sateeessabaeesebaeeesnsbeessnseeessnsees 40
3.3 Formal Methods of Describing SYNtaX........cccuiiiiiiiiiieiiecciee ettt et 40
3.3.1 Backus-Naur Form and Context-Free GrammarsS.........ccocevcereeneeneenieneeseeneeseens 41
3.3.2 EXIENdEd BINF......ooii et ettt 49
3.3.3 Grammars and RECOQNIZEIS.......ceiuieieierieerieesieesteesteessseesseessseessseessseesssassssesssseesns 52
3.4 AUMDULE GFAIMMAS ..cc.uiiiieiieieetee ettt ettt sttt st ettt ettt bt e be et e eabeeteeabeebeeneesaeas 52
341 StAlC SEMANTICS....cctieiieeieeiieie et te et e ettt et eseee e e seaeseesteessaesaeessaesneesssesneeseeans 52
3.4.2 BASIC CONCEPLS......uviiiiieieiieiieecttesite st e et eae st e st ae e ste e e e e essseessaeesrseeenseessseeenseessnesans 53
3.4.3 Attribute Grammars DefiNedccc.oiiiiiiiiii e 53
3.4.4 INEFNSIC ATIDULES ettt ettt et et e ense e enneeneas 54
3.45 Examples of Attribute GrammMarsSccccveriiiiiie i ree e 54
3.4.6 7= 11 = o o P 56

4 Self-ASSESSMENT EXEICISES. .. uiiiieiietieiiesieeite st ete et e st ettestesstesaesatesntesseeesseensesssesssesnsesnseseeans 57
5 Self-ASSESSMENT EXEITISES. ...cocuiiiieiieiieie ettt ettt ettt st et saeesteesaeesseeneeenes 57
(I @ o Tod U1 o o ST 58
A S 1V 11111 0= T 2P PPPPPPRRN 58
8 References/FUrther REAAING.........ccocviiiii ettt re e ve e ebe e etae e sbbe e etreeaans 58
L0 1 TR 1= 0 F= T o | o= ST 59
A [011 0T [8o 1o o TSRV TRR 60
2 Intended Learning OUCOMES (ILOS).....uiiiiiiiiiiieiieecieeeie e stie ettt re e stve e sbe e etae s sbae e etaeeaens 60
G - 11 I Oo]] (=] | SO OO PRSI USRP 60

CIT401 COURSE GUIDE

G 0 A S =T o = Vg (o3P 60
3.2 Describing the Meanings of Programs: DynamiC SEMaitS...........cccvvevvrerereriveenveeseneennns 60
3.3 Operational SEMANTICS.......ccoiiiiiiiiiiie ettt re e be e s b e e erte e e te e e be e estaeetbeesabeestaeenees 61
3.3. 1 THE BASIC PrOCESS....ccuiiiiieieiee ettt sttt s eseae e e snsesnaesneens 62
3.3.2 7= 11 = o o T 63

3.4 Denotational SEMANTICS.cccocterierietiese ettt ete et e te et teeteente e seenteeseeneeeneas 64
3.4.1 TWO SIMPIE EXAMPIES...cuiiiiiiiiiecieece ettt sre e s te s srre e s e s sbe e esreeennneens 65
3.4.2 The State Of @ Programi.......c..cociiiiiiiiiiecieece ettt sre e te e s te e s tae s svae e sre e eaneen 66
3.4.3 (0] (=11 0] 1 T USRS UTRUPRN 66
3.4.4 ASSIGNMENT StAEMENLS.....ccuiiiiiiiecieece et srre e st e s sraeesreeenneeens 67
3.4.5 LOQICAl Pretest LOOPS....ccuiiiiieeiiii ettt et ee et e stte et streesve s s te e s tbe e sate e eabaesstesesteaensneen 68
4.8 EVAIUALION.....eiiii ettt st st b e st sb e s b e b e 68

3.5 AXIOMALIC SEMANTICSiiiiiiieiteee ettt ettt ettt sttt et et ebe et saeas 69
S 0 R N~ T o] SRS 69
3.5.2 Weakest PreCONdIitiONS.........oouiiiiiiiiie ettt sttt s 70
3.5.3 ASSIGNMENT StAtEMENLS.....ccuiiiiiiecieecee et sre e st e s sraessreeeneeens 71
3.54 SEQUENCES. ... eeiiieiiee e ettt e ettt e et ee e sttt e ettt e s ssbteeesstbeeessaeeessssseeeanbeeessnsseeeansseessnseeennes 73
.55 SEIBCHON. ... e st sttt b e b e 73
3.5.6 [IoTo [or= Ul = =1 (=1S) o] o LSV R U TR SRU PP 74
3.5.7 Program PrOOfS.... ..ottt sttt s srre e e e e sra e e naeeenree e 76
3.5.8 EVAIUALION.....eiiii e et et sb e s b e b e 76

4 Self-ASSESSMENT EXEICISES. .. uieitieiietieiiesieete st ete et e st sate st e setesaesatesntesseeassesnsesssesnsesnsesseseeans 77
5 Answer to Self-ASSESSMENT EXEICISES.cocuiiiiiieeie ettt ettt sb e 77
(I @ o Tod U1 o o SR 78
A S 1V 15111 0= T 2P PPPPPPRRN 78
8 References/FUrther REAAING.........ccocviiiie ittt e e ve e e be e etae e sbbe e etreeaans 78
Unit4 Lexical Analysis and Parsing.........cccceoiiiiiieiiie ettt et ettt 79
N 110 T [Tox 1o o ST 80
2 Intended Learning OUCOMES (ILOS)iiiiii ittt ettt ve e ve e eabe e ebae s sbae e etneeaens 80
I I /= 11 @0] (=] oL SRR 80
TNt R = o= Y g T 1)V TSR 80
3.2 BUIldiNg LEXICAl ANAIYZETiiiitieeiie ettt e e te e be s eta e etbe e sabe e streeans 82
3.3 The Parsing ProbIem..........cociiiiiiie ettt ettt e st s et eeaae e snte e sneeenees 84

CIT401 COURSE GUIDE

3.3.1 INtrOdUCHION t0 PArSINGccvviiiieeiie ettt et e e ta e et ae e tbe e staeenens 84
3.3.2 TOP-DOWN PalSEIS...cuiiieiiieeeeeiiee e erite e eiite e e siete e e stte e e sstteeessteeessabaeessssseessnsbeeesnsseessnsnes 86
3.3.3 BOtOM-UP PaAISEIS..... ittt e e et e e e e s et rae e e e e s easbeeas 87
3.3.4 The Complexity Of PArsing.........ccccoeeiiieiiieiiee e cieecteesrie e ste e re e sre e svee s stae s sreeeaneens 87

3.4 RecUrsive-DESCEN ParSiNG.......cccciiiiiiiiiec ittt e ete e te e ebe e eta e etae e sabe e s tnee e 88
3.4.1 The Recursive-Descent Parsing PrOCESS.......cccoevieeiiieiiiie ittt esre e esve e 88
3.4.2 The LL Grammar ClasS........coueiue ittt sttt sttt st e st st sbee s saa 92

3.5 BOtOM-UP PArSING......coiiiiiiiiiiciieeiie ettt ettt e rve e tbe s sate e s veesba e s beseabesetaeetbeesabeesteeenens 94
3.5.1 The Parsing Problem for Bottom-Up Parsers........ccccocvevieeiiieeciiee et esvee e 94
3.5.2 Shift-Reduce AIGOItNMS.........ooiiiiieeceeeere e s st sre e e ea 97
3.5.3 LR PAISEIS.....eeeiiteieet ettt sttt ettt sttt e s s abe e e e s beee e sbbe e e s beee s sabeee 97

4 Self-ASSESSMENT EXEICISES. .. .iiitiitietieteertt ettt ettt et eette st sat e seesabesatesatesbbesatesbte st e saaeseesaeans 98
5 Answer to Self-ASSESSMENT EXEICISES.cocuiiiiiiieie ettt ettt et e 98
(I @ o Tod U1 o o ST 99
A 101111 01= Y2 RSP SPPRPR 99
8 References/FUrther REAUING........cccovuiiiiiiiiie sttt sttt et e s s stae e stre e srressrreesrea e 100
UNit5 Language PrOCESSING......cccviivieriieieiieeite ettt e stteesreeesteessaeesteeesseesssaeessseesssessssessssessssessnses 101
A [011 0T [8o 1o o OSSPSR 102
2 Intended Learning OUCOMES (ILOS)......coiiiiiiieiiic ettt ettt este e eteeestae e stve e sareesareesbea e 102
G b 1]l @0] (=] o | SO OO OO UP P TURTUP TS 102
TNt R 11 (=14 o (=3 7= {0 [T 102
I I - 1 5] - U1 T o ISR 103
3.3 Concept of Interpretative LaNQUAGE.........cveecvieiiieireeeieesie et sreessee e e sveeeseesseee s 104
3.4 The Concept Of BiNAING.......ccouieiiiiiiieciieeee ettt et sr et ae s ebe e ebee e sabeestae s 106

4 Self-ASSESSMENT EXEICISES. .. .ieitieiieitieiiesieesite et ertteee e st este st e e e steebe e et eseenseeseenseenseenseenseenes 107
5 Answer to Self-ASSESSMENT EXEICISES.......ioviiiieieee ettt 107
I @ o Tod U1 o o U 108
A S 1V 11111 0= T 2 PRSP 108
8 References/FUrther REAMING.........coouiiiiii ittt ettt e tae e sbae s tbe e sare e sareesabea e 109
Module 3 Structuring Data..................ccco i 110
Unitl Data TYPES N0 SHIUCIUIE....ccuiiiieeeiieeiee et ctte ettt rte s te e stve e stae e streesbeesbe s eateesabaeeraeennes 111
A [011 0T [8o 1o o H OO SO PUTUP 112
2 Intended Learning OUCOMES (ILOS)...c.uiiiiiiiiieiiieiieeeieesteeesieeeseeesteesteesraeestaeeseneessveesnreenes 112

CIT401 COURSE GUIDE

G I /= 11 @0 | (=] o | (S 112
I J0 R B T = N I 1= SRR 112
3.1.1 Primitive data [y PES......cocuiieiiee ettt ettt e e tae e are e eaae s 113
3.1.2 Composite / Derived data tyPesS........cccviiiiiiiiiiciie ettt 115
3.1.3 ENUMEIAtEA TYPE...e ittt ettt et be et et a e et b e e sbeeetseenareasavean 115

G 00 7 Y AN o1 1 - Tod o F= 1 = R 1Y/ 011 VTP SRR 116
3.1.5 ULty dAta tYPES...cveeeceiieiee sttt ettt s e et et et enraeenae e 117

3.2 DALA SHUCTUIE......eeiietiee ettt ettt ettt e s sab et e e bt e s saabe e e s abbeeesaabeeessabeeesnbeeesaans 117
3.2.1 L £ = |V PPRR 117
3.2.2 LINKEA LIS .ttt ettt st ettt et sae e b 118
3.2.3 L (=TT T O S T PP PP PP PR UU PP PPPPPTO 119
324 HASN TADIE.....c. e et 127
A T €11 o] o SRS 128
B.2.8 SEACK ..ttt ettt ettt ettt e te et e e tesneestaesreeeneenees 129
3.2.7 (@ 10U = TR 129

3.3 Difference between data type and data StrUCtUIE:.........cocvvvevveerieeciee i 130

4 Self-ASSESSMENT EXEICISES. .. .eeitietieitietie ittt ettt ettt sttt et ettt et eabeebeeabe b e eabeebe e 130
5 Answer to Self-ASSESSMENT EXEICISES.......cooiiiiiiieiee ettt 131
LI @ o Tod U1 o o S 133
A U] 1011 0= 1 Y2 PRPRN 133
8 References/FUrther REAUING........ccccuiiiiii ittt sttt e ee s stae e stae e seressrreesrea e 133
Unit2 Control Structure and Data FIOW...........cocoviiiiie e 134
A [011 0T [8o 1o o H OSSO STPRTUP T 135
2 Intended Learning OULCOMES (ILOS)......coiiiiiiieiie et ciee et ettt eteeestae e tae e sareesareesbea e 135
G I /= 11 @0 | (=] oL (S 135
TN R b o] (=151 (o] 1O NPT 135
3.1.1 EXPrESSION SYNLAX......cciiiiiiiiiieciiieiieecie ettt e et e v e ste e s tbe e e beeebaestaeestseesbseenareesseeas 136
3.1.2 SemantiCs Of EXPrESSIONS.......ccciiiiieiiieiiee et eecte e ste s treectte e srr e sive e sbe s s tbeesabaeenraeeans 138
3.1.3 Evaluation of EXPreSSIONS.ccceiiiiiiiiicieecee ettt et svae et et eaae s 141
3.1.4 Subexpression Evaluation OFdEL...........cccviiviieeiiieeiie ettt sve e evae s 143

3.2 The Concept 0f COMMANG.........c.cooiiiiiiieier e ae e e seee s 146
321 ThE VAIADIE ...t 147
I A1~ o | 1 01=] 0| SO PSR 149

CIT401 COURSE GUIDE

3.3 Sequence Control COMMEANGS........c.cooiiiierierieeierieree e ete et see et ebeeee e sae e eneeenes 152
3.3.1 Sequential COMMANG........ccccuviiieeiieeeiee et eee e ste et ae e stae s seeesste e sae s srbeesnseesnreeenees 153
3.3.2 ComposSite COMMANT.........cooiiiiiieiiie i ectee e erte e ste et e e stbe e streesabeesbesstbeesabaeenraeenres 153
3.3.3 Conditional COMMEANGAS.......ccoieiieiieeere ettt st st e e s eseaeeneeenaenneas 153
3.34 [terative COMMANTS.......cooiirie ettt ettt st e et eteesaeenneesneenseens 156

4 Self-ASSESSMENT EXEICISES. .. .oiitieiieitieiiesieesite st et et et eete et et e ste et e steeseenseeseenseeseenseensenees 160
5 Answer to Self-ASSESSMENT EXEICISES.coiuiiiiiieeiierie ettt ettt 161
I @ o Tod U1 o o SR 161
A S 1V 11 111 0= T 2T SRPPPPR 162
8 References/FUrther REAUING........cccouiiiiii ittt et et e e s srae e stre e snressrreesree e 162
Unit3 RUN-tIME CONSIAEIALION........cciiieieeieee ettt sttt e eenaennees 163
A [011 0T [8o 1o o OSSO TORRTUP 164
2 Intended Learning OUCOMES (ILOS)...c.uiiiiiiiiieiiieiieeiieesreeeriee e seeesteseteessraeesrseesnneessneesnseenes 164
G I /= 11 @0] (=] o | (PSS 164

3.1 Overview Of RUN-TIME. ..ottt e 164

3.2 RUNTIME ITOIS ...ttt ettt ettt ettt e b e bt e sb e bt e s bt e bt e sbe e b e enbe e bt enbe e st e enbesaeesas 164
3.2.1 Common Types Of RUNIIME EITOI.......c.cooviiiiiieie ettt este s svee s 166
3.2.2 How D0 You FiX @ RUNIME EITOI?.....cuoiiiiiiiie ettt e 167

3.3 RUNME VS COMPIIE tIME...cciiiiiiecee e ettt e be e e be e e rare e etae s 168

4 Self-ASSESSMENT EXEICISES. .. .eeitieteetietie sttt ettt ettt sttt et e b e ettt e et et et b e enbeebe e 168
5 Answer to Self-ASSESSMENE EXEICISES.......cooiiiiiiieiee ettt 169
I @ o Tod U1 o o U 169
T SUIMIMAIY ..eiiiiiite ettt eeit e e sttt e e sttt e s et e e e s bt ee s s steeesseeee e sbeeesassaeeeasseesannsaeesasaeessnseeesnssseesnnsenessnns 169

CIT401 COURSE GUIDE

Introduction:
Several Programming Language (PL) have been dexelapd most of it are in used. However,

some of these PLs have similarity while some aréredy different from each other. The
comparison between the PLs led to categorize P& ifferent classes. Organization of
Programming Languages (OPL) is a course on theafmedtal principles of programming
languages, introduction to fundamental principlesl #echniques in programming languages
design and implementation. It handles the progrgmparadigm and historical pattern of

programming. The course elaborates on languagetste data type and data structure.

Course Justification:
Any serious study of programming languages requaresexamination of some related topics

among which are formal methods of describing thetassy and semantics of programming
languages and its implementation techniques. Thd teeuse programming language to solve our
day-to-day problems grows every year. Students Idhbe able to familiar with popular
programming languages and the advantage they vaveach other. They should be able to know
which programming language solves a particular lerabbetter. The theoretical and practical
knowledge acquired from this course will give thedents a foundation from which they can

appreciate the relevant and the interrelationsbifsfferent programming languages.

Course Objectives:
Certain objectives have been set out to ensurethieatourse achieves its aims. Apart from the

course objectives, every unit of this course hassgctives. In the course of the study, you will
need to confirm, at the end of each unit, if youehmet the objectives set at the beginning of each

unit. By the end of this course you should be #dle

¢ Increase capacity of computer science studentspiess ideas

¢ Improve their background for choosing appropriategliages

¢ Increase the ability to learn new languages

e Better understand the significance of programmimglémentation

e Ensure overall advancement of computing

CIT 401- Organization of Programming Languages thrae (3) unit course It deals with

Language definition structure. Data types and sires, Review of basic data types, including

Xi

CIT401 COURSE GUIDE

lists and tress, control structure and data flownfme consideration, interpretative languages,
lexical analysis and parsing.

This Course Guide gives you a brief overview of ¢barse content, course duration, and course
materials.

Course Aims
i. Introduce the concepts of programming languagareparation for the main course;

ii. to discuss structural layer of programming laage and formal methods of describing syntax;
iii. Introduce lexical analysis, parsing and lange@rocessing; and
iv. explain data type and structure.

v. Identify the common error of runtime

Working through this Course
In order to have a thorough understanding of thesmunits, you will need to read and understand

the contents and be committed to learning and imefging your knowledge. This course is
designed to cover approximately sixteen weeks,iandl require your devoted attention. You

should do the exercises in the Tutor-Marked Assigmisrand submit to your tutors.

Course Materials
These include:

1. Course Guide

2. Study Units

3. Recommended Texts

4. A file for your assignments and for records tonftor your progress.

Study Units

There are ten (10) study units in this course:

Module 1 Introduction to Programming Language

Unit 1 Introduction to Programming Language

Unit 2 Programming Languages Evolution and Pgradi

Unit 3 Structure and unstructured Programming uagyg

Xii

CIT401 COURSE GUIDE

Module 2 Language Structure

Unit 1 Language Structure

Unit 2 Syntax and Semantics

Unit 3 Lexical Analysis and Parsing
Unit 4 Language processing

Module 3 Structuring Data

Unit 1 Data Types and Data Structure
Unit 2 Control Structure and Data Flow
Unit 3 Run-time Consideration

Make use of the course materials, do the exertiseshance your learning.

Textbooks and References

Chen, Y. (2020). Chapter 1 Basic Principles of Paogning Languages. lintroduction to
Programming Languagg$Sixth, pp. 1-40). Kendal Hunt Plublishing

John C. Mitchell (2003)Concepts in Programming Languag€&ambridge University Press ©
2003 (529 pages)SBN:0521780985

Sebesta, R. W. (2016). Concepts of Programming wamges (Eleventh Edition). Pearson
Education Limited.

Sebesta, R. W. (2009). Concepts of Programming Wages (Tenth Edition). Pearson Education
Limited.

Jaemin Hong and Sukyoung Ryu (20Irfyoduction to Programming Languages

Ghezzi & Jazayeri (1996Brogramming language concepts—Third editlmihn Wiley & Sons
New York Chichester Brisbane Toronto Singapore 1996

Gabbriell M. & Martini S. (2010).Programming Languages: Principles and Paradigms,
Undergraduate Topics in Computer Science, DOl 1¥My8-1-84882-914-5 1, © Springer-
Verlag London Limited 2010

Archana M.Principles of Programming Languages

https://www.integralist.co.uk/posts/data-types-alath-structures/
https://www.geeksforgeeks.org/

https://lwww.sctevtservices.nic.in/docs/website/pdi338.pdf
xiii

CIT401 COURSE GUIDE

https://www.scribd.com/document/70893872
http://www.tutorialsspace.com/Programming-Languages
https://lwww.geeksforgeeks.org/the-evolution-of-geogming-languages
https://blog.stackpath.com/runtime/

http://net-informations.com/python/ig/checking.htm

Assignments File
These are of two types: the self-assessment egesraisd the Tutor-Marked Assignments. The

self-assessment exercises will enable you mondar performance by yourself, while the Tutor-
Marked Assignment is a supervised assignment. $sigraments take a certain percentage of your
total score in this course. The Tutor-Marked Assignts will be assessed by your tutor within a

specified period.

The examination at the end of this course will atrdetermining the level of mastery of the subject
matter. This course includes twelve Tutor-Markedsigsments, and each must be done and
submitted accordingly. Your best scores howevelt,beirecorded for you. Be sure to send these

assignments to your tutor before the deadline todalss of marks.

Presentation Schedule
ThePresentation Scheduiecluded in your course materials gives you theartgnt dates for the

completion of tutor marked assignments and attentlitorials. Remember, you are required to
submit all your assignments by the due date. Yawlshguard against lagging behind in your

work.

Assessment
There are two aspects to the assessment of theecdeirst are the tutor marked assignments;

second, is a written examination. In tackling thesignments, you are expected to apply
information and knowledge acquired during this seurThe assignments must be submitted to
your tutor for formal assessment in accordance thighdeadlines stated in the Assignment File.
The work you submit to your tutor for assessmeiitaaunt for 30% of your total course mark.
At the end of the course, you will need to sit éofinal three-hour examination. This will also

count for 70% of your total course mark.

Xiv

CIT401 COURSE GUIDE

Tutor-Marked Assignment
There are twelve tutor-marked assignments in thigsse. You need to submit all the assignments.

The total marks for the best four (4) assignmenii$ e 30% of your total course mark.

Assignment questions for the units in this courgecantained in the Assignment File. You should
be able to complete your assignments from the imédion and materials contained in your set
textbooks, reading and study units. However, yoy migh to use other references to broaden

your viewpoint and provide a deeper understandirigesubject.

When you have completed each assignment, sengdeithter with form to your tutor. Make sure
that each assignment reaches your tutor on or édifier deadline given. If, however, you cannot
complete your work on time, contact your tutor befthe assignment is done to discuss the

possibility of an extension.

Examination and Grading
The final examination for the course will carry 7@¥#rcentage of the total marks available for

this course. The examination will cover every aspéthe course, so you are advised to revise all

your corrected assignments before the examination.

This course endows you with the status of a teaahdrthat of a learner. This means that you
teach yourself and that you learn, as your learoagabilities would allow. It also means that you
are in a better position to determine and to asirethe what, the how, and the when of your

language learning. No teacher imposes any methéehofing on you.

The course units are similarly designed with theoohuction following the table of contents, then

a set of objectives and then the dialogue and so on

The objectives guide you as you go through thesuoitascertain your knowledge of the required

terms and expressions.

XV

CIT401 COURSE GUIDE

Course Marking Scheme
This table 1 shows how the actual course markimgaken down.

Table 1: Marking Scheme

Assignment Marks Comment

Assignment 1 10 Marks Note: The best three marks qut
Assignment 2 10 Marks of the four assignments given
Assignment 3 10 Marks will be picked as the
Assignment 4 10 Marks Continuous Assessment (GA)

to make up for the 30%
End of Course Examination 70% Of the overall Course

Marks.

Total 100% of Course Material.

How to Get the Best from this Course
In distance learning the study units replace thevausity lecturer. This is one of the great

advantages of distance learning; you can read ankltwrough specially designed study materials
at your own pace, and at a time and place thatysuitbest. Think of it as reading the lecture

instead of listening to a lecturer. In the same tiry a lecturer might set you some reading to do,
the study units tell you when to read your set Isomkother material. Just as a lecturer might give

you an in-class exercise, your study units proexercises for you to do at appropriate points.

Each of the study units follows a common formate Tihst item is an introduction to the subject
matter of the unit and how a unit is integratechwifite other units and the course as a whole. Next
is a set of learning objectives. These objectivexbke you know what you should be able to do by
the time you have completed the unit. You shoultlthese objectives to guide your study. When
you have finished the units, you must go back dratk whether you have achieved the objectives.
If you make a habit of doing this, you will sigméintly improve your chances of passing the

course.

Remember that your tutor’s job is to assist youeWiiou need help, don’t hesitate to call and ask

your him/her.

1. Read thiCourse Guide¢horoughly.
2. Organize a study schedule. Refer to the ‘CoOnggrview’ for more details. Note the time you
are expected to spend on each unit and how thgnassits relate to the units. Whatever method

you chose to use, you should decide on it and wriy@ur own dates for working on each unit.

XVi

CIT401 COURSE GUIDE

3. Once you have created your own study schedaleyerything you can to stick to it. The major
reason that students fail is that they lag behmnitheir course work.

4. Turn toUnit 1 and read the introduction and the objectives ferthit.

5. Assemble the study materials. Information abshét you need for a unit is given in the
‘Overview’ at the beginning of each unit. You wallmost always need both the study unit you are
working on and one of your set of books on youkdd#ghe same time.

6. Work through the unit. The content of the utself has been arranged to provide a sequence
for you to follow. As you work through the unit yeuill be instructed to read sections from your
set books or other articles. Use the unit to gymwmie reading.

7. Review the objectives for each study unit tofconthat you have achieved them. If you feel
unsure about any of the objectives, review theystadterial or consult your tutor.

8. When you are confident that you have achievadis objectives, you can then start on the
next unit. Proceed unit by unit through the coward try to pace your study so that you keep
yourself on schedule.

9. When you have submitted an assignment to ydar far marking, do not wait for its return
before starting on the next unit. Keep to your sicie When the assignment is returned, pay
attention to your tutor's comments, both on therumharked assignment form and also written on
the assignment. Consult your tutor as soon aslgestiyou have any questions or problems.

10. After completing the last unit, review the cseiand prepare yourself for the final examination.
Check that you have achieved the unit objectiviste@ at the beginning of each unit) and the

course objectives (listed in th@ourse Guidg

Facilitators/Tutors and Tutorials

There are 15 hours of tutorials provided in supportof this course You will be notified of the

dates, times and location of these tutorials, togrewith the name and phone number of your tutor,

as soon as you are allocated a tutorial group.

Your tutor will mark and comment on your assignmnsekeep a close watch on your progress and
on any difficulties you might encounter and provés$sistance to you during the course. You must
mail or submit your tutor-marked assignments torytator well before the due date (at least two

working days are required). They will be markedyloyr tutor and returned to you as soon as

possible.

XVii

CIT401 COURSE GUIDE

Do not hesitate to contact your tutor by telephame-mail if you need help. The following might

be circumstances in which you would find help neaeg Contact your tutor if you:

e do not understand any part of the study units ertfsigned readings,
¢ have difficulty with the self-tests or exercises,
e have a question or problem with an assignment, yatlr tutor’'s comments on an assignment

or with the grading of an assignment.

You should try your best to attend the tutorialsisTis the only chance to have face to face contact
with your tutor and to ask questions which are ared instantly. You can raise any problem
encountered during your study. To gain the maxinenefit from course tutorials, prepare a

guestion list before attending them. You will learfot from participating in discussions actively.

Summary
The course presented the fundamental of prograr@nguage, evolution of programming

language, programming paradigm, language structyrgax and semantics, lexical analysis, and
language processing. Also, the course intimateke#rer with data type and data structure, control
structure and data flow as well as run-time consititen. Upon the completing this course, the
learner will be equipped with the ability to knowopular programming languages and the

advantage they have over each other.

I wish you success with the course and hope thatwb find it both interesting and useful.

Xviii

CIT401 COURSE GUIDE

Module 1: Concept of Programming Language

Introduction of Module

Programming languages are tools used in developafigvare thus this module discusses the
concept of programming language. This discussiothenconcept of programming language is
used to refresh and prepare the leaners towardséie topics. The first unit of the module
presents the fundamental of programing languagehwisi the foundation. It also discusses the
categories of programming language as well as ttibwte of good programming language.
Programming languages have been in active oveedfsyago thus, all languages have their link
to the earlier versions developed. Hence, the gkcoaoit presents discussions on programming
language evolution and programming paradigm. Fsy eaderstanding of programs, the last unit
of the module deliberates on structured and unstred programming. Likewise, the merit and

demerit of structured programming are presented.

CIT401 COURSE GUIDE

Unit 1 Introduction to Programming Language

1. Introduction
2. Intended Learning Outcomes (ILOs)
3. Main Content
3.1.Introduction to Programming
3.2. Classification of Programming Language
3.2.1. Machine Language
3.2.2. Assembly Language
3.2.3. High Level Language
3.3. Attribute of good Programming Language
3.3.1. Clarity, Simplicity and Unity
3.3.2. Orthogonality
3.3.3. Support for Abstraction
3.3.4. Programming Environment
3.3.5. Ease of Program Verification/Reusability
3.3.6. Portability of Programs
3.4. Program Performance and Features of Programminguzaye
Self-Assessment Exercises
Conclusion

Summary

N o g A

References/Further Reading

CIT401 COURSE GUIDE

Unit 1 Introduction to Programming Language

1 Introduction

This unit introduces the leaner to fundamental odgpaming language and serves as the
foundation for the entire module. Several defimfi@f programming language are stated and the
three categories of programming language - maclissembly and high level languages - are
briefly discussed. The unit shall therefore expibsestudents to program performance, features

and the attribute of good programming language.

2 Intended Learning Outcomes (ILOS)
At the end of the unit, students should able to

e Define Programming language
e Explain machine language, assembly language ardlénvgl language
e Discuss attribute of good programming language

e Explain performance and features of programminguage

3 Main Content

3.1 Introduction to Programming language
A programming language is a language designedrtoramicate instructions to a computer. They

are used to create programs that control the behaf’/a machine. A programming language is a
notation for writing programs, which are specifioas of a computation or algorithm. However,
some authors restrict the term "programming langliag those languages that can express all
possible algorithms. Thus, Programming language set of commands, strings or characters
readable by programmers but easily translatablmaohine code. It has syntax, grammar, and
semantics.
e Syntax is a set of rules that define how the condsdrave to be arranged to make sense
and to be correctly translatable to the machinecod
e Grammar is a set of rules of using different puatan, quotation marks, semicolons, and
other symbols to divide and clarify the syntax qfaaticular language.
e Semantics is a set of meanings assigned to evenynend of the language and is used to

properly translate the programme to machine code.

CIT401 COURSE GUIDE

3.2 Classification of Programming language
Programming Language can be grouped into three Igarvachine Languages, Assembly

Languages and High level Languages.

3.2.1 Machine Language:
Machine language is a collection of binary digitsbas that the computer reads and interprets.

Machine language is the only language a computeapsble of understanding. Machine level
language is a language that supports the machitleea$ithe programming or does not provide
human side of the programming. It consists of (hipaeros and ones. Each instruction in a
program is represented by a numeric code, and ncathexddresses are used throughout the
program to refer to memory locations in the compsitenemory. Microcode allows for the

expression of some of the more powerful machinell@vwstructions in terms of a set of basic

machine instructions.

3.2.2 Assembly language:
Assembly language is easier to use than machirgridéeye. An assembler is useful for detecting

programming errors. Programmers do not have thelatesaddress of data items. Assembly

language encourage modular programming.

3.2.3 High level language

High level language is a language that supportshilean and the application sides of the
programming. A language is a machine independegtta@pecify the sequence of operations
necessary to accomplish a task. A line in a higlelltanguage can execute powerful operations.
and correspond to tens, or hundreds, of instrustenthe machine level. Consequently more
programming is now done in high level languagesiries of high-level languages are BASIC,
FORTRAN etc.

3.3 Attribute of good Programming Language
There are various factors why the programmers poafe language over the another. Some of

very good characteristics of a good programminguage are,

3.3.1 Clarity, Simplicity and Unity:

A Programming language provides both a conceptaahdwork for Algorithm planning and
means of expressing them. It should provide a ctaple and unified set of concepts that can be

used as primitives in developing algorithms. It ddobe simple and regular as well as have

CIT401 COURSE GUIDE

minimum number of different concepts, and rulestf@ir combination. This attribute is called

conceptual integrity.

3.3.2 Orthogonality:
Orthogonality is one of the most important featweRL. It is the property that says " Changing

A does not change B". In real world, radio is aaraple of an orthogonal system. For instance,
changing a station in a radio does not change eheme and vice versa. When the features of a
language are orthogonal, language is easier to Bat programs are easier to write because only

few exceptions and special cases to be remembered.

3.3.3 Support for Abstraction:
There is always found that a substantial gap remgibetween the abstract data structure and

operations that characterize the solution to alpmband their particular data structure and

operations built into a language.

3.3.4 Programming Environment:
An appropriate programming environment (reliablewdnentation and testing packages) adds an

extra utility and make language implementationezasi

3.3.5 Ease of program verification/Reusability:
The reusability of program written in a languagalisays a central concern. A program is checked

by various testing technique like Formal verificatimethod Desk checking Input output test
checking. We verify the program by many more teghas. A language that makes program
verification difficult may be far more troublesortee use. Simplicity of semantic and syntactic

structure is a primary aspect that tends to simplibgram verification.

3.3.6 Portability of programs:
Programming language should be portable meansiildtbe easy to transfer a program from

which they are developed to the other computerrdgm@mm whose definition is independent of
features of a Particular machine forms can onlypsupPortability. Example: Ada, FORTRAN,
C, C++, Java.

3.4 Program performance and features of programming laguages

A programming language’s features include ortholignar simplicity, available control
structures, data types and data structures, sy@sign, support for abstraction, expressiveness,
type equivalence, and strong versus weak type amgclexception handling, and restricted

aliasing. While the performance of a program, idoilg reliability, readability, writability,
5

CIT401 COURSE GUIDE

reusability, and efficiency, is largely determiri®dthe way the programmer writes the algorithm
and selects the data structures, as well as atieinentation details. However, the features of
the programming language are vital in supportind anforcing programmers in using proper
language mechanisms in implementing the algoritmd data structures. Table 2 shows the

influence of a language’s features on the perfoeari a program written in that language.

Table 2 indicates that simplicity, control struesirdata types, and data structures have sigrtifican
impact on all aspects of performance. Syntax desighthe support for abstraction are important
for readability, reusability, writability, and ralbility. However, they do not have a significant

impact on the efficiency of the program. Expressess supports writability, but it may have a

negative impact on the reliability of the prograstrong type checking and restricted aliasing

reduce the expressiveness of writing programs,abeitgenerally considered to produce more
reliable programs. Exception handling prevents ghegram from crashing due to unexpected

circumstances and semantic errors in the program.

