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Introduction 

Welcome to ECO: 355 INTRODUCTION TO ECONOMETRICS I. 

ECO 355: Introduction to Econometrics I is a three-credit and one-semester 

undergraduate course for Economics student. The course is made up of nineteen units 

spread across fifteen lectures weeks. This course guide gives you an insight to 

introduction to econometrics and how it is applied in economics. It tells you about the 

course materials and how you can work your way through these materials. It suggests 

some general guidelines for the amount of time required of you on each unit in order to 

achieve the course aims and objectives successfully. Answers to your tutor marked 

assignments (TMAs) are therein already. 

 

Course Content 

This course is basically an introductory course on Econometrics. The topics covered 

include the econometrics analysis, single-equation (regression models), Normal linear 

regression model and practical aspects of statistics testing. 

 

Course Aims 

The aims of this course is to give you in-depth understanding of the macroeconomics as 

regards 

 Fundamental concept  of econometrics 

 To familiarize students with single-equation of regression model  
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 To stimulate student‘s knowledge on normal linear regression model 

 

 To make the students to understand some of the practical aspects of econometrics 

test.  

      

 To expose the students to rudimentary analysis of simple and multiple regression 

analysis.  

 

Course Objectives 

 

To achieve the aims of this course, there are overall objectives which the course is out to 

achieve though, there are set out objectives for each unit. The unit objectives are included 

at the beginning of a unit; you should read them before you start working through the 

unit. You may want to refer to them during your study of the unit to check on your 

progress. You should always look at the unit objectives after completing a unit. This is to 

assist the students in accomplishing the tasks entailed in this course. In this way, you can 

be sure you have done what was required of you by the unit. The objectives serves as 

study guides, such that student could know if he is able to grab the knowledge of each 

unit through the sets of objectives in each one. At the end of the course period, the 

students are expected to be able to:  

 to understand the basic fundamentals of Econometrics 

 distinguish between Econometrics and Statistics. 

 know how the econometrician proceed in the analysis of an economic problem. 

 know how the econometrician make use of both mathematical and statistical 

analysis in solving economic problems. 

 understand the role of computer in econometrics analysis 

 identify/explain the types of econometrics analysis. 

 understand the basic Econometrics models 

 differentiate between Econometrics theory and methods 

 know the meaning of Econometrics and why Econometrics is important within 

Economics. 

 know how to use Econometrics for Assessing Economic Model 

 understand what is Financial Econometrics.  

 examine the linear regression model 

 understand the classical linear regression model 

 be able to differentiate the dependant and independent variables. 

 prove some of the parameters of ordinary least estimate. 



4 
 

 know the alternative expression for  ̂ 

 understand the assumptions of classical linear regression model. 

 know the properties that our estimators should have 

 know the proofing of the OLS estimators as the best linear unbiased estimators 

(BLUE). 

 examine the Goodness fit 

 understand and work through the calculation of coefficient of multiple 

determination 

 identify and know how to calculate the probability normality assumption for Ui 

 understand the normality assumption for Ui 

 understand why we have to conduct the normality assumption. 

 identify the properties of OLS estimators under the normality assumption 

 understand what is probability distribution 

 understand the meaning of Maximum Likelihood Estimation of two variable 

regression Model. 

 understand the meaning of Hypothesis 

 know how to calculate hypothesis using confidence interval 

 analyse and interpret hypothesis result. 

 understand the meaning of accepting and rejecting an hypothesis 

 identify a null and alternative hypothesis. 

 understand the meaning of Level of significance 

 understand the Choice between confidence-interval and test-of-significance 

Approaches to hypothesis testing 

 understand the meaning of regression analysis and variance 

 know how to calculate the regression analysis and analysis of variance 

Working Through The Course 

 

To successfully complete this course, you are required to read the study units, referenced 

books and other materials on the course. 

Each unit contains self-assessment exercises called Student Assessment Exercises (SAE). 

At some points in the course, you will be required to submit assignments for assessment 

purposes. At the end of the course there is a final examination. This course should take 

about 15weeks to complete and some components of the course are outlined under the 

course material subsection.  
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Course Material  

 

The major component of the course, What you have to do and how you should allocate 

your time to each unit in order to complete the course successfully on time are listed 

follows: 

1. Course guide  

2. Study unit 

3. Textbook 

4. Assignment file 

5. Presentation schedule  

 

Study Unit 

 

There are 19 units in this course which should be studied carefully and diligently. 

MODULE ONE      ECONOMETRICS ANALYSIS 

Unit 1   Meaning Of Econometrics 

Unit 2            Methodology of Econometrics 

Unit 3   Computer and Econometrics 

Unit 4            Basic Econometrics Models: Linear Regression 

Unit 5            Importance Of Econometrics 

 

MODULE TWO       SINGLE- EQUATION (REGRESSION MODELS)  

Unit One: Regression Analysis 

Unit Two:     The Ordinary Least Square (OLS) Method Estimation 

Unit Three:    Calculation of Parameter   and the Assumption of Classical Least 

                     Regression Method (CLRM) 

Unit Four:     Properties of the Ordinary Least Square Estimators 

Unit Five:      The Coefficient of Determination (R
2
): A measure of ―Goodness of fit‖ 

MODULE THREE    NORMAL LINEAR REGRESSION MODEL (CNLRM) 

 

Unit One:        Classical Normal Linear Regression Model 

Unit Two:        OLS Estimators Under The Normality Assumption 

Unit Three:      The Method Of Maximum Likelihood (ML) 

Unit Four:        Confidence intervals for Regression Coefficients    and    

Unit Five:        Hypothesis Testing 
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MODULE FOUR   PRACTICAL ASPECTS OF ECONOMETRICS TEST 

Unit One          Accepting & Rejecting an Hypothesis 

Unit Two         The Level of Significance 

Unit Three        Regression Analysis and Analysis of Variance 

Unit Four          Normality tests 

 

Each study unit will take at least two hours, and it include the introduction, objective, 

main content, self-assessment exercise, conclusion, summary and reference. Other areas 

border on the Tutor-Marked Assessment (TMA) questions. Some of the self-assessment 

exercise will necessitate discussion, brainstorming and argument with some of your 

colleges. You are advised to do so in order to understand and get acquainted with 

historical economic event as well as notable periods. 

 

There are also textbooks under the reference and other (on-line and off-line) resources for 

further reading. They are meant to give you additional information if only you can lay 

your hands on any of them. You are required to study the materials; practice the self-

assessment exercise and tutor-marked assignment (TMA) questions for greater and in-

depth understanding of the course. By doing so, the stated learning objectives of the 

course would have been achieved. 

 

Textbook and References 

 

For further reading and more detailed information about the course, the following 

materials are recommended: 

 

Adesanya, A.A., (2013). Introduction to Econometric, 2
nd

 edition, Classic Publication  

               limited, Lagos Nigeria. 

Adekanye, D. F., (2008). Introduction to Econometrics, 1
st
 edition, Addart Publication  

              limited, Lagos Nigeria. 

Begg, Iain and Henry, S. G. B.  Applied Economics and Public Policy.  Cambridge             

             University Press, United Kingdom: 1998.  

Bello, W.L., (2015). Applied Econometrics in a large Dimension, Fall Publication, 

Benini, Nigeria. 

Cassidy, John.  The Decline of Economics.  

Dimitrios, A & Stephen, G., (2011). Applied Econometrics, second edition 2011, first  

              edition 2006 and revised edition 2007. 

Emmanuel, E.A., (2014). Introduction to Econometrics, 2
nd

  edition, World gold  

               Publication limited. 

Faraday, M.N., (2014) Applied Econometrics, 1
st
 Edition, Pentagon Publication limited.  
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Friedland, Roger and Robertson, A. F., eds.  Beyond the Marketplace: Rethinking                  

               Economy and Society.  Walter de Gruyter, Inc. New York: 1990  

Gordon, Robert Aaron.  Rigor and Relevance in a Changing Institutional Setting.  

            Kuhn, Thomas.  The Structure of Scientific Revolutions. 

Gujarat, D. N. (2007) Basic Econometrics, 4
th

 Edition, tata Mcgraw – Hill publishing   

               company limited, New Delhi. 

Hall, S. G., & Asterion, D. (2011) Applied Econometrics, 2
nd

 Edition, Palgrave 

Macmillian, New York city, USA 

Medunoye, G.K., (2013). Introduction to Econometrics, 1
st
 edition, Mill Publication  

                limited. 

Olusanjo, A.A. (2014). Introduction to Econometrics, a broader perspective, 1
st
 edition,  

             world press publication limited, Nigeria. 

Parker, J.J., (2016). Econometrics and Economic Policy, Journal vol 4, pg 43-73, Parking  

                & Parking Publication limited. 

Warlking, F.G., (2014). Econometrics and Economic theory, 2
nd

 edition, Dale Press  

              limited.   

 

 

Assignment File 

 

Assignment files and marking scheme will be made available to you. This file presents 

you with details of the work you must submit to your tutor for marking. The marks you 

obtain from these assignments shall form part of your final mark for this course. 

Additional information on assignments will be found in the assignment file and later in 

this Course Guide in the section on assessment. 

There are four assignments in this course. The four course assignments will cover: 

Assignment 1 - All TMAs‘ question in Units 1 – 5 (Module 1) 

Assignment 2 - All TMAs' question in Units 6 – 10 (Module 2) 

Assignment 3 - All TMAs' question in Units 11 – 15 (Module 3) 

Assignment 4 - All TMAs' question in Unit 16 – 19 (Module 4).  

 

Presentation Schedule 

The presentation schedule included in your course materials gives you the important 

dates for this year for the completion of tutor-marking assignments and attending 

tutorials. Remember, you are required to submit all your assignments by due date. You 

should guide against falling behind in your work. 
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Assessment 

There are two types of the assessment of the course. First are the tutor-marked 

assignments; second, there is a written examination. 

 

In attempting the assignments, you are expected to apply information, knowledge and 

techniques gathered during the course. The assignments must be submitted to your tutor 

for formal Assessment in accordance with the deadlines stated in the Presentation 

Schedule and the Assignments File. The work you submit to your tutor for assessment 

will count for 30 % of your total course mark. 

 

At the end of the course, you will need to sit for a final written examination of three 

hours' duration. This examination will also count for 70% of your total course mark. 

 

Tutor-Marked Assignments (TMAs) 

There are four tutor-marked assignments in this course. You will submit all the 

assignments. You are encouraged to work all the questions thoroughly. The TMAs 

constitute 30% of the total score. 

 

Assignment questions for the units in this course are contained in the Assignment File. 

You will be able to complete your assignments from the information and materials 

contained in your set books, reading and study units. However, it is desirable that you 

demonstrate that you have read and researched more widely than the required minimum. 

You should use other references to have a broad viewpoint of the subject and also to give 

you a deeper understanding of the subject. 

 

When you have completed each assignment, send it, together with a TMA form, to your 

tutor. Make sure that each assignment reaches your tutor on or before the deadline given 

in the Presentation File. If for any reason, you cannot complete your work on time, 

contact your tutor before the assignment is due to discuss the possibility of an extension. 

Extensions will not be granted after the due date unless there are exceptional 

circumstances. 

 

Final Examination and Grading 

 

The final examination will be of three hours' duration and have a value of 70% of the 

total course grade. The examination will consist of questions which reflect the types of 

self-assessment practice exercises and tutor-marked problems you have previously 

encountered. All areas of the course will be assessed 

 

Revise the entire course material using the time between finishing the last unit in the 

module and that of sitting for the final examination to. You might find it useful to review 

your self-assessment exercises, tutor-marked assignments and comments on them before 

the examination. The final examination covers information from all parts of the course. 
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Course Marking Scheme 

 

The Table presented below indicates the total marks (100%) allocation. 

Assignment Marks 

Assignments (Best three assignments out of four that is 

marked) 

30% 

Final Examination 70% 

Total 100% 

 

 

Course Overview 

The Table presented below indicates the units, number of weeks and assignments to be 

taken by you to successfully complete the course, Introduction to Econometrics (ECO 

355).  

 

Units Title of Work                          Week’s 

Activities 

Assessment 

(end of unit) 

 Course Guide   

                  Module 1       ECONOMETRICS ANALYSIS 

1 Meaning Of Econometrics Week 1 Assignment 1 

2 Methodology of Econometrics Week 1 Assignment 1 

3 Computer and Econometrics Week 2 Assignment 1 

4. Basic Econometrics Models: Linear 

Regression. 

Week 2 Assignment 1 

5. Importance Of Econometrics   

                  Module 2      SINGLE- EQUATION (REGRESSION MODELS) 

1. Regression Analysis Week 3 Assignment 2 

2. The Ordinary Least Square (OLS)  

Method Estimation 

Week 3 Assignment 2 

3. Calculation of Parameter   and the  

Assumption of Classical Least 

Regression Method (CLRM) 

Week 4 Assignment 2 

4. Properties of the Ordinary Least  

Square Estimators 

Week 5 Assignment 2 

5. The Coefficient of Determination  

(R
2
): A measure of ―Goodness of fit‖ 

Week 6 Assignment 3 

     Module 3      NORMAL LINEAR REGRESSION MODEL (CNLRM) 

1. Classical Normal Linear Regression  

Model 

Week 7 Assignment 3 

2. OLS Estimators Under The  

Normality Assumption 

Week 8 Assignment 3 
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3. The Method Of Maximum Likelihood 

(ML) 

Week 9 Assignment 3 

4. Confidence intervals for Regression 

Coefficients    and    

Week 10 Assignment 4 

5. Hypothesis Testing Week 11  

                 Module 4  PRACTICAL ASPECTS OF ECONOMETRICS TEST 

1. Accepting & Rejecting an Hypothesis Week 12 Assignment 4 

2. The Level of Significance Week 13 Assignment 4 

3. Regression Analysis and Analysis of 

Variance 

Week 114 Assignment 4 

4. Normality tests Week 15 Assignment 4 

 Total 15 Weeks  

 

How To Get The Most From This Course 
 

In distance learning the study units replace the university lecturer. This is one of the great 

advantages of distance learning; you can read and work through specially designed study 

materials at your own pace and at a time and place that suit you best. 

Think of it as reading the lecture instead of listening to a lecturer. In the same way that a 

lecturer might set you some reading to do, the study units tell you when to read your 

books or other material, and when to embark on discussion with your colleagues. Just as 

a lecturer might give you an in-class exercise, your study units provides exercises for you 

to do at appropriate points. 

 

Each of the study units follows a common format. The first item is an introduction to the 

subject matter of the unit and how a particular unit is integrated with the other units and 

the course as a whole. Next is a set of learning objectives. These objectives let you know 

what you should be able to do by the time you have completed the unit. 

You should use these objectives to guide your study. When you have finished the unit 

you must go back and check whether you have achieved the objectives. If you make a 

habit of doing this you will significantly improve your chances of passing the course and 

getting the best grade. 

 

The main body of the unit guides you through the required reading from other sources. 

This will usually be either from your set books or from a readings section. Some units 

require you to undertake practical overview of historical events. You will be directed 

when you need to embark on discussion and guided through the tasks you must do. 

The purpose of the practical overview of some certain historical economic issues are in 

twofold. First, it will enhance your understanding of the material in the unit. Second, it 

will give you practical experience and skills to evaluate economic arguments, and 

understand the roles of history in guiding current economic policies and debates outside 

your studies. In any event, most of the critical thinking skills you will develop during 
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studying are applicable in normal working practice, so it is important that you encounter 

them during your studies. 

 

Self-assessments are interspersed throughout the units, and answers are given at the ends 

of the units. Working through these tests will help you to achieve the objectives of the 

unit and prepare you for the assignments and the examination. You should do each self-

assessment exercises as you come to it in the study unit. Also, ensure to master some 

major historical dates and events during the course of studying the material. 

 

The following is a practical strategy for working through the course. If you run into any 

trouble, consult your tutor. Remember that your tutor's job is to help you. When you need 

help, don't hesitate to call and ask your tutor to provide it. 

 

1. Read this Course Guide thoroughly. 

2. Organize a study schedule. Refer to the `Course overview' for more details. Note 

the time you are expected to spend on each unit and how the assignments relate to 

the units. Important information, e.g. details of your tutorials, and the date of the 

first day of the semester is available from study centre. You need to gather 

together all this information in one place, such as your dairy or a wall calendar. 

Whatever method you choose to use, you should decide on and write in your own 

dates for working breach unit. 

3. Once you have created your own study schedule, do everything you can to stick to 

it. The major reason that students fail is that they get behind with their course 

work. If you get into difficulties with your schedule, please let your tutor know 

before it is too late for help. 

4. Turn to Unit 1 and read the introduction and the objectives for the unit. 

5. Assemble the study materials. Information about what you need for a unit is given 

in the `Overview' at the beginning of each unit. You will also need both the study 

unit you are working on and one of your set books on your desk at the same time. 

6. Work through the unit. The content of the unit itself has been arranged to provide 

a sequence for you to follow. As you work through the unit you will be instructed 

to read sections from your set books or other articles. Use the unit to guide your 

reading. 

7. Up-to-date course information will be continuously delivered to you at the study 

centre. 

8. Work before the relevant due date (about 4 weeks before due dates), get the 

Assignment File for the next required assignment. Keep in mind that you will 

learn a lot by doing the assignments carefully. They have been designed to help 

you meet the objectives of the course and, therefore, will help you pass the exam. 

Submit all assignments no later than the due date. 

9. Review the objectives for each study unit to confirm that you have achieved them. 

If you feel unsure about any of the objectives, review the study material or consult 

your tutor. 
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10. When you are confident that you have achieved a unit's objectives, you can then 

start on the next unit. Proceed unit by unit through the course and try to pace your 

study so that you keep yourself on schedule. 

11. When you have submitted an assignment to your tutor for marking do not wait for 

it return `before starting on the next units. Keep to your schedule. When the 

assignment is returned, pay particular attention to your tutor's comments, both on 

the tutor-marked assignment form and also written on the assignment. Consult 

your tutor as soon as possible if you have any questions or problems. 

12. After completing the last unit, review the course and prepare yourself for the final 

examination. Check that you have achieved the unit objectives (listed at the 

beginning of each unit) and the course objectives (listed in this Course Guide). 

 

Tutors and Tutorials 

 

There are some hours of tutorials (2-hours sessions) provided in support of this course. 

You will be notified of the dates, times and location of these tutorials. Together with the 

name and phone number of your tutor, as soon as you are allocated a tutorial group. 

 

Your tutor will mark and comment on your assignments, keep a close watch on your 

progress and on any difficulties you might encounter, and provide assistance to you 

during the course. You must mail your tutor-marked assignments to your tutor well 

before the due date (at least two working days are required). They will be marked by your 

tutor and returned to you as soon as possible. 

 

Do not hesitate to contact your tutor by telephone, e-mail, or discussion board if you need 

help. The following might be circumstances in which you would find help necessary. 

Contact your tutor if. 

• You do not understand any part of the study units or the assigned readings 

• You have difficulty with the self-assessment exercises 

• You have a question or problem with an assignment, with your tutor's comments on an 

assignment or with the grading of an assignment. 

 

You should try your best to attend the tutorials. This is the only chance to have face to 

face contact with your tutor and to ask questions which are answered instantly. You can 

raise any problem encountered in the course of your study. To gain the maximum benefit 

from course tutorials, prepare a question list before attending them. You will learn a lot 

from participating in discussions actively. 

 

Summary 

 

The course, Introduction to Econometrics II (ECO 355), expose you to the field of 

Econometrics analysis such as Meaning of Econometrics, Methodology of Econometrics, 

Computer and Econometrics, and Basic Econometrics Models: Linear Regression, 
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Importance of Econometrics etc. This course also gives you insight into Single- Equation 

(Regression Models) such as; Regression Analysis, the Ordinary Least Square (OLS) 

Method Estimation, Calculation of Parameter   and the Assumption of Classical Least 

Regression Method (CLRM), Properties of the Ordinary Least Square Estimators and the 

Coefficient of Determination (R
2
): A measure of ―Goodness of fit‖. The course shield 

more light on the Normal Linear Regression Model (CNLRM) such as Classical Normal 

Linear Regression Model, OLS Estimators Under The Normality Assumption, the 

Method Of Maximum Likelihood (ML). However, Confidence intervals for Regression 

Coefficients    and    and Hypothesis Testing were also examined. Furthermore the 

course shall enlighten you about the Practical Aspects of Econometrics Test such 

accepting & Rejecting an Hypotheses, the Level of Significance, regression Analysis and 

Analysis of Variance and Normality tests. 

On successful completion of the course, you would have developed critical thinking skills 

with the material necessary for efficient and effective discussion on Econometrics 

Analysis, Single- Equation (Regression Models), Normal Linear Regression Model (CNLRM) 

and Practical Aspects of Econometrics. However, to gain a lot from the course please try to 

apply anything you learn in the course to term papers writing in other economic 

development courses. We wish you success with the course and hope that you will find it 

fascinating and handy. 
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MODULE ONE:  ECONOMETRICS ANALYSIS 

 

Unit One:        Meaning of Econometrics 

Unit Two:        Methodology of Econometrics 

Unit Three:    Computer and Econometrics 

Unit Four:       Basic Econometrics Models: Linear Regression 

Unit Five:        Importance of Econometrics 

 

Unit One:   Meaning of Econometrics 

CONTENTS 

1.0 Introduction 

2.0 Objectives 

3.0 Main content 

3.1 Definition/Meaning of Econometrics 

3.2 Why is Econometrics a Separate Discipline 

 

4.0   Conclusion 

5.0   Summary 

6.0   Tutor-Marked Assignment 

7.0              References/Further Readings 

 

1.0 INTRODUCION 

 

The study of econometrics has become an essential part of every undergraduate course in 

economics, and it is not an exaggeration to say that it is also an essential part of every 

economist‘s training. This is because the importance of applied economics is constantly 

increasing and the ability to quantity and evaluates economic theories and hypotheses 

constitutes now, more than ever, a bare necessity. Theoretical economies may suggest 

that there is a relationship between two or more variables, but applied economics 

demands both evidence that this relationship is a real one, observed in everyday life and 

quantification of the relationship, between the variable relationship using actual data is 

known as econometrics. 

  

2.0 OBJECTIVES 

 

At the end of this unit, you should be able to: 

 understand the basic fundamentals of Econometrics 

 distinguish between Econometrics and Statistics. 
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3.0 MAIN CONTENT 

 

3.1 Definition/Meaning of Economics 

 

Literally econometrics means measurement (the meaning of the Greek word metrics) in 

economic. However econometrics includes all those statistical and mathematical 

techniques that are utilized in the analysis of economic data. The main aim of using those 

tools is to prove or disprove particular economic propositions and models. 

Econometrics, the result of a certain outlook on the role of economics consists of the 

application of mathematical statistics to economic data to tend empirical support to the 

models constructed by mathematical economics and to obtain numerical results. 

Econometrics may be defined as the quantitative analysis of actual economic phenomena 

based on the concurrent development of theory and observation, related by appropriate 

methods of inferences. 

Econometrics may also be defined as the social sciences in which the tools of economic 

theory, mathematics and statistical inference are applied to the analysis of economic 

phenomena. 

Econometrics is concerned with the empirical determination of economic laws. 

 

3.2 Why Is Econometrics A Separate Discipline? 

 

Based on the definition above, econometrics is an amalgam of economic theory, 

mathematical economics, economic statistics and mathematical statistics. However, the 

course (Econometrics) deserves to be studied in its own right for the following reasons: 

1. Economic theory makes statements or hypotheses that are mostly qualitative in 

nature. For example, microeconomics they states that, other thing remaining the 

same, a reduction in the price of a commodity is expected to increase the quantity 

demanded of that commodity. Thus, economic theory postulates a negative or 

inverse relationship between the price and quantity demanded of a commodity. 

But the theory itself does not provide any numerical measure of the relationship 

between the two\; that is it does not tell by how much the quantity will go up or 

down as a result of a certain change in the price of the commodity. It is the job of 

econometrician to provide such numerical estimates. Stated differently, 

econometrics gives empirical content to most economic theory. 

2. The main concern of mathematical economics is to express economic theory in 

mathematical form (equation) without regard to measurability or mainly interested 

in the empirical verification of the theory. Econometrics, as noted in our 

discussion above, is mainly interested in the empirical verification of economic 

theory. As we shall see in this course later on, the econometrician often uses the 

mathematical equations proposed by the mathematical economist but puts these 

equations in such a form that they lend themselves to empirical testing and this 

conversion of mathematical and practical skill. 



16 
 

3. Economic statistics is mainly concerned with collecting, processing and presenting 

economic data in the form of charts and tables. These are the jobs of the economic 

statistician. It is he or she who is primarily responsible for collecting data on gross 

national product (GNP) employment, unemployment, price etc. the data on thus 

collected constitute the raw data for econometric work, but the economic 

statistician does not go any further, not being concerned with using the collected 

data to test economic theories and one who does that becomes an econometrician. 

4. Although mathematical statistics provides many tools used in the trade, the 

econometrician often needs special methods in view of the unique nature of the 

most economic data, namely, that the data are not generated as the result of a 

controlled experiment. The econometrician, like the meteorologist, generally 

depends on data that cannot be controlled directly. 

 

4.0 CONCLUSION 

In econometrics, the modeler is often faced with observational as opposed to 

experimental data. This has two important implications for empirical modeling in 

econometrics. The modeler is required to master very different skills than those needed 

for analyzing experimental data and the separation of the data collector and the data 

analyst requires the modeler familiarize himself/herself thoroughly with the nature and 

structure of data in question. 

 

5.0 SUMMARY 

The units vividly look at the meaning of econometrics which is different from the modern 

day to day calculation or statistical analysis we are all familiar with. However, the units 

also discuss the reasons why econometrics is studied differently from other disciplines in 

economics and how it is so important in formulating and forecasting the present to the 

future. 

 

6.0 TUTOR MARKED ASSIGNMENT 

1. Differentiate between mathematical equation and models. 

2. Explain the term ‗Econometrics‘. 

 

7.0 REFERENCES/FURTHER READINGS 

Gujarat, D. N. (2007) Basic Econometrics, 4
th

 Edition, tata Mcgraw – Hill publishing 

company limited, New Delhi. 

