I WORK & LEARN I

- WATONAL OFEN UNIVERSAY OF Niggry, -

NATIONAL OPEN UNIVERSITY OF NIGERIA

SCHOOL OF SCIENCE AND TECHNOLOGY

COURSE CODE: CIT 734

COURSE TITLE: OBJECT ORIENTED TECHNOLOGY

178

COURSE
GUIDE

CIT 734
OBJECT ORIENTED TECHNOLOGY

CourseTeam Oyefola George(Course Developer/WritBfpUN
Dr. M. Oki (Programme Leader)NOUN
Mr. A. M Balogun (Course CoordinatorNOUN

NATIONAL OPEN UNIVERSITY OF NIGERIA

179

National Open University of Nigeria
Headquarters

14/16 Ahmadu Bello Way

Victoria Island

Lagos

Abuja Office

5, Dar es Salaam Street
Off Aminu Kano Crescent
Wuse I, Abuja

e-mail: centralinfo@noun.edu.ng
URL: www.noun.edu.ng

Published by
National Open University of Nigeria

Printed2014
ISBN: 978-058-809-X

All Rights Reserved

180

mailto:centralinfo@noun.edu.ng
http://www.noun.edu.ng/

CONTENTS PAGE

7 7 7 7 e e 7 7 7 7 7 7 e

Introductiore € é ¢ é ééééééééééeéeéeeéeée iv

What you will learn inthiscourgeé ¢ é é € é é é é

CourseAimse é é ééeeeééceeeeeéeée. .v
> é

é
CourseObjective® é

ée
ée

CourseMaterial® € € 6 6 é ééeéééééeéeéé. . v
StudyUnitse € € 6 6 é € éééééééééééé i
Computer Softwaie é é é é é é é é é é é é é é Vi
ASS|gnmentF|Ieéééééééééééééééé Vii
Assessmeté € 6 € 66 eééééééeéeééée i
Course Marking Schemeéééévieeéeéeeéeéceé.
Course Overvieweeéeééééeéecé. i
How to get the most from this coués& ¢ é ¢ é é é . . X
Summarg é é 6 €6 éééééééeéeéeéeéeéeéeeée x

181

INTRODUCTION

Welcome to Object Oriented Technology. This course is a 2 credit unit
course and it is a poegraduate level course. The course will be
available to all students in the M.Ed Educational Technology
programme and PGD in Information Technology for Teachers.

The course is made up of twenty (20) units, which have been grouped
into four modules:

1 The Object Orientation Paradigm

| Object Oriented Analys and Design

1 Object Oriented Programming with JAVA
1 Object Oriented Programming with C++

Although there are no compulsory prerequisites for this course,-a non
trivial understanding of computer operations is necessary before
commencing the course. This ¢se@ is not a course in any particular
programming language however you are introduced to the fundamentals
of JAVA and C++ programming languages. You are expected to be able
to write programs and compile the examples and exercises provided in
this course marial. The JAVA Development Kit and C++ compiler are
provided with the course material and website addresses are also
provided for those who may wish to download the JAVA SDK
(Standard Development Kit) and the C++ compiler. No previous
programming experrece in Objecbriented programming languages is
assumed, however, students are expected to have had experience in a
conventional programming language like C or Pascal.

In the last two modules of this course you are expected to use the JAVA
Development Kitand the C++ compiler to compile and execute the
provided exercises, as a result you are required to undertake practical
computing work, so you will need a computer to complete this unit. A
computer system with the following minimum configuration will be
suitable.

Pentium 233 MHz CPU
Microsoft Windows 98

VGA display and monitor
16MB RAM

500MB free space hard disk
Mouse and Keyboard

This Course Guide tells you briefly what the course is about, what

course materials you will be using and how you cankwalur way
through these materials.

182

WHAT YOU WILL LEARN IN THIS COURSE

The overall aim of ObjegDriented Technology is to introduce the
concept ofObjects as it relates to Objeatiented analysis and design
and objecioriented programming. During thisowurse you will be
introduced to objeebriented concepts and some of its applications. You
will also learn about other programming techniques and the evolution of
objectoriented approach to programming.

For the purpose of clarity and better understandinigave explained
objectoriented programming with specific reference to two
programming languages (Java and C++) these are not the only-object
oriented languages.

COURSE AIMS
The aim of the course can be summarized as follows:

to introduce the concepf objectorientation

to introduce objeebriented concepts

to introduce objeebriented software design

to introduce you to software engineering concepts and software

quality issues as it relates to objectented design and analysis

to give you a cocrete understanding of objeatiented

programming

1 to provide basic knowledge of programming in an obgetnted
language

1 to demonstrate to you the use of objesented concepts in

programming

= = =4 =4 =

COURSE OBJECTIVES

To achieve the aims set out above, ¢cbarse sets overall objectives. In
addition, each unit also has specific objectives. The unit objectives are
always included at the beginning of a unit; you should read them before
you start working through the unit. You may want to refer to them
during your study of the unit to check on your progress. You should
always look at the unit objectives after completing a unit. In this way
you can be sure that you have done what was required of you by the
unit.

Set out below are the wider objectives of the seuas a whole. By

meeting these objectives you should have achieved the aim of the
course as a whole.

183

On successful completion of this course, you should be able to:

Explain basic objeebriented concepts

Describe objecbriented programming technique

Explain the principles of software engineering

Describe Software Life Cycle

Explain objectoriented approach to software design and analysis
Apply objectoriented techniques in programming

Write programs in C++ and Java Programming Languages
Compile and Rn programs in C++ and Java Programming
Languages using the provided compilers

=4 =4 =4 =8 -8 -8 -8 -9

COURSE MATERIALS

Major components of the course are:
1. Course Guide

2. Study units

3. Assignment File

You must also have access to a computer system and have the C++ and
Java compilers provided on the GROM installed on the computer.

STUDY UNITS
There are 20 units in the course, as follows;

Module 1 Object Orientation Paradigm

Unit 1 Introduction to ObjecOriented Concepts
Unit 2 More ObjectOriented Concepts

Unit 3 Relationships

Unit 4 Survey of Programming Techniques

Module 2 Object-Oriented Analysis And Design

Unit 1 Software Engineering

Unit 2 Software Quality Concepts

Unit 3 Landmarks of ObjeeDriented Analysis and Design
Unit 4 ObjectOriented Amalysis and Design

Unit 5 ObjectOriented Software Design

184

Module 3 Object-Oriented Programming In Java

Unit 1 Your First Cup of JAVA

Unit 2 A Closer look at the "Hello World" Sample

Unit 3 ObjectOriented Programming Concepts in Java

Unit 4 Translding Concepts into Code

Unit 5 JAVA Language Basics 1 (Variables & Operators)
Unit 6 JAVA Language Basics 2 (Expressions & Statements)

Module 4 Object-Oriented Programming In C++

Unit 1 Introduction to C++

Unit 2 C++ Language Basics

Unit 3 C++ Expessions and Statements
Unit 4 Classes |

Unit 5 Classes Il

COMPUTER SOFTWARE

You will be expected to undertake practical activities using JAVA SDK
and Turbo C++ Compiler. The JAVA SDK and the C++ compiler are
provided on CBROM with the Course matergl The files are zipped
(compressed), you are expected to unzip them using WINZIP.EXE
provided also on the GBROM.

ASSIGNMENT FILE

In this file you will find all the details of the work you must submit to
your tutor for marking. The marks you obtain fbese assignments will
count towards the final mark you obtain for this course. There are
eighteen (18) assignments in this course.

ASSESSMENT

There are two aspects of the assessment of the course. First are the tutor
marked assignments; second, ther@ vaitten examination.

In tackling the assignments, you are expected to apply information,
knowledge and techniques gathered during the course. The assignments
must be submitted to your tutor for formal assessment in accordance
with the stipulated deadies. The work you submit to your tutor for
assessment will count for 45% of your total course mark.

At the end of the course you will need to sit for a final written

examination of two hours' duration. This examination will count for
55% of your total cotse mark. The examination will consist of

185

questions, which reflect the types of exercises and tutor marked
problems you have previously encountered. All areas of the course will
be assessed.

Use the time between finishing the last unit and sitting for the
examination to revise the entire course. You might find it useful to
review your exercises and tutor marked assignments before the
examination. The final examination covers information from all parts of
the course.

COURSE MARKING SCHEME

The following tdle lays out how the actual course marking is broken
down.

Assessment Marks

Assignments 1 18 Only the best 15 TMAs are counted (You
are encouraged to do all the TMAS)
15 * 3.00% each = 45% of course marks

Final Examination 55% of course marks

Total 100% of course marks

COURSE OVERVIEW

Module: Title of Work Weeks | Assessment
Unit activity | (end of
unit)

Course Guide

1:1 Introduction to objecbriented 1

1:2 More objectoriented concepts 2

1:3 Relationships 3

1:4 Survey of Prgramming 4

2:1 Software Engineering 5

2:2 Software Quality Concepts 6

2:3 Landmarks of ObjeeDriented 7
Analysis and

2:4 Objectoriented Design an 8

2:5 Objectoriented Software Desig 9

3:1 Your First Cup oflava

3:2 A Closer Look at the "Hellq 10

186

3:3 Objectoriented programming 11
concepts indava

3:4 Translating Concepts into Codg

3:5 JAVA Language Basics 1 12

3:6 JAVA Language Basics 2 13

4:1 Introduction to C++ 14

4:2 C++ Language Basics 15

4:3 C++ Expressions and Stateme 16

4:4 Classes 1 17

4:5 Classes lI 18
Revision

HOW TO GET THE MOST FROM THIS COURSE

In distance learning the study units replace the lecturer. This is one of
the great advantagesf distance learning; you can read and work
through specially designed study materials at your pace, and at a time
and place that suit you best. Think of it as reading the lecture instead of
listening to a lecturer. In the same way that a lecturer mighyae
some reading to do, the study units tell you when to read your set books
or other material, and when to undertake computing practical work. Just
as a lecturer might give you angtass exercise, you study units provide
exercises for you to do at@opriate points.

Each of the study units follows a common format. The first item is an
introduction to the subject matter of the unit and how a particular unit is
integrated with the other units and the course as a whole. Next is a set of
learning objedves. These objectives let you know what you should be
able to do by the time you have completed the unit. You should use
these objectives to guide your study. When you have finished the unit
you

must go back and check whether you have achieved the wbpect

you make a habit of doing this you will significantly improve your
chances of passing the course.

Exercises are interspersed within the units, and answers are given.

Working through this exercises will help you to achieve the objectives
of theunit and help you to prepare for the assignments and examination.

The following is a practical strategy for working through the course.
l. Read this Course Guide thoroughly

2. Organize a study schedule. Refer to the "Course Overview' for
more details.

187

3. Once you have created your own study schedule, do everything
you can to stick to it. The major reason that students fail is that
they get behind with their course work. If you get into difficulties
with your schedule, please let your tutor know beforss itoo
late.

4, Turn to Unit 1 and read the introduction and the objectives for the
unit.

5. Work through the unit. The content of the unit itself has been
arranged to provide a sequence for you to follow.

6. Review the objectives for each study unit mnfirm that you
have achieved them. If you feel unsure about any of the
objectives, review the study materials or consult your tutor.

7. When you are confident that you have achieved a unit's
objectives, you can then start on the next unit. Proceed unit by
unit through the course and try to pace your study so that you
keep yourself on schedule.

8. When you have submitted an assignment to your tutor for
marking, do not wait for its return before starting on the next unit.
Keep to your schedule. When the gssnent is returned, pay
particular attention to your tutor's comments.

9. After completing the last unit, review the course and prepare
yourself for final examination. Check that you have achieved the
unit objectives (listed at the beginning of each uamd the
course objectives listed on this Course Guide.

SUMMARY

ObjectOriented Technology is intended to provide you with sound
foundation of knowledge about the Objectentation concept and how

it applies to software design, software analysis andrproging. In
order to achieve this you have been introduced to objsented
concepts like Encapsulation, polymorphism, Inheritance etc. You are
familiar to many of the buzzwords of objemtiented technology (e.g.
objects, messages, classes, instanoésface etc). You have also been
taught how to apply these objeatiented concepts in design, analysis
and programming. Upon completion of this course, you will be equipped
with basic knowledge and skills necessary for the design and analysis of
objectoriented software as well as skill needed for programming in an
objectoriented programming language.

To gain the most from this course you should try to apply the knowledge
and skills that you have learned in this course in your career. | hope that
you ae able to apply the knowledge and skills from this course
throughout your career.

| wish you success with the course and hope that you will find it both
the NOU and wish you every success in your future.

188

189

MAIN

COURSE

CONTENTS PAGE
Module 1 Object Orientation Paradigmé ¢é é é é é 1
Unit 1 Introduction to ObjecOriented Concepés é 1
Unit 2 More ObjectOriented Concepésé é é é é 12
Unit 3 Relationshipé é ¢ é ¢ é é é é éé éé&. . 18
Unit 4 Survey of Programming Techniqéeg € € . . 28
Module 2 Object-Oriented Analysis And Desige é € 39
Unit 1 Software Engineerirgé ¢ ¢ é ¢ é é é é 39
Unit 2 Software Quality Concepisé é é é é é é 49
Unit 3 Landmarks of ObjeeOriented

Analysisand Desighé ¢ é é é é é é ¢é 64
Unit 4 ObjectOriented Aralysis and Desigh é é 75
Unit 5 ObjectOriented Software Designé é é é 85
Module 3 Object-Oriented Programming In Javaé .99
Unit 1 Your First Cupof JAVR é é é € € € é é 99
Unit 2 A Closer look at the "Hello World" Samgle. 110
Unit 3 ObjectOriented Programming Concepts

inJavéd e éeeééeéeeéeeée. 125
Unit 4 Translating Concepts into Caéle® € € € é 135
Unit 5 JAVA Language Basics 1

(Variables & Operatorg) ¢ é é ¢ € € é é 143
Unit 6 JAVA Language Basics 2

(Expressions & Stamentsg é € € € € € € 162
Module 4 Object-Oriented Programming In C++é é . .178
Unit 1 IntroductiontoC+€ é € € € € € € € é é& . 178
Unit 2 C++ Language Basiésé e e ¢ e ¢ ¢ ¢ ¢ . .185
Unit 3 C++ Expressions and Statements ¢ ¢ ¢ ¢ 200
Unit 4 Classesé ¢ 6 ¢ ¢ é6ééééééeéééé 21
Unit 5 Classes || éééeééeééeemdecé

190

MODULE 1 OBJECT ORIENTATION PARADIGM

Unit 1 Introduction to ObjecOriented Concepts
Unit 2 More ObjectOriented Concepts

Unit 3 Relationships

Unit 4 Survey of Programming Techniques

UNIT 1 FUNDAMENTAL CONCEPTS OF OBJECT -
ORIENTED TECHNOLOGY

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main content
3.1 The Object Paradigm
3.1.1 What is an Object?
3.1.2 Classes
3.1.3 Methods
3.2 Object Oriented Programming
3.2.1 What is ObjeciOriented Programming?
3.2.2 ObjectOriented Programming Languages
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 Referencegurther Reading

1.0 INTRODUCTION

This unit is a-general introduction to the fundamental concepts of
objectoriented technology. The unit introduces the concept of objects,

classes and methods and the role they play in ebjemtted software.

2.0 OBJECTIVES

By the end of this unit, you should be able to

| define objects, classes and methods and identify their

relationships
explain the concept of objeotiented programming

1
1 identity objectoriented languages

191

3.0 MAIN CONTENT
3.1 The Object Paradigm

3.1.1 What is an Object?

An object is a "black box" which receives and sends messages. A black
box actually cordgins code (sequences of computer instructions) and
data (information which the instructions operates on).

o

An Object

An object is a.software unit composed gH set of data and a set of
operations for accessing anprocessing that dataTraditiorally, code

and data have been kept apart. For example, in the C language, units of
code are called functions, while units of data are called structures.

Functions and structures are not formally connected in C. A C function
can operate on more than ongd of structure, and more than one
function can operate on the same structure.

Not so for objecbriented software! In objedriented programming,
code and data are merged into a single indivisible thiag object.

This has some big advantagesyas'll see in a moment. But first, why
use the "black box" metaphor for an object? A primary rule of cbject
oriented programming is this: as the user of an object, you should never
need tapeekinside the box!

Why shouldn't you need to look inside an abj@ For one thing, all
communication to it is done via messages. The object which a message
is sent to is called the receiver of the message. Messages define the
interface to the object. Everything an object can do is represented by its
message interfac&o you shouldn't have to know anything about what

is in the black box in order to use it.

192

—_

L

And not looking inside the object's black box doesn't tempt you to
directly modify that object. If you did, you would be tampering with the
details of how theobject works. Suppose the person who programmed
the object in the first place decided later on to clanged some of these
details? Then you Would be in trouble. Your software would no longer
work correctly! But so long as you just deal with objects as biacies

via their messages, the software is guaranteed to work. Providing access
to an object only through its messages. While keeping the details private
is called information hiding (technically speaking, encapsulation).

Why all this concern for being &b to change software? Because
experience has taught us that software changes. A popular adage is that
"software is not written, it is ravritten”. And some of the costliest
mistakes in computer history have come from software that breaks when
someone trig to change it.

3.1.2 Classes

How are objects defined? An object is defined via its class, which
determines everything about an object. Objects are individual instances
of a class. For example, you may create an object called Spot from class
Dog. The Dg class defines what it is to be a Dog object, and all the
"dog-related" messages a Dog object can act upon. All ebjemted
languages have some means, usually called a factory, to "manufacture"
object instances from a class definition.

e

Spot

You can make more than one object of this class, and call them Spot,
Fido, Rover, etc. The Dog class defines messages that the Dog objects
understand, such as "bark". "fetch", and “mier".

193

3.1.3 Methods

You may al so hear the t asimplyfirmet hod

action that a message carries out. It is the code, which gets executed
when the message is sent to a particular object.

A method can be applied to (or invoked on) a specific object or the class
itself. To be more precise a method consistheffollowing:

a name

a (possibly empty) list of input names, called parameters or

arguments, and their types

1 an (optional) output type, called the return type (if the return type
is 'void', then it means that there is no return type)

1 a body of executable The body of executable code is called

the implementation of the method.

T
T

Arguments are often supplied as part of a message. For example, the
"fetch" message might contain an argument that says what to fetch, like
"the-stick”. Or the "roltover" messageotlld contain one argument to

say how fast, and a second argument to say how many times.

SELF ASSESSMENTEXERCISE 1

Identify the Object, Class and Method in this: | have two Balls, a
football and volleyball. The balls could bounce fast or slow and could
roll left or right.

3.2 Object Oriented Programming

3.2.1 What is Object-Oriented Programming?

Since the early days of computing, programmers have looked for ways
to manage the complexity of programming computers. Because a
computer's central processingnit (CPU) works by fetching and
executing simple instructions from memory, early computer programs
were a sequence of such machine instructions that had to be loaded into
memory through a set of switches or through a numeric keypad.

Assembly language ipmoved the situation by enabling us to use

mnemonic names for the machine instructions and symbolic names for
memory locations. A translator called the assembler converts assembly
language programs into machine code. Assemblers soon started
providing spea@l commands or directives that allowed programmers to

group basic data items into structures with assigned names. With a
program's tasks broken down into procedures and data organized into

194

structures. assembly language provided reasonable programming
facilities. However, the close connection between assembly language
and the machine code means that assembly language forces you to think
of the program in terms of the machine instructions that the underlying
CPU can execute.

Higherlevel languages such as RDRAN, BASIC, Pascal, and C
largely eliminate the close ties to the CPU's machine instructions by
providing standard data types such as integers, flopting numbers,

and character strings that can be used in expressions and statements each
of which istranslated by a compiler into many machine instructions.

Most recent applications are written in a combination of theselbigit
languages and some assembly language. The accepted programming
style has been to organize related data items using progngmm
constructs such as Pascal RECORDs or C STRUCTs and then treat the
resulting block of data as a single unit. Once the data structures are laid
out, the application is written as a collection of procedures that
manipulate these structures.

Although the traditional "design the data structures and write the
functions to manipulate them" approach to programming has served us
well. there is no denying that the complexity of software is increasing in
keepingwith more powerflicomputer hardware. With ewvarcreasing
hardware capabilities such as faster CPUs, better graphics, and easier
networking, users have come to expect software to have greater
functionality. Users now routinely expect programs to include features
such as avindow-based graphical user interface, transparent access to
data stored in minior mainframe computers, and the ability to work in a
networked environment. Faced with this complexity, more programmers
are starting to use objectiented programming (OQPOOP is a new

way of organizing code and data that promises increased control over
the complexity of the software development process.

Objectoriented programming is nothing new; its underlying concepts
are data abstraction, inheritance, and polymomHiexplained in later
units). All three have been around for quite some time (for example, in
languages such as Simula67 and Smalltalk). What is new is the
increasing interest in OOP among programmers in general.

The term objectoriented programming (OQPs widely used, but
experts cannot seem to agree on its exact definition. However, most
experts agree that OOP involves defining abstract data types (ADI)
representing complex realorld or abstract objects and organizing your
program around the colleoch of AD Fs with an eye toss and exploiting
their common features. The term data abstraction refers to the process of

195

file://-itli

defining ADTSs: inheritance and polymorphism refer to the mechanisms
that enable you to take advantage of the common characteristias of th
AD-I's-the objects in OOP. These terms are clearly explained later in the
course.

The term abstract data type, or ADT for short, refers to a programmer
defined data type together with a set of operations that can be performed
on that data.

Before youjump into OOP, take note of two points. First, OOP is only a
method of designing and implementing software. Use of chjeented
techniques does not impart anything to a finished software product that
the user can see. However, as a programmer implamgethi software,

you can gain significant advantages by using okpeieinted methods,
especially in large software projects. Because OOP enables you to
remain close to the conceptual, higherel model of the realorld
problem you are trying to solvepy can manage the complexity better
than with approaches that force you to map the problem to lit the
features of the language. You can take advantage of the modularity of
objects and implement the program in relatively independent units that
are easier tamaintain and extend. You can also share code among
objects through inheritance.

SELF ASSESSMENTEXERCISE 2

Mention three underlying concepts of object oriented programming
Practical Examples

If you wanted to add two numbers, say, | and 2, in an argimson

objectoriented computer language like C (don't wowryou don't need
to know any C to follow this), you might write this:

a=lb=2;

c=a+b;

This says,

ARTake a, which has the value 1, an
together using he C | an § inaddiéoh sapdbility. Take the
resul t, 3, and place it i nto the v

thing expressed in Smalltalk, which is a pure objedgented language:

a:=1.
b:=2.

196

C:=atbh.

Wait a minute. Exgat for some minor notational differences, the looks
exactly the same ! Okey, it is the same, but meaning is dramatically
different.

In Smalltalk, this says,

"Take the object a, which has the value |, and send it the message which
included the argument, bwhich. In turn, has the value 2. Object a.
receives this message and performs the action requested. which is to add
the value of the argument to yourself. Create a new object, give this the
result, 3, and assign this object to c."

Hmm. This seems like &ll - more complicated way of' accomplishing
exactly the same thing! So why bother?

The reason is that objects greatly simplify matters when the data get
more complex. Suppose you wanted a data type called list, which is a
list ol'names. In C, list woulde defined as a structure.

struck list {<definition of list structure data here>},

list a, b, c;
a = "John Jones";
b ="Suzy Smith";

Let's try to add these new a and b in the C language:

Guess what? This doesn't work. The C compiler will generaterier
when it tries to compile this because it doesn't know what to do with a
and b. C compilers just know how to add numbers. Period. But a and b
are not numbers. One can do the same thing in Smalltalk, but this time,
list is made a class, which is abslass of the budin Smalltalk class
called "String":

a := List from String : "John Jones'.
b := List from String : "Suzy Smith'.
c=a+h.

The first two lines simply create List objects a and b from the given
strings. This now works, because thst Iclass was created with a
method which specifically "knows" how to handle the message. For
example. itmight simply combine the argument with its own object by
sticking them together with a comma separating them @hioone a
single line of Smalltalk I:). So ¢ will have the new value:

197

http://example.it/

‘John Jones, Suzy Smith'

3.22 Object-Oriented Programming Languages

Objectoriented programming is a programming method that combines
data and instructions into a sslifficient"object". In an objecbriented
program, the design is represented by objects. Objects have two
sections, fields (instance variables) and methods. Fields represent what
an object is. Methods represent how an object is used. These fields and
methods are okely tied to real world characteristics and use of the
object. An object is used by means of its methods. The following figure
shows a view of objeatriented programming.

Object 1
Data
Object 3
Data
Object 4
Data

A programming language is called objectented if it supports the
concepts of data abstraction, class, and movarad concepts such as
inheritance and polymorphism.

There are almost two dozens major obj@eénted programming
languages in use today. But the leading commercial Ojgented
languages are far fewer in number. These are:

C'++
Smalltalk
Java

C++
C++ is an objeebriented version of C. It is compatible with C (it is
actually a superset), so that existing C code can be incorporated into

198

C++ programs. C++ programs are fast and efficiantyalitieswhich
helped make C an extremely popular prograngmianguage. It
sacrifices some flexibility in order to remain efficient. However. C++
uses compildime binding, which means that the programmer must
specify the specific class of an object, or at the very least, the most
general class that an object daalong to. This makes for high rdime
efficiency and small code size, but it trades off some of the power to
reuse classes.

C++ has become so popular that most new C compilers are actually
C/C++ compilers. However, to take full advantage of objedented
programming, one must program (and think!) in C++, not C. This can
often be a major problem for experienced C programmers. Many
programmers think they are coding in C++, but instead are only using a
small part of the language's objeatiented power.

Smalltalk

Smalltalk is a pure objedriented language. While C++ makes some
practical compromises to ensure fast execution and small code size,
Smalltalk makes none. It uses ftime binding, which means that
nothing about the type of an object needkbewn before a Smalltalk
program is run.

Smalltalk programs are considered by most to be significantly faster to
develop than C++ programs. A rich class library that can be easily
reused via inheritance is one reason for this. Another reason is
Smalltalks dynamic development environment. It is not explicitly
compiled, like C++. This makes the development process more fluid, so
that "what if scenarios can be easily tried out, and classes definitions
easily refined. But being purely objeairiented, proggmmers cannot
simply put their toes in the Objeotiented waters, as with C++. For this
reason, Smalltalk generally takes longer to master than C++. But most
of this time is actually spent learning objeatiented methodology and
techniques, rather thatetails of a particular programming language. In
fact, Smalltalk is syntactically very simple, much more so than either C
or C++.

Unlike C++, which has become standardized, The Smalltalk language
differs somewhat from one implementation to another. Th&t papular
commercial "dialects" of Smalltalk are:

Visual Works from Parc Plac®igitalk, Inc.

Smalltalk/VV and Visual Smalltalk from Pare Plaoggitalk Inc.
Visual Age from IBM

199

Java

Java is the latest, flashiest objeotiented language. It has takéhe
software world by storm due to its close ties with the Internet and Web
browsers. It is designed as a portable language that can run on any web
enabled computer via that computer's Web browser. As such, it offers
great promise as the standard Intérmed Intranet programming
language.

Java is a curious mixture of C++ and Smalltalk. It has the syntax of'
C++, making it easy (or difficult) to learn, depending on your
experience. But it has improved on C++ in some important areas. For
one thing, it ha no pointers, lowevel programming constructs that
make for erroiprone programs. Like Smalltalk, it has garbage
collection, a feature that frees the programmer from explicitly allocating
and deallocating memory. And it runs on a Smalltasilyle virtual
machine, software built into your web browser which executes the same
standard compiled Java byte codes no matter what type of computer you
have.

Java development tools are being rapidly deployed, and are available
from such major software companies BM| Microsoft, and Symantec.

4.0 CONCLUSION

ObjectOriented programming offers a new and powerful model for
writing computer software. Objects are "black boxes" which send and
receive messages. This approach speeds the development of new
programs, andf properly used, improves the maintenance, reusability,
and modifiability of software.

Objectoriented programming requires a major shift in thinking by
programmers, however. The C++ language offers an easier transition via
C, but it still requires an Qéctoriented design approach in order to
make proper use of this technology. Smalltalk offers a pure Object
oriented environment, with more rapid development time and greater
flexibility and power. Java promises much for Wamabling Object
oriented progams.

5.0 SUMMARY
In this unit you have learnt about objects and how they are defined
through classes. You also learnt about the underlying concepts of object

oriented preramming and some examples of objedented languages.
We will build on theses cwepts as we proceed in the course.

200

6.0 TUTOR-MARKED ASSIGNMENT

1. Describe the following terms
1 Object
1 Class
i Method
2. Describe Objeebriented programming

7.0 REFERENCES/FURTHER READING

Terry Mantic What is ObjeeDriented Software Copyright 19951996
by Software Design Consultants, LL.C All rights reserved

Nabajyoti Barkakati, ObjeeDriented Programming in C++, Prentice
Hall of India Private Limited, New Delhi 110 001, 2001.

201

UNIT 2 MORE OBJECT ORIENTED CONCEPTS
CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content
3.1 Encapsulation

1.0 INTRODUCTION

In the previous unit you have learned about some basic aibjeated
concepts. In this unit you will learn about some more oljeented
concepts.

2.0 OBJECTIVES

After completing this unityou should be able to:

explain encapsulation

explain poltimorphism
explain inheritance

W === e

.0 MAIN CONTENT

3.1 Encapsulation

Encapsulation is hiding parts of program that do internal things, and by
their nature shouldn't be of concern to anybody fronsidat Why is it
good to hide anything? Because of two reasons:

1. You warn user of your code what lie can use safely, and what is
not of his concern.

2. You can change (fix errors and enhance) what you liid, without
influencing public part. User continués use your code in the
same manner, but it works better.

Imagine you are writing piece of software that does some common task
(a graphic library for example). You are in a role of programmer writing
for other programmers, and your relation with theseg@ammers is
similar to relation between them and end users. Although, end users
don't know (nor they should) how the program is made, they are
perfectly capable to use it efficiently through it's user interface. The
same is true with programmers that yser library- don't waste their

202

time by making them know internal details of your code. Just provide
efficient "user interface" and let them use your code only through that
interface.

Maybe what you are writing is huge. There is lot of auxiliary/interna
code. Line count is 10000+. Of course you are constantly developing it
fixing bugs and adding new features. Put yourself in the place of
programmers who are using your code. Whenever you make a change,
these poor fellows have to check if their codeasnpatible with the
"new version" of your code. If you are selfish person, you might ask:
"Why that should be my concern?". Well, IT IS YOUR CONCERN. It's
perfectly possible (especially if you are not working in a team) that
"other programmers" are actlyalou. If you are member of the team
remember, team wins, not an individual player!

The solution is to divide constant from mutating part. Every
library/class/module... has part which has form that it has because it's
logical and natural to be that wagnd because communication with the
outer world is conducted through it. The "communication channel" is
permanent. Only the way messages that come through it are processed
changes from time to time.

That constant communication channel is called interfat¢e rest is
implementation. Classic programming tools, mainly modules and, in a
lower level, blocks (begin.. end in Pascal, {} inlike language), give

fair set of possibilities to use encapsulation. OOP, however, has
comprehensive model ol'encapsudratielated to classes.

Every element (field or method) of one class can have one of these three
levels of visibility:

1. Public elements are completely visible from outside of the class.
They make interface to the outside world.
2. Private elements arasible only from methods of the class itself.

In some languages, their visibility is extended to module in which
class resides. They make implementation.

3. Protected elements are something between 1 and 2. To the
outside world, they act same as the gevalements, but they are
completely visible from inherited child classethey have public
beliaviOUr for these classes. In some languages protected
elements visibility is extend to module in which class resides.
Although, strictly speaking, protected eslents belong to
implementation, they should be considered as interface to child
classes.

203

Let's make one Delphi class:

TTriangle = class
private
X,Y,A: integer;
protected
procedure Initialize;
public
procedure Place(x_arg,y_aigteger);
procedure Draw;
published
end;

Just Initialize, Place and Draw methods can access X Y and A. No outer
function can access X, Y and A. Initialize can be called from Draw,
Place and all methods from child classes. Finally Place and Draw ca
be called from any place in which class itself is visible.

In addition, Delphi permits access to private and protected members
from the same unit. Java has similar behaviour for packages. C++ is
more rigorous (and, as the matter of fact, has no realil@®)dand there

Is no such visibility of private and protected members, but there-is so
called fiend mechanism. Delphi supports fourth, published specified,
which has role in visual programming. But this is not our topic in this
point.

Inheritance

One ofthe most important, (and yet not completely solved) problems of
programming states: "How not to-ievent a wheel again?". Differently
said, problem is: how to write something that can be used more then one
time. 1 admit, sounds weird.

However, anybody #h intense programming experience, wrote similar
(or same!) code in different programs, or even the same program. y

Why?

There are several reason®ne is traditional laziness of COMPLrter
programmers. Simply, it was easier tolamt do exactly what Isato be
done, exactly where it has to be done, than to try to extract a global
solution, that can be later specialized for concrete cases. Such "copy
andpaste” programming (meaning copying+erasting code to needed
place and changing it slightly) is aawto finish the program fast and to
make it work fast. But, the word "fast" doesn't mean "robust". In tills
case, word "fast" means "nightmare" for maintenance and enhancement.

204

Not to blame only programmers, languages too didn't support "abstract”
way of thinking that Would allow you to think Using concepts close to
problem, not using concepts close to machine, such as bytes and
pointers.

In classic "procedural” or "structure” programming, there are techniques
to extract a code that handles some geriasid (although out some old
dBaselike languages lack even these capabilities). Tile most Important
technique of that kind are "procedures” (Or "functions"” or “iutiines

"). Tile second important technique are "modules” (similar terms:
"units”, "packags", even "compilation units"). Modules appear ill three
roles: 1) encapsulation 2) code reuse achieved thru procedures contained
il modules and 3) physical organizationa module is (in most
languages) a file.

It seems tills solves the need for codeseslbut on the long track (and
ill the large programs), we are trapped ill thinking on the machine level.
riot problem level.

There are better, objeotiented solutions which don't negate classic
techniques, but organize them on a higher level. Key isaluis
inheritance.

Inheritance is the way tchange or extend already existing class
(parent class) by making it'schild (inherited, derived) class and
writing only changedor enhanced part ill that child class. Everything
else (part ol'tlle parent thatoesn't need to be changedhild class
inherits from the parent. There is an important fact: child remains
linked to it's parent when parent is changed, child changes as well (in
it's inherited part). So, if you fix a bug within the parent, you
automaitally fixed that bug ill all children. If you enhance parent, you
enhanced all children.

Polymorphism

Let's say we need bunch of different objects that are used ill the same
way. Typical example. Widely used ill OOP literature, are geometric
shapes. Wdud n 6t be nice to | et user
squares, triangles, circles,... and call Draw for all of them, without
further complications (such as explicit type checking).

Traditional solution is use of classical structures (records ill Pascal

unions that contain datgpe identification field. This approach suffers
from two weaknesses.

205

1 Bad abstraction and neasptimal use of space because all types
]Jlave to be placed ill one format. If we rationalized use of space,
that usually means av“flattened” the types too much, and they
are no more a good representation of the problem we are trying to
solve. In the other hand. if we wanted to achieve ill optimal
abstraction level, there is probably lot of wasted space because
physical formats ofypes are very different. Of course. tricks are
always available (such pointers and dynamic memory allocation)
but that implicates a different set of problems.

2. Nonstandardized type identification fields. You have to
memorize what value identifies whigpe. Enumerated types can
help, but simply it's not an optimal solution.

Polymorphism is ability of objects to act depending of their {time
type.

Without inheritance, polymorphism makes no sense. Without
inheritance it's impossible to have object afe (child) class placed
instead of another (parent) class. So, with inheritance, we need a
mechanism to deal with awareness of the-trone (not the compile
time) class of the particular object, no mater it's placed instead of
different compiletime decéred class.

Polymorphism is such mechanism.

Polymorphism is extremely important for effective use of inheritance.
Frequently, it is used to "persuade" methods of parent class to use
redefined methods of the child class. A good example can be seen in the
inheritance.

The other situation is what | wrote in the beginning of this page: we
have a number of objects with the same interface. but different
behaviour. The solution is to create one base class that will contain all
common methods. These methods $thdoe virtual. After that, from

that base class, we'll inherit all needed classes. Then, we'll declare an
array (or list or whatever) whose elements are declared as instances of
the base class, but in the ftime instances of child classes will be
placedinstead.

Virtual methods are methods aware of polymorphism.

In some languages (Smalltalk) all methods are virymdlymorphism

is always active. In most languages, however, you can declare a method
as nonvirtual, which ensures no other version is edl(no matter that
other version exists in a child class, and a method is called for instance

206

of the child class). You should be very careful when deciding do you
need polymorphic or n@olymorphic behaviour for particular method.

207

UNIT 3 RELATIONSHIPS
CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content
3.1 Relationship
3.1.1 A-Kind-Of Relationship
3.1.2 Is-A Relationship
3.2 PartOf Relationship
3.3 HasA Relationship
2.1 Multiple Inheritance
2.2 Abstract Classes
4.0 Conclusion
5.0 Summary
6.0 Tutor Marked Assignment
7.0 Reference/Further Reading

1.0 INTRODUCTION

Whereas the previous units introduces the fundamental concepts of
objectoriented programming, this unit presents more details tateu
objectoriented idea. We will use a pseudo language to describe most of
the concepts described in this unit.

2.0 OBJECTIVES

By the end of this unit, you should be able to

1 explain types of relationships of classes

1 describe inheritance and multipfeneritance
T define super class and subclass

T describe abstract classes

3.

0 MAIN CONTENT

3.1 Relationship
Class Circle inherits all data elements and methods from point. There is

no need to define them twice: We just use already existing and well
known data and method definitions.

208

On the object level we are now able to use a circle just as we would use
a point, because a circleaspoint. For example, we can define a circle
object and set its center point coordinates:

Circle acircle

acircle.setX (1) /* Inherited from Point */
acircle.setY(2)

acircle.setRadius(3) Added by Circle */

"Is-a" also implies, that we can use a circle everywhere where a point is
expected. For example, you can write a function or method, say move(),
which should move a pai in x direction:

move (Point apoint, int deltax) {

apoint.setX(apoint.getX() + deltax)
As a circle inherits from a point, you can use this function with a circle
argument to move its center point and, hence, the whole circle:

Circle acircle

Move (acircle,10) /* Move circle by moving */
[* its center point */

Let's try to formalize the term "inheritance":

Definition (Inheritance) Inheritance is the mechanism which allow a
class A to inherit properties of a class B. we say "A inhiEréfom
".object of class A thus/ how access to attributes and methods' of class
13 without the need to redefine them. The following definition defines
two terms with which we are able to refer to participating classes when
they use inheritance.

Definition (Super class Subclass) If class A inherits, from class 13, then

B is called super class of A. A is called succors of 13. Objects of a
subclass can be used where objects of the corresponding super class are
expected. This is due to the fact that objexftshe subclass share the
same behaviour as objects of the superclass.

In literatures you may also find other terms for "superclass" and
"subclass”. Super classes are also called parent classes. Subclasses may
also be called child classes or just derigkdses.

Of course, you can again inherit from a subclass, malting this class the
superclass of the new subclass. This leads to a hierarchy of
superclass/subclass relationships. If you draw this hierarchy you get an
inheritance graph.

209

A common drawing dteme is to use arrowed lines to indicate the
inheritance relationship between two classes or objects. In our examples
we have used "inherifsom". Consequently, the arrowed line starts
from the subclass towards the superclass as illustrated in Figure 3.5

Figure 3.5: A simple inheritance graph.

Point

InheritT from

Circle

In some literatures you also find illustrations where the arrowed lines
are used just the other way around. The direction, in which the arrowed
line is used, depends on how the corresponding author has decided to
understand it.

Anyway, within this unit, the arrowed line is always directed towards
tile Super class.

In the following sections an unmarked arrowed line indicates "inherit
from".

Exercise 2.1
What is another name for a subclass ?

Answer
Child class or derived class

3.1.1 A-Kind-Of relationship

of various objects such as points, circles, rectangles, triangles and many
more. For early object you provide a class definition. For exarttme,
point class just defines a point by its coordinates:

class Point {
attributes:
intx,y

methods:

setX(int newX)
getX ()

210

setY (int newyY)
getY ()

You continue defining classes of your drawing program with a class to
describe tcles. A circle defines a center point and a radius:
class Circle { attributes: int x, y, radius

methods:

setX (int newX)

getX ()

setY (int newy)

getY ()
setRadius(newRadius)
getRadius()

Comparing both class definitions we can observe the follpwin

1 Both classes have two data elements x and y. In the class Point
these elements describe the position of the point, in the case of
class Circle they describe the circle's center. Thus, x and v have
the same meaning in both classes: They describe thigopasf
their associated object by defining a point.

1 Both classes’ offer the same set of methods to get and set the
value of the two data elements x and Y.
1 Class Circle "adds" a new data element radius and corresponding

access methods.

