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INTRODUCTION 
 
You are holding in your hand the course guide for FMT 204: 
Introduction to Mathematical Economics. 
 
The purpose of the course guide is to relate to you the basic structure of 
the course material you are expected to study. Like the name ‘course 
guide’ implies, it is to guide you on what to expect from the course 
material and at the end of your study of the course material. 
 
COURSE CONTENT 
 
Logarithms, Exponential and Growth Mathematics, Production 
functions, Differential and Total derivatives, Matrix Algebra, Input-
Output Analysis, Comparative Statistics, Linear Programming, Dual 
Programming and Games Theory. 
 
COURSE AIM 
 
The aim of the course is to bring to your cognisance the Introduction to 
Mathematical Economics as mentioned in the course content to enable 
you solve  financial problems and calculations. 
 
COURSE OBJECTIVES 
 
At the end of the course material, among other objectives, you should be 
able to: 
 
• explain the concept of Logarithms, Exponential and Growth 

Mathematics 
• contextualise the use of Production functions, Differential and 

Total derivatives, Matrix Algebra to handle financial problems 
• discuss the introduction and insight to Comparative Statistics, 

Linear Programming, Dual Programming and Games Theory.  
 
COURSE MATERIALS 
 
The course material package is composed of: 
 
• The Course Guide 
•  Study Units 
• Assignment File 
• Tutor-Marked Assignments 
• Textbooks and References 
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STUDY UNITS 
 
There are 6 modules broken into 7 study units as listed below: 
 
Module 1 
 
Unit 1  Indices, Exponential Equations and Logarithms 
 
Module 2 
 
Unit 1  Growth Mathematics 
 
Module 3 
 
Unit 1  Matrix Algebra and Vector 
 
Module 4 
 
Unit 1  Comparative Statics and the Concept of Derivative 
Unit 2  Application to Comparative Static Analysis 
 
Module 5 
 
Unit 1  Games Theory 
 
Module 6 
 
Unit 1  Linear Programming 
 
Each unit of the course has a self-assessment exercise. You will be 
expected to attempt them as this will enable you learn the facts about the 
unit. 
 
TUTOR-MARKED ASSIGNMENTS (TMAs) 
 
The tutor-marked assignments (TMAs) at the end of each unit are 
designed to test your knowledge and application of the concepts learned. 
Besides the preparatory TMAs in the course material to test what has 
been learnt, it is important that you know that at the end of the course, 
you must have done your examinable TMAs as they fall due, which are 
marked electronically. They make up to 30% of the total score for the 
course. 
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SUMMARY 
 
Financial Mathematics can be compared to a cathedral. We wish to visit 
a small part of this cathedral of human ideas of quantities and space. We 
wish to learn how financial mathematics can be built. Financial 
Mathematics spans a very wide spectrum, from the simple arithmetic 
operations a pupil learns in primary school to the sophisticated and 
difficult research which only a specialist can understand after years of 
long and hard postgraduate study. We place ourselves somewhere higher 
up in the lower half of this spectrum. This can also be roughly described 
as where University mathematics starts. In natural sciences, the criterion 
of validity of a theory is experiment and practice. 
 
Financial mathematics is very different. Experiment and practice are 
insufficient for establishing mathematical truths. Mathematics is 
deductive; the only means of ascertaining the validity of a statement is 
logic. However, the chain of logical arguments cannot be extended 
indefinitely: inevitably there comes a point where we have to accept 
some basic propositions without proofs.  
 
The era which huge and complex calculations take eternity to arrive has 
passed and technology has made so many things easy for us. 
 
Many aspects of business and accounting say depreciation, loans, 
interest calculations, investment appraisals, have as their basis some 
relatively simple formula. Our goal is to be able to answer such typical 
questions like: A firm rents its premises and the rent agreement provided 
for a regular annual increase of N2, 550. If the rent in the first year is 
N9, 500, what is the rent in the tenth year? A building cost N500, 000 
and it depreciate at 10% per annum on the reducing balance method. 
What will its written down value be after 25 years? If N1, 000 is 
invested at 18% interest compounded semi-annual, what will be its 
worth in 5 years? How long does it take an investment to double at an 
interest rate of 8%? If I buy a N200, 000 house, put N40, 000 down, and 
obtain a 30 year mortgage for the balance at a 9% annual interest rate, 
what will be my monthly repayment?                                                     
 
Good luck in your studies! 
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MODULE 1  
 
Unit 1  Indices, Exponential Equations and Logarithms 
 
 
UNIT 1     INDICES, EXPONENTIAL EQUATIONS AND  
  LOGARITHMS  
 
CONTENTS  
 
1.0  Introduction  
2.0  Objectives  
3.0  Main Content  
       3.1 Indices  
       3.2  Exponential Equations  
       3.3  Logarithms  
       3.4 Rules of Logarithm  
       3.5  Logarithm Equations  
4.0  Conclusion  
5.0      Summary 
6.0  Tutor-Marked Assignment  
7.0  Reference/Further Reading  
 
1.0 INTRODUCTION 
 
The prime factor of 64 is 2, meaning that of all the factors of 64 (i.e 1, 2, 
4, 8, 16, 32, 64) only 2 is a prime number. Hence we can express 64 as 2 
× 2 × 2 × 2 × 2 × 2. This expression can be written in a shorter form as 
26.  
 
Therefore, 64 = 2 × 2 × 2 × 2 × 2 × 2 = 26 . Here, we have written 64 in 
index form (i.e. 26 )  
 
In this case 2 is referred to as the base while 6 is called the index or 
power or degree or exponent.  
 
For example, 100,000 can be written in index form as 105 where 10 is 
the base and 5 is the index.  
 
There are some rules that guides indices and these rules are sometimes 
referred to as laws or properties. (In fact these rules or laws are simply 
definitions).  
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2.0 OBJECTIVES 
 
At the end of this unit, you should be able to:  
 
• identify the laws of indices 
• solve problems relating to indices 
• explain related problems on logarithms.  
 
3.0 MAIN CONTENT 
 
3.1 Indices 
 
Laws of Indices  
 
Six laws of indices will  be considered.  
 
Law I:  
 

am× an = am+n 

 
The interpretation of this law is that whenever you are multiplying two 
or more numbers written in index form and having common base then, 
you add their powers as indicated above.  
 
Example 1:  
Simply the following 
 
     (a)  2a 2× 3a 2       (b)  4b3× 7b−6       (c)  105× 102 

 

Solution: 
 
(a) 2a 2× 3a 2 

 

We can re-write this expression as  
(2 × a 2 ) × (3 × a 2 ) 

=2×a2×3×a2  

=2×3×a2×a2  

=6×a2×a2 

= 6×a2+2 Here we have applied the rule 
=6×a12 = 6a 2 = 6a3 

 

(b)  4b3×7b−6 

 

= (4 × b3) × (7 × b−6) 
=4×7×b3×b−6 

= 28 × (b3× b−6) 
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= 28 × (b3+(−6))   i.e  applying  the  rule 
 

= 28 × (b−3) 
= 28b−3 

(c)  105× 102 = 105+2 = 107  

Note: 
105× 102 = (10 × 10 × 10 × 10 × 10) × (10 × 10)  
 = 10 × 10 × 10 × 10 × 10 × 10 × 10 = 107 

 

Law II:  
 

am÷ an = am−n 

 

The interpretation of these laws is that whenever you are to divide two 
numbers written in index form where their base(s) are equal, what you 
do is to subtract their powers from each other as demonstrated in the 
above definition.  
 
Example 2:  
Simply the following 
 
(a) x−2y3z−4 ÷ x3y−3z4            (b) 2−3÷ 24                 (c) 125 ×54 ÷ 55 

 

Solution: 
 
(a)  x−2y3z−4 ÷ x3y−3z4 

 

= (x−2y3z−4) ÷ (x3y−3z4) 
= (x−2× y3× z−4) ÷ (x3× y−3× z4)  

= (x−2÷ x3) × (y3÷ y−3) × (z−4× z4) 
= x−2−3× y3−(−3)× z−4−4 

= x−5× y3+3× z−8 

= x−5× y6× z−8 = x−5y6z−8 

 

(b) 2−3÷ 24 

 

= 2−3−4 
= 2−7 

 
 
 (c) 125 ×54 ÷ 55 

 

Note:  125 = 53(index form)  
Hence 125 × 54÷ 55  

 = 53× 54÷ 55 

= (53+4) ÷ 55  
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= 57÷ 55 

57−5 

= 52 = 25 
 
Note: 
 

57÷ 55 

 

=55 

5×5×5×5×5×5×5  
 5×5×5×5×5 

=5×5=52 =25 
 
Law III:  
 

(am)n = am×n 

This rule states that, if an index number is raised to a power, then, we 
multiply the two powers as defined above.  
 
Example 3:  
 
Simplify the following.  
(a) (103)2 (b) (10x)2 (c) 32x (d) 163/4 (e) ( 8 27 )3 

 

Solution:  
(a)  (103)2 =103×2 = 106 

 

Alternatively,  
 

(103)2 = 103× 103 = 103+3 = 106 

or (103)2 = (10 × 10 × 10) × (10 × 10 × 10) = 10 × 10 × 10 × 10 × 10 × 
10  

 = 106 

 
(b)    (10x)2 = 10x×2  

    = 102x = (102)x  

         = 100x 
 
(c)    32x = (25)x  

    = 25×x = 25x  

                                                        = (2x)5 
 

(d)      163/4    

= (24) ¾  

= 24× ¾ 

=212/4 = 23= 8 
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Law IV: 
 

 
This law indicates that any number raised to the power of zero will give:
 
 e.g. 100 = 1, 20 = 1, 30 = 1, 70 
 
Hence 100 = 20 = 30 = 70 = 1.How? 
Consider 102÷ 102 = 102−2 = 10
 

 
Example 4:  
Simplify 31−n× 3n−1  

 

Solution:  

Law V:  
 

 

      MODULE 1 

 

a0 = 1 

This law indicates that any number raised to the power of zero will give: 

 = 1. 

= 1.How?  
= 100 = 1 Now, 102÷ 102  

 

31−n× 3n−1  

= 31−n+n−1  
= 30 = 1 
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This law relates to a situation whereby the index/power is negative. 
Changing the index to positive, then, we have the inverse of the index 
number (but with positive index) as written above. e.g 
 

Example 5:  
 
Simplify the following (a)
Solution:  
 
(a) 32−1/5× 81−1/4

 (b) (8a−6)−1/3 

 

Law VI: 
 

This rule talk about a fractional power, that is where the index/power is 

     INTRODUCTION TO MATHEMATICAL ECONOMICS 

This law relates to a situation whereby the index/power is negative. 
Changing the index to positive, then, we have the inverse of the index 
number (but with positive index) as written above. e.g  

 
 

Simplify the following (a) 32−1/5× 81−1/4 (b) (8a−6 )−1/3 

1/4 

 

 

 

am/n = ( n√a)m 

This rule talk about a fractional power, that is where the index/power is 

INTRODUCTION TO MATHEMATICAL ECONOMICS  

This law relates to a situation whereby the index/power is negative. 
Changing the index to positive, then, we have the inverse of the index 

This rule talk about a fractional power, that is where the index/power is 
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a quotient say m/n (i.e a m/n).  In this case, we find the n
raised the result to power m and then evaluate.
 
Example 6:  
Simplify 8 3  

 
Solution: 

83 = (3√8)2 (i.e.
 

Note:  
In most cases we can also apply rule III in solving problems involving 
rule VI if the base can be written in index form. 
e.g. 8 3 = (23) 3) = 23× 3 = 2 3 = 
 
 

 
Example 7:  
Simplify 4a3b × (3ab)−2  

 

Solution:  
 
4a3b × (3ab) −2  
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).  In this case, we find the nth root of "a," 
raised the result to power m and then evaluate. 

. finding the cube root of 8)  
 = 22 = 4 

In most cases we can also apply rule III in solving problems involving 
rule VI if the base can be written in index form.  

 22 = 4  
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Example 8:  

  

Example 9: 
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Example 10:  
 

Example 11: 
 

 

 
Example 12: 
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Writing 81 in index form (i.e 9

 
Now all the terms in the expression has the power of
expression becomes

Alternative method:
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Writing 81 in index form (i.e 92) then the expression becomes

 

Now all the terms in the expression has the power of 13

becomes 

 
method: 
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13 hence, the 
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Example 14: 

Solution: 
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3.2  Exponential Equations
 
Introduction 

Equations such as  
are examples of 
and right hand side of the equation must be written in the index form 
(with outright simplification and conformity).  If the two sides of the 
equation are of the same base then 
powers of both sides are the
base, then their bases will also be equal. It 
exponential function can NEVER be negative. 
 
Example 18:  
 
If  

     INTRODUCTION TO MATHEMATICAL ECONOMICS 

Exponential Equations 

Equations such as  
are examples of exponential equations. To solve such equation the left 
and right hand side of the equation must be written in the index form 
(with outright simplification and conformity).  If the two sides of the 

tion are of the same base then their powers will be same and if the 
powers of both sides are the same and both have single expression as the 

r bases will also be equal. It should be noted that an 
exponential function can NEVER be negative.  
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 e.t.c 
To solve such equation the left 

and right hand side of the equation must be written in the index form 
(with outright simplification and conformity).  If the two sides of the 

their powers will be same and if the 
have single expression as the 

should be noted that an 
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If  

Also If 

Similarly, If   

Example 19:  
Solve the equation 3x = 81  
 
Solution:  

 
Example 20: 

Solve the equation 9x =  
 
Solution: 

Example 21:  
 
Solve the equation 125x−1 = 25
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= 252x−3  
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Solution:  

 
Therefore, 

 
Example 22:  
 
Solve the simultaneous equation 2
 
Solution:  

Also  

Therefore, 

 
Now, solve the equations (1)
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imultaneous equation 2x+y = 8, 32x−y = 27  

 

 

 

solve the equations (1) and equation (2) simultaneously to get 
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simultaneously to get  
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By adding equations (1) and (2) to get 
 

Substitute x = 2 in either equation (1) or (2) 
Now using equation (1) i.e.  
 

Hence x=2, y=1  
 
Example 23:  
 
Solve the equation 22x− 5(2x) = 4
 
Solution:  

 
then, the equation becomes a
quadratic equation. Now, solving this equation by factoriz
through groupings, we have  
 

 
 
 

      MODULE 1 

(2) to get  

 
 

Substitute x = 2 in either equation (1) or (2)  

 

) = 4 = 0 

 

then, the equation becomes a2− 5a + 4 = 0 which has turned to a 
olving this equation by factorization method 

 



FMT 204  

but 2x = a,  

 
Hence x=0, or x=2 
 
Example 24:  
Solve the equation
 
Solution:  
 
 

 
then, the equation  becomes 
 

 
multiplying  through by b, we have
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Hence x=0, or x=2  

Solve the equation 3x + 31−x = 4  

 

then, the equation  becomes  

 

through by b, we have 
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but b = 3x 

if b=1,  

 

 
Hence x=0, or x=1  
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Example 26:  
 

 

Now take log of both sides to base 10
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Now take log of both sides to base 10 
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Example 27: 
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FMT 204  

Example 28:  
 
Given that (3x+1)(5
Solution: 
 

 
Example 29:  
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)(5x) = 675 find x 
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3.3 Logarithms 
 
You will be familiar with the use of logarithms for multiplication and 
division, but there are certain properties of log
in more advanced work.  Having just considered in
appropriate place to discuss logarithms
written or expressed in index form. 
 
