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Introduction 

Welcome to ECO 713: APPLIED ECONOMETRICS. 

ECO 713: Applied Econometric is a three-credit and one-semester postgraduate course 

for postgraduate Economics students. The course is made up of twelve units spread 

across twelve lectures weeks. This course guide gives you an insight to Applied 

Econometrics in a broader way and how to study to make use and apply econometric 

issues in quantifying economic relationships. It tells you about the course materials and 

how you can work your way through these materials. It suggests some general 

guidelines for the amount of time required of you on each unit in order to achieve the 

course aims and objectives successfully. Answers to your tutor marked assignments 

(TMAs) are therein already. 

Course Content 

This course is basically on Applied Econometrics because as you are aspiring to become 

a quantitative economist, you must be able to apply the knowledge of statistics and 

mathematics to quantify and solve economic relationship problems. The topics covered 

include Definition and scope of econometrics, stages of econometric research. 

Regression analysis (Simple and multiple) and the statistical tests of significance, 

Econometric problems (heteroscedasticity, autocorrelation, multicollinearity): their 

causes, detection, consequences and correction. Basic ideas of the identification 

problem, dummy variables, and distributed lags. Simultaneous equation estimation 

methods (2SLS, 3SLS, etc); Matrix treatment of multiple regression; Advanced 

treatment of the simultaneous equation estimation techniques. Instrumental 

variables, Time series econmetr1cs. 

Course Aims 

The aim of this course is to give you in-depth understanding of the development as 

regards: 

• Definition and Scope of Econometrics 

• Correlation Analysis 

• Simple Regression Model and Statistical Test of Significance 

• Multiple Regression Model and Statistical Test of Significance 
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• Econometric Problems (Heteroscedasticity, Autocorrelation and 

Multicollinearity) 

• Basic Ideas of the Identification Problem, Dummy variables and Distributed lag 

Models 

• Simultaneous Equation Estimation Methods (2SLS, 3SLS, etc) 

• Matrix treatment of Multiple Regression and Advanced treatment of 

Simultaneous Equation Estimation Techniques 

• Advanced Treatment of the Simultaneous-equation Estimation Techniques 

• Time Series Econometrics 

Course Objectives 

To achieve the aims of this course, there are overall objectives which the course is out 

to achieve though, there are set out objectives for each unit. The unit objectives are 

included at the beginning of a unit; you should read them before you start working 

through the unit. You may want to refer to them during your study of the unit to check 

on your progress. You should always look at the unit objectives after completing a unit. 

This is to assist the students in accomplishing the tasks entailed in this course. In this 

way, you can be sure you have done what was required of you by the unit. The 

objectives serves as study guides, such that student could know if he/she is able to grab 

the knowledge of each unit through the sets of objectives in each one. At the end of the 

course period, the students are expected to be able to:  

• Define the term Econometrics 

• Explain the scope/division of Econometrics 

• State the objectives/goals of Econometrics 

• Describe the stages of Econometrics 

• Define the term Correlation 

• Examine the nature of Correlation between Variables 

• Distinguish between measures of Correlation: The Population correlation 

Coefficient, ρ and its Sample Estimate, r. 

• Estimate numerical Value of the Correlation Coefficient. 

• Explain the meaning of simple regression model 



vi 

 

• Describe the assumptions of the linear stochastic regression model. 

• Discuss the Least Squares Criterion and the Normal Equations of OLS. 

• Evaluate the statistical test of significance of the Least Squares estimates. 

• Illustrate models with two explanatory variables. 

• Derive the normal equation of two explanatory variables. 

• Estimate the coefficient of multiple determinations and the adjusted coefficient 

of multiple determinations. 

• Calculate the mean and variance of parameter estimates ( 0b , 1b  and 2b ) 

• Test the statistical significance of the parameter estimates 

• Examine econometric problems of heteroscedasticity, autocorrelation and 

multicollinearity: their causes, detection, consequences and correction. 

• Identify the basic ideas of identification, dummy variables and distributed lag 

models.  

• Explain simultaneous equation estimation methods (2SLS, 3SLS etc.). 

• Discuss matrix treatment of multiple regression and advance treatment of 

simultaneous equation estimation techniques. 

• Define what identification problem is all about. 

• State the implications of identification problems 

• State the formal rules or conditions for identification. 

• State the nature of dummy variables. 

• Compute ANOVA models. 

• Estimate ANCOVA models. 

• Analyse regression with a mixture of quantitative and qualitative regressors. 



vii 

 

• Examine the use of dummy variables in seasonal analysis 

• State the nature of simultaneous-equation model. 

• Identify simultaneous-equation bias in a model and the inconsistency of the OLS 

estimators. 

• Describe approaches to simultaneous-equation estimators. 

• Examine recursive models and the OLS 

• Determine estimation of exactly identified and over-identified equations. 

• Analyze matrix formulation of the regression model 

• Estimate least squares estimate in matrix notation 

• Analyze further matrix result for multiple regression 

• Determine the method of Instrumental Variables (IV) 

• Examine the method of Generalised Least Squares (GLS) 

• Solve the method of Three Stage least Squares (3SLS) 

• Analyze matrix formulation of the regression model 

• Estimate least squares estimate in matrix notation 

• Analyze further matrix result for multiple regression 

• Differentiate between univariate and multivariate time series models.  

• Understand Vector Autoregressive (VAR) models and discuss their advantages. 

• Understand the concept of causality and its importance in economic applications. 

• Estimate VAR models and test for Granger and Sims causality through the use 

of econometric software 

• Understand the concept of stationarity.  

• Understand the importance of stationarity and the concept of spurious 

regressions. 

• Understand the concept of unit roots in time series. 

• Estimate the DF, ADF and PP tests using appropriate software 

• Understand the concept of cointegration in time series. 
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• Appreciate the importance of cointegration and long-run solutions in 

econometric applications. 

• Understand the error-correction mechanism and its advantages. 

• Test for cointegration using the Engle–Granger approach. 

• Test for cointegration using the Johansen approach. 

• Obtain results of cointegration tests error-correction models and using 

appropriate econometric software. 

 

Working Through The Course 

To successfully complete this course, you are required to read the study units, 

referenced books and other materials on the course. 

Each unit contains self-assessment exercises called Student Assessment Exercises 

(SAE). At some points in the course, you will be required to submit assignments for 

assessment purposes. At the end of the course there is a final examination. This course 

should take about 15weeks to complete and some components of the course are outlined 

under the course material subsection. 

Course Material  

The major component of the course, What you have to do and how you should allocate 

your time to each unit in order to complete the course successfully on time are listed 

follows: 

1. Course guide  

2. Study unit 

3. Textbook 

4. Assignment file 

5. Presentation schedule  

 

Study Unit 

There are 12 units in this course which should be studied carefully and diligently. 

MODULE 1: DEFINITON AND SCOPE OF ECONOMETRICS, REGRESSON 

ANALYSIS AND THE STATISTICAL TEST OF SIGNIFICANCE  

Unit 1: Definition and Scope of Econometrics 

Unit 2: Unit 3: Simple Regression Model  
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Unit 3: Multiple Regression Model  

Unit 4: Statistical Test of Significance for Simple and Multiple Regressions 

 

 

MODULE 2: ECONOMETRIC PROBLEMS, BASIC IDEAS OF THE 

IDENTIFICATION PROBLEM AND SIMULTENEOUS 

EQUATION ESTIMATION METHODS  

Unit 1: Econometric Problems (Heteroscedasticity, Autocorrelation and 

Multicollinearity) 

Unit 2: Basic Ideas of the Identification Problem, Dummy variables and Distributed lag 

Models 

Unit 3: Simultaneous Equation Estimation Methods (2SLS, 3SLS, etc) 

Unit 4: Matrix treatment of Multiple Regression and Advanced treatment of 

Simultaneous Equation Estimation Techniques. 

 

MODULE THREE: MATRIX TREATMENT OF REGRESSION ANALYSIS, 

TIME SERIES ECONOMETRICS 

Unit 1: Matrix Treatment of Multiple Regressions 

Unit 2: Vector Auto Regressive (VAR) Models 

Unit 3: Non-Stationarity and Unit Roots  

Unit 4: Cointegration and Error Correction Model 

 

Each study unit will take at least three hours, and it include the introduction, objective, 

main content, self-assessment exercise, conclusion, summary and reference. Other areas 
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border on the Tutor-Marked Assessment (TMA) questions. Some of the self-assessment 

exercise will necessitate discussion, brainstorming and argument with some of your 

colleges. You are advised to do so in order to understand and get acquainted with 

historical economic event as well as notable periods. 

There are also textbooks under the reference and other (on-line and off-line) resources 

for further reading. They are meant to give you additional information if only you can 

lay your hands on any of them. You are required to study the materials; practice the 

self-assessment exercise and tutor-marked assignment (TMA) questions for greater and 

in-depth understanding of the course. By doing so, the stated learning objectives of the 

course would have been achieved. 

 

Textbook and References 

For further reading and more detailed information about the course, the following 

materials are recommended: 

Akerele, A.A. (2002). Operations Research. Dimis Publications, Jos. 

Albert, J. H., and S. Chib (1993): \Bayesian analysis of binary and polychotomous 

response data," J. Amer. Statist. Assoc., 88(422), 669{679. 

Allen, R.G.D. (1956). Mathematical Economics, Macmillan, London.  

Almon, S. (1965). The Distributed Lag between Capital Appropriations and Net 

Expenditure, Econometrica, 33, 178 – 196. 

Anderson T. W. and Rubin, H. (1949). Estimation of the parameters of a single equation 

in a complete system of stochastic equations. Ann. Math. Statist. 20, 46-63. 

Anderson, T. W. (2000). Cointegration of economic time series. In Probability and 

Statistical Models with Applications. Chapman and Hall, New York. 

Asteriou, D. & Hall, S. (2007). Applied Econometrics: A Modern Approach (Revised 

Edition), New York: Palgrave Macmillam. 

Astrios, D. & Hall, S.G. (2006). Applied econometrics: A modern Approach (Revised 

Edition), Palgrave Macmillan, New York. 

Basmann, R.L. (1957). A generalised Classical Method of Linear Estimation of 

Coefficients in a structural Equation, Econometrica, vol. 25, pp. 77-83.  
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Brennan, 1965). Preface to Econometrics, South-Western Publishing Company, 

Cincinnati, Ohio  
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Campbridge University Press, United Kingdom.  
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Theory of Money (Edited by Milton Friedman). University of Chicago Press, 

Chicago, Ill. 

Cagan, P. (1956). The Monetary Dynamics of Hypernflation. In Friedman, Milton (ed.). 

Studies in Quantity Theory of Money, Chiicago: University of Chicago Press. 

Del Negro, M., and F. Schorfheide (2004): Priors from General Equilibrium Models for 

VARs," International Economic Review, 45, 643{673. 

Department of Economics, Princeton University, Princeton NJ 08544-1021, U.S.A. 

Draper, N.R. & Smith, H. (1998). Applied Regression Analysis, Third Edition, John 

Wiley online; doi: 10.1002/9781118625590.Email: gchow@princeton.edu 

(Received October 2000; accepted January 2001) 

Engle, R. and Granger, C. (1987). Cointegration and error correction: representation, 

estimation and testing. Econometrica 55, 251-176. 

Ericsson, N. R., Hendry, D. F. and Mizon, G. E. (1998). Exogeneity, cointegration, and 

economic policy analysis. J. Business Econom. Statist. 16, 370-387. 

Evidence from the U.S. Stock Market. Department of Economics, Princeton University, 

Princeton, New Jersey. 

Goldberger, A.S. (1964). Econometric Theory. Wiley, New York, P. 1.  

Goldberger, A.S. (1964). Econometric Theory. Wiley, New York.  

Gujarati, D.N. & Sangeetha (2007). Basic Econometrics. The MacGraw-Hill, New 

Dehi, India. 

Gujarati, D.N. (2006). Essentials of Econometrics (Third Edition). McGraw-Hill, New 
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Assignment File 

Assignment files and marking scheme will be made available to you. This file presents 

you with details of the work you must submit to your tutor for marking. The marks you 

obtain from these assignments shall form part of your final mark for this course. 

Additional information on assignments will be found in the assignment file and later in 

this Course Guide in the section on assessment. 

There are four assignments in this course. The four course assignments will cover: 

Assignment 1 - All TMAs’ question in Units 1 – 4 (Module 1) 

Assignment 2 - All TMAs' question in Units 5 – 8 (Module 2) 

Assignment 3 - All TMAs' question in Units 9 – 12 (Module 3) 

 

Presentation Schedule 
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The presentation schedule included in your course materials gives you the important 

dates for this year for the completion of tutor-marking assignments and attending 

tutorials. Remember, you are required to submit all your assignments by due date. You 

should guide against falling behind in your work. 

Assessment 

There are two types of the assessment of the course. First are the tutor-marked 

assignments; second, there is a written examination. 

In attempting the assignments, you are expected to apply information, knowledge and 

techniques gathered during the course. The assignments must be submitted to your tutor 

for formal Assessment in accordance with the deadlines stated in the Presentation 

Schedule and the Assignments File. The work you submit to your tutor for assessment 

will count for 30 % of your total course mark. 

At the end of the course, you will need to sit for a final written examination of three 

hours' duration. This examination will also count for 70% of your total course mark. 

Tutor-Marked Assignments (TMAs) 

There are four tutor-marked assignments in this course. You will submit all the 

assignments. You are encouraged to work all the questions thoroughly. The TMAs 

constitute 30% of the total score. 

Assignment questions for the units in this course are contained in the Assignment File. 

You will be able to complete your assignments from the information and materials 

contained in your set books, reading and study units. However, it is desirable that you 

demonstrate that you have read and researched more widely than the required minimum. 

You should use other references to have a broad viewpoint of the subject and also to 

give you a deeper understanding of the subject. 

When you have completed each assignment, send it, together with a TMA form, to your 

tutor. Make sure that each assignment reaches your tutor on or before the deadline given 

in the Presentation File. If for any reason, you cannot complete your work on time, 

contact your tutor before the assignment is due to discuss the possibility of an extension. 

Extensions will not be granted after the due date unless there are exceptional 

circumstances. 

 

Final Examination and Grading 
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The final examination will be of three hours' duration and have a value of 70% of the 

total course grade. The examination will consist of questions which reflect the types of 

self-assessment practice exercises and tutor-marked problems you have previously 

encountered. All areas of the course will be assessed 

Revise the entire course material using the time between finishing the last unit in the 

module and that of sitting for the final examination to. You might find it useful to review 

your self-assessment exercises, tutor-marked assignments and comments on them 

before the examination. The final examination covers information from all parts of the 

course. 

Course Marking Scheme 

The Table presented below indicates the total marks (100%) allocation. 

Assignment Marks 

Assignments (Best three assignments out of four that 

is marked) 

30% 

Final Examination 70% 

Total 100% 

 

Course Overview 

The Table presented below indicates the units, number of weeks and assignments to be 

taken by you to successfully complete the course, Applied Econometrics (ECO 713).  

Units Title of Work                          Week’s 

Activities 

Assessment 

(end of unit) 

 Course Guide   

MODULE 1:DEFINITON AND SCOPE OF ECONOMETRICS, 

REGRESSON ANALYSIS AND THE 

STATISTICAL TEST OF SIGNIFICANCE 

1 Definition and Scope of 

Econometrics 

Week 1 Assignment 1 

2 Correlation Analysis  

 

Week 2 Assignment 2 

3 Simple Regression Model and 

Statistical Test of Significance 

Week 3 Assignment 3 
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4 Multiple Regression Model 

and Statistical Test of 

Significance 

Week 4 Assignment 4 

Module 2: ECONOMETRIC PROBLEMS, BASIC IDEAS OF 

THE IDENTIFICATION PROBLEM AND 

SIMULTENEOUS EQUATION ESTIMATION 

METHODS 

1 Econometric Problems 

(Heteroscedasticity, 

Autocorrelation and 

Multicollinearity) 

Week 5 Assignment 1 

2 Basic Ideas of the 

Identification Problem, 

Dummy variables and 

Distributed lag Models 

 

Week 6 Assignment 2 

3 Simultaneous Equation 

Estimation Methods (2SLS, 

3SLS, etc) 

Week 7 Assignment 3 

4 Matrix treatment of Multiple 

Regression and Advanced 

treatment of Simultaneous 

Equation Estimation 

Techniques. 

Week 8 Assignment 4 

MODULE THREE:MATRIX TREATMENT OF REGRESSION 

ANALYSIS, TIME SERIES 

ECONOMETRICS 

1 Matrix Treatment of Multiple 

Regressions  

Week 9 Assignment 1 

2 Non-Stationarity and Unit 

Roots 

Week 10 Assignment 2 

3 Vector Auto Regressive (VAR 

Models 

Week 11 Assignment 3 

4 Cointegration and Error 

Correction Model 

Week 12 Assignment 4 
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 Examination Week 13, 

14 & 15 

 

 

How To Get The Most From This Course 

In distance learning the study units replace the university lecturer. This is one of the 

great advantages of distance learning; you can read and work through specially designed 

study materials at your own pace and at a time and place that suit you best. 

Think of it as reading the lecture instead of listening to a lecturer. In the same way that 

a lecturer might set you some reading to do, the study units tell you when to read your 

books or other material, and when to embark on discussion with your colleagues. Just 

as a lecturer might give you an in-class exercise, your study units provides exercises for 

you to do at appropriate points. 

Each of the study units follows a common format. The first item is an introduction to 

the subject matter of the unit and how a particular unit is integrated with the other units 

and the course as a whole. Next is a set of learning objectives. These objectives let you 

know what you should be able to do by the time you have completed the unit. 

You should use these objectives to guide your study. When you have finished the unit 

you must go back and check whether you have achieved the objectives. If you make a 

habit of doing this you will significantly improve your chances of passing the course 

and getting the best grade. 

The main body of the unit guides you through the required reading from other sources. 

This will usually be either from your set books or from a readings section. Some units 

require you to undertake practical overview of historical events. You will be directed 

when you need to embark on discussion and guided through the tasks you must do. 

The purpose of the practical overview of some certain historical economic issues are in 

twofold. First, it will enhance your understanding of the material in the unit. Second, it 

will give you practical experience and skills to evaluate economic arguments, and 

understand the roles of history in guiding current economic policies and debates outside 

your studies. In any event, most of the critical thinking skills you will develop during 

studying are applicable in normal working practice, so it is important that you encounter 

them during your studies. 

Self-assessments are interspersed throughout the units, and answers are given at the 

ends of the units. Working through these tests will help you to achieve the objectives of 

the unit and prepare you for the assignments and the examination. You should do each 
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self-assessment exercises as you come to it in the study unit. Also, ensure to master 

some major historical dates and events during the course of studying the material. 

The following is a practical strategy for working through the course. If you run into any 

trouble, consult your tutor. Remember that your tutor's job is to help you. When you 

need help, don't hesitate to call and ask your tutor to provide it. 

 

1. Read this Course Guide thoroughly. 

2. Organize a study schedule. Refer to the `Course overview' for more details. Note 

the time you are expected to spend on each unit and how the assignments relate 

to the units. Important information, e.g. details of your tutorials, and the date of 

the first day of the semester is available from study centre. You need to gather 

together all this information in one place, such as your dairy or a wall calendar. 

Whatever method you choose to use, you should decide on and write in your own 

dates for working breach unit. 

3. Once you have created your own study schedule, do everything you can to stick 

to it. The major reason that students fail is that they get behind with their course 

work. If you get into difficulties with your schedule, please let your tutor know 

before it is too late for help. 

4. Turn to Unit 1 and read the introduction and the objectives for the unit. 

5. Assemble the study materials. Information about what you need for a unit is 

given in the `Overview' at the beginning of each unit. You will also need both 

the study unit you are working on and one of your set books on your desk at the 

same time. 

6. Work through the unit. The content of the unit itself has been arranged to provide 

a sequence for you to follow. As you work through the unit you will be instructed 

to read sections from your set books or other articles. Use the unit to guide your 

reading. 

7. Up-to-date course information will be continuously delivered to you at the study 

centre. 

8. Work before the relevant due date (about 4 weeks before due dates), get the 

Assignment File for the next required assignment. Keep in mind that you will 

learn a lot by doing the assignments carefully. They have been designed to help 

you meet the objectives of the course and, therefore, will help you pass the exam. 

Submit all assignments no later than the due date. 

9. Review the objectives for each study unit to confirm that you have achieved 

them. If you feel unsure about any of the objectives, review the study material or 

consult your tutor. 

10. When you are confident that you have achieved a unit's objectives, you can then 

start on the next unit. Proceed unit by unit through the course and try to pace 

your study so that you keep yourself on schedule. 

11. When you have submitted an assignment to your tutor for marking do not wait 

for it return `before starting on the next units. Keep to your schedule. When the 
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assignment is returned, pay particular attention to your tutor's comments, both 

on the tutor-marked assignment form and also written on the assignment. Consult 

your tutor as soon as possible if you have any questions or problems. 

12. After completing the last unit, review the course and prepare yourself for the 

final examination. Check that you have achieved the unit objectives (listed at the 

beginning of each unit) and the course objectives (listed in this Course Guide). 

 

Tutors and Tutorials 

There are some hours of tutorials (2-hours sessions) provided in support of this course. 

You will be notified of the dates, times and location of these tutorials. Together with 

the name and phone number of your tutor, as soon as you are allocated a tutorial group. 

Your tutor will mark and comment on your assignments, keep a close watch on your 

progress and on any difficulties you might encounter, and provide assistance to you 

during the course. You must mail your tutor-marked assignments to your tutor well 

before the due date (at least two working days are required). They will be marked by 

your tutor and returned to you as soon as possible. 

Do not hesitate to contact your tutor by telephone, e-mail, or discussion board if you 

need help. The following might be circumstances in which you would find help 

necessary. Contact your tutor if. 

• You do not understand any part of the study units or the assigned readings 

• You have difficulty with the self-assessment exercises 

• You have a question or problem with an assignment, with your tutor's comments on 

an assignment or with the grading of an assignment. 

 

You should try your best to attend the tutorials. This is the only chance to have face to 

face contact with your tutor and to ask questions which are answered instantly. You can 

raise any problem encountered in the course of your study. To gain the maximum 

benefit from course tutorials, prepare a question list before attending them. You will 

learn a lot from participating in discussions actively. 

 

Summary 

The course, Applied Econometrics (ECO 713), exposes you to the analysis of 

quantitative economics by applying the knowledge of statistics and mathematics to 

quantify and solve economic relationships. The topics covered include definition and 

scope of econometrics, stages of econometric research. Regression analysis (Simple and 

multiple) and the statistical tests of significance, Econometric problems 
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(heteroscedasticity, autocorrelation, multicollinearity): their causes, detection, 

consequences and correction. Basic ideas of the identification problem, dummy 

variables, and distributed lags. Simultaneous equation estimation methods (2SLS, 

3SLS, etc); Matrix treatment of multiple regressions; advanced treatment of the 

simultaneous equation estimation techniques. Instrumental variables, Time series 

econometrics, VAR models, Non-stationarity and unit roots, cointegration and error 

correction models (ECM); estimation and some tests of statistical hypotheses. 

On successful completion of the course, you would have developed critical thinking 

skills with the material necessary for efficient and effective discussion on Environment 

and Sustainable Development: overview of theoretical perspectives of environment and 

development, introduction to the theories of managing common pool resources and their 

implications for sustainable development and the environmental challenges and types 

of resources.  

However, to gain a lot from the course please try to apply anything you learn in the 

course to term papers writing in other economics courses. We wish you success with 

the course and hope that you will find it fascinating and handy. 
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1.0 INTRODUCTION 

When the Nobel Memorial Prize in Economics Science was first awarded, in 1969, it 

was given to Ragnar Frisch and Jan Tinbergen of The Netherlands for their pioneering 

work in econometrics. At the time, few people had heard of the subject and even fewer 

knew much about it. Today econometrics is widely recognised as the primary tool of 

empirical economic analysis. Put simply, econometrics involves the development and 

the use of special statistical methods with mathematics within the framework that is 

consistent with the ways of economic inquiry. It is an extension of the field of statistics, 

which deals with techniques for collecting and analyzing data that arise in many 

different contexts.  
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Econometrics analysis starts from a statement about a behavioural relation. This 

statement, which may come from some sophisticated economic theory or from some 

plain reasoning, is then developed into an equation that specifies how the value of one 

variable is determined by the values of other variables. 

2.0 OBJECTIVES 

At the end of this unit, students are expected to: 

• Define the term Econometrics 

• Explain the scope/division of Econometrics 

• State the objectives/goals of Econometrics 

• Describe the stages of Econometrics 

3.0 MAIN CONTENT 

3.1. Definition of Econometrics 

In a simple parlance, econometrics means economic measurement.  According to 

Goldberg (1964), econometrics may be defined as the social science in which the tools 

of economic theory, mathematics, and statistical inference are applied to the analysis of 

economic phenomena. Samuelson, Koopmans and Stone (1954) as captured by Gujarati 

(2006) defined econometrics as the result of a certain outlook on the role of economics, 

consists of the application of mathematical statistics to economic data to lend empirical 

support to the models constructed by mathematical economics and to obtain numerical 

results. According to Brooks (2008), the literal meaning of econometrics is 

‘measurement in economics’. The first four letters of the word suggest correctly that the 

origins of econometrics are rooted in economics. In the words of Koutsoyannis (1977), 

econometrics deals with the measurement of economic relationships. It is a combination 

of economic theory, mathematical economics and statistics, but t is completely distinct 

from each one of these three branches of science. Koutsoyannis (1977) further stated 

that the following quotation from the opening editorial of Econometrica written by R. 

Frish in 1933 may give a clear idea of the scope and method of econometrics, thus: 
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But there are several aspects of the quantitative approach to economics, and no single 

one of these aspects, taken by itself, should be confounded with econometrics. Thus, 

econometrics is by no means the same as economic statistics. Nor is it identical with 

what is called general economic theory, although a considerable portion of this theory 

has a definite quantitative character. Nor should econometrics be taken as synonymous 

with the application of mathematics to economics. Experience has shown that each of 

these three view points, that of statistics, economic theory, and mathematics, is a 

necessary, but not by itself sufficient, condition for a real understanding of the 

quantitative relations in modern economic life. It is the unification of all three that is 

powerful. It’s this unification that constitutes econometrics. 

Thus econometrics may be considered as the integration of economics, mathematics 

and statistics for the purpose of providing numerical values for the parameters of 

economic relationship such as elasticities, propensities, marginal values etc and 

verifying economic theories. It is a special type of economic analysis and research in 

which the general economic theory, formulated in mathematical terms, is combined 

with empirical measurement of economic phenomenon. Starting from the relationships 

of economic theory, we express them in mathematical terms (i.e. we build a model) so 

that they can be measured. We then use specific method, called econometric methods, 

in order to obtain numerical estimates of the coefficients of the economic relationships. 

Econometric methods are statistical methods specifically adapted to the peculiarities of 

economic phenomena. The most important characteristic of economic relationships is 

that they contain a random element, which, however, is ignored by economic theory 

and mathematical economics which postulate exact relationships between the various 

economic magnitudes. Econometrics has developed methods of dealing with the 

random element of economic relationships. For example, economic theory has it that 

the demand for a commodity is a function of its price, prices of other commodities, 

consumer’s income and tastes. This kind of a function is exact because it implies that 

demand is wholly determined by the above four factors. No other factors except those 

explicitly mentioned, influences the demand Koutsoyannis (1977). In mathematical 
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economics, the above abstract economic relationship can be expressed in mathematical 

terms as follows: 

Qd = a0 + a1P + a2Po + a3Y + a4t………………………………………….(1.1.1) 

Where Qd = quantity demanded of a particular commodity 

 P = price of that particular commodity 

 Po = Prices of other commodity 

Y = Consumer’s income  

t = tastes of the consumer 

a0, a1, a2, a3, a4 = the coefficients of the quantity demanded equation 

The above demand equation is exact, because it implies that the only determinants of 

the quantity demanded are the four factors which appear in the right hand side of 

equation (1.1.1). Quantity will change only if some of these factors change. No other 

factor may have any effect on demand. Yet it is common knowledge that in economic 

life many more factors may affect demand. For example, the invention of a new product, 

a war, professional changes, institutional changes, changes in law, changes in income 

distribution, massive population movements (migration), etc., change quantity 

demanded of a commodity. In addition, human behaviour is erratic. We are influenced 

by rumours, dreams, prejudices, traditions and other psychological and sociological 

factors which make us behave differently even though the conditions in the market 

(prices) and our incomes remain the same. In econometrics the influence of these ‘other’ 

factors is taken into account by the introduction into the economic relationships of a 

random variable, with specific characteristics. In the previous example, the demand 

function studied with the tools of econometrics would be of the stochastic form: 

Qd = a0 + a1P + a2Po + a3Y + a4t + u…………………………(1.1.2) 

Where u represents the random factors which affect the quantity demanded of the 

commodity. 
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It is important to emphasise that econometrics presupposes the existence of a body of 

economic theory. Economic theory should suffix first, because it sets the hypotheses 

about economic behaviour which should be tested with the application of econometric 

techniques.  

SELF ASSESSMENT EXERCISE 1 

1. In your own words, define the term econometrics 

2. With example, differentiate between economic model and econometric model? 

 

3.2 Scope of Econometrics 

Econometrics may be classified into two main branches: Theoretical econometrics and 

applied econometrics. 

• Theoretical Econometrics: This is concerned with the development of 

appropriate methods for the measurement of various economic relationships. 

Such methods could be: single equation technique, which is applied to one 

relationship at a time; and simultaneous equation techniques applied to all the 

relationships of a given model at once. 

• Applied Econometrics: this other aspect of econometrics deals with the 

application of econometric methods to specific branches of economic theory. It 

examines various problems encountered and proffers solutions to such problems. 

Essentially, applied econometrics uses the tool of Theoretical econometrics in 

analyzing economic phenomenon as well as predicting economic behaviour. 

SELF ASSESSMENT EXERCISE 2 

Distinguish between theoretical and applied econometrics  

3.3 Objectives of Econometrics 
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The three main objectives of econometrics are: (1) analysis, i.e. testing of economic 

theory; (2) policy-making, i.e. supplying numerical estimates of the coefficients of 

economic relationships, which may be then used for decision-making; (3) 

forecasting, i.e. using the numerical estimates of the coefficients in order to forecast 

the future values of the economic magnitudes Koutsoyannis (1977).  

(1). Analysis: Testing Economic Theory 

In the earlier stages of the development of economic theory, economists formulated 

the basic principles of the functioning of the economic systems using verbal 

exposition and applying a deductive procedure. The earlier economic theories 

started from a set of observations concerning the behaviour of individuals as 

consumers and producers. Some basic assumptions were set regarding the 

motivation of individual economic units. 

Econometrics aims primarily at the verification of economic theories. Econometrics 

is a useful tool for structural analysis. From this, one can analyse intersectional 

relationships such as the business, household, financial or monetary sectors. Today 

any theory regardless of its elegance in exposition or its sound logical consistency 

cannot be established and generally accepted without some empirical testing. 

(2). Policy-Making: Obtaining Numerical Estimates of the Coefficients of 

Economic Relationships for Policy-Making 

Econometrics is aimed at bringing out alternatives for the process of decision-

making. It is very vital for policy-making. The numerical estimates of the 

coefficients of the economic relationships are essential for the decision of firms as 

well as for the formulation government’s economic policy. 

For example, the decision of government about devaluing the currency will depend 

to a great extent on the numerical values of the price elasticities of exports and 

imports. If the sum of the price elaticities of exports and imports is less than one in 

absolute value, the devaluation will not help in eliminating the deficit in the balance 

of payment. 
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Such example show how important is the knowledge of the numerical values of the 

coefficients of the economic relationships. Econometrics can provide such sound 

economic policies. 

(3). Forecasting the Future Values of Economic Magnitudes 

Econometrics is useful in forecasting the future values of economic magnitudes. 

Such forecasts will enable policy makers to take necessary measures in order to 

influence the relevant economic variables. Indeed, predicting or forecasting has been 

cited as the prime contribution of econometrics. 

For example, suppose that the government wants to decide its employment policy. 

It is necessary to know what is the current situation of employment as well as what 

level of employment will be, say, in three or six years’ time, if no measure 

whatsoever is taken by the government. With econometric techniques, we may 

obtain such an estimate of the level of employment. Government can take 

appropriate measures to curb reoccurrence if the forecast value is higher or avoid 

inflation if the forecast value is low. 

SELF ASSESSMENT EXERCISE 3 

Vividly explain the objectives of econometrics. 

 

 

3.4 Stages of Econometric Research 

The subject matter of econometrics consists of the following stages: 

1. Stage A. Model Specification 

The first step in any econometric research is the specification of the model with which 

one will attempt the measurement of the phenomenon being analysed. This stage is also 

known as the formulation of the maintained hypothesis. This stage involves expressing 
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economic relationships between the given variables in mathematical form. Here, one 

needs to determine the dependent variable as well as the explanatory variable(s) which 

will be included in the model. Also expressed here is the apriori theoretical expectation 

regarding the sign and size of the parameters of the function as well as the nature of the 

mathematical form the model will take. Model specification, therefore, presupposes 

knowledge of economic theory and the familiarity with the particular phenomenon 

under investigation. 

From the above sources of information the econometrician will be able to make a list of 

the variables (regressors) which might influence the dependent variable (regressand). 

Economic theory indicates the general factors which affect the dependent variable in 

any particular case. For example, suppose that the econometrician wants to study the 

demand for a particular commodity. The first source of her information is the static 

theory of demand which suggests that the determinants of the demand for any 

commodity are its price, the price of other commodities (mainly substitutes or 

complements), the level of the income of consumers, and their preferences. On the basis 

of this information, the demand function may be specified as follows: 

Qd
m = f(Pm, Po, Y, T)u……………………………………………….(1.1.3) 

Where Qd
m = quantity demanded of commodity m 

 Pm = price of commodity m 

 Po = Prices of other commodity 

Y = Consumers’ income  

t = preferences of the consumers 

u = random variable 

Equation (1.1.3) can be expressed in a more explicit form to contain the coefficients as 

follows: 

Qd
m = a0 + a1Pm + a2Po + a3Y + u………………………………………(1.1.4) 
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The same source of knowledge – theory, other applied research and information 

about possible special features of the phenomenon being studied – will contain 

suggestions about the likely sign of the parameters and possibly of their size. For 

example, in equation (1.1.4), the parameter a1 is expected to have a negative sign, given 

the ‘law of demand’ which postulates an inverse relationship between quantity 

demanded and its price. The parameter a2 of the variable Po is expected to have a 

positive sign if commodity o is a substitute of commodity m, and a negative sign if the 

two commodities are complementary. The parameter a3 related to the variable Y is 

expected to have a positive sign, since income and quantity demanded are positively 

related, except in the case of inferior goods. 

2. Stage B: Estimation of the Model 

Model estimation is the second stage in econometric research. It entails obtaining 

numerical estimates (values) of the coefficients of the specified model by means of 

appropriate econometrics techniques. This gives the model a precise form with 

appropriate signs of the parameters for easy analysis. In estimating the specified model, 

the following steps are important: 

i. Data collection based on the variables included in the model. The data used in 

estimation of a model may be of various types. For example, time series data, 

cross-sectional data, panel data, engineering data, legislation and other 

institutional regulations, Data constructed by the econometrician: Dummy 

variable data etc. 

ii. Examining the identification conditions of the model to ensure that the function 

one is estimation is the real function in question. Identification is the procedure 

by which we attempt to establish that the coefficients which we shall estimate by 

the application of some appropriate econometric technique are essentially the 

true coefficients of the function in which we are interested. 

iii. Examining the aggregation problems of the function to avoid bias estimates. 

Aggregation problems arise from the fact that we use aggregative variables in 
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our function such aggregative variables may involve: aggregation over 

commodities, aggregation over time periods, spatial aggregation etc.  

iv. Ensuring that the explanatory variables are not collinear, the situation which 

always results in misleading results. Most variables are correlated, in the sense 

the sense that they tend to change simultaneously during the various phases of 

economic activity. For example income, employment, consumption, investment, 

exports, imports, taxes, tend to grow n periods of booms and decline in periods 

of depression. Thus a certain degree of multicollinearity is inherent in the 

economic variables due to the growth and technological progress.  

v. Appropriate methods should be adopted on the basis of the specified model. 

The coefficients of economic relationships may be estimated by various methods 

which may be classified into two main groups: 

i. Single-equation techniques. These are techniques which applied to one 

equation at a time. The most important are: the Classical Least Squares or 

Ordinary least Squares method, the Indirect Least Squares or Reduced 

form technique; Two Stage least Squares method, the Limited 

Information Maximum Likelihood method and various methods of mixed 

Estimation. 

ii. Simultaneous-equation techniques. These are techniques which are 

applied to all equations of a system at once, and give estimates of the 

coefficients of all the functions simultaneously. The most important are 

the Three-stage Least Squares method and the Full Information 

Maximum Likelihood technique. 

The choice of any technique in any particular case is a function of many factors, such 

as (a) The nature of the relationship and its identification condition. (b) The properties 

of the estimates of the coefficients obtained from each technique. (c) However, which 

of these desirable characteristics is the most important, depends on the purpose of the 

econometric research. (d) In some cases the simplicity of the method is used as a 
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criterion of choice: a method may be preferred to another because the first involves 

simpler computations and has less data requirements than the other. (e) The time and 

cost requirements of the various methods are often important criteria for the choice of 

the technique for the estimation of parameters of a model.  

3. Stage C: Evaluation of Estimates 

Evaluation entails assessing the results of the calculation in order to test their reliability. 

The results from the evaluation enable us to judge whether the estimates of the 

parameters are theoretically meaningful and statistically satisfactory. For this purpose 

we use various criteria which may be classified into three groups. (1) Economic apriori 

criteria, which are determined by economic theory and refer to the sign and size of the 

parameters of economic relationships (2) Statistical criteria, determined by statistical 

theory and aim at the evaluation of the statistical reliability of the estimates of the 

parameter of the model. The most commonly used statistical criteria are the correlation 

coefficient and standard deviation (or standard error) of the estimates. (3) Econometric 

criteria otherwise known as the second-order tests, determined by econometric theory 

aim at the investigation of whether the assumptions of the econometric method 

employed are satisfied or not in any particular case. The econometric criteria serve as 

second-order tests; in other words they determine the reliability of the statistical criteria, 

and in particular of the standard errors of the parameter estimates. They help to establish 

whether the estimates have the desirable properties of unbiasedness, consistency, etc. 

4. Stage D: Evaluation of the Forecasting Power of the Estimated Model 

Before the estimated model can be put to use, it is necessary to test its forecasting 

power. This will enable one to be assured of the stability of the estimates in terms 

of their sensitivity to changes in the size of the model even outside the given sample 

data, whose ‘average’ variation it represents.  

A particular way of establishing the forecasting power of a model is to use the 

estimates of the model for a period not included in the sample. The estimated value 

(forecast value) s compared with the actual (realised) magnitude of the relevant 
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dependent variable. Another way of establishing the stability of the estimates and 

the performance of the model outside the sample of data from which it has been 

estimated is to re-estimate the function with an expanded sample that is a sample 

including additional observations. 

SELF ASSESSMENT EXERCISE 

Describe the stages of econometric research  

3.5 Concept of Model: Economic Model and Econometric Model 

A model is a simplified representation of a real world process. That is a prototype of 

reality, and so describes the way in which variables are interrelated (Akerele, 2002). 

These models exhibit the power of deductive reasoning in drawing conclusions relevant 

to economic policy. 

Economic model describes the way in which economic variables are interrelated. Such 

model is built from various relationships between the given variables. 

Econometric model on the other hand, consists of a system of equations which relate 

observable variables and unobservable random variables using a set of assumptions 

about the statistical properties of the random variables. In this respect, econometric 

model is built on the basis of economic theory. 

Econometric model differs from econometric model in the following ways: 

i. For an econometric model, its parameter can be estimated using appropriate 

econometric techniques. 

ii. In formulation econometric model, it is usually necessary to decide the variables 

to be included or not. Thus, the variables here are selective, depending on the 

available statistical data. 

iii. Because of the specific nature of econometric model, it allows fitting-in line of 

best fit, and this is not possible with economic model. 
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iv. The formulation of an econometric model involves the introduction of a random 

disturbance term. This will enable random element that are not accounted for to 

be taken care of.  

The “goodness” of an econometric model is judged on the basis of the following various 

properties: 

i. Conformity with economic theory. A good model should agree with the postulate 

of economic theory. It should describe precisely the economic phenomena to 

which it relates. 

ii. Accuracy- the estimate of the coefficients should be accurate. They should 

approximate as best as possible the true parameter of the structural model. 

iii. The model should possess explanatory ability. That is, it should be able to 

explain the observations of the real world. 

iv. The model should be able to correctly predict future values of the dependent 

variable. 

v. The mathematical form of the model should be simple with fewer equations. 

Such model should represent economic relationships with maximum simplicity. 

vi.  The equations of the model should be easily identified, that is, it most have a 

unique mathematical form. 

SELF ASSESSMENT EXERCISE 

Differentiate between an economic model and an econometric model. 

4.0 CONCLUSION 

We can see that this course would equip students understand the need to measure 

economic phenomena based on the application of statistic, mathematics and 

economic theory. This would help in achieving the goals of econometrics which 

include: analysis i.e. testing of economic theory, policy making, i.e. supplying 
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numerical estimates of the economic relationships, which may be then used for 

decision-making, and forecasting, i.e. using numerical estimates of the coefficients 

in order to forecast the future values of economic magnitudes. 