Table 2: Impact of Language Features on the Pedocm of the Programs

Performance Readability/

Language features Efficiency Reusability Writability Reliability
Simplicity/Orthogonality v v v v
Control structures » v A

Typing and data structures v v v

Syntax design ¥ A

Support for abstraction v v

Expressiveness v

Strong checking

Restricted aliasing

AR AR RS EN

Exception handling

4 Self-Assessment Exercises
e List and explain the three categories of prograngnamguage
¢ Discuss the attribute of a good programming languag
e State any five features of a computer program

e List five program performances

5 Answer to Self-Assessment Exercises

e List and explain the three categories of prograngnamguage — Section 3.2

6

CIT401 COURSE GUIDE

¢ Discuss the attribute of a good programming langua§ection 3.3
e State any five features of a computer program #i@e8.4

e List five program performances — Section 3.4

6 Conclusion

In this unit, you have been introduced to the fumelatal of programming languagProgramming
language is described as a collection of instractibich can be translated to machine code and
readable by the programmers. There are rules guttm construction of language. It has syntax,
semantic and grammar rules. The features of thgr@mming language are vital in supporting
and enforcing programmers in using proper langmagehanisms in implementing the algorithms

and data structures.

7 Summary

In this unit, you learnt tha programming language is a set of symbols, grasarat rules with the
help of which one is able to translate algorithmgrograms that will be executed by the computer.
There are three categories of programming langwelgeh are machine language, assemble
language and high level language. Clarity, simpli@and unity, orthogonality, support for
abstraction, programming environment, ease of aragverification and portability of program

were presented as good attribute of programmingpiage.

CIT401 COURSE GUIDE

Unit 2 Programming Language Evolution and Paradigns
1. Introduction

2. Intended Learning Outcomes (ILOS)

N o o &

Main Content
3.1. Programming Language Evolution
3.1.1. 1883 — The Beginning
3.1.2. 1949 — Assembly Language
3.1.3. 1957 — FORTRAN
3.1.4. 1958 — ALGOL
3.1.5. 1959 — COBOL
3.1.6. 1964 — BASIC
3.1.7. 1970 — Pascal
3.1.8. 1972-C
3.1.9. Other Popular Programming Language
3.2. Programming Language Paradigms
3.2.1. Categories of Programming Paradigm
3.2.2. Overview of Main Programming Paradigm
3.2.2.1. Imperative Paradigm
3.2.2.2. Object-Oriented Paradigm
3.2.2.3. Functional (Application) Paradigm
3.2.2.4. Logic Paradigm
Self-Assessment Exercises
Conclusion
Summary

References/Further Reading

CIT401 COURSE GUIDE

1 Introduction
Programming Language is indeed an essential patodz#y’'s tech world. There are lots of

programming languages which have their own syrgematic and features. This unit presents the
evolution of programming language and deliberationgprogramming paradigm. Paradigm in
programming language is the set of basic princjplEmcept and methods in which the
computation or algorithm is expressed. Based onptradigms, programming languages are

classified into different classes.

2 Intended Learning Outcomes (ILOs)
At the end of the unit, students should able to
e Have historical knowledge of programming language
e Discuss the programming paradigm

e Explain different categories of programming paraaig

3 Main Content
3.1 Programming Language Evolution

3.1.1 1883: The Beginning ...!!
In the early days, Charles Babbage had made theejdwut he was confused about how to give

instructions to the machine, and then Ada Lovelaicee the instructions for the analytical engine.
The device was made by Charles Babbage and the wadewritten by Ada Lovelace for
computing Bernoulli's number. That was the firshai in history that the capability of computer
devices was judged.

3.1.2 1949: Assembly Language

It is a type of low-level language. It mainly castsi of instructions (kind of symbols) that only
machines could understand. In today’s time, assghlabguage is used in real-time programs such
as simulation flight navigation systems and medécplipment e.g. — Fly-by-wire (FBW) systems.

It is also used to create computer viruses.

3.1.3 1954 -: FORTRAN
FORTRAN was developed in 1954 by John Backus and.IB was designed for numeric

computation and scientific computing. Software FASA probes voyager-1 (space probe) and
voyager-2 (space probe) was originally written @RTRAN. It is first high level language. It

was developed using the first compiler and it iscMae Independent Language. In 1958

CIT401 COURSE GUIDE

FORTRAN 2nd version was developed which introdusabroutines, functions, loops and
primitive for loop. It started as a Project anctaenamed as ALGOLS5S.

3.1.4 1958: ALGOL
ALGOL stands for ALGOrithmic Language. The init@ahase of the most popular programming

languages of C, C++, and JAVA. It was also the faeguage implementing the nested function
and has a simple syntax than FORTRAN. The firsgmmming language to have a code block
like “begin” that indicates that your program hgsrted and “end” means you have ended your
code. ALGOL(ALGOrithmic Language) was a first "BloStructured Language released in 1960.
It was Considered to be the first second gener&mmputer Language and Machine Independent
language. It introduced concepts like: Block stunetcode (Marked by BEGIN and END), Scope
of variables (Scope of local variables inside b&)cBNF (Backus Naur Form), Notation for
defining syntax, Dynamic Arrays, Reserved words En@HEN ELSE, FOR, WHILE loops

3.1.5 1959: COBOL
It stands for COmmon Business-Oriented Languag&98v, 80% of the world’s business ran on

Cobol. The US internal revenue service scramblegdth to COBOL-based IMF (individual
master file) in order to pay the tens of millionfspayments mandated by the coronavirus aid,
relief, and economic security. COBOL was rated iayM 959 by the ShortRange committee of
the US department of DOD.

3.1.6 1964: BASIC
BASIC (Beginner's All-purpose Symbolic Instructi®®ode). It was designed as a teaching

language in 1963 by John George Kemeny and Thomgsre Kurtz of Dartmouth college.
Intended to make it easy to learn programming. 9811 Microsoft released Visual Basic, an
updated version of Basic but the first microcompuggsion of Basic was co-written by Bill Gates,
Paul Allen, and Monte Davidoff for their newly-foed company, Microsoft.

3.1.7 1970: Pascal
Pascal is named after a French religious fanaticraathematician Blaise Pascal. It was Created

in 1970 with the intension of replacing BASIC feathing language. It was quickly developed as
a general purpose language. It was Programs cednala platform-independent intermediate p-

code. The compiler for Pascal was written in Pascal

10

CIT401 COURSE GUIDE

3.1.8 1972:C
C is a general-purpose, procedural programminguiagg and the most popular till now. All the

previous codes (like operating system and kernatjem in assembly language gets replaced by
the C language. C can be used to implementing tipgraystem, embedded system, and on the
website using the Common Gateway Interface (CGlis e mother of almost all higher-level
programming languages like C#, D, Go, Java, JavatStimbo, LPC, Perl, PHP, Python, and
Unix’s C shell.

3.1.9 Other Programming Languages
The table 3 below listed some popular programmamgliages among the programmers.

Table 3: Other Programming Languages

YEAR OF | PROGRAMMING

RELEASE LANGUAGES FACTS

SQL was developed at IBM by Donald D. Chamberlid Baymond F.

1972 SQL Boyce. The earlier name was SEQUEL (StructurediEm@)uery
Language).
1978 MATLAB It stands for MATrix LABoratory. It is used for miat¢ manipulation,
implementation of an algorithm, and creation ofartnterface.
1983 Objective-C, C++ C++ is the fastest high-level programming langu&gelier, Apple Inc
’ uses Objective-C to make applications.
1990 Haskell It is a purely functional programming language.
It was Created in 1991 by GuidoVan Rossum. Theuagg is very easy
1991 Python to understand. Famous language among data scsesmidtanalysts. A
scripting language with dynamic type, intendedeqolace perl
JAVA JAVA is everywhere. JAVA is the platform-indepentiamguage.
PHP PHP is a scripting language mainly used in web aiogning for
1995 connecting databases.
JavaScript enables interactive web pages. JS imdise popular
JavaScript programming language. JS is famous for buildingel application. It
makes our page interactive.
2000 C# C#(C-sharp) is mainly used for making games. Uaiitgine uses C# for
making amazing games for all platforms
2009 GO GO language is developed in Google by Robert GnesgRob Pike, and
Ken Thompson.
2011 Kotlin Kotlin is developed by JetBrains. It is used forking an android
application.
2014 Swift Swift language is developed by Apple Inc. It iseagral-purpose

programming language.

11

CIT401 COURSE GUIDE

3.2 Programming Language Paradigm
A programming paradigm is an approach to progrargraicomputer based on a coherent set of

principles or mathematical theory. By the word payen, we understand a set of patterns and
practices used to achieve a certain goal. Milliohgrogramming languages have been invented,
and several thousands of them are actually in@smpared to natural languages that developed
and evolved independently, programming language$aaimore similar to each other because:

o different programming languages share the sameameattical foundation (e.g., Boolean

algebra, logic);

e they provide similar functionality (e.qg., arithnegtlogic operations, and text processing);

e they are based on the same kind of hardware atrddtisn sets;

e they have common design goals: find languagestiaée it simple for humans to use and

efficient for hardware to execute;

It is worthwhile to note that many languages beltmgultiple paradigms. For example, we can
say that C++ is an object-oriented programming lagg. However, C++ includes almost every
feature of C and thus is an imperative programntémguage too. We can use C++ to write C
programs. Java is more object- oriented, butistludes many imperative features. For example,
Java’s primitive type variables do not obtain meyrfoom the language heap like other objects.
Lisp contains many nonfunctional features. Scheamebe considered a subset of Lisp with fewer
nonfunctional features. Prolog’s arithmetic openadi are based on the imperative paradigm.
3.2.1 Categories of Programming Paradigm
There are many programming paradigms in use todamain programming paradigm stems an
idea within some basic discipline which is relevdat performing computations. Some
programming languages, however, are more similagach other, while other programming
languages are more different from each other. Basedheir similarities or the paradigms,
programming languages can be divided into diffeokedses namely;

e Imperative paradigm

e Functional paradigm,

e Logic paradigm

e Object-Oriented paradigm

e Visual paradigm
12

CIT401 COURSE GUIDE

e Parallel/concurrent paradigms,
e Constraint based paradigm

e Dynamic paradigms.

3.2.2 Overview of Main Programming Paradigm
There are four main programming paradigms whichraperative paradigm functional paradigm,

logical paradigm and object-oriented paradigm.

3.2.2.1 Imperative Paradigm
The imperative, also called the procedural programgrparadigm expresses computation by fully

specified and controlled manipulation of named datastepwise fashion. In other words, data or
values are initially stored in variables (memorgdtions), taken out of (read from) memory,

manipulated in ALU (arithmetic logic unit), and thstored back in the same or different variables
(memory locations). Finally, the values of variabkre sent to the I/O devices as output. The
foundation of imperative languages is the storemg@m concept-based computer hardware
organization and architecture (von Neumann machire) stored program concept will be further

explained in the next chapter. Typical imperativegpamming languages include all assembly

languages and earlier high-level languages likér&oy Algol, Ada, Pascal, and C.

3.2.2.2 Object-Oriented Paradigm
The object-oriented programming paradigm is balyidhle same as the imperative paradigm,

except that related variables and operations aablas are organized into classes of objects. The
access privileges of variables and methods (op&stiin objects can be defined to reduce
(simplify) the interaction among objects. Objecte aonsidered the main building blocks of
programs, which support language features likeritdrece, class hierarchy, and polymorphism.

Typical object-oriented programming languages idel&malltalk, C++, Python, Java, and C#.

3.2.2.3 Functional (Application) Paradigm
The functional, also called the applicative, prognaing paradigm expresses computation in terms

of mathematical functions. Since we express contiputan mathematical functions in many of
the mathematics courses, functional programmisgpgposed to be easy to understand and simple
to use. However, programmers find it difficult teitch because they are already familiar with the
functional programming. The main difference is ttigre is no concept of memory locations in

functional programming languages. Each functionl wake a number of values as input

13

CIT401 COURSE GUIDE

(parameters) and produce a single return valug@@owuf the function). The return value cannot
be stored for later use. It has to be used eithénafinal output or immediately as the parameter
value of another function. Functional programmis@lbout defining functions and organizing the
return values of one or more functions as the patars of another function. Functional
programming languages are mainly based on the lamédulus that will be discussed in Chapter
4. Typical functional programming Languages inclidle, SML, and Lisp/Scheme. Python and
C# support direct applications of lambda calculug many functional programming features.
3.2.24 Logic Paradigm
The logic, also called the declarative, programnpagadigm expresses computation in terms of
logic predicates. A logic program is a set of fanoiées, and questions. The execution process of a
logic program is to compare a question to eachdadtrule in the given fact and rulebase. If the
guestion finds a match, we receive a yes answbetquestion. Otherwise, we receive a no answer
to the question. Logic programming is about findiagts, defining rules based on the facts, and
writing questions to express the problems we wishdive. Prolog is the only significant logic
programming language.
4 Self-Assessment Exercises

e Explain the evolution of programming language.

e What is programming language paradigm?

e List all categories of programming language panadig

e Compare and contrast the four programming paradigmperative, object-oriented,

functional, and logic

e Explain in details the four common programming laage paradigm.

5 Answer to Self-Assessment Exercises
e Explain the evolution of programming language —tisac3.1.

e What is programming language paradigm? A progrargmpi@radigm is an approach to
programming a computer based on a coherent seinigdes or mathematical theory

e List all categories of programming language panaditnperative paradigm, Functional
paradigm, Logic paradigm, Object-Oriented paradignVisual paradigm,

Parallel/concurrent paradigms, Constraint baseddogm, Dynamic paradigms.

14

CIT401 COURSE GUIDE

e Compare and contrast the four programming paradigmperative, object-oriented,
functional, and logic — Section 3.2.2

e Explain in details the four common programming laage paradigm. — Section 3.2.2

6 Conclusion
Paradigm is a set of basic principles, conceptd,raethods for how a computation or algorithm

is expressed. We have several programming paradigmvadays. Although there is similarity
between some of these programming languages. Hitiemphasizes the need to know which

paradigm the programming language in use belong to.

7 Summary
In this unit, you learnt thathe history of programming language right from theginning till

present. Also, the programming paradigms were dgsl The four common program paradigm

and groups were discussed as well as their sitndarmnd differences.

8 References/Further Reading
Ghezzi & Jazayeri (1996Brogramming language concepts—Third editlmmn Wiley & Sons

New York Chichester Brisbane Toronto Singapore 1996

https://www.geeksforgeeks.org/the-evolution-of-peogming-languages

15

CIT401 COURSE GUIDE

Unit 3 Structured/Unstructured Programming Language

1.
2.
3.

N o o &

Introduction
Intended Learning Outcomes (ILOS)
Main Content
3.1. Structured Programming
3.2. Elementary Structures of Structured Programs
3.3. Different between Structured and unstructured @agning language
3.4. Types of Structured Programming
3.4.1. Procedural Programming
3.4.2. Object-oriented Programming
3.4.3. Model-based Programming
3.5. Components of Structured Programming
3.6. Advantages and Disadvantages of Structured Progiagnm
3.6.1. Advantages of Structured Programming
3.6.2. Disadvantages of Structured Programming
Self-Assessment Exercises
Conclusion
Summary

References/Further Reading

16

CIT401 COURSE GUIDE

1 Introduction
This unit discusses structured and unstructuregramming towards making programming easier

to understand. While drawing the difference betwsteuctured and unstructured language, the
unit deliberates on types and components of stredtprogramming language, and highlighted

their advantages and disadvantages.

2 Intended Learning Outcomes (ILOs)
At the end of the unit, students should able to

e Understand structured/ unstructured programminguage
o Differentiate between structured and unstructuregiamming language
e Explain types and component of structured programgmi

e Discuss the advantages and disadvantaged od sgdgtogramming

3 Main Content
3.1 Elementary structures of structured programs?

Structured programming (sometimes known rasdular programming is a programming
paradigm that facilitates the creation of programith readable code and reusable components.
All modern programming languages support structyyemramming, but the mechanisms of
support, like the syntax of the programming langasagaries. Where modules or elements of code
can be reused from a library, it may also be ptss$ibbuild structured code using modules written
in different languages, as long as they can olm®yranon module interface or application program
interface (API) specification. However, when modudee reused, it's possible to compromise data
security and governance, so it's important to @eéind enforce a privacy policy controlling the

use of modules that bring with them implicit dataess rights.

Structured programming encourages dividing an apptin program into a hierarchy of modules
or autonomous elements, which may, in turn, corséner such elements. Within each element,
code may be further structured using blocks ofteeldogic designed to improve readability and
maintainability. These may include case, whichstestvariable against a set of values; Repeat,
while and for, which construct loops that continuail a condition is met. In all structured
programming languages, an unconditional transfeoafrol, or goto statement, is deprecated and
sometimes not even available.

17

CIT401 COURSE GUIDE

e Block: It is a command or a set of commands thatglogram executes linearly. The
sequence has a single point of entry (first limej axit (last line).

e Selection: It is the branching of the flow of caritbased on the outcome of a condition.
Two sequences are specified: the ‘if’ block whesa ¢bndition is true and the ‘else’ block
when it is false. The ‘else’ block is optional azah be a no-op.

o lteration: It is the repetition of a block as loag it meets a specific condition. The
evaluation of the condition happens at the stath®end of the block. When the condition
results in false, the loop terminates and move® dhe next block.

o Nesting: The above building blocks can be nestedirse conditions and iterations, when
encapsulated, have singular entry-exit points afhbe just like any other block.

e Subroutines: Since entire programs now have singi&ry-exit points, encapsulating
them into subroutines allows us to invoke blockohg identifier.

3.2 Difference between structured and unstructured progamming languages

A structured programming language facilitates ofoeaes structured programming practices.
These practices can also be supported with unstectianguages, but that will require specific
steps in program design and implementation. Stradtprogramming practices thus date to the

emergence of structured programming languages.

The theoretical basis for structured programmingsgoack to the 1950s, with the emergence of
the ALGOL 58 and 60 languages. Up to then, coddtglavas reduced by the need to build
condition/action tests by having programmers wiiitked tests and actions explicitly (using the
goto statement or its equivalent), resulting in ivivas often called spaghetti code. ALGOL

included block structure, where an element of dadeided a condition and an action.

Modular programming, which is today seen as synaugnwith structured programming,

emerged a decade later as it became clear tha oféummon code could improve developer
productivity. In modular programming, a prograndigided into semi-independent modules, each
of which are called when needed. Purists argue tthadular programming requires actual
independence of modules, but most development teamsider any program that divides logic

into separate elements, even if those elements\weitign the same program, as modular.

18

CIT401 COURSE GUIDE

Modern programming languages are universally capabproducing structured code. Similarly,

they're also capable of producing code fairly descr as unstructured if used incorrectly. Some
would say that an unstructured programming languagéains goto statements and, thus, does
not require a "call" to a separate module, whi@nthreturns when complete, but that definition is
unnecessarily restrictive. It's better to say that mechanisms for enforcing structure vary by

language, with some languages demanding structutether accepting less-structured code.

3.3 Types of structured programming
Structured programming can be divided into thréegaries, including:

3.3.1 Procedural programming.
Defines modules as "procedures” or "functions" #ratcalled with a set of parameters to perform
a task. A procedural language will begin a processch is then given data. It is also the most
common category and has recently been subdividedhee following:
e Service-oriented programming simply defines reusatviodules as "services" with
advertised interfaces.
« Microservice programming focuses on creating malthat do not store data internally,
and so are scalable and resilient in cloud deployme
e Functional programming, technically, means that nheslare written from functions, and
that these functions' outputs are derived only ftbeir inputs. Designed for server less
computing, the definition of functional programmihgs since expanded to be largely

synonymous with microservices.

3.3.2 Object-oriented programming (OOP).

Defines a program as a set of objects or resotwoghich commands are sent. An object-oriented
language will define a data resource and sendpitdoess commands. For example, the procedural
programmer might say "Print(object)" while the O@fgrammer might say "Tell Object to
Print".

3.3.3 Model-based programming.

The most common example of this is database gqaegulges. In database programming, units

of code are associated with steps in databasesaandsupdate or run when those steps occur. The
database and database access structure will deteth@ structure of the code. Another example

of a model-based structure is Reverse Polish NotdRPN), a math-problem structure that lends
19

CIT401 COURSE GUIDE

itself to efficient solving of complex expressior@uantum computing, just now emerging, is
another example of model-based structured progragrthat demands a specific model to

organize steps, and the language simply provides it

3.4 Components of structured programming

At the high level, structured programs consist dftraictural hierarchy starting with the main
process and decomposing downward to lower levethetogic dictates. These lower structures
are the modules of the program, and modules mataicoinoth calls to other (lower-level) modules
and blocks representing structured condition/aatmmbinations. All of this can be combined into

a single module or unit of code, or broken dowo imultiple modules, resident in libraries.

Modules can be classified as "procedures” or "fonst" A procedure is a unit of code that
performs a specific task, usually referencing amam data structure available to the program at
large. Much of the data operated on by procedwexternal. A function is a unit of code that

operates on specific inputs and returns a resudinvdalled.

Structured programs and modules typically havesaléefile or section that describes the modules
or libraries referenced and the structure of theampaters and module interface. In some
programming languages, the interface descriptiabgracted into a separate file, which is then

implemented by one or more other units of code.

3.5 Advantages and Disadvantages of structured programing

3.5.1 Advantages of structured programming

The primary advantages of structured programmieg ar

e It encourages top-down implementation, which impsovboth readability and
maintainability of code.

e It promotes code reuse, since even internal modukes be extracted and made
independent, residents in libraries, describedrectbries and referenced by many other
applications.

e It's widely agreed that development time and cagdity are improved through structured

programming.

These advantages are normally seen as compeliag,decisive, and nearly all modern software

development employs structured programming.
20

CIT401 COURSE GUIDE

3.5.2 Disadvantages of structured programming

The biggest disadvantage of structured programmnsng reduction in execution efficiency,
followed by greater memory usage. Both these prolarise from the introduction of calls to a
module or process, which then returns to the callen it's done. System parameters and system
resources are saved on a stack (a queue orgarsizd8@, or last-in-first-out) and popped when
needed. The more program logic is decomposed, mgdahe more modules are involved, the
greater the overhead associated with the modwefae. All structured programming languages

are at risk to "over-structuring” and loss of a#itcy.

Structured programming can also be applied inctyédahe type of structure selected isn't right
for the task at hand. The best-known example is¢iheng of math problems. RPL is an efficient
way to state and solve a math problem becauseningltes the need to explicitly state execution
order and eliminates recursion in code. Howevethat problem was to be posed in structured
programming procedural or object form, the resglttode would be much less efficient than the

RPL version.

4 Self-Assessment Exercises
e Define structured programming and explain its congos
¢ Differentiate between structured and unstructuregamming

e Discuss different categories of structured programym

5 Answer to Self-Assessment Exercises
e Define structured programming: Structured prograngis a programming paradigm that

facilitates the creation of programs with readatnlde and reusable components.
Explain its components — Section 3.4

o Differentiate between structured and unstructuregq@amming — Section 3.2

e Discuss different categories of structured programym Section 3.3

6 Conclusion
Structured programming is a paradigm that aims a&erprograms easier to comprehend from a

reader’s point of view. It does this by line argsithe flow of control through a program. In which

case, execution follows the writing order of theleoStructured programming caught favor with

21

CIT401 COURSE GUIDE

programming languages for its iconic oppositionthe keyword goto, aiming to reduce the
prevalence of spaghetti code.

7 Summary
The knowledge of structured and unstructured prograg languages led to easy understanding

of programs. Although, structured programming laaggipossess the risk of over structuring and
loss of efficiency but its merit cannot be overked. Structured programming language increases
the maintainability and readability of code, proetode reuse and improve the development
time and code quality. This unit debated extengieal structured programming language. Also,

the difference between structured and structuregramming language were discussed as well as

the merit and demerit of structured programmingjleage.

8 References/Further Reading

https://deepsource.io/glossary/structured-progrargmi

https://searchsoftwarequality.techtarget.com/dedinistructured-programming-modular-

programming

22

CIT401 COURSE GUIDE

Module 2 Language Structure

Having refreshed our memory about programming lagguin previous module, this module
handles language structure which is one of a nt@jpc in organization of programming language.
The module is divided into four units. Unit 1 disses the different structural layers of
programming language as well as the designing amdtaicts of these layers. Unit 2 and 3
presents general problem of describing syntax dsaseformal methods of describing syntax.
Also, the attribute grammars, operational semandiesotational semantic and axiomatic semantic
will be talk about in unit 2 and 3. Unit 4 shalsduss the parsing problem, recursive-decent parsing
and bottom-up parsing, before deliberating on #&xéchl analysis with focus on lexical process
and lexical analyzer building. The last unit (uB)tintroduces the implementation of language
processing by discussing interpretation, trangtatiooncept of interpretative language and

binding.

23

CIT401

Unit 1
1.
2.
3.

No ok

Introduction
Intended Learning Outcomes (ILOs)
Main Content
3.1. Structural Layers
3.1.1. Lexical Structure
3.1.1.1. Identifiers
3.1.1.2. Keywords
3.1.1.3. Operators
3.1.1.4. Separators
3.1.1.5. Literals
3.1.1.6. Comments
3.1.1.7. Layout and Spacing
3.1.2. Syntactic Structure
3.1.2.1. Assignments
3.1.2.2. Conditional Statements
3.1.2.3. Loop Statements
3.1.3. Contextual Structure
3.1.4. Semantic Structure
3.2.Error Types at Different levels
3.2.1. Lexical Errors
3.2.2. Syntactic Errors
3.2.3. Contextual Errors
3.2.4. Semantic Errors

3.2.5. Examples of Conceptual and Semantic Errors
3.3. Application of BNF Notation and Syntax Graph

3.3.1. BNF Notation
3.3.2. Syntax Graph
Self-Assessment Exercises

Conclusion
Summary
References/Further Reading

24

Concept of Language Structure

COURSE GUIDE

CIT401 COURSE GUIDE

1 Introduction
A structure is used to represent information alsmrhething more complicated than a single

number, character, or Boolean. Thus, this unitgssthe fundamental concepts of language
structuring by discussing the structural layerpraigramming language, as well as the designing

and constructs of those layers.

2 Intended Learning Outcomes (ILOs)
At the end of the unit, students should able to

e discuss in details the structural layers of programg language

e Understand types of error that occur in each layer

3 Main Content
3.1 Structural Layers

The structures of programming languages are groupedour structural layers which are lexical,

syntactic, contextual, and semantic.

3.1.1 Lexical structure
Lexical structure defines the vocabulary of a laaggi Lexical units are considered the building
blocks of programming languages. The lexical stmeg of all programming languages are similar

and normally include the following kinds of units:

Identifiers - Names that can be chosen by programmers to repr@gests like variables, labels,
procedures, and functions. Most programming langsiagquire that an identifier start with an

alphabetical letter and can be optionally folloviigdetters, digits, and some special characters.

o Keywords: Names reserved by the language designer andafadt the syntactic structure
of the language.

e Operators: Symbols used to represent the operations. Aleggdspurpose programming
languages should provide certain minimum operatoct as mathematical operators like +,
-, *, /, relational operators like <, ?, ==, >gnd logic operators like AND, OR, NOT, etc.

e Separators: Symbols used to separate lexical or syntacticsuoitthe language. Space,

comma, colon, semicolon, and parentheses are gsagparators.

25

CIT401 COURSE GUIDE

Literals: Values that can be assigned to variables ofreifiietypes. For example, integer-
type literals are integer numbers, character-titpeals are any character from the character
set of the language, and string-type literals asestring of characters.

Comments: Any explanatory text embedded in the program. @emts start with a specific
keyword or separator. When the compiler translagsrogram into machine code, all
comments will be ignored.

Layout and spacing: Some languages are of free format such as C, &g Java. They
use braces and parentheses for defining code béakseparations. Additional whitespace
characters (spaces, newlines, carriage returnsiaos) will be ignored. Some languages
consider layout and whitespace characters as lesyiogbols. For example, Python does not
use braces for defining the block of code. It usdentation instead. Different whitespace

characters are considered different lexical symbols

3.1.2 Syntactic structure

Syntactic structure defines the grammar of fornsagtences or statements using the lexical units.

An imperative programming language normally offiaes following basic kinds of statements:

Assignments:An assignment statement assigns a literal val@ @xpression to a variable.
Conditional statements:A conditional statement tests a condition and Hnaado a certain
statement based on the test result (true or falggical conditional statements are if-then,
if-then- else, and switch (case).

Loop statements:A loop statement tests a condition and enters tlay of the loop or exits
the loop based on the test result (true or falbgpical loop statements are for-loop and

while-loop.

3.1.3 Contextual structure

Contextual structure (also called static semante$ines the program semantics before dynamic

execution. It includes variable declaration, iization, and type checking. Some imperative

languages require all variables be initialized wtirery are declared at the contextual layer, while

other don't as long as the variables are initi@ibefore their values are used. This means that

initialization can be done either at the contextagr or at the semantic layer. Contextual stmectu

starts to deal with the meaning of the programtakesnent that is lexically correct may not be

contextually correct. For example:

26

CIT401 COURSE GUIDE

The declaration and the assignment statementseaigally and syntactically correct, but the
assignment statement is contextually incorrect iexat does not make sense to add an integer

variable to a string variable.

3.1.4 Semantic structure

Semantic structure describes the meaning of a anegor what the program does during the
execution. The semantics of a language are oftena@mplex. In most imperative languages,
there is no formal definition of semantic structurdormal descriptions are normally used to
explain what each statement does. The semantictstes of functional and logic programming
languages are normally defined based on the matiehand logical foundation on which the
languages are based. For example, the meaningshaint® procedures are the same as the
meanings of the lambda expressions in lambda escah which Scheme is based, and the
meanings of Prolog clauses are the same as thengeaf the clauses in Horn logic on which

Prolog is based.

3.2 Error types at different levels

Programming errors can occur at all levels of agmam. We call these errors lexical errors,
syntactic errors, contextual errors, and semantic® respectively, depending on the levels where
the errors occur.

3.2.1 Lexical errors:
Errors at the lexical level. Compiler can detettfdr example:

These declarations will cause compilation errorG ibbecause “if” is a keyword, a variable cannot

start with a number, and “?” cannot be used inalde definition.

27

CIT401 COURSE GUIDE

3.2.2 Syntactic errors:
Errors at the syntactic level. Compiler can dedlodf them. For example:

int x =0, y'= 3; double z =i

There is a number of syntactic errors in C in giece of code:
* The condition if-statement must be quoted by péesds.
* No comma between the condition and the followirageshent.

* A semicolon is missing at the end of z = x+y stagain

3.2.3 Contextual errors:
Contextual errors are complex and compiler impldiit@ns may or may not detect all of the

initialization errors, depending on whether thefuatty compute the initialization expression or
not. They include all the errors (excluding theidakerrors) in

» variable declaration,

» variable initialization, and

* type inconsistent in assignment.

The following are examples of contextual errors:

i contextual error that compller may not

3.2.4 Semantic errors:

Errors at the semantic level include all the eriarshe statements that will be executed after

passing compilation. The compiler normally doesdeiect semantic errors. For example:

3.2.5 Examples of contextual errors and semantic errors
Figure 1 shows several contextual and semanticsewih similar but different types of errors

that the compilers may handle differently.

* In Figure 1(a), there is a clear semantic erroe bde will pass all compilers but will cause
an exception at execution.

* In Figure 1 (b), there is a contextual error irtigtization. Since the initialization expression

is quite complex, both GCC and Visual Studio wdl detect the error because they choose to
28

CIT401 COURSE GUIDE

compile the initialization statement as an execustatement in the form shown in Figure 1
(c). Therefore, the contextual error in initialipat will be delayed to the execution stage. We
still call such errors contextual errors becausecthmpiler’s choice of implementation should
not impact the definitions of error types.

* In Figure 1 (c), the initialization statement iStten as an execution statement, and, thus, the
error changes from contextual error to semantiarerr

* Figure 1 (d) has a clearly semantic error thatmotibe detected by any compilers, even though
the expression is simple and straightforward, shgwi division zero situation. Now, we move
the execution statement in Figure 1 (d) to theatatlon part in Figure 1 (e). It now will be a
contextual error. This example shows a situatiorerehdifferent compilers will handle it
differently. Visual Studio will throw a compiler rer, whereas GCC will pass the code.
Although GCC gives a warning of division by zettcstill generates executable.

{8} Mo compilaton emor (b GHOC & VS pass compilion
i tdio.h

Conteximl emror
maind) i & Mt ot o
int & = 3, y=5; e= v/ ¥ - 2F;

forintf(®w- %4, 3 = %4, z =« E4" =, ¥, z}:

W Semanti error . {d) Mo compibtion emor for ey compia
. i wilen cxcouting ; r

ol io.l Semmik o
- 5 it |1 ¥
, s ; s, when excouimg
L=y Yy = w=d); int x = 3, y=5, =3 -
ForintF(= K&, ¥ o BT . e ¥ FlE r w5 f {5 -3 - 3): il
4

Exrmption Uinhareisd & fprint ("

Lnhardisd geoephon ot O] 12800

Ly - nilegper divigan by gera
(e) Pass GOC but not VS
: | Contextual error
{ TN 1 -
. m mielimion
mait 1 | A"{:‘-\. :
{rt % =3, y=b, =5 / (5
fprimtf (v M, v = M

Figure 1:Examples of contextual and semantic errors

29

CIT401 COURSE GUIDE

3.3 Application of BNF Notation and Syntax Graph
Lexical and syntactic structure of a language eaarmalyzed using BNF and syntax graph.

3.3.1 BNF Notation
BNF (Backus-Naur Form) is a meta language thatbeansed to define the lexical and syntactic

structures of another language. For easy undeis@nge will first use BNF to define a simplified

familiar English language and then learn BNF fréwa definition itself.

A simple English sentence consists of a subjeatyla, and an object. The subject, in turn, consists
of possibly one or more adjectives followed by aimoThe object has the same grammatical
structure but both the verbs and adjectives mustecbhiom the vocabulary. A simple English
sentence can therefore be defined as:

<sentence> ::= <subject><verb><object>

<subject> ::= <noun> | <article><noun> | <adjective><noun> | <article><adjective><noun>
<adjective> ::= <adjective> | <adjective><adjective>

<object> ::= <subject>

<noun> ::= table | horse | computer

<article> ::=the | a

<adjective> ::= big | fast | good | high

<verb> ::= is | makes

In the definitions, the symbol “::=" means that tm@me on the left-hand side is defined by the
expression on the right-hand side. The name inrapangle brackets “<>" is nonterminal, which
means that the name needs to be further defineslvéitical bar “|” represents an “or” relation.
The boldfaced names are terminal, which meanghieatames need not be further defined. They
form the vocabulary of the language. We can useséimence definition to check whether the

following sentences are syntactically correct.

fast high big computer is good table 1
the high table is a good table 2
a fast table makes the high horse
the fast big high computer is good
good table is high

a table is not a horse

N oo 1 MW

is fast computer good

30

CIT401 COURSE GUIDE

The first sentence is syntactically correct, algiioit does not make much sense. Three adjectives
in the sentence are correct because the defirofian adjective recursively allows any number of
adjectives to be used in the subject and the objeatsentence. The second and third sentences
are also syntactically correct according to theingn. The fourth and fifth sentences are
syntactically incorrect because a noun is missirthe object of the sentences. The sixth sentence
is incorrect because “not” is not a terminal. Tast Isentence is incorrect because the definition

does not allow a sentence to start with a verb.