Knowing the properes of class Point we can describe a circle as a point
plus a radius and methods to access it. Thus, a cireekiad-of' point.
However, a circle is somewhat more specialized". We illustrate this
graphically as shown in Figure 3.1.

Figure 3.1: lllustration of "a -kind-of' relationship.

Circle akind of Point

»
>

In this and the following figures, classes are drawn using rectangles.
Their name always starts with an uppercase letter. The arrowed line
indicates the direction of the relatidmence, it is to be read as "Circle is
akind-of Point."

211

3.1.2 Is-A relationship

The previous relationship is used at the class level to describe
relationships between two similar classes. If we create objects of two
such classes we refer to theiratgnship as an "ia" relationship.

Since the class Circle is a kind of class Point, an instance of Circle, say
acircle, is a point. Consequently, each circle behaves like a point. For
example, you can move points in x direction by altering the vakye of
Similarly, you move circles in this direction by altering their x value.

Figure 3.2 illustrates this relationship. In this and the following figures,
objects are drawn using rectangles with round corners. Their name only
consists of lowercase letters.

Figure 3.2: lllustration of "is -a" relationship.

Circle a kind of Point
—_—

3.2 Part-Of relationship

You sometimes need to be able to build objects by combining them OLrt
of structure or record construct to put data of various types together.

Let's come back to our dsng program. You already have created
several classes for the available figures. Now you decide that you want
to Dave a special figure which represents your own logo which consists
of a circle and a triangle. (Let's assume, that you already Dave defined a
class Triangle.) Thus, your logo consists of two parks or the circle and
triangle are parof your logo:

class Logo {
attributes:
Circle circle
Triangle triangle

methods:

set(Point where

)

This is illustrated in Figure 3.3

Figure 3.3: lllustration of "partof' relationship.

212

Circle
Pat- of Logo Partof

A
A

3.3 Has-A relationship

This relationship is just the inverse version of the-pantelationship.
Therefore we can easily add this relationship to the-gfaittustration
by adding arrows in the other direction (Figure 3.4).

Figure 3.4: lllustration of-hasa" relationship.

Circle Partof Part of

Triangle
It as-at Itis-a

3.4 Multiple Inheritance

One important objeedriented mechanism is multiple inheritance.
Multiple inheritances does not mean that mpldt subclasses share the
same superclass. It also does not mean that a subclass can inherit from a
class which itself is a subclass of another class.

Multiple inheritances means that one subclass can have more than one
superclass. This enables the sugglg inherit properties of more than
one superclass and to "merge" their properties.

As an example consider again our drawing program. Suppose we
already have a class String which allows convenient handling of text.
For example, it might have a method &append other text. In our
program we would like to use this class to add text to the possible
drawing objects. It would be nice to also use already existing routines
such as move () ~ to move the text around. Consequently, it makes sense
to let a drawabléext have a point which defines its location within the
drawing area. Therefore we derive a new class Drawable String which
inherits properties from Point and String as illustrated in Figure 3.6

Figure 3.6: Derive a drawable string which inherits projpes of Point
and Siring.

213

Pojnt String

\/

Drawable String

In our pseudo language we writas by simply separating the multiple
super classes by comma:

class DrawableString inherits from Point, String {
attributes:

[* All inherited from super classes */

methods:

[* All inherited from super classes */

We can use objects of class Drawable$ttike both points and strings.
Because a drawablestring &spoint we can move them around

DrawableString string

Move (string, 10)

é

Since it is a siring, we can append other text to them: cistring.append
("The red brown fox ...") Now it's time for ¢hdefinition of multiple
inheritances:

Definition (Multiple Inheritance) If class A inherits from more than one
class, ie. A inherits from BIl, B2, ..., B, we speak mtiltiple
inheritance. This may introduc@aming conflictsin A if at least two of

its syper classes define properties with the same name.

The above definition introduce naming conflict which occur if more
than one super class of a subclass use the same name for either attributes
or methods. For an example, let's assume, that class Sefmgsa
method which sets the string to a sequence of "X" characters. The
question arises, what should be inherited by Drawable String? The
Point, String version or none of them?

These conflicts can be solved in at least two ways:
1 The order in which t super class is provided define which

property will be accessible by the conflict causing name. Others
will be "hidden".

214

1 The subclass must resolve the conflict by providing a property
with the name and by defining how to use the ones from its super
clases.

The first solution is not very convenient as it introduces implicit
consequences depending on the order in which classes inherit from each
other. For the second case, subclasses must explicitly redefine properties
which are involved in a naming corufi

A special type of naming conflict is introduced if a class D multiply
inherits fromroom super classes B and C which themselves are derived
from one superclass A. This leads to an inheritance graph as shown in
Figure 3.7.

Figure 3.7: A name conflct introduced by a shared superclass of super
classes used with multiple inheritance.

D

The question arises what properties class D actually inherits from its
super classes B and C. Some existing programming language solve this
special inheritace graphs by deriving D with

A The properties of, A plus
A The properties of B and C without the properties they have
inherited from A.

Consequently, D cannot introduce naming conflicts with names of class
A. However, if B and C add properties with ts&me name, D runs into
a naming conflict.

Another possible solution is, that D inherits from both inheritance paths.
In this solution, D owns two copies of the properties of A: one is
inherited by B and one by C.

Although multiple inheritance is a powalfobjectoriented mechanism

the problems introduced with naming conflicts have lead several authors

215

to "doom" it. As the result of multiple inheritance can always be
achieved by using (simple) inheritance some objeieinted languages
even don't allow & use. However, carefully used, under some
conditions multiple inheritance provides an efficient and elegant way of
formulating things.

3.5 Abstract Classes

With inheritance we are able to force a subclass to offer the same
properties like their super class Consequently, objects of a subclass
behave like objects of their super classes.

Sometimes it make sense to only describe the properties of a set of
objects rollout knowing the actual behaviour beforehand. In our drawing
program example, each objecbstd provide a method to draw itself on

the drawing area. However. the necessary steps to draw an objects
depends on its represented shape. For example, the drawing routine of a
circle is different from the drawing routine of a rectangle.

Let's call the dawing nettled print(). To force every drawable object to
include SLICK method, we define a class Drawable object from which
every other class in our example inherits general properties of drawable
objects:

abstract class Drawable object {
attributes:

methods:

setX (int newX)
getX ()

setY (in newy)
getY ()

print o)

We introduce the new keyword abstract here. It is used to express the
fact that derived classes must redefine" the properties to fulfill the
desired function@y. Thus from the abstract class' point of view, the
properties are only specified but not fully classified. The full definition
including the semantics of the properties must be provided by derived
classes.Now, every class in our drawing program exaenghherits
properties from the general drawable object class. Therefore, class point
changes to:

class Point inherits from Drawable object { attributes:
int X, y methods:

setX(int newX)

getX ()

216

setY (int newyY)

getY ()
print() /* Redefine for Poih*/

We are now able to force every drawable object to have a method called
print which should provide functionality to draw the object within the
driven;., area. The superclass of all draw able objects, class Drainable
object, does not provide any fuimtality for drawing itself. It is not
intended to create objects from it. This class rather specifies properties
which must be defined by every derived class. We refer to this special
type of classes as abstract classes:

Definition (Abstract Class) .-1 dass A is calledhbstract classif it is

only used as a supclass for other classes. Class A only specific
properties. It is not used to create objects. Derived classes must define
the properties of A.

Abstract classes allow us to Structure our inhecgagraph. However,
we actually don't want to create objects from them: we only scant to
express common characteristics of a set of classes.

4.0 CONCLUSION

Classes are related one way or the other.You have learnt about different
types of class relatiohgps in this unit. The concept of inheritance and
multiple inheritance among related classes have also been discussed in
this unit.

5.0 SUMMARY
In this unit we have used a pseudo language to describe the concept of

oriented language like C++ or Javaiethwill be discussed later in the
course.

6.0 TUTOR-MARKED ASSIGNMENT

I. Describe with diagrams three types of relationships
. Define the following terms

a. Inheritance
b. Multiple Inheritance
C. Abstract Class

7.0 REFERENCE/FURTHER READING

Peter Mille - Introduction to Object Oriented Programming in C++
Globewide Network Academy (GNA)

217

UNIT 4 SURVEY OF PROGRAMMING TECHNIQUES
CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content
3.1 Unstructured Programming
3.2 Procedural Programming
3.3 ModularProgramming
3.4 An Example With Data Structures
3.4.1 Handling Single Lists
3.4.2 Handling Multiple Lists
3.5 Modular Programming Problems
3.5.1 Explicit Creation And Destruction
3.5.2 Decoupled Data And Operations
3.5.3 Missing Type Safety
3.5.4 Strategies AndRepresentation
3.6 ObjectOriented Programming
4.0 Conclusion
5.0 Summary
6.0 Tutor Marked Assignment
7.0 Reference$urther Reading

1.0 INTRODUCTION

This unit is a short survey of programming techniques. We use a simple
example to illustrate the partilar properties and to point out their main
ideas and problems. Roughly speaking, we can distinguish the following
learning curve of someone who learns to program:

Unstructured programming,
Procedural programming,
Modular programming and
Objectoriented pogramming.

= =4 =4 =4

This unit is organized as follows. Sections 3.1 to 3.3 briefly describe the
first three programming techniques. Subsequently, we present a simple
example of how modular programmining' can be used to implement a
singly linked list module (sedn 3.4). Using this we state a few
problems with this kind of technique in section 3.5. Finally, section 3.6
describes the fourth programming technique.

218

2.0 OBJECTIVES

By the end of this unit, you should be able to

1 explain unstructured programmingyrocedural programming,
modular programming and objeatiented programming
1 identify some problems with modular programming technique

3.0 MAIN CONTENT

3.1 Unstructured Programming

Usual l vy, people start |l earning programm
simple programs consisting only of one main program. Here "main

program" stands for a sequence of commands or statements which

modify data which is global throughout the whole program. We can

illustrate this as shown in Fig. 3. | .

Figure 3.1: Unstructured prgramming. The main program directly
operates on global data.

Program

Main program
data

As you should know, this progranmmg techniques provide tremendous
disadvantages once the program gets sufficiently large. For example, if
the same statement sequence is needed at different locations within the
program, the sequence must be copied. This has lead to the idea to
extract thee sequences, name them and offering a technique to call and
return from these procedures.

3.2 Procedural Programming
With procedural programming you are able to combine returning
sequences of after the sequence is processed, flow of control proceeds

right after the position where the call was made (Fig. 3.2).

Figure 3.2: Execution of procedures. After processing flow of controls
proceed where the call was made.

219

v

With introducing parameters as well as procedures (subprocedures
progams can now be written more structured and error free. For
example, if a procedure is correct, every time it is used it produces
correct results. Consequently, in cases of errors you can narrow your
search to those places which are not proven to bectorre

Now a program can be viewed as a sequence of procedure calls. The
main program is responsible to pass data to the individual calls, the data
is processed by the procedures and, once the program has finished, the
resulting data is presented. Thus, fllogv of duel can be illustrated as a
hierarchical graph, a tree, as shown in Fig. 3.3 for a program with no
subprocedures.

Figure 3.3: Procedural programming. The main program coordinates
calls to procedures and hands over appropriate data as parameters.

Main program
data

[

Procedure Procedure Procedure

Program

To sum up: Now we leave a single program which is divided into small
pieces in other programs, they must be separately available. For that
reason, modular progmming allows grouping of procedures into
modules.

3.3 Modular Programming

With modular programming procedures of a common functionality are
grouped together into separate modules. A program therefore no longer

220

consists of only one single part. It iswalivided into several smaller
parts which interact through procedure calls and which form the whole
program

(Fig. 3.4)

Figure 3.4: Modular programming. The main program coordinates calls
to procedures in separate modules and hands over appropriai@sdata
parameters.

Main program
data
Module 1
Data+ data | Module 2
Data+ data 2
Procedur /
Procedure] procedufe

Each module can have its own data. This allows each module to manage
an internal slate which is modified by calls to procedures of this module.
However, there is only one state per module and each module exists at
most once in the whole program.

3.4 An Example with Data Structures

Programs use data structures to store data. Several data structures exist,
for example lists, trees, arrays, sets, baggueues to name a few. Each

of these data structures can be characterized by their structure and their
access methods .

3.4.1 Handling Single Lists

You all know singly linked lists which use a very simple structure,
consisting of elements which are stguogether, as shown in Fig. 3.5).

Figure 3.5: Structure of a singly linked list.

X ECH R N

221

Singly linked lists just provides access methods to append a new
element to their end and to delete the element at the front. Complex data
structures might use already existing ones. For example a queue can be
structured like a singly linked list. However, queuesvpie access
methods to put a data element at the end and to get the first data element
(first in first-out (FIFO) behaviour).

We will now present an example which we use to present some design
concepts. Since this example is just used to illustrate ttwerseepts and
problems it is neither complete nor optimal. Suppose you want to
program a list in a modular programming language such as C or
Modula2. As you believe that lists are a common data structure, you
decide to implement it in a separate modulgigdally, this requires you

to write two files: the interface definition and the implementation file.
Within this unit we will use a very simple pseudo code which you
should understand immediately. Let's assume, that comments are
enclosed in/* ... */". Our interface definition might then look similar to
that below:

*

* Interface definition for a module which implements
* a singly linked list for storing data of any type.
*/

MODULE Singly-Linked-List-1
BOOT, list_ initialize();
BOOT, list append(ANY da);
BOOT, list_ delete();

list end();
ANY list getFirts ();
ANY list getNext();
BOOT, list isEmpty();
END SinglyLinked-List-I

Interface definitions just describe what is available and not how it is
made available. You hide the infornati of the implementation in the
implementation file. This is a fundamental principle in software
engineering, so let's repeat it: You hide information of the actual
implementation (information hiding). This enables you to change the
implementation, for exaple to use a faster but more memory
consuming algorithm for storing elements with out the need to change
other modules of your program: The calls to provide procedures remain
the same.

The idea of this interface is as follows: Before using the list @asetd
call list initialize initialize variables local to the module. The following

222

two procedures implement the mentioned access methods append and
delete. The append procedure needs a more detailed discussion.
Function list append() takes one argumera datarbitrary type. This is
necessary since you wish to use your list in several different
environments, hence, the type of the data elements to be stored in the list
is not known beforehand. Consequently, you have to use a special type
any which allowsa assign data of any type to it. The third procedure
list_ end() needs to be called when the program terminates to enable the
module to clean up its internally used variables. For example you might
want to release allocated memory.

With the next two proedures list getfirst () and list getNext() a simple
mechanism to traverse through the list is offered. Traversing can be
done using the follow Hloop:

ANY data;

data < list getFirst();

WHILE data IS VALID DO
Do Something(data);
data < list_getNext();

END

Now you have a list module which allows you to use a list with any type
of data elements. But what, if you need more than one list in one of your
programs?

3.4.2 Handling Multiple Lists

You decide to redesign your list module to be ablemanage more than
one list. You therefore create a new interface description which now
includes a definition for a list handle. This handle is used in every
provided procedure to uniquely identify the list in question. Your
interface definition file ofyour new list module looks like this:

*

* A list module for more than one list.
*/

MODULE Singly-Linked-List-2
DECLARE TYPE list handle t;

list handle t listreate();

223

list _destroy(list handle _t this);

BOOL list _append(list handle this, ANY data);
ANY list get First(list handle t this);

ANY list_getNext(list handle _t this);

BOOL list is Empty(list handle t this);

END Singly-Linked-List-2;

You use DECLARE TYPE to introduce a new type list _handle t
representsyour list handle. We do not specify, how this handle is

actually represented or even implemented. You also hide the
implementation details of this type in your implementation file. Note the
difference to the previous version where you just hide functions o

procedures, respectively. Now you also hide information for a user
defined data type called lidtandle t.

You use list create () to obtain a handle to a new thus empty list. Every
other procedure now contains the special parameter This which just
identities the list in question. All procedures now operate on this handle
rather than a module global list.

Now you might say, that you can create list objects. Each such object
can be defined to operate on this handle.

3.5 Modular Programming Problems

The pevious section shows, that you already program with some ebject
oriented concepts in mind. However, the example implies some
problems which we will outline now.

3.5.1 Explicit Creation and Destruction

In the example every time you want to use a listj ggplicitly have to
declare a handle and perform a call to list create to obtain a valid one.
After the use of the list you must explicitly call list destroy with the
handle of the list you want to be destroyed. If you want to use a list
within a procéure, say, food you use the following code frame:

PROCEDURE fool) BEGIN
list-handle t myList;

myList <- list create();

[* Do something with myList
e

224

list destroy(myList);
END

Let's compare the list with other data types, for example an integer.
Integers are declared within a particular scope (for example within a
procedure). Once you've defined them, you can use them. Once you
leave the scope (for example the procedure where the integer was
defined) the integer is lost. It is automatically created @estroyed.
Some compilers even initialize newly created integers to a specific
value, typically () (zero).

Where is the difference to list "objects"? The lifetime of a list is also
defined by its scope, hence, it must be created once the scope is entered
and destroyed once it is left. On creation time a list should be

similar to the definition of an integer. A code frame for this would loot:
like this:

PROCEDURE fool) BEGIN

list handle t myList; /* List is created and initialized */
/* Do something wh the myList */

END /* myList is destroyed */

The advantage is, that now the compiler takes care of calling
initialization and termination procedures as appropriate. For example.
this ensures that the list is correctly deleted, returning resourchs to t
program.

3.5.2 Decoupled Data and Operations

Decoupling of data and operations leads usually to a structure based on
the operations rather than the data: Modules group common operations
(such as those list ... () operations) together. You then usse th
operations by providing explicitly the data to them on which they should
operate. The resulting module structure is therefore oriented on the
operations rather than the actual data. One could say that the defined
operations specify the data to be used.

In objectorientation, structure is organized by the data. You choose the
data representations which best fit your requirements. Consequently,
your programs get structured by the data rather than operations. Thus, it
Is exactly the other way around: Datpecifies valid operations. Now
modules group data representations together.

225

3.5.3 Missing Type Safety

In our list example we have to use the special type ANY to allow the list
to carry any data we like. This implies, that the compiler cannot
guarantedfor type safety. Consider the following example which the
compiler cannot check for correctness:

PROCEDURE fool) BEGIN
Some Data Type data;
SomeOtherType dataz;
List_ handle t myList;

myList <- list_ create();
list append(myList, data);
list append(myist, data2); /* Oops */

END

It is in your responsibility to ensure that your list is used consistently. A
element, However, this implies more overhead and does not prevent you
from knowing what you are doing.

What we would like to have is a mechanisrniatr allows us to specify

on always the same, whether we store apples, numbers, cars or even
lists. Therefore it would be nice to declare a new list with something
like:

list_handle_t<Apple> list/* a list of apples */
list handle t<Car> list2; /* adt of cars */

The corresponding list routines should then automatically return the
correct data types. The compiler should be able to check for type
consistency.

3.5.4 Strategies and Representation

The list example implies operations to traverse thhouhe list.
Typically a cursor is used for that purpose which points to the current
element. This implies a traversing strategy which defines the order in
which the elements of the data structure are to be visited.

For a simple data structure like thexgy linked list one can think of

only one traversing strategy. Starting with the leftmost element one
successively visits the right neighbors until one reaches the last element.
However, more complex data structures such as trees can be traversed

226

using dfferent strategies. Even worse, sometimes traversing strategies
depend on the particular context in which a data structure is used.
Consequently, it makes sense to separate the actual representation or
shape of the data structure from its traversing sgjyate

What we have shown with the traversing strategy applies to other
strategies as well. For example insertion might be done such that an
order over the elements is achieved or not.

3.6 Object-Oriented Programming

Objectoriented programming solves some the problems just
mentioned. In contrast to the other techniques, we now have a web of

interacting objects, each hodseeping its own state (Fig. 3.6).

Figure 3.6: Objectoriented programming. Objects of the program
interact by sending messages to eatiern

Program

Object
data \ Object
data

Object
data

Object /

data

Consider the multiple lists example again. Tile problem heit&
modular use the procedures of the module to modify each of your
handles.

In contrast to that, in objedriented programming we would have as
many list objects as needed. Instead of calling a procedure which we
must provide with the correct list handle, we would directly send a
message to the list object in questiomuBhly speaking, each object
implements its own module allowing for example many lists to coexist.

Each object is responsible to initialize and destroy itself correctly.

Consequently, there is no longer the need to explicitly call a creation or
termination procedure.

227

file://ith

4.0 CONCLUSION

You might ask: Bavientadch @ahniques Just e mareb | e ¢

fancies modular programming technique? You were right, if this would
be all about objeebrientation. Fortunately. It is not. From the previous
units addiional features of objeairientation were discussed which
makes objecbriented programming a new programming technique.

5.0 SUMMARY

In this unit you have had a comparison of-pgonming techniques and |
am sure you now know why object oriented progmang technique
stands shoulder high

6.0 TUTOR MARKED ASSIGNMENT

Describe the four programming techniques discussed in this unit.

7.0 REFERENCES/FURTHER READING

Peter Muller- introduction to Object Oriented Programming in C++
Globe wide Network Acaeimy (GNA)

228

MODULE 2 OBJECT-ORIENTED ANALYSIS AND

DESIGN
Unit 1 Software Engineering
Unit 2 Software Quality Concepts
Unit 3 Landmarks of ObjeeDriented Analysis and Design
Unit 4 ObjectOriented Analysis and Design
Unit 5 ObjectOriented Software Design

UNIT 1 SOFTWARE ENGINEERING
CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content
3.1 Software Product, Components and Characteristics
3.2 Software Engineering Concepts
3.2.1 The Study Phase
3.2.2 The Design Phase
3.2.3 The Development Phase
3.2.4 The Operation Phase
3.3 Documentation of The Software Product
3.4 Software Process and Models
3.4.1 Software Life Cycle
3.4.2 Requirement Analysis and Specification
3.4.3 Design and Specification
3.4.4 Coding and Module Testing
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 Reference$urther Reading

1.0 INTRODUCTION

This unit focuses on Software Product, Component and Characteristics.
This unit discusses in details the evolution process of Software
Engineering fie cycle. A sample waterfall model is also discussed in
this unit. Software Engineering concepts and its phases are also included
in this unit. The documentation part is also included in this unit,
Software Documentation is a continuous and parallel &gctiin
development process.

229

2.0 OBJECTIVES
After going through this unit, you should be able to:

1 define software product component and characteristics.

1 explain what is documentation of software product.

1 describe what is software process and whabftware life cycle.
1 describe a generic view of software engineering.

3.

0 MAIN CONTENT
3.1 Software Product, Components and Characteristics

We are in an information age, one in which the management of the
information resource of organization is ofaliimportance. Business
information systems are systems that use these resources to convert data
into information in order to improve productivity. Business information
systems usually are composed of smaller systems, called subsystems.
Computer hardware nal software are important resources that that
support information systems and subsystems.

Systems analysis is a general terms that refers to an orderly, structured
process life cyclenethodology. Four phases study, design,
development, and operationmake up the life-cycle of computer
related business systems. A systems analyst is a person who performs
systems analysis during any or all of the-tifecle phases. The systems
analyst not only analyzes information system problems, but also
synthesizes e systems to solve these problems.

The four information eras are: the Early Era (1:9465), the Growing

Era (1995 1965), the Refining Era (196280), and the Maturing Era
(1980). The Early Era concentrated on hardware, and human machine
communicationwas very difficult. The growing Era improved this
communication through the introduction of Englislke programming
languages; however, techniques for managing Computer related projects
were lacking. During the Refining Era, explosive growth occurreten
development of large (midi and maxi) and small (micro and mini)
computer systems and in their applications. Developments in
microelectronics technology contributed significantly to this growth.
Throughout most of the Refining Era, in spite of a peoétion of
applications, difficulties were encountered in using computer to solve
business problems. However, toward the end of this era, a structured
system analysis procesalled the lifecycle methodology came into
increasing use as a means of depig usable business information
systems. Structured techniques for the analysis, design, and
development of computeelated information systems are now

230

enhanced in the maturing Era. These techniques are used to develop
information systems in applicationsreas such as distributed, data
processing, the automated office, and managentetision support.

This is an era in which information is acknowledged as an important
corporate resource. The systems analyst assumes an important role in
managing the inforation resources of the corporation.

The computebased business system also contains hardware
components; however, its most significant characteristics is a software
endproduct. Software may be defined as a collection of programs or
routines that facildtes the use of a computer. This definition includes
operating systems, which facilitate the general use of computers, and
application programs, which are written to solve specific problems. The
latter is the engbroduct associated with a compubersed iformation
system. Software, in contrast with hardware, does not possess attributes
that can readily be observed and measured from concept to end product.
The software engbroduct is information. Although it may be stored or
printed on a physical medium,duas a magnetic disk, a reel of tape, or

a sheet of paper, information is transient and fragile compared with
hardware.

Many of the past difficulties in developing effective compitased
business systems stemmed not only from belated efforts to apply
management controls, but also from failure to recognize that techniques
applicable to the development of hardware-prmbucts could not be
applied without modification to the development of software-end
products. However, as a result of experience gainmedn flarge
government and commercial software projects in the latter part of the
1960s and throughout the 1970s, the concept otlitde management

was adapted to fit the development of computer based business systems.

The key to modifying the lifeycle concept for the management of
software projects was the recognition that, although supporting
documentation accompanies a physical product throughout its
development, documentation is the software product.

TOOLS

METHODS

PROCESS

QUALITY

Figure 11: Software engineering layers

231

3.2 Software Engineering Phases
Life-Cycle Phases and the Lif€Cycle Manager:

The life-cycle methodology for developing complex systems is modular,
top-down procedure. In the study phases, modules that describe the
major functions to be performed by the system are developed. The
procedure is called tegown because in successive phases the major
modules are expanded into additional, increasingly detailed, modules.
Powerful graphic tools have been developed to structureothdotvn
design and development phase activities in detail. For the present, we
can summarize the principal tasks associated with each of the phases of
the life cycle of a computdrased business system.

The life cycle of a computdrased system exhibitsistinct phases.
These are:

3.2.1 The Study Phase

This is the phases during which a problem is identified, alternate system
required to design the system. Task performed in the study phase are
grossly analogous to determining that a shelter from theegims
needed, and deciding that a tlwedroom house is a more appropriate
shelter than a palace, a cave, or other possible selections.

3.2.2 The Design Phase

In this phase the detailed design of the system selected in the study
phases is accomplishedhis is analogous to drawing the plans for the
two-bedroom home decided on in the study phase. In the case of a
computerbased business system, design phase activities include the
allocation of resources to equipment tasks, personnel tasks, and
computerprogram task. In the design phase, the technical specifications
are prepared for the performance of all allocated tasks.

3.2.3 The Development Phase

This is the phase in which the comptib@sed system is constructed
from the development phase. All mssary procedure, manuals,
software specifications, and other documentation are completed. The
staff is trained, and the complete system is tested for operational
readiness. This is analogous to the actual construction of our two
bedroom house from the piaprepared in its design phase.

232

3.2.4 The Operation Phase

In this phase, the new system is installed or there is a changeover from
the old system to the new system. The new system is operated and
maintained. Its performance is reviewed, and changigsre managed,

the operation phase is analogous to moving into and living in the house
that we have built. If we have performed the activities of the preceding
phases adequately, the roof should not leak.

All of the activities associated with each lifgcle phase must be
performed, managed, and documented. Hence, we now define systems
analysis as the performance, management, and documentation of the
activities related to the four lifeycle phases of a computer based
business system. Similarly, we nowncidentify the system analyst as

the individual who is responsible for the performance of systems
analysis for all, or a portion of the phases of the life cycle of a business
system. The analyst is, in effect, adifele manger.

3.3 Documentation of the Software Product

The accumulation of documentation parallels thedifele performance
and management review activities. Documentation is not a task
accomplished as a "wind up" activity; rather, it is continuous and
cumulative. The most essential doants are called baseline
specification (that is, specifications to which change can be referred).
There are three baseline specifications:

1. Performance specification: It is completed at the end of the study
phase, and describing in the language of ger exactly what the
system is to do. It is a "design to" specification.

2. Design specification: It is completed at the end of the design
phase, and describing in the language of the programmer (and
others employed in actually constructing the systemy ho
develop the system. Itis a "but to".

3. System specification: It is completed at the end of the
development phase and containing all of the critical system
documentation. It is the basis for all manuals and procedures, and
it is an "as built" speditation.

The design specification evolves from the performance specification,
and the system specification evolves from the design specification.
Since these documents are the only measurable evidence that progress is
being made toward the creation of seful software engroduct, it is

not possible to manage the Giele process without them. Thus,
documentation is not only the "visible" software gmdduct, but also

233

the key to the successful management of the life cycle of computer
based business ggms.

SELF-ASSESSMENT EXERCISE 1
Which of the following is not an example of program documentation?

(a) Source code
(b) Object code
(c) Specification
(d) Identifier Names

3.4 Software Process And Models

3.4.1 Software Life Cycle

From the inceppn of an idea for a software system, until it is
implemented and delivered to a customer, and even after that, the
system undergoes gradual development and evolution. The software is
said to have a life cycle composed of several phases. Most of these
phags result in the development of either a part of the system or
something associated with the system, such as a test plan or user
manual. In the traditional life cycle model, called the "waterfall model,"
each phases has weléfined starting "and ending ipts, with clearly
identifiable deliverables to the next phase.

A sample waterfall life cycle model comprises the phases, similar to
described in next sections.

3.4.2 Requirements analysis and specification

Requirements analysis is usually the first gghaf largescale software
development project. It is undertaken after a feasibility study has been
performed to define the precise costs and benefits of a software system.
The purpose of this phase is to identify and document the exact
requirements for # system. The customer, the developer, a marketing
organization or any combination of the three may perform such study. In
cases where the requirements are not clear e.g., for a system that has
never been defined, more interaction is required betweenstreamnd

the developer. The requirements at this stage are irussdterms.
Various software engineering methodologies advocate that this phase
must also produce user manuals and system test plans.

234

3.4.3 Design and specification

Once the requirementer a system have been documented, software
engineers design a software system to meet them. This phase is
sometime split into two suphases: architectural or higével design

and detailed design. Higlkvel design deals with overall module
structure ad organization, rather than the details of the modules. The
high level design is refined by designing each module in detail (detailed
design). Separating the requirements analysis phase from the design
phase is instance of a fundamental "what/how" dichgtdhat we
encounter quite often in computer science. The general principle
involves makings a cleardistinction between what the problem is and
how to solve the problem. In this case, the requirement phase attempts to
specify what the problem is. Thereeausually many ways that the
requirements may be met, including some solutions that do not involve
the use of computers at all. The purpose of the design phase is to specify
a particular software system that will meet the stated requirements.
Again thereare usually many ways to build the specified system. In the
coding phase, which follows the design phase, a particular system is
coded to meet the design specification.

Description Software Phase Typical Fraction
Of Total Time

precise Formulation
of problem |. specification 10%

Development of a
Detailed Plan

To Solve problems Il. Algorithm Design 15%
Translation of
Plan into a
Computer program Ill. Coding 15%

Checking Correctness

initial statement
of solution IV. Verification and 10%

program Released to Users

Modification
Of
program V. Maintenances 50%

Figure 1.2: Software Life Cycle

235

3.4.4 Coding and module testing

This is the phase that produces the actual code that will be delivered to
the customer as the running system. The other phases of the life cycle
may also develop code, such as prototypes, tests, and test drivers, but
these are for wsby the developer. Individual modules developed in this
phase are also tested before being delivered to the next phase.

1 Integration and system testing: All the modules that have been
developed before and tested individually are put together
(integrated)n this phase and tested as a whole system.

1 Delivery and maintenance: Once the system passes the entire test,
it is delivered to the customer and enters the maintenance phase.
Any modifications made to the system after initial delivery are
usually attribted to this phase.

Requirements
Analysis and
Specification

Design and
Specificatior

Coding and
module testin

Integration and
system
Delivery

and
Maintenance

v

Figure 1.3 : Waterfall Model of Software life Cycle
SELF-ASSESSMENT EXERCISE 2

Which of the following is &re) among the legitimate purposes of
software documentation?

I To assist in maintaining and modification.

. To describe the capabilities of the program.
lil. To provide the user with instructions.

236

a) iionly

b) ii andiii only
c) iii only
d) i, ii andiii

4.0 CONCLUSION

As presented above, the phases give a partial, simplified view of the
conventional waterfall software life cycle. The process may be
decomposed into a different set of phases, with different names,
different purpose, and different granulariBntirely different life cycle
schemes may even be proposed, not based on a strictly phased waterfall
development. For example, it is clear that if any tests uncover defects in
the system, we have to go back at least to the coding phase and perhaps
to thedesign phase to correct some mistakes. In general, any phase may
uncover problems in previous phases this will necessitate going back to
the previous phases and redoing some earlier work. For example, if the
system design phase uncovers inconsistencieandriguities in the
system requirements, the requirements analysis phase must be revisited
to determine what requirements were really intended.

Another simplification in the above presentation is that it assumes that a
phase is completed before the nexe diegins. In practice, it is often
expedient to start a phase before a previous one is finished. This may
happen, for example, if some data necessary for the completion of the
requirement phase will not be available for some time or it might be
necessary drause the people ready to start the next phases are available
and have nothing else to do.

Most books on software engineering are organized according to the
traditional software life cycle model, each, section or chapter being
devoted to one phase. Ongmstered, the software engineer can apply
these principles in all phases of software development, and also in life
cycle models that are not based on phased development, as discussed
above. Indeed, research and experience over the past decade have shown
that there is a variety of life cycle models and that no single one is
appropriate for all software systems.

5.0 SUMMARY
In this unit, you have learnt the techniques applicable to the
development of software products. The phases of software engineering

and the use of baseline specifications in the software process were also
discussed. The next unit focuses on Software Performance.

237

6.0 TUTOR-MARKED ASSIGNMENT

1. The life cycle of a computdrased system exhibits distinct
phases. Discuss

2. Describe the phases a Software Life Cycle

7.0 REFERENCES/FURTHER READING

Management of Information Systems, Unit 2, Indira Gandhi National
Open University

Software Engineering- A Practitioner's Approach by ROGER
S.PRESSMAN: McGraw Hill International Edition.

238

UNIT 2

CONTENTS

1.0
2.0
3.0

4.0
5.0
6.0
7.0

1.0

Introduction

SOFTWARE QUALITY CONCEPTS

Objectives
Main Content
Important Qualities Of Software Product And Process

3.1

3.2

3.1.1
3.1.2
3.1.3
3.1.4
3.1.5
3.1.6
3.1.7
3.1.8

Correctness
Reliability
Robustness

User Friendliness
Verifiability
Maintainability
Reusability
Portability

Data abstraction

3.2.1
3.2.2
3.2.3
3.24
3.2.5
3.2.6
3.2.7
3.2.8

3.2.9

Modularity

Principles Of Software Engineering

High-quality Software Possible

Give Products to Customers Early

Evaluate Deign Alternatives

Use an Appropriate Process Model

Minimize Intellectual Distance

Good Management is More Importamtah Good
Technology

People are the key to success

3.2.10Follow with care
3.2.11Take responsibility
Conclusion
Summary
Tutor-Marked Assignment
Referencefurther Reading

INTRODUCTION

The goal of any engineering aaty is to build a product. Foexample,

the aerospace engineer builds an airplane. The product of software
engineer is a softwareystem. But the difference between software
product and other product is that it is modifiable. This quality makes
software quite different from other products such as cars. In this unit, we
will first examine the important software qualities and then discu
software engineering principles.

239

2.0 OBJECTIVES
After going through this unit, you will be able to:
list various qualities of software product

discuss various qualities of software product
explain principles of software engineering

W === =a

.0 MAIN CON TENT

3.1 Important Qualities of Software Product and Process

There are many importaqualities of software productSome of these
qualities are applicable both to product and to the process used to
produce the product.

The user wants the software puatito be reliable and usérendly. The
designer of the software wants it to be maintainable portable and
extensible. In this unit, we will consider all these qualities.

3.1.1 Correctness

A program is functionally correct if it behaves according te th
specification of function it should provides (called functional
requirements specifications). It is common simply to use the term
correct rather the functionally correct, similarly, in this context, the term
specification implies functional requiremenpesifications. We will
follow this convention when the context is clear.

The definition of correctness assumes that a specification of the system
Is available and that it is possible to determine unambiguously whether
or not a program meets the specificas. With most current software
systems, no such specification exists. If a specification does exists, it is
usually written in an informal style using natural language. Such a
specification is likely to contain many ambiguities. Regardless of these
diffi culties with current specifications, however, the definition of
correctness is useful. Clearly, correctness is a desirable property for
software systems.

Correctness is a mathematical property that establishes the equivalence
between the software and #pecification. Obviously, we can be more
systematic and precise in assessing correctness depending on how
rigorous we are in specifying functional requirements. Correctness can
be assessed through a variety of functional requirements. Correctness
can be asessed trough a variety of methods, some stressing an
experimental approach (e. g testing). others stressing an analytic

240

approach (e.g. formal verification of correctness). Correctness can also
be enhanced by using appropriate tools such asléugh langiages,
particularly those supporting extensive static analysis. Likewise, it can
be improved by using standard algorithms or using libraries of standard
modules, rather than inventing new ones.

3.1.2 Reliability

Informally, software is reliable if theser can depend on it. The
specialized literature on software reliability defines reliability in terms
of statistical behaviour the probability that the software will operate as
expected over a specified time interval.

Correctness is an absolute qualitgyaleviation from the requirements
makes the systems incorrect, regardless of how minor or serious is the
consequences of the deviation. The notion of reliability is on the other
hand, releases along with a list of know bugs. User of software takes it
for granted that Release | of a product is buggy. This is one of the most
striking symptoms of the immaturity of the software engineering field as
an engineering discipline.

In classic engineering disciplines, a product is not released if it has bugs.
You donot expect to take delivery of an automobile, along with a list of
shortcomings or a bridge with a warning not to use the railing. Design
errors are extremely rare and worthy of news headlines. A bridge that
collapses may even cause the designers to lsequted in court.

On the contrary, software design errors are generally treated as
unavoidable. Far from being surprised with the occurrence of software
errors, we expect them. Whereas with all other products the customers
receives a guarantee of reliatyl with software we get a disclaimer that
the software manufacturer is not responsible for any damage due to
product errors. Software engineering can truly be called an engineering
discipline only when we can achieve software reliability comparable to
the reliability of other products.

3.1.3 Robustness

A program is robust if it behaves reasonably, even in circumstances that
were not anticipated in the requirements specificatidar example,

when it encounters incorrect input data or some hardwarkimetibn.

A program that assumes perfect input and generates as unrecoverable
runtime error as soon as the user inadvertently type an incorrect
command would not be robust. It might be correct, though, if the
requirements specification does not state wvitmataction should be upon
entry of an incorrect command. Obviously, robustness is a difficult to

241

define quality; after all, if we could state precisely what we should do to
make an application robust, we would be able to specify its reasonable
behaviour ompletely. Thus, robustness would become equivalent to
correctness.

The amount of code devoted to robustness depends on the application
area For example, a system written to be used by novice computer users
must be more prepared to deal with-fdimatted input than an
embedded system that receives its input from a seratrough, if the
embedded system is controlling the space shuttle or somerititzl
devices, then extra robustness is advisable.

In conclusion, we can see that robustness andatbe®s are strongly
related without a sharp dividing line between them. If we put a
requirement in the specification, its accomplishment becomes an issue
of correctness; if we leave it out of the specification, it may become an
issue of robustness. The Herline between the two qualities is the
specification of the systerfinally, reliability comes in because not all
incorrect behaviours signify equally serious problems; some incorrect
behaviours may actually be tolerated.

Correctness, robustness, andiatglity also apply to the software
production process. A process is robust, for example, if it can
accommodate unanticipated changes in the environment, such as a new
release of the operating system of the sudden transfer of half the
employees to anothércation. A process is reliable if it consistently
leads to the production of higfuality productdn many engineering
disciplines, considerable research is devoted to the discovery of reliable
processes.

3.1.4 User Friendliness

A software system isser friendly if its human user find it to use. This
definition reflects the subjective nature of user friendness. An
application that is used by novice programmers qualifies a user friendly
by virtue of different properties than an application that is used
expert programmers. For example, a voice user may appreciate verbose
messages, while an experienced user grows to dates and ignore them.
Similarly, a nonprogrammer may appreciate the use of menus, while a
programmer may be more comfortable with typengommand.

The user interface is a important component of user friendliness. A
software system that present the novice user a set ofetiee
commands is not user friendly. On the other hand, a keystrokes rather
than a fancy widow interface through whihe has to navigate to get to

242

the command that's he knew all along he wanted to execute, will not be
appropriate.

There is more to user friendliness, however, than the user interface. For
example, an embedded software system does not have a human user
interface. Instead, it interacts with hardware and perhaps other software
systems. In this case, the user friendliness is reflected in the case with
which the system can be configured and adapted to the hardware
environment.