SEFL ASSESSMENT EXERCISE 4 

Discuss the methodology of econometric research. 

5.0 SUMMARY 

This unit has discussed the meaning of econometrics which involves the integration 

of economics, mathematics and statistics for the purpose of providing numerical 

values for the parameters of economic relationships and verifying economic 

theories. The unit further elaborated the scope of econometrics which involves 

theoretical and applied econometrics and highlighted the goals of econometrics 

(analysis, policy-making and forecasting). The unit concluded with the 

methodology/stages of econometrics which include model specification, model 

estimation, model evaluation and evaluation of the forecasting validity of the model. 

6.0 TUTORED-MARKED ASSIGNMENT 

1. How do you perceive the roles of econometrics in analysis, decision/policy 

making and forecasting of economic phenomena? 

2. Enumerate and explain the stages of econometric research you know. 
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1.0 INTRODUCTION 

In developing a model of economic phenomenon (e.g., the law of demand and supply) 

econometricians make heavy use of a statistical technique known as regression analysis. 

The purpose of this unit is to introduce the basics of regression analysis I terms of the 

simple and multiple linear regression model, namely, the two-variable model. 

Subsequent unit will consider various modifications and extensions of the two-variable 

model to the multiple-variable model.  

 

2.0 OBJECTIVES 

At the end of this unit, students are expected to: 

4 Explain the meaning of simple regression model 

5 Describe the assumptions of the linear stochastic regression model. 

6 Discuss the Least Squares Criterion and the Normal Equations of OLS. 

7 Evaluate the statistical test of significance of the Least Squares estimates. 

 

 

3.0 MAIN CONTENT 

3.1 Meaning of Simple Linear Regression Model 

Regression analysis in general is concerned with the study of the relationship between 

one variable called the explained, or dependent, variable and one or more other variables 

called independent, or explanatory, variables (Gujarati, 2006). 

Thus we may be interested in studying the relationship between the quantity demanded 

of a commodity in terms of the price of that commodity, income of the consumer, and 

prices of other commodities which could be complement or substitutes. We may also 

be interested in studying how sales of a product are related to advertisement expenditure 

incurred in that product. In both examples there may be some underlying theory that 

specifies why we would expect one variable to be dependent or related to one or more 
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other variables. In the first example, the law of demand provides the rationale for the 

dependence of the quantity demanded of a commodity on its price and several other 

factors. For notational uniformity, from here on we will le Y stand for the dependent 

variable and X the independent or explanatory variable Gujarati and Sangeetha, 2007). 

Simple linear regression model therefore is a model which shows the relationship 

between two variables. In this relationship, one variable is depending on the other 

variable. The model consists of the independent variable and the constant term, with 

their respective coefficients and we need to estimate the parameters of the model in 

other to know the magnitude of their relationship.  

Example 

Consider a familiar supply function of the form: 

 Y = f(X)………………………………………………………(1.2.1) 

Where Y = quantity supplied 

 X = Price of the product 

The theory of supply postulates that there exists a positive relationship between quantity 

supplied of a commodity and its price, ceteris paribus. Our first task is the specification 

of the supply model (equation 1.2.1), that is, the determination of the dependent 

(regressand or explained) and the independent (regressor or explanatory) variables, the 

number of equations and their precise mathematical form, finally the apriori 

expectations regarding the sign and size of the coefficients. Economic theory provides 

the following information with respect to the supply function. 

1) The dependent variable is the quantity supplied and the explanatory variable s 

the price. 

2) Economic theory does not specify the type of equation; therefore, we start our 

analysis with a single equation model.  

3) Economic theory is not clear about the mathematical form of the model whether 

linear or nonlinear again we start by assuming a linear supply function: 

Yi = b0 + b1Xi…………………………………………(1.2.2)  

This form implies that there is one-way causation between the variables Y and 

X: price is the cause of changes in quantity supplied, but not the other way 

around. The parameters of the supply function are b0 and b1, and our aim is to 

obtain estimates of their numerical values. 
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The parameters of this model are to be estimated using the Ordinary Least 

Squares (OLS). We shall employ this technique for a start due to the following 

reasons: 

i. The computational procedure using this method is easy and straight forward. 

ii. The mechanics of the OLS method is simple and understand. 

iii. This method always produces satisfactory results. 

iv. The parameter estimates using the OLS method best, linear and unbiased. This 

makes the estimates to be more accurate compared to the estimates obtained 

using other methods. 

v. The OLS method is essential component of most econometric techniques. 

Note that the model of equation (1.3.6) implies an exact relationship between Y and X. 

That is, all the variation in Y is due to changes in X only and no other factor(s) 

responsible for the change. When this is represented on a graph or scatter diagram, the 

pairs of observation (Y and X) would all lie on a straight line a shown in Figure 1.4. 

 

 

 

 

 

Y (Quantity)  

 

 

 

  

     X (price) 

Figure 1.4: An exact relationship  

Ideally, if we gather observations on the quantity actually supplied in the market at 

various prices and plot them on a diagram, we will notice that they do not really lie on 



19 

 

a straight line. Here, there are deviations of observations from the line. These deviations 

are attributable to the following factors: 

1. Omission of variable(s) from the function on ground that some of these variables 

may not be known to be relevant. 

2. Random behaviour of human beings. Human reactions at times are unpredictable 

and may cause deviation from the normal behavioural pattern depicted by the 

line. 

3. Imperfect specification of the mathematical form of the model. A linear model, 

for instance, may mistakenly be formulated as a nonlinear model. It is also 

possible that some equations might have been left out in the model. 

4. Error of aggregation. Usually, in model specification, we use aggregate data in 

which we add magnitudes relating to individuals whose behaviour differ. 

5. Error of measurement. This error arises in the course of data collection, 

especially in the methods used in the collection of data.  

The inclusion of a random variable usually denoted by U, into the econometric function 

helps in overcoming the above stated sources of errors. 

This is so called because its introduction into the system disturbs the exact relationship 

which is assumed to exist between the Y and the X. Thus, the variation in Y could be 

explained in terms of explanatory variable, X and the random disturbance term, U.  by 

introducing the random variable in the function, the model is rendered stochastic of the 

form: 

 Yi = (b0 + b1Xi) + Ui………………………………………………..(1.2.3) 

Where Yi = Variation in Yi, (b0 + b1Xi) = Systematic variation, Ui = random variation 

Simply put: Variation in Y = Explained variation plus Unexplained variation 

Thus, equation (1.2.3) is the true relationship that connects the variable Y and X. And 

this is our regression equation which we need to estimate its parameters using OLS 

method. To achieve this, we need observations on X, Y and U. However, U is not 

observed directly like any other variable.  

SELF ASSESSMENT EXERCISE 

Define the simple linear regression model and differentiate between economic model 

and econometric model. 
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3.2 Assumptions of the Linear Stochastic Regression Model 

The linear regression model is based on certain assumptions, some of which refer to the 

distribution of the random variable U, some to the relationship between U and the 

explanatory variables, and finally some refer to the relationship between the explanatory 

variables themselves.  We will group the assumptions into two categories: (a) stochastic 

assumptions, (b) other assumptions. 

(a) Stochastic Assumptions of Ordinary least Squares 

There are assumptions about the distribution of U. these assumptions are crucial for the 

estimates of the parameters. 

i. Ui is a random variable. This means that the value which Ui takes in any one 

period depends on chance. Such values may be positive, negative or zero. For 

this assumption to hold, the omitted variables in the model should be numerous 

and should change in different directions. 

ii. The mean value of “Ui” in any particular period is zero. That is, E(Ui) denoted 

by iU  is zero. By this assumption, we may expressed equation (1.2.3) as:  

Yi = (b0 + b1Xi)……………………………………..(1.2.4) 

iii. The variance of is Ui constant in each period. That is,  

Var(Ui) = E(Ui)2 = σ(Ui)2 = σ2
Ui, which is zero. This implies that for all values of 

X, the Ui’s will show the same dispersion about their mean. Violation of this 

assumption makes the Ui’s heteroscedastic.  

iv. Ui has a normal distribution. That is, a bell shaped symmetrical distribution about 

their zero mean. That is Ui ~N(0,σ2
u) . 

v. The covariance of Ui and Uj = 0. i≠ j. this assumes the absence of autocorrelation 

among the Ui’s. In this respect, the value of Ui in one period is not related to its 

value in another period. 

 

(b) Other Assumptions 

In terms of the relationship between Ui and the explanatory variables, the following 

assumptions also hold: 

i. U and X do not covary. This means that there is no correlation between the 

disturbance term and the explanatory variable. Therefore, Cov (XiUi) = o 
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ii. The explanatory variables are measured without error. This is because the U 

absorbs any error of omission n the model. 

In relation to the explanatory variable(s) alone, the following assumptions are made: 

i. The explanatory variables are not linearly correlated. That is, there is absence of 

multicollinearity among the explanatory variables. This means Cov XiXj = 0, i≠j 

(This assumptions applies to multiple linear regression model). 

ii. The explanatory variables are correctly aggregated. It is assumed that the correct 

procedure for such aggregate explanatory variables is used. 

iii. The coefficients of the relationship to be estimated are assumed to have a unique 

mathematical form. That is, the variables are easily identified. 

iv. The relationship to be estimated is correctly specified. 

SELF ASSESSMENT EXERCISE 

Describes the various assumptions of the linear stochastic regression model  

3.3 The Least Squares Criterion and the Normal Equations of OLS. 

Having specified the model and stated explicitly its assumptions in the previous unit, 

the next step is the estimation of the model, that is, the computation of the numerical 

values of its parameters. 

• Model Estimation 

The following procedure are used in finding numerical values of the parameters 0b  and 

1b . 

1. From the true relationship: Yi = (b0 + b1Xi) + Ui (1.2.3) and the estimated 

relationship: 0 1i i iY b b X e= + + , the residual, 

 

i i ie Y Y= − ………………………………….(1.2.4) 

 and  0 1i i ie Y b b X= − −  

2. Squaring the residuals and taking their sum gives: 

2 2 2 2

0 1( ) ( )i i i i i ie Y Y or e Y b b X= − = − −    ………………………..(1.2.5) 
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3. The expression in (1.2.5) is to be minimised with respect to 
0b and 

1b

respectively. 

Thus, 
2

0 1 0 1

0

2 ( ).( 1) 0 2 ( ) 0
i

i i i i

e
Y b b X Y b b X

b


= − − − = = − − − =




 


 

            
2

0 1 0 1

1

2 ( ).( ) 0 2 ( ) 0
i

i i i i i i

e
Y b b X X X Y b b X

b


= − − − = = − − − =




 


  

4. Dividing each term by -2, the OLS estimates of 
0b and 1b could be written in 

the form: 

          0 1 0i iY b n b X− − =  …………………………………….........(1.2.6) 

           2

0 1 0i i i iY X b X b X− − =   …………………………………(1.2.7) 

The two equations (1.2.6) and (1.2.7) are the normal equations of the regression 

model. 

5. Using the crammer’s rule, the values of the parameters 0b and 1b are 

respectively: 

            
2

0 2 2( )

i i i i i

i i

Y X X Y X
b

N X X

−
=

−

   
 

…………………………………………..(1.2.8) 

             1 2 2( )

i i i i

i i

N Y X Y X
b

N X X

−
=

−

  
 

……………………………………………..(1.2.9) 

Using lower case letters (i.e. deviation of the variables from their means), it can be 

shown that: 

                   0 1i ib Y b X= − …………………………………………(1.2.10) 

                  1 2

i i

i

X Y
b

X
=



…………………………………………..(1.2.11) 

 

Example 
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Given the following data on quantity supplied and price of a particular commodity, find 

the estimated supply function (Table 1.5). 

N 1 2 3 4 5 6 7 8 

Yi(Quantity 64 68 44 48 50 65 45 56 

Xi(Price) 8 10 6 9 6 10 7 8 

 

Solution: 

The expression for 0b and 1b in (1.2.8) and (1.2.9) as well as (1.2.10) and (1.2.11) lead 

us to produce the above table as seen in Table 1.6: 

Yi Xi Xi
2 XiYi yi xi xi

2 xiyi Y  ei ei
2 

64 8 64 512 9 0 0 0 55 9 81 

68 10 100 680 13 2 4 26 64 4 16 

44 6 36 264 -11 -2 4 22 46 -2 4 

48 9 81 432 -7 1 1 -7 49.

5 

-

11.

5 

132.2

5 

50 6 36 300 -5 -2 4 10 46 4 16 

65 10 100 650 10 2 4 20 64 1 1 

45 7 49 315 -10 -1 1 10 50.

5 

-5.5 32.25 

56 8 64 448 1 0 0 0 55 1 1 

∑Yi=44

0 

∑Xi=6

4 

∑Xi
2=53

0 

∑XiY

i 

=360

1 

∑y

i   = 

0 

∑x

i   = 

0 

∑xi

2 

=18 

∑xi

y 

=81 

 ∑ei 

= 0 

∑ei
2

 = 

281.5 

 

Where ei = Residual, 0 1i iY b b X= +  



24 

 

From Table 1.6, 

N= 8; 
440

55
8

i

i

Y
Y

n
= = =


; 
64

8
8

i

i

X
X

n
= = =


 

Therefore, using the upper case letters: 

     
2

0 2 2( )

i i i i i

i i

Y X X Y X
b

N X X

−
=

−

   
 

 = 
2

2

440(530) (64)
19

8(530) (64)

−
=

−
 

      1 2 2( )

i i i i

i i

N Y X Y X
b

N X X

−
=

−

  
 

 = 
2

8(3601) (64)(440)
4.5

8(530) (64)

−
=

−
 

Similarly, using the lower case letters: 

                  1 2

i i

i

X Y
b

X
=



 = 
81

4.5
18

=  

                0 1i ib Y b X= −  = 55 4.5(8) 19− =  

Note: (i) Only one of the two methods is to be used, and each gives the same result 

         (ii) Unless specified, one is free to use any of the methods. 

From the values of 0b  and 1b , the estimated regression line or equation is gotten by 

substituting these values into  0 1i iY b b X= +  and this gives: 

19 4.5i iY X= + ………………………………………………….(1.2.12) 

Thus, given the values of Xi (I = 1, 2 … N), the estimated values of Y can be obtained 

using the regression equation. 

From the estimated regression line, one can estimate price elasticity. Recall the 

estimated model, 0 1i iY b b X= + . This is also the equation of the line with intercept, 0b and 

slope, 1b .  

Note that 1b = ∂Yi/∂Xi. Therefore, price elasticity (ep) = 1 i

i

b X

Y
 

Taking the mean of Xi and Yi, we have average elasticity: 

1 4.5(8)
0.65

55

i
p

i

b X
e

Y
= = =  (Inelastic)  
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SELF ASSESSMENT EXERCISE 

Given a simple linear supply stochastic function, Yi = b0 + b1Xi + Ui, derive the least 

squares estimates. 

3.5 Ordinary Least Squares Estimators 

The ordinary least squares (OLS) principle is among the best method used in obtaining 

estimates of parameter, ib . 

The use of OLS method in estimating economic relationship is based on the fact that 

the estimates of the parameters have some optimal properties. 

Generally, in choosing a particular method, one should aim at such method that gives 

an estimate, which (if at all it exists) will be within only a small range around the true 

parameter. 

For any estimation method, the goodness of the estimator is judge on the basis of the 

following desirable properties: 

 

i. Unbiasedness  

An estimator is unbiased if its bias is zero, i.e. E( ib ) – bi = 0. In this case, the unbiased 

estimator changes to the true value of the parameter as the number of sample increases. 

An unbiased estimator always gives, on the average, the true value of the parameter. 

The case of biased and unbiased estimator of the true parameter is illustrated 

diagrammatically: 

 

 

 

 

 

        P(bi)     (a)Biased   P(bi)           (b)Unbiased 
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          Bias 

      E(bi)     b       E(bi)=b 

Figure 1.4: Biased and Unbiased estimator 

 

ii. Minimum Variance 

An estimator is best if it has the smallest variance compared with any other estimate 

obtained using other methods. By minimum variance, we mean that the values of the 

parameter bi clusters very closely around the true parameter b. 

        P(bi) (c)Large variance  P(bi)         (d)Minimum variance 

  

 

          

           

      E(bi)            E(bi)=b 

Figure 1.5: Large and Minimum Variance 

In diagrams of Figure 1.5, panel (d) is best compared with (c) because (d) has minimum 

variance as seen in the narrowness of the distribution (Goldberger, 1964). 

iii. Efficient Estimator 

An estimator is efficient when it combines the property of unbiasedness and minimum 

variance property. 

Symbolically, bi is efficient if the following two conditions are fulfilled: 

(a) ( )E b b=  (b) 2 2[( ) ( )] [ * ( *)]E b E b E b E b−  −  

Where b* is another unbiased estimate of the true b. 

This means that in the class of unbiased estimators, such estimator has a minimum 

variance 

iv. Linear Estimator 
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An estimator is linear if it is a combination of the given sample data. Thus, with the 

sample observation, Y1, Y2,…Yn, a linear estimator take the form: 

k1Y1 + k2Y2+…+knYn, where k is some constants. 

v. BLUE (Best, Linear, Unbiased Estimator) 

This property is abbreviated to BLUE meaning that the estimator is best (having 

minimum variance), linear, and unbiased as compared with all other linear, unbiased 

estimators. Thus, all the properties (i-iv) are included n the BLUE property. 

vi. Minimum Mean Square Error (MSE) Estimator 

This property combines unbiasedness and minimum variance properties. An estimator, 

therefore, is a minimum MSE estimator if it has the smallest mean square error, defined 

as the expected value of the squared difference of the estimator around the true 

population parameter, b. that is, 2( ) [ ] .MSE b b b= −  

vii. Sufficiency 

This property implies that the estimator uses all the available information a sample 

contains about the true parameter. 

For this property to hold, the estimator should accommodate all the observations of he 

sample, and should not give room for any additional information in connection with the 

true population parameter. 

The OLS method satisfies the above stated properties. For this reason, the method seems 

to be the best and most widely used of all the estimation methods. In a nutshell, the OLS 

has the BLUE (best, linear, unbiased properties) among the class of linear and unbiased 

estimators. The linearity property as previously discussed implies that the parameter 

estimates are linear functions of the observed Yi. That is, the estimates 0b  and 1b includes 

the variable Y and X in the first power. 
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Thus, 
1b = f(Y). This property enables one to compute the values of the parameter 

estimates with ease. 

The unbiased property of OLS estimates implies that the expected value of the estimated 

parameter is equal to the true value of the parameter. That is, ( )i iE b b= . 

The importance of this property lies in the fact that for large samples, the parameter 

estimates obtained will on the average give a true value of the b’s. 

The minimum variance property becomes desirable when combined with unbiasedness. 

The importance of this property is obvious when we want to apply the standard error 

test of significance for b0 and b1, and to construct confidence intervals for these 

estimates. Because of minimum variance they have, their respective confidence 

intervals will be narrower than for other estimates obtained using any other econometric 

procedures. 

The smaller confidence interval obtained is interpreted to mean in effect that we are 

extracting more information from our sample than we would be, if we were to use any 

other methods which yielded the same unbiased estimates. 

SELF ASSESSMENT EXERCISE 

Discuss the properties of OLS 

3.6 Practical Aspect of Simple Regression in Econometric Software 

Simple Regression in EViews 

Step 1: Open EViews. 

Step 2: Click on File/New/Workfile in order to create a new file. 

Step 3: Choose the frequency of the data in the case of time series data or Undated or 

Irregular in the case of cross-sectional data, and specify the start and end of your data 

set. EViews will open a new window which automatically contains a constant (c) and a 

residual (resid) series. 

Step 4: On the command line type: 
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genr x = 0 (press enter) 

genr y = 0 (press enter) 

which creates two new series named x and y that contain zeros for every observation. 

Open x and y as a group by selecting them and double-clicking with your mouse. 

Step 5: Then either type the data into EViews or copy/paste the data from Excel. To be 

able to type (edit) the data of your series or to paste anything into the EViews cells, the 

edit +/− button must be pressed. After editing the series press the edit +/−button again 

to lock or secure the data. 

Step 6: Once the data have been entered into EViews, the regression line (to obtain 

alpha and beta) may be estimated either by typing: 

ls y c x(press enter) on the command line, or by clicking on Quick/Estimate equation 

and then writing your equation (that is ycx) in the new window. Note that the option for 

OLS (LS Least Squares (NLS and ARMA)) is chosen automatically by EViews and the 

sample is automatically selected to be the maximum possible. Either way, the regression 

result is shown in a new window which provides estimates for alpha (the coefficient of 

the constant term), beta (the coefficient of X) and some additional statistics that will be 

discussed in later sections of this material. 
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Presentation of regression results 

The results of a regression analysis can be presented in a range of different ways. 

However, the most common way is to write the estimated equation with standard errors 

of the coefficients in brackets below the estimated coefficients and to include further 

statistics below the equation. For the consumption function that will be presented in 

Computer Example 1, the results are summarized as shown below: 

Ĉ = 15.116 + 0.116 Yt
d 

(6.565)    (0.038) 

R2 = 0.932 n = 20   σ = 6.879 

From this summary we can (a)read estimated effects of changes in the explanatory 

variables on the dependent variable; (b) predict values of the dependent variable for 

given values of the explanatory variable; (c) perform hypothesis testing for the 

estimated coefficients; and (d) construct confidence intervals for the estimated 

coefficients. 

 

 

 

Computer example: the Keynesian consumption function 

Table 1.7 provides data for consumption and disposable income for 20 randomly 

selected people. 

S/N 1 2 3 4 5 6 7 8 9 10 

Consumpti

on (Y) 

72.3 91.6

5 

135.

2 

94.6 163.

5 

100 86.

5 

42.3

6 

120 112.5

6 

Disposable 

Income (X) 

100 120 200 130 240 114 126 213 156 167 

S/N 11 12 13 14 15 16 17 18 19 20 

Consumpti

on (Y) 

132.

3 

149.

8 

115.

3 

132.

2 

149.

5 

100.2

5 

79.

6 

90.2 116.

5 

126 
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Disposable 

Income (X) 

189 214 188 197 206 142 112 134 169 179 

 

Use Eviews to calculate α and β. 

Solution: To obtain regression results in EViews, the following steps are required: 

1. Open EViews. 

2. Choose File/New/Workfile in order to create a new file. 

3. Choose Undated or Irregular and specify the number of observations (in this case 20). 

A new window appears which automatically contains a constant (c) and a residual 

(resid) series. 

4. In the command line type: 

genr x = 0 (press enter) genr y = 0 (press enter) which creates two new series named x 

and y that contain zeros for every observation. Open x and y as a group by selecting 

them and double-clicking with the mouse. 

5. Either type the data into EViews or copy/paste the data from Excel. To edit the series 

press the edit +/− button. After you have finished editing the series press the edit 

+/−button again to lock or secure the data.  

6 After entering the data into EViews, the regression line (to obtain alpha and beta) can 

be estimated either by writing: 

ls y c x(press enter) 

on the EViews command line, or by clicking on Quick/Estimate equation and then 

writing the equation (that is y c x) in the new window. Note that the option for OLS (LS 

– Least Squares (NLS and ARMA)) is chosen automatically by EViews and the sample 

is automatically selected to be from 1 to 20. Either way, the output in Table 1.7 is shown 

in a new window which provides estimates for alpha (the coefficient of the constant 

term) and beta (the coefficient of X). 
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SELF ASSESSMENT EXERCISE 

The following data in Table 18 refer to the quantity sold of good Y (measured in kg), 

and the price of that good X (measured in naira per kg), for 10 different market 

locations: 

Y 198 181 170 179 163 145 167 203 251 147 

X 23 24.5 24 27.2 27 24.4 24.7 22.1 21 25 

 

(a) Assuming a linear relationship between the two variables, use Eviews software, 

obtain the OLS estimators of α and β. (b) On a scatter diagram of the data, and draw 

your OLS sample regression line. (c) Estimate the elasticity of demand for this good at 

the point of the sample means (that is when Y = Y  and X = X ). 
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4.0 CONCLUSION 

This unit throws light on   the meaning of simple linear regression model as a model 

which shows the relationship between two variables with one of the variable called the 

dependent viable while the other one called the independent or explanatory variables. 

The unit concludes that the parameter estimates (b0 and b1) of the regression model can 

be estimated with the use of an econometric technique called the ordinary least squares 

(OLS) because the method is best, linear and unbiased. As a result makes the parameter 

estimates to be accurate compared to the estimates obtained from other methods.  

5.0 SUMMARY 

This unit discusses the meaning of simple linear regression model and assumptions of 

the linear stochastic regression model such as stochastic assumptions regarding the error 

term and other assumptions regarding the random term and explanatory variable(s) as 

well as regarding the explanatory variables themselves. The unit further discusses the 

least squares criteria and the least squares normal equation where the parameters b0 and 

b1 can be estimated using the OLS which is adjudged to be best, linear and unbiased. 

Statistical test of significance such as the coefficient of determination (R2), standard 

error test, t-test, confidence intervals were also discussed. The unit rounds up with the 

explanation of the properties of the OLS such as unbiasedness, minimum variance, 

efficient estimator, linear estimator, BLUE, minimum mean square error and 

sufficiency. 

6.0 TUTOR-MARKED ASSIGNMENT 

1) The following table includes the price and quantity demanded of the product of 

a monopolist over a six-year period. 

Table 1.7: Price and quantity demanded of a given Monopolist’s product 

Year 2014 2015 2016 2017 2018 2019 
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Quantity (Y) 80 30 40 70 80 10 

Price (N) 20 40 30 10 30 50 

 

(a) Using both manual and Eviews computer based, estimate the demand function 

for the monopolist’s product. Use economic theory to comment on the values of 

the estimated parameters (
0b and 

1b ). 

(b) Estimate the average elasticity of demand. 

2) Distinguish carefully between the following concepts: 

a) The true relationship between X and Y. 

b) The true regression line. 

c) The estimated relationship. 

d) The estimated regression line. 

e) What assumptions do we normally make about the random term, U? Why are 

these assumptions necessary?  

3) The following table includes the gross domestic product (X) and demand for 

food respectively measured in thousand naira and tons in Nigeria over the ten-

year period, 2010-19. 

Table 1.8: GDP and demand for food in Nigeria, 2010-2019 

Year 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 

Y 6 7 8 10 8 9 10 9 11 10 

X 50 52 55 59 57 58 62 65 68 70 
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(a) Use both manual and Eviews computer base, estimate the food function 

Y = b0 + b1X + u  

 What is the economic meaning of your result? 

(b) Compute the coefficient of determination and interpret your result. 

(c) Compute the standard errors of the regression estimates and conduct tests of 

significance at the 5 percent level of significance. 

(d) Find the 99 percent confidence interval for the population parameters.  

(e) Obtain annual data for the inflation rate and the unemployment rate of your 

country. 

(i) Use Eviews to estimate the following regression, which is known as the 

Phillips curve: πt = a0 + a1UNEMPt  + ut 

where πt is inflation and UNEMPt is unemployment. Present the results in the 

usual way. 

(ii) Estimate the alternative model: 

πt −πt−1 = a0 + a1UNEMPt−1 + ut and calculate the Non-Accelerating 

Inflation Rate of Unemployment (NAIRU) (that is when πt − πt−1 = 0).  

(iii) Re-estimate the above equations splitting your sample into different 

decades. What factors account for differences in the results? Which period has 

the ‘best-fitting’ equation? State the criteria you have used. 

7.0 REFERENCES/FURTHER READINGS 

Dimitrios Asteriou and Stephen G. Hall (2011). Applied Econometrics (Second 

Edition). PALGRAVE MACMILLAN, UK. 

Goldberger, A.S. (1964). Econometric Theory. Wiley, New York.  
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UNIT 3: MULTIPLE REGREEIONS MODEL 

1.0 Introduction 

2.0 Objectives 

3.0 Main Contents 

3.1 Models with two explanatory variables. 

3.2 The coefficient of multiple determinations and the adjusted coefficient of 

multiple determinations. 

3.3 The mean and variance of parameter estimates ( 0b , 1b  and 2b ) 

3.4 Test the statistical significance of the parameter estimates 

3.5 Practical Applications of Multiple Regression in Econometric Soft wares 

4.0 Conclusion 



37 

 

5.0 Summary 

6.0 Tutor Marked Assignment  

7.0 References/Further Readings 

1.0 INTRODUCTION 

The two variable model studied in the previous unit is often inadequate in practice. Most 

economic relations, and the processes they describe, involve more than one determinant 

of some particular dependent variable. In consumption-income example, for instance, 

it is assumed implicitly that only income, X affects consumption, Y. But economic 

theory is seldom so simple for, besides income, a number of other variables are also 

likely to affect consumption expenditure. An obvious example is the wealth of the 

consumer. Another example is the demand for a commodity which is likely to depend 

not only on its own price but also on the prices of other competing or complementary 

goods, income of the consumer, social status, etc. therefore, we need to extend our two-

variable regression model to cover models involving more than two variables. Adding 

more variables leads us to the discussion of multiple regression models, that is, models 

in which the dependent variable, or the regressand, Y, depends on two or more 

explanatory variables, or regressors. 

 

2.0 OBJECTIVES 

At the end of this unit, students are expected to: 

8.0 Illustrate models with two explanatory variables. 

9.0 Derive the normal equation of two explanatory variables. 

10.0 Estimate the coefficient of multiple determinations and the adjusted coefficient 

of multiple determinations. 

11.0 Calculate the mean and variance of parameter estimates ( 0b , 1b  and 2b ) 

12.0 Test the statistical significance of the parameter estimates 
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3.0 MAIN CONTENT 

3.1 Two Explanatory Variables Models  

As a first step in learning about multiple regressions, we consider an economic process 

in which the variable Y is determined by two variables, X1 and X2 (Mirer, 1995). We 

shall illustrate the three-variable model with an example from the theory of demand. 

Economic theory postulates that the quantity demanded for a given commodity (Y) 

depends on its price (X1) and the consumer’s income (X2): 

 Y = f(X1, X2)…………………………………………………….( 1.3.1) 

Given that the theory does not specify the mathematical form of the demand function, 

we start our investigation by assuming a linear relationship between Y, X1 and X2. 

 Yi = b0 + b1X1i + b2X2i    (i = 1,2,…,n)…………………………(1.3.2) 

Equation (1.3.2) shows an exact relation in the sense that variations in quantity 

demanded are wholly explained by variations in price and income. If this claim is true, 

then any observation on Y, X1 and X2 would determined a point which would lie on a 

plane. However, if we gather observations on these variables during a certain period of 

time and plot them on a diagram, we will notice that not all the observations lie on the 

plane: some will lie on it, but others will lie above or below t. this scatter is due to 

various factors omitted from the function and to other types of error which have been 

examined in the previous unit. The influence of such factors may be taken into account 

by introducing a random variable u, n the function, which thus becomes stochastic: 

 Yi = (b0 + b1X1i + b2X2i) + (ui)……………………………………….(1.3.3) 

         Systematic                         random 

           component                       component 
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Economic theory suggests that the coefficient 
1b  should have negative sign, given the 

‘law of demand’, while 
2b  is expected to be positive, since for normal commodities the 

quantity demanded changes in the same direction as income (Koutsayiannis, 1977). 

In equation (1.3.3), b0 is the intercept term. As usual, it gives the mean or average effect 

on Y of all the variables excluded from the model, although its equal to zero. The 

coefficients 
1b  and 

2b  are called the partial regression coefficients (Gujarati & 

Sangeetha, 2007). 

In order to complete the specification of our model, we continue to operate within the 

framework of the classical linear regression model (CLRM) introduced in the previous 

unit. 

3.1.1 Assumptions with Respect to the Three-Variable Regression 

Model 

Some certain assumptions are needed to complete the formulation of the model. Some 

of the assumptions are about the random term u. these assumptions are the same as in a 

two-variable regression model discussed in the previous unit. That is: 

1. Randomness of u 

The variable u is a real random variable. 

2. Zero mean value of the random variable u, or  

E(ui│X1i, X2i) = 0 

3. No serial correlation of the u’s or  

Cov (ui, uj) = 0 i ≠ j 

4. Homoscedasticity or the variance of each ui is the same for all the Xi values  

Var(ui) = E(ui
2) = σ2  

5. Normality of u 
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ui ~ (0, σu
2) 

6. Independence of ui and Xi 

Every disturbance term ui is independent of the explanatory variables 

 E(ui X1i) = E(ui X2i) = 0 

This condition is automatically met if we assume that the values of the X’s are a 

set of fixed numbers in all assumed samples. 

7. No errors of measurement in the X’s. 

The explanatory variables are measured without error. 

8. No exact linear relationship between X1 and X2.  

The explanatory variables are not perfectly correlated. We assume that the multiple 

regression is linear in the parameters that the values of the regressors are fixed in 

repeated sampling, and that there is sufficient variability in the values of the 

regressors. 

9. Correct aggregation of the macro-variables. 

The appropriate ‘aggregation bridge’ has been constructed between the 

aggregate macro-variables used n the function and their individual components 

(micro-variables). 

10. Identifiability of the model/function. 

The relationship under study is fully identified and has a unique mathematical 

formation. 

11. Correct specification of the model. 

All the explanatory variables appear explicitly in the function and the 

mathematical form s correctly defined (linear or nonlinear form and the number 

of equations in the model). Therefore, the model has no specification error. 
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3.1.2 (a) Interpretation of Multiple Regression Model 

Given the assumptions of the least squares regression model, it follows that on taking 

the conditional expectation of Y on both sides of equation (1.2.3), we obtained: 

 E(Yi│X1i, X2i) = b0 + b1X1i + b2X2i…………………………………(1.3.4)  

In words, (1.2.4) gives the conditional mean or expected value of Y conditional upon 

the given or fixed values of X1 and X2. Therefore, as in the two-variable case, multiple 

regression analysis is regression analysis conditional upon the fixed values of the 

regressors, and what we obtain is the average or mean response of Y for the given values 

of the regressors.  

(b) The Meaning of Partial Regression Coefficients 

The regression coefficients X1 and X2 are known as partial regression or partial slope 

coefficients. The meaning of partial regression coefficient is as follows: b1 measures the 

change in the mean value of Y, E(Y), per unit change in X1, holding the value of X2 

constant. Put differently, it gives the “direct” or the “net” effect of a unit change in X1 

on the mean value of Y, net of any effect that X2 may have on mean Y. Likewise, b2 

measures the change in the mean value of Y per unit change in X2, controlling for the 

value of X1 constant. That is, it gives the “direct” or “net” effect of a unit change in X2 

on the mean value of Y, net of any effect that X1 may have on mean Y. 

Having specified our model (1.3.4), we next use sample observations on Y, X1 and X2 

and obtain estimates of the true parameters b0, b1 and b2: 

 0 1 1 2 2i i iY b b X b X= + + …………………………………………(1.3.5) 

Where 0b , 1b  and 2b  are estimates of the true parameters b0, b1 and b2 of the demand 

relationship. 
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As n the case of two-variable regression mode, the estimates will be obtained by 

minimizing the sum of squared residuals. 

2 2 2

0 1 1 1 2

1

( ) ( )
n n n

i i i i i

i i i

e Y Y Y b b X b X
=

= − = − − −   ……………………….(1.3.6) 

A necessary condition for this expression to assume a minimum value is that its partial 

derivatives with respect to
0b , 1b  and 

2b  be equal to zero: 

1. Partial derivative with respect to 0b : 

 

2

0 1 1 1 2

0

0 1 1 1 2

0 1 1 2 2

0 1 1 2 2

2 ( )( 1) 0

2 ( ) 0

0

i i i

i i i

i i i

i i i

e
Y b b X b X

b
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
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

− − − − =

− − − =

= + +






   

  

……………………………….(1) 

2. Partial derivative with respect to 1b  

2
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1
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2

1 0 1 1 1 2 1 2

2
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2 ( )( ) 0
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i i i i

i i i i i i

i i i i i i i
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b
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
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
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− − − =
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




   

   

……………………………….(2) 

3. Partial derivative with respect to 2b  
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2
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2
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2 ( )( ) 0
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i i i i i i

i i i i i i i
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X Y b b X b X

X Y b X b X X b X

X Y b X b X X b X


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− − − − =

− − − =

= + +






   

   

………………………………(3) 

From equation (1), divide through by n to estimate the mean of the equation to solve for

0b : 
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1 20
1 2

0 1 1 2 2

0 1 1 2 2

i i i

i i i

i i i

Y X Xnb
b b

n n n n

Y b b X b X

b Y b X b X

= + +

= + +

= − −

  

……………………………………....(1.3.7) 

The other identities whose values are still unknown ( 1b  and 2b ) can be determined. The 

first rule to determine these unknown is to convert the upper case variables into lower 

case or deviations from the sample mean. 

Secondly, the crammer’s rule of matrix is applied to the deviation values algebraically 

to determine the solution equation for the slope of 1b  and 2b . 
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1 1 1 2 1 2

2
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x y b x b x x

x y b x x b x

= +
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  
………………………………………..(1.3.8) 

Where i iy Y Y= − , 
1 1 1i ix X X= −  and 

2 2 2i ix X X= −  

Applying crammer’s rule: 
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Solve for 1b  
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    …………………………..(1.3.11)     
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Solve for 
2b  
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 

 

   

   
  

………………………………….(1.3.12) 

Example 

The following table shows the amount spent on education in some families (X1), 

parents’ literacy rates (X2) and the corresponding students’ performance (Y) in the 

school over a period of time. 

Table 1.9: Amount spent on education, parent literacy rate and students’ performance 

in school 

Period 1 2 3 4 5 6 7 8 9 10 

Y 5 6 8 10 7 8 10 11 15 20 

X1 18 20 25 35 45 60 72 80 85 90 

X2 16 15 12 8 7 6 5 5 4 2 

 

Estimate the regression equation of Y on X1 and X2. Interpret the estimated parameters 

in line with economic theory. 

Solution: 

Estimated Model: 0 1 1 2 2Y b b X b X= + +  

Table 1.10: Solution to the example 
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Y X1 X2 Y x1 x2 x1
2 x2

2 y x1 yx2 x1 x2 y2 

5 18 16 -5 -35 8 1225 64 175 -40 -280 25 

6 20 15 -4 -33 7 1089 49 132 -28 -231 16 

8 25 12 -2 -28 4 784 16 56 -8 -112 4 

10 35 8 0 -18 0 324 0 0 0 0 0 

7 45 7 -3 -8 -1 64 1 24 3 8 9 

8 60 6 -2 7 -2 49 4 -14 4 -14 4 

10 72 5 0 19 -3 361 9 0 0 -57 0 

11 80 5 1 27 -3 729 9 27 -3 -81 1 

15 85 4 5 32 -4 1024 16 160 -20 -128 25 

20 90 2 10 37 -6 1369 36 370 -60 -222 100 

100 530 80 0 0 0 7018 204 930 -152 -1117 184 

N = 10  Y = ∑Y/N = 100/10 = 10 

1X  =∑X1/N = 530/10 = 53 

2X = ∑X2/N = 80/10 = 8 

1b  = (∑y x1)(∑ x2
2) – (∑y x2)(∑x1 x2) 

       (∑ x1
2)(∑ x2

2) – (∑ x1 x2)2 

 1b  = 930(204) – (-152)(-1117) 

       7018(204) – (-1117)2 

1b  = 0.10835784 ≈ 0.1084 
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2b  = (∑y x2)(∑ x1
2) – (∑y x1) (∑x1 x2) 

      ( ∑ x1
2)(∑ x2

2) – (∑ x1 x2)2 

 
2b  = 7018(-152) – (-1117)(930) 

         7018 (204) – (-1117)2 

2b  =  0.15178576 ≈ 0.1518 

0b  = Ȳ - b1X1 - b2X2 

0b  = 10 – 0.1084 (53) – 8 (0.1518) 

0b  = 3.0427 

Y = 3.0427 + 0.1084X1 + 0.1518X2 

 Interpretation 

b0 = the intercept of the model or the value of the model at it mathematical origin is 

3.0427. The value of Y when X’s are zeros. 

b1 = the slope of X1 is 0.1084. This implies that all things being equal, a 1% change in 

X1 would lead to a 0.11% change in Y in the positive direction. 

b2 = -0.1518. This means that the magnitude of change in Y as a result of change in X2. 

A 1% change in X2 would bring about a 0.15 change in Y in the negative direction. 

3.4 Practical Applications of Multiple Regression in Econometric Software 

Multiple Regression Analysis in STATA 

Step 1: Open Stata  

Step 2: Click on the Data Editor button to open the Data Editor Window, which looks 

like a spreadsheet. Start entering the data manually or copy/paste the data from Excel 

or any other spreadsheet. After you have finished entering the data, double-click on the 



47 

 

variable label (the default name is var1, var2 and so on) and a new window opens up 

where you can specify the name of the variable and can (optionally) enter a description 

of it in the Label area. We will assume that for this example we entered data for the 

following variables given in Step 2 (variable y is the dependent variable and variables 

x1, and x2 are four explanatory variables).  

Step 3: In the Command Window, type the command: 

regress y x2 x3 (press enter) and you will obtain the regression results. Note that there is 

no requirement to provide a constant here as Stata includes it automatically in the results 

(in the output it is labelled as _cons). The β1 coefficient is the one next to _cons in the 

Stata regression output and β2 and β3 are the coefficients derived in Stata, and you will 

see them next to the x2 and x3 variables in the results.  