After we have a basic understanding of BNF, we gse it to define a small programming
language. The first five lines define the lexidalisture, and the rest defines the syntactic strect

of the language.

detter> z= albld|dlelflglhlijlkllimin|olplalrsltlulviwlxlylz

<digit> = o[1[2[3]4/5|6|7|8|9

<symbol> = _|@]-|~I2|#|$

<char> = <letter>|<digit>|<symbol>

<operator> u= +|-|*|/|%|<|>|==|<=|>=|and|or|not

<identifier> = <letter>|<identifier><char>

<number> = <digit>|<number><digit>

<item> = <identifier>|<number>

<expression> ::= <item>|(<expression>)| <expression><operator><expression>
<branch> = if <expr>then {<block>} | if <expr>then {<block>}else {<block>}
<switch> = switch<expr>{<sbody>}

<sbody> = <cases> | <cases>; default :<block>

<cases> = case<value>:<block> | <cases> ; case<value>:<block>

<loop> = while <expr>do {<block>}

<assignment> :: <identifier>=<expression>;
<statement> ::

<block>

<assignment>|<branch>|<loop>

<statement>|<block>;<statement>

31

CIT401 COURSE GUIDE

Now we use the definition to check which of thddwling statements are syntactically correct.

sum1 = o;

—_

while sum1<=100 do {

sum1 = sum1 + (a1 + a2) * (3b % 4*b); }

if sum1 == 120 then 2sum — sum1 else sum2 + sum1;
p4#rd 2 =((1a+a2)*(b3%bg))/(c7 — c8);
_foo.bar =(a1+a2—-b3-bg);

(a1/a2)=(c3 - c4);

N oovi M WN

According to the BNF definition of the languagatsetments 1 and 2 are correct. Statements 3 and
4 are incorrect because 3b and 2 sum are neitheptable identifiers nor acceptable expressions.
Statement 5 is incorrect. Statement 6 is incorbeciause an identifier must start with a letter.

Statement 7 is incorrect because the left-handdide assignment statement must be an identifier.

3.3.2 Syntax graph
BNF notation provides a concise way to define éxéchl and syntactic structures of programming

languages. However, BNF notations, especially doansive definitions, are not always easy to
understand. A graphic form, called a syntax gratdg known as railroad tracks, is often used to
supplement the readability of BNF notation. For ragée, the identifier and the if-then-else
statement corresponding to the BNF definitions lsamlefined using the syntax graphs in Figure
2. The syntax graph for the identifier requires @ identifier start with a letter, may exit with
only one letter, or follow the loops to include amymber of letters, digits, or symbols. In other
words, to check the legitimacy of an identifier, weed to travel through the syntax graph
following the arrows and see whether we can fiqghtn that matches the given identifier. For
instance, we can verify that len_23 is a legitimdemntifier as follows. We travel through the first
<letter> once, travel through the second <letten>tlee back track twice, travel through the
<symbol> once, and finally travel through the <thdiwice, and then we exit the definition. On
the other hand, if you try to verify that 23 _leraitegitimate identifier, you will not be able iad

a path to travel through the syntax graph.

Using the if-then-else syntax graph in Figure 2 cae precisely verify whether a given statement
is a legitimate if-then-else statement. The altiveaoute that bypasses the else branch signifies
that the else branch is optional. Please notethieadefinition of the if-then-else statement here i

not the same as the if- then-else statement im@uige.

32

CIT401 COURSE GUIDE

— clette >
dentifi i < jaftbar |
— cdigits 44—

=% if =k cexpr> = then =k | =% <blocks> = | Talsa % [= chlock: =@]T.

If-then-elegs

Figure 2. Definition of identifier and if-then-els&éatement.

As another example, Figure 3 shows the definitiohs set of data structures, including the
definitions of value, string, array, bool, numband object. In syntax graphs, we use the same
convention that terminals are in boldfaced text andterminals are enclosed in a pair of angle

brackets.

— camays ——
—® <hool> —
] <Unicode character except
s 111 115 ; 1) ¥
i * b — uFu:l: ; * quotcand bockslash: 1 e
value —* phject> —® g
— <sinng> —» — " —
— null E— . . e
=+ <shshe -
1 = <hackspace> =
—+ [<value> | —= Pl g
arrmy —+— <formfced
! -+ <newling> —w
= <camage-retums —
true :
{ &l } I <hommntoHabh> —p
bool SE
—* <4hesdigiss

. <digit=> ¥ *
numkcr E: i E I i T = ! I::
digu - c . :
v <digit=
b [T 3
—l-ll strmgs = 3 % <vale | —
obect

Figure 3: Definitions of different data structuresligit>

33

CIT401

COURSE GUIDE

4 Self-Assessment Exercises

Compare the four structural layers: lexical, syntacontextual, and semantic structures
Mention and explain error types that occur at esairctural layer

Explain the application of BNF and syntax grapleixical and syntactic structure

From the stated definitions below check if thedwling statements stated below are

syntactically correct.

Definitions

detter> == alblcldlelflglhliliklliminlolplalrlsitlulviwlxlylz

<digit> = o[1[2[3]4/5|6|7|8]9

<symbol> = _|@]-|~]21#$

<char> = <letter>|<digit>|<symbol>

<operator> == +|=|*|/|%|<|>|==|<=|>=|and|or|not

<identifier> = <letter>|<identifier><char>

<number> = <digit>|<number><digit>

<item> BE <identifier>|<number>

<expression> ::= <item>|(<expression>)| <expression><operator><expression>
<branch> = if <expr>then {<block>} | if <expr>then {<block>}else {<block>}
<switch> = switch<expr>{<sbody>}

<sbody> = <cases> | <cases>; default :<block>

<cases> = case<value>:<block> | <cases> ; case<value>:<block>

<loop> = while <expr>do {<block>}

<assignment> :: <identifier>=<expression>;

<statement> ::= <assignment>|<branch>|<loop>

<block> = <statement>|<block>;<statement>

Statement

sum1 = o; 1

while sum1 <= 100 do {

sum1 = sum1 + (a1 + a2) * (3b % 4*b); }

if sum1 ==120 then 2sum — sum1 else sum2 + sum1;
pa#rd 2 =((1a+a2)*(b3%bg))/(c7 - c8);
_foo.bar =(a1+a2—-b3-bg);

(a1/a2)=(c3 ~ c4);

N oV ~WN

34

CIT401

COURSE GUIDE

5 Answer to Self-Assessment Exercises

Compare the four structural layers: lexical, syntacontextual, and semantic structures
— Section 3.1

Mention and explain error types that occur at estalctural layer — Section 3.2

Explain the application of BNF and syntax grapleixical and syntactic structure —
Section 3.3

From the stated definitions below check if thedwling statements stated below are

syntactically correct.

Definitions

detter> == alblcldlelflglhliliklliminlolplalrlsitlulviwlxlylz

<digit> = o[1[2[3]4/5|67|8]9

<symbol> = _|@]-|~]21#$

<char> = <letter>|<digit>|<symbol>

<operator> == +|=|*|/|%|<|>|==|<=|>=|and|or|not

<identifier> = <letter>|<identifier><char>

<number> = <digit>|<number><digit>

<item> = <identifier>|<number>

<expression> ::= <item>|(<expression>)| <expression><operator><expression>
<branch> = if <expr>then {<block>} | if <expr>then {<block>}else {<block>}
<switch> = switch<expr>{<sbody>}

<sbody> = <cases> | <cases>; default :<block>

<cases> = case<value>:<block> | <cases> ; case<value>:<block>

<loop> = while <expr>do {<block>}

<assignment> :: <identifier>=<expression>;

<statement> = <assignment>|<branch>|<loop>

<block> = <statement>|<block>;<statement>

Statement

sum1 = 0; 1

while sum1 <= 100 do {

sum1 = sum1 + (a1 + a2) * (3b % 4*b); }

if sum1 ==120 then 2sum — sum1 else sum2 + sum1;
pa#rd 2 =((1a+a2) *(b3%bg))/(c7 — c8);
_foo.bar =(a1+a2—-b3-bg),

(a1/a2)=(c3 ~ c4);

N oV ~AWN

35

CIT401 COURSE GUIDE

According to the BNF definition of the languaggtetments 1 and 2 are correct. Statements 3 and
4 are incorrect because 3b and 2 sum are neitheptable identifiers nor acceptable expressions.
Statement 5 is incorrect. Statement 6 is incorbeciause an identifier must start with a letter.

Statement 7 is incorrect because the left-handddide assignment statement must be an identifier.

6 Conclusion
Defining the language vocabulary and grammar iy weucial in language construction. Thus,

depth knowledge of the structural layers (lexisghtactic, contextual, and semantic) will help in
detecting error easily at each layer. BNF and sygtaph can also be used to define the lexical

and syntactic structures of a language.

7 Summary
This unit presented the fundamental concepts @uage structuring, and discussed the structural

layers of programming language. Error type asseditt each of the mentioned structural layers

were also discussed.
8 References/Further Reading

Chen, Y. (2020). Chapter 1 Basic Principles of Programming Languages. In Introduction to Programming

Languages (Sixth, pp. 1-40). Kendal Hunt Plublishing

36

CIT401

Unit 2 Syntax

1.
2.
3.

No ok

Introduction

Intended Learning Outcomes (ILOs)

Main Content

3.1. Syntax

3.2.The General Problem of Describing Syntax
3.2.1. Language Recognizers
3.2.2. Language Generators

3.3.Formal Methods of Describing Syntax
3.3.1. Backus-Naur Form and Content-Free Grammars
3.3.2. Extended BNF
3.3.3. Grammars and Recognizers

3.4. Attribute Grammars
3.4.1. Static Semantics
3.4.2. Basic Concepts
3.4.3. Attribute Grammars Defined
3.4.4. Intrinsic Attributes
3.4.5. Examples of Attribute Grammar
3.4.6. Computing Attribute Values
3.4.7. Evaluation

Self-Assessment Exercises

Conclusion

Summary

References/Further Reading

37

COURSE GUIDE

CIT401 COURSE GUIDE

1 Introduction
Just like natural language, Programming language bath the syntax and semanti8gntax of

a programming language is a form of its expressistetements, and program units while Its
semanticss the meaning of those expressions, statemerdspragram units. The unit presents a
discussion on general problem of describing symtast formal methods of describing syntax.
Attribute grammars, which can be used to describih Ibhe syntax and static semantics of

programming languages, are also discussed.

2 Intended Learning Outcomes (ILOs)
At the end of the unit, students should able to
¢ have full understanding of language description
e know how the expressions, statements, and prograts of a language are formed and
also their intended effect when executed

e determine how to encode software solutions by referring to a language reference manual.

3 Main Content

3.1 Syntax
Syntax is described by a set of rules that defiedférm of a language: they define how sentences

may be formed as sequences of basic constituelisl s@ords. Using these rules we can tell
whether a sentence is legal or not. The syntax doegell us anything about the content (or
meaning) of the sentence—the semantic rules tethats As an example, C keywords (such as
while, do, if, else,...), identifiers, numbers, oggers, ... are words of the language. The C syntax

tells us how to combine such words to construct-feemed statements and programs.

Words are not elementary; they are constructedbaharacters belonging to an alphabet. Thus
the syntax of a language is defined by two setsilek: lexical rules and syntactic rules. Lexical
rules specify the set of characters that constitutealphabet of the language and the way such
characters can for example, Pascal considers laserand uppercase characters to be identical,
but C and Ada consider them to be distinct. Thaspaling to the lexical rules, “Memory” and
“memory” refer to the same variable in Pascal,tbuistinct variables in C and Ada. The lexical
rules also tell us that <> (or }) is a valid operat Pascal but not in C, where the same opeigtor
represented by !=. Ada differs from both, sincet“equal” is represented as /=; delimiter <>

(called “box”) stands for an undefined range obamy index.

38

CIT401 COURSE GUIDE

3.2 The General Problem of Describing Syntax

A language, whether natural (such as English) tifical (such as Java), is a set of strings of
characters from some alphabet. The strings of gulage are called sentences or statements. The
syntax rules of a language specify which stringshafracters from the language’s alphabet are in
the language. English, for example, has a largecangplex collection of rules for specifying the
syntax of its sentences. By comparison, even thgeth and most complex programming
languages are syntactically very simple. Formalcdpesons of the syntax of programming
languages, for simplicity’s sake, often do not uald descriptions of the lowest-level syntactic
units. These small units are called lexemes. Tlserg#ion of lexemes can be given by a lexical
specification, which is usually separate from tyr@actic description of the language. The lexemes
of a programming language include its numeric dift&r operators, and special words, among

others. One can think of programs as strings @rfees rather than of characters.

Lexemes are partitioned into groups—for example,tames of variables, methods, classes, and
so forth in a programming language form a groupedaildentifiers Each lexeme group is
represented by a name, or token. So, a takea language is a category of its lexemes. For
example, an identifier is a token that can havengas, or instances, such as sum and total. In
some cases, a token has only a single possibleneexeéor example, the token for the arithmetic

operator symbol + has just one possible lexemesidenthe following Java statement:
index = 2 * count + 17,

The lexemes and tokens of this statement are

Lexemes Tokens
index identifier

= equal_sign
2 int_literal

* mult_op
count identifier

+ plus_op

17 int_literal

; semicolon

In general, languages can be formally describetivin distinct ways - by recognition and by
generation - although neither provides a definitioat is practical by itself for people trying to

learn or use a programming language.
39

CIT401 COURSE GUIDE

3.2.1 Language Recognizers
Suppose we have a language L that uses an alphabetharacters. To define L formally using

the recognition method, we would need to constauttechanism R, called a recognition device,
capable of reading strings of characters from tphabetX. R would indicate whether a given
input string was or was not in L. In effect, R wab@ither accept or reject the given string. Such
devices are like filters, separating legal senterfoem those that are incorrectly formed. If R,
when fed any string of characters o¥gmccepts it only if it is in L, then R is a degtion of L.
Because most useful languages are, for all praghagooses, infinite, this might seem like a
lengthy and ineffective process. Recognition desjiteowever, are not used to enumerate all of

the sentences of a language— they have a diffprepbse.

The syntax analysis part of a compiler is a recogniior the language the compiler translates. In
this role, the recognizer need not test all possshiings of characters from some set to determine
whether each is in the language. Rather, it negddatermine whether given programs are in the
language. In effect then, the syntax analyzer detes whether the given programs are

syntactically correct.

3.2.2 Language Generators
A language generator is a device that can be wsgérerate the sentences of a language. We can

think of the generator as having a button that pced a sentence of the language every time it is
pushed. Because the particular sentence thatasiped by a generator when its button is pushed
is unpredictable, a generator seems to be a defiomited usefulness as a language descriptor.
However, people prefer certain forms of generadwes recognizers because they can more easily
read and understand them. By contrast, the syritagking portion of a compiler (a language
recognizer) is not as useful a language descriftioa programmer because it can be used only
in trial-and-error mode. For example, to determntime correct syntax of a particular statement
using a compiler, the programmer can only subnmspeculated version and note whether the
compiler accepts it. On the other hand, it is oftessible to determine whether the syntax of a
particular statement is correct by comparing itwite structure of the generator.

3.3 Formal Methods of Describing Syntax
This section discusses the formal language-geoearatechanisms, usually called grammars, that
are commonly used to describe the syntax of prognaignlanguages.

40

CIT401 COURSE GUIDE

3.3.1 Backus-Naur Form and Context-Free Grammars
In the middle to late 1950s, two men, Noam Chomeskg John Backus, in unrelated research

efforts, developed the same syntax description &ism, which subsequently became the most

widely used method for programming language syntax.

3.3.1.1 Context-Free Grammars
In the mid-1950s, Noam Chomsky, a noted linguistiqag other things), described four classes

of generative devices or grammars that define étasses of languages (Chomsky, 1956, 1959).
Two of these grammar classes, nantedtext-freeand regular, turned out to be useful for
describing the syntax of programming languages. fimms of the tokens of programming
languages can be described by regular grammarssyfitiax of whole programming languages,
with minor exceptions, can be described by contieed-grammars. Because Chomsky was a
linguist, his primary interest was the theoretiwalure of natural languages. He had no interest at
the time in the artificial languages used to comizate with computers. So it was not until later
that his work was applied to programming languages.

3.3.1.2 Originsof Backus-Naur Form

Shortly after Chomsky’s work on language classies, ACM-GAMM group began designing
ALGOL 58. A landmark paper describing ALGOL 58 waesented by John Backus, a prominent
member of the ACM-GAMM group, at an internationahterence in 1959 (Backus, 1959). This
paper introduced a new formal notation for spendyprogramming language syntax. The new
notation was later modified slightly by Peter N&urthe description of ALGOL 60 (Naur, 1960).
This revised method of syntax description becammavknas Backus-Naur Form, or simply BNF.
BNF is a natural notation for describing syntaxfdnt, something similar to BNF was used by
Panini to describe the syntax of Sanskrit sevewaldred years before Christ (Ingerman, 1967).
Although the use of BNF in the ALGOL 60 report wast immediately accepted by computer
users, it soon became and is still the most popukthod of concisely describing programming
language syntax. It is remarkable that BNF is Iyadentical to Chomsky’s generative devices
for context-free languages, called context-freergnars. In the remainder of the chapter, we refer
to context-free grammars simply as grammars. Furtbee, the terms BNF and grammar are used

interchangeably.

41

CIT401 COURSE GUIDE

3.3.1.3 Fundamentals
A metalanguage is a language that is used to thesariother language. BNF is a metalanguage

for programming languages. BNF uses abstractionssyotactic structures. A simple Java
assignment statement, for example, might be repredeby the abstraction <assign> (pointed
brackets are often used to delimit names of aligtre). The actual definition of <assign> can be

given by <assign> — <var> = <expression>

The text on the left side of the arrow, which igharalled the left-hand side (LHS), is the
abstraction being defined. The text to the righthefarrow is the definition of the LHS. It is el

the right-hand side (RHS) and consists of someuraxbf tokens, lexemes, and references to other
abstractions. (Actually, tokens are also abstrastjoAltogether, the definition is called a rule, o
production. In the example rule just given, thetdusions <var> and <expression> obviously
must be defined for the <assign> definition to beful.

This particular rule specifies that the abstractiassign> is defined as an instance of the
abstraction <var>, followed by the lexeme =, folemvby an instance of the abstraction

<expression>. One example sentence whose synsaatature is described by the rule is
total = subtotal1 + subtotal2

The abstractions in a BNF description, or gramnaag, often called nonterminal symbols, or
simply nonterminals, and the lexemes and tokenthefrules are called terminal symbols, or
simply terminals. A BNF description, or grammaraisollection of rules. Nonterminal symbols
can have two or more distinct definitions, repréisgtwo or more possible syntactic forms in the
language. Multiple definitions can be written asiagle rule, with the different definitions

separated described with the rules

<if stmt> — if (<logic_expr>) <stmt>
<if stmt> — if (<logic_expr>) <stmt> else <stmt>
or with the rule
<if stmt> — if (<logic_expr>) <stmt>
| if (<logic_expr>) <stmt> else <stmt>

In these rules, <stmt> represents either a sirigtersent or a compound statement.

42

CIT401 COURSE GUIDE

Although BNF is simple, it is sufficiently powerfub describe nearly all of the syntax of
programming languages. In particular, it can désdlists of similar constructs, the order in which
different constructs must appear, and nested shegtto any depth, and even imply operator

precedence and operator associativity.

3.3.1.4 Describing Lists
Variable-length lists in mathematics are oftententusing an ellipsis (. . .); 1, 2, . . . is aample.

BNF does not include the ellipsis, so an altermativethod is required for describing lists of
syntactic elements in programming languages (fangte, a list of identifiers appearing on a data
declaration statement). For BNF, the alternativedsirsion. A rule isecursiveif its LHS appears

in its RHS. The following rules illustrate how resion is used to describe lists:
<ident_list> — identifier
| identifier, <ident_list>

This defines <ident_list> as either a single tokdantifier) or an identifier followed by a comma

and another instance of <ident_list>.

3.3.1.5 Grammarsand Derivations
A grammar is a generative device for defining laages. The sentences of the language are

generated through a sequence of applications atites, beginning with a special nonterminal of
the grammar called tretart symbol. This sequence of rule applications is calleavation. In
a grammar for a complete programming languagestdré symbol represents a complete program
and is often named <program>. The simple grammawshn Example 1 is used to illustrate
derivations.
Example 1: A Grammar for a Small Language
<program> — begin <stmt_list> end
<stmt_list> — <stmt>
| <stmt> ; <stmt_list>
<stmt> — <var> = <expression>
<var>—A|B|C
<expression> — <var> + <var>

| <var> - <var>
| <var>

43

CIT401 COURSE GUIDE

The language described by the grammar of Examfla&s only one statement form: assignment.
A program consists of the special wdrdgin, followed by a list of statements separated by
semicolons, followed by the special wagdd. An expression is either a single variable or two
variables separated by either a + or - operatce.difly variable names in this language are A, B,
and C. A derivation of a program in this languégl®ws:

<program> =>pegin <stmt_list>end

=> begin<stmt> ; <stmt_list>end

=> begin<var> = <expression> ; <stmt_lisend

=> begin A = <expression> ; <stmt_listend

=>begin A = <var> + <var> ; <stmt_listend

=>beginA = B + <var> ; <stmt_listend

=>beginA =B + C ; <stmt_list>end

=>beginA = B + ; <stmt>end

=>beginA =B + C ; <var> = <expressiorend

=>beginA =B + C ; B = <expressionend

=>beginA=B + C; B =<varsend

=>beginA=B + C ;B =Cend

This derivation, like all derivations, begins wittie start symbol, in this case <program>. The
symbol => is read “derives.” Each successive stintipe sequence is derived from the previous
string by replacing one of the nonterminals witle @fi that nonterminal’s definitions. Each of the

strings in the derivation, including <program>céadled asentential form.

In this derivation, the replaced nonterminal is aj® the leftmost nonterminal in the previous
sentential form. Derivations that use this orderegflacement are callddftmost derivations.
The derivation continues until the sentential fmomtains no nonterminals. That sentential form,
consisting of only terminals, or lexemes, is th@egated sentence. In addition to leftmost, a
derivation may be rightmost or in an order thatagher leftmost nor rightmost. Derivation order
has no effect on the language generated by a grarByahoosing alternative RHSs of rules with
which to replace nonterminals in the derivatiorffedent sentences in the language can be
generated. By exhaustively choosing all combinatioh choices, the entire language can be

generated. This language, like most others, igiiefi SO one cannot generaléthe sentences in

44

CIT401 COURSE GUIDE

the language in finite time. Example 2 is anotheaneple of a grammar for part of a typical
programming language.
Example 2: A Grammar for Simple Assignment Statésen
<assign> — <id> = <expr>
<id>—>A|B|C
<expr> — <id> + <expr>
| <id> * <expr>
| (<expr>)
| <id>
The grammar of Example 3.2 describes assignmetgnséats whose right sides are arithmetic
expressions with multiplication and addition operatand parentheses. For example, the statement
A=B*(A+Q)
is generated by the leftmost derivation:
<assign> => <id> = <expr>
=> A = <expr>
=> A =<id> * <expr>
=>A=B* <expr>
=>A =B * (<expr>)
=>A =B * (<id> + <expr>)
=>A=B*(A+<expr>)
=>A=B*(A+<id>)
=>A=B*(A+C)
3.3.1.6 ParseTrees
One of the most attractive features of grammatbas they naturally describe the hierarchical
syntactic structure of the sentences of the langu#ttey define. These hierarchical structures are
calledparse trees For example, the parse tree in Figure 4 showsttlueture of the assignment
statement derived previously

45

CiT401 COURSE GUIDE

Figure 4: Parse tree for the structure of the assent statement

Every internal node of a parse tree is labeled aitionterminal symbol; every leaf is labeled with
a terminal symbol. Every subtree of a parse treri®es one instance of an abstraction in the
sentence.

3.3.1.7 Ambiguity

A grammar that generates a sentential form for wthere are two or more distinct parse trees is
said to beambiguous Consider the grammar shown in Example 3, whicnnsinor variation of

the grammar shown in Example 3.

Example 3: An Ambiguous Grammar for Simple Assigntrgtatements
<assign> — <id> = <expr>
<id>—A|B|C
<expr> — <expr> + <expr>
| <expr> * <expr>
| (<expr>)
| <id>
The grammar of Example 3 is ambiguous becausectitersce

A=B+C*A

has two distinct parse trees, as shown in Figared%. The ambiguity occurs because the grammar

specifies slightly less syntactic structure thaagithe grammar of

46

CiT401 COURSE GUIDE

L | | 1
| | |
Figure 5 Figure 6

Example 2. Rather than allowing the parse treenoéxgression to grow only on the right, this
grammar allows growth on both the left and thetri@yntactic ambiguity of language structures
is a problem because compilers often base the sm®mahthose structures on their syntactic form.
Specifically, the compiler chooses the code todreegated for a statement by examining its parse
tree. If a language structure has more than orsepeee, then the meaning of the structure cannot
be determined uniquely. This problem is discussetivo specific examples in the following
subsections. There are several other charactsrigsti@ grammar that are sometimes useful in
determining whether a grammar is ambiguous. Thelde the following: (1) if the grammar
generates a sentence with more than one leftmostatien and (2) if the grammar generates a

sentence with more than one rightmost derivation.

Some parsing algorithms can be based on ambiguansgars. When such a parser encounters
an ambiguous construct, it uses nongrammaticatnmeition provided by the designer to construct
the correct parse tree. In many cases, an ambigygraosmar can be rewritten to be unambiguous
but still generate the desired language.

3.3.1.8 Operator Precedence

When an expression includes two different operatorexample, x + y * z, one obvious semantic
issue is the order of evaluation of the two opesffor example, in this expression is it add and
then multiply, or vice versa?). This semantic guestan be answered by assigning different
precedence levels to operators. For example, #s*lteen assigned higher precedence than + (by
the language designer), multiplication will be ddinst, regardless of the order of appearance of

the two operators in the expression.

47

CIT401 COURSE GUIDE

A grammar can be written for the simple expressiweshave been discuss- ing that is both
unambiguous and specifies a consistent precedétice ® and * operators, regardless of the order
in which the operators appear in an expression.cohect ordering is specified by using separate
nonterminal symbols to represent the operandsebfierators that have different precedence.
This requires additional nonterminals and some ngs. Instead of using <expr> for both
operands of both + and *, we could use three nomtets to represent operands, which allows the
grammar to force different operators to differezndls in the parse tree. If <expr> is the root
symbol for expressions, + can be forced to thedothe parse tree by having <expr> directly
generate only + operators, using the new nontelliterm>, as the right operand of +. Next, we
can define <term> to generate * operators, usiegyt as the left operand and a new nonterminal,
<factor>, as its right operand. Now, * will alwalgs lower in the parse tree, simply because it is
farther from the start symbol than + in in everyiegion. The grammar of Example 4 is such a
grammar.

Example 4: An Unambiguous Grammar for Expressions

<assign> — <id> = <expr>
<id>—>A|B|C
<expr> — <expr> + <term>
| <term>
<term> — <term> * <factor>
| <factor>
<factor> — (<expr>)
| <id>

The grammar in Example 4 generates the same laaqsthe grammars of Examples 2 and 3,

but it is unambiguous and specifies the usual pieree order of multiplication and addition

operators. The following derivation of the senteAce B + C * A uses the grammar

<assign> => <id> = <expr>
=> A = <expr>
=> A = <expr> + <term>
=> A = <term> + <term>
=> A = <factor> + <term>
=> A =<id> + <term>
=>A =B+ <term>
=> A = B + <term> * <factor>

48

CiT401 COURSE GUIDE

=> A = B + <factor> * <factor>
=> A = B + <id> * <factor>
=>A =B+ C* <factor>
=>A=B+C*<id>
=>A=B+C*A
The parse tree for this sentence, as defined witlygtammar of Example 4, is shown in Figure 7.

<ASSIGN >

<tertme <term>

Figure 7

3.3.2 Extended BNF
Because of a few minor inconveniences in BNF, & baen extended in several ways. Most

extended versions are called Extended BNF, or irBEINF, even though they are not all the
same. The extensions do not enhance the descriptwer of BNF; they only increase its
readability and writability. Three extensions amnenonly included in the various versions of
EBNF. The first of these denotes an optional paamoRHS, which is delimited by brackets. For
example, a Gf-elsestatement can be described as
<if_stmt> — if (<expression>) <statement> [else <statement>]
Without the use of the brackets, the syntactic migtson of this statement would require the
following two rules:
<if stmt> — if (<expression>) <statement>

|if (<expression>) <statement> else <statement>
The second extension is the use of braces in an RHi®licate that the enclosed part can be

repeated indefinitely or left out altogether. Taidension allows lists to be built with a singléetu

49

CIT401 COURSE GUIDE

instead of using recursion and two rules. For exantigts of identifiers separated by commas can
be described by the following rule:
<ident_list> — <identifier> {, <identifier>}
This is a replacement of the recursion by a forningdlied iteration; the part enclosed within
braces can be iterated any number of times. Thid t@mmon extension deals with multiple-
choice options. When a single element must be chfyeen a group, the options are placed in
parentheses and separated by the OR operator,gx&mple,
<term> — <term> (* | / | %) <factor>
In BNF, a description of this <term> would requine following three rules:
<term> — <term> * <factor>

| <term> [<factor>

| <term> % <factor>

The brackets, braces, and parentheses in the ERtRstons arenetasymbols which means
they are notational tools and not terminal symholthe syntactic entities they help describe. In
cases where these metasymbols are also termindlotynm the language being described, the
instances that are terminal symbols can be un@erion quoted. Example 5 illustrates the use of
braces and multiple choices in an EBNF grammar.

Example 5: BNF and EBNF Versions of an Expressican@nar

BNF: <expr> — <expr> + <term>

| <expr> - <term>

| <term>
<term> — <term> * <factor>

| <term> [<factor>

| <factor>
<factor> — <exp> ** <factor>

<exp>

<exp> — (<expr>)

| id

EBNF: <expr> — <term> {(+ | -) <term>}

<term> — <factor> {(* | /) <factor>}
<factor> — <exp> { ** <exp>}
<exp> — (<expr>)

| id

50

CIT401 COURSE GUIDE

The BNF rule

<expr> — <expr> + <term>

clearly specifies—in fact forces—the + operatorb left associative. However, the EBNF
version,

<expr> — <term> {+ <term>}

does not imply the direction of associativity. Thieblem is overcome in a syntax analyzer based
on an EBNF grammar for expressions by designingstimax analysis process to enforce the
correct associativity. Some versions of EBNF allwumeric superscript to be attached to the
right brace to indicate an upper limit to the numbktimes the enclosed part can be repeated.
Also, some versions use a plus (+) superscripidate one or more repetitions. For example,
<compound> — begin <stmt> {<stmt>} end

and

<compound> — begin {<stmt>}+ end

are equivalent.

In recent years, some variations on BNF and EBNf aapeared. Among these are the following:

* In place of the arrow, a colon is used and the RH#aced on the next line.

» Instead of a vertical bar to separate alternatidS®& they are simply placed on separate
lines.

» In place of square brackets to indicate sometheigdooptional, the subscript opt is used.
For example,

e Constructor Declarator> SimpleName (FormalParameterListopt)

» Rather than using the | symbol in a parenthesigedflelements to indicate a choice, the

words “one of” are used. For example,
Assignment Operater> one of = *= /= %= += -= <<=>>= &= "= |=

There is a standard for EBNF, ISO/IEC 14977:19986)9but it is rarely used. The standard uses
the equal sign (=) instead of an arrow in rulesnieates each RHS with a semicolon, and requires

guotes on all terminal symbols. It also specifié®sat of other notational rules.

51

CIT401 COURSE GUIDE

3.3.3 Grammars and Recognizers
Earlier in this chapter, we suggested that thera ctose relationship between generation and

recognition devices for a given language. In fgoten a context-free grammar, a recognizer for
the language generated by the grammar can be thlgcally constructed. A number of software
systems have been developed that perform thisrcmtisn. Such systems allow the quick creation
of the syntax analysis part of a compiler for a n@mguage and are therefore quite valuable. One
of the first of these syntax analyzer generatonsaisied yacc yet anothercompiler compiler)

(Johnson, 1975). There are now many such systeailalale.

3.4 Attribute Grammars

An attribute grammais a device used to describe more of the structiuagprogramming language
than can be described with a context-free gramwarattribute grammar is an extension to a
context-free grammar. The extension allows celtguage rules to be conveniently described,
such as type compatibility. Before we formally defithe form of attribute grammars, we must

clarify the concept of static semantics.

3.4.1 Static Semantics
There are some characteristics of programming lagegi that are difficult to describe with BNF,

and some that are impossible. As an example ofi@syule that is difficult to specify with BNF,
consider type compatibility rules. In Java, for myde, a floating-point value cannot be assigned
to an integer type variable, although the oppasikegal. Although this restriction can be spedifie
in BNF, it requires additional nonterminal symbatsl rules. If all the typing rules of Java were
specified in BNF, the grammar would become toodatq be useful, because the size of the

grammar determines the size of the syntax analyzer.

As an example of a syntax rule that cannot be fipddén BNF, consider the common rule that all
variables must be declared before they are refeterithas been proven that this rule cannot be
specified in BNF. These problems exemplify the gatees of language rules called static
semantics rules. The static semantics of a langisagely indirectly related to the meaning of
programs during execution; rather, it has to déithe legal forms of programs (syntax rather than
semantics). Many static semantic rules of a langstate its type constraints. Static semantics is
so named because the analysis required to ches& sipecifications can be done at compile time.
Because of the problems of describing static seicgamtith BNF, a variety of more powerful

mechanisms has been devised for that task. One mechanism, attribute grammars, was
52

CIT401 COURSE GUIDE

designed by Knuth (1968a) to describe both theasyand the static semantics of programs.
Attribute grammars are a formal approach both srdeing and checking the correctness of the
static semantics rules of a program. Although #reynot always used in a formal way in compiler
design, the basic concepts of attribute grammaratdeast informally used in every compiler (see
Aho et al., 1986).

3.4.2 Basic Concepts
Attribute grammars are context-free grammars toctwvthave been added attributes, attribute

computation functions, and predicate functionsriBites, which are associated with grammar
symbols (the terminal and nonterminal symbols) sarelar to variables in the sense that they can
have values assigned to them. Attribute computatiorctions, sometimes called semantic
functions, are associated with grammar rules. Tdreyused to specify how attribute values are
computed. Predicate functions, which state thecstatnantic rules of the language, are associated
with grammar rules. These concepts will becomereteafter we formally define attribute

grammars and provide an example.

3.4.3 Attribute Grammars Defined
An attribute grammar is a grammar with the follogvendditional features:

» Associated with each grammar symbol X is a settabates A(X). The set A(X) consists of
two disjoint sets S(X) and I(X), called synthesizamd inherited attributes, respectively.
Synthesized attributes are used to pass semafdreniation up a parse tree, while inherited
attributegpass semantic information down and across a tree.

» Associated with each grammar rule is a set of samAmctions and a possibly empty set of
predicate functions over the attributes of the sgisin the grammar rule. For a rule X0 SX1
¢ Xn, the synthesized attributes of X0 are computell sgimantic functions of the form S(X0)
= f(A(X1), ¢, A(Xn)). So the value of a synthesized attribute onragtree node depends
only on the values of the attributes on that nodd#igdren nodes. Inherited attributes of
symbols %, 1 ...j ... n(in the rule above), are computed with a semantiction of the form
(X)) = f(A(X0), c , A(Xn)). So the value of an inherited attribute on aspdree node depends
on the attribute values of that node’s parent rentkthose of its sibling nodes. Note that, to
avoid circularity, inherited attributes are oftegstricted to functions of the form I{X=
f(A(X0), c, A(X(j-1))). This form prevents an inherited attributenfr depending on itself or
on attributes to the right in the parse tree.