In general, the user friendlisg of a system depends on the consistency
of its user and operator interfaces. Clearly, however, the other qualities
mentioned above such as correctness and performatse affect user
friendliness. A software system that produces wrong answers is not
friendly, regardless of how fancy it user interface is. Also, a software
system that produces answers more slowly than the user requires is not
friendly even if the answers are displayed in colour.

User friendliness is also discussed under the subject mdacors.
Human factors or human engineering plays a major role in many
engineering disciplines. For example. automobile manufacturers devote
significant effort to deciding the position of the various control knobs on
the dashboard. Television manufactarand microwave oven makers
also try to make their products easy to use. User interface decisions in
these classical engineering fields are made, not randomly by engineers,
but only after extensive study of user needs and attitude by specialists in
fields such as industrial design or psychology.

Interestingly, ease of use in many of these engineering disciplines is
achieved through standardization of the human interface. One set, he or
she can operate almost any other television set. The significanhtcurre
research and development activity in the area of standard user interface
for software systems will lead to more u$eendly systems in future.

3.1.5 Verifiability

A software system is verifiable if its properties can be verified easily.
For examplethe correctness or the performance of a software system
are properties we would be interested in verifying. Verification can be
performed either by formal analysis methods or through testing. A
common technique for improving verifiability is the quabtisuch as
performance or correctness.

Modular design, disciplined coding practices, and the use of a
appropriate programming language all contribute to verifiability.

243

Verifiability is usually an internal quality, although it sometimes
becomes an externquality also. For example, in many secuwatytical
applications, the customer requires the verifiability of certain properties.
The highest level of the security standard for a trusted computer system
requires the verifiability of the operation systearnel.

3.1.6 Maintainability

The termsoftware maintenanceis commonly used to refer to the
modification that are made to a software system its initial release.
Maintenance used to be viewed as merely bug fixing, and it was
distressing to discover thab much effort was being open on fixing
defects. Studies have shown, however, that the majority of time spent on
maintenance is in fact spent on enhancing the product with features that
were not in the original specifications or were stated incorrectly.

Maintenance is indeed not the proper word to use with software. First, as
it is used today, the terms cover a wide range of activities, all having to
do with modifying an existing piece of software in order to make an
improvement. A term that perhaps captithe essences of this process
better is software evolution. Second, | other engineering products, such
as computer hardware or automobiles or washing machine, maintenance
refers to the upkeep of the product in response to the gradual
deterioration of pas due toextended use of the produétor example,
transmissions are oiled and air filters are dusted and periodically
changes. To use the word maintenance with software gives the wrong
connotation because software does not wear out. Unfortunately,
howeve, the term is used so widely that we will continue using it.

There is evidence that maintenance costs exceed 60% of the total cost of
software. To analyze the factor that affect such costs, it is customary to
divide software maintenance into three categgy corrective, adaptive

and perceptive maintenance.

3.1.7 Reusability

Reusability is akin to resolvability. In product evolution, we modify a
product to build a new version of that same product. Reusability appears
to be more applicable to softwarengponents than to whole product.
But it certainly seems possible to build products that are reusable

A good example of a reusable product is the UNIX shell. The UNIX
shell is a command language to be used both interactively and in batch.
The ability to sta a new shell with a file containing a list of shell
commands allows us to write program script® the shell command
language. We can view the program as a new product that uses the shell

244

as a component. The UNIX environment in fact supports the @use
any of its commands, as well as the shell, in building powerful utilities.

Scientific libraries are best known reusable components. Several large
FORTRAN libraries have existed for many years. User can buy these
and use them to build their own prodyatsthout having to reinvent or
recode welknow algorithms. Indeed, several companies are devoted to
producing just such libraries.

Another successful example of reusable packages is the recent
development of windowing system such as Microsoft Window, X
windows or Motif, for the development of user interface.

Unfortunately, while reusability is clearly an important tool for reducing
software production costs, example of software reuse in practice is
rather rare.

Reusability is difficult to achieve a pesiori, therefore, one should
strive for reusability when software components are developed. One of
the more promising techniques is the use of olpeeinted design,
which can unify the qualities of resolvability and reusability.

So far. We have discsed reusability in the framework of reusable
components, but the concept has boarder applicability it may occur at
different levels and may affect both product and process. A simple and
widely practiced type of reusability consists of the reuse of pebele,
reusing their specific knowledge of an application domain of a
development or target environment, and so on. This level is
unsatisfactory, partially due to the turnover of software engineers:
knowledge goes away with people and never becomes a permane
asset.

Another level of reuse may occur at the requirements levdlhen a

new application is conceived, we may try to identify parts that are
similar to parts used in a previous application. Thus, we may reuse parts
of the previous requirement spec#ion instead of developing an
entirely new one.

As discussed above, further levels of reuse may occur when the
application is designed, or even at the code level. In the latter case, we
might be provided with expect claim that in the future new appticati

by assembling together a set readgde, off the shell component.
Software companies will invest in the development of their own
catalogues of reusable components so that the knowledge acquired in
developing applications will not disappear as peopkvé, but will
progressively accumulate in the catalogues. Other companies will invest

245

their efforts in the production of generalized reusable components to be
put on the marketplace for use other software producers.

Reusability applies to the softwareopess as well. Indeed, the various
software methodologies can be viewed as attempts to reuse the same
process for building different products. The various life cycle models
are also attempts at reusing higher level processes. Another example of
reusabilityin a process is the replay approach to software maintenance.
In this approach, the entire process is repeated when making a
modification. That is, first the requirements are modified, and then the
subsequent steps are followed as in initial product dpusdot.

Reusability is a key factor that characterizes the maturity of an industrial
field.We see high degrees of reusability in such mature areas as the
automobile industry and consumer electronic. For example, in the
automobiles industry, the enginesesftreused from model to model.
Moreover, a car is constructed by assembling together many
components that are highly standardized and used across many models
produced by the same industry. Finally, the manufacturing process is
often reused. The low degres reusability in software is a clear
indication that the field must evolve to achieve the status of a well
established discipline.

3.1.8 Portability

Software is portable if it can run is different environments. The term
environment can refer to a hardwe platform or a software environment
such as a particular operating system. With the proliferation of different
processors and operating systems, portability has become an important
issue for software engineers.

More generally, portability refers to thability to run a system on
different hardware platforms. As the ratio of money spent on software
versus hardware increase, portability gains more importance. Some
software systems are inherently machine specific. For example, an
operating system is writte to control a specific computer, and a
compiler produces code for a specific machine. Even in these cases,
however, it is a possibility to achieve some level of portability. Again,
UNIX is an example of an operating system that has been ported to
many diferent hardware systems. Of course, the porting effort requires
months of work. Still, we can call the software portable because writing
the system from scratch for the new environment would require much
effort than porting it.

246

For many applications, itsiimportant to be portable across operating
system. or, looked at another way, the operating system provides
portability across hardware platforms.

3.2 Data abstraction

Abstraction is a process whereby we identify the important aspects of a
phenomenon ahignore its details. Thus, abstraction is a special case of
separation of concerns wherein we separate the concern of the important
aspects from the concern of the unimportant details.

The programming language that we use are abstraction built on top of
the hardware: they provide us with useful and powerful constructs so
that we can write (most) programs ignoring such details as the number
of bits that are used to represent numbers or the addressing mechanism.
This helps us concentrate on the problemolgesrather than the way to
instruct the machine on how to solve it. The programs we write are
themselves abstractions. For example, a computerized payroll procedure
Is an abstraction over the manual procedure it replaces: it provides the
essence of the maal procedure, not its exact details, well defined
procedure/ function in a single unit. This encapsulation forms a wall,
which is intended to shield the data representation from computer users.
There are two requirements for data abstraction facilities i
programming language.

(1) Data structure and operations as described is a single semantic
unit.

(i) Data structure and internal representation of the data abstractions
are not visible to the programmer. rather the programmer is
presented with a wetlefined procedural interface. Today most of
the object oriented programming language supports this feature.

3.2.1 Modularity

A complex system may be divided into similar pieces called modules. A
system that is composed of modules is called modularmiie benefit

of modularity is that it allows the principle of separation of concerns to
be applied in two phases: when dealing with the details of each module
in isolation (and ignoring details of other modules); and when dealing
with the overall charactistics of all modules and their relationship in
order to integrate them into a coherent system. If the two phases are
temporarily executed in the order mentioned, then we say that the
systern is designed bottom up; the converse denotefotep design.

247

Modularity is an important property of most engineering processes and
products. For example, in the automobiles industry, the construction
of cars proceeds by assembling building blocks that are designed and
built separately. Furthermore, parts are oftenseel from model to
model, perhaps after minors changes. Most industrial processes are
essentially modular, made out of work packages that are combined in
simple ways (sequentially or overlapping) to achieve the desired result.

Modularity, however, is nobnly a desirable design principle, but
permeates the whole of software production. In particular, there are
three goals that modularity tries to achieve in practice: capacity of
decomposing a complex system or composing it from existing modules,
and of un@rstanding the system in pieces.

The decomposability of a system is based on dividing the original
problem top down into sub problems and then applying the
decomposition to each sub problem recursively. This procedure reflects
the well - known Latin mottodivide (divide and conquer), which
described the philosophy followed by the ancient Romans to dominate
other nations: divide and isolate them first and conquer them
individually.

The compensability of a system is based on starting bottom up from
elemenary components and proceeding to the finished system. As an
example, a system for office automation may be designed by assembling
together existing hardware components such as personal workstation, a
network, and peripherals: system software such as #@timy system;

and productivity tools such as document processors, data bases and
spreadsheeté car is another obvious example of a system that is built
by assembling components. Consider first the main subsystems in a car
system, each of them, in tuis,made out of standard parts, for example,
the battery, fuses, cables, etc. form the electrical system. When
something goes wrong, defective components maybe replaced by new
ones.

Ideally, in software production we would like to be able to assemble
new applications by taking modules from a library and combining them
to form the required product. Such modules should be designed with the
express goal of being reusable. By using reusable components, we may
speed up both the initial system construction aedfinetuning. For
example, it would be possible to replace a component by another that
perform s the same function but differs in computational resource
requirements.

The capability of understanding each part of a system separately aids in
modifying a ystem.The evolutionary nature of software is such that the

248

software engineer is often required to go back to previous work to
modify it. If the entire system can be understood only entirely,
modifications are likely to be difficult to apply, and the resuiteliable.
When the need for repair arises, proper modularity helps confine the
searches for the source of malfunction to single components.

To achieve modular compensability,decomposability, and
understanding, modules must have high cohesion anddopling.

A module has high cohesion if all elements are related strongly.
Elements of a module (e.g. statement, procedures, and declarations) are
grouped together in the same modules for a logical reason, not just by
chance; they coperate in the same mholes (e. g. modules A call a
routine provided by module B or

accesses a variable declared by Module B) if two modules in a system to
exhibit low coupling, because if two modules are highly coupled, it will
be difficult to analyze, understand, modify, tfe®r reuse them
separately.

Module structures with high cohesion and low coupling allow us to see
modules as black boxes when the overall structure of a system is
described and then deal with each module separately when the module's
functionality is desdbed or analyzed. This is just another example of
the principle of separation of concerns.

3.2.2 Principles Of Software Engineering

Engineering disciplines have principles based on the laws of physics,
biology, chemistry or mathematics. Principles aresuo live by, they
represent the collected wisdom of many dozens of people who have
learned through experience.

Because the product of software engineering is not physical, physical
laws do not form a suitable foundation. Instead, software engineering
has had to evolve its principles based solely on observation of thousands
of projects. The following are probably the more important ones. A
customer will not tolerate a poquality product, regardless of how you
define quality. Quality must be quantifieshd mechanisms put into to
deliver a product on time, even though its quality is poor, but this is
correct only in the short term, it is suicide in the middle and long term.
There is no tradeff to be made here. The first requirement must be
quality.

However, there is no one definition of software quality. To developers,

it might be elegant design or elegant code. To users, it might be good
response time or high customers, it might be satisfying all their

249

perceived and nget-perceived needs. The dilemma that these
definitions may not be compatible.

3.2.3 High-quality Software Possible

Although our industry is saturated with examples of software system
that perform poorly, are full of bugs, or otherwise fail to satisfy user
needs, there are counteraexple. Large software systems can be built
with very high quality, but they carry a steep price taq the order of
$1,000 per line of code: one example is IBM'sbamd flight software

for the space shuttle: three million lines of code with less thareoor

per 10,000 lines.

Techniques that have been demonstrated to increase quality
considerably include involving the customer, prototyping (to verify
requirements before fulicale development), simplifying design,
conducting inspections, and hiringethest people.

3.2.4 Give Products to Customers Early

No matter how hard you try to learn user's needs during the
requirements phase, the most effective way to ascertain real needs is to
give users a product and let them play with it. The conventional
waterfall model delivers the first product after 99 percent of the
development resources have been expanded. Thus, the majority of
customer feedback on need occurs after resource have been expanded.
Contrast this with an approach that you deliver a quicand dirty
prototype early in development, gather feedback, write a requirements
specification, and then proceed with fatlale development. In this
scenario, only five to twenty percent of development resources have
been expended when customers first begoroduct.

3.2.5 Evaluate Design Alternatives

After the requirements areraed upon. you must examine a variety of
architectures and algorithms. You certainly do not want to use an
architecture simply because it was used in the requirements
specificaton. After all, that architecture was selected to optimize the
Understandability of the system's external behaviour. The architecture
you want is the one that optimizes conformance with the requirements.

For example, architectures are generally selected opimize
constructability, throughput, response time, modifiability, portability,
interoperability, safety, functional requirements. The best way to do this
Is to enumerate a variety of software architectures, analyze (or simulate)
each with respect to ¢hgoals, and select the best alternative. Some

250

design methods result in specific architectures, so one way to generate a
variety of architectures is to use a variety of methods.

3.2.6 Use an Appropriate Process Model

There are dozens of process modelterfall, throwaway prototyping,
incremental, spiral, operational prototyping, and so on. There is no such
thing as process model that works for every project,. Each project must
select a process that take risks, application area, volatility of
requirementsand the extent to which requirements are wwetlerstood.

Study your project's characteristics and select a process model that
makes the most sense. When building a prototypes for example, choose
a process that minimizes protocol, facilitates rapid lbgpmeent and

does not worry about checks and balances. Choose the opposite when
building a file critical product.

3.2.7 Minimize Intellectual Distance

Edsger Dijkstra defined intellectual distance as the distance between the
reatworld problem and the cqpoterized solution to the problem.
Richard Fairley has argued that the smaller the intellectual distance, the
easier it is to maintain the software. To minimize intellectual distance,
the software's structure should be as close as possible to tiveorshl
structure. This is primary motivation for approaches such as objective
oriented design and Jackson System Development. But you can
minimize intellectual distance using any design approachOf course,

the real -world structure can vary as Jawed Siddigmings out
(Challenging University Truths of Requirements Engineering, Mar,
1994, pp.189). Different humans perceive different structures when
they examine the same real world and this construct quite different
realities.

3.2.8 Good Management is More Inportant than Good
Technology

The best technology will not compensate for poor management, and a
good manager can produce great results even with meager resources.
Successful software stattps are not successful because they have great
process of greatobls (or great products for that matter!). Most are
successful because of great management and great marketing.

Good management motivates people to do their best, but there are no

universal right styles of management. Management style must be
adapted tohe situation. It is not uncommon for a successful leader to be

251

an autocrat in one situation and a consensus based leader in another.
Some styles are innate, others can be learnt.

3.2.9 People are the key to success

Highly skilled people with appropriatexperience, talent and training
are key. The right people with insufficient tools, languages, and process
will succeed. The wrong people with appropriate tool, language and
process will probably fail (as will the right people with insufficient
training or experience). When interviewing prospective employees,
remember that there is no substitute for quality. Don't compare two
people by saying, person x is better than person y but person y good
enough and less expensive. Your can't have all superstars, Ibas un
you truly have an overabundance, hire them when you find them!

3.2.10 Follow with care

Just because everybody is doing something does not make it right for
you. It may be right, but you must carefully assess its applicability to
you environment. ©ject orientation, measurement, reuse, process
improvement, CASE, prototyping all these, might increase quality,
decrease cost, and increase user satisfaction.

However, only those organizations that can take advantage of them will
reap the rewards. Thmotential of such techniques is often oversold, and
benefits are by no means guaranteed or universal. You can't afford to
ignore a new technology. But don't believe the inevitable hype
associated with it. Read carefully. Be realistic with respect to payoff
and risks. And run experiments before you make a major commitment.

3.2.11Take responsibility

When a bridge collapses we asWhat did the engineers do wrong?
When software fails we rarely ask this. When we do, the responise is,
was just following the 15 stepsof this method, or My manager made
me do it or The Schedule left insufficient time to do it right. The fact is
that in any engineering discipline the best methods can be used to
produce awful designs, and the most antiquated methods to produce
elegant designs.

There are no excuses: If you develop a system, it is your responsibility
to do it right. Take that responsibilito it right, or don't do it at all.

252

4.0 CONCLUSION

Software engineering deals with the applications of engineering
principles to the blinding of software product$he arrive at a set of
engineering principles, one has to select a set of qualities that
characterize the products. In this unit we presented a set of' qualities for
software product. At the end, we discussederal principles which
should be applied in designing software products that achieve these
qualities.

5.0 SUMMARY

In this unit you have learned about qualities to consider in software
products and processes. You have also learnt about Software
Engineering principles. In the next unit you will learn about issues that
relate to software performance.

6.0 TUTOR-MARKED ASSIGNMENT

1. Discuss seven (7) of the important qualities of software products

2. Outline the principles of Software Engineering discussed in this
unit.

7.0 REFERENCES/FURTHER READING

Management of Information Systems, Unit 2, Indira Gandhi National
Open University

Software Engineering- A Practitioner's Approach by ROGER
S.PRESSMAN: McGraw Hill International Edition.

253

UNIT 3 LANDMARKS OF OBJE CT-ORIENTED
ANALYSIS AND DESIGN

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content
3.1 Origin of ObjectOriented Design
3.2 Two Different Cultures
3.2.1 Programming Language (Ndformal) Views of
OOD
3.2.2 Life-Cycle Views of OOD
3.3 OOD Appraches
3.3.1 Non-Rigorous OOD Approaches
3.3.2 Moderately Formal OOD Approaches
3.3.3 Mixed Paradigms
3.3.4 Modifying Other Approaches to Encompass
ObjectOriented Thinking
3.3.5 Different Paradigms in the Same L-&ycle
3.4 Analysis of OOD Approaches
4.0 Conclusion
5.0 Tutor-Marked Assignment
6.0 Reference$urther Reading

1.0 INTRODUCTION

Like many other concepts. The objeetented concept did not come up
overnight. Objecbriented design has come a long way. In this unit,
some of the important landirks of objecbriented design will be
discussed.

2.0 OBJECTIVES

At the end of this unit, you should be able to

1 describe the origin of Objectriented design

T differentiate between the two cultures in the "obmwoented
community"

254

3.0 MAIN CONTE NT

3.1 Origin of Object-Oriented Design

Work on what was to become "structured design" began in the early
1960s. Structured design, as a widfined and named concept, did not
achieve appreciable visibility until the publication of an article in the
IBM Systems Journal in 1974. Five years later, Prentice Hall published
a book by Larry Constantine and Edward Yourdon that introduced
structured design to the masses.

Even before 1979, variations on Constantine's version of structured
design began to appeaAfter 1979, software engineers could select
from an ever increasing variety of approaches to structured design, e.g.,
Gomaa, 1984], Ward and Mellor. 1985], [Hatley and Pirbliai, 1987], and
[Marca and McGowan, 1988]. It should be obvious to even a casual
observer that there is more than one way to accomplish a "structured
design."

Like structured design, the term "objextented design” (OOD) means
different things to different people. For example, OOD has been used to
imply such things as:

1 The designof individual objects, and/or the design of the
individual methods contained in those objects

1 the design of an inheritance (specialization) hierarchy of objects,

1 the design of a library of reusable objects , and

1 the process of specifying and coding of aire objectoriented
application.

What many people consider to be the first obganted programming
language Similar - was introduced in 1966. The term "objectented,"
however, did not come into use until around 1970, with many people
creditingAlan Kay as the person who coined the term.

3.2 Two Different Cultures

Part of the problem is the diversity within thealed "objectoriented
community." Many objecbriented people seem to focus primarily on
programming language issues. They temddst all discussions in terms

of the syntax and semantics of their chosen olggented
programming language. These people find it almost impossible to
discuss any software engineering activity (e.g_ analysis, design, and
testing) without direct mentio of some specific implementation
language.

255

Outside of producing executable "prototypes,” people who emphasize
programming languages seldom have wdelfined techniques for
analyzing their client's problems or describing the overall architecture of
the sdtware product. A great deal of what they do is intuitive. If they
have a natural instinct/intuition for good analysis or good design, their
efforts on smaito-medium, norcritical projects can result in
respectable software solutions.

Programming languge people use the terms "analysis" and "design” in

a very loose sense. Analysis can mean listening to their customer,
making some notes and sketches, thinking about both the problem and
potential solutions, and even constructing a few software prototypes.
Design can mean the cotirel design of an individual object, the
development of an inheritance (specialization) hierarchy, or the informal
definition and implementation of a software product (e.g., identify all
the objects, create instances of the oBjeahd have the instances send
messages to each other).

Another group of objeebriented people are interested in formality and
rigor. To these people, software engineering is largely very systematic,
repeatable, and transferable. They view obpentel software
engineering as primarily an engineering process with -gafined,
coordinated tasks, and walefined deliverables. The quality of the
resulting products (and the process itself) can be evaluated in a
guantitative, as well as qualitative, manne

For members of this second camp, "obj@eented programming”
(OOP) is primarily a coding activity, and "objemtiented design" did

not exist until about 1980. The programming language people, on the
other hand, often lay claim to all things objedented, including
objectoriented design. Even though a wedlifined, quantifiable,
transferable, and repeatable process for olgeehted design did not
exist until the early 1980s, in their minds OOD has existed at least since
there were objeeabdriented programming languagesa process many
people date from 1966 when Similar was first introduced.

As you might guess, there are significant cultural differences between
these two groups of objeotiented people. For example, some of those
that emphasizeigor and formality view the programming language
people as chaotic, overly error prone, wasteful, and largely
unpredictable. On the other hand, some of the programming language
people consider the "formality” and "rigor" to be mere window dressing

- at kest adding nothing to the quality of the final product, and at worst
increasing the cost of development while simultaneously delaying the
delivery and lowering the quality of the resulting software product.

256

Even if one takes into account the widely difflet perspectives
described above, there are still significant variations within each of these
perspectives. Consider inheritance, i.e., the process whereby an object
acquires characteristics from another object. A few olgeented
programming languageslow an object to inherit directly from only one
other object (single inheritance). Other languages allow an object to
inherit characteristics from more than one object (multiple inheritance).
Someone who defines OOD in programming language terms may
chose to Include or exclude Multiple inheritance from the design
process based on whether or not their particular language supports the
concept.

Other issues that arise in the programming language camp include the
mixing of data and objects, the abilityhave program elements that are
not encapsulated within any object, and the use of exceptions,
parameterized classes, metaclasses, and concurrency.

Within the "formality and rigor" group there is also a significant amount
of diversity. Some try to portragbjectoriented methods as slightly
recast structured approaches (old wine in new bottles). Others advocate
a more datariven style, e.g., the extensive use of enthationship
diagrams and other data modeling techniques. Still others seem to have
sucessfully blended objedriented thinking and rigorous software
engineering. In effect, they have integrated the two without losing the
benefits of either.

Almost everyone that advocates a formal approach views ebject
oriented design as only one partté software development lHgycle.

It may be preceded by such activities as obpeiginted analysis and
feasibility studies, and followed by objeatiented programming
(coding). Those accomplishing objeotiented design will also be
expected to intact with testing, quality assurance, and management
personnel. Only if the software problem is small, and of relatively low
risk, will objectoriented design be the first l#gycle activity, and even
then it will be followed by objeebriented programming

The word "formal" is sometimes reserved for mathematical (or logically

rigorous) approaches to software development. Examples of such
approaches include Vienna Development Methodology (VDM), OBJ

and

its derivatives, Z, and C.A.R. Hoare's communicatisgquential
processes. In this unit, we will use the word "formal” more in the sense
of "a welldefined, stefby-step, repeatable process with accompanying
guidelines, and defined deliverables.")

257

3.2.1 Programming Language (NonrFormal) Views of OOD

We will use the term "noformal” to describe approaches to OOD that

are not weldefined, stefby-step, or repeatable, such as those that
emphasize the design of individual objects, specialization (inheritance)
hierarchies, and libraries of objects. A survey safch approaches
indicates that there may indeed be some repeatable rigor (and some sage
advice) given for these approaches, but they are severely lacking when it
comes to defining the software architecture of large/critical systems.

Non-formal OOD approdwes usually exhibit many of the following
characteristics:

1 There is an overriding emphasis on identifying the objects that
will make up the application almost to the exclusion of
understanding the overall application. For example, one non
formal approak defines the OOD approach as "identify and
create the classes, create instances from the classes, and then
have the instances send messages to each other."”

1 Because of the above, nformal approaches are often bottom
up in nature. Specifically, one idefindis, defines, and implements
pieces of the solution, and then merges these pieces into a final or
partial solution. (Note that a botteap approach need not be
chaotic, and may be entirely appropriate for small and/or non
critical problems.)

1 Non-formal approaches frequently address issues related to the
internal design of individual objects and almost never discuss
strategies for the design of the software architecture for the
overall application.

1 Often there is a blurring of the distinction between th&gieof
an individual object and the design of the application at hand.
Specifically, it is not unusual in such approaches to see objects
containing applicatiorspecific information. (This, unfortunately,
reduces the reusability of such objects and deesct®e overall
reliability of the application.)

3.2.2 Life-Cycle Views of OOD

We now Shift our attention to those who view objegénted design as

one process among several in the development of software products.
This view stipulates that, with the ggible exception of very simple,
non-critical pieces of software, several processes are involved in the
creation of software products. These processes have commonly been
referred to as "methodologies.” (There are those who point out that the
"-ology" suffix on methodology should mean "the study of methods,"
but we will use the term methodology as it is usually understood.)

258

There are many views as to how to partition the development part of the
software product lifeycle. These views can be very simpleg(e.
design, followed by coding, followed by testing) or fairly involved (e.qg.,
including feasibility studies, requirements analysis, Heytel external
design, et cetera).

Virtually all life-cycle views of OOD assume the possibility of some
form of analyss (establishing an understanding of the problem to be
solved, sometimes coupled with a hilgvel external description of the
solution). Only if the problem is very simple, will the "analysis phase"
become optional. Lifeycle views very often considerdding" to be
separate from "design." For example, it is not uncommon to hear
statements such as, "no code will be produced until the design is
complete.”

Software engineers have known for some time that the divisions
between various lifeycle phases (e.gbetween analysis and design,
and between design and coding) are not sharp. Older approaches tended
to emphasize the divisions by using different techniques, deliverables,
and viewpoints. For example:

1 Structured analysis emphasized understanding thetleaglient
conducted business, data flow diagrams, and "the flow of data."”
T Structured design, on the other hand, stressed developing an

acceptable software system architecture, structure charts, and "the
flow of control.”

With both increased experienae software development techniques,
and an emphasis on an objéariented view point, the distinctions
between various lifeycle phase have become more blurred. Many
people have observed that structured analysis, structured design, and
structured progrmming had little in common other than a sense of
formality and the adjective "structured." Objectented techniques
(e.g., objecbriented analysis, objecriented design, and object
oriented programming), however, tend to be much more consistent with
each other.

E.W. Dijkstra introduced the term, and basic concepts behind,
"structured programming” in 1969. Although structured programming
focused primarily on coding activities, it accelerated a movement that
lead to the formalization of other I#gycle phases, e.g., structured
design and structured analysis. Objegénted programming has had a
similar effect on lifecycle phases.

One very important difference between the-called "structured
revolution" and the scalled "objectoriented revolutia” is the much

259

higher degree of consistency among obmanted lifecycle phases.

For example, the concept of inheritance (specialization) is much the
same in objeebriented requirements analysis, in objedented design,

and in objecriented progemming.

3.3 OOD Approaches
3.3.1 Non-Rigorous OOD Approaches

Dave Bulman ([Bulman, 1989]) and others have observed that the mere
identification and creation of objects is not a substitute for "design." It is
important to realize that, by "design,"” Bulmaneans the establishment

of a system architecture. This includes not only the identification of
system components (objects), but also the definitions of their
interactions and interrelationships as well.

Russell J. Abbott ([Abbott, 1980] and [Abbott, B)B described an
informal method for specifying the design of a software system. It
involved writing a paragraph that described a solution to the problem at
hand, and then identifying the nouns and noun phrases as candidate
objects. The verbs in the paragh could then be analyzed to suggest
methods (operations) encapsulated within the objects.

Grady Booch adopted the work of Abbott as a mechanism for bringing
out the software engineering features of Ada (e.g., [Booch, 1981],
[Booch, 1982], [Booch, 1983ahnd [Booch, 1983b]). Initially making
only a few changes in Abbott's approach, Booch referred to his
technique as "objeariented design." To be sure, Booch was also
influenced by Smalltalk, objeariented computer hardware, and
semantic data modelin@®ne could say that Booch was probably the
first person to significantly popularize the term "objedgented design."

(It was not until the mid to late 1980s that people who focused primarily
on objectoriented programming languages began using the ted O
with any frequency.)

3.3.2 Moderately Formal OOD Approaches

People who define approaches, guidelines, and techniques for various
software engineering activities are commonly called "methodologists."
People such as Grady Booch, Larry Constantine, angd Rumbaugh

are examples of people who are often referred to as methodologists.

As both the methodologists and the users of their methodologies become

more experienced, they cause mutations (clarifications, modifications,
and extensions) to the methodgies. In fact, it can be

260

interesting to follow the evolution of a particular methodology over time
gain experience. Thinking on objemtiented approaches. Realizing that
objectoriented thinking is not limited to design and coding, Booch
began to refeto his approach as "objectiented development.”

Some OOD approaches are strongly influenced by particular
programming languages. Although the proponents of "responsibility
driven design" do not think of the approach as specific to a particular
programnmng language, its Smalltalk roots are fairly obvious.

As objectoriented technology increases in popularity, people who
formerly advocated structured techniques have begun to modify their
approaches to encompass objoented thinking. The degree of
modfication varies from author to author.

One technique for creating a "new" methodology is to take one or more
iImportant principles from older approaches and then to recast new ideas
(e.g., objecbrientation) in terms of these principles. The Hierarchical
ObjectOriented Design (HOOD) stresses the importance of -@doam
approach to software engineering, and places objgmttation within

that framework. The General Obje@tiented Development (GOOD)
approach advocated by Ed Seidewitz and Mike Stargssdd the
importance of understanding a problem in more traditional terms (e.g.,
data modeling) before moving to an objeaented perspective.

There are other views on OOD that have evolved from fairly unusual
perspectives. [Jochem et al., 1989] ddmesi an approach that was
influenced by computer integrated manufacturing (CIM). James
Rumbaugh ([Blaha et al., 1988] and [Rumbaugh et al., 1991]) advocates
an approach that is more closely based on data modeling than on object
oriented thinking. Peter CogfiCoad and Yourdon, 1991]) describes a
"multi-component, multlayered" approach that is fairly unique.

3.3.3 Mixed Paradigms

There are methodologists that suggest mixing ofgaented
approaches with other approaches, and giving each approach equal
weighting. [Bewtra et al., 1990] suggests combining objeented
technology with functional programming ([Backus, 1978] and [Backus,
1982]). [Pendley, 1989] describes a combination of olgeented
thinking and information engineering ([Finkelstein, 899 [Martin,
1989], [Martin, 1990a], and [Martin, 1990b]). Stream and formal object
oriented specification techniques are advocated in [Toetenel et al.,
1990].

261

3.3.4 Modifying Other Approaches to Encompass Object
Oriented Thinking

When moving from armlder way of doing things to a newer way, it is
seldom advisable to "throw out" everything connected with the old way.
One often used strategy is to enlarge the older way so that it can
encompass some or all of the aspects of the newer. Some authors
sugges mechanisms for keeping much of traditional
structured/functionatlecomposition thinking while addressing object
oriented concerns.

3.3.5 Different Paradigms in the Same LifeCycle

Experience has shown that simply attempting to integrate ebject
oriented thinking into the more traditional methodologies (e.g.,
structured) is a mistake. The major problem is that of localization, i.e.,
the placing of related items in close physical proximity to each other.
Functional approaches, for example, tend to locatifmrmation around
functions, whereas objeotiented approaches tend to localize
information around objects. A functional decomposition "front end" to
an objectoriented process, in effect, breaks up objects and scatters their
parts. Later, these partsust be retrieved and delocalized around
objects.

There have been quite a number of attempts to reconcile the output of a
nonobjectoriented process with the input requirements of an OOD
process, but none of these scenarios are as clean and easy amnusing
objectoriented approach from the very beginning of the software life
cycle.

3.4 Analysis of OOD Approaches

Since objecbriented programming has been with us for more than a
quarter of a century, and OOD proper has been around for over a
decade, its not unusual that a number of attempts have been made to
analyze the OOD process. While some of these analysis reveal potential
problems with particular OOD approaches, none have advocated
avoiding an objeebriented approach.

Comparisons

Comparisons ofnethodologies have been around since the 1970s. The
first significant comparison of OOD with Structured Analysis/Structured
Design and Jackson System Development was done under the auspices
of General Electric ([Boeliabbavis and Ross, 1984]). This studyvga

the same problem to three different groups of people, and had them all
implement solutions using the same programming language.

262

When compared with the other solutions, the researchers found that the
OOD solutions:

1 were simpler (using contrdlow comgdexity and numbers of
operators and operands as metrics),

1 were smaller (using lines of code as a metric),

1 took less time to develop, and

1 were better suited to retime problems.

Some comparisons have been very informal (e.g., [Boyd, 1987] and
[Jamea, 198]), while others have been flawed because the authors did
not fully understand what OOD was.

OOD Techniques

A number of authors, while not describing complete OOD
methodologies, have described techniques that can be used in the OOD
process. [Beck and Caoimgham, 1989], for example, describes Class
responsibilityCollaboration (CRC) cards. The idea is to create one CRC
card for every class involved in the problem or solution. The
responsibilities (method interfaces) of the object are documented on one
area of the card and the collaborations (other objects with which the
object must interact) are placed on another area.

[Byrne and Kwiatkowski, 1986] describe a graphical means of
representing objects in an OOD process. In the same vein, [Coleman et
al., 199] describes a variation on state charts ([Harel, 1987] and [Harel
et al., 1987]), i.e., "object charts." (Loomis et al., 1987] defines a
graphical technique that is used in tile OOD approach advocated by
James Rumbaugh.

Experiences With OOD

One of thesgn of a maturing technology 1is th
stories, o i.e., accounts of the experie
technology. [Chedgey et al., 1987] describes an attempt to use a formal

methodology (Vienna Development Method, e.g., [Jones, |19

OOD. [Meyer et al.,, 1989] talks about the experience of using an

approach to OOD that mixes functional decomposition with more

traditional objecioriented techniques. [Davis and Irving, 1989] presents

a discussion of one of the most common use3@D, i.e., for reatime

systems. [Vlissides and Linton, 1988] describes the use of OOD for the

creation of a graphics application.

Metrics

Even before Tom Glib wrote his landmark book on software metrics
([Glib, 1977]), people had been interested in meag software. While
there are now numerous metrics for measuring-aigact oriented

263

software (e.g., [Arthur, 1985], [Card and Glass, 1990], [Conte et],
[Dreger, 1989], [Ejiogu,

1991], [Grady and Caswell. 1987], and [Jones, 19911). there are
relativelyfew discussions on metrics for objewiented software.

Karl Livebearer and his colleagues have written a number of articles on
assessing the quality of the design of an individual object (e.g.,
[Livebearer and Riel, 1989]). However, until very recerithgre has not

been much published. [Chidambaram and Kemmerer, 1991] is
probably the most comprehensive article to date on assessing the quality
of an objecioriented design.

Computer Aided Software Engineering For OOD

Computer aided software enginegri(CASE), once considered a
luxury, is becoming increasingly necessary in today's software
engineering arena. With the rising interest in obganted software
engineering, it is only natural to ask, "Where are the CASE tools for
objectoriented technalgy?"

One of the major obstacles to OOD CASE tools is the wide variety of
approaches. Some OOD methodologists, or their organizations, have put
out their own CASE tool s, e. g.,
International's OOATool(tm). Some CASE venddrave chosen to
automate the approaches from several different methodologists, e.g.,
Mark V Systems, Ltd.'s Object Maker(tm) and Photoset Ine.'s Paradigm
Plus(tm). However, it will be some time before the obmatnted
technology market becomes as focusesl the seaalled structured
technology marketplace.

4.0 CONCLUSION

Objectoriented technology has many different dimensions, viewpoints,
and implementation strategies. Those considering using OOD on a
project have many different options from which tmose. However, the
"right choice" will require careful research.

5.0 TUTOR-MARKED ASSIGNMENT

1. Describe briefly the origin of Obje€riented Design
2. Discuss the two views of Obje€iriented Design

6.0 REFERENCES/FURTHER READING

ObjectOriented Design B¥dward V. Berard

264

UNIT 4 OBJECT-ORIENTED ANALYSIS AND DESIGN
CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content
3.1 ObjectOriented Analysis and Design
3.2 The Role of GOAD in the Software Life Cycle
3.3 OOAD Methodologies
3.3.1 Booch
3.3.2 Coad and Yourdon
3.3.3 Fusion
3.3.4 Jacobson: Objectors and DOSE
3.3.5 LBMS SEOO
3.3.6 Rumbaugh OMT
3.3.7 Shlaer and Mellor OO Analysis
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 Reference$urther Reading

1.0 INTRODUCTION

Most new clent/server application development tools emphasize ebject
oriented (00) features. This implies that an 00 analysis and design
(OOAD) methodology should be an effective guide to applying these
tools to business problems. But with the numerous methodologies
available for OOAD, how do you choose the correct one? How do you
get started, and how do you ascertain whether your approach is as
efficient as it should be? And how do you avoid the pitfalls? OOAD can
provide wonderful benefits, but believing that a neethodology will

solve all your problems is like believing in Utopia.

In this unit we will discuss a number of Objextented Analysis and
Design methodologies.

2.0 OBJECTIVES
At the end of this unit, you should be able to
1 describe the origin of Obgtoriented design

T differentiate between the two cultures in the "obmwented
community"

265

3.0 MAIN CONTENT

3.1 Object-Oriented Analysis and Design

A survey of available literature shows that the applications competing
for "object honors" are wtiégn mostly in C++ or Smalltalk, and have a
heavy manufacturing, engineering, aerospace, or scientific focus. That
the major OOAD methodologies are best for such problems, however,
does not guarantee that they are also best for typical business
client/serve applications. You need to determine which methodology is
best suited for your particular application, and what to do if no
methodology matches your requirements precisely. (Using OOAD often
requires adaptations to methodologies.)

3.2 The Role of GOAD inthe Software Life Cycle

To understand what's right and wrong with OOAD, you need to know
where 00 methodologies fit into the software life cycle. These
methodologies do not replace traditional approaches (such as data flow,
process flow, and state tratigsh diagrams); they are important new
additions to the toolkit.

According to Donald Fire Smith in his book Dictionary of Object
Technology (SIGS Books, 1995), analysis is "the development activity
consisting of the discovery, modeling, specification andluation of
requirements,” while 00 analysis is "the discovery, analysis and
specification of requirements in terms of objects with identity that
encapsulate properties and operations, message passing, classes,
inheritance, polymorphism and dynamic bimgli' Fire smith also states

that 00 design is "the design of an application in terms of objects,
classes, clusters, frameworks and their interactions."

In comparing the definition of traditional analysis with that of OOAD,

the only aspect that is reallgw is thinking of the world or the problem

in terms of objects and object classes. A class is any uniquely identified
abstraction (that is, model) of a set of logically related instances that
share the same or similar characteristics. An object is anyaatish

that models a single thing, and the term "object" is synonymous with
instance. Classes have attributes and methods. For an object class named
Customer, attributes might be Name and Address, and methods might be
Add, Update, Delete, and Validate. <lass definition defines the
Customer class attributes and methods, and a real customer such as
"XYZ Corp." is an instance of the class. If you have different kinds of
customers, such as residential customers and commercial customers, you
can create twaew classes of customers that are descendants of the
Customer class. These descendants use inheritance to gain access to all

266

of the Customer class attributes and methods, but can override any of
the ancestor attributes and methods, as well as contairequmyed new
attributes and methods.