Example: using the data in Table 1.9, estimate the coefficients, β1, β2 and β3. 

SELF ASSESSMENT EXERCISE 

i.  Use the output of Table 1.10 and the estimated regression equation to estimate the   

    standard errors of the parameter estimates and test for their respective statistical     

    significance at 5 percent level of significance. 

ii. Use the same information in (i) to estimate the coefficient of multiple determination   

and interpret your result. 

4.0 CONCLUSION 

This unit discussed extensively a three-variable linear regression model which is in 

many ways an extension of the two-variable regression model. The unit concludes that 

there are some new concepts involved, such as partial regression coefficients, multiple 

correlation coefficient or coefficient of multiple determination, adjusted and unadjusted 

(for degrees of freedom) R2. Although, R2 and adjusted R2 are overall measures of how 

the chosen model fits a given set of data, their importance should not be overplayed. 
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What are critical are the underlying theoretical expectations about the model in terms 

of a priori signs of the coefficients of the variables entering the model. 

5.0 SUMMARY 

This unit introduced the simplest possible multiple linear regression model, namely, the 

three-variable regression model. It is understood that the term linear refers to the 

linearity in the parameters. The unit discussed models with two explanatory variables 

and derived the normal equation of the three-variable regression model. The unit further 

reiterated the assumptions of the linear regression model previously discussed with 

emphasis assumptions regarding the explanatory variables themselves. Some new 

concepts have been highlighted in the three-variable model which is an extension of the 

two-variable model such as partial regression coefficients, multiple correlation 

coefficient otherwise known as coefficient of multiple determination, adjusted and 

unadjusted (for degrees of freedom) R2. 

6.0 Tutor-Marked Assignment 

The following Table 1.11 shows the values of expenditure on clothing (Y), total 

expenditure (X1) and the price of clothing (X2). 

Year 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 

Y 3.5 4.3 5 6 7 9 8 10 12 14 

X1 15 20 30 42 50 54 65 72 85 90 

X2 16 13 10 7 7 5 4 3 3.5 2 

 

(1) (a) Find the least squares regression equation of Y on X1 and X2. 

(b) Compute the coefficient of multiple determination and the standard errors of the 

estimated parameters and conduct tests of significance. 

 (2) The following results were obtained from a sample of 12 companies on their output 

(Y), labour input (X1) and capital input (X2), measured in arbitrary units. 

         ∑Y = 753            ∑Y2 = 48139           ∑YX1 = 40830 

         ∑X1 = 643           ∑X1
2 = 34843         ∑YX2 = 6796 

         ∑X2 = 106           ∑X2
2 = 976             ∑X1X2 = 5779 
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(a) Find the least squares equation of Y on X1 and X2.  What is the economic meaning 

of your coefficients? 

(b) Given the following sample values of output (Y) in table 1.12, compute the standard 

errors of the estimates and test their statistical significance. 

Companies A B C D E F G H I J K L 

Output 64 71 53 67 55 58 77 57 56 51 76 68 

 

(c) Find the coefficient of multiple determination and the unexplained variation in 

output 

7.0 REFERENCES/FURTHER READINGS 

Gujarati, D.N. & Sangeetha (2007). Basic Econometrics. The MacGraw-Hill, New 

Dehi, India. 

 

UNIT 4: STATISTICAL TESTS OF SIGNIFICANCE 

1.0 Introduction 

2.0 Objective 

3.0 Main Content 

3.1 Statistical Test of the OLS Estimates of a Simple Regression 

3.2 Statistical Test of the OLS Estimates of a Simple Regression 

4.0 Conclusion 

5.0 Summary 

6.0 Tutored-Marked Assignment 

7.0 References 

1.0 INTRODUCTION 
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Under the assumptions of the CLRM, we know that the estimators ̂ and ̂  obtained 

by OLS follow a normal distribution with means a and β and variances 2

̂  and 2

̂
 , 

respectively. This test involves the means and variances of the estimates of the 

parameters. 

2.0 OBJECTIVES 

At the end of this unit students should be able to: 

• Test the statistical significance of the OLS estimates of simple regression 

• Test the statistical significance of the OLS estimates of multiple regression 

• Construct confidence interval of parameter estimates 

 

 

3.0 MAIN CONTENT 

3.1 Statistical Tests of Significance of the OLS Estimates of a Simple Regression 

3.2 Statistical Tests of Significance of the OLS Estimates of a Simple Regression 

 

3.1 Statistical Tests of Significance of the OLS Estimates of a Simple Regression 

After the estimation of the model in the previous sub-unit, we need to test the 

explanatory power or the goodness of fit of the model, as well as the statistical 

reliability/significance at a given level in respect of bi (i = 0,1,2,…n). 

This is achieved using the following tests: 

i. Coefficient of determination, r2. 

ii. Standard error test 

iii. Z and t-statistic (test) 
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3.1.1. R2 and the Simple Regression Line  

The coefficient of determination, r2, is used in determining the goodness of fit of the 

regression line obtained using the OLS method. That is, it is used in testing the 

explanatory power of the linear regression of Y on X. 

Thus, in order to determine the degree to which the explanatory variables is able to 

explain the variation in the dependent variable, Y, the r2provides a useful guide. 

If we measure the dispersion of observations around the regression line, some may be 

closer to the line while others may be far away from it. Our argument is that the closer 

these observed values are to the line, the better the goodness of fit. On the basis of this, 

we may turn out to state that changes in the dependent variable, Y, is explained by 

changes in the explanatory variable, X. to know precisely the extent to which the total 

variation in Y is explained by the independent variable, X, we compute the value of r2 

as the ratio of explained variation to total variation. That is,  

      r2 = Explained variation/ Total variation = 
2

2

y

y




…………………….(1.4.1) 

However, the coefficient of determination, r2 is also expressed as: 

      
2

2

2 2

( )xy
r

x y
=

 

 or 
12

2

b xy
r

y
=



…………………………………..….(1.4.2)  

The first expression of equation (1.4.2) shows that r2 determines the proportion of the 

variation in Y which is explained by variation in X. 

If for instance, r2 = 0.75, it means that 75% of the variation in Y is due to the variation 

in X, while 25% of the variation is explained by the disturbance term, U. Thus, this 

regression line gives a good fit to the observed data. 

If, however, r2 = 0.45, it means that only 45% of the variation in Y is as a result of 

variation in X while 55% of the variation is due to the disturbance term. This is a poor 

indication and the regression line does not give a good fit to the observed data. If r2 is 

0.5 and above, it shows a good fit while a value of r2 less than 0.5 shows poor fit. 

Note that the r2 is much of relevance when the estimated model is used for forecasting. 

Note also that the value of r2 = 0 signifies that the independent variable cannot explain 

any changes in the dependent variable, hence variation in the independent variable has 

no effect on the dependent variable. 

Using the data on Table 1.6 with the r2 formulae, where ∑y2 = 646 



52 

 

      
2

2

2 2

( )xy
r

x y
=

 

    or  
12

2

b xy
r

y
=



  

       

2
2

2

(81)

18(646)

0.56

r

r

=

=

            or     
2

2

4.5(81)

646

0.56

r

r

=

=

 

This implies that 56% of the variation in Y is due to the variation in X, while 44% of 

the variation is explained by the disturbance term, U. Thus, this regression line gives a 

good fit to the observed data. 

3.1.2 The Coefficient of Multiple Determination (
1 2

2

.Y X XR ) 

When the explanatory variables are more than one then we have a situation called 

coefficient of multiple determination. This can be obtained by taking the square of 

correlation coefficient. That is why it is also called squared multiple correlation 

coefficient. The coefficient of multiple determination is designated R2, with subscripts 

the variables whose relationship is under study. For example, in the three-variable 

model, the squared multiple correlation coefficient is 
1 2

2

.Y X XR . As in the two-variable 

model, R2
 shows the proportion of the total variation of Y explained by the regression 

plane, that is, by changes in X1 and X2. 

1 2

2 2 2 2 2

2 2

2

2. 2

( )
1

( )
Y X XR

Y

y Y Y e y e

y Y y y

− −
= = = − =

−

    
   

…………….(1.4.3) 

Given the relationship between bi and R2, equation (1.48) can be written as: 

 
1 2

1 1 2

.

22

2Y X XR
b x y b x y

y

+
=
 


………………………………………….(1.4.4) 

 The value of R2 lies between 0 and 1. The higher the value of R2, the greater the 

proportion of variation of Y explained by the plane, that is the better the ‘goodness of 

fit’ of the regression plane to the sample observations. The closer the coefficient of 

multiple determination (R2) to zero the worse the fit of the regression plane. 
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The above formula for R2 does not take into consideration the loss of degrees of freedom 

from the introduction of additional explanatory variables in the function. An adjusted 

expression of R2 is discussed in the next section. 

 

3.1.3. Statistical Significance of bi using the Standard Error Test 

To use this test, it is important to know the mean and variance of the parameter estimates 

0b and 
1b . It has been established that the mean and variance of 

0b and 
1b are respectively: 

         E( 0b ) = b0  var 0b = [ 0b - b0] = 
2 2

2

i

i

u x

n x

 


 ………………………..(1.4.5) 

        E( 1b ) = 1b   var 1b  = [ 1b -b1] = 
2

2

i

u

x




………………………………(1.4.6) 

The standard error test enables us to determine the degree of confidence in the validity 

of the estimate. That is, from the test, we are able to know whether the estimates 0b and 

1b are significantly different from zero. The test is mainly useful when the purpose of 

the research is the explanatory (analysis) of economic phenomena and estimation of 

reliable values. 

We formally start by stating null hypothesis: (H0): 0b = 0  

Against the alternative hypothesis: H1: 0b ≠0 

The standard error for the parameter estimates 0b and 1b are respectively computed as 

shown: 

i. S( 0b ) = 0var( )b =
2 2

2

U i

i

x

n x

 


……………………………………..(1.4.7) 

But 
2

2

2

i

U

e

n
 =

−


 

 

2 2

0 2
( )

( 2)

i i

i

e x
S b

n n x
=

−

 


…………………………………………………..(1.4.8) 
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ii. 
2

1 1 2
( ) var( ) U

i

S b b
x


= =


= 

2

2( 2)

i

i

e

n x−




……………………………...(1.4.9) 

When the numerical values for the 0( )S b and 
1( )S b are each compared with the numerical 

values of 
0b  and

1b , the following decision rules apply: 

 

Decision Rules 

i. If (bi) < ½(bi), we reject the null hypothesis and conclude that 1b is statistically 

significant. 

ii. If on the other hand, S(bi) > ½(bi), we accept the null hypothesis that the true 

population parameter bi = 0. This concludes that the estimate is not 

statistically significant. Therefore, change in X has no effect on the values of 

Y. 

The acceptance of the null hypothesis has economic implication. Thus, the 

acceptance of the null hypothesis, say 1b  = 0 implies that the explanatory variable to 

which this estimate relates does not influence the dependent variable, Y, and should 

not be included in the function. This situation renders the relationship between Y 

and X, hence the regression equation is parallel to axis of the explanatory variable, 

X. In this case, 0 0i iY b X= +  or 0iY b= . The zero slope shows that no relationship 

exists between Y and X. 

Similarly if the null hypothesis of 0b = 0 is accepted, on the basis that 0 0( ) 1/ 2S b b , 

it implies that the intercept of this regression line is zero. Therefore, the line passes 

through the origin. In this case, the relationship between Y and X will be 10i iY b X= +  

or 1i iY b X= . The two situations are diagrammatically presented as show in Figure 

1.5 

 

  Y             Y 

         1i iY b X=  

          

           0iY b=  
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     X     X 

    Figure 1.5:  (a) 1 0b =              (b) 0 0b =  

Example  

Refer to the example on the regression analysis, the r2 and the standard errors, 
0( )S b and 

1( )S b are as computed: 

From the computed values of the table, 

 ∑xiyi = 81; ∑xi
2 = 18; ∑yi

2 = 646; ∑ei
2 = 281.5; n = 8; K = 2 where K = degree of 

freedom 

 
2

2

2 2

( )xy
r

x y
=

 

= 

2
2

2

(81)

18(646)

0.56

r

r

=

=

 

Hence X is a fairly good predictor of Y. About 56% of the variation in the dependent 

variable, Y is explained by variation in the explanatory variable, X, while 44% of the 

variation is due to the disturbance term, U. Thus, the regression line fairly gives a good 

fit to the observed data. 

On the statistical significance of the parameter estimates, we compute: 

2 2

0 2
( )

( 2)

i i

i

e x
S b

n n x
=

−

 


 = 
281.5(530)

13.14
(8 2)(8)(18)

=
−

  

2

1 2
( )

( 2)

i

i

e
S b

n x
=

−




 = 
281.5

1.61
(8 2)

=
−

 

 

Thus, the result of our regression may be presented formally as: 

19 4.5i iY X= + …………………………………………………(1.4.10) 

      (13.14) (1.61)  

      R2 =0.56, n = 8 

From the above estimated result, 
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0 19b = , 
1 4.5b = , 

0( ) 13.14S b = , 
1( ) 1.61S b =  

Therefore, 01/ 2( ) 9.5b =  and 11/ 2( ) 2.25b =  

Thus, 
0 0( ) 1/ 2( )[13.14 9.5]S b b   and we accept the null hypothesis that

0 0: 0H b = . This 

shows that 
0b is not statistically significant. 

Similarly, 1 1( ) 1/ 2( )[1.61 2.25)S b b  and we reject the null hypothesis. Thus, the 

estimate 
1b is statistically significant. 

Note: the acceptance and meaningful interpretation of econometric result entails a 

combination of high r2 and low standard errors.  

 

 

 

3.1.4 Z and t-statistic Test 

i. Z-test of Statistical Significance of OLS Estimate 

The z-test is employed when the sample size is sufficiently large (i.e. n > 30). It could 

be applied whether the population variance is known or not. The z-test is applied using 

the formula: 

 1

1( )

b
z

S b
 = …………………………………………………………(1.4.11) 

Where z* is the calculated z which is to be compared with the z table (theoretical value 

of z) at a given level of significance, say 5%. 

Decision Rule 

If -z < z* < +z at 0.025, we accept the null hypothesis that 0 1: 0H b = , and conclude that 

our estimate is not statistically significant. 

If however, z* > z, then we accept that 1 1: 0H b  , and conclude that our estimate is 

statistically significant (Koutsoyannis, 1977). 

 

Example: 



57 

 

As an illustration, consider an estimated function from a sample of 50 observations in 

the form: 15. 6.8i iY X= +  

  (2.8) (1.05) 

To conduct Z test for the estimates 
0b and 

1b  at 5% level of significance, we proceed as 

follows: 

H0: ib =0 (Null hypothesis) 

H1: ib ≠0 (Alternative hypothesis 

Z*= 0

0( )

b

S b
= 15/2.8 = 5.36 ( 0b ) 

Z* = 1

1( )

b

S b
 = 6.8/1.05 = 6.48 (for 1b ) 

Z table at 5% level of significance = 1.96 

For 0b  Z* (5.36) > Z-table (1.96); and for 1b , Z* (6.48) > Z-table (1.96) 

Therefore, we reject the null hypothesis, and conclude that estimates 0b  and 1b  are 

statistically significant at 0.05 level. 

ii. t-Test of Significance of ib  

The student’s t-test is used when the sample size is small (i.e. n < 30) provided that the 

population parameter follows a normal distribution. With this n view, and taking degree 

of freedom into consideration, we need to compare this with the theoretical t, at a given 

level of significance say 5%. 

Our null and alternative hypotheses are respectively formulated thus: 

H0: ib = 0 

H1: ib ≠ 0 

Following a normal distribution, our t is computed as follows: 

t* = 
( )

i

i

b

S b
…………………………………………………………(1.4.12) 
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As stated previously, the empirical t (t*) value is compared with the t-table (tc) with n-

k degree of freedom, given a 5% level of significance. 

Decision Rule: 

If –t0.025 < t* < t0.025 (with n-k degree of freedom), we accept the null hypothesis, and 

conclude that our estimate ib  is not statistically significant at 0.05 level of significance. 

If however, t* > t0.025, we reject the null hypothesis, and accept the alternative 

hypothesis. This concludes that the estimate 
ib  is statistically significant. 

Example: 

Given a sample size of n = 18, the model was estimated to be: 

21 0.75i iY X= +  

        (10.2) (1.4) 

We wish to test the statistical reliability of 0b  and 1b  respectively. 

From the estimated model, 

0b   = 21, 0( )S b = 10.2; 1b = 0.75, 1( )S b = 1.4 

Therefore, t* = 0

0

( )

( )

b

S b
= 21/10.2 = 2.06 (for 0b ) 

       t* = 1

1

( )

( )

b

S b
= 0.75/1.4 = 0.54 (for 1b ) 

The critical value of t for (n-k) or 8 – 2 = 16 degree of freedom [t0.025(16)] are: 

t0.025(16) = -2.12 and +2.12. 

For the estimate 0b , we see that t* < t0.025(n-k) [2.06 < 2.12), we accept the null hypothesis 

and conclude that the estimate 0b  is not statistical significant. 

In the case of estimate 1b , since t* < t* < t0.025(n-k) [0.54 < 2.12), we also accept the null 

hypothesis and conclude that 1b  is not statistically significant at 5% significant level. 

3.1.5 Confidence Interval for the Parameter Estimates 

a. Confidence for Z-statistic 
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The construction of confidence intervals for the estimates 
0b  and 

1b enables us to state 

how close to these estimates the true parameter lies. It shows the limiting values within 

which the true parameter is expected to lie within a certain degree of confidence. 

In econometrics, we usually chose 95%. This implies that the confidence limit 

computed from a given sample would include from a population parameter in 95% of 

the cases. That s, we are 95% confident that our parameter estimates represent the true 

population parameter. 

Using the Z-distribution, the 95% confidence interval for the parameters 
ib  is 

constructed as follows: 

 1.96( ) 1.96( )i i i i ib Sb b b Sb−   + ……………………………………….(1.4.13) 

This means that the unknown population parameter 1b  will lie within the limits 95 times 

out of 100. 

Example: 

From the previous regression model, equation (1.2.12): 

 19 4.5i iY X= +  

     (13.14) (1.61) 

And choosing 95% for the confidence coefficient, our confidence interval for b0 is: 

0b  - 1.96 0( )Sb  < b0 < 0b  + 1.96 0( )Sb  

19 – 1.96 (13.14) < b0 < 19+ 1.96 (13.14) 

-6.75 < b0 < 44.75 

This implies that the true population parameter b0 will lie between -6.75 and 44.75 with 

a probability of 0.95.  

Similarly, the confidence interval for b1 is constructed as shown: 

1b  - 1.96 1( )Sb  < b1 < 1b  + 1.96 1( )Sb  

4.5 – 1.96 (1.61) < b1 < 4.5+ 1.96 (1.61) 

1.34 < b0 < 7.66 
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We also conclude that the true population will lie between 1.34 and 7.66 with a 

probability of 0.95. 

b. Confidence interval for the t-statistic 

The confidence interval for t-statistic is also constructed the same way as for the Z-

distribution. The difference is that the t-distribution uses n-k degree of freedom. Thus, 

the 95% confidence interval for the parameter estimates bi is constructed as follows: 

 
0.025 0.025( ) ( )i i i i ib t Sb b b t Sb−   + ……………………………………(1.4.14)  

with n-k degree of freedom. 

 

 

Example: 

From a sample of 20, if the estimated model was: 

 13.25 1.8i iY X= +  

     (6.04) (0.35) 

The 95% confidence interval for the parameter estimates is constructed as shown:  

d.f = 20 – 2=18 

For 0b : 0b -2.101 0( )Sb < b0 < 0b + 2.101 0( )Sb  

 13.25 – 2.101(6.04) < b0 < 13.25 + 2.101(6.04) 

 0.560 < b0 < 25.94 

This shows that the true population parameter b0 (or the intercept) will lie between 0.56 

and 25.94 with a probability of 0.95. 

For 1b : 1b - 2.101 1( )Sb < b1 < 1b + 2.101 1( )Sb  

1.8 – 2.101(0.35) < b1 < 2.101(0.35) 

1.064 < b1 < 2.535 

This implies that the value of true parameter b1 will be between 1.064 and 2.535, given 

a probability of 0.95. 
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SELF ASSESSMENT EXERCISE 

Explain confidence interval in relation to the how close to the estimate the true 

parameter lies. 

3.2 Statistical Test of Significance of the OLS of a Multiple Regression 

3.2.1 The Adjusted Coefficient of Multiple Determination (
1 2

2

.Y X XR ) 

Worthy of note is that the inclusion of additional explanatory variables does not in any 

way reduce the R2 and rather raise it. When new explanatory variables are included in a 

model, the numerator of R2 equation increases, while the denominator remains the same 

because total variation (∑y2) is given in any particular sample.  

In order to correct for such defect, the R2 is adjusted by taking into consideration the 

degrees of freedom, which clearly decrease as new explanatory variables are introduced 

in the function. The expression for the adjusted R2 is: 

 

2

2

2

2

1
1 (1 2)

/ ( )
1

/ ( 1)

R
n

R
n K

e n K
R

y n

−
= − −

−

 −
= −  

−  




…………………………………………..(1.4.15) 

R2 as usual is the unadjusted coefficient of multiple determination, n is the number of 

observations and K is the number of parameter estimated from the sample. 

3.2.2 The Mean and Variance of the Parameter Estimates ( 0b , 1b  and 2b ) 

The mean of the estimates of the parameters in the three-variable model is derived in 

the same way as the two-variable model. The estimates 0b , 1b  and 2b  are assume to be 

unbiased estimates of the true parameters of the relationship between Y, X1 and X2: 

their mean expected value is the true parameter itself. 

 0 0( )E b b= ,      1 1( )E b b= ,       2 2( )E b b= ………………………….(1.4.16) 
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The variances of the parameter estimates are obtained by the following formulae: 

          
2 2 2 2

1 2 2 1 1 2 1 22

0 2 2 2

1 2 1 2

21
var( )

( )
u

X x X x X X x x
b

n x x x x


 + −
= + 

−  

  
  

………………(1.4.17) 

2

22

1 2 2 2

1 2 1 2

var( )
( )

u

x
b

x x x x
=

−


  

……………………………………..(1.4.18) 

2

12

2 2 2 2

1 2 1 2

var( )
( )

u

x
b

x x x x
=

−


  

…………………………………….(1.4.19) 

Where 2

u  = ∑e2/(n-K), K being the total number of parameters which are 

estimated. In the there-variable model, K = 3. 

 

3.2.3 Test the Reliability/significance of the parameter estimates  

The conventional test of reliability of parameter estimates has been explained in the 

previous unit. This test includes the standard error test which is equivalent to the 

Student’s t-test. Here, a summary of the procedures is provided to guide the students on 

how to conduct hypothesis testing. 

Conventionally in econometrics usage, researchers test the null hypothesis H0: bi = 0 

for each parameter, against the alternative hypothesis H1: bi ≠ 0. The hypothesis under 

discussion is the two-tailed test at a chosen level of significance, usually at the 5 percent 

significant level. 

1. The standard error test 

The value of the standard error ( var( ))ib  is compared with the numerical values of the 

estimates and a decision is taken o the basis of the comparison. 
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(a) The null hypothesis is accepted if
( )

1/ 2( )
i

ib
s b ; that is, the estimate bi is not 

statistically significance at the 5 percent level of significance for a two-tailed 

test. 

(b) The null hypothesis is rejected while alternative hypothesis is accepted if 

( )
1/ 2( )

i
ib

s b ; that is, the estimate bi is statistically significance at the 5 percent 

level of significance for a two-tailed test. 

In conventional terms, the smaller the standard errors, the stronger is the evidence that 

the estimates are statistically reliable. 

2. The Student’s test of significance 

The student’s t ratio for each bi is computed as follows: 

( )

*

i

i

b

b
t

s
= …………………………………………………………(1.4.20) 

Equation (1.3.20) is the sample or observed t ratio which is compared with the 

theoretical value of t obtainable from the student’s t-table with n-K degrees or freedom 

(Koutsoyiannis, 1977).  

(a) If t* falls in the acceptance region; that is, if –t0.025< t* <t0.025(with n-K 

degrees of freedom), we accept the null hypothesis that b  is not statistically 

significant and hence the corresponding explanatory variable does not 

explain the variation in the dependent variable. 

(b) If on the other hand, t* falls in the critical region, we reject the null hypothesis 

that b  is statistically significant and hence the corresponding explanatory 

variable contributes to the explanation of the variation in the dependent 

variable. 

It is important to note that the greater the value of t*, the stronger is the evidence that 

b  is significant and vice versa. 
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SELF ASSESSMENT EXERCISE 

i.  Use the output of Table 1.10 and the estimated regression equation to estimate the   

    standard errors of the parameter estimates and test for their respective statistical     

    significance at 5 percent level of significance. 

ii. Use the same information in (i) to estimate the coefficient of multiple determination   

and interpret your result. 

4.0 CONCLUSION 

This unit discussed extensively the statistical significance of parameter estimates of 

both simple and multiple regression. The unit concludes that although, R2 and adjusted 

R2 are overall measures of how the chosen model fits a given set of data, their 

importance should not be overplayed. What are critical are the underlying theoretical 

expectations about the model in terms of a priori signs of the coefficients of the variables 

entering the model. 

5.0 SUMMARY 

This unit introduced the statistical significance of the parameter estimates to ascertain 

their reliability. The unit discussed the R2, statistical significance of α and β in terms of 

simple regression estimates and β0, β1 and β2 in terms of multiple regrssion. 

6.0 Tutor-Marked Assignment 

The following Table 1.11 shows the values of expenditure on clothing (Y), total 

expenditure (X1) and the price of clothing (X2). 

Year 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 

Y 3.5 4.3 5 6 7 9 8 10 12 14 

X1 15 20 30 42 50 54 65 72 85 90 

X2 16 13 10 7 7 5 4 3 3.5 2 

 

(1) (a) Find the least squares regression equation of Y on X1 and X2. 
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(b) Compute the coefficient of multiple determination and the standard errors of the 

estimated parameters and conduct tests of significance. 

(c) Construct 95 percent confidence intervals for the population parameters 

(2) The following results were obtained from a sample of 12 companies on their output 

(Y), labour input (X1) and capital input (X2), measured in arbitrary units. 

         ∑Y = 753            ∑Y2 = 48139           ∑YX1 = 40830 

         ∑X1 = 643           ∑X1
2 = 34843         ∑YX2 = 6796 

         ∑X2 = 106           ∑X2
2 = 976             ∑X1X2 = 5779 

(a) Find the least squares equation of Y on X1 and X2.  What is the economic meaning 

of your coefficients? 

(b) Given the following sample values of output (Y) in table 1.12, compute the standard 

errors of the estimates and test their statistical significance. 

Companies A B C D E F G H I J K L 

Output 64 71 53 67 55 58 77 57 56 51 76 68 

 

(c) Find the coefficient of multiple determination and the unexplained variation in 

output 

(d) Construct 99 percent confidence intervals for the population parameters.  

 

7.0 REFERENCES/FURTHER READINGS 

Mirer, T.W. (1995). Economic Statistics and Econometrics (Third Edition), Prentice-

Hall Inc, London. 
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MODULE 2: ECONOMETRIC PROBLEMS, BASIC IDEAS OF THE 

IDENTIFICATION PROBLEM AND SIMULTENEOUS EQUATION 

ESTIMATION METHODS  

Unit 1: Econometric Problems (Heteroscedasticity, Autocorrelation and 

Multicollinearity) 

Unit 2: Basic Ideas of the Identification Problem, Dummy variables and Distributed lag 

Models 

Unit 3: Simultaneous Equation Estimation Methods (2SLS, 3SLS, etc) 

Unit 4: Matrix treatment of Multiple Regression and Advanced treatment of 

Simultaneous Equation Estimation Techniques 

UNIT 1: ECONOMETRIC PROBLEMS 

1.0 Introduction 

2.0 Objectives 

3.0 Main Contents 

3.1 Heteroscedasticity: Causes, Detection, Consequences and Correction 
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3.2 Autocorrelation: Detection, Consequences and Correction 

3.3 Multicollinearity: Detection, Consequences and Correction 

4.0 Conclusion 

5.0 Summary 

6.0 Tutor Marked Assignment  

7.0 References/Further Readings 

• INTRODUCTION 

In the previous units, we stated that the third stage in any econometric research is the 

evaluation of the reliability of the estimates of the parameters. After the estimation of 

the parameters with the OLS method or any other econometric technique, there is need 

to establish how trustworthy these estimates are. The evaluation is on the basis of three 

criteria. Firstly, is the a priori economic criterion, which is determined by the postulates 

of economic theory and relate to the sign and magnitude of the parameters. Secondly, 

statistical criteria otherwise known as the first-order tests, defined by statistical theory. 

Thirdly, econometric criteria, also known as second-order tests, defined by econometric 

theory. 

2.0 OBJECTIVES 

At the end of this unit, students should be able to: 

• Examine econometric problems of heteroscedasticity, autocorrelation and 

multicollinearity: their causes, detection, consequences and correction. 

• Identify the basic ideas of identification, dummy variables and distributed lag 

models.  

• Explain simultaneous equation estimation methods (2SLS, 3SLS etc.). 

• Discuss matrix treatment of multiple regression and advance treatment of 

simultaneous equation estimation techniques 

 

3.0 MAIN CONTENT 

3.1 Heteroscedasticity 

3.1.1 Meaning of Heteroscedasticity 
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Heteroscedasticity is an econometric problem which arises as a result of the violation 

of the assumption of homoscedasticity. Recall that the variance of each disturbance term 

in a given model is the same (constant) [homoscedastic] for all values of the explanatory 

variables. That is, var(u) = E[(ui – E(u)}2  = σu
2, which is constant. 

If however, this assumption s violated, then:  

                         var(ui) = σu
2 (not constant) 

where the subscript I signifies that the individual variances of u may all be different 

(Koutsoyiannis, 1977). 

According to Mirer (1995), Heterohcedasticity is the situation in which the standard 

deviations of the disturbances are not the same for all observations. This often arises in 

the analysis of cross-section data, although t may be present n time-series data also.  

Heteroscedasticity manifests itself with the variance of the u’s tending to change with 

changes in the values of the regressors. 

3.1.2 Causes of Heteroscedasticity 

Heteroscedasticity may be attributable to the following factors: 

i. Error of specification due to the non-inclusion of all relevant regressors in the equation 

of the model. 

ii. Accumulated error of measurement which tends to increase over time. This makes 

the variance of ui to increase with increase in the value of X. 

3.1.3 Consequences of heteroscedasticity in a model 

i. the presence of heteroscedascity disturbance terms render the formula for variances 

of parameter estimates for conducting test of significance rather difficult. More also, 

confidence intervals cannot be constructed with ease. 
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ii. Since it is no longer constant, it is not possible to factor out the variance to ease 

further computation. Sequel to the above, the test of significance using the t or z will 

yield inaccurate result. 

iii. The presence of heteroscedacity renders the OLS estimates (parameter estimates) 

inefficient. Thus, the property of minimum variance in the class of unbiased estimates 

no longer holds for these parameters. 

iii. The explanatory power of the regressor(s) will be affected. Predictions based on the 

estimates of the paraneters will no longer be accurate. 

3.1.4 Test for Detection of the Presence of Hetroscedasticity 

To test for the presence of heteroscedasticity or otherwise, various devices are used. 

Such tests include: 

i. Spearman’s Rank correlation tes 

ii. The Goldfeld and Quandt test 

iii. The Glejser test 

1. The Spearman’s Correlation Test 

This test can be applied to either small or large samples. N applying the test, the 

following procedures hold: 

(a) Y is regressed on X, and the value of the individual e’s obtained. 

(b) These values (e’s) are ordered (from smallest to highest) on the basis of its absolute 

values (i.e. ignoring the signs) together with the X values either in ascending or 

descending order of magnitude (in terms of their positions in the data) and we compute 

the rank correlation coefficient using: 

        
2

2

6
1

( 1)

d
r

n n
 = −

−


……………………………………………….(2.1.1) 

n = number of observations; d = rank difference 
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A high value of r  suggests the presence of heteroscedasticity while a low value suggest 

its absence. 

For the case of more than one explanatory variable, we perform the rank correlation 

between e’s and each of the explanatory variable separately. 

2. The Goldfeld and Quandt Test 

This test is mainly used for large sample sizes. It is based on the assumption that: 

i. ui is a normal distribution with zero mean and standard deviation, σu
2 i.e. 

          ui~n(0, σu
2) 

ii. No serial dependence of ui or correlation between the u’s and X’s, i.e. 

          E(ui uj) = 0; E(ui Xi) = 0 

To conduct this test, we proceed as follows: 

(a) Order the observations according to the magnitude of the explanatory variable X (in 

ascending order). 

(b) Select arbitrarily a certain number, C (central observations) which we need to omit 

from the analysis. Note; it has been observed that for n = 30, the number to be omitted 

= 8; for n = 60, the number = 16. If n ≥ 30, the number of central observations to be 

omitted is approximately equal to ¼ of n. The remaining (n - c) observations are divided 

into two sub-samples of equl size (n-c/2), one including the small values of X and the 

other including large values of X. 

(c) Regress each sub-sample and obtain the sum of squared residuals from each, such 

that: 

          Σe1
2 = Residuals from the sub-sample of low values of X’s with [(n – c)/2] – K 

degree of freedom, where K = number of parameters in the model. 
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         Σe2
2 = Residuals from the sub-sample of high values of X’s with [(n – c)/2] – K 

degree of freedom. 

Using F ratio, the value is: 

          F* = Σe2
2/ Σe1

2……………………………………………………(2.1.2) 

Decision Rule: 

If F* > F-table, we accept that there is heteroscedasticity (i.e. reject null hypothesis, H0: 

ui’s are homoscedastic). 

If however, F* < F-table, then we conclude that ui’s are homoscedastic. 

Thus, the larger the F ratio (F*), the stronger the heteroscedasticity of the ui’s. 

3. The Glejser Test  

This test involves the performance of the following regressions: 

(i) Y on X’s and computes the residuals, e’s. 

(ii) We regress the absolute values of e’s (│e’s│) on the explanatory variable with 

which σui2 is thought on a priori grounds, to be associated. 

The actual form of this regression is usually not known, so that one may experiment 

with various formulations, containing various powers of X. hence, the first tests are 

preferred to this. 

Example: 

Considering personal savings and personal income of a certain community over a 31 

year period shown in Table 2.1:  

                                             Table 2.1 

Period 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
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Saving (NM) 10 12 8 14 15 7 11 16 18 20 13 17 6 5 19 24 

Income(NM) 54 60 38 63 65 32 56 68 72 80 64 70 30 25 75 84 

Period 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31  

Saving(NM) 25 26 27 30 32 35 28 29 21 22 23 33 34 38 40  

Income(NM) 87 88 92 95 100 104 96 97 78 85 89 93 94 110 120  

 

Question: Use Goldfeld and Quandt to test for the presence or otherwise of 

heteroscedasticity. 

Solution: 

Income = X, Saving = S 

Using Goldfeld and Quandt test, we order the observations n ascending order of the X’s 

and omitting the central observations, we are left with two sub-samples of data, one 

with the lower values of X and one with the higher values of X as shown below in Table 

2.2: 

                                           Table 2.2 

X 25 30 32 38 54 556 60 63 65 68 70 72 75 78 80 

S 5 6 7 8 10 11 12 14 13 16 17 18 19 21 20 

X 84 85 87 88 89 92 93 94 95 96 98 100 104 110 120 

S 24 22 25 26 23 27 33 34 30 28 29 32 35 38 40 

 

Dividing the observations into two sub-sets after omitting the nine central observations, 

we have as presented in Table 2.3 below: 
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                                                Table 2.3 

n1 S1 XL n2 S2 XH 

1 5 25 12 23 89 

2 6 30 13 27 92 

3 7 32 14 33 93 

4 8 38 15 34 94 

5 10 54 16 30 95 

6 11 56 17 28 96 

7 12 60 18 29 98 

8 14 63 19 32 100 

9 13 64 20 35 104 

10 15 65 21 38 110 

11 16 68 22 49 120 

We regress the following: 

S1 = f(XL) → S = a0 + a1X1…………………………………(i) 

S2 = f(XH) → S = b0 + b1X2………………………………...(ii) 

Where XL = X1 and XH = X2 

From equation (i),  

                
1

1 2

1

sx
a

x
=



 and 0 1 1 1a S a X= −  

Similarly, from equation (ii),  
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                2

1 2

2

sx
b

x
=



 and 0 2 1 2b S b X= −  

Continue to get Σe1
2; Σe2

2 

Then F* = Σe2
2/ Σe1

2 

F-table with V1 = V2 = n-c-2K/2 d.f = 31-9-2(2)/2 = 9 

F* = 3.18 

Since F*(3.1) < F-table (9), we conclude that the u’s are homoscedastic.  

Example: 

Test using rank correlation 

(i) Using a given data set, regress the dependent variable on the independent variable, 

say X 

(ii) obtain the e’s 

(iii) Rank the X values and the e’s (ignoring the sign of e) in either ascending order or 

descending order and using the formula,
2

2

6
1

( 1)

d
r

n n
 = −

−


, we get the correlation between 

the e’s and the X’s, and conclude appropriately.  

Illustration: 

The following data is in respect of quantity demanded, D and price, P, of a commodity 

in a certain period shown in the Table 2.4 below: 

                                                   Table 2.4 

D 24 30 33 36 45 48 54 57 60 63 66 60 

P 48 45 45 36 39 30 27 24 18 15 9 6 
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If D = a0 + a1P + U; 74.50 0.90D P= − . The P’s and the e’s are also tabulated in Table 

2.5 below: 

                                                   Table 2.5 

D 24 30 33 36 45 48 54 57 60 63 66 60 

D  31.3 34 34 42.1 39.4 47.5 50.2 52.9 58.3 61 66.4 69.1 

E -7.3 -4 -1 -6.1 5.6 0.5 3.8 4.1 1.7 2 -0.4 -9.1 

P 48 45 45 36 39 30 27 24 18 15 9 6 

 

Taking the absolute values of e and rank the respective /e/ and P, we have the following 

in Table 2.6: 

RP 1 2.5 2.5 5 4 6 7 8 9 10 11 12 

Re 2 5 10 3 4 11 7 6 9 8 12 1 

D -1 2.25 -7.5 2 0 -5 0 2 0 2 -1 11 

d2 1 6.25 56.25 4 0 25 0 4 0 4 1 121 

RP = Rank of P; Re = Rank of e 

∑d2 = 222.5; n = 12 

∴ 
2

2

6
1

( 1)

d
r

n n
 = −

−


 = 

2

6(222.5)
1 1 0.778 0.22

12(12 1)
− = − 

−
 

This value of r! Shows a weak correlation between the explanatory variable, P and the 

residuals, e. thus, there is the absence of heteroscedasticity in the model. 

3.1.5 Solutions for Heteroscedasticity 

For a given model, heteroscedastic disturbance term can be corrected by transforming 

the original model n a way to obtain a form in which the transformed disturbance terms 

have constant variances. 

Supposed we concluded that the disturbance terms in the regression model:               Yi 

= b0 + b1Xi + ui are homoscedastic as specified as:  
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 σui = σXi,…………………………………………………………….(2.1.3) 

 where σ stands simply as a constant of proportionality. 

Suppose we have concluded that the disturbance terms in Yi = b0 + b1Xi + ui are 

heteroscedastic. In this case the technique for estimating the coefficients is straight 

forward to apply. The object is to re-specify the original model in such a way that the 

resulting disturbance terms are homoscedastic (i.e., free from heteroscedasticity) 

The first step is to divide through the original model (Yi = b0 + b1Xi + ui) by Xi, the 

measure to which σ(ui) is proportional to (2.3). Letting ∈i = ui/Xi, this yield: 

             0 1

1i
i

i i

Y
b b

X X

   
= + +   

   
……………………………………………..(2.1.4)  

Equation (2.1.4) is simple regression specification with regressand and regressor given 

in brackets. Note that the original intercept b0 is the slope coefficient here, and the 

original slope b1 appears as the intercept. Now, since Xi is fixed for each observation, 

the transformation ∈i = (1/Xi)ui is a simple case of a linear transformation. Substituting 

from (2.1.3), we see that: 

 
1 1

( ) ( )i i i

i i

u X
X X

    = = = ……………………………………….(2.1.5) 

For Xi > 0. Thus (2.4) specifies a regression model that is free from heteroscedasticity. 

Since the ϵi satisfy all the regular disturbance terms assumptions, OLS can be used to 

make estimates b0 and b1 that are unbiased, efficient and consistent (Mirer, 1995). 

The transformed model can then be estimated using OLS method. The transformation 

technique to be adopted depends entirely on the nature of the relation between the 

variances of the disturbance term, σu
2 and the values of the explanatory variables(s). 

Generally, we transform the original model by dividing the original relationship by the 

square root of the term, which is responsible for the homoscedasticity. 

SELF ASSESSMENT EXERCISE 
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Define heteroscedasticity and its causes, consequences, detection and solutions. 

3.2 Autocorrelation 

 3.2.1 Meaning of Autocorrelation 

The term “autocorrelation” or “serial correlation” refers to a situation which arises when 

the value of the disturbance term u n any particular period is correlated with its own 

preceding value (Koutsoyiannis, 1977). In the words of Mirer (1995), autocorrelation 

is a situation which successive disturbances are related to each other rather than 

independent. Almost by definition, this is time-series problem, because the ordering of 

the observations plays a very special role. Accordingly, in this sub-unit, we use t as a 

subscript (instead of i) to index individual observations. 