Hall, S. G., & Asterion, D. (2011) Applied Econometrics, 2
nd

 Edition, Palgrave 

Macmillian, New York city, USA. 
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UNIT 2 METHODOLOGY OF ECONOMETRICS 

CONTENTS 

1.0                           Introduction 

2.0                           Objectives 

3.0                           Main content 

                          

                        3.1. Traditional Econometrics Methodology 

 

4.0   Conclusion 

5.0   Summary 

6.0              Tutor-Marked Assignment 

7.0              References/Further Readings 

 

1.0 INTRODUCTION 

 

One may ask question that how economists justifies their argument with the use of 

statistical, mathematic and economic models to achieve prediction and policy 

recommendation to economic problems. However, econometrics may also come inform 

of applied situation, which is called applied econometrics. Applied econometrics works 

always takes (or, at least, should take) as its starting point a model or an economic theory. 

From this theory, the first task of the applied econometrician is to formulate an 

econometric model that can be tested empirically and the next task is to collect data that 

can be used to perform the test and after that, to proceed with the estimation of the model. 

After this estimation, an econometrician performs specification tests to ensure that the 

model used was appropriate and to check the performance and accuracy of the estimation 

procedure. So these process keep on going until you are satisfied that you have a good 

result that can be used for policy recommendation. 

 

2.0 OBJECTIVES 

 

At the end of this unit, you should be able to: 

 know how the econometrician proceed in the analysis of an economic problem. 

 know how the econometrician make use of both mathematical and statistical 

analysis in solving economic problems. 
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3.0 MAIN CONTENT 

 

3.1 Traditional Econometrics Methodology 

 

The traditional Econometrics methodology proceeds along the following lines: 

1. Statement of theory or hypothesis. 

2. Specification of the mathematical model of the theory. 

3. Specification of statistical, or econometric, model. 

4. Obtaining the data. 

5. Estimation of parameters of the econometric model. 

6. Hypothesis testing. 

7. Forecasting or prediction. 

8. Using the model for control or policy purposes. 

 

However, to illustrate the proceeding steps, let us consider the well-known Keynesian 

theory of consumption. 

 

1. Statement of the theory Hypothesis 

 

Keynes stated: 

 

The fundamental psychological law is that Men (Women) are disposed as a rule and on 

average, to increase their consumption as their income increases, but not as much as the 

increase in their income. 

In short, Keynes postulated that the marginal propensity to consume (MPC), the rate of 

change of consumption for a unit change income is greater than zero but less than 1. 

 

2. Specification of the mathematical model of consumption 

 

Although Keynes postulated a positive relationship between consumption and income, he 

did not specify the precise form of the functional relationship between the two. However, 

a mathematical economist might suggest the following form of the Keynesian 

consumption function: 

           where                                       . 

Where Y = consumption expenditure and X = income and where          , known as 

the parameters of the model, are respectively, the intercept and slope coefficients. The 

slope coefficient    measures the MPC. In equation (1) above, which states that 

consumption is linearly related to income, is an example of a mathematical model of the 

relationship between consumption and income that is called consumption function in 

economics. A model is simply a set of mathematical equations, if the model had only one 

equation, as in the proceeding example, it is called a single equation model, whereas if it 

has more than one equation, it is known as a multiple-equation model. In equation (1), the 

variable appearing on the left side of the equality sign is called the ‗dependent variable‘ 
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and the variable(s) on the right side are called the independent or explanatory variables. 

Moreover, in the Keynesian consumption function in equation (1), consumption 

(expenditure) is the dependent variable and income is the explanatory variable. 

 

3. Specification of the Econometric Model of Consumption  

 

The purely mathematical model of the consumption function given in equation (1) is of 

limited interest to econometrician, for it assures that there is an exact or deterministic 

relationship between consumption and income. But relationships between economic 

variables are generally inexact. Thus, if we were to obtain data on consumption 

expenditure and disposable (that is after tax) income of a sample of, say, 500 Nigerians 

families and plot these data on a graph paper with consumption expenditure on the 

vertical axis And disposable income on the horizontal axis we would not expect all 500 

observations to lie exactly on the straight line of equation (1) above, because, in addition 

to income other variables affect consumption expenditure. For example size of family, 

ages of the members in the family, family religion etc are likely to exert some influence 

on consumption.  

To allow for the inexact relationships between economic variables, the econometrician 

would modify the deterministic consumption function in equation (1) as follows: 

                                   
Where u, known as the disturbance, or error term, is a random (Stochastic) variable that 

has well-defined probabilistic properties. The disturbance term ‗u‘ may well represent all 

those factors that affect consumption but are not taken into account explicitly. 

Equation (2) is an example of an econometric model. More technically, it is an example 

of a linear regression model, which is the major concern in this course. 

 

4. Obtaining Data 

 

To estimate the econometric model in equation (2), that is to obtain the numerical values 

of         , we need data. Although will have more to say about the crucial importance 

of data for economic analysis. The data collection is used to analysis the equation (2) and 

give policy recommendation. 

5. Estimation of the Econometric Model 

Since from ‗obtaining the data‘ we have the data we needed, our next point of action is to 

estimate the parameters of the say consumption function. The numerical estimates of the 

parameters give empirical content to the consumption function. The actual mechanics of 

estimating the parameters will be discussed later in this course. However, note that the 

statistical technique of regression analysis is the main tool used to obtain the estimates. 

For example assuming the data collected was subjected to calculation and we obtain the 

following estimates of        , namely                     Thus, the estimated 

consumption function is: 

  ̂                                               
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The hat on the y indicated that it is an estimate. The estimated consumption function (that 

is regression line) is shown below. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Showing personal consumption expenditure (y) in relation to GDP (x) from 

1682 – 1996. 

 

Moreover, the regression line fits the data quite well in that the data points are very close 

to the regression line. 

 

6. Hypothesis Testing 

 

Assuming that the fitted model is a reasonably good approximation of reality, we have to 

develop suitable criteria to find out whether the estimates obtained in equation (3) are in 

accord with the expectations of the theory that is being tested. According to ―positive‖ 

economists like Milton Freedman, a theory or hypothesis that is not verifiable by appeal 

to empirical evidence may not be admissible as a part of scientific enquiry. 

As noted by Keynes that marginal propensity to consume (MPC) to be positive but less 

than 1. In equation (3) the MPC is 083. But before we accept this finding as confirmation 

of Keynesian consumption theory, we must enquire whether this estimate is sufficiently 

below unity to convince us that this is not a chance occurrence or peculiarity of the 

particular data we have used. In conclusion, 0.83 is statistically less than 1. If it is, it may 

support Keynes theory. This type of confirmation or refutation of the economic theories 

on the basis of sample evidence is based on a branch of statistical theory known as 

statistical inference (hypothesis testing). 

 

7. Forecasting or Prediction 

 

If the model we choose does not refute the hypothesis or theory under consideration, we 

may use it to predict the future value(s) of the dependent, or forecast variable y on the 

basis of known or expected future value(s) of the explanatory or predictor variable x. 

Let us make use of equation (3) as an example. Suppose we want to predict the main 

consumption expenditure for 1997. The GDP value for 1997 (for example say is) 
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6158.7billion dollars. Putting this GDP figure on the right-hand side of equation (3), we 

obtain 

   ̂                                                

Therefore  ̂                                                       

                                 

   ̂                 
or about 4944 billion naira. Thus given the value of the GDP, the mean or average, 

forecast consumption expenditure is about 4944 billion naira. The actual value of the 

consumption expenditure reported in 1997 was 4913.5 billion naira. The estimated model 

(in equation 3) thus over predicted the actual consumption expenditure by about 30.76 

billion naira. We could say that forecast error is about 30.76 billion naira, which is about 

0.74 percent of the actual GDP value for 1997. 

8. Use of the Model for Control or Policy Purpose 

Let us assume that we have already estimated a consumption function given in equation 

(3). Suppose further the government believes that consumer expenditure of about say 

4900 (billion of 1992 naira) will keep the unemployment rate at its current level of about 

4.2 percent (early 2000). What level of income will guarantee the target amount of 

consumption expenditure? If the regression result given in equation (3) seem reasonable, 

sample arithmetic will show that 4900 = – 144.06 + 0.8262x ______________ (5).  

Which gives x = 6105, approximately. That is, an income levels of about 6105 (billion) 

naira, given an MPC of about 0.83, will produce (10) an expenditure of about 4900 

billion naira. 

From the analysis above, an estimated model may be used for control or policy purposes. 

By appropriate fiscal and monetary policy mix, the government can manipulate the 

control variable x to produce the desired level of the target variable y. 

 

4.0 CONCLUSION 

Stages of econometrics analysis are the process of getting on economic theory, subject it 

to empirical model, and then make use of data, estimation, and hypothesis and policy 

recommendation. 

 

5.0 SUMMARY 

 

The unit has discussed attentively the stages econometrics analysis from the economic 

theory, mathematical model of theory, econometric model of theory, collecting the data, 

estimation of econometric model, hypothesis testing, forecasting or prediction and using 

the model for control or policy purposes. Therefore at this end I belief you must have 

understand the stages of econometrics analysis. 

 

6.0 TUTOR MARKED ASSIGNMENT  

Discuss the stages of econometrics analysis 
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1.0 INTRODUCTION 

 

In this unit, we are going to know briefly the role computer application in econometrics 

analysis and to be able to convinced people that are not economists that computer help in 

bringing the beauty of economic model to reality and prediction. The computer 

application are peculiar to social sciences techniques/analysis and economics in 

particular. 

 

2.0 OBJECTIVES 

At the end of this unit, you should be able to: 

 understand the role of computer in econometrics analysis 

 identify/explain the types of econometrics analysis. 

3.0 MAIN CONTENT 

3.1 The Role of Computer 

Regression analysis, the bread-and-better tool of econometrics, these days is unthinkable 

without the computer and some access to statistical software. However, several excellent 

regression packages are commercially available, both for the mainframe and the 

microcomputer and the lot is growing by the day. 

Regression software packages such as SPSS, EVIENS, SAS, STATA etc. are few of the 

economic software packages use in conducting estimation analysis on economic-

equations and models. 
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3.2 TYPES OF ECONOMETRICS 

 

 

 

 

 

 

Figure 2: Showing categories of Econometrics. 

As the classificatory scheme in figure 2 suggests, econometrics may be divided into two 

broad categories: THEORETICAL ECONOMETRICS and APPLIED 

ECONOMETRICS. In each category, one can approach the subject in the classical or 

Bayesian tradition. 

 

Furthermore, theoretical econometrics is concerned with the development of appropriate 

methods for measuring economic relationships specified by econometrics models. In this 

aspect, econometrics leans heavily on mathematical statistics. Theoretical econometrics 

must spell out the assumptions of this method, its properties and what happens to these 

properties when one or more of the assumptions of the method are not fulfilled.  

In applied econometrics we use the tools of theoretical econometrics to study some 

special field (s) of economics and business, such as the production function, investment 

function, demand and supply functions, portfolio theory etc. 

3.3. Theoretical versus Applied Economics  

The study of economics has taken place within a Kuhnian paradigm of perfect 

competition for years.  Within this paradigm, the models of perfect competition, rational 

expectations, supply and demand, and the other economic theories have been described.  

In recent years, there has been a strong movement towards mathematics and 

econometrics as a way to expound upon already established theories.  This movement has 

come under some criticism, both from within the profession and without, as not being 

applicable to real world situations.  There has been a push to move away from the 

econometric methods that lead to further theory explanation and to focus on applying 

economics to practical situations.  While the theories are innately important to the study 

of any economic activity, the application of those theories in policy is also important. 

There are many areas of applied economics, including environmental, agricultural, and 

transitional.  However, the recent trends towards mathematical models has caused some 

to question whether or not expounding on the theories will help in the policy decisions of 

taxation, inflation, interest rates, etc.  Solutions to these problems have been largely 

theoretical, as economics is a social science and laboratory experiments cannot be done. 

Econometrics 

Bayesian 

 

Classical 

 

Bayesian 

 

Classical 

 

Applied Theoretical 
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However, there are some concerns with traditional theoretical economics that are worth 

mentioning.  First, Ben Ward describes "stylized facts," or false assumptions, such as the 

econometric assumption that "strange observations do not count." 

 [1] While it is vital that anomalies are overlooked for the purpose of deriving and 

formulating a clear theory, when it comes to applying the theory, the anomalies could 

distort what should happen.  These stylized facts are very important in theoretical 

economics, but can become very dangerous when dealing with applied economics.  A 

good example is the failure of economic models to account for shifts due to deregulation 

or unexpected shocks. 

[2] These can be viewed as anomalies that are unable to be accounted for in a model, yet 

is very real in the world today.  

Another concern with traditional theory is that of market breakdowns.  Economists 

assume things such as perfect competition and utility maximization.  However, it is easily 

seen that these assumptions do not always hold.  One example is the idea of stable 

preferences among consumers and that they act efficiently in their pursuit.  However,  

people's preferences change over time and they do not always act rational nor efficient. 

 [3] Health care, for another example, chops down many of the assumptions that are 

crucial to theoretical economics.  With the advent of insurance, perfect competition is no 

longer a valid assumption.  Physicians and hospitals are paid by insurance companies, 

which assures them of high salaries, but which prevents them from being competitive in 

the free market.  Perfect information is another market breakdown in health economics.  

The consumer (patient) cannot possibly know everything the doctor knows about their 

condition, so the doctor is placed in an economically advantaged position.  Since the 

traditional assumptions fail to hold here, a manipulated form of the traditional theory 

needs to be applied.  The assumption that consumers and producers (physicians, 

hospitals) will simply come into equilibrium together will not become a reality because 

the market breakdowns lead to distortions.  Traditional theorists would argue that the 

breakdown has to be fixed and then the theory can applied as it should be.  They stick to 

their guns even when there is conflicting evidence otherwise, and they propose that the 

problem lies with the actors, not the theory.  

[4] The third concern to be discussed here ties in with the Kuhnian idea of normal 

science.  The idea that all research is done within a paradigm and that revolutions in 

science only occur during a time of crisis.  However, this concerns a "hard" science, and 

economics is a social science.  This implies that economics is going to have an effect on 

issues, therefore, economists are going to have an effect on issues.  Value-neutrality is 

not likely to be present in economics, because economists not only explain what is 

happening, predict what will happen, but they prescribe the solutions to arrive at the 

desired solution.  Economics is one of the main issues in every political campaign and 
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there are both liberal and conservative economists.  The inference is that economists use 

the same theories and apply them to the same situations and recommend completely 

different solutions.  In this vein, politics and values drive what solutions economists 

recommend.  Even though theories are strictly adhered to, can a reasonably economic 

solution be put forth that is not influenced by values?  Unfortunately, the answer is no.  

Theoretical economics cannot hold all the answers to every problem faced in the "real 

world" because false assumptions, market breakdowns, and the influence of values 

prevent the theories from being applied as they should.  Yet, the Formalist Revolution or 

move towards mathematics and econometrics continues to focus their efforts on theories.  

Economists continue to adjust reality to theory, instead of theory to reality. 

 [5] This is Gordon's "Rigor over Relevance."  The concept that mathematical models and 

the need to further explain a theory often overrides the sense of urgency that a problem 

creates.  There is much literature about theories that have been developed using 

econometric models, but Gordon's concern is that relevance to what is happening in the 

world is being overshadowed. 

[6] This is where the push for applied economics has come from over the past 20 years or 

so.  Issues such as taxes, movement to a free market from a socialist system, inflation, 

and lowering health care costs are tangible problems to many people.  The notion that 

theoretical economics is going to be able to develop solutions to these problems seems 

unrealistic, especially in the face of stylized facts and market breakdowns.  Even if a 

practical theoretical solution to the problem of health care costs could be derived, it 

would certainly get debated by economists from the left and the right who are sure that 

this solution will either be detrimental or a saving grace.  

Does this mean that theoretical economics should be replaced by applied economics?  

Certainly not.  Theoretical economics is the basis from which economics has grown and 

has landed us today.  The problem is that we do not live in a perfect, ideal world in which 

economic theory is based.  Theories do not allow for sudden shocks nor behavioral 

changes.  

[7] This is important as it undercuts the stable preferences assumption, as mentioned 

before.  When the basic assumptions of a theory are no longer valid, it makes very 

difficult to apply that theory to a complex situation.  For instance, if utility maximization 

is designed as maximizing my income, then it should follow that income become the 

measuring stick for utility.  However, if money is not an important issue to someone, then 

it may appear as if they are not maximizing their utility nor acting rationally.  They may 

be perfectly happy giving up income to spend time with their family, but to an economist 

they are not maximizing their utility.  This is a good example of how theory and reality 

come into conflict.  
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The focus in theoretical economics has been to make reality fit the theory and not vice-

versa.  The concern here is that this version of problem-solving will not actually solve 

any problems.  Rather, more problems may be created in the process.  There has been 

some refocusing among theoreticians to make their theories more applicable, but the 

focus of graduate studies remains on econometrics and mathematical models.  The 

business world is beginning to take notice of this and is often requiring years away from 

the academic community before they will hire someone.  They are looking for economists 

who know how to apply their knowledge to solve real problems, not simply to expound 

upon an established theory.  It is the application of the science that makes it important 

and useful, not just the theoretical knowledge.  

This is not to say that theoretical economics is not important.  It certainly is, just as 

research in chemistry and physics is important to further understand the world we live in.  

However, the difference is that economics is a social science with a public policy aspect.  

This means that millions of people are affected by the decisions of policy-makers, who 

get their input from economists, among others.  Legislators cannot understand the 

technical mathematical models, nor would they most likely care to, but they are interested 

in policy prescriptions.  Should health care be nationalized?  Is this the best solution 

economically?  These are the practical problems that face individuals and the nation 

every day.  The theoreticians provide a sturdy basis to start from, but theory alone is not 

enough.  The theory needs to be joined with practicality that will lead to reasonable 

practical solutions of difficult economic problems.  Economics cannot thrive without 

theory, and thus stylized facts and other assumptions.  However, this theory has to 

explain the way the world actually is, not the way economists say it should be. 

[8] Pure economic theory is a great way to understand the basics of how the market 

works and how the actors should act within the market.  False assumptions and market 

breakdowns present conflict between theory and reality.  From here, many economists 

simply assume is not the fault of the theory, but rather the economic agents in play.  

However, it is impossible to make reality fit within the strict guidelines of a theory; the 

theory needs to be altered to fit reality.  This is where applied economics becomes 

important.  Application of theories needs to be made practical to fit each situation.  To 

rely simply on theory and models is not to take into account the dynamic nature of human 

beings.  What is needed is a strong theoretical field of economics, as well as a strong 

applied field.  This should lead to practical solutions with a strong theoretical basis.  
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3.4. THE DIFFERENCE BETWEEN ECONOMETRICS MODELING AND 

MACHINE LEARNING 

Econometric models are statistical models used in econometrics. An econometric 

model specifies the statistical relationship that is believed to be held between the various 

economic quantities pertaining to a particular economic phenomenon under study. 

On the other hand- Machine learning is a scientific discipline that explores the 

construction and study of algorithms that can learn from data.  So that makes a clear 

distinction right? If it learns on its own from data it is machine learning. If it is used for 

economic phenomenon it is an econometric model. However the confusion arises in the 

way these two paradigms are championed. The computer science major will always say 

machine learning and the statistical major will always emphasize modeling. Since 

computer science majors now rule at face book, Google and almost every technology 

company, you would think that machine learning is dominating the field and beating poor 

old econometric modeling. 

But what if you can make econometric models learn from data? 

Lets dig more into these algorithms. The way machine learning works is to optimize 

some particular quantity, say cost. A loss function or cost function is a function that maps 

a value(s) of one or more variables intuitively representing some ―cost‖ associated with 

the event. An optimization problem seeks to minimize a loss function. Machine learning 

frequently seek optimization to get the best of many alternatives. 

Now, cost or loss holds different meanings in econometric modeling. In econometric 

modeling we are trying to minimize the error (or root mean squared error). Root mean 

squared error means root of the sum of squares of errors. An error is defined as the 

difference between actual and predicted value by the model for previous data. 

The difference in the jargon is solely in the way statisticians and computer scientists are 

trained. Computer scientists try to compensate for both actual error as well as 

computational cost – that is the time taken to run a particular algorithm. On the other 

hand statisticians are trained primarily to think in terms of confidence levels or error in 

terms or predicted and actual without caring for the time taken to run for the model. 

That is why data science is defined often as an intersection between hacking skills (in 

computer science) and statistical knowledge (and math).  Something like K Means 

clustering can be taught in two different ways just like regression can be based on these 

two approaches. I wrote back to my colleague in Marketing – we have data scientists. 

They are trained in both econometric modeling and machine learning.  I looked back and 

had a beer. If university professors don‘t shed their departmental attitudes towards data 
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science, we will have a very confused set of students very shortly arguing without 

knowing how close they actually are. 

4.0 CONCLUSION 

 

Computer and Econometrics have a long history in econometrics analysis. The use of 

software to calculate data in economics analysis is very important in econometrics 

analysis and it has shown and gives the way forward in forecasting and policy 

recommendations to the stakeholders, private companies and government. 

 

5.0 SUMMARY  
 

The unit discussed extensively on the role of computer in econometrics. When equations 

in economics are turn to mathematical equations and becomes a model in economics, the 

computer software or what are ‗economists‘ called econometrics packages to solve/run 

the analysis for forecast and policy recommendation. 

 

6.0 TUTOR MARKED ASSIGNMENT 
 

Discuss the role of computer in econometrics analysis 
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1.0 INTRODUCTION 

The basic tool for econometrics is the linear regression model. In modern econometrics, 

other statistical tools are frequently used, but linear regression is still the most frequently 

used starting point for an analysis.
 
Estimating a linear regression on two variables can be 

visualized as fitting a line through data points representing paired values of the 

independent and dependent variables. 

Okun's law representing the relationship between GDP growth and the unemployment 

rate. The fitted line is found using regression analysis. For example, consider Okun's law, 

which relates GDP growth to the unemployment rate. This relationship is represented in a 

linear regression where the change in unemployment rate ( ) is a 

function of an intercept ( ), a given value of GDP growth multiplied by a slope 

coefficient and an error term, : 

 

The unknown parameters and can be estimated. Here is estimated to be −1.77 

and is estimated to be 0.83. This means that if GDP growth increased by one 

percentage point, the unemployment rate would be predicted to drop by 1.77 points. The 

model could then be tested for statistical significance as to whether an increase in growth 

is associated with a decrease in the unemployment, as hypothesized. If the estimate of 

were not significantly different from 0, the test would fail to find evidence that changes in 

the growth rate and unemployment rate were related. The variance in a prediction of the 

https://en.wikipedia.org/wiki/Linear_regression_model
https://en.wikipedia.org/wiki/Okun%27s_law
https://en.wikipedia.org/wiki/Statistical_significance
https://en.wikipedia.org/wiki/Hypothesis_test
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dependent variable (unemployment) as a function of the independent variable (GDP 

growth) is given in polynomial least squares. 

2.0. OBJECTIVES 

At the end of this unit, you should be able to: 

1. To understand the basic Econometrics models 

2. To be able to differentiate between Econometrics theory and methods 

3.1. Econometric Theory 

Econometric theory uses statistical theory to evaluate and develop econometric methods. 

Econometricians try to find estimators that have desirable statistical properties including 

unbiasedness, efficiency, and consistency. An estimator is unbiased if its expected value 

is the true value of the parameter; it is consistent if it converges to the true value as 

sample size gets larger, and it is efficient if the estimator has lower standard error than 

other unbiased estimators for a given sample size. Ordinary least squares (OLS) is often 

used for estimation since it provides the BLUE or "best linear unbiased estimator" (where 

"best" means most efficient, unbiased estimator) given the Gauss-Markov assumptions. 

When these assumptions are violated or other statistical properties are desired, other 

estimation techniques such as maximum likelihood estimation, generalized method of 

moments, or generalized least squares are used. Estimators that incorporate prior beliefs 

are advocated by those who favor Bayesian statistics over traditional, classical or 

"frequents" approaches. 

3.2. Econometrics Methods 

Applied econometrics uses theoretical econometrics and real-world data for assessing 

economic theories, developing econometric models, analyzing economic history, and 

forecasting. 

Econometrics may use standard statistical models to study economic questions, but most 

often they are with observational data, rather than in controlled experiments. In this, the 

design of observational studies in econometrics is similar to the design of studies in other 

observational disciplines, such as astronomy, epidemiology, sociology and political 

science. Analysis of data from an observational study is guided by the study protocol, 

although exploratory data analysis may be useful for generating new hypotheses. 

Economics often analyzes systems of equations and inequalities, such as supply and 

demand hypothesized to be in equilibrium. Consequently, the field of econometrics has 

developed methods for identification and estimation of simultaneous-equation models. 

These methods are analogous to methods used in other areas of science, such as the field 

https://en.wikipedia.org/wiki/Polynomial_least_squares
https://en.wikipedia.org/wiki/Statistical_theory
https://en.wikipedia.org/wiki/Estimator
https://en.wikipedia.org/wiki/Bias_of_an_estimator
https://en.wikipedia.org/wiki/Efficiency_%28statistics%29
https://en.wikipedia.org/wiki/Consistent_estimator
https://en.wikipedia.org/wiki/Ordinary_least_squares
https://en.wikipedia.org/wiki/Gauss-Markov
https://en.wikipedia.org/wiki/Maximum_likelihood_estimation
https://en.wikipedia.org/wiki/Generalized_method_of_moments
https://en.wikipedia.org/wiki/Generalized_method_of_moments
https://en.wikipedia.org/wiki/Generalized_least_squares
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of system identification in systems analysis and control theory. Such methods may allow 

researchers to estimate models and investigate their empirical consequences, without 

directly manipulating the system. 

One of the fundamental statistical methods used by econometricians is regression 

analysis. Regression methods are important in econometrics because economists typically 

cannot use controlled experiments. Econometricians often seek illuminating natural 

experiments in the absence of evidence from controlled experiments. Observational data 

may be subject to omitted-variable bias and a list of other problems that must be 

addressed using causal analysis of simultaneous-equation models. 

3.3. Examples of a Relationship in Econometrics 

A simple example of a relationship in econometrics from the field of labor economics is: 

 

This example assumes that the natural logarithm of a person's wage is a linear function of 

the number of years of education that person has acquired. The parameter measures 

the increase in the natural log of the wage attributable to one more year of education. The 

term is a random variable representing all other factors that may have direct influence 

on wage. The econometric goal is to estimate the parameters, under specific 

assumptions about the random variable . For example, if is uncorrelated with years of 

education, then the equation can be estimated with ordinary least squares. 