There are three types of relationships between classes: inheritance,
aggregation, and association. Inheritance (also referred to as
generalization/specialization) is usually identified by the phrase "is a
kind of." Forexample, Student and Faculty are both a kind of Person
and are therefore inherited from the Person class. Aggregation is
identified by the phrase "is a part of," as with a product that contains
parts. If neither of the first two relationships applies; thet objects are
clearly related (for example, an employee is associated with a company),
then the relationship is association.

An abstract class is a class that has no instances, and is used only for
inheritance. A concrete class is a class that can dtantiated, that is,
that can have direct instances.

All of the major OOAD methodologies have a similar basic view of
objects, classes, inheritance, and relationships. The drawing notation is
slightly different in each; the real differences in the metlmgles are
more subtle.

Table 1 (below) summarizes the major GOAD methodologies. When
you're choosing a methodology, it is important to consider not only the
methodology's features, but also the cost of using it, the types of
problems to which it is besduited, its limitations, and the training
available. When used in typical initial attempts to develop client/server
applications using OOAD methodologies, all of the methodologies
suffer from the same basic flaws:

1 an overemphasis on the 00 approach inegan even though
another approach might be better for some parts of the problem

1 an overemphasis on the problem domain object model during the
analysis phase

1 analysis diagrams and output formats that end users may find

difficult to understand
1 difficulty in the methodology's ability to describe complex
analysis problems
a lack of emphasis on the underlying system architecture
an inability to understand the limitations of either 4GL OO
languages or of beginning OO developers

= =

267

Table 1. Major OOAD Methodologies

Analysis

Cited Methodology
Applications /

Markets
Booch No
Coad and No
Yourdon

Fusion No

Jacobson Yes
Objectory
LBMS Yes

CEANn

RumbaughNo

Shlaer andNo
Mellor

Propri- Type

etary

Ternary

Unaty

Ternary

Ternary

Ternary

Ternary

Ternary

Scope Strengths Primary

Complex,
Rich.
Pragmatic
Simple,
Limited.
Pragmatic
Complex,
Rich.
Praamatic
Complex,
Rich
Middle of

the Road.
Pragmatic
Complex,
Rich.

Somewhat
Pragmatic

Complex,
Rich

Desian

Analysis

Full Life
Cvcle

Full Life
Cycle
Full Life
Cvcle

All

Client/Serve

All

All

Client/Servel

Analysis & All, but

Desian

Design

heavilv
Fmhedded.

RealTime

Embedded,
RealTime

Every object methodology tells you to start with the object model, not
the data model; there are at least four problems with this approach:

)l
)l

T

3.3

OOAD Methodologies

The data model often exists before the object model.

The analyst may rightly be more comfortable buildihg tlata
model before the object model.
A good object model should be able to map to any data model.
For me, it is usually a requirement in complex systems that an
object's attributes can map to one or more tables in one or more
databases.
A good abstractlgect model of the problem domain may not be
easy to implement in the chosen language or development tool.

OOAD methodologies fall into two basic types. The ternary (or three
pronged) type is the natural evolution of existing strred methods and

268

has three separate notations for data, dynamics, and process. The unary
type asserts that because objects combine processes (methods) and data,
only one notation is needed. The unary type is considered to be more
objectlike and easier ttearn from scratch, but has the disadvantage of
producing output from analysis that may be impossible to review with
users.

Dynamic modeling is concerned with events and states, and generally
uses state transition diagrams. Process modeling or functmusling

is concerned with processes that transform data values, and traditionally
uses techniques such as data flow diagrams.

In the following sections, 1 describe the methodologies of Booch, Coad
and Yourdon, Fusion, Jacobson, LBMS, Rumbaugh, and iShiae
Mellor. There are several other methodologies that | don't discuss, and if
you are interested in learning more about them, | strongly recommend
lan Graham's book, Obje@riented Methods (AddiseWesley, 1994),
which does an excellent job of both deking and comparing available
methodologies.

3.3.1 Booch

Grady Broochdés approach to OOAD is one
supported by a variety of reasonably priced tools ranging from Visio to

Rational Rose. Booch is the chief scientist at Rati@udtware, which

produces Rational Rose. (Now that James Rumbaugh and Ivar Jacobson

have joined the company, Rational Software is one of the major forces

in the OOAD world.)

Booch's design method and notation consist of four major activities and
six notatons, as shown schematically in Table 2.

While the Booch methodology covers requirements analysis and domain
analysis, its major strength has been in design. However, with
Rumbaugh and Jacobson entering the fold, the (relative) weaknesses in
analysis ar@lisappearing rapidly. | believe that Booch represents one of
the better developed OOAD methodologies, and now that Rational Rose
IS moving away from its previous tight link with C++ to a more open
approach that supports 4GLs such as PowerBuilder. the dudtigy's
popularity should increase rapidly.

269

Table 2. The Steps in Booch's Methodology
Steps Notations

Logical Class Diagrams
structure Object Diagrams

Physical Module Diagrams
structure Process Diagrams

Dynamics of State Transition Diagrams
Classs

Dynamics of Timing Diagrams
Instances

For systems with complex rules, state diagrams are fine for those with a
small number of states, but are not usable for systems with a large
number of states. Once a singlate transition diagram has morertha
eight to 10 states, it becomes difficult to manage. For more than 20
states, state transition diagrams become excessively unwieldy.

3.3.2 Coad and Yourdon

Coad and Yourdon published the first practical and reasonably complete
books on OOAD (ObjectOriented Analysis and ObjeQriented
Design, Prenticédall, 1990 and 1991, respectively). Their methodology
focuses on analysis of business problems, and uses a friendlier notation
than that of Booch, Shlaer and Mellor, or the others that focus more on
desiq.

In Coad and Yourdon, analysis proceeds in five stages, called SOSAS:

1 Subjects: These are similar to the levels or layers in-fttata
diagrams and should contain five to nine objects.

1 Objects: Object classes must be specified in this stage, but Coad
and Yourdon provide few guidelines for how to do this.

1 Structures: There are two types: classification structures and

composition structures. Classification structures correspond to
the inheritance relationship between classes. Composition
structures defin¢ghe other types of relationships between classes.
Coad and Yourdon do not deal as well as Rumbaugh, Jacobson,
and several other methodologies do with these structures.

1 Attributes: These are handled in a fashion very similar to that in
relational analysis

270

| Services: The identification of what other methodologies call
methods or operations.

In design, these five activities are supplanted by and refined into four
components: problem domain component: classes that deal with the
problem domain; for exampleCustomer classes and Order classes
human interaction component: useterface classes such as window
classes

1 task management component: systeamagement classes such
as error classes and security classes

1 data management component. database acces®dnelhsses
and the like

Al t hough Coad and Yourdonos met hodol ogy
easiest 00 methodologies to learn and get started with, the most common

complaint is that it is too simple and not suitable for large projects.

However, if you adhere ta premise that you should use those pieces of

a methodology that work, and add other parts from other methodologies

as required, Coad and Yourdon's methodology is not as limiting as its

critics claim.

3.3.3 Fusion

In 1990, Derek Coleman of Hewlé®aclkard led a team in the U.K. to
develop a set of requirements for OOAD, and conducted a major survey
of methods in use at HP and elsewhere. The chief requirement was a
simple methodology with an effective notation.

The result was Fusion, Which Coleman anithecs developed by
borrowing and adapting ideas from other methodologies. They
incorporated some major ideas from Booch, Jacobson, Rumbaugh, and
others, and explicitly rejected many other ideas from these
methodologies.

Coleman did not use some of the aragomponents of Rumbaugh and
Shlaer and Mellor in Fusion, because the components were not found to
be useful in practice. Some writers have called this encouraging and
remarkable, and consider it indirect proof that excessive emphasis on
state models comse from Rumbaugh and Shlaer and Mellor's
telecommunications and real time system backgrounds.

Fusion's pragmatic approach seems to hold considerable potential for

client/server applications, but this methodology is not being marketed as
aggressively as mosf the other methodologies.

271

3.3.4 Jacobson: Objectors and DOSE

Although Jacobson's full OOAD methodology, Objectory, is proprietary
(to use it you must buy consulting services and a CASE tool, OrySE,
from Rational Software), it is probably the mostizes attempt by an
OOAD tool vendor to support the entire software development life
cycle. Jacobson is considered to be one of the most experienced 00
experts for applying 00 to business problems such as client/server
applications.

Jacobson's Obje@rierted Software Engineering (OOSE) is a
simplified applications. According to Jacobson: "You will need the
complete ... description which, excluding large examples, amounts to
more than 1200 pages" (Objegdtiented Systems Engineering,
AddisonWesley, 1992).

Object modeling and many other 00 concepts in Objectory and OOSE
are similar to 00 concepts in other methodologies. The major
distinguishing feature in Jacobson is the use case. Aasedefinition
consists of a diagram and a description of a singkrantion between

an actor and a system; the actor may be an end user or some other object
in the system. For example, the «wsese description of an order entry
application would contain a detailed description of how the actor (the
user) interacts with #hsystem during each step of the order entry, and
would include descriptions of all the exception handling that might
occur.

3.3.5 LBMS SEOO

Systems Engineering 00 (SEO00) is a proprietary methodology and
toolkit from the U.K:based company LBMS, which #aits U.S.
headquarters in Houston. SEOQQO is tightly integrated with Windows 4GLs
such as PowerBuilder, and is perceived to be a very pragmatic and
useful tool, but this perception may be due in part to a stronger
marketing effort than is often made for pooprietary methodologies.

Because SEOO is proprietary, there is not as much detailed information
available about it as there is about other methodologies, and it is
somewhere between difficult and impossible to try it out just to compare
it with the othes.

The four major components of the SEOO methodology are:

T work-breakdown structures and technique

1 an object modeling methodology
1 GUI design techniques

272

1 relational database linkages to provide ER modeling and- 4GL
specific features with ne@0 approachesna then adapting to 00. /A
very positive aspect of this is the heavy focus on data management and
data modeling. SEOO is intended to be object oriented while retaining the
advantages of traditional data modeling. This makes the methodology
well-suited for client/server database applications. SEOO is unique in
treating data, triggers, and referentraegrity rules as a set of shared
objects in a database. It treats a data model as a view of the shared
objects, which also include constraints, rules, andadyos (state
transitions and so on). SEOO draws a clear line between shared objects
and other objects, and regards the shared objects as important interfaces
between subsystems. This technique allows a distinction, for example,
between customer behaviorasbd by all applications and customer
object behavior unique to a single application. It is a technique with
which a purist would quibble, but which is eminently practical.

3.3.6 Rumbaugh OMT

James Rum Baughoés met hodol ogy, as descr |
Oriented Modeling and Design (Prentidall, 1991), offers one of the

most complete descriptions yet written of an 00 analysis methodology.

Although it is somewhat lacking in 00 design and construction, it

contains a large number of ideas and approadiasate of significant

use to analysts and designers.

Analysis consists of building three separate models:

1 the Object Model (OM): definition of classes, together with
attributes and methods; the notation is similar to that of ER
modeling with methods ferations) added

1 the Dynamic Model (DM): state transition diagrams (STDs) for
each class, as well as global evBotv diagrams

1 the Functional Model (FM): diagrams very similar to data flow
diagrams

3.3.7 Shlaer and Mellor OO Analysis

When Shlaer and Mer 00 analysis first came out in 1988, it
represented one of the earliest examples of 00 methodology and it has
evolved very positively since then.

Originally an objecbased extension of data modeling, the Shlaer and
Mellor methodology starts with annformation model describing
objects, attributes, and relationships. (Note that this is more like a data
model than an object model.) Next, a state model documents the states

273

of objects and the transitions between them. Finally, a-ftata
diagram shows tprocess model.

4.0 CONCLUSION

No one feature will make all software trivial to write, and no one
architecture will be ideal for all problems. Creating good software will
continue to be hard work. Each of these methodologies are very useful
for particubr situations.

5.0 SUMMARY

In this unit you have learned about the role of obggEnted analysis

and design in the Software Life Cycle and you have been introduced to
some of the major OOAD methodologies.

6.0 TUTOR-MARKED ASSIGNMENT

Outline FOUR O®@\D methodologies and briefly describe them.

7.0 REFERENCES/FURTHER READING

Michael Gora, ObjeeOriented Analysis and Design

274

UNIT 5 OBJECT-ORIENTED SOFTWARE DESIGN
CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content
3.1 SoftwareEngineering Trends
3.1.1 Prevailing Methods
3.1.2 Problems with the Topown Approach
3.2 ObjectOriented Approach
3.2.1 Finding Objects Using Structured Analysis Tools
3.2.3 Notation for Objects
3.2.4 Hybrid Design Methods
3.2.5 Using Physical Metaphor3he Desktop
4.0 Conclusion
5.0 Tutor-Marked Assignment
6.0 Reference$urther Reading

1.0 INTRODUCTION

For any realorld problem, you have to design the softwardentify

the objects and their interrelationshipbefore you can write any code

to implement the objects in an objemtiented language such as C++. In
fact, this early part of the software development proedhs analysis
and design phasess much harder than the actual coding because there
are no weHdefined, stefoy-step methods foaccomplishing the job.
The best you can do is to learn about the prevailing practices in-object
oriented analysis and design and adapt them to your problem.

This unit provides a summary description of some of the current ideas in
the field of objectoriented design. However, the unit does not attempt
complete coverage of objectiented design.

2.0 OBJECTIVES

After completing this unit, you should be able to;

T describe the sequence of activities that constitute software
development

1 identify methods ah tools for accomplishing the analysis and
design phases of the designing software

1 enumerate the problems with tdpwn approach to software
design

1 describe the use of objectiented techniques in software

development process

275

3.0 MAIN CONTENT

3.1 Software Engineering Trends

Looks on software engineering show the traditional lifecycle of software
development in the form of a waterfall (see Figure 5.1), in which the
development process follows a rigid sequence from analysis to design
and to implementatioand testing. Based on that waterfall process, here
is an oversimplified view of the sequence of activities that constitute
software development:

1.

276

You begin development with the analysis phase by analyzing
what the software must do and arriving at a plate, detailed
description of the software's behavior in response to the possible
set of inputs. You work with potential users of the software to
find a definitive answer to the question: What does the software
do? The result of this step is a set of iszments for the
software.

Next comes the design phase, during which you decide how to do
what the user wants. Here your goal is to map the user's real
world description of the software into algorithms and data that
can be implemented in a programmiagguage. Typically, you
might follow a topdown approach and repeatedly decompose the
software's functions into a sequence of progressively simpler
functions that are eventually implemented in the implementation
phase.

In the implementation phase yalefine the data structures and
write the code to implement the functions that were identified in
the design. Finally, you have to test the software to verify that it
conforms to the original specification as much as possible.

Analysis

Design

Implementation

Figure 5.1 Traditional Life Cycle of Software

3.1.1 Prevailing Methods

Although there is no single, cleaut, stepby-step approach to
designing software, there are wkhHown methods and tools for
accomplishing the analysis and desifgnages of the process.

Among the analysis methods, the most popular is structured analysis,
attributed to Tom DeMarco, who built on prior work by Ed Yourdon
and Larry Constantine. Structured analysis is concerned with the way
data flows through the systeit.generates a data flow diagram (DFD)
and two textual descriptions: a data dictionary and a minispecification.
The DFD is a diagramming notation that depicts the flow of data
through the system and identifies the processes that manipulate the data.
The data dictionary describes the data shown in the DFD, whereas the
minispecification describes, in plain English, how the data is processed

277

by each process. As an example, consider the problem of querying a
database and printing a sorted list of the itenréeratd by the database.
Figure 5.2 shows a grossly simplified data flow diagram for this task.
The diagram shows the major processes (functions), with arrows
indicating the data being passed between functions.

Data
Base

Matching

Database Search
Server Criteria
Query List of
items
Sorted List

Figure 5.2 Data FlowDiagram (DFD) for querying a database

Another type of diagram for representing a software system is the
structure chart introduced by Larry Constantine in the 1970s as a
replacement for flowcharts of earlier years. The structure charts are
quite similarto the flowcharts, and they provide a notational means to
represent the behaviour of the system being implemented. As shown in
Figure 5.3, a structure chart starts with a single-léopl module
represented by a rectangle. That module represents thel duacdion

of the system. From that topmost module, arrows fan out to subordinate
modules that the topmost module invokes. The subordinate modules, in
turn, invoke other modules. Thus, the structure looks like an
organization chart, reflecting the tolwn nature of the design. Each
arrow emanating from one module to another represents a function call
as well as a data transfer. In an actual structure chart, a label next to
each arrow identifies the data being transferred. There are other symbols

278

as well aghat indicate program's control flow, such as if statements and
loops.Many commercially available computaided software
engineering (CASE) tools support structure charts with symbols similar
to those originally suggested by Larry Constantine.

Solve Poblem 1
Part 1 Part 2Part 3 'Task A Task 6
Library 1

Which problem?

: i\ \ Y
Solve Solve Solve

N
et
~
"
:\
O
=3

Problem 1 Problan 2 Problem 2
part [L part 2 part 3 Y
Fiest

bnd

_|
i
/
—> P
-
—
4/'.:'4__
\\‘
AN
4—
_>
N
~
\m
D
Q
4—

Library
1 Library

1

Figure 5.3 Atypical structure chart

The design phase of the traditional development cycle is rather loosely
defined. The goal of design is to refine the data flow diagrams and map
the data into data structures using facilities of the programming
language (for exame] struck in C) that you will use to implement the
software. Procedures are then defined to implement the modules that
manipulate the data. The distinction between the analysis and design

279

phases are often blurred and, usually, there are several itefagifame
you arrive at a design for the software.

3.1.2 Problems with the Top-Down Approach

There are several problems with the-tlgovn approach so prevalent in
structured techniques. As Bertrand Meyer points outdtmpn design :

1 does not allow for evationary changes in software.

1 characterizes the system as having a singldewg function,
which is not always true (in Meyer's words: "Real systems have
no top").

1 gives functions more importance than data, thus ignoring
important characteristics ofaldata.

1 hampers reusability, because sub modules are usually written to
satisfy the specific needs of a highevel module.

3.2 Object-Oriented Approach

In any realistic software project, pastplementation changes are all but
evolutionary. Becauseeavearn as we go along, our usual approach to a
new programming task is to go through an iterative process of analyzing
the problem, implementing it, and then refining the design. In other
words, we develop prototypes or working models of the softwarelyGra
Booch calls this the strategy of "apzé¢ a little, design a little.He
gualifies this by stating that it does not mean that you should design by
trial and error. Instead, Booch advocates a design process that proceeds
with a series of prototypes, eaafndeling an important aspect of the
system and each selected with an eye toward arriving at the complete
functionality as the collection of prototypes grows.

The emerging objeatriented design (OOD) techniques reflect the
evolutionary aspect of softwamdevelopment. The steps of analysis,
design, and implementation are still necessary, but the separation
between them is blurred. Also, the approach in each phase is more
closely tied to the objects in theal world problem being solvedhe
remainder of his unit briefly discusses several ways of using object
oriented techniques in the software development process.

3.2.1 Finding Objects Using Structured Analysis Tools

At the implementation level, objectientation means encapsulating
data structures wh related functions and using the notion of "message
passing” (which may very well be implemented by function calls) to
accomplish the tasks of a program. The question in cbjsmhted
design is how to find the objects. For those already familiar with

280

structured analysis, the answer may be in using the results of structured
analysis to find the objects to be implemented using OOP techniques.
This approach can be exploited by commercial software developers who
are trying to introduce objecriented techology but have already
invested in CASE tools that employ tdpwn analysis and design.

A class is the template that defines the data and functions common to a
set of objects. Each object is an instance of its class. A class library is a
collection of clases, usually meant for some related tasks such as
displaying objects or storing them on disk.

Figure 5.4 illustrates the steps for a simplified example of finding the
objects for an index card file. Each card stores a name, address, and
phone number. Caentional structured analysis will model the card file
as follows:

Identify the requirements of the card filing system.In this case, the
system must be capable of creating a new card deck, adding or deleting
a card, finding a card, and saving cards dhis& resident database.

Translate the requirements into a -pwn structure in which the
topmost module enables the user to pick one of several choices: create a
new deck, save it, add a card, delete a card, or find a card. Each choice
iIs handled by sepate modules. The analysis also identifies the data
items and how they are processed. Typically, you will use libraries of
functions for specialized tasks such as displaying a card or organizing
the deck of cards as a database.

(MNit = cacd \
m g, S-S
Mﬁmnw a caxd
g Save
POV
Srd

281

3

Anceng
e 8 nzvil Cise
x atar:g |
hid naru raiule Fiud saue
[caid caxd ciec file
aearyh
\“\."‘w: * rn!";:.iq ,g.r: ’,/
vekd *
|] B8-Trea Likoacy

Figure 5.4 Designinga card file

You can use existing CASE tools in performing the analysis to
determine the functional breakdown of the system and identify the
necessary data items (from the data dictionary, for instance). At this
point, instead of using the CASE tool to idgsthe system, you can try

to identify the objects from the data and the functidas:. the card file,
here is a partial description of how you might do this:

T

282

Note that cards are manipulated by most modules identified by
structured analysis. Thus, eacér@d should be an object in the
system. In C++ terminology, you might decide to define an Index
card class, for instance, to encapsulate the data and functions
necessary to model an index card.

Because a card file is a collection of cards, there shouddviney

to maintain such a collection. You might use a container class (a
class designed to hold objects) or simply use an array of Index
Card objects for this.

Each card has several strings to hold information such as the
name and address. For this, youn case a String class that
enables you to handle each string as an objects. When a new card
Is created, you can create the necessary string objects.

You can choose from among three options for obtaining the
database that will store the cards. You can deaigomplete set

of classes, implementing a database in an clojeehted manner.

You can buy a commercially available library of classes and use
it. Lastly, you can directly call functions from the
programming interface to a commercial database that does
follow an objectbased design. The problem with the last
approach is that embedding calls to a database in the Index Card

class, for instance, couples the card class too tightly to a specific
database.

As you can see, the process of identifying tiigects can be quite
complicated, even for a relatively simple example such as the card file.
Even so, there are some general guidelines for identifying the classes:

1 Look for data and related functions that operate on the data.
Group them into a class.

1 If a class seems too specific, try to derive it from a more general

purpose class. The idea is to look for similarities among classes
and to create a hierarchy in which the common features are in a
base class. For example, instead of implementing a cincleaa
rectangle shape, first define a generic shape class, then derive
circle and rectangle classes from that generic shape. That way, a
new shape, such as a triangle, can be derived easily from the
same base.

1 Use a bottorrup approach to design libraried basic classes
such as strings and collections. For example, if you design a
database for the card file, it can be a geneuapose database
class that can be reused in other projects as well.

1 Avoid embedding in a class any code for displaying an object
storing it to the disk. Instead, use a separate class library for these
tasks.

Unfortunately, as fuzzy as these guidelines are for identifying objects
and their interrelationships, the material in most of the references listed
at the end of this chagtis not any more specific. Luckily, this situation

Is bound to improve, because objedented design is the current topic

of choice among many researchers and new design methods are
gradually beginning to emerge. The following discussions summarize
sone important ideas that can help you gain insight into designing
objectoriented software.

3.2.3 Notation for Objects

Diagrams are an essential part of any design, and atnjecited design

IS no exception. Unfortunately, there is no standard notation fo
representing objects and their interactions. Authors of books on ebject
oriented techniques have used their own notations to denote objects.
Recently other suggested notations have appeared in computer journals.
Of these, Wasserman, Muller, and Pitchave based their notation on a
combination of structure charts and the notation that Booch uses for Ada

283

packages- modules in the Ada programming language. Figure 5.5
shows a subset of Wasserman's notation that is adequate for representing
objects. The naition developed by Wasserman and colleagues is used in
a design technique termed objeciented structured design (OOSD),
which forms the basis of a useful design tool named Software Through
Pictures developed and marketed by Interactive Development
Environments, Inc.

3.2.4 Hybrid Design Methods

One trouble with using structured analysis as a basis for afnjectted
design is that the two approaches use radically different grouping of the
functions in the system. As Bailin points out, structured arsay®ups
functions together if, as a group, they constitute a higgwal function.

On the other hand, objeotiented analysis groups functions together on
the basis of the data they operate on. Thus, in ebjemtited approach,

all functions operatingn the same class of data fall in the same group.

This, however, does not mean that structured analysis is not useful. In
fact, according to Larry Constantine, one of the pioneers of the
structured approach, it may be more useful and even practicaé ta us
mix of top-down functional analysis together with objectentation.

Here are three possible scenarios:

1 An objectoriented system with tedown functional
decomposition applied to each object's methods: You decompose
the system into interacting olsfs, either by identifying the
objects from the output of a CASE tool or by using one of the
methods discussed later in the chapter. Then, you applyawep
structured analysis techniques to design the object's internal
methods (member functions in C++rteénology). In this case,
outwardly, the system appears objectented, but inside each
object there may be a small hierarchy of functions designed in a
top down manner (see Figure 5.6).

1 A top-down hierarchy of functions controlling the system that
empbys objectoriented modules for its functionality: As you can
see from Figure 5.7, in this case you design the system using a
top-down approach, but you implement the modules by using a
set of interacting objects.

284

l::al
- . i R——
fory nl i I.‘:_- (ré'.- [‘v. - Y 1 ‘
=te 8 1 ——
I 57 A E
L) -9 v
4:1;ch Lawt_ra‘rn,v I {
: =y | Casenl URT
D”‘ﬁ’: $ YeLdal ionahap
l) ‘ maze £ile
—_— 3 izes chie
{i -EXT | | xt_Lale 3n services of
[7 r Tex ’ maGe_ T @ 31T
~ A = 2
l.._'i'_, | ik - 4 15k €41
V i riie ~
At |
= mm——] =X — -
~laaas Leat i.c ‘ c.a reys 1 "j
gave ‘] | save
— —_
I e
- ~ !
oad A‘] ‘ | 1 and - H
= | T
R L] |
l ,([ent :;ﬁ (Inage l-l ‘T A |
1af infc
S — S

— s

Figure 5.5 Notations for objects andheir interactions

T

An objectoriented system built on a traditional library of
functions: This is a common case when you are building an
objectoriented system using the facilities of a conventional
library of functions such as Xlibthe C function libray for the X
Window System. As illustrated in Figure 5.8, the objects call
functions from the library to do their work, but the application is
built on the objects.

3.2.5 Using Physical Metaphors: The Desktop

One way to design software is to find the tighysical metaphor for the
various features of the software you are designing. For example, the user
interface in Apple Macintosh computers uses the desktop metaphor. You
are supposed to view the display as desktop containing folders and files
of all information laid out like paper. You can shuffle these "papers”
around, keeping in view the one you are currently using. To use a
document, you simply open it and the right application gets started. The
desktop metaphor is extended to the point that theeger a trashcan
where you discard files and folders that you no longer need. As with a
real world trashcan, you have to empty this trashcan before the items are
actually deleted from the system's disk.

285

farvice X
II

Bervice 2

Figure 5.6 Objectoriented system with topdown design internal to
objects

-

S,
T"‘\?:'
P’ e B ol

ey
_U

i WY

Wiy
B wareh

"t

3

&

Figure 5.7 opdown design with functionality from objects

286

.‘9&
D oy i

FHPRED
: =
%a
o 1 =
=t 2 A - 25
T aus, e XX L e %‘_ &
o = g = o~ et N
= = =k = 1“%{'
—_y
a - AL
ey T2
:~,i . 3 J., " e A SV a '.ia'.—.;t-c"‘:
33 b-(;
* g
7=
>3

Figure 5.8 Objectoriented system built atop the functional layer

The advantage of using du physical metaphors is that your job as a
designer metaphor, you do not necessarily have to use an-object
oriented approach to exploit a metaphor, but physical metaphors lend
themselves more readily to objemiented organization. After all, the
objecs in the software can be the direct counterparts of the objects that
are art of the physical metaphor.

The idea of using electronic circuits as a metaphor may seem natural for
simulating actual integrated circuits (ICS), but you can use this
metaphor to bild user interfaces. In fact, the idea of software packaged
as ICs was first used by Brad Cox, who also coined the term software
IC. Suppose you are using a windowing system such as the X Window
system to implement a user interface. Here is a rough ideaveo you

might use the electronic circuit metaphor (see Figure 3.9) to implement
the user interface:

1 Think of each window as an IC with a number of input pins.

1 Provide "connector" objects and functions to connect one pin to
another. Use a linked list ofonnectors to handle multiple
connections at a pin.

1 Allow signals to be sent from output pins to input pins. This
means that you need signal objects. Signals arriving at an input
pin can be handled by calling a function inside the IC.

287

1 As the user providesput with mouse or keyboard, send signals
arriving at air input pin can be handled by calling a function
inside the IC.

1 As the user provides input with mouse or keyboard, send signals
out on appropriates pins to perform the task requested by the
user.

Depending on your application, this can turn out to be a useful
metaphor. For example, you might exploit such a metaphor in an
application with which the user interactively builds a graphical user
interface. With such a metaphor, the user can select indivigser
interface components and connect their input and output pins to build,
and interface. You could provide some means for exercising the
interface and, when the user is satisfied, allow generation of code that
implements the interface.

4.0 CONCLUSION

Objectoriented programming (OOP) refers to the implementation of
programs using objects, preferably in an obmanted programming
language such as C++. Obpexiented analysis (OOA) refers to
methods of specifying the requirements of the softwaterms of real

world objects- their behaviour and their interactions. Objegented
design (OOD), on the other hand, turns the software requirements into
specifications for objects and derives class hierarchies from which the
objects can be created.OD methods usually use a diagramming
notation to represent the class hierarchy and to express the interaction
among objects.

5.0 TUTOR-MARKED ASSIGNMENT

1. Define the following
a. Data Flow Diagram
b. Data Dictionary
C. Minispecification
2. Outline the problem with the topdown approach so prevalent in

structured techniques as pointed out by Bertrand Meyer.
6.0 REFERENCES/FURTHER READING

Objectoriented Programming in C++. Nabajyoti Bark Kati,
PrenticeHall of India Private Limited, New Delhil 10001, 2001.

288

MODULE 3 OBJECT-ORIENTED PROGRAMMING

IN JAVA
Unit 1 Your First Cup of JAVA
Unit 2 A Closer look at the "Hello World" Sample
Unit 3 ObjectOriented Programming Concepts in Java
Unit 4 Translating Concepts into Code
Unit 5 JAVA LanguageBasics 1 (Variables & Operators)
Unit 6 JAVA Language Basics 2 (Expressions and Statements)

UNIT 1 YOUR FIRST CUP OF JAVA
CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content
3.1 A Checklist
3.2 Creating Your First Application
3.3 Creating YourFirst Applet
3.4 About the Java Technology
3.4.1 The Java Programming Language
3.4.2 The Java Platform
4.0 Conclusion
5.0 Summary
6.0 References/Further Reading

1.0 INTRODUCTION

In this Unit you will start with a checklist of what you need to write
your first and explanations of error messages you may encounter.

2.0 OBJECTIVES

After completingthis Unit you should be able to:

1 identify what you need to write your first java program
1 create an application
1 create an applet

289

3.0 MAIN CONTENT

3.1 A Checklist
To write your first program, you need:

1. The Java™ 2 Platform, Standard Edition. This is provided on
the included CEROM. You can also download the SDK from
http//java.sun.com/j2sg&/4/download.html and consult the
installation instructions athttp://java.sun.com/j2se/1.4/install
windows.htm] (Make sure you download the SDK, not the JRE.)

2. A text editor. You canuse EDIT provided on the included €D
ROM or Notepad, the simple editor included with the Windows
platforms. To find Notepad, from the Start menu select Programs
> Accessories > Notepad.

3.2 Creating Your First Application
Why Bytecodes are Cool

So, yowe heard that with the Java programming language, you can
"write once, run anywhere." This means that when you compile your
program, you don't generate instructions for one specific platform.
Instead, you generate Java bytecodes, which are instructicthe fdava
Virtual Machine (Java VM). If your platformwhether it's Windows,
UNIX, MacOS, or an Internet browsdnas the Java VM, it can
understand those bytecodes.

Your first program, Hello WORLDAPP!. To app, will simply display
the greeting "Hello wod!". To create this program, you will:

T Create a source file.A source file contains text, written in the
Java programming language, that you and other programmers can
understand. You can use any text editor to create and edit source
files or use Notepad.

1 Compile the source file into a bytecode fileThe compiler, java,
takes your source file and translates its text into instructions that
the, Java Virtual Machine (Java VM) can understand. The
compiler converts these instructions into a bytecode file.

Run the program contained in the bytecode fe. The Java interpreter
installed on your computer implements the Java VM. This interpreter
takes your bytecode file and carries out the instructions by translating
them into instructions that your computer canansthnd.

290

http://iava.sun.com/j2se/1.4/download.html
http://iava.sun.com/j2se/1.4/install-windows.html
http://iava.sun.com/j2se/1.4/install-windows.html

Class

Java Program

Slare HeVloWordap (

sinlString (] sgo (
et In("allo Wr¥di™)

(Compiler)

Helloworldapp . Java

(Imerpreter) { IMerpretes 'j- (Interpretes D

Warld! = 230
@ World! eorct
= ® =T e
— el) e

Win32 Solaris MacOS

a. Create a Source File.
To create a source file, you have two options

1 You can save the file HelloWorldApp. j ava (from the -BDM)
on your computer and avoid a lot of typing. Then, you can go
straight to step b.

1 Or, yau can follow these longer instructions:

1. Start NotePad or Edit (available on the CD). In a new
document, type in the following code:

/**

* The HelloWorldApp class implements an application that
* displays "Hello World!" to the standard output

*/

public class HelloWorldApp {

public static void main(String[] args) {

// Display "Hello World!"

System. out. Println ("Hello World!");

Be Careful When You Type E

A

a

291

Type all code, commands, and file names exactly as shown. The Java
compiler and intermter are case sensitive, so you must capitalize
consistently.

HelloWorldApp 7'- helloworldapp

2. Save this code to a file. If you are using Notepad, from the
menu bar, select File > Save As. In the Save As dialog box:

1 Using the Save in dregown menu, gecify the folder (directory)
where you'll save your file. In this example, the directory is java
on the C drive.

1 In the File name text box, type "HelloWorldApp. java", including
the double quotation marks.
1 From the Save as type drdpwn menu, choose TekRibcument.

When you're finished, the dialog box should look like this:

sman [o = &) 2) E)

Now click Save, and exit Notepad.
b. Compile the Source File.
From the Start menu, select the M®S Prompt application (Windows

95/98) or Command Prompt application (Windows)NWhen the
application launches, it should look like this:

M2 M5-005 Prompt

REEEEEERY

Microseft(R) Windows 978
CCOCopyright Microsoft Corp 1981-1998.

prompt I\WINDOWS >

The prompt shows your current directory. When you bring up the
prompt for Windows 95/98, your current directory is usually
WINDOWS on your C drive (as shown above) or WINNT fomdbws

292

NT. To compile your source code file, change your current directory to
the directory where your file is located. For example, if your source
directory is java on the C drive, you would type the following command
at the prompt and press Enter:

cd c\java
Now the prompt should change to C\java>.
Note: To change to a directory on a different drive, you must type

an extra
command.

C.\WINDOWS>cd djjava
C\WINDOWS>d:
D:\java>

As shown here, to change to the java directory ortheve, you must
reenter the drive, d:

If you enter dir at the prompt, you should see your file.

5M5-DOS Prompt " (=] E3
112 =) Ll @) B3]) Al

CinJavardir

Uolume in drive C iz DBO2
Uolune Serial Numbher iz FIC4-ESHG
Directory of C:\java

<DIR> 07-22-99 11:23p .
<DIR> 87-22-99 11:23p

NELLOW™1 JAY 272 87-23-99 12:3%« HelloVerldApp. Java
HELLOW™ CLA 478 07-23-99 12:483 HelloVorldApp.class
2 Flletnd 758

2 diris) 218,734,592 bytes free

bytes

Now you can compile. At the prompt, type the following command
and press Enter Javac HelloWorldApp.java

If your prompt reappears without error messggcongratulations. You
have successfully compiled your program.

Error Explanation

293

Bad command or file name(Windows 95/98)

The name specified is not recognized as an internal or external
command, operable program or batch file(Windows NT

If you reeive this error, Windows cannot find the Java compiler, Javac.
Here's one way to tell Windows where to fiddvac Suppose you
installed the Java Software Development Kit in\fdkl . 4. At the
prompt you would type the following command and piester:
C:\jdkl.4\bin\javac HelloWorldApp.java

Note: If you choose this option, each time you compile or run a

program, you'll have to precede your javac and java commands with C :
\jdkl . 4\bin\..

The compiler has generated a Java bytecode tile, HelloWorldAp
class. At the prompt, type dir to see the new file that was generated

MEMS-DOS Prompt

T sx2 Lijs B @S Al

C:\WINDOWSY>cd C:\java u]

CiNjavardir

Volume in drive C iz DBG2
Uolume Serial Number iz F3C4-ESGH
Directory of C:\java

<DIR> #7-22-99 11
<DIR> 87-22-99 11:23

272 87-22-99 11

1 filels> 3,829 bytes

2 dircs) 218,734,592 hytes

Now that you have a . class file, you can run your program.
C. Run the program

In the same directory, enter at the prompt:
Java HelloWorldApp

Now you should see:
result
Congratulations! Your program works.

Error Explanation

294

Exception in thread "main" java. lang.NoClassDefFoundError:
HelloWorldApp

If you receive this error, java cannot find your bytecode file,
HelloWorldApp . class.

One of the places jva tries to find your bytecode file is your current
directory. So, if your bytecode file is in Q] ava, you should change
your current directory to that. To change your directory, type the
following command at the prompt and présger:

cd c\java

The prompt should change to Gjava>. If you enter dir at the prompt,
you should see your . java and. class files. Now enter java
HelloWorldApp again.

If you still have problems, you might have to change your CLASSPATH
variable. To see if thiss necessary, try "clobbering” the classpath with
the following command:

set CLASSPATH=

Now enter java HelloWorldApp again. If the program works now, you'll
have to change your CLASSPATH variable.

Exercise 1.1:

When you compile a program weh in the Java programming
language, the compiler converts the humaadable source file into
platformrindependent code that a Java Virtual Machine can understand.
What is this platformindependent code called?

Answer : Bytecode.

3.3 Creating Your First Applet

HelloWorldApp is an example of a Java application, a standalone
program. Now you will create a Java applet called HelloWorld, which
also displays the greeting "Hello world!". Unlike HelloWorldApp,
however, the applet runs in a Jea@abled Web broser such as Hot
Java, Netscape Navigator, or Microsoft Internet Explorer.

To create this applet, you'll perform the basic steps as before: create a
Java source file; compile the source file; and run the program.

295

a. Create a Java Source File.
Again, you have two options:

1 You can save the files HelloWorld.java and Hello. html on
your computer and avoid a lot of typing. Then, you can go straight
to step b.

1 Or, you can follow these instructions:

1. Start NotePad. Type the following code into a new docuenmt:

import java. applet.*,
import java.awt.*;

/**

* The HelloWorld class implements an applet that
* simply displays "Hello World!".

*/
public class HelloWorld extends Applet {
public void paint(Graphics g) {
/I Display "Hello World!"
g.drawString ("Hello world!", 50, 25);

Save this code to a file called HellowWorld. java.

2. You also need an HTML file to accompany your applet. Type
the following code into a new Notepad document:

<HTML>

<HEAD>

<TITLE>A Simple Program</TITLE>

</HEAD>

<BODY>

Here is the output of my program:

<APPLET CODE="HelloWorld.class" WIDTH=150 HEIGHT=25>
</APPLET>

</BODY>

</HTML>

Save this code to a file called Hello. html.

296

b. Compile the Source File.

At the prompt, type theoflowing command and press Return: javac
HelloWorld.java

The compiler should generate a Java bytecode file, HelloWorld.
class.

C. Run the Program.

Although you can view your applets using a Web browser, you may
find it easier to test your applets usinghe simple application that
comes with the Java TM Platform. To view the HelloWorld applet
using appletviewer, enter at the prompt:

Appletviewer Hello.html
Now you should see:

Applet

Congratulations! Your applet works.

3.4 About The Java Technology

Java technology is both a programming language and a platform.
3.4.1 The Java Programming Language

The Java programming language is a Hmglel language that can be
characterized by all of the following buzzwords:

T Simple T Architecture neutral
1 Objectoriented 1 Portable

1 Distributed 1 High performance
| Interpreted 1 Multithreaded

T Robust Secure T Dynamic

With most programming languages, you either compile or interpret a
program so that you can run it on your computer. The Java
programming language is unusual in that a program is both compiled
and interpreted. With the compiler, first you translate a program into an
intermediate language called Java bytecotles platformindependent

297

codes interpreted by the interpreter on thealplatform. The interpreter
parses and runs each Java bytecode instruction on the computer.
Compilation happens just once; interpretation occurs each time the
program is executed. The following figure illustrates how this works.

You can think of Java bytecodes as the machine code instructions for the
Java Virtual Machine (Java VM). Every Java interpreter, whether it's a
development tool or a Web browser that can run applets, is an
implementation of the Java VM.