The circumstance surrounding time-series models make autocorrelation a plausible 

occurrence in many cases. Recall that one of the factors contributing to the disturbance 

term in a regression model is error of measurement for the dependent variable. 

Measurement errors may be serially correlated because data-gathering techniques may 

be modified gradually over time. A second factor usually contributing to te disturbance 

term is the exclusion of some unimportant explanatory variables. Each of these is likely 

to vary systematically with time, and their combination may be serially correlated 

(Mirer, 1995). 

One of the assumptions with respect to the disturbance term discussed n the previous 

unit s that, the successive values of the random term u are temporarily independent. 

This assumption implies that the covariance of ui and uj is equal to zero: 

 Cov(ui uj) = E{[ui – E(ui)][uj – E(uj)]} 

        = E(uiuj) = 0   (for i≠j)  

If however, this assumption is not satisfied, i.e. cov(ui uj) ≠0 we say that there is 

autocorrelation or serial correlation of the random variable. T is the violation of the zero 

covariance of the disturbance term. 
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Auto correlation is a special case of correlation. It is a relationship between the 

successive values of the same variable. The autocorrelation of the u’s is similar to the 

concept of correlation in general.  

Consider the simple linear regresson model: 

 Yt = b0 + b1Xt + ut …………………………………………..(2.1.6) 

Under the assumption of normal regression model, the disturbance terms are 

independent. This means the probability of different values occurring for one period’s 

disturbance term is not affected by the value that occurred for the previous period’s 

disturbance term.  

In order to understand the consequences of this situation and to take corrective 

measures, we need to develop a formal model of autocorrelation. There are varieties of 

ways in which the disturbance terms may be related, and each requires a separate 

analysis we examine only the most common one.  The model of first-order 

autocorrelation starts with the regression model in (2.6). The disturbance term ut is 

assumed to be related to the previous period’s disturbance term according to:  

 ut = ρut-1 + vt    0 < ρ < 1……………………………………….(2.1.7) 

where ρ = first order autocorrelation coefficient and v = random variable. 

This gives the relationship between the u’s in the form ut = f(ut-1) 

3.2.2 Test for Autocorrelation 

To test for the presence or absence of autocorrelation in a model, we begin by: 

(i) Plotting the values of the regression residuals e’s on a scatter diagram.  

 [Note; the e’s are estimates of the true values of u] 

If these show certain pattern, it suggests autocorrelation of the u’s. 
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(ii) Another way of obtaining a rough idea of autocorrelation is to plot the residuals 

e’s against time. If the e’s in successive periods show a regular pattern, one concludes 

that auto correlation exists in the given function.  

A case of positive autocorrelation is seen in Figure 1.1(a) where several positive e’s are 

followed by several negative e’s. 

If however, the e’s assume positive and negative signs in successive time periods, the 

autocorrelation is negative. This is shown in Figure 1.1(b) 

  et (+ve)            (a)             et (+ve)         (b) 

            e3          e4 e1              e3               e5 

         0       1     2e2     3     4   5e5 Time       0     1    2     3     4    5      6  Time 

     -ve      e1       -ve         e2                                        e6 

              e4 

  Figure 2.1: +ve autocorrelation            -ve autorrelation  

i. The degree to which the e’s in one period s related to the e’s in another period 

is measured using: 
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−

=


 
…………………………………………(2.1.8) 

This s called first-order linear autocorrelation. 

In the regression result on Table 2.7, the values of et and et-1 are given as follows:  

      Table 2.7 

N et et-1 et
2 et-1

2 etet-1 

1 9 - 81 - - 
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2 4 9 16 81 36 

3 -2 4 4 16 -8 

4 11.5 -2 132.25 4 -23 

5 4 11.5 16 132.25 46 

6 1 4 1 16 4 

7 -5.5 1 30.25 1 -5.5 

8 1 -5.5 1 30.25 -5.5 

N = 8   281.5 280.5 44 

 

 
1

1

2 2

1

44
0.

281.5 280.5t t

t t

e e

t t

e e
r

e e
−

−

−

= = =


 
 

This shows that the autocorrelation of the disturbance term is 

ii. Formal Test for Autocorrelation: The Durbin Watson Test 

Durbin and Watson suggested a test which is applicable to only a small size, with n 

given in the range; 15 < d < 30. 

In this test, the first auto regressive scheme of the form: ut = ρut-1 + vt  is adhered to. 

The test may be outlined as follows: 

H0: ρ = 0, i.e. the u’s are not auto correlated with the first-order scheme 

H1: ρ ≠ 0, i.e. the u’s are serially correlated. 

The test is administered using the Durbin-Watson statistic: 
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e e
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=



……………………………………………(2.1.9) 
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Where d* is the empirical value of Durbin-Watson statistic. This value (d*) is compared 

with the theoretical value of “d” with K   degrees of freedom where K = number of 

explanatory variable(s), excluding constant term. 

The following decision rules apply: 

(i) Reject H0 if d* < dL, or d* > 4dL 

(ii) Accept H0 if dU < d* < (4 - dU) 

Where dL is the Durbin-Watson lower significance limit 

 dU is the Durbin-Watson upper significance limit   

Example: 

Assume a linear demand function: Dt = a0 ± a1Pt + ut, where P = price of the commodity 

and u = error form. 

The data in respect of the estimated demand and actual values are given in Table 2.8: 

  Table 2.8: Calculations for the Test of Autocorrelation 

tD  
tD  te  1te −  1t te e −−  2

te  2

1( )t te e −−  

24 31.3 -7.3 - - 53.29 - 

30 34 -4 -7.3 3.3 16 10.89 

33 34 -1 -4 3 1 9 

36 42.1 -6.1 -1 -5.1 37.21 26.01 

45 39.4 5.6 -6.1 11.7 31.36 136.89 

48 47.5 0.5 5.6 -5.1 0.25 26.01 

54 50.2 3.8 0.5 3.3 14.44 10.89 



82 

 

57 52.9 4.1 3.8 0.3 16.81 0.09 

60 58.3 1.7 4.1 -2.4 2.89 5.76 

63 61 2 1.7 0.3 4 0.09 

66 66.4 -0.4 2 -2.4 0.16 5.76 

60 69.1 -9.1 -0.4 -8.7 82.81 75.69 

62 70 -8 -9.1 1.1 64 1.21 

65 71.6 -6.6 -8 1.4 43.56 1.96 

64 73.5 -9.5 -6.6 -2.9 90.25 8.41 

68 72.8 -4.8 -9.5 4.7 23.04 22.09 

∑et
2 =481.07; ∑(et – et-1)2 = 340.75 

∴ 
2

1

2

( ) 340.75
* 0.708

481.07

t t

t

e e
d

e

−−
= = =



 

From the Durbin-Watson table, 1K  = and n = 16, dL = 1.10 and dU = 1.37 

Since 0.70 < dL, we reject the null hypothesis and conclude that the error terms are auto 

correlated. 

3.2.3 Sources of Autocorrelation 

Autocorrelation of the error terms arises under a number of different circumstances. 

Some of these include: 

(i) Mis-specification of the mathematical form of the model. 

Specification error arises here when instead of adopting a linear relation 

between the Y and the X, a nonlinear relationship is specified. Thus, a 

mathematical form which differs from the true form of the relationship makes 

the values of the u’s temporarily dependent. 



83 

 

(ii) Omission of explanatory variables 

The exclusion of an auto correlated variable from a set of explanatory 

variables renders the values of u’s dependent. This is because the influence 

of the omitted auto correlated variable will be captured by the error term, 

hence cause autocorrelation of the disturbance term. 

(iii) Mis-specification of the random variable  

This is also responsible for the autocorrelation of the disturbance term. If the 

true random variables are not correctly specified, the successive error terms 

will be correlated. 

(iv) Autocorrelation may also occur as a result of using interpolated values in our 

estimation. This leads to the interrelationship between the successive value 

of u’s, which exhibits autocorrelation patterns. 

3.2.4 Consequences of Autocorrelation 

Autocorrelation affects our estimation in the following ways: 

(i) The estimates of the parameter will not have statistical bias. The bias is 

necessary because even in the presence of autocorrelated residuals such 

parameter estimates will be statistically unbiased. In this respect, their 

expected values will be equal to the true population parameters (for example, 

bias in 1 1 2

( ) ( )
( ) 0

i i

i

x E u
E b b

x
= − = =




 

(ii) The OLS method cannot be successfully applied to the model whose 

disturbance terms are auto correlated. The application of this leads to the 

underestimation of their variances.  

(iii) The presence of autocorrelation renders the variance of the random term, u, 

underestimated. The underestimation becomes pronounced in the case of 

positive autocorrelation. 
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(iv) If the values of the u’s are serially correlated, the predictions based on the 

OLS estimates will be inefficient. That is, predictons with needlessly large 

sampling variances. 

It should be noted however, that auto correlation does not affect the properties of 

unbiasedness nor is the property of consistency necessarily affected. 

3.2.5 Solution for Autocorrelation 

Problem of autocorrelation is solved using the following methods: 

(i) Inclusion of variables in the set of the explanatory variables if the 

autocorrelation is due to omission of some variables. 

(ii) Changing the initial form of a given equation, if the autocorrelation is 

attributable to mis-specification of the mathematical form of the relationship. 

SELF ASSESSMENT EXERCISE 

Define autocorrelation as an econometric problem, stating the sources, consequences, 

detection and solutions. Why is autocorrelation an econometric problem associated with 

time-series? 

3.3 Multicollinearity 

3.3.1 Meaning of Multicollinearity 

One of the assumptions of least squares (classical linear) regression model is that there 

is no multicollinearity among the regressors included in the regression model. That I, 

the explanatory variables are not perfectly linearly correlated (rxixj ≠ 1).  

The term multicollinearity is due to Ragnar Frisch (1934) which originally meant the 

existence of a “perfect” or exact, linear relationship among some or all explanatory 

variables of a regression model Gujarati and Sangeetha, (2007).  

If the explanatory variables are perfectly linearly correlated, that is, if the correlation 

coefficient for these variables is equal to unity, the parameters become indeterminate: 
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it is impossible to obtain numerical values for each parameter separately and the method 

of least squares breaks down. At the other extreme, if the explanatory variables are not 

intercorrelated at all (i.e. if the correlation coefficient for these variables is equal to 

zero), the variables are called orthogonal (Note: orthogonal variables are the variables 

whose covariance is zero: Σxixj/n = 0) and there are no problems concerning the 

estimates of the coefficients, at least so far as multicollinearity is concerned. 

To understand multicollinearity, consider the following model: 

 0 1 1 2 2Y b b X b X u= + + + …………………………………………….(2.1.10) 

Where the hypothetical sample values for X1 and X2 are given below: 

 

  X1: 1    2    3    4    5    6 

  X2: 2   4    6    8   10   12 

From this, we can easily observed that X2 = 2X1. Therefore, while equation (2.1.10) 

seems to contain two explanatory variables X1 and X2 which are distinct, in fact the 

information provided by X2 is not distinct from that of X1. When this situation occurs, 

X1 and X2 are perfectly collinear (Dimitrios & Stephen, 2006). More formally, two 

variables X1 and X2 are linearly dependent if one variable can be expressed as a linear 

function of the other variable. When this occurs then the equation: 

 δ1X1 + δ2X2 = 0………………………………………………..(2.1.11) 

can be satisfied for non-zero values of both δ1 and δ2. In our example, we have         X2 

= 2X1, therefore (-2)X1 + (1)X2 = 0, so δ1 = -2 and δ2 = 1. Obviously, if the only solution 

in (2.1.11) is δ1 = δ2 = 0 (usually called the trivial solution), the X1 and X2 are linearly 

independent. The absence of perfect multicollinearity requires that (2.1.11) does not 

hold exactly. 
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In the case of more than two explanatory variables (let us take five), the case for linear 

dependence is that one variable can be expressed as an exact linear function of one or 

more or even all of the other variables. So this time, the expression: 

 δ1X1 + δ2X2 + δ3X3 + δ4X4 + δ5X5 = 0…………………………(2.1.12) 

can be satisfied with at least two non-zero coefficients. 

An application to better understand this situation can be given by the dummy variable 

trap. Take for example X1 to be the intercept 9so as X1= 1) and X2, X3, X4 and X5 to be 

seasonal dummies for quarterly time series data (i.e. X2 takes the value of 1 for the first 

quarter, zero otherwise; X3 takes the value of 1 for the second quarter, zero otherwise 

and so on). Therefore, n this case we have that, X2 + X3 + X4 + X5 = 1; and because X1 = 

1 then X1 = X2 + X3 + X4 + X5. So the solution is δ1 = 1, δ2 = -1, δ3 = -1, δ4 = -1, and δ5 = 

-1, and this set the variables is linearly dependent. 

In practice, neither the orthogonal X’s nor perfect collinear X’s is often met. In most 

cases there is some degree of interrelationships among the explanatory variables, due to 

the interdependence of economic magnitude over time. In this event the simple 

correlation coefficient will have a value between 0 and 1 and the multicollinearity 

problems may impair the accuracy and stability of the parameter estimates 

(Koutsoyiannis, 1977). 

3.3.2 Causes of Multicollinearity 

The following reasons may be attributed as the causes of multicollinearity in a model: 

1. There is the tendency for economic variables to move together over time. 

Economic magnitudes are influenced by the same factors and in consequences 

once these determining factors are in operative the economic variables show the 

same broad pattern of behaviour over time. For example, in the period of boom 

or rapid economic growth, the basic economic magnitudes grow, although some 

tend to lag behind others. Thus, incomes, consumption, savings, investment, 

prices employment, tend to rise in periods of economic expansion and decrease 
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in periods of economic down turn or recession. These growth and trend factors 

can seriously caused multicollinearity. 

2. The use of lagged values of some explanatory variables as independent factors 

in the relationship. Naturally, the successive values of certain variables are 

interrelated since the current value of the variable is partly determined by its own 

value in the previous period. Thus, multicollinearity is almost certain to exist in 

distributed lagged model (i.e., Yt = f(Xt, Xt-1, Xt-2,…,Xt-n). it should be noted 

however that multicollinearity is usually connected with time-series data. 

3.3.3 Consequences of Multicollinearity 

1. If there is a perfect multicollinearity among the X’s, their regression coefficients are 

indeterminate i.e. undefined. 

2. The standard errors of these estimates become infinitely large 

3. While it is possible to obtain least squares estimates of the regression coefficients, 

the interpretation of the coefficients will be quite difficult. 

It is fairly easy to show that under conditions of perfect multicollinearity, the OLS 

estimators are not unique. Consider, for example, the model: 

 1 2 2 3 3t tY a a X a X u= + + + …………………………………………….(2.1.13) 

Where X3 = δ1 + δ2X2; and δ1 and δ2 are known constant. Substituting this into (2.3.13) 

gives: 

 1 2 2 3 1 2 2( )tY a a X a X u = + + + +  

 
1 3 1 2 3 2 2

1 2

( ) ( )a a a a X u

X

 

  

= + + + +

= + +
……………………………………..(2.1.14) 

Where of course ϑ1 = (a1 + a3δ1) and ϑ1 = (a2 + a3δ2). 
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So what we can estimate from our sample data is that coefficients ϑ1 and ϑ2. However, 

no matter how good the estimates of ϑ1 and ϑ2 will be, we will never be able to obtain 

unique estimate of a1, a2 and a3.  

3.3.4 Test for detecting Multicollinearity 

There are various methods for detecting the presence of multicollinearity, among these 

are: 

(1) A method base on Frisch confluence analysis 

The procedure is to regress the dependent variable on each of the independent 

variable separately. Thus, we obtain all the elementary regression and we 

examine their results on the basis of a priori and statistical criteria. 

We choose the elementary regression which appears to give the most plausible 

results, on the basis of these criteria (i.e., on a priori and statistical criteria). Then 

we gradually insert additional variables and we examine their effects on the 

individual coefficients, on their standard errors and on the overall R2.  A new 

variable is classified as useful, superfluous or detrimental as follows: 

(a) If it improves R2 without rendering the individual coefficient unacceptable 

on a priori consideration, the variable is considered useful and retain as 

explanatory variable. 

(b) If it affects considerably the size or values of the coefficients, it is considered 

detrimental.  

(c) If the individual coefficients are affected n such a way as to be commonly 

acceptable on theoretical a priori consideration, then we may say that this is 

a warning that multicollinearity is a serous problem. 

(2) The Farrar-Glauber test 

This is a statistical test for multicollinearity developed by Farrar and Glauber. It 

is a set of three tests: 
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(i) Chi-square test for the detection of the existence and severity of 

multicollinearity in a function including several explanatory variables. 

The basic hypothesis here is: 

 H0: the X’s are orthogonal 

 H1: the X’s are not orthogonal  

A formula for computing chi-square test is given as: 

 2

1 2

11
* [ 1 (2 5).log

6
eX n k

rx x


= − − − + 


 1 2

1

rx x 



……………………………….(2.1.15) 

(where *X2 = observed (computed from the sample) value of X2, n = sample size and k 

= number of explanatory variables) has a X2 distribution with degree of freedom of v = 

1/2k(k-1); the term in parenthesis is value of the standardize determinant obtained from 

the partial correlation coefficients.  

From the sample data, we obtain the empirical value of *X2 which we compare with the 

theoretical value of X2 at a chosen level of significance which may be obtained from a 

X2 table. 

If the observed *X2 > than the theoretical value of X2 with v degree of freedom, we 

reject the assumption of orthogonality, that is we accept that there is multicollinearity 

in the function. The higher the observed *X2, the more severe the multicollinearity. 

If the observed *X2 <  X2, we accept the assumption of orthogonality, that is, e accept 

that there is no significant multicollinearity in the function.  

(ii) The second test is the F-test for locating which variables are multicollinear. 

To test the F-test for the location of variables that are collinear, Glauber and Farrar 

compute the multiple correlation coefficients among the explanatory variables (

22 11 3 3

2 2

. . ...., ,
k k kx x x x x x x x xR R  and in general

1 2

2

. kix x x xR  ) and they test the statistical significance 

of these multiple correlation coefficients with: 
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 For each multiple correlation coefficient, we compute the observed F*, 

 21

21

2

.

2

.

( ) / ( 1)
*

(1 ) / ( )

i

i

k

k

x x x x

x x x x

R k
F

R n k





−
=

− −
……………………………………………(2.1.16) 

Where n = sample size, k = number of explanatory variables 

The hypothesis being tested is: 

 H0: 
1 2

2

. kix x x xR  = 0 

And the alternative hypothesis is: 

 H1: 
1 2

2

. kix x x xR  ≠ 0 

The observed value F* is compared with theoretical value F (from the F table) with 

v1=(k-1) and v2=(n-k) degrees of freedom (at a chosen level of significance). 

If F* > F-table, we accept that the variable Xi is multicollinear, that is we accept the 

null hypothesis. 

If F* < F-table, we accept that the variable Xi is not multicollinear. 

(iii) The third test is a t-test for finding out the pattern of multicollinearity. 

To find which variable are responsible for multicollinearity, we compute the partial 

correlation coefficients among the explanatory variables and test their statistical 

significance with the t-ststistic. 

The basic hypothesis being tested is: 

 
210 . 0:

ki j xx x x xH r  =  

Against the alternative hypothesis 

 
211 . 0:

ki j xx x x xH r    
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Having estimated the partial correlation coefficients, we test their significance by 

computing for each of them the statistic: 

 21

1 2

.

.

( )
*

1

i j

i j

k

k

x xx

x

x x

x x x x

r n k
t

r





−
=

−
…………………………………………….(2.1.17) 

Where 
1 2. ki j xx x x xr 

denotes the partial correlation coefficient between xi and xj. 

The observed value t* is compared with the theoretical t value (from the student’s t-

table) with v = (n-k) degrees of freedom (at a chosen level of significance). 

If t* > t, we accept that partial correlation coefficient between the variables xi and xj are 

responsible for multicollinearity in the function. 

 If t* < t, we accept that xi and xj are the cause of multicollinearity in the function since 

their partial correlation coefficient is not statistically significant. 

 

3.3.5 Solutions for Multicollinearity 

The solutions which may be adopted if multicollinearity exist in a function varies 

depending on the severity of multicollinearity, unavailability of other sources of data, 

on the importance of factors which are collinear, on the purpose for which a function is 

being estimated etc. 

1. Increase the size of the sample. Multicollinearity may be avoided or reduced if 

the size of the sample is increased by gathering more observations. Thus, by 

increasing the size of the sample, higher covariances among estimated 

parameters resulting from multicollinearity in an equation can be reduced 

because these covariances are inversely proportional to the sample size. 

However, this is possible if the source of multicollinearity comes from errors of 

measurement as well as the original sample size. 
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2. Introduction of additional equations in the model. To solve the problem of 

multicollinearity, we can introduce additional equations into the model to 

express meaningfully the relationship between the multicollinear X’s. 

3. Application of methods of incorporating extraneous quantitative information. 

This include the method of restricted least squares, pooling cross-section and 

time-series, Durbin version of generalised least squares, mixed estimation 

techniques as propounded by Theil and Goldberger. 

4. Substitution of lagged variables for other explanatory variables in distributed lag 

models.  Multicollinearity may be avoided by substituting for a single lagged 

value of the dependent variable as suggested by Koyck. 

5. Application of principal component analysis. 

SELF ASSESSMENT EXERCISE 

Substantiate the meaning of multicollinearity, it causes, consequences, detection and 

remedial measures. 

4.0 CONCLUSION 

This sub-unit discussed the incidence where the explanatory variables collinear in a 

function. This is a violation of one of the assumptions of the least squares regression 

model. The consequence of multicollinearity is that, their regression coefficients are 

indeterminate and their standard errors are not defined. If multi co linearity is high but 

not perfect, estimation of regression coefficients is possible but their standard errors 

tend to be large. 

5.0 SUMMARY 

One of the assumptions of the least squares regression model is that there is no 

multicollinearity among the regressors, the X’s. Broadly interpreted, refers to a situation 

where there is either an exact or approximately exact linear relationship among the 
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explanatory variables. The unit further threw light on the causes of multicollinearity, 

consequences, detection and solutions for multicollinearity. 

6.0 TUTOR-MARKED ASSIGNMENT 

1. The following table shows the annual consumption and disposable income of 

Nigeria for a given period. 

  Table 2.9: Income and consumption expenditure n Nigeria (N’000million) 

 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 

Ct 26 29 35 39 42 46 50 54 60 64 69 73 

Ydt 38 43 53 60 66 71 77 86 94 102 109 115 

 

(a) Estimate the savings function St = f(Yd(t)). 

(b) Test for heteroscedasticity using spearman’s rank correlation coefficient 

2. Table 2.10 below shows the annual consumption (C) and disposable income (Yd) 

of Nigeria (in N million). 

Table 2.10: Consumption and disposable (N’ million) 

Year C Yd Year C Yd 

2008 11,378 11,617 2014 20,074 21,512 

2009 13,012 13,297 2015 21,439 23,124 

2010 15,263 15,790 2016 22,833 24,724 

2011 16,873 18,017 2017 24,205 26,175 

2012 17.764 19,314 2018 25,307 27,219 
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2013 18,857 20,198 2019 27,020 28,915 

Ordinary least squares (OLS) application on the data in Table 2.10 yields the following 

outcomes: 

 8,526 0.65 dC Y= +    r2 = 0.953 

Find the residuals and test for autocorrelation. 

3. The following table shows time-series on three variables, Y, X1, X2 in arbitrary 

units. 

Table 2.11: Calculations for the Test of Autocorrelation 

Y 6 6 6.5 7.1 7.2 7.6 8 9 9 9.3 

X1 40.1 40.3 47.5 49.2 52.3 58 61.3 62.5 64.7 66.8 

X2 5.5 4.7 5.2 6.8 7.3 8.7 10.2 14.1 17.1 21.3 

  

(a) Test for multicollinearity with any appropriate method. 

(b) How does multicollinearity affect the parameter estimates? 

7.0 REFERENCES/FURTHER READINGS 
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UNIT TWO: BASIC IDEA OF IDENTIFICATION PROBLEM 

1.0 Introduction 

2.0 Objectives 

3.0 Main Contents 

3.1 Meaning of Identification problem 

3.2 Implications of Identification problem 

3.3 Formal Rules (Conditions) for Identification 

4.0 Conclusion 

5.0 Summary 

6.0 Tutor Marked Assignment  

7.0 References/Further Readings 

1.0 INTRODUCTION 

The crux of the identification problem is seen in the famous demand-and-supply model 

discussed in the previous units. Suppose that we have time-series data on quantity and 
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price only and no additional information (such as income of the consumer, price 

prevailing in the previous period, and weather condition). The identification problem 

then consists in seeking an answer to this question:  Given only the data on quantity and 

price, how do we know whether we are estimating the demand function or the supply 

function? Alternatively, if we think we are fitting a demand function, how do we 

guarantee that it is, in fact, the demand function that we are estimating and not 

something else? A moment of reflection will reveal that an answer to the preceding 

question is necessary before one proceeds to estimate the parameters of our demand 

function. In this unit, we shall show how the identification problem is resolved. 

2.0 OJECTIVES 

At the end of this unit, students should be able to: 

• Define what identification problem is all about. 

• State the implications of identification problems 

• State the formal rules or conditions for identification. 

3.0 MAIN CONTENT 

3.1 Meaning of identification problem 

Identification problem associated with model formulation. Identification problem arises 

if a given model is not correctly specified. This is sequel to the violation of the 

assumption that the relationship to be estimated must have a unique mathematical form. 

If this is violated truly, then the relationship to be estimated will contain the same 

variable(s) as any other equation one is estimating. In the face of unidentified model, 

the estimates of the parameters of the relationship between the variable(s) measured in 

samples relate to the model in question or to another model or to a mixture of models 

(Gujarati and Sangeetha, 2007). 

Let us illustrate this concept of non-identifiability by making reference to a model of 

market equilibrium: 
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 D = b0 + b1P + u………………………..(iii) Demand function 

 S = a0 + a1P + v…………………………(iv) Supply function 

 D = S ……………………………………(v) Clearance equation 

Here, we cannot identify the two models in equation (iii) and (iv) since in both, 

quantities Q = f(P). Hence, we may not know exactly which function one is estimating, 

whether it is the demand or the supply function. 

To be sure of the function one is estimating, there is the need to examine identification 

condition to enable us judge the precise equation. 

To achieve this objective, we need further information on factors affecting the demand 

and the supply function separately (shift factors). This will help us to state clearly the 

function one is dealing with. 

In the demand function, other determining factors such as consumers’ income, taste, 

price of other commodities (substitute or complement), fashion, etc, should be included 

to differentiate this function from the supply function determined by factors such as 

weather, technological change, government policy etc. 

The stability of each of these functions depends, to a large extent, on the aforementioned 

factors. 

We can state here that a model is identified if it is in unique mathematical form such 

that its estimates can be uniquely obtained from the given data. As a corollary, a model 

is not identified, if its parameter estimates relate to the model in question or to another 

model or both. 

Thus, for a set of simultaneous equations, the identification of the entire set requires 

that the model be complete. 

The completeness of such models implies that it should contain at least as many 

independent equations as the endogenous variables. 
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Referring to the market equilibrium previously indicated, the given model is complete, 

because it contains three equations and three endogenous variables: D, S, and P. 

However, they are not identified, as previously highlighted with reasons. 

We generalised by stating that a function belonging to a system of simultaneous 

equation is identified, if it has a unique statistical form, meaning that there is no other 

equation in the system which contains the same variable as the function in question 

Koutsoyiannis, 1977). 

Thus, we can state that: 

(i) The identification of a system requires that each of the equations in the 

system be identified. 

(ii) The parameters of the given equation be identified, (Note that in the previous 

example, the parameters of D(b0 and b1) and S(a0 and a1) cannot be 

statistically  since one is not really sure of the function one is dealing with. 

 

SELF ASSESSMENT EXERCISE 

Briefly discuss identification as a problem associated with model formulation. 

3.2 Implications of Identification 

Identification is closely related to the estimation of a model although it is a problem 

associated with model formulation. 

(a)  Once an equation (or model) is underidentified, it is impossible to estimate all 

its parameters with any econometric technique. 

(b) If an equation is identified, its coefficients can, in general be estimated. In 

particular: (i) If the equation is exactly identified, the appropriate method to be used for 

its estimation is the method of indirect least squares (ILS). (ii) If the equation is over-

identified, indirect least squares cannot be applied, because it will not yield unique 
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estimates of the structural parameters. There are various other methods which can be 

applied in this case, for example, two-stage least squares (2SLS), or maximum 

likelihood methods. 

SELF ASSESSMENT EXERCISE 

What are the implications of identification problem in a regression model (or equation)? 

3.3 Formal Rules (Conditions) for Identification 

To establish identification, therefore, two rules are adhered to: 

(a) Order condition (b) Rank condition 

In econometrics, there are two possible situations of identifiability of any possible 

situation of equation: 

(i) Under-identification 

(ii) Identification 

 An under indentified equation exists if the mathematical form of the equation is not 

unique. A system is under identified when one or more of its equations are under 

identified. For such an equation or model, it is not possible to estimate all its parameters 

using any econometric technique. 

An identified equation on the other hand has a unique statistical form. An over identified 

equation may either come n the form of exact identification or over identification 

condition. A given system, therefore, is identified if all its equations are identified. 

For an exact identification, we estimate such equation using the indirect least squares 

(ILS). In the case of over identification, we use the two stage least squares (2SLS) or 

maximum likelihood methods. 

Note that identification problem is peculiar to only those equations which contained 

coefficient that needs to be estimated (From a given set of data). 
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Therefore, identification of a model can best be established by the examination of the 

specification of the structural model. In applying the identification rules, we either 

ignore the constant term or retain it, and include in the set of variables, a dummy 

variable which takes the values 1. In this context, we shall ignore the constant term. 

For an equation (or model) to be identified the conditions are: 

1. Order Condition 

This condition is based on the number of variables included and those excluded from a 

particular equation. This is a necessary condition, although not sufficient for complete 

identification. This implies that the order condition for identification may be satisfied if 

the equation is not identified. The condition stated that: for an equation to be identified, 

the number of variables (endogenous and exogenous) excluded from it must be equal to 

or greater than the number of endogenous variables in the model less one. 

Since the number of endogenous variables equals the number of equation in a complete 

model, the above condition may also be equivalently stated in this form: an equation is 

identified, if the total number of variables excluded from it but included in the other 

equations is at least as great as the number of equations of the system less one. 

Symbolically, the order condition for identification is given as: 

 K – M ≥ G – 1…………………………………………………..(2.2.1) 

Where, K = total number of variables (endogenous and exogenous) in the system 

   M = number of variables included in a particular equation 

    G = total number of equations in the system 

So that K - M = excluded variables in a particular equation 

   G – 1 = total number of equations less one. 

Note: the order condition for identification is necessary for aa relation to be identified 

but it is not sufficient for identification. 
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2. The Rank Condition 

This condition maintains that in a system of G-equations, any particular equation is 

identified if and only if it is possible to construct at least one non-zero determinant of 

G – 1 from the coefficient of the variables excluded from that particular equation, but 

contained in the other equations of the model. 

In order to identify a particular equation, therefore, the following should be followed: 

(i) Write out the parameters of all the equations of the model in a separate table, 

bearing in mind to assign zero to each parameter of a variable excluded from 

a given equation. Make a table of coefficients of the equations which is being 

examined for identification. 

(ii) Strike out the columns in which a non-zero coefficient of the equation being 

examined appears. (By deleting relevant row and columns, we are left with 

the coefficients of variables not in the other equations of the model). 

(iii) From the determinant(s) of order (G – 1) and examine their values. 

-If at least one of these determinants is non-zero, the equation is identified. 

-If however, all the determinants of order G – 1) are zero, the equation is 

under identified and we make conclusion. 

       (iv) Once the equation is identified, we then move to the order condition to 

determine the nature of identification. 

Example: 

Examine the identification state of the following model. 

Ct = a0 - a1Yt – a2Tt + u1………………………………..(i) 

It = b0 + b1Yt + b2Yt-1 +b3Rt + u2………………………(ii) 

Yt = Ct + It + Gt………………………………………...(iii) 
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Solution: 

Re-writing the above equations, we have: 

-Ct + a0 - a1Yt – a2Tt + u1 = 0 

-It + b0 + b1Yt + b2Yt-1 +b3Rt + u2 = 0 

-Yt Ct + It + Gt = 0 

We make table for the model as shown: 

 

 

 

Table 2.12: structural parameters 

Equation Ct Yt It Tt Yt-1 Rt Gt 

(i) -1 a1 0 -a2 0 0 0 

(ii) 0 b1 -1 0 b2 b3 0 

(iii) 1 -1 1 0 0 0 1 

 

To identify equation (i), delete the first row containing the coefficient of equation and 

also delete the column of the table with non-zero coefficients of the equation to be 

identified. 

Table 2.13: identifying equation (i) 

Equation Ct Yt It Tt Yt-1 Rt Gt 

(i)  -1 a1 0 -a2 0 0 0 
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(ii) 0 b1 -1 0 b2 b3 0 

(iii) 1 -1 1 0 0 0 1 

 

Thus, we are left with: 

  

It Yt-1 Rt Gt 

-1 b2 b3 0 

1 0 0 1 

 

i.e. coefficients of the excluded variables (in tabular form). 

Determinant of G – 1 i.e. 3 -1 are: 

∆1 = -1      b2 = b2    ∆2 =   -1       b3   = -b3        ∆3 = -1        0 

         1        0      1        0   0       1 

Since we have at least a non-zero determinant, equation (i0 is identified. 

For the nature of identification, we use order condition as follows: 

K – M ≥ G – 1; K = 7,   M = 3,   G = 3 

∴ 7 – 3 ≥ 3 -1,  4 > 2 (a case of over identification) 

Using similar procedure as in (i) above, equations (ii) and (iii) are respectively 

identified as follows: 

Equation (i) coefficients of excluded variables are: 

Ct Tt Gt 
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-1 -a2 0 

1 0 1 

 

And G – 1 determinants are: 

∆1 = -1      -a2 = a2    ∆2 =   -1        0   = -1        ∆3 =   -a2      0  = -a2 

         1       0                 1        1               0       1 

Since we have at least a non-zero determinant, equation (ii0 is identified. 

Using order condition: K – M ≥ G – 1; K = 7, M = 4, G = 3 

 ∴ 7 – 4 > 3 – 1 ; 3 > 2 [equation (ii) is  over-identified] 

 

Similarly, in equation (iii), coefficients of excluded variables are: 

 

Tt Yt-1 Rt 

-a2 0 0 

0 b2  b3 

 

So that determinants of G – 1 are: 

∆1 = -a2     0 = a2b2    ∆2 =   -a2       0   = -a2b3   ∆3 =   0      0    = 0 

         0       b2      0       b3              b2    b3 

Again equation (iii) is identified. 

Nature of identification is given as: K – M ≥ G – 1; K = 7, M = 4, G = 3 

∴ 7 – 4 > 3 – 1, 3 > 2 [Equation (iii) is over identified]. 
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SELF ASSESSMENT EXERCISE 

1. Discuss the two conditions that must be satisfied for an equation in a system of 

equations to be identified.    

4.0 CONCLUSION 

The problem of identification precedes the problem of estimation. The identification 

problem asks whether one can obtain numerical estimates of structural coefficients from 

the estimated reduced form coefficients. If this can be done, an equation in a system of 

simultaneous equations is identified. If this cannot be done, that equation is un-or under-

identified. Identification problem arises because the set of data may be compatible with 

different sets of structural coefficients, that is, different models. Thus, in regression of 

quantity on price only, it is difficult to tell whether one is estimating the supply function 

or the demand function, because price and quantity enter both equations.  An equation 

can be just (exact) identified or over-identified. In the exact identification, unique values 

of the structural coefficients can be obtained using the indirect least squares (ILS); in 

the over-identification,  there may be more than one value for one or more structural 

parameters [the parameters can be obtained using the two stage least squares (2SLS)]. 

To identify an equation, two conditions must be met which include the order condition 

and the rank condition. 

5.0 SUMMARY 

This unit discussed the idea of identification problem which has to do with model 

formulation rather than of model estimation or evaluation. The unit added that an 

equation from a system of simultaneous equation is identified if it is in a unique 

statistical form, guaranteeing unique estimates of its parameters to be subsequently 

made from sample data. An equation can be just (exact) identified or over-identified. In 

the exact identification, unique values of the structural coefficients can be obtained 

using the indirect least squares (ILS); in the over-identification,  there may be more than 

one value for one or more structural parameters [the parameters can be obtained using 

the two stage least squares (2SLS)]. To identify an equation, two conditions must be 

met which include the order condition and the rank condition. 
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6.0 TUTOR-MARKED ASSIGNMENT 

(1) Consider the following structural model and examine the identification state of 

the model: 

Y1 = 2Y2 – X1 + 2X3 – X4 + Z1 + u……………………………..(i) 

Y2 = X1 + 2Y1 – 2X1 – Y1 + 2X2 + v…………………………...(ii) 

Y3 = Y1 –Y2 + 3Y1 – 3X2 – X4 + w…………………………….(iii) 

(2) State and explain the estimation techniques for an exact and over-identified 

equation in a system of simultaneous model. 

7.0 REFERENCES/FURTHER READINGS 

Gujarati, D.N. & Sangeetha (2007). Basic Econometrics. The MacGraw-Hill, New 

Dehi, India. 

 

UNIT THREE: DUMMY VARIABLE AND DISTRIBUTED LAG MODELS 

1.0 Introduction 

2.0 Objectives 

3.0 Main Contents 

3.1 Dummy Variable in the Regressors 

3.2 Dummy Variable in the Regressand 

3.3 Lag Variables and Distributed Lag Models 

4.0 Conclusion 

5.0 Summary 

6.0 Tutor Marked Assignment  

7.0 References/Further Readings 

1.0 INTRODUCTION 

It sometimes is the case that the economic process under study leads to outcomes that 

are categorical, rather than measureable. For example, a person might taken private or 

public transportation to work, a firm might go bankrupt or not, and a high school senior 

might go to college or not. In each case the outcome variable Y can be coded as a binary 
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dummy variable: one outcome is assigned the value 0, and the other is assigned the 

value 1. Similarly, n regression analysis, the dependent variable, or the regressand, is 

frequently influenced not only by ratio scale variables (e.g. income, output, price, costs, 

height, temperature) but also by variables that are essentially qualitative, or nominal 

scale, in nature,  such as sex, race, colour, religion, nationality, geographical region, 

political upheavals and party affiliations.  In this unit, we shall begin our discussion 

with dummy variables in the regressors, and then followed with dummy variables in the 

regressand.  

2.0 OBJECTIVES 

At the end of this unit, students should be able to: 

• State the nature of dummy variables. 

• Compute ANOVA models. 

• Estimate ANCOVA models. 

• Analyse regression with a mixture of quantitative and qualitative regressors. 

• Examine the use of dummy variables in seasonal analysis 

3.0 MAIN CONTENT 

3.1 Nature of Dummy Variable  

In some regression analysis, the dependent variable is influenced by categorical or 

nominal scale, in nature, such as sex, race, colour, religion, nationality, geographical 

region, political upheavals and party affiliations.  For example, holding all other factors 

constant, female workers are found to earn less than their male counterparts. This 

pattern may result from sex discrimination. But whatever the reason, qualitative 

variables such as sex seems to influence the regressand and clearly should be included 

among the explanatory variables, or the regressors. 
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Since such variables usually indicate the presence or absence of a “quality” or an 

attribute, such as male or female, APC or PDP party, North or South, they are essentially 

nominal scale variables. One way we could “quantify” such attributes is by constructing 

artificial variables that take on values of 1 or 0, 1 indicating the presence (or possession) 

of that attribute and 0 indicating the absence of that attribute. 

For example1 may indicate that a person is a female and 0, may designate a male. 

Variables that assume such 0 and 1 values are called dummy variables. Such variables 

are thus essentially a device to classify data into mutually exclusive categories such as 

male or female. 

3.1.1 Regression with Dummy Variables as Regressors  

Dummy variables can be incorporated in regression models just as easily as quantitative 

variables. As a matter of fact, a regression model may contain regressors that are all 

exclusively dummy, or qualitative, in nature. Such models are called Analysis of 

Variance (ANOVA) models. 

To illustrate the ANOVA models, consider the following example: 

We examine this by looking at public school teachers’ salaries by geographical region. 

Table 1.0 in the appendix gives data on average salary (in naira) of public school 

teachers in 51 local government Areas (LGAs) in Nigeria. These 51 LGAs are classified 

into three geographical regions (i) North (21 states in all) (ii) South (17 states in all) and 

(iii) Middle Belt (13 states in all). 

Suppose we want to find out the average annual salary (AAS) of public school teachers 

differs among the three geographical regions. 

There are various statistical techniques to compare the two or more mean values of these 

categories, which generally go by the name of analysis of variance. By the same 

objective can be achieved by regression analysis. 

Note: D2 = 1 for states in the North; 0 otherwise. 
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 D3 = 1 for state in the South; 0 otherwise 

To see this, consider the following model: 

 Yi = b1 + b2D2i + b3D3i + ui………………………………………..(2.3.1) 

Where Yi = average salary of public school teachers in state i 

 D2i = 1 if the state is in the North; 0 otherwise (i.e. in other regions of the 

country). 

 D3i = 1 if the state is in the south; 0 otherwise (i.e. in other regions of the   

country). 