Hence, the logarithm of a number (say k) to a particular base (say x)
the power (say t) to which that particular number (x) must be raised to 
give the number (k)  
 

  
 
Note:  
1.  The logarithm of w to base x is written as 
2.   Whenever the base of a logarithm is 
 we assumed it is in base 10. 
 

 
Example 32:  
Find the value of the following:
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You will be familiar with the use of logarithms for multiplication and  
division, but there are certain properties of logarithm that are very useful 

more advanced work.  Having just considered indices, this is the 
place to discuss logarithms because logarithm can also be 

in index form.  

Hence, the logarithm of a number (say k) to a particular base (say x) is 
the power (say t) to which that particular number (x) must be raised to 

m of w to base x is written as logx w.  
Whenever the base of a logarithm is not indicated, in most cases, 

med it is in base 10.  

 

following: 
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3.4  Rules of Logarithms
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Rules of Logarithms 
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Example 34: 
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3.5  Logarithmic Equations
 

 

 

 

 

 

 
Now, by factori
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Logarithmic Equations 

 

 

 

 

 

 

 

Now, by factorization using grouping method, we have 
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4.0  CONCLUSION 
 
The students can identify the laws of indices and 
as apply it to problems. 
 
5.0     SUMMARY 
 
This unit highlighted the six laws of indices
how they can be used to resolve mathematical problems.
 
6.0  TUTOR-MARKED ASSIGNMENT
 

 
7.0 REFERENCE/FURTHER READING
            
Sogunro, S.O. (1999). Basic Business Mathematics

Mathematics. Lagos: University of Lagos Press.
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The students can identify the laws of indices and logarithms as well 

This unit highlighted the six laws of indices and logarithms, and 
how they can be used to resolve mathematical problems. 

MARKED ASSIGNMENT 

 

/FURTHER READING 

Basic Business Mathematics Elementary 
s. Lagos: University of Lagos Press. 
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MODULE 2 
 
Unit 1  Growth Mathematics 
 
 
UNIT 1  GROWTH MATHEMATICS  
 
CONTENTS  
 
1.0  Introduction  
2.0  Objectives  
3.0  Main Content  

3.1 Series 
3.1.1 Arithmetic Progression 
3.1.2 Sum of Arithmetic Progression 

3.2 Geometric Progression 
3.2.1 Sum of Geometric Progression 

3.3 Simple and Compound Interest 
3.4 Discounting 
3.5 Discounting a Series 
3.6 Bank Discount 
3.7 Compound Interest with Growing Annual Investment 
3.8 Annuities 
3.9 Present Value of an Annuity 
3.10 Amortisation and Sinking Funds 
3.11 Sinking Funds 
3.12 Percentages 

3.12.1  Percentage Gain or Loss 
3.13 Proportion 

4.0  Conclusion  
5.0      Summary 
6.0  Tutor-Marked Assignment  
7.0  Reference/Further Reading  
 
1.0 INTRODUCTION 
 
Many aspects of business and accounting say depreciation, loans, 
interest calculations, investment appraisals, have as their basis some 
relatively simple formula. Our goal is to be able to answer such typical 
questions like:  
 
1. A firm rents its premises and the rent agreement provided for a 

regular annual increase of N2, 550.  If the rent in the first year is 
N9, 500, what is the rent in the tenth year?  

 
2. A building cost N500, 000 and it depreciate at 10% per annum on 
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the reducing balance method. What will its written down value be 
after 25 years?  

 
3. If N1, 000 is invested at 18% interest compounded semi-annual, 

what will be its worth in 5 years?  
 

4. How long does it take an investment to double at an interest rate 
8%?  

 
5. If I buy a N200, 000 house, put N40, 000 down, down, and obtain 

a 30 years mortgage for the balance at a 9% annual interest rate, 
what be my monthly payment?  

 
2.0 OBJECTIVES 
 
At the end of this unit, you should be able to: 
 
• determine simple and compound interest  
• undertake discount and commission  
• explain the principle of annuity 
• state how to calculate percentage and proportion. 
 
3.0 MAIN CONTENT 
 
3.1 Series 
 
In many financial calculations is the concept of allocating or paying out 
receiving money at some regular interval (i.e. weekly, monthly, every 
three months or quarterly, every four months and even annually).  
Typical examples are depreciation calculations, investing funds, loan 
repayment and cash flow analysis. We represent these situations by 
series of which the two most common types are arithmetic and 
geometric progressions.  
 
3.1.1 Arithmetic Progression 
 
This is also called.  This is a series of quantities where each new value is 
obtained by adding a constant amount to the previous value.  The 
constant amount is sometimes called the common difference.  
 
An arithmetic progression is of the form:  
a, a + d, a + 2d, a + 3d, ,a+(n−1)d 
where a is the first term  
d is the common difference  
n is the number of terms in the series.  
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Example 1:  
 
Mr Jacob buys equipment for N32, 500 which is expected to last for 20 
years and to have a scrap of N7, 500.  If it depreciates on the straight 
line method, how much would be provided for in each year? 
 
In this problem, number of terms in the series is one more than the 
number of years because the cost is the value at the beginning of the first 
year and the scrap value is at the end of the year. 
 
Solution:  
 

Ln = a + (n 

 

The straight line depreciation is N1250 per annum.
 
3.1.2 Sum of Arithmetic Progression
 
To find the sum of arithmetric 
successive terms and sum them up. So we have the formula as 
Sn =n2 (2a + (n − 1
progression 
 
Example 2: 
 
An employee, who received fixed annual increment, had a final salary of 
N90, 000 per annual after 10 years, if total salary was N650, 000 over 
10years, what was his initial 
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Mr Jacob buys equipment for N32, 500 which is expected to last for 20 
years and to have a scrap of N7, 500.  If it depreciates on the straight 
line method, how much would be provided for in each year? 

In this problem, number of terms in the series is one more than the 
number of years because the cost is the value at the beginning of the first 
year and the scrap value is at the end of the year.  

= a + (n − 1)d, is the nth  term of the progression
 n=21,a=32,500,Ln =7,500 

7, 500 = 32, 500 + (21 − 1)d  
7, 500 = 32, 500 + (20)d 

The straight line depreciation is N1250 per annum.

Sum of Arithmetic Progression 

To find the sum of arithmetric progression is to evaluate each of the 
successive terms and sum them up. So we have the formula as 

− 1) d) where Sn is the sum of arithmetric 

An employee, who received fixed annual increment, had a final salary of 
per annual after 10 years, if total salary was N650, 000 over 

what was his initial salary? 

 

INTRODUCTION TO MATHEMATICAL ECONOMICS  

Mr Jacob buys equipment for N32, 500 which is expected to last for 20 
years and to have a scrap of N7, 500.  If it depreciates on the straight 
line method, how much would be provided for in each year?  

In this problem, number of terms in the series is one more than the 
number of years because the cost is the value at the beginning of the first 

progression.  

The straight line depreciation is N1250 per annum. 

is to evaluate each of the 
successive terms and sum them up. So we have the formula as  

the sum of arithmetric 

An employee, who received fixed annual increment, had a final salary of 
per annual after 10 years, if total salary was N650, 000 over 
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Solution:  
Note that Sn = S10 = N 650, 000, a =? and d= ? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.2 Geometric Progression
 
A series of quantities where each value is o
previous value by a constant value known as common ratio called a 
geometric progression or exponential
progression is of the form 
  
a, ar, ar2, ar3, ar4, arn−1 

where a is the first term.  
r is the common ratio  
n is the number of terms in the series 
A geometric progression has a general 
 

Example 3:  
 
A building cost N500, 000 and depreciates at 10% per annum on the 
reducing balance method. What will its value be after 25 years? 
 
Solution:  
 
a=500,000 n=26 and r=(1−d)=(1−0.10) where d is the depreciation rate 

 Value after 25 years = ar
= 500, 000(1

= 500, 000(0.90)

=N35, 894.90
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= N 650, 000, a =? and d= ?  

Geometric Progression 

A series of quantities where each value is obtained by multiplying the 
vious value by a constant value known as common ratio called a 

exponential progression.  A geometric 

n is the number of terms in the series  
A geometric progression has a general formula given as arn−1  

A building cost N500, 000 and depreciates at 10% per annum on the 
reducing balance method. What will its value be after 25 years?  

−d)=(1−0.10) where d is the depreciation rate  
Value after 25 years = arn−1 

= 500, 000(1− 0.10)26−1 

= 500, 000(0.90)25 

= 500, 000 
, 894.90 approximately 
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3.2.1 Sum of Geometric Progression
 
In a similar way as in arithmetic progress
progression could be evaluate and added together with a final simple 
formula as: 
 

 
 
 
Example 4: 
 
A company sets up a sinking fund and invests N20, 000 each year for 25 
years at 9% compound interest. What will the fund be worth after 5 
years? 
  
Note:  
Solution:  
From above questions, it can be inferred that 
end of the each year and so last allocation earns no interest, we have the 
whole series set up as
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Sum of Geometric Progression 

In a similar way as in arithmetic progression, the terms of geometric 
gression could be evaluate and added together with a final simple 

 

A company sets up a sinking fund and invests N20, 000 each year for 25 
years at 9% compound interest. What will the fund be worth after 5 

From above questions, it can be inferred that N20, 000 is invested at the 
end of the each year and so last allocation earns no interest, we have the 
whole series set up as 

INTRODUCTION TO MATHEMATICAL ECONOMICS  

ion, the terms of geometric 
gression could be evaluate and added together with a final simple 

A company sets up a sinking fund and invests N20, 000 each year for 25 
years at 9% compound interest. What will the fund be worth after 5 

N20, 000 is invested at the 
end of the each year and so last allocation earns no interest, we have the 
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3.3 Simple and Compound Interest
 
The concept of simple interest has to do with the problems involving the 
basic concepts of progressions just discussed. Common 
following terminology:  
 
P is the sum at the present time or principal 
S is the sum arising in the future 
T is the number of the interest hearing period usually, but not 
exclusively, expressed in years 
I is the total amount of interest. 
 
Suppose p (naira) called the principal are invested in an enterprise 
(which may be a bank bond or a common stock) with an annual interest 
rate of r, simple interest is the amount earned on the p naira over a 
period of time.  
 
Hence if P naira are invested 
given by I=Prt  
 
In other words, the process whereby interest only accrues on the 
principal is known as simple interest.  In this case the interest is not re 
interest to earn more interest.  
 
S=P+I  
S=P+Prt  
S=P(1+rt) which is the total amount at the end of transaction 
 
Example 5:  
How much will N15, 000 amount to at 10% simple interest over 20 
years?  
 
Solution:  

The second method of paying interest is the compound interest method. 
Here the interest for each of time period is added to the principal before 
interest is computed for the next time period. 
 

      MODULE 2 

Simple and Compound Interest 

The concept of simple interest has to do with the problems involving the 
concepts of progressions just discussed. Common practice uses the 

sum at the present time or principal  
is the sum arising in the future  
is the number of the interest hearing period usually, but not 

ssed in years  
I is the total amount of interest.  

Suppose p (naira) called the principal are invested in an enterprise 
(which may be a bank bond or a common stock) with an annual interest 
rate of r, simple interest is the amount earned on the p naira over a 

Hence if P naira are invested for n years, then the simple interest I is 

In other words, the process whereby interest only accrues on the 
principal is known as simple interest.  In this case the interest is not re 

 

+rt) which is the total amount at the end of transaction  

How much will N15, 000 amount to at 10% simple interest over 20 

 

 
 

The second method of paying interest is the compound interest method. 
Here the interest for each of time period is added to the principal before 
interest is computed for the next time period.  
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This method applies whenever the period interest payment are n
withdrawn compound interest is the interest paid on the interest 
previously earned as well as on the original investment. In this case 
interest is reinvested to earn more 
annually then, suppose P naira are invested
rp naira and original invested is now worth 
 
P +rP =P(1+r) 
P (1 + r) + rP (1 + r) = P (1 + r)
P (1 + r)2 + rP (1 + r)
If it continues for say n years 
S =P(1+r)n where S denotes the amount of the investment after n year 
with an interest rate of r. 
 
Example 6:  
What is the value after 20 years of a N5, 0000 invested earning 10% 
interest compounded annually 
 
Solution:  
We have p=5, 000, r=0.10 and n=20 
S =P(1+r)n S =5,000(1+0.10)
S =5,000(1.10)20 

S =5,000(6.7275
 
Example 7:  
What compound rate of interest will be required to produce N5, 000 
after 5 years which an investment of N4, 000? 
                         
Solution:  
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This method applies whenever the period interest payment are n
withdrawn compound interest is the interest paid on the interest 
previously earned as well as on the original investment. In this case 
interest is reinvested to earn more interest. If that interest is paid 
annually then, suppose P naira are invested the interest after one year is 
rp naira and original invested is now worth  

 after first year. 
P (1 + r) + rP (1 + r) = P (1 + r)2 after second year. 

+ rP (1 + r)2 = P (1 + r)3 after third year. 
If it continues for say n years  

where S denotes the amount of the investment after n year 
with an interest rate of r.  

What is the value after 20 years of a N5, 0000 invested earning 10% 
interest compounded annually  

We have p=5, 000, r=0.10 and n=20  
S =5,000(1+0.10)20  

20  

S =5,000(6.7275) = N 33.637.50 approximately  

What compound rate of interest will be required to produce N5, 000 
after 5 years which an investment of N4, 000?  

 

INTRODUCTION TO MATHEMATICAL ECONOMICS  

This method applies whenever the period interest payment are not 
withdrawn compound interest is the interest paid on the interest 
previously earned as well as on the original investment. In this case 

If that interest is paid 
interest after one year is 

where S denotes the amount of the investment after n year 

What is the value after 20 years of a N5, 0000 invested earning 10% 

What compound rate of interest will be required to produce N5, 000 
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3.4 Discounting 
 
The basic compounding principle of S
making P ( the principal invested ) the subject. It will be apparent that 
there are occasions when the future 
to calculate the present value (P). The formula can be put as 
 

 
which is restated in term of discounting to a present value. 
 
Note :  
This formula is the basis of all discounting method and is particularly 
useful as the basis of discounting cash flow techniques. 
 
In practice interest is compounded more frequently than annually. If its 

paid k times a year, then interest is
periods. 
we apply 
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The basic compounding principle of Sn  = P (1 + r)n  may be used in 
making P ( the principal invested ) the subject. It will be apparent that 
there are occasions when the future values are known and it’s required 
to calculate the present value (P). The formula can be put as  

 

which is restated in term of discounting to a present value.  

This formula is the basis of all discounting method and is particularly 
useful as the basis of discounting cash flow techniques.  

In practice interest is compounded more frequently than annually. If its 

paid k times a year, then interest is and in n years, there are nk 
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The value P is known as the present value of an investment worth S for 
nk periods at interest rate of r% compounded k times a years. 
 
 
Example 8:  
If interest is compounded qua
(i)   How long will it take an investment to 
(ii)   How much will have to be invested now to produce N20, with a 

10% compound interest rate?
 
 

 

     INTRODUCTION TO MATHEMATICAL ECONOMICS 

The value P is known as the present value of an investment worth S for 
nk periods at interest rate of r% compounded k times a years. 

If interest is compounded quarterly at 6%?  
How long will it take an investment to double? 
How much will have to be invested now to produce N20, with a 
10% compound interest rate? 