53

CIT401 COURSE GUIDE

» A predicate function has the form of a Boolean egpion on the union of the attribute set
5A(X0), c, A(Xn)6 and a set of literal attribute values. The aigyivations allowed with an
attribute grammar are those in which every predieasociated with every nonterminal is true.
A false predicate function value indicates a violabf the syntax or static semantics rules of
the language. A parse tree of an attribute gramsntire parse tree based on its underlying
BNF grammar, with a possibly empty set of attributdues attached to each node. If all the
attribute values in a parse tree have been comptliedree is said to be fully attributed.
Although in practice it is not always done this wiiys convenient to think of attribute values
as being computed after the complete unattributedeptree has been constructed by the
compiler.

3.4.4 Intrinsic Attributes
Intrinsic attributesre synthesized attributes of leaf nodes whoseegalte determined outside the

parse tree. For example, the type of an instan@ewafriable in a program could come from the
symbol table, which is used to store variable naargstheir types. The contents of the symbol
table are set based on earlier declaration statsmeitially, assuming that an unattributed parse
tree has been constructed and that attribute valgeseeded, the only attributes with values are
the intrinsic attributes of the leaf nodes. Givba intrinsic attribute values on a parse tree, the

semantic functions can be used to compute the remgaattribute values.

3.4.5 Examples of Attribute Grammars
As a very simple example of how attribute gramns be used to describe static semantics,

consider the following fragment of an attributergraar that describes the rule that the name on
the end of an Ada procedure must match the proe&xdlname. (This rule cannot be stated in
BNF.) The string attribute of <proc_name>, dendigdproc_name>.string, is the actual string
of characters that were found immediately followihg reserved word procedurg the compiler.
Notice that when there is more than one occurrehaeonterminal in a syntax rule in an attribute
grammar, the nonterminals are subscripted with Ketacto distinguish them. Neither the
subscripts nor the brackets are part of the desgtildginguage.

Syntax rule: <proc_def> — procedure <proc_name>[1]
<proc_body> end <proc_name>[2];
Predicate: <proc_name>[1]string == <proc_name>[2].string

54

CIT401 COURSE GUIDE

In this example, the predicate rule states thatndwme string attribute of the <proc_name>
nonterminal in the subprogram header must matcimaéinge string attribute of the <proc_name>

nonterminal following the end of the subprogram.

Next, we consider a larger example of an attrilgugenmar. In this case, the example illustrates
how an attribute grammar can be used to checkyfieerules of a simple assignment statement.
The syntax and static semantics of this assignisiatément are as follows: The only variable
names are A, B, and C. The right side of the assgyts can be either a variable or an expression
in the form of a variable added to another variablee variables can be one of two types: int or
real. When there are two variables on the right siflan assignment, they need not be the same
type. The type of the expression when the opergpestare not the same is always real. When
they are the same, the expression type is thateobperands. The type of the left side of the
assignment must match the type of the right side fi/pes of operands in the right side can be
mixed, but the assignment is valid only if the &rgnd the value resulting from evaluating the
right side have the same type. The attribute gramgpecifies these static semantic rules. The

syntax portion of our example attribute grammar is

<assign> — <var> = <expr>
<expr> — <var> + <var>
| <var>
<var> > A|B|C
The attributes for the nonterminals in the exanagigbute grammar are described in the following
paragraphs:
* actual_type—A synthesized attribute associated with the nonitealls <var> and <expr>.
It is used to store the actual type, int or rebla @ariable or expression. In the case of a
variable, the actual type is intrinsic. In the cagan expression, it is determined from the
actual types of the child node or children nodethef<expr> nonterminal.
* expected_type-An inherited attribute associated with the nonteah<expr>. It is used
to store the type, either int or real, that is extpeé for the expression, as determined by the

type of the variable on the left side of the assignt statement.
The complete attribute grammar follows in Example 6

Example 6: An Attribute Grammar for Simple Assigmnh8tatements

55

CIT401 COURSE GUIDE

1. Syntax rule: <assign> — <var> = <expr>
Semantic rule: <expr>.expected type «— <var>.actual type
2. Syntax rule: <expr> — <var>[2] + <var>[3]
Semantic rule: <expr>.actual_type «—
if (<var>[2].actual_type = int) and
(<var>[3].actual_type =int)
then int
else real
end if
Predicade: <expr>.actual_type == <expr>.expected_type:
3. Syntax rule: <expr> — <var>
Semantic rule: <expr>.actual_type « <var>.actual_type
Predicate: <expr>.actual_type == <expr>.expected type
4. Syntax rule: <var> — A|B | C
Semantic rule: <var>.actual_type « look- up(<var>.string)

The look- up function looks up a given variable eamthe symbol table and returns the variable’s

type.

A parse tree of the sentence A = A + B generatethbygrammar in Example 3.6 is shown in
Figure 3.6. As in the grammar, bracketed numbersdded after the repeated node labels in the

tree so they can be referenced unambiguously.

3.4.6 Evaluation
Checking the static semantic rules of a languagmisssential part of all compilers. Even if a

compiler writer has never heard of an attributengrear, he or she would need to use their
fundamental ideas to design the checks of stathi@aécs rules for his or her compiler. One of the

main difficulties in using an attribute grammaidiescribe all of the syntax and static semantics of
a real contemporary programming language is thee &l complexity of the attribute grammar.

The large number of attributes and semantic ridgsired for a complete programming language
make such grammars difficult to write and read ti@nmore, the attribute values on a large parse
tree are costly to evaluate. On the other hand,flasnal attribute grammars are a powerful and
commonly used tool for compiler writers, who arerenmterested in the process of producing a

compiler than they are in formalism.

56

CIT401 COURSE GUIDE

4 Self-Assessment Exercises

e What is lexeme and token.

e How are programming languages formally defined?

¢ In which form is the programming language syntaxocwnly described?
¢ What is an ambiguous grammar?

e Explain the use of meta symbols in EBNFs.

e What is the purpose of a predicate function?

¢ What is the use of intrinsic attributes?

5 Self-Assessment Answers

e What is lexeme and token. A Lexeme is a stringhafracters that is a lowest-level syntactic
unit in the programming language while a Token syrtactic category that forms a class of
lexemes

e How are programming languages formally definedhgumges can be formally described
in two distinct ways which are by recognition anddeneration.

¢ In which form is the programming language syntamgwnly describedsrammars are
commonly used to describe the syntax of programr@nguagesThe forms of the tokens
of programming languages can be described by regudanmars while the syntax of whole
programming languages, with minor exceptions, eaddscribed by context-free grammars

e Whatis an ambiguous grammar? A grammar that géegea sentential form for which there
are two or more distinct parse trees is said tarbbiguous

e Explain the use of metasymbols in EBNFs. The brcKeraces, and parentheses in the
EBNF extensions amaetasymbols which means they are notational tools and notiteal
symbols in the syntactic entities they help descrlh cases where these metasymbols are
also terminal symbols in the language being desdrilthe instances that are terminal
symbols can be underlined or quoted

e What is the purpose of a predicate function? . iadel functions state the static semantic
rules of the language which is used to check ifitipait meets some condition.

e What is the use of intrinsic attributes? Intrinattributesare synthesized attributes of leaf

nodes whose values are determined outside the jpaese

57

CIT401 COURSE GUIDE

6 Conclusion

Backus- Naur Form and context- free grammars aue/elgnt metalanguages that are well suited
for the task of describing the syntax of prograngnianguages. Not only are they concise

descriptive tools, but also the parse trees thatbeaassociated with their generative actions give
graphical evidence of the underlying syntacticdtites. Furthermore, they are naturally related
to recognition devices for the languages they gdmerwhich leads to the relatively easy

construction of syntax analyzers for compilers ttoese languages. An attribute grammar is a
descriptive formalism that can describe both thetasy and static semantics of a language.
Attribute grammars are extensions to context- §@enmars. An attribute grammar consists of a
grammar, a set of attributes, a set of attributepaation functions, and a set of predicates that

describe static semantics rules.

7 Summary

This unit discussed syntax of programming languagd presented a discussion on general
problem of describing syntax. Also, the formal noeth of describing syntax suchBackus- Naur
Form (BNF) and context- free grammars, Extended BN@ammar and recognizers were
deliberated onThe attribute grammars, which can be used to tesboth the syntax and static

semantics of programming languages were brieflgudised.

8 References/Further Reading
Sebesta, R. W. (2016). Concepts of Programming wages (Eleventh Edition). Pearson

Education Limited.

Sebesta, R. W. (2009). Concepts of Programming Wages (Tenth Edition). Pearson Education
Limited.

Jaemin Hong and Sukyoung Ryu (201Iiffoduction to Programming Languages

Ghezzi & Jazayeri (1996Brogramming language concepts—Third editlmihn Wiley & Sons
New York Chichester Brisbane Toronto Singapore 1996

58

CIT401

Unit 3
1. Introduction
2.

3.

No oA

Semantics

Intended Learning Outcomes (ILOS)

Main Content

3.1. Semantics
3.2.Describing the Meanings of Program

3.2.1. Operational Semantics

3.2.1.1.
3.2.1.2.

The Basic Process
Evaluation

3.2.2. Denotational Semantics

3.2.2.1.
3.2.2.2.
3.2.2.3.
3.2.2.4.
3.2.2.5.
3.2.2.6.

Two Simple Examples
The State of a Program
Expressions
Assignment Statements
Logical Pretest Loops
Evaluation

3.2.3. Axiomatic Semantics

3.2.3.1.
3.2.3.2.
3.2.3.3.
3.2.3.4.
3.2.3.5.
3.2.3.6.
3.2.3.7.
3.2.3.8.

Assertions

Weakest Preconditions
Assignment Statements
Sequences

Selection

Logical Pretest Loops
Program Proofs
Evaluation

Self-Assessment Exercises

Conclusion
Summary

References/Further Reading

59

: Dynamic Senganti

COURSE GUIDE

CIT401 COURSE GUIDE

1 Introduction
Just like natural language, Programming language hath the syntax and semanticsiantics
is the meaning of those expressions, statemerdgyragram units.
2 Intended Learning Outcomes (ILOs)
At the end of the unit, students should able to
e have full understanding of language description
e know how the expressions, statements, and prograts of a language are formed and
also their intended effect when executed

e determine how to encode software solutions by referring to a language reference manual.

3 Main Content

3.1 Semantics
Syntax defines well-formed programs of a langua§emantics defines the meaning of

syntactically correct programs in that language.éx@ample, the semantics of C help us determine
that the declaration int vector [10]; causes téagar elements to be reserved for a variable named
vector. The first element of the vector may beneieed by vector [0]; all other elements may be

referenced by an index i,[00Ji [JJ9.

As another example, the semantics of C stateghbanstruction if (a > b) max = a; else max = b;
means that the expression a > b must be evaluatelddepending on its value, one of the two
given assignment statements is executed. Notethieasyntax rules tell us how to form this
statement—for example, where to put a “;"—and #m@antic rules tell us what the effect of the

statement is.

3.2 Describing the Meanings of Programs: Dynamic Semaius

We now turn to the difficult task of describing tldgnamic semantics, or meaning, of the

expressions, statements, and program units ofgrgoroning language. Because of the power and
naturalness of the available notation, describyrgex is a relatively simple matter. On the other

hand, no universally accepted notation or apprdeshbeen devised for dynamic semantics. In
this section, we briefly describe several of thethods that have been developed. For the

remainder of this section, when we use the manticswe mean dynamic semantics.

There are several different reasons underlyingrnided for a methodology and notation for

describing semantics. Programmers obviously neddoav precisely what the statements of a

60

CIT401 COURSE GUIDE

language do before they can use them effectivetiigir programs. Compiler writers must know
exactly what language constructs mean to desigfemmmntations for them correctly. If there were
a precise semantics specification of a programrfanguage, programs written in the language
potentially could be proven correct without testiAdso, compilers could be shown to produce
programs that exhibited exactly the behavior giwerthe language definition; that is, their
correctness could be verified. A complete spedifica of the syntax and semantics of a
programming language could be used by a tool tcergeé® a compiler for the language

automatically.

Finally, language designers, who would develop dbmantic descriptions of their languages,
could in the process discover ambiguities and is=tencies in their designs. Software developers
and compiler designers typically determine the sgios of programming languages by reading
English explanations in language manuals. Becausle sxplanations are often imprecise and
incomplete, this approach is clearly unsatisfactddye to the lack of complete semantics
specifications of programming languages, programsaxely proven correct without testing, and

commercial compilers are never generated autontigticam language descriptions.

3.3 Operational Semantics
The idea behind operational semantg$o describe the meaning of a statement or prodina

specifying the effects of running it on a machimbe effects on the machine are viewed as the
sequence of changes in its state, where the maststage is the collection of the values in its
storage. An obvious operational semantics desoripthen, is given by executing a compiled
version of the program on a computer. Most progransrhave, on at least one occasion, written
a small test program to determine the meaning ofesprogramming language construct, often
while learning the language. Essentially, what sagirogrammer is doing is using operational

semantics to determine the meaning of the construct

There are several problems with using this appréacbomplete formal semantics descriptions.
First, the individual steps in the execution of tniae language and the resulting changes to the
state of the machine are too small and too numefeond, the storage of a real computer is too
large and complex. There are usually several lexeisemory devices, as well as connections to
enumerable other computers and memory devices ghrawetworks. Therefore, machine

languages and real computers are not used for fapeaational semantics. Rather, intermediate-

61

CIT401 COURSE GUIDE

level languages and interpreters for idealized agers are designed specifically for the process.
There are different levels of uses of operatioeahantics. At the highest level, the interest is in
the final result of the execution of a completegoemn. This is sometimes called natural operational
semantics. At the lowest level, operational sengardan be used to determine the precise meaning
of a program through an examination of the competguence of state changes that occur when

the program is executed. This use is sometimesctatructural operational semantics.

3.3.1 The Basic Process
The first step in creating an operational semandiescription of a language is to design an

appropriate intermediate language, where the pyirdasired characteristic of the language is
clarity. Every construct of the intermediate lang®anust have an obvious and unambiguous
meaning. This language is at the intermediate Jdedause machine language is too low-level to
be easily understood and another high-level langus@bviously not suitable. If the semantics

description is to be used for natural operatiopatantics, a virtual machine (an interpreter) must

be constructed for the intermediate language.

The virtual machine can be used to execute eitinglesstatements, code segments, or whole
programs. The semantics description can be usdwbutita virtual machine if the meaning of a
single statement is all that is required. In thee,uwhich is structural operational semantics, the

intermediate code can be visually inspected.

The basic process of operational semantics is masual. In fact, the concept is frequently used
in programming textbooks and programming languagference manuals. For example, the

semantics of the @r construct can be described in terms of simpleestants, as in

C Statement Meaning
for (expri1; expr2; expr3) { expri;
... loop: if expr2 == 0 goto out
}
exprs;
goto loop

out:

The human reader of such a description is the alitromputer and is assumed to be able to
“execute” the instructions in the definition cortlgand recognize the effects of the “execution.”

The intermediate language and its associated Virmechine used for formal operational
62

CIT401 COURSE GUIDE

semantics descriptions are often highly abstrabe intermediate language is meant to be

convenient for the virtual machine, rather thantfaman readers. For our purposes, however, a
more human-oriented intermediate language coulddael. As such an example, consider the
following list of statements, which would be adegufor describing the semantics of the simple

control statements of a typical programming languag

ident = var

ident =ident + 1

ident =ident -1

goto label

if var relop var goto label

In these statements, relop is one of the relatiopatators from the set {=, <>, >, <, >=, <=}, iden

is an identifier, and var is either an identifieraoconstant. These statements are all simple and

therefore easy to understand and implement.

A slight generalization of these three assignméatesients allows more general arithmetic
expressions and assignment statements to be dsbcfibe new statements are
ident = var bin_op var

ident = un_op var

where bin_op is a binary arithmetic operator andognis a unary operator. Multiple arithmetic
data types and automatic type conversions, of epasmplicate this generalization. Adding just
a few more relatively simple instructions wouldoallthe semantics of arrays, records, pointers,

and subprograms to be described. using this indiatelanguage.

3.3.2 Evaluation
The first and most significant use of formal opienadl semantics was to describe the semantics

of PL/I (Wegner, 1972). The abstract machine amdtthnslation rules for PL/l were together
named the Vienna Definition Language (VDL), aftes tity where IBM designed it. Operational
semantics provides an effective means of describégmgantics for language users and language
implementors, as long as the descriptions are $iemtle and informal. The VDL description of

PL/I, unfortunately, is so complex that it servespmactical purpose.

Operational semantics depends on programming lggguaf lower levels not mathematics. The

statements of one programming language are deddrilierms of the statements of a lower-level

63

CIT401 COURSE GUIDE

programming language. This approach can lead talaiities, in which concepts are indirectly
defined in terms of themselves. The methods de=ttrib the following two sections are much
more formal, in the sense that they are based ahematics and logic, not programming
languages.

3.4 Denotational Semantics

Denotational semantigs the most rigorous and most widely known formatimod for describing
the meaning of programs. It is solidly based omirgige function theory. A thorough discussion
of the use of denotational semantics to descrileesttmantics of programming languages is
necessarily long and complex. It is our intent tovide the reader with an introduction to the
central concepts of denotational semantics, alotigafew simple examples that are relevant to

programming language specifications.

The process of constructing a denotational sensmspecification for a programming language
requires one to define for each language entitly bohathematical object and a function that maps
instances of that language entity onto instancab@mathematical object. Because the objects
are rigorously defined, they model the exact magointheir corresponding entities. The idea is
based on the fact that there are rigorous ways afipalating mathematical objects but not
programming language constructs. The difficultyrviiiis method lies in creating the objects and
the mapping functions. The method is nandeshotationalbecause the mathematical objects

denote the meaning of their corresponding syntactitties.

The mapping functions of a denotational semantiognamming language specification, like all
functions in mathematics, have a domain and a taFfge domain is the collection of values that
are legitimate parameters to the function; the eaisgthe collection of objects to which the
parameters are mapped. In denotational semantiesgdmain is called the syntactic domain,

because it is syntactic structures that are mapfieelrange is called the semantic domain.

Denotational semantics is related to operationabsics. In operational semantics, programming
language constructs are translated into simplegraroming language constructs, which become
the basis of the meaning of the construct. In deiwtal semantics, programming language
constructs are mapped to mathematical objectserestéts or, more often, functions. However,
unlike operational semantics, denotational semantiwes not model the step-by-step
computational processing of programs.

64

CIT401 COURSE GUIDE

3.4.1 Two Simple Examples
We use a very simple language construct, charatiieg representations of binary numbers, to

introduce the denotational method. The syntax chdwinary numbers can be described by the
following grammar rules:
<bin_num> — "o’

| "1’

| <bin_num>'o’

| <bin_num> "1’
A parse tree for the example binary number, 11Ghiswn in Figure 8. Notice that we put
apostrophes around the syntactic digits to show&he not mathematical digits. This is similar to
the relationship between ASCII coded digits andhmiadatical digits. When a program reads a
number as a string, it must be converted to a madkieal number before it can be used as a value

in the program.

DM _ e
.-_.-"\.

AN

< _ U

Figure 8

The syntactic domain of the mapping function fardsy numbers is the set of all character string
representations of binary numbers. The semanticadons the set of nonnegative decimal
numbers, symbolized by N. To describe the meanihgimary numbers using denotational
semantics, we associate the actual meaning (a deoumber) with each rule that has a single
terminal symbol as its RHS. In our example, decimahbers must be associated with the first
two grammar rules. The other two grammar rulesiar@ sense, computational rules, because they
combine a terminal symbol, to which an object carabsociated, with a nonterminal, which can
be expected to represent some construct. Presuaniegaluation that progresses upward in the

parse tree, the nonterminal in the right side wallldady have its meaning attached. So, a syntax
65

CIT401 COURSE GUIDE

rule with a nonterminal as its RHS would requiruaction that computed the meaning of the
LHS, which represents the meaning of the compléi& Rrhe semantic function, named Mbin,
maps the syntactic objects, as described in theque grammar rules, to the objects in N, the set
of non-negative decimal numbers. The function Mbidefined as follows:

Mbin('o') =0

Mbin("1") =1

Mbin(<bin_num> '0") = 2 * Mbin(<bin_num>)

Mbin(<bin_num> "1") = 2 * Mbin(<bin_num>) + 1

3.4.2 The State of a Program

The denotational semantics of a program could li@ebkin terms of state changes in an ideal
computer. Operational semantics are defined invwiaig, and denotational semantics are defined
in nearly the same way. In a further simplificatibowever, denotational semantics is defined in
terms of only the values of all of the program’si@ales. So, denotational semantics uses the state
of the program to describe meaning, whereas opaidtsemantics uses the state of a machine.
The key difference between operational semantidslanotational semantics is that state changes
in operational semantics are defined by coded lgos, written in some programming language,
whereas in denotational semantics, state changesdefined by mathematical functions. Let the

states of a program be represented as a set aedrpairs as follows:
s ={<il, v1>,<i2, v2>, ..., € vn>}

Each i is the name of a variable, and the assatidseare the current values of those variables.
Any of the v’'s can have the special valusdef, which indicates that its associated variable is
currently undefined. Let VARMAP be a function ofdvparameters: a variable name and the
program state. The value of VARMAP (ij, s) is vhétvalue paired with ij in state s). Most
semantics mapping functions for programs and progranstructs map states to states. These state
changes are used to define the meanings of progaachgrogram constructs. Some language

constructs—for example, expressions—are mappedlt@s, not states.

3.4.3 Expressions
Expressions are fundamental to most programmingulages. We assume here that expressions

have no side effects. Furthermore, we deal witly gaty simple expressions: The only operators
are + and *, and an expression can have at mosterator; the only operands are scalar integer

66

CIT401 COURSE GUIDE

variables and integer literals; there are no paesds; and the value of an expression is an integer
Following is the BNF description of these expressio

<expr> — <dec_num> | <var> | <binary_expr>
<binary_expr> — <left_expr> <operator> <right_expr>
<left_expr> — <dec_num> | <var>

<right_expr> — <dec_num> | <var>

<operator> — + | *

The only error we consider in expressions is aabdei having an undefined value. Obviously,
other errors can occur, but most of them are maeti@pendent. Let Z be the set of integers, and
let error be the error value. Then"Zerror} is the semantic domain for the denotational
specification for our expressions. The mapping fimmcfor a given expression E and state s
follows. To distinguish between mathematical fumetdefinitions and the assignment statements
of programming languages, we use the symbok to define mathematical functions. The
implication symbol, =>, used in this definition cwtts the form of an operand with its associated
case (or switch) construct. Dot notation is usekfer to the child nodes of a node. For example,

<binary_expr>.<left_expr> refers to the left childde of <binary_expr>.

Me(<expr>, s) A= case <expr> of
<dec_num>=>Mdec(<dec_num>, s)
<var> =>if VARMAP(<var>, s) == undef
then error
else VARMAP(<var>, s)
<binary_expr> =>
if(Me(<binary _expr>.<left_expr>,s) == undef OR
Me(<binary_expr>.<right_expr>, s) == undef)
then error
else if (<binary_expr>.<operator> =="+')
then Me(<binary_expr>.<left_expr>,s) +
Me(<binary_expr>.<right_expr>, s)
else Me(<binary_expr>.<left_expr>, s) *
Me(<binary_expr>.<right_expr>, s)
3.4.4 Assignment Statements
An assignment statement is an expression evaluptimnthe setting of the target variable to the
expression’s value. In this case, the meaning fonchaps a state to a state. This function can be

described with the following:
67

CIT401 COURSE GUIDE

Ma(x = E, s) A= if Me(E, s) == error

then error

else s' = {<i1, v1' >, <i2, v2'>, ..., <in, vn'>}, where
forj=1,2,...,n
if ij == x

then vj' = Me(E, s)
else vj' = VARMAP(ij, s)

Note that the comparison in the third last lineahaj == X, is of names, not values.

3.4.5 Logical Pretest Loops
The denotational semantics of a logical pretesp l® deceptively simple. To expedite the

discussion, we assume that there are two othdireximapping functions, Msl and Mb, that map
statement lists and states to states and Boolepressions to Boolean values (error),
respectively. The function is
M1(while B do L, s) A= if Mb(B, s) == undef
then error
else if Mb(B, s) == false
thens
else if Msl(L, s) == error
then error
else M1(while B do L, Msl(L, s))
The meaning of the loop is simply the value of pinegram variables after the statements in the
loop have been executed the prescribed numbemettiassuming there have been no errors. In
essence, the loop has been converted from iter&dioecursion, where the recursion control is
mathematically defined by other recursive statepmapfunctions. Recursion is easier to describe
with mathematical rigor than iteration. One sigraht observation at this point is that this

definition, like actual program loops, may comput¢hing because of nontermination.

3.4.6 Evaluation
Objects and functions, such as those used in thiereeonstructs, can be defined for the other

syntactic entities of programming languages. Wheoraplete system has been defined for a given
language, it can be used to determine the meariiogroplete programs in that language. This
provides a framework for thinking about programminga highly rigorous way. As stated

previously, denotational semantics can be usednaaic to language design. For example,

statements for which the denotational semanticrgegm is complex and difficult may indicate
68

CIT401 COURSE GUIDE

to the designer that such statements may alsdfibittifor language users to understand and that

an alternative design may be in order.

3.5 Axiomatic Semantics
Axiomatic semantics, thus named because it is basedathematical logic, is the most abstract

approach to semantics specification discussedisnctiapter. Rather than directly specifying the
meaning of a program, axiomatic semantics speci¥fieat can be proven about the program.
Recall that one of the possible uses of semangcispations is to prove the correctness of

programs.

In axiomatic semantics, there is no model of tla¢esof a machine or program or model of state
changes that take place when the program is exkclilee meaning of a program is based on
relationships among program variables and constaiich are the same for every execution of
the program. Axiomatic semantics has two distipgligaations: program verification and program
semantics specification. This section focuses awgnam verification in its description of

axiomatic semantics.

Axiomatic semantics was defined in conjunction wiite development of an approach to proving
the correctness of programs. Such correctnessqraten they can be constructed, show that a
program performs the computation described bypéeciication. In a proof, each statement of a
program is both preceded and followed by a logegbression that specifies constraints on
program variables. These, rather than the entite sff an abstract machine (as with operational
semantics), are used to specify the meaning ofstaeement. The notation used to describe
constraints—indeed, the language of axiomatic séinsaris predicate calculus. Although simple
Boolean expressions are often adequate to expoassraints, in some cases they are not. When
axiomatic semantics is used to specify formallyrtireaning of a statement, the meaning is defined

by the statement’s effect on assertions about dtee affected by the statement.

3.5.1 Assertions
The logical expressions used in axiomatic semaraiescalled predicates, or assertions. An

assertion immediately preceding a program statemestribes the constraints on the program
variables at that point in the program. An asserilbomediately following a statement describes
the new constraints on those variables (and pgssibers) after execution of the statement. These

assertions are called the precondition and posttondrespectively, of the statement. For two

69

CIT401 COURSE GUIDE

adjacent statements, the postcondition of the 8eswes as the precondition of the second.
Developing an axiomatic description or proof ofigeg program requires that every statement in

the program has both a precondition and a posttondi

In the following sections, we examine assertiomsnfithe point of view that preconditions for
statements are computed from given postconditaltispugh it is possible to consider these in the
opposite sense. We assume all variables are intgger As a simple example, consider the

following assignment statement and postcondition:
sum=2*x+ 1 {sum > 1}

Precondition and postcondition assertions are pteddn braces to distinguish them from parts
of program statements. One possible preconditiorthis statement is {x > 10}. In axiomatic
semantics, the meaning of a specific statemerdfinetl by its precondition and its postcondition.
In effect, the two assertions specify precisely éffect of executing the statement. The general
concept of axiomatic semantics is to state precided meaning of statements and programs in
terms of logic expressions. Program verificatioone application of axiomatic descriptions of
languages.

3.5.2 Weakest Preconditions

The weakest preconditios the least restrictive precondition that will galstee the validity of the
associated postcondition. For example, in the staimde and postcondition given in Section 3.6.3.1,
{x > 10}, {x > 50}, and {x > 1000} are all valid grconditions. The weakest of all preconditions

in this case is {x > 0}.

If the weakest precondition can be computed froenntiost general postcondition for each of the

statement types of a language, then the processelsto compute these preconditions provide a
concise description of the semantics of that laggu&urthermore, correctness proofs can be
constructed for programs in that language. A pnogpaoof is begun by using the characteristics

of the results of the program’s execution as theqamdition of the last statement of the program.

This postcondition, along with the last statementised to compute the weakest precondition for
the last statement. This precondition is then asetthe postcondition for the second last statement.
This process continues until the beginning of thegmm is reached. At that point, the

precondition of the first statement states the tms under which the program will compute the

70

CIT401 COURSE GUIDE

desired results. If these conditions are impliedthey input specification of the program, the

program has been verified to be correct.

An inference rules a method of inferring the truth of one asserborthe basis of the values of

other assertions. The general form of an infereakeeis as follows:

S1,82, ... ,Sw
3

This rule states that if S1, S2, . . ., amdh& true, then the truth of S can be inferred. tdpepart

of an inference rule is called its antecedent;bibtom part is called its consequent. An axism

a logical statement that is assumed to be truereTdre, an axiom is an inference rule without an

antecedent. For some program statements, the catiggubf a weakest precondition from the

statement and a postcondition is simple and capéeified by an axiom. In most cases, however,

the weakest precondition can be specified onlyrbingerence rule.

To use axiomatic semantics with a given programnlamguage, whether for correctness proofs
or for formal semantics specifications, either @& or an inference rule must exist for each
kind of statement in the language. In the follogvisubsections, we present an axiom for
assignment statements and inference rules fornséae sequences, selection statements, and
logical pretest loop statements. Note that we aestimat neither arithmetic nor Boolean
expressions have side effects.

3.5.3 Assignment Statements

The precondition and postcondition of an assignmns&atement together define its meaning. To
define the meaning of an assignment statement thast be a way to compute its precondition
from its postcondition. Let x = E be a generaigrssent statement and Q be its postcondition.
Then, its weakest precondition, P, is defined leyakiom

P =Qx-E

which means that P is computed as Q with all instarof x replaced by E. For example, if we
have the assignment statement and postcondition

a=b/2-1{a<10}

the weakest precondition is computed by substigubii 2 - 1 for a in the postcondition {a < 10},

as follows:
71

CIT401 COURSE GUIDE

b/2-1<10

b<22

Thus, the weakest precondition for the given assent statement and postcondition is {b < 22}.
Remember that the assignment axiom is guarantdezidorrect only in the absence of side effects.

An assignment statement has a side effect if ihgag some variable other than its target.

The usual notation for specifying the axiomatic aatits of a given statement form is
{Prs{Q}

where P is the precondition, Q is the postconditaomd S is the statement form. In the case of the

assignment statement, the notation is
{Qx—e} x = E{Q}

As another example of computing a precondition dar assignment statement, consider the

following:

x=2%y-3{x>25}

The precondition is computed as follows:

2%y-3>25

y > 14

So {y > 14} is the weakest precondition for thisigament statement and postcondition.

Note that the appearance of the left side of te@ament statement in its right side does not affec
the process of computing the weakest precondition.

For example, for

X=Xx+y-3{x>10}

the weakest precondition is

x+y-3>10

y>13-x

Recall that axiomatic semantics was developed dogthe correctness of programs. In light of
that, it is natural at this point to wonder how théom for assignment statements can be used to
prove anything. Here is how: A given assignmentestent with both a precondition and a

postcondition can be considered a logical statenmertheorem. If the assignment axiom, when

72

CIT401 COURSE GUIDE

applied to the postcondition and the assignmemérstant, produces the given precondition, the

theorem is proved. For example, consider the fafigvogical statement:

{x>3}x=x-3{x>0}

Using the assignment axiom on the statement armmbgondition produces

{x > 3}, which is the given precondition. Therefome have proven the example logical statement.

3.5.4 Sequences
The weakest precondition for a sequence of statenoamnot be described by an axiom, because

the precondition depends on the particular kindstatements in the sequence. In this case, the
precondition can only be described with an infeeende. Let S1 and S2 be adjacent program
statements. If S1 and S2 have the following pré-@stconditions

{P} S1{P2}

{P2} S2 {P3}

the inference rule for such a two-statement sequenc

{P1}S1{P2}, {P2} 52 {P3}
{P1} 51,82 {P3}

So, for our example, 5P16 S1; S2 5P36 describesxibenatic semantics of the sequence S1; S2.
The inference rule states that to get the sequprendition, the precondition of the second
statement is computed. This new assertion is tBed as the postcondition of the first statement,
which can then be used to compute the preconddfotine first statement, which is also the

precondition of the whole sequence. If S1 and &2fa assignment statements

3.5.5 Selection
We next consider the inference rule for selectiatesnents, the general form of which is

if B then S1 else S2
We consider only selections that incluglseclauses. The inference rule is

{B and P} 51 {3}, {{not BY and P} 52 {(}}
P} if B then 5] else 52 ()]

This rule specifies that selection statements nbasproven both when the Boolean control

expression is true and when it is false. The lrgical statement above the line representstbe
73

CIT401 COURSE GUIDE

clause; the second represents #iege clause. According to the inference rule, we need a

precondition P that can be used in the preconddfdsoth thethen andelseclauses.

Consider the following example of the computatidntlte precondition using the selection
inference rule. The example selection statement is

if x> Othen

y=y-1

else

y=y+1

Suppose the postcondition, Q, for this selectiatestent is {y > 0}. We can use the axiom for

assignment on thihen clause
y=y-1{y>0}

This produces {y - 1 > 0} or {y > 1}. It can be u$as the P part of the precondition for then
clause. Now we apply the same axiom todlseclause

y=y+1{y>0}

3.5.6 Logical Pretest Loops

Another essential construct of imperative prograngrianguages is the logical pretestwanile
loop. Computing the weakest precondition favtdle loop is inherently more difficult than for a
sequence, because the number of iterations calwaysabe predetermined. In a case where the

number of iterations is known, the loop can be liedoand treated as a sequence.

The problem of computing the weakest preconditarridops is similar to the problem of proving

a theorem about all positive integers. In the tattese, induction is normally used, and the same
inductive method can be used for some loops. Thecipal step in induction is finding an
inductive hypothesis. The corresponding step irathematic semantics ofvahile loop is finding

an assertion called laop invariant, which is crucial to finding the weakest precoiudit The
inference rule for computing the precondition favlale loop is as follows:

land B} S {I}

{1} while Bdo Send {Iand(notB))

In this rule, I is the loop invariant. This seenm@e, but it is not. The complexity lies in findjn
an appropriate loop invariant. The axiomatic dgdgmn of awhile loop is written as
74

CIT401 COURSE GUIDE

{P} while B do Send{Q}

The loop invariant must satisfy a number of requigats to be useful. First, the weakest
precondition for thevhile loop must guarantee the truth of the loop invarigmturn, the loop
invariant must guarantee the truth of the postdmrupon loop termination. These constraints
move us from the inference rule to the axiomatiscdetion. During execution of the loop, the
truth of the loop invariant must be unaffected bg évaluation of the loop-controlling Boolean
expression and the loop body statements. Henceatieinvariant Another complicating factor

for while loops is the question of loop termination. A lodyatt does not terminate cannot be
correct, and in fact computes nothing. If Q is plostcondition that holds immediately after loop
exit, then a precondition P for the loop is ond thaarantees Q at loop exit and also guarantees

that the loop terminates.