Equation (2.3.1) shows a multiple regression where the explanatory variables are 

dummy variables. Assuming that the error term satisfies the usual OLS assumptions, on 

taking expectation of (2..3.20) on both sides, we obtain: 

Mean salary of public school teachers in the North: 

 E(Yi│D2i = 1, D3i = 0) = b1 + b2 

Mean salary of public school teachers in the South: 

 E(Yi│D2i = 0, D3i = 1) = b1 + b3 

The mean salary of public school teachers in the Middle Belt: 

 E(Yi│D2i = 0, D3i = 0) = b1  

This means that the mean salary of public school teachers in the Middle belt is given by 

the intercept b1, in the multiple regression of (2.20), and the “slope” coefficient b2 and 

b3 tell by much the mean salaries of teachers in the North and n the South differ from 

the mean salary of teachers in the Middle Belt.  

Assuming the regression equation of (2.3.20) is given as follows: 

 iY =  26,158.62  - 1734.473D2i – 3264.615D3i 
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        SEE = (1128.523)    (1435.953)      (1499.615) 

     t = [23.1759]     [-1.2078]       [-2.1776]  

P-value    =   (0.0000)       (0.2330)       (0.0349) 

We can deduce from the regression that the mean salary teachers in the Middle belt is 

N26,158, that of teachers in the North is lower by about N1734, and that of teachers in 

the South is lower by about N3264.  The actual mean salaries in the last two regions can 

be obtained by adding these differential salaries to the mean salary of teachers in the 

Middle Belt. Doing this, we will find that the mean salaries in the North and South 

regions are about N24,424 and N22,894. 

But how do we know that these mean salaries are statistically different from the mean 

salary of teachers in the Middle Belt, the bench mark category? All we need do is to 

check the significance of the respective slope coefficients. From the regression, the 

estimated coefficient for the North is not statistically significant, as the p=value is 

0.2330, where as that of the south is statistically significant, as the p-value is 0.0349. 

Therefore the overall conclusion is that North is about the same with middle belt but 

the mean salary of teachers in the South is statistically lower by about N3265. 

A word of caution: 

i. If we introduce three dummies for the three regions, we will run into the 

problem of perfect multicollinearity. Therefore, if qualitative variables have 

m categories, introduce only (m-1) dummy variables. However if we 

introduce three variables for the three regions, then we should not include the 

intercept as a benchmark category. 

ii. The category for which a dummy is not assigned (in our example, Middle 

Belt)is known as the base, benchmark, control, comparison, reference, or 

omitted category. 

iii. The intercept value (b1) represents the mean value of the benchmark 

category. 
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iv. The coefficient attached to dummy variables in (2.3.20) are known as the 

differential coefficients because they tell by how much the value of the 

intercept that receives the value of 1 differs from the intercept coefficient of 

the benchmark category. 

v. The choice of a benchmark category is strictly up to the researcher.   

3.1.2 Regression with a Mixture of Quantitative and Qualitative Regressors 

ANOVA models of the type discussed in the preceding sub-unit, although common in 

fields such as sociology, psychology, education, and market research, are not common 

in economics. Typically, in most economic research a regression model contains some 

explanatory variables that are quantitative and qualitative. Regression models 

containing a mix of quantitative and qualitative variables are called analysis 

covariance (ANCOVA) models. They are an extension of ANOVA models in that they 

provide a method of statistically controlling the effects of quantitative regressors, called 

covariates or control variables, in the model that includes both quantitative and 

qualitative, or dummy, regressors. 

As an illustration, let us consider, let us consider, the three regions teachers’ salaries by 

maintaining that that the mean salary of public school teachers may not be different n 

the three regions if we take into consideration any variables that cannot be standardize 

across the regions. Consider, for example, the variable, expenditure on public schools 

by the state and local governments. Now, we developed the following model: 

 Yi = b1 + b2D2i + b3D3i + b4Xi + ui………………………………..(2.3.2) 

Where Yi = average salary of public school teachers in state i 

 Xi = spending on public schools per pupil (N) 

 D2i = 1 if the state is in the North; 0 otherwise (i.e. in other regions of the 

country). 
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 D3i = 1 if the state is in the south; 0 otherwise (i.e. in other regions of the   

country). 

The following regression results emerged after introducing X in the model: 

 iY =  13269.11  - 1673.514D2i – 1144.517D3i + 3.2889Xi 

        SEE = (1395.056)    (801.1703)      (861.1182)     (0.3176) 

     t = (9.5115)*         (-2.0089)*       (-1.3286)** (10.3539)* 

where * indicates p-value less than 5 percent and ** indicates p-value greater than 5 

percent. The result suggests that as public expenditure goes up by a naira, on average, 

a public school teacher’s salary goes up by N3.29. Controlling for spending on 

education, we can now see that the differential intercept coefficient is significant for the 

North region but not for the south. These results are different from the previous one 

without X because we did not account for the covariate, differences in per pupil public 

spending on education. 

 

3.2 Regression with Dummy variable as Regressand 

So far we have considered regression models in which the regressand is quantitative 

while regressors are quantitative or qualitative or both. But there are situations where 

the regressand can be qualitative or dummy. 

Suppose we are interested in studying labour force participation (LFP) decision of adult 

males. Since an adult is either in the labour force or not, LFP is a ‘yes’ or ‘no’ decision. 

Hence, the response variable, or regressand, can take only two values, say, 1 if the 

person is in the labour force and 0 if he is not. In other words, the regressand is a binary 

or dichotomous variable. In the theory of labour economics, LPF depends on 

unemployment rate, average wage rate, education, family income etc.  

Another example of a binary variable is that, consider Nigerian presidential elections. 

Assume that there are only two political parties, ABC and XYZ. The regressand here is 
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vote choice between the two political parties. Suppose we let Y = 1, if the vote is for 

ABC candidate, and Y = 0, if the vote is for XYZ candidate. Some of the variables that 

can enter into the vote choice function are growth rate of GDP, unemployment and 

inflation rates, whether the candidate is running for re-election etc.  

Other examples where the regressand is a qualitative in nature include: a family either 

owns a house or it does not, both husband and wife are n the labour force or one spouse 

is. 

In addition, we do not have to restrict our response variable to yes/no or dichotonomous 

category only. Returning to our example on presidential election, suppose there are 

three parties: ABC, XYZ and Independent. The response variable here is trichotomous. 

In general, we can have polychotomous (or multiple) response variable. 

Our emphasis now is to first consider the dichotomous regressand and then consider 

various extension of the basic model. It is worthy to note that in a model where the Y is 

quantitative, the objective is to estimate its expected or mean value given the values of 

the regressors, i.e. E(Yi│X1i, X2i,…Xki), where the X’s are regressors both quantitative 

and qualitative. However, in models where Y is qualitative, the objective is to find the 

probability of something happening, such as voting ABC party, or owning a house, 

belong to a union etc. hence qualitative response regression models are often known as 

probability models. 

Our study of qualitative response models begins with the binary response regression 

model. There are three approaches to developing a probability model for a binary 

response variable: 

1. The linear probability model (LPM) 

2. The logit model 

3. The probit model 

1. The Linear Probability Model (LPM) 
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Consider the following regression model: 

 Yi = b1 + b2Xi + ui……………………………………………….(2.3.3) 

Where X = family income and Y = 1 if the family owns a house and 0 if it does not own 

a house. 

Equation (2.22) looks like a typical linear model but because the regressand s binary, 

or dichotomous, it is called a linear probability model (LPM). This is because the 

conditional expectation of Yi given Xi, E(Yi│Xi), can be interpreted as the conditional 

probability that the event will occur given Xi, Pr(Yi = 1│Xi). thus, in our example, 

E(Yi│Xi) gives the probability of a family owning a house and whose income is the 

given amount of Xi. 

Assuming E(ui), as usual (to obtain unbiased estimators, we obtain: 

 E(Yi│Xi) = b1 + b2Xi…………………………………………….(2.3.4) 

If Pi = probability that Yi = 1 (that is, that the event occurs), and (1 - Pi) = probability 

that Yi = 0 (that is, that the event does not occur), the variable Yi has the following 

probability distribution: 

       Table 2.14: Probability distribution 

Yi Probability 

0 1 - Pi 

1 Pi 

Total 1 

 

This implies that Yi follows a Bernoulli probability distribution. 

Mathematically, we obtain: 

 E(Yi) = 0(1 - Pi) + 1(Pi) = Pi……………………………………..(2.3.5) 



115 

 

Comparing (2.24) with (2.25), we can equate, thus: 

 E(Yi│Xi) = b1 + b2Xi = Pi………………………………………..(2.3.6) 

Equation (2.3.6) implies that, the conditional expectation of the model (2.22) can, in 

fact, be interpreted as the conditional probability of Yi. in general, the expectation of a 

Bernoulli random variable is the probability that the random variable equals 1. If there 

are n independent trials, each with a probability p of success and probability (1 - p) of 

failure, and X of these trials represent the number of successes, then X is said to follow 

the binomial distribution. The mean of the binomial distribution is np and the variance 

is np(1 – p). The term success is defined in the context of the problem. 

Since the probability Pi must lie between 0 and 1, we have the restriction: 

 0 ≤ (Yi│Xi) ≤ 1………………………………………………(2.3.7) 

That is, the conditional expectation (or conditional probability) must lie between 0 and 

1. 

From the preceding discussion, it would seem that OLS can be easily extended to binary 

dependent variable regression models. So, perhaps there is nothing new here. 

Unfortunately, this is not the case, for the LPM possesses several problems, which are 

as follows: 

i. Non-Normality of the disturbance ui 

ii. Heteroscedasticity variance of the disturbance 

iii. Non-fulfilment of 0 ≤ (Yi│Xi) ≤ 1 

iv. Questionable R2 as a measure of goodness of fit  

3.2.1 Alternative to Linear Probability Model (LPM) 

As highlighted in the previous sub-unit, the LPM has several problems. However, these 

problems can be overcome. For instance, the weighted least squares (WLS) can be used 
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to resolve the problem of heteroscedasticity or one can increase the sample size to solve 

the problem of non-normality. 

Even with these solutions, the major issue with LPM is that, it is not logically a very 

attractive model because it assumes that Pi = E(Y = 1│X) increases linearly with X, that 

is, the marginal increment remains constant throughout. This seems practically 

unrealistic. In reality, one would expect that Pi is nonlinearly related to Xi. at a very low 

income, a family will not own a house but at a sufficiently high level of income, say, 

X*, it most likely will own a house. Any increase in income beyond X* will have little 

effect on the probability of owning a house. Thus, at both ends of the income 

distribution, the probability of owning a house will be virtually unaffected by a small 

increase in X. 

Therefore, what is needed is a probability with these two characteristic: (a) As Xi 

increases, Pi = E(Y = 1│X) increases but never steps outside the 0 – 1 interval (b) the 

relationship between Pi and Xi is nonlinear, that is, “one which approaches zero at 

slower rates Xi gets small and approaches one at slower and slower rates as Xi gets very 

large (Gujarati & Sangeetha, 2007).  

Figure 2.2 below geometrically shows a model that the probability lies between 0 and 

1, and that it varies nonlinearly with X. the s-shape curve in the figure very much 

resembles the cumulative distribution function (CDF) of random variable. Therefore, 

one can use the CDF to model regressions where the response is dichotomous.  

 

        ------------------------------1----------------------------------- 

 

 

 

  -∞      0    ∞      X 
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 Figure 2.2: A cumulative distribution function (CDF) 

The CDF normally chosen to represent the 0 – 1 response models are (1) the logistic 

(logit) and (2) the normal (probit) model. 

(1) The Logit Model 

Using our example of house ownership, we can explain the basic ideas underlying the 

logit model. Recall that in explaining home ownership n relation to income, the LPM 

was: 

 Pi = E(Y = 1│Xi) = b1 + b2Xi…………………………………………..(2.3.8) 

Where X is income and Y = 1 means family owns a house. But not consider the 

following representation of home ownership: 

 ( )
1 2( )

1
1

1 i
i i b b x
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e
− +
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+

│ ……………………………………….(2.3.9) 

This can be written as: 
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= =
+ +

……………………………………………………(2.3.10) 

Where Zi = b1 + b2Xi. 

Equation (2.300 is what is known as the cumulative distribution function (CDF) 

(Kramer, 1991).  

It is easy to verify that as Zi ranges from -∞ to +∞, Pi ranges from 0 – 1 and that Pi is 

nonlinearly related to Zi (i.e. Xi), thus, satisfying the two conditions considered 

earlier. However, in satisfying these two requirements, we have created a problem 

of estimation because Pi is nonlinearly not only in X but in the b’s as shown in 

(2.3.9). This further means that the OLS cannot be used to estimate the 

parameters. But this problem can be solved by linearizing (2.3.9). 
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If Pi, the probability of owning a house is given by (2.3.10), the (1 – P), the 

probability of not owning a house, is: 

1
1

1 iz
P

e
− =

+
……………………………………………………(2.3.11) 

Therefore, we can write: 
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− +
………………………………………………(2.3.12)  

The ration, Pi/1-Pi is simple the odds ratio in favour of owning a house-the ratio of the 

probability that a family will own a house to the probability that it will not own a house. 

If we take the natural log of (2.3.12), we obtain a very interesting result, namely: 

 1 2ln
1

i
i i

i

P
Li Z b b X

P

 
= = = + 

− 
…………..………………………(2.3.13)  

That is, L, the log of the odds ratio, is not only linear in X, but also linear in the 

parameters. L is called the logit, and hence the name logit models for models like 

(2.3.13). 

 

(2) The Probit Model 

As we have noted, to explain the behaviour of a dichotomous variable we will have to 

use a suitable chosen CDF. The logit model uses the cumulative logistic function as 

shown n (2.3.9). But this is not the only CDF that one can apply. In some applications, 

the normal CDF has been found useful. The estimating model emerges from the normal 

CDF is popularly called the probit model. In principle, one could substitute the normal 

CDF in place of the logistic CDF in (2.3.9). Instead of following this route, we will 

present probit model based on utility theory, or rational choice perspective on 

behaviour. 
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Assume that in our house ownership example, the decision to of the ith family to own a 

house or not depends on an unobservable utility index, Ii (also called latent variable), 

that is determined by one or more explanatory variables, say income Xi, in such a way 

that the larger the value of the index Ii, the greater the probability of a family owning a 

house, we express the index Ii as: 

 Ii = b1 + b2Xi…………………………………………………..(2.3.14) 

Where Xi is the income of the ith family. How is the (unobservable) index related to the 

acyual decision to own a house? As before, let Y = 1 if the family owns a house and Y 

= 0 if it does not. Now it is reasonable to assume that there is a critical or threshold level 

of the index, called it Ii
*, like the Ii is not observable, but if we assume it is normally 

distributed with the same mean and variance, it is possible not only to get some 

information about the unobservable index itself. 

Given the assumption of normality, the probability that Ii
* is less than or equal to Ii can 

be computed from the standardized normal CDF as: 

 Pi = P( = 1│X) = p(Ii
*≤ Ii) = P(Zi ≤ b1 + b2Xi) = F(b1 + b2Xi)……(2.3.15) 

Where P(Y = 1│X) means the probability that an event occurs given the values(s) of 

the X,. and where Zi is the standard normal variable, i.e., Z ~ N(0,σ2). F is the standard 

normal CDF, which written explicitly in the present context is: 

 
2 /21

( )
2

iI
z

iF I e dz


−

−
=   

          
22 /21

2

i ib b X
ze dz



+
−

−
=  ………………………………………(2.3.16) 

Since P represents the probability that an event will occur, here the probability of 

owning a house, it is measured by the area of the standard normal curve from -∞ to Ii 

as shown in Figure 2.3a.  

Now to obtain the information on Ii, the utility index, as well as on b1 and b2, we take 

the inverse of (2.35): 
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 Ii = F-1(Ii) = F-1(Pi) 

    = b1 + b2Xi……………………………………………………(2.3.17) 

Where F-1 is the inverse of normal CDF 

                     Pi = F(Ii)            Pi = F(Ii) 

  --------------------------------------            -------------------------------------- 

             Pi 

 

 

-∞       0          +∞       -∞                     0                +∞ 

  (a) Ii = b1 + b2Xi          (b)  Ii = F-1(Pi) 

SELF ASSESSMENT EXERCISE 

(1) What are the shortcomings of the linear probability model (LPM)? 

(2) Discuss logit and probit models. 

 

3.3 Dynamic Econometric Models (Distributed Lag and Autoregressive (Models)  

Although many econometric models are formulated in static terms, it is quite 

possible in time series models to have relationships where the concept of time 

plays a more crucial role. So, for example, we might find ourselves with a model 

that has the following form: 

 
0 1 1 2 2 ...t t t t p t p tY X X X X u    − − −= + + + + + + ………………………..(2.3.18) 

In this model we have Yt is not depending on the current value of Xt only, but also on 

past (lagged) values of Xt. there are various reasons why lags might need to be 
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introduced in a model. Consider, for example, an exogenous shock stimulating the 

purchase of capital goods. It is unavoidable that some time will elapse from the moment 

the shock occurred till the firm’s knowledge of the situation. This can be either because 

(a) it requires some time to get the relevant statistical information, (b) it takes time for 

the firm’s managers to draw up plans for the new capital project, or (c) the firm might 

want to obtain different prices from competing suppliers of capital equipment, among 

various reasons. Therefore, lagged effects will occur and dynamic models which can 

capture the effects of the time paths of exogenous variables and/or disturbances on the 

time path of the endogenous variables are needed (Asteriou & Hall, 2007). 

In general there are two types of dynamic models. 

(1) Distributed lag models that include lagged terms of the independent (or 

explanatory variables), and 

(2) Autoregressive models that include lagged terms of the dependent variable. 

These two types of model are described in this unit. 

• The Distributed Lag Models 

Consider the model: 

 
0 1 1 2 2 ...t t t t p t p tY X X X X u    − − −= + + + + + +  

      
0

p

i t i t

i

X u  −

=

= + + …………………………………………………(2.3.19) 

In which the βs are coefficients of the lagged X terms. With this model the reaction to 

Yt after a change in Xt is distributed over a number of time periods. In the model, we 

have p lagged terms and the current Xt term, so it takes p+1 period for the full effect of 

a change in Xt to influence Yt. it is interested to examine the effect of the βs. 

(a) The coefficient β0 is the weight attached to the current X (Xt) given by ∆Yt/∆Xt. 

it therefore, shows how much the average change in Yt will be when Xt changes 

by one unit. β0 is for this reason called the impact multiplier. 
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(b) βi is similarly given by ∆Yt/∆Xt-i and shows the average change in Yt for a unit 

increase in Xt-i, i.e. for a unit increase in X made I periods prior to t. for this 

reason the βis are called the interim multipliers of order i. 

(c) The total effect s given by the sum of the effects on all periods: 

0 1 2

0

...
p

i p

i

    
=

= + + + + ……………………………………(2.3.20) 

This is also called the long run equilibrium effect when the economy is at the steady 

state (equilibrium) level. In the long run: 

 
1*      t t t pX X X X− −= = = =  ………………………………….(2.3.21) 

And therefore: 

 * * * * *

0 1 2 p  + + X + X ...+t tY X X u    = + + …………………………(2.3.22) 

Distributed lag models can be estimated by simple OLS and the estimators of the βs are 

BLUE. The question here is how lags are required in order to have a correctly specified? 

Or, in other words, what is the optimal lag-length?  One way to resolve this is to 

use a relatively large value for p, estimate the model for p, p-1, p-2,… lags and choose 

the model with the lowest value of Akaike Information Criteria (AIC), Schwarz 

Bayesian Criteria (SBC) or any other criterion. However, this approach generates two 

considerable problems: 

(a) it can suffer from severe multicollinearity problems, because of close 

relationships between Xt, Xt-1, Xt-2,… Xt-p; and 

(b) a large number of p means a considerable loss of degree of freedom because we 

can use only the p+1 to n observations. 

Therefore, and alternative approach s needed to provide methods that can resolve these 

difficulties. The typical approach is to impose restrictions regarding the structure of the 

βs and then reduce from P+1 to only a few the number of parameters to be estimated. 
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Two of the most popular methods to do this are the Koyck (geometric lag) and the 

Almon (polynomial lag) transformations which are presented below. 

• The Koyck Transformation 

Koyck (1954) proposed a geometrically declining scheme for the βs. To understand this, 

consider again the distributed lag model: 

 
0 1 1 2 2 ...t t t t p t p tY X X X X u    − − −= + + + + + + ………………….(2.3.23) 

Two assumptions were made by Koyck: 

(a) All the βs have the same sign; and 

(b) The βs decline geometrically as in the following equation: 

0

i

i

 = ………………………………………………………….(2.3.24) 

Where λ takes value among 0 and 1 and I = 1, 2, 3,… 

It is easy to see that it is declining. Since λ is positive and less than one and all the βi 

have the same sign, then 
1 2

0 0 0

i       and son on; and therefore β1 > β2 > β3 and so 

on.  

Let us say we have an infinite distributed lag model: 

 0 1 1 2 2 ...t t t t tY X X X u   − −= + + + + + ………………………………(2.3.25) 

Substituting 0

i

i

 = , we have: 

 
0 1 2

0 0 1 0 2 ...t t t t tY X X X u     − −= + + + + + …………………………..(2.3.26) 

For this infinite lag model the immediate impact is given by β0 (because λ0 =1), while 

the long run effect will be the sum of an infinite geometric series. Koyck transforms 

this model to a much simpler one as follows: 

Step 1: lag both sides of equation (2.3.26) 
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0 1 2

1 0 1 0 2 0 3 1...t t t t tY X X X u     − − − − −= + + + + + ………………………(2.3.27) 

Step 2: Multiply both sides of equation (2.3.27) one period to get: 

 
1 2 3

1 0 1 0 2 0 3 1...t t t t tY X X X u       − − − − −= + + + + + ……………………(2.3.28) 

Step 3: Subtract (2.3.28) from (2.3.26) 

 1 0 1(1 )t t t t tY Y X u u    − −− = − + + − ………………………………….(2.3.29) 

Or   

0 1(1 )t t t tY X Y v    −= − + + + …………………..………………………(2.3.30) 

Where vt = ut – ut-1. In this case the immediate effect is β0/(1 – λ) (considering again 

that in the long run we have Y* = Yt = Yt-1 = …). So equation (2.3.30) is now enough 

to give us both the immediate and long run coefficients very easily (Ateriou & Hall, 

2007). 

• The Almon Transformation 

An alternative procedure is provided by Almon (1965). Almon assumes that the 

coefficients βi can be approximated by polynomials in I, such as: 

 β0 = f(0) = α0 

 β1 = f(1) = α0 + α1 + α2 + α3 

 β2 = f(2) = α0 + 2α1 + 4α2 + 8α3 

β3 = f(3) = α0 + 3α1 + 9α2 + 27α3 

β1 = f(4) = α0 + 4α1 + 16α2 +64 α3 

Substituting these into the distributed lag model of order p = 4, we have: 

 0 0 1 2 3 1( ) ( )t t tY X X      −= + + + + +  

         0 1 2 3 2( 2 4 8 ) tX    −+ + + +  
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            0 1 2 3 3( 3 9 27 ) tX    −+ + + +  

            0 1 2 3 4( 4 16 64 ) tX    −+ + + + ………………………………(2.3.31) 

And factorizing the αis, we get: 

 0 1 2 3 4( 4t t t t t tY X X X X X  − − − −= + + + + +  

          1 1 2 3 4( 2 3 4 )t t t tX X X X − − − −+ + + +  

          2 1 2 3 4( 4 9 16 )t t t tX X X X − − − −+ + + +  

          3 1 2 3 4( 8 27 64 )t t t tX X X X − − − −+ + + + ………………………………(2.3.32) 

Therefore, what is required is to apply appropriate transformation of the Xs such as the 

ones given in parentheses. If α3 is not significant, then a second-degree polynomial 

might be preferable. If we want to include additional terms, we can easily do that as 

well. The best model will be either the one that maximizes R2 (for different model 

combinations regarding r and p), or the one that minimizes AIC, SBC or any other 

criteria. 

• Other Models of lag Structure 

There are several other models for reducing the number of parameters in a distributed 

lag model. Some of the most important ones are the Pascal lag, the gamma lag, the 

LaGuerre lag and the Shiller lag (Kmenta, 1986).  

• Autoregressive Models 

Autoregressive models are models that simply include lagged dependent variables 

as regressors. In the Koyck transformation discussed in the previous section, we saw 

that Yt-1 appears as a regressor, so it can be considered as a case of a distributed lag 

model that was transformed to an autoregressive model. There are two more 

specifications involving lag-dependent variables: 

(a) The partial adjustment model; and  
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(b) The adaptive expectations model. 

We will examine these models below. 

• The Partial Adjustment Model 

Suppose that the adjustment of the actual value of a variable Yt to its optimal (or 

desired) level (denoted by Yt
*) needs to be modelled. One way to do this is through 

the partial adjustment model which assumes that the change in actual Yt (Yt – Yt-1) 

will be equal to a proportion of the optimal change (Yt
* - Yt-1) or: 

Yt – Yt-1 = λ(Yt
* - Yt-1)…………………………………………(2.3.33) 

Where λ is the adjustment coefficient, which takes values from 0 t0 1, and 1/λ denotes 

the speed of adjustment. 

Consider the two extreme cases (a) if λ = 1, then Yt = Yt-1 which means that there is no 

adjustment of the Y. Therefore, the closer λ is to unity, the faster the adjustment will 

be. To understand it better, we can use a model from economic theory. Suppose Yt
* is 

the desired level of inventories for a firm I, and that this depends on the level of the 

sales of the firm Xt. 

 Yt
* = β1 + β2Xt………………………………………………………(2.3.34) 

Because there are ‘frictions’ in the market, there is bound to be a gap among the actual 

level of inventories and the desired one. Suppose also that a part of the gap can be closed 

each period, and then the equation that will determine the actual level of inventories 

will be given by: 

 Yt = Yt-1 + λ(Yt
* - Yt-1) + ut……..………………………………….(2.3.35) 

That is, the actual level of inventories is equal to that at time t-1 plus an adjustment 

factor and a random component. 

Combining (2.3.44) and (2.3.35): 

 Yt = Yt-1 + λ(β2Xt –Yt-1) + ut 
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       = β1λ + (1 – λ)Yt-1 + β2λXt + ut………………………………….(2.3.36) 

From this model we have the following: 

(a) The short run reaction of Y to a unit change in X is  β2λ; 

(b) The long run reaction is given by β1; and 

(c) An estimate of β1 can be obtained by dividing the estimate of β2λ by one minus 

the estimate of (1 – λ), i.e. β1 = β2λ/[1 – (1 – λ)]. 

Here, it is useful to note that error correction model (ECM) s also an adjustment model. 

Example: 

Consider the money demand function: 

Mt
* = aYt

b1Rt
b2et

ut…………………………………………………..(2.3.36) 

where the usual notation applies. Taking logarithms of this equation we get: 

ln Mt
* = lna + b1lnYt + b2lnRt + ut…………………………………(2.3.57) 

The partial adjustment hypothesis can be written as: 

*

1 1

t t

t t

M M

M M− −

 
=  
 

……………………………………………………..(2.3.38)  

Where if taking logarithms, gives: 

lnMt – lnMt-1 = λ((lnMt* - lnMt-1)………………………………(2.3.39) 

Substituting (2.3.37) into (2.3.39), we get: 

 lnMt – lnMt-1 = λ(lna + b1lnYt + b2lnRt + ut - lnMt-1) 

              lnMt-1 = λ lna + λ b1lnYt + λ b2lnRt + (1 – λ)lnMt-1+ λut …(2.3.40) 

or  

 lnMt-1 = γ1 + γ2lnYt + γ3lnRt +γ4lnMt-1 + vt…………………….(2.3.41) 
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• The Adaptive Expectations Model 

The second of the autoregressive models is the adaptive model, which is based on the 

adaptive expectations hypothesis formulated by Cagan (1956). Before understanding 

the model, it is crucial to have a clear picture of the adaptive expectations hypothesis. 

So, consider an agent who forms expectations of a variable Xt. If we denote by the 

subscript e expectations, then Xe
 t-1 is the expectation formed at time t-1 for X in t. 

The adaptive expectations hypothesis assumes that agents make errors in their 

expectations (given by Xt - Xe
t-1) and also that they revise their expectations by a 

constant proportion of the most recent error. Thus: 

 Xe
t - Xe

t-1 = θ(Xt - Xe
t-1)  0 < θ ≤ 1………………………………..(2.3.42) 

Where θ is the adjustment parameter 

If we consider again the two extreme cases, we have that: 

(a) If θ = 0, then Xe
t = Xe

t-1 and no revision in the expectations is made; while 

(b) If θ 1, the Xe
t = Xt and we have an instantaneous in the expectations. 

(c) The adaptive expectations hypothesis can now be incorporated in an econometric 

model. Suppose that we have the following model: 

Yt = β1 + β2Xe
t + ut……………………………………………(2.3.43) 

Where, for example, we can think of Yt as consumption of Xe
t as expected income. 

Assume, then, that for the specific model the expected income follows the adaptive 

expectations hypothesis, so that: 

Xe
t - Xe

t-1 = θ(Xt - Xe
t-1)………………………………………….(2.3.44) 

If actual X in period t-1 exceeds the expectations, then we would expect agents to revise 

their expectations upwards. Equation (2.3.44) then becomes: 

Xe
t = θXt + (1 – θ) Xe

t-1…………………………………………….(2.3.45) 
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Substituting (2.3.45) into (2.3.43), we obtain: 

Yt = β1 + β2(θXt + (1 – θ) Xe
t-1) +ut 

     = β1 + β2θXt + β2(1 – θ) Xe
t-1) +ut………………………………..(2.3.46) 

In order to estimate the Xe
t-1 variable from equation (2.3.46) to obtain an estimable 

econometric model, we need to follow the following procedure: 

Lagging equation (2.3.63) one period, we get: 

Yt-1 = β1 + β2 Xe
t-1 + ut-1………………………………………………….(2.3.47) 

Multiply both sides of (2.67) by (1-θ) we get: 

(1-θ)Yt-1 = (1-θ)β1 + (1-θ)β2Xe
t-1 + (1-θ)ut-1…………………………….(2.3.48) 

Subtract (2.68) from (2.63) we get: 

 Yt - (1-θ)Yt-1 = β1 - (1-θ)β1 + β2 Xe
t - (1-θ)β2Xe

t-1 + ut - (1-θ)ut-1……..(2.3.49) 

Or  

 Yt = β1θ + β2θ Xt + (1 – θ)Yt-1 + ut - (1-θ)ut-1………………………….(2.3.50) 

And finally: 

 Yt = β1
* + β2

* Xt + β3
*Yt-1 + vt ………………………………………..(2.3.51) 

Where β1
* = β1θ, β2

* = β2θ, β3
* = (1 – θ) and vt = ut - (1-θ)ut-1. Once estimates of the β*s 

have been obtained, β1, β2, and θ can be estimated as follows: 

 θ = 1 - β3
*, β1 = β1

*/θ and β2 = β2
*/θ 

here, it is interesting to mention that through this procedure we are able to obtain an 

estimate of the marginal propensity to consume out of expected income, although we 

do not have data for the expected income. 

Note: it is very highly important to test for autocorrelation n models with lagged 

dependent variables. In such cases, the Durbin-Watson (DW) tetst statistic is not 
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appropriate and Durbin’s h-test should be applied instead, or alternatively the 

Lagrangian Multiplier (LM) test for autocorrelation. The Durbin h-test is given as: 

 
1 [var( )]

n
h

n



=

−
……………………………………………………….(2.3.52) 

Where n is the sample size, var( ) is the variance of the lagged Yt (=Yt-1) coefficient, 

and  is an estimate of the first-order serial correlation ρ. 

SELF ASSESSMENT EXERCISE 

Show how we might obtain an estimate of the marginal propensity to consume out of 

expected income, although we do not have data for expected income, using the adaptive 

expectations autoregressive model. 

4.0 CONCLUSION 

Qualitative response regression models refer to models in which the response, or 

regressand, variable is not quantitative or an interval scale. The simplest possible 

qualitative response regression model is the binary model in which the regressand is of 

the yes/no or presence /absence type. Also the simplest possible binary regression model 

is the linear probability model (LPM) in which the binary regression model is regressed 

on the relevant explanatory variables by using the standard OLS methodology. 

However, the LPM suffers from several estimation problems. Even if some of the 

estimations problem can be overcome, the major shortcoming of the LPM is that it 

assumes that the probability of something happening increases linearly with the level 

of the regressor. This very restrictive assumption can be overcome with the use of logit 

and probit models. Furthermore, this unit elaborated on regression models that take into 

account time lags known as dynamic or lagged regression models (distributed lag and 

autoregressive). 

5.0 SUMMARY 

So far unit discussed qualitative response regression models in which the explanatory 

variable(s) and the response variable takes on qualitative variables. The unit further 
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examined the simple possible binary regression model known as the linear probability 

model (LPM) which has the shortcoming of estimation problems (assuming linearity 

between the probability and the regressor.  To overcome this shortcoming, the unit 

introduced the logit and probit models. The unit further elaborated on on regression 

models that take into account time lags known as dynamic or lagged regression models 

(distributed lag and autoregressive). A purely distributed lag model can be estimated by 

OLS, but in that case there is the problem of multicollinearity since successive lagged 

values of a regressor tend to be correlated. As a result, some short cut methods have 

been deviced. These include the Koyck, the adaptive expectations, and partial 

adjustment mechanisms, the first being purely algebraic approach and the other two 

being based on economic principles. 

6.0 TUTOR-MARKED ASSIGNMENT 

(1) Consider the following model for home ownership, the maximum likely hood 

estimates of the logit model are as follows: 

 ln 493.54 32.96
1

i
i

i

P
L income

P

 
= = − + 

− 
 

      t = (-0.000008) (0.000008) 

Comment on these results, bearing in mind that all values of income below 16 

correspond to Y = 0. A priori, what would you expect in such a situation. 

(2) Discuss the problem one encounters when using OLS to estimate the parameters 

of linear probability model. 
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UNIT FOUR: SIMULTANEOUS EQUATION ESTIMATION 

1.0 Introduction 

2.0 Objectives 

3.0 Main Contents 

3.1 Nature of Simultaneous Equation 

3.2 Consequences of Ignoring Simultaneity (Simultaneous Bas: 

Inconsistency of OLS Estimators) 

3.3 Recursive Models and the OLS 

3.4 Approaches to Estimation 

3.5 Estimation of exactly Identified and Over-identified Equations 

4.0 Conclusion 

5.0 Summary 

6.0 Tutor Marked Assignment  

7.0 References/Further Readings 

1.0 INTRODUCTION 

In this unit, we discuss the simultaneous-equation models. In particular we discuss 

special features, their estimation, and some of the statistical problems associated with 

them. 

2.0 OBJECTIVES 

At the end of this unit, students should be able to: 

• State the nature of simultaneous-equation model. 

• Identify simultaneous-equation bias in a model and the inconsistency of the OLS 

estimators. 

• Describe approaches to simultaneous-equation estimators. 

• Examine recursive models and the OLS 

• Analyse estimation of exactly identified and over-identified equations. 
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3.0 MAIN CONTENT 

3.1 Nature of Simultaneous Equation Model 

All econometric models covered so far have dealt with a single dependent variable and 

estimations of a single equation. However, in modern economics, interdependence is 

very commonly encountered. Several dependent variables are determined 

simultaneously, therefore appearing both as dependent and independent variables in a 

set of different equations. For example, in the single equation case that we have 

examined so far, we had equations as demand functions of the following form: 

 
1 2 3

d

t t t tQ P Y u  = + + + ……………………………………………(2.4.1) 

Where Qt
d is quantity demanded, Pt is the price of the commodity, and Yt s income. 

However, economic analysis suggest that price and quantity are typically determined 

simultaneously by the market processes, and therefore a full market model is not 

captured by a single equation but consists of a set of three different equations: the 

demand function, the supply function, and the condition for equilibrium in the market 

of a product. So, we have: 

 
1 2 3 1

d

t t t tQ P Y u  = + + + ………………………………………(2.4.2) 

 1 2 2

s

t t tQ P u = + + …………………………………………………(2.4.3) 

 d s

t tQ Q= ………………………………………………………..…(2.4.4) 

Where of course Qt
s denotes the quantity supplied. 

Equations (2.4.2), (2.4.3) and (2.4.4) are called structural equations of the simultaneous 

equations model, and the coefficients β and γ are called structural parameters. 

Because price and quantity are jointly determined, they are both endogenous variables, 

and because income is not determined by specified model, income is characterized as 

an exogenous variable. Note, here, that in the single-equation models, we were using 

the terms exogenous variable and explanatory variable interchangeably, this is no longer 
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possible in simultaneous equation models. So, we have price as an explanatory variable 

but not as an exogenous variable as well. 

Equating (2.4.2) to (2.4.3) and solving for Pt we get: 

 3 1 21 1

2 2 2 2 2 2

t t
t

u u
P

 

     

−−
= + +

− − −
………………………………………..(2.4.5) 

This can be written as: 

 1 2 1t t tP Y  = + + …………………………………………………….(2.4.6) 

If we substitute (2.4.6) into 2.4.3) we get: 

 1 2 1 2 1 2( )t tQ Y u t    = + + + +  

      1 2 1 2 2 2 1 2t tY u t      = + + + +  

     3 4 2t tY  = + + …………………………………………………..(2.4.7) 

So now we have those equations (2.4.6) and (2.4.7) specify each of the endogenous 

variables in terms only of the exogenous variables, the parameter of the model and the 

stochastic error terms. These two equations are known as reduced form equations and 

the πs are known as reduced form parameters. In general reduced form equations can 

be obtained by solving for each of the endogenous variables in terms of the exogenous 

variables, the unknown parameters and the error terms.   

SELF ASSESSMENT EXERCISE 

Interdependence is common in modern economics; therefore, many economic 

relationships cannot be captured with a single equation. Discuss. 

 

 

3.2 Consequences of Ignoring Simultaneity (Simultaneous Bias: The 

Inconsistency of the OLS Estimators) 
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One of the assumptions of classical linear regression model (CLRM) states that error 

term of an equation should be uncorrelated with each explanatory variable in this 

equation. If such a correlation exists, then the OLS regression equation is biased. It 

should evident from the reduced form equations that in cases of simultaneous-equation 

models such a bias exists. Recall that the new error terms v1t and v2t depend on u1t and 

u2t. However, to show this more clearly, consider the following general form of a 

simultaneous-equation model: 

 1 1 2 2 3 1 4 3 1t t t t tY Y X X e   = + + + + ………………………………….(2.4.8) 

 2 1 2 1 3 3 4 2 2t t t t tY Y X X e   = + + + + …………………………………..(2.4.9) 

In this model, we have two structural equations, with two endogenous variables (Y1t 

and Y2t) and three exogenous variables (X1t, X2t and X3t). let us see what happens if one 

of the error terms increases, assuming everything else in the equations to be held 

constant: 

(a) If e1t increases, this cause Y1t to increase due to equation (2.3.80), then 

(b) If Y1t increases (assuming that β2 is positive) Y2t will then also increase due to 

the relationship in equation (2.4.9), but 

(c) If Y2t increases in (2.4.9) it also increases (2.4.8) where it is an explanatory 

variable. 

Therefore, an increase in the error term of one of the equation causes an increase in an 

explanatory variable in the same equation. So the assumption of no correlation among 

the error term and the explanatory variable is violated leading to biased estimates. 

SELF ASSESSMENT EXERCISE 

Describe how the OLS becomes inconsistent in the face of simultaneous bias.  

3.3 Approaches to Estimation 
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If we consider the general M equations model in M endogenous variables, we may adopt 

two approaches to estimate the structural equations, namely, single-equation methods, 

also known as limited information methods, and system methods, also known as full 

information methods. In the single-equation methods, we estimate each equation in 

the system (of simultaneous equations) individually, taking into consideration any 

restrictions imposed on the equation (such as exclusion of some variables) without 

worrying about the restrictions on the other equations in the system, hence the name 

limited information methods. In the system methods, on the other hand, we estimate all 

the equations in the model simultaneously, taking into due consideration of all 

restrictions on such equations by the omission or absence of some variables, hence the 

name full information methods (Christ, 1966). 

As an illustration, let us consider the following system of simultaneous-equation: 

 Y1t = β10 +    + β12Y2t + β13Y3t +    + γ11X1t +                              + u1t 

 Y2t = β20 +        + β23Y3t +    + γ21X1t + γ22X2t                   + u2t 

 Y3t = β30 + β31Y1t +                  + β34Y4t + γ31X1t + γ32X2t +        + u3t 

 Y4t = β40 +    + β42Y2t                                             + γ43X3t +           + u1t…(2.4.10) 

Here, the Y’s are the endogenous variables whereas the X’s are the exogenous variables. 

Supposing our interest is to estimate the third equation in the system noting that the 

variables Y2 and X3 are excluded from it. In the system method, on the other hand, 

emphasis is placed on estimating all the four equations in the system simultaneously, 

considering all the restrictions placed on the various equations of the system. 

To maintain the spirit of simultaneous-equation models, one basically should apply the 

systems method, such as the full information maximum likelihood (FIML) method. 