INTRODUCTION TO MATHEMATICAL ECONOMICS  

 

The value P is known as the present value of an investment worth S for 
nk periods at interest rate of r% compounded k times a years.  

How much will have to be invested now to produce N20, with a 
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3.5 Discounting a Series
 
There are many problems dealing with discounting one value and may 
need to do with involvement of a whole series of cash flows required to 
be discounted to a present value. In such a case the formula 
 

 
A i represents the cash flow arisin
1,2, 3 ,4........ n 
 
Example 9:  
 
What is the present value of receiving
N3,000 in 2 years time and N4, 500 in 3 years time when the discount 
rate is 10%.  
 
Solution:  
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Discounting a Series 

There are many problems dealing with discounting one value and may 
need to do with involvement of a whole series of cash flows required to 
be discounted to a present value. In such a case the formula  

 

the cash flow arising at the end of year 1, 2, 3 ,4.......n i.e. 

What is the present value of receiving N1,500 in one year’s times 
in 2 years time and N4, 500 in 3 years time when the discount 
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3.6 Bank Discount
 
The charge of interest on a loan is not calculated on amount borrowed 
but the balance of amount to be repaid later. 
 
A charge for a loan computed in this manner is called the 
Discount. The amount the borrower receives is called the 
loan, and   is the amount received now. 
 
P=S(1-dt)where NS is the future amount t
receives NP( proceed is P)rate of interest is d , where d is the bank 
discount rate and the period is t years. 
 
3.7 Compound Interest with 
  
 
Suppose a sum of NP is invested at the beginning of the year and each 
subsequent year, an additional sum of Na is a
no withdrawals are made and the whole sum invested is allowed to 
accumulate at a 
years is given by
 

 
Example 10: 
 
(i)    Find the proceeds for a N4, 000 two year loan from a bank, if the 
 discount rate is 10% 
(ii)   Ade invested N15, 000 at the beginning of 1990, it remains 
 invested and on first January each subsequent year, another N500 
 is added is. 
 interest is compounded annually at the rate of 5% per annum. 
 
Solution:  
(i) P=S(1-dt), where S=4, 000, d=0.10 
P=4,000(0.8)  
(ii) P=N15, 000, a=N500, d=5% =0.10 t=9years
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Bank Discount 

The charge of interest on a loan is not calculated on amount borrowed 
but the balance of amount to be repaid later.  

A charge for a loan computed in this manner is called the 
. The amount the borrower receives is called the proceeds

loan, and   is the amount received now.  

dt)where NS is the future amount to be paid back and borrower 
ceives NP( proceed is P)rate of interest is d , where d is the bank 

discount rate and the period is t years.  

Compound Interest with Growing Annual Investment

Suppose a sum of NP is invested at the beginning of the year and each 
sequent year, an additional sum of Na is added to the investment.  If 
withdrawals are made and the whole sum invested is allowed to 

accumulate at a compound interest rate r, then the balance B(t) after t
years is given by 

 

Find the proceeds for a N4, 000 two year loan from a bank, if the 
discount rate is 10%  
Ade invested N15, 000 at the beginning of 1990, it remains 
invested and on first January each subsequent year, another N500 
is added is. What sum will be available to Ade 31
interest is compounded annually at the rate of 5% per annum. 

dt), where S=4, 000, d=0.10 and t=2, dt=0.2, 

(ii) P=N15, 000, a=N500, d=5% =0.10 t=9years 

INTRODUCTION TO MATHEMATICAL ECONOMICS  

The charge of interest on a loan is not calculated on amount borrowed 

A charge for a loan computed in this manner is called the Bank 
proceeds of a 

o be paid back and borrower 
ceives NP( proceed is P)rate of interest is d , where d is the bank 

rowing Annual Investment 

Suppose a sum of NP is invested at the beginning of the year and each 
dded to the investment.  If 

withdrawals are made and the whole sum invested is allowed to 
compound interest rate r, then the balance B(t) after t 

Find the proceeds for a N4, 000 two year loan from a bank, if the 

Ade invested N15, 000 at the beginning of 1990, it remains 
invested and on first January each subsequent year, another N500 

What sum will be available to Ade 31st 1998 if 
interest is compounded annually at the rate of 5% per annum.  

and t=2, dt=0.2, 1-0.2=0.8 
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3.8 Annuities 
 
An annuity is a sequence of fixed equal payments (or receipts) made 
over uniform interval, and some common examples of annuities are: 
Weekly or monthly salaries, 
mortgage payment and hire purchase payment. Annuities are
areas of business and commerce. Loans are normal repaid with an 
annuity investment funds are 
(for example, asset replacement) by 
perpetual annuities can be purchased with (single) lump sum payment to 
enhance pensions.  
 
Types of Annuity:  
a.  Annuities may be paid  
i. at the end of payment intervals (ordinary annuity) 
ii. at the beginning of payment intervals (a due annuity) 
b.   The terms of an annuity may 
i. beginning and end of fixed dates (ascertain annuity ) 
ii. depend on some event that cannot 
 
c.  A perpetual annuity is one that carries on
 Calculations involving annuity are: 
i. Accrued amount (compound interest ) A = P (1 + i)
ii. Sum of the first a term of a geometrical progression 
 

 
Example 11:  
Suppose N1, 000 is invested in a saving plan a
8% interest is paid compound 
after 5 years?  
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is a sequence of fixed equal payments (or receipts) made 
over uniform interval, and some common examples of annuities are:  
Weekly or monthly salaries, insurance premiums, house purchase, 

payment and hire purchase payment. Annuities are used in all 
and commerce. Loans are normal repaid with an 

estment funds are set up to meet fixed future commitments 
et replacement) by the [payment of an annuity, 

perpetual annuities can be purchased with (single) lump sum payment to 

 
at the end of payment intervals (ordinary annuity)  
at the beginning of payment intervals (a due annuity)  
The terms of an annuity may  
beginning and end of fixed dates (ascertain annuity )  
depend on some event that cannot be fixed (a contingent annuity) 

A perpetual annuity is one that carries on indefinitely  
Calculations involving annuity are:  
Accrued amount (compound interest ) A = P (1 + i)r  
Sum of the first a term of a geometrical progression  

 

Suppose N1, 000 is invested in a saving plan at the end of each year that 
interest is paid compound annually, how much will be in the account 
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Solution:  
 

 
 

 

 
 
 
 
 
3.9 Present Value of an Annuity
 
The present value of an ordinary annuity is given by
 

where B is periodic payment of an annuity 
I is the interest rate paid each period 
n is the number of periods 
 
Example 12:  
What is the present value of an annuity that would be N4
15 years assuming an interest rate 6% compound annually?
 
 
 

     INTRODUCTION TO MATHEMATICAL ECONOMICS 

Present Value of an Annuity 

The present value of an ordinary annuity is given by 

 
where B is periodic payment of an annuity  
I is the interest rate paid each period   
n is the number of periods  

What is the present value of an annuity that would be N4, 000
15 years assuming an interest rate 6% compound annually?  

INTRODUCTION TO MATHEMATICAL ECONOMICS  

 

 

 

, 000 a year for 
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Solution: 
 

 

Here P = initial lump sum to be put in the saving account or any other 
types of investment where the interest is compounded annually at the 
rate of 6% to giving room for yearly withdrawal/payment of N4,000 for 
five years B=4,000  I=6%=0.06
 

 
it would be observed that the amount is less than N6,000 which is 
supposed to be the total withdrawals at the end of 15years. This is due to 
accumulation of interest compounding rate periodically. 
 
an−1=present the value of an ordinary annuity consisting of payment of 
N1 with interest rate High pay at the end of each period. By setting B=I 
 

Present value of an ordinary annuity with payment of N B = Ba
Note :  
 
An annuity due is an annuity in which
beginning of the time periods.  Examples of annuity due ar
saving account, rents payment, payment of an insurance pr
means that an annuity due drams interest from one more period than the 
corresponding ordinary annuity. 
 
3.10 Amortisation and Sinking Funds
 
An interest bearing debts is set to be amortised when all liabilities (both 
principal and interest) are discharged by sequence of (usually) equal 
payment made at equal interval of time. 
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Here P = initial lump sum to be put in the saving account or any other 
of investment where the interest is compounded annually at the 

giving room for yearly withdrawal/payment of N4,000 for 
B=4,000  I=6%=0.06 n=15 

 

it would be observed that the amount is less than N6,000 which is 
to be the total withdrawals at the end of 15years. This is due to 

accumulation of interest compounding rate periodically.  

=present the value of an ordinary annuity consisting of payment of 
N1 with interest rate High pay at the end of each period. By setting B=I  

 
Present value of an ordinary annuity with payment of N B = Ban−1  

An annuity due is an annuity in which payments are made at the 
the time periods.  Examples of annuity due are deposit in a 

rents payment, payment of an insurance premium. This 
ity due drams interest from one more period than the 

annuity.  

Amortisation and Sinking Funds 

An interest bearing debts is set to be amortised when all liabilities (both 
principal and interest) are discharged by sequence of (usually) equal 
payment made at equal interval of time.  
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Example 13:  
A debt of N5, 000
amortised by equal semi annual payment of R over the next three years, 
the first due is six months.  Find the payment, six payment of R from an 
ordinary annuity 
Solution:  
Rn−1=5, 000  
 

Example 14:  
Mr x buys a new car which sell for N180
car over 4 years by making 48payments, one at the rate of 12% 
compounded monthly. What will his payment? 
 
Solution:  
P=180, 000, 0.1212
payment 
 

 
3.11 Sinking Funds
 
A Sinking Fund is an account into which periodic deposits are made so 
that a fixed sum of money may be paid on the due maturity.  It is an 
ordinary annuity with fixed future value. 

     INTRODUCTION TO MATHEMATICAL ECONOMICS 

, 000 with at interest of 5% compounded is set to be 
amortised by equal semi annual payment of R over the next three years, 
the first due is six months.  Find the payment, six payment of R from an 
ordinary annuity whose present value is N5, 000 then.  

 

Mr x buys a new car which sell for N180, 000. He agrees to pay for the 
car over 4 years by making 48payments, one at the rate of 12% 
compounded monthly. What will his payment?  

0.1212 n=48, the, we are to find B which is the monthly 

Sinking Funds 

A Sinking Fund is an account into which periodic deposits are made so 
that a fixed sum of money may be paid on the due maturity.  It is an 
ordinary annuity with fixed future value.  

INTRODUCTION TO MATHEMATICAL ECONOMICS  

with at interest of 5% compounded is set to be 
amortised by equal semi annual payment of R over the next three years, 
the first due is six months.  Find the payment, six payment of R from an 

 

. He agrees to pay for the 
car over 4 years by making 48payments, one at the rate of 12% 

n=48, the, we are to find B which is the monthly 

 

A Sinking Fund is an account into which periodic deposits are made so 
that a fixed sum of money may be paid on the due maturity.  It is an 
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Where B is the regular payment for the required sinking fund to have a
future value An paid at the end of each period. 
 
Example 15:  
How much will have to be invested at the end of each year at 8% 
compounded annually to pay of N75
 
Solution:  
An = 75, 000  n=10 I=8%=0.08 
 

Example 16:  
A company set aside a sum of N18, 000 annually to enable it to pay off 
a debenture issue of N220, 000 at the end of 10years.  Assuming that the 
sum accumulates at 4% per annum compounded interest, fund the 
surplus after paying off the debenture stock. 
 
Solution:  
At the end of 10 years N1, 800 will amount to 18, 000 × (1.04)
The second sum of N18, 000 will amount to 18, 000 × (1.04)
Then total money will be 
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Where B is the regular payment for the required sinking fund to have a 
paid at the end of each period.  

How much will have to be invested at the end of each year at 8% 
compounded annually to pay of N75, 000 after 10 years?  

n=10 I=8%=0.08  

 

A company set aside a sum of N18, 000 annually to enable it to pay off 
a debenture issue of N220, 000 at the end of 10years.  Assuming that the 
sum accumulates at 4% per annum compounded interest, fund the 
surplus after paying off the debenture stock.  

At the end of 10 years N1, 800 will amount to 18, 000 × (1.04)10 

The second sum of N18, 000 will amount to 18, 000 × (1.04)9  
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The required surplus is 
 
3.12 Percentages
 
There are really kinds of ratios which are very useful in making 
comparisons. The fractions or more correctly ratios with 100 as 
denominations are known as percentages, the term meaning "per 
hundred" the denominator of such fractions is always omitted and 
numerator is called the rate percent which may written as percent (PC) 
or often %  
 
3.12.1  Percentage Gain or Loss
 

 
 
Example 17:  
 
A man bought 1000 oranges for N1040, 160 of 
sold the rest N20 a dozen. What percentage profit or loss did he 
 
Solution:  
160 oranges were bad. 
840 oranges were sold
at 1 dozen=N20 
1 orange was sold at = N then SP for 840

     INTRODUCTION TO MATHEMATICAL ECONOMICS 

The required surplus is N (224172-220, 000) =N4, 712  

Percentages 

There are really kinds of ratios which are very useful in making 
comparisons. The fractions or more correctly ratios with 100 as 
denominations are known as percentages, the term meaning "per 
hundred" the denominator of such fractions is always omitted and 
numerator is called the rate percent which may written as percent (PC) 

Percentage Gain or Loss 

A man bought 1000 oranges for N1040, 160 of them were bad, and he 
rest N20 a dozen. What percentage profit or loss did he 

160 oranges were bad.  
840 oranges were sold 

 
1 orange was sold at = N then SP for 840 

INTRODUCTION TO MATHEMATICAL ECONOMICS  

 

There are really kinds of ratios which are very useful in making 
comparisons. The fractions or more correctly ratios with 100 as 
denominations are known as percentages, the term meaning "per 
hundred" the denominator of such fractions is always omitted and 
numerator is called the rate percent which may written as percent (PC) 

 

them were bad, and he 
rest N20 a dozen. What percentage profit or loss did he make?  
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Example 18: 
A trader buy some goods all at the same price.  He sells profit of 16%, 
and has to sell the remaining 10 at a loss of percentage profit on the 
deal? 
 
Solution: 
Let the goods cost Nx each  
Total cost profit for 30 goods=N30x
20 sold at profit of 165 
Cost prices for 20 goods =N20x 
=(CP + prof it%) =(100% + 16%) 
=116% 
SP for 20=1.16 of CP 20(1.16)x=23.2x
Then 10 of them at loss of 4% CP for 10 =10x
SP for 10= CP-loss% =(100-4%)
=96%  
=0.96 

 
 
 
Example 18: 
A shopkeeper marks his goods to 45% but allow 5% discoun
By selling a purse he makes a profit of N18.875 on a cash deal.  Find 
what the shopkeeper paid for the purse. 
 
Solution:  
Marked price=45% of CP SP=Marks Price 
Let x be the cost price of the good. 
The marked pric is 45% of the cost price 
Marked price =(100+45)x100 
Marked price =145x100 = 1.45x
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ll at the same price.  He sells profit of 16%, 
and has to sell the remaining 10 at a loss of percentage profit on the 

Total cost profit for 30 goods=N30x 

Cost prices for 20 goods =N20x Selling price for 20 
=(CP + prof it%) =(100% + 16%)  

SP for 20=1.16 of CP 20(1.16)x=23.2x 
Then 10 of them at loss of 4% CP for 10 =10x 

4%) 

 

A shopkeeper marks his goods to 45% but allow 5% discount for cash.  
By selling a purse he makes a profit of N18.875 on a cash deal.  Find 
what the shopkeeper paid for the purse.  