The complete axiomatic description ofvhile construct requires all of the following to be trure,
which | is the loop invariant:

P=>|

{land B} S {1}

(Iand (not B)) => Q

the loop terminates

Once again, the computed | can serve as P, argsépdhe four requirements. Unlike our earlier
example of finding a loop precondition, this oneatly is not a weakest precondition. Consider
using the precondition {s > 1}. The logical statethe

{s>1}whiles>1dos=s/2nd{s =1}

can easily be proven, and this precondition isiBaantly broader than the one computed earlier.
The loop and precondition are satisfied for anyitp@svalue for s, not just powers of 2, as the
process indicates. Because of the rule of conseguesing a precondition that is stronger than
the weakest precondition does not invalidate afproo

Finding loop invariants is not always easy. Itedpful to understand the nature of these invariants
First, a loop invariant is a weakened version efltop postcondition and also a precondition for
the loop. So, | must be weak enough to be satigfient to the beginning of loop execution, but

when combined with the loop exit condition, it mbgt strong enough to force the truth of the

75

CIT401 COURSE GUIDE

postcondition. Because of the difficulty of provit@pp termination, that requirement is often
ignored. If loop termination can be shown, the matic description of the loop is called total
correctness. If the other conditions can be metdyatination is not guaranteed, it is called partia
correctness. In more complex loops, finding a &litéoop invariant, even for partial correctness,
requires a good deal of ingenuity. Because comgutia precondition for while loop depends
on finding a loop invariant, proving the correctnie$ programs withwvhile loops using axiomatic

semantics can be difficult.

3.5.7 Program Proofs
This section provides validations for two simplegnams. The first example of a correctness proof

is for a very short program, consisting of a segeenf three assignment statements that
interchange the values of two variables.
{x=AAND Yy =B}

t=Xx;
X=Y,
y=t

{x=B AND y = A}

Because the program consists entirely of assignst@téments in a sequence, the assignment
axiom and the inference rule for sequences carsée o prove its correctness. The first step is to
use the assignment axiom on the last statemertharbstcondition for the whole program. This
yields the precondition

{x=B AND t = A}

3.5.8 Evaluation

As stated previously, to define the semantics abmaplete programming language using the
axiomatic method, there must be an axiom or arrenfee rule for each statement type in the
language. Defining axioms or inference rules fomsoof the statements of programming
languages has proven to be a difficult task. Anialv solution to this problem is to design the
language with the axiomatic method in mind, so timdy statements for which axioms or inference

rules can be written are included. Unfortunatelighsa language would necessarily leave out some

useful and powerful parts.

76

CIT401 COURSE GUIDE

Axiomatic semantics is a powerful tool for reseamto program correctness proofs, and it

provides an excellent framework in which to reaabaut programs, both during their construction

and later. Its usefulness in describing the meaofngrogramming languages to language users

and compiler writers is, however, highly limited.

4

Self-Assessment Exercises
Describe the two levels of uses of operational seira

Explain the domain, range, syntactic and semartigains in denotational semantics?
What is an assertion in axiomatic semantics?
What is an inference rule?

Which part of an inference rule is the antecedadt@nsequent?

Answer to Self-Assessment Exercises

Describe the two levels of uses of operational sgiws At the highest level, the interest is
in the final result of the execution of a complptegram. This is sometimes called natural
operational semantics. At the lowest level, operati semantics can be used to determine
the precise meaning of a program through an exdimmef the complete sequence of state
changes that occur when the program is executed.Ude is sometimes called structural
operational semantics.

Explain the domain, range, syntactic and semauwticains in denotational semantics? - The
domain is the collection of values that are legiienparameters to the function; the range is
the collection of objects to which the parameteesraapped. In denotational semantics, the
domain is called the syntactic domain, becausesymtactic structures that are mapped. The
range is called the semantic domain.

What is an assertion in axiomatic semantics? Thyedb expressions used in axiomatic
semantics are called predicates, or assertions.

What is an inference rule? An inference tigla method of inferring the truth of one assertion
on the basis of the values of other assertions.

Which part of an inference rule is the antecededta@mnsequent? The top part of an inference
rule is called its antecedent while the bottom pmutalled its consequent. An axidma

logical statement that is assumed to be true
77

CIT401 COURSE GUIDE

6 Conclusion

In a well- designed programming language, semastiosild follow directly from syntax; that is,
the appearance of a statement should strongly stgdmat the statement is meant to accomplish.
Describing syntax is easier than describing semmsnpartly because a concise and universally
accepted notation is available for syntax desaiptibut none has yet been developed for

semantics.

7 Summary

The unit provided a brief introduction to three methoaf semantic description: operational,

denotational, and axiomatic. Operational semansica method of describing the meaning of

language constructs in terms of their effects ondaal machine. In denotational semantics,
mathematical objects are used to represent theingsof language constructs. Language entities
are converted to these mathematical objects witlrséve functions. Axiomatic semantics, which

is based on formal logic, was devised as a togbfoving the correctness of programs.

8 References/Further Reading
Sebesta, R. W. (2016). Concepts of Programming wages (Eleventh Edition). Pearson

Education Limited.

Sebesta, R. W. (2009). Concepts of Programming Wages (Tenth Edition). Pearson Education
Limited.

Jaemin Hong and Sukyoung Ryu (20Irfyoduction to Programming Languages

Ghezzi & Jazayeri (1996Brogramming language concepts—Third editlmihn Wiley & Sons
New York Chichester Brisbane Toronto Singapore 1996

78

CIT401

Unit 4 Lexical Analysis and Parsing

1. Introduction

2. Intended Learning Outcomes (ILOs)

N o o k&

Main Content
3.1.Lexical Analysis
3.2.Building Lexical Analyzer
3.3.The Parsing Problem
3.3.1. Introduction to Parsing
3.3.2. Top-Down Parsers
3.3.3. Bottom-Up Parsers
3.3.4. The Complexity of Parsing
3.4.Recursive-Descent Parsing
3.4.1. The Recursive-Decent Parsing Process
3.4.2. The LL Grammar Class
3.5. Bottom-Up Parsing
3.5.1. The Parsing problem for Bottom-up Parsers
3.5.2. Shift-Reduce Algorithm
3.5.3. LR Parsers
Self-Assessment Exercises
Conclusion
Summary
References/Further Reading

79

COURSE GUIDE

CIT401 COURSE GUIDE

1 Introduction
The syntax analyzer is the heart of a compilerabse several other important components,

including the semantic analyzer and the intermediatle generator, are driven by the actions of
the syntax analyzer.y8tax analyzers are based directly on the gramamdiscussed in Module

2 unit 1 and 2 thus, it is necessary to discusstias an application of grammars. Many

applications, among them program listing formatteregrams that compute the complexity of

programs, and programs that must analyze andtetw contents of a configuration file, all need

to do lexical and syntax analyses. Therefore, Exaad syntax analyses are important topics for
software developers, even if they never need ttevericompiler. This unit discusses extensively
on lexical analysis with focus on lexical processl d&uilding lexical analyzer. Also, the unit

discusses the parsing problem, recursive-decesingeand bottom-up parsing.

2 Intended Learning Outcomes (ILOs)
At the end of the unit, students should able to
e Explain lexical analysis
e Discuss parsing and parsing algorithm

e Understand the implementation process of recurdacent parsing

3 Main Content

3.1 Lexical Analysis

A lexical analyzer is essentially a pattern matcAepattern matcher attempts to find a substring
of a given string of characters that matches argiefearacter pattern. Pattern matching is a
traditional part of computing. One of the earliases of pattern matching was with text editors,
such as the ed line editor, which was introduceahnirearly version of UNIX. Since then, pattern
matching has found its way into some programmingl&ges—for example, Perl and JavaScript.
It is also available through the standard clagsiibs of Java, C++, and C#. A lexical analyzer
serves as the front end of a syntax analyzer. Tealy) lexical analysis is a part of syntax

analysis.

A lexical analyzer performs syntax analysis at ltheest level of program structure. An input
program appears to a compiler as a single stringhafacters. The lexical analyzer collects
characters into logical groupings and assigns nialecodes to the groupings according to their

structure. In unit 2, these logical groupings aesnadlexemes and the internal codes for
80

CIT401 COURSE GUIDE

categories of these groupings are nanoé@ns. Lexemes are recognized by matching the input
character string against character string patteMthough tokens are usually represented as
integer values, for the sake of readability of ¢@kiand syntax analyzers, they are often referenced

through named constants.

Consider the following example of an assignmeriestant:

result = oldsum - value [100;

Following are the tokens and lexemes of this stat¢m

Token Lexeme
IDENT result
ASSIGN_OP =
IDENT oldsum
SUB_OP -

IDENT value
DIV_OP /
INT_LIT 100
SEMICOLON :

Lexical analyzers extract lexemes from a given irghung and produce the corresponding tokens.
In the early days of compilers, lexical analyzdtsmprocessed an entire source program file and
produced a file of tokens and lexemes. Now, howeawest lexical analyzers are subprograms that
locate the next lexeme in the input, determine#isociated token code, and return them to the
caller, which is the syntax analyzer. So, eachtoalhe lexical analyzer returns a single lexeme
and its token. The only view of the input progragers by the syntax analyzer is the output of the

lexical analyzer, one token at a time.

The lexical-analysis process includes skipping cemisiand white space outside lexemes, as they
are not relevant to the meaning of the programo Alse lexical analyzer inserts lexemes for user-
defined names into the symbol table, which is useldhter phases of the compiler. Finally, lexical
analyzers detect syntactic errors in tokens, sschl-formed floating-point literals, and report

such errors to the user.

81

CIT401 COURSE GUIDE

3.2 Building Lexical Analyzer
There are three approaches to building a lexicalyaer:

e Write a formal description of the token patternstioé language using a descriptive
language related to regular expressions. Theseipligsies are used as input to a software
tool that automatically generates a lexical analyZbere are many such tools available
for this. The oldest of these, named lex, is conmgnoeluded as part of UNIX systems.

¢ Design a state transition diagram that describegotken patterns of the language and write
a program that implements the diagram.

¢ Design a state transition diagram that describesaken patterns of the language and hand

construct a table-driven implementation of theesthhgram.

A state transition diagram, or just state diagresna, directed graph. The nodes of a state diagram
are labeled with state names. The arcs are labeidd the input characters that cause the
transitions among the states. An arc may also declkctions the lexical analyzer must perform
when the transition is taken.

State diagrams of the form used for lexical analyagee representations of a class of mathematical
machines called finite automata. Finite automatabzdesigned to recognize members of a class
of languages called regular languages. Regular rgeas are generative devices for regular
languages. The tokens of a programming language eggular language, and a lexical analyzer
is a finite automaton. We now illustrate lexicabdzer construction with a state diagram and the
code that implements it. The state diagram coutgki include states and transitions for each and
every token pattern. However, that approach regsulisvery large and complex diagram, because
every node in the state diagram would need a tiangor every character in the character set of

the language being analyzed. We therefore considgs to simplify it.

Suppose we need a lexical analyzer that recognidgsarithmetic expressions, including variable
names and integer literals as operands. Assumethiibatariable names consist of strings of
uppercase letters, lowercase letters, and digitsnoist begin with a letter. Names have no length
limitation. The first thing to observe is that theare 52 different characters (any uppercase or
lowercase letter) that can begin a name, which evoedjuire 52 transitions from the transition
diagram’s initial state. However, a lexical analyieinterested only in determining that it is a

name and is not concerned with which specific nénimappens to be. Therefore, we define a
82

CIT401 COURSE GUIDE

character class named LETTER for all 52 letters as®la single transition on the first letter of

any name.

Another opportunity for simplifying the transitiaiagram is with the integer literal tokens. There
are 10 different characters that could begin aeget literal lexeme. This would require 10
transitions from the start state of the state diagrBecause specific digits are not a concerneof th
lexical analyzer, we can build a much more comptate diagram if we define a character class
named DIGIT for digits and use a single transibarany character in this character class to a state

that collects integer literals.

Because our names can include digits, the tranditam the node following the first character of

a name can use a single transition on LETTER orlDIG continue collecting the characters of a
name. Next, we define some utility subprogramgtHercommon tasks inside the lexical analyzer.
First, we need a subprogram, which we can namehget@hat has several duties. When called,
getChar gets the next character of input from tipeii program and puts it in the global variable
nextChar. getChar also must determine the chareless of the input character and put it in the
global variable charClass. The lexeme being buyltthee lexical analyzer, which could be

implemented as a character string or an array,bgithamed lexeme.

We implement the process of putting the characterextChar into the string array lexeme in a
subprogram named addChar. This subprogram mustdhieitty called because programs include
some characters that need not be put in lexemexonple the white-space characters between
lexemes. In a more realistic lexical analyzer, cants also would not be placed in lexeme. When
the lexical analyzer is called, it is conveniernthé next character of input is the first charaofer
the next lexeme. Because of this, a function nagegdonBlank is used to skip white space every
time the analyzer is called. Finally, a subprograamed lookup is needed to compute the token
code for the single-character tokens. In our examihlese are parentheses and the arithmetic

operators. Token codes are numbers arbitrarilygaesito tokens by the compiler writer.

The state diagram in Figure 9 describes the patferrour tokens. It includes the actions required
on each transition of the state diagram. The falhgws a C implementation of a lexical analyzer

specified in the state diagram of Figure 9, inahgda main driver function for testing.

83

CiT401

purposes:

[* front.c - a lexical analyzer system for simple arithmetic expressions */
#include <stdio.h>
#include <ctype.h>

[* Global declarations */
[* Variables */

int charClass;

char lexeme [100];

char nextChar;

int lexLen;

int token; int nextToken;
FILE *in_fp, *fopen();

Letter/Digit

COURSE GUIDE

7 SN
\)
Y ¥

L\ Letter ‘_"*-‘-'/’,-_—Jj —) - '

{\E“_a:_} 33T : e '\\. = _/-—"‘ return lookup (

‘ Digit —‘/_ — N\ E—
aS3aCE JaetCha .___,."LE-; _/L____-
‘/_ ——
d “\'
\ ¥
\\‘--__ ~ Digit — _-/
\\

-_“\. t—lookup (nax

)

retum t
—

Figure 9: A state diagram to recognize names, plageas and arithmetic operators

3.3 The Parsing Problem

The part of the process of analyzing syntax thaefisrred to asyntax analysiss often called

parsing. We will use these two interchangeablysBleiction discusses the

general parsing problem

and introduces the two main categories of pardiggrithms, top-down and bottom-up, as well as

the complexity of the parsing process.

3.3.1 Introduction to Parsing

Parsers for programming languages construct pegse for given programs. In some cases, the

parse tree is only implicitly constructed, meanthgt perhaps only a traversal of the tree is

84

CIT401 COURSE GUIDE

generated. But in all cases, the information remlito build the parse tree is created during the
parse. Both parse trees and derivations includefathe syntactic information needed by a

language processor.

There are two distinct goals of syntax analysisstfFithe syntax analyzer must check the input
program to determine whether it is syntacticallgrect. When an error is found, the analyzer must
produce a diagnostic message and recover. In #sis, gecovery means it must get back to a
normal state and continue its analysis of the irgroigram. This step is required so that the
compiler finds as many errors as possible duriemgle analysis of the input program. If it is not
done well, error recovery may create more erraraf teast more error messages. The second goal
of syntax analysis is to produce a complete paese br at least trace the structure of the coraplet
parse tree, for syntactically correct input. Thespatree (or its trace) is used as the basis for

translation.

Parsers are categorized according to the direatievhich they build parse trees. The two broad
classes of parsers are top-down, in which theigréilt from the root downward to the leaves,

and bottom-up, in which the parse tree is builbfrihe leaves upward to the root.

In this unit, we use a small set of notational @ntions for grammar symbols and strings to make
the discussion less cluttered. For formal languatyey are as follows:

e Terminal symbols—lowercase letters at the beginoirtye alphabet (a, b, . . .)

¢ Nonterminal symbols—uppercase letters at the bagynof the alphabet (A, B, . . .)

e Terminals or nonterminals—uppercase letters aetiteof the alphabet (W, X, Y, Z)

e Strings of terminals—lowercase letters at the ditti@alphabet (w, X, y, z)

e Mixed strings (terminals and/or nonterminals)—Iloease Greek letters (a, b, d, g)

For programming languages, terminal symbols aresthall-scale syntactic constructs of the
language, what we have referred to as lexemes. nbméerminal symbols of programming
languages are usually connotative names or abhiesa surrounded by angle brackets—for
example, <while_statement>, <expr>, and <functi@fi>d The sentences of a language
(programs, in the case of a programming languageytangs of terminals. Mixed strings describe

right-hand sides (RHSs) of grammar rules and aed usparsing algorithms.

85

CIT401 COURSE GUIDE

3.3.2 Top-Down Parsers
A top-down parser traces or builds a parse trgar@order. A preorder traversal of a parse tree

begins with the root. Each node is visited befdsebranches are followed. Branches from a

particular node are followed in left-to-right ord&iis corresponds to a leftmost derivation.

In terms of the derivation, a top-down parser caméscribed as follows:

Given a sentential form that is part of a leftmdstivation, the parser’s task is to find the next
sentential form in that leftmost derivation. Thengeal form of a left sentential form is xAa,
whereby our notational conventions x is a stringeofninal symbols, A is a nonterminal, and a is
a mixed string. Because x contains only terminals the leftmost nonterminal in the sentential
form, so it is the one that must be expanded tohgehext sentential form in a leftmost derivation.
Determining the next sentential form is a mattectwdosing the correct grammar rule that has A
as its LHS. For example, if the current sentetiah is xAa and the A-rules are-AbB, A—cBD,
and A—a, a top- down parser must choose among thesertlieseto get the next sentential form,

which could be xbBa, xcBba, or xaa. This is thesjpay decision problem for top-down parsers.

Different top-down parsing algorithms use differ@rformation to make parsing decisions. The
most common top-down parsers choose the correctfBHBe leftmost nonterminal in the current
sentential form by comparing the next token of inpith the first symbols that can be generated
by the RHSs of those rules. Whichever RHS hasttkan at the left end of the string it generates
is the correct one. So, in the sentential form xtAa, parser would use whatever token would be
the first generated by A to determine which A-rsit®uld be used to get the next sentential form.
In the example above, the three RHSs of the A-ralldsegin with different terminal symbols. The
parser can easily choose the correct RHS basdueameixt token of input, which must be a, b, or
c in this example. In general, choosing the corRHdS is not so straightforward, because some of

the RHSs of the leftmost nonterminal in the cursaritential form may begin with a nonterminal.

The most common top-down parsing algorithms arsetjorelated. A recursive-descent parser is
a coded version of a syntax analyzer based direstlghe BNF description of the syntax of
language. The most common alternative to recuiddseent is to use a parsing table, rather than
code, to implement the BNF rules. Both, which aabed LL algorithms, are equally powerful,
meaning they work on the same subset of all cofitegtgrammars. The first L in LL specifies a

left-to-right scan of the input; the second L sfiesithat a leftmost derivation is generated.

86

CIT401 COURSE GUIDE

3.3.3 Bottom-Up Parsers

A bottom- up parser constructs a parse tree bynbewj at the leaves and progressing toward the
root. This parse order corresponds to the revdraerightmost derivation. That is, the sentential
forms of the derivation are produced in order ot la first. In terms of the derivation, a bottom-
Up parser can be described as follows: Given & sghtential formu, the parser must determine
what substring oft is the RHS of the rule in the grammar that mustdghiced to its LHS to
produce the previous sentential form in the righgteerivation. For example, the first step for a
bottom-up parser is to determine which substringhefinitial given sentence is the RHS to be
reduced to its corresponding LHS to get the setastdsentential form in the derivation.

The process of finding the correct RHS to reduceomsiplicated by the fact that a given right
sentential form may include more than one RHS fteengrammar of the language being parsed.
The correct RHS is called tirandle. A right sentential form is a sentential form thppears in a

rightmost derivation. Consider the following graamand derivation:

S — aAc
A—aA|b

S => aAc => aaAc => aabc

A bottom-up parser of this sentence, aabc, stattsthe sentence and must find the handle in it.
In this example, this is an easy task, for thengtcontains only one RHS, b. When the parser
replaces b with its LHS, A, it gets the secondast kentential form in the derivation, aaAc. In the
general case, as stated previously, finding thelleas much more difficult, because a sentential

form may include several different RHSs.

A bottom-up parser finds the handle of a giventrggntential form by examining the symbols on
one or both sides of a possible handle. Symbotkeaight of the possible handle are usually
tokens in the input that have not yet been analyZé® most common bottom-up parsing
algorithms are in the LR family, where the L spiesifa left-to-right scan of the input and the R

specifies that a rightmost derivation is generated.

3.3.4 The Complexity of Parsing

Parsing algorithms that work for any unambiguowsrgnar are complicated and inefficient. In
fact, the complexity of such algorithms is O(n3hieh means the amount of time they take is on
87

CIT401 COURSE GUIDE

the order of the cube of the length of the strmype parsed. This relatively large amount of time
is required because these algorithms frequently back up and reparse part of the sentence being
analyzed. Reparsing is required when the parsemtste a mistake in the parsing process.
Backing up the parser also requires that parteptrse tree being constructed (or its trace) must
be dismantled and rebuilt. O(n3) algorithms arenadly not useful for practical processes, such
as syntax analysis for a compiler, because thefaateo slow. In situations such as this, computer
scientists often search for algorithms that aréefashough less general. Generality is traded for
efficiency. In terms of parsing, faster algorithhesse been found that work for only a subset of
the set of all possible grammars. These algoritarasacceptable as long as the subset includes
grammars that describe programming languages.|lgdrighms used for the syntax analyzers of
commercial compilers have complexity O(n), whichamethe time they take is linearly related to
the length of the string to be parsed. This islyasbre efficient than O(n3) algorithms.

3.4 Recursive-Descent Parsing

This section introduces the recursive-descent taprd parser implementation process and

Grammar Class

3.4.1 The Recursive-Descent Parsing Process

A recursive-descent parser is so named becauseststs of a collection of subprograms, many
of which are recursive, and it produces a parseitréop-down order. This recursion is a reflection
of the nature of programming languages, which idelseveral different kinds of nested structures.
For example, statements are often nested in oth&rnsents. Also, parentheses in expressions
must be properly nested. The syntax of these siregtis naturally described with recursive

grammar rules.

EBNF is ideally suited for recursive-descent pars€onsider the following examples:
<if statement> — if <logic_expr> <statement> [else <statement>]

<ident_list> — ident {, ident}

In the first rule, theelseclause of arif statement is optional. In the second, an <ident |san

identifier, followed by zero or more repetitionsao€omma and an identifier.

A recursive-descent parser has a subprogram for m@tterminal in its associated grammar. The

responsibility of the subprogram associated witbagticular nonterminal is as follows: When
88

CIT401 COURSE GUIDE

given an input string, it traces out the parse tine¢ can be rooted at that nonterminal and whose
leaves match the input string. In effect, a remerslescent parsing subprogram is a parser for the
language (set of strings) that is generated bgstociated nonterminal. Consider the following
EBNF description of simple arithmetic expressions:

<expr> — <term> {(+ | -) <term>}
<term> — <factor> {(* | /) <factor>}
<factor> — id | int_constant | (<expr>)

Recall from unit 2 that an EBNF grammar for arithimexpressions, such as this one, does not
force any associativity rule. Therefore, when ussnogh a grammar as the basis for a compiler,
one must take care to ensure that the code gemembcess, which is normally driven by syntax
analysis, produces code that adheres to the assiigiaules of the language. This can be done

easily when recursive-descent parsing is used.

A recursive-descent subprogram for a rule witmglsiRHS is relatively simple. For each terminal
symbol in the RHS, that terminal symbol is compaséith nextToken. If they do not match, it is

a syntax error. If they match, the lexical analygecalled to get the next input token. For each
nonterminal, the parsing subprogram for that noniteal is called. The recursive-descent

subprogram for the first rule in the previous ex&rgyammar, written in C, is

[* expr
Parses strings in the language generated by the rule:
<expr> -> <term> {(+ | -) <term>}
*
void expr() {
printf("Enter <expr>\n");

[* Parse the first term */
term();

[* Aslong as the next token is + or -, get
the next token and parse the next term */
while (nextToken == ADD_OP || nextToken == SUB_OP) {

lex();
term();

}
printf("Exit <expr>\n");
}/* End of function expr */
89

CIT401 COURSE GUIDE

Recursive-descent parsing subprograms are writtdntiae convention that each one leaves the
next token of input in nextToken. So, whenever &sipg function begins, it assumes that
nextToken has the code for the leftmost token @finiput that has not yet been used in the parsing

process.

The part of the language that the expr functios@arconsists of one or more terms, separated by
either plus or minus operators. This is the languggnerated by the nonterminal <expr>.
Therefore, first it calls the function that parsersns (term). Then it continues to call that fuoiti

as long as it finds ADD_OP or SUB_OP tokens (whicpasses over by calling lex). This
recursive-descent function is simpler than mostabse its associated rule has only one RHS.
Furthermore, it does not include any code for syetaor detection or recovery, because there are

no detectable errors associated with the gramnbar ru

A recursive-descent parsing subprogram for a nomited whose rule has more than one RHS
begins with code to determine which RHS is to besgh Each RHS is examined (at compiler
construction time) to determine the set of termsyahbols that can appear at the beginning of
sentences it can generate. By matching these gaitssathe next token of input, the parser can

choose the correct RHS. The parsing subprogramitésm> is similar to that for <expr>:

[* term
Parses strings in the language generated by the rule:
<term> -> <factor> {(* | /) <factor>)
*
void term() {
printf("Enter <term>\n");

[* Parse the first factor */
factor();

[* As long as the next token is * or /, get the
next token and parse the next factor */
while (nextToken == MULT_OP || nextToken == DIV_OP) {

lex();
factor();

}

printf("Exit <term>\n");
} /* End of function term */

90

CIT401 COURSE GUIDE

The function for the <factor> nonterminal of ourtlametic expression grammar must choose
between its two RHSs. It also includes error detacin the function for <factor>, the reaction to
detecting a syntax error is simply to call the efumction. In a real parser, a diagnostic message
must be produced when an error is detected. Funtrey; parsers must recover from the error so
that the parsing process can continue.

[* factor
Parses strings in the language generated by the rule:
<factor>->id | int_constant | (<expr)
*I
void factor() {
printf("Enter <factor>\n");

[* Determine which RHS */
if (nextToken == IDENT || nextToken == INT_LIT)

[* Get the next token */
lex();
[* If the RHS is (<expr>), call lex to pass over the left parenthesis, call expr, and check for the
right parenthesis */
else {
if (nextToken == LEFT_PAREN) {
lex();
expr();
if (nextToken == RIGHT_PAREN)
lex();
else
error();
} [* End of if (nextToken == ... */

[* It was not an id, an integer literal, or a left parenthesis */
else
error();
} /* End of else */ printf("Exit <factor>\n");;
} /* End of function factor */

printf("Exit <factor>\n");;
} [* End of function factor */

91

CiT401 COURSE GUIDE

Following is the trace of the parse of the exangxgression (sum + 47) / total, using the parsing
functions expr, term, and factor, and the functea Note that the parse begins by calling lex and
the start symbol routine, in this case, expr.

Next token is: 25 Next lexeme is (Enter <expr> Enter <term> Enter <factor>
Next token is: 11 Next lexeme is sum Enter <expr> Enter <term> Enter <factor>
Next token is: 21 Next lexeme is + Exit <factor> Exit <term>

Next token is: 10 Next lexeme is 47 Enter <term> Enter <factor>

Next token is: 26 Next lexeme is) Exit <factor> Exit <term> Exit <expr>

Next token is: 24 Next lexeme is | Exit <factor>

Next token is: 11 Next lexeme is total Enter <factor>

Next token is: -1 Next lexeme is EOF Exit <factor> Exit <term> Exit <expr>

The parse tree traced by the parser for the pnegexkipression is shown in Figure 10

=
<factor= ™~ factors
p— \ “\\
- -~
L~ i "‘\ ™\ \\
o~ h
/ N \ \
/ expr- N\ \ b
[N N N
d \ e N A b
4 \ \ “\ \
"." b \ \ \
/ ternm <term> \
‘I L}

! Ll .I .I

dfactor> " <factor> | \

f || \ \
, | | \ \
“ \ \ |1
!

Figure 10: Parse tree for (Sum + 47)/total

3.4.2 The LL Grammar Class

Before choosing to use recursive descent as angassiategy for a compiler or other program
analysis tool, one must consider the limitationghef approach, in terms of grammar restrictions.
One simple grammar characteristic that causes astoaphic problem for LL parsers is left

recursion. For example, consider the following rule

A—A+B

92

CIT401 COURSE GUIDE

A recursive-descent parser subprogram for A imnteljiacalls itself to parse the first symbol in
its RHS. That activation of the A parser subprogthem immediately calls itself again, and again,
and so forth. It is easy to see that this leadsheoe/(except to stack overflow). The left recursion
in the rule A— A + B is called direct left recursion, becauseaturs in one rule. Direct left

recursion can be eliminated from a grammar by dlewing process:

For each nonterminal, A,

1. Group the A-rules as A> Aoy, |...| Aam [B1]| B2 | ...|Bn Where none of th@'s begins with A
2. Replace the original A-rules with

A—B1A" [B2A" | ... |BrA’

A" —aiA' oA’ |amA’ | €

Note that e specifies the empty string. A rule tiest e as its RHS is calledenasure rule because
its use in a derivation effectively erases its Lirt8n the sentential form. Consider the following
example grammar and the application of the abowegss:

E—-E+T|T

T->T*F|F

F—()]|id

For the E-rules, we hawa = + T and} = T, so we replace the E-rules with

E-TFE

EE—+TE|e

For the T-rules, we havwa = *F andp = F, so we replace the T-rules with

T-FT

T->*FT |e

Because there is no left recursion in the F-rules remain the same, so the complete replacement
grammar is

E-TE
E—+TE|e
ToET

T —*FT'|e
F— (E) | id

This grammar generates the same language as tierabigrammar but is not left recursive. As

was the case with the expression grammar writtergEBNF in Section 3.3.1, this grammar does

93

CIT401 COURSE GUIDE

not specify left associativity of operators. Howevie is relatively easy to design the code
generation based on this grammar so that the addimd multiplication operators will have left

associativity. Indirect left recursion poses theegroblem as direct left recursion.

3.5 Bottom-Up Parsing

3.5.1 The Parsing Problem for Bottom-Up Parsers
Consider the following grammar for arithmetic exgziens:

E—-E+T|T

T->T*F|F

F—(E)|id

Notice that this grammar generates the same aritbmgressions as the example in Section 3.4.
The difference is that this grammar is left recugsivhich is acceptable to bottom-up parsers. Also
note that grammars for bottom-up parsers normallgat include metasymbols such as those used
to specify extensions to BNF. The following rightshderivation illustrates this grammar:
E=>E+T

=>E+T*F

=>E+T*id

=>E+F*id

=>E+id *id

=>T+id*id

=>F +id*id

=>id+id*id

The underlined part of each sentential form in thesivation is the RHS that is rewritten as its
corresponding LHS to get the previous sententiahfd he process of bottom-up parsing produces
the reverse of a rightmost derivation. So, in tkenaple derivation, a bottom-up parser starts with
the last sentential form (the input sentence) adyces the sequence of sentential forms from
there until all that remains is the start symbdijali in this grammar is E. In each step, the tdsk o
the bottom- up parser is to find the specific RHf®, handle, in the sentential form that must be
rewritten to get the next (previous) sententiahfoAs mentioned earlier, a right sentential form

may include more than one RHS. For example, the ggntential form

E+T*id

94

CiT401 COURSE GUIDE

includes three RHSs, E + T, T, and id. Only onthete is the handle. For example, if the RHS E
+ T were chosen to be rewritten in this senteifdiah, the resulting sentential form would be E *

id, but E * id is not a legal right sentential fofor the given grammar.

The handle of a right sentential form is uniquee Tdsk of a bottom-up parser is to find the handle
of any given right sentential form that can be gatesl by its associated grammar. Formally,

handle is defined as follows:

Definition: 8 1s the handle of the right sentental form y = afw if
and only f S => *__ aAw =>__apfw

In this definition, => rm specifies a rightmost @ation step, and => *rm specifies zero or more
rightmost derivation steps. Although the definitioh a handle is mathematically concise, it
provides little help in finding the handle of a givright sentential form. In the following, we

provide the definitions of several substrings afteatial forms that are related to handles. The

purpose of these is to provide some intuition alaunidles.

Definition: B is a phrase of the right sentential form y if and only if
S =>*y = qjAa; => + ooy

In this definition, => + means one or more derivatsteps.

Definition: B is a simple phrase of the right sentental form v if and
onlyif S => *y = ajAa; => + a|fa;

If these two definitions are compared carefullys itlear that they differ only in the last derieat
specification. The definition of phrase uses onmore steps, while the definition of simple phrase

uses exactly one step.

The definitions of phrase and simple phrase magapfp have the same lack of practical value
as that of a handle, but that is not true. Consideat a phrase is relative to a parse tree. has t

string of all of the leaves of the partial parssetthat is rooted at one particular internal ndde o
the whole parse tree. A simple phrase is just agghthat takes a single derivation step from its

root nonterminal node. In terms of a parse trgdrase can be derived from a single nonterminal

95

CiT401 COURSE GUIDE

in one or more tree levels, but a simple phrasebeaderived in just a single tree level. Consider

the parse tree shown in Figure 11.

Figure 11: A parse tree for W+ T *id

The leaves of the parse tree in Figure 11 comphisesentential form E + T * id. Because there
are three internal nodes, there are three phraseb. internal node is the root of a subtree, whose

leaves are a phrase. The root node of the whose page, E, generates all of the resulting serenti

form, E + T * id, which is a phrase. The internalde, T, generates the leaves T * id, which is
another phrase. Finally, the internal node, F, gees id, which is also a phrase. So, the phrases
of the sentential form E+ T *id are E + T *id}Td, and id. Notice that phrases are not necédgsar

RHSs in the underlying grammar.

The simple phrases are a subset of the phrastge previous example, the only simple phrase is
id. A simple phrase is always a RHS in the gramilae. reason for discussing phrases and simple
phrases is this: The handle of any rightmost seialefiorm is its leftmost simple phrase. So now
we have a highly intuitive way to find the handfeaay right sentential form, assuming we have
the grammar and can draw a parse tree. This agptodinding handles is of course not practical
for a parser. (If you already have a parse treg, shyou need a parser?) Its only purpose is to
provide the reader with some intuitive feel for whahandle is, relative to a parse tree, which is

easier than trying to think about handles in teofnsentential forms.