Jawa bytecodes help make "write once, run anywhere" possible. You can
compile your program into bytecodes on any platform that has a Java
compiler. The bytecodes can then be run on any implementation of the
Java VM. That means that as long as a computealdava VM, the
same program written in the Java programming language can run on
Windows 2000, a Solaris workstation, or on an iMac.

Jaya Program
ahass MeYlohhe iy (
P mtatic veid nn.::&n»;l)wy:' 1 -
Srrtew ot pristied"Mells Welé™,; { Con‘.p!ler
loMor 1 dAop ., 3av ¢ - iy
Interpretes InMerpretey) (Inderpreter)
Rt = o el
_;’:“ ‘Wodd!
J gl -
5 S— —;
Win32 Solaris MacOS

3.4.2 The Java Platform

A platform is the hardware or software environment in which a program
runs. 2000, Linux, Solaj and MacOS. Most platforms can be
described as a combination of the operating system and hardware. The
Java platform differs from most other platforms in that it's a software
only platform that runs on top of other hardwaesed platforms.

The Java pldorm has two components:

298

| The Java Virtual Machine (Java VM)
| The Java Application Programming Interface (Java API)

You've already been introduced to the Java VM. It's the base for the
Java platform and is ported onto various hardviased platforms.

The Java API is a large collection of reathade software components
that provide many useful capabilities, such as graphical user interface
(GUI) widgets. The Java API is grouped into libraries of related classes
and interfaces; these libraries are knowpaskages.

The following figure depicts a program that's running on the Java
platform. As the figure shows, the Java API and the virtual machine
insulate the program from the hardware.

myProgram.java J \
|

Java APl | N
Java Virtual Machine ‘* Java Platform
Hardware-Based PI 5m:vm}

Native code is code thaftar you compile it, the compiled code runs on

a specific hardware platform. As a platfemadependent environment,

the Java platform can be a bit slower than native code. However, smart
compilers, wehltuned interpreters, and juist-time bytecode compite

can bring performance close to that of native code without threatening
portability.

4.0 CONCLUSION

Now you have learned how to create your own Java application and
your applet. You have learnt how to create a source code file for your
application orapplet, compile the source code into a bytecode file and
run the program contained in the bytecode file.

5.0 SUMMARY

This unit as the title implies is a general introduction to the Java

programming language and the Java platform. Subsequent unitowill g

deeper into the characteristics, structure and use of the Java
programming language.

6.0 REFERENCESFURTHER READING

www.lava.sun.com/docs/books

299

http://www.lava.sun.com/docs/books

UNIT 2 A CLOSER LOOK AT THE "HELLO WORLD"
SAMPLE

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content
3.1 The "Hello World" Application
3.1.1 Comments in Java Code
3.1.2 Defining a Class
3.1.3 The main Method
3.1.3.1 How the main Method Gets Called
3.1.3.2 Arguments to the main Method
3.1.4 Using Classes and Objects
3.1.4.1 Using a Class Method or Variable
3.1.4.2 Using an Instance Method or Variable
3.2 The "Helloworld" Applet
3.2.1 Importing Classes and Packages
3.2.2 Defining an Applet Subclass
3.2.3 Implementing Applet Methods
3.2.4 Ruming an Applet
3.3 Solving Common Compiler and Interpreter Problems
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION

The "Hello World" Application leads you through compiling and
running a unittialso introduces some general Java techniques: how to
define a class and how to use supporting classes and objects.

The "Hello World" Applet tells you how to compile and run an apget

Java program to be included in HTML pages and executed in Java
enalbed browsers. The lesson also introduces some general Java
concepts and techniques: how to create a subclass, what packages are,
and how to import classes and packages into a program.

This unit dissects the "Hello World" application and the "Hello World"
applet that you've already seen.

300

2.0 OBJECTIVES
After completing this Unit yoshould be able to:

define a class in java

explain how the main method operates
describe a package

solve minor compiler and interpreter problems

w = =4 =4 =1

.0 MAIN CONTENT

3.1 The "Hello World" Application

Now that you've seen a Java application (and perhaps even compiled
and run it), you might be wondering how it works and how similar it is
to other Java applications. Remember that a Java application is a
standalone Java prograina program written in the Java language that
runs independently of any browser.

Here, again, is the code of the HelloWorld application

/**

* The HelloWorldApp class implements an application that

* simply displays "Hello World!" to the standard output.

*/

class HelloWorldApp {

public static void main (String) {} arg) {

system. Out. Println (A Hello world)!o

3.1.1 Comments in Java Code

The "Hello World" application has two blocks of comments. The first
block, at the top ofthe program uses /** and * / delimiters. Later, a line

of code is explained with a comment that's marked by / / characters. The
Java language supports a third kind of comment, as-wile familiar
C-style comment, which is delimited with / * and * /.

The bold characters in the following listing are comments.

/**
* The HelloWorldApp class implements an application that
* simply displays "Hello World!" to the standard output.
*/
class HelloWorldApp {
public static void main(String[] args) {
System.out.printin ("Hello World!");
/[Display the string.

301

The Java language supports three kinds of comments:
[* text */
The compiler ignores everything from / * to * /.

[** documentation */

This indicates a documentation commeragdomment, for short). The
JDK javadoc tool uses doc comments when preparing automatically
generated documentation.

/I text
The compiler ignores everything from / / to the end of the line.

3.1.2 Defining a Class

In the Java language, each method (fwmd and variable exists within

a class or an object (an instance of a class). The Java language does not
support global functions or variables. Thus, the skeleton of any Java
program is a class definition.

The first bold line in the following listing lggns a class definition
block.

/**

* The HelloWorldApp class implements an application that

* simply displays "Hello World!" to the standard output.

*/

class HelloWorldApp {

public static void main(String[] args) {
System. out. Println ("Hell®Vorld!"); //Display the string.

A class-the basic building block of an objeatiented language such as
Java-is a template that describes the data and behavior associated with
instances of that class. When you instantiate a class you create an objec
that looks and feels like other instances of the same class. The data
associated with a class or object is stored in variables; the behavior
associated with a class or object is implemented with methods. Methods
are similar to the functions or proceduresprocedural languages such

as C.

Julia Child's recipe for rack of lamb is a reabrld example of a class.

Her (While both

racks of lamb may "look and feel" the same, | imagine that they "smell
and taste" different.)

A more traditional example from ehworld of programming is a class
that represents a rectangle. The class would contain variables for the

302

origin of the rectangle, its width, and its height. The class might also
contain a method that calculates the area of the rectangle. An instance of
the rectangle class would contain the information for a specific
rectangle, such as the dimensions of the floor of your office, or the
dimensions of this page.

In the Java language, the simplest form of a class definition is

class name {

}

The keyword class begins the class definition for a class named name.
The variables and methods of the class are embraced by the curly
brackets that begin and end the class definition block. The "Hello
World" application has no variables and has a single rdettfaomed
main.

Exercise 2.1:
Which of the following is not a valid comment:

a.[** comment */
b./* comment */
c./* comment
d.// comment

Answer 2.1: c is an invalid comment.
3.1.3 The Main Method

The entry point of every Java application is itsmmaethod. When you

run an application with the Java interpreter, you specify the name of the
class that you want to run. The interpreter invokes the main method
defined within that class. The main method controls the flow of the

program, allocates whataveesources are needed, and runs any other

methods that provide the functionality for the application.

The first bold line in the following listing begins the definition of a main
method.

/**

* The HelloWorldApp class implements an application that
* simply displays "Hello World!" to the standard output.

class HelloWorldApp {
public static void main(String[] args) {

303

System.out.println ("Hello World!");
/IDisplay the string.

Every Java application must contain a main method whose signature
looks like this: public static void main(String[] args)

The method signature for the main method contains three modifiers:

1 public indicates that the main method can be called by any object.
1 static indicates that the main method is a class method.

1 void indicateshat the main method doesn't return any value.

3.1.3.1 How the main Method Gets Called

The main method in the Java language is similar to the main function in
C and C++. When the Java interpreter executes an application (by being
invoked upon the applitian's controlling class), it starts by calling the
class's main method. The main method then calls all the other methods
required to run your application.

If you try to invoke the Java interpreter on a class that does not have a
main method, the interpter refuse to run your program and displays an
error message similar to this:

In class NoMain:void main (String argv []) is not defined
3.1.3.2 Arguments to the main Method

As you can see from the following code snippet, the main method
accepts a sgle argument: an array of elements of type String.
public static void mai(string[] args)

This array is the mechanism through which the runtime system passes
information to your application. Each String in the array is called a
commaneline argument. Comand line arguments let users affect the
operation of the application without recompiling it. For example, a
sorting program might allow the user to specify that the data be sorted in
descending order with this commalmte argument:

-descending

The "Hello World" application ignores its commalite arguments, so
there isn't much more to discuss here.

304

3.1.4 Using Classes and Objects

The other components of a Java application are the supporting objects,
classes, methods, and Java languageerstits that you write to
implement the application.

This section explains how the "Hello World" application uses classes
and objects. If you aren't familiar with objemtiented concepts, then
you might find this section confusing. If so, feel free tpsinead to the
next unit (Objecbriented programming concepts) and don't forget to
return to finish this section.

The "Hello World" application is about the simplest Java program you
can write that actually does something. Because it is such a simple
program, it doesn't need to define any classes except for HellowWorld
App. However, most programs that you write will be more complex and
require you to write other classes and supporting Java code.

The "Hello World" application does use another clilse Sysem class

-that is part of the API (application programming interface) provided
with the Java environment. The System class provides system
independent access to systdapendent functionality.

The bold code in the following listing illustrates the useaotlass
variable of the System class, and of an instance method.

/**

* The HelloWorldApp class implements an application that * simply
displays "Hello World!" to the standard output.
*/
class HelloWorldApp {
public static void main(String[} args)
System.out.printin("Hello World!");
/[Display the string.

}
}
3.1.4.1 Using a Class Method or Variable

Let's take a look at the first segment of the statement:
System.outprintin("Hello World!");

The construct System. out isetliull name of the out variable in the
System class. Notice that the application never instantiates the System
class and that out is referred to directly from the class name. This is
because out is a class variakde variable associated with the class

305

rather than with an instance of the class. You can also associate methods
with a class-class methods.

To refer to class variables and methods, you join the class hame and the
name of the class method or class variable together with a period

3.1.4.2 Using an Instance Method or Variable

Methods and variables that are not class methods or class variables are
known as instance methods and instance variables. To refer to instance
methods and variables, you must reference the methods and variables
from an objet

While System's out variable is a class variable, it refers to an instance of
the Print Stream class (a class provided with the Java development
environment) that implements the standard output stream.

When the System class is loaded into the apptinatt instantiates Print
Stream and assigns the new Print Stream object to the out class variable.
Now that you have an instance of a class, you can call one of its instance
methods:

System.out.println ("Hello World!");

As you can see, you refer to inst@ methods and variables similarly to
the way you refer to class methods and variables. You join an object
reference (out) and the name of the instance method or variable (printin)
together with a period

The Java compiler allows you to cascade refererioeslass and
instance methods and variables together, resulting in constructs like the
one that appears in the sample program:

System.out.printin("Hello World!");

This line of code displays "Hello World!" to the application's standard
output stream.

3.2 The "Helloworld" Applet

Now that you've seen a Java applet, you're probably wondering how it
works. Remember that a Java applet is a program that adheres to a set of
conventions that allows it to run within a Jas@mpatible browser.

Here again is the ce for the "Hello World" applet.

import java.applet.Applet;
import java.awt.Graphics;

306

public class HelloWorld extends Applet {
public void paint(Graphics g) {
g.drawString("Hello world!", 50, 25);

3.2.1 Importing Classes and Pakages

The code above starts off with two import statements. By importing
classes or packages, a class can more easily refer to classes in other
packages. In the Java language, packages are used to group classes,
similar to the way libraries are used t@gp C functions.

The first two lines of the following listing import two classes used in the
applet: Applet and Graphics.

import java.applet.Applet;
import java.awt.Graphics;

public class HelloWorld extends Applet {
public void paint(Graphics g) {
g.drawString("Hello world!", 50, 25);

{
}

If you removed the first two lines, the applet could still compile and run,
but only if you changed the rest of the code like this:

public class HelloWorld extends
Java. applet Applet {
public void paint(java.awt.Graphics g) {
g.drawString("Hello world!*, 50, 25);
}
}

As you can see, importing the Applet and Graphics classes lets the
program refer to them later without any prefixes. The java. applet. and
java. awt . prefies tell the compiler which packages it should search for
the Applet and Graphics classes. Both the java . app let and java . awt
packages are part of the core Java APAPI that every Java program

can count on being in the Java environment. The jaaetipackage
contains classes that are essential to Java applets. The java . awt package
contains the most frequently used classes in the Abstract Window
Toolkit (AWT), which provides the Java graphical user interface (GUI).

You might have noticed that éhHelloworldapp example uses the

System class without any prefix, and yet does not import the System
class. The reason is that the System class is part of the java. lang

307

package, and everything in the Java. lang package is automatically
imported into everylava program.

Besides importing individual classes, you can also import entire
packages. Here's an example:

import java. applet.*;
import java. awt.*;

public class HelloWorld extends Applet {
public void paint(Graphics g) {
g.drawString("Hello worldl', 50, 25);
}
}

In the Java language, every class is in a package. If the source code for a
class doesn't have a package statement at the top, declaring the package
the class is in, then the class is in the default package. Almost all of the
exampe classes in this unit are in the default package.

Within a package, all classes can refer to each other without prefixes.
For example, the java. awt Component class refers to the java. awt
Graphics class without any prefixes, without importing the Gaphi
class.

3.2.2 Defining an Applet Subclass

Every applet must define a subclass of the Applet class. In the "Hello
World" applet, this subclass is called HelloWorld. Applets inherit a
great deal of functionality from the Applet class, ranging from
commurncation with the browser to the ability to present a graphical
user interface (GUI).

The first bold line of the following listing begins a block that defines the
HelloWorld class.

import java. applet. Applet;
import java.awt.Graphics;

public class HelldNorld extends Applet {

public void paint(Graphics g) {
g.drawString("Hello world!", 50, 25);

}
}
The extends keyword indicates that HelloWorld is a subclass of the
class whose name follows: Applet. If the term subclass means nothing to

308

you, yodll learn about it soon in Obje€@riented Programming
Concepts in Java.

From the Applet class, applets inherit a great deal of functionality.
Perhaps most important is the ability to respond to browser requests. For
example, when a Jav@apable browserohds a page containing an
applet, the browser sends a request to the applet, telling the applet to
initialize itself and start executing.

An applet isn't restricted to defining just one class. Besides the necessary
Applet use a class, the application thatxecuting the applet first looks

on the local host for the class. If the class isn't available locally, it's
loaded from the location that the Applet subclass originated from.

3.2.3 Implementing Applet Methods

The HelloWorld applet implements just oneethod, the paint method.
Every applet must implement at least one of the following methods: init,
start, or paint. Unlike Java applications, applets do not need to
implement a main method.

The bold lines of the following listing implement the paint metho

import java.applet.Applet;
import java.awt.Graphics;

public class HelloWorld extends Applet {
public void paint(Graphics g)
g.drawString("Hello world!", 50, 25);

Every applet must implement one or more of the init, start, pamal
methods.

Besides the init, start, and paint methods, applets can implement two

more methods that the browser calls when a major event occurs (such as
leaving the applet's page): stop and destroy. Applets can implement any
number of other methodss avell.

Returning to the above code snippet, the Graphics object passed into the
paint method represents the applet's onscreen drawing context. The first
argument to the Graphics drawstring method is the string to draw
onscreen. The second and third argats are the (x,y) position of the
lower left corner of the text onscreen. This applet draws the string
"Hello world!" starting at location (50,25). The applet's coordinate
system starts at (0,0), which is at the upper left corner of the applet's
display aea.

309

3.2.4 Running an Applet

Applets are meant to be included in HTML pages. Using the
<APPLET> tag, you specify (at a minimum) the location of the Applet
subclass and the dimensions of the applet's onscreen display area. When
a Javeacapable browser eounters an <APPLET> tag, it reserves
onscreen space for the applet, loads the Applet subclass onto the
computer the browser is executing on, and creates an instance of the
Applet Subclass.

The bold lines of the following listing comprise the <APPLET> ttzay
includes the "Hello World" applet in an HTML page.

<HTML>
<HEAD>
<TITLE> A Simple Program </TITLE>
</HEAD>
<BODY>

Here is the output of my program:

<APPLET CODE="HelloWorld.class" WIDTH=150 HEIGHT=25>
</APPLET>

</BODY>

</HTML>

The above <APPLE> tag specifies that the browser should load the
class whose compiled code is in the file named Hello World. Class. The
browser looks for this file in the same directory as the HTML document
that contains the tag.

When the browser finds the class file,loads it over the network, if
necessary, onto the computer the browser is running on. The browser
then creates an instance of the class. If you include an applet twice in
one page, the browser loads the class file once and creates two instances
of the chss.

The WIDTH and HEIGHT attributes are like the same attributes in an
 tag: They specify the size in pixels of the applet's display area.
Most browsers do not let the applet resize itself to be larger or smaller
than this display area. For exampdegery bit of drawing that the "Hello
World" applet does in its paint method occurs within the 15(xR8l
display area that the above <APPLET> tag reserves for it.

310

3.3 Solving Common Compiler and Interpreter Problems

If you're having trouble compilg your Java source code or running
your application, this section might be able to help you. If nothing in
this section helps, please refer to the documentation for the compiler or
interpreter you're using.

Compiler Problems
Syntax Errors

If you mistypepart of a program, the compiler may issue a syntax error.
The message usually displays the type of the error, the line number
where the error was detected, the code on that line, and the position of
the error within the code. Here's an error caused bitingna semicolon

(;) at the end of a statement:

testing.java:14: ;' expected.
System.out.printin("Input has " + count + " chars.")

1 error
Sometimes the compiler can't guess your intent and prints a confusing
error message or multiple error messagethe error cascades over
several lines. For example, the following code snippet omits a semicolon
(;) from the bold line:
while (System.in.read() !<1)

count++
System.out.printin("Input has " + count + " chars.");

When processing this code, theompiler issues two error messages:
testing.java:13: Invalid type expression.
count++

testing.java:14: Invalid declaration.
System.out.printin("Input has " + count + " chars.");

2 errors

The compiler issues two error messages because affgogesses
count++, the compiler's state indicates that it's in the middle of an
expression. Without the semicolon, the compiler has no way of knowing
that the statement is complete.

If you see any compiler errors, then your program did not successfully

compile, and the compiler did not create a . class file. Carefully verify
the program, fix any errors that you detect, and try again.

311

Semantic Errors
In addition to verifying that your program is syntactically correct, the
compiler checks for other bastorrectness. For example, the compiler
warns you each time you use a variable that has not been initialized:
testing.java:13: Variable count may not have been
initialized.

count++

testing.java:l4: Variable count may not have been
initialized.

System.out.printin("Input has " + count + " chars.");
2 errors

Again, your program did not successfully compile, and the compiler did
not create a . class file. Fix the error and try again.

Interpreter Problems

Can't Find Class

A common eror of beginner Java programmers using the UNIX or
Windows 95/NT JDK is to try to interpret the . class file created by the
compiler. For example, if you try to interpret the file HelloWorldApp.
class rather than the class HelloWorldApp, the interpretglals this
error message:

Can't find class HelloWorldApp.class

The argument to the Java interpreter is the name of the class that you
want to use, not the filename.

The main Method Is Not Defined
The Java interpreter requires that the class you exewith it have a
method named main, because the interpreter must have somewhere to

begin execution of your Java application.

If you try to run a class with the Java interpreter that does not have a
main method, the interpreter prints this error message:

In class classname:

312

void main(String argv(]) is not defined

In the above message, class name is the name of the class that you tried
to run.

Changes to My Program Didn't Take Effect

Sometimes when you are in the edit/debug/run cycle, it appears that
your changes to an application didn't take effec print statement isn't
printing, for example. This is common when running Java applications
on MacOS using Java Runner. If you recompile a . class file, you must
quit Java Runner and bring it up again,ceinlava Runner does not
reload classes.

4.0 CONCLUSION

In this unit you have learned how to define a class and how to use
supporting classes and objects. You have also learned how to create a
subclass, what packages are, and how to import classesaekagps

into a program.

5.0 SUMMARY

You have learnt some general Java techniques in this unit, the
subsequent units ill throw more light into these techniques.

6.0 TUTOR-MARKED ASSIGNMENT

1. Change the MelloWorldApp.java"program so that it displays
Hola Mundo! instead of Hello World!.

2. This modified version of HelloworldApp below has an error. Fix
the error so that the program successfully compiles and runs.
What was the error?

/**
* The HelloWorldApp class implements an application that
* simply digplays "Hello World!" to the standard output.
*/
class HelloWorldApp {
public static void main(String[] args) {
System.out.printin("Hello World!); //Display the string.

}
}

313

3. How do you run an applet ?
7.0 REFERENCES/FURTHER READING

www."ava.sun.com/docs/books

314

http://ava.sun.com/docs/books

UNIT 3 OBJECT-ORIENTED PROGRAMMING
CONCEPTS IN JAVA

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content
3.1 What Is An Object?
3.2 What Is A Message?
3.3 Whatls A Chss?
3.4 Objects vs. Classes
3.5 What Is Inheritance?
3.6 What Is An Interface?

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

If you've never used an objeatiented language before, you need to
understand the underlying concepts before you begin writing code. You
need to understand what an object is, what a class is, how objects and

classes are related, and how objects communicate by using messages.
This unit describes the concepts behind obgegnted programming.

2.0 OBJECTIVES
By the end of this unit, you should be able to

1 define an object, class and message
1 explain inheritance
T describe an interface

3.0 MAIN CONTENT

3.1 What Is an Object?

Objects are key to understanding objecgented technology. You can
look around you now and see many examples ofweald objects:
your dog, your desk, your television set, your bicycle.

These realorld objects share two characteristics: They all have state
and behavior. For example, dogs hatete (name, color, breed, hungry)

315

and behavior (barking, fetching, and wagging tail). Bicycles have state
(current gear, current pedal cadence, two wheels, number of gears) and
behavior (braking, accelerating, slowing down, changing gears).

Software obgcts are modeled after reabrld objects in that they too
have state and behavior. A software object maintains its state in one or
more variables. A variable is an item of data named by an identifier. A
software object implements its behavior with methodlamethod is a
function (subroutine) associated with an object.

Definition: An object is a software bundle of variables and related
methods.

You can represent realorld objects by using software objects. You
might want to represent realorld dogs assoftware objects in an
animation program or a rewlorld bicycle as a software object in the
program that controls an electronic exercise bike. You can also use
software objects to model abstract concepts. For example, an event is a
common object used BUI window systems to represent the action of a
user pressing a mouse button or a key on the keyboard.

The following illustration is a common visual representation of a
software object:

Methods Jariable

(behavior)

Everything that the software objdatows (state) and can do (behavior)

is expressed by the variables and the methods within that object. A
software object that modeled your reabrld bicycle would have
variables that indicated the bicycle's current state: its speed is 10 mph,
its pedal cadnce is 90 rpm, and its current gear is the 5th gear. These
variables are formally known as instance variables because they contain
the state for a particular bicycle object, and in obpented
terminology, a particular object is called an instance.

316

Exercise 3.1

Software objects are modeled after v&akld objects in that they too
have state behaviour. How doe software objects maintain their state and
implement them behavior?

In addition to its variables, the software bicycle would also have
methods to brake, change the pedal cadence, and change gears. (The
bike would not have a method for changing the speed of the bicycle, as
the bike's speed is just a side effect of what gear it's in, how fast the rider
Is pedaling, whether the brakes are amg how steep the hill is.) These
methods are formally known as instance methods because they inspect
or change the state of a particular bicycle instance.

The object diagrams show that the object's variables make up the center,
or nucleus, of the objedWlethods surround and hide the object's nucleus
from other objects in the program. Packaging an object's variables
within the protective custody of its methods is called encapsulation. This
conceptual picture of an objeatnucleus of variables packagedhwn a
protective membrane of methessan ideal representation of an object
and is the ideal that designers of objedented systems strive for.
However, it's not the whole story. Often, for practical reasons, an object
may wish to expose some of tariables or hide some of its methods. In

the Java programming language, an object can specify one of four
access levels for each of its variables and methods. The access level
determines which other objects and classes can access that variable or
method. Encapsulating related variables and methods into a neat
software bundle is a simple yet powerful idea that provides two primary
benefits to software developers:

1 Modularity: The source code for an object can be written and
maintained independently of thewce code for other objects.
Also, an object can be easily passed around in the system. You
can give your bicycle to someone else, and it will still work.

1 Information hiding: An object has a public interface that other
objects can use to communicate withThe object can maintain
private information and methods that can be changed at any time
without affecting the other objects that depend on it. You don't
need to understand the gear mechanism on your bike to use it.

3.2 What Is a Message?

A single olect alone is generally not very useful. Instead, an object
usually appears as a component of a larger program or application that

317

contains many other objects. Through the interaction of these objects,
programmers achieve higherder functionality and mer complex
behavior. Your bicycle hanging from a hook in the garage is just a
bunch of titanium alloy and rubber; by itself, the bicycle is incapable of
any activity. The bicycle is useful only when another object (you)
interacts with it (pedal).

Softwareobjects interact and communicate with each other by sending
messages to each other. When object A wants object B to perform one
of B's methods, object A sends a message to object B

— ¥ ! N

ll", v
2’ ~—

Object B
Sometimes, the receiving object needs more information so that it
knows exactly what to do; for example, when you want to change gears
on your bicycle, you have to indicate which gear you want. This
information is passed algrwith the message as parameters.

The next figure shows the three components that comprise a message:

l. The object to which the message is addressed (Your Bicycle)
2. The name of the method to perform (change Gears)
3. Any parameters needed by the metiilower Gear)

change Gears(lowm

yars
. .",’ G
e / / ‘.‘_

a
you

These three components are enough information for the receiving object
to perform the desired method. No other information or context is
required.

Messages provide twimportant benefits.
1 An object's behavior is expressed through its methods, so (aside

from direct variable access) message passing supports all possible
interactions between objects.

318

1 Objects don't need to be in the same process or even on the same
machire to send and receive messages back and forth to each
other.

3.3 Whatls a Class?

In the real world, you often have many objects of the same kind. For
example, your bicycle is just one of many bicycles in the world. Using
objectoriented terminology, wesay that your bicycle object is an
instance of the class of objects known as bicycles. Bicycles have some
state (current gear, current cadence, two wheels) and behavior (change
gears, brake) in common. However, each bicycle's state is independent
of and ca be different from that of other bicycles.

When building bicycles, manufacturers take advantage of the fact that
bicycles share characteristics, building many bicycles from the same
blueprint. It would be very inefficient to produce a new blueprint for
every individual bicycle manufactured.

In objectoriented software, it's also possible to have many objects of the
same kind that share characteristics: rectangles, employee records, video
clips, and so on. Like the bicycle manufacturers, you can taketzdea

of the fact that objects of the same kind are similar and you can create a
blueprint for those objects. A software blueprint for objects is called a
class.

Definition: A class is a blueprint, or prototype, that defines the variables
and the methodsommon to all objects of a certain kind.

Public API Private
o ' Implementation
¥ Details
y : X
: 7

The class for our bicycle example would declare the instance variables
necessary to contain the current gear, the current cadence, and so on, for
each bicycle object. The class would also declare and provide
implementations for the instance methods that allow the rider to change
gears, brake, and change the pedaling cadence, as shown in the next
figure.

319

currentSneesd
urrentopeed

currentCadence

\(
A
r

mpkeme 18001

“cleige N\ /T currentGear
. cokice p

After you've created the bicylclass, you can create any number of
bicycle enough memory for the object and all its instance variables.
Each instance gets its own copy of all the instance variables defined in
the class.

claige .currentSpeed = 10 A claige - currentSpeed = 15
gean AN i) SN gears ra' i .
\ S \ . currentCadence = 60 / e \ . currentCadence = 90
/ \ pe X { 2 7 by
f e Ol L4
‘ S sl \ Gear { b [B & Gear
| broke (o AC | el | brae » Aa9%0 — e
- \ O f— - |\ O "
\ . [mpkme 1i5bos N - W [Impkmevibor
N1 T e \ XA T
claige ™ currentCear =5 " claige O\ ™ currentGCear = 2
. ki b . cakice]
My Bike YourBike

In addition to instace variables, classes can define class variables. A
class variable contains information that is shared by all instances of the
class. For example, suppose that all bicycles had the same number of
gears. In this case, defining an instance variable to helcdhtimber of
gears is inefficient; each instance would have its own copy of the
variable, but the value would be the same for every instance. In such
situations, you can define a class variable that contains the number of
gears. All instances share thisriable. If one object changes the
variable, it changes for all other objects of that type. A class can also
declare class methods. You can invoke a class method directly from the
class, whereas you must invoke instance methods on a particular
instance.

320

Charge ,
Gears

Current Speed =15
Current Cadence =90

numberof Gears 18 | [SN 4 e Number Of Gears =18

current Gear =2

Change Change

Case ice Case ice

Bike Your Bike
Class Instance of a Class

3.4 Objects vs. Classes

You probably noticed that the illustrations of objects and classes look
very similar. And indeed, the difference between classes and objects is
often the source of some confusion. In the real world, it's obvious that
classes are not themselves the objects they describe: A blueprint of a
bicycle is not a bicycle. However, it's attle more difficult to
differentiate classes and objects in software. This is partially because
software objects are merely electronic models of-weald objects or
abstract concepts in the first place. But it's also because the term
"object" is sometime used to refer to both classes and instances.

In the figures, the class is not shaded, because it represents a blueprint of
an object rather than an object itself. In comparison, an object is shaded,
indicating that the object exists and that you cantuse

3.5 What Is Inheritance?

Generally speaking, objects are defined in terms of classes. You know a
lot about an object by knowing its class. Even if you don't know what a
pennyfarthing is, if | told you it was a bicycle, you would know that it
hadtwo wheels, handle bars, and pedals.

Objectoriented systems take this a step further and allow classes to be

defined in terms of other classes. For example, mountain bikes, racing
bikes, and tandems are all kinds of bicycles. In olpeented

321

terminobgy, mountain bikes, racing bikes, and tandems are all
subclassesof the bicycle class. Similarly, the bicycle class is the

superclass of mountain bikes, racing bikes, and tandems. This
relationship is shown in the following figure.

Bicycle

Mountain Bike Racing Bike Tandem Bike

Each subclass inherits state (in the form of variable declarations) from
the superclass. Mountain bikes, racing bikes, and tandems share some
states: cadence, speed, and the Wso, each subclass inherits methods
from the superclass. Mountain bikes, racing bikes, and tandems share
some behaviors: braking and changing pedaling speed, for example.

However, subclasses are not limited to the state and behaviors provided
to them ly their superclass. Subclasses can add variables and methods to
the ones they inherit from the superclass. Tandem bicycles have two
seats and two sets of handle bars; some mountain bikes have an extra set
of gears with a lower gear ratio.

Subclasses carlsa override inherited methods and provide specialized
implementations for those methods. For example, if you had a mountain
bike with an extra set of gears, you would override the "change gears"
method so that the rider could use those new gears.

You arenot limited to just one layer of inheritance. The inheritance tree,

or class hierarchy, can be as deep as needed. Methods and variables are
inherited down through the levels. In general, the farther down in the
hierarchy a class appears, the more speeidlits behavior.

The object class is at the top of class hierarchy, and each class is its
descendant (directly or indirectly). A variable of type Object can hold a
reference to any object, such as an instance of a class or an array. Object
provides behawrs that are required of all objects running in the Java
Virtual Machine. For example, all classes inherit Object's to String
method, which returns a string representation of the object.

322

Inheritance offers the following benefits:

1 Subclasses provide spalized behaviors from the basis of
common elements provided by the superclass. Through the use of
inheritance, programmers can reuse the code in the superclass
many times.

1 Programmers can implement super classes called abstract classes
that define "gendér" behaviors. The abstract superclass defines
and may partially implement the behavior, but much of the class
is undefined and unimplemented. Other programmers fill in the
details with specialized subclasses.

3.6 What Is an Interface?

In English, an irgrface is a device or a system that unrelated entities use
to interact. According to this definition, a remote control is an interface
between you and a television set, the English language is an interface
between two people, and the protocol of behavioioreed in the
military is the interface between people of different ranks. Within the
Java programming language, an interface is a device that unrelated
objects use to interact with each other. An interface is probably most
analogous to a protocol (an agd on behavior). In fact, other object
oriented languages have the functionality of interfaces, but they call
their interfaces protocols.

The bicycle class and its class hierarchy defines what a bicycle can and
cannot do in terms of its "bicycle ness.ttBbicycles interact with the
world on other terms. For example, a bicycle in a store could be
managed by an inventory program. An inventory program doesn't care
what class of items it manages as long as each item provides certain
information, such as prcand tracking number. Instead of forcing class
relationships on otherwise unrelated items, the inventory program sets
up a protocol of communication. This protocol comes in the form of a
set of constant and method definitions contained within an interface
The inventory interface would define, but not implement, methods that
set and get the retail price, assign a tracking number, and so on.

To work in the inventory program, the bicycle class must agree to this
protocol by implementing the interface. Whanclass implements an
interface, the class agrees to implement all the methods defined in the
interface. Thus, the bicycle class would provide the implementations for
the methods that set and get retail price, assign a tracking number, and
So on.

323

You usean interface to define a protocol of behavior that can be
implemented by any class anywhere in the class hierarchy. Interfaces are
useful for the following:

1 Capturing similarities among unrelated classes without artificially
forcing a class relationship.

1 Declaring methods that one or more classes are expected to
implement.

1 Revealing an object's programming interface without revealing
its class.

4.0 CONCLUSION

You now know what objects are. How objects communicate through
messages and how objects diffrom classes. You have learned how
classes can be defined in terms of other classes through inheritance. You
have also learned how unrelated classes communicate with each other in
the Java language through interfaces.

5.0 SUMMARY

In this unit, you hae learned about objectiented concepts. The next
unit will explain how these concepts translate into Java codes.

6.0 TUTOR-MARKED ASSIGNMENT

1. Software objects interact and communicate with each other by
sending messages to each other, Explain.
2. Differentiate between Objects and Classes.

7.0 REFERENCES/FURTHER READING

www.lava.sun.com/docs/books

324

http://www.lava.sun.com/docs/books

UNIT 4 TRANSLATING CONCEPTS INTO CODE
CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content
3.1 Clickme Applet
3.2 Objects in the Ciickme Applet
3.3 Classes in the Clickme Applet
3.4 Messages in the Ciickme Applet
3.5 Inheritance in the Clickme Applet
3.6 Interfaces In The Clickme Applet
3.7 Api Documentation

4.0 Conclusion

5.0 Summary

6.0 References/Further Reading

1.0 INTRODUCTION

Now that you have a conceptual understanding of ocloeented
programming let's look at how these concepts get translated into code.

This unit looks at a small applet, and shows you the code that creates
objeds, implements classes, sends messages, establishes a superclass,
and implements an interface.

2.0 OBJECTIVES
By the end of this unit, you should be able to

identify objects in an applet
identify classes in an applet
identify messages in an applet
identify inheritance in an applet
identify interfaces in an applet

=A =4 =4 -8 -4

3.0 MAIN CONTENT
3.1 Clickme Applet

The ClickMe applet is a relatively simple program and the code for it is
short. However, if you don't have much experience with programming,
you might ind the code daunting. | don't expect you to understand
everything in this program right away, and this unit won't explain every

325

detail. The intent is to expose you to some source code and to associate
it with the concepts and terminology you just learned.

The Source Code and the Applet Tag for ClickMe

To compile this applet you need two source files: ClickMe . java and
Spot.
java. (they are provided in the Clickme directory of your CD)

To run the applet you need to create an html file with this apgdein
it: (it is also provided in the Clickme directory of your CD)

<applet code="ClickMe.class"
width="300" height="150">
</applet>

Then load the page into your browser or the appletviewer tool. Make
sure all the necessary files are ire ttame directory. (all the file are
already in the ClickMe directory on your CD)

/\/_—\

dir

ClickMe.html CIickIVI|e java ClickMe. Class Spotl java
Spot. class

Note: If you're having problems running this example:

1 Make sure you copy both Spot. java and Click Me . java and
place them in the same directory (the files are already in the
ClickMe directory on your CD).

1 If you can compile one file but not the other, you arolly have a
CLASSPATH problem. If ". " (indicating your current directory)
isn't in your class path, the ClickMe class can't find the Spot
class, even though they are in the same directory. Try unsetting
CLASSPATH and recompiling, like this:

set CLASSPAH=
javac ClickMe.java

> >

326

If your problem is fixed, then you should modify your global
CLASSPATH variable to add ". " to it.

3.2 Obijects in the ClickMe Applet

Many objects play a part in this applet. The two most obvious ones are
the ones you can see: thepbgt itself and the spot, which is red-on
screen.

The browser creates the applet object when it encounters the applet tag
in the HTML code containing the applet. The applet tag provides the
name of the class from which to create the applet object. Iodhes the

class name is ClickMe..

The Clickme.applet in turn creates an object to represent the spot on the
screen. Every time you click the mouse in the applet, the applet moves
the spot by changing the object's x and y location and repainting itself.

The spot does not draw itself; the applet draws the spot, based on
information contained within the spot object.

Besides these two obvious objects, other, nonvisible objects play a part
in this applet. Three objects represent the three colors used ipplle¢ a
(black, white, and red); an event object represents the user action of
clicking the mouse, and so on.

3.3 Classes in the ClickMe Applet

Because the object that represents the spot on the screen is very simple,
let's look at its class, nhamed Spdtdéeclares three instance variables:
size contains the spot's radius, x contains the spot's current horizontal
location, and y contains the spot's current vertical location:

public class Spot {
/linstance variables

public int size;

public int x,y;

/lconstructor
public Spot(int intSize) {
size = intSize;

x =1
y =1

}
}

327

Additionally, the class has a constructoa subroutine used to initialize
new objects created from the class. You can recognize a constructor
becausetihas the same name as the class. The constructor initializes all
three of the object's variables. The initial value of size is provided as an
argument to the constructor by the caller. The x and y variables are set
to Tone indicating that the spot is nat-screen when the applet starts

up.

The applet creates a new spot object when the applet is initialized.
Here's the relevant code from the applet class:

private Spot spot = null;

private static final int RADIUS = 7;
€. ..

spot = new Spot(RADIUS);

The frst line shown declares a variable named spot whose data type is
Spot, the class from which the object is created, and initializes the
variable to null. The second line declares an integer variable named
RADIUS whose value is 7. Finally, the last line wimocreates the
object; new allocates memory space for the object. Spot (RADIUS) calls
the constructor you saw previously and passes in the value of RADIUS.
Thus the spot object's size is set to 7

3 X=25
L d i ' L Y =13
e z A
o ad .
, a X , Size =7

The figure on the left is a representatiaf the Spot class. The figure on
the right is a spot object.

3.4 Messages in the ClickMe Applet

As you know, object A can use a message to request that object B do
something, and a message has three components:

1. The object to which the message islta$sed

2. The name of the method to perform
3. Any parameters the method needs

328

Here are two lines of code from the Click Me applet:

g.setColor(Color.white);
g.fillRect(0, 0, getSize().width1, getSize().height1);

Both are messages from the appghketan object named-g Graphics
object that knows how to draw simple-screen shapes and text. This
object is provided to the applet when the browser instructs the applet to
draw itself. The first line sets the color to white; the second fills a
rectange the size of the applet, thus painting the extent of the applet's
area white.

The following figure highlights each message component in the first
message:

g. set Color (Color. White);
‘ A s

receiving method parameters
object nam

3.5 Inheritance in the ClickMe Applet

To run in a browser, an object must be an applet. This means that the
object must be an instance of a class that derives from the Applet class
provided by the Java platform.

The ClickMe applet object is an inst&nof the ClickMe class, which is
declared like this:

public class ClickMe extends Applet implements
Mouse Listener {

The extends Applet clause makes ClickMe a subclass of Applet.
ClickMe inherits a lot of capability from its superclass, including the
ahlity to be initialized, started, and stopped by the browser, to draw
within an area on a browser page, and to register to receive mouse
events. Along with these benefits, the ClickMe class has certain
obligations: its painting code must be in a methodedapaint, its
initialization code must be in a method called init, and so on.

public void init() {
... Il ClickMe's initialization code here

}
public void paint(Graphics g) {

... Il ClickMe's painting code here
}

329

3.6 Interfaces in the ClickMe Applet

The ClickMe applet responds to mouse clicks by displaying a red spot at
the click location. If an object wants to be notified of mouse clicks, the
Java platform event system requires that the object implement the
Mouse Listener interface. The objectush also register as a mouse
listener.