Marked price=45% of CP SP=Marks Price  
Let x be the cost price of the good.  
The marked pric is 45% of the cost price  

100  
= 1.45x 

t for cash.  
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SP=1.45x 
Dicount of 5% mean 5% off the selling price or marked price
 

 
i.e. the shopkeeper paid N50 for the goods 
   
A common scale for a detailed map is 2cm to 5km.  
2cm on the map represents an actual horizontal distance of 5km.  The 
scale can also be
the distance on the map with actual horizontal distance. 
 
The different quantities of the same kind may always be compared in 
this way.  If one of the quantities is expressed as a fraction of the other 
quantity, this fraction is said to be the ratio of their sizes. It should be 
noted that the quantities that a ra
being a:b  

 
Example 19:  
Express a length of 8cm to a length of 3m as a ratio 
 
Solution:  

 
 
Example 20: 
Express a speed of 12km/h to a speed of 10m/s as a ratio.
 
Solution: 
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Dicount of 5% mean 5% off the selling price or marked price

 

the shopkeeper paid N50 for the goods  

A common scale for a detailed map is 2cm to 5km.  This
2cm on the map represents an actual horizontal distance of 5km.  The 

be given as 1 in 250:500 or 1:250,000, which compares 
the distance on the map with actual horizontal distance.  

The different quantities of the same kind may always be compared in 
this way.  If one of the quantities is expressed as a fraction of the other 
quantity, this fraction is said to be the ratio of their sizes. It should be 
noted that the quantities that a ration express in the form a/b is written as 

 

Express a length of 8cm to a length of 3m as a ratio  

 

Express a speed of 12km/h to a speed of 10m/s as a ratio. 

 

INTRODUCTION TO MATHEMATICAL ECONOMICS  

Dicount of 5% mean 5% off the selling price or marked price 

This means that 
2cm on the map represents an actual horizontal distance of 5km.  The 

given as 1 in 250:500 or 1:250,000, which compares 

The different quantities of the same kind may always be compared in 
this way.  If one of the quantities is expressed as a fraction of the other 
quantity, this fraction is said to be the ratio of their sizes. It should be 

tion express in the form a/b is written as 
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Example 21:   
If the price of two commodities A and B are N450 and N600 
respectively, find the ratio of Price of commodity A to B. Price of 
commodity B to A.  
 
Solution:  

 
Example 22:  
A sales agent allows the list price of
and a cash discount of 5%. What is the ratio of the cash price to the list 
price?  
 
Solution:  

 

 
Example 23:  
Find the ratio between the selling price which will give a profit of 20% 
in the cost price and the selling price which will give a profit of cost 
price is the same in both cases.

      MODULE 2 

If the price of two commodities A and B are N450 and N600 
the ratio of Price of commodity A to B. Price of 

 

price of his goods a trade discount of 20% 
and a cash discount of 5%. What is the ratio of the cash price to the list 

 

 

Find the ratio between the selling price which will give a profit of 20% 
selling price which will give a profit of cost 

price is the same in both cases. 
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Solution: 
 

 
3.13 Proportion
 
Proportion is the equality of ratios.  Suppose a given quantity of value of 
money, assets is to be shared among two or mo
ratio or proportion of sharing must be stated.  In 
proportion, the individual ratios are added together to obtain the general 
ratio.  
 
Example 24:  
Find A: B: C. Given that A:B=4:3 and A:C=4:5 
A:B=4:3  
A:C=4:5  
A:B:C=4:3:5  
 
Example 25: 
Kola, Tola and Shola share N4800. If the ratio of Kola: of Kola:Sola = 
4:5 Find the individual’s share.
 
Solution 
Kola: Tola = 4:3 
Kola:Shola = 4:5
Kola: Tola:Shola = 4:3:5 
Total ratio = 4+3+5=12
(i)Kola share= 4 

12× N 4800 = N 1600
(ii)Tola share = 3

(iii Shola share = 
Tola = 4:3 and that 
12× 
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Proportion 

Proportion is the equality of ratios.  Suppose a given quantity of value of 
money, assets is to be shared among two or more individuals, then

or proportion of sharing must be stated.  In solving problem on 
the individual ratios are added together to obtain the general 

Find A: B: C. Given that A:B=4:3 and A:C=4:5 Solution:  

Kola, Tola and Shola share N4800. If the ratio of Kola: of Kola:Sola = 
4:5 Find the individual’s share. 

Kola: Tola = 4:3  
Kola:Shola = 4:5 
Kola: Tola:Shola = 4:3:5  
Total ratio = 4+3+5=12 

 

12× N 4800 = N 1600 
312× N 4800 = N 1200  

(iii Shola share = 5  N 4800 = N 2000 
Tola = 4:3 and that  

INTRODUCTION TO MATHEMATICAL ECONOMICS  

 

 

Proportion is the equality of ratios.  Suppose a given quantity of value of  
re individuals, then the 

solving problem on 
the individual ratios are added together to obtain the general 

Kola, Tola and Shola share N4800. If the ratio of Kola: of Kola:Sola = 
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Example 26:  
If A:B: = 4 : 3 and B : C := 4 : 5 Find A:B:C  
 
Solution:  
A:B = 4 : 3  
B:C: = 4 : 5  
⇒A:B=4:3×4=16:12 ⇒B:C =4:5×3=12:15 A:B:C=16:12:15  
 
Example 27: 
Kunle, Tunde and Dele share the sum of N34, 000. If the ratio of Kunle 
of Tunde is 4:3 and that of Tunde of Dele is 4:5. Find the share of each 
of them. 
 
Solution:  
Kunle : Tunde=4:3  
Tunde : Dele=4:5  
⇒ Kunle : Tunde = 4 : 3 × 4 = 16 : 12  
⇒Tunde : Dele = 4 : 5 × 3 = 12 : 15  
Kunle : Tunde : Dele=16: 12 : 15  
Total ratio=16+ 12 + 15= 43  
(i) Kunle share=1643× N 43, 000 = N 16, 000  
(i i)Tunde share =12  
43× N 43, 000 = N 12, 000  
(iii Dele share =1543× N 43, 000 = N 15, 000  
 
Example 28:  
If A:B: = 4 : 2 and B : C := 2 : 5 Find A:B:C  
Solution:  
A:B = 4 : 2  
B:C: = 2 : 5  
⇒A:B=4:2×2=8:4  
⇒B:C =2:5×4=18:20 A:B:C= 8:4:20=2:1:5  
 
Example 29:  
If N6400 is to be shared among Wale, Tade and Ade such that the ratio 
of Wale of Tade is 4:2 and that of Wale to Ade is 2:5. Find the share of 
each one of them.  
 
Solution: 
Wale: Tunde = 4:2  
Wale: Ade = 2:5  
⇒Wale:Tade = 4 : 2 × 2 = 8 : 4  
⇒Tunde: Ade = 2 : 5 × 4 = 8 : 20  
⇒Wale:Tade : Ade = 8 : 4 : 20 = 2 : 1 : 5 Total ratio=8  
(i)Wale’s share= 28×N6400=N1600 



FMT 204       INTRODUCTION TO MATHEMATICAL ECONOMICS  

66 

(ii)Tade’s share = 18×N6400=N800 
(iii Ade’s share = 58×N6400=N4000 
 
4.0 CONCLUSION  
 
Conclusively, Students could understand simple and compound interest 
and an annuity and sinking fund as a well relationship that exist between 
them. At the end they are able to determine the percentage and 
proportion.  
 
5.0       SUMMARY 
 
This unit focused on the use of arithmetic and geometric progression to 
solve financial calculations for business and accounting purposes. 
 
6.0  TUTOR-MARKED ASSIGNMENT 
 
1.   Find in what time a sum of money trebles itself at 5 percent per 
 annum compound interest.  
 
2.  The sum of N20, 000 is borrowed at 4 percent per annum 

compound interest. Principal and interest are to be repaid in 25 
equal, annual instalments beginning one year hence. Find the 
yearly payment.  

 
3.  A sum of money was invested by Ajibola at compound interest 

amount to N21, 632 at the end of the second year and to N22, 
497.28 at end of the third year. Find the rate of interest and sum 
invested.  

 
4.   A machine costs a company N100, 000 and its effective life is 

estimated to be 20 years.  If the scrap is expected to realise 
N5000 only  find the sum to be invested every year at 5 percent 
per annum compound interest for 20 years, to replace the 
machine which is expected to cost them 25 percent more over the 
its percent cost. Assume that the sale of scrap would be utilised 
for meeting the cost of the machine.  

 
5.  (a) KAMAH (Nig) Limited decides to invest N10,000 at the 

beginning of 1992 in a fund earning 12% per annum. KMAH 
(Nig) Limited will add further N2, 500 to the fund at the 
beginning of each year, commencing in 1993. What will be the 
value of the total investment in the fund at the end of 1996?  

(b)  As an alternate form of investment the company decide to make 
equal annual instalments starting at the beginning of 12%. 
Calculate to the nearest Naira the annual investments necessary 



FMT 204     

for the fund to have the same value at the end of 1996 in (a) 
(c)  Calculate the present value of perpetual 

12% per annum first payable in one year. 
 
6. A proposal has come before the Manage

LASPOTECH for the purchas
palm oil in the school of Agricultural at Iko
results for the expected five year life of the machine are supplied 
by the coordinator of the project as follows: 
i. If the Management board cos
 annum. 
ii. Would you advise the management to invest in the 
 machine?  

 
7.   A certain project is expected to yield the returns given below over 

the next five years.  It would require an initial investment of N3, 
500.  Determine its internal rate of return.  State how would use 
this in deciding whether or not to invest in the pro

 

 
8.  An investment opportunity has the following expected cash 
 flows: The discount rate is 12%. You are required: 
 a. Calculate the payback period 
 b. Calculate the opportunity’s Internal Rate return 
 c. Calculate the opportunity’s Net Present value. 
 
9.  A gari processing industry is considering the replacement of its 

processing plant which could not cope with the present 
processing demand of gari. The company is given the choice, the 
profitability of the plants.  A discount rate of 10 percent is to 
used. Determined which of the plant to be bought, earning after 
taxation are expected to as follows:
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for the fund to have the same value at the end of 1996 in (a)  
culate the present value of perpetual annuity of N10, 000 at 

annum first payable in one year.  

sal has come before the Management Board of 
LASPOTECH for the purchase of machine for processing of 
palm oil in the school of Agricultural at Ikorodu. Anticipated 

expected five year life of the machine are supplied 
by the coordinator of the project as follows:  

If the Management board cost of capital is 12% per 

Would you advise the management to invest in the 

A certain project is expected to yield the returns given below over 
the next five years.  It would require an initial investment of N3, 
500.  Determine its internal rate of return.  State how would use 
this in deciding whether or not to invest in the project. 

 

An investment opportunity has the following expected cash 
flows: The discount rate is 12%. You are required:  
a. Calculate the payback period  
b. Calculate the opportunity’s Internal Rate return  
c. Calculate the opportunity’s Net Present value.  

A gari processing industry is considering the replacement of its 
processing plant which could not cope with the present 
processing demand of gari. The company is given the choice, the 

the plants.  A discount rate of 10 percent is to 
used. Determined which of the plant to be bought, earning after 
taxation are expected to as follows: 
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10.  The management of KAMAH (Nig.) Ltd. is considering two 

mutually exclusive pr
each one of them. The life of the asset is expected to be with 
residual value.  Net profit is expected to be as follows:

 
 

Using the discount rate of 20% determine which of the project is mor
profitable investment. 
 
7.0  REFERENCE
                               
Sogunro, S.O. (1999). 

Mathematic
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The management of KAMAH (Nig.) Ltd. is considering two 
mutually exclusive projects X and Y, investment is N10
each one of them. The life of the asset is expected to be with 
residual value.  Net profit is expected to be as follows:

 
 

Using the discount rate of 20% determine which of the project is mor
profitable investment.  
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The management of KAMAH (Nig.) Ltd. is considering two 
ojects X and Y, investment is N10, 000 on 

each one of them. The life of the asset is expected to be with 
residual value.  Net profit is expected to be as follows: 

Using the discount rate of 20% determine which of the project is more 

 Elementary 
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1.0 INTRODUCTION 
 
This unit will discuss 
elimination and solutions to simultaneous equations using Matrix 
Approach. 
 
2.0  OBJECTIVES 
 
At the end of this unit
 
• identify rows and 
• classify different types of 
• perform operation on 
• describe D
• solve simultaneous
 
3.0  MAIN CONTENT 
 
3.1 Matrix  
 
Definition  1:  
A Matrix is a triangular or rectangular or square array of objects or items 
or numbers (real, 
and columns enclosed within 
operations.  
 
A Matrix having m rows and n columns is called an "m by n " or  m× n 
and is referred to as having order m × n. 
 
Example 1: 
 

 
In the above Matrix,
elements. In the, double subscript notation, the first subscript indicates 
the row and the second subscript indicates the column in which the 
element stands.  Matrix or a Matrix of order m × n.
Suppose  

     INTRODUCTION TO MATHEMATICAL ECONOMICS 

INTRODUCTION  

This unit will discuss Matrix, types, Crammer’s rules, Gaussian 
elimination and solutions to simultaneous equations using Matrix 

OBJECTIVES  

At the end of this unit, you should be able to:  

identify rows and columns of a Matrix 
different types of Matrices 

perform operation on Matrix 
Determinant  

simultaneous equations using Matrix and Crammer’s rule.

MAIN CONTENT  

 

A Matrix is a triangular or rectangular or square array of objects or items 
or numbers (real, complex, rational, irrational, natural numbers) in rows 
and columns enclosed within brackets, subject to certain rules of 

A Matrix having m rows and n columns is called an "m by n " or  m× n 
and is referred to as having order m × n.  

Matrix, the numbers or functions aij (n = aij
elements. In the, double subscript notation, the first subscript indicates 
the row and the second subscript indicates the column in which the 
element stands.  Matrix or a Matrix of order m × n. 

INTRODUCTION TO MATHEMATICAL ECONOMICS  

Crammer’s rules, Gaussian 
elimination and solutions to simultaneous equations using Matrix 

rammer’s rule. 

A Matrix is a triangular or rectangular or square array of objects or items 
, irrational, natural numbers) in rows 

to certain rules of 

A Matrix having m rows and n columns is called an "m by n " or  m× n 

 

ij ) called its 
elements. In the, double subscript notation, the first subscript indicates 
the row and the second subscript indicates the column in which the 
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We say that B is a 2 × 2 Matrix while C is a 3 × 3 Matrix. 
 
3.2 Types of Matrix 
 
3.2.1 Square Matrix 
 
Definition 2:  
This is the type of Matrix in which the number of rows equal number of 
columns.  
 
Example 2: 

 
3.2.2 Zero Matrix 
 
Definition 3:  
 
A zero or null or Void Matrix is Matrix each whose elements is zero is 
called zero or null or Void Matrix 
 
 Example 3: 
 

3.2.3 Diagonal Matrix 
 
Definition 4:  
 
It is a square Matrix that has its diagonal elements to be non
other elements re zero.  In order words the elements a

      MODULE 3 

 
trix while C is a 3 × 3 Matrix.   