If the researcher could randomly assign people to different levels of education, the data 

set thus generated would allow estimation of the effect of changes in years of education 

on wages. In reality, those experiments cannot be conducted. Instead, the econometrician 

observes the years of education of and the wages paid to people who differ along many 

dimensions. Given this kind of data, the estimated coefficient on Years of Education in 

the equation above reflects both the effect of education on wages and the effect of other 

variables on wages, if those other variables were correlated with education. For example, 

people born in certain places may have higher wages and higher levels of education. 

Unless the econometrician controls for place of birth in the above equation, the effect of 

birthplace on wages may be falsely attributed to the effect of education on wages. 

The most obvious way to control for birthplace is to include a measure of the effect of 

birthplace in the equation above. Exclusion of birthplace, together with the assumption 

that is uncorrelated with education produces a misspecified model. Another technique is 

to include in the equation additional set of measured covariates which are not 

instrumental variables, yet render identifiable. An overview of econometric methods 

used to study this problem was provided by Card (1999). 
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3.4. LIMITATIONS AND CRITICISMS 

Like other forms of statistical analysis, badly specified econometric models may show a 

spurious relationship where two variables are correlated but causally unrelated. In a study 

of the use of econometrics in major economics journals, McCloskey concluded that some 

economists report p values (following the Fisherian tradition of tests of significance of 

point null-hypotheses) and neglect concerns of type II errors; some economists fail to 

report estimates of the size of effects (apart from statistical significance) and to discuss 

their economic importance. Some economists also fail to use economic reasoning for 

model selection, especially for deciding which variables to include in a regression. It is 

important in many branches of statistical modeling that statistical associations make some 

sort of theoretical sense to filter out spurious associations (e.g., the collinearity of the 

number of Nicolas Cage movies made for a given year and the number of people who 

died falling into a pool for that year). 

In some cases, economic variables cannot be experimentally manipulated as treatments 

randomly assigned to subjects. In such cases, economists rely on observational studies, 

often using data sets with many strongly associated covariates, resulting in enormous 

numbers of models with similar explanatory ability but different covariates and 

regression estimates. Regarding the plurality of models compatible with observational 

data-sets, Edward Leamer urged that "professionals ... properly withhold belief until an 

inference can be shown to be adequately insensitive to the choice of assumptions" 

4.0 CONCLUSION 
 

The unit critically conclude that basic econometrics models is the basis of econometrics 

and from the simple straight line graph we can see that a simple/linear regression 

equation is derived from the graph and from there, the model of econometrics started to 

emanate to becomes higher level of econometrics model which is called multiple 

regression analysis. 

 

5.0 SUMMARY  
 

The unit discussed extensively on basic Econometrics models of linear regression 

analysis such as Econometrics theory, Econometrics Methods, Examples of econometrics 

modeling and the limitations and criticism of the models. 

 

6.0 TUTOR MARKED ASSIGNMENT 
 

Discuss the theory and methods of Econometrics modeling 
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1.0. INTRODUCTION 

 

Econometrics contains statistical tools to help you defend or test assertions in economic 

theory. For example, you think that the production in an economy is in Cobb-Douglas 

form. But do data support your hypothesis? Econometrics can help you in this case. 

 

To be able to learn econometrics by yourself, you need to have a good 

mathematics/statistics background. Otherwise it will be hard. Econometrics is the 

application of mathematics, statistical methods, and computer science to economic data 

and is described as the branch of economics that aims to give empirical content to 

economic relations. 

 

2.0. OBJECTIVES 

At the end of this unit, you should be able to: 

 know the meaning of Econometrics and why Econometrics is important within 

Economics. 

 know how to use Econometrics for Assessing Economic Model 

 understand what is Financial Econometrics.  

 

3.0. MAIN CONTENT 
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3.1. WHY IS ECONOMETRICS IMPORTANT WITHIN ECONOMICS?  

So Econometrics is important for a couple of reasons though I would strongly urge you to 

be very wary of econometric conclusions and I will explain why in a minute.  

 

1. It provides an easy way to test statistical significance so in theory, if we specify our 

econometric models properly and avoid common problems (i.e. heteroskedasticity or 

strongly correlated independent variables etc.), then it can let us know if we can say 

either, no there is no statistical significance or yes there is. That just means that for the 

data set we have at hand, we can or cannot rule out significance. Problems with this: 

Correlation does not prove causality. It is theory which we use to demonstrate causality 

but we most definitely cannot use it to "discover" new relationships (only theory can be 

used to tell us what causes what, for example, we may find a strong statistical 

significance between someone declaring red is their favorite color and income, but this 

obviously not an important relationship just chance)  

 

Another problem is that many times people run many regressions until they find one that 

"fits" their idea. So think about it this way, you use confidence intervals in economics, so 

if you are testing for a 95% confidence interval run 10 different regressions and you have 

a 40% chance of having a regression model tell you there is statistical significance when 

there isn't. Drop this number to 90% and you have a 65% chance. Alot of shady 

researchers do exactly this, play around with data series and specifications until they get 

something that says their theory is right then publish it. So remember, be wary of 

regression analysis and really only use it to refute your hypotheses and never to "prove" 

something.  

 

Regression analysis is your friend and you will see how people love to use it. If you don't 

understand econometrics very well, particularly how to be able to sift through the 

different specifications so that you rule out any poorly specified models, and so that you 

understand what all these crazy numbers they are throwing at you mean. If you don't 

know econometrics yet try reading some papers using regression analysis and notice how 

you don't know what any of the regression analysis means. This should give you an idea 

of why you need to learn it.  

 

However, many people use it, and believe me many people get undergraduate degrees in 

economics without knowing econometrics and this makes you less capable then those 

peers of yours who did learn it. 

 

3.2. MEANING OF MODERN ECONOMETRICS 

Modern econometrics is the use of mathematics and statistics as a way to analyze 

economic phenomena and predict future outcomes. This is often done through the use of 

complex econometric models that portray the cause and effect of past or current 

http://www.wisegeek.com/what-is-econometrics.htm
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economic stimuli. Econometric analysts can plug new data into these models as a means 

of predicting future results. One of the distinguishing features of modern econometrics is 

the use of complex computer algorithms that can crunch tremendous amounts of raw data 

and create a concise and coherent overview of some aspect of the economy. 

For a long period of time in the past, economists could make hypotheses and guesses 

about the economy but couldn‘t prove their theories without some sort of obvious sea 

change in the economy as an indicator. As a result, many started to use mathematics and 

statistics to give proof about their different ideas. Some began to realize that these same 

tools could actually give accurate assessments about future economic events, which is 

how the field of modern econometrics first came into being. 

Although it can be defined in many different ways, modern econometrics essentially boils 

down to plugging statistical information about an economy into mathematical formulas. 

When that happens, the results can show cause and effect about certain economic 

characteristics. For example, when interest rates rise, it might affect employment levels, 

inflation, economic growth, and so on. Using econometrics, an analyst might be able to 

pinpoint exactly how and to what extent this occurs. 

Economic models are a huge part of the field of modern econometrics. This is where the 

leaps and bounds made by computer technology in the modern era come into play. 

Sophisticated programs devised by analysts can take all of the information that is entered, 

analyze the relationships between the numerical data, and come up with specific 

information about how certain economic stimuli affect the overall picture. It is an 

effective way for those practicing econometrics to use the past to predict the future. 

Proponents of modern econometrics should factor in those unforeseen circumstances that 

can trigger huge negative changes in an economy. One way to do this is to simulate 

worst-case scenarios for an economy. By doing this, analysts can see what the potential 

damage done by hypothetical economic catastrophes might be. In addition, models can be 

used to show the ways out of such dire occurrences. The boundaries for econometrics are 

practically limitless, but using them can be fruitless without sound economic theories as 

their basis. 

3.3. USING ECONOMETRICS FOR ASSESSING ECONOMIC MODELS 

Econometrics is often used passively to provide the economist with some parameter 

estimates in a model which from the outset is assumed to be empirically relevant. In this 

sense, econometrics is used to illustrate what we believe is true rather than to find out 

whether our chosen model needs to be modified or changed altogether. The econometric 

analyses of this special issue should take its departure from the latter more critical 

approach. We would like to encourage submissions of papers addressing questions like 

whether a specific economic model is empirically relevant in general or, more 

http://www.wisegeek.com/what-is-economic-growth.htm


38 
 

specifically, in a more specific context, such as in open, closed, deregulated, 

underdeveloped, mature economies, etc. For example, are models which were useful in 

the seventies still relevant in the more globalized world of today? If not, can we use the 

econometric analysis to find out why this is the case and to suggest modifications of the 

theory model? We encourage papers that make a significant contribution to the discussion 

of macroeconomics and reality, for example, by assessing the empirical relevance of 

influential papers, or the robustness of policy conclusions to econometric 

misspecification and the ceteris paribus clause, or by comparing different expectation‘s 

schemes, such as the relevance of forward versus backward expectations and of model 

consistent rational expectations versus imperfect/incomplete knowledge expectations, etc. 

3.4. FINANCIAL ECONOMETRICS 

Financial econometrics is the subject of research that has been defined as the application 

of statistical methods to financial market data. Financial econometrics is a branch of 

financial economics, in the field of economics. Areas of study include capital markets , 

financial institutions, corporate finance and corporate governance. Topics often revolve 

around asset valuation of individual stocks, bonds, derivatives, currencies and other 

financial instruments. Financial econometrics is different from other forms of 

econometrics because the emphasis is usually on analyzing the prices of financial assets 

traded at competitive, liquid markets. People working in the finance industry or 

researching the finance sector often use econometric techniques in a range of activities – 

for example, in support of portfolio management and in the valuation of securities. 

Financial econometrics is essential for risk management when it is important to know 

how often 'bad' investment outcomes are expected to occur over future days, weeks, 

months and years. 

The sort of topics that financial econometricians are typically familiar with include: 

1. Arbitrage pricing theory 

In finance, arbitrage pricing theory (APT) is a general theory of asset pricing that holds 

that the expected return of a financial asset can be modeled as a linear function of various 

macro-economic factors or theoretical market indices, where sensitivity to changes in 

each factor is represented by a factor-specific beta coefficient. The model-derived rate of 

return will then be used to price the asset correctly - the asset price should equal the 

expected end of period price discounted at the rate implied by the model. If the price 

diverges, arbitrage should bring it back into line. 

The theory was proposed by the economist Stephen Ross in 1976. 

The Model; 
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Risky asset returns are said to follow a factor intensity structure if they can be expressed 

as: 

 
where  

 is a constant for asset  

 is a systematic factor 

 is the sensitivity of the th asset to factor , also called factor loading, 

 and is the risky asset's idiosyncratic random shock with mean zero. 

Idiosyncratic shocks are assumed to be uncorrelated across assets and uncorrelated with 

the factors. 

The APT states that if asset returns follow a factor structure then the following relation 

exists between expected returns and the factor sensitivities: 

 
where  

 is the risk premium of the factor, 

 is the risk-free rate, 

That is, the expected return of an asset j is a linear function of the asset's sensitivities to 

the n factors. 

Note that there are some assumptions and requirements that have to be fulfilled for the 

latter to be correct: There must be perfect competition in the market, and the total number 

of factors may never surpass the total number of assets (in order to avoid the problem of 

matrix singularity). 

Arbitrage is the practice of taking positive expected return from overvalued or 

undervalued securities in the inefficient market without any incremental risk and zero 

additional investments. 

In the APT context, arbitrage consists of trading in two assets – with at least one being 

mispriced. The arbitrageur sells the asset which is relatively too expensive and uses the 

proceeds to buy one which is relatively too cheap. 

Under the APT, an asset is mispriced if its current price diverges from the price predicted 

by the model. The asset price today should equal the sum of all future cash flows 

discounted at the APT rate, where the expected return of the asset is a linear function of 
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various factors, and sensitivity to changes in each factor is represented by a factor-

specific beta coefficient. 

A correctly priced asset here may be in fact a synthetic asset - a portfolio consisting of 

other correctly priced assets. This portfolio has the same exposure to each of the 

macroeconomic factors as the mispriced asset. The arbitrageur creates the portfolio by 

identifying x correctly priced assets (one per factor plus one) and then weighting the 

assets such that portfolio beta per factor is the same as for the mispriced asset. 

When the investor is long the asset and short the portfolio (or vice versa) he has created a 

position which has a positive expected return (the difference between asset return and 

portfolio return) and which has a net-zero exposure to any macroeconomic factor and is 

therefore risk free (other than for firm specific risk). The arbitrageur is thus in a position 

to make a risk-free profit: 

Where today's price is too low: 

The implication is that at the end of the period the portfolio would have 

appreciated at the rate implied by the APT, whereas the mispriced asset would 

have appreciated at more than this rate. The arbitrageur could therefore:  

Today:  

1 short sell the portfolio 

2 buy the mispriced asset with the proceeds. 

At the end of the period:  

1 sell the mispriced asset 

2 use the proceeds to buy back the portfolio 

3 pocket the difference. 

Where today's price is too high: 

The implication is that at the end of the period the portfolio would have 

appreciated at the rate implied by the APT, whereas the mispriced asset would 

have appreciated at less than this rate. The arbitrageur could therefore:  

Today:  

1 short sell the mispriced asset 

2 buy the portfolio with the proceeds. 

At the end of the period:  

1 sell the portfolio 

2 use the proceeds to buy back the mispriced asset 

3 pocket the difference. 
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3.4.1. Relationship with the capital asset pricing model 

The APT along with the capital asset pricing model (CAPM) is one of two influential 

theories on asset pricing. The APT differs from the CAPM in that it is less restrictive in 

its assumptions. It allows for an explanatory (as opposed to statistical) model of asset 

returns. It assumes that each investor will hold a unique portfolio with its own particular 

array of betas, as opposed to the identical "market portfolio". In some ways, the CAPM 

can be considered a "special case" of the APT in that the securities market line represents 

a single-factor model of the asset price, where beta is exposed to changes in value of the 

market. 

Additionally, the APT can be seen as a "supply-side" model, since its beta coefficients 

reflect the sensitivity of the underlying asset to economic factors. Thus, factor shocks 

would cause structural changes in assets' expected returns, or in the case of stocks, in 

firms' profitabilities. 

On the other side, the capital asset pricing model is considered a "demand side" model. 

Its results, although similar to those of the APT, arise from a maximization problem of 

each investor's utility function, and from the resulting market equilibrium (investors are 

considered to be the "consumers" of the assets). 

3.4.2. Co integration 

Co integration is a statistical property of a collection (X1,X2,...,Xk) of time series 

variables. First, all of the series must be integrated of order 1 (see Order of Integration). 

Next, if a linear combination of this collection is integrated of order zero, then the 

collection is said to be co-integrated. Formally, if (X,Y,Z) are each integrated of order 1, 

and there exist coefficients a,b,c such that aX+bY+cZ is integrated of order 0, then X,Y, 

and Z are co integrated. Co integration has become an important property in 

contemporary time series analysis. Time series often have trends — either deterministic 

or stochastic. In an influential paper, Charles Nelson and Charles Plosser (1982) provided 

statistical evidence that many US macroeconomic time series (like GNP, wages, 

employment, etc.) have stochastic trends — these are also called unit root processes, or 

processes integrated of order 1 — I(1). They also showed that unit root processes have 

non-standard statistical properties, so that conventional econometric theory methods do 

not apply to them. 

 

If two or more series are individually integrated (in the time series sense) but some linear 

combination of them has a lower order of integration, then the series are said to be 

cointegrated. A common example is where the individual series are first-order integrated 

(I(1)) but some (co integrating) vector of coefficients exists to form a stationary linear 

combination of them. For instance, a stock market index and the price of its associated 

futures contract move through time, each roughly following a random walk. Testing the 
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hypothesis that there is a statistically significant connection between the futures price and 

the spot price could now be done by testing for the existence of a co integrated 

combination of the two series. 

3.4.3. Event study 

An Event study is a statistical method to assess the impact of an event on the value of a 

firm. For example, the announcement of a merger between two business entities can be 

analyzed to see whether investors believe the merger will create or destroy value. The 

basic idea is to find the abnormal return attributable to the event being studied by 

adjusting for the return that stems from the price fluctuation of the market as a whole. 

As the event methodology can be used to elicit the effects of any type of event on the 

direction and magnitude of stock price changes, it is very versatile. Event studies are thus 

common to various research areas, such as accounting and finance, management, 

economics, marketing, information technology, law, and political science. 

One aspect often used to structure the overall body of event studies is the breadth of the 

studied event types. On the one hand, there is research investigating the stock market 

responses to economy-wide events (i.e., market shocks, such as regulatory changes, or 

catastrophic events). On the other hand, event studies are used to investigate the stock 

market responses to corporate events, such as mergers and acquisitions, earnings 

announcements, debt or equity issues, corporate reorganisations, investment decisions 

and corporate social responsibility (MacKinlay 1997; McWilliams & Siegel, 1997 

4.0 CONCLUSION 
 

The unit critically concludes that Econometrics is very important in Economics and 

financial analysis. Econometrics is the basis of using economics theories to justify a real 

life situation in the micro and macro economy of any nation.  

 

5.0 SUMMARY  
 

The unit discussed extensively on the importance of Econometrics and why econometrics 

is very useful in our day to day activities and how the financial analyst also makes use of 

it to financial forecast and analysis.  

 

6.0 TUTOR MARKED ASSIGNMENT 
 

Differentiate between Modern and Financial Econometrics 
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1.0 INTRODUCTION 

 

The term regression was introduced by Francis Galton.  In a famous paper, Galton found 

that, although there was a tendency for tall parents to have tall children and for short 

parents to have short children, the average height of children born of parents of a given 

height tended to move to ―regress‖ toward the average height in the population as a 

whole.  In other words, the height of the children of unusually tall or unusually short 

parents tends to move toward the average height of the population.  Galton‘s law of 

universal regression was confirmed by his friend Karl Pearson who collected more than a 

thousand records of heights of members of family groups.   He found that the average 

height of sons of a group of tall fathers was less than their father‘s height and the average 

height of sons of a group of short fathers was greater than their fathers‘ height, thus 

―regressing‖‖ tall and short sons alike toward the average height of all men.  In the word 

of Galton, this was ―regression to mediocrity‖. 

 

2.0. OBJECTIVES 

At the end of this unit, you should be able to: 

 examine the linear regression model 

 understand the classical linear regression model 

 

3.0 MAIN CONTENT 

 

3.1 The Linear Regression Model 

 

We can ask ourselves a question that why do we regress?  Econometric methods such as 

regression can help to overcome the problem of complete uncertainty and guide planning 

and decision-making.  Of course, building a model is not an easy task.  Models should 

meet certain criteria (for example a model should not suffer from serial correlation) in 

order to be valid and a lot of work is usually needed before we achieve a good model.  

Furthermore, much decision making is required regarding which variables to include in 

the model.  Too many may cause problems (unneeded variables misspecification), while 

too few may cause other problems (omitted variables misspecification or incorrect 

functional form). 

 

3.2 The classical linear regression model 

 

The classical linear regression is a way of examining the nature and form of the 

relationships among two or more variables.  In this aspect we will consider the case of 

only two variables.  One important issue in the regression analysis is the direction of 

causation between the two variables; in other words, we want to know which variable is 

affecting the other.  Alternatively, this can be stated as which variable depends on the 

other.  Therefore, we refer to the two variables as the dependent variable (usually denoted 

by Y) and the independent or explanatory variable (usually denoted by X).  We want to 
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explain /predict the value of Y for different values of the explanatory variable X.  Let us 

assume that X and Y are linked by a simple linear relationship: 

                        
        

Where        denotes that average value of     for given      and unknown population 

parameters ‗a‘ and    (the subscript t indicates that we have time series data).  Equation 

(1) is called the population regression equation.  The actual value of        will not always 

equal its expected value         There are various factors that can ‗disturb‘ its actual 

behaviour and therefore we can write actual   as: 

                        
  or 

                         
   

Where      is a disturbance.  There are several reasons why a disturbance exiaists: 

1. Omission of explanatory variables:   There might be other factors (other than   ) 

affecting    that have been left out of equation (III).  This may be because we do 

not know.  These factors, or even if we know them we might be unable to meaure 

them in order to use them in a regression analysis.   

2. Aggregation of variables:  In some cases it is desirable to avoid having too many 

variables and therefore we attempt to summarize in aggregate a number of 

relationships in only one variable.  Therefore, eventually we have only a good 

approximation   of  with discrepanceis that are captured by the disturbance term. 

3. Model misspecification:  We might have a smisspecified model in terms of its 

structure.  For example, it might be that   is not affected by   , but it is affected 

by the valaue of X in the previous period (that is     ).  In this case, if   and       

are closely related, the estimation of equation (III) will lead to discrepancies that 

are again captured by the error term. 

4. Functional Misspecification: The relationship between X and Y might be non-

linear. 

5. Measurement Errors:  If the measurement of one or more variables is not correct 

then errors appear in the relationship and these contribute to the disturbance term. 

 

3.3 Regression Vs Causation 

 

Although regression analysis deals with the dependence of one variable on other 

variables, it does not necessarily imply causation.  In other words of Kendall and Stuart, 

―A statistical relationship, however strong and however suggestive, we can never 

establish cuasal connection: our ideas of causation must come from outside statistics, 

ultimately from some theory or other.  In the crop-yield, there is not statistical reason to 
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assume that rainfall does not depend on crop yeild.  The fact that we treat crop yeeld as 

dependent on rainfall (among other things) is due to nonstatistical considerations: 

common sense suggests that the relationship cannot be reversed for we cannot control 

rainfall by barying crop yield. 

 

3.4 Regression Vs Correlation 

 

Closely related to but conceptually very much different from regression analysis is 

correlation analysis, where the primary objective is to measure the strength or degree of 

linear association between two variables.  The correlation coefficient measures the 

strength of (Linear) association.  For example, we may be interested in finding the 

correlation (coefficient) between smoking and lung cancer, between scores on statistics 

and mathematics examinations, between high school grades and college grades and so on.  

In regression analysis, as already noted, we are not primarily interested in such a 

measure.  Instead, we try to estimate or predict the average value of one variable on the 

basis of the fixed values of other variables.  Thus, we may want to know whether we can 

predict the average score on a statistics examination by knowing a students‘ score on a 

mathematics examination. 

 

4.0 SUMMARY 

 

The key idea behind regression analysis is the statistical dependence of one variable, the 

dependent variable , on one or more of the variables, the explanatory variable.  So, I 

believe in this unit you must have known the differences between regression and 

correlation and the classical linear regression anlysis. 

 

5.0 CONCLUSION 

 

In any research, the researcher should clearly state the sources of the data used in the 

analysis, their definitions, their methods of collection and amy gaps or omissions in the 

data as well as any revisions in the data. 

 

6.0 TUTOR MARKED ASSESSMENT EXERCISE 

 

1. Discuss the term ―Regression Analysis‖ 

2. Differentiate between regression and correlation 

7.0 REFERENCES/Further Reading 

 

Dimitrios, A & Stephen, G., (2011). Applied Econometrics, second edition 2011, first  

              edition 2006 and revised edition 2007. 
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Emmanuel, E.A., (2014). Introduction to Econometrics, 2
nd

  edition, World gold  

 

               Publication limited. 

 

 

 

 

 

UNIT 2 THE ORDINARY LEAST SQUARE (OLS) METHOD OF 

ESTIMATION 

 

CONTENTS 

 

1.0.                                Introduction 

2.0.                                Objectives 

3.0.                                Main content 

         

                                    3.1. The Method of Ordinary Least Square (OLS) 

                                    3.2. Properties of OLS 

           

4.0   Conclusion 

5.0   Summary 

6.0              Tutor-Marked Assignment 

7.0             References/Further Readings 

 

 

 

 

1.0 INTRODUCTION 

 

Ordinary Least Square (OLS) method is used extensively in regression analysis primarily 

because it is intuitively appealing and mathematically much simplier than the method of 

maximum likelihood. 

 

2.0. OBJECTIVES 

At the end of this unit, you should be able to: 

 differentiate the dependant and independent variables. 

 prove some of the parameters of ordinary least estimate. 

3.0 MAIN CONTENT 

 

3.1 The method of Ordinary Least Squares (OLS) 



49 
 

 

The method of ordinary least squares is attributed to Carl Friedrich Gausss, a German 

mathematician.  Under certain assumptions, the method of least square has some very 

attractive statistical properties that have made it one of the most powerful and popular 

methods of regression analysis.  To understand, we first explain the least square principle. 

Recall the two variable model. 

                       
     

Where      is called the dependent variable while          are called independent 

or explanatory variables. 

The equation is not directly observable.  However, we can gather data and obtain 

estimates of   and    from a sample of the population.  This gives us the following 

relationship, which is a fitted straight linw with intercept ̂  and  ̂. 

  ̂   ̂                      

Equation (II) can be referred to as the sample regression equation.  Here  ̂  and  ̂ are 

sample estimates of the population parameters   and  , and   ̂   denotes the predicted 

value of  .  Once we have the estimated sample regression equation we can easily predict 

  for various values of   . 

When we fit a sample regression line to a scatter of points, it is obviously desirable to 

select the line in such a manner that it is as close as possible to the actual Y, or, in other 

words, that it provides the smallest possible number of residuals.  To do this we adopt the 

following criterion:  choose the sample regression function in such a way that the sum of 

the squared residuals is as small as possible (that is minimized).   

 

3.2. Properties of OLS 

 

This method of estimation has some desirable properties that make it the most popular 

technique in uncomplicated applications of regression analysis, namely: 

1. By using the squared residuals we eliminate the effect of the sign of the residuals, 

so it is not possible that  a positive and negative residual will offset each other.  

For example, we could minimize the sum of the residuals by setting the forecast 

for   ( ̂).  But this would not be a very well-fitting line at all. So clearly we want a 

transformation that gives all the residuals the same sign before making them as 

small as possible. 

2. By squaring the residuals, we give more weight to the larger residuals and so, in 

effect, we work harder to reduce the very large errors. 