We can now consider bottom-up parsing in termsap$@ trees, although the purpose of a parser
is to produce a parse tree. Given the parse tremfentire sentence, you easily can find the leandl
which is the first thing to rewrite in the sentertoeget the previous sentential form. Then the

96

CIT401 COURSE GUIDE

handle can be pruned from the parse tree and twegs repeated. Continuing to the root of the

parse tree, the entire rightmost derivation candrestructed.

3.5.2 Shift-Reduce Algorithms
Bottom-up parsers are often called shift-reducerélyns, because shift and reduce are the two

most common actions they specify. An integral pagvery bottom-up parser is a stack. As with
other parsers, the input to a bottom-up parsdrastream of tokens of a program and the output
is a sequence of grammar rules. The shift actiovesithe next input token onto the parser’s stack.
A reduce action replaces an RHS (the handle) orotdpe parser’'s stack by its corresponding
LHS. Every parser for a programming language isshdown automaton (PDA), because a PDA
is a recognizer for a context-free language. Yoedneot be intimate with PDAs to understand
how a bottom-up parser works, although it help&®DW is a very simple mathematical machine
that scans strings of symbols from left to rightPBRA is so named because it uses a pushdown
stack as its memory. PDAs can be used as recogrfimecontext-free languages. Given a string
of symbols over the alphabet of a context-free lagg, a PDA that is designed for the purpose
can determine whether the string is or is not déese® in the language. In the process, the PDA

can produce the information needed to construetrseptree for the sentence.

With a PDA, the input string is examined, one syhdia time, left to right. The input is treated
very much as if it were stored in another stackabee the PDA never sees more than the leftmost
symbol of the input. Note that a recursive-desgamser is also a PDA. In that case, the stack is
that of the run-time system, which records submogrcalls (among other things), which

correspond to the nonterminals of the grammar.

3.5.3 LR Parsers
Many different bottom-up parsing algorithms haverbdevised. Most of them are variations of a

process called LR. LR parsers use a relatively Ispnaggram and a parsing table that is built for a

specific programming language. This algorithm, whgsometimes called canonical LR, was not

used in the years immediately following its publica because producing the required parsing
table required large amounts of computer time amanary. These are characterized by two

properties: (1) They require far less computerueses to produce the required parsing table than
the canonical LR algorithm, and (2) they work orafier classes of grammars than the canonical
LR algorithm.

97

CIT401

COURSE GUIDE

There are three advantages to LR parsers:

They can be built for all programming languages.
They can detect syntax errors as soon as it islpess a left-to-right scan.
The LR class of grammars is a proper superseteothliiss parsable by LL parsers (for

example, many left recursive grammars are LR, buerare LL).

The only disadvantage of LR parsing is that itifalilt to produce by hand the parsing table for

a given grammar for a complete programming language

Prior to the appearance of the LR parsing algorittimare were a number of parsing algorithms

that found handles of right sentential forms bykiag both to the left and to the right of the

substring of the sentential form that was suspectédxting the handle.

4 Self-Assessment Exercises

What is a lexical analyzer?

State the two classes of parsers with their functio
State three approaches in building a lexical aralyz
What are the two distinct goals of syntax analysis?
Describe the complexity of parsing algorithms.
Briefly describe the recursive-descent parser.
What do the two Ls in LL algorithm specify?

State the advantages and disadvantage of LR parsing

5 Answer to Self-Assessment Exercises

e What is a lexical analyzer? A lexical analyzer igattern matcher which attempts to find a

substring of a given string of characters that medc given character pattern.

o State the two classes of parsers with their funcfidve two broad classes of parsers are top-

down, in which the tree is built from the root domard to the leaves, and bottom-up, in which

the parse tree is built from the leaves upwardh¢orpot.

o State three approaches in building a lexical amalykJsing a software tool to generate a table

for a table-driven analyzer, building such a tabjehand, and writing code to implement a

state diagram description of the tokens of the Uagg being implemented

98

CIT401 COURSE GUIDE

« What are the two distinct goals of syntax analy$is®letect syntax errors in a given program
and to produce a parse tree, or possibly onlyrtfeemation required to build such a tree, for
a given program

o Describe the complexity of parsing algorithms. #ec8.3.4

o Briefly describe the recursive-descent parser.cumrgve-descent parser is an LL parser that
is implemented by writing code directly from theugimar of the source language. It consists
of a collection of subprograms, many of which aeursive, and it produces a parse tree in
top-down order. This recursion is a reflectionhad hature of programming languages, which
include several different kinds of nested structure

e What do the two Ls in LL algorithm specify? Thesfil_ in LL specifies a left-to-right scan
of the input while the second L specifies thatfamest derivation is generated.

o State the advantages and disadvantage of LR passivgntages of LR parsers: They can be
built for all programming languages; They can desgatax errors as soon as it is possible in
a left-to-right scan; The LR class of grammarssaper superset of the class parsable by LL
parsers (for example, many left recursive gramraggd R, but none are LL). Disadvantage
of LR parsers: It is difficult to produce by harigetparsing table for a given grammar for a

complete programming language.

6 Conclusion

Although there is terminology confusion betweeridakanalysis and syntax analysis but nearly
all compilers separate the task of analyzing symiéx two parts, lexical analysis and syntax
analysis. The lexical analyzer deals with smalll&d¢anguage constructs, such as names and
numeric literals while the syntax analyzer dealghwihe large-scale constructs, such as
expressions, statements, and program units. Therdhaee reasons why lexical analysis is
separated from syntax analysis because of its siityplefficiency and portability. However, the
syntax analyzer can be platform independent aisdallways good to isolate machine-dependent

parts of any software system.

7 Summary
Syntax analysis is a common part of language impigation, regardless of the implementation

approach used. Syntax analysis is normally basealformal syntax description of the language

99

CIT401 COURSE GUIDE

being implementedThis unit discussed lexical process and how todblgkical analyzer. Also,

discussed the parsing problem, recursive-decesingaand bottom-up parsing.

8 References/Further Reading
Sebesta, R. W. (2016). Concepts of Programming wames (Eleventh Edition). Pearson
Education Limited.

Sebesta, R. W. (2009). Concepts of Programming Wages (Tenth Edition). Pearson Education
Limited.

100

CIT401

Unit 5 Language Processing

1.
2.
3.

N o o &

Introduction

Intended Learning Outcomes (ILOS)
Main Content

3.1. Interpretation

3.2. Translation

3.3.Concept of Interpretative Language
3.4.The Concept of Binding
Self-Assessment Exercises

Conclusion

Summary

References/Further Reading

101

COURSE GUIDE

CIT401 COURSE GUIDE

1 Introduction

Machine languages are designed on the basis ofl spleexecution, cost of realization, and
flexibility in building new software layers uponeitm. On the other hand, programming languages
often are designed on the basis of the ease aabili#y of programming. A basic problem, then,

is how a higher level language eventually can lezeted on a computer whose machine language
is very different and at a much lower level. Thilgs unit focus on implementation of language

processing by discussing interpretation, trangstadimncept of interpretative language and binding.

2 Intended Learning Outcomes (ILOS)
At the end of the unit, students should able to
e Understand how constructs of the language are &éeedirectly
e Understand how program are translated into an aetgnvmachine language before
being executed
o Differentiate between compilers and interpreter

e Understand the concept of binding

3 Main Content

3.1 Interpretation
In this solution, the actions implied by the counsts of the language are executed directly (see

Figures 12). Usually, for each possible action éhexists a subprogram—written in machine
language—to execute the action. Thus, interpretatfoa program is accomplished by calling
subprograms in the appropriate sequence. More saigcian interpreter is a program that
repeatedly executes the following sequence.

e Get the next statement;

e Determine the actions to be executed,;

e Perform the actions;

This sequence is very similar to the pattern ofoastcarried out by a traditional computer, that
is:
e Fetch the next instruction (i.e., the instructiomose address is specified by the instruction
pointer).

e Advance the instruction pointer (i.e., set the addrof the instruction to be fetched next).

102

CiT401 COURSE GUIDE

e Decode the fetched instruction.

e Execute the instruction.

This similarity shows that interpretation can bewed as a simulation, on a host computer, of a

special-purpose machine whose machine languabge isigher level language.

mput output
— interpreter ——-
data data

program
(a) Interpretation

relocatable
machine code

source . >
— compiler |
module ol

linker

executable
unit
> output
loader interpreter — -
data

single relocatabl_e*
unit

mnput data

(b) Translation (+ interpretation)

Figure 12: Language processing by interpretation (a) and mtos (b)

3.2 Translation

In this solution, programs written in a high-ledahguage are translated into an equivalent
machine-language version before being executed ffainslation is often performed in several
steps (Figure 12). Program modules might firstdygasately translated into relocatable machine
code; modules of relocatable code are linked tagstito a single relocatable unit; finally, the

entire program is loaded into the computer’'s menagrgxecutable machine code. The translators

103

CIT401 COURSE GUIDE

used in each of these steps have specialized naompiler, linker (or linkage editor), and loader,
respectively.

In some cases, the machine on which the transl&iperformed (the host machine) is different
from the machine that is to run the translated ¢tduetarget machine). This kind of translation is
called cross-translation. Crosstranslators offerahly viable solution when the target machine is

a special purpose processor rather than a genamabge one that can support a translator.

3.3 Concept of Interpretative Language
Pure interpretation and pure translation are twasasf a continuous spectrum. In practice, many

languages are implemented by a combination ofvibaéchniques. A program may be translated
into an intermediate code that is then interprefdte intermediate code might be simply a
formatted representation of the original progranthrelevant information (e.g., comments and
spaces) removed and the components of each stadtetoezd in a fixed format to simplify the
subsequent decoding of instructions. In this cabe, solution is basically interpretive.
Alternatively, the intermediate code might be tleev{level) machine code for a virtual machine
that is to be later interpreted by software. Tlisitson, which relies more heavily on translation,
can be adopted for generating portable code, Hiatade that is more easily, transferable to
different machines than machine language codee¥ample, for portability purposes, one of the
best known initial implementations of a Pascal cienpvas written in Pascal and generated an
intermediate code, called Pcode. The availabilitya portable implementation of the language
contributed to the rapid diffusion of Pascal in jmaducational environments. More recently, with
the widespread use of Internet, code portabilitselnee a primary concern for network application
developers. A number of language efforts have itécereen undertaken with the goal of
supporting code mobility over a network. Languagealis perhaps the best known and most
promising example. Java is first translated tore@rmediate code, called Java bytecode, which is

interpreted in the client machine.

In a purely interpretive solution, executing aeata¢nt may require a fairly complicated decoding
process to determine the operations to be exeemedheir operands. In most cases, this process
is identical each time the statement is encounteCedsequently, if the statement appears in a
frequently-executed part of a program (e.g., areioop), the speed of execution is strongly

affected by this decoding process. On the othed haure translation generates machine code for

104

CIT401 COURSE GUIDE

each high-level statement. In so doing, the traosstiecodes each high-level statement only once.
Frequently-used parts are then decoded many timéiseir machine language representation;
because this is done efficiently by hardware, pgraeslation can save processing time over pure
interpretation. On the other hand, pure interpr@tatay save storage. In pure translation, each
high-level language statement may expand into tensundreds of machine instructions. In a
purely interpretive solution, high-level statemests left in the original form and the instructions
necessary to execute them are stored in a subpnogfahe interpreter. The storage saving is
evident if the program is large and uses most @fldhguage’'s statements. On the other hand, if
all of the interpreter's subprograms are kept immreemory during execution, the interpreter may

waste space for small programs that use only sofdve language's statements.

Compilers and interpreters differ in the way thewy ceport on run-time errors. Typically, with
compilation, any reference to the source codessilothe generated object code. If an error is
generated at run-time, it may be impossible toteeiato the source language construct being
executed. This is why run-time error messages #ea obscure and almost meaningless to the
programmer. On the opposite, the interpreter psE®source statements, and can relate a run-
time error to the source statement being executed.these reasons, certain programming
environments contain both an interpreter and a demior a given programming language. The
interpreter is used while the program is being e, due to its improved diagnostic facilities.
The compiler is then used to generate efficienecafter the program has been fully validated.

Macro processing is a special kind of translatltat tmay occur as the first step in the translation
of a program. A macro is a named source text fragnoalled the macro body. Through macro

processing, macro names in a text are replacetebgdrresponding bodies. In C, one can write
macros, handled by a preprocessor, which genesatese C code through macro expansion. For

example, one can use a macro to provide a symhaiie for a constant value, as in this fragment:
#define upper_limit 100

sum = 0;

for (index = 0; index < upper_Imit; index++)

{

sum += a [index];

}

105

CIT401 COURSE GUIDE

3.4 The Concept of Binding

Programs deal with entities, such as variablegjnmes, statements, and so on. Program entities
have certain properties called attributes. For etapa variable has a name, a type, a storage area
where its value is stored; a routine has a nammpdbparameters of a certain type, certain
parameter-passing conventions; a statement hasiaggbactions. Attributes must be specified
before an entity is elaborated. Specifying the erature of an attribute is known lisding For

each entity, attribute information is containedirepository called descriptot

Binding is a central concept in the definition edgramming language semantics. Programming
languages differ in the number of entities with eththey can deal, in the number of attributes to
be bound to entities, in the time at which suchdinigs occur l§inding timé@, and in thestability

of the binding (i.e., whether an established bigdsfixed or modifiable). A binding that cannot
be modified is calledtatic A modifiable binding is calledynamic Bindings can take place at
language design time, language implementation toompile time, load time, link time, or run
time. Some attributes may be bound at languageitefi time, others at program translation time
(or compile time), and others at program executiome (or run time). The following is a
(nonexhaustive) list of binding examples:

» Language definition time binding. In most languadgesluding FORTRAN, Ada, C, and
C++) the type "integer" is bound at language da@nitime to its well-known mathematical
counterpart, i.e., to a set of algebraic operattbhas produce and manipulate integers;

* Language implementation time binding. In most laages (including FORTRAN, Ada, C,
and C++) a set of values is bound to the integee Bt language implementation time. That
is, the language definition states that type "iatégnust be supported and the language
implementation binds it to a memory representatihich—in turn—determines the set of
values that are contained in the type.

* Compile time (or translation time) binding. Paspadvides a predefined definition of type
integer, but allows the programmer to redefin@hius type integer is bound a representation
at language implementation time, but the binding lba modified at

e translation time.

» Execution time (or run time) binding. In most pragrming languages variables are bound to

a value at execution time, and the binding can bdified repeatedly during execution.

106

CIT401 COURSE GUIDE

* In the first two examples, the binding is estaldstivefore run time and cannot be changed
thereafter. This kind of binding regime is ofteti@@static The term static denotes both the
binding time (which occurs before the program isaeted) and the stability (the binding is
fixed). Conversely, a binding established at rametis usually modifiable during execution.
The fourth example illustrates this case. This lohbinding regime is often calletynamic
There are cases, however, where the binding iblesdtad at run time, and cannot be changed
after being established. An example is a languageiging (read only) constant variables

that are initialized with an expression to be eatdd at run time.

In the first two examples, the binding is estaldtbefore run time and cannot be changed
thereafter. This kind of binding regime is ofterll@d static The term static denotes both the
binding time (which occurs before the program ieated) and the stability (the binding is fixed).
Conversely, a binding established at run time igllg modifiable during execution. The fourth
example illustrates this case. This kind of bindiegime is often calledynamic There are cases,
however, where the binding is established at rometiand cannot be changed after being
established. An example is a language providingd(enly) constant variables that are initialized

with an expression to be evaluated at run time.

4 Self-Assessment Exercises
» How does Compiler differ from interpreter?
* With an aid the of diagram show the language pingdy interpretation and translation
» List the sequence of executing an interpreter
* In what does sequence of an interpreter simildhéopattern carried out by a traditional
computer?
* What is binding and binding time?
* What is descriptor?
* When can binding takes place?
5 Answer to self-Assessment Exercises
* How does Compiler differ from interpreter? Comgsland interpreters differ in the way
they can report on run-time errors.
» With an aid the of diagram show the language psingdy interpretation and translation.

See figure 12

107

CIT401 COURSE GUIDE

e List the sequence of executing an interpreterit@ehext statement; Determine the actions
to be executed; Perform the actions;

* In what does sequence of an interpreter simildhéopattern carried out by a traditional
computer? Fetch the next instruction; Advance tis&uction pointer; Decode the fetched
instruction; Execute the instruction.

* What is binding and binding time? A binding is as@ciation between an attribute and an
entity, such as between a variable and its typeatue, or between an operation and a
symbol while the time at which a binding takes plecregarded as binding time.

* What is descriptor? Descriptor is a repository tattained attribute information of each
entity.

* When can binding takes place? Language design temguage implementation time,

compile time, load time, link time, or run time.

6 Conclusion

In this unit, you have been introduced to the hamgliage processing can be implemented through
interpretation and translation. Also, binding wasdatibed as the association of attributes with
program entities. Knowledge of the binding times aifributes to entities is essential to
understanding the semantics of programming languaBending can be static or dynamic.
Declarations, either explicit or implicit, provide® means of specifying the static binding of
variables to types. In general, dynamic bindingwadi greater flexibility but at the expense of

readability, efficiency, and reliability.

7 Summary

The unit focused on implementation of language @ssing through interpretation and translation.
For a programming language to be meaningful trermeed or a translator which accepts other
languages and execute them directly or transfoemtimto form that is suitable for execution. A
translation involves two processes which are imeggtion and compilation. Interpreter is a
translator that execute program directly while cdemps a translator that produces an equivalent
program in a form suitable for execution. Also thet explain the concept of binding which is
regarded as a central concept in the definitioproframming language semantics. A binding is
an association between an attribute and an estith as between a variable and its type or value,
or between an operation and a symbol. The timehathna binding takes place is called binding

108

CIT401 COURSE GUIDE

time. It worth to know that complete understandafghe binding times for the attributes of

program entities is a prerequisite for understamtie semantics of a programming language.

8 References/Further Reading

Ghezzi and Jazayeri (199®rogramming language conceprsird edition John Wiley & Sons.
New York Chichester Brisbane Toronto Singapore

Sebesta, R. W. (2016). Concepts of Programming wages (Eleventh Edition). Pearson
Education Limited.

Sebesta, R. W. (2009). Concepts of Programming Wages (Tenth Edition). Pearson Education
Limited.

109

CIT401 COURSE GUIDE

Module 3 Structuring Data

The effectiveness of implementation of any programgmianguage depends mainly on how
effectively its information can be stored in themputer. Each programming language contains
constructs and mechanisms for structuring data. afa dstructure is a way of organizing
information, so that it is easier to use. Instebpist the simple sequences of bits in the physical
machine, a high level language provides complexctired data which easily lends itself to
describe the structure of the problems that abetsolved. Data structures are often optimized for
certain operations. Finding the best data struatimen solving a problem is an important part of
programming. Programs that use the right datatstreics easier to write, and work better. Unit 1
elaborates on data type and structure. Unit 2 expléhe constructs used in programming
languages for specification of sequence controke Thit 3 which is the last unit, discusses
overview of run-time, identifies common errors ohtime and shows how to fix run-time errors.

Also, it presents the difference between runtime @mpile time.

110

CIT401

Unit 1

1.
2.

N o o k&

Introduction

Data Types and Structure

Intended Learning Outcomes (ILOS)

Main Content

3.1.Data Type
3.2.Classes of Data Type

3.2.1.
3.2.2.
3.2.3.
3.2.4.
3.2.5.
3.2.6.

Primitive Data Type
Composite/Derived Data Type
Enumerated Data Type
Abstract Data Type

Utility Data Type

Other Data Type

3.3. Data Structure

3.3.1.
3.3.2.
3.3.3.
3.3.4.
3.3.5.
3.3.6.
3.3.7.

Array
Linked List
Tree

Hash table
Graph
Stack

Queue

3.4. Difference between data type and data structure

Self-Assessment Exercises

Conclusion

Summary

References/Further Reading

111

COURSE GUIDE

CIT401 COURSE GUIDE

1 Introduction
A data type defines a collection of data valuesasdt of predefined operations on those values.
Computer programs produce results by manipulatatg.dAn important factor in determining the
ease with which they can perform this task is hosll the data types available in the language
being used match the objects in the real worldhefgroblem being addressed. Therefore, it is

crucial that a language supports an appropriatectan of data types and structures.

2 Intended Learning Outcomes (ILOS)
At the end of the unit, students should able to
¢ Understand meaning and different types of data type
e Understand different categories of data structure

¢ Know the difference between data types and datatsiie

3 Main Content

3.1 Data Types
A data type is the most basic and the most comrassification of data; it is an attribute of data

which tells the compiler (or interpreter) how th®grammer intends to use the data. Basically
data type is a type of information transmitted kestwthe programmer and the compiler where the
programmer informs the compiler about what typdatt is to be stored and also tells how much

space it requires in the memory. Data type carrbepgd into three namely;

e Scalar: basic building block (boolean, integeraflachar etc.)
« Composite: any data type (struct, array, string emmposed of scalars or composite types
(also referred to as a ‘compound’ type).

« Abstract: data type that is defined by its behaw{tuple, set, stack, queue, graph etc).

If we consider a composite type, such as a ‘stritglescribesa data structure which contains a
sequence of char scalars (characters), and asisueferred to as being a ‘composite’ type.
Whereas the underlyingnplementationof the string composite type is typically implertesh
using an array data structure. An abstract data {ADT) describes the expectéehaviour

associated with a concrete data structure. For pbeam ‘list’ is an abstract data type which

112

CIT401 COURSE GUIDE

represents a countable number of ordered valuéagain themplementatiorof such a data type

could be implemented using a variety of differeatadstructures, one being a ‘linked list'.
Some basic examples are int, string etc. It igype of any variable used in the code.

#include <iostream.h>
using namespace std;

void main()

{
int a;

a=5;

float b;
b =5.0;

charg;
— A
c="A"

char d[10];
d ="example";

}

As seen from the theory explained above we corkadw that in the above code, the variable ‘a’
is of data type integer which is denoted by iff@athe variable ‘a’ will be used as an integer type
variable throughout the process of the code. Amdhé same way, the variables ‘b’, ‘c’ and ‘d’

are of type float, character and string respectivehd all these are kinds of data types.

3.1.1 Primitive data types

All data in computers based on digital electromgsceepresented as bits (alternatives 0 and 1) on
the lowest level. The smallest addressable undavé is usually a group of bits called a byte

(usually an octet, which is 8 bits). The unit prgsrd by machine code instructions is called a word
(as of 2011, typically 32 or 64 bits). Most insttians interpret the word as a binary number, such
that a 32-bit word can represent unsigned integkres from 0 to or signed integer values from

to. Because of two's complement, the machine lagggaad machine doesn't need to distinguish

between these unsigned and signed data typessfonadist part.

113

CIT401 COURSE GUIDE

There is a specific set of arithmetic instructidhat use a different interpretation of the bits in
word as a floating-point number. Machine data typesd to beexposedor made available in
systems or low-level programming languages, allgwine-grained control over hardware. The
C programming language, for instance, suppliegartéypes of various widths, such as short and
long. If a corresponding native type does not existhe target platform, the compiler will break
them down into code using types that do exist.ifstance, if a 32-bit integer is requested on a
16-bit platform, the compiler will tacitly treat s an array of two 16 bit integers. Several
languages allow binary and hexadecimal literalscémvenient manipulation of machine data.

In higher level programming, machine data types afien hidden or abstracted as an
implementation detail that would render code lesggble if exposed. For instance, a generic
numeric type might be supplied instead of integérsome specific bit-width. The following are
primitive data type

3.1.1.1 Boolean type
The Boolean type represents the values true asel. fAlthough only two values are possible, they

are rarely implemented as a single binary digit éfficiency reasons. Many programming
languages do not have an explicit boolean typegaasinterpreting (for instance) 0 as false and

other values as true.

3.1.1.2 Numeric types
e The integer data types, or "whole numbers". Maysbletyped according to their ability to

contain negative values (e.g. unsigned in C and)CMay also have a small number of
predefined subtypes (such as short and long in €/Cer allow users to freely define
subranges such as 1..12 (e.g. Pascal/Ada).

e Floating point data types, sometimes misleadinglied reals, contain fractional values. They
usually have predefined limits on both their maximualues and their precision. These are
often represented as decimal numbers.

e Fixed point data types are convenient for représgnmonetary values. They are often
implemented internally as integers, leading to efieeéd limits.

e Bignum or arbitrary precision numeric types lackgefined limits. They are not primitive

types, and are used sparingly for efficiency reason

114

CIT401 COURSE GUIDE

3.1.2 Composite / Derived data types
Composite types are derived from more than oneifivertype and can be done in so many ways

called data structures. Composing a primitive typp@ a compound type generally results in a new
type, e.garray-of-integeris a different type tinteger.

e An array stores a number of elements of the sapeeitya specific order. They are accessed
using an integer to specify which element is resflii(although the elements may be of
almost any type). Arrays may be fixed length orangable.

e Record (also called tuple or struct) Records arersnthe simplest data structures. A
record is a value that contains other values, &lfyian fixed number and sequence and
typically indexed by names. The elements of recardsusually callefleldsor members

e Union. A union type definition will specify whichf @ number of permitted primitive types
may be stored in its instances, e.g. "float or lontgger”. Contrast with a record, which
could be defined to contain a flaabd an integer; whereas, in a union, there is only one
value at a time.

e Atagged union (also called a variant, variant récdiscriminated union, or disjoint union)
contains an additional field indicating its curréye, for enhanced type safety.

e A setis an abstract data structure that can stegtain values, without any particular order,
and no repeated values. Values themselves aretm@ved from sets, rather one tests a
value for membership to obtain a boolean "in" ast"im".

e An object contains a number of data fields, likeeeord, and also a humber of program
code fragments for accessing or modifying themaBB#&tuctures not containing code, like

those above, are called plain old data structure.

3.1.3 Enumerated Type
This has values which are different from each qtaed which can be compared and assigned, but

which do not necessarily have any particular cdecrepresentation in the computer's memory;
compilers and interpreters can represent themrariyt For example, the four suits in a deck of
playing cards may be four enumerators na@edB, DIAMOND, HEART, SPADE belonging to

an enumerated type namsdit If a variableV is declared havinguit as its data type, one can
assign any of those four values to it. Some implaatens allow programmers to assign integer

values to the enumeration values, or even treat #eetype-equivalent to integers.

115

CIT401 COURSE GUIDE

3.1.3.1 String and text types
e Alphanumeric character. A letter of the alphabuiitdblank space, punctuation mark, etc.

e Alphanumeric strings, a sequence of charactersy @teetypically used to represent words
and text.

3.1.3.2 Character and string
Character and string types can store sequencdsaddaters from a character set such as ASCII.

Since most character sets include the digits,gbssible to have a numeric string, such as "1234".
However, many languages would still treat thesbedgnging to a different type to the numeric

value 1234. Character and string types can havereift subtypes according to the required
character "width". The original 7-bit wide ASCII wéound to be limited and superseded by 8 and
16-bit sets.

3.1.4 Abstract data types
Any type that does not specify an implementatioansabstract data type. For instance, a stack

(which is an abstract type) can be implementedrasireay (a contiguous block of memory
containing multiple values), or as a linked liss@ of non-contiguous memory blocks linked by
pointers). Abstract types can be handled by cbhdedoes not know or "care" what underlying
types are contained in them. Arrays and records ateo contain underlying types, but are

considered concrete because they specify howdhatents or elements are laid out in memory.

In computer science, an abstract data type (ADB) isathematical model for a certain class of

data structures that have similar behavior; orckntain data types of one or more programming

languages that have similar semantics. An absttaizt type is defined indirectly, only by the

operations that may be performed on it and by nma#ttieal constraints on the effects (and

possibly cost) of those operations. For examplealastract stack could be defined by three

operations:

e push, that inserts some data item onto the streictur

e pop, that extracts an item from it (with the coastt that each pop always returns the most
recently pushed item that has not been poppedared),

e peek, that allows data on top of the structurest@xamined without removal.

116

CIT401 COURSE GUIDE

Abstract data types are purely theoretical entittesed (among other things) to simplify the
description of abstract algorithms, to classify amdluate data structures, and to formally describe
the type systems of programming languages. SomencornADTs, which have proved useful in
a great variety of programming applications, ar€entainer, Deque, List, Map, Multimap,

Multiset Priority queue, Queue, Set, Stack, TreapB.

3.1.5 Utility data types
For convenience, high-level languages may suppigdyenade "real world" data types, for

instancetimes datesandmonetary valueandmemory even where the language allows them to

be built from primitive types.

3.2 Data Structure
A data structure is a collection of data type “esuwhich are stored and organized in such a way
that it allows for efficient access and modificatidn some cases, a data structure can become the

underlying implementation for a particular dataeyp

Data structures perform some special operatiorsiigertion, deletion and traversal. For example,
you have to store data for many employees where @aployee has his name, employee id and
a mobile number. So this kind of data requires demgata management, which means it requires
data structure comprised of multiple primitive datpes. So data structures are one of the most
important aspects when implementing coding condeptsal-world applications. Data structures
can be grouped into four forms:

e Linear: arrays, lists

e Tree: binary, heaps, space partitioning etc.

e Hash: distributed hash table, hash tree etc.

e Graphs: decision, directed, acyclic etc

3.2.1 Array
An array is a finite group of data, which is alltexh contiguous (i.e. sharing a common border)

memory locations, and each element within the arsagccessed via an index key (typically
numerical, and zero based). The name assignedaoanis typically a pointer to the first item in
the array. Meaning that given an array identifieaw which was assigned the value ["a", "b",

"c"], in order to access the "b" element you wouse the index 1 to lookup the value: arr[1].

117

CIT401 COURSE GUIDE

Arrays are traditionally ‘finite’ in size, meanirygu define their length/size (i.e. memory capacity)
up front, but there is a concept known as ‘dynaarrays’ (and of which you’re likely more
familiar with when dealing with certain high-ley@logrammings languages) which supports the

growing (or resizing) of an array to allow for more elensstio be added to it.

In order to resize an array you first need to atea new slot of memory (in order to copy the
original array element values over to), and bec#hisetype of operation is quite ‘expensive’ (in

terms of computation and performance) you neee tsulpe you increase the memory capacity just
the right amount (typically double the originaleizo allow for more elements to be added at a
later time without causing the CPU to have to e array over and over again unnecessarily.
One consideration that needs to be given is thatdgm’'t want the resized memory space to be

too large, otherwise finding an appropriate slot ohmey becomes more tricky.

When dealing with modifying arrays you also neeteacareful because this requires significant
overhead due to the way arrays are allocated meshoty. If you imagine you have an array and
you want to remove an element from the middle efdtray, try to think about that in terms of

memory allocation: an array needs its indexes todmiguous, and so we have to re-allocate a

new chunk of memory and copy over the elementsviba¢ placedroundthe deleted element.

These types of operations, when done at scaléharfundation behind reasons to have a good
understanding of how data structures are implendefitiee reason being, when you’re writing an
algorithm you will hopefully be able to recognizéien you're about to do something (let's say
modify an array many times within a loop construbgt could ultimately end up being quite a

memory intensive set of operations.

3.2.2 Linked List
A linked list is different to an array in that tloeder of the elements within the list are not

determined by a contiguous memory allocation. butéhe elements of the linked list can be
sporadically placed in memory due to its designgctvis that each element of the list (also referred

to as a ‘node’) consists of two parts:

e the data

e apointer

118

CiT401 COURSE GUIDE

The data is what you've assigned to that elemed&nwhereas the pointer is a memory address

reference to the next node in the list as showfigure 13.

Figure 13: Example of Linked List

Also unlike an array, there is no index accessnSwder to locate a specific piece of data you'll
need to traverse the entire list until you find taa you're looking for.

This is one of the key performance characteristitsa linked list, and is why (for most

implementations of this data structure) you're ablie toappenddata to the list (because if you
think about the performance of such an operatiowoiild require you to traverse the entire list to
find the end/last node). Instead linked lists gelemwill only allow prependingto a list as it's

much quicker. The newly added node will then haw@ointer set to the original ‘head’ of the list.

There is also a modified version of this data stmecreferred to as a ‘doubly linked list’ which is
essentially the same concept but with the excemtiathird attribute for each node: a pointer to

thepreviousnode (whereas a normal linked list would only hayminter to théollowing node).

3.2.3 Tree
The concept of a ‘tree’ in its simplest terms isdpresent a hierarchical tree structure, withod ro

value and subtrees of children (with a parent naggyesented as a set of linked nodes (see figure
14). A tree contains “nodes” (a node has a valgeaated with it) and each node is connected by
a line called an “edge”. These lines represent¢taionshipbetween the nodes. The top level
node is known as the “root” and a node with nodrieth is a “leaf”. If a node is connected to other
nodes, then the proceeding node is referred thea$ptrent”, and nodes following it are “child”
nodes. There are various incarnations of the hbase structure, each with their own unique
characteristics and performance considerationsariifiree, Binary Search Tree, Red-Black Tree,

B-tree, Weight-balanced Tree, Heap, Abstract Syiitae.

3.2.3.1 Binary Tree
A binary tree is a ‘rooted tree’ and consists a@e®which have, at most, two children. This is as

the name suggests (i.e. ‘binary’: 0 or 1)wo potential values/directions. Rooted trees suggest
notion ofdistance(i.e. distance from the ‘root’ node)

119

CiT401

COURSE GUIDE

Binary trees are the building blocksathertree data structures (see also: this referencenéoe

details), and so when it comes to the performarficedain operations (insertion, deletion etc)

consideration needs to be given to the number @pshthat need to be made as well as the re-

balancing of the tree (much the same way as thegrsifor a linked list need to be updated). The

most common operations performed on tree strucsuteat of traversal. Traversal is a procedure

by which each node in the tree is processed exantg in a systematic manner. There three ways

of traversing binary tree which are preorder tragkrinorder traversal and postorder traversal.

Preorder Traversal (Root, leftnode, rightnode): Preorder of a binaegtis defined as follow;

Process the root node; Traverse the left subtrgaraorder; Traverse the right subtree in

preorder; Note that if subtree is empty the traaleis performed by doing nothing. Preorder
Traversal of a tree in figure IMABCDEFG

Inorder Traversal (Leftnode, root, rightnode): Inorder of a binargdris defined as follow;

Traverse the left subtree in Inorder; Processdbenode; Traverse the right subtree in Inorder.

Inorder Traversal of atree in figure ICBAEFD G

Postorder Traversal (Leftnode, rightnode, Root): Postorder of a binage is defined as

follow; Traverse the left subtree in postorder;vEmse the right subtree in postorder; Process
the root node. Preorder Traversal of a tree iéigulis CBFEGD A

(A
\/_H..m’“"

e e N
B D)
W,,,Z_j? p— / \. ________]

.) p ™ / .
(C (&) (&)
F

Figure 14: Binary Tree

120

CiT401 COURSE GUIDE

3.2.3.2 Binary Search Tree
A binary search tree is a ‘sorted’ tree, and is @mas such because it helps to support the use of

a ‘binary search’ algorithm for searching moreaéntly for a particular node (more on that later).

Figure 15: Binary Search Tree

To understand the idea of the nodes being ‘softedbrdered’) we need to compare the left node
with the right node. The left node should alwaysadesser number than the right node, and the
parent node should be the decider as to whethéilé rode is placed to the left or the right.
Consider the figure 15, where we can see the ¢ s 8. Let’s imagine we’re going to construct
this tree.