The Mouse Listener interface declares five different methods each of
which is called for a different kind of mouse event: when the mouse is
clicked, when the mouse moves outside of the applet, and so on. Even
thoughthe applet is interested only in mouse clicks it must implement
all five methods. The methods for the events that it isn't interested in are
empty.

The complete code for the ClickMe applet is shown below. The code
that participates in mouse event handimgold:

import java.applet.Applet;
import java.awt.*;
import java.awt.event.*;

public class ClickMe extends Applebplements MouselListener
private Spot spot = null;
private static final int RADIUS = 7,

public void init() {
addMouseListener(thisg;

}
public void paint(Graphics g) {
/l draw a black border and a white background
g.setColor (Color.white);
g.fillRact O, O, getSize().widtHL, getSize () height

-1
g.setColor(Color.black);
g.drawRect(0, 0, getSize().widi 1,1,
// draw the spot
g. setColor (Color. Red);

330

If (spot! = null){
g.fillOval (spot.x- RADIUS,

spot.y- RADIUS,
(RADINIK * 2 RADIIIK * 9\

}

public void mousePressed(MouseBivevent)
{if (spot == null) {

spot = new Spot(RADIUS);
}

spot.x = event.getX();
spot.y = event.getY/();
renaint():

}

public void mouseClicked(MouseEvent event) {}
public void mouseReleased(MouseEvent event) {}
public void mouseErgred(MouseEvent event) {}
public void mouseExited(MouseEvent event) {}

3.7 APl Documentation

The ClickMe applet inherits a lot of capability from its superclass. To
learn more about how ClickMe works, you need to learn about its
superclass, Applet. How do you finttdat information? You can find
detailed descriptions of every class in the API documentation, which
constitute the specification for the classes that make up the Java
platform.

The API documentation for the Java 2 Platform is online at java. sun.
com.

40 CONCLUSION

This discussion glossed over many details and left some things
unexplained, but you should have some understanding now of what
objectoriented concepts look like in code. You should now have a
general understanding of the following:

That aclass is a prototype for objects
That objects are created from classes
That an object's class is its type

How to create an object from a class
What constructors are

How to initialize objects

=A =4 =4 -8 -8 9

331

T What the code for a class looks like

T What class variables and rhetls are

T What instance variables and methods are
50 SUMMARY

In this unit, you have learned how to identify objects, classes, messages,
inheritance, interfaces in an applet.

6.0 REFERENCES/FURTHER READING

www.lava.sun.com/docs/books

332

http://www.lava.sun.com/docs/books

UNIT5 JAVA LANGUAGE BASICS 1 (VARIABLES &
OPERATORS)

CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content
3.1 Variables
3.1.1 Data Types
3.1.2 Variable Names
3.1.3 Scope
3.1.4 Variable Initialization
3.2 Operators
3.2.1 Arithmetic Operators
3.2.2 Relational And Conditional Operators
3.2.3 Assignment Operators
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION

The BasicsEmo program that follows adds the numbers from | to 10
and displays theesult.

public class BasicsDemo {
public static void main(String} args) {
int sum = 0;
for (int current = 1; current <= 10;
curent++) {
sum += current;
}

System.out.printin ("Sum =" + sum);
}
}
The output from this program is:

Sum =55

Even a small program such as this uses many of the traditional features
of the Java programming language, including variables, operators, and
control structures. The code might look a little mysterious now. But this
unit teaches what you need to know about the nuts and bolts of the Java
programming language to understand thigypmm.

333

2.0 OBJECTIVES

After this unit, you should be able to:
A define a variable.

A describe data types

A list the different primitive data types in java
A determine the right data type to use for each variable declaration

3.0 MAIN CONTENT

3.1 Variables

An object stores its state in variables.

Definition: A variableis an item of data named by an identifier.

You must explicitly provide a name and a type for each variable you
want to use in your program. The variable's name must be a legal
identfier --an unlimited series of Unicode characters that begins with a
letter. You use the variable name to refer to the data that the variable
contains. The variable's type determines what values it can hold and
what operations can be performed on it. Teega variable a type and a
name, you write a variable declaration, which generally looks like this:

type name

In addition to the name and type that you explicitly give a variable, a
variable has scope. The section of code where the variable's simple
name can be used is the variable's scope. The variable's scope is
determined implicitly by the location of the variable declaration, that is,
where the declaration appears in relation to other code elements.

The MaxVariableDemo program, show below declamght variable

of different
types within its main method. The variable declarations are bold:

public class MaxVariablesDemo {
public static void main(String args T J)

/] integers
byte largestByte = Byte. MAX_VALUE;

334

short larggestshort = short. MAX VALUE;
int largestinteger = Integer. MAXVALUE
long largestlong = long. MAX_ VALUE

/Il real numbers
float largestFloat = FloaMAX_ VALUE
double largestDouble = Doubl®lAX _ VALUE

Il other primitive types
char aChar =0S6;
boolean aBoolean = true;

/I display them all

Svstem.out.println laroest bvte value | s 0
laraestBvte);

Svstem.out.println laroest short value | s 0
largestShort);

Svystem.out.println ("THaraest inteaer valuel s 0
laraest Inteaen);

Svystem.out.println largest lona value 1| s 0
largestLong);

System.out.printin ("THargest floatvalue | s 10
laraest Float):

Svystem.out.println ("THaraest double valuel s 0

largestDouble);

if (Character.isUpperCase (aChar)) {

System.out.printin ("The charactet + aChar + 0O i s
Upper case .0);
} else {
Sysem. out .println ("The character A+
Lower case. 0);
}
system. Out. Println) A the val
aBoolean);
}
}

The output from this program is:

The largest byte value is 127
The largest short value is 32767

The largest integer value is 2147483647
The largest long value is 9223372036854775807
The largest float value is 3.40282e+38
The largest double value is 1.79769e+308
The character S is upper case.

335

The value of aBoolean is true

The following sectios elaborate on the various aspects of variables,
including data types, names, scope, initialization, and final variables.
The MaxVariablesDemo program uses two items with which you might
not yet be familiar and are not covered in this unit: several aussta
named MAX VALUE and an #else statement. Each MAX VALUE
constant is defined in one of the number classes provided by the Java
platform and is the largest value that can be assigned to a variable of that
numeric type.

3.1.1 Data Types

Every variablemust have a data type. A variable's data type determines
the values that the variable can contain and the operations that can be
performed on it. For example, in the MaxVariablesDemo program, the
declaration int largestinteger declares that largestintegeran integer

data type (int). Integers can contain only integral values (both positive
and negative). You can perform arithmetic operations, such as addition,
on integer variables.

The Java programming language has two categories of data types:
primitive and reference. A variable of primitive type contains a single
value of the appropriate size and format for its type: a number, a
character, or a boolean value. For example, an integer value is 32 bits of
data in a format known as two's complement, tHaevaf a char is 16

bits of data formatted as a Unicode character, and so on.

. ua |
VarlabIeNamel Vaue

The following table lists, by keyword, all of the primitive data types
supported by Java, their sizes and formats, and a brief description of
each. The MaxVarlaesDemo program declares one variable of each
primitive type.

Primitive Data Types

Primitive Data Types

Keyword Description Size/Format

(integers)

Byte Byte-length integer 8bi t
complement

Short Short Integer 16b i t
complement

Int integer 32bit

336

complement

Long Long integer 64- bit
complement
(real numbers)
Float Single precision 32-bit IEEE 754
floating point
Double Double - precision 64-bit IEEE 754
floating point
(other types)
Chart A single charadr 16-bit Unicode
character
Boolean A Boolean value (true o True or dales
false

Tip: In other languages, the format and size of primitive data types may
depend on the platform on which a program is running. In contrast, the
Java programming languagpecifies the size and format of its primitive
data types. Hence, you don't have to worry about sydegpandencies.

You can put a literal primitive value directly in your code. For example,
if you need to assign the value 4 to an integer variable youwcie
this:

int anint = 4;

The digit 4 is a literal integer value. Here are some examples of literal
values of various primitive types:

Examples of Literal Values and Their Data Types

Literal Date Type
178 int

8864L Long

37. 266 Double
37.266D Double
87. 363F Float
26.77e3 Double

6cod Char
True Boolean
False Boolean

Generally speaking, a series of digits with no decimal point is typed as
an integer. You cab specify ea | ong inte
the number. O0LO6 is preferred as it canno!
A series of digits with a decimal point is of type double. You can

337

specify a float by putting an ' f' or ' F' after the number. A literal
character value is any single Unicodearacter between single quote
marks. The two boolean literals are simply true and false.

Arrays, classes, and interfaces are reference types. The value of a
reference type variable, in contrast to that of a primitive type, is a
reference to (an addresf the value or set of values represented by the
variable.

A reference is called a pointer, or a memory address in other languages.
The Java programming language does not support the explicit use of
addresses like other languages do. You use the vasiallele instead.

Object Name referenceé\

an object

Or an array

3.1.2 Variable Names

A program refers to a variable's value by the variable's name. For
example, uses the name largestByte. A name, such as largestByte, that's
composed of a single identifier, is callegieple name. Simple names

are in contrast to qualified names, which a class uses to refer to a
member variable that's in another object or class.

In the Java programming language, the following must hold true for a
simple name:

1. It must be a legal iadifier. An identifier is an unlimited series of
Unicode characters that begins with a letter.

2. It must not be a keyword, a boolean literal (true or false), or the
reserved word null.

3. It must be unique within its scope. A variable may have theesa
name as a variable whose declaration appears in a different scope.
In some situations, a variable may share the same name as
another variable if it is declared within a nested block of code.
(We will cover this in the next section, Scope.)

338

By Convention : Variable names begin with a lowercase letter, and
class names words are joined together, and each word after the first
begins with an uppercase letter, like this: isVisible. The underscore
character () is acceptable anywhere in a name, but by canvénis

used only to separate words in constants (because constants are all caps
by convention and thus cannot be edsémited).

3.1.3 Scope

A variable scope is the region without which the variable can be
referred to by its simple name. Secondardicope also determines when

the system creates and destroys memory for the variable. Scope is
distinct from visibility, which applies only to member variables and
determines whether the variable can be used from outside of the class
within which it is delared. Visibility is set with an access modifier.

The location of the variable declaration within your program establishes
its scope and places it into one of these four categories:

i Member variable
T Local variable
T method parameter
1 exceptionhandler parater
member class MyClass {
variable
scope \ P
member variable declarations
method
Parameter e.
Scope Public void a methods (methods parameters) {
Local local variable declarations
Variable ee.
Scope * Catch (exception handler parameters) {
. }
Exception / —
Handier }
Parameter T
Scope ,

339

A member variable is a member of a class or an object. It is declared
within a class buoutside of any method or constructor. A member
variable's scope is the entire declaration of the class. However, the
declaration of a member needs to appear before it is used when the use
Is in a member initialization expression.

You declare local vartdes within a block of code. In general, the scope
of a local variable extends from its declaration to the end of the code
block in which it was declared. In MaxVariableDemo, all of the
variables declared within the main method are local variables. Tpe sco
of each variable in that program extends from the declaration of the
variable to the end of the main metheithdicated by the first right curly
bracket } in the program code.

Parameters are formal arguments to methods or constructors and are
used to pss values into methods and constructors. The scope of a
parameter is the entire method or constructor for which it is a parameter.

Exceptionhandler parameters are similar to parameters but are
arguments to an exception handler rather than to a method or
constructor. The scope of an exceptf@ndler parameter is the code
block between { and } that follow a catch statement.

Consider the following code sample:

if (...){

inti=17;

}
System. out. printin("The value of [= ; +);
Il emror

The final line won't compile because the local variable i is out of scope.
The scope of i is the block of code between the { and } . The i variable
does not exist anymore after the closing} . Either the variable
declaration needs to be moved outsiflehe if statement block, or the
println method call needs to be moved intoifretatement block.

3.1.4 Variable Initialization
Local variables and member variables can be initialized with an
assignment statement when they're declared. The data fypleeo

variable must match the data type of the value assigned to it. The
MaxVariableDemo program provides initial values for all its local

340

variables when they are declared. The local variable declarations from
that program follow, with the initializatiorode set irbold:

/] integers
byte largestByte Byte.MAX_ VALUE;
short largestShort Short. MAX_VALUE;
int largestinteger integer.MAX_VALUE;
long largestLong £ ong.MAX VALUE;

/l real numbers
float largestFloat Float. MAX_VALUE;
doublelargestDouble ®ouble.MAX VALUE;

Il other primitive types
char aChar ='S'"; boolean aBoolean = true;

Parameters and exceptibandler parameters cannot be initialized in
this way. The value for a parameter is set by the caller.

3.2 Operators

An operator performs a function on one, two, or three operands. An
operator that requires one operand is called a unary operator. For
example, ++ is a unary operator that increments the value of its operand
by 1. An operator that requires two operands isnaryi operator . For
example, = is a binary operator that assigns the value from ithaught
operand to its lefhand operand. And finally, a ternary operator is one
that requires three operands. The Java programming language has one
ternary operator, 2 which is a shorhand i f-e 1 s e statement.

The unary operators support either prefix or postfix notation. Prefix
notation means that the operator appears before its operand:

operator op /Iprefix notation

Postfix notation means that the operajgpears after its operand:

op operator /Ipostfix notation

All of the binary operators use infix notation, which means that the

operator appears between its operands:

opl operator op2 //infix notation

341

The ternary operator is also infix; each componenthe operator
appears between operands:

opl ? opt : op3 /linfix notation

In addition to performing the operation, an operator returns a value. The
return value and its type depend on the operator and the type of its
operands. For example, the arithraebiperators, which perform basic
arithmetic operations such as addition and subtraction, return numbers
the result of the arithmetic operation. The data type returned by an
arithmetic operator depends on the type of its operands: If you add two
integers, pu get an integer back. An operation is said to evaluate to its
result.

Though there are other types of operators in Java, you will learn about
three categories in this unit.

1 Arithmetic Operators

T Relational and Conditional Operators
i Assignment Operators
3.

2.1 Arithmetic Operators

The Java programming language supports various arithmetic operators
for all floating point and integer numbers. These operators are +
(addition), - (subtraction)*, (multiplication), / (division), and %
(modulo).

The following table summarizes the binary arithmetic operations in the
Java programming language.

Operator Use Description

+ Opl + Adds opl and op2
Op2

_ Opl _ Subtract op2 from opl
Op2

* Opl X Multiplies opl by op2
Op2

/ Opl / Divides opl by op2
Op2

% Opl % Computers the
Op2 remainder of dividing

opl op2

342

Here's an example program, ArithmeticDemo, that defines two double

precision floatingpoint numbers and uselset five arithmetic operators

to perform different arithmetic operations. This program also uses + to

concatenate strings. The arithmetic operations are sholaidn

public class ArithmeticDemo {
public static void main(String[] args) {

/la fewnumbers

inti=37;
intj=42;

double x = 27.475;
double y = 7.22;

System.out.printin("Variable values...");

System.out.printin (" [= 0 + i)
System.out.println ("] =
System. out.println (" X = 0
System.out.printn (" 'y ® +vy) ;

/[adding numbers

system. Out. Println {A Adding
system. Out. Println {A I +
system. Out. Println (A x + y =
/[subtracting number

system . out . Println (A Subtra
System,. Ouwf pramgEl 6 i (A i
System. Outiy riamgkl 6 x(h x

//multiplying numbers
System.out.printin("Multiplying...");
System.out.printin('* j =" + (i *)));
System.out.printin(x *y =" + (x * Y));

/[dividing numbers

System.out.pritin("Dividing...");

System.out.printin('/ j =" + (i/})));
ystem.out.printin(" x /'y =" + (x/y));

/lcomputing the remainder resulting from dividing nos
System.out.printin("Computing the remainder...");
System.out.printin(% j ="+ (I %j));

System.out.printin(% y =" + (x%Y));

343

C

/Imixing types
System.out.printin("Mixing types...");
System.out.printin(f+y ="+ (j +Y));
System.out.printin(I'* x =" + (i * x));

}
}

The output from this program is:

Variable values...

I =37

j=42

X =27.475
=722

Adding...

i+j=79

X +y=34.695

Subtracting...

I-j=-5

X-y=20.255

Multiplying...

I *]=1554

X *y=198.37

Dividing...

i/j=0

x/y=23.8054

Computing the remainder..

1% j=37

X% y=5.815

Mixing types...

j+y=49.22

I *x=1016.58

Note that when an integer and a floatpgnt number are used as
operands to a single arithmetic operation, the result is floating point. The
integer is implicitly converted to a floatifqgpint number before the
operation takes place. The following table summarizes the data type
returned by the arithmetic operators, based on the data type of the
operands. The necessary conversions take place before the operation is

performed.

344

Data Type of Data Type d Operands

result
Long

Int

Double

Float

Neither operand is a float or a doul
(integer arithmetic); at least one operanc

a long.

Neither operand is a float or a doul
(integer arithmetic):
neither operand is a long.

At least one operand is a double.

At least

one operand is a float; neitl

operand is a double

3.2.2 Relational and Conditional Operators

A relational operator compares two values and determines the
relationship between them. For example, ! = returns tfude two
operands are unequal. This table summarizes the relational operators:

Operator
>
>=

<

Use

Opl > op2
Opl >=
Op2

Op1l

Op1l <=
Op2

Op]_ ==
Op2

Op1l I=
Op2

Returns true if

Opl is grater than op2
Opl is greater than ¢
equal op2

Oplis less than op2

Oplis less than or equal
op2
Opl and op2 are equal

Opl and op2 are not equal

Following is an example, RelationaDemo, that defines three integer
numbers and uses the reladbnoperators to compare them. The

relational operations are shown in bold:

345

public class RelationalDemo {
public static void main(String[] args) {

/la few Numbers

int i= 37;

int = 42;

int k= 42: _ _
System.out.println("Variable values
System.ouprintin("i =" +1i);

System.out.printin(f =" +j) ;
System.out.printin(k =" + k);
/I greater than

system. Out . Println (A Greater

System . out println (A I > J =
/[false

system.. out println (A] > | =
Il true

system . out. Println (A k >]
/ false, they are equal
/I greater than or equal to

system.. out. Println (A Greater

system.out println (d I > = =
/Il false

system. out . =Ptimt An+ (0] >= 1)) ;
/I true

system. out. Println (A k >= |
I true
/I less than

system. out Println (A | ess tha

system. ou println (A | < = N
/I true

system. out println (A j < | =
/Il false

system. .out . println (A k < |
/Il false
/I Less than or equal to

system. out. Println (A | ess tha

system. out println (n | <= j =
I true

system . out . println (A <= |
// false

system.out . println (A k <= |
Iltrue

346

/I equal to
system.
system.

[Itrue
system. o

/I false

}

}

Herés the output from this program:

Variable values...
=37
j=42

ut .

Greate

;
|
Kk

Greater than or equal to.

i >= | = false

| >=1i=true

k >=]=true
Less than...

| <j=true

| <i=false

k <j=false
Less than or equal to.
| <=]=true

| <=1=false

k <=j=true
Equalto ...

| ==] = false

k ==j=true

Not equalto ...
I 1= =true
k!=j=false

>
>
>

—

hangyse

true
false

o X

=1

Relational operators often are used with conditional operators to
construct more complex decisiemaking expressions. The Java
programming language supports six conditional operdioesbinary

and one unaryas shown in the following table.

347

o

St s

Operator Use Returns true if

&& Opl && opl and op2 are both tru
Op2 condtionally evaluates op2

I Opl || either opl or op2 is true
Op2 conditionally evaluates op2

! I op Op is false

& Opl & opl and op2 are both tru
Op2 always evaluates opl and op

I Opl | either opl or op2 is tmey
Op2 always evaluates opl and op
Opl — if opl and op2 are different
Op2 that is if one or the other of tt

operands is true but not both

One such operator is &&, which performs the conditional AND
operation. You can use two different relational operataaglvith &

& to determine whether both relationships are true. The following line
of code uses this technique to determine whether an array index is
between two boundaries. It determines whether the index is both greater
than or equal to 0 and less than MENTRIES, which is a previously
defined constant value.

0 <= index && index < NUM_ ENTRIES

Note that in some instances, the second operand to a conditional
operator may not be evaluated. Consider this code segment:

(numChars < LIMIT) && (...)

The && opeiator will return true only if both operands are true. So, if
numChars is greater than or equal to LIMIT, the-heftd operand for &

& is f a | se, and the return value of && can be determined without
evaluating the righband operand. In such a case,ittierpreter will not
evaluate the righhand operand. This has important implications if the
right-hand operand has side effects, such as reading from a stream,
updating a value, or making a calculation.

When both operands are boolean, the operator &pesf the same
operation as &&. However, & always evaluates both of its operands and
returns true if both are true. Likewise, when the operands are boolean, |
performs the same operation as | | . The operator always evaluates both
of its operands and retwgrirue if at least one of its operands is true.

348

When their & and |

manipulations.

operands are numbers, perform bitwise

3.2.3 Assignment Operators

You use the basic assignment operator, =, to assign one value to another.
The MaxvariableDemo, program usesto initialize all of its local
variables:

Il integers
byte largestByte = Byte. MAX_VALUE;

short largestShort /= Short. MAX VALUE;

int largestinteger = Integer.MAX VALUE;
long largestLong /= Long.MAX_VALUE;
/l real numbers
float largestFloat /= Blat. MAX VALVE;
double largestDouble = Double. MAX _ VALUE;
Il other primitive types

char aChar = " s 0 ;

boolean aBoolean = true;

The Java programming language also provides several shortcut
assignment operators t hat allow you to perform an arithngtshift,

or bitwise operation and an assignment operation all with one operator.
Suppose you wanted to add a number to a variable and assign the result
back into the variable, like this:

=i+ 2;
You can shorten this statement using the shibdperator +=, like this:
i +=2;

The two previous lines of code are equivalent.
The following table lists the shortcut assignment operators and their
lengthy equivalents:

Operator | Use Equivalent to

+= Opl += op2 |opl =opl + op2
-= Opl-= op2 |opl=opl i op2

*= Opl *= op2 |opl=opl *op2

= Opl /= op2 |opl=opl /op2
%= Opl %= op2 |opl=0pl %& op2
&= Opl &=o0p2 |opl=0pl & op2
°= Op1l ° = op2 opl =opl °op2
= Opl = op2 |opl=opl op2
<<= Opl <<=o0p2 |opl=0pl <<o0p2

349

>>= Opl>>=o0p2 |opl=opl >>o0p2
>>>= Opl >>>=0p2 |opl =opl >>>o0p2

4.0 CONCLUSION

Variables and operators are essential part of a language that cannot be
overlooked. They are the bits and piettest form the basis from which
programs are developed. Understanding a programming language
involves a good understanding of these building blocks. It has been
clearly demonstrated that there is virtually nothing a programmer can do
without using the legalvariable name, comparing values using the
appropriate operator, and placing them where they ought to be.

5.0 SUMMARY

When you declare a variable, you explicitly set the variable's name and
data type. The Java programming language has two categorizdaof
types: primitive and reference. A variable of primitive type contains a
value.

The location of a variable declaration implicitly sets the variable's scope,
which determines what section of code may refer to the variable by its
simple name. There arfour categories of scope: member variable
scope, local variable scope, parameter scope, and excepmnaler
parameter scope.

You can provide an initial value for a variable within its declaration by
using the assignment operator (=).

You can declare aariable as final. The value of a final variable cannot
change after it's been initialized.

6.0 TUTOR-MARKED ASSIGNMENT

1. Which of the following are valid variable names?
a. Int
b. Anint
c. |
d.il
e.l
f. thingl
g. Ithing
h. ONEHUNDRED
I. ONE_ HUNDRED

350

7.0

J. something2do

Answer the following questions about the Ba s i ¢ s Demo

program.

a. What is the name of each variable declared in the
program? Remember that method parameters are also

variables.
b. What is the data type of each variable?
C. What is the scope of each variable?

Consider the following code snippet:
inti=10;
int n = i++05;

I What are the values of i and n after the code is executed?

Ii. What are the final values of i and n if instead of using the
postfix increment perator (i++), you use the prefix
version (++i))?

What is the value of i after the following code snippet executes?
inti=3§;
| >>=2 ;

What is the value of i after the following code snippet executes?
inti=17;
| >>=1;

Write a progam that calculates the number of US dollars

equivalent to a given number of French francs. Assume an
exchange rate of 6.85062 francs per dollar.

REFERENCES/FURTHER READING

http://www.java.sun.com

351

http://www.java.sun.com/

UNIT 6 JAVA LANGUAGE BASICS 2 (EXPRESSIONS
AND STATEMENTS)

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content
3.1 Expressions
3.2 Statements

3.3 Blocks
3.4 Control Structures
3.4.1 Loops

3.4.2 DecisionMaking Statements
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION

Variables and operators, which you met in the previous unit, are basic
building blocks of programs. You combine literals, variables, and
operators to form expressiensegnents of code that perform
computations and return values. Certain expressions can be made into
statementgomplete units of execution. By grouping statements together
with curly braces { and }, you create blocks of code.

2.0 OBJECTIVES
At the end of ths unit, you should be able to:

define expressions and statements

describe how control structures are used in java programming
use block statements

control programming sequence in loops.

= =4 =4 =4

3.0 MAIN CONTENT

3.1 Expressions
Expressions perform the workf @ program. Among other things,

expressions are used to compute and to assign values to variables and to
help control the execution flow of a program. The job of an expression

352

Is twofold: to perform the computation indicated by the elements of the
expres®on and to return a value that is the result of the computation.

Definition: An expression is a series of variables, operators, and method
calls (constructed according to the syntax of the language) that evaluates
to a single value.

As discussed in thprevious unit, operators return a value, so the use of
an operator is an expression. This partial listing of the
MaxVariablesDemo program shows some of the program's expressions
in bold:

<]

Il other primitive types
char aChar ='S";
boolean aBoolean *ue;

/l display them all

System.out.printlf"The largest byte value is " +
largestByte);

é

if (Character.isUpperCase(aChar)) {
e

}

Each of these expressions performs an operation and returns a value.

Expression Action Value Returned
aChar = *S'" Assign the characte the value of
'S' to The characte aChar after the
variable aChar assignment ('S")
Concatenatethe The resulting string:
"The largest str i ng the largest byte valu
byte largest byte value i is 127
value + > and the value o
largestByte largestByte
converted to a sting
Character. Call the " The return value ot

isUpperCase method'isUpperCas the method: true
(aChar

353

The data type of the value returned by an expression depends on the
elements used in the expriess The expression aChar ="' S' returns a
character because the assignment operator returns a value of the same
data type as its operands and aChar and ' S' are characters. As you see
from the other expressions, an expression can return a boolean value, a
string, and so on.

The Java programming language allows you to construct compound
expressions and statements from various smaller expressions as long as
the data types required by one part of the expression matches the data
types of the other. Here's arampie of a compound expression:

In this particular example, the order in which the expression is evaluated
IS unimportant because the results of multiplication is independent of
order-the outcome is always the same no matter what order you apply
the mdtiplications. However, this is not true of all expressions. For
example, the following expression gives different results depending on
whether you perform the addition or the division operation first:

x +y/100 /lambiguous

You can specify exactly hoywou want an expression to be evaluated by
using balanced parentheses (and) . For example to make the previous
expression unambiguous, you could write:

(x +y)/ 100 /lunambiguous, recommended

If you don't explicitly indicate the order in which you watite
operations in a compound expression to be performed, the order is
determined by the precedence assigned to the operators in use within the
expression. Operators with a higher precedence get evaluated first. For
example, the division operator has ahag precedence than does the
addition operator. Thus, the two following statements are equivalent:

x +y/100

x + (y / 100) //lunambiguous, recommended

When writing compound expressions, you should be explicit and
indicate with parentheses which operatdieuld be evaluated first. This
will make your code easier to read and to maintain.

The following table shows the precedence assigned to the operators. The

operators in this table are listed in precedence order: the higher in the
table an operator appsarthe higher its precedence. Operators with

354

higher precedence are evaluated before operators with a relatively lower
precedence. Operators on the same line have equal precedence.

Postfix operator []1. (params) expre++ expr
Unary operator ++expr- -expr =expn expr~!
Creation or cast New (type) expr
Multiplicative *[%

Additive +-

Shift << >> >>>

Relational < > <= >=instance of
Equality ===

Bitwise AND &

Bitwise exclusion OR E
Bitwise inclusive OR |

Logical AND &&

Logical OR Il

Conditional ?

Assignment =+=-= *= [= %= ¢
>>=
>>>=

When

operators of equal precedence appear in the same expression, a rule must
govern which is evaluated first. All binary operators except for the
assignment operat® are evaluated in lefo-right order. Assignment
operators are evaluated right to left.

3.2 Statements

Statements are roughly equivalent to sentences in nature languages.

A statement forms a complete unit of execution. The following types of
expres®ns can be made into a statement by terminating the expression
with a semicolon (;):

1 Assignment expressions

| Any use of ++ oif

T Method calls

| Object creation expressions

These kinds of statements are called expression statements. Here are
some examplegf expression statements:

aValue = 8933.234;
/lassignment statement

aValue++;
/lincrement statement

355

System.out.printin(aValue);

//method call statement

Integer integerobject = new Integer(4);
//object creation statement

In addition to these kiredof expression statements, there are two other
kinds of statements. A declaration statement declares a variable. You've
seen many examples of declaration statements.

double aValue = 8933.234; Il
declaration statement

A control structure regulates tloeder in which statements get executed.
The for loop and the i f statement are both examples of control
structures.

3.3 Blocks

A block is a group of zero or more statements between balanced braces
and can be used anywhere a single statement is alldwedollowing

listing shows two blocks from thBlaxVariablesDemoprogram, each
containing a single statement:

if (Character.isUpperCase(aChar)) {
System. out.println("The character
IS upper case.");
} else (

System.out.printh (i e character A + aChar +
" is lower case.");

}

3.4 Control Structures

When you write a program, you type statements into a file. Without
control structures, the interpreter executes these statements in the order
they appear in the file from left to rightop to bottom. You can use
control structures in your programs to conditionally execute statements,
to repeatedly execute a block of statements, and to otherwise change the
normal, sequential flow of control. For example, in the following code
snippet, lhe i f statement conditionally executes the System. out. printin
statement within the braces, based on the return value of Character.
iIsUpperCase (aChar)

char c;

é

if (Character.isUpperCase(aChar)) {

System.out.printin("The character " + aChar +

356

"is upper case.");

}

The Java programming language provides several control structures,
which are listed in the following table.

Statement Type Keyword
Looping While, do while, for
Decision If else, switch case
Exception handaihg Try- catch i finally,
throw
Branching Break, continue
label:, return

In this course material we will only discuss the first two: Looping and
Decision making.

The while and davhile Statements

You use awhile statement to continually egute a block of statements
while a condition remains true. The general syntax of the while
statement is:

while (expression) {
statement
}

First , the while statement evaluates expression, which must return a
boolean value. if the expressionuets true, then the while statement
executes the statement(s) associated with it. The while statement
continues testing the expression and executing its block until the
expression returns false.

The example program shown below, called While Demo, usekila w
statement to step through the characters of a string, appending each
character from the string to the end of a string buffer until it encounters
the letter g.

public class WhileDemo {
public static void main(String[] args) {

String copyFrorvle = "Copy this string until you " +

"encounter the letter 'g'.";

357

StringBuffer copyToMe = new StringBuffer();

inti=0;
char ¢ = copyFromMe.charAt(i);

while (¢ '='g") {
copyToMe.append(c);
¢ = copyFromMe.charAt(++i);

}

{System.out.printin(copyToMe);
The value printed by the last line is: Copy thitrin.
The Java programming language provides another statement that is
similar to the while statementhe (dewhile staement. The general
syntax of the davhile is:

do {

Statement (s)
} while (expression);

Instead of evaluating the expression at the top of the loopyhile
evaluates the expression at the bottom. Thus the statements associated
with a dowhile are exegted at least once.

Here's the previous program rewritten to usemile and renamed to
DoWhileDemo:

public class DoWhileDemo {
public static void main(String[largs) {

String copyFromMe = "Copy this string until you " +
"encounter the letter 'g".";
StringBuffer copyToMe = new StringBuffer();

inti=0;
char ¢ = copyFromMe.charAt(i);

do {

copyToMe.append(c);

¢ = copyFromMe.charAt(++i);

} while (c !'="g’); System.out.printin(copyToMe);

}

The value printedby the last line is: Copy this strain.

358

The for Statement

The for- statement provides a compact way to iterate over a range of
values. The general form of the for statement can be expressed like this:

for (initialization; termination; increment) {
statement
}

The initialization is an expression that initializes the littspexecuted
once at the beginning of the loop. The termination expression
determines when to terminate the loop. This expression is evaluated at
the top of each iteration dhe loop. When the expression evaluates to
false, the loop terminates. Finally, increment is an expression that gets
invoked after each iteration through the loop. All these components are
optional. In fact, to write an infinite loop, you omit all thregoeessions:

for (;;){ [/ infinite loop

e

}

Often for loops are used to iterate over the elements in an array, or the
over the elements of an array and print them:

public class ForDemo {
public static void main(String[] args) {
int[] arrayofints = {32, 87, 3, 589, 12, 1076,
2000, 8, 622, 127 };

for (inti = 0; i < arrayOfints.length; i.++)
{ Sys tem. out .print (arrayoflrits [1] +

System.out.printin();

}
}

The output of the program is:3287 3 589 12 1076
2000 8 622 127.

Note that you can declare a local variable within the initialization
expression of a for loop. The scope of this variable extends from its
declaration to the end of the block governed by the for statement so it
can be used in the termination andrement expressions as well. If the
variable that controls a for loop is not needed outside of the loop, it's
best to declare the variable in the initialization expression. The names i,
], and k are often used to control for loops; declaring them wili@rfor

loop initialization expression limits their Ifgpan and reduces errors.

359

The if else Statements

The if statement enables your program to selectively execute other
statements, based on some criteria. For example, suppose that your
program printsdebugging information, based on the value of a boolean
variable named DEBUG. If DEBUG is true, your as x. might

program prints debugging information, such as the value of a variable,
such Otherwise, your program proceeds normally. A segment of code to
implement this look like this:

if (DEBUG) {

System.out.printin("DEBUG: x =" + X);

}

This is the simplest version of the if statement. The executed if a
condition is true. Generally, the simple form of if can be written like
this:

If (expression) {

statemen(s)

What if you want to perform a different set of statements if the
expression is false? You use the else statement for that. Consider
another example. Suppose that your program needs to perform different
actions depending on whether the user clickes@K button or another
button in an alert window. Your program could do this by using an i f
statement along with an else statement:

/I response is either OK or CANCEL depending

// on the button_ that the user pressed

e

if (response == OK) {

/I code to prform OK action}

else {

/I code to perform Cancel action

}

The else block is executed if the i f part is false. Another form of the
else statement, els#, executes a statement based on another
expression. An if statement can have any number of compafsei f
statements but only one else. Following is a program, IFELseDemo, that
assigns a grade based on the value of a test score: an A for a score of
90% or above, a B for a score of 80% or above, and so on:

public class IfElseDemo {
public static vadl main(String[] args) {

int testscore = 76;

360

char grade;

if (testscore >= 90) {

grade ="A";
1 alae if (tecternre >= QN {
grade = 'B";
1 else if (testscore >= 70){
grade ='C";
1 else if (testscore >= 60) {
grade ='D’; } else {
grade = 'F

System.out.printin("Grade+ grade) ;

The output from this program is:
Grade =C

You may have noticed that the value of test score can satisfy more than
one of the expressions in the compound i f statement: 76 >= 70 and 76
>= 60. However, as the runtimg/stem processes a compound i f
statement such as this one, once a condition is satisfied, the appropriate
statements are executed (grade = ' C' and control passes out of the i f
statement without evaluating the remaining conditions.

The Java programmingahguage supports an operator, ? :, that is a
compact version of an if statement. Recall this statement from the Max
Variables Demo program:
If (character . | Upper case (achar) }{
} else {

System.out.println("The charactero
" is lower cas.");

}
Here's how you could rewrite that statement using the ? : operator:
System.out.printin(*The character " + aChar + " is " +

(Character.isUpperCase(aChar) ? "upper” "lower") + "case.");

The ? : operator returns the string "upper" if the isUpper@asthod

returns true. Otherwise, it returns the string "lower". The result is
concatenated with other parts of a message to be displayed. Using ? :
makes sense here because the i f statement is secondary to the call to the
printin method. Once you get usédl this construct, it also makes the
code easier to read.

361

The switch Statement

Use the switch statement to conditionally perform statements based on
an integer expression. Following is a sample program, Switch Demo,
that declares an integer named nmontvhose value supposedly
represents the month in a date. The program displays the name of the
month, based on the value of month, using the switch statement:

public class SwitchDemo {
public static void main(String[] args) {

int month =8

switch (nonth) {

case 1: System.out.printin("January"); break;
case 2: System.out.printin("February"); break;
case 3: System.out.printin("March"); break;
case4: System.out.printin("April"); break;

case 5: System.out.printin("May"); break;

case 6. System.out.prinf'June"); break;

case 7. System.out.printin("July"); break;

case 8: System.out.printin("August"); break; break;
case 9: System.out.printin("September");

case 10: System.out.printin("October"); break ;
case 11:system .outprintin("November"); break ;
casel2System. out. printlin ("December"); break

}
}
}

The switch statement evaluates its expression, in this case the value
executes the appropriate caw statement. Thus, the output of the program
course, you could implement this by using an i f statement:

int month = 8;

if (month ==1)
System.out.printin("January");
}else if (month == 2)

{ System.out.printin("February");
}

e // and so on

Deciding whether to use an if statement or a switch statement is a
judgment call. You can decide which to use, basedeadability and

other factors. An if statement can be used to make decisions based on
ranges of values or conditions, whereas a switch statement can make
decisions based only on a single integer value. Also, the value provided
to each case statement miistunique.

362

Another point of interest in the switch statement is the break statement
after each case. Each break statement terminates the enclosing switch
statement, and the flow of control continues with the first statement
following the switch block. Théreak statements are necessary because
without them, the case statements fall through. That is, without an
explicit break, control will flow sequentially through subsequent case
statements. Following is an example, SwitchDemo2, which illustrates
why it might be useful to have case statements fall through:

public class SwitchDemo2 {
public static void main(String[] args) {

int month = 2;
int year = 2000;
int numDays = 0;

switch (month)
{ case 1:

case 3:

case 5:

case 7.

case 8:

case 10:

case 12:

numDays = 31;
break;
case 4:
case 6:
case 9:
case 11:
numDays = 30;
break;
case 2:
if (((year % 4 == 0) && !(year % 100 == 0))
11 (year % 400 == 0))
numDays = 29;
else
numDays = 28; break;
Systemout.printin("Number of Days =" + numDays);
}
}

The output from this program is:
Number of Days = 29

363

Technically, the final break is not required because flow would fall out

of the switch statement anyway. However, we recommend using a break
for the last case statement just in case you need to add more case
statements at a later date. This makes modifying the code easier and less
errorprone.

Finally, you can use the default statement at the end of the switch to
handle all values that aren't expligithandled by one of the case
statements.

int month = 8;

switch (month) {

case 1° Svstem ot nrintin(™.1antiarv': hreak:
case 2: System.out.printin("February"); break;
case 3: Svstem.out.printin("March™); break;
case 4: Svystem.out.orintin("April); break;

case 5: Svystem.out.printin("Mav"); break;

case 6: System.out.printin("June™); break;

case 7: Svstem.out.printin("Julv™); break:

case 8: System.out.printin("Auagust™); break;
case 9: Svystem.out.printin("September"); break;
case 10: System.ouprintin("October"); break;
case 11: System.out.printin("November™); break;
case 12: Svstem.out.orintin("December™: break:

default: System.out.printin("Hey, that's not a valid month!");
break;

}

Summary of Control Structures

For controlling the Ibw of a program, the Java programming language
has three loop

constructs, a flexible {i€lse statement, a switch statement, exception
handling statements, and branching statements.

3.4.1 Loops

Use the dewhile statement to loop over a block of statetaemhile a
boolean expression remains true. The expression is evaluated at the
bottom of the loop, so the statements within themtide block execute

at least once:

do {

statement (s)
} while (expression);

364

The for statement loops over a block of statetsieand includes an
initialization expression, a termination condition expression, and an
increment expression.

for (initialization ; termination ; increment) {
statement (s)

}
3.4.2 DecisionMaking Statements

The Java programming language has twasig@emaking statements:
if-else and switch. The more genepakpose statement is if; use switch

to make multiplechoice decisions based on a single integer value. The
following is the most basic if statement whose single statement block is
executed if tb boolean expression is true:

if (boolean expression)
{ statement (s)
}
Here's an i f statement with a companion else statement. The i f
statement executes the first block if the boolean expression is true;
otherwise, it executes the second block:
if (boolean expression)
{ statement (s)
} else {
statement (s)
}
You can use e 1 s ef _to construct compound i f statements:
if (boolean expression) {
statement (s)
} else if (boolean expression) {
statement (s)
} else if (boolean expression) {
statemaet (s)
} else { statement (s)

The switch statement evaluates an integer expression and executes the
appropriate case statement.
switch (integer expression) {
case integer expression:
statement (s)
break;
e
default:
statement (s)
break; }

365

4.0 CONCLUSION

The parts that form the basics in JAVA have been dealt with on
completion of this unit. With the knowledge gained from unit | to unit 4,
it is expected that you are able to write a JAVA code that will be ebject
based and perform the task itgsven effectively. The remaining units
combine what you have learnt so far with the power of olggented
programming.