3. The OLS method chooses  ̂ and  ̂ estimates that have certain numerical and 

statistical properties (such as unbiasedness and efficiency).  Let us see how to 

derive the OLS estimators.  Denoting by RSS the Residual Sum of square. 
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       ̂ 
      

          ̂ 
    ∑ ̂ 

 

 

   

           

However, we know that: 

  ̂ 
           (     ̂    ̂  )               

and therefore: 

      ∑ ̂ 
 

 

   

  ∑     ̂ )
 
  ∑     ̂   ̂  )

 
         

 

   

 

   

 

To minimum equation (V), the first order condition is to take the partial derivatives of 

Rss with respect to  ̂ and  ̂ and set them to zero. 

Thus, we have: 

    

  ̂
     ∑      

 

   

 ̂   ̂                 

and 

    

  ̂
     ∑      

 

   

 ̂   ̂                 

The second – order partial derivatives are: 

     

  ̂ 
                 

 

     

  ̂ 
     ∑  

 

 

    

           

     

  ̂ 
     ∑  

 

    

            

Therefore it is easy to verify that the second-order conditions for a minimum are met.  

Since 

∑  ̂    ̂ for simplicity on notation we omit the upper and lower limits of the summation 

symbol), we can (by using that and rearranging) rewrite equation (6) and (7) as follows: 

∑     ̂     ̂∑              

∑      ̂∑     ̂∑  
             

The only unknowns in these two equations are  ̂ and  ̂.  Therefore, we can solve this 

system of two equations with two unknown to obtain  ̂ and  ̂.  First, we divide both sides 

of equation (11) by n to get; 

∑  
 

  
  ̂

 
  

 ̂ ∑  

 
            

Denoting 
∑  

 
    ̂and

∑  

 
     ̂and rearranging,  
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we obtain:  ̂    ̅   ̂ ̅              
Substituting equation (14) into equation (12), we get:  

∑       ̅∑    ̂ ̅∑     ̂∑              

or 

        
 

 
           ̂

 

 
        ̂   

             

And finally, factorizing the  ̂ terms, we have: 

∑        
      

 
   ̂ *   

  
     

 

 
+              

and finally, factorizing the  ̂as: 

 ̂   
       

 
 
       

   
   

 
 
     

 
             

and given  ̂ we can use equation (14) to obtain    ̂. 

 

 

4.0 CONCLUSION 

 

In statistics, ordinary least squares (OLS) or linear least squares is a method for 

estimating the unknown parameters in a linear regression model, with the goal of 

minimizing the differences between the observed responses in some arbitrary dataset and 

the responses predicted by the linear approximation of the data (visually this is seen as 

the sum of the vertical distances between each data point in the set and the corresponding 

point on the regression line - the smaller the differences, the better the model fits the 

data). The resulting estimator can be expressed by a simple formula, especially in the 

case of a single regressor on the right-hand side. 

 

5.0 SUMMARY 

 

The unit makes us to understand how to derive the ordinary least square (OLS) method of 

estimation of Residual sum of square  ̂ and to know the technique to be used in deriving 

them. 

 

6.0 TUTOR MARKED ASSIGNMENT EXERCISES 

 

1.   Derive the Residual Sum of Square parameter ̂. 

 

 

7.0 REFERENCES/Further Reading 

 

 

https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Linear_regression_model
https://en.wikipedia.org/wiki/Dataset
https://en.wikipedia.org/wiki/Statistical_estimation
https://en.wikipedia.org/wiki/Simple_linear_regression
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Dimitrios, A & Stephen, G., (2011). Applied Econometrics, second edition 2011, first  

              edition 2006 and revised edition 2007. 
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1.0   INTRODUCTION 

 

Based on Unit 2 we just discussed, we can also make an alternative expression for 

parameter  ̂ for residual sum of square and it can also be expressed further as co-variance 

analysis.  In this unit, the assumptions of classical linear regression model will also be 

examined and you will be able to differentiate these assumptions from other economic 

analysis assumptions. 

 

2.0.     OBJECTIVES 

At the end of this unit, you should be able to: 

 know the alternative expression for  ̂ 

 understand the assumptions of classical linear regression model. 

 

3.0 MAIN CONTENT 

3.1 Alternative Expression for  ̂ 
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We can express the numerator and denominator of equation (III) which is: 

 ̂  
       

 
 
       

   
   

 
 
     

 
             

as follows: 

        ̅       ̅          
 

 
                  

 (     ̂)
 
     

   
 

 
     

            

So then we have: 

 ̂          ̅       ̅            
or even 

 ̂   
      

   
             

 

Where obviously           ̅    and             ̅  , which are derivatives from their 

respective means. 

We can use the definitions of Cov(X,Y) and Var(X) to obtain an alternative expression 

for  ̂ as: 

 ̂  
       

 
 
       

   
   

 
 
     

 
  

        ̅ ̅

   
    ̅  

           

or 

 ̂   
       ̅       ̅ 

  (     ̂)
                     

If we further divide both nominator and denominator by 
 

 
 we have: 

 ̂   

 
 
       ̅       ̅ 

 
 
  (     ̂)

 
                  

and finally we can express  ̂ as  

 ̂   
          

       
             

 

Where            and         are sample covariances and variances. 

 

 

3.2 The Assumptions of CLRM 
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In a general term, when we calculate estimators of population parameters from sample 

data we are bound to make some initial assumptions about the population distribution.  

Usually, they amount to a set of statements about the distribution of the bariables we are 

investigating, without which our model and estimates cannot be justified.  Therefore it is 

important not only to present the assumptions but also to move behond them, to the 

extent that we will at least study what happens when they go wrong and how we may test 

whether they have gone wrong. 

 

 

3.2.1 The Assumptions 

 

The CLRM consists of eight basic assumptions about the ways in which the observations 

are generated: 

 

1.   Linearity:  The first assumption is that the dependent variable can be calculated as 

a linear function of a specific set of independent variables, plus a disturbance term.  

This can be expressed mathematically as follows:  The regression model is linear 

in the unknown coefficients       so that                       
            

2.    has some variation:  By this assumption we mean that not all observations of    

are the same, at least one has to be different so that the sample         is not 0.  It 

is important to distinguish between the sample variance, which simply shows how 

much X varies over the particular sample, and the stochastic nature of X. in 

course, we shall make the assumption that X is non-stochastic.  This means that 

the variance of X at any point in time is zero, so         is not 0.  It is important 

to distinguish between the sample variance, which simply shows how much X 

varies over the particular sampl, and the stochastice nature of X.  In course, we 

shall make the assumption that X is non-stochastic.  This means that the variance 

of X at any point in time is zero, so          , and if we could somehow repeat 

the world over againX would always take exactly the same values.  But of course, 

over any sample there will (indeed must) be some variations in X. 

3.    is non-stochastic and fixed in repeated samples.  By these assumptions we 

mean first that    is a variable whose value are not determined by some chance 

mechanism, that is they are determined by an experimenter or investigator, and 

seen that it is possible to repeat the sample with the same independent variable 

values.  This implies that            for all s, and t =1, 2 ……., n: that is    

and   are uncorrelated. 

4. The expected value of the disturbance term is zero: - This means that the 

disturbance is a genuine disturbance, so that if we took a large number of samples 

the mean disturbance would be zero.  This can be denoted as        .  We 

need this assumption in order to interpret the deterministic part of a regression 

model,          as a statistical average relation. 
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5. Homoskedasticity:  This requires that all disturbance terms have the same 

variance, so that         =    = constant for all t. 

6. Serial independence: This requires that all disturbance terms are independently 

distributed, or, more easily, are not correlated with one another, so that 

                                          for all    s. This 

assumption has a special significance in economics to grasp what it means in 

practice, recall that we nearly always obtain our data from time series in which 

each t is one year, or one quarter, or one week ahead of the last.  The condition 

means, therefore, that the disturbance is one period should not be related to a 

disturbance in the next or previous periods.  This condition is frequently violated 

since, if there is a disturbing effect at one time, it is likely to persist. 

7. Normality of Residuals: The disturbance            are assumed to be 

independently and identically normally distributed, with mean zero and common 

variance    . 

8. n>2 and multicollinearity:  This assumption says that the number of observations 

must be greater than two or in general than the relationships among the variables. 

 

 

4.0 CONCLUSION 

            

Classical linear regression model statistical-tool used in predicting future values of a 

target (dependent) variable on the basis of the behavior of a set of explanatory factors  

(independent variables). A type of regression analysis model, it assumes the target 

variable is predictable, not chaotic or random. 

 

5.0 SUMMARY 

            

In this unit, we have vividly discuss the classical linear regression model and its  

assumptions and various calculation of  ̂. So i think from this unit, you should be able to  

work through the calculation of CLRM and the assumptions. 

 

6.0 Tutor Marked Assessment Exercise. 

 

1. Discuss extensively the assumption of classical linear regressions model. 

 

7.0 REFERENCES/Further Reading 

 

Dimitrios, A & Stephen, G., (2011). Applied Econometrics, second edition 2011, first  

              edition 2006 and revised edition 2007. 

 

 

 

http://www.businessdictionary.com/definition/model.html
http://www.businessdictionary.com/definition/future-value.html
http://www.businessdictionary.com/definition/target.html
http://www.businessdictionary.com/definition/variable.html
http://www.businessdictionary.com/definition/behavior.html
http://www.businessdictionary.com/definition/factor.html
http://www.businessdictionary.com/definition/independent-variable.html
http://www.businessdictionary.com/definition/regression-analysis-RA.html
http://www.businessdictionary.com/definition/assume.html
http://www.businessdictionary.com/definition/random.html
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1.0 INTRODUCTION 

The ordinary least square (OLS) estimator is consistent when the regressors are 

exogenous and there is no perfect multicollinearity, and optimal in the class of linear 

unbiased estimators when the errors are homoscedastic and serially uncorrelated. Under 

these conditions, the method of OLS provides minimum-variance mean-unbiased 

estimation when the errors have finite variances. Under the additional assumption that the 

errors be normally distributed, OLS is the maximum likelihood estimator. OLS is used in 

economics (econometrics), political science and electrical engineering (control theory and 

signal processing), among many areas of application. The Multi-fractional order 

estimator is an expanded version of OLS. 

https://en.wikipedia.org/wiki/Consistent_estimator
https://en.wikipedia.org/wiki/Exogenous
https://en.wikipedia.org/wiki/Multicollinearity
https://en.wikipedia.org/wiki/Statistical_error
https://en.wikipedia.org/wiki/Homoscedastic
https://en.wikipedia.org/wiki/Autocorrelation
https://en.wikipedia.org/wiki/UMVU
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Maximum_likelihood_estimator
https://en.wikipedia.org/wiki/Econometrics
https://en.wikipedia.org/wiki/Control_theory
https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Multi-fractional_order_estimator
https://en.wikipedia.org/wiki/Multi-fractional_order_estimator
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2.0.    OBJECTIVES 

At the end of this unit, you should be able to: 

 know the properties that our estimators should have 

 know the proofing of the OLS estimators as the best linear unbiased estimators 

(BLUE). 

 

 

 

 

 

3.0 MAIN CONTENT 

3.1 Properties of the OLS Estimators 

 

We now return to the properties that we would like our estimators to have.  Based on the 

assumptions of the CLRM can prove that the OLS estimators are best linear unbiased 

estimators (BLUE).  To do so, we first have to decompose the regression coefficients 

estimated under OLS into their random and non-random components. 

As a starting point, not that    has a non-random component         , as well as a 

random component, captured by the residual   .  Therefore cov(X,Y) that is which 

depends on values of    – will have a random and non-random component.   

            [             ] 
                                         

 

However, because        are constants we have that            and that 

                                Thus 

                                      
and substituting that in equation (26) yields: 

  
        

      
      

        

      
                

 

which says that the OLS coefficient   ̂ estimated from any sample has a non-random 

component,         random component which depends on           . 

 

(i). Linearity 

Based on assumption 3, we have that X is non-stochastic and fixed in repeated samples.  

Therefore, the x values can be treated as cosntants and we need merely to concentrate on 

the Y values.  If the OLS estimators are linear functions of the Y values then they are 

linear estimators. 

From equation (22) we have that: 

 ̂   
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Since the    are regarded as constants, then the are regarded as constants as well, we 

have that: 

 ̂   
      

   
    

         ̅ 

   
   

      ̅   

   
               

but because  ̅     , we have that: 

 ̂   
      

   
                         

Where           
   can also be regarded as constant and therefore  ̂ is indeed a linear 

estimator of the    . 
 

(ii) Unbiasedness. 

(1) Unbiasedness of   ̂ 

To prove that  ̂ is an unbiased estimator of  ̂ we need to show that 

 ( ̂)    * ̂   
        

      
+               

However,   is a constant, and using assumptions, that is    is non-random- we can take 

       as a fixed constant to take them out of the expectation expression and have: 

          
 

      
  [(        )]              

Therefore, it is enough to show that   [(        )]     

  [(        )]    
 

 
∑      ̅       ̅ 

 

   

              

Where 
 

 
 is constant, so we can take it out of the expectation expression and we can also 

break the sum down into the sum of its expectations to give: 

  [(          )]  
 

 
[       ̅       ̅         [     ̅]      ̅ ]

   

 

 
∑  [      ̅       ̅ ]

 

   

             

Furthermore, because  is non-random (again from assumption 3) we can take it out of 

the expression term to give: 

  [(        )]   
 

 
∑  [      ̅       ̅ ]           

 

   

  

Finally, using assumption 4, we have that         and therefore    ̅    So 

 [(        )]    and this proves that: 

 ( ̂)     

or, to put it in words, that  ̂ is an unbiased estimator of the true population parameter  . 

(b)  Unbiasedness of ̂.  We know that 
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 ̂    ̅   ̂ ̅     

   ̂     ̅    ( ̂) ̅                

But we also have that: 

                          

Where we eliminated the                ̅      ̅            

Substituting equation (40) into equation (38) gives: 

   ̂       ̅   ( ̂) ̅            
 

We have proved before that  ( ̂)    ; therefore: 

  ( ̂)        ̅    ̅                  

Which proves that   ̂ is an unbiased estimator of   

 

 

(iii)  Efficiency and BLUEness 

 

Under assumptions 5 and 6, we can then make a prove that the OLS estimators are the 

most efficient among all unbiased linear estimators.  However, we can say that the OLS 

procedure yields BLU estimators. 

The proof that the OLS estimators are BLU estimators is relatively complicated.  It 

entails a procedure which goes the opposite way from that followed so far.  We start the 

estimation from the beginning, trying to derive a BLU estimator of   based on the 

properties of linearity, unbiasedness and minimum variance one by one, and we will then 

check whether the BLU estimator derived by this procedure is the same as the OLS 

estimator.  Thus, we want to derive the BLU estimator of  , say  ̂, concentrating first on 

the property of linearity.  For  ̂ to be linear we need to have: 

 ̂                        ∑                 

Where the    terms are constants, the values of which are to be determined proceeding 

with the property of unbiasedness, for  ̂ to be unbiased, we must be able to have  ( ̂)  

  .  However, we know that; 

 ( ̂)    (∑    )   ∑                       

Therefore, let us substitute                                  , and also 

because    is non-stochastic and        , given by the basic assumptions of the 

model, we get; 

 ( ̂)  ∑            ∑     ∑                    

And therefore, in order to have unbiased  ̂, we need; 

∑         ∑                      

I think you are learning through the process and you should know that econometric 

notation might show as if they are abstract but they have different meaning.  Therefore, 
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we can then proceed by deriving an expression for the variance (which we need to 

minimize) of  :   

   ( ̂)    [ ̂   ( ̂)]
 

                                           *∑       (∑    )+
 

                                              *∑      ∑       +
 

 

                                                                               *∑           +
 

                 

 

From equation 47 above, we can use               and               

respectively.  Then: 

   ( ̂)   (∑    )
 

 

            
   

    
      

   
        

   
  

                          

   
  (  

 )     
  (  

 )    
  (  

 )       
 (  

 ) 

                                                  

Let us use the assumptions                   and                       
                         we obtain that: 

   ( ̂)   ∑                 

We then need to choose    in the linear estimator (equation 44 to be such as to minimize 

the variance (equation 49 subject to the constraints (equation 46) which ensure 

unbiasedness (with this then having a linear, unbiased minimum variance estimator). We 

formulate the Langrangian function: 

        
                                   

Where    and   are Langrangian multipliers. 

However, following the regular procedure, which is to take the first-order conditions (that 

is the portal derivatives of Lwith respect to   ,    and   ) and set them equal to zero and 

after re-arrangement and mathematical manipulations (we omit the mathematical details 

of the derivation because it is very lengthy and tedious and because it does not use any of 

the assumptions of the model in any case), we obtain the optimal    as:   

              
  

   
               

We can say that       of the OLs expression given by Equation (32). so, substituting 

this into our linear estimators  ̂ we have: 

 ̂              
              ̅   ̅   

         ̅   ̅    
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  ̂                 

Therefore we can conclude that  ̂ of the OLs is BLU. Let us then talk more about the 

advantage of the BLUEness: The advantages of the BLUEness condition is that it 

provides us with an expression for the variance by substituting the optional    given in 

equation (51) into equation (49) and that will gives: 

    ( ̂)      ( ̂)  ∑(
  

   
 )

 

    

           
   

   

    
   

   
 

   
               

 

 

 

 

 

(iv) CONSISTENCY 

 

Consistency is the idea that, as the sample becomes infinitely large, the parameter 

estimate given by a procedure such as OLs converges on the true parameter value. This is 

obviously true when estimator is unbiased, as shown in our previous discussion above, as 

consistency is really just a weaker form of unbiasedness. However, the proof above rests 

on our assumption 3, that the X variables are fixed. If we relax this assumption it is no 

longer possible to prove the unbiasedness of OLs but we can still establish that it is a 

consistent estimator. That is, when we relax assumption 3, OLS is no longer a BLU 

estimator but it is still consistent. We showed in equation (29) in this module that  ̂ 

                      Let us divide the top and the bottom of the last term by n, we 

have:   

                ̂    
          

        
                 

Finally, using the law of large numbers, we know that            coverages to its 

expectation, which is           . Similarly          converges to        . So as n 

tend to infinity (i.e. n     ̂                      , which is equal to the true 

population parameter   if              (that is if               uncorrelated). Thus  ̂ 

is a consistent estimator of the true population parameter  . 

 

4.0  CONCLUSION 

The unit has critically examines assumption 5 and 6 of the CLRM and we can concludes 

that efficiency and consistency of CLRM as shown that is the best property of the model 

the value of  ̂      ̂    
          

        
  respectively. 

5.0 SUMMARY 

It should be noted by all the students that this unit make a continuation of the classical 

linear regression model (CLRM) and it is also called the GAUSS-MARKOV 
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THEOREM. However, the unit try to proof the efficiency and consistency of classical 

linear regression model (CLRM) in one case while the unit also make a difference 

between the efficiency and BLUEness. 

 

6.0 TUTOR MARKED ASSESSMENT EXERCISE 

1. Discuss the differences between Efficiency and BLUEness. 

2. Proof the consistency property of classical linear regression model. 

 

7.0 REFERENCES 

 

 

Dimitrios, A & Stephen, G., (2011). Applied Econometrics, second edition 2011, first  

              edition 2006 and revised edition 2007. 
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UNIT 5 : THE COEFFICIENT OF DETERMINATION    : A MEASURE OF  

                “GOODNESS OF FIT”. 

 

CONTENTS 

 

1.0.                     Introduction 

2.0.                     Objectives 

3.0.                     Main content 

 

               3.1. Goodness of fit 

                           

4.0      Conclusion 

5.0      Summary 

6.0                 Tutor-Marked Assignment 

7.0.                 References/Further Readings 

 

 

 

1.0. INTRODUCTION 

In statistics, the coefficient of determination denoted R
2
 or r

2
 and pronounced R squared, 

is a number that indicates the proportion of the variance in the dependent variable that is 

predictable from the independent variable. 

It is a statistic used in the context of statistical models whose main purpose is either the 

prediction of future outcomes or the testing of hypotheses, on the basis of other related 

information. It provides a measure of how well observed outcomes are replicated by the 

model, based on the proportion of total variation of outcomes explained by the model 

(pp. 187, 287). 

There are several definitions of R
2
 that are only sometimes equivalent. One class of such 

cases includes that of simple linear regression where r
2
 is used instead of R

2
. In this case, 

if an intercept is included, then r
2
 is simply the square of the sample correlation 

coefficient (i.e., r) between the outcomes and their predicted values. If additional 

explanator are included, R
2
 is the square of the coefficient of multiple correlations. In 

both such cases, the coefficient of determination ranges from 0 to 1. 

Important cases where the computational definition of R
2
 can yield negative values, 

depending on the definition used, arise where the predictions that are being compared to 

the corresponding outcomes have not been derived from a model-fitting procedure using 

those data, and where linear regression is conducted without including an intercept. 

https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Statistic
https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Prediction#Statistics
https://en.wikipedia.org/wiki/Hypotheses
https://en.wikipedia.org/wiki/Simple_linear_regression
https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
https://en.wikipedia.org/wiki/Coefficient_of_multiple_correlation
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Additionally, negative values of R
2
 may occur when fitting non-linear functions to data. 

In cases where negative values arise, the mean of the data provides a better fit to the 

outcomes than do the fitted function values, according to this particular criterion. 

2.0. OBJECTIVES 

 At the end of this unit, you should be able to: 

 examine the Goodness fit 

 understand and work through the calculation of coefficient of multiple 

determination 

3.0       MAIN CONTENT 

 

3.1.      GOODNESS OF FIT 

 

So, far, we have been dealing with the problem of estimating regression coefficients, and 

some of their properties, we now consider the GOODNESS OF FIT of the fitted 

regression line to a set of data: that is we will find out how ―well‖ the sample regression 

line fits the data. Let us consider a least square graph given below: 

 

 

 

 

 

         

 

 

 

 

 

 

 

            Figure 5.1 Showing least square Criterion.  

 

From the graph it is clear that if all the observations were to lie on the regression line we 

would obtain a ―perfect‖ fit, but this is rarely the case. Generally, there will be some 

positive  ̂  and some negative  ̂ . What we hope for is that these residuals around the 

regression line are as small as possible. The coefficient of determination    (two-variable 

case) or    (multiple regressions) is a summary measure that tells how well the sample 

regression line fits the data. 
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   Figure 5.2 Showing the Ballentine view of   (a)             . 

 

Before we go on to show how    is computed, let us consider a heuristic explanation of 

   in terms of a graphical device, known as Venn diagram, or The Ballentine shown 

above. 

However, in this figure the circle Y represents variation in the dependent variable Y and 

the circle X represent variation in X (say, via an OLS regression). The greater the extent 

of the overlap, the greater the variation in Y is explained by X. The    is simply a 

numerical measure of this overlap. In the figure as we move from left to right, the area of 

the overlap increases, that is, successively a greater proportion of the variation in Y is 

explained by X. In conclusion,    increases. When there is no overlap,    is obviously 

zero, but is explained by X. However, let us consider: 

      ̂   ̂               

Or in the deviation form 

      ̂   ̂               
Square both sides 

 ̂ 
  ( ̂   ̂ )

 
  

 ̂ 
   ̂ 

   ̂ 
     ̂ 

   ̂  

Multiply through with  . 

∑[ ̂ 
   ̂ 

   ̂ 
    ̂   ̂ ] 

∑ ̂ 
  ∑ ̂ 

  ∑ ̂ 
   ∑ ̂   ̂  

              ∑ ̂ 
  ∑ ̂ 

  

              ̂ 
 ∑ ̂ 

  ∑ ̂ 
  

     ∑ ̂   ̂         ̂   ̂  ̂             

The various sums of squares appearing in (57) can be described as follows: 

 ∑  ̂ 
  ∑( ̂   ̂ )

 
  total variation of the actual Y values about their sample mean, 

which may be called the total sum of square (TSS). ∑  ̂ 
  ∑( ̂   ̅)

 
 ∑( ̂   ̅)

 
 

 ̂ 
 ∑  

   variation of the estimated Y values about their mean ( ̂   ̅)  which 

  

 
 

 

a 

  Y X Y X 

 b 

Y  X 

 c 

 

 
 

 

d 

  

Y X 

Y X 

 d Y=X 
 f 
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appropriately may be called the sum of squares due to regression (i.e. due to the 

explanatory variables) or explained by regression, or simply the explained sum of squares 

(ESS). ∑  ̂ 
   residual or unexplained variation of the Y values about the regression 

line, or simply the residual sum of square (RSS). Thus equation (57) is: 

  TSS = ESS + RSS ________________________(58) 

and shows that the total variation in the observed Y values about their mean value can be 

partitioned into two parts, one attributable to the regression line and the other to random 

forces because not all actual Y observations lie on the fitted line. 

Dividing equation (58) by TSS  

  
   

   
 

   

   
                

    
∑( ̂   ̅)

 

∑     ̅  
 

∑  ̂ 
 

∑     ̅  
 

We now define    as 

   
∑( ̂   ̅)

 

∑     ̅  
 

   

   
                 

or, alternatively, as: 

                  
∑  ̂ 

 

∑     ̅  
                 

                      
   

   
  

The quantity    thus defined is known as the (sample) coefficient of determination and is 

the most commonly used measure of the goodness of fit of a regression line. Verbally,    

measure the proportion or percentage of the total variation in Y explained the regression 

model. 

Two properties of    may be noted: 

(1) It is a nonnegative quantity 

(2) Its limit are          An    of 1 means a perfect fit, that is,  ̂     from each 

t. On the other hand, an    of zero means that there is no relationship between the 

regressand and the regressor whatsoever (i.e  ̂    . In this case as  ̂   ̂   ̅, 

that is the best prediction of any Y value is simply its mean value. In this situation 

therefore the regression line will be horizontal to the X axis. 