We start with 8 as the root node and then we'remithe number 3 to insert into the tree. At this
point the underlying logic for constructing theenill know that the number 3 Isssthan 8 and

so it'll first check to see if there is alreadyedt Inode (there isn’t), so in this scenario thedagll
determine that the tree should have a new left noder 8 and assign it the value of 3. Now if we
give the number 6 to be inserted, the logic wiltfthat again it is less than 8 and so it’ll chérk

a left node. There is a left node (it has a valug) and so the value 6 ggeaterthan 3. This means
the logic will now check to see if there is a rigloide (there isn’'t) and subsequently creates a new
right node and assigns it the value 6.

This process continues on and on until the tredoban provided all of the relevant numbers to be
sorted. In essence what this sorted tree desiglitdtes is the means for an operation (such as
lookup, insertion, deletion) to only take, on aggratime proportional to the logarithm of the

121

CIT401 COURSE GUIDE

number of items stored in the tree. So if therean00 nodes in the tree, and we wanted to find
a specific node, then the average case numbermpaasons (i.e. comparing left/right nodes)
would be 10.

By using the logarithm to calculate this we geg B(10) = 1024 which is the inverse of the
exponentiation 2710 (“2 raised to the power of 1@9 this says we’ll execute 10 comparisons
before finding the node we were after. To break thawvn a bit further: the exponentiation

calculation is 1024 =22%x2x2x2Xx 2x 2x2 x 2 x 2 = 2710, so the “logarithm to base 2” of
10 is 1024.

The logarithm (i.e. the inverse function of expaimegion) of 1000 to base 2, in this case abstracted
to n, is denoted as log(8), but typically the base 2 is omitted to jugj(l®). When determining
the ‘time complexity’ for operations on this typledata structure we typically use ‘Big O’ notation
and thus the Big O complexity would be defined ds@n) for the average search case (which is
good), but theworst casefor searching would still be O(n) linear time (whiis bad — and I'll

explain why in the next section on red-black trees)

Similarly, when considering complexity for a padi@r algorithm, we should take into account

both ‘time’ and ‘space’ complexity. The latterl&etamount of memory necessary for the algorithm
to execute and is similar to time complexity intthe're interested in how that resource (time vs
space) will change and affect the performance d#ipgron the size of the input.

3.2.3.3 Red-Black Tree

The performance of a binary search tree is depémuohetme height of the tree. Meaning we should
aim to keep the tree as ‘balanced’ as possibleraibe the logarithm performance is lost in favor

of linear time.
To understand why that is, consider the followiadgdstored in an array:

[1, 2, 3, 4]
If we construct a binary search tree from this datsat we would ultimately end up with is a very
‘unbalanced’ tree in the sense that all the nodesldvbe to the right, and none to the left (see
figure 16).

122

CiT401 COURSE GUIDE

Figure 16: Red-Black Tree-a

When we search this type of tree (which for allgmses is effectively a linked list) we would,

worst case, end up with linear time complexity: O{ro resolve that problem, we need a way to
balance the nodes in the tree. This is where theeq of a red-black tree comes in to help us.
With a red-black tree (due to it being consisteh#dianced) we get O(log n) for search/insert/delete

operations (which is great).

Let’s consider the properties of a red-black tfegi(e 17):

o Each node is either red or black.

e The root node is always black.

o All leaves are ‘NIL’ and should also be black.

o All red nodes should have two black child nodes.

o All paths from given node to NIL must have same rafrnlack nodes.

e New nodes should be red by default (we’ll clariBidw).

Figure 17: Red-Black Tree-b
123

CIT401 COURSE GUIDE

The height of the tree is referred to as its ‘btaekght’, which is the number of black nodes (not
including the root) to the furthest leaf, and skido¢ no longer than twice as long as the length of
the shortest path (the nearest NIL). These pragsedie what enable the red-black tree to provide
the performance characteristics it has (i.e. Oflggand so whenever changes are made to the tree

we want to aim to keep the tree height as shgpbasible.

On every node insertion, or deletion, we need tsusn we have not violated the red-black
properties. If we do, then there are two possitédpsthat we have to consider in order to keep the
tree appropriately balanced (which we’ll checkhistorder):

e Recolour the node in the case of a red node neeldmaying two black child nodes.

e Make a rotation (left/right)in the case where recwoing then requires a structural change.
The goal of a rotation is to decrease the height@tree. The way we do this is by moving larger
subtrees up the tree, and smaller subtrees dowtnettie\We rotate in the direction of the smaller
subtree, so if the smaller side is the right sid®llwdo a right rotation. Note: there is an
inconsistency between what node/subtree is affdnyealrotation. Does the subtree being moved
into the parent position indicate the directiordoes the target node affected by the newly moved
subtree indicate the direction (I've opted for tatter, as we’ll see below, but be aware of this

when reading research material).

In essence, there are three steps that need tppliechto the target node (T) being rotated, and
this is the same for either a left rotation orghtirotation. Let’'s quickly look at both of these
rotation movements:
o Left Rotation (figure 18):
i. T'sright node (R) is unset & becomes T's parent
ii. R’soriginal left node L is now orphaned.
lii. T'sright node is now set to L.
T we now find R’s left pointer has to be set tarifarder for it to become the parent node), meaning
R’s original left pointer is orphaned.
« Right Rotation (figure 19):

i. T'sleft node (L) is unset & becomes T's parent T
ii. L’s original right node R is now orphaned.
iii. T'sleft node is now set to R.

124

CiT401 COURSE GUIDE

T we now find L’s right pointer has to be set tdiff order for it to become the parent node),

meaning L’s original right pointer is orphaned.

Let’s now visualize the movements for both rotasion

left-rotate(T)

< start - end >

Figure 18: Left Rotation

right-rotate(T)

< start - end >

Figure 19: Right Rotation

3234 B-tree
A B-tree is a sorted tree that is very similar $sence to a red-black tree in that it is self-bafepn

and as such can guarantee logarithmic time focckéasert/delete operations. A B-tree is useful
for large read/writes of data and is commonly ugdtie design of databases and file systems, but
it's important to note that a B-treenst a binary search tree because it allows more twarchild
nodes.

The reasoning for allowing multiple children fonade is to ensure the height of the tree is kept
as small as possible. The rationale is that B-taeeslesigned for handling huge amounts of data
which itself cannot exist in-memory, and so thaada pulled (in chunks) from external sources.
This type of I/O is expensive and so keeping the tfat’ (i.e. to have a very short height instead

of lots of node subtrees creating extra lengthp$& reduce the amount of disk access. The design

125

CiT401 COURSE GUIDE

of a B-tree means that all nodes allow a set rdoigiés children but not all nodes will need the

full range, meaning that there is a potential fasted space.

Note: there are also variants of the B-tree, siscB-atrees and B* trees (which we’ll leave as a

research exercise for the reader).

3.2.3.5 Weight-balanced Tree
A weight-balanced tree is a form of binary searele and is similar in spirit to a weighted graph,

in that individual nodes are ‘weighted’ to indicite more likely successful route with regards to
searching for a particular value. The search peréoice is the driving motivation for using this

data structure, and typically used for implemensets and dynamic dictionaries.

3.2.3.6 BinaryHeap
A binary heap tree is a binary tree, not a binagreh tree, and so it's not a sorted tree. It bages

additional properties that we’ll look at in a morhdyut in essence the purpose of this data streictur
is primarily to be used as the underlying implera&ah for a priority queue.
The additional properties associated with a birnegp are:
o heap property: the node value is either greatelegser depending on the direction of the
heap) or equal to the value of its parent.

o shape property: if the last level of the tree mplete, the missing nodes are filled.

The insertion and deletion operations yield a ticoenplexity of O(log n). Below are some

examples of a max and min binary heap tree stre¢figure 20 and 21).

Figure 20: Max Heap

126

CIT401 COURSE GUIDE

Figure 21: Min Heap

3.2.4 Hash Table
A hash table is a data structure which is capabheaping ‘keys’ to ‘values’, and you'll typically

find this is abstracted and enhanced with additibehaviours by many high-level programming
languages such that they behave like an ‘assoeiatiay’ abstract data type. In Python it's called
a ‘dictionary’ and has the following structure (@mp of which are functions such as del, get and

pop etc that can manipulate the underlying data):

table = {'name": 'foobar,

'number': 123}
The keys for the hash table are determined by Wwayhash function but implementors need to be
mindful of hash ‘collisions’ which can occur if thash function isn’t able to create a distinct or
unique key for the table. The better the hash geioer, the morelistributedthe keys will be, and
thus less likely to collide. Also the size of thaderlying array data structure needs to

accommodate the type of hash function used fokélyegeneration.

For example, if using modular arithmetic you mifjht the array needs to be sized to a prime
number. There are many techniques for resolvingnihgscollisions, but here are two that I've
encountered:

e Separate Chaining
e Linear Probing

127

CiT401 COURSE GUIDE

3.24.1 Separate Chaining
With this option our keys will contain a nestedadstructure, and we’ll use a technique for storing

our conflicting values into this nested structaéwing us to store the same hashed value key in

the top level of the array.

3.24.2 Linear Probing
With this option when a collision is found, the hdable will check to see if the next available

index is empty, and if so it'll place the data itttat next index. The rationale behind this techaiq
is that because the hash table keys are typicaltg gistributed (e.g. they're rarely sequential O,
1, 2, 3, 4), then it’s likely that you'll have maeynpty elements and you can use that empty space

to store your colliding data.

Linear Probing technique is not generally accepted feels like it'll introduce more complexity
and bugs. and also relies on the top level datiatsire being an array. This is fine if the key we’r

constructing is numerical, but if we want to hatrengs for the keys then, then it won’t work very

3.2.5 Graph

A graph is an abstract data type intended to gihidémplementation of a data structure following

the principles of graph theory. The data struciisedf is non-linear and it consists of:

e nodes: points on the graph (also known as ‘verjices

e edges: lines connecting each node.

The figure 22 demonstrates a ‘directed’ graph ¢eotihe edges have arrows indicating the

direction and flow):

Figure 22: Directed Graph
128

CIT401 COURSE GUIDE

Note: an ‘undirected’ graph simply has no arrondseao the flow between nodes can go in either

direction.

Some graphs are ‘weighted’ which means each ‘eldgg’a numerical attribute assigned to them.
These weights can indicate a stronger preferencegarticular flow of direction. Graphs are used
for representing networks (both real and electiprsach as streets on a map or friends on

Facebook. When it comes to searching a graph, #rerevo methods:

e Breadth First Search: look at siblings.

e Depth First Search: look at children.
Which approach you choose depends on the typeloéwvaou’'re searching for. For example,
relationship across fields would lend itself to BM#iereas hierarchical tree searches would be
better suited to DFS.

3.2.6 Stack
A stack is a basic data structure that can be dlgithought as linear structure represented by a

real physical stack or pile, a structure wherertnse and deletion of items takes place at one end
called top of the stack. The basic concept calisgriated by thinking of your data set as a stack
of plates or books where you can only take theiterp off the stack in order to remove things

from it. This structure is used all throughout paogming.

The basic implementation of a stack is also called a —Last In First Outl structure; however there
are different variations of stack implementatiofisere are basically three operations that can be

performed on stacks. They are:

e inserting (—pushingl) an item into a stack
e deleting (—poppingl) an item from the stack

e displaying the contents of the top item of the stack (—peekingl)

3.2.7 Queue
A queue is an abstract data type or a linear datatare, in which the first element is inserted

from one end (the —taill), and the deletion of existing element takes place from the other end
(the—head). A queue is a—First In First Outl structure. The process of adding an element to a
queue is called —enqueuingl and the process of removing an element from a quewsllsd

—dequeuingl.
129

CIT401

COURSE GUIDE

3.3 Difference between data type and data structure:
The table 4 presents the differences between gags tand data structures

Data Types

Data Structures

Data Type is the kind or form of a variable wh
is being used throughout the program. It def
that the particular variable will assign the va
of the given data type only

Data Structure is the collection different
kinds of data. That entire data can
represented using an object and can be
throughout the entire program.

Implementation through Data Types is a forr
abstract implementation

Implementation through Data Structures
called concrete implementation

Can hold values and not data, so it is data legs

Can hold different kind and types of d
within one single object

Values can directly be assigned to the data
variables

The data is assigned to the data stru
object using some sedf algorithms an
operations like push, pop and so on.

No problem of time complexity

Time complexity comes into play wh

working with data structures

Examples: int, float, double ‘

| Examples: stacks, gsetree

4 Self-Assessment Exercises

o Briefly define the following; i. Field ii. Recond. File iv. Data structure

o Explain the following in detail: i. Hash table. liinked-List iii Array
o What is List the different between data type anté d&ructure

« What is queue, enqueuing and dequeuing

o State differences between stack and queue

o Describe briefly the Preorder, Inorder and Postoti@deersal techniques of a binary tree.

e Construct a tree for the given Inorder and Preci@derersals : Inorder:
QBKCFAGPEDHR Preorder: GBQACKFPDERH

e Construct binary search tree for the following datd find its Inorder, Preorder and
Postorder traversal 10,3,15,22,6,45,65,23,78,34,5

130

CIT401

COURSE GUIDE

5 Answer to self-Assessment Exercises

Briefly define the following; i. Field:Field is a single elementary unit of information
representing an attribute of an entity ii. Recddcord is a collection of field values of a
given entity or is a collection of related datarge each of which is called a field or attribute
iii. File: Fileis a collection of records of the entities in aegi entity set or a collection of
logically related information. iv. Data structurBata structure is a systematic way to
organize data in order to use it efficiently onista way of organizing all data items by
considering not only the element stored but aled tlelationship to each order.
Explain the following in detail: iHash Table — Section 3.2.4 liinked-List — Section 3.2.2
iii Array — Section 3.2.1
List the different between data type and data siree- Section 3.3
What is queue, enqueuing and dequeuing: Queuérisax data structure, in which the first
element is inserted from one end and the deletiexisting element takes place from the

other end. Enqueuing is the process of adding@mnaegit to a queue while Dequeuing is the

and the process of removing an element from a queue

Stack

A Linear List Which allows insertion or deletion of
an element at one end only is called as Stack

Since insertion and deletion of an element are
performed at one end of the stack, the elements
can only be removed in the opposite order of
insertion.

Stack s called as Last In First Out (LIFO) List.

The most and least accessible elements are called
as TOP and BOTTOM of the stack

Example of stack is arranging plates in one above
one.

Insertion operation is referred as PUSH and
deletion operation is referred as POP

Function calling in any languages uses Stack

State differences between stack and queue

Queue

A Linear List Which allows insertion at one end and
deletion at another end is called as Queue

Since insertion and deletion of an element are
performed at opposite end of the queue, the
elements can only be removed in the same order of
insertion.

Queue is called as First In First Out (FIFO] List.

Insertion of element is performed at FRONT end
and deletion is performed from REAR end

Example is ordinary queue in provisional store.

Insertion operation is referred as ENQUEUE and
deletion operation is referred as DQUEUE

Task Scheduling by Operating System uses queue

131

CIT401 COURSE GUIDE

« Describe briefly the Preorder, Inorder and Postotderersal techniques of a binary tree.
Preorder of a binary tree is defined as follow;dess the root node, Traverse the left subtree
in preorder then Traverse the right subtree inqoi@o Inorder of a binary tree is defined as
follow; Traverse the left subtree in Inorder, Psx¢he root node then Traverse the right
subtree in Inorder; Postorder of a binary treesfsnéd as follow; Traverse the left subtree in
postorder, Traverse the right subtree in postaaddrProcess the root node.

e Construct a tree for the given Inorder and Preordeaversals : Inorder:
QBKCFAGPEDHR Preorder: GBQACKFPDERH

e Construct binary search tree for the following datad find its Inorder, Preorder and
Postorder traversal 10,3,15,22,6,45,65,23,78,34,5

Preorder (RT-L-R): 10,3,6,5,15,22,45,23,34,65,78
Inorder (L-RT-R): 3,5,6,10,15,22,23,34,45,65,78
Postorder(L-R-RT): 5,6,3,34,23,78,65,45,22,15,10

132

CIT401 COURSE GUIDE

6 Conclusion

This unit discussed the data types and data steiciData types of a language was described as a
large part of what determines that language’s syl usefulness. Along with control structures,
they form the heart of a language. Whildalstructures determine the way in which infororati
can be stored in computer and used. The unit lgigtdd how data type is different from data
structure. Data structure can be grouped into dHewing forms which are Array, Linked List,
Tree, Hash Table, Graph, Stack and Queue. Thisalsot presented a comparison between the
data type and data structure.

7 Summary
The unit discussed extensively on different dapesysuch as primitive data types, composite data
types, enumerated data types, abstract data tyygestidity data types. Also, justice was done in
describing different types of data structure suslaraay, linked list, tree, hash table, graph,kstac

and queue. The unit presented the differences eeatdata type and data structure.

8 References/Further Reading

e Gabbriell M. & Martini S. (2010)Programming Languages: Principles and Paradigms,
Undergraduate Topics in Computer Science, DOI XY 8-1-84882-914-5 1, © Springer-
Verlag London Limited 2010

e Archana M.Principles of Programming Languages

e https://www.integralist.co.uk/posts/data-types-aiath-structures/

e https://www.geeksforgeeks.org/

e Wwww.sctevtservices.nic.in/docs/website/pdf/140388.p

e https://devikacloud.in/Pradyumansinh Jadeja (981848) | 2130702.pdf

133

CIT401 COURSE GUIDE

Unit 2 Control Structure and Data Flow
1. Introduction
2. Intended Learning Outcomes (ILOs)

3. Main Content
3.1. Expressions
3.1.1. Expression Syntax
3.1.2. Semantics of Expressions
3.1.3. Evaluation of Expressions
3.1.4. Subexpression Evaluation Order
3.2.The Concept of Command
3.2.1. The Variable
3.2.2. Assignment
3.3.Sequence Control Commands
3.3.1. Sequential Command
3.3.2. Composite Command
3.3.3. Conditional Commands
3.3.4. Iterative Commands
Self-Assessment Exercises
Conclusion
Summary
References/Further Reading

No oA

134

CIT401 COURSE GUIDE

1 Introduction

This unit tackles the problem of managing sequermdrol, an important part in defining the
execution of program instructions in a generic ta@a$t machine’s interpreter. In low-level
languages, sequence control is implemented inasieple way, just by updating the value of
the PC (Program Counter) register. In high-levegleages, however, there are special language-
specific constructs which permit the structuringoftrol and the implementation of mechanisms
that are much more abstract than those availabtBephysical machine. Also the unit discusses
the constructs used in programming languages &explicit or implicit specification of sequence

control.

2 Intended Learning Outcomes (ILOs)
At the end of the unit, students should able to
* Manage sequence control implementation
» Understand sequence control command

» Understand the construct used for specificatiosegfuence control

3 Main Content

3.1 Expressions
Expressionstogether with commands and declarations, areobtiee basic components of every

programming language. We can say that expressiomgh& essential component of every
language because, although there exist declafatigeiages in language. First, let us try to clarify
what sorts of object we are talking about.

An expression is defined as a syntactic entity whesluation either produces a value or fails to
terminate, in which case the expression is unddfifibe essential characteristic of an expression,
that which differentiates it from a command, isréiere that its evaluation produces a value.
Examples of numerical expressions are familiatitel&3*2, for example, is an expression whose
evaluation is obvious. Moreover, it can be seet) thaen in such a simple case, in order to obtain
the correct result, we have made an implicit assiomp(derived from the mathematical
convention) about operator precedence. This assompthich tells us that * has precedence over
+ (and that, therefore, the result of the evaluaisol0 and not 14), specifies a control aspect for
evaluation of expressions. We will see below otimere subtle aspects that can contribute to
modify the result of the evaluation of an expressio

135

CIT401 COURSE GUIDE

Expressions can be non-numeric, for example in LA3& can write (cons a b) to denote an

expression which, if it is evaluated, returns tbecalled pair formed by a and b.

3.1.1 Expression Syntax

In general, an expression is composed of a singiéygconstant, variable, etc.) or even of an
operator (such as +, cons, etc.), applied to a mumbarguments (or operands) which are also
expressions. Expression syntax can be precisskyithed by a context-free grammar and that an
expression can be represented by a derivationiriradich, in addition to syntax, there is also
semantic information relating to the evaluatiortitd expression. Tree structures are also often
used to represent an expression internally indm#ecomputer. However, if we want to use
expressions in a conventional way in the text pf@yram, linear notations allow us to write an
expression as a sequence of symbols. Fundamernktedlyarious notations differ from each other
by how they represent the application of an opetatis operands. We can distinguish three main

types of notation.

3.1.1.1 Infix Notation

In this notation, a binary operation symbol is plbetween the expressions representing its two
operands. For example, we write x+y to denote tharaddition of x and y, or (x+y)*z to denote
the multiplication by z of the result of the additiof x and y. It can be seen that, in order tacavo
ambiguity in the application of operator to opemngrackets and precedence rules are required.
For operators other than binary ones, we must adligsi@ll back on their representation in terms
of binary symbols, even if, in this case, this esgntation is not the most natural. A programming
language which insists on infix notation even feemdefined functions is Smalltalk, an object

oriented language.

Infix notation is the one most commonly used irntheaatics, and, as a consequence is the one
used by most programming languages, at least farpioperators and for user syntax. Often, in
fact, this notation is only an abbreviation oryassay, ayntactic sugaused to make code more
readable. For example, in Ada, a + b is an abhtievidor +(a, b), while in C++ the same

expression is an abbreviation for a.operator+(b).

136

CIT401 COURSE GUIDE

3.1.1.2 Prefix Notation
Prefix notation is another type of notation. liaiso calledorefix Polish notatiorl The symbol

which represents the operation precedes the symémiesenting the operands (written from left
to right, in the same way as text). Thus, to wtheesum of x and y, we can write +(X,y), or, withou
using parentheses, + x y, while if we want to witite application of the function f to the operands

a and b, we write f(a b) or fab.

It is important to note that when using this kirfchotation, parentheses and operator precedence
rules are of no relevance, provided that the tiitgt is the number of operands) of every operator
is already known. In fact, there is no ambiguitpatwhich operator to apply to any operands,
because it is always the one immediately precetthagperands. For example, if we write:
*(+(ab)+(c d))

or even

*+ab+cd

we mean the expression representedd¥)*(c+d) in normal infix notation. The majority of

regular languages use prefix notation for unaryratpes (often using parentheses to group
arguments) and for user-defined functions. Somgraraming languages even use prefix notation
for binary operators. LISP represents functionsigisi particular notation known as Cambridge
Polish, which places operators inside parenthéseisis notation, for example the last expression

becomes:

(*(+ab)(+cd)).

3.1.1.3 Postfix Notation
Postfix notation is also calldgieverse Polisht is similar to the last notation but differs phacing

the operator symbol after the operands. For exanipdelast expression above when written in
postfix notationis:ab +cd + *.

Prefix notation is used in the intermediate codeegated by some compilers. It is also used in
programming languages (for example Postscript)gdneral, an advantage of Polish notation
(prefix or otherwise) over infix is that the formeain be used in a uniform fashion to represent
operators with any number of operands. In infixation, on the other had, representing operators

with more than two operands means that we havattoduce auxiliary operators. A second

137

CIT401 COURSE GUIDE

advantage, already stated, is that there is theilplity of completely omitting parentheses even
if, for reasons of readability, both mathematicadfix notation f(a b) and Cambridge Polish (f a
b) use parentheses. A final advantage of Polishtioot, as we will see in the next subsection is
that it makes the evaluation of an expression méhe simple. For this reason, this notation
became rather successful during the 1970s and &@s w was used for the first pocket-sized

calculators.

3.1.2 Semantics of Expressions
According to the way in which an expression is espnted, the way in which its semantics is

determined changes and so, consequently, doeseitsoth of evaluation. In particular, in infix
representation the absence of parentheses can aaulmsguity problems if the precedence rules
for different operators and the associativity oémpbinary operator are not defined clearly. When
considering the most common programming languagés,also necessary to consider the fact
that expressions are often represented intermathya form of a tree. In this section we will dissu
these problems, starting with the evaluation ofreggions in each of the three notations that we

saw above.

3.1.2.1 Infix Notation: Precedence and Associativity
When using infix notation, we pay for the facilapd naturalness of use with major complication

in the evaluation mechanism for expressions. Biratl, if parentheses are not used systematically,
it is necessary to clarify the precedence of epenador. If we write4 + 3 * 5, for example, clearly
we intend the value of 19 as the result of the @sgion and not 35: mathematical convention, in
fact, tells us that we have to perform the multiglion first, and the addition next; that is, the
expression is to be read as4 + (5 * 3) and not a¥* 5. In the case of less familiar operators,
present in programming languages, matters are deradly more complex. If, for example, in
Pascal one writes: x=4 and y=5

where the and is the logical operator, contraryi@t many will probably expect, we will obtain
an error (a static type error) because, accordirfggiscal’s precedence rules, this expression can
be interpreted as

x=(4 and y)=5

and not as

(x=4) and (y=5).

138

CiT401 COURSE GUIDE

To avoid excessive use of parentheses (which, wheloubt it is good to use), programming
languages emplgyrecedence rule® specify a hierarchy between the operators usaddnguage
based upon the relative evaluation order. Varianguiages differ considerably in their definition
of such rules and the conventions of mathematictdtion are not always respected to the letter.
A second problem in expression evaluation concepesator associativity. If we write 15-5-3, we
could intend it to be read as either (15-5)-3 od%g5-3), with clearly different results. In this
case, too, mathematical convention says that thal usterpretation is the first. In more formal
terms, the operator “-" associates from left tdtigIn fact, the majority of arithmetic operators
in programming languages associaten left to rightout there are exceptions. The exponentiation
operator, for example, often associates from righeft, as in mathematical notation. If we write
or, using a notation _;‘9 more familiar to programmeérs* 3 ** 2, we mean , or 5 ** (3 **

2), 531 and not5%)?, or ((5 ** 3) ** 2). Thus, when an operator is dsé is useful to include
parentheses when in doubt about precedence anciasasty. In fact, there is no lack of special

languages that in this respect have rather coumteitive behaviour.

In APL, for example, the expression 15-5-3 is ipteted as 15 - (5 - 3) rather than what we would
ordinarily expect. The reason for this apparerdrajeness is that in APL there are many new
operators (defined to operate on matrices) thahatohave an immediate equivalent in other
formalisms. Hence, it was decided to abandon opepaecedence and to evaluate all expressions
from right to left. Even if there is no difficuliy conceiving of a direct algorithm to evaluate an
expression in infix notation, the implicit use okpedence and associativity rules, together with
the explicit presence of parentheses, complicatgtens significantly. In fact, it is not possibte t
evaluate an expression in a single left-to-riglans(r one from right to left), given that in some
cases we must first evaluate the rest of the egmesand then return to a sub-expression of
interest. For example, in the case of 5+3*2, winenscan from left to right arrives at +, we have
to suspend the evaluation of this operator butrtiicethe evaluation of 3*2 and then go back to

the evaluation of +.

3.1.2.2 Prefix Notation
Expressions written in prefix Polish notation lehdmselves to a simple evaluation strategy which

proceeds by simply walking the expression fromtieftight using a stack to hold its components.

It can be assumed that the sequence of symbolfotimas the expression is syntactically correct

139

CIT401 COURSE GUIDE

and initially not empty. The evaluation algorithendescribed by the following steps, where we
use an ordinary stack (with the push and pop ojpesgtand a countet to store the number of
operands requested by the last operator that \aas re

a. Read in a symbol from the expression and gushthe stack;
If the symbol just read is an operator, inisi@atthe counte€ with the number of arguments
of the operator and go to step 1.
If the symbol just read it is an operand, dexetC.

d. IfC_=0,gotol.

e. If C = 0, execute the following operations:

o Apply the last operator stored on the stack todperands just pushed onto the stack,
storing the results iR, eliminate operator and operands from the stadkstore the value
of Ron the stack.

o |If there is no operator symbol in the stack go.to 6

¢ |Initialise the counte€ to n — m, wheren is the number of the argument of the topmost
operator on the stack, amd is number of operands present on the stack abase th
operator.

e Goto4.

f. If the sequence remaining to be read is nottgngo to 1.

The result of the evaluation is located on thekstaeen the algorithm finishes. It should be noted
that the evaluation of an expression using thisrélym assumes that we know in advance the
number of operands required by each operator. fEggires that we syntactically distinguish
unary from binary operators. Furthermore, it isegally necessary to check that the stack contains
enough operands for the application of the opef&t@p 5.(c) in the algorithm above). This check
is not required when using postfix notation, assee below.

3.1.2.3 Postfix Notation
The evaluation of expression in Polish notatioaven simpler. In fact, we do not need to check

that all the operands for the last operator hawes prished onto the stack, since the operands are
read (from left to right) before the operators. Hwaluation algorithm is then the following (as
usual, we assume that the symbol sequence is $igathccorrect and is not empty):

140

CIT401 COURSE GUIDE

a. Read the next symbol in the expression and pushthe stack.
If the symbol just read is an operator apptp ithe operands immediately below it on the
stack, store the result R pop operator and operands from the stack andthesbalue in
R onto the stack.

C. If the sequence remaining to be read is nottygngp to 1.

d. If the symbol just read is an operand, go to 1.

This algorithm also requires us to know in advatiee number of operands required by each
operator.

3.1.3 Evaluation of Expressions
Expressions, like the other programming languagestrocts, can be conveniently represented by

trees. In particular, can be represented by a(tedked the expressiongy/ntax tregin which:
e Every non-leaf node is labelled with an operator.
» Every subtree that has as root a child of a Médenstitutes an operand for the operator
associated witlN.

» Every leaf node is labelled with a constant, vdealy other elementary operand.

Trees like this can be directly obtained from teewhtion trees of an (unambiguous) grammar for
expressions by eliminating non-terminal symbols lapé@ppropriate rearrangement of the nodes.
It can be seen also that, given the tree represmmtahe linear infix, prefix and postfix
representations can be obtained by traversingrédeeih a symmetric, prefix or postfix order,
respectively. The representation of expressionsezs clarifies (without needing parentheses)
precedence and associativity of operators. Theresedbtfound lower in the tree constitute the

operands and therefore operators at lower leveit brievaluated before those higher in the tree.

For example the tree shown in Figurer2fresents the expression: (a+f(b))*(c+f(b))

141

CiT401 COURSE GUIDE

O\

/ N\ /' \
a ! ¢ i

| |

b b

Figure 23: An expression

This expression can be obtained (parentheses &mentthe symmetric-order traversal of the tree

(fis here an arbitrary unary operation).

For languages with a compilative implementation,was have seen, the parser implements
syntactic analysis by constructing a derivatiom tie the specific case of expressions then, infix
representation in the source code is translatedaiitee based representation. This representation
is then used by successive phases of the compilg@tiocedure to generate the object code
implementing runtime expressions evaluation. Thigect code clearly depends on the type of
machine for which the compiler is constructed.ha tase in which we have a traditional physical
machine, for example, code of a traditional kind.(in the form opcode operandl operand?2) is
generated which uses registers as well as a temypuneamory location to store intermediate results

of evaluation.

In some particular cases, on the other hand, obpele can be represented using a prefix or postfix
form which is subsequently evaluated by a stachkitacture. This is the case for example in the
executable code for many implementations of SNOB@lograms. In the case of languages with
an interpretative implementation, it is also coneah to translate expressions, normally
represented in the source code in infix notatiomg ia tree representation which can then be
directly evaluated using a tree traversal. Thisthe case, for example, in interpreted
implementations of LISP, where the entire programepresented as a tree.

It is beyond the scope of the present text to go dietails on mechanisms for generating code or

for evaluating expression in an interpreter. HowgeNés important to clarify some difficult points

142

CIT401 COURSE GUIDE

which often cause ambiguity. For convenience, wi fix on the evaluation of expressions
represented in infix form. We will see that what inave to say applies equally to the direct

evaluation of expressions represented as a traeglaas to code generation-mechanisms.

3.1.4 Subexpression Evaluation Order

Infix notation precedence and associativity rules the structure, when expressions are
represented as trees) do not hint at the orderdluate an operator’'s operands (i.e., nodes at the
same level). For example, in the expression inl&i@3, nothing tells us that it is necessary first
to evaluate either a+f(b) or c+f(b). There is alething explicit about whether the evaluation of
operands or operator should come first; nor, inegan whether expressions which are
mathematically equivalent can be inter-substitwt@tiout modifying the result (for example, (a-
b+c) and(a+c-b) could be considered equivalent)il@\ih mathematical terms these differences
are unimportant (the result does not change), foomviewpoint these questions are extremely

relevant and for the following five reasons.

3.14.1 Sideeffects:
In imperative programming languages, expressionuatian can modify the value of any

variables through so-called side effects. A sidectis an action that influences the result (parti
or final) of a computation without otherwise exflicreturning a value in the context in which it
is found. The possibility of side effects rendéms order of evaluation of operands relevant to the
final result. In our example in Figure 13, if theakiation of the function f were to modify the
value of its operand through side effects, firstaiting a+f(b) rather than c+f(b), could change
the value produced by the evaluation. As far as gfflects are concerned, languages follow
various approaches. On the one hand, pure degkatatiguages do not permit side effects at all,
while languages which do allow them in some casdsd the use in expressions of functions that
can cause side effects. In other, more common edsa® the presence of side effects is permitted,
the order with which expressions are evaluatethmgh, clearly stated in the definition of the
language. Java, for example, imposes left-to eghtuation of expressions (while C fixes no order

at all).

3.1.4.2 Finitearithmetic
Given the set of numbers represented in a compaitimite, reordering expressions can cause

overflow problems. For example,afhas, as its value, the maximum integer represkntatulb
143

CIT401 COURSE GUIDE

andc are positive numbers such that b > c, right-tb4efluation of (a-b+c) does not produce
overflow, while we have an overflow resulting frahe evaluation from left to right of (a+c-b).
Moreover, when we do not have overflow, the limiggdcision of computer arithmetic implies
that changing the order of the operands can leddferent results (this is particularly relevant i

cases of floating point computation).

3.1.4.3 Undefined operands
When the application of operator to operands issictaned, two evaluation strategies can be

followed. The first, calle@ager evaluationconsists of first evaluating all the operands tomh
applying the operator to the values thus obtailbd.strategy probably seems the most reasonable
when reasoning in terms of normal arithmetic omegat The expressions that we use in
programming languages, however, pose problems awdrabove those posed by arithmetic
expressions, because some can be defined evensehenof the operands are missing. Let us

consider the example of a conditional expressiam®form:a==02?b:b/a

We can write this in C to denote the value of bleew a is non-zero and b, otherwise. This
expression results from the application of a siruglerator (expressed in infix notation using two
binary operators ? and :) to three operands (tl@eBa expression, a==0, and the two arithmetic
expressions b and b/a). Clearly here we cannoteagger evaluation for such conditional
expressions because the expression b/a would bdwe ¢valuated even when a is equal to zero

and this would produce an error.

In such a case, it is therefore better to ukey evaluatiorstrategy which mainly consists bt
evaluating operands before the application of therator, but in passing the un-evaluated
operands to the operator, which, when it is evalliawill decide which operands are required, and
will only evaluate the ones it requires. The lazsleation strategy, used in some declarative
languages, is much more expensive to implementehger evaluation and for this reason, most
languages use eager evaluation (with the signifieaneption of conditional expressions as we
will see below). There are languages which use ja ghiboth the techniques (ALGOL, for

example).