This is the type of Matrix in which the number of rows equal number of 

A zero or null or Void Matrix is Matrix each whose elements is zero is 
called zero or null or Void Matrix  

 

It is a square Matrix that has its diagonal elements to be non-zero while 
other elements re zero.  In order words the elements aij, are called diagonal 
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elements of a square matrix (a
 
Example 4:  
 

 
Is a diagonal Matrix.
It should be noted that, the diagonal elements is a diagonal matrix may 
also be zero as shown below
 

 
3.2.4  Identity Matrix 
 
Definition 5:  
A diagonal matrix whose diagonal elements are equal to 1 (unit) is called 
identity matrix or unit 
 
Example 5: 
 

 
3.3 Triangular Matrix
 
Definition 6:  
 
A triangular matrix is a square Matrix a
It is referred to as LOWER TRIANGULAR Matrix whenever i < j and 
UPPER TRIANGULAR MATRIX whenever i > j 
 

     INTRODUCTION TO MATHEMATICAL ECONOMICS 

elements of a square matrix (aij ).  

 

a diagonal Matrix. 
It should be noted that, the diagonal elements is a diagonal matrix may 

be zero as shown below: 

Identity Matrix  

atrix whose diagonal elements are equal to 1 (unit) is called 
identity matrix or unit matrix.  

Triangular Matrix  

atrix is a square Matrix aij  elements aij = 0.  
It is referred to as LOWER TRIANGULAR Matrix whenever i < j and 
UPPER TRIANGULAR MATRIX whenever i > j  
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It should be noted that, the diagonal elements is a diagonal matrix may 

 

atrix whose diagonal elements are equal to 1 (unit) is called 

 

It is referred to as LOWER TRIANGULAR Matrix whenever i < j and 
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Example 6: 
 

 
3.4 Scalar Matrix 
 
Definition 7: 
 
This is a diagonal matrix whose diagonal elements are equal.
 

 
3.5 Row Matrix 
 
Definition 8:  
It is a matrix which has exactly one row. 
 
Example 7 :  
A=(1 2 3)  
 
3.6 Column Matrix 
 
Definition 9:  
It is a matrix which has exactly one column 
 
Example 8: 
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This is a diagonal matrix whose diagonal elements are equal. 

 

It is a matrix which has exactly one row.  

It is a matrix which has exactly one column  

 

 

 



FMT 204  

3.7 Algebra of Matrices
 
3.7.1 Equality of Matrices
 
Definition 10: 
 
Two matrices A and B are said to be equal if:
(a)  Both A and B are of
(b)  Corresponding elements in both A and B are the same.
 
Example 9: 
 

 
3.7.2 Sum and Difference of Matrices
 
Definition 11:  
 
If A = (aij ) and B = (b
+B) is definition as the Matrix C = (c
sum or difference of the corresponding elements of A and B. Thus, A ± B 
= (aij± bij ) . Two
addition or subtraction. 
 
Example 10: 
Suppose  
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Algebra of Matrices 

Equality of Matrices 

Two matrices A and B are said to be equal if:  
Both A and B are of the same order. 
Corresponding elements in both A and B are the same.

Sum and Difference of Matrices 

 

) and B = (bij ) are two × Matrices, their sum or difference (A ± 
is definition as the Matrix C = (cij ), where each element of C is the 

difference of the corresponding elements of A and B. Thus, A ± B 
Two matrices of the same order are said to be conformable for 
subtraction.  

INTRODUCTION TO MATHEMATICAL ECONOMICS  

Corresponding elements in both A and B are the same. 

 

eir sum or difference (A ± 
ach element of C is the 

difference of the corresponding elements of A and B. Thus, A ± B 
be conformable for 
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Solution: 

3.7.3 Multiplication of Matrix
 
Definition 12:  
 
Scalar Multiplication:  
 
If K is any complex number and A , a given matrix then KA is the Matrix 
obtained from A by multiplying each element of A by K. The number K is 
called scalar.  
 
Example 11: 
 
If 

 
 
Example 12: 
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Multiplication of Matrix  

If K is any complex number and A , a given matrix then KA is the Matrix 
obtained from A by multiplying each element of A by K. The number K is 
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Example 13: 
 
If 

 
Find Matrix B such that A × B 
 
Solution: 
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Find Matrix B such that A × B  
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3.7.4 Multiplication of Two Matrices
 
Definition 13: 
 
 
The product of AB of two Matrices A and B is defined only when the 
number of columns of A is the same as the number of rows in B. If A and 
B were order m × n and n × p respectively,
of order n × p.  
Example 14: 
 
If  

Find (i) AB (ii)   BA 
 
 
Solution: 
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Multiplication of Two Matrices  

The product of AB of two Matrices A and B is defined only when the  
number of columns of A is the same as the number of rows in B. If A and 

respectively, then the product AB is a matrix 
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Example 15: 
 

 
Solution:  

 
 
3.8 Transpose Matrix
 
Definition  14:  
 
The transpose of a matrix is where the rows change to columns and 
column change to rows. 
 
If A = (aij )m,n  then A
 
Example 16: 
 

 
 
3.9 Symmetric Matrix
 
Definition 15:  
 
Let A be a square Matrix. If A = A
Matrix.  
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Transpose Matrix 

 

The transpose of a matrix is where the rows change to columns and 
column change to rows.  

then AT  or At = (aij ) where AT  = At =transpose of A. 

Symmetric Matrix  

 

Let A be a square Matrix. If A = AT  , then we say that A is a symmetric 

INTRODUCTION TO MATHEMATICAL ECONOMICS  

 

The transpose of a matrix is where the rows change to columns and 

=transpose of A.  

 

, then we say that A is a symmetric 
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Example 17: If 
 

 
Hence AT = A which implies that A is a symmetric Matrix. 
 
3.10 Skew Symmetric Matrix
 
Definition 16:  
 
Suppose A is a square Matrix,
Matrix if A = −AT  They are only valid for square Matrix ( i.e
and skew symmetric Matrices). 
 
 
Example 18: 
 

 

 
 
3.11 Determinant of a Matrix
 
Definition 17:  
 
 
With any square Matrix there is associated a number ∆
calculated from products of the elements of the Matrix . 
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A which implies that A is a symmetric Matrix.  

Skew Symmetric Matrix 

Suppose A is a square Matrix, then A is said to be a Skew symmetric 
They are only valid for square Matrix ( i.e. symmetric 

and skew symmetric Matrices).  

  

 

Determinant of a Matrix  

atrix there is associated a number ∆ which is 
calculated from products of the elements of the Matrix . Thus if 
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then, determinant of A is
 

 
represent determinant of A or ∆
 
Example 19:  
 
Find the determinant of Matrix A. Given that
 

 
Consider a 3 × 3 

 
Using first row to expand
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determinant of A is 

represent determinant of A or ∆.  

Find the determinant of Matrix A. Given that 

Consider a 3 × 3 Matrix  
 

 

Using first row to expand 
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Alternatively, if 

 
Note: 
The minor of the element aij  is the Matrix obtained by deleting the i
and jth  column. 
 
Example 20: The minor of the element
 

 
Example 21: 
 
Calculate the value of the determinant 
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is the Matrix obtained by deleting the ith  row 

: The minor of the element 

 

Calculate the value of the determinant of Matrix A, if 
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Using the first column to expand
 
 

 
Alternatively, if 
 

 
 
3.12 Sarru’s Rule
 
Definition 18: 
 
Sarru’s rule can be applied in getting determinant of a Matrix.
If Suppose Matrix 
 

 
then, using Sarru’s rule, we have
 

 
 
Note:
Here we have added first two columns in each row to the row now giving 
us a 3×5 matrix the map (or cross) as indicated to get. 
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Using the first column to expand 

 

Sarru’s Rule 

Sarru’s rule can be applied in getting determinant of a Matrix.
If Suppose Matrix  

 

using Sarru’s rule, we have 

 

Here we have added first two columns in each row to the row now giving 
us a 3×5 matrix the map (or cross) as indicated to get.  
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Sarru’s rule can be applied in getting determinant of a Matrix. 

Here we have added first two columns in each row to the row now giving 
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Example 22: Given that Matrix
 

Note: Sarru’s rule is the only applicable to 3 × 3 Matrix
 
3.13 Properties of Determinants
 
(1) If we add (or subtract)

another then the determinant does not change.
e.g.  
 
Let  

 
 
(3)  If we interchange two rows (or column
 determinant changed. 
 

(5)    If any two rows or two columns of a square matrix are the same, 
then  the determinant will be zero
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: Given that Matrix 

 

 
 

Sarru’s rule is the only applicable to 3 × 3 Matrix 

Properties of Determinants 

If we add (or subtract) a scalar multiple of a row or column to 
then the determinant does not change. 

If we interchange two rows (or column) then the sign of the 

 
If any two rows or two columns of a square matrix are the same, 
the determinant will be zero .e.g. if 
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(6)   The determinant of a diagonal Matrix A is equal to the product of 
its diagonal elements. 

 
(7)   The determinant of the product of two Matrices is equal to the 

product of the determinant of the two Matrices.e.g |AB| = |A|.|B| 
where A and B are two given Ma

 
3.14 Singular and Non
 
Suppose A is a square Matrix A is said to a singular Matrix if its 
determinant is equal to zero i.e
non-singular when its determinant is not equal to zero i.e
 
Example 23: Show that A is a singular Matrix given that |A| = 0.
 

 
Example 24: 
 
Given that  
 

 
where A is a Singular Matrix, determine the values of x.
 
Solution: 
Since Matrix A is singular
 

dividing both sides by x, we have  x
equation using factori
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The determinant of a diagonal Matrix A is equal to the product of 
its diagonal elements.  

The determinant of the product of two Matrices is equal to the 
product of the determinant of the two Matrices.e.g |AB| = |A|.|B| 
where A and B are two given Matrices.  

Singular and Non-Singular Matrix 

Suppose A is a square Matrix A is said to a singular Matrix if its 
determinant is equal to zero i.e. |A| = 0. Matrix A is said to be 

singular when its determinant is not equal to zero i.e. if |A| = 0. 

: Show that A is a singular Matrix given that |A| = 0.

where A is a Singular Matrix, determine the values of x. 

Since Matrix A is singular 

 
 

 
 

dividing both sides by x, we have  x2− 5x + 2 = 0 which is a quadratic 
equation using factorisation, we have:  

INTRODUCTION TO MATHEMATICAL ECONOMICS  

The determinant of a diagonal Matrix A is equal to the product of 

The determinant of the product of two Matrices is equal to the 
product of the determinant of the two Matrices.e.g |AB| = |A|.|B| 

Suppose A is a square Matrix A is said to a singular Matrix if its 
|A| = 0. Matrix A is said to be 

if |A| = 0.  

: Show that A is a singular Matrix given that |A| = 0. 

 

5x + 2 = 0 which is a quadratic 
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⇒ x2− x − 4x + 2 = 0  
⇒ x(2x − 1) − 2(2x − 1) = 0  
⇒ (x − 2)  (2x − 1) = 0  
⇒ (x − 2) = 0 or (2x − 1) = 0  
⇒x=2 or   x = 12 
 
3.15 Cofactor of a Matrix
 
Given an n-square Matrix A. i.e
 

The scalar Cij  = (−1)i+j |Mij | is called the cofactor of the element a
Matrix A, where M and  (−1)i+j

 
 
Hence the cofactor of a11 = c11
 

 
 
and the cofactor 
 

Note: cofactor is a scalar while the minor is a Matrix.
 
 
3.16 Adjoint of a Matrix  
 
The transpose of the cofactor of a Matrix is known as the adjoint of the
Matrix. 
 
Example 25: 
Given that Matrix  
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Cofactor of a Matrix  

atrix A. i.e. 

 
| is called the cofactor of the element aij of the 

i+j  are called minor and scalar respectively. 

11 = (−1)1+1 

 
cofactor is a scalar while the minor is a Matrix. 

 

of the cofactor of a Matrix is known as the adjoint of the 
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(a) Determine the cofactor of A, and hence find 
(b) Its Adjoint.  
 
 
Solution:  
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(a) Determine the cofactor of A, and hence find  
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3.17 Inverse of a Matrix 
 
(Using adjoint and determinant) 
Suppose A is a square Matrix, the inverse of A 

 
Example 26: 
Given that Matrix  

show that the inverse of Matrix A is denoted by

 
Solution: 

 

 
Example 27: 
 
Find the inverse of A, given that

      MODULE 3 

 

adjoint and determinant)  
Suppose A is a square Matrix, the inverse of A denoted A−1  is given by  

 

 
 

show that the inverse of Matrix A is denoted by 

 

 
 

 

 

Find the inverse of A, given that 
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Solution: 

 
Example 28:  
 
A and B are Matrix such that
 

 
where  b1, b2 are non
satisfies AB = KB
 
Solution: 
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A and B are Matrix such that 

 

are non-zero numbers. Determine the values of K which 
AB = KB 
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zero numbers. Determine the values of K which 
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Example 29: 
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Example 30: 
 

 
 
 
 
 
 
 

     INTRODUCTION TO MATHEMATICAL ECONOMICS 

 

INTRODUCTION TO MATHEMATICAL ECONOMICS  
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Solution: 
 

 
Example 31: 
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Example 32: 

 
Solution: 
 
Consider  
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FMT 204     

 

 

      MODULE 3 
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Example 33: 
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Example 34: 
Suppose Matrix  

 
 (i) Find the value of x for which A is a singular Matrix and (ii) Hence 
determine the Adjoint of A. 
 
Solution 
(i) If A is a singular Matrix then, |A| =
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(i) Find the value of x for which A is a singular Matrix and (ii) Hence 

(i) If A is a singular Matrix then, |A| = 0 
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3.18 Solutions to Simultaneous Equations using Matrix 
 Approach
 
Using Inverse of a Matrix 
 
The inverse of Matrix can also be use to provide solution to a 
simultaneous linear equation.
simultaneous equation with two and three unknowns. 
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Solutions to Simultaneous Equations using Matrix 
Approach 

Using Inverse of a Matrix  

The inverse of Matrix can also be use to provide solution to a 
simultaneous linear equation. In this section we are going to consider 
simultaneous equation with two and three unknowns.  
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Solutions to Simultaneous Equations using Matrix 

The inverse of Matrix can also be use to provide solution to a 
In this section we are going to consider 
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Example 35:  
 
(a) Given that 
 

(a)  (i) Find AB, (ii) Find the inverse A 
(b)  Using the inverse of A in (a)(ii)above, or otherwise, solve the 
 following simultaneous equation. 
 
3x + 2y − 2z + 8 = 0  
x−3y+3=0  
2x + y − 3z + 9 = 0  
 
 
Solution: 
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(i) Find AB, (ii) Find the inverse A  
Using the inverse of A in (a)(ii)above, or otherwise, solve the 
following simultaneous equation.  

 



FMT 204  

 

 
(b)  Re-writing the equation, we have
 
3x + 2y − 2z = −8 
x−3y+z=−3  
2x + y − 3z = −9 
 
Write the equations in Matrix form we have
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writing the equation, we have:  

− 2z = −8  

− 3z = −9  

the equations in Matrix form we have: 
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Example 36: 
 
Using the inverse of a Matrix solve the system of the equations
 
2x + 3y = 7 
x+2y=3 
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Using the inverse of a Matrix solve the system of the equations  
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3.19 Crammer’s Rules 
 
Crammer’s rule is another Matrix method of solving a simultaneous 
linear equation. This approach is applicable only for square Matrix.
Given A X = K where while K is 
 

 
where the summation is the expansion of determinant of A by its ith 
column if the element of the i
K1K2K3,......Kn  i.e. 
 