Although    can be computed directly from its definition given in equation (60) it can be 

obtained more quickly from the following formula;  

                
   

   
 

∑  ̂ 
 

∑  ̂ 
 
 

 ̂ 
 ∑  

 

∑  
  

                     ̂ 
 ( 

∑  
 

∑  
 )                  

If we divide the numerator and the denominator of equation (61) by the sample size 

                                     , we obtain: 
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                 ̂ 
 ( 

  
 

  
 )  

Where   
  and   

  are the sample variables of Y and X respectively  

       ̂  ∑      ∑  
   equation (61) can also be expressed as 

               
 ∑      

 

∑  
 ∑  

                    

an expression that may be computationally easy to obtain. Given the definition of   , we 

can express ESS and RSS discussed earlier as follows: 

             

                          ∑  
                     

           –      
                                          

           ∑  
         

Therefore, we can write:                  

                              ∑  
    ∑  

        ∑  
             

an expression that we will find useful later. A quantity closely related to but conceptually 

very much different from    is the coefficient of correlation, which is a measure of the 

degree of association between two variables. It can be computed either from: 

     √                 

or from its definition  

                 
∑     

√ ∑  
   ∑  

  
 

                  
 ∑       ∑    ∑   

√[ ∑  
   ∑   

 ][ ∑  
   ∑   

 ]
               

Which is known as the sample correlation coefficient. 
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Figure 5.3 Showing the correlation patterns (adapted from Henri Theil, introduction to 

Econometrics, Prentice – Hall, Englewood Cliffs, N.J, 1978. P. 86) 

 

Some of the properties of r are as follows: 

(1) It can be positive or negative, the sign depending on the sign of the term in the 

numerator of (66) which measures the sample co variation of two variables. 

(2) It lies between the limits of                     |   |  
(3) It is symmetrical in nature; that is, the coefficient of correlation between Y and X 

(   ) is the same as that between Y and X (   ). 

(4) It is independent of the origin and scale; that is/ if we define   
      

        
          where         and c and d are constants, then r 

between          is the same as that between the original variables X and Y. 

(5) If X and Y are statistically independent, the correlation coefficient between them 

is zero, but if r = 0, it does not mean that to variables are independence. 

(6) It is a measure of linear association or linear dependence only; it has no meaning 

for describing nonlinear relations. 

(7) Although it is a measure of linear association between two variables, it does not 

necessarily imply any cause and effect relationship. 

In the regression context,    is a more meaningful measure than r, for the former tells us 

the proportion of variation in the dependent variable explained by the explanatory 

variable(s) and therefore provides on overall measure of the extent to which the variation 

in one variable determines the variation in the other. 

The latter does not have such value. Moreover as we shall see, the interpretation of r (= 

R) is a multiple regression model is of dubious value. However, the student should note 

that    defined previously can also be computed q the squared coefficient of correlation 

between actual    and the estimated   , namely  ̂  that is using equation (66), we can 

write:  

      
[∑     ̅  ( ̂   ̅ )]

 

∑     ̅  
 ∑( ̂   ̅ )

           

  
(∑   ̂ )

 

 ∑  
  (∑  ̂ 

 )
             

where     actual Y,  ̂  = estimated Y and  ̅ =  ̅̂ = the mean of Y. 

Example:  
 

Given the hypothetical data on weekly family consumption expenditure Y and weekly 

family income X. 

Y X 

70 80 

65 100 

90 120 
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95 140 

110 160 

115 180 

120 200 

140 220 

155 240 

150 260 

 

 

(1) 

   
(2) 

   

(3) 

     

(4) 

  
  

(5) 

    

  

   

(6) 

    

  
  ̅ 

(7) 

  
  

 

(8) 

     
(9) 

   
 

 ̂   

    ̂  

 

 

 ̂  ̂  

70 80 5600 6400         8100 3690 65,181

8 

4.8181 314.0524 

65 100 6500 10000         4900 3220 75.363

6 
                   

90 120 10800 14400         2500 1050 85.545

4 

4.4545 381.0620 

95 140 13300 19600         900 480 95.727

2 
                 

110 160 17600 25600        100 10 105.90

90 
        433.2631 

115 180 20700 32400      100 40 116.09

09 
                  

120 200 24000 40000      900 270 125.27

27 
                  

140 220 30800 48400       2500 1450 136.45

45 
       483.7858 

155 240 37200 57600       4900 3080 145.63

63 
       1226.407

3 

150 260 39000 67600       8100 3510 156.81

81 
                   

         
          
 

   

      

     

        

   
 

        

   

   

   

   

   

      

   
       

   

       
9995=

1110.0 

= 110 

  ̂ 

   

  ̂  ̂ 

        
= 0.0 = 0. 

111 170 nc nc 0 0 nc nc 110 0 0 
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 ̂  
     

   
                       

 ̂   ̅   ̂  ̅ 

                                 

 ̂             ( ̂ )                 ( ̂ )         

 ̂            ( ̂ )                ( ̂ )         

   ( ̂   ̂ )                       

                         
The estimated regression line therefore is: 

 ̂                                  

The interpretation of equation (68) is that the intercept is 24.4545, while the slope of    is 

      . The intercept indicates the average level of weekly consumption expenditure 

when weekly income is zero. However, this is a mechanical interpretation of the intercept 

term. In regression  analysis such literal interpretation of the intercept term may not be 

always meaningful, although in the present example it can be argued that a family 

without any income (because of unemployment, layoff etc) might maintain some 

minimum level of consumption expenditure either by borrowing or dissaving. But in 

general one has to use common sense in interpreting the intercept term, for very often the 

sample range of X values may not include zero as one of the observed values. 

Moreover, it is best to interpret the intercept term as the mean or average effect on Y of 

all the variables omitted from the regression model. The value of    of 0.9621 means that 

about 96 percent of the variation in the weekly consumption expenditure is explained by 

income. Since    suggests that the sample regression line fits the data very well. The 

coefficient of correlation of 0.9809 shows that the two variables, consumption 

expenditure and income, are highly positively correlated. The estimated standard errors 

of the regression coefficients will be interpreted later in this course. 

 

Example 2 

 

 Given  ̂                     

    ( ̂ )              ( ̂ )          

    ( ̂ )              ( ̂ )           

                                 ̂            
 

The straight line equation above is a sample regression a analysis and it represent the 

aggregate (i.e. for the economy as a whole) Keynesian consumption function. As this 

equation shows the marginal propensity to consume (MPC) is about 0.71, suggesting that 

if income goes up by one naira, the average personal consumption expenditure (PCE) 

goes up by about 71 percents. From Keynesian theory, the MPC is less than 1. The 

intercept value of about – 184 billion naira. Of course, such, a mechanical interpretation 

of the intercept term does not make economic sense in the present instance because the 
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zero income value is out of range of values we are working with and does not represent a 

likely outcome. As we will see on many occasion, very often the intercept term may not 

make much economic sense. 

Therefore, in practice the intercept term may not be very meaningful although on 

occasions it can be very meaningful, in some analysis. The more meaningful value is the 

slope coefficient MPC in the present case. 

The    value of 0.9984 means approximately 99 percent of the variation in the PCE is 

explained by variation in the GDP. Since    at most can be 1, we can say that the 

regression line in the equation above fit our data extremely well; as you can see from that 

figure the actual data points are very tightly clustered around the estimated regression 

line. 

 

4.0 CONCLUSION 

 

Coefficient of multiple determinations (    as been seen as an area of economic analysis 

that try to explain the variation in the dependent and independent variable in a 

simple/multiple regression analysis of ordinary least square method and it is one of the 

best instrument use to know whether a regression is spurious or not. 

 

5.0 SUMMARY 

 

The unit has vividly looked at the analysis of coefficient of determination    and this    

measures the goodness of fit. 

However the unit also make some proof of    and its component which is total sum of 

squares, which is equal to residual sum of square and error sum of squares. 

The interpretation of simple equation of a straight was also analysis which is called the 

simple regression analysis. 

 

6.0 TUTOR MARKED ASSESSMENT EXERCISE 

 

Given                     

          . Interpret the equation critically. 
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1.0.  INTRODUCTION 

What is known as the classical theory of statistical inference consists of two branches, 

namely, estimation and hypothesis testing. We have thus far covered the topic of 

estimation of the parameters of the (two variable) linear regression model. Using the 

method of OLS we were able to estimate the parameters  ̂ ,  ̂  and   . Under the 

assumptions of the classical linear regression model (CLRM), we were able to show that 

the estimators of these parameters,  ̂   ̂ , and  ̂ , satisfy several desirable statistical 

properties, such as unbiasedness, minimum variance, etc. (Recall the BLUE property.) 

Note that, since these are estimators, their values will change from sample to sample. 

Therefore, these estimators are random variables. 
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But estimation is half the battle. Hypothesis testing is the other half. Recall that in 

regression analysis our objective is not only to estimate the sample regression function 

(SRF), but also to use it to draw inferences about the population regression function 

(PRF), as emphasized in Chapter 2. Thus, we would like to find out how close flu is to 

the true flu or how close  ̂  is to the true   . For instance, in Example 3.2, we estimated 

the SRF as shown in Eq. (3.7.2). But since this regression is based on a sample of 55 

families, how do we know that the estimated MPC of 0.4368 represents the (true) MPC in 

the population as a whole? 

Therefore, since  ̂ ,  ̂ , and  ̂  are random variables, we need to find out their 

probability distributions, for without that knowledge we will not be able to relate them to 

their true values. 

 

2.0. OBJECTIVES 

At the end of this unit, you should be able to: 

 identify and know how to calculate the probability normality assumption for Ui 

 understand the normality assumption for Ui 

 understand why we have to conduct the normality assumption. 

 

3.0. MAIN CONTENT 

3.1 THE PROBABILITY DISTRIBUTION OF DISTURBANCES    

 

To find out the probability distributions of the OLS estimators, we proceed as follows. 

Specifically, consider ̂ . As we showed in Appendix 3A.2, 

                       ̂   ∑                                                                                                        

where    =    /∑  
 
. But since the X's are assumed fixed, or non stochastic, because ours 

is conditional regression analysis, conditional on the fixed values of X„ Eq. (4.1.1) shows 

that /32 is a linear function of    , which is random by assumption. But since    = 
∑              , we can write (4.1.1) as 

                  ̂   ∑           

                                                                                         

Because   , the betas, and    are all fixed,  ̂  is ultimately a linear function of the 

random variable tit, which is random by assumption. Therefore, the probability 

distribution of 42 (and also of it,) will depend on the assumption made about the 

probability distribution of   . And since knowledge of the probability distributions of 

OLS estimators is necessary to draw inferences about their population values, the nature 

of the probability distribution of    assumes an extremely important role in hypothesis 

testing. 

Since the method of OLS does not make any assumption about the probabilistic nature of 

  , it is of little help for the purpose of drawing inferences about the PRF from the SRF, 
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the Gauss-Markov theorem notwithstanding. This void can be filled if we are willing to 

assume that the u's follow some probability distribution. For reasons to be explained 

shortly, in the regression context it is usually assumed that the u's follow the normal 

distribution. Adding the normality assumption for it to the assumptions of the classical 

linear regression model (CLRM) discussed in Chapter 3, we obtain what is known as the 

classical normal linear regression model (CNLRM). 

 

3.2 THE NORMALITY ASSUMPTION FOR    

 

The classical normal linear regression model assumes that each    is distributed normally 

with 

Mean:                     (4.2.1) 

Variance:   [          ]
        

             (4.2.2) 

cov (     ):   {[         ][        ]}  (     )           (4.2.3) 

The assumptions given above can be more compactly stated as 

                                                 (4.2.4) 

where the symbol — means distributed as and N stands for the normal distribution, the 

terms in the parentheses representing the two parameters of the normal distribution, 

namely, the mean and the variance. 

As noted in Appendix A, for two normally distributed variables, zero covariance or 

correlation means independence of the two variables. Therefore, with the normality 

assumption, (4.2.4) means that   , and   are not only uncorrelated but are also 

independently distributed.  

Therefore, we can write (4.2.4) as  

                                   (4.2.5) 
where NID stands for normally and independently distributed. 

 

3.2.1. Why the Normality Assumption?  
 

Why do we employ the normality assumption? There are several reasons:  

1.     represent the combined influence (on the dependent variable) of a large number 

of independent variables that are not explicitly introduced in the regression model. 

As noted, we hope that the influence of these omitted or neglected variables is 

small and at best random. Now by the celebrated central limit theorem (CLT) of 

statistics (see Appendix A for details), it can be shown that if there are a large 

number of independent and identically distributed random variables, then, with a 

few exceptions, the distribution of their sum tends to a normal distribution as the 

number of such variables increase indefinitely.' It is the CLT that provides a 

theoretical justification for the assumption of normality of   . 

2.  A variant of the CLT states that, even if the number of variables is not very large 

or if these variables are not strictly independent, their sum may still be normally 

distributed.
2 
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3.  With the normality assumption, the probability distributions of OLS estimators 

can be easily derived because, as noted in Appendix A, one property of the normal 

distribution is that any linear function of normally distributed variables is itself 

normally distributed. OLS estimators  ̂ , and  ̂  are linear functions of   . 

Therefore, if    are normally distributed, so are  ̂ , and  ̂ , which makes our task 

of hypothesis testing very straightforward. 

4.  The normal distribution is a comparatively simple distribution involving only two 

parameters (mean and variance); it is very well known and its theoretical 

properties have been extensively studied in mathematical statistics. Besides, many 

phenomena seem to follow the normal distribution. 

5.  Finally, if we are dealing with a small, or finite, sample size, say data of less than 

100 observations, the normality assumption assumes a critical role. It not only 

helps us to derive the exact probability distributions of OLS estimators but also 

enables us to use the t, F, and    statistical tests for regression models. The 

statistical properties of t, F, and    probability distributions are discussed in 

Appendix A. As we will show subsequently, if the sample size is reasonably large, 

we may be able to relax the normality assumption. 

A cautionary note: Since we are "imposing" the normality assumption, it behooves us to 

find out in practical applications involving small sample size data whether the normality 

assumption is appropriate. Later, we will develop some tests to do just that. Also, later we 

will come across situations where the normality assumption may be inappropriate. But 

until then we will continue with the normality assumption for the reasons discussed 

previously. 

 

4.0 CONCLUSION 

In this unit we conclude that the normality assumption is one of the most misunderstood 

in all of statistics.  In multiple regressions, the assumption requiring a normal distribution 

applies only to the disturbance term, not to the independent variables as is often 

believed.  Perhaps the confusion about this assumption derives from difficulty 

understanding what this disturbance term refers to – simply put, it is the random error in 

the relationship between the independent variables and the dependent variable in a 

regression model.  Each case in the sample actually has a different random variable 

which encompasses all the ―noise‖ that accounts for differences in the observed and 

predicted values produced by a regression equation, and it is the distribution of this 

disturbance term or noise for all cases in the sample that should be normally distributed. 

5.0 SUMMARY 

 

In this unit, we must have been able to understand the normality assumption and the 

assumption of normality is just the supposition that the underlying random variable of 

interest is distributed normally, or approximately so. Intuitively, normality may be 

understood as the result of the sum of a large number of independent random events. 

http://www.statisticssolutions.com/multiple-regression-predictors/
http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Normal_distribution
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4.0 TUTOR MARKED ASSESSMENT EXERCISE 

 

Critically discuss why we employ Normality assumption. 
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1.0. INTRODUCTION 

The OLS estimators that we create through linear regression give us a relationship 

between the variables. However, performing a regression does not automatically give us a 

reliable relationship between the variables. In order to create reliable relationships, we 
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must know the properties of the estimators and show that some basic assumptions about 

the data are true under the normality assumption. One must understand that having a 

good dataset is of enormous importance for applied economic research. Therefore, in this 

unit we will vividly discuss the OLS estimators under the normality assumption. 

 

2.0. OBJECTIVES 

At the end of this unit, you should be able to: 

 identify the properties of OLS estimators under the normality assumption 

 understand what is probability distribution 

 

3.0. MAIN CONTENT 

3.1. PROPERTIES OF OLS ESTIMATORS UNDER THE NORMALITY 

ASSUMPTION 

 

With the assumption that u, follow the normal distribution as in (4.2.5), the OLS 

estimators have the following properties; Appendix A provides a general discussion of 

the desirable statistical properties of estimators. 

1.  They are unbiased. 

2.  They have minimum variance. Combined with 1, this means that they are 

minimum-variance unbiased, or efficient estimators. 

3. They have consistency; that is, as the sample size increases indefinitely, the 

estimators converge to their true population values. 

4  ̂  (being a linear function of u,) is normally distributed with 

Mean:      ̂              (4.3.1) 

       ̂      ̂ 

  
∑  

 

 ∑  
  

    = (3.3.3)                  (4.3.2) 

Or more compactly,  

                                  ̂     ̂     ̂ 

   

 

Then by the properties of the normal distribution the variable Z, which is defined as 

  
 ̂    

  ̂ 

        (4.3.3) 

 

follows the standard normal distribution, that is, a normal distribution with zero mean and 

unit      variance, or 

          

5.  ̂  (being a linear function of   ) is normally distributed with 

Mean:   E( ̂ ) =  ̂        (4.3.4) 
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    ( ̂ )     ̂ 

  
  

∑  
                                                

                                                                                                       

Or, more compactly,  

     ̂   ( ̂     ̂ 

 )  

Then, as in (4.3.3),       

      
 ̂      

  ̂ 

             (4.3.6) 

also follows the standard normal distribution. 

Geometrically, the probability distributions of  ̂ and  ̂  are shown in Figure 4.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Probability distribution of  ̂        ̂     

 

6.  (n – 2)(  ̂ /  ) is distributed as the    (chi-square) distribution with (n – 2)df. 
3
 

This knowledge will help us to draw inferences about the true    from the 

estimated   . 

7.    ̂   ̂   are distributed independently of  ̂ . The importance of this will be 

explained in the next chapter. 

8.       ̂  and  ̂  have minimum variance in the entire class of unbiased estimators, 

whether linear or not. This result, due to Rao, is very powerful because, unlike the 
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Gauss-Markov theorem, it is not restricted to the class of linear estimators only. 4 

Therefore, we can say that the least-squares estimators are best unbiased 

estimators (BUE); that is, they have minimum variance in the entire class of 

unbiased estimators. 

In passing, note that, with the assumption that      N(0,    ),   , being a linear function 

of   , is itself normally distributed with the mean and variance given by  

         ̂  +  ̂                    (4.3.7) 

                   (4.3.8) 
More neatly, we can write 

                 
 )       (4.3.9) 

 

 

4.0 CONCLUSION 

 

To sum up, the important point to note is that the normality assumption enables us to 

derive the probability, or sampling, distributions of  ̂  and  ̂  (both normal) and 

 ̂ (related to the chi square). As we will see in the next chapter, this simplifies the task of 

establishing confidence intervals and testing (statistical) hypotheses. 

 

5.0 SUMMARY 

 

In this unit, we have discuss the properties of OLS estimators under the normality 

assumption and I belief that you must have learnt a lot in this unit and know how the 

normality assumptions is used.  

6.0 TUTOR MARKED ASSESSMENT EXERCISE 

 

List and explain the properties of OLS estimators under the normality assumption. 

 

7.0 REFERENCES/FURTHER READINGS 

 

 

Gujarat, D. N. (2007) Basic Econometrics, 4
th

 Edition, tata Mcgraw – Hill publishing 

company limited, New Delhi. 

Faraday, M.N., (2014) Applied Econometrics, 1
st
 Edition, Pentagon Publication limited.  
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1.0. INTRODUCTION 

 

A method of point estimation with some stronger theoretical properties than the method 

of OLS is the method of maximum likelihood (ML). Since this method is slightly 
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involved, it is discussed in the appendix to this chapter. For the general reader, it will 

suffice to note that if     are assumed to be normally distributed, as we have done for 

reasons already discussed, the ML and OLS estimators of the regression coefficients, the 

    , are identical, and this is true of simple as well as multiple regressions. The ML 

estimator of    is ∑  ̂ 
   . This estimator is biased, whereas the OLS estimator of 

  ∑  ̂ 
      ), as we have seen, is unbiased. But comparing these two estimators of 

  , we see that as the sample size n gets larger the two estimators of     tend to be equal. 

Thus, asymptotically (i.e., as n increases indefinitely), the ML estimator of    is also 

unbiased. 

Since the method of least squares with the added assumption of normality of u, provides 

us with all the tools necessary for both estimation and hypothesis testing of the linear 

regression models, there is no loss for readers who may not want to pursue the maximum 

likelihood method because of its slight mathematical complexity. 

 

2.0. OBJECTIVES 

 

At the end of this unit, you should be able to: 

 understand the meaning of Maximum Likelihood Estimation of two variable 

regression Model. 

 

3.0. MAIN CONTENT 

 

3.1. MAXIMUM LIKELIHOOD ESTIMATION OF TWO VARIABLE     

       REGRESSION MODEL 

 

Assume that in the two-variable model    +    +      +    the    are normally and 

independently distributed with mean =    +      and variance =   . [See Eq. (4.3.9).] As 

a result, the joint probability density function of   ,          , given the preceding mean 

and variance, can be written as 

                |           
    

But in view of the independence of the Y's, this joint probability density function can be 

written as a product of n individual density functions as 

              |           
    

            |           
       |           

       |           
    

 (1) 
 

Where 

      
 

 √  
   , 

 

 

             
 

  
-                                                  

which is the density function of a normally distributed variable with the given mean and 

variance. 

 (Note: exp means e to the power of the expression indicated by [].) 
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Substituting (2) for each Y, into (1) gives 

              |           
   

 

  (√  )
    , 

 

 
∑

             
 

  
-             

If              are known or given, but fit, h, and    are not known, the function in (3) 

is called a likelihood function, denoted by LF(       
 ), and written as 

1
. 

          
  

 
 

  (√  )
    , 

 

 
∑

             
 

  
-                                                                    

Maximum Likelihood Estimation of Two-Variable Regression Model 

Assume that in the two-variable model               the    are normally and independently 

distributed with mean          and variance   . [See Eq. (4.3.9).] As a result, the joint 

probability density functions of              given the preceding mean and variance, 

can be written as 

              |           
   

But in view of the independence of the Ys, this joint probability density function can be 

written as a product of n individual density functions as  

              |           
   

     |           
      |           

       |   
        

                                                                                                      
Where 

     

 
 

 (√  )
    , 

 

 

             
 

  
-                                                                      

which is the density function of a normally distributed variable with the given mean and 

variance. 

(Note: exp means e to the power of the expression indicated by [].) Substituting (2) for 

each    into (1) gives 

              |           
  

 
 

  (√  )
    , 

 

 
∑

             
 

  
-                                             

If              are known or given, but fib            
  are not known, the function in 

(3) is called a likelihood function, denoted by LF            
  , and written as

1
. 

          
  

 
 

  (√  )
    , 

 

 
∑

             
 

  
-                                                                       

The method of maximum likelihood, as the name indicates, consists in estimating the 

unknown parameters in such a manner that the probability of observing the given Y‘s is 

as high (or maximum) as possible. Therefore, we have to find the maximum of the 

function (4). This is a straightforward exercise in differential calculus. For differentiation 

it is easier to express (4) in the log term as follows.
2 

(Note:    = natural log.). 
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∑

             
 

  
 

  
 

 
    

 
 

 
      ∑

             
 

  
                                                                            

Differentiating (5) partially with respect to            
 , we obtain 

     

   

  
 

  
∑      

                                                                                                           
     

   

  
 

  
∑      

                                                                                
     

   

  
 

   

 
 

  4
∑      

       
                                                                           

Setting these equations equal to zero (the first-order condition for optimization) and 

letting  ̅   ̅       ̅
  denote the ML estimators, we obtain

3
. 

                    
 

 ̅ 
∑     ̅   ̅    

                                                                                                                                             

                 
 

 ̅ 
∑     ̅   ̅      

                                                                                                                       

 
 

  ̅ 
 

 

  ̅4
∑(    ̅   ̅   )

 

                                                                                                      

After simplifying, Esq. (9) and (10) yield 

∑  

   ̅ 

  ̅ ∑                                                                                                                               



84 
 

∑    

  ̅ ∑  

  ̅ ∑  
                                                                                                    

Which are precisely the normal equations of the least-squares theory obtained in (3.1.4) 

and (3.1.5). Therefore, the ML estimators, the  ̅ , given in (3.1.6) and (3.1.7). This 

equality is not accidental. Examining the likelihood (5), we see that the last term enters 

with a negative sign. Therefore, maximizing (5) amounts to minimizing this term, which 

is precisely the least-squares approach, as can be seen from (3.1.2).  

Substituting the ML, (= OLS) estimators into (11) and simplifying, we obtain the ML 

estimator of  ̅  as 

 ̅  
 

 
∑(    ̅   ̅   )

 
 

 

 
 

 
∑(    ̂ 

  ̂   )
 
                                                                                                                             

 
 

 
∑ ̂ 

  

From (14) it is obvious that the ML estimators  ̅  differs from the OLS estimator 

 ̅  [       ]∑  ̂ 
 , which was shown to be an unbiased estimator of    in 

Appendix 3A, Section 3A.5. Thus, the ML estimator of    is biased. The 

magnitude of this bias can be easily determined as follows. Taking the 

mathematical expectation of (14) on both sides, we obtain. 

   ̅   
 

 
 (∑ ̂ 

 ) 

 (∑
   

 
)                 g                                                      

    
 

 
   

Which shows that  ̅  is biased downward (i.e., it underestimates the true   ) in small 

samples. But notice that as n, the sample size, increase indefinitely, the second term in 

(15), the bias factor, tends to be zero. Therefore, asymptotically (i.e., in a very large 

sample),  ̅  is unbiased too, that is, lim E( ̅   =    as    . It can further be proved 

that  ̅  is also a consistent estimator.
4
; that is, as n increase indefinitely  ̅  converges to 

its true value   . 

 

4.0 CONCLUSION 

 

An alternative to the least-squares method is the method of maximum likelihood (ML).  

To use this method, however, one must make an assumption about the probability 
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distribution of the disturbance term   . In the regression context, the assumption most  

popularly made is that    follows the normal distribution. However, under the normality  

assumption, the ML and OLS estimators of the intercept and slope parameters of the  

regression model are identical. However, the OLS and ML estimators of the variance of  

  , are different. In large samples, however, these two estimators converge. Thus the ML  

method is generally called a large-sample method. The ML method is of broader  

application in that it can also be applied to regression models that are nonlinear in the  

parameters.  

 

5.0 SUMMARY 

 

The unit has vividly discussed the maximum likelihood estimation of two variable 

regression model and the method of maximum likelihood corresponds to many well-

known estimation methods in statistics. For example, one may be interested in the heights 

of adult female penguins, but be unable to measure the height of every single penguin in 

a population due to cost or time constraints. Assuming that the heights are normally 

distributed with some unknown mean and variance, the mean and variance can be 

estimated with MLE while only knowing the heights of some sample of the overall 

population. MLE would accomplish this by taking the mean and variance as parameters 

and finding particular parametric values that make the observed results the most probable 

given the model. 