144

CIT401 COURSE GUIDE

3.1.4.4 Short-circuit evaluation
The problem detailed in the previous point presés&df with particular clarity when evaluating

Boolean expressions. For example, consider thevirig expression (in C syntax):
a==0]|b/a>2

If the value of a is zero and both operands afe|lexaluated at the same time, it is clear that an
error will result (in C, “||” denotes the logicgderation of disjunction). To avoid this problemgdan
to improve the efficiency of the code, C, like atlkenguages uses a form of lazy evaluation, also
calledshort-circuiting evaluationof boolean expressions. If the first operand dfsjunction has
the valuetrue then the second is not evaluated, given that tleeatiwesult will certainly have the
valuetrue. In such a case, the second expressi@hast-circuitedin the sense that we arrive at
the final value before knowing the value of alltbé operands. Analogously, if the first operand
of a conjunction has the valti@se the second is not evaluated, given that the dvwesult can
have nothing other than the valfsdse It is opportune to recall that not all languagess this
strategy for boolean expressions. Counting on tesgmce of a short-circuited evaluation, without

being certain that the language uses it, is damgefeor example, we can write in Pascal

p := list;
while (p <> nil) and (p~.value <> 3) do

p := p”.next;

The intention of this code is to traverse a listilune have arrived at the end or until we have
encountered the value 3. This is badly written ctbdé¢ can produce a runtime error. Pascal, in
fact, does not use short-circuit evaluation. Indage in which we have p = nil, the second operand
of the conjunction (p~.value <>. 3) yields an emndren it dereferences a null pointer. Similar code,
on the other handnutatis mutandiscan be written in C without causing problemsotder to
avoid ambiguity, some languages (for example C/Aahal), explicitly provide different boolean
operators for short-circuit evaluation. Finallyshould be noted that this kind of evaluation can

be simulated using a conditional command.

145

CIT401 COURSE GUIDE

3.1.4.5 Optimisation
Frequently, the order evaluation of subexpressiofhigences the efficiency of the evaluation of

an expression for reasons relating to the organizaif the physical machine. For example,

consider the following code:
a = vectorf[i];
b = a*a + c*d,

In the second expression, it is probably bettst fo evaluate c*d, given that the value of a leas t
be read from memory (with the first instructionglanight not be yet available; in such a case, the
processor would have to wait before calculatingsa th some cases, the compiler can change the

order of operands expressions to obtain code shabre efficient but semantically equivalent.

The last point explains many of the semantic prolléhat appear while evaluating expressions.
Given the importance of the efficiency of the objeade produced by the compiler, it is given
considerable liberty in the precise definition tsféxpression evaluation method, without it being
specified at the level of semantic descriptionhe& language (as we have already said, Java is a
rare exception). The result of this kind of appfoacthat, sometimes, different implementations
of the same language produce different resultshi@isame expression, or have errors at runtime

whose source is hard to determine.

Wishing to capitalize in a pragmatic prescriptigiven what has been said so far, if we do not
know the programming language well and the sperifdementation we are using, if we want to
write correct code, it is wise to use all possibans at our disposal to eliminate as many sources
of ambiguity as possible in expression evaluatguctk as brackets parentheses, specific boolean

operations, auxiliary variables in expressions,)etc

3.2 The Concept of Command
If, as we were saying above, expressions are prasafl programming languages, the same is

not true for commands. They are constructs thatyaieally present (but not entirely restricted to
them) in so-called imperative languages. A commaradsyntactic entity whose evaluation does
not necessarily return a value but can have aedfdet. A command, or more generally, any other

construct, has a side-effect if it influences teguit of the computation but its evaluation returns

146

CiT401 COURSE GUIDE

no value to the context in which it is located. SThoint is fairly delicate and merits clarification
with an example. If the print command in a hypatt@fprogramming language can print character
strings supplied as an argument, when the commiamicpippo” is evaluated, we will not obtain

a value but only a side-effect which is composetthefcharacters “pippo” appearing on the output

device.

The attentive reader will be aware that the definiof command, just as the previous definition
of expression, it is not very precise, given tha have referred to an informal concept of
evaluation (the one performed by the abstract nme&cbi the language to which the command or
the expression belongs). It is clear that we carayd modify the interpreter so that we obtain
some value as a result of the evaluation of thencand. A precise definition and, equally, an
exact distinction, between expressions and commandke basis of their semantics is possible
only in the setting of a formal definition of themsantics of language. In such a context, the
difference between the two concepts derives frafaht that, once a starting state has been fixed,
the result of the evaluation of an expressionvalae (together with possible side effects). On the
other hand, the result of evaluating a commandnsva state which differs from the start state
precisely in the modifications caused by the siffieets of the command itself (and which are due
principally to assignments). Command is therefocerstruct whose purpose is the modification
of the state The concept of state can be defined in variougsywae saw a simple version, one
which took into account the value of all the vakégbpresent in the program. If the aim of a
command is to modify the state, it is clear thatdbsignment command is the elementary construct
in the computational mechanism for languages wimmands. Before dealing with them,

however, it is necessary to clarify the conceptasfable.

3.2.1 The Variable
In mathematics, a variable is an unknown which tsite on all the numerical values in a

predetermined set. Even if we keep this in mindpriogramming languages, it is necessary to
specify this concept in more detail because, theenative paradigm uses a model for variables
which is substantially different from that employdte in logic and functional programming
paradigms. The classical imperative paradigm osmdifiable variablesAccording to this model,
the variable is seen as a sort of container, atioa (clearly referring to physical memory), to

which a name can be given and which contains vdliseslly of a homogeneous type, for example

147

CiT401 COURSE GUIDE

integers real, characters etc.). These valuesea@hdnged over time, by execution of assignment
commands (whence comes the adjective “modifiablHi)s terminology might seem tautological
to the average computer person, who is almost @sameone who knows an imperative language
and is therefore used to modifiable variables. ditentive reader, though, will have noted that, in
reality, variables are not always modifiable. Intheematics a variable represents a value that is

unknown but when such a value is defined the Imistcreated cannot be modified later.

= %

Figure 24: A modifiable variable

Modifiable variables are depicted in Figure 24. Bhaall box which represents the variable with
the name x can be re-filled with a value (in tlgaifie, the value is 3). It can be seen that thebbai
(the box) is different from the name x which desateeven if it is common to say “the variable

X" instead of “the variable with the name x".

Some imperative languages (particularly objectraed ones) use a model that is different from
this one. According to this alternative model, aialale is not a container for a value but is a
reference to (that is a mechanism which allows st@) a value which is typically stored in the
heap. This is a new concept analogous to thategbptinter (but does not permit the usual pointer-
manipulation operations). We will see this in tlextnsection after we have introduced assignment
commands. This variable model is called, the “esfee model”, where it is discussed in the
context of the language CLU, is called the “objacidel”. Henceforth, we will refer to this as the
reference modedf variables. (Pure) functional languages use @eptnof variable similar to the
mathematical one: a variable is nothing more thaidentifier that stands for a value. Rather, it is
often said that functional languages “do not haaeables”, meaning that (in their pure forms)

they do not have any modifiable variables.

Logic languages also use identifiers associated watues as variables and, as with functional
languages, once a link between a variable identdied a value is created, it can never be
eliminated. There is however a mode in which tHaevassociated with a variable can be modified
without altering the link.

148

CIT401 COURSE GUIDE

3.2.2 Assignment
Assignmentis the basic command that allows the modificatiérthe values associated with

modifiable variables. It also modifies the statemperative languages. It is an apparently very
simple command. However, as will be seen, in diifiéprogramming languages, there are various
subtleties to be taken into account. Let us fiest the case that will probably be most familiar to

the reader. This is the case of an imperative lagguvhich uses modifiable variables and in which
assignment is considered only as a command (andlsotas an expression). One example is
Pascal, in which we can write X := 2 to indicatattthe variable X is assigned the value 2. The
effect of such a command is that, after its exeaytthe container associated with the variable
(whose name is) X will contain the value 2 in platéhe value that was there before. It should be
noted that this is a side effect, given that thel@ation of the command does not on its own, return
any kind of value. Furthermore, every access ta ¥e rest of the program will return the value

2 and not the one previously stored.
Consider now the following command: X := X+1

The effect of this assignment, as we know, is ¢i@ssigning to the variable X its previous value
incremented by 1. Let us observe the different wdedbe name, X, of the variable in the two
operands of the assignment operator. The X apgetrime left of the := symbol is used to indicate
the container (the location) inside which the ales value can be found. The occurrence of the
X on the right of the := denotes the value inside tontainer. This important distinction is
formalised in programming languages using two d#ifé sets of values:valuesare those values
that usually indicate locations and therefore heavialues of expressions that can be on the left of
an assignment command. On the other hamdluesare the values that can be stored in locations,
and therefore are the values of expressions thadgaear on the right of an assignment command.

In general, therefore, the assignment commandheasyintax of a binary operator in infix form:
exp1 OpAss exp2

where OpAss indicates the symbol used in the pdatidanguage to denote assignment (:= in
Pascal, =in C, FORTRAN, SNOBOL and Ja¥ain APL, etc.). The meaning of such a command
(in the case of modifiable variables) is as followempute the I-value of expl, determining,

thereby, a containdoc, compute the r-value of exp2 and modify the cotstefioc by substituting

149

CIT401 COURSE GUIDE

the value just calculated for the one previousgréfWhich expressions denote (in the context on
the left of an assignment) an I-value depends emptbbgramming language: the usual cases are
variables, array elements, record fields (note, #mmi consequence, calculation of an |-value can
be arbitrarily complex because it could involvedtion calls, for example when determining an
array index). In some languages, for example Ggaseent is considered to be an operator whose

evaluation, in addition to producing a side effat$p returns the r-value thus computed.
Thus, if we write in C: x = 2;

the evaluation of such a command, in addition sgasng the value 2 to X, returns the value 2.
Therefore, in C, we can also write: y = x = 2;

which should be interpreted as: (y = (x = 2));

This command assigns the value 2 to x as well gsltoC, as in other languages, there are other
assignment operators that can be used, eithendogasing code legibility or avoiding unforeseen

side effects. Let us take up the example of increing a variable. Once again we have: x = x+1;

This command, unless optimised by the compileruireg, in principle, two accesses to the
variable x: one to determine the I-value, and aneltain the r-value. If, from the efficiency
viewpoint, this is not serious (and can be eagiinoised by the compiler), there is a question
which is much more important and which is agaiates to side-effects. Let us then consider the
code: b =0;

a[f(3)] = alf(3)]+1;

where ais a vector and f is a function defined as follows:

int f (int n){
if b ==0{
b=1;

return 1,

}

else return 2;
}

150

CIT401 COURSE GUIDE

This function is defined in such a way that the 4msal reference to b in the body of f refers to
the same variable b that is cleared in the previagment. Given that f modifies the non-local

variable b, it is clear that the assignment

a[f(3)] = a[f(3)]+1

does not have the effect of incrementing the valuthe element a[f(3)] of the array, as perhaps
we wanted it to do. Instead, it has the effectssigning the value of a[1]+1 to a[2] whenever the
evaluation of the left-hand component of the assignt precedes the evaluation of the right-hand
one. It should be noted, on the other hand, tleat@mpiler cannot optimise the computation of r-

values, because the programmer might have wanigdpparently anomalous behaviour.

To avoid this problem, we can clearly use an aamilvariable and write:
intj =1(3);
alj] = aljl+;

Doing this obscures the code and introduces ablan@hich expresses very little. To avoid all of

this, languages like C provide assignment operatbish allow us to write:
a[f(3)] +=1;

This add to the r-value of the expression preserihe left the quantity present on the right of the
+= operator, and then assigns the result to thailmt obtained as the I-value of the expression on
the left. There are many specific assignment conaisiéimat are similar to this one. The following

is an incomplete list of the assignment commands, itogether with their descriptions:

e X =Y: assign the r-value of Y to the location dhtal as the I-value of X and return the r-
value of X;

« X+=Y (or X -=Y): increment (decrement) X by theantity given by the r-value of Y
and return of the new r-value;

* ++X (or -X): increment (decrement) X by and rettine new r-value of X;

» X++ (or X-): return the r-value of X and then inorent (decrement) X.

151

CIT401 COURSE GUIDE

We will now see how the reference model for vagaldiffers from the traditional modifiable-
variable one. In a language which uses the refereradel (for example, CLU and, as we will see,
in specific cases, Java) after an assignment dbtine:

X=e
X becomes a reference to an object that is obtdnoed the evaluation of the expression e. Note
that this does not copy the value of e into thation associated with x. This difference becomes
clear if we consider an assignment between twalbbas using the reference model.

X=y
After such an assignment, x and y are two refeietwéhe same object. In the case in which this
object is modifiable (for example, record or arfay)nodification performed using the variable x

becomes visible through variable y and vice versa.

In this model, therefore, variables behave in a wawyilar to variables of a pointer type in
languages which have that type of data. A valua pbinter type is no more than the location of
some data item (or, equivalently, its address mesarea of memory). In many languages which
have pointer types, the values of such types caaxpécitly manipulated. In the case of the

reference model, however, these values can be olateg only implicitly using assignments

3.3 Sequence Control Commands
Assignment is the basic command in imperative laggs (and in “impure” declarative

languages); it expresses the elementary computatem The remaining commands serve to
define sequence control, or rather serve to sp#ugprder in which state modifications produced

by assignments, are to be performed. These otmememds can be divided into three categories:

« Commands for explicit sequence control These aesé#guential command and goto. Let us
consider, in addition, the composite command, whatlbws us to consider a group of
commands as a single one, as being in this category

« Conditional (or selection) commands These are timencands which allow the specification
of alternative paths that the competition can tdlkeey depend on the satisfaction of specific
conditions.

« Iterative commands These allow the repetition given command for a predefined number

of times, or until the satisfaction of specific ditrons.

152

CIT401 COURSE GUIDE

3.3.1 Sequential Command
The sequential command, indicated in many langubges*;”, allows us directly to specify the

sequential execution of two commands. If we write:
Cl;C2

the execution of C2 starts immediately after Cintaates. In languages in which the evaluation
of a command also returns a value, the value retlioy the evaluation of the sequential command
is that of the second argument.

Obviously we can write a sequence of commands asich
Cl;C2;...;Cn
with the implicit assumption that the operatordssociates to the left.

3.3.2 Composite Command
In modern imperative languages, it is possiblertag a sequence of commands intmmposite

commandising appropriate delimiters such as those usetldny:

begin

end
orthosein C:

{
}

3.3.3 Conditional Commands
Conditional commands, or selection commands, egpoee alternative between two or more

possible continuations of the computation basedpgpropriate logical conditions. We can divide
conditional commands into two groups.

If The if command, originally introduced in the ALGOL®Ganguage, is present in almost all
imperative languages and also in some declarativguages, in various syntactic forms which,

really, can be reduced to the form:

if Bexp then C1 else (2

153

CIT401 COURSE GUIDE

where Bexp is a boolean expression, while C1 an@r€Zzommands. Informally, the semantics
of such a command expresses an alternative inXtéeugon of the computation, based on the
evaluation of the expression Bexp. When this evaloaeturns true, the command C1 is executed,
otherwise the command C2 is executed. The comnsaoitein present in the form without the else

branch:
if Bexp then C1

In this case, too, if the condition is false, tloenecnand C1 is not executed and control passes to
the command immediately after the conditional. Assaw in Chap. 2, the presence of a branching
if as in the command

if Bexp1 if Bexp2 then C1 else C2

causes problems of ambiguity, which can be resobdg a suitable grammar which formally
describes the rules adopted by the language (Bimple, the else branch belongs to the innermost
if; this is the rule in Java and it is used in adtrevery language). To avoid problems of ambiguity,
some languages use a “ terminator” to indicate whbke conditional command ends, as for

example in:
if Bexp then C1 else C2 endif

Furthermore, in some cases, instead of using aflisested if then elses, use is made of an if
equipped with more branches, analogous to theviutig:
if Bexp1then C1

elseif Bexp2 then C2

elseif Bexpn then Cn
else Cn+1

endif

The implementation of the conditional command pogegroblems, and makes use of instructions
for test and jump that are found in the underlyhgsical machine. The evaluation of the boolean

expression can use the shorter circuit technigaewle saw above.
154

CIT401 COURSE GUIDE

CaseThe command is a specialisation of the if commgunst,discussed, with more branches. In

its simplest form it is written as follows:

case Exp of
label1: C1;

label2: C2;

labeln: Cn;

else Cn+1

where Exp is an expression whose value is of adgpepatible with that of the labels labell, ...,
labeln, while C1, ..., Cn+1 are commands. Eactlletrepresented by one or more constants and
the constant used in different labels are diffefiearh each other. The type permitted for labels, as
well as their form, varies from language to languadg most cases, a discrete type is permitted,
including enumerations and intervals. So, for exdampe can use the constants 2 and 4 to denote
a label, but in some languages we can also wrted?indicate either the value 2 or the value 4,

or 2 .. 4to indicate all values between 2 and dl(sive).

Different languages exhibit significant differenéegheir case commands. In C, for example, the

switch has the following syntax (also to be foundCi++ and in Java):

switch (Exp) body

where body can be any command that all. In genévailigh, the body is formed from a block in

which some commands can be labelled; that is thepfahe form:
case label : command

while the last command of the block is of the form:

default : command

When the expression Exp is evaluated and conttolbe transferred to the command whose label
coincides with the resulting value, if there arelaloels with such a value, control passes to the

command with the label default. If there is no défacommand, control passes to the first
155

CIT401 COURSE GUIDE

command following the switch. It can be seen tbate a branch of the switch has been selected,
control then flows into the immediately followingamches. To obtain a construct with semantics
analogous to that of the case we discussed alias@gcessary to insert an explicit control transf

at the end of the block, using a break:

switch (Exp){
case label1: C1 break;
case label2: C2 break;

case labeln: Cn break;
default: Cn+1 break;

It can be seen also that in a switch, the valugrmet! by the evaluation of the expression might
not appear in any label, in which case the entbrarnand has no effect. Finally, lists or ranges of
values are not permitted as labels. This howeweo iseal limitation, given that lists of values can
be implemented using the fact that control passes bne branch to its successor when break is
omitted. If, for example, we write:
switch (Exp){

case 1:

case 2: C2 break;

case 3: (3 break;

default: C4 break;

in the case in which the value of Exp is 1, givieat the corresponding branch does not contain a
break command, control passes from the case 1 lbriammediately to the case 2 branch and

therefore it is as if we had used a list of valugsfor the label of C2.

3.3.4 lIterative Commands
The commands that we have seen up to this poialii@ixg goto, only allow us to express finite

computations, whose maximum length is determinaticsily by the length of the program text.

A language which had only such commands would H&gifly limited expressiveness. It would

156

CIT401 COURSE GUIDE

certainly not be Turing complete, in that it wouldt permit the expression of all possible

algorithms (consider, for example, scanning a vegfto elements, whereis not knowra priori).

In order to acquire the expressive power necessagypress all possible algorithms in low-level
languages, jump instructions allowing the repatitdd groups of instructions by jumping back to
the start of the code are needed. In high-levglages, given that, as has been seen, it is desirab
to avoid commands like goto, two basic mechanisraseaployed to achieve the same effect:
structured iteratiorandrecursion The first, which we consider in this sectionmsere familiar
from imperative languages (and they almost alwdlgsvaecursion as well). Suitable linguistic
constructs (which we can regard as special vergibtie jump command) allow us compactly to
implement loops in which commands are repeatetemated. At the linguistic level, it is possible
to distinguish between unbounded iteration and Hedrteration. In bounded iteration, repetition
is implemented by constructs that allow a deterteimamber of iterations. Unbounded iteration,
on the other hand, is implemented by constructchvbontinue until some condition becomes

true.

Recursion which we will consider in the next sectiallows, instead, the expression of loops in
an implicit fashion, including the possibility thatfunction (or procedure) can call itself, thereby
repeating its own body an arbitrary number of timEse use of recursion is more common in
declarative languages (in many functional and Idgiguages there does not, in fact, exist any

iterative construct).

3.34.1 Unbounded iteration
Unbounded iteration is logically controlled itemati It is implemented by linguistic constructs

composed of two parts: a logpndition(or guard) and abody, which is composed of a (possibly
compound) command. When executed, the body is reglgaexecuted until the guard becomes
false (or true, according to the construct). Imitsst common form, this type of iteration takes the

form of the while command, originally introducedAhGOL:while
while (Bexp)do C

The meaning of this command is as follows: (1)lbelean expression Bexp is evaluated; (2) if
this evaluation returns the valtreie, execute the command C and return to (1); othentig

while command terminates.
157

CIT401 COURSE GUIDE

In some languages there are also commands th#téestnditiorafter execution of the command
(which is therefore always executed at least onid@k construct is for example present in Pascal

in the following form:
repeat C until Bexp
This is no more than an abbreviation for:

G

while not Bexp do C

(not Bexp here indicates the negation of the expression Bexp). In C an analogous
construct is do:

do C while (Bexp)

which corresponds to:

G

while Bexp do C

(note that the guard is not negated as in the dfaspeat.)

The while construct is simple to implement, giveattit corresponds directly to a loop that is
implemented on the physical machine using a camwti jump instruction. This simplicity of

implementation should not deceive us about the pasfethis construct. Its addition to a
programming language which contains only assignrardtconditional commands immediately

makes the language Turing complete.

3.3.4.2 Bounded iteration
Bounded iteration (sometimes also called numesicatintrolled iteration) is implemented by

linguistic constructs that are more complex thaaséhused for unbounded iteration; their
semantics is also more elaborate. These formsegyedifferent and not always “pure” as we will
see shortly. The model that we adopt in this disiomsis that of ALGOL, which was then adopted

by many other languages of the same family (lmiby C or Java).

Bounded iteration is implemented using some vaoéttie for command. Without wishing to use

any specific syntax, it can be described as:

for | = start to end by step do

body
158

CiT401 COURSE GUIDE

where | is a variable, called thedex or counter, orcontrol variable start and end are two
expressions (for simplicity we can assume that Hreyof integer type and, in general, they must
be of a discreet type); step is a (compile-time)-mero integer constariipdyis the command we
want to repeat. This construct, in the “pure” fonma are describing, is subject to the important
static semantic constraint that the control vadatén not be modified (either explicitly nor
implicitly) during the execution of the body.

« Semantics of bound iteration

The semantics of the bounded iteration construtbeadescribed informally as follows (assuming

that step is positive):

1. The expression start is evaluated, as is end.VBllues are frozen and stored in dedicated
variables (which cannot be updated by the programnwe denote them, respectively, as
start_save and end_save.

2. | is initialised with the value of start_save.

3. If the value of | is strictly greater than thelwe of end_save, execution of the for command is
terminated.

4. Executébodyand increment | by the value of step.

5. Goto 3.

In the case in which step is negative, the testep (3) determines whether | is strictly less than
end_save. It is worth emphasizing the importancstep (1) above and the constraint that the
control variable cannot be modified in the bodyeifltombined effect is tdeterminghe number

of times and the body will be executeeforethe loop begins execution. This number is given by
the quantityjc (iteration coun}, which is defined as:

=
I
—
I
=
P
|
(/]
| r
B
ih H
| et
+
]
i
:
| S

if ic is positive, otherwise itis 0. It can be seerglfin that there is no way of producing an infinite
cycle with this construct.

159

CIT401 COURSE GUIDE

o Expressiveness of bounded iteration

Using bounded iteration, we can express the repeif a command fan times, whera it is an
arbitrary value not known when the program is wnftbut is fixed at when the iteration starts. It
is clear that this is something that cannot be esg®d using only conditional commands and
assignment, because it is possible to repeat a eowchonly by repeating the command in the body
of the program syntactically. Given that every peog has a finite length, we have a limit on the

maximum number of repetitions that we can includa specific program.

4 Self-Assessment Exercises

o Define expression

o Discuss in detail expression syntax

o Discuss in detail semantics of expression

o Define, in any programming language, a functionsuch that the evaluation of the

expressior(a + f (b)) * (c + f (b)) when performed from left-to-right has a result that
differs from that obtained by evaluating right-agtl

o Show how the if then else construct can be usathalate short-circuit evaluation of
boolean expressions in a language which evaludtesparands before applying

boolean operators.

o Consider the following case command:
Case Exp of
1 (G
2,3: C;
4..6: a3;
7 C4
else: (@

Provide an efficient pseudocode assembly progratctirresponds to the translation of this

command.

160

CIT401 COURSE GUIDE

5 Answer to Self-Assessment Exercises
o Define expression: An expression is defined asrdastic entity whose evaluation

either produces a value or fails to terminate

o Discuss in detail expression syntax — Section 3.1.1
o Discuss in detail semantics of expression — Se&itbr?
. Define, in any programming language, a functionsuch that the evaluation of the

expressiorn(a + f (b)) = (c + f (b)) when performed from left-to-right has a result that
differs from that obtained by evaluating right-agtl

o Show how the if then else construct can be usadhalate short-circuit evaluation of
boolean expressions in a language which evaludtesparands before applying

boolean operators.

o Consider the following case command:
Case Exp of
1: 1
2,3: C2;
4..6: G3;
7: C4
else: (@

Provide an efficient pseudocode assembly progratcthrresponds to the translation of this

command.

6 Conclusion

The unit described and discussed a variety of siélevel in control structures and briefly
evaluated the expression. A brief evaluation nosnseto be in order. Also, thecuence control
commands were deliberated on which led in groupirtgcommands to four categories namely
sequential command, composite command, conditi@akelection) commands and Iterative

commands.

161

CIT401 COURSE GUIDE

7 Summary

The unit analyzed the components of high-level laxggs relating to the control of execution flow
in programs. We first considered expressions antdave analyzed the types of syntax that most
used for their description (as trees, or in preifitix and postfix linear form) and the related
evaluation rules. Also, the precedence and assotyatules required for infix notation were
debated on. Furthermore, the unit discussed thblgns generally related to the order of

evaluation of the subexpressions of an expression.

8 References/Further Reading

Gabbriell M. & Martini S. (2010).Programming Languages: Principles and Paradigms,
Undergraduate Topics in Computer Science, DOl 1¥Md¥8-1-84882-914-5 1, © Springer-
Verlag London Limited 2010

162

CIT401 COURSE GUIDE

Unit 3 Run-time Consideration

1. Introduction
2. Intended Learning Outcomes (ILOS)
3. Main Content
3.1.Overview of Run-time
3.2.Run-time Errors
3.2.1. Common Types of Run-time Error
3.2.2. How to Fix a Run-time Error?
3.3.Run-time Environment
3.4.Run-time/Compiler time
Self-Assessment Exercises
Conclusion

Summary

N o o ok

References/Further Reading

163

CIT401 COURSE GUIDE

1 Introduction
The period of time it takes a program to run frdra beginning to the end is regarded as running
time although, the execution time is very cruamsystem evaluation. Thus, this unit presents the
overview of run-time and deliberate on runtime ebydiscussing the common errors of runtime

and how these errors can be fixed as well as tirgpadson between runtime and compile time.

2 Intended Learning Outcomes (ILOS)
At the end of the unit, students should be able to
e Know different types of run-time error
e Fix run-time error

¢ Differentiate between run-time and compile time

3 Main Content

3.1 Overview of Run-time
Run time is a phase of a computer program in wtielprogram is run or executed on a computer

system. Run time is part of the program life cyeled it describes the time between when the
program begins running within the memory untilgtterminated or closed by the user or the
operating system. Run time is also known as exacuime. Runtime is a system used primarily
in software development to describe the periodndywhich a program is running. Runtime is the

final phase of the program lifecycle in which thaahine executes the program’s code.

When a user tries to start a program a loader thetsallocates memory and links the program
with any necessary libraries, then the executi@inse Many people who use computer programs
understand the runtime process; however, runtimeery important to software developers

because if errors are found in the code the progvdinthrow runtime errors.

3.2 Runtime errors
A runtime error is an error that occurs when a progyou’re using or writing crashes or produces

a wrong output. At times, it may prevent you frosing the application or even your personal
computer. In some cases, users need only refrestdtvice or the program to resolve the runtime
error. However, sometimes, users may have to paréoparticular action to fix the error. Before

a runtime error shows up on your computer, you hee noticed its performance slowing down.

When runtime errors occur, your computer will alwalysplay a prompt stating the specific type

164

CIT401 COURSE GUIDE

of error you've encountered. If a program expergsnan error after it has been executed it will
report back a runtime error. There are hundrediiftédrent errors that programs can experience

such as division by zero errors, domain errors,aitdmetic underflow errors.

Some programming languages have built-in excegtamdling which is designed to handle any
runtime errors the code encounters. Exception Iapdtan catch both predictable and
unpredictable errors without excessive inline, namuror checking. Taking Java as an example,
there are multiple ways to implement exception hagdBelow we will cover try-catch blocks
and throws. The following type of exception hanglis called a try-catch block. It tells the
program to try a block of code and, if it doesntdnk; catch the exception and run another block
of code:

public static String readFirstLine(String url) {
try {
Scanner scanner = new Scanner(new Filg(url)
return scanner.nextLine();
} catch(FileNotFoundException ex) {
System.out.printin("File not found.");

return null;

}

The next type of exception handling is called awhrlt tells the program to explicitly throw an

exception object if specific criteria are met:

public class ThrowExample {
static void checkEligibilty(int stuage, int steight){
if(stuage<12 && stuweight<40) {
throw new ArithmeticException("Studentist eligible for registration”);
} else {

System.out.printin("Student Entry is Valiy

165

CIT401 COURSE GUIDE

public static void main(String args[]){
System.out.printin("Welcome to the Registratwocess!!");
checkEligibilty(10, 39);
System.out.printin("Have a nice day..");
}
}

//If the student does not meet the necessary iesiter
/lwe will encounter the following error message.

Welcome to the Registration process!!Exceptiorhnead "main”

java.lang.ArithmeticException: Student is not délgifor registration

3.2.1 Common Types of Runtime Error
To understand what constitutes a runtime errorehelt's take a look at some of its common

forms, which include:

3.2.1.1 LogicError
A logic error occurs when a developer enters thengrstatements into the application’s source
code. With if-then statements, for example, develspvould sometimes make the mistake of

leaving the logical values to revert to “true.” Mamuntime errors fall under this category.

3.2.1.2 Memory Leak
Memory leaks happen when a program drains your agens random access memory (RAM). It
often arises from unpatched software, such as wbeffiail to update your operating system (OS)

to the newest release.

3.2.1.3 Division by Zero Error
Division by zero (DIV/0) is an error associated wixcel workbooks. When formula inputs in
the spreadsheet are left blank, the total mighglaysa DIV/O error. The cell formulas need to be

formatted in a precise manner to produce the coogtput.

3.2.1.4 Undefined Object Error
An undefined object error happens when a progradematts to call a function for a PHP or

JavaScript object (or a C++ variable) that isnfired or assigned a value. The error also occurs

166

CIT401 COURSE GUIDE

for deeply nested objects. In simpler terms, thdectcannot read” or find where a property is

because it does not exist or is buried severaldedeep within the code.

3.2.1.5 Input/Output Device Error

Input/Output (1/0) device errors occur when issagse with the read/write function of a device.
Common causes include device malfunction, outddracers, OS incompatibility, and faulty
universal serial bus (USB) ports. As a result, siseould get a prompt saying that the device
wasn’t accessible, making it impossible to transfieencode files into it. Usually, the memory

drive or the computer only needs to be restartegbtaid of the issue.

3.2.1.6 Encoding Error
Encoding errors happen when you’re rendering a $dg a video file, to convert it into a usable
or accessible file format. This is due to the resetintensive nature of the encoding process. Error

messages linked to this type of error include “eleg overloaded” or “encoding failed.”

3.2.2 How Do You Fix a Runtime Error?

First off, you need to know that a runtime errocurs due to bugs that the software’s programmers
knew about but couldn’t fix. More generally, thoyghruntime error happens due to lack of
memory or other system resources required for phicapion to run properly. The following listed
are tips to fix a runtime error:

« Restart your computer. This is an age-old technitpaé most often than not fixes any
problem, including runtime errors.

« Close other applications. It's possible for a rongierror to occur because another program
conflicts with the one you're trying to run. In ethcases, that other application is using
too many system resources, leaving not enoughhoptogram you wish to load. Close
applications that you don’t need then try openhggrogram again.

e Run the application in safe mode. In safe mode paaogram runs only the bare minimum
so your computer can work. To do this, boot inte saode then try running the program.

e Update the application. Sometimes, the problem stéom a bug or an error in the
program’s last release. If you can, update it onuadly download its latest version using
your browser.

e Reinstall the application. Your program may haverbeorrupted and needs to be

reinstalled. Save important files from it then wtall and reinstall it.

167

CIT401 COURSE GUIDE

« Consult a forum or seek a tech expert’s advicrotfe of the above-mentioned tips work,
look for users online facing the same problem. Fardike Reddit can be a valuable

resource. You can also try contacting the prograsujgort team.

3.3 Runtime vs Compile time
Runtime and compile time are programming terms the&tr to different stages of software

program development. Compile-time is the instanbere the code you entered is converted to
executable while Run-time is the instance whereettexutable is running. The terms "runtime"

and "compile time" are often used by programmergfer to different types of errors too.

Compile-time checking occurs during the compiletif@ompile time errors are error occurred
due to typing mistake, if we do not follow the pepyntax and semantics of any programming
language then compile time errors are thrown byctirapiler. They won't let your program to

execute a single line until you remove all the ayrgrrors or until you debug the compile time

errors. The following are usual compile time errors

= Syntax errors
= Type checking errors

= Compiler crashes (Rarely)

Run-time type checking happens during run timerofjpams. Runtime errors are the errors that
are generated when the program is in running stétese types of errors will cause your program
to behave unexpectedly or may even kill your prograhey are often referred as Exceptions. The

following are some usual runtime errors:

= Division by zero
= Dereferencing a null pointer

* Running out of memory

4 Self-Assessment Exercises
. List and explain different type of run-time error
o What is run-time

° What is run-time error

168

CIT401

6

COURSE GUIDE

Explain how run-time error can be fixed
What is compile time

Compare run-time and compile time

Answer to self-Assessment Exercises

List and explain different type of run-time erro6ection 3.2.1

What is run-time: Runtime is a system used primanilsoftware development to describe
the period during which a program is running

What is run-time error: A runtime error is an erioat occurs when a program you're
using or writing crashes or produces a wrong output

Explain how run-time error can be fixed — SectiohA 3

What is compile time: Compile-time is the instamdeere the code you entered is
converted to executable.

Compare run-time and compile time — Section 3.3

Conclusion

Runtime is a technical term, used most often itwgre development. It is commonly seen in the

context of a "runtime error," which is an errorttibacurs while a program is running. The term

"runtime error" is used to distinguish from othgpeés of errors, such as syntax errors and

compilation errors, which occur before a programuis

7

Summary

The unit analyzed the components of high-level laxggs relating to the control of execution flow

in programs. We first considered expressions antdave analyzed the types of syntax that most

used for their description (as trees, or in preiifix and postfix linear form) and the related

evaluation rules. Also, the precedence and assatyatules required for infix notation were

debated on. Furthermore, the unit discussed thblgrs generally related to the order of

evaluation of the subexpressions of an expression.

169