 

      MODULE 3 

 

Crammer’s rule is another Matrix method of solving a simultaneous 
linear equation. This approach is applicable only for square Matrix. 

while K is coefficient. 

 
 

 

where the summation is the expansion of determinant of A by its ith 
the element of the ith  column of A are replaced by 
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Example 37: 
(a) Find the values of w for which
 

 
(b)  By substituting the integral value of 

Crammer’s rule to solve the system of equation. 
 
wx + 2z = 3  
3x − y + 4z = 4  
6x + 2wy = −4 
 
Solution (a) 

 
w(0 − 8w) − 0(0 − 24) + 2(6w + 6) = 16 
⇒ w(−8w) − (−24) + 12w + 12 = 16 
⇒−8w2 + 12w + 12 
⇒−8w2 + 12w − 4 = 0 or 
⇒ 8w2− 12w + 4 = 0 
⇒ 4(2w2− 3w + 1) = 0 
Dividing both side by 4, we have 
⇒ 2w2− 2w − w + 1 = 0 
⇒ 2w(w − 1) − 1(w − 1) = 0 
w=1 or w= ½   
 

(b) The integral value of w is 1 with w
 3 
3x − y + 4z = 4 
6x + 2wy = −4 
 
Writing this equation
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(a) Find the values of w for which 

 

By substituting the integral value of w as obtained in (a) above, use 
Crammer’s rule to solve the system of equation.  

 

 
 

− 8w) − 0(0 − 24) + 2(6w + 6) = 16  
−8w) − (−24) + 12w + 12 = 16 ⇒−8w2 + 24 + 12w + 12 = 16 

+ 12w + 12 − 16 = 0  
− 4 = 0 or  

12w + 4 = 0  
3w + 1) = 0  

Dividing both side by 4, we have ⇒ 2w2− 3w + 1 = 0  
− w + 1 = 0  

− 1) − 1(w − 1) = 0 ⇒ (w − 1)(2w − 1) = 0  

(b) The integral value of w is 1 with w =1the system becomes

 

this equation in Matrix form, we have 
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w as obtained in (a) above, use 

 

+ 24 + 12w + 12 = 16  

becomes wx+2z=
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3.20 Gaussian Elimination
 
This is another method of finding the inverse of a non
is a situation whereby a square Matrix been converted to the identity 
Matrix by series of row operations or by a series of 
The same series of operations performed on the identity Matrix will 
change it (identity Matrix
The procedures of obtaining the inverse of a square Matrix using 
Gaussian elimination are as follows. 
 
Step 1:  
Put the square Matrix and its equivalent identity in the form 
adjoining the Matrices A and 
identity  Matrix and label  R
hand sides e.gR1
 
Step 2:  
Divide the first row of the Matrices (i.e
the element in the first column of the square Matrix 
result obtained (for this new row) to obtain zer
each of the other 
side from where you stop 
example. 
 
Step 3: 
Divide the second row (in step 2 above i.e
element in its second column to get R8 and use the result obtained for this 
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Gaussian Elimination 

This is another method of finding the inverse of a non-singular Matrix.
is a situation whereby a square Matrix been converted to the identity 
Matrix by series of row operations or by a series of column operations.  
The same series of operations performed on the identity Matrix will 
change it (identity Matrix) to the inverse of the square matrix. 
The procedures of obtaining the inverse of a square Matrix using 
Gaussian elimination are as follows.  

Put the square Matrix and its equivalent identity in the form 
adjoining the Matrices A and I, where A is a square Matrix and I is the 

Matrix and label  Ri(where i = 1, 2, 3 ,R = row) on the left 
1, R2, R3 if A is a 3×3 Matrix. 

Divide the first row of the Matrices (i.e. that of the square and identity) by 
the element in the first column of the square Matrix (i.e. a11), then use the 
result obtained (for this new row) to obtain zeros in the first colu

of the other rows. Continue the labelling of the rows on the left hand 
side from where you stop i.e.  R1, R2R3 if A is a 3×3 

Divide the second row (in step 2 above i.e. R5 for  3 × 3  Matrix)by the 
its second column to get R8 and use the result obtained for this 

INTRODUCTION TO MATHEMATICAL ECONOMICS  

 

singular Matrix. It 
is a situation whereby a square Matrix been converted to the identity 

column operations.  
The same series of operations performed on the identity Matrix will 

the inverse of the square matrix.  
The procedures of obtaining the inverse of a square Matrix using 

Put the square Matrix and its equivalent identity in the form  [A/I]  i.e 
A is a square Matrix and I is the 

,R = row) on the left 

that of the square and identity) by  
), then use the  

os in the first column of 
the labelling of the rows on the left hand 

 Matrix for 

for  3 × 3  Matrix)by the 
its second column to get R8 and use the result obtained for this 
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new  R8 to obtain zero in the second c
and  R9 for a 3×3 Matrix). 
 
Step 4:  
Divide the third row (in step 3 above, i.e
column to get  R12 and use the result obtained in R
third column of each of the other rows (i.e
Matrix).  
 
The process will continue till 
Matrix one is considering. In other words step (n + 1) will be: Divide 
nth row (in step n) by the element in its and use the new row obtained to 
get zero in the nth column of each of the other rows. 
NOTE:  
(1) it should be noted that when considering the above procedure, if for 
examples at  the(r + 1)  step the element in the rth column is zero, you 
need to interchange that particular row with subsequent row that is having 
a non-zero element in the rth column and proceed with the (r + 1) step.
(2) The result will be in the form A and I is the identity Matrix.
 

 
Find the inverse of A, using Gaussian elimination method.
Solution 
 

      MODULE 3 

obtain zero in the second column of each of the other rows (R7 

Divide the third row (in step 3 above, i.e. R9  )by the element in its third 
and use the result obtained in R12  to get zero in the 

third column of each of the other rows (i.e.  R10  and R11 for  a 3 × 3 

The process will continue till the nth   row depending on the type of 
other words step (n + 1) will be: Divide the 

(in step n) by the element in its and use the new row obtained to 
of each of the other rows.  

(1) it should be noted that when considering the above procedure, if for 
examples at  the(r + 1)  step the element in the rth column is zero, you 
need to interchange that particular row with subsequent row that is having 

zero element in the rth column and proceed with the (r + 1) step. 
ill be in the form A and I is the identity Matrix. 

 

using Gaussian elimination method. 
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Alternatively (for better understanding)
 

     INTRODUCTION TO MATHEMATICAL ECONOMICS 

(for better understanding) 
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Example 39: 
 
Find the inverse of Matrix A, if

 
using Gaussian elimination method
 
Hence solve the system of the equations
 

 
Solution: 

 
It can be noticed that the element in the first row, first column of Matrix
A is zero, hence there is need to interchange the
which will now look like: 
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Find the inverse of Matrix A, if 

 

elimination method. 

Hence solve the system of the equations:  

 

 

It can be noticed that the element in the first row, first column of Matrix 
e is need to interchange the first and second rows, 
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Now to solve the system of equations, firstly, we need to rewrite the 
equations, that is, equations. 
 
2z − 4y = 2  
x+5z=y+83  

2x + 3y + 4z − 53

becomes 
−4y + 2z = 2 
x+5z=y+83 

2x + 3y + 4z = 53
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Now to solve the system of equations, firstly, we need to rewrite the 
equations, that is, equations.  

53 =0 

53 
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Now to solve the system of equations, firstly, we need to rewrite the 
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It can be seen that A is the same as the original 
the working above, we have 
 

 

 

 
Example 40: 
Using Gaussian elimination method to solve the equations
 
2x1− 2x2 + x3 + x4 = 1  
x1 + 3x2− x3 + 2x4 = 2  
−x1 + 2x2− 2x3− x4 = −3  
5x1 + x2− 2x4 = −9  
 
Solution:  
Writing the above equations in Matrix form, we have
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It can be seen that A is the same as the original Matrix A given and from 

 

 

 

Using Gaussian elimination method to solve the equations 

Writing the above equations in Matrix form, we have 

 

 

 

 

 

 



FMT 204  

 

 

     INTRODUCTION TO MATHEMATICAL ECONOMICS INTRODUCTION TO MATHEMATICAL ECONOMICS  

 

 

 



FMT 204     

 
3.21 Vectors 
 
 
Vectors can be in column form or row form. A Matrix that has one 
column, 
that is, an m × 1 Matrix is called column Vector.  An example of a column
vector is 

 
where  ui   are real numbers called the components of the Vector.  It 
should be noted that ui  is the  i
example given above is also called an m
Vector.  
 
Example 41: 

 
This is a 4-component or a 4-dimensional column Vector which can be re
ferred to as a 4×1 Matrix. Also a matrix with n 
Matrix is called a row Vector. An examples of a row vector is  V = (V
V2, V3,..........Vn) .where  Vj  are real numbers which the components of 
the Vector.  The Vj is the jth    component of the Vector V. The example of 
a row Vector given above is also called an n
n-dimensional Vector.  
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can be in column form or row form. A Matrix that has one 

that is, an m × 1 Matrix is called column Vector.  An example of a column 

 

are real numbers called the components of the Vector.  It 
is the  ith   component of the Vector U. The 

example given above is also called an m-component or an m-dimensional 

 

dimensional column Vector which can be re- 
Also a matrix with n rows that is a 1 × n 

Vector. An examples of a row vector is  V = (V1, 
are real numbers which the components of 
component of the Vector V. The example of 

a row Vector given above is also called an n-component or an 
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Example 42:  
[3 2 4 5]  
This is a 4-component row Vec
Two row Vectors with the same number of r
with the same number of column are said to be eq
corresponding elements are 
should be noted that a Matrix is composed 
Vector.  
 
Example 43: 
 

 
Example 44:  
 
 

 
Determine: (i) B + C (ii)B 
algebraic law satisfies (iii) and (iv) above? 
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component row Vector which can also be called a 1×4.
Two row Vectors with the same number of rows or two columns Vector 

the same number of column are said to be equal if and only if all the 
corresponding elements are equal that is if the vectors are identical. 
should be noted that a Matrix is composed of series of row or column 

Determine: (i) B + C (ii)B - C (iii) A(B - C) (iv) AB - AC (v) what 
algebraic law satisfies (iii) and (iv) above?  

INTRODUCTION TO MATHEMATICAL ECONOMICS  

tor which can also be called a 1×4.Matrix. 
ows or two columns Vector 

ual if and only if all the 
f the vectors are identical. It 

of series of row or column 

 

 

AC (v) what 
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Solution: 
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Example 45:  
One unit of commodity A is produced by combining 1 unit of land, 2 units 
of labour and 5 units of capital.
by 2 units of land, 3 units of labour and 1 unit of cap
of commodity C results from the use of 3 units of land, 1 unit of labour 
and 2 units of capital.
are respectively 
rent(R), the wages (W) and interest(I) of the three resources. 
 
Solution:  
   
Let D=Land, L=Land, and C=Capital. 
The information given can be expressed i
 

 
Therefore, Total Rent = N 1160
Interest =N 1890
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One unit of commodity A is produced by combining 1 unit of land, 2 units 
and 5 units of capital. Also 1 unit of commodity B is produced 

units of land, 3 units of labour and 1 unit of capital. Similarly, 1 unit 
modity C results from the use of 3 units of land, 1 unit of labour 

of capital. Assume that the prices of commodity A, B and C 
are respectively PA = N 270, PB = N 160 and PC = N 190.Find the total 
rent(R), the wages (W) and interest(I) of the three resources. 

Let D=Land, L=Land, and C=Capital.  
The information given can be expressed in form thus: 

Total Rent = N 1160, Total Wages = N 1210 and 
nterest =N 1890 
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One unit of commodity A is produced by combining 1 unit of land, 2 units  
f commodity B is produced 

ital. Similarly, 1 unit 
modity C results from the use of 3 units of land, 1 unit of labour 

ty A, B and C 
= N 190.Find the total 

rent(R), the wages (W) and interest(I) of the three resources.  

 

 Total 
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Alternative Solution:  

 
4.0 CONCLUSION 
 
At the end of the module students are able to differentiate between 
and Determinant and solve difference problems related to matrix and 
determinant. 
 
5.0      SUMMARY 
 
This unit analysed the use of the Matrix Approach focusing on 
Crammer’s rules, Gaussian elimination, and solutions to simultaneous 
equations. 
 
6.0 TUTOR-MARKED ASSIGNMENT
 
1. Determine the range of values of x for which the determinant of 
 the matrix A is:  
 
 greater than or equal to 1, where
 

 Show the range of value of x on a number line.
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At the end of the module students are able to differentiate between Matrix 
and solve difference problems related to matrix and 

This unit analysed the use of the Matrix Approach focusing on 
Crammer’s rules, Gaussian elimination, and solutions to simultaneous 

MARKED ASSIGNMENT  

Determine the range of values of x for which the determinant of 

greater than or equal to 1, where 

 
 

Show the range of value of x on a number line. 
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2. The matrix

 by X. It is given that AX=KX where K is any integers. 
 Form a pair of equation connecting x, y and K and hence find two 

different expressions involving K for the fraction
possible values of K and

 

3. Given the simultaneous equations
 2x1 + 3x2−
 x1 + x2 + x
 x1− x2− x
 (i)   Write the above equations in matrix form 
 (ii)   Find the inverse of the 3 × 3 matrix so formed, and 
 (iii)   Hence solve the ststems of the equation given. 
 
7.0  REFERENCES
 
Stroud, K.A. (1992).
 
Sogunro, S.O. (1996). 
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The matrix is denoted by A and the vector

by X. It is given that AX=KX where K is any integers. 
Form a pair of equation connecting x, y and K and hence find two 
different expressions involving K for the fraction yx. Find the two 
possible values of K and the two corresponding values of

Given the simultaneous equations 
− x3 = −3 

+ x3 = 2  
x3 = 0  

Write the above equations in matrix form  
Find the inverse of the 3 × 3 matrix so formed, and 
Hence solve the ststems of the equation given. 

REFERENCES/FURTHER READING 

, K.A. (1992). Engineering Mathematics.  

, S.O. (1996).  Basic Business Mathematics. 
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denoted by A and the vector   

by X. It is given that AX=KX where K is any integers.             
Form a pair of equation connecting x, y and K and hence find two 

. Find the two 
the two corresponding values of yx  

Find the inverse of the 3 × 3 matrix so formed, and  
Hence solve the ststems of the equation given.  
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MODULE 4  
 
Unit 1  Comparative Statics and the Concept of Derivative  
Unit 2  Applications to Comparative Static Analysis  
 
 
UNIT 1  COMPARATIVE STATICS AND THE   
  CONCEPT OF DERIVATIVE  
 
CONTENTS  
 
1.0  Introduction  
2.0  Objectives  
3.0  Main Content  
       3.1 The Nature of Comparative Statics 
       3.2 The Derivatives 
        3.3 The Derivative and the Slope of a Curve 
        3.4 The Concept of Limit 
        3.5 Graphical Illustrations 
        3.6. Continuity and Differentiability of a Function 
        3.7 Rules of Difference and their Use in Comparative Statics 
        3.8 Rules of Differentiation for a Function of One Variable 
        3.9 Power Function Rule Generalised 
       3.10 Total Derivatives 
       3.11 Partial Differentiation 
4.0  Conclusion  
5.0      Summary 
6.0  Tutor-Marked Assignment 
7.0  References/Further Reading  
 
1.0  INTRODUCTION  
 
Comparative statics, as the name suggests, is concerned with the 
comparison of different equilibrium states that are associated with 
different sets of values of parameters and exogenous variables. For 
purposes of such a comparison, we always start by assuming a  
given initial equilibrium state. In the isolated-market model, for 
example, such an initial equilibrium will be represented by a 
determinate price P and a corresponding quantity  
 
Q. Similarly, in the simple national-income model, the initial 
equilibrium will be specified by a determinate  Y and a corresponding 
Y. Now if we let a disequilibrating change occur in the model-in the 
form of a variation in the value of some parameter or exogenous  
variable-the initial equilibrium will, of course, be upset. As a result, the 
various endoge-nous variables must undergo certain adjustments. If it is 
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assumed that a new equilibrium state relevant to the new values of the 
data can be defined and attained, the question posed in the comparative-
static analysis is: How would the new equilibrium compare with the 
old?  
 