 

6.0 TUTOR MARKED ASSESSMENT EXERCISE 

 

Discuss extensively the maximum likelihood estimation of two variable regression 

model. 

 

7.0 REFERENCES/FURTHER READINGS 
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1.0.  INTRODUCTION 

Interval estimates can be contrasted with point estimates. A point estimate is a single 

value given as the estimate of a population parameter that is of interest, for example the 

mean of some quantity. An interval estimate specifies instead a range within which the 

parameter is estimated to lie. Confidence intervals are commonly reported in tables or 

https://en.wikipedia.org/wiki/Interval_estimate
https://en.wikipedia.org/wiki/Point_estimate
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graphs along with point estimates of the same parameters, to show the reliability of the 

estimates. 

For example, a confidence interval can be used to describe how reliable survey results 

are. In a poll of election voting-intentions, the result might be that 40% of respondents 

intend to vote for a certain party. A 99% confidence interval for the proportion in the 

whole population having the same intention on the survey might be 30% to 50%. From 

the same data one may calculate a 90% confidence interval, which in this case might be 

37% to 43%. A major factor determining the length of a confidence interval is the size of 

the sample used in the estimation procedure, for example the number of people taking 

part in a survey. 

In statistics, a confidence interval (CI) is a type of interval estimate of a population 

parameter. It is an observed interval (i.e., it is calculated from the observations), in 

principle different from sample to sample, that frequently includes the value of an 

unobservable parameter of interest if the experiment is repeated. How frequently the 

observed interval contains the parameter is determined by the confidence level or 

confidence coefficient. More specifically, the meaning of the term "confidence level" is 

that, if CI are constructed across many separate data analyses of replicated (and possibly 

different) experiments, the proportion of such intervals that contain the true value of the 

parameter will match the given confidence level. Whereas two-sided confidence limits 

form a confidence interval, their one-sided counterparts are referred to as lower/upper 

confidence bounds (or limits). The confidence interval contains the parameter values that, 

when tested, should not be rejected with the same sample. Greater levels of variance yield 

larger confidence intervals, and hence less precise estimates of the parameter. Confidence 

intervals of difference parameters not containing 0 imply that there is a statistically 

significant difference between the populations. 

In applied practice, confidence intervals are typically stated at the 95% confidence level. 

However, when presented graphically, confidence intervals can be shown at several 

confidence levels, for example 90%, 95% and 99%. 

Certain factors may affect the confidence interval size including size of sample, level of 

confidence, and population variability. A larger sample size normally will lead to a better 

estimate of the population parameter. 

Confidence intervals were introduced to statistics by Jerzy Neyman in a paper published 

in 1937 

2.0.  OBJECTIVES 

At the end of this unit, you should be able to: 

 understand confidence interval for    and    

https://en.wikipedia.org/wiki/Sample_size
https://en.wikipedia.org/wiki/Sample_size
https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Interval_estimation
https://en.wikipedia.org/wiki/Population_parameter
https://en.wikipedia.org/wiki/Population_parameter
https://en.wikipedia.org/wiki/Sample_%28statistics%29
https://en.wikipedia.org/wiki/Replication_%28statistics%29
https://en.wikipedia.org/wiki/Statistical_significance
https://en.wikipedia.org/wiki/Statistical_significance
https://en.wikipedia.org/wiki/Jerzy_Neyman
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 interpret the confidence interval 

 

3.0.  MAIN CONTENT 

3.1. Confidence Interval for    

 

With the normality assumption for u„ the OLS estimators    and    are themselves 

normally distributed with means and variances given therein. Therefore, for example, the 

variable. 

 

 
 ̂    

  ( ̂ )
                                                                                                                                

 
( ̂    )√∑  

 

 
 ̂  

as noted in (4.3.6), is a standardized normal variable. It therefore seems that we can use 

the normal distribution to make probabilistic statements about    provided the true 

population variance    is known. If    is known, an important property of a normally 

distributed variable with mean   and variance    is that the area under the normal curve 

between it ±   is about 68 percent, that between the limits   ± 2  is about 95 percent, and 

that between   ±    is about 99.7 percent.  

But    is rarely known, and in practice it is determined by the unbiased estimator  ̂ . If 

we replace   by  ̂, (5.3.1) may be written as 

  
 ̂    

  ( ̂ )

 
                   

                                      
                                                                  

 
( ̂    )√∑  

 

 ̂
 ̂  

where the se ( ̂ ) now refers to the estimated standard error. It can be shown that the t 

variable thus defined follows the t distribution with n – 2 df. [Note the difference between 

(4.3.1) and (4.3.2).] Therefore, instead of using the normal distribution, we can use the t 

distribution to establish a confidence interval for  ̂  as follows: 

 Pr (—      t       ) = 1 —        (4.3.3) 

where the t value in the middle of this double inequality is the t value given by (4.3.2) 

and where      is the value of the t variable obtained from the t distribution for  /2 level 

of significance and n — 2 df; it is often called the critical t value at  /2 level of 

significance. Substitution of (4.3.2) into (4.3.3) yields 

  *      
 ̂    

  ( ̂ )
     +
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Rearranging (5.3.4), we obtain 

 

  [ ̂        ( ̂ )      ̂          ( ̂ )]

                                                                                                                

 

Equation (4.3.5) provides a 100(1 - a) percent confidence interval for    , which can be 

written more compactly as  

 100(1 –  )% confidence interval for   :      

                    

 ̂ 

       ( ̂ )                                                                                                             

 

Arguing analogously, and using (4.3.1) and (4 3 2), we can then write: 

  [ ̂         ( ̂ )      ̂         ( ̂ )]

                                                                                               
or, more compactly 

 100(1 –  )% confidence interval for   : 

  ̂  

      ( ̂ )                                                                                                                    

Notice an important feature of the confidence intervals given in (4.3.6) and (4.3.8): In 

both cases the width of the confidence interval is proportional to the standard error of the 

estimator. That is, the larger the standard error, the larger is the width of the confidence 

interval. Put differently, the larger the standard error of the estimator, the greater is the 

uncertainty of estimating the true value of the unknown parameter. Thus, the standard 

error of an estimator is often described as a measure of the precision of the estimator, i.e., 

how precisely the estimator measures the true population value. 

Returning to our illustrative consumption-income example, we found that  ̂  = 0.5091, se 

  ̂ ) = 0.0357, and df = 8. If we assume   = 5%, that is, 95% confidence coefficient, then 

the t table shows that for 8 df the critical      =        = 2.306. Substituting these values 

in (5.3.5), the reader should verify that the 95% confidence interval for    is as follows: 

                             
                                                                                                                                    

Or, using (4.3.6), it is 

                      
that is, 

        
                                                                                                                                      

The Interpretation of this confidence interval is: Given the confidence coefficient of 

95%, in the long run, in 95 out of 100 cases intervals like (0.4268, 0.5914) will contain 

the true   . But, as warned earlier, we cannot say that the probability is 95 percent that 
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the specific interval (0.4268 to 0.5914) contains the true    because this interval is now 

fixed and no longer random; therefore,    either lies in it or does not: The probability that 

the specified fixed interval includes the true    is therefore 1 or 0.  

 

Confidence Interval for    

Following (4.3.7), the reader can easily verify that the 95% confidence interval for flu of 

our consumption-income example is 

 

            
                                                                                                                    

Or, using (4.3.8), we find it is 

                       
This is, 

         
                                                                                                                                             

that is, 

Again you should be careful in interpreting this confidence interval. In the long run, in 95 

out of 100 cases intervals like (4.3.11) will contain the true   ; the probability that this 

particular fixed interval includes the true    is either 1 or 0. 

Confidence Interval for    and    Simultaneously 

There are occasions when one needs to construct a joint confidence interval for    and    

such that with a confidence coefficient       say, 95%, that interval includes    and    

simultaneously. 

  

3.2. CONFIDENCE INTERVAL FOR    

 

As pointed out in our previous discussion, under the normality assumption, the variable 

  

   

   
 ̂ 
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Figure 5.1 The 95% confidence interval for    (8 df). 

 

follows the    distribution with n – 2 df.
5
 Therefore, we can use the    distribution to 

establish a confidence interval for   . 

               
         

                                                             

where the    value in the middle of this double inequality is as given by (5.4.1) and 

where       
  and     

  are two values of    (the critical    values) obtained from the 

chi-square table for n – 2 df in such a manner that they cut off 100( /2) percent tail areas 

of the    distribution, as shown in Figure 5.1. Substituting    from (5.4.1) into (5.4.2) 

and rearranging the terms, we obtain 

  *     
 ̂ 

    
          

 ̂ 

      
 +  

                                                                                         
which gives the 100(1 - a)% confidence interval for a 2 . 

To illustrate, consider this example, when  ̂  = 42.1591 and df = 8. If   is chosen at 5 

percent, the chi-square table for 8 df gives the following critical values:       
  = 17.5346, 

and       
  = 2.1797. These values show that the probability of a chi-square value 

exceeding 17.5346 is 2.5 percent and that of 2.1797 is 97.5 percent. Therefore, the 

interval between these two values is the 95% confidence interval for   .  

Substituting the data of our example into (4.4.3), the students should verify that the 95% 

confidence interval for 5 2 is as follows: 

                       (4.4.4) 
The interpretation of this interval is: If we establish 95% confidence limits on a2 and 

if we maintain a priori that these limits will include true a 2 , we shall be right in the long 

run 95 percent of the time. 

 

4.0 CONCLUSION 

 

Confidence intervals consist of a range of values (interval) that act as good estimates of 

the unknown population parameter; however, the interval computed from a particular 

sample does not necessarily include the true value of the parameter. When we say, "we 

are 99% confident that the true value of the parameter is in our confidence interval", we 

express that 99% of the hypothetically observed confidence intervals will hold the true 

value of the parameter. After any particular sample is taken, the population parameter is 

either in the interval, realized or not; it is not a matter of chance. The desired level of 

confidence is set by the researcher (not determined by data). If a corresponding 

hypothesis test is performed, the confidence level is the complement of respective level 

of significance, i.e. a 95% confidence interval reflects a significance level of 0.05. 

https://en.wikipedia.org/wiki/Population_parameter
https://en.wikipedia.org/wiki/Statistical_significance
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5.0 . SUMMARY 

In this unit we have learnt a lot on Confidence intervals and confident interval are 

frequently misunderstood, and published studies have shown that even professional 

scientists often misinterpret them. A 95% confidence interval does not mean that for a 

given realized interval calculated from sample data there is a 95% probability the 

population parameter lies within the interval, nor that there is a 95% probability that the 

interval covers the population parameter.
 
Once an experiment is done and an interval 

calculated, this interval either covers the parameter value or it does not, it is no longer a 

matter of probability. The 95% probability relates to the reliability of the estimation 

procedure, not to a specific calculated interval. 

 

6.0 TUTOR MARKED ASSESSMENT EXERCISE 

 

Discuss the term ―Confidence interval‖. 
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1.0. INTRODUCTION 

A hypothesis test is a statistical test that is used to determine whether there is enough 

evidence in a sample of data to infer that a certain condition is true for the entire 

population.  A hypothesis test examines two opposing hypotheses about a population: the 

null hypothesis and the alternative hypothesis. The null hypothesis is the statement being 

tested. Usually the null hypothesis is a statement of "no effect" or "no difference". The 

alternative hypothesis is the statement you want to be able to conclude is true. 
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Based on the sample data, the test determines whether to reject the null hypothesis. You 

use a p-value, to make the determination. If the p-value is less than or equal to the level 

of significance, which is a cut-off point that you define, then you can reject the null 

hypothesis.  

2.0. OBJECTIVES 

At the end of this unit, you should be able to: 

 understand the meaning of Hypothesis 

 know how to calculate hypothesis using confidence interval 

 analyse and interpret hypothesis result. 

 

3.0. MAIN CONTENT 

3.1. ANALYSIS OF HYPOTHESIS 
 

Having discussed the problem of point and interval estimation, we shall now consider the 

topic of hypothesis testing. In this unit we will discuss briefly some general aspects of 

this topic. 

The problem of statistical hypothesis testing may be stated simply as follows: Is a given 

observation or finding compatible with some stated hypothesis or not? The word 

"compatible," as used here, means "sufficiently" close to the hypothesized value so that 

we do not reject the stated hypothesis. Thus, if some theory or prior experience leads us 

to believe that the true slope coefficient    of the consumption-income example is unity, 

is the observed  ̂  = 0.5091 from the statistical table consistent with the stated 

hypothesis? If it is, we do not reject the hypothesis; otherwise, we may reject it. 

In the language of statistics, the stated hypothesis is known as the null hypothesis and is 

denoted by the symbol   . The null hypothesis is usually tested against an alternative 

hypothesis (also known as maintained hypothesis) denoted by   , which may state, for 

example, that true    is different from unity. The alternative hypothesis may be simple or 

composite.
6
 For example,       = 1.5 is a simple hypothesis, but        0 1.5 is a 

composite hypothesis. 

The theory of hypothesis testing is concerned with developing rules or procedures for 

deciding whether to reject or not reject the null hypothesis. There are two mutually 

complementary approaches for devising such rules, namely, confidence interval and test 

of significance. Both these approaches predicate that the variable (statistic or estimator) 

under consideration has some probability distribution and that hypothesis testing involves 

making statements or assertions about the value(s) of the parameter(s) of such 

distribution. For example, we know that with the normality assumption  ̂  is normally 

distributed with mean equal to    and variance. If we hypothesize that    = 1, we are 

making an assertion about one of the parameters of the normal distribution, namely, the 

mean. Most of the statistical hypotheses encountered in this text will be of this type-
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making assertions about one or more values of the parameters of some assumed 

probability distribution such as the normal, F, t, or   . 

 

3.2  HYPOTHESIS TESTING: THE CONFIDENCE-INTERVAL APPROACH 

 

(i) Two-Sided or Two-Tall Test 
To illustrate the confidence-interval approach, once again we revert to the consumption-

income example. As we know, the estimated marginal propensity to consume (MPC),  ̂ , 

is 0.5091. Suppose we postulate that 

 

                                                    : 02 = 0.3 

                                                    : 02   0.3 

that is, the true MPC is 0.3 under the null hypothesis but it is less than or greater than 0.3 

under the alternative hypothesis. The null hypothesis is a simple hypothesis, whereas the 

alternative hypothesis is composite; actually it is what is known as a two-sided 

hypothesis. Very often such a two-sided alternative hypothesis reflects the fact that we do 

not have a strong a priori or theoretical expectation about the direction in which the 

alternative hypothesis should move from the null hypothesis. 

Is the observed  ̂  compatible with   ? To answer this question, let us refer to the 

confidence interval (5.3.9). We know that in the long run intervals like (0.4268, 03914) 

will contain the true    with 95 percent probability. Consequently, in the long run (i.e., 

repeated sampling) such intervals provide a range or limits within which the true    may 

lie with a confidence coefficient of, say, 95%. Thus, the confidence interval provides a 

set of plausible null hypotheses. Therefore, if    under    falls within the 100      )% 

confidence interval, we do not reject the null hypothesis; if it lies outside the interval, we 

may reject it. 

 

Decision Rule: Construct a 100      )% confidence interval for   . If the    under    

falls within this confidence interval, do not reject   , but if it falls outside this interval, 

reject   . 

Following this rule, for our hypothetical example,   :    = 0.3 clearly lies outside the 

95% confidence interval given in (4.3.9). Therefore, we can reject  

 

 

 

 

 

 

 

 

 

 

Values of 𝛽  lying in this interval are 

plausible under 𝐻 with 100     𝛼)% 

confidence. Hence, do not reject 

𝐻  if 𝛽  lies in this region. 

 

𝛽̂  𝑡𝛼   𝑠𝑒 𝛽̂    

 

𝛽̂  𝑡𝛼    𝑠𝑒 𝛽̂    
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Figure 4.2 A 100      )% confidence interval for   . 

 

the hypothesis that the true MPC is 0.3, with 95% confidence. If the null hypothesis were 

true, the probability of our obtaining a value of MPC of as much as 0.5091 by sheer 

chance or fluke is at the most about 5 percent, a small probability. 

In statistics, when we reject the null hypothesis, we say that our finding is statistically 

significant. On the other hand, when we do not reject the null hypothesis, we say that our 

finding is not statistically significant. 

Some authors use a phrase such as "highly statistically significant." By this they usually 

mean that when they reject the null hypothesis, the probability of committing a Type I 

error (i.e., a) is a small number, usually 1 percent. it is better to leave it to the researcher 

to decide whether a statistical finding is "significant," "moderately significant," or 

"highly significant." 

 

(ii) One-sided or One-Tall Test 

Sometimes we have a strong a priori or theoretical expectation (or expectations based on 

some previous empirical work) that the alternative hypothesis is one-sided or 

unidirectional rather than two-sided, as just discussed. Thus, for our consumption-income 

example, one could postulate that 

           and           

 

Perhaps economic theory or prior empirical work suggests that the marginal propensity to 

consume is greater than 0.3. Although the procedure to test this hypothesis can be easily 

derived from (4.3.5), the actual mechanics are better explained in terms of the test-of-

significance approach discussed next.
 

 

3.3.  HYPOTHESIS TESTING: THE TEST-OF-SIGNIFICANCE APPROACH 

 

(i) Testing the Significance of Regression Coefficients: The t Test 

An alternative but complementary approach to the confidence-interval method of testing 

statistical hypotheses is the test-of-significance approach developed along independent 

lines by R. A. Fisher and jointly by Neyman and Pearson.' Broadly speaking, a test of 

significance is a procedure by which sample results are used to verify the truth or falsity 

of a null hypothesis. The key idea behind tests of significance is that of a test statistic 

(estimator) and the sampling distribution of such a statistic under the null hypothesis. The 

decision to accept or reject Ho is made on the basis of the value of the test statistic 

obtained from the data at hand. 

As an illustration, recall that under the normality assumption the variable 

  
 ̂    

    ̂  
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( ̂    )√∑  

 

 ̂
                                                                                           

follows the t distribution with n – 2 df. If the value of true    is specified under the null 

hypothesis, the t value of (5.3.2) can readily be computed from the available sample, and 

therefore it can serve as a test statistic. And since this test statistic follows the t 

distribution, confidence-interval statements such as the following can be made: 

  *      
 ̂    

    ̂  
      +

                                                                                         

where   
  is the value of    under    and where       and       are the values of t (the 

critical t values) obtained from the t table for (   ) level of significance and n – 2 df [cf. 

(4.3.4)].  

Rearranging (5.7.1), we obtain 

  [  
           ̂    ̂    

  ( ̂ )]         (4.7.2) 

 

which gives the interval in which 42 will fall with     probability, given      
 . In 

the language of hypothesis testing, the 100(   )% confidence interval established in 

(4.7.2) is known as the region of acceptance (of the null hypothesis) and the region(s) 

outside the confidence interval is (are) called the region(s) of rejection (of   ) or the 

critical region(s). As noted previously, the confidence limits, the endpoints of the 

confidence interval, are also called critical values. 

The intimate connection between the confidence-interval and test-of significance 

approaches to hypothesis testing can now be seen by comparing (4.3.5) with (4.7.2). In 

the confidence-interval procedure we try to establish a range or an interval that has a 

certain probability of including the true but unknown   , whereas in the test-of-

significance approach we hypothesize some value for    and try to see whether the 

computed  ̂  lies within reasonable (confidence) limits around the hypothesized value. 

Once again let us revert to our consumption-income example. We know that  ̂ = 0.5091, 

se ( ̂ ) = 0.0357, and df = 8. If we assume   = 5 percent,       = 2.306. If we let       

  
   0.3 and        0.3, (4.7.2) becomes 

  Pr (0.2177    ̂  0.3823) = 0.95      (4.7.3) 

as shown diagrammatically in Figure 5.3. Since the observed 42 lies in the critical region, 

we reject the null hypothesis that true    = 0.3. 

In practice, there is no need to estimate (4.7.2) explicitly. One can compute the t value in 

the middle of the double inequality given by (4.7.1) and see whether it lies between the 

critical t values or outside them. For our example, 
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FIGURE 5.3 The 95% confidence interval for  ̂ under the hypothesis that    = 0.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 5.4 The 95% confidence interval for t(8 df). 

 

which clearly lies in the critical region of Figure 5.4. The conclusion remains the same; 

namely, we reject   . 

Notice that if the estimated    (=  ̂ ) is equal to the hypothesized    , the t value in 

(4.7.4) will be zero. However, as the estimated    value departs from the hypothesized    

value, It I (that is, the absolute t value; note: t can be positive as well as negative) will be 

increasingly large. Therefore, a "large" It value will be evidence against the null 

hypothesis. Of course, we can always use the t table to determine whether a particular t 

value is large or small; the answer, as we know, depends on the degrees of freedom as 

well as on the probability of Type I error that we are willing to accept. If you take a look 

at the t statistical table you will observe that for any given value of df the probability of 

obtaining an increasingly large | | value becomes progressively smaller. Thus, for 20 df 

the probability of obtaining a | | value of 1.725 or greater is 0.10 or 10 percent, but for 
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the same df the probability of obtaining a | | value of 3.552 or greater is only 0.002 or 0.2 

percent. 

Since we use the t distribution, the preceding testing procedure is called appropriately the 

t test. In the language of significance tests, a statistic is said to be statistically significant 

if the value of the test statistic lies in the critical region. In this case the null hypothesis is 

rejected. By the same token, a test is said to be statistically insignificant if the value of 

the test statistic lies in the acceptance region. In this situation, the null hypothesis is not 

rejected. In our example, the t test is significant and hence we reject the null hypothesis. 

Before concluding our discussion of hypothesis testing, note that the testing procedure 

just outlined is known as a two-sided, or two-tail, test of-significance procedure in that 

we consider the two extreme tails of the relevant probability distribution, the rejection 

regions, and reject the null hypothesis if it lies in either tail. But this happens because our 

   was a two-sided composite hypothesis;     0.3 means    is either greater than or less 

than 0.3. But suppose prior experience suggests to us that the MPC is expected to be 

greater than 0.3. In this case we have:        0.3 and        0.3. Although    is still 

a composite hypothesis, it is now one-sided. To test this hypothesis, we use the one-tail 

test (the right tail), as shown in Figure 5.5. (See also the discussion in Section 5.6.). 

The test procedure is the same as before except that the upper confidence limit or critical 

value now corresponds to    =     , that is, the 5 percent level. As Figure 5.5 shows, we 

need not consider the lower tail of the t distribution in this case. Whether one uses a two- 

or one-tail test of significance will depend upon how the alternative hypothesis is 

formulated, which, in turn, may depend upon some a priori considerations or prior 

empirical experience.  
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3.4. Testing the significance of      The Chi Square (    Test 
As another illustration of the test-of-significance methodology, consider the following 

variables  

  

   

   
 ̂ 

  
                                                                                                

which, as noted previously, follows the x 2 distribution with n – 2 df. For the hypothetical 

example,  ̂  = 42.1591 and df = 8. If we postulate that     
  = 85 vs.     

     , Eq. 

(4.4.1) provides the test statistic for   . Substituting the appropriate values in (4.4.1), it 

can be found that under     
  = 3.97. If we assume   = 5%, the critical     values are 

2.1797 and 17.5346. Since the computed     lies between these limits, the data support 

the null hypothesis and we do not reject it. This test procedure is called the chi-square test 

of significance. 

1. The Logic of Hypothesis Testing  

As just stated, the logic of hypothesis testing in statistics involves four steps. We 

expand on those steps in this section:  

First Step: State the hypothesis  
Stating the hypothesis actually involves stating two opposing hypotheses about the value 

of a population parameter.  

Example: Suppose we have are interested in the effect of prenatal exposure of alcohol on 

the birth weight of rats. Also, suppose that we know that the mean birth weight of the 

population of untreated lab rats is 18 grams.  

Here are the two opposing hypotheses:  
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o The Null Hypothesis (Ho). This hypothesis states that the treatment has 

no effect. For our example, we formally state:  

o The null hypothesis (Ho) is that prenatal exposure to alcohol has no effect 

on the birth weight for the population of lab rats. The birth weight will be 

equal to 18 grams. This is denoted  

 
o The Alternative Hypothesis (H1). This hypothesis states that the 

treatment does have an effect. For our example, we formally state:  

The alternative hypothesis (H1) is that prenatal exposure to alcohol has an effect on the 

birth weight for the population of lab rats. The birthweight will be different than 18 

grams. This is denoted  

 

4. Second Step: Set the Criteria for a decision.  
The researcher will be gathering data from a sample taken from the population to 

evaluate the credibility of the null hypothesis.  

A criterion must be set to decide whether the kind of data we get is different from what 

we would expect under the null hypothesis.  

Specifically, we must set a criterion about wether the sample mean is different from the 

hypothesized population mean. The criterion will let us conclude whether (reject null 

hypothesis) or not (accept null hypothesis) the treatment (prenatal alcohol) has an effect 

(on birth weight).  

5. Third Step: Collect Sample Data.  
Now we gather data. We do this by obtaining a random sample from 

the population.  

Example: A random sample of rats receives daily doses of alcohol 

during pregnancy. At birth, we measure the weight of the sample of 

newborn rats. We calculate the mean birth weight.  

6. Fourth Step: Evaluate the Null Hypothesis  
We compare the sample mean with the hypothesis about the 

population mean.  

 If the data are consistent with the hypothesis we 

conclude that the hypothesis is reasonable.  

 If there is a big discrepency between the data and 

the hypothesis we conclude that the hypothesis was wrong.  
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Example: We compare the observed mean birth weight with the hypothesized values of 

18 grams.  

 If a sample of rat pups which were exposed to prenatal alcohol has a 

birth weight very near 18 grams we conclude that the treatement 

does not have an effect. Formally we do not reject the null 

hypothesis.  

 If our sample of rat pups has a birth weight very different from 18 

grams we conclude that the treatement does have an effect. Formally 

we reject the null hypothesis.  

 

Errors in Hypothesis Testing  

The central reason we do hypothesis testing is to decide whether or not the sample data 

are consistent with the null hypothesis.  

In the second step of the procedure we identify the kind of data that is expected if the null 

hypothesis is true. Specifically, we identify the mean we expect if the null hypothesis is 

true.  

If the outcome of the experiment is consistent with the null hypothesis, we believe it is 

true (we "accept the null hypothesis"). And, if the outcome is inconsistent with the null 

hypothesis, we decide it is not true (we "reject the null hypothesis").  