Despite the advantageous nature of the system methods, in practice, such methods are 

not commonly used for the following reasons: (a) the computational burden is enormous 

and stupendously tasking even in these days of high-speed computers, not to mention 

the cost involved. (b) the systems methods, such as FIML, lead to solutions that are 
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highly nonlinear in the parameters and are therefore often difficult to determine. (c) if 

there is specification error in one or more equations of the system, that error is 

transmitted to the rest of the system as a result, the systems methods become sensitive 

to specification errors (Klein, 1974). 

SELF ASSESSMENT EXERCISE 

Describe the two approaches to estimate the structural equations, namely, single-

equation methods, also known as limited information methods, and system methods, 

also known as full information methods.  

3.4 Recursive Models and OLS 

We learned from our previous unit that due to the interdependence between the 

stochastic disturbance term and the endogenous explanatory variable(s), the OLS 

method is inappropriate for the estimation of an equation in a system of simultaneous-

equations. However, if OLS is applied mistakenly to such an equation, the estimators 

are not only biased (in small samples) but also inconsistent; that is, the bias does not 

disappear no matter how large the sample size. There is however an exceptional 

situation where the OLS can be applied appropriately even in the context of 

simultaneous equations. This is a typical case of the recursive, triangular, or causal 

models. As an example, consider the following system of equations: 

 Y1t = β10                           + γ11X1t + γ12X2t + u1t 

 Y2t = β20 + β21Y1t                    + γ21X1t +  γ22X2t + u2t……………………(2.4.11) 

 Y3t = β30 + β31Y1t + β32Y2t + γ31X1t + γ32X2t + u3t 

Where the Y’s are the endogenous while the X’s are exogenous as usual. The 

disturbances are assumed as follows: 

 cov (u1t, u2t) cov (u1t, u3t) = cov (u2t, u3t) = 0 

that is, the same-period disturbances in different equations are uncorrelated (the 

assumption of zero contemporaneous correlation). 
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Let us consider the first equation of (2.4.11). Since it contains only the exogenous 

variable on the right hand side and since by assumption they are not correlated with the 

disturbance term, u1t, this equation satisfies the critical assumption of the classical OLS 

(uncorrelatedness between the explanatory variable and the stochastic disturbances). 

Hence, OLS can be applied to this equation. Similarly, consider the second equation of 

(2.4.11), which contains the endogenous variable Y1 as an explanatory variable along 

with non-stochastic X’s. In this case, OLS can also be applied provided Y1t and u2t are 

uncorrelated. The reason for the un-correlation of Y1t and u2t is that u1, which affect Y1, 

is by assumption uncorrelated with u2. Therefore, Y1 is a predetermined variable in as 

so far Y2 is concerned. The third equation can be estimated using OLS because both Y1 

and Y2 are uncorrelated with u3. 

Thus, in a recursive model, OLS can be applied to each equation separately. Actually, 

there is no a simultaneous equation problem in this situation. From the structure of such 

systems, it is clear there is no interdependence among the endogenous variables. Thus, 

Y1 affects Y2, but Y2 does not affect Y1. In the same vein, Y1 and Y2 affect Y3 without, 

in turn, being influenced by Y3. In other words, each equation exhibits a unilateral 

causal dependence, hence, the name causal models (Zellner, 1962). 

3.5 Estimation of Simultaneous Equation Models 

The question of identification is closely related to the problem of estimating the 

structural parameters in a simultaneous equation model. Thus, when an equation is not 

identified, such estimation is not possible. N cases, though, of exact or 

overidentification, there are procedures that allow us to obtain estimates of the structural 

parameters. These procedures are different from simple OLS in order to avoid the 

simultaneity bias we discussed previously. 

In general, in cases of exact identification, the appropriate method is the so-called 

method of indirect least squares (ILS), while in cases of overidentified equations, the 

two stage least squares (2SLS) method is the most commonly used. 
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3.5.1 Estimation of an Exactly Identified Equation: The Method of 

ILS 

This method can be applied only when the equations of a simultaneous equation model 

is found to be exactly identified. The procedure of the ILS involves the following three 

steps: 

Step 1: Find the reduced form equations. These reduced-form-equations are obtained 

from the structural equations in such a manner that the dependent variable in each 

equation is the only endogenous variable and is a function solely of the predetermined 

(exogenous or lagged endogenous) variables and the stochastic error term(s). 

Step 2: Estimate the reduced form parameters by applying simple OLS to the reduced-

form-equations, and 

Step 3: Obtain unique estimates of the structural parameters from the estimates of the 

parameters of the reduced-form-equation in step 2. 

As this three-step procedure indicates, the name ILS derives from the fact that structural 

coefficients are obtained indirectly from the OLS estimates of the reduced-form-

coefficients Gujarati & Sangeetha, 2007). 

Example: 

Consider the demand-and-supply model which is given below: 

Demand function: 0 1 2 1t t t tQ P X u  = + + + ……………………………(2.4.12) 

Supply function:           0 1 2t t tQ P u = + + ………………………………(2.4.13)   

Where Q = quantity, P = Price; X = income 

Now we assume that X is exogenous. As observed previously, the supply function is 

exactly identified     whereas the demand function is not identified. 

The reduced-form-equations corresponding to the preceding structural equations are: 
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 0 1t t tP X w = + + …………………………………………………(24.14) 

 2 3t t tQ X v = + + …………………………………………………(2.4.15) 

Where ψ’s are the reduced-form coefficients and are (nonlinear) combinations of the 

structural coefficients, and where ω and v are linear combinations of the structural 

disturbances u1 and u2. 

One plausible thing is that, each reduced-form equation contains only one endogenous 

variable and which is a function of the exogenous variable X (income) and the stochastic 

disturbances. Hence, the parameters of the preceding reduced-form equations may be 

estimated by OLS as follows: 

 

1 0 12

3 2 12

;

;

t t

t

t t

t

p x
P X

x

q x
Q X

x

  

  

= = −

= = −







………………………………….(24.16) 

Where the lower case letters denote deviations from the sample means and where Q  

and P  are the sample mean values of Q and P. As observed previously, 'i s are 

consistent estimators and under appropriate assumptions is minimum variance unbiased 

or asymptotically efficient. 

Our major concern now is to determine the structural coefficients from the reduced-

form coefficients. The supply function is exactly identified; therefore its parameters can 

be estimated uniquely from the reduced-form coefficients as follows: 

 0 2 1 0  = −  and 3
1

1





= …………………………………….(2.4.17) 

Hence, the estimates of these parameters can be obtained from the estimates of the 

reduced-form coefficients as follows: 

 0 2 1 0  = −  and 3
1

1





=  ……………………………………(2.4.18) 
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Which are the ILS estimators. 

The ILS method is not commonly used for two reasons: 

(1) Most simultaneous equations models tend to be over-identified. 

(2) If the system has several equations, solving for the reduced form and then for the 

structural form can be very tedious. An alternative is the TSLS method. 

3.5.2 Estimation of an Over Identified Equation: The Method of 

2SLS 

The basic idea behind the 2SLS method is to replace the stochastic endogenous variable 

(which is correlated with the error term and causes the bias) with the one that is non-

stochastic and consequently independent of the error term. This involves two stages 

(hence two-stage least squares): 

Stage 1: Regress each endogenous variable which is a regressor as well, on all of the 

exogenous and lagged endogenous variables in the entire system by using OLS (that is 

equivalent to estimating the reduced form equations) and obtain the fitted values of the 

endogenous variables of these regressions (Y ). 

Stage 2: Use the fitted values from stage 1 as proxies or instruments for the endogenous 

regressors in the original (structural form) equations. 

Example: 

Consider the following model: 

Income function:                  Y1t = β10+        + β11Y2t + γ11X1t + γ12X2t + u1t…(2.4.19) 

Money supply function  Y2t = β20 + β21Y1t                                              + u2t…(2.4.20) 

Where Y1 = income, Y2 = stock of money; X1 = investment expenditure;  

 X2 = government expenditure on goods and services 

The variables X1 and X2 are exogenous. 
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Equation (2.3.91) is the hybrid of quantity-theory-Keynesian approaches to the 

determination of income while (2.3.92) postulates that the stock of money is determined 

by the apex bank (CBN) on the basis of the level of income. It is pertinent that there is 

a simultaneous problem in the two equations. 

If we apply the order condition of identification, we will realise that the income equation 

(2.3.91) is under identified whereas the money supply equation (2.3.92) is over 

identified. Here, there is nothing that can be done with the income equation rather than 

changing the specification form of the model. In addition, the over identified money 

supply function may not be estimated by ILS due to the presence of only two estimates 

of β21. 

However, if we apply OLS to the over identified money supply function; we may get 

estimates that are inconsistent given that there may be presence of correlation between 

the stochastic explanatory variable Y1 and the stochastic disturbance term u2. Suppose, 

we find a proxy for the stochastic explanatory variable Y1 such that, it s highly 

correlated with Y1 but uncorrelated with u2. Such proxy is also known as an 

instrumental variable. If such a variable is found, then one can use OLS to estimate 

the money supply function. To obtain such an instrumental variable, one has to use the 

two stage least squares (Theil, 1953 & Basmann, 1957). As the name implies, the 

method involves two successive applications of OLS. The process is as follows: 

Stage 1: Regress first Y1 on all the predetermined variables in the whole system, not 

just that equation in order to avoid the correlation between Y1 and u2. In this, we regress 

Y1 on X1 and X2 as follows: 

 1 0 1 1 2 2t t t tY X X u  = + + + …………………………………………(2.4.21) 

Where tu  are the usual OLS residuals. From (24.21), we obtain: 

 
1 0 1 1 2 2t t tY X X  = + + …………………………………………..(2.4.22) 
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Where 1tY  is an estimate of the mean value of Y conditional upon the fixed X’s. Note 

that (2.4.21) is nothing but a reduced-form regression because only the exogenous 

variables appear on the right-hand-side. Equation (2.4.21) can be expressed as: 

 1it t tY Y u= + ………………………………………………………(2.4.23) 

Which shows that the stochastic Y1 consist of two parts: 1tY which is a linear 

combination of the non-stochastic X’s, and the random component tu . Following the 

OLS theory,  1tY  and tu  are uncorrelated. 

Stage 2: The over identified money supply equation can now be written as: 

 2 20 21 1 2( )t t t tY Y u u = + + +   

                
20 21 1 2 21( )t t tY u u  = + + + …………………………………(2.4.24) 

    *

20 21 1t tY u = + +  

Where *

2 21t t tu u u= +  

When we compare (2.4.24.) and (2.4.20), we discover that they are very similar; the 

only difference is that Y1 is replaced by 1Y . It can be shown that although Y1 in the 

original money supply equation is correlated with the disturbance term u2 and rendering 

OLS inappropriate, Y1t in (2.4.24) is uncorrelated with ut
* asymptotically. As a result, 

OLS can be used to (2.4.24), which will give consistent estimates of the parameters of 

the money supply function. 

The basic idea behind the 2SLS is to purify the stochastic explanatory variable Y1 of 

the influence of influence of the stochastic disturbance, u2. This objective is achieved 

by performing the reduced-form regression of Y1 on all the exogenous variables in the 

system (i.e. stage 1), and obtain the estimates 1tY  and replacing 1tY  in the original 

equation by estimated 1tY , and then applying OLS to the equation thus transformed 
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(stage 2). The estimators thus obtained are consistent; that is they converge to their 

true values as the sample size increases indefinitely. 

SELF ASSESSMENT EXERCISE 

Explain the stages of estimating an exact and an over identified equations in a system 

of simultaneous equation model. 

4.0 CONCLUSION 

In contrast to single-equation models, in simultaneous-equation models, more than one 

dependent variable is involved, necessitating as many equations as the number of 

endogenous variables. A unique feature of simultaneous-equation models is that the 

endogenous variable in one equation may appear as an explanatory variable in another 

equation of the system. As a consequence, such endogenous explanatory variable 

becomes stochastic and is usually correlated with the disturbance term of the equation 

in which it appears as an explanatory variable. This makes the classical OLS estimators 

inconsistent. However, alternative methods have been developed to take care of the 

simultaneous bias of such equations in a system. Some of these methods include: the 

ILS for exact identification of an equation in a system and the 2SLS for overidentified 

equation.  

5.0 SUMMARY 

This unit discussed simultaneous-equation models as models where more than one 

endogenous variable is involved, which makes the models to have as many equations 

as the number of dependent variables. The unit further explained how OLS estimators 

become inconsistent in the presence of simultaneous bias of a system of equations. 

Although OLS is, in general, inappropriate in the context of simultaneous-equation 

models, it can be applied to the so-called recursive models where there is definite but 

unidirectional cause-and-effect relationship among the endogenous variables. Finally, 

the method of ILS is suited for exact identified equation whereas the 2SLS is designed 

for an over identified equation. 
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6.0 TUTOR-MARKED ASSIGNMENT 

(1) J. Riti developed the following model for Nigerian economy: 

Yt = α0 + α1Yt-1 + α2It + u1t 

It = α3 + α4Yt + α5Qt + u2t 

Ct = α6 + α7Yt + α8Ct-1 + α9Pt + u3t 

Qt = α10 + α11Qt-1 + α12Rt + u4t 

Where Y = national income; I = investment; C = consumption; Q = profits;    

 P = cost of living index; R = industrial productivity, t = time;  

 u = stochastic disturbances 

(a) Which of the variables would you regard as endogenous and which as 

exogenous? 

(b) Is there any equation in the system that can be estimated by a single-equation 

least squares method? 

(2) Why is it unnecessary to apply the 2SLS method to an exact identified equation? 

(3) Consider the following modified Keynesian model of income determination: 

Ct = α10 + α11Yt + u1t 

 It = α20 + α21Yt + α22Yt-1 + u2t 

Yt = Ct + It + Gt  

Where C = consumption; I = investment expenditure; Y = income;  

 G = government expenditure; Gt and Yt-1 are assumed predetermined 
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UNIT 1:  MATRIX TREATMENT OF MULTIPLE REGRESSIONS 

1.0 Introduction 

2.0 Objectives 

3.0 Main Contents 

3.1 A matrix formulation of the regression model 

3.2 Leas Squares Estimates in Matrix Notation 

3.3 Further Matrix Results for Multiple Linear Regression 

4.0 Conclusion 

5.0 Summary 

6.0 Tutor Marked Assignment  

7.0 References/Further Readings 

1.0 INTRODUCTION 

In the multiple regression setting, because of the potentially large number of predictors, 

it is more efficient to use matrices to define the regression model and the subsequent 

analyses. Here, we review basic matrix algebra, as well as learn some of the more 

important multiple regression formulas in matrix form. 

2.0 OBJECTIVES 

At the end of this unit, students should be able to: 

• Analyze matrix formulation of the regression model 

• Estimate least squares estimate in matrix notation 

• Analyze further matrix result for multiple regression 

 

3.0 MAIN CONTENT 

3.1 A Matrix Formulation of the Regression Model 
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As always, let us start with the simple case first. Consider the following simple linear 

regression function: 

 0 1i i iy x = + +ò     for i = 1,…,n………………………………….(3.1.1) 

If we actually let i = 1, ..., n, we see that we obtain n equations: 

 

 

1 0 1 1 1

2 0 1 2 2

0 1n n n

y x

y x

y x

 

 

 

= + +

= + +

= + +

ò

ò

ò

………………………………………………………….(3.1.2) 

Well, that is a pretty inefficient way of writing it all out! As you can see, there is a 

pattern that emerges. By taking advantage of this pattern, we can instead formulate the 

above simple linear regression function in matrix notation: 
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1
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  
  
  =
  
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
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 

   +    
 
 

…………………………………………….(3.1.3) 

That is, instead of writing out the n equations, using matrix notation, our simple linear 

regression function reduces to a short and simple statement: 

Y = Xβ+ ϵ………………………………………………………………..(3.1.4) 

Now, what does this statement mean? Well, here is the answer: 

▪ X is an n × 2 matrix. 

▪ Y is an n × 1 column vector, β is a 2 × 1 column vector, and ε is an n × 1 column 

vector. 

▪ The matrix X and vector β are multiplied together using the techniques of matrix 

multiplication. 

▪ And, the vector Xβ is added to the vector ε using the techniques of matrix addition. 

Now, that might not mean anything to you, if you have never studied matrix algebra 

— or if you have and you forgot it all! So, let us start with a quick and basic review. 

(a) Definition of a Matrix 

An r × c matrix is a rectangular array of symbols or numbers arranged in r rows 

and c columns. A matrix is almost always denoted by a single capital letter in boldface 

type. 

Here are three examples of simple matrices. The matrix A is a 2 × 2 square 

matrix containing numbers: 
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1

6
A


= 


 
2

3





 

The matrix B is a 5 × 3 matrix containing numbers: 

          

1,80, 3.4

1,92, 3.1

1,65, 2.5

1,71, 2.8

1, 40,1.9

B

 
 
 
 =
 
 
  

 

And, the matrix X is a 6 × 3 matrix containing a column of 1's and two columns of 

various x variables: 

         

11 12

21 22

31 32

41 42

51 52

1, ,

1, ,

1, ,

1, ,

1, ,

x x

x x

X x x

x x

x x

 
 
 
 =
 
 
 
 

………………….(3.1.5) 

(b) Definition of a Vector and a Scalar 

A column vector is an r × 1 matrix, that is, a matrix with only one column. A vector 

is almost often denoted by a single lowercase letter in boldface type. The following 

vector q is a 3 × 1 column vector containing numbers: 

       

2

5

8

q

 
 

=
 
  

 

A row vector is an 1 × c matrix, that is, a matrix with only one row. The vector h is a 

1 × 4 row vector containing numbers: 

h = [21 46 32 90] 

A 1 × 1 "matrix" is called a scalar, but it is just an ordinary number, such as 29 or σ2. 

(c) Matrix multiplication 

Recall that Xβ that appears in the regression function: Y = Xβ + ϵ 

is an example of matrix multiplication. Now, there are some restrictions — you cannot 

just multiply any two old matrices together. Two matrices can be multiplied 

together only if the number of columns of the first matrix equals the number of rows 

of the second matrix. Then, when we multiply the two matrices, we get: the number of 
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rows of the resulting matrix equals the number of rows of the first matrix, and the 

number of columns of the resulting matrix equals the number of columns of the 

second matrix. 

For example, if A is a 2 × 3 matrix and B is a 3 × 5 matrix, then the matrix 

multiplication AB is possible. The resulting matrix C = AB has 2 rows and 5 columns. 

That is, C is a 2 × 5 matrix. Note that the matrix multiplication BA is not possible. 

For another example, if X is an n × (k+1) matrix and β is a (k+1) × 1 column vector, 

then the matrix multiplication Xβ is possible. The resulting matrix Xβ has n rows and 

1 column. That is, Xβ is an n × 1 column vector. 

Okay, now that we know when we can multiply two matrices together, how do we do 

it? Here's the basic rule for multiplying A by B to get C = AB: 

The entry in the ith row and jth column of C is the inner product — that is, element-

by-element products added together — of the ith row of A with the jth column of B. 

For example: 

  

3,2,1,5
1,9,7 90,101,106,88

5,4,7,3
8,1,2 41,38,27,59

6,9,6,8

C AB

 
    

= = =    
     

 

That is, the entry in the first row and first column of C, denoted c11, is obtained by: 

c11 = 1(3) + 9 (5) + 7(6) = 90 

And, the entry in the first row and second column of C, denoted c12, is obtained by: 

c12 = 1(2) + 9(4) + 7(9) = 101 

And, the entry in the second row and third column of C, denoted c23, is obtained by: 

c23 = 8(1) + 1(7) + 2(6) = 27 

You might convince yourself that the remaining five elements of C have been 

obtained correctly. 

 

(d) Matrix Addition 

Recall that Xβ + ε that appears in the regression function: Y = Xβ + ϵ 
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is an example of matrix addition. Again, there are some restrictions — you cannot just 

add any two old matrices together. Two matrices can be added together only if they 

have the same number of rows and columns. Then, to add two matrices, simply add the 

corresponding elements of the two matrices. That is: 

▪ Add the entry in the first row, first column of the first matrix with the entry in the first 

row, first column of the second matrix. 

▪ Add the entry in the first row, second column of the first matrix with the entry in the 

first row, second column of the second matrix. 

▪ And, so on. 

For example: 

    

2,4, 1 7,5,2 9,9,1

1,8,7 9, 3,1 10,5,8

3,5,6 2,1,8 5,6,14

C A B

−     
     

= + = − =
     
          

 

That is, the entry in the first row and first column of C, denoted c11, is obtained by: 

c11 = 2 + 7 = 9 

And, the entry in the first row and second column of C, denoted c12, is obtained by: 

c12 = 4 + 5 = 9 

You might convince yourself that the remaining seven elements of C have been 

obtained correctly. 

 

SELF ASSESSMENT EXERCISE 

Define matrix multiplication and addition. What condition must be fulfilled for two 

matrices to be multiplied and added? 

 

3.2 Least squares estimates in matrix notation 

Here is the punch-line: the (k+1) × 1 vector containing the estimates of 

the (k+1) parameters of the regression function can be shown to equal: 
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…………………………(3.1.6) 

where: (X'X)–1 is the inverse of the X'X matrix, and X' is the transpose of the X matrix. 

As before, that might not mean anything to you, if you have never studied matrix algebra 

— or if you have and you forgot it all! So, let's go off and review inverses and transposes 

of matrices. 

(a) Definition of the Transpose of a Matrix 

The transpose of a matrix A is a matrix, denoted A' or AT, whose rows are the columns 

of A and whose columns are the rows of A — all in the same order. For example, the 

transpose of the 3 × 2 matrix A: 
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is the 2 × 3 matrix A': 
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And, since the X matrix in the simple linear regression setting is: 
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The X'X matrix in the simple linear regression setting must be: 
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(b) Definition of the identity matrix 

The square n × n identity matrix, denoted In, is a matrix with 1's on the diagonal and 0's 

elsewhere. For example, the 2 × 2 identity matrix is: 

       2

1

0
I


= 


   
0

1





 

The identity matrix plays the same role as the number 1 in ordinary arithmetic: 
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That is, when you multiply a matrix by the identity, you get the same matrix back. 

(c) Definition of the inverse of a matrix 

The inverse A-1 of a square (!!) matrix A is the unique matrix such that: 

A−1A = I = AA−1………………………………………………………(3.1.10) 

That is, the inverse of A is the matrix A-1 that you have to multiply A by in order to 

obtain the identity matrix I. The inverse only exists for square matrices! 

Now, finding inverses is a really messy venture. The good news is that we'll always let 

computers find the inverses for us. In fact, we won't even know that statistical software 

is finding inverses behind the scenes! 

An example 

Let us take a look at an example just to convince ourselves that, yes, indeed the least 

squares estimates are obtained by the following matrix formula: 

0

1 1
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p
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b
b X X X Y

b

−

−

 
 
   = =
 
 
  

……………………………………………(3.1.11) 

Let us consider the data in soapsuds.txt, in which the height of suds (y = suds) in a 

standard dishpan was recorded for various amounts of soap (x = soap, in grams) (Draper 

https://online.stat.psu.edu/stat462/sites/onlinecourses.science.psu.edu.stat462/files/data/soapsuds/index.txt
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and Smith, 1998, p. 108). Using statistical software to fit the simple linear regression 

model to these data, we obtain: 

 

Now, let us see if we can obtain the same answer using the above matrix formula. We 

previously showed that: 

1
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1 1

n
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n n
ii ii

n x
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……………………………………………….(3.1.12) 

We can easily calculate some parts of this formula: 

 

That is, the 2 × 2 matrix X'X is: 
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And, the 2 × 1 column vector X'Y is: 
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So, we have determined X'X and X'Y. Now, all we need to do is to find the inverse 

(X'X)-1. As mentioned before, it is very messy to determine inverses by hand. Letting 

computer software do the dirty work for us, it can be shown that the inverse of X'X is: 

    1
4.4643

( )
0.78571

X X − 
 = 

−
  

0.78571

0.14286

− 


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And so, putting all of our work together, we obtain the least squares estimates: 

1
4.4643

( )
0.78571

X X X Y− 
  = 

−
  

0.78571 347 2.67

0.14286 1975 9.51

− −    
=    

    
 

That is, the estimated intercept is b0 = -2.67 and the estimated slope is b1 = 9.51. Our 

estimates are the same as those reported above (within rounding error). 

SELF ASSESSMENT EXERCISE 

Define the following matrix’s terms: transpose identity and inverse matrix 

3.3 Further Matrix Results for Multiple Linear Regression 

Matrix notation applies to other regression topics, including fitted values, residuals, 

sums of squares, and inferences about regression parameters. One important matrix that 

appears in many formulas is the so-called "hat matrix,"  

H = X(X′X)−1X′, since it puts the hat on Y. 

(a) Linear Dependence 

There is just one more really critical topic that we should address here, and that is linear 

dependence. We say that the columns of the matrix A: 

1,2,4,1

2,1,8,6

3,6,12,3

A

 
 

=
 
  

 

are linearly dependent, since (at least) one of the columns can be written as a linear 

combination of another, namely the third column is 4 × the first column. If none of the 

columns can be written as a linear combination of the other columns, then we say the 

columns are linearly independent. 

Unfortunately, linear dependence is not always obvious. For example, the columns in 

the following matrix A: 

    

1,4,1

2,3,1

3,2,1

A

 
 

=
 
  

 

are linearly dependent, because the first column plus the second column equals 5 × the 

third column. 
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Now, why should we care about linear dependence? Because the inverse of a square 

matrix exists only if the columns are linearly independent. Since the vector of regression 

estimates b depends on (X'X)-1, the parameter estimates b0, b1, and so on cannot be 

uniquely determined if some of the columns of X are linearly dependent! That is, if the 

columns of your X matrix — that is, two or more of your predictor variables — are 

linearly dependent (or nearly so), you will run into trouble when trying to estimate the 

regression equation. 

For example, suppose for some strange reason we multiplied the predictor 

variable soap by 2 in the dataset soapsuds.txt. That is, we would have two predictor 

variables, say soap1 (which is the original soap) and soap2 (which is 2 × the original 

soap): 

 

If we tried to regress y = suds on x1 = soap1 and x2 = soap2, we see that statistical 

software spits out trouble: 

 

In short, the first moral of the story is "do not collect your data in such a way that the 

predictor variables are perfectly correlated." And, the second moral of the story is "if 

your software package reports an error message concerning high correlation among 

your predictor variables, then think about linear dependence and how to get rid of it." 

3.4 More on the Regression Model in Matrix Form 

We will consider the linear regression model in matrix form. 

For simple linear regression, meaning one predictor, the model is 

0 1i i iY x  = + +             for i = 1, 2, 3, …, n………………(3.1.13) 
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This model includes the assumption that the εi ’s are a sample from a population with 

mean zero and standard deviation σ. In most cases we also assume that this population 

is normally distributed. 

The multiple linear regression model is: 

0 1 1 2 2 3 3 ...i i i i k ik iY x x x x     = + + + + + +    for i = 1, 2, 3, …, n………(3.1.14) 

This model includes the assumption about the εi ’s. 

This requires building up our symbols into vectors. Thus: 

 

1

2

3

1nx

n

Y

Y

Y Y

Y

 
 
 
 =
 
 
 
 

…………………………………………………………(3.1.15) 

captures the entire dependent variable in a single symbol. The “n × 1” part of the 

notation is just a shape reminder. These get dropped once the context is clear. 

For simple linear regression, we will capture the independent variable through this     n 

×2 matrix: 

 
2

1

1

1

1

nx

X




=




  

1

2

3

n

x

x

x

x










……………………………………………….(3.1.16) 

The coefficient vector will be 
0

12 1x






 
=  
 

 and the noise will be  

1

2

3

1nx

n





 



 
 
 
 =
 
 
 
 

 

The simpler linear regression model is written then as: 
11 2 2 1 nxnx nx x

Y X  = +  

The product part, meaning
2 2 1nx x

X  , is found through the usual rule for matrix 

multiplication as: 
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2 2 1

1

1

1

1

nx x

X 




=




  

0 1 11

0 1 22

0

3 0 1 3

1

0 1n n

xx

xx

x x

x x

 

 


 


 

+ 
 

+
   
  = + 
   
 
  +  

……………………………….(3.1.17) 

We usually write the model without the shape reminders as Y = X β + ε. This is a short 

hand notation for: 

 

0 1 1 11

0 1 2 22

3 0 1 3 3

0 1n n n

xY

xY

Y x

Y x

  

  

  

  

+ +  
  

+ +
  
   = + +
  
  
   + +   

…………………………………………(3.1.18) 

It is helpful that the multiple regression story with K ≥ 2 predictors leads to the same 

model expression Y = X β + ε (just with different shapes). As a notational convenience, 

let p = K + 1. In the multiple regression case, we have: 

  

 

11

21

31

41

51

61

1

1

1

1,

1,

1,

1,

,

1,

nxp

n

x

x

x

x
X

x

x

x








=







  

12 1

22 2

32 3

42 4

52 5

62 6

2

k

k

k

k

k

k

n nk

x x

x x

x x

x x

x x

x x

x x














  and  

0

1

2

31px

k












 
 
 
 

=  
 
 
 
  

…………………………..(3.1.19) 

The detail shown here is to suggest that X is a tall, skinny matrix. We formally require 

n ≥ p. 

In most applications, n is much, much larger than p. The ratio n/p is often in the 

hundreds. If it happens that n/p is as small as 5, we will worry that we don’t have enough 

data (reflected in n) to estimate the number of parameters in β (reflected in p). 

The multiple regression model is now: 
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0 1 11 2 12 3 13 1 11

0 1 21 2 22 3 23 2 22

3 0 1 31 2 32 3 33 3 3

0 1 1 2 2 3 3

...

...

...

...

k k

k k

k k

n n n n k nk n

x x x xY

x x x xY

Y x x x x

Y x x x x

      

      

      

      

+ + + + + +  
  

+ + + + + +
  
   = + + + + + +
  
  
   + + + + + +   

……………………(3.1.20) 

The model form Y = X β + ε is thus completely general. 

The assumptions on the noise terms can be written as E(ε) = 0 and Var (ε) = σ2 I. The 

I here is the n × n identity matrix. That is, 

 

1,0,0

0,1,0

0,0,1

0,0,0

I




=





  

0

0

0

1









…………………………………………………….(3.1.21) 

The variance assumption can be written as var (ε) = 

2

2

2

,0,0

0, ,0

0,0,

0,0,0

I












=






2

0

0

0












. You may see 

this expressed as cov (εi,εj) = σ2 δij, where, 

 
1

0
ij


= 


                if 
i j

i j

= 


 
  

We will call b as the estimate for unknown parameter vector β. You will also find the 

notation   as the estimate. Once we get b, we can compute the fitted vector Yˆ = X b . 

This fitted value represents annex-post guess at the expected value of Y. 

The estimate b is found so that the fitted vector Yˆ is close to the actual data vector Y. 

Closeness is defined in the least squares sense, meaning that we want to minimize the 

criterion Q, where, 

 
1

( ( ) th

n

i i
i

Q Y Xb
=

= − 2)entry ……………………………………………(3.1.22) 
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This can be done by differentiating this quantity p = K + 1 times, once with respect to 

b0, once with respect to b1, ….., and once with respect to bK . This is routine in simple 

regression (K = 1), and it’s possible with a lot of messy work in general. 

It happens that Q is the squared length of the vector difference Y − Xb. This means that 

we can write: 

 

1 1

( ) ( )

xn nx

Q Y Xb Y Xb= − − ………………………………………………….(3.1.23) 

This represents Q as a 1 × 1 matrix, and so we can think of Q as an ordinary number. 

There are several ways to find the b that minimizes Q. The simple solution we will show 

here (alas) requires knowing the answer and working backward.  

Define the matrix, 
nxn nxp pxn

H X X


= 


 

1

nxp pxn

X X

−





. We will call H as the “hat matrix”, and it has 

some important uses. There are several technical comment about H: 

(1) Finding H requires the ability to get 
pxn

X





1

nxp

X

−





.This matrix inversion is possible if 

and only if X has full rank p. Things get very interesting when X almost has full rank p; 

that’s a longer story for another time. 

(2) The matrix H is idempotent. The defining condition for idempotence is this: 

The matrix C is idempotent ⇔ C C = C . 

Only square matrices can be idempotent. 

Since H is square (It is n × n.), it can be checked for idempotence. You will indeed find 

that H H = H . 

(3) The ith diagonal entry, that in position (i, i), will be identified for later use as the 

ith leverage value. The notation is usually hi , but you’ll also see hii . 

Now write Y in the form H Y + (I – H) Y . 

Now let’s develop Q. This will require using the fact that H is symmetric, meaning H ′ 

= H . 

This will also require using the transpose of a matrix product. Specifically, the 

property will be: 

The second and third summands above are zero, as a consequence of: 
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( )

 

(   1   .

     {

)

{ } } (( ) ) (  )

H X X H X X X X X X X X X

H Y Xb H Y Xb H Y H Y

− = − = − −   = − =

= −  − + −  −

I 0

I I
……………..(3.1.24) 

If this is to be minimized over choices of b, then the minimization can only be done 

with regard to the first summand,{ }{ }  H Y Xb H Y Xb−  − }. It is possible to make the 

vector H Y − Xb equal to 0 by selecting 1( )b X YX X− =  . This is very easy to see, as: 

1( )H X X XX − =  . This 1( )b X YX X− =  is known as the least squares estimate of β. 

For the simple linear regression case K = 1, the estimate 
0

1

b
b

b

 
=  
 

 and be found with 

relative ease. The slope estimate is 1 ,
xy

xx

s
b

s
=   

where  
1 1

( )( )
n n

xy i i i i

i i

s x x Y Y x Y nxY
= =

= − − = −   

 and where 2 2 2

1 1

( ) ( )
n n

xx i i

i i

s x x x n x
= =

= − = −   

For the multiple regression case K ≥ 2, the calculation involves the inversion of the p×p 

matrix X′ X. This task is best left to computer software. 

There is a computational trick, called “mean-centering,” that converts the problem to a 

simpler one of inverting a K × K matrix. 

The matrix notation will allow the proof of two very helpful facts: 

* E (b) = β. This means that b is an unbiased estimate of β. This is a good thing, but 

there are circumstances in which biased estimates will work a little bit better. 

* Var (b) = σ2 (X′ X)-1. This identifies the variances and covariances of the estimated 

coefficients. It’s critical to note that the separate entries of b are not statistically 

independent. 

SELF ASSESSMENT EXERCISE 

What is linear dependence in matrix algebra? And happens if some of the columns of 

X are linearly dependent?  
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4.0 CONCLUSION 

Instead of writing regression models in normal function (which is pretty inefficient), we 

can instead formulate the linear regression function in a matrix form. In a simple and 

short statement of a matrix regression formulation, it shows that X is an n x 2 matrix, β 

is a 2 x 1 column vector; Y is n x 1 column vector; and ε is an n x 1 column vector. The 

matrix X and vector β are multiplied together using the technique of matrix 

multiplication and added to the vector ε using the technique of matrix addition. The 

least squares estimates in matrix notation can be as: the inverse of X-transpose times X 

multiplied by X-transpose times Y [ 1( )X X X Y−  ]. 

5.0 SUMMARY 

This unit explained the basic matrix formulation of a regression model. Emphasis is laid 

on the use of matrix notation to formulate regression model due to its efficiency. The 

unit further stressed that, in a simple and short statement of a matrix regression 

formulation, it shows that X is an n x 2 matrix, β is a 2 x 1 column vector; Y is n x 1 

column vector; and ε is an n x 1 column vector. The matrix X and vector β are multiplied 

together using the technique of matrix multiplication and added to the vector ε using 

the technique of matrix addition. The least squares estimates in matrix notation can be 

as: the inverse of X-transpose times X multiplied by X-transpose times Y [ 1( )X X X Y− 

]. 

6.0 TUTOR-MARKED ASSIGNMENT 

(1) The following table (Table 3.1) is students (Y), soap 1 (X1) and soap 2 (X2) 

      Table 3.1 

Soap 1(x1) 4 4.5 5 5.5 6 6.5 7 

Soap 2(x2) 8 9 10 11 12 13 14 

Suds (y) 33 42 45 51 53 61 62 
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Note: all variables are deviation from their means 

 use matrix notation to show that there is linear dependency between the columns of the 

X’s. 

(2) Table 3.2 shows students and soap used 

Soap 1(x1) 4 4.5 5 5.5 6 6.5 7 

Suds (yi) 33 42 45 51 53 61 62 

 

Use both normal regression estimation and matrix notation; prove that both methods 

produce the same estimates. 

Note: 
0 1

1

( )
b

b X X X Y
b

− 
 = = 

 
; 

1

2
1 1

n

ii

n n
ii ii

n x
X X

x x

=

= =


 = 
 



 
 and 

1

1

n

ii

n

i ii

y
X Y

x y

=

=

 
  =
 
 




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UNIT 2:  VECTOR AUTOREGRESSIVE (VAR) MODELS AND CAUSALITY  

                TESTS 

1.0 Introduction 

2.0 Objectives 

3.0 Main Contents 

3.1 The VAR Model 

3.2 Causality Test 

3.3 Computer Applications of VAR with Examples 

4.0 Conclusion 

5.0 Summary 

6.0 Tutor Marked Assignment  

7.0 References/Further Readings 

1.0 INTRODUCTION 

It is quite common in economics to have models in which some variables are not only 

explanatory variables for a given dependent variable, but are also explained by the 

variables that they are used to determine. In these cases we have models of simultaneous 

equations, in which it is necessary to identify clearly which are the endogenous and 

which are the exogenous or predetermined variables. This means that in its general 

reduced form each equation has the same set of regressors, which leads to the 

development of VAR models. 

2.0 OBJECTIVES 

At the end of this unit, students should be able to: 

• Differentiate between univariate and multivariate time series models.  

• Understand Vector Autoregressive (VAR) models and discuss their advantages. 

• Understand the concept of causality and its importance in economic applications. 

• Use the Granger causality test procedure.  

• Use the Sims causality test procedure.  

• Estimate VAR models and test for Granger and Sims causality through the use 

of econometric software. 
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3.0 MAIN CONTENT 

3.1 The VAR Model 

When we are not confident that a variable really is exogenous, each variable has to be 

treated symmetrically. Take, for example, the time series yt that is affected by current 

and past values of xt and, simultaneously, the time series xt to be a series that is affected 

by current and past values of the yt series. In this case the simple bivariate model is 

given by: 

 
10 12 11 1 12 1t t t t yty x y x u   − −= − + + + ……………………………………(3.2.1) 

 20 21 21 1 22 1t t t t xtx y y x u   − −= − + + + …………………………………….(3.2.2) 

where we assume that both yt and xt are stationary, and uyt and uxt are uncorrelated 

white-noise error terms. Equations (3.2.1) and (3.2.2) constitute a first-order VAR 

model, because the longest lag length is unity. These equations are not reduced-form 

equations, since yt has a contemporaneous impact on xt (given by −β21), and xt has a 

contemporaneous impact on yt (given by −β12). Rewriting the system using matrix 

algebra, we get: 

 10 111 1212

21 20 21 22 1

1

1

ytt t

t t xt

uy y

x x u

  

   

−

−

        
= + +         

          
…………………………(3.2.3) 

Or  0 1 1t t tBz z u−=  + +  ……………………………………………………(3.2.4) 

Where: 

1012

0

21 20

11 12

1

21 22

1
, ,

1

,

t

t

yt

t

xt

y
B zt

x

u
u

u



 

 

 

    
= =  =    
     

  
 = =   

   

 

Multiplying both sides by B−1 we obtain:  

0 1 1t t tz A A z e−= + + ….. …………………………………………………(3.2.5) 

Where: 1 1 1

0 0 1 1, , ,t tA B A B e B u− − −=  =  =   

For purposes of notational simplification we can denote as ai0 the ith element of the 

vector A0; aij the element in row i and column j of the matrix A1; and eit as the ith element 

of the vector et. Using this, we can rewrite the VAR model as: 
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 10 11 1 12 1 1t t t ty a a y a x e− −= + + + ……………………………………………(3.2.6) 

 20 21 1 22 1 2t t t tx a a y a x e− −= + + + ……………………………………………(3.2.7) 

To distinguish between the original VAR model and the system we have just obtained, 

we call the first a structural or primitive VAR system and the second a VAR in standard 

(or reduced) form. It is important to note that the new error terms, e1t and e2t, are 

composites of the two shocks uyt and uxt. Since et = B−1ut we can obtain e1t and e2t as: 

 
1 12 12 21( ) /1 )t yt xte u u  = + − ……………………………………………..(3.2.8) 

 
2 21 12 21( ) /1 )t xt yte u u  = + − …………………………………………….(3.2.9) 

Since uyt and uxt are white-noise processes, it follows that both e1t and e2t are also white-

noise processes. 

 

SELF ASSESSMENT EXERCISE 

If there is simultaneity among a number of variables, then all these variables should be 

treated in the same way, why? 

3.1.1 Pros and Cons of the VAR Models 

The VAR model approach has some very good characteristics: 

(1) It is very simple. The econometrician does not have to worry about which 

variables are endogenous or exogenous.  

(2) Estimation is also very simple, in the sense that each equation can be estimated 

separately with the usual OLS method.  

(3) Forecasts obtained from VAR models are in most cases better than those 

obtained from the far more complex simultaneous equation models (see 

Mahmoud, 1984; McNees, 1986). 

However, on the other hand, VAR models have faced severe criticism over various 

points. 

(1) They are atheoretic, in that they are not based on any economic theory. 