5.0 SUMMARY

An expression is a series of variables, operators, and method calls
(constructed according to the syntax of the langu#gat evaluates to a
single value. You can write compound expressions by combining
expressions as long as the types required by all of the operators involved
in the compound expression are correct. When writing compound
expressions, you should be exgliand indicate with parentheses which
operators should be evaluated first.

If you choose not to use parentheses, then the Java platform evaluates
the compound expression in the order dictated by operator precedence.
A statement forms a complete unit ofeextion and is terminated with a
semicolon There are three kinds of statements: expression statements,
declaration statements, and control structures. You can group zero or
more statements together into a block with curly brackets ({ and }).
Even thoughnot required, we recommend using blocks with control
structures even if there's only one statement in the block.

6.0 TUTOR-MARKED ASSIGNMENT

1. What are the data types of the following expressions, assuming
that is type is int?

a 1>0

b i=0

C. i++

d (float) i

o .

f.

"aString" + |
2. Consider the following expression:%5>0

a) What is the result of the expression, assuming that the value of i
Is initially 10?

b) Modify the expression so that it has the same result but is easier
for programmers to read.

366

3. Look at the Sort Demo program. What control structures does it
contain?

4. What's wrong with the following code snippet:

if i=1)({
[* do something */
}

5. Look at the While demo program and the DoWhileDemo
progam. What would the output be from each program if you
changed the value of each program's

copyFromMe string to golly gee. This is fun. Explain why you
think each program will have the predicted output.

6. Consider the following code snippet.

if (@Number >= 0)

if (aNumber == 0)
System.out.printin("first string");

else System.out.printin("second string");
System.out.printin("third string");

a. What output do you think the code will produce if
aNumber is 3?

b. Write a test prograntontaining the code snippet; make
aNumber 3. What is the output of the program? Is it what
you predicted? Explain why the output is what it is. In
other words, what is the control flow for the code snippet?

C. Using only spaces and line brealeformat the
code snippet to make the control flow easier to
understand.

d. Use braces { and } to further clarify the code and reduce

the possibility of errors in future.

7.0 REFERENCES/FURTHER READING

http://www.java.sun.com

367

http://www.java.sun.com/

MODULE 4 OBJECT-ORIENTED PROGRAMMING

IN C++
Unit 1 Introduction to C++
Unit 2 C++ Language Basics
Unit 3 C++ Expressions and Statements
Unit 4 Classes |
Unit 5 Classes Il

UNIT 1 INTRODUCTION TO C++
CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content
3.1 History Of C++
3.1.1 How C++ Evolved
3.1.2 The ANSI Standard
3.2 Programming Using C++
3.2.1 Preparing to Program
3.2.2 Development Environment
3.2.3 Procedural, Structured, and Objéatiented
Programming
3.24 C++ and ObjecODriented Programming
3.2.5 Compiling the Source Code
3.2.6 Creating an Executable File
3.1.7 The Development Cycle
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION
More than any otlr programming language, C++ has become the-most
widely used programming language. Its transitional ability from the

more traditional concept to the objemiented concept has helped to
make it a language of choice for many.

368

2.0 OBJECTIVES

At the endof this unit, you should be able:to

T know the origin of C++

1 differentiate between procedural and objecénted
programming in C++,

1 Compile a C++ program

1 execute/run a C++ compiled file

3.0 MAIN CONTENT
3.1 History of C++

3.1.1 How C++ Evolved

As objectoriented analysis, design, and programming began to catch on,
Bjarne Stroustrup took the most popular language for commercial
software development, C, and extended it to provide the features needed
to facilitate objecoriented programming. He creat C++, and in less
than a decade it has gone from being used by only a handful of
developers at AT&T to being the programming language of choice for
an estimated one million developers worldwide. It is expected that by
the end of the decade, C++ will bbhet predominant language for
commercial software development.

While it is true that C++ is a superset of C, and that virtually any legal C
program is a legal C++ program, the leap from C to C++ is very
significant. C++ benefited from its relationship tof&@ many years, as

C programmers could ease into their use of C++. To really get the full
benefit of C++, however, many programmers found they had to unlearn
much of what they knew and learn a whole new way of conceptualizing
and solving programming prolvtes.

3.1.2 The ANSI Standard

The idea of creating standards for C++ so that compiler developers will
stick to a pattern of design evolved from the wide acceptance of the
language and the rate at which different compilers took over the market.
The Accrediéd Standards Committee, operating under the procedures of
the American National Standards Institute (ANSI), is working to create

an international standard for C++.

The ANSI standard is an attempt to ensure that C++ is porithale
code you write for Mimsoft's compiler will compile without errors,

369

using a compiler from any other vendor. For most students of C++, the
ANSI standard will be invisible. The standard has been stable for a
while, and all the major manufacturers support the ANSI standard.

3.2 Programming Using C++

3.2.1 Preparing to Program

C++, perhaps more than other languages, demands that the programmer
design the program before writing it. Trivial problems don't require
much design, but students are advised to make it a habit to faighde
the programs before writing it. Complex problems, however, such as the
ones professional programmers are challenged with every day, do
require design, and the more thorough the design, the more likely it is
that the program will solve the problemssitdesigned to solve, on time
and on budget. A good design also makes for a program that is relatively
bugfree and easy to maintain. It has been estimated that fully 90 percent
of the cost of software is the combined cost of debugging and
maintenance. Tohe extent that good design can reduce those costs, it
can have a significant impact on the bottlme cost of the project.

The first question you need to ask when preparing to design any
program is, "What is the problem I'm trying to solve?" Every @ogr
should have a clear, welkticulated goal.

The second question every good programmer asks is, "Can this be
accomplished without resorting to writing custom software?" Reusing
an old program, using pen and paper, or buying software off the shelf is
often a better solution to a problem than writing something new. The
programmer who can offer these alternatives will never suffer from lack
of work; finding lessexpensive solutions to today's problems will
always generate new opportunities later.

Assumingyou understand the problem, and it requires writing a new
program, you are ready to begin your design.

3.2.2 Development Environment

This course material makes the assumption that your computer has a
mode in which you can write directly to the screenthaiit worrying

about a graphical environment, such as the ones in Windows or on the
Macintosh.

Your compiler may have its own buil text editor, or you may be

using a commercial text editor or word processor that can produce text
files. The importanthing is that whatever you write your program in, it

370

must save simple, plaitext files, with no word processing commands
embedded in the text. Examples of safe editors include Windows
Notepad, the DOS Edit command, Brief, Epsilon and EMACS. Many
commercialword processors, such as WordPerfect, Microsoft Word,
and dozens of others, also offer a method for saving simple text files.

The files you create with your editor are called source files, and for C++
they typically are named with the extension CPP,&F;. In this book,

we'll name all the source code files with the CPP extension, but check
your compiler for what it needs.

3.2.3 Procedural, Structured, and ObjectOriented
Programming

Until recently, programs were thought of as a series of procechates t
acted upon data. A procedure, or function, is a set of specific
instructions executed one after the other. The data was quite separate
from the procedures, and the trick in programming was to keep track of
which functions called which other functionand what data was
changed. To make sense of this potentially confusing situation,
structured programming was created.

The idea behind structured programming is as simple as the idea of
divide and conquer. A computer program can be thought of as consisting
of a set of tasks. Any task that is too complex to be described simply
would be broken down into a set of smaller component tasks, until the
tasks were sufficiently small and selbntained enough that they were
easily understood.

As an example, computindpe average salary of every employee of a
company is a rather complex task. You can, however, break it down into
these subtasks:

Find out what each person earns.

Count how many people you have.

Total all the salaries.

Divide the total by th@umber of people you have.

PonNPE

Totaling the salaries can be broken down:into

Get each employee's record.
Access the salary.

Add the salary to the running total.
Get the next employee's record.

PoONPE

In turn, obtaining each employeeécord can beroken down into:

371

1. Open the file of employees.
2. Go to the correct record.
3. Read the data from disk.

Structured programming remains an enormously successful approach for
dealing with complex problem®y the late 1980s, however, some of
the deficienges of structured programming had become all too clear.

First, it is natural to think of your data (employee records, for example)
and what you can do with your data (sort, edit, and so on) as related
ideas.

Second, programmers found themselves congtaminventing new
solutions to old problems. This is often called "reinventing the wheel,"
and is the opposite of reusability. The idea behind reusability is to build
components that have known properties, and then be able to plug them
into your program agou need them. Olfashioned programs forced the
user to proceed stdpy/-step through a series of screens. Modern event
driven programs present all the choices at once and respond to the user's
actions.Objecbriented programming attempts to respond teséh
needs, providing techniques for managing enormous complexity,
achieving reuse of software components, and coupling data with the
tasks that manipulate that data.

The essence of objeotiented programming is to treat data and the
procedures that acfpon the data as a single "objeed’ selfcontained
entity with an identity and certain characteristics of its own.

3.2.4 C++ and ObjectOriented Programming

C++ fully supports objeedriented programming, including the four
pillars of objectoriented deelopment: encapsulation, data hiding,
inheritance, and polymorphism.

The property of being a setbntained unit is called encapsulation. With
encapsulation, we can accomplish data hiding. Data hiding is the highly
valued characteristic that an objectnche used without the user
knowing or caring how it works internally. Just as you can use a
refrigerator without knowing how the compressor works, you can use a
well-designed object without knowing about its internal data members.

C++ supports the propes of encapsulation and data hiding through
the creation of usedefined types, called classes. Once created, a well
defined class acts as a fully encapsulated erititg used as a whole
unit. The actual inner workings of the class should be hiddesrsld a

372

well-defined class do not need to know how the class works; they just
need to know how to use it.

C++ supports the idea of reuse through inheritance. A new type, which
Is an extension of an existing type, can be declared. This new subclass is
sad to derive from the existing type and is sometimes called a derived

type.

C++ supports the idea that different objects do "the right thing" through
what is called function polymorphism and class polymorphism. Poly
means many, and morph means form. Polpghsm refers to the same
name taking many forms.

Exercise: What are the four pillars of objeciented development

Answer: encapsulation, inheritance, data hiding, polymorphism

3.2.5 Compiling the Source Code

Although the source code is somewhat ciypéind anyone who doesn't
know C++ will struggle to understand what it is for, it is still in what is
called humasreadable form. The source code file is not yet a program,
and it can't be executed, or run, as a program can.To turn source codes
into programs, a compiler is used. How it is invoked differs from
compiler to compiler.

After the source code is compiled, an object file is produced. This file is
often named with the extension OBJ. This is still not an executable
program, however. To turn this cmtan executable program, you must
run the linker.

3.2.6 Creating an Executable File

C++ programs are typically created by linking together one or more OBJ
files with one or more libraries. A library is a collection of linkable files
that were supplied wh your compiler, that you purchased separately, or
that you created and compiled. All C++ compilers come with a library
of useful functions (or procedures) and classes that you can include in
your program. A function is a block of code that performs aicer

such as adding two numbers or printing to the screen. A class is a
collection of data and related functions.

The steps to create an executable file are

1. Create a source code file, with a CPP extension.

2. Compile the source code into a file witre OBJ extension.
3

Link your OBJ file with any needed libraries to produce an
executable program.

373

3.1.7 The Development Cycle

If every program worked the first time they are tried, that would be the
complete development cycle: Write the program, coenflile source
code, link the program, and run it. Unfortunately, almost every program,
no matter how trivial, can and will have errors, or bugs, in the program.
Some bugs will cause the compile to fail, some will cause the link to
fail, and some will only lsow up when you run the prograivhatever
type of bug you find, you must fix it, and that involves editing your
source code, recompiling and relining, and then rerunning the program.

4.0 CONCLUSION

C++ is a landmark language in the programming worldbridges the

gap between its antecedents and successors in that it is procedural,
structured and also objectiented in nature. It serves as a good
development tool to use for a wide range of applications from highly
scientific to Marjorydatabase applitans (in conjunction with
databases). The advent of C++ has helped subsequent language
(compiler) developers to focus more on the obgeatnted technology

and make a better world for programmers.

5.0 SUMMARY

In this unit, you have a good understandafghow C++ evolved and
what problems it was designed to solve. You should feel confident that
C++ provides the tools of objeotiented programming and the
performance of a systeAmvel language, which makes C++ the
development language of choice for man

6.0 TUTOR-MARKED ASSIGNMENT

1. Define Procedural Programming

2. What is a Structured Program

3 Differentiate between Procedural Programming and Object

Oriented Programming in C++
4. What are the steps necessary to make a C++ program executable

7.0 REFERENCESFURTHER READING

Teach yourself C++ in 21 days, Greg Wieganmith://www.mcp.com

Borland C++ ObjecOriented Programming.

374

http://www.mcp.com/

UNIT 2

C++ LANGUAGE BASICS

CONTENTS

1.0 Introduction

2.0 Objectives

3.0 Main Content
3.1 Variables

4.0
5.0
6.0
7.0

1.0

3.2

3.3

3.1.1 Setting Aside Memory
3.1.2 Size of Integers

3.1.3 Signed and Unsigned
3.1.4 Fundamental Variable Types
Defining A Variable

3.2.1 Case Sensitivity

3.2.2 Keywords

3.2.3 Typedef

3.2.4 Characters

3.2.5 Characters and Numlser
3.2.6 Special Printing Characters
Constants

3.3.1 Literal Constants

3.3.2 Symbolic Constants

3.3.3 Enumerated Constants

Conclusion

Summary

Tutor-Marked Assignment
References/Further Reading

INTRODUCTION

Programs need a way $tore the data they use. Variables and constants
offer various ways to represent and manipulate that data.

In C++ a variable is a place to store information. A variable is a location
in your computer's memory in which you can store a value and from
which you can later retrieve that value.

2.0 OBJECTIVES

In this unit, you will learn

T
)l
)l

how to declare andefine variables and constants
how to assign values to varlab and manipulate those values
how to write the value of a variable to the screen.

375

3.0 MAIN CONTENT
3.1 Variables

Your computer's memory can be viewed as a series of cubbyholes. Each
cubbyhole is one of many, many such holes all lined up. Each
cubbyhole-or memory locationris numbered sequentially. These
numbers are known as memory asibes. A variable reserves one or
more cubbyholes in which you may store a value.

Your variable's name (for examplmyVariable)is a label on one of
these cubbyholes, so that you can find it easily without knowing its
actual memory address. Dependingtba size ofmy Variable,it can
take up one or more memory addresses.

3.1.1 Setting Aside Memory

When you define a variable in C++, you must tell the compiler what
kind of variable it is: an integer, a character, and so forth. This
information tells thecompiler how much room to set aside and what
kind of value you want to store in your variable. Each cubbyhole is one
byte large. If the type of variable you create is two bytes in size it needs
two bytes of memory, or two cubbyholes. The type of the viariébr
example, integer) tells the compiler how much memory (how many
cubbyholes) to set aside for the variable.

Because computers use bits and bytes to represent values, and because
memory is measured in bytes, it is important that you understandend ar
comfortable with these concepts.

3.1.2 Size of Integers

On any one computer, each variable type takes up a single, unchanging
amount of room. That is, an integer might be two bytes on one machine,
and four on another, but on either computer it is abthg same, day in

and day out.

A char variable (used to hold characters) is most often one byte long. A
short integer is two bytes on most computers, a long integer is usually
four bytes, and an integer (without the keyword short or long) can be
two or four bytes. Listing 2.1 should help you determine the exact size
of these types on your computer.

New Term: A character is a single letter, number, or symbol that takes
up one byte of memory.

376

Listing 2.1. Determining the size types on your cmputer.
#include <iostream.h>

l:

2:

3: int main()

4: {

5: cout << "The size of an int M\t" << sizeof(int) <<" bytes\.n 0
6: cout << "The size of a short int\8:<< sizeof(short)<< " bytes\.n ¢
7. cout << "The size of along inti8: << sizeof(long)<< " bytes\.n 0
8: cout << "The size of a charV8t" << sizeof(char)<<" bytes\.n 0
9: cout << The size of a float i#\t" << sizeof(float)<<" bytes\.n 0
10:cout << "The size of a double\8: << sizeof(double) << " bytet
11:

12:return O;

13:}

Output: The size of anintis: 2 bytes.
The size of a short int is: 2 bytes.

The size of along intis: 4 bytes.

The size of a char is:bytes.

The size of a float is: 4 bytes.

The size of a double is: 8 bytes.

NOTE: On your computer, the number of bytes presemeght be
different.

Analysis: Most of Listing 2.1 should be pretty familiar. The one new
feature is the use of the size of () function in lines 5 through 10. size of()
Is provided by your compiler, and it tells you the size of the object you
pass in as parameter. For example, on line 5 the keyword int is passed
into size of(). Using size of(), | was able to determine that on my
computer an int is equal to a short int which is 2 bytes.

3.1.3 Signed and Unsigned

In addition, all integer types come indwarieties: signed and unsigned.
The idea here is that sometimes you need negative numbers, and
sometimes you don't. Integers (short and long) without the word
"unsigned" are assumed to be signed. Signed integers are either negative
or positive. Unsignethtegers are always positive.

Because you have the same number of bytes for both signed and
unsigned integers, the largest number you can store in an unsigned
integer is twice as big as the largest positive number you can store in a
signed integer. An uingned short integer can handle numbers from 0 to

377

65,535. Half the numbers represented by a signed short are negative,
thus a signed short can only represent numbers f8@y768 to 32,767.
If this is confusing, be sure to read Appendix A, "Operator Precede

3.1.4 Fundamental Variable Types

Several other variable types are built into C++. They can be
conveniently divided into integer variables (the type discussed so far),
floating-point variables, and character variables.

Floatingpoint variables havealues that can be expressed as fractions
that is, they are real numbers. Character variables hold a single byte and
are used for holding the 256 characters and symbols of the ASCII and
extended ASCII character sets.

New Term: The ASCII character settiee set of characters standardized
for use on computers. ASCII is an acronym for American Standard Code
for Information Interchange. Nearly every computer operating system
supports ASCII, though many support other international character sets
as well.

The types of variables used in C++ programs are described in Table 2.1.
This table shows the variable type, how much room this book assumes it
takes in memory, and what kinds of values can be stored in these
variables. The values that can be stored arerdeted by the size of the
variable types, so check your output from Listing 2.1.

Table 2.1 Variable Types

Type Size | Types

unsigned short int | 2 bytes| 0 to 65,535

short int 2 bytes| -32,768 to 32,767

unsigned long int | 4 bytes| 0 to 4,294,967,295

longint 4 bytes| -2,147,483,648 to 2,147,483,6:
int (16 bit) 2 bytes| -32,768 to 32,767

int (32 bit) 4 bytes| -2,147,483,648 to 2,147,483,6:

unsigned int (16 bit] 2 bytes| 0 to 65,535
unsigned int (32 bit] 2 bytes| 0 to 4,294,967,295

Char 1 byte | 256 charaar values
Float 4 bytes| 1.2e38 to 3.4e38
Double 8 bytes| 2.2e308 to 1.8e308

378

NOTE:

The sizes of variables might be different from those shown in Table 2.1,
depending on the compiler and the computer you are using. If your
computer had the same outpsatvaas presented in Listing 2.1, Table 2.1
should apply to your compiler. If your output from Listing 2.1 was
different, you should consult your compiler's manual for the values that
your variable types can hold.

3.2 Defining a Variable

You create or défie a variable by stating its type, followed by one or
more spaces, followed by the variable name and a semicolon. The
variable name can be virtually any combination of letters, but cannot
contain spaces. Legal variable names include x, J22grsnf, and myAge
Good variable names tell you what the variables are for; using good
names makes it easier to understand the flow of your program. The
following statement defines an integer variable called myAge:

int myAge;

As a general programming practice, avoid suwrrific names as
J22grsnf, and restrict singletter variable names (such as x or i) to
variables that are used only very briefly. Try to use expressive names
such as myAge or how Many. Such names are easier to understand three
weeks later when you aseratching your head trying to figure out what

you meant when you wrote that line of code.

Try this experiment: Guess what these pieces of programs do, based on
the first few lines of code:

Example 1

main()

{

unsigned short x;

unsigned short y;

ULONG z

Z=X%*Y.

Example 2

main ()

{

unsigned short Width;
unsigned short Length;
unsigned short Area;
Area = Width * Length;

379

Clearly, the second program is easier to understand, and the
inconvenience of having to type the longer variable names is imane t
made up for by how much easier it is to maintain the second program.

3.2.1 Case Sensitivity

C++ is casesensitive. In other words, uppercase and lowercase letters
are considered to be different. A variable named age is different from
Age, which is diferent from AGE.

NOTE: Some compilers allow you to turn case sensitivity off. Don't be
tempted to do this; your programs won't work with other compilers, and
other C++ programmers will be very confused by your code.

There are various conventions for htavname variables, and although

it doesn't much matter which method you adopt, it is important to be
consistent throughout your program.

Many programmers prefer to use all lowercase letters for their variable
names. If the name requires two words (fornegke, my car), there are
two popular conventions: my_ car or myCar. The latter form is called
camelnotation, because the capitalization looks something like a
camel's hump.

Some people find the underscore character (my_ car) to be easier to
read, whileothers prefer to avoid the underscore, because it is more
difficult to type. This book uses camebtation, in which the second and

all subsequent words are capitalized: myCar, theQuickBrownFox, and
so forth.

NOTE: Many advanced programmers employ a notatstyle that is
often referred to as Hungarian notation. The idea behind Hungarian
notation is to prefix every variable with a set of characters that describes
its type. Integer variables might begin with a lowercase letter longs
might begin with a lowemse I. Other notations indicate constants,
global, pointers, and so forth. Most of this is much more important in C
programming, because C++ supports the creation ofdefered types

(see Day 6, "Basic Classes") and because C++ is strongly typed.

3.2.2 Keywords

Some words are reserved by C++, and you may not use them as variable
names. These are keywords used by the compiler to control your
program. Keywords include generally, any reasonable name for a
variable is almost certainly not a keyword.

DO ddfine a variable by writing the type, then the variable nabD®@

use meaningful variable nameBO remember that C++ is case
sensitive DON'T use C++ keywords as variable name® understand

380

the number of bytes each variable type consumes in memory, atd wh
values can be stored in variables of that typ@N'T use unsigned
variables for negative numbers.

Listing 2.2A Demonstration Of The Use Of Variables.

/I Demonstration of variables

#include <iostream.h>

int main()

{

unsigned short int Width = 5, Length;

Length = 10;

RN O RIWIN =

/l create an unsigned short and initialize with result

10: | /I of multiplying Width by Length

11: | unsiagned short int Area = Width * Lenath :

13: | cout << "Width:" << Width <<"\n";

14:. | cout << '"Length: " << Length << endL;

15: | cout << "Area: " << Area << endL

16: | return O;

17: |}

Output: Width:5
Length: 10
Area: 50

Analysis: Line 2 includes the required include statement for the
lostream’s library so that cout will work. Line 4 begins the program.

On line 6, Width is defined as an unsigned short integer, and its value is
initialized to 5. Another unsigned short integer, Length, is also defined,
but it is not initialized. On line 7, éhvalue 10 is assigned to Length.

On line 11, an unsigned short integer, Area, is defined, and it is
initialized with the value obtained by multiplying Width times Length.
On lines 1315, the values of the variables are printed to the screen.
Note that tle special word end creates a new line.

3.2.3 Typedef
It can become tedious, repetitious, and, most important,-prome to
keep writing unsigned short int. C++ enables you to create an alias for

this phrase by using the keyword typedef, which starats type
definition.

381

In effect, you are creating a synonym, and it is important to distinguish
this from creating a new type (which you will do on Day 6). typedef is
used by writing the keyword typedef, followed by the existing type and
then the new namé&or example

typedef unsigned short int USHORT

creates the new name USHORT that you can use anywhere you might
have written unsigned short int.

Listing 2.3 is a replay of Listing 2.2, using the type definition USHORT
rather than unsigned short int.

Listing 2.3. A demonstration of typedef.

2: /| Demonstrates typedef keyword

3: #include <iostream.h>

4.

5: typedef unsigned short int USHORT;
6:

7 void main()

8. {

9:

USHORT Width = 5;

10: USHORT Length;

11: Length = 10;

12: USHORT Area = Widthk Lenath :

13: cout << "Width:" << Width <<n";

14: cout << "Length: " << Length << end1;

15: cout << "Area: " << Area << end1;

16: }

Output: Width:5
Length: 10
Area: 50

Analysis: On line 5, USHORTIs type defined as a synonym for
unsigned short int. The program is very much like Listing 2.2, and the
output is the same.

3.2.4 Characters
Character variables (type char) are typically | byte, enough to hold 256
values (see Appendix C). A char canibeerpreted as a small number

(0-255) or as a member of the ASCII set. ASCII stands for the American
standard code for information interchange. The ASC Il character set its

382

ISO (International Standards Organization) equivalent are a way to
encode all théetters, numerals, and punctuation marks.

Computer do not know about letters, punctuation, or sentences. All they
understand are numbers. In fact, all they really know about is whether or
not a sufficient amount of electricity is at a particular junctibmwioes.

If so, it is represented internally as a 1; if not, it is represented as a 0. By
grouping ones and zeros, the computer is able to generate patterns that
can be interpreted as numbers, and these in turn can be assigned to
letters and punctuation.

In the ASCII code, the lowercase letter "a" is assigned the value 97. All
the lower and uppercase letters, all the numerals, and all the
punctuation marks are assigned values between | and 128. Another 128
marks and symbols are reserved for use by thepaten maker,
although the IBM extended character set has become something of a
standard.

3.2.5 Characters and Numbers

When you put a character, for example, 'a’, into a char variable, what is
really there is just a number between 0 and 255. The conkpitavs,
however, how to translate back and forth between characters
(represented by a single quotation mark and then a letter, numeral, or
punctuation mark, followed by a closing single quotation mark) and one
of the ASCII values.

The value/letter relatiahip is arbitrary; there is no particular reason
that the lowercase "a" is assigned the value 97. As long as everyone
(your keyboard, compiler, and screen) agrees, there is no problem. It is
important to realize, however, that there is a big differencedsat the
value 5 and the character '5'. The latter is actually valued at 53, much as
the letter 'a' is valued at 97.

Listing 2.4. Printing characters based on numbers

1 #include <iostream.h>
2: int main()

3. {

4: for (inti = 32;i<128; i++)
5: cout<< (char) i;

6: return O;

7.}

Output:I"#$%G'()*+,./0123456789:;<>? @ABCDEFGHIJKLMNOP
QRSTUVWXYZ[\|Vabcdefghijklmnopgrstuvwxyz<ks

383

This simple program prints the character values for the integers 32

through 127.

3.2.6 Special Printing Characters

The C++ compiler recognizes some special characters for formatting.
Table 2.2 shows the most common ones. You put these into your code
by typing the backslash (called the escape character), followed by the
character. Thus, to put a tab character into your,cgmlewould enter a
single quotation mark, the slash, the letter t, and then a closing single

guotation mark:

char tabCharacter '

This example declares a char variable (tabCharacter) and initializes it
with the character valué, which is recognied as a tab. The special
printing characters are used when printing either to the screen or to a file

or other output device.

New Term: An escape character changes the meaning of the character
that follows it. For example, normally the character n melamdetter n,
but when it is preceded by the escape charagtémgeans new line.

Table 2.2. The Escape Characters.

Character What it means
\n new line

\t Tab

\b backspace

\" double quote
\' single quote
\? guestion mark

\\

backslash

3.3 Congants

Like variables, constants are data storage locations. Unlike variables,

and as

t he

name

i mpli es,

constants

constant when you create it, and you cannot assign a new value later.

384

3.3.1 Literal Constants

C++ hastwo types of constants: literal and symbolic.
A literal constant is a value typed directly into your program wherever it
Is needed. For example

int myAge = 39;

myAge is a variable of type int; 39 is a literal constant. You can't assign
a value to 39, its value be changed.
can't

3.3.2 Symbolic Constants

A symbolic constant is a constant that is represented by a name, just as a
variable is represented. Unlike a variable, however, after a constant is
initialized, its value can't be changed.

If your program has one integer variable named students and other
named classes, you could compute how many students you have, given a
known number of classes, if you knew there were 15 students per class:

students = classes * 15;

In this example, 15 is a litdraonstant. Your code would be easier to
read, and easier to maintain, if you substituted a symbolic constant for
this value:

students = classes * studentsPerClass

If you later decided to change the number of students in each class, you
could do so whereou define the constant student per class without
having to make a change every place you used that value.

There are two ways to declare a symbolic constant in C++. The old,
traditional, now obsolete way is with a preprocessor directive, # define.
To defne a constant the traditional way, you would enter this:

#define studentsPerClass 15

Note that studentsPerClass is of no particular type (int, char, and so on).
#define does a simple text substitution. Every time the preprocessor sees
the word studentBerClass, it puts in the text 15.

Because the preprocessor runs before the compiler, your compiler never
sees your constant; it sees the number 15.

Although #define works, there is a new, much better way to define
constants in C++:

385

const unsigned sharit studentsPerClass = 15;

This example also declares a symbolic constant named
studentsPerClass, but this time studentsPerClass is typed as an unsigned
short int. This method has several advantages in making your code
easier to maintain and in preventinggs. The biggest difference is that

this constant has a type, and the compiler can enforce that it is used
according to its type.

NOTE: Constants cannot be changed while the program is running. If
you need to change studentsPerClass, for example, walitoechange
the code and recompile.

D O N 6 Us the term int. use short and long to make it clear which size
number you intendedO watch for numbers overrunning the size of
the integer and wrapping around incorrect valub® give your
variables meaningf names that reflect their uBON'T use keywords

as variable names.

3.3.3 Enumerated Constants

Enumerated constants enable you to create new types and then to define
variables of those types whose values are restricted to a set of possible
values. Foexample, you can declare COLOR to be an enumeration, and
you can define that there are five values for COLOR: RED, BLUE,
GREEN, WHITE, and BLACK.

The syntax for enumerated constants is to write the keyword enum,
followed by the type name, an open braeach of the legal values
separated by a cormna, and finally a closing brace and a semicolon.
Here's an example:

enum COLOR {RED, BLUE, GREEN, WHITE, BLACK};

This statement performs two tasks:

1. It makes COLOR the name of an enumeration, that is, dypew

2. It makes RED a symbolic constant with the value 0, BLUE a
symbolic constant with the value |, GREEN a symbolic constant with
the value 2, and so forth.

Every enumerated constant has an

otherwise, the first awstant will have the value 0, and the rest will count
up from there. Any one of the constants can be initialized with a

386

particular value, however, and those that are not initialized will count
upward from the ones before them. Thus, if you write

enum Colo { RED=100, BLUE, GREEN=500, WHITE,
BLACK=700};

then RED will have the value 100; BLUE, the value 101; GREEN, the
value 500; WHITE, the value 501; and BLACK, the value 700.

You can define variables of type COLOR, but they can be assigned only
one of theenumerated values (in this case, RED, BLUE, GREEN,
WHITE, or BLACK, or else 100, 101, 500, 501, or 700). You can assign
any color value to your COLOR variable. In fact, you can assign any
integer value, even if it is not a legal color, although a good demp

will issue a warning if you do. It is important to realize that enumerator
variables actually are of type unsigned int, and that the enumerated
constants equate to integer variables. It is, however, very convenient to
be able to name these values wheorking with colors, days of the
week, or similar sets of values. Listing 2.5 presents a program that uses
an enumerated type.

Listing 2.5. A demonstration of enumerated constants.

1: #include <iostream.h>

2: int main()

3.

4. enum Days { Sunday, Malay, Tuesday, Wednesday, Thursday,
Friday, Saturday };

Days DayOff;
int X;

© N d

Gout << "What day would you like off {6)? ";
10: cin>>x;

11: DayOff = Days (x)

12:

13: if (DayOff == Sunday 11 DayOff == Saturday)
14: Gout << \nYou're aleady off on weekendsil";
15: else

16: cout << nOkay, I'll put in the vacation dag:’;
17: return O;

18.}

Output: What day would you like off {6)? 1
Okay, I'll put in the vacation day.

What day would you like off (&)? O

You're already off on wé@nds!

387

Analysis: On line 4, the enumerated constant DAYS is defined, with
seven values counting upward from 0. The user is prompted for a day on
line 9. The chosen value, a number between 0 and 6, is compared on line
13 to the enumerated values for Sundey Saturday, and action is
taken accordingly.

NOTE: For this and all the small programs in this book, I've left out all
the code you would normally write to deal with what happens when the
user types inappropriate data. For example, this program doksnk,

as it would in a real program, to make sure that the user types a number
between 0 and 6. This detail has been left out to keep these programs
small and simple, and to focus on the issue at hand.

4.0 CONCLUSION

Writing a C++ program needs a caretinderstudy of the rudiments of

the project which should be designed beforehand to know the format the
coding will take and the different variables that may be used. As a
programmer, care should be taken to ensure the right variable type is
used for efftient use of memory space.

5.0 SUMMARY

This chapter has discussed numeric and character variables and
constants, which are either integral (char, short, and long int) or they are
floating point (float and double). Numeric variables can also be signed
or unsigned. Although all the types can be of various sizes among
different computers, the type specifies an exact size on any given
computer.

You must declare a variable before it can be used, and then you must
store the type of data that you've declamsccorrect for that variable. If

you put too large a number into an integral variable, it wraps around and
produces an incorrect result.

This chapter also reviewed literal and symbolic constants, as well as
remunerated constants, and showed two ways ¢ttamdea symbolic
constant: using #define and using the keyword const.

6.0 TUTOR-MARKED ASSIGNMENT
1. What is the difference between an integral variable and a
floating-point variable?

2. What are the differences between an unsigned short int and a long
int?

388

8.
9

10.

What are the advantages of using a symbolic constant rather than
a literal constant ?

What are the advantages of using the const keyword rather than #
define ?

Given this enum, what is the value of BLUE?

enum COLOR { WHITE, BLACK = 100, REDBLUE, GREEN
=300}

Which of the following variable names are good, which are bad,
and which are invalid?

a. Age

b. lex

C. R791

d. Total Income
e Invalid

What would be the correct variable type in which to store the
following information?

a. Your age.

b. The area of your backyard.

C. The number of stars in the galaxy.

d. The average rainfall for the month of January.

Create good variable names for this information.
Declare a constant for pi as 3.14159.

Declare a floavariable and initialize it using your pi constant.

7.0 REFERENCESFURTHER READING

Teach yourself C++ in 21 days, Greg Wiegamith://www.mcp.com

Borland C++ ObjecOriented Programming.

389

http://www.mcp.com/

UNIT 3

CONTENTS

1.0
2.0
3.0

4.0
5.0
6.0
7.0

1.0

C++ EXPRESSIONS AND STATEMENTS

Introduction
Objectives
Main Content

3.1

3.2

3.3

3.4

Statements

3.1.1 Blocks and Compound Statements
3.1.2 Expressions

Operators

3.2.1 Assignment Operators

3.2.2 Mathematical Operators

3.2.3 Integer Division and Modulus
3.2.4 Increment and Decrement Operators
3.2.5 Prefix and Postfix

3.2.6 Operator Precedence

3.2.7 Relational Operators

The if Statement

3.3.1 Ifelse

3.3.2 Advanced/Nested if Statements
3.3.3 Using Braces in Nested if Statements
Logical Operators

3.4.1 Logical AND

3.4.2 Logical OR

3.4.3 Logical NOT

3.4.4 Relational Precedence

3.4.5 Conditional (Ternary) Operator

Conclusion

Summary

Tutor-Marked Assignment
References/Further Reading

INTRODUCTION

At its heart, a program is a sgft commands executed in sequence. The
power in a program comes from its capability to execute one or another
set of commands, based on whether a particular condition is true or

false.

2.0 OBJECTIVES

At the end of this unit, you will be able:to

T
T

390

define statements.
define what blocks are.

1 describe What expressions are.
1 Know how to branch your code based on conditions.
3.0 MAIN CONTENT

3.1 Statements

In C++ a statement controls the sequence of execution, evaluates an
expression, or does nothing €thull statement). All C++ statements end
with a semicolon, even the null statement, which is just the semicolon
and nothing else. One of the most common statements is the following
assignment statement:

X=a+bh;

Unlike in algebra, this statement dagst mean that x equals a+b. This

is read, "Assign the value of the sum of a and b to x," or "Assign to X,
a+b." Even though this statement is doing two things, it is one statement
and thus has one semicolon. The assignment operator assigns whatever
Is onthe right side of the equal sign to whatever is on the left side.

3.1.1 Blocks and Compound Statements

Any place you can put a single statement, you can put a compound
statement, also called a block. A block begins with an opening brace ({
) and ends wh a closing brace { | }. Although every statement in the
block must end with a semicolon, the block itself does not end with a
semicolon. For example

{
temp = a;
a=b;
b = temp;
}

This block of code acts as one statement and swaps the values in the
variables a and b.

3.1.2 Expressions

Anything that evaluates to a value is an expression in C++. An
expression . All said to return a value. Thus, 3 +2; returns the value 5
and so is an expression. expressions are statements.

Examples of valid expressie are given below:

3.2 /I returns the value 3.2
Pl /I float const that returns the value 3.14

391

SecondsPerMinute// int const that returns 60
constant equal to 60, all three of these statements are expressions.

A little complicated expression
X=a+b;

not only adds a and b and assigns the result to x, but returns the value of
that assignment (the value of x) as well. Thus, this statement is also an
expression. Because it is an expression, it can be on the right side of an
assignment operator:

Listing 4.1. Evaluating complex expressions.

1 #include <iostream.h>

2: int main()

3.4

4. int a=0, b=0, x=0, y=35;

5: cout<<"a: "<<a<<"b: "<< b;
6: cout<<"x:"<<x<<"y:"<<y<<endl,
7. a=09;

8: b=7:

9: y =X = a+b;

10: cout<<"a"<<a<<"h:"<<b;
11: cout<<"x:"<<x<<"y:"<<y<<endl]
12: return O;

Copy and run the lines of code above.

3.2 Operators

An operator is a symbol that causes the compiler to take an action.
Operators act on operands, and in C++ allrapgs are expressions. In
C++ there are several different categories of operators. Two of these

categories are

1 Assignment operators.
1 Mathematical operators.

3.2.1 Assignment Operators

The assignment operator (=) causes the operand on the left side of th
assignment operator to have its value changed to the value on the right
side of the assignment operator. The expression

Xx=a+Db;

assigns the value that is the result of adding a and b to the operand x.

392

3.2.2 Mathematical Operators

There are five matimeatical operators: addition (+), subtractioy), (
multiplication (*), division (/), and modulus (%).

Addition and subtraction work as you would expect, although
subtraction with unsigned integers can lead to surprising results, if the
result is a negativenumber. You saw something much like this
yesterday, when variable overflow was described. Listing 4.2 shows
what happens when you subtract a large unsigned number from a small
unsigned number.

Llstlng 4.2. A demonstration of subtraction and integer ¢aonarf
Il Listing 4.2- demonstrates subtraction and

/l integer overflow

#include <# iostreamh>

int main()

=

unsigned int difference;

unsigned int bigNumber = 100;

unsigned int smallNumber = 50;

10: difference = bigNumbersmallNumber;

11: cout << "Difference is: " << difference;

12: difference = smallNumberbigNumber;

13: Gout << \nNow difference is: " << difference <<end];
14: return O;

15:}

OCONyI AWM E

Copy and run the lines of code above.
3.2.3 Integer Division and Modulus

Integer division is somewhat different from everyday division. When
you divide 21 by 4, the result is a real number (a number with a
fraction). Integers don't have fractions, and so the "remainder" is
truncated. The answer is therefore 5. To get the remaipde take 21
modulus 4 (21 % 4) and the result is 1. The modulus operator tells you
the remainder after an integer division.

3.2.4 Increment and Decrement Operators

The most common value to add (or subtract) and then reassign into a
variable is 1. In @+, increasing a value by | is called incrementing, and
decreasing by | is called decrementing. There are special operators to
perform these actions.

393

The increment operator (++) increases the value of the variable by 1,
and the decrement operatef) (deaeases it by 1. Thus, if you have a
variable, C, and you want to increment it, you would use this statement:

C++; // Start with C and increment it. This statement is equivalent to
the more verbose statement
C=C+1;

which you learned is also equivalemd the moderately verbose
statement

3.2.5 Prefix and Postfix

Both the increment operator (++) and the decrement operatoofme

in two varieties: prefix and postfix. The prefix variety is written before
the variable name (++myAge); the postfix variasy written after
(myAge++).