We can be wrong in either decision we reach. Since there are two decisions, there are two 

ways to be wrong.  

(i). Type I Error: A type I error consists of rejecting the null hypothesis when it is 

actually true. This is a very serious error that we want to seldomly make. We don't want 

to be very likely to conclude the experiment had an effect when it didn't.  

The experimental results look really different than we expect according to the null 

hypothesis. But it could come out the way it did just because by chance we have a wierd 

sample.  

Example:We observe that the rat pups are really heavy and conclude that prenatal 

exposure to alcohol has an effect even though it doesn't really. (We conclude, 

erroneously, that the alcohol causes heavier pups!) There could be for another reason. 

Perhaps the mother has unusual genes.  
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(ii). Type II Error: A type II error consists of failing to reject the null hypothesis when it 

is actually false. This error has less grevious implications, so we are will to err in this 

direction (of not concluding the experiment had an effect when it, in fact, did).  

The experimental results don't look different than we expect according to the null 

hypothesis, but they are, perhaps because the effect isn't very big.  

Example: The rat pups weigh 17.9 grams and we conclude there is no effect. But "really" 

(if we only knew!) alcohol does reduce weight, we just don't have a big enough effect to 

see it.  

 

 

3. Hypothesis Testing Techniques  

There is always the possibility of making an inference error --- of making the wrong 

decision about the null hypothesis. We never know for certain if we've made the right 

decision. However:  

The techniques of hypothesis testing allow us to know the probability of making a type I 

error.  

We do this by comparing the sample mean and the population mean hypothesized 

under the null hypothesis and decide if they are "significantly different". If we 

decide that they are significantly different, we reject the null hypothesis that 

.  

To do this we must determine what data would be expected if Ho were true, and what 

data would be unlikely if Ho were true. This is done by looking at the distribution of all 

possible outcomes, if Ho were true. Since we usually are concerned about the mean, we 

usually look at the distribution of sample means for samples of size n that we would 

obtain if Ho were true.  

Thus, if we are concerned about means we:  

o Assume that Ho is true  

o Divide the distribution of sample means into two parts:  

1. Those sample means that are likely to be obtained if Ho is true.  

2. Those sample means that are unlikely to be obtained if Ho is true.  
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To divide the distribution into these two parts -- likely and unlikely -- we define a cutoff 

point. This cutoff is defined on the basis of the probability of obtaining specific sample 

means. This (semi-arbitrary) cutoff point is called the alpha level or the level of 

significance. The alpha level specifies the probability of making a Type I error. It is 

denoted . Thus:  

= the probability of a Type I error.  

By convention, we usually adopt a cutoff point of either:  

or or occasionally .  If we adopt a cutoff point of  

 

then we know that the obtained sample of data is likely to be obtained in less than 5 of 

100 samples, if the data were sampled from the population in which Ho is true.  

We decide: "The data (and its sample mean) are significantly different than the value of 

the mean hypothesized under the null hypothesis, at the .05 level of significance."  

This decision is likely to be wrong (Type I error) 5 times out of 100. Thus, the probability 

of a type I error is .05.  

 
The obtained sample of data is likely to be obtained in less than 1 of 100 samples, if the 

data were sampled from the population in which Ho is true.  

We decide: "The data (and its sample mean) are significantly different than the value of 

the mean hypothesized under the null hypothesis, at the .01 level of significance."  

This decision is likely to be wrong (Type I error) 1 time out of 100. Thus, the probability 

of a type I error is .05.  

 
The obtained sample of data is likely to be obtained in less than 1 of 1000 samples, if the 

data were sampled from the population in which Ho is true.  

We decide: "The data (and its sample mean) are significantly different than the value of 

the mean hypothesized under the null hypothesis, at the .001 level of significance."  

This decision is likely to be wrong (Type I error) 1 time out of 1000. Thus, the 

probability of a type I error is .05.  
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Example: We return to the example concerning prenatal exposure to 

alcohol on birth weight in rats. Lets assume that the researcher's 

sample has n=16 rat pups. We continue to assume that population of 

normal rats has a mean of 18 grams with a standard deviation of 4.  

There are four steps involved in hypothesis testing:  

(I). State the Hypotheses:  

 Null hypothesis: No effect for alcohol 

consumption on birth weight. Their weight will 

be 18 grams. In symbols:  

 
 Alternative Hypothesis: ALcohol will effect birth 

weight. The weight will not be 18 grams. In symbols:  

 

(II). Set the decision criteria:  

 Specify the significance level. We specify:  

 
 Determine the standard error of the mean (standard deviation of the 

distribution of sample means) for samples of size 16. The standard 

error is calculated by the formula:  

 
The value is 4/sqrt(16) = 1.  

 To determine how unusual the mean of the sample we will get is, we 

will use the Z formula to calculate Z for our sample mean under the 

assumption that the null hypothesis is true. The Z formula is:  

 
Note that the population mean is 18 under the null hypothesis, and 

the standard error is 1, as we just calculated. All we need to calculate 

Z is a sample mean. When we get the data we will calculate Z and 

then look it up in the Z table to see how unusual the obtained 

sample's mean is, if the null hypothesis Ho is true.  
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(III). Gather Data:  

Lets say that two experimenters carry out the experiment, and they get these data:  

 

Experiment 1 Experiment 2 

 

 

Experiment 1 Experiment 2 

Sample Mean = 13 Sample Mean = 16.5 

(IV). Evaluate Null Hypothesis:  

We calculate Z for each experiment, and then look up the P value for the obtained Z, and 

make a decision. Here's what happens for each experiment:  

Experiment 1 Experiment 2 
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Sample Mean = 13 

Z = (13-18)/1 = -5.0 

p < .0000 

Reject Ho 

ViSta Applet 

Sample Mean = 16.5 

Z = (16.5-18)/1 = -1.5 

p = .1339 

Do Not Reject Ho 

ViSta Applet 

ViSta's Report for Univariate Analysis of Experiment 1 Data. 

 

ViSta's Report for Univariate Analysis of Experiment 1 Data. 

 

 

3. Directional (One-Tailed) Hypothesis Testing  

What we have seen so far is called non-direction, or "Two-Tailed", hypothesis testing. 

Its called this because the critical region is in both tails of the distribution. It is used when 

the experimenter expects a change, but doesn't know which direction it will be in.  

(a). Non-directional (Two-Tailed) Hypothesis  
The statistical hypotheses (Ho and H1) specify a change in the population mean score.  

In this section we can consider directional, "One-Tailed", hypothesis testing. This is 

what is used when the experimenter expects a change in a specified direction.  

(b). Directional (One-Tailed) Hypothesis  
The statistical hypotheses (Ho and H1) specify either an increase or a decrease in the 

population mean score.  

http://forrest.psych.unc.edu/research/vista-frames/help/lecturenotes/lecture07/birthweight1.xli
http://forrest.psych.unc.edu/research/vista-frames/help/lecturenotes/lecture07/birthweight2.xli
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Example: We return to the survey data that we obtained on the first day of class. Recall 

that our sample has n=41 students.  

Sample Statistics, Population Parameters 

and Sample Frequency Distribution for SAT Math  

Statistics & Parameters Sample Frequency Distribution 

Sample Statistics  
Samp. Mean = 589.39  

Samp. Stand. Dev. = 94.35  

 

Population Parameters  
Pop. Mean = 460  

Pop. Stand. Dev. = 100  

Note that red is for males, blue for females.  

The same four steps are involved in both directional and non-directional hypothesis 

testing. However, some details are different. Here is what we do for directional 

hypothesis testing:  

4. State the Hypotheses:  

(a). Alternative Hypothesis: Students in this class are sampled from a restricted 

selection population whose SAT Math Scores are above the unrestricted population's 

mean of 460. There is a restrictive selection process for admitting students to UNC that 

results in SAT Math scores above the mean: Their mean SAT score is greater than 460.  

(b). Null hypothesis: Students in this class are not sampled from a restricted selection 

population whose SAT Math Scores are above the unrestricted population's mean of 460. 

There is an unrestrictive selection process for admitting students to UNC: Their mean 

SAT score is not greater than 460.  

Symbols:  

 

 

 

5. Set the decision criteria:  

http://forrest.psych.unc.edu/research/vista-frames/help/lecturenotes/lecture04/popvalues.html
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Specify the significance level. We specify:  

 

Determine the standard error of the mean (standard deviation of the distribution of 

sample means) for samples of size 41. The standard error is calculated by the formula:  

 
The value is  

 

To determine how unusual the mean of the sample we will get is, we will use the Z 

formula to calculate Z for our sample mean under the assumption that the null hypothesis 

is true. The Z formula is:  

 

Note that the population mean is 460 under the null hypothesis, and the standard error is 

15.6, as we just calculated. All we need to calculate Z is a sample mean. When we get the 

data we will calculate Z and then look it up in the Z table to see how unusual the obtained 

sample's mean is, if the null hypothesis Ho is true.  

6. Gather Data:  

We gathered the data on the first day of class and observed that the class's mean on SAT 

Math was 589.39.  

7. Evaluate Null Hypothesis:  

We calculate Z and then look up the P value for the obtained Z, and make a decision. 

Here's what happens:  

 
The P value is way below .00001, so we reject the null hypothesis that there is an 

unrestrictive selection process for admitting students to UNC. We conclude that the 

selection process results in Math SAT scores for UNC students that are higher than the 

population as a whole.  

 

 

8. Statistical Power  
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As we have seen, hypothesis testing is about seeing if a particular treatment has an effect. 

Hypothesis testing uses a framework based on testing the null hypothesis that there is no 

effect. The test leads us to decide whether or not to reject the null hypothesis.  

We have examined the potential for making an incorrect decision, looking at Type I and 

Type II errors, and the associated significance level for making a Type I error.  

We now reverse our focus and look at the potential for making a correct decision. This is 

referred to as the power of a statistical test. 

However, the power of a statistical test is the probability that the test will correctly reject 

a false null hypothesis. The more powerful the test is, the more likely it is to detect a 

treatment effect when one really exists.  

9. Power and Type II errors:  

When a treatment effect really exists the hypothesis test:  

(i). can fail to discover the treatment effect (making a Type II error). The 

probability of this happening is denoted:  

= P[Type II error]  

(ii) can correctly detect the treatment effect (rejecting a false null 

hypothesis). The probabililty of this happening, which is the power of 

the test, is denoted:  

= power = P[rejecting a false Ho].  

Here is a table summarizing the Power and Significance of a test and their relationship to 

Type I and II errors and to "alpha" and "beta" the probabilities of a Type I and Type II 

error, respectively:  

10. How to we determine power?  
Unfortunately, we don't know "beta", the exact value of the power of a test. We do know, 

however, that the power of a test is effected by:  

(i). Alpha Level: Reducing the value of alpha also reduces the power. So if we wish to be 

less likely to make a type I error (conclude there is an effect when there isn't) we are also 

less likely to see an effect when there is one.  

(ii). One-Tailed Tests: One tailed tests are more powerful. They make it easier to reject 

null hypotheses.  
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(iii). Sample Size: Larger samples are better, period. Tests based on larger samples are 

more powerful and are less likely to lead to mistaken conclusions, including both Type I 

and Type II errors.  

4.0. CONCLUSION 

The unit concludes that hypothesis testing is an act in statistics whereby an analyst tests 

an assumption regarding a population parameter. The methodology employed by the 

analyst depends on the nature of the data used and the reason for the analysis. Hypothesis 

testing is used to infer the result of a hypothesis performed on sample data from a larger 

population. 

5.0 SUMMARY 
 

We then summaries that Procedure for deciding if a null hypothesis should be accepted or 

rejected in favor of an alternate hypothesis. A statistic is computed from a survey or test 

result and is analyzed to determine if it falls within a preset acceptance region. If it does, 

the null hypothesis is accepted otherwise rejected. 

 

6.0. TUTOR MARKED ASSESSMENT EXERCISE 

List the stages of hypothesis testing in statistical analysis 
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1.0. INTRODUCTION 

In order to undertake hypothesis testing you need to express your research hypothesis as a 

null and alternative hypothesis. The null hypothesis and alternative hypothesis are 

statements regarding the differences or effects that occur in the population. You will use 

your sample to test which statement (i.e., the null hypothesis or alternative hypothesis) is 

most likely (although technically, you test the evidence against the null hypothesis). So, 

with respect to our teaching example, the null and alternative hypothesis will reflect 

statements about all statistics students on graduate management courses. 

The null hypothesis is essentially the "devil's advocate" position. That is, it assumes that 

whatever you are trying to prove did not happen (hint: it usually states that something 

equals zero). For example, the two different teaching methods did not result in different 

exam performances (i.e., zero difference). Another example might be that there is no 

relationship between anxiety and athletic performance (i.e., the slope is zero). The 

alternative hypothesis states the opposite and is usually the hypothesis you are trying to 

prove (e.g., the two different teaching methods did result in different exam 

performances). Initially, you can state these hypotheses in more general terms (e.g., using 

terms like "effect", "relationship", etc.). 

2.0. OBJECTIVES 

At the end of this unit, you should be able to: 

 understand the meaning of accepting and rejecting an hypothesis 

 identify a null and alternative hypothesis. 

 

3.0. MAIN CONTENT 

 

3.1. The meaning of "Accepting" or "Rejecting" an Hypothesis 
 

If on the basis of a test of significance, say, the t test, we decide to "accept" the null 

hypothesis, all we are saying is that on the basis of the sample evidence we have no 

reason to reject it; we are not saying that the null hypothesis is true beyond any doubt. 

Why? To answer this, let us revert to our consumption-income example and assume that 

      (MPC) = 0.50. Now the estimated value of the MPC is  ̂  = 0.5091 with a 

     ̂           . Then on the basis of the t test we find that              
                    , which is insignificant, say, at   = 5%. Therefore, we say 

"accept"   . But now let us assume       = 0.48. Applying the t test, we obtain t = 

(                            , which too is statistically insignificant. So now we 

say "accept" this   . Which of these two null hypotheses is the "truth"? We do not know. 

Therefore, in "accepting" a null hypothesis we should always be aware that another null 
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hypothesis may be equally compatible with the data. It is therefore preferable to say that 

we may accept the null hypothesis rather than we (do) accept it. Better still, just as a court 

pronounces a verdict as "not guilty" rather than "innocent," so the conclusion of a 

statistical test is "do not reject" rather than "accept."
 

 

3.2. The “Zero” Null Hypothesis and the “2-t” Rule of Thumb 
 

A null hypothesis that is commonly tested in empirical work is       = 0, that is, the 

slope coefficient is zero. This "zero" null hypothesis is a kind of straw man, the objective 

being to find out whether Y is related at all to X, the explanatory variable. If there is no 

relationship between Y and X to begin with, then testing a hypothesis such as    = 0.3 or 

any other value is meaningless.  

This null hypothesis can be easily tested by the confidence interval or the t-test approach 

discussed in the preceding sections. But very often such formal testing can be shortcut by 

adopting the "2-t" rule of significance, which may be stated as "2-t" Rule of Thumb. If 

the number of degrees of freedom is 20 or more and if  , the level of significance, is set 

at 0.05, then the null hypothesis    = 0 can be rejected if the t value [  ̂    ( ̂ )] 
computed from (4.3.2) exceeds 2 in absolute value. 

The rationale for this rule is not too difficult to grasp. From (4.7.1) we know that we will 

reject        0 if 

     ̂    ( ̂ )        when  ̂     

or 

   ̂    ( ̂ )         when  ̂     

or when 

| |  |
 ̂ 

  ( ̂ )
|

                                                                                                           

for the appropriate degrees of freedom. 

Now if we examine the t Statistical table, we see that for df of about 20 or more a 

computed t value in excess of 2 (in absolute terms), say, 2.1, is statistically significant at 

the 5 percent level, implying rejection of the null hypothesis. Therefore, if we find that 

for 20 or more df the computed t value is, say, 2.5 or 3, we do not even have to refer to 

the t table to assess the significance of the estimated slope coefficient. Of course, one can 

always refer to the t table to obtain the precise level of significance, and one should 

always do so when the df are fewer than, say, 20.  

In passing, note that if we are testing the one-sided hypothesis     0 versus     0 or 

    0, then we should reject the null hypothesis if  

| |  |
 ̂ 

  ( ̂ )
|

                                                                                                             



115 
 

If we fix   at 0.05, then from the t table we observe that for 20 or more df a t value in 

excess of 1.73 is statistically significant at the 5 percent level of significance (one-tail). 

Hence, whenever a t value exceeds, say, 1.8 (in absolute terms) and the df are 20 or more, 

one need not consult the t table for the statistical significance of the observed coefficient. 

Of course, if we choose   at 0.01 or any other level, we will have to decide on the 

appropriate t value as the benchmark value. But by now the reader should be able to do 

that. 

3.3.  Forming the Null and Alternative Hypotheses  

Given the null and the alternative hypotheses, testing them for statistical significance 

should no longer be a mystery. But how does one formulate these hypotheses? There are 

no hard-and-fast rules. Very often the phenomenon under study will suggest the nature of 

the null and alternative hypotheses. For example, consider the capital market line (CML) 

of portfolio theory, which postulates that           , where E = expected return on 

portfolio and a = the standard deviation of return, a measure of risk. Since return and risk 

are expected to be positively related–the higher the risk, the higher the return–the natural 

alternative hypothesis to the null hypothesis that     0 would be     0. That is, one 

would not choose to consider values of    less than zero. 

But consider the case of the demand for money. As we shall show later, one of the 

important determinants of the demand for money is income. studies of the money demand 

functions have shown that the income elasticity of demand for money (the percent change 

in the demand for money for a 1 percent change in income) has typically ranged between 

0.7 r, 1.3. Therefore, in a new study of demand for money, if one postulates t the income-

elasticity coefficient    is 1, the alternative hypothesis could he that     1, a two-sided 

alternative hypothesis. 

Thus, theoretical expectations or prior empirical work or both can be relied upon to 

formulate hypotheses. But no matter how the hypotheses are formed, it is extremely 

important that the researcher establish these hypotheses before carrying out the 

empirical investigation. Otherwise, he or she will be guilty of circular reasoning or self-

fulfilling prophesies. That is, if one were to formulate hypotheses after examining the 

empirical results, there may be the temptation to form hypotheses that justify one's 

results. Such a practice should be avoided at all costs, at least for the sake of scientific 

objectivity. Keep in mind the Stigler quotation given at the beginning of this chapter! 

 

 

4.0. CONCLUSION 

The unit conclude that in stage one of the hypothesis-testing process, we formulate a 

hypothesis called the null hypothesis. This has some special characteristics. It is a 

specific statement about population parameters and it provides the basis for calculating 

what is called a p-value. The null hypothesis is often shortened to H₀. The null hypothesis 

represents your current belief. If the data is consistent with it, you do not reject the null 

hypothesis (H₀). But if the data provides enough evidence against it, then you do reject 
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H₀. The result of the hypothesis test is either: to reject or not to reject the null hypothesis 

and you might be wondering, why not just accept H₀ instead of 'not rejecting' it? This is 

because statistical hypothesis testing is not geared towards proving that H₀ is true, but to 

disproving it instead. 

5.0 SUMMARY 

 

This unit has vividly discuss at length in accepting and rejecting an hypothesis and we 

can see that the process of how we can accept and reject an hypothesis was discuss in 

Module three, unit five and in this unit you must have learn more on how you are to 

accept and reject an hypothesis. 

 

6.0. TUTOR MARKED ASSESSMENT EXERCISE 

 

Differentiate between a Null and Alternative hypothesis 
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1.0. INTRODUCTION 

The significance level, also denoted as alpha or α, is the probability of rejecting the null 

hypothesis when it is true. For example, a significance level of 0.05 indicates a 5% risk of 

concluding that a difference exists when there is no actual difference. However, a type I 
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error occurs when the researcher rejects a null hypothesis when it is true. The probability 

of committing a Type I error is called the significance level, and is often denoted by α. 

 

2.0. OBJECTIVES 

At the end of this unit, you should be able to: 

 understand the meaning of Level of significance 

 understand the Choice between confidence-interval and test-of-significance 

Approaches to hypothesis testing 

 

 

 

 

3.0. MAIN CONTENT 

3.1. LEVEL OF SIGNIFICANCE 

 

It should be clear from the discussion so far that whether we reject or do not reject the 

null hypothesis depends critically on a, the level of significance or the probability of 

committing a Type I error–the probability of rejecting the true hypothesis. But even then, 

why is a commonly fixed at the 1, 5, or at the most 10 percent levels? As a matter of fact, 

there is nothing sacrosanct about these values; any other values will do just as well. 

In an introductory book like this it is not possible to discuss in depth why the chooses the 

1, 5, or 10 percent levels of significance, for that will take us into the field of statistical 

decision making, a discipline unto itself. A brief summary, for a given sample size, if we 

try to reduce a Type I error, a Type II error increases, and vice versa. That is, given the 

sample size, if we try to reduce the probability of rejecting the true hypothesis, we at the 

same time increase the probability of accepting the false hypothesis. So there is a tradeoff 

involved between these two types of errors, given the sample size. Now the only way we 

can decide about the tradeoff is to find out the relative costs of the two types of errors. 

Then, 

If the error of rejecting the null hypothesis which is in fact true (Error Type I) is 

costly relative to the error of not rejecting the null hypothesis which is in fact false 

(Error Type II), it will be rational to set the probability of the first kind of error 

low. If, on the other hand, the cost of making Error Type I is low relative to the 

cost of making Error Type II, it will pay to make the probability of the first kind of 

error high (thus making the probability of the second type of error low).
13

 

Of course, the rub is that we rarely know the costs of making the two types of errors. 

Thus, applied econometricians generally follow the practice of setting the value of   at a 

1 or a 5 or at most a 10 percent level and choose a test statistic that would make the 

probability of committing a Type II error as small as possible. Since one minus the 

probability of committing a Type II error is known as the power of the test, this 

procedure amounts to maximizing the power of the test. 

http://stattrek.com/Help/Glossary.aspx?Target=Null_hypothesis
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But this entire problem with choosing the appropriate value of a can be avoided if we use 

what is known as the p value of the test statistic, which is discussed next.  

 

3.2. The Exact Level of Significance: The p Value 
 

As just noted, the Achilles heel of the classical approach to hypothesis testing is its 

arbitrariness in selecting  . Once a test statistic (e.g., the t statistic) is obtained in a given 

example, why not simply go to the appropriate statistical table and find out the actual 

probability of obtaining a value of the test statistic as much as or greater than that 

obtained in the example? This probability is called the p value (i.e., probability value), 

also known as the observed or exact level of significance or the exact probability of 

committing a Type I error. More technically, the p value is defined as the lowest 

significance level at which a null hypothesis can be rejected. 

 

To illustrate, let us return to our consumption–income example. Given the null hypothesis 

that the true MPC is 0.3, we obtained a t value of 4.86 in (4.7.4). What is the p value of 

obtaining a t value of as much as or greater than 5.86? Looking up the t table, we observe 

that for 8 df the probability of obtaining such a t value must be much smaller than 0.001 

(one-tail) or 0.002 (two-tail). By using the computer, it can be shown that the probability 

of obtaining a t value of 5.86 or greater (for 8 df) about 0.000189." This is the p value of 

the observed t statistic. This observed, or exact, level of significance of the t statistic is 

much smaller than the conventionally, and arbitrarily, fixed level of significance, such as 

1, 5, or 10 percent. As a matter of fact, if we were to use the p value just computed, and 

reject the null hypothesis that the true MPC is 0.3, the probability of our committing a 

Type I error is only about 0.02 percent, that is, only about 2 in 10,000. 

As we noted earlier, if the data do not support the null hypothesis, | | obtained under the 

null hypothesis will be "large" and therefore the p value of obtaining such a | |value will 

be "small." In other words, for a given sample size, as | | increases, the p value decreases, 

and one can therefore reject the null hypothesis with increasing confidence. 

What is the relationship of the p value to the level of significance a? If we make the habit 

of fixing a equal to the p value of a test statistic (e.g., the t statistic), then there is no 

conflict between the two values. To put it differently, it is better to give up fixing fi 

arbitrarily at some level and simply choose the p value of the test statistic. It is preferable 

to leave it to the reader to decide whether to reject the null hypothesis at the given p 

value. If in an application the p value of a test statistic happens to be, say, 0.145, or r 14.5 

percent, and if the reader wants to reject the null hypothesis at this (exact) level of 

significance, so be it. Nothing is wrong with taking a chance of being wrong 14.5 percent 

of the time if you reject the true null hypothesis. Similarly, as in our consumption-income 

example, there is nothing wrong if the researcher wants to choose a p value of about 0.02 

percent and not take a chance of being wrong more than 2 out of 10,000 times. After all, 

some investigators may be risk-lovers and some risk-averters. 

 

3.3. SIGNIFICANCE ANALYSIS 



120 
 

 

Let us revert to our consumption-income example and now hypothesize t the true MPC is 

0.61 (  :   = 0.61). On the basis of our sample result  ̂  0.5091, we obtained the interval 

(0.4268, 0.5914) with 95 percent confidence. Since this interval does not include 0.61, we 

can, with 95 percent confidence, say that our estimate is statistically significant, that is, 

significantly different from 0.61. 

But what is the practical or substantive significance of our finding? That is, what 

difference does it make if we take the MPC to be 0.61 rather than 0.5091? Is the 0.1009 

difference between the two MPCs that important practically? 

The answer to this question depends on what we really do with these estimates. For 

example, from macroeconomics we know that the income multiplier is 1/(1 – MPC). 

Thus, if MPC is 0.5091, the multiplier is 2.04, but it is 2.56 if MPC is equal to 0.61. That 

is, if the government were to increase its expenditure by N1 to lift the economy out of a 

recession, income will eventually increase by N2.04 if the MPC is 0.5091 but by N2.56 if 

the MPC is 0.61. And that difference could very well be crucial to resuscitating the 

economy. 

The point of all this discussion is that one should not confuse statistic significance with 

practical, or economic, significance. As Goldberger notes: 

When a null, say,    = 1, is specified, the likely intent is that     is close to 1, so close that 

for all practical purposes it may be treated as if it were 1. But whether 1.1 is "practically 

the same as" 1.0 is a matter of economics, not of statistics. One cannot resolve the matter 

by relying on a hypothesis test, because the test statistic [t =](   1)/ ̂   measures the 

estimated coefficient in standard error units, which are not meaningful units in which to 

measure the economic parameter     . It may be a good idea to reserve the term 

"significance" for the statistical concept, adopting "substantial" for the economic concept. 