(2) A second criticism concerns the loss of degrees of freedom. If we suppose that 

we have a three-variable VAR model and decide to include 12 lags for each 

variable in each equation, this will entail the estimation of 36 parameters in each 
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equation plus the equation constant. If the sample size is not sufficiently large, 

estimating that great a number of parameters will consume many degrees of 

freedom, thus creating problems in estimation. 

(3) Finally, the obtained coefficients of the VAR models are difficult to interpret 

because of their lack of any theoretical background. To overcome this criticism, 

the advocates of VAR models estimate so-called impulse response functions. 

The impulse response function examines the response of the dependent variable 

in the VAR to shocks in the error terms. The difficult issue here, however, is 

defining the shocks. 

SELF ASSESSMENT QUESTION 

Examine the merits and demerits of VAR models 

3.2 Causality Tests 

One of the good features of VAR models is that they allow us to test for the direction 

of causality. Causality in econometrics is somewhat different from the concept in 

everyday use; it refers more to the ability of one variable to predict (and therefore cause) 

the other. Suppose two variables, say yt and xt, affect each other with distributed lags. 

The relationship between these variables can be captured by a VAR model. In this case 

it is possible to state that (a) yt causes xt; (b) xt causes yt; (c) there is a bi-directional 

feedback (causality among the variables); and (d) the two variables are independent. 

The problem is to find an appropriate procedure that allows us to test and statistically 

detect the cause and effect relationship among the variables. Granger (1969) developed 

a relatively simple test that defined causality as follows: a variable yt is said to Granger 

cause xt if xt can be predicted with greater accuracy by using past values of the yt 

variable rather than not using such past values, all other terms remaining unchanged. 

3.2.1 The Granger Causality Test  

The Granger causality test for the case of two stationary variables yt and xt involves as 

a first step the estimation of the following VAR model: 

 1 1 1

1 1

n m

t t i j t j t

i j

y x y e  − −

= =

= + + +  ………………………………………(3.2.10) 

 2 1 2

1 1

n m

t t i j t j t

i j

x x y e  − −

= =

= + + +  ………………………………………(3.2.11) 

where it is assumed that both eyt and ext are uncorrelated white-noise error terms. In this 

model we can have the following different cases: 
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Case 1: The lagged x terms in Equation (3.2.10) may be statistically different from zero 

as a group, and the lagged y terms in Equation (3.2.11) not statistically different from 

zero. In this case we see xt causes yt.  

Case 2: The lagged y terms in Equation (3.3.11) may be statistically different from zero 

as a group, and the lagged x terms in Equation (3.2.10) not statistically different from 

zero. In this case we see that yt causes xt.  

Case 3: Both sets of x and y terms are statistically different from zero in Equations 

(3.2.10) and (3.3.11), so that there is bi-directional causality.  

Case 4: Both sets of x and y terms are not statistically different from zero in Equations 

(3.2.10) and (3.2.11), so that xt is independent of yt.  

The Granger causality test, then, involves the following procedure. First, estimate the 

VAR model given by Equations (3.2.10) and (3.2.11). Then check the significance of 

the coefficients and apply variable deletion tests, first in the lagged x terms for Equation 

(3.2.10), and then in the lagged y terms for Equation (3.2.11). According to the result 

of the variable deletion tests we may come to a conclusion about the direction of 

causality based on the four cases mentioned above. More analytically, and for the case 

of one equation (we shall examine Equation (3.2.10), and it is intuitive to reverse the 

procedure to test for Equation (3.2.11)), we perform the following steps:  

Step 1: Regress yt on lagged y terms as in the following model: 

 1 1

1

m

t j t j t

i

y y e  −

=

= + + ………………………………………………….(3.2.12) 

and obtain the RSS of this regression (the restricted one) and label it as RSSR.  

Step 2: Regress yt on lagged y terms plus lagged x terms as in the following model: 

 1 1

1 1

n m

t i t i j t j t

i j

y x y e  − −

= =

= + + +  ……………………………………….(3.2.13) 

and obtain the RSS of this regression (the unrestricted one) and label it as RSSU .  

Step 3: Set the null and the alternative hypotheses as: 

 0

1

0
n

i

i

H 
=

= =  or xt does not cause yt 

 0

1

0
n

i

i

H 
=

=   or xt does cause yt 
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Step 4: Calculate the F-statistic for the normal Wald test on coefficient restrictions 

given by: 

 
( ) /

/ )

R U

U

RSS RSS m
F

RSS n k

−
=

−
 

which follows the Fm,n−k distribution. Here k = m + n + 1.  

Step 5: If the computed F-value exceeds the F-critical value, reject the null hypothesis 

and conclude that xt causes yt. 

 

SELF ASSESSMENT EXERCISE 

1. Enumerate and explain the possible state of Granger causality 

2. State and explain the steps or procedures to test for Granger causality in a single 

equation. 

 

3.2.2 The Sim Causality Test 

Sims (1980) proposed an alternative test for causality making use of the fact that in any 

general notion of causality it is not possible for the future to cause the present. 

Therefore, when we want to check whether a variable yt causes xt, Sims suggests 

estimating the following VAR model: 

 1 1

1 1 1

n m k

t i t i j t j t t

i j

y x y x e 


   − − +

= = =

= + + + +   ……………………(3.2.14) 

 2 2

1 1 1

n m k

t i t i j t j t t

i j

x x y x e 


   − − +

= = =

= + + + +   ……………………(3.2.15) 

The new approach here is that, apart from lagged values of x and y, there are also leading 

values of x included in the first equation (and similarly, leading values of y in the second 

equation). Examining only the first equation, if yt causes xt then we expect that there is 

some relationship between y and the leading values of x. Therefore, instead of testing 

for the lagged values of xt we test for
1

0
k




=
= . Note that if we reject the restriction 

then the causality runs from yt to xt, and not vice versa, since the future cannot cause 

the present. To carry out the test we simply estimate a model with no leading terms (the 

restricted version) and then the model as it appears in Equation (3.2.14) (the unrestricted 

model), and then obtain the F-statistic as in the Granger test above. It is unclear which 

version of the two tests is preferable, and most researchers use both. The Sims test, 
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however, using more regressors (because of the inclusion of the leading terms), leads to 

a greater loss of degrees of freedom. 

SELF ASSESSMENT EXERCISE 

Briefly explain Granger and Sims causality and state their differences 

3.3 Computer Applications of VAR in Eviews 

In EViews, to estimate a VAR model go to Quick\Estimate VAR. A new window opens 

that requires the model to be specified. First, we have to specify whether it is an 

unrestricted VAR (default case) or a cointegrating VAR (we shall discuss this in the 

next section). Leave this option as it is – that is, unrestricted VAR. Then the endogenous 

variables for our VAR model need to be defined by typing their names in the required 

box; the lag length (default is 1 2) by typing the start and end numbers of the lags we 

want to include; and the exogenous variable, if any (note that the constant is already 

included in the exogenous variables list). 

As an example, we can use the data of manufacturing sector output (MSO) for growth 

and financial deepening (Private sector credit ratio to GDP [PSC] and stock market 

turnover ratio to GDP [STR]) variables in Nigeria from 1986 – 2017 given in the file 

VAR.wf1 (appendix 1). If we include as endogenous variables the series MSO, PSC 

and STR and estimate the VAR model for 2 lags, we obtain the results reported in Table 

3.1. EViews can calculate very quickly the Granger causality test for all the series in 

the VAR model estimated below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vector Autoregression Estimates  

Date: 08/29/20   Time: 09:07  
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Sample (adjusted): 1988 2017  

Included observations: 30 after adjustments 

Standard errors in ( ) & t-statistics in [ ] 

    
     MSO PSC STR 

    
    MSO(-1)  1.126280 -0.001745  0.001169 

  (0.15254)  (0.00114)  (0.00536) 

 [ 7.38368] [-1.52931] [ 0.21820] 

    

MSO(-2) -0.201119  0.001825 -0.000495 

  (0.15075)  (0.00113)  (0.00530) 

 [-1.33413] [ 1.61862] [-0.09347] 

    

PSC(-1)  59.07464  0.537339 -0.613703 

  (24.7179)  (0.18491)  (0.86852) 

 [ 2.38996] [ 2.90600] [-0.70661] 

    

PSC(-2)  42.15659  0.345108  0.291689 

  (23.5602)  (0.17625)  (0.82784) 

 [ 1.78932] [ 1.95810] [ 0.35235] 

    

STR(-1)  20.04542  0.247529  0.708869 

  (6.37529)  (0.04769)  (0.22401) 

 [ 3.14424] [ 5.19021] [ 3.16444] 

    

STR(-2) -31.30572 -0.055663  0.035509 

  (7.65655)  (0.05728)  (0.26903) 

 [-4.08875] [-0.97183] [ 0.13199] 

    

C -624.7486  0.482719  4.914156 

  (143.590)  (1.07415)  (5.04537) 

 [-4.35093] [ 0.44940] [ 0.97399] 

    
    R-squared  0.995823  0.939400  0.523255 

Adj. R-squared  0.994734  0.923592  0.398886 

Sum sq. resids  1181654.  66.12615  1458.912 

S.E. equation  226.6633  1.695597  7.964356 

F-statistic  913.9983  59.42343  4.207298 

Log likelihood -201.2866 -54.42366 -100.8319 

Akaike AIC  13.88577  4.094911  7.188793 

Schwarz SC  14.21272  4.421857  7.515739 

Mean dependent  2644.196  12.11333  9.572333 

S.D. dependent  3123.485  6.134127  10.27241 
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Determinant resid covariance 

(dof adj.)  5964721.  

Determinant resid covariance  2687880.  

Log likelihood -349.7684  

Akaike information criterion  24.71789  

Schwarz criterion  25.69873  

Number of coefficients  21  

    
     

Table 3.22: VAR Granger Causality Results from 

Eviews 

VAR Granger Causality/Block Exogeneity Wald 

Tests 

Date: 08/29/20   Time: 09:13  

Sample: 1986 2017   

Included observations: 30  

    
        

Dependent variable: MSO  

    
    Excluded Chi-sq df Prob. 

    
    PSC  28.25124 2  0.0000 

STR  18.12155 2  0.0001 

    
    All  32.73529 4  0.0000 

    
        

Dependent variable: PSC  

    
    Excluded Chi-sq df Prob. 

    
    MSO  2.675969 2  0.2624 

STR  31.08185 2  0.0000 

    
    All  32.82883 4  0.0000 

    
        

Dependent variable: STR  

    
    Excluded Chi-sq df Prob. 

    
    MSO  0.354166 2  0.8377 

PSC  0.534053 2  0.7657 

    
    All  0.824661 4  0.9351 

    
    



174 

 

above. To do this, choose from the VAR window with the output View/Lag 

Structure/Granger Causality–Block Exogeneity Tests. The results of this Granger 

causality test are reported in Table 3.21 and show results for each equation of the VAR 

model, first for excluding the lagged regressors one by one and then all of them at once. 

EViews also quickly calculates Granger causality tests for different pairs of variables. 

This test is different from the one presented above because it assumes only the two 

variables that are being tested in the pair are endogenous in the VAR model. To do this 

very quick pairwise test, go to Quick/Group Statistics/Granger Causality Test, and in 

the window that appears define first the variables to be tested for causality (once again 

using MSO, PSC and STR) and then the number of lags (default 2) that are needed for 

the test. By clicking OK we get the results reported in Table 3.22. The results report the 

null hypothesis, the F-statistic and the probability limit value for all possible pairs of 

variables. From the probability limit values, it is clear that, at a 95% significance level, 

the only case for which we can reject the null (prob < 0.05) is for ‘PSC does not cause 

MSO’ and ‘STR does not cause PSC’, concluding that PSC does indeed Granger cause 

MSO and STR does indeed cause PSC. The null hypothesis cannot be rejected in any 

other case. 

Table 3.23: Granger Pairwise Causality Results from Eviews 

Pairwise Granger Causality Tests 

Date: 08/29/2020   Time: 09:30 

Sample: 1986 2017  

Lags: 2   

    
    

 Null Hypothesis: Obs 

F-

Statistic Prob.  

    
     PSC does not Granger Cause MSO  30  4.44224 0.0223 

 MSO does not Granger Cause PSC  0.40378 0.6721 

    
     STR does not Granger Cause MSO  30  1.09364 0.3505 

 MSO does not Granger Cause STR  0.15435 0.8578 

    
     STR does not Granger Cause PSC  30  14.6795 6.E-05 

 PSC does not Granger Cause STR  0.25183 0.7793 

    
    

 

 4.0 CONCLUSION 
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This unit discussed VAR models, estimates and causality analyses. It is obvious in 

economics to have simultaneous equations in which it is important to identify which are 

endogenous and which are exogenous variables. However, if we are not confident that 

a variable really is exogenous, then each variable has to be treated symmetrically. VAR 

technique can be applied in such a model and causality estimated. 

5.0 SUMMARY 

This unit explained VAR technique a model with variables that has to be treated 

symmetrically since one is not confident of whether the variables one is dealing with is 

really exogenous. The unit added that VAR model is simple and its estimation is simple 

because each equation is estimated separately. However, the disadvantage of VAR lies 

with it being atheoretic. The issue of causality was also discussed, a situation where the 

direction of cause-effect is detected. The two notable causality are the Granger and 

Sims. The unit ended with computer applications of VAR models estimations and 

causality using Eviews. 

 

6.0 TUTORED MARKED ASSIGNMENT 

1. Use the data of manufacturing sector output (MSO) for growth and financial 

deepening (Interest rate spread [IRS], Private sector credit ratio to GDP [PSC] 

and stock market turnover ratio to GDP [STR], Ratio of financial saving to GDP 

[RFS], and Stock market capitalization ratio to GDP [SMC]) variables in Nigeria 

from 1986 – 2017 given in the file VAR.wf1 (appendix 1).  

(1) Formulate a VAR model with the stated variables  

(2) Estimate the parameters and explain  

(3) Find the impulse response and explain  

(4) Estimate the pairwise Granger causality and explain whether causality 

between the variables exists or not. 

7.0 REFERENCES 

Asteriou, D. & Hall, S. (2011). Applied Econometrics: A Modern Approach (Revised 

Edition), New York: Palgrave Macmillam. 
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UNIT 3: NON STATIONARITY AND UNIT ROOT TEST 

1.0 Introduction 

2.0 Objective 

3.0 Main Contents 

3.1 Unit Roots and Spurious Regression 

3.2 Testing for Unit Roots 

3.3 Computer Applications of Unit Roots Tests in Eviews 

4.0 Conclusion 

5.0 Summary 

6.0 Tutor Marked Assignment  

7.0 References/Further Readings 

1.0 INTRODUCTION 

The point of this discussion is that formal tests for identifying non-stationarity (or, put 

differently, the presence of unit roots) are needed. The next section explains what a unit 

root is and discusses the problems regarding the existence of unit roots in regression 

models. Formal tests are then presented for the existence of unit roots, followed by a 

discussion of how results for the above tests can be obtained using EViews. Finally, 

results are presented from applications on various macroeconomic variables. 
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2.0 OBJECTIVES 

At the end of this unit students should be able to: 

• Understand the concept of stationarity.  

• Explain the differences between stationary and non-stationary time series 

processes. 

• Understand the importance of stationarity and the concept of spurious 

regressions. 

• Understand the concept of unit roots in time series. 

• Understand the meaning of the statement ’the series is integrated for order 1’ or 

I(1). 

• Learn the Dickey–Fuller (DF) test procedure for testing for unit roots. 

• Differentiate among the three different DF models for unit-root testing. 

• Learn the Augmented Dickey–Fuller (ADF) test. 

• Learn the Philips-Perron (PP) test procedure. 

• Estimate the DF, ADF and PP tests using appropriate software. 

3.0 MAIN CONTENT 

3.1 Unit Roots and Spurious Regression 

3.1.1 Unit Roots 

What is unit roots? 

Consider AR(1) model: 

1t t ty y e −= + ……………………………………………………..(3.3.1) 

where et is a white-noise process and the stationarity condition is | ϕ | < 1. In general, 

there are three possible cases: 

Case 1: | ϕ | < 1 and therefore the series is stationary. A graph of a stationary series for 

ϕ = 0.67 is presented in Figure 3.1.  

Case 2: | ϕ | > 1 where the series explodes. A graph of a series for ϕ = 1.26 is given in 

Figure 3.2.  

Case: | ϕ |  = 1 where the series contains a unit root and is non-stationary. A graph of a 

series for ϕ = 1 is given in Figure 3.3.  
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Figure 3.1: A Plot of Stationary AR(1) Model 

 

 

Figure 3.2: Plot of an exploding AR (1) model 
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Figure 3.3: Plot of a non-stationary AR (1) model 

To reproduce the graphs and the series that are stationary, exploding and nonstationary, 

type the following commands into EViews (or in a program file and run the program):  

smpl @first @first+1  

genr y=0  

genr x=0  

genr z=0  

smpl @first+1 @last  

genr z=0.67*z(-1)+nrnd  

genr y=1.16*y(-1)+nrnd  

genr x=x(-1)+nrnd  

plot y  

plot x  

plot z 

So if ϕ = 1, then yt contains a unit root. Having φ = 1 and subtracting yt−1 from both 

sides of Equation (3.3.2) we get:  
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1t t ty y e−− =  

       t ty e = ……………………………………………(3.3.2) 

and because et is a white-noise process, so yt is a stationary series. Therefore, after 

differencing yt we obtain stationarity.  

Definition 1: A series yt is integrated of order one (denoted by yt ∼ I(1)) and contains 

a unit root if yt is non-stationary but ∆yt is stationary. 

Definition 2: A series yt is integrated of order d (denoted by yt ∼ I(d)) if yt is non-

stationary but ∆yt is stationary; where ∆yt = yt − yt−1 and ∆2yt = ∆ (∆yt) = ∆yt − ∆yt−1 

and so on.  

We can summarize the above information under a general rule: 

(order of integration of a series) ≡ (number of times the series needs to be differenced 

in order to become stationary) ≡ (number of unit roots) 

SELF ASSESSMENT EXERCISE 

Given an AR(1) model: 

 Xt = φXt-1 + et 

1. What are the possible cases of φ? 

2. Use one of the series in appendix data and Eviews command to show the graph. 

3.1.2 Spurious Regression 

Most macroeconomic time series are trended and therefore in most cases are 

nonstationary (see, for example, time plots of the GDP, money supply and CPI for the 

Nigeria economy). The problem with non-stationary or trended data is that the standard 

OLS regression procedures can easily lead to incorrect conclusions. It can be shown 

that in these cases the norm is to get very high values of R2 (sometimes even higher 

than 0.95) and very high values of t-ratios (sometimes even greater than 4) while the 

variables used in the analysis have no interrelationships. Such series are not stationary 

as the mean is continually rising; however, they are also not integrated, as no amount 

of differencing can make them stationary. This gives rise to one of the main reasons for 

taking the logarithm of data before subjecting it to formal econometric analysis. If we 

take the log of a series, which exhibits an average growth rate, we shall turn it into a 
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series that follows a linear trend and is integrated. This can easily be seen formally. 

Suppose we have a series x, which increases by 10% every period, thus: 

 xt = 1.1xt-1 

Taking the log of this, we get: 

 log xt = log1.1 + logxt-1 

Now the lagged dependent variable has a unit coefficient and in each period it increases 

by an absolute amount equal to log (1.1), which is, of course, constant. This series would 

now be I(1). More formally, consider the model: 

 1 2t t ty x u = + + ………………………………………….(3.3.3) 

where ut is the error term. The assumptions of the CLRM require both yt and xt to have 

a zero and constant variance (that is, to be stationary). In the presence of nonstationarity, 

the results obtained from a regression of this kind are totally spurious (using the 

expression introduced by Granger and Newbold, 1974) therefore these regressions are 

called spurious regressions. 

A spurious regression usually has a very high R2 and t-statistics that appear to provide 

significant estimates, but the results may have no economic meaning at all. This is 

because the OLS estimates may not be consistent, and therefore the tests for statistical 

inference are not valid. 

Granger and Newbold (1974) constructed a Monte Carlo analysis generating a large 

number of yt and xt series containing unit roots following the formulae: 

  

1t t yty y e−= + ……………………………………………(3.3.4) 

 1t t xtx x e−= + ……………………………………………(3.3.5) 

where eyt and ext are artificially generated normal random numbers. Since yt and xt are 

independent of each other, any regression between them should give insignificant 

results. However, when Granger and Newbold regressed the various yt’s to the xt’s, as 

shown in Equation (3.3.2), they were surprised to find that they were unable to reject 

the null hypothesis of β2 = 0 for approximately 75% of their cases. They also found that 

their regressions had very high R2’s and very low values of DW statistics. To see the 
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spurious regression problem, we can type the following commands into EViews (or into 

a program file and run the file several times) to see how many times the null of β2 = 0 

can be rejected. The commands are: 

smpl @first @first+1  

genr y=0 genr x=0  

smpl @first+1 @last  

genr y=y(-1)+nrnd  

genr x=x(-1)+nrnd  

scat(r) y x  

smpl @first @last  

ls y c x 

To understand the problem of spurious regression better, it might be useful to use an 

example with real economic data (1990 – 2015). Consider a regression of the logarithm 

of real GDP (y) to the logarithm of real domestic credit of private sector (x) and a 

constant. The results obtained from such a regression are the following: 

 yt = 5.941 + 0.560;  R2 = 0.926, DW = 0.196 

        (0.4820)  (0.1763) 

Here we see very good t-ratios, with coefficients that have the right signs and more or 

less plausible magnitudes. The coefficient of determination is very high (R2 = 0.926), 

but there is also a high degree of autocorrelation (DW = 0.196). This indicates the 

possible existence of spurious regression. In fact, this regression is totally meaningless 

because the domestic private sector credit data are for the Benin Republic economy and 

the real GDP figures are for the Nigerian economy. Therefore, while there should not 

be any significant relationship, the regression seems to fit the data very well, and this 

happens because the variables used in this example are, simply, trended (non-

stationary). So, the final point is that econometricians should be very careful when 

working with trended variables. 

SELF ASSESSMENT EXERCISE 
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1. What do you understand by spurious regression? 

2. Use the data some of the selected series in appendix 1 and test whether the regressions 

are spurious or not. 

3.2 Testing for Unit Roots  

• Testing for the order of integration  

A test for the order of integration is a test for the number of unit roots, and follows these 

steps:  

Step 1: Test yt to see if it is stationary. If yes, then yt ∼ I(0); if no, then yt ∼ I(n); n > 0.  

Step 2: Take first differences of yt as ∆yt = yt −yt−1, and test yt to see if it is stationary. 

If yes, then yt ∼ I(1); if no, then yt ∼ I(n); n > 0.  

Step 3: Take second differences of ∆2yt as ∆2yt = ∆yt − ∆yt−1, and test ∆2yt to see if it 

is stationary. If yes, then yt ∼ I(2); if no, then yt ∼ I(n); n > 0 and so on until it is found 

to be stationary, and then stop. So, for example, if ∆3yt ∼ I(0), then ∆2yt ∼ I(1), and yt 

∼ I(2), and finally yt ∼ I(3); which means that yt needs to be differenced three times to 

become stationary.  

• The simple Dickey–Fuller (DF) test for unit roots 

 Dickey and Fuller (1979, 1981) devised a formal procedure to test for non-stationarity. 

The key insight of their test is that testing for non-stationarity is equivalent to testing 

for the existence of a unit root. Thus the obvious test is the following, which is based 

on the simple AR(1) model of the form: 

 1t t xty y e −= + …………………………………………..(3.3.6) 

What we need to examine here is whether ϕ is equal to 1 (unity and hence ‘unit root’). 

Obviously, the null hypothesis H0: ϕ = 1, and the alternative hypothesis H1: φ < 1. A 

different (more convenient) version of the test can be obtained by subtracting yt−1 from 

both sides of Equation (3.3.6):  

yt − yt−1 = (ϕ − 1)yt−1 + ut  

yt = (ϕ − 1)yt−1 + ut  

yt = γyt−1 + ut ……………………………………………..(3.3.7)  
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where of course γ = (ϕ − 1). Now the null hypothesis is H0: γ = 0 and the alternative 

hypothesis Ha: γ < 0, where if γ = 0 then yt follows a pure random-walk model.  

Dickey and Fuller (1979) also proposed two alternative regression equations that can 

be used for testing for the presence of a unit root. The first contains a constant in the 

random-walk process, as in the following equation:  

yt = α0 + γyt−1 + ut…………………………………………(3.3.8) 

This is an extremely important case, because such processes exhibit a definite trend in 

the series when γ = 0 which is often the case for macroeconomic variables.  

The second case is also to allow a non-stochastic time trend in the model, to obtain:  

yt = α0 + a2t + γyt−1 + ut……………………………………(3.3.9)  

The DF test for stationarity is then simply the normal t-test on the coefficient of the 

lagged dependent variable yt−1 from one of the three models (Equations (3.3.7), (3.3.8) 

or (3.3.9). This test does not, however, have a conventional t-distribution and so we 

must use special critical values originally calculated by Dickey and Fuller. MacKinnon 

(1991) tabulated appropriate critical values for each of the three models discussed above 

and these are presented in Table 3.21. In all cases, the test focuses on whether γ = 0. 

The DF test statistic is the t-statistic for the lagged dependent variable. If the DF 

statistical value is smaller than the critical value then the null hypothesis of a unit root 

is rejected and we conclude that yt is a stationary process. 

 

 

 

 

Table 3.21: Critical values for the Dickey-Fuller test 
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• The Augmented Dickey–Fuller (ADF) Test for Unit Roots  

As the error term is unlikely to be white noise, Dickey and Fuller extended their test 

procedure by suggesting an augmented version of the test that includes extra lagged 

terms of the dependent variable in order to eliminate autocorrelation. The lag length on 

these extra terms is either determined by the Akaike information criterion (AIC) or the 

Schwartz Bayesian criterion (SBC), or more usefully by the lag length necessary to 

whiten the residuals (that is after each case we check whether the residuals of the ADF 

regression are autocorrelated or not through LM tests rather than the DW test). The 

three possible forms of the ADF test are given by the following equations: 

 1

1

p

t t i t i xt

i

y y y u − −

=

 = +  + ……………………………………(3.3.10) 

 0 1

1
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t t i t i xt

i

y y y u  − −

=

 = + +  + ………………………………..(3.3.11) 

 0 1 2

1

p

t t i t i xt

i

y y t y u   − −

=

 = + + +  + …………………………..(3.3.12) 

The difference between the three regressions again concerns the presence of the 

deterministic elements a0 and a2t. The critical values for the ADF tests are the same as 

those given in Table 16.1 for the DF test. Unless the econometrician knows the actual 

data-generating process, there is a question concerning whether it is most appropriate 

to estimate Equations (3.3.10), (3.3.11) or (3.3.12). Doldado et al. (1990) suggest a 

procedure which starts from the estimation of the most general model given by Equation 

(3.3.12), answering a set of questions regarding the appropriateness of each model and 

then moving to the next model. This procedure is illustrated in Figure 3.4 (below). It 

needs to be stressed here that, despite being useful, this procedure is not designed to be 

applied in a mechanical fashion. Plotting the data and observing the graph is sometimes 

very useful because it can indicate clearly the presence or not of deterministic 

regressors. However, this procedure is the most sensible way to test for unit roots when 

the form of the data-generating process is unknown. 

• The Phillips–Perron (PP) Test 

 The distribution theory supporting the DF and ADF tests is based on the assumption 

that the error terms are statistically independent and have a constant variance. So, when 

using the ADF methodology, one has to make sure that the error terms are uncorrelated 

and that they really do have a constant variance. Phillips and Perron (1988) developed 
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a generalization of the ADF test procedure that allows for fairly mild assumptions 

concerning the distribution of errors. The test regression for the PP test is the AR(1) 

process: 

 1 0 1t t ty y e − − = + + ……………………………………………(3.3.13) 

While the ADF test corrects for higher-order serial correlation by adding lagged 

differenced terms on the right-hand side, the PP test makes a correction to the t-statistic 

of the coefficient γ from the AR(1) regression to account for the serial correlation in et. 

So the PP statistics are only modifications of the ADF t-statistics that take into account 

the less restrictive nature of the error process. The expressions are extremely complex 

to derive and are beyond the scope of this text. However, since many statistical packages 

(one of them is EViews) have routines available to calculate these statistics, it is good 

for the researcher to test the order of integration of a series by also performing the PP 

test. The asymptotic distribution of the PP t-statistic is the same as the ADF t-statistic 

and therefore the MacKinnon (1991) critical values are still applicable. As with the ADF 

test, the PP test can be performed with the inclusion of a constant, a constant and a linear 

trend, or neither in the test regression. 
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Figure 3.4: Procedure for testing for unit-root tests  

        Source: Enders (1995). 

3.3 Computer Applications of Unit-Root Tests 

• Performing unit-root tests in EViews  

The DF and ADF Test  

Step 1: Open the file gdp_uk.wf1 (appendix 1) in EViews by clicking 

File/Open/Workfile and then choosing the file name from the appropriate path.  

Step 2: Let us assume that we want to examine whether the series named MSO contains 

a unit root. Double-click on the series named ‘MSO’ to open the series window and 

choose View/Unit-Root Test ... In the unit-root test dialog box that appears, choose the 
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type of test (that is the Augmented Dickey–Fuller test, which is the default) by choosing 

it from the Test Type drop-down menu.  

Step 3: We then have to specify whether we want to test for a unit root in the level, first 

difference or second difference of the series. We can use this option to determine the 

number of unit roots in the series. As was noted in the theory section, we first start with 

the level and if we fail to reject the test there we continue with testing for the first 

differences and so on. So here we first click on levels in the dialog box to see what 

happens in the levels of the series and then continue, if appropriate, with the first and 

second differences.  

Step 4: We also have to specify which model of the three ADF models we wish to use 

(that is whether to include a constant, a constant and a linear trend, or neither in the test 

regression). For the model given by Equation (3.3.10) click on none in the dialog box; 

for the model given by Equation (3.3.11) click on intercept; and for the model given by 

Equation (3.3.12) click on intercept and trend. The choice of the model is very 

important, since the distribution of the test statistic under the null hypothesis differs 

among these three cases.  

Step 5: Finally, we have to specify the number of lagged dependent variables to be 

included in the model – or the number of augmented terms – to correct for the presence 

of serial correlation. EViews provides two choices: one is User Specified, which is used 

only in the event that we want to test for a predetermined specific lag length. If this is 

the case, we choose this option and enter the number of lags in the box next to it. The 

second choice is Automatic Selection, which is the default in EViews. If this option is 

chosen we need to specify from a drop-down menu the criterion we want EViews to use 

to find the optimal lag length. We have discussed the theory of the AIC and SBC criteria, 

which are referred to as the Akaike Info Criterion and the Schwarz Info Criterion, 

respectively, in EViews. We recommend choosing one of the two criteria before going 

on to the next step. EViews will present the results only for the optimal lag length 

determined from the criterion you have chosen.  

Step 6: Having specified these options, click OK to carry out the test. EViews reports 

the test statistic together with the estimated test regression.  

Step 7: We reject the null hypothesis of a unit root against the one-sided alternative if 

the ADF-statistic is less than (lies to the left of) the critical value, and conclude that the 

series is stationary.  

Step 8: After running a unit-root test researchers should examine the estimated test 

regression reported by EViews, especially if unsure about the lag structure or 
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deterministic trend in the series. You may want to rerun the test equation with a different 

selection of right-hand variables (add or delete the constant, trend or lagged differences) 

or lag order.  

• The PP test  

Step 1: Open the file ‘(appendix 1)’ in EViews by clicking File/Open/Workfile and then 

choosing the file name from the appropriate path.  

Step 2: Let us assume that we want to examine whether the series RSF contains a unit 

root. Double-click on the series named rsf to open the series window and choose 

View/Unit-Root Test ... In the unit-root test dialog box that appears, choose the type of 

test (that is the Phillips–Perron test) by selecting it from the Test Type drop-down menu.  

Step 3: We then have to specify whether we want to test for a unit root in the level, first 

difference or second difference of the series. We can use this option to determine the 

number of unit roots in the series. As was stated in the theory section, first start with the 

level and if the test is not rejected in the level continue with testing for the first 

differences and so on. So here we first click on levels to see what happens in the levels 

of the series, and then continue, if appropriate, with the first and second differences.  

Step 4: We also have to specify which model of the three to be used (that is whether to 

include a constant, a constant and a linear trend or neither in the test regression). For 

the random-walk model, click on none in the dialog box; for the random walk with drift 

model click on intercept; and for the random walk with drift and with deterministic 

trend model click on intercept and trend.  

Step 5: Finally, for the PP test specify the lag truncation to compute the Newey–West 

heteroskedasticity and autocorrelation (HAC) consistent estimate of the spectrum at 

zero frequency.  

Step 6: Having specified these options, click OK to carry out the test. EViews reports 

the test statistic together with the estimated test regression. 

Step 7: We reject the null hypothesis of a unit root against the one-sided alternative if 

the ADF-statistic is less than (lies to the left of) the critical value. 

Computer example: unit-root tests for the financial development and economic 

growth.  
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Consider again the data we described in the computer example of the previous chapter 

for the Granger causality tests. Here we report results of tests for unit roots and orders 

of integration of all the variables (see file finance.wf1, appendix 1).  

We begin the ADF test procedure by examining the optimal lag length using Akaike’s 

FPE criteria; we then proceed to identify the probable order of stationarity. The results 

of the tests for all the variables and for the three alternative models are presented in 

Table 3.4, first for their logarithmic levels and then (in cases where we found that the 

series contain a unit root) for their first differences and so on. The results indicate that 

each of the series is non-stationary when the variables are defined in levels. First 

differencing the series removes the non-stationary components in all cases and the null 

hypothesis of non-stationarity is clearly rejected at the 5% significance level, suggesting 

that all our variables are integrated of order one, as was expected. The results of the PP 

tests are reported in Table 3.5, and are not fundamentally different from the respective 

ADF results. (The lag truncations for the Bartlett kernel were chosen according to 

Newey and West’s (1987) suggestions.) Analytically, the results from the tests on the 

levels of the variables point clearly to the presence of a unit root in all cases apart from 

the claims ratio, which appears to be integrated of order zero. The results after first 

differencing the series robustly reject the null hypothesis of the presence of a unit root, 

suggesting therefore that the series are integrated of order one. 

4.0 CONCLUSION 

In this unit emphasis is laid on unit root. In stationary time series, shocks will be 

temporary, and over time their effects will be eliminated as the series revert to their 

long-run mean values. On the other hand, non-stationary time series will necessarily 

contain permanent components. Therefore, the mean and/or the variance of a non-

stationary time series will depend on time, which leads to cases where a series (a) has 

no long-run mean to which the series returns; and (b) the variance will depend on time 

and will approach infinity as time goes to infinity. 

5.0 SUMMARY 

This unit explained the concept of stationarity and the differences between stationary 

and non-stationary time series processes. The importance of stationarity and the concept 

of spurious regressions were highlighted. The unit further discussed the concept of unit 

roots in time series and the meaning of the statement ’the series is integrated for order 

1’ or I(1). The different test for unit roots such as Dickey–Fuller (DF) test procedure 

for testing for unit roots, the three different DF models for unit-root testing, the 

Augmented Dickey–Fuller (ADF) test, the Philips-Perron (PP) test procedure were 
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discussed while the estimation of the DF, ADF and PP tests using appropriate software 

were explained. 

 

6.0 TUTORED MARKED ASSIGNMENT 

1. Explain why it is important to test for stationarity.  

2. Describe how a researcher can test for stationarity.   

3. Explain the term spurious regression and provide an example from economic time 

series data. 

4. The file (Appendix 1) contains data from various macroeconomic indicators of the 

Nigerian economy. Check for the order of integration of all the variables using both the 

ADF and PP tests. Summarize your results in a table and comment on them. 
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UNIT 4: COINTEGRATION AND ERROR-CORRECTION MODELS 

1.0 Introduction 

2.0 Objectives 

3.0 Main Contents 

3.1 What is Cointegration 

3.2 Cointegration and the Error Correction Mechanism (ECM) 

3.3 Testing for Cointegration 

3.4 Computer Examples of Cointegration 

4.0 Conclusion 

5.0 Summary 

6.0 Tutor Marked Assignment  

7.0 References/Further Readings 

1.0 INTRODUCTION 

The basic idea of this unit follows from our explanation of spurious regression in the 

previous unit, which showed that if the two variables are non-stationary we can 

represent the error as a combination of two cumulated error processes. These cumulated 

error processes are often called stochastic trends and normally we would expect them 

to combine to produce another non-stationary process. However, in the special case that 

X and Y are in fact related we would expect them to move together so the two stochastic 

trends would be very similar. When we put them together it should be possible to find 

a combination of them that eliminates the nonstationarity. In this special case we say 

that the variables are cointegrated. In theory, this should only happen when there is truly 

a relationship linking the two variables, so cointegration becomes a very powerful way 

of detecting the presence of economic structures. 

2.0 OBJECTIVES 

At the end of this unit, students should be able to:  

• Understand the concept of cointegration in time series. 

• Appreciate the importance of cointegration and long-run solutions in 

econometric applications. 

• Understand the error-correction mechanism and its advantages. 

• Test for cointegration using the Engle–Granger approach. 

• Test for cointegration using the Johansen approach. 

• Obtain results of cointegration tests using appropriate econometric software. 

• Estimate error-correction models using appropriate econometric software. 
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3.0 MAIN CONTENT 

3.1 What is Cointegration? 

The main message from previous unit was that trended time series can potentially create 

major problems in empirical econometrics because of spurious regressions. We also 

made the point that most macroeconomic variables are trended and therefore the 

spurious regression problem is highly likely to be present in most macroeconometric 

models. One way of resolving this is to difference the series successively until 

stationarity is achieved and then use the stationary series for regression analysis. 

However, this solution is not ideal. There are two main problems with using first 

differences. If the model is correctly specified as a relationship between y and x (for 

example) and we difference both variables, then implicitly we are also differencing the 

error process in the regression. This would then produce a non-invertible moving 

average error process and would present serious estimation difficulties. The second 

problem is that if we difference the variables the model can no longer give a unique 

long-run solution. By this we mean that if we pick a particular value for x then 

regardless of the initial value for y the dynamic solution for y will eventually converge 

on a unique value. So, for example, if y = 0.5x and we set x = 10, then y = 5. But if we 

have the model in differences, yt − yt−1 = 0.5(xt − xt−1) then even if we know that x = 10 

we cannot solve for y without knowing the past value of y and x, and so the solution for 

y is not unique, given x. The desire to have models that combine both short-run and 

long-run properties, and at the same time maintain stationarity in all of the variables, 

has led to a reconsideration of the problem of regression using variables that are 

measured in their levels. 

The basic thrust of this unit follows from our explanation of spurious regression in the 

previous unit, which indicated that if the two variables are non-stationary we can 

represent the error as a combination of two cumulated error processes. These cumulated 

error processes are often called stochastic trends and normally we would expect them 

to combine to produce another non-stationary process. However, in the special case that 

X and Y are in fact related we would expect them to move together so the two stochastic 

trends would be very similar. When we put them together it should be possible to find 

a combination of them that eliminates the non-stationarity. In this special case we say 

that the variables are cointegrated. In theory, this should only happen when there is truly 

a relationship linking the two variables, so cointegration becomes a very powerful way 

of detecting the presence of economic structures. Cointegration then becomes an 

overriding requirement for any economic model using non-stationary time series data. 

If the variables do not cointegrate we have problems of spurious regression and 

econometric work becomes almost meaningless. On the other hand, if the stochastic 

trends do cancel then we have cointegration and, as we shall see later, everything works 
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even more effectively than we previously might have thought. The key point here is 

that, if there really is a genuine long-run relationship between Yt and Xt, then despite 

the variables rising over time (because they are trended), there will be a common trend 

that links them together. For an equilibrium or long-run relationship to exist, what we 

require, then, is a linear combination of Yt and Xt that is a stationary variable (an I(0) 

variable). A linear combination of Yt and Xt can be taken directly from estimating the 

following regression: 

 1 2t t tY X u = + + ……………………………………….(3.4.1) 

And taking the residuals: 

 1 2t t tu Y X = − + ………………………………………..(3.4.2) 

If (0)ttu I then Yt and Xt are said to be cointegrated. 

3.1.1 Cointegration: A more Mathematical Approach  

To put it differently, consider a set of two variables {Y, X} that are integrated of order 

1 (that is {Y, X} ∼ I(1)) and suppose that there is a vector {θ1, θ2} that gives a linear 

combination of {Y, X} which is stationary, denoted by: 

 1 2 (0)t t tY X u I + = ……………………………………(3.31) 

then the variable set {Y, X} is called the cointegration set, and the coefficients vector 

{θ1, θ2} is called the cointegration vector. What we are interested in is the long-run 

relationship, which for Yt is: 

 *t tY X= ………………………………………………..(3.4.3) 

To see how this comes from the cointegration method, we can normalize Equation 

(3.31) for Yt to give: 

 2

1

t t tY X e



= + ……………………………………………(3.4.4) 

where now Y* = −(θ2/θ1)Xt, which can be interpreted as the long-run or equilibrium 

value of Yt (conditional on the values of Xt). We shall return to this point when 

discussing the error-correction mechanism later in the chapter. For bivariate economic 

I(1) time series processes, cointegration often manifests itself by more or less parallel 
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plots of the series involved. As noted earlier, we are interested in detecting long-run or 

equilibrium relationships and this is mainly what the concept of cointegration allows. 