In a simple statement, it doesort much matter which you use, but in a
complex statement when you have to assign the result to another
variable, it matters very much. The prefix operator is evaluated before
the assignment, theostfix is evaluated after.

The semantics of prefix is this: Increment the value and then fetch it.
The semantics of postfix is different: Fetch the value and then increment
the original.

This can be confusing at first, but if x is an integer whose valGeand
you write int a = ++Xx;

you have told the compiler to increment x (making it 6) and then fetch
that value and assign it to a. Thus, a is now 6 and x is now 6.

If, after doing this, you write
int b = x++;

you have now told the compiler to fatthe value in x (6) and assign it

to b, and then go back and increment x. Thus, b is now 6, but x is now 7.
Listing 4.3 shows the use and implications of both types.

Listing 4.3. A demonstration of prefix and postfix operators.

1: // Listing 4.3- demamstrates use of

2: /] prefix and postfix increment and
3: // decrement operators

394

4: #include <iostream.h>

5: int main()

6: {

7. int myAge = 39; /l initialize two integers

8: int yourAge = 39;

9: cout << "l am: " myAge << " years old’;

10. cout <<'You are: " /] ++yourAge << yourAge << " years oit}
11: myAge++;; Il postfix increment

12: ++Yuragebo /I prefix increment

13: cout << "One year passesn’;

14: cout << "l am: " << myAge << " years old’;

15: cout << "You are: " << yourAge << "ears olth";
16: cout << "Another year passa$,

17: cout << "l am: " << myAge++ << " years old";

18: cout << "You are: " << ++yourAge << " years bit}
19: cout << "Let's print it agaiim";

20: cout << "l am: " << myAge << " years old’;

21: cout<<"You are: " << yourAge << " years aid;
22: return O;

23:}

Copy and run the lines of code above.
3.2.6 Operator Precedence

In the complex statement
X=5+3*8§;

which is performed first, the addition or the multiplication? If the
addition is erformed first, the answer is 8 * 8, or 64. If the
multiplication is performed first, the answer is 5 + 24, or 29.

Every operator has a precedence value. Multiplication has higher
precedence than addition, and thus the value of the expression is 29.
Whentwo mathematical operators have the same precedence, they are
performed in lefto-right order. Thus

X=5+3+8*9+6*4;
is evaluated multiplication first, left to right. Thus, 8*9 = 72, and 6*4 =
24. Now the expression is essentially

=5+ 3+ 72 24;
Now the addition, left to right, is 5+ 3 =8; 8 + 72 = 80; 80 + 24 = 104.

395

Be careful with this. Some operators, such as assignment, are evaluated
in right-to-left order! In any case, what if the precedence order doesn't
meet your needs? Considee tbBxpression

TotalSeconds = NumMinutesToThink + NumMinutesToType * 60

In this expression, you do not want to multiply the NumMinutesToType
variable by 60 and then add it to NumMinutesToThink. You want to add
the two variables to get the total number ohutes, and then you want

to multiply that number by 60 to get the total seconds.

In this case, you use parentheses to change the precedence order. Iltems
in parentheses are evaluated at a higher precedence than any of the
mathematical operators. Thus

TotalSeconds = (NumMinutesToThink + NumMinutesToType) * 60

will accomplish what you want.

3.2.7 Relational Operators

The relational operators are used to determine whether two numbers are
equal, or if one is greater or less than the other. Every relational
statement evaluates to either 1 (TRUE) or O (FALSE). The relational
operators are presented later.

If the integer variable myAge has the value 39, and the integer variable
yourAge has the value 4 0, you can determine whether they are equal by
using the relabnal "equals" operator:

myAge == yourAge; // is the value in myAge the same as in yourAge?

This expression evaluates to O, or false, because the variables are not
equal. The expression

myAge > yourAge; // is myAge greater than yourAge?
evaluates to Or false.

There are six relational operators: equals (==), less than (<), greater than
(), less than or equal to (<=), greater than or equal to (>=), and not
equals (! =).

3.3 The if Statement

Normally, your program flows along line by line in theler in which it
appears in your source code. The i f statement enables you to test for a
condition (such as whether two variables are equal) and branch to
different parts of your code, depending on the result.

The simplest form of an i f statement is this

396

if (expression)
statement;

The expression in the parentheses can be any expression at all, but it
usually contains one of the relational expressions. If the expression has
the value 0, it is considered false, and the statement is skipped. ¢f it ha
any nonzero value, it is considered true, and the statement is executed.
Consider the following example:

if (bigNumber > smallNumber)
bigNumber = smallNumber;

This code compares bigNumber and smallNumber. If bigNumber is

larger, the second linets its value to the value of smallNumber.

Because a block of statements surrounded by braces is exactly
equivalent to a single statement, the following type of branch can be
quite large and powerful:

{(expression)
statement |
statement 2;
statement 3;

}

Here's a simple example of this usage:

If (bigNumber > smallNumber)

{

bigNumber = smallNumber;

cout << "bigNumber: " << bigNumber <4n";

cout << "smallNumber: " << smallNumber <¥";

}

This time, if bigNumber is larger than smallNumber, not asli set to

the value of smallNumber, but an informational message is printed.
Listing 4.4 shows a more detailed example of branching based on
relational operators.

Listing 4.4. A demonstration of branching based on relational operators.
1: // Listing4.4 - demonstrates if statement

2: /I used with relational operators

3: #include <iostream.h>

4: int main()

5.4

6: int RedSoxScore, YankeesScore;

7 cout << "Enter the score for the Red Sox: ";

397

8:
9:
10:
11:
12:
13:
14
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41
42:}

cin >> RedSoxScore;

Cout << \nEnter the score fdhe Yankees: ";
cin >> YankeesScore;

Cout << \n";

if (RedSoxScore > YankeesScore)
Cout << "Go Soxn";

if (RedSoxScore < YankeesScore)

{

Cout << "Go Yankeesh";
cout << "Happy days in New Yorkl";

}

If (RedSoxScore == YankeesScore)

{

cout << "A tie? Naah, can't he";
cout << "Give me the real score for the Yanks: "
cin >> YankeesScore;

if (RedSoxScore > YankeesScore)
cout << "Knew it! Go Sox!";

if (YankeesScore > RedSoxScore)
cout << "Knew it! Go Yanks!";

if (YankeesScore == RedSoxScore)
cout << "Wow, it really was a tie!";

}

cout << \nThanks for telling mén";
return O;

In this example, getting a true resuitone i f statement does not stop
other if statements from being tested.

Copy and run the lines of code above.

3.3.1 If else

Often your program will want to take one branch if your condition is
true, another if it is false. In Listing 4.3, you wanted piont one
message (G&ox!) if the first test (RedSoxScore >Yankees)

398

evaluated TRUE, and another message (GoYanks !) if it evaluated
FALSE.

The method shown so far, testing first one condition and then the other,
works fine but is a bit cumbersonihe keyword else can make for far
more readable code:

if (expression)
statement;
else
statement;

Listing 4.5 demonstrates the use of the keyword else

Listing 4.5. Demonstrating the else keyword.

II'listina 4 5- demonstrates if statement
I with else clause

#include <iostream.h>

int main()

{

int firstNumber, secondNumber;

cout << "Please enter a bia number: ":

cin >> firstNumber;

cout << \nPlease enter a smaller number: ":
10: cin >> secondNumber;

11: if (firstNumber > secondNumber)

12: cout << \nThanksin";

13: else

14° coitr << "\nOons. The second is hinaer!":

©R NouhkwNnT

16: return O;
17: 1}

Copy and run the lines of code above.

3.3.2 Advanced/Nested if Statenents

it is worth noting that any statement can be used in an if or else clause,
even another if or else statement. Thus, you might see complex if
statement in the following form:

if (expression I)
if (expression2)
statement |
else

399

if (expressioR)

statement?2;
else
statement3;

}
}

else

statement4;
This cumbersome if statement says, "If expression | is true and
expression2 is true, execute statement I. If expression is true but
expression?2 is not true, thenelkpression3 is true execute statement2. If
expression is true but expression2 and expression3 are false, execute
statement3. Finally, if expression is not true, execute statement4." As
you can see, complex i f statements can be confusing!

Listing 4.6 gives an example of such a complex i f statement.
Listing 4.6. A complex, nested if statement.

1 /I Listing 4.5- a complex needed

2: /I if statement

3: #include <iostream.h>

4: int main()

5.
6: /I Ask for two numbers

7 /I Assign the numbers to bigNdrar and littleNumber,
8: /[1f bigNumber is bigger than littleNumber,

9: /] see if they are evenly divisible

10: /[If they are, see if they are the same

11:

12: int firstNumber , secondNumber ;

13: Cout <, i Enter two numbes . /I nF
14: cin>> firstNumber;

15: Cout << A/ nSecond: i ;

16: cin >> secondNumber;

17: cout << A/ n/ no;

18:

19: if (firstNumber >= secondNumber)

20: |

{ 2i: if (first Number % secondNuber) = = 0) // evenly divisible?

{
23: if (firstNumber = = secatNumber)

24: cout << "They are the same !0 ;

25: else
26: cout << "They are not evently divisibie! 0 ;
27 '}

400

28: else

29 cout << A They ‘serond one is | arger!
30: }

31: else

32, cout << A Hey! Thwmwosecond one is | arge
33: return)O0;

34:}

copy and run the lines of code above.
3.3.3 Using Braces in Nested if Statements

Although it is legal to leave out the braces on i f statements that are only
a single statement, and it is legal to nest i f statements, such as

if (x>y) Il'if X is bigger than y
if (x<z) /landif xis smaller than z
X=Y,; // then set x to the value iny

when writing large nested statements, this can cause enormous
confusion. Remember, whitespace and indentation are a convenience for
the pogrammer; they make no difference to the compiler. It is easy to
confuse the logic and inadvertently assign an else statement to the
wrong if statement. Listing 4.7 illustrates this problem.

Listing 4.7. A demonstration of why braces help clarify which kse
statement goes with which if statement.

/I Listing 4.7- demonstrates why braces

/l are important in nested if statements
#include <iostream.h>

int main()

{

int X;

cout << "Enter a number less than 1(
cin >> Xx;

cout << '\n":

11: if (x > 10)

12: if (x > 100)

13: cout << "More than 100, Thankas!;
14: else /I not the else intended!

15: cout << "Less than 10. Thanks!:

ooNoIRWN E

17: return O;
18: }

Copy and run the lines of code above.

401

Listing 4.8 fixes the problem by putting in the necessary
braces.
Listing 4.8. A demonstration of the proper use of braces with an if
statement
1 //Listing 4.8 demonstrates proper use of braces
2 I/l in nested if statements
3: #include <iostream.h>
4. int main() 5. {
6
7
8
9

: int X;
: cout << "Enter a number | ess
: cin >> x;
: cout << \n";
10:
11: if (x> 10)
12: {

13: if (x>100)

14: cout << "More than 100, Thanka!;

15: }

16: Else /I not theelse intended!

17: cout << A Lesssndbhen 10, Thanks !
18: return O;

19: }

copy and run the lines of code above.
3.4 Logical Operators

Often you want to ask more than one relational question at a time. "Is it
true that x is greater than y, and atsee that y is greater than z?" A
program might need to determine that both of these conditions are true,
or that some other condition is true, in order to take an action.

Imagine a sophisticated alarm system that has this logic: "If the door
alarm sound#&ND it is after six p.m. AND it is NOT a holiday, OR if it

is a weekend, then call the police." C++'s three logical operators are
used to make this kind of evaluation. These operators are listed in Table
3.1.

Table 3.1. The Logical Operators.

Operator Symbol Example

AND & & expression &¢
OR |1 expression Il expressi
NOT ! I expression

402

3.4.1 Logical AND

A logical AND statement evaluates two expressions, and if both
expressions are true, the logical AND statemerttus as well. If it is
true that you are hungry, AND it is true that you have money, THEN it
Is true that you can buy lunch. Thus,

if ((x==5)&& (y==5))

would evaluate TRUE if both x and y are equal to 5, and it would
evaluate FALSE if either ons hot equal to 5. Note that both sides must
be true for the entire expression to be true.

Note that the logical AND is two & & symbols. A single & symbol is a

different operator.

3.4.2 Logical OR

A logical OR statement evaluates two expressions. If redghe is true,

the expression is true. If you have money OR you have a credit card,
you can pay the bill. You don't need both money and a credit card; you
need only one, although having both would be fine as well. Thus,

if(x==5)11(y==5))

evaludes TRUE if either x or y is equal to 5, or if both are.

Note that the logical OR is two | | symbols. A single | symbol is a
different operator

3.4.3 Logical NOT

A logical NOT statement evaluates true if the expression being tested is
false. Again, if tle expression being tested is false, the value of the test
iIs TRUE! Thus

if (!(x==5))

is true only if x is not equal to 5. This is exactly the same as writing

if (x 1=5)

3.4.4 Relational Precedence

Relational operators and logical operators, b&nrg expressions, each
precedence order (see Appendix A) that determines which relations are
evaluated first. This fact is important when determining the value of the
statement

if(x>5&%y>511z>5)

403

It might be that the programmer wanted thigpression to evaluate
TRUE if both x and y are greater than 5 or if z is greater than 5. On the
other hand, the programmer might have wanted this expression to
evaluate TRUE only if x is greater than 5 and if it is also true that either
y is greater than &r z is greater than 5.

If x is 3, and y and z are both 10, the first interpretation will be true (z is
greater than 5, so ignore x and y), but the second will be false (it isn't
true that both x and y are greater than 5 nor is it true that z is greater
than 5).

Although precedence will determine which relation is evaluated first,
parentheses can both change the order and make the statement clearer:

if((x>5&&(y>511z>5))

Using the values from earlier, this statement is false. Becaus@at is
true that x is greater than 5, the left side of the AND statement fails, and
thus the entire statement is false. Remember that an AND statement
requires that both sides be trsmething isn't both "good tasting"
AND "good for you" if it isn't gooddsting.

NOTE: It is often a good idea to use extra parentheses to clarify what
you want to group. Remember, the goal is to write programs that work
and that are easy to read and understand.

3.4.5 Conditional (Ternary) Operator

The conditional operatof?(;) is C++'s only ternary operator; that is, it is
the only operator to take three terms.

The conditional operator takes three expressions and returns a value:
(expression |) ? (expression?2) : (expression3)

This line is read as "If expression) is truesturn the value of
expression2; otherwise, return the value of expression3." Typically, this
value would be assigned to a variable.

Listing 4.9 shows an i f statement rewritten using the conditional
operator.

Listing 4.9. A demonstration of the conditedroperator.

1. /I Listing 4.9 - demonstrates the conditio
2: |l

3: #include <iostream.h>

4: int main()

5 |

6: Iintx,v, z;

7.

cout << "Enter two numbeig.":

404

8: cout << "First: ";

9: cin>>x;

10: cout << '\nSecond: ":
11: cin>>vy;

12: cout << '\n"™:

13:

14: if (x > V)

15: z=x;

16: else

17: z=vy;

18:

19: cout<<"z:"<<7Z;
20: cout << '\n"™:

21:

22 z=(X>VY)?X.YV,;
23:

24: cout<<"z:"<<z:
25: cout << '\n"™:

26: return O;

27}

Copy and run the lines of code above.
4.0 CONCLUSION

The composition of any program is made of the small bits of expressions
and statements. Learning and understanding a programming
language involve knowing the combination of these bits and pieces.
Without them a programmer has not even started. They are the blood
through which the other components of a program runs.

5.0 SUMMARY

This unit has covered a lot of material. You have learned what C++
statements and expressions are, what C++ operatorsddbpanC++ i f
statements work.

You have seen that a block of statements enclosed by a pair of braces
can be used anywhere a single statement can be used.

You have learned that every expression evaluates to a value, and that
value can be tested in an statement or by using the conditional
operator. You've also seen how to evaluate multiple statements using the
logical operator, how to compare values using the relational operators,
and how to assign values using the assignment operator.

405

You have expleed operator precedence. And you have seen how
parentheses can be used to change the precedence and to make
precedence explicit and thus easier to manage.

6.0 TUTOR-MARKED ASSIGNMENT

l. Why use unnecessary parentheses when precedence will
determine \mich operatoroperators are acted on are acted on
first ?

2. If the relational operators always return 1 or 0, why are other
values considered true?

3. What effect do tabs, spaces, and new lines have on the program?

4. Are negative numbers true or fabse

7.0 REFERENCES/FURTHER READING
Teach yourself C++ in 21 days, Greg Wiegdhmit}y://www.mcp.com

Borland C++ ObjecDriented Programming.

406

http://www.mcp.com/

UNIT 4

CONTENTS

1.0
2.0
3.0

4.0
5.0
6.0
7.0

1.0

CLASSES |

Introduction
Objectives
Main Content

3.1 Classes And Their Members
3.1.1 Declaring A Class
3.2 Declaring An Object
3.3 Classes Versus Objects
3.4 Accessing Class Members
3.4.1 Assign to Objects, Not to Classes
342 1| f You Donot Decl aret I t,
3.5 Access Modifiers
3.5.1 Private Versus Public
3.5.2 Make data members private
3.5.3 Privacy Versus Security
3.6 Implementing Class Methods
Conclusion
Summary

Tutor-Marked Assignment
References/Further Reading

INTRODUCTION

Classes extend the builh capabilities of C++ to assist you in
representing and solving complex, real world problems. It is the
beginning of the representation of the objegénted programming in

C++.

Object are simply instances of classes as variablesinstances of
primitive types.

2.0 OBJECTIVES

At the end of this unit, you will learn:

= =4 =4 =4

what classes and objects are

how to define a new class and create objects of thss ¢
what membefunctions and data members are

what constructors are and howuse them.

407

Your

Cl

3.0 MAIN CONTENT
3.1 Classes And Their Members

You make a new type by declaring a class. A class is just a collection of
variables-often of different typescombined with a set of related
functions.

One way to think about a car is asdlection of wheels, doors, seats,
windows, and so forth. Another way is to think about what a car can do:
It can move, speed up, slow down, stop, park, and so on. A class enables
you to encapsulate, or bundle, these various parts and various functions
into one collection, which is called an object.

Encapsulating everything you know about a car into one class has a
number of advantages for a programmer. Everything is in one place,
which makes it easy to refer to, copy, and manipulate the data. Likewise,
clients of your classthat is, the parts of the program that use your €lass
-can use your object without worry about what is in it or how it works.

A class can consist of any combination of the variable types and also
other class types. The variables ire tblass are referred to as the
member variables or data members. A Car class might have member
variables representing the seats, radio type, tires, and so forth.

New Term: Member variables , also known as data members , are the
variables in your class. Maber variables are part of your class, just like
the wheels and engine are part of your car.

The functions in the class typically manipulate the member variables.
They are referred o as member functions or methods of the class.
Methods of the Car class ght include Start() and Brake(). A Cat class
might have data members that represent age and weight; its methods
might include Sleep(), Meow(), and Chase Mice().

New Term: Member functions , also known as methods , are the
functions in your class. Memberrfations are as much a part of your
class as the member variables. They determine what the objects of your
class can do.

3.11 Declaring A Class

To declare a class, use the class keyword followed by an opening brace,
and then list the data members and hods of that class. End the
declaration with a closing brace and a semicolon. Here's the declaration
of a class called Cat:

408

class Cat

unsigned int itsAge;
unsigned int its Weight;
Meow();

¥
Declaring this class doesn't allocate memory for a Caustttglls the
compiler what a Cat is, what data it contains (itsAge and its Weight),
and what it can do (Meow()). It also tells the compiler how big a Gat is
that is, how much room the compiler must set aside for each Cat that
you create. In this examplé,an integer is two bytes, a Cat is only four
bytes big: itsAge is two bytes, and its Weight is another two bytes.
Meow() takes up no room, because no storage space is set aside for
member functions (methods).

3.2 Declaring An Obiject

You define an objg of your new type just as you define an integer
variable:

unsigned int Gross Weiglit,define an unsigned integer

Cat Frisky; // define a Cat

This code defines a variable called Gross Weight whose type is an
unsigned integer. It also defines Frisky, @fis an object whose class
(or type) is Cat.

3.3 Classes Versus Objects

You never pet the definition of a cat; you pet individual cats. You draw

a distinction between the idea of a cat, and the particular cat that right
now is shedding all over your lvg room. In the same way, C++
differentiates between the class Cat, which is the idea of a cat, and each
individual Cat object. Thus, Frisky is an object of type Cat in the same
way in which Gross Weight is a variable of type unsigned int.

New Term: An olect is an individual instance of a class.

3.4 Accessing Class Members

Once you define an actual Cat objefcr example, Friskyyou use the

dot operator (.) to access the members of that object. Therefore, to
assign 50 to Frisky's Weight member varghlou would write

Frisky. Weight = 50;

In the same way, to call the Meow() function, you would write Frisky.
Meow();

When you use a class method, you call the method. In this example, you
are calling Meow() on Frisky.

409

3.4.1 Assign to Objects, Not to Clases

In C++ you don't assign values to types; you assign values to variables.
For example, you would never write

int =5; // wrong

The compiler would flag this as an error, because you can't assign 5 to
an integer. Rather, you must define an integerabégi and assign 5 to
that variable. For example,

int x; Il define x to be an int

X =5; /] set x's value to 5

This is a shorthand way of saying, "Assign 5 to the variable x, which is
of type int." In the same way, you wouldn't write

Cat.age=5; // wrong

The compiler would flag this as an error, because you can't assign 5 to
the age part of a Cat. Rather, you must define a Cat object and assign 5
to that object. For example,

Cat Frisky; Il just like int x;

Frisky.age =5; //just like x = 5;

3421fYouDono6ét Declare 1It, Your CIl as
Try this experiment: Walk up to a thrgearold and show her a cat.

Then say, "This is Frisky. Frisky knows a trick. Frisky, bark." The child
will giggle and say, "No, silly, cats can't bark."

If you wrote
CatFrisky; /I make a Cat named Frisky
Frisky. Bark() /I tell Frisky to bark

the compiler would say, No, silly, Cats can't bark. (Your compiler's
wording may vary). The compiler knows that Frisky can't bark because
the Cat class doesn't have a Bark() fiomwctThe compiler wouldn't even

let Frisky meow if you didn't define a Meow() function.

3.5 Access Modifiers

There are three keywords in C++ that determine the level of access the
users will have on objectd’he declaration of these must be done at
class declaration level. They are private, public and protectedWe

shall discuss private and public in this unit and leave protected for the
next.

410

3.5.1 Private Versus Public

Other keywords are used in the declaration of a class. Two of the most
importantare public and private.

All members of a clasglata and methoesre private by default.
Private members can be accessed only within methods of the class itself.
Public members can be accessed through any object of the class. This
distinction is both imortant and confusing. To make it a bit clearer,
consider an example from earlier in this unit:

class Cat
{
unsigned int itsAge;
unsigned int itsWeight;
Meow ();
3
In this declaration, itsAge, its Weight, and Meow() are all private,
because all membeof a class are private by default. This means that
unless you specify otherwise, they are private.

However, if you write

Cat Boots;
Boots.itsAge=5; // error! can't access private data!

the compiler flags this as an error. In effect, you've said todah®iler,

"I'l access itsAge, itsWeight, and Meow() only from within member
functions of the Cat class.” Yet here you've accessed the itsAge member
variable of the Boots object from outside a Cat method. Just because
Boots is an object of class Cat, thdaesn't mean that you can access the
parts of Boots that are private.

This is a source of endless confusion to new C++ programmers. Why
can't Boots access his own age?" The answer is that Boots can, but you
can't. Boots, in his own methods, can accebk#$ial parts-public and
private. Even though you've created a Cat, that doesn't mean that you
can see or change the parts of it that are private.

The way to use Cat so that you can access the data members is

class Cat

public:

unsigned int itsAge;
unsignel int its Weight;
Meow ();

411

%
Now itsAge, itsWeight, and Meow() are all public. Boots.itsAge=5
compiles without problems.

Listing 6.1 shows the declaration of a Cat class with public member
variables.

Listing 6.1. Accessing the public members of a $agbass.

1: /l Demonstrates declaration of a class and
2: /l definition of an object of the class,

3:

4: #include <overstream.h>// for court

5:

6: class Cat // declare the class object

7.

8: public: /I members which follow are public
9: int itsAge;

10: intitsWeight; 11. };

12:

13:

14: void main()

15: {

16: Cat Frisky;

17: Frisky.itsAge = 5; /I assign to the member variable
18: cout << "Friskyis acatwhois";

19: cout << Frisky.itsAge << " years old';

Output: Frisky is a cat who Bsyears old.

Analysis: Line 6 contains the keyword class. This tells the compiler that
what follows is a declaration. The name of the new class comes after the
keyword class. In this case, it is Cat. The body of the declaration begins
with the opening b in line 7 and ends with a closing brace and a
semicolon in line 11. Line 8 contains the keyword public, which
indicates that everything that follows is public until the keyword private
or the end of the class declaration.

Lines 9 and 10 contain the daations of the class members itsAge and
its Weight

Line 14 begins the main function of the program. Frisky is defined in
line 16 as an instance of a G#tat is, as a Cat object. Frisky's age is set
in line 17 to 5. In lines 18 and 19, the itsAge mem\ariable is used to
print out a message about Frisky.

412

NOTE: Try commenting out line 8 and try to recompile. You will
receive an error on line 17 because itsAge will no longer have public
access. The default for classes is private access.

3.5.2 Make data members private

As a general rule of design, you should keep the data members of a class
private. Therefore, you must create public functions known as
accessor/mutator methods to set and get the private member variables.

These accessor/mutator methade the member functions that other
parts of your program call to get and set your private member variables.

New Term: A public accessor/gettor method is a class member function
used either to read the value of a private class member variable while a
mutator / settor method is used to set its value. Why bother with this
extra level of indirect access? After all, it is simpler and easier to

use the data, instead of working through accessor/mutator functions.
Accessor/mutator functions enable you to saefgathe details of how the
data is stored from how it is used. This enables you to change how the
data is stored without having to rewrite functions that use the data.

If a function that needs to know a Cat's age accesses itsAge directly, that
function wauld need to be rewritten if you, as the author of the Cat class,
decided to change how that data is stored. By having the function call
GetAge(), your Cat class can easily return the right value no matter how
you arrive at the age. The calling function sioeéneed to know whether

you are storing it as an unsigned integer or a long, or whether you are
computing it as needed.

This technique makes your program easier to maintain. It gives your

code a longer life because design changes don't make your program
obsolete. Listing 6.2 shown the cat class modified to include private data
members and public accessor/mutator methods. Note that this is not an
executable listing.

Listing 6.2. A class with accessor/mutator methods.

/I public accessor/mutators
unsigned int GetAge();

1: /I Cat class declaration

2: /l Data members are private, public accessor/mutator methods
3: /l mediate setting and getting the values of the private data

4.

5: class Cat

6. {

7 public:

8:

9:

413

10: void SetAge(unsigned int Age);

11:

122 unsigned int GetWeight();

13: void SetWeight(unsigned int Weight);

14:

15: // public member functions
16. Meow();

17:

18: // private data members

9: private:

20: unsigned int itsAge;
21: unsigned int itsWeight;
22:

23. };

Analysis: This class has¥e public methods. Lines 9 and 10 contain the
accessor/mutator methods for itsAge. Lines 12 and 13 contain the
accessor/mutator methods for its Weight. These accessor/mutator
functions set the member variables and return their values.

The public member faction Meow() is declared in line 16. Meow() is
not an accessor/mutator function. It doesn't get or set a member variable;
it performs another service for the class, printing the word Meow.

The member variables themselves are declared in lines 20 and 21.

To set Frisky's age, you would pass the value to the SetAge() method, as
in Cat Frisky;
Frisky.SetAge(5);// set Frisky's age using the public accessor/mutator

3.5.3 Privacy Versus Security

Declaring methods or data private enables the compiler to find
programming mistakes before they become bugs. Any programmer
worth his consulting fees can find a way around privacy if he wants to.
Stroustrup, the inventor of C++, said, "The C++ access control
mechanisms provide protection against accideat against faud.”
(ARM, 1990.)

DO declare member variables privai2O use public accessor/mutator
methodsDON'T try to use private member variables from outside the
class.DO access private member variables from within class member
functions.

414

3.6 Implementing Class Methods

As you've seen, an accessor/mutator function provides a public interface
to the private data members of the class. Each accessor/mutator
function, along with any other class methods that you declare, must have
an implementation. The implemt@tion is called the function definition.

A member function definition begins with the name of the class,
followed by two colons, the name of the function, and its parameters.
Listing 6.3 shows the complete declaration of a simple Cat class and the
implementation of its accessor/mutator function and one general class
member function.

Listing 6.3. Implementing the methods of a simple class.
I: /I Demonstrates declaration of a class and

2: /I definition of class methods,

3:

4. #include <iostream.h> // for cout

5:

6: class Cat // beain declaration of the class
7:

8: public: // beain public section

9: int GetAge(); // accessor/mutator function

10: void SetAae (int aae); // accessor/mutator function
11: void Meow(): // ameral function

12: private: // beain private section

13: intitsAae: // member variable

14: Y

16: // GetAge, Public accessor/mutator function

17: [l returns value of itsAae member
18: int Cat::GetAge()

19: {

20: return itsAqge;
21: 1}

22:

23: // definition of SetAge, public

24: [l accessor/mutator function

25: [/ returns sets itsAae member
26: void Cat::SetAge(int age)

27 {

28: [/ set member variable its age to
29: [/l value passed in by parameter aage
30: itsAae = age ;

31: 1}

32:

33: // definition of Meow method

34: [/l returns: void

35: // parameters: None

36: // action: Prints "meow" to screen

415

37: void Cat::Meow()

38: {

39: cout << "MeowAn";
40: }

41:

42 /] create a cat, set its aae, have it
43: /I meow, tell usts age, then meow again.
44: int main()

46. Cat Frisky;
47: Frisky.SetAae(5);
48. Frisky.Meow();
49: cout << "Friskv is a cat
50: cout << Frisky.GetAge() << " year olth. 0 ;
51: Friskv.Meow():
52. return O;
53: 1}
Output: Meow.
Frisky is a cat who is 5 years old.

Meow.

Analysis: Lines 614 contain the definition of the Cat class. Line 8
contains the keyword public, which tells the compiler that what follows
Is a set of public members. Line 9 has the declaratioth@fpublic
accessor/mutator method GetAge(). GetAge() provides access to the
private member variable itsAge, which is declared in line 13. Line 10
has the public accessor/mutator function SetAgeQ. SetAge() takes an
integer as an argument and sets itsAgehe value of that argument.
Line 11 has the declaration of the class method Meow(). Meow() is not
an accessor/mutator function. Here it is a general method that prints the
word Meow to the screen.

Linel2 begins the private section, which includes dettan in line 13
of theprivate member variable itsAge. The class declaration ends with a
closing brace and semicolon in line 14.

Lines 1821 contain the definition of the member function GetAge().
This method takes no parameters; it returns an intégee that class
methods include the class name followed by two colons and the function
name (Line 18). This syntax tells the compiler that the GetAge()
function that you are defining here is the one that you declared in the
Cat class. With the exception a@his header line, the GetAge ()
function is created like any other function.

The GetAge() function takes only one line; it returns the value in itsAge.
Note that the main() function cannot access itsAge because itsAge is
private to the Cat class. Theam() function has access to the public
method GetAge(). Because GetAge() is a member function of the Cat

416

class, it has full access to the itsAge variable. This access enables
GetAge() to return the value of itsAge to main().

Line 26 contains the defindn of the SetAge () member function. It
takes an integer parameter and sets the value of itsAge to the value of
that parameter in line 30. Because it is a member of the Cat class,
SetAge() has direct access to the member variable itsAge.

Line 37 begins th definition, or implementation, of the Meow() method

of the Cat class. It is a olime function that prints the word Meow to

the screen, followed by a new line. Remember that\nheharacter
prints a new line to the screen.

Line 44 begins the body ofhé program with the familiar main()
function. In this case, it takes no arguments and returns void. In line 46,
main() declares a Cat named Frisky. In line 47, the value 5 is assigned to
the itsAge member variable by way of the SetAge() accessor/mutator
method. Note that the method is called by using the class name (Frisky)
followed by the member operator (.) and the method name (SetAge()).
In this same way, you can call any of the other methods in a class.

Line 48 calls the Meow() member function, ancel#® prints a message
using the GetAge() accessor/mutator. Line 51 calls Meow() again.

4.0 CONCLUSION

Classes are gateway to objectented programming in C++. The much
desired technology is made available through the use of classes. It
extends the pvilege of creating own types, as the primitive types are
created by compiler developers, that suit the development by
programmers, make them more in control and make their jobs much
easier to accomplish.

5.0 SUMMARY

In this unit, you learned how to cteanew data types called classes.
You learned how to define variables of these new types, which are
called objects.

A class has data members, which are variables of various types,
including other classes. A class also includes member funetidss
known as methods. You use these member functions to manipulate the
data members and to perform other services.

Class members, both data and functions, can be public or private. Public

members are accessible to any part of your program. Private members
are accssible only to the member functions of the class.

417

6.0 TUTOR-MARKED ASSIGNMENT

1.
2.

> w

70

How big is a class object?

If I declare a class Cat with a private member itsAge and then
define two Cat objects, Frisky and Boots, can Boots access
Frisky's itsAge membevariable?

Why shouldn't | make all the data members public?

If using a const function to change the class causes a compiler
error, why shouldn't | just leave out the word const and be sure to
avoid errors?

Is there ever a reason to use a stmgcton a C++ program?

What is the dot operator, and what is it used for?

Which sets aside memorylass declaration or definition?

Is the declaration of a class its interface or its implementation?
What is the difference between public and arévdata members?
Can member functions be private?

Can data members be public?

Can two objects of the same class have different values in their
data members?

Do class declarations end with a semicolon? Do class method
definitions?

REFERENCESFURTHER READING

Teach yourself C++ in 21 days, Greg Wiegadmitl://www.mcp.com

Borland C++ ObjecODriented Programming.

418

http://www.mcp.com/

UNIT 5 CLASSES |l
CONTENTS

1.0 Introduction
2.0 Objectives
3.0 Main Content
3.1 Constructors and Destructors
3.1.1 Default Constructors and Destructors
3.1.2 Constant Member Functions
3.1.3 Interface Versus Implementation
3.1.4 Where to Put Class Declarations and Method
Definitions
3.1.5 Inline Implementation
3.2 Class Composition
3.3 Structures
3.3.1 Why Two Keywords Do the Same Thing
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 References/Further Reading

1.0 INTRODUCTION

The idea of using classes is good, but if it does not give the flexibility
and ease of use of the primitive types, the aim of its olgaented
nature will be defeated. Programs will still be as complex as ever and
compiler developers will have created another problem while erasing
one. The use of constructors and destructolisshe lot in doing away

with this development. This unit talks about how the C++ programmer
can use the constructor and destructor technology and achieve fantastic
result.

2.0 OBJECTIVES
At the end of this unit, you should know

what constructors ancdedtructors are

how to declare constructors and destructors

how to access object variables without changing them
what inline implementation is

= =4 =4 =4

419

3.0 MAIN CONTENT
3.1 Constructors and Destructors

Constructors and destructors are simply functions, athospecial
ones, in C++. A constructor is used in classes to initialize variables and
create memory spaces. A destructor, on the other hand, is used to free
memory spaces. We shall use the knowledge of primitive types to
explain them.

There are two way#o define an integer variable. You can define the
variable and then assign a value to it later in the program. For example,

int Weight; /I define a variable
Weight = 7, /[assign it a value

Or you can define the integer and immediately initializeat. &xample,

int Weight = 7; /I define and initialize to 7

Initialization combines the definition of the variable with its initial
assignment. Nothing stops you from changing that value later.
Initialization ensures that your variable is never without ammegul
value.

How do you initialize the member data of a class? Classes have a special
member function called a constructor. The constructor can take
parameters as needed, but it cannot have a return-eidtieven void.

The constructor is a class metheith the same name as the class itself.
Whenever you declare a constructor, you'll also want to declare a
destructor. Just as constructors create and initialize objects of your class,
destructors clean up after your object and free any mernory you might
have allocated. A destructor always has the name of the class, preceded
by a tilde (~). Destructors take no arguments and have no return value.
Therefore, the Cat declaration includes

~Cat () ;

3.1.1 Default Constructors and Destructors

If you don't detare a constructor or a destructor, the compiler makes
one for you. The default constructor and destructor take no arguments
and do nothing.

What good is a constructor that does nothing? In part, it is a matter of
form. All objects must be constructed addstructed, and these -do
nothing functions are called at the right time. However, to declare an
object without passing in parameters, such as

420

Cat Rags; // Rags gets no parameters you must have a constructor in
the form
Cat () ;

When you define an objeot a class, the constructor is called. If the Cat
constructor took two parameters, you might define a Cat object by
writing

Cat Frisky (5,7);

If the constructor took one parameter, you would write

Cat Frisky (3);

In the event that the constructor takesparameters at all, you leave off

the parentheses and write

Cat Frisky ;

This is an exception to the rule that states all functions require
parentheses, even if they take no parameters. This is why you are able to
write

Cat Frisky;

Which is a call to thelefault constructor. It provides no parameters, and

it leaves off the parentheses. You don't have to use the compiler
provided default constructor. You are always free to write your own
constructor with no parameters. Even constructors with no parameters
can have a function body in which they initialize their objects or do
other work.

As a matter of form, if you declare a constructor, be sure to declare a
destructor, even if your destructor does nothing. Although it is true that
the default destructor wédi work correctly, it doesn't hurt to declare
your own. It makes your code clearer.

Listing 5.1 rewrites the Cat class to use a constructor to initialize the Cat
object, setting its age to whatever initial age you provide, and it
demonstrates where thestieictor is called.

Llstlng 5.1 Using constructors and destructors.

/l Demonstrates declaration of a constructors and

/I destructor for the Cat class

#include <iostream.h> // for cout

class Cat // begin declaration of the class

N~ Rhwn =

~=

public: // begin public section
Cat(int initialAge); // constructor
~Cat(); /l destructor

= O

421

11: int GetAge()// accessor/mutator functicn
12: void SetAge(int age); // accessor/mutator function
13: void Meow();

14: private: I/l begin private section
15: intitsAge; // member variable

16. };

17:

18: /I constructor of Cat,

19: Cat::Cat(int initialAge)

20: 1

21: itsAge = initialAge;

22:}

23:

24: Cat::~Cat()// destructor, takes no action
25: { /I destructor, takes no action
26:}

27:

28: //GetAge, Public accessor/mutator function
29: // returns value of itsAge member

30: { int Cat::GetAge()

31:{

32: return itsAge;
33: }

34:

35: /I Definition of SetAge, public
36: // accessor/mutator function

37:
38: void Cat::SetAge(int age)
39: {

40: // set member variable its age to
41: // value passed in by parameter age
42: itsAge = age;

43: '}

44:

45: /] definition of Meow method

46: /l returns: void

47:. |/ parameters: None

48: /[action: Prints "meow" to screen
49: void Cat::Meow()

50 {

51: cout << "MeowAn";
52:1

53:

54: [/ create a cat, set its age, have it
55 /I meow, tell us its age, then meow again.
56 56: int main()

422

57. {

58: Cat Frisky(b);

59 Frisky.Meow();

60: cout << "Frisky is acatwhois";

61: cout << Frisky.GetAge() <" years oldn";
62: Frisky.Meow();

63: Frisky.SetAge(7);

64: cout << "Now Frisky is " ;

65: cout << Frisky.GetAge() << " years did’;
66; return O;

67:}

Output: Meow.
Frisky is a cat who is 5 years old. Meow.
Now Frisky is 7 years old.

Analysis. Line 9 adds a constructor that takes an integer. Line 10
declares the destructor, which takes no parameters. Destructors never
take parameters, and neither constructors nor destructors return-a value
not even void.

Lines 1922 show the implementatiorf the constructor. It is similar to

the implementation of the SetAge() accessor/mutator function. There is
no return value.

Lines 2426 show the implementation of the destructor ~Cat(). This
function does nothing, but you must include the definition of the
function if you declare it in the class declaration.

Line 58 contains the definition of a Cat object, Frisky. The value 5 is
passed in to Frisky's constructor. There is no need to call SetAge(),
because Frisky was created with the value 5 in its memébeable
itsAge, as shown in line 61. In line 63, Frisky's itsAge variable is
reassigned to 7. Line 65 prints the new value.

DO use constructors to initialize your objects. DON'T give constructors
or destructors a return value. DON'T give destructors pdesme

3.1.2 Constant Member Functions

If you declare a class method coast, you are promising that the method
won't change the value of any of the members of the class. To declare a
class method constant, put the keyword coast after the parentheses but
before the semicolon. The declaration of the constant member function
SomeFunction() takes no arguments and returns void. It looks like this:

void SomeFunction() const;

423