It should be noted that in comparative statics we again disregard the 
process of adjustment of the variables; we merely compare the initial 
(prechange) equilibrium state with the final (postchange) equilibrium 
state. Also, we again preclude the possibility of instability of 
equilibrium, for we assume the new equilibrium to be attainable, just as 
we do for the old.  
 
A comparative-static analysis can be either qualitative or quantitative in 
nature.  If we are interested only in the question of, say, whether an 
increase in investment % will increase or decrease the equilibrium 
income f, the analysis will l > e qualitative because the direction of 
change is the only matter considered. But if we are concerned with the 
magnitude of the change in Y resulting from a given change in % (that 
is, the size of the investment multiplier), the analysis will obviously be 
quantitative.  By obtaining a quantitative answer, however, we can 
automatically tell the direction of change from its algebraic sign. 
Quantitative analysis always embraces the qualitative.  
 
It should be clear that the problem under consideration is essentially one 
of finding a rate of change:  the rate of change of the equilibrium value 
of an endogenous variable with respect to the change in a particular 
parameter or exogenous variable.  For this reason, the mathematical 
concept of derivative takes on preponderant significance in comparative 
statics, because that concept-the most fundamental one in the branch of 
mathematics known as differential calculus is directly concerned with 
the notion of rate of change Later on, moreover, we shall find the 
concept of derivative to be of extreme importance for optimisation 
problems as well.  
 
2.0  OBJECTIVES  
 
At the end of this unit, you should be able to:  
 
• define comparatives statics 
• describe derivatives of a function  
• state the limits of function  
• discuss the techniques of  differentiation  
• explain partial differentiation   
• discuss applications of derivatives.  
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3.0 MAIN CONTENT 
 
3.1 The Nature of Comparative Statics
 
3.1.1 Rate of Change and the Derivative
 
Even though our present context is concerned only with the 
change of the equilibrium values of the variables in a model, we may 
carry on the discussion in a more general 
of change of any variable y in response to 
x, where the two variables are related to each other by the function 
 

 
Applied in the comparative-static context, the variable y will represent 
the equilibrium value of an endogenous variable, and x will be some 
parameter.  Note that, for a start, we are restricting ourselves to the 
simple case where there is only a single parameter or exogenous 
variable in the model.  Once we have mastered this simplified case, 
however, the extension to the case of more parameters will pro
relatively easy.  
 
3.1.2  The Difference Quotient 
 
Since the notion of "change" figures prominently in the present context, 
a special symbol is needed to represent it. When the variable x changes 
from the value x0  to a new value x
difference x1− x0  . Hence, using the symbol A (the Greek capital delta, 
for "difference") to denote the change, we write X = x
is a way of denoting the value of the function f(x) at various values of x.  
The standard practice is to use the notation f(x;) to represent the value of 
f(x) when x =X;. Thus, for the function f(x) =5 + x
02 = 5 and similarly, f(2) =5 + 2
initial value x0  to a new value (x
f(x) changes from f(x0 ) to f(x
in x can be represented by the difference quotient
 

 
Example 1: 
 
Given y = f (x) = 3x2− 4, we can write: f (x
3(x0 + ∆x)2− 4 
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The Nature of Comparative Statics 

Rate of Change and the Derivative 

Even though our present context is concerned only with the rates of 
rium values of the variables in a model, we may 

e discussion in a more general manner by considering the rate 
of change of any variable y in response to a change in another variable 
x, where the two variables are related to each other by the function  

y=f(x) 

static context, the variable y will represent 
the equilibrium value of an endogenous variable, and x will be some 

Note that, for a start, we are restricting ourselves to the 
simple case where there is only a single parameter or exogenous 
variable in the model.  Once we have mastered this simplified case, 
however, the extension to the case of more parameters will prove 

The Difference Quotient  

Since the notion of "change" figures prominently in the present context, 
a special symbol is needed to represent it. When the variable x changes 

to a new value x1  , the change is measured by the 
. Hence, using the symbol A (the Greek capital delta, 

for "difference") to denote the change, we write X = x1− x0. Also needed 
is a way of denoting the value of the function f(x) at various values of x.  

practice is to use the notation f(x;) to represent the value of 
f(x) when x =X;. Thus, for the function f(x) =5 + x2, we have f(0) =5 + 

= 5 and similarly, f(2) =5 + 22 = 9, etc. When x changes from an 
to a new value (x0  + x), the value of the function y = 

) to f(x0 + x). The change in y per unit of change 
in x can be represented by the difference quotient 

 

4, we can write: f (x0) = 3(x0)
2− 4 f (x0 + ∆x) = 

is a way of denoting the value of the function f(x) at various values of x.  
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Therefore, the difference quotient is
 

 
which can be evaluated if we are given x
4; then the average rate of change of y will be 6(3) + 3(4) = 30. This 
means that, on the
30 units per unit change in x. 
 
3.2  The Derivatives 
 
Frequently, we are interested in the rate of change of y 

small. In such a case, it is possible to obtain an approximation of
dropping all the terms in the difference quotient involving the 
expression ∆x. In (6.1), for instance, if ∆
we may simply take the term 
The smaller the value of x, of course, the closer is the ap

the true value of
 
As x approaches zero (meaning that it gets closer and closer to, but 
never actually reaches, zero), 6x

and by the same token,

fact is expressed either by the statement
 
Several points should be noted about the derivative.  First, a derivative is 
a function; in fact, in this usage the word derivative really means a 
derived function. 
and the derivative is another function derived from it.  Whereas the 
difference quotient is a function of 
function of x0 only
zero, and therefore it sh
function. Let us also add that so far we have used the subscripted 
symbol x0 only 
from some specific value of x. Now that this is understood, we may 
delete the subscript and simply state that the derivative, like the 
primitive function, is itself a function of the independent va
That is, for each value of x, there is a unique corresponding value for the 
derivative function. 
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Therefore, the difference quotient is 

which can be evaluated if we are given x0  and ∆x.  Let x0  = 3 and ∆
4; then the average rate of change of y will be 6(3) + 3(4) = 30. This 
means that, on the average, as x changes from 3 to 7, the change in y is 
30 units per unit change in x.  

The Derivatives  

Frequently, we are interested in the rate of change of y when ∆
a case, it is possible to obtain an approximation of

dropping all the terms in the difference quotient involving the 
∆x. In (6.1), for instance, if ∆x is very small, 

we may simply take the term 6x0 the right as an approximation of
The smaller the value of x, of course, the closer is the approximation to 

of .  

As x approaches zero (meaning that it gets closer and closer to, but 
never actually reaches, zero), 6x0 + 3∆x will approach the value 6x

and by the same token, will approach 6x0 also. Symbolically, this 

essed either by the statement→ 6x0  as ∆x

Several points should be noted about the derivative.  First, a derivative is 
a function; in fact, in this usage the word derivative really means a 
derived function. -The original function y = f( x) is a primitive function, 
and the derivative is another function derived from it.  Whereas the 
difference quotient is a function of x0 and ∆x, observe derivative is a 

only. This is because ∆x is already compelled to approach 
zero, and therefore it should not be regarded as another variable in the 
function. Let us also add that so far we have used the subscripted 

 in order to stress the fact that a change in x must start 
from some specific value of x. Now that this is understood, we may 
delete the subscript and simply state that the derivative, like the 
primitive function, is itself a function of the independent va
That is, for each value of x, there is a unique corresponding value for the 
derivative function.  
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= 3 and ∆x = 
4; then the average rate of change of y will be 6(3) + 3(4) = 30. This 

average, as x changes from 3 to 7, the change in y is 

when ∆x is very 

a case, it is possible to obtain an approximation of   by 
dropping all the terms in the difference quotient involving the 

∆ ∆x is very small,  

right as an approximation of . 
proximation to 

As x approaches zero (meaning that it gets closer and closer to, but 
∆x will approach the value 6x0 , 

also. Symbolically, this 

∆x → 0.  

Several points should be noted about the derivative.  First, a derivative is 
a function; in fact, in this usage the word derivative really means a 

mitive function, 
and the derivative is another function derived from it.  Whereas the 

∆x, observe derivative is a 
∆x is already compelled to approach 

ould not be regarded as another variable in the 
function. Let us also add that so far we have used the subscripted 

in order to stress the fact that a change in x must start 
from some specific value of x. Now that this is understood, we may 
delete the subscript and simply state that the derivative, like the 
primitive function, is itself a function of the independent variable x. 
That is, for each value of x, there is a unique corresponding value for the 
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Second, since the derivative is merely a limit of the difference quotient, 
which measures a rate of change of y, the derivative must of necessity 
also be a measure of some rate of change.  In view of the fact that the 
change in x envisaged in the derivative concept is infinitesimal (that is, 
∆x → 0), however, the rate measured by the derivative is in the nature 
of an instantaneous rate of change. 
 
Third, there is the matter of notation. Derivative functio
commonly denoted in two ways. Given a primitive function y = f(x), one 
way of denoting its derivative (if it exists) 
simply f’; this notation is attributed to 

other common notation is
[Actually there is a third notation, Dy, or 
in the following discussion.]  The notation f’(x), which resembles the 
notation for the primitive function 
the idea that the derivative is itself a function of x. The reason for 
expressing it as f’(x)-rather than, say, φ
function f’ is derived from the primitive function f.

notation,   serves instead to emphasis
measures a rate of change. The letter d is the counterpart of the Greek ∆
and x differs from ∆x chiefly
latter as ∆x approaches zero. In the subsequent discussion, we shall use 
both of these notations, depending on which seems the m
in a particular context.  
 
Using these two notations, we may define the 
function y = f(x) as follows: 
 

 
3.3  The Derivatives and Slope of a Curve 
 
Elementary economics tells us that, given a total
where C denotes total cost and Q the output, the marginal cost
defined as the change in total cost 

output:  that is, MC =  .  It is understood that ∆
small change. For the case of a product that has discrete units (integers 
only), a change of one unit is the
case of a product whose quantity is a continuous variable,∆
to an infinitesimal change. In this 
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Second, since the derivative is merely a limit of the difference quotient, 
which measures a rate of change of y, the derivative must of necessity 
lso be a measure of some rate of change.  In view of the fact that the 

change in x envisaged in the derivative concept is infinitesimal (that is, 
∆ → 0), however, the rate measured by the derivative is in the nature 
of an instantaneous rate of change.  

hird, there is the matter of notation. Derivative functions are 
ways. Given a primitive function y = f(x), one 

its derivative (if it exists) is to use the symbol f’( x ), or 
is attributed to the mathematician Lagrange. The 

, devised by the mathematician Leibniz. 
[Actually there is a third notation, Dy, or DF(x), but we shall not use it 
in the following discussion.]  The notation f’(x), which resembles the 

the primitive function f(x), has the advantage of conveying 
the idea that the derivative is itself a function of x. The reason for 

rather than, say, φ(x)-is to emphasise that the  
function f’ is derived from the primitive function f. The alternative 

serves instead to emphasise that the value of a derivative 
measures a rate of change. The letter d is the counterpart of the Greek ∆, 

∆x chiefly in that the former is the limit of the 
∆x approaches zero. In the subsequent discussion, we shall use  

both of these notations, depending on which seems the more convenient 

Using these two notations, we may define the derivative of a given 

 

The Derivatives and Slope of a Curve  

Elementary economics tells us that, given a total-cost function C = f(Q), 
total cost and Q the output, the marginal cost (MC) is 

ed as the change in total cost resulting from a unit increase in 

.  It is understood that ∆Q is an extremely 
small change. For the case of a product that has discrete units (integers  
only), a change of one unit is the smallest change possible; but for the 

whose quantity is a continuous variable,∆Q will refer 
to an infinitesimal change. In this  
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latter case, it is well known that the marginal cost can b
the slope of the 

nothing but the limit of the 
the concept of the slope of a curve is merely the geometric counterpart 
of the concept of the derivative.  Both have to do with the "marginal" 
notion so extensively used in economics. 
 
In Fig 1, we have drawn a total
(primitive) function C=f(Q).Suppose
output level from
relevant point on the cost curve will be A. If output is to 
be raised to Q0 + ∆
+ ∆C = C2;  

Geometrically, this is the ratio of two line segments,
the A B. This particular ratio measures
average.  
 
Marginal cost for the particular ∆
quotient. As such, it is a function of the initial value Q
of change ∆Q. What happens when we vary the magnitude of ∆
smaller output increment is 
the average marginal cost will be measured 
inste11d. Moreover, as we reduce the output increment fur
ther and further, flatter and flatter lines will result until
∆Q → 0), we obtain the line KG (which is the tangent line 

curve at point A) as the relevant 

the slope of the total
as ∆Q → 0, when initial output is at Q = Q0
derivative, the slope of the
particular derivative value 
 
What if the initial output level is changed from 
case, point B on the curve will replace point A as the relevant point, and 
the slope of the curv
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latter case, it is well known that the marginal cost can be measured by 
the slope of the total-cost curve.  But the slope of the total cost curve i

nothing but the limit of the ratio , when ∆Q approaches zero. Thus 
concept of the slope of a curve is merely the geometric counterpart 

of the concept of the derivative.  Both have to do with the "marginal" 
notion so extensively used in economics.  

In Fig 1, we have drawn a total-cost curve C, which is the graph of the 
(primitive) function C=f(Q).Suppose that we consider Q0 as

from which an increase in output is measured, then the 
relevant point on the cost curve will be A. If output is to 

+ ∆Q = Q2, the total cost will be increased from C

 

Geometrically, this is the ratio of two line segments,   or the slope of 
This particular ratio measures an average rate of change the 

cost for the particular ∆Q pictured-and represents a difference 
such, it is a function of the initial value Q0 and the amount 

What happens when we vary the magnitude of ∆
smaller output increment is contemplated (say, from Q0 to Q

marginal cost will be measured by the slope of the line AD 
inste11d. Moreover, as we reduce the output increment fur
ther and further, flatter and flatter lines will result until, in the limit (as 

obtain the line KG (which is the tangent line 

ve at point A) as the relevant line. The slope of KG (=

the slope of the total-cost curve at point A and represents the limit of
∆ → 0, when initial output is at Q = Q0. Therefore, in 

derivative, the slope of the C = f (Q) curve at point A corresponds to the 
particular derivative value f’ (Q0).  