The point made by Goldberger is important. As sample size becomes very large, issues of 

statistical significance become much less important but issues of economic significance 

become critical. Indeed, since with very large samples almost any null hypothesis will be 

rejected, there may be studies which the magnitude of the point estimates may be the only 

issue. 

 

3.4. The Choice between Confidence-Interval and Test-of-Significance Approaches 

to Hypothesis Testing 

 

In most applied economic analyses, the null hypothesis is set up as a straw man and the 

objective of the empirical work is to knock it down, that is, reject the null hypothesis. 

Thus, in our consumption–income example, the null hypothesis that the MPC      is 

patently absurd, but we often use it to dramatize the empirical results. Apparently editors 

of reputed journals do not find it exciting to publish an empirical piece that does not 

reject the null hypothesis. Somehow the finding that the MPC is statistically different 

from zero is more newsworthy than the finding that it is equal to, say, 0.7.  

Thus, J. Bradford De Long and Kevin Lang argue that it is better for economists. 
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4.0 CONCLUSION 

 

In this unit we conclude that in the study of statistics, a statistically significant result (or 

one with statistical significance) in a hypothesis test is achieved when the p-value is less 

than the defined significance level. The p-value is the probability of obtaining a test 

statistic or sample result as extreme as or more extreme than the one observed in the 

study whereas the significance level or alpha tells a researcher how extreme results must 

be in order to reject the null hypothesis. 

 

5.0 SUMMARY 

The unit has discussed extensively the analysis of level of significance and the exact p 

value, in addition to how to interpret the level of significance in hypothesis testing. I 

belief at this junction that you must have learn through this unit of level of significance 

and it‘s rudimentary.  

 

 

 

6.0 TUTOR MARKED ASSESSMENT EXERCISE 

 

Write short note on ―Level of Significance‖ 
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1.0. INTRODUCTION 
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In statistical modeling, regression analysis is a statistical process for estimating the 

relationships among variables. It includes many techniques for modeling and analyzing 

several variables, when the focus is on the relationship between a dependent variable and 

one or more independent variables (or 'predictors'). More specifically, regression analysis 

helps one understand how the typical value of the dependent variable (or 'criterion 

variable') changes when any one of the independent variables is varied, while the other 

independent variables are held fixed. Most commonly, regression analysis estimates the 

conditional expectation of the dependent variable given the independent variables – that 

is, the average value of the dependent variable when the independent variables are fixed. 

Less commonly, the focus is on a quantile, or other location parameter of the conditional 

distribution of the dependent variable given the independent variables. In all cases, the 

estimation target is a function of the independent variables called the regression function. 

In regression analysis, it is also of interest to characterize the variation of the dependent 

variable around the regression function which can be described by a probability 

distribution. 

Regression analysis is widely used for prediction and forecasting, where its use has 

substantial overlap with the field of machine learning. Regression analysis is also used to 

understand which among the independent variables are related to the dependent variable, 

and to explore the forms of these relationships. In restricted circumstances, regression 

analysis can be used to infer causal relationships between the independent and dependent 

variables. However this can lead to illusions or false relationships, so caution is 

advisable; for example, correlation does not imply causation. 

Many techniques for carrying out regression analysis have been developed. Familiar 

methods such as linear regression and ordinary least squares regression are parametric, in 

that the regression function is defined in terms of a finite number of unknown parameters 

that are estimated from the data. Nonparametric regression refers to techniques that allow 

the regression function to lie in a specified set of functions, which may be infinite-

dimensional. 

The performance of regression analysis methods in practice depends on the form of the 

data generating process, and how it relates to the regression approach being used. Since 

the true form of the data-generating process is generally not known, regression analysis 

often depends to some extent on making assumptions about this process. These 

assumptions are sometimes testable if a sufficient quantity of data is available. 

Regression models for prediction are often useful even when the assumptions are 

moderately violated, although they may not perform optimally. However, in many 

applications, especially with small effects or questions of causality based on 

observational data, regression methods can give misleading results. 

variance is the expectation of the squared deviation of a random variable from its mean, 

and it informally measures how far a set of (random) numbers are spread out from their 
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mean. The variance has a central role in statistics. It is used in descriptive statistics, 

statistical inference, hypothesis testing, goodness of fit, Monte Carlo sampling, amongst 

many others. This makes it a central quantity in numerous fields such as physics, biology, 

chemistry, economics, and finance. The variance is the square of the standard deviation, 

the second central moment of distribution, and the covariance of the random variable 

with itself.   

 

 

 

2.0. OBJECTIVES 

At the end of this unit, you should be able to: 

 understand the meaning of regression analysis and variance 

 know how to calculate the regression analysis and analysis of variance 

 

3.0. MAIN CONTENT 

3.1. Regression Analysis 

 

In this unit we will study regression analysis from the point of view of the analysis of 

variance and introduce the reader to an illuminating and complementary way of looking 

at the statistical inference problem. 

In previous discussion, we developed the following identity: 

∑  
  ∑ ̂ 

  ∑ ̂ 
 

  ̂ 
 ∑  

  ∑ ̂ 
                                                             

that is, TSS = ESS + RSS, which decomposed the total sum of squares (TSS) into two 

components: explained sum of squares (ESS) and residual sum of squares (RSS). A study 

of these components of TSS is known as the analysis of variance (ANOVA) from the 

regression viewpoint. 

Associated with any sum of squares is its df, the number of independent observations on 

which it is based. TSS has       df because we lose 1 df in computing the sample mean 

 ̅. RSS has n – 2 df. (Why?) (Note: This is true only for the two-variable regression 

model with the intercept    present.) ESS has 1 df (again true of the two-variable case 

only), which follows from the fact that ESS   ̂ 
 ∑  

  is a function of  ̂  only, since 

∑  
  is known. 

However, we can also state that; 

https://en.wikipedia.org/wiki/Descriptive_statistics
https://en.wikipedia.org/wiki/Statistical_inference
https://en.wikipedia.org/wiki/Hypothesis_testing
https://en.wikipedia.org/wiki/Goodness_of_fit
https://en.wikipedia.org/wiki/Monte_Carlo_method
https://en.wikipedia.org/wiki/Physics
https://en.wikipedia.org/wiki/Biology
https://en.wikipedia.org/wiki/Chemistry
https://en.wikipedia.org/wiki/Economics
https://en.wikipedia.org/wiki/Finance
https://en.wikipedia.org/wiki/Standard_deviation
https://en.wikipedia.org/wiki/Central_moment
https://en.wikipedia.org/wiki/Covariance
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 ̂ 

 ∑  
 

∑  ̂ 
       

                                                                           

 
 ̂ 

 ∑  
 

 ̂ 
 

If we assume that the disturbances u, are normally distributed, which we do under the 

CNLRM, and if the null hypothesis (  ) is that    = 0, then it can be shown that the F 

variable of (4.9.1) follows the F distribution with 1 df in the numerator and (n – 2) df in 

the denominator.  

What use can be made of the preceding F ratio? It can be shown that 

 ( ̂ 
 ∑  

 )

   

   
 ∑  

                                                                                 

 

and  

 
∑  ̂ 

 

   
    ̂  

                                                                                                  
(Note that    and   appearing on the right sides of these equations are the true 

parameters.) Therefore, if    is in fact zero, Eqs. (4.9.2) and (4.9.3) both provide us with 

identical estimates of true   . In this situation, the explanatory variable X has no linear 

influence on Y whatsoever and the entire variation in Y is explained by the random 

disturbances   . If, on the other hand,    is not zero, (4.9.2) and (4.9.3) will be different 

and part of the variation in Y will be ascribable to X. Therefore, the F ratio of (4.9.1) 

provides a test of the null hypothesis        . Since all the quantities entering into this 

equation can be obtained from the available sample, this F ratio provides test statistic to 

test the null hypothesis that true    is zero. All that needs to be done is to compute the F 

ratio and compare it with the critical F value obtained from the F tables at the chosen 

level of significance, or obtain the p value of the computed F statistic. 

 

To illustrate, let us continue with our consumption-income example. 

Looking at the ANOVA value and the F statistics; therefore, the computed F value is seen 

to be 202.87. The p value of this F statistic corresponding to 1 and 8 degree of freedom 

(df) cannot be obtained from the F table, but by using electronic statistical tables it can be 

shown that the p value 0.0000001, an extremely small probability indeed. If you decide to 

choose the level-of-significance approach to hypothesis testing and fix   at 0.01, or a 1 

percent level, you can see that the computed F of 202.87 is obviously significant at this 

level. Therefore, if we reject the null hypothesis that    = 0, the probability of 

committing a Type I error is very small. For all practical purposes, our sample could not 
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have come from a population with zero    value and we can conclude with great 

confidence that X, income, does affect Y, consumption expenditure. 

Thus, the t and the F tests provide us with two alternative but complementary ways of 

testing the null hypothesis that     . If this is the case, why not just rely on the t test 

and not worry about the F test and the accompanying analysis of variance? For the two-

variable model there really is no need to resort to the F test. But when we consider the 

topic of multiple regressions we will see that the F test has several interesting 

applications that make it a very useful and powerful method of testing statistical 

hypotheses. 

 

 

 

3.2. APPLICATION OF REGRESSION ANALYSIS: THE PROBLEM OF  

          PREDICTION 

 

For example let say we have a sample regression result: 

 ̂                              

 

where  ̂  is the estimator of true E(Y,) corresponding to given X. What use can be made 

of this historical regression? One use is to "predict" or "forecast" the future consumption 

expenditure Y corresponding to some given level of income X. Now there are two kinds 

of predictions: (1) prediction of the conditional mean value of Y corresponding to a 

chosen X, say,    , that is the point on the population regression line itself and (2) 

prediction of an individual Y value corresponding to   . We shall call these two 

predictions the mean prediction and individual prediction. 

 

3.2.1. Mean Prediction 

 

To fix the ideas, assume that    = 100 and we want to predict E( |   = 100). Now it can 

be shown that the historical regression (3.6.2) provides the point estimate of this mean 

prediction as follows: 

    ̂   ̂   ̂    

 
          
                                                                               

          

where  ̂  = estimator of E( |  ). It can be proved that this point predictor is a best linear 

unbiased estimator (BLUE). 

Since  ̂  is an estimator, it is likely to be different from its true value. The difference 

between the two values will give some idea about the prediction or forecast error. To 

assess this error, we need to find out the sampling distribution of  ̂ . It is shown in 
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Appendix 5A, Section 5A.4, that  ̂  in Eq. (5.10.1) is normally distributed with mean 

(       ) and the variance is given by the following formula: 

   ( ̂ )

   *
 

 
 

     ̅  

∑  
 +                                                                   

By replacing the unknown    by its unbiased estimator  ̂ , we see that the variable  

 

 
 ̂           

    ̂  
                                                                                    

follows the t distribution with n – 2 df. The t distribution can therefore be used to derive 

confidence intervals for the true E(  |  ) and test hypotheses about it in the usual 

manner, namely, 

  [ ̂   ̂          ( ̂ )           ̂   ̂          ( ̂ )]

                           
where se (4) is obtained from (5.10.2). For our data (see Table 3.3), 

   ( ̂ )        *
 

  
 

          

      
+   

               
and 

       ( ̂ )          

Therefore, the 95% confidence interval for true E( |            is given by 

                          |                             
that is, 

   

           |                                                                               
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑋̅ 

Y 

X 

150 

130 

0 
0 60 80 100 120 140 160 

                     
for mean   

200 220 260 240 

50 

70 

90 

110 

170 

92 

83 

68 

58 

                     
for individual   

 ̂i                 i 

180 



128 
 

 

 

 

 

 

 

 

FIGURE 5.6 Confidence interval (bands) for mean Y and individual Y values. 

Thus, given    = 100, in repeated sampling, 95 out of 100 intervals like (4.10.5) will 

include the true mean value; the single best estimate of the true mean value is of course 

the point estimate 75.3645. 

If we obtain 95% confidence intervals like (4.10.5) for each of the X values, we obtain 

what is known as the confidence interval, or confidence band, for the population 

regression function, which is shown in Figure 5.6. 

 

3.2.3. Individual Prediction 

If our interest lies in predicting an individual Y value,   , corresponding to a given X 

value, say, Xo,, a best linear unbiased estimator of    is also given by (4.10.1), but its 

variance is as is follows: 

   (    ̂ )   [    ̂ ]
 

   *  
 

 
 

     ̅  
 

∑  
 +                                             

It can be shown further that    also follows the normal distribution with mean and 

variance given by (4.10.1) and (4.10.6), respectively. Substituting  ̂  for the unknown 

  , it follows that 

  
    ̂ 

  (    ̂ )
 

also follows the t distribution. Therefore, the t distribution can be used to draw inferences 

about the true   . Continuing with our consumption-income example, we see that the 

point prediction of    is 75.3645, the same as that of  ̂ , and its variance is 52.6349 (the 

reader should verify this calculation). Therefore, the 95% confidence interval for    

corresponding to    = 100 is seen to be 

             |         
                                                                         

Comparing this interval with (4.10.5), we see that the confidence interval for individual 

   is wider than that for the mean value of   . (Why?) Computing confidence intervals 

like (4.10.7) conditional upon the X values, we obtain the 95% confidence band for the 

individual Y values corresponding to these X values. This confidence band along with the 

confidence band for    associated with the same X's is shown in Figure 5.6. 
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Notice an important feature of the confidence bands shown in Figure 5.6. The width of 

these bands is smallest when    = X. (Why?) However, the width widens sharply as    

moves away from X. (Why?) This change would suggest that the predictive ability of the 

historical sample regression line falls markedly as    departs progressively from X. 

Therefore, one should exercise great caution in "extrapolating" the historical regression 

line to predict E  |    or    associated with a given    that is far removed from the 

sample mean X. 

 

 

 

 

 

3.2.4 REPORTING THE RESULTS OF REGRESSION ANALYSIS 

 

There are various ways of reporting the results of regression analysis, but in this text we 

shall use the following format, employing the consumption income example of Chapter 3 

as an illustration: 

 ̂                              

                                                          
                                         

                                                              

                                             8          
In Eq. (4.11.1) the figures in the first set of parentheses are the estimated standard errors 

of the regression coefficients, the figures in the second set are estimated t values 

computed from (4.3.2) under the null hypothesis that the true population value of each 

regression coefficient individually is zero (e.g., 3.8128 = 24.4545   6.4138), and the 

figures in the third set are the estimated p values. Thus, for 8 df the probability of 

obtaining a t value of 3.8128 or greater is 0.0026 and the probability of obtaining a t 

value of 14.2605 or larger is about 0.0000003. 

By presenting the p values of the estimated t coefficients, we can see at once the exact 

level of significance of each estimated t value. Thus, under the null hypothesis that the 

true population intercepts value is zero, the exact probability (i.e., the p value) of 

obtaining a t value of 3.8128 or greater is only about 0.0026. Therefore, if we reject this 

null hypothesis, the probability of our committing a Type I error is about 26 in 10,000, a 

very small probability indeed. For all practical purposes we can say that the true 

population intercept is different from zero. Likewise, the p value of the estimated slope 

coefficient is zero for all practical purposes. If the true MPC were in fact zero, our 

chances of obtaining an MPC of 0.5091 would be practically zero. Hence we can reject 

the null hypothesis that the true MPC is zero.  

Earlier we showed the intimate connection between the F and t statistics, namely, 

       
 . Under the null hypothesis that the true     , (4.11.1) shows that the F value 

is 202.87 (for 1 numerator and 8 denominator df ) and the t value is about 14.24 (8 df ); 
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as expected, the former value is the square of the latter value, except for the roundoff 

errors.  

 

3.2.5. EVALUATING THE RESULTS OF REGRESSION ANALYSIS 

 

Now that we have presented the results of regression analysis of our consumption-income 

example in (4.11.1), we would like to question the adequacy of the fitted model. How 

"good" is the fitted model? We need some criteria with which to answer this question. 

First, are the signs of the estimated coefficients in accordance with theoretical or prior 

expectations? A priori,   , the marginal propensity to consume (MPC) in the 

consumption function, should be positive. In the present example it is. Second, if theory 

says that the relationship should be not only positive but also statistically significant, is 

this the case in the present application? The MPC is not only positive but also statistically 

significantly different from zero; the p value of the estimated t value is extremely small. 

The same comments apply about the intercept coefficient. Third, how well does 
the regression model explain variation in the consumption expenditure? One can 
use    to answer this question. In the present example    is about 0.96, which is a 

very high value considering that    can be at most 1.  

Thus, the model we have chosen for explaining consumption expenditure behavior 

seems quite good. But before we sign off, we would like to find out whether our 

model satisfies the assumptions of CNLRM. We will not look at the various assumptions 

now because the model is patently so simple. But there is one assumption that we would 

like to check, namely, the normality of the disturbance term,   . Recall that the t and F 

tests used before require that the error term follow the normal distribution. Otherwise, the 

testing procedure will not be valid in small, or finite, samples. 

 

4.0 CONCLUSION 

 

The unit conclude that statistical approach to forecasting change in a dependent variable 

(sales revenue, for example) on the basis of change in one or more independent variables 

(population and income, for example). Known also as curve fitting or line fitting because 

a regression analysis equation can be used in fitting a curve or line to data points, in a 

manner such that the differences in the distances of data points from the curve or line are 

minimized. Relationships depicted in a regression analysis are, however, associative only, 

and any cause-effect (causal) inference is purely subjective and that variance is the 

difference between an expected and actual result, such as between a budget and actual 

expenditure. 

 

5.0 SUMMARY 
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http://www.businessdictionary.com/definition/expenditure.html
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In this unit we have discuss the meaning of regression analysis and analysis of variance. 

However, some of the calculation of regression analysis and variance was also examine 

in this unit, therefore I belief you must have learn a lot in this unit.  

 

6.0 TUTOR MARKED ASSESSMENT EXERCISE 

 

Differentiate between regression analysis and variance analysis. 
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In statistics, normality tests are used to determine if a data set is well-modeled by a 

normal distribution and to compute how likely it is for a random variable underlying the 

data set to be normally distributed. 

Before applying statistical methods that assume normality, it is necessary to perform a 

normality test on the data (with some of the above methods we check residuals for 

normality).  We hypothesize that our data follows a normal distribution, and only reject 

this hypothesis if we have strong evidence to the contrary. 

 

While it may be tempting to judge the normality of the data by simply creating a 

histogram of the data, this is not an objective method to test for normality – especially 

with sample sizes that are not very large.  With small sample sizes, discerning the shape 

of the histogram is difficult.  Furthermore, the shape of the histogram can change 

significantly by simply changing the interval width of the histogram bars. 

 

2.0. OBJECTIVES 

At the end of this unit, you should be able to: 

 understand the meaning of histogram residuals 

 understand the analysis of normal probability plot and Jarque-Bera test of 

normality. 

 

3.0. MAIN CONTENT 

3.1. NORMALITY TEST ANALYSIS 

 

Although several tests of normality are discussed in the literature, we will consider just 

three: (1) histogram of residuals; (2) normal probability plot (NPP), a graphical device; 

and (3) the Jarque-Bera test. 

 

3.1.1. Histogram of Residuals.  

 

A histogram of residuals is a simple graphic device that is used to learn something about 

the shape of the PDF of a random variable. On the horizontal axis, we divide the values 

of the variable of interest (e.g., OLS residuals) into suitable intervals, and in each class 

interval we erect rectangles equal in height to the number of observation (i.e., frequency) 

in that class interval. If you mentally superimpose the bell-shaped normal distribution 

curve on the histogram, you will get some idea as to whether normal (PDF) 

approximation may be appropriate. It is always a good practice to plot the histogram of 

the residuals as a rough and ready method of testing for the normality assumption. 

 

3.1.2. Normal Probability Plot.  

 

https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Data_set
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Random_variable
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A comparatively simple graphical device to study the shape of the probability density 

function (PDF) of a random variable is the normal probability plot (NPP) which makes 

use of normal probability paper, a specially designed graph paper. On the horizontal, or x, 

axis, we plot values of the variable of interest (say, OLS residuals,  ̂  ), and on the 

vertical, or y, axis, we show the expected value of this variable if it were normally 

distributed. Therefore, if the variable is in fact from the normal population, the NPP will 

be approximately a straight line. The NPP of the residuals from our consumption-income 

regression is shown in Figure 5.7 below, which is obtained from the MINITAB software 

package, version 13. As noted earlier, if the fitted line in the NPP is approximately a 

straight line, one can conclude that the variable of interest is normally distributed In 

Figure 5.7, we see that residuals from our illustrative example are op-proximately 

normally distributed, because a straight line seems to fit the data reasonably well. 

MINITAB also produces the Anderson-Darling normality test, known as the    statistic. 

The underlying null hypothesis is that the variable under consideration is normally 

distributed. As Figure 5.7 shows, for our example, the computed    statistic is 0.394. The 

p value of obtaining such a value of    is 0.305, which is reasonably high. Therefore, we 

do not reject the 
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FIGURE 5.7 Residuals from consumption-income regression 
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hypothesis that the residuals from our consumption-income example are normally 

distributed. Incidentally, Figure 5.7 shows the parameters of the (normal) distribution, the 

mean is approximately 0 and the standard deviation is about 6.12. 

 

 

3.1.3. Jarque-Bera (JB) Test of Normality.  

 

The JB test of normality is an asymptotic, or large-sample, test. It is also based on the 

OLS residuals. This test first computes the skewness and kurtosis measures of the OLS 

residuals and uses the following test statistic: 

   

   *
  

 

 
      

  
+                                                                               

where n = sample size, S = skewness coefficient, and K = kurtosis coefficient. For a 

normally distributed variable, S = 0 and K = 3. Therefore, the JB test of normality is a 

test of the joint hypothesis that S and K are 0 and 3, respectively. In that case the value of 

the TB statistic is expected to be 0. 

Under the null hypothesis that the residuals are normally distributed, Jarque and Bera 

showed that asymptotically (i.e., in large samples) the JB statistic given in (4.12.1) 

follows the chi-square distribution with 2 df. If the computed p value of the JB statistic in 

an application is sufficiently low, which will happen if the value of the statistic is very 

different from 0, one can reject the hypothesis that the residuals are normally distributed. 

But if the p value is reasonably high, which will happen if the value of the statistic is 

close to zero, we do not reject the normality assumption. 

The sample size in our consumption-income example is rather small. Hence, strictly 

speaking one should not use the JB statistic. If we mechanically apply the JB formula to 

our example, the JB statistic turns out to be 0.7769. The p value of obtaining such a value 

from the chi-square distribution with 2 df is about 0.68, which is quite high. In other 

words, we may not reject the normality assumption for our example. Of course, bear in 

mind the warning about the sample size. 

 

EXAMPLE 5.1   
 

Let us return to Example 3.2 about food expenditure in India. Using the data given in 

(3.7.2) and adopting the format of (5.11.1), we obtain the following expenditure equation: 

 

         ̂                             
se = (50.8563)                 (0.0783) 

t = (1.8524)                     (5.5770)                 (5.12.2) 

p = (0.0695)                    (0.0000* 
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   = 0.3698;                       df = 53 

       31.1034                 (p value = 0.0000)* 

 

where * denotes extremely small. 

 

First, let us interpret this regression. As expected, there is a positive relationship between 

expenditure on food and total expenditure. If total expenditure went up by a rupee, on 

average, expenditure on food increased by about 44 paise. If total expenditure were zero, 

the average expenditure on food would be about 94 rupees. Of course, this mechanical 

Interpretation of the intercept may not make much economic sense. The    value of about 

0.37 means that 37 percent of the variation in food expenditure is explained by total 

expenditure, a proxy for income. 

 

Suppose we want to test the null hypothesis that there is no relationship between food 

expenditure and total expenditure, that Is, the true slope coefficient    = 0. The estimated 

value of    is 0.4368. If the null hypothesis were true, what is the probability of obtaining 

a value of 0.4368? Under the null hypothesis, we observe from (5.12.2) that the t value is 

5.5770 and the p value of obtaining such a t value is practically zero. In other words we 

can reject the null hypothesis resoundingly. But suppose the null hypothesis were that     

= 0.5. Now what? 

 

Using the t test we obtain: 

 
            

      
           

 
The probability of obtaining a | | of 0.8071 is greater than 20 percent. Hence we do not 

reject the hypothesis that the true     is 0.5. 

 

Notice that, under the null hypothesis, the true slope coefficient is zero, the F value is 

31.1034, as shown in (5.12.2). Under the same null hypothesis, we obtained a t value of 

5.5770. If we square this value, we obtain 31.1029, which is about the same as the F 

value, again showing the close relationship between the t and the Fstatistic. (Note: The 

numerator df for the F statistic must be 1, which is the case here.) 

 

Using the estimated residuals from the regression, what can we say about the probability 

distribution of the error term? The information is given in Figure 5.8. As the figure 

shows, the residuals from the food expenditure regression seem to be symmetrically 

distributed. Application of the Jarque-Bera test shows that the JB statistic is about 0.2576, 

and the probability of obtaining such a statistic under the normality assumption is about 
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88 percent. Therefore, we do not reject the hypothesis that the error terms are normally 

distributed. But keep in that the sample size of 55 observations may not be enough. 

 

We leave it to the reader to establish confidence intervals for the two regression 

coefficients as well as to obtain the normal probability plot and do mean and individual 

predictions. 

 

4.0 CONCLUSION 

 

We conclude in this unit that we usually apply normality tests to the results of processes 

that, under the null, generate random variables that are only asymptotically or nearly 

normal (with the 'asymptotically' part dependent on some quantity which we cannot make 

large); In the era of cheap memory, big data, and fast processors, normality tests should 

always reject the null of normal distribution for large (though not insanely large) samples. 

And so, perversely, normality tests should only be used for small samples, when they 

presumably have lower power and less control over type I rate. 

 

5.0 SUMMARY 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 

Series:  Residuals 

Sample 1.55 

Observation 55 
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The unit discusses at length the normality test analysis such as the histogram of residuals, 

probability plot and Jraque Bera test of normality. Therefore, we can say that you must 

have learn through the test of normality at length. 

 

6.0 TUTOR MARKED ASSESSMENT EXERCISE 

Discuss the differences between Normal probability plot and Jarque-Bera test of 

normality 
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