The concept of cointegration was first introduced by Granger (1981) and elaborated 

further by Phillips (1986, 1987), Engle and Granger (1987), Engle and Yoo (1987), 

Johansen (1988, 1991, 1995a), Stock and Watson (1988), Phillips and Ouliaris (1990), 

among others. Working in the context of a bi-variate system with at most one 

cointegrating vector, Engle and Granger (1987) give the formal definition of 

cointegration between two variables as follows: Definition 1: Time series Yt and Xt are 

said to be cointegrated of order d, b where d ≥ b ≥ 0, written as Yt, Xt ∼ CI(d, b), if (a) 

both series are integrated of order d, and (b) there exists a linear combination of these 

variables, say β1Yt +β2Xt which is integrated of order d −b. The vector {β1, β2} is called 

the cointegrating vector. A straightforward generalization of the above definition can 

be made for the case of n variables, as follows:  

Definition 2: If Zt denotes an n×1 vector of series Z1t, Z2t, Z3t, ... , Znt and (a) each Zit 

is I(d); and (b) there exists an n × 1 vector β such that ( )tZ I d b − , then ( , )
t

Z CI d b . 

For empirical econometrics, the most interesting case is where the series transformed 

with the use of the cointegrating vector become stationary; that is, when d = b, and the 

cointegrating coefficients can be identified as parameters in the long-run relationship 

between the variables. The next sections of this unit will deal with these cases.  

SELF ASSESSMENT EXERCISE 

1. Explain the meaning of cointegration. Why is it so important for economic analysis?  

2. Why is it necessary to have series that are integrated of the same order to make 

cointegration possible? Give examples. 

3.2 Cointegration and the Error Correction Mechanism (ECM): A General 

Approach  

3.2.1 The problem  

As noted earlier, when there are non-stationary variables in a regression model we may 

get results that are spurious. So if Yt and Xt are both I(1), if we regress: 

 1 2t t tY X u = + + …………………………………….(3.4.5) 
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We will not generally get satisfactory estimates of 1  and 2 . One way of resolving this 

is to difference the data to ensure stationarity of our variables. After doing this, Yt ∼ 

I(0) and Xt ∼ I(0), and the regression model will be: 

 1 2t t tY X u  = +  + …………………………………..(3.4.6) 

In this case, the regression model may give us correct estimates of the 1̂  and 2̂  

parameters and the spurious equation problem has been resolved. However, what we 

have from Equation (3.4.6) is only the short-run relationship between the two variables. 

Remember that, in the long-run relationship: 

 1 2*t tY X = + …………………………………………(3.4.7) 

so Yt is bound to give us no information about the long-run behaviour of our model. 

Knowing that economists are interested mainly in long-run relationships, this 

constitutes a big problem, and the concept of cointegration and the ECM are very useful 

to resolve this. 

• Cointegration (again)  

We noted earlier that Yt and Xt are both I(1). In the special case that there is a linear 

combination of Yt and Xt (that is, I(0)), then Yt and Xt are cointegrated. Thus, if this is 

the case, the regression of Equation (3.4.7) is no longer spurious, and it also provides 

us with the linear combination: 

 1 2
ˆ ˆˆ

t t tu Y X = − + ………………………………………………(3.4.8) 

which connects Yt and Xt in the long run.  

3.2.2 The error-correction model (ECM)  

If, then, Yt and Xt are cointegrated, by definitio ˆ (0)tu I . Thus we can express the 

relationship between Yt and Xt with an ECM specification as: 

 0 1 1
ˆ

t t t tY a b X u e − = +  − + ………………………………………(3.4.9) 

which will now have the advantage of including both long-run and short-run 

information. In this model, b1 is the impact multiplier (the short-run effect) that 

measures the immediate impact a change in Xt will have on a change in Yt. On the other 

hand, π is the feedback effect, or the adjustment effect, and shows how much of the 
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disequilibrium is being corrected – that is the extent to which any disequilibrium in the 

previous period affects any adjustment in Yt. Of course 1 1 1 2 1
ˆˆ

t t tu Y X − − −= − − , and 

therefore from this equation β2 is also the long-run response (note that it is estimated by 

Equation (3.4.6)). Equation (3.38) now emphasizes the basic approach of the 

cointegration and error-correction models. The spurious regression problem arises 

because we are using non-stationary data, but in Equation (3.4.9) everything is 

stationary, the change in X and Y is stationary because they are assumed to be I(1) 

variables, and the residual from the levels regression (3.4.8) is also stationary, by the 

assumption of cointegration. So Equation (3.4.9) fully conforms to our set of 

assumptions about the classic linear regression model and OLS should perform well. 

• Advantages of the ECM 

 The ECM is important and popular for many reasons:  

1. First, it is a convenient model measuring the correction from disequilibrium of the 

previous period, which has a very good economic implication.  

2. Second, if we have cointegration, ECMs are formulated in terms of first differences, 

which typically eliminate trends from the variables involved, and they resolve the 

problem of spurious regressions. 

3. A third, very important, advantage of ECMs is the ease with which they can fit into 

the general to specific approach to econometric modelling, which is in fact a search for 

the most parsimonious ECM model that best fits the given data sets.  

4. Finally, the fourth and most important feature of the ECM comes from the fact that 

the disequilibrium error term is a stationary variable (by definition of cointegration). 

Because of this, the ECM has important implications: the fact that the two variables are 

cointegrated implies that there is some adjustment process preventing the errors in the 

long-run relationship from becoming larger and larger. 

 

SELF ASSESSMENT EXERCISE 

1. Why is it that when a model is differenced and the regression of such model 

gives short run estimates? 

2. Why is cointegration and ECM useful in resolving the problem of regression 

estimates of differenced model? 

3. What are the advantages of ECM in a model? 
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3.2.3 Cointegration and the error-correction mechanism: a more mathematical 

approach  

• A simple model for only one lagged term of X and Y 

The concepts of cointegration and the error-correction mechanism (ECM) are very 

closely related. To understand the ECM it is better to think of it first as a convenient re-

parameterization of the general linear autoregressive distributed lag (ARDL) model. 

Consider the very simple dynamic ARDL model describing the behaviour of Y in terms 

of X, as follows: 

 0 1 1 0 1 1t t t t tY Y X X u   − −= + + + + ……………………………………(3.4.10) 

where the residual ut ∼ iid(0, σ2). In this model the parameter γ0 denotes the short-run 

reaction of Yt after a change in Xt. The long-run effect is given when the model is in 

equilibrium, where: 

 * *

0 1t tY X = + ……………………………………………………….(3.4.11) 

And for simplicity, we assume that: 

 *

1 ...t t t t pX X X X− −= = = = ………………………………………….(3.4.12) 

Thus, it is given by: 

 * * * *

0 1 0 1t t t t tY Y X X u   = + + + +  

         * *

1 0 0 1(1 ) ( )t t tY X u   − = + + +  

         * *0 0 1

1 11 1
t t tY X u

  

 

+
= + +

− −
 

         *

0 1t t tY X u = + + ………………………………………..(3.4.13) 

So the long-run elasticity between Y and X is captured by β1 = (γ0 + γ1)/(1 − α1). Here, 

we need to make the assumption that α1 < 1 so that the short-run model in Equation 

(3.4.10) converges to a long-run solution. 

We can then derive the ECM, which is a re-parameterization of the original Equation 

(3.4.10) model: 
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 0 1 0 1 1(1 )[ ]t t t t tY X Y X u   − − =  − − − − + ……………………(3.4.14) 

 0 1 0 1 1[ ]t t t t tY X Y X u   − − =  − − − + ………………………….(3.4.15) 

What is of importance here is that when the two variables Y and X are cointegrated, the 

ECM incorporates not only short-run but also long-run effects. This is because the long-

run equilibrium Yt−1 − β0 − β1Xt−1 is included in the model together with the short-run 

dynamics captured by the differenced term. Another important advantage is that all the 

terms in the ECM model are stationary, and standard OLS is therefore valid. This is 

because if Y and X are I(1), then Y and X are I(0), and by definition if Y and X are 

cointegrated then their linear combination (Yt−1 − β0 − β1Xt−1) ∼ I(0). A final, very 

important, point is that the coefficient π = (1 − a1) provides us with information about 

the speed of adjustment in cases of disequilibrium. To understand this better, consider 

the long-run condition. When equilibrium holds, then (Yt−1 − β0 − β1Xt−1) = 0. However, 

during periods of disequilibrium, this term will no longer be zero and measures the 

distance the system is away from equilibrium. For example, suppose that because of a 

series of negative shocks in the economy (captured by the error term ut) Yt increases 

less rapidly than is consistent with Equation (3.4.13). This causes (Yt−1 −β0 −β1Xt−1) to 

be negative, because Yt−1 has moved below its long-run steady-state growth path. 

However, since π = (1 − a1) is positive (and because of the minus sign in front of π) the 

overall effect is to boost Yt back towards its long-run path as determined by Xt in 

Equation (3.4.13). The speed of this adjustment to equilibrium is dependent on the 

magnitude of (1−a1). The magnitude of π will be discussed in the next unit. 

 

• A More General Model for Large Numbers of Lagged Terms  

Consider the following two-variable Yt and Xt ARDL: 

 
1 0

n m

t i t i i t i t

i i

Y Y X u  − −

= =

= + + +  ……………………………………(3.4.16) 

 1 1 0 1 1... ...t t n t n t t m t m tY Y Y X X X u     − − − −= + + + + + + + + + ……….(3.4.17) 

We want to obtain a long-run solution of the model, which would be defined as the 

point where Yt and Xt settle down to constant steady-state levels Y∗ and X∗, or more 

simply when: 

 * *

0 1t tY X = + ………………………………………………………(3.4.18) 
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And again assume Xt
* is constant: 

 *

1 ...t t t t mX X X X− −= = = =  

So, putting this condition into Equation (3.4.3), we get the long-run solution, as: 

 * *

1 1

i

i i

Y X


 
= +

− −


 

………………………………………..(3.4.19) 

 * *

1 2 1 2

( 1 2 ... )

1 ... 1 ...n n

Y X
   

     

+ + +
= +

− − − − − − − −
…………………(3.4.20) 

 * *

0 1Y X = + ……………………………………………………..(3.4.21) 

which means we can define Y∗ conditional on a constant value of X at time t as: 

 *

0 1 tY X = + ………………………………………………………(3.4.22) 

Here there is an obvious link to the discussion of cointegration in the previous section. 

Defining et as the equilibrium error as in Equation (3.4.3), we get: 

 *

0 1t t t t te Y Y Y B B X= − = − − …………………………………………(3.4.23) 

Therefore, what we need is to be able to estimate the parameters B0 and B1. Clearly, B0 

and B1 can be derived by estimating Equation (3.4.16) by OLS and then calculating 

/ (1 1 )iA  = − −  and / (1 1 )i iB  = − −  . However, the results obtained by this 

method are not transparent, and calculating the standard errors will be very difficult. 

However, the ECM specification cuts through all these difficulties. Take the following 

model, which (although it looks quite different) is a re-parameterization of Equation 

(3.4.3): 

 
1 1

1 1 2 1

1 0

n m

t i t i i t i t t t

i i

Y Y X Y X u    
− −

− − − −

= =

 = +  +  + + +  …………………..(3.4.24) 

Note: for n = 1 the second term on the left-hand side of Equation (3.4.24) disappears. 

From this equation we can see, with a bit of mathematics, that: 

 2

1

m

i

i

 
=

= ………………………………………………………………..(3.4.25) 
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Which is the numerator of the long-run parameter, B1, and that: 

1

1

1
n

i

i

 
=

 
= − − 

 
 …………………………………………………………(3.4.26) 

So the long-run parameter β0 is given by β0 = 1/θ1 and the long-run parameter β1 = − 

θ2/θ1. Therefore the level terms of Yt and Xt in the ECM tell us exclusively about the 

long-run parameters. Given this, the most informative way to write the ECM is as 

follows:  

 
1 1

2
1 1 1

1 0 1 1

1
( )

n m

t i t i i t i t t t

i i

Y Y X Y X u


   
 

− −

− − − −

= =

 = +  +  + − − +  ……………..(3.4.27) 

 
1 1

1 1 0 1 1

1 0

ˆ ˆ( )
n m

t i t i i t i t t t

i i

Y Y X Y X u     
− −

− − − −

= =

 = +  +  + − − +  ………………(3.4.28) 

where θ1 = 0. Furthermore, knowing that 1 0 1 1
ˆ ˆ

t t tY X e − −− − = , our equilibrium error, we 

can rewrite Equation (3.3.56) as: 

 
1 1

1

1 0

ˆ
n m

t i t i i t i t t

i i

Y Y X e    
− −

− − −

= =

 = +  +  − +  ……………………………….(3.4.29) 

What is of major importance here is the interpretation of π. π is the error-correction 

coefficient and is also called the adjustment coefficient. In fact, π tells us how much of 

the adjustment to equilibrium takes place in each period, or how much of the 

equilibrium error is corrected. Consider the following cases:  

(a) If π = 1 then 100% of the adjustment takes place within a given period, or the 

adjustment is instantaneous and full.  

(b) If π = 0.5 then 50% of the adjustment takes place in each period.  

(c) If π = 0 then there is no adjustment, and to claim that Yt
 * is the long-run part of Yt 

no longer makes sense. We need to connect this with the concept of cointegration. 

Because of cointegration, ˆ (0)te I and therefore also 1
ˆ (0)te I− . Thus, in Equation 

(3.4.29), which is the ECM representation, we have a regression that contains only I(0) 

variables and allows us to use both long-run information and short-run disequilibrium 

dynamics, which is the most important feature of the ECM. 

3.3 Testing for Cointegration 
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3.3.1 Cointegration in Single Equations: The Engle–Granger Approach  

Granger (1981) introduced a remarkable link between non-stationary processes and the 

concept of long-run equilibrium; this link is the concept of cointegration defined above. 

Engle and Granger (1987) further formalized this concept by introducing a very simple 

test for the existence of cointegrating (that is long-run equilibrium) relationships. To 

understand this approach (which is often called the EG approach) consider the following 

two series, Xt and Yt, and the following cases:  

(a) If Yt ∼ I(0) and Xt ∼ I(1), then every linear combination of those two series 

 1 2t tY X + ……………………………………………………..(3.4.30) 

will result in a series that will always be I(1) or non-stationary. This will happen because 

the behaviour of the non-stationary I(1) series will dominate the behaviour of the I(0) 

one.  

(b) If we have that both Xt and Yt are I(1), then in general any linear combination of the 

two series, say 

 1 2t tY X + ……………………………………………………..(3.4.31) 

will also be I(1). However, though this is the more likely case, there are exceptions to 

this rule, and we might find in rare cases that there is a unique combination of the series, 

as in Equation (3.4.31) above, that is I(0). If this is the case, we say that Xt and Yt are 

cointegrated of order (1, 1).  

Now the problem is how to estimate the parameters of the long-run equilibrium 

relationship and check whether or not we have cointegration. Engle and Granger 

proposed a straightforward method involving four steps.  

Step 1: test the variables for their order of integration. By definition, cointegration 

necessitates that the variables be integrated of the same order. Thus the first step is to 

test each variable to determine its order of integration. The DF and ADF tests can be 

applied in order to infer the number of unit roots (if any) in each of the variables. We 

can differentiate three cases which will either lead us to the next step or will suggest 

stopping: 

(a) if both variables are stationary (I(0)), it is not necessary to proceed, since standard 

time series methods apply to stationary variables (in other words, we can apply classical 
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regression analysis); (b) if the variables are integrated of different order, it is possible 

to conclude that they are not cointegrated; and  

(c) if both variables are integrated of the same order we proceed with step 2. 

 Step 2: estimate the long-run (possible cointegrating) relationship If the results of step 

1 indicate that both Xt and Yt are integrated of the same order (usually in economics, 

I(1)), the next step is to estimate the long-run equilibrium relationship of the form:  

 1 2t t tY X e = + + ……………………………………….(3.4.32) 

and obtain the residuals of this equation. If there is no cointegration, the results obtained 

will be spurious. However, if the variables are cointegrated, then OLS regression yields 

‘super-consistent’ estimators for the cointegrating parameter 2̂ .  

Step 3: check for (cointegration) the order of integration of the residuals To determine 

if the variables are in fact cointegrated, denote the estimated residual sequence from 

this equation by t̂e . Thus, t̂e  is the series of the estimated residuals of the long-run 

relationship. If these deviations from long-run equilibrium are found to be stationary, 

then Xt and Yt are cointegrated. We perform a DF test on the residual series to determine 

their order of integration. The form of this DF test is:  

 1 1

1

ˆ ˆ ˆ
n

t t i t i t

i

e e e v − −

=

 = +  + ………………………………...(3.4.33) 

Note that because t̂e  is a residual we do not include a constant or a time trend. The 

critical values differ from the standard ADF values, being more negative (typically 

around −3.5). Critical values are provided in Table 3.3.25. Obviously, if we find that

ˆ (0)te I , we can reject the null that the variables Xt and Yt are not cointegrated; 

similarly, if we have a single equation with more than just one explanatory variable.  

Step 4: estimate the ECM If the variables are cointegrated, the residuals from the 

equilibrium regression can be used to estimate the ECM and to analyse the long-run and 

short-run effects of the variables as well as to see the adjustment coefficient, which is 

the coefficient of the lagged residual terms of the long-run relationship identified in step 

2. At the end, the adequacy of the model must always be checked by performing 

diagnostic tests. 

Table 3.3.25: Critical values for the null of no cointegration 
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 1% 5% 10% 

No lags -4.07 -3.37 -3.3 

Lags -3.73 -3.17 -2.91 

Source: Engel and Granger (1987) 

• Drawbacks of the EG Approach 

 One of the best features of the EG approach is that it very easy both to understand and 

to implement. However, there are important shortcomings in the Engle–Granger 

methodology:  

1. One very important issue is related to the order of the variables. When estimating 

the long-run relationship, one has to place one variable in the left-hand side and 

use the others as regressors. The test does not say anything about which of the 

variables can be used as a regressor and why. Consider, for example, the case of 

just two variables, Xt and Yt. One can either regress Yt on Xt (that is Yt = a + βXt 

+ u1t) or choose to reverse the order and regress Xt on Yt (that is Xt = a + βYt + 

u2t). It can be shown, with asymptotic theory, that as the sample goes to infinity, 

the test for cointegration on the residuals of those two regressions is equivalent 

(that is there is no difference in testing for unit roots in u1t and u2t). However, 

in practice in economics, there are rarely very big samples and it is therefore 

possible to find that one regression exhibits cointegration while the other does 

not. This is obviously a very undesirable feature of the EG approach, and the 

problem becomes far more complicated when there are more than two variables 

to test.  

2. A second problem is that when there are more than two variables there may be 

more than one cointegrating relationship, and the Engle–Granger procedure 

using residuals from a single relationship cannot treat this possibility. So a most 

important point is that it does not give us the number of cointegrating vectors.  

3. A third problem is that it relies on a two-step estimator. The first step is to 

generate the residual series and the second is to estimate a regression for this 

series to see whether the series is stationary or not. Hence, any error introduced 

in the first step is carried into the second. 

All these problems are resolved with the use of the Johansen approach that will be 

examined later.  

3.3.2 Engel-Granger Apporach in Econometric Softwares 
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• The Engel-Granger Approach in EViews 

The EG test is very easy to perform and does not require any more knowledge regarding 

the use of EViews. For the first step, ADF and PP tests on all variables are needed to 

determine the order of integration of the variables. If the variables (let’s say X and Y) 

are found to be integrated of the same order, then the second step involves estimating 

the long-run relationship with simple OLS. So the command here is simply:  

ls X c Y or ls Y c X  

depending on the relationship of the variables (see the list of drawbacks of the EG 

approach in the section above). You need to obtain the residuals of this relationship, 

which are given by:      

genr res_000 = resid  

where instead of 000 a different alphanumeric name can be entered to identify the 

residuals in question. The third step (the actual test for cointegration) is a unit-root test 

on the residuals, for which the command is:  

adf res_000  

for no lags; or:  

adf (4) res_000  

for 4 lags in the augmentation term, and so on. A crucial point here is that the critical 

values for this test are not those reported in EViews, but the ones given in Table 3.3.25 

in this text.  

 

• The Engel-Granger Approach in Stata  

The commands for Stata are:  

regress y x  

predict res_000 , residuals  

dfuller res_000 , noconstant  
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for no lags or the simple DF test; or:  

dfuller res_000 , noconstant lags(4)  

to include 4 lags in the augmentation term, and so on. 

3.3.3 Cointegration in Multiple Equations and the Johansen Approach  

It was mentioned earlier that if there are more than two variables in the model, there is 

a possibility of having more than one cointegrating vector. This means that the variables 

in the model might form several equilibrium relationships governing the joint evolution 

of all the variables. In general, for n number of variables there can be only up to n − 1 

cointegrating vectors. Therefore, when n = 2, which is the simplest case, if cointegration 

exists then the cointegrating vector is unique.  

Having n > 2 and assuming that only one cointegrating relationship exists where there 

are actually more than one is a serious problem that cannot be resolved by the EG single-

equation approach. Therefore an alternative to the EG approach is needed, and this is 

the Johansen approach for multiple equations.  

To present this approach, it is useful to extend the single-equation error-correction 

model to a multivariate one. Let us assume that we have three variables, Yt, Xt and Wt 

which can all be endogenous; that is we have it that (using matrix notation for Zt = [Yt, 

Xt,Wt]) 

 1 1 2 2 ...t t t k t k tZ A Z A Z A Z u− − −= + + + + ……………………………….(3.4.34) 

which is comparable to the single-equation dynamic model for two variables Yt and Xt 

given in Equation (3.4.14). Thus it can be reformulated in a vector error-correction 

model (VECM) as follows: 

 1 1 2 2 1...t t t k t k t tZ Z Z Z Z u− − − − =   +  + + + + …………………(3.4.35) 

where Γi = (I − A1 −A2 −···−Ak) (i = 1, 2, ... , k−1) and Πi = − (I − A1 −A2 −···−Ak). 

Here we need to examine carefully the 3 × 3 Π matrix. (The Π matrix is 3 × 3 because 

we assume three variables in Zt = [Yt, Xt,Wt].) The matrix contains information 

regarding the long-run relationships. We can decompose  = where   will include 

the speed of adjustment to equilibrium coefficients while  will be the long-run matrix 

of coefficients. 
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Therefore the 1tZ −
  term is equivalent to the error-correction term (Yt−1 − β0 − β1Xt−1) 

in the single-equation case, except that now 1tZ −
  contains up to (n − 1) vectors in a 

multivariate framework. For simplicity, we assume that k = 2, so that we have only two 

lagged terms, and the model is then the following: 

 

1 1

1 1 1

1 1
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       
     
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            

……………………………..(3.4.36) 

Or  
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…………………….(3.4.37) 

Let us now analyse only the error-correction part of the first equation (that is for Yt on 

the left-hand side), which gives: 

 1 1 11 11 12 12 11 21 12 22([ ][ ]tZ        − = + +  

  

1

11 31 12 32 1

1
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t
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−

−

−

 
 

+  
 
 

…………………………………….(3.4.38) 

where Π1 is the first row of the matrix. Equation (3.3.67) can be rewritten as: 

 1 1 11 11 1 21 1 31 1( )t t t tZ Y X w   − − − − = + +  

  12 12 1 22 1 32 1( )t t tY X w   − − −+ + + ………………………………..(3.4.39) 

which shows clearly the two cointegrating vectors with their respective speed of 

adjustment terms α11 and α12.  

• Advantages of the Multiple-equation Approach  

So, from the multiple-equation approach we can obtain estimates for both cointegrating 

vectors from Equation (3.3.68), while with the simple equation we have only a linear 

combination of the two long-run relationships.  
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Also, even if there is only one cointegrating relationship (for example the first only) 

rather than two, with the multiple-equation approach we can calculate all three differing 

speeds of adjustment coefficients (α11 α21 α31).  

Only when α21 = α31 = 0, and only one cointegrating relationship exists, can we then say 

that the multiple-equation method is the same (reduces to the same) as the single-

equation approach, and therefore there is no loss from not modelling the determinants 

of Xt and Wt. Here, it is good to mention too that when α21 = α31 = 0, this is equivalent 

to Xt and Wt being weakly exogenous. 

• The Johansen approach (again)  

Let us now go back and examine the behaviour of the matrix under different 

circumstances. Given that Zt is a vector of non-stationary I(1) variables, then ∆Zt−1 are 

I(0) and ΠZt−1 must also be I(0) in order to have that ut ∼ I(0) and therefore to have a 

well-behaved system.  

In general, there are three cases for ΠZt−1 to be I(0):  

Case 1: When all the variables in Zt are stationary. Of course, this case is totally 

uninteresting since it implies that there is no problem of spurious regression and the 

simple VAR in levels model can be used to model this case.  

Case 2: When there is no cointegration at all and therefore the matrix is an n × n matrix 

of zeros because there are no linear relationships among the variables in Zt. In this case 

the appropriate strategy is to use a VAR model in first differences with no long-run 

elements as a result of the non-existence of long-run relationships.  

Case 3: When there exist up to (n−1) cointegrating relationships of the form 1 (0)tZ I −


. In this particular case, r ≤ (n − 1) cointegrating vectors exist in β. This simply means 

that r columns of β form r linearly independent combinations of the variables in Zt, each 

of which is stationary. Of course, there will also be (n − r) common stochastic trends 

underlying Zt.  

Recall that  =  and so in case 3 above, while the matrix will always be dimensioned 

n × n, the α and β matrices will be dimensioned n × r. This therefore imposes a rank of 

r on the matrix, which also imposes only r linearly independent rows in this matrix. So 

underlying the full size matrix is a restricted set of only r cointegrating vectors given by 

βZt−1. Reduced rank regression, of this type, has been available in the statistics literature 

for many years, but it was introduced into modern econometrics and linked with the 
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analysis of non-stationary data by Johansen (1988). Going back to the three different 

cases considered above regarding the rank of the matrix we have: Case 1: When has a 

full rank (that is there are r = n linearly independent columns) then the variables in Zt 

are I(0).  

Case 2: When the rank of is zero (that is there are no linearly independent columns) 

then there are no cointegrating relationships. 

Case 3: When has a reduced rank (that is there are r ≤ (n − 1) linearly independent 

columns) and therefore there are r ≤ (n − 1) cointegrating relationships.  

• The steps of the Johansen approach in practice  

Step 1: testing the order of integration of the variables As with the EG approach, the 

first step in the Johansen approach is to test for the order of integration of the variables 

under examination. It was noted earlier that most economic time series are non-

stationary and therefore integrated. Indeed, the issue here is to have non-stationary 

variables in order to detect among them stationary cointegrating relationship(s) and 

avoid the problem of spurious regressions. It is clear that the most desirable case is when 

all the variables are integrated of the same order, and then to proceed with the 

cointegration test. However, it is important to stress that this is not always the case, and 

that even in cases where a mix of I(0), I(1) and I(2) variables are present in the model, 

cointegrating relationships might well exist. The inclusion of these variables, though, 

will massively affect researchers’ results and more consideration should be applied in 

such cases. Consider, for example, the inclusion of an I(0) variable. In a multivariate 

framework, for every I(0) variable included in the model the number of cointegrating 

relationships will increase correspondingly. We stated earlier that the Johansen 

approach amounts to testing for the rank of (that is finding the number of linearly 

independent columns in ), and since each I(0) variable is stationary by itself, it forms a 

cointegrating relationship by itself and therefore forms a linearly independent vector in 

. Matters become more complicated when we include I(2) variables. Consider, for 

example, a model with the inclusion of two I(1) and two I(2) variables. There is a 

possibility that the two I(2) variables cointegrate down to an I(1) relationship, and then 

this relationship may further cointegrate with one of the two I(1) variables to form 

another cointegrating vector. In general, situations with variables in differing orders of 

integration are quite complicated, though the positive thing is that it is quite common 

in macroeconomics to have I(1) variables. Those who are interested in further details 

regarding the inclusion of I(2) variables can refer to Johansen’s (1995b) paper, which 

develops an approach to treat I(2) models.  
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Step 2: setting the appropriate lag length of the model The issue of finding the 

appropriate (optimal) lag length is very important because we want to have Gaussian 

error terms (that is standard normal error terms that do not suffer from non-normality, 

autocorrelation, heteroskedasticity and so on). Setting the value of the lag length is 

affected by the omission of variables that might affect only the shortrun behaviour of 

the model. This is because omitted variables instantly become part of the error term. 

Therefore very careful inspection of the data and the functional relationship is necessary 

before proceeding with estimation, to decide whether to include additional variables. It 

is quite common to use dummy variables to take into account short-run ‘shocks’ to the 

system, such as political events that had important effects on macroeconomic 

conditions. The most common procedure in choosing the optimal lag length is to 

estimate a VAR model including all our variables in levels (non-differenced data). This 

VAR model should be estimated for a large number of lags, then reducing down by re-

estimating the model for one lag less until zero lags are reached (that is we estimate the 

model for 12 lags, then 11, then 10 and so on until we reach 0 lags). In each of these 

models we inspect the values of the AIC and the SBC criteria, as well as the diagnostics 

concerning autocorrelation, heteroskedasticity, possible ARCH effects and normality of 

the residuals. In general the model that minimizes AIC and SBC is selected as the one 

with the optimal lag length. This model should also pass all the diagnostic checks.  

Step 3: choosing the appropriate model regarding the deterministic components in the 

multivariate system. Another important aspect in the formulation of the dynamic model 

is whether an intercept and/or a trend should enter either the short-run or the long-run 

model, or both models. The general case of the VECM, including all the various options 

that can possibly arise, is given by the following equation: 

 1 1 1 1 1 1 2 2... ( 1t t k t tZ Z Z t t u     − − − =   + + + + + + …………………….(3.4.40) 

And for this equation we can see the possible cases. We can have a constant (with 

coefficient µ1) and/or a trend (with coefficient δ1) in the long-run model (the 

cointegrating equation (CE)), and a constant (with coefficient µ2) and/or a trend (with 

coefficient δ2) in the short-run model (the VAR model). In general, five distinct models 

can be considered. While the first and the fifth models are not that realistic, all of them 

are presented for reasons of complementarity.  

Model 1: No intercept or trend in CE or VAR (δ1 = δ2 = µ1 = µ2 = 0). In this case there 

are no deterministic components in the data or in the cointegrating relations. However, 

this is quite unlikely to occur in practice, especially as the intercept is generally needed 

to account for adjustments in the units of measurements of the variables in (Zt−1 1 t).  
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Model 2: Intercept (no trend) in CE, no intercept or trend in VAR (δ1 = δ2 = µ2 = 0). 

This is the case where there are no linear trends in the data, and therefore the first 

differenced series have a zero mean. In this case, the intercept is restricted to the long-

run model (that is the cointegrating equation) to account for the unit of measurement of 

the variables in (Zt−1 1 t).  

Model 3: Intercept in CE and VAR, no trends in CE and VAR (δ1 = δ2 = 0). In this case 

there are no linear trends in the levels of the data, but both specifications are allowed to 

drift around an intercept. In this case, it is assumed that the intercept in the CE is 

cancelled out by the intercept in the VAR, leaving just one intercept in the short-run 

model.  

Model 4: Intercept in CE and VAR, linear trend in CE, no trend in VAR (δ2 = 0). In 

this model a trend is included in the CE as a trend-stationary variable, to take into 

account exogenous growth (that is technical progress). We also allow for intercepts in 

both specifications while there is no trend in the short-run relationship.  

Model 5: Intercept and quadratic trend in the CE intercept and linear trend in VAR. 

This model allows for linear trends in the short-run model and thus quadratic trends in 

the CE. Therefore, in this final model, everything is unrestricted. However, this model 

is very difficult to interpret from an economics point of view, especially since the 

variables are entered as logs, because a model like this would imply an implausible 

ever-increasing or ever-decreasing rate of change. 

So the problem is, which of the five different models is appropriate in testing for 

cointegration. It was noted earlier that model 1 and model 5 are not that likely to happen, 

and that they are also implausible in terms of economic theory, therefore the problem 

reduces to a choice of one of the three remaining models (models 2, 3 and 4). Johansen 

(1992) suggests that the joint hypothesis of both the rank order and the deterministic 

components need to be tested, applying the so-called Pantula principle. The Pantula 

principle involves the estimation of all three models and the presentation of the results 

from the most restrictive hypothesis (that is r = number of cointegrating relations = 0 

and model 2) to the least restrictive hypothesis (that is r = number of variables entering 

the VAR − 1 = n − 1 and model 4). The model-selection procedure then comprises 

moving from the most restrictive model, at each stage comparing the trace test statistic 

to its critical value, and stopping only when it is concluded for the first time that the 

null hypothesis of no cointegration is not rejected.  

Step 4: determining the rank of Π or the number of cointegrating vectors According to 

Johansen (1988) and Johansen and Juselius (1990), there are two methods (and 
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corresponding test statistics) for determining the number of cointegrating relations, and 

both involve estimation of the matrix Π. This is a k × k matrix with rank r. The 

procedures are based on propositions about eigenvalues.  

(a) One method tests the null hypothesis, that Rank (Π) = r against the hypothesis that 

the rank is r + 1. So the null in this case is that there are cointegrating vectors and there 

are up to r cointegrating relationships, with the alternative suggesting that there are (r + 

1) vectors. The test statistics are based on the characteristic roots (also called 

eigenvalues) obtained from the estimation procedure. The test consists of ordering the 

largest eigenvalues in descending order and considering whether they are significantly 

different from zero. To understand the test procedure, suppose we obtained n 

characteristic roots denoted by λ1 > λ2 > λ3 > ··· > λn. If the variables under examination 

are not cointegrated, the rank of is zero and all the characteristic roots will equal zero. 

Therefore ( ˆ1 i− ) will be equal to 1 and, since ln(1) = 0, each of the expressions will be 

equal to zero for no cointegration. On the other hand, if the rank of is equal to 1, then 0 

< λ1 < 1 so that the first expression is ( ˆ1 i− ) < 0, while all the rest will be equal to zero. 

To test how many of the numbers of the characteristic roots are significantly different 

from zero this test uses the following statistic: 

 max 1
ˆ( , 1) ln(1 )rr r T  ++ = − − ……………………………….(3.4.41) 

As noted above, the test statistic is based on the maximum eigenvalue and is thus called 

the maximal eigenvalue statistic (denoted by λmax). (b) The second method is based on 

a likelihood ratio test for the trace of the matrix (and because of that it is called the trace 

statistic). The trace statistic considers whether the trace is increased by adding more 

eigenvalues beyond the rth. The null hypothesis in this case is that the number of 

cointegrating vectors is less than or equal to r. From the previous analysis it should be 

clear that when all ˆ 0i = , then the trace statistic is also equal to zero. On the other hand, 

the closer the characteristic roots are to unity, the more negative is the ˆln(1 )i−  term 

and therefore the larger the trace statistic. This statistic is calculated by: 

 1
ˆ( ) ln(1 )

n

trace r

i r t

r T  +

= +

= − − …………………………………..(3.4.42) 

The usual procedure is to work downwards and stop at the value of r, which is associated 

with a test statistic that exceeds the displayed critical value. Critical values for both 

statistics are provided by Johansen and Juselius (1990) (these critical values are directly 

provided from EViews after conducting a test for cointegration using the Johansen 

approach).  
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Step 5: Testing for Weak Exogeneity.  

After determining the number of cointegrating vectors we proceed with tests of weak 

exogeneity. Remember that the matrix contains information about the long-run 

relationships, and that  = , where α represents the speed of adjustment coefficients 

and β is the matrix of the long-run coefficients. A very useful feature of the Johansen 

approach for cointegration is that it allows us to test for restricted forms of the 

cointegrating vectors. Consider the case given by Equation (3.4.36), and from this the 

following equation: 
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…………………(3.4.43) 

In this equation it can be seen that testing for weak exogeneity with respect to the long-

run parameters is equivalent to testing which of the rows of α are equal to zero. A 

variable Z is weakly exogenous if it is only a function of lagged variables, and the 

parameters of the equation generating Z are independent of the parameters generating 

the other variables in the system. If we think of the variable Y in Equation (3.4.43), it 

is clearly a function of only lagged variables but in the general form above the 

parameters of the cointegrating vectors (β) are clearly common to all equations and so 

the parameters generating Y cannot be independent of those generating X and W as they 

are the same parameters. However, if the first row of the α matrix were all zeros then 

the βs would drop out of the Y equation and it would be weakly exogenous. So a joint 

test that a particular row of α is zero is a test of the weak exogeneity of the corresponding 

variable. If a variable is found to be weakly exogenous it can be dropped as an 

endogenous part of the system. This means that the whole equation for that variable can 

also be dropped, though it will continue to feature on the right-hand side of the other 

equations.  

Step 6: testing for linear restrictions in the cointegrating vectors. An important feature 

of the Johansen approach is that it allows us to obtain estimates of the coefficients of 

the matrices α and β, and then test for possible linear restrictions regarding those 

matrices. Especially for matrix β, the matrix that contains the long run parameters, this 

is very important because it allows us to test specific hypotheses regarding various 

theoretical predictions from an economic theory point of view. So, for example, if we 

examine a money–demand relationship, we might be interested in testing restrictions 

regarding the long-run proportionality between money and prices, or the relative size of 

income and interest-rate elasticities of demand for money and so on. 
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3.4 The Johansen Approach in EViews 

 The Johansen approach in EViews EViews has a specific command for testing for 

cointegration using the Johansen approach under group statistics.  

Consider the file in appendix 2, which has quarterly data from 2000q1 to 2019q4 for 

the Nigerian economy and for the following variables: GDPg = the growth rate of GDP; 

INFL = the rate of inflation and INTR = the interest rate representing the opportunity 

cost of holding money.  

The first step is to determine the order of integration of the variables. To do this, apply 

unit-root tests on all three variables that are to be tested for cointegration. Apply the 

Doldado et al. (1990) procedure to choose the appropriate model and determine the 

number of lags according to the SBC criterion. This model was found to be appropriate 

and we concluded from that model that there is a unit root in the series (because the 

ADF-statistic was bigger than the 5% critical value). The results of all tests for levels 

and first differences are presented in Table 3.3.26 

 

The next step is to go to workfile in Eviews and highlight the variables starting with the 

dependent variable, in our own case: GDPG INFR INTR. The go to quick then Johansen 

cointegration. Depending on the model whether 2, 3 or 4, then click on ok. 
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For illustrative purposes for the use of EViews only, we consider the results from model 

2 where only one cointegrating vector was found to exist. From the full results (reported 

in Table 3.3.27) we see that both the trace and the maximal eigenvalue statistics suggest 

the existence of one cointegrating vectors. 

After establishing the number of cointegrating vectors, we proceed with the estimation 

of the ECM by clicking on Procs/Make Vector Autoregression. EViews here gives us 

two choices of VAR types; first, if there is no evidence of cointegration we can estimate 

the unrestricted VAR (by clicking on the corresponding button), or, if there is 

cointegration we can estimate the VECM. If we estimate the VECM we need to specify 

(by clicking on the Cointegration menu), which model we want and how many numbers 

of cointegrating vectors we wish to have (determined from the previous step), and to 
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impose restrictions on the elements of the α and β matrices by clicking on the VEC 

restrictions menu. The restrictions are entered as b(1, 1) = 0 for the β11 = 0 restriction. 

More than one restriction can be entered and they should be separated by commas. 

4.0 CONCLUSION 

This unit laid emphasis on cointegration and error correction model (ECM). When two 

variables are non-stationary, the errors can be represented as a combination of two 

cumulated error processes which are often referred to as stochastic trends. However, in 

the special case that two variables X and Y are in fact related, one expects them to move 

together so the stochastic trends would be very similar. In other words, although the two 

series are individually nonstationary, a linear combination of them is stationary. In the 

language of econometrics, the two series are cointegrated.if the two variables are 

cointegrated, the relationship can be expressed with an ECM which includes both 

longrun and short run information. 

5.0 SUMMARY 

In this unit, we discussed the concept of cointegration in time series econometrics, the 

importance of cointegration and the long run solutions in econometric applications. The 

unit also discussed error correction mechanism (ECM) model and its advantages. When 

two variables are cointegrated although individually non-stationary, the relationship can 

be expressed with an ECM which includes both long run and short run information. The 

unit further talked about Engle Granger and Johansen approaches to cointegration with 

some computer softwares applications. 

6.0 TUTORED-MARKED ASSIGNMENT 

1. Explain the meaning of cointegration. Why is it so important for economic 

analysis?  

2. Why is it necessary to have series that are integrated of the same order to make 

cointegration possible? Give examples.  

3. What is the error-correction model? Prove that the ECM is a reparametrization 

of the ARDL model.  

4. What are the features of the ECM that make it so popular in modern econometric 

analysis? 
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5. Explain step by step how can one test for cointegration using the Engle–Granger 

(EG) approach.  

6. State the drawbacks of the EG approach, and discuss these with reference to its 

alternative (that is the Johansen approach).  

7. Is it possible to have two I(1) variables and two I(2) variables in a Johansen test 

for cointegration, and to find that the I(2) variables are cointegrated with the I(1)? 

Explain analytically.  

8. The file (appendix 2) contains data for GDP growth rate and unemployment for 

the Nigerian economy. Test for cointegration between the two variables using 

the EG approach and comment on the validity of the Phillips curve theory for the 

Korean economy.  

9. The file (appendix 2) contains data on three variables (GDPG, INFR and INTR). 

Test the variables for their order of integration and then apply the EG approach 

to the three different pairs of variables. In which of the pairs do you find 

cointegration?  
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