What if the initial output level is changed from Q0 to, say, Q
on the curve will replace point A as the relevant point, and 

the slope of the curve at the new point B will give us the derivative 
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e measured by 
cost curve.  But the slope of the total cost curve is 

∆Q approaches zero. Thus 
concept of the slope of a curve is merely the geometric counterpart 

of the concept of the derivative.  Both have to do with the "marginal" 

cost curve C, which is the graph of the 
as the initial 

in output is measured, then the 
relevant point on the cost curve will be A. If output is to  

sed from C0 to C0 

or the slope of 
an average rate of change the 

ents a difference 
and the amount 

What happens when we vary the magnitude of ∆Q?  If a 
to Q1 only), then 

by the slope of the line AD 
inste11d. Moreover, as we reduce the output increment fur- 

, in the limit (as 
obtain the line KG (which is the tangent line to the cost 

) measures 

cost curve at point A and represents the limit of 
 terms of the 

Q) curve at point A corresponds to the 

, say, Q2?  In that 
on the curve will replace point A as the relevant point, and 

e at the new point B will give us the derivative 
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value f’(Q2 ). Analogous results are obtainable for 
output levels. In general, the derivative f
Q changes.  
 
3.4 The Concept of Limit
 

The derivative   has been defined as the limit of the difference 

quotient   as ∆x → 0.  If we adopt the shorthand symbols q =
(q for quotient) and v = ∆x (v for variation), 
 
we have 

 
In view of the fact that the derivative
notion of limit, it is imperative that we get a clear idea about that notion. 
 
Left-Side Limit and Right-Side Limit
The concept of limit is concerned with the question:
one variable (say, q) approach as 
specific value (say, zero)?" In 
must, of course, be a function of v: say, q = g (v)
interest is in finding the limit of q as v 
explore the more general case of v 
number. Then,  
 

will be merely a special case of 

 
where N = 0. In the course of the discussion, we shall actually also 
consider the limit of q asv →
infinity).  
 
When we say v → N , the variable v can approach the numbe
from values greater than N, or from values less than N. If, as v 
from the left side (from values less than N), q approaches a finite 
number L, we call L the left-side limit of q. On 
number that q tends to as v → N from the right side (from valu
than N), we call L the right-side limit of q. The left
may or may not be equal.  
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ous results are obtainable for alternative initial 
output levels. In general, the derivative f′(Q) a function of Q will vary as 

The Concept of Limit 

has been defined as the limit of the difference 

If we adopt the shorthand symbols q =     
∆x (v for variation),  

 

In view of the fact that the derivative concept relies heavily on the 
notion of limit, it is imperative that we get a clear idea about that notion.  

Side Limit  
The concept of limit is concerned with the question: "What value does 

(say, q) approach as another variable (say, v) approaches a 
value (say, zero)?" In order for this question to make sense, q 

a function of v: say, q = g (v). Our immediate 
interest is in finding the limit of q as v → 0, but we may just as easily  

plore the more general case of v -+ N, where N is any finite real 

 
will be merely a special case of  

 

where N = 0. In the course of the discussion, we shall actually also 
→∞ (plus infinity) or as v →−∞ (minus 

→ N , the variable v can approach the number N either 
than N, or from values less than N. If, as v → N 

from the left side (from values less than N), q approaches a finite 
side limit of q. On the other hand, if L is the 
→ N from the right side (from values greater 
side limit of q. The left- and right-side limits 
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The left-side limit of q is symbolis

 
(the minus sign signifies from v 
right-side limit is written as 

 
When and only when
L), we consider the limit of q to exist and write it as 

 
Note that L must be a fini

 
(or - ∞), we shall consider q to possess no v →
∞ means that q 
increasing values as v tends to N, would be contradictory to say that q 
has a limit. As a convenient way of expressing the fact that q 
→ N , however, people do indeed write 
 

 
and speak of q as having an "infinite limit." 
 
In certain cases, only the limit of one side needs to be considered.  In 
taking the limit of q as
is relevant, because v can approach +
the case of v →
limit of q exists in these cases will depend only on whethe
a finite value as v v 
 
It is important to realis
therefore it cannot be subjected to the usual algebraic operations. We 
cannot have 3 + 
the same as q ∞. However, it is acceptable to express
= " (as against → ∞ →∞
 
3.5 Graphical Illustrations
 
Let us illustrate, in above figure several possible situations regarding the 
limit of a function q = g( v ). Figure 2 shows a smooth curve. As the 
variable v tends to the value N from either side on the horizontal axis, 
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side limit of q is symbolised by  

  

(the minus sign signifies from v → N − values less than N), and the 
side limit is written as  

 

When and only when-the two limits have a common finite value (say, 
L), we consider the limit of q to exist and write it as  

 

Note that L must be a finite number. v → N If we have the situation of

 

∞), we shall consider q to possess no v → N limit, because lim q = 
q →∞ as v → N, and if q will assume v →

increasing values as v tends to N, would be contradictory to say that q 
a limit. As a convenient way of expressing the fact that q 

→ N , however, people do indeed write  

 

and speak of q as having an "infinite limit."  

In certain cases, only the limit of one side needs to be considered.  In 
taking the limit of q as v → +∞, for instance, only the left-side limit of q 
is relevant, because v can approach +∞ only from the left. Similarly, for 

→−∞, only the right-side limit is relevant. Whether the 
limit of q exists in these cases will depend only on whether q approaches 
a finite value as v v → +∞, or as v v →−∞.  

It is important to realise that the symbol ∞ (infinity) is not a number, and 
therefore it cannot be subjected to the usual algebraic operations. We 
cannot have 3 + ∞ or 1∞; nor can we write q = ∞, 

∞. However, it is acceptable to express the limit of q as " 
→) ∞, for this merely indicates that q →∞. 

Graphical Illustrations 

Let us illustrate, in above figure several possible situations regarding the 
limit of a function q = g( v ). Figure 2 shows a smooth curve. As the 
variable v tends to the value N from either side on the horizontal axis, 
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− values less than N), and the 

the two limits have a common finite value (say, 

→ N If we have the situation of 

, because lim q = 
→∞ → N, and if q will assume v → N ever 

increasing values as v tends to N, would be contradictory to say that q 
a limit. As a convenient way of expressing the fact that q →∞ as v 

In certain cases, only the limit of one side needs to be considered.  In 
side limit of q 

∞ only from the left. Similarly, for 
side limit is relevant. Whether the 

r q approaches 

∞ (infinity) is not a number, and 
therefore it cannot be subjected to the usual algebraic operations. We 

 which is not 
the limit of q as " 

Let us illustrate, in above figure several possible situations regarding the 
limit of a function q = g( v ). Figure 2 shows a smooth curve. As the 
variable v tends to the value N from either side on the horizontal axis, 
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the variable q tends to the value L.
identical with the right-side limit; therefore we can write 

The curve drawn in above figure is not smooth; it has a sharp turning 
point directly above the point N. Nevertheless, as v tends to N from 
either side, q again tends to an identical value L. The limit of q again 
exists and is equal to L.  
 
It shows what is known as a step function.* In this case, 
the left-side limit of q is Lp but the right
number.  Hence, q does not 
figure, as v tends to N, the left
side limit is +∞, because the two parts of the 
and rise indefinitely while approaching the broken 
asymptote.  
Again,  

does not exist. On the other hand, if we are considering different sort of 
limit in diagram d, namely,  
 

then only the left-side limit has relevance, and we do find that limit to 
exist:  
 

Analogously, you can verify that 
 

 

as well.  
It is also possible to apply the concepts of left
to the discussion of the marginal cost in Fig 1. In that context, the 
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the variable q tends to the value L. In this case, the left-side limit is 
side limit; therefore we can write  

 
The curve drawn in above figure is not smooth; it has a sharp turning 
point directly above the point N. Nevertheless, as v tends to N from 

gain tends to an identical value L. The limit of q again 

shows what is known as a step function.* In this case, as v tends to N, 
limit of q is Lp but the right-side limit is L 2, a different 

es not have a limit as v -+ N. Lastly, in above 
N, the left-side limit of q is −∞, whereas the right-

∞, because the two parts of the (hyperbolic) curve will fall 
and rise indefinitely while approaching the broken vertical line as an 

 
does not exist. On the other hand, if we are considering different sort of 

 
side limit has relevance, and we do find that limit to 

 
 

verify that  

 

 

It is also possible to apply the concepts of left-side and right-side limits 
of the marginal cost in Fig 1. In that context, the 
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variables q and v will refer, respectively, to the quotient
magnitude of ∆
point A on the curve. In other words, q will refer to the 
lines as AB, AD, 
lines asQ0, Q2 (=
that, as v approaches zero from a positive value, q will approach a value 
equal to the slope of line KG. Simila
approaches zero from a negative value (i.e., as the decrease in output 

becomes less and less), the quotient
such lines as RA (
slope of line KG. Indeed, the situation here is very much akin to that 
illustrated in Fig. 
L in Fig 2) is indeed the limit of the quotient q as v tend
such it gives us the marginal cost at the output level Q = Q
 
Evaluation of a Limit 
 
Let us now illustrate the algebraic evaluation of a limit of a given 
function q = g(v). Example 2: 
Given q = 2 + v2

To take the left

decrease steadily and approach 2
Next, for the right

(in that order) for v and find the same limit as before.
In as much as the two limits are identical, we consider the limit of q to 
exist and write  

It is tempting to regard the answer just obtained as the o
setting v = 0 in the 
general be resisted. In
 

 
we only let v tend to N but, as a rule, do not let v = N. Indeed, we can 
quite legitimately speak of the limit of q as v 
the domain of the function q = g(v). In this latter case, if we try to set v 
= N, q will clearly be undefined. 
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variables q and v will refer, respectively, to the quotient
de of ∆Q, with all changes being measured from 

point A on the curve. In other words, q will refer to the slope of such 
lines as AB, AD, and KG, whereas v will refer to the length of such 

(= line AE) and Q0, Q1 (= line AF). We have already s
that, as v approaches zero from a positive value, q will approach a value 
equal to the slope of line KG. Similarly, we can establish that, if 
approaches zero from a negative value (i.e., as the decrease in output 

becomes less and less), the quotient  as measured by the slope of 
such lines as RA (not drawn), will also approach a value 
slope of line KG. Indeed, the situation here is very much akin to that 

trated in Fig. 6.2a. Thus the slope of KG in Fig 1 (the counterpart of 
2) is indeed the limit of the quotient q as v tends to zero, and as 

us the marginal cost at the output level Q = Q0. 

Evaluation of a Limit  

Let us now illustrate the algebraic evaluation of a limit of a given 
function q = g(v). Example 2:  

2, find  

 
To take the left-side limit, we substitute the series of negative values 

(in that order) for v and find that (2 + v
se steadily and approach 2 (because v2 will gradually approach 0). 

Next, for the right-side limit, we substitute the series of positive values 

(in that order) for v and find the same limit as before.
In as much as the two limits are identical, we consider the limit of q to 

 

 
It is tempting to regard the answer just obtained as the o
setting v = 0 in the equation q = 2 + v2, but this temptation should in 
general be resisted. In evaluating  

 

we only let v tend to N but, as a rule, do not let v = N. Indeed, we can 
quite legitimately speak of the limit of q as v → N , even if N is not in 
the domain of the function q = g(v). In this latter case, if we try to set v 

arly be undefined.  

INTRODUCTION TO MATHEMATICAL ECONOMICS  

  and to the 
∆Q, with all changes being measured from  

slope of such 
and KG, whereas v will refer to the length of such 

line AF). We have already seen 
that, as v approaches zero from a positive value, q will approach a value 

rly, we can establish that, if ∆Q 
approaches zero from a negative value (i.e., as the decrease in output 

as measured by the slope of 
 equal to the 

slope of line KG. Indeed, the situation here is very much akin to that 
the slope of KG in Fig 1 (the counterpart of 

s to zero, and as 
.  

Let us now illustrate the algebraic evaluation of a limit of a given 

side limit, we substitute the series of negative values 

(2 + v2) will 
will gradually approach 0). 

side limit, we substitute the series of positive values 

(in that order) for v and find the same limit as before. 

In as much as the two limits are identical, we consider the limit of q to 

It is tempting to regard the answer just obtained as the outcome of 
but this temptation should in 

we only let v tend to N but, as a rule, do not let v = N. Indeed, we can 
→ N , even if N is not in 

the domain of the function q = g(v). In this latter case, if we try to set v 
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3.5.1  Formal View of the Limit Concept 
 
The above discussion should have conveyed some gene
the concept of limit. Let us now give it a more precise definition. Since 
such a definition will make use 
point on a line (in particular, a specific number as a 
real numbers), we shall first explain the latter term. 
L, there can always be found a number (L 
(L + a2) > L, where a1  and a2  
set of all numbers falling between (L 
the interval between those two numbers. If the numbers (L 
(L + a2) > L are included in the 
are excluded, the set is an open interval. A closed 
a1) < L and (L + a2) > L is denoted by the bracketed expression 
 

[(L − a1), (L + a2) > L] = q{(L 
 
and the corresponding open inte
 

((L − a1), (L + a2) > L) = q{(L 
 
Thus, [ ] relate to the weak inequality sign 
strict inequality sign < . But in both types of intervals, the smaller 
number (L − a1) is always listed first. Later on, we shall also have 
occasion to refer to half-open and half
[6, ∞), which have the following meanings: 
 

(3, 5] = {x|3 < x ≤ 5} 
 
Now we may define a neighbor
defined in (6.4), which is an interval "covering" the number L
Depending on the magnitudes of the arbitrary 
possible to construct various neighborhoods for the given number L. 
Using the concept of neighbou
defined as follows:  
 
As v approaches a number N, the limit of q = g( v) is the number L, if, 
for every neighbourhood of L that can be chosen, however small, there 
can be found a corresponding 
v = N) in the domain of the function such that, 
that N-neighbourhood, its image lies in the chosen L
This statement can be clarified with the help of Fig.3, which resembles 
Fig. 2a.  From what was learned about the latter figure, we know that 

in  
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Figure 3 show that L does indeed fulfill the new defin
the first step, select an arbitrary small neighbo
L + a2). (This should have 
it relatively la
neighbourhood of N, say, (N 
neighbourhoods 
rectangle (shaded in diagram) with 
curve. It can then be ver
neighbourhood of N (not counting v = N), the co
= g( v) lies in the chosen neighbo
small an L-neighbo
neighbourhood can b
the definition of a limit, as 
 
We can also apply the above definition to the step funct
order to show that neither L
a very small neighborhood of 
L1-then, no matter what 
for N, the rectangle associated with the two neighbo
possibly enclose the 
value of v > N , the corresponding value 
will not be in the neighbo
limit. By similar reasoning, L

In fact, in this case no limit exists for q as v 
 
3.5.2 Limit Theorem
 
Our interest in rates of change led us to the consideration of the concept 
of derivative, which, being in the nature of the limit of a quotient, in turn 
prompted us to study questions of the existence and evaluation of a 
limit.  The basic process of limit 
letting the variable v approach a particular number (say, N) and 
observing the value which q approaches. When actually evaluating the 
limit of a function, however, we may draw upon certain established limit 
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that L does indeed fulfill the new definition of a limit. As 
select an arbitrary small neighbourhood of L, say, (L 

). (This should have been made even smaller, but we are keeping 
it relatively large to facilitate exposition.) Now construct a 

rhood of N, say, (N −b1, N +b2), such that the 
rhoods (when extended into quadrant I) will together define a 

angle (shaded in diagram) with two of its corners lying on the given 
curve. It can then be verified that, for every value of 

rhood of N (not counting v = N), the corresponding value of q 
lies in the chosen neighbourhood of L. In fact, no matter h

neighbourhood we choose, a (correspondingly small) N 
rhood can be found with the property just cited. Thus L fulfills 

the definition of a limit, as was to be demonstrated.  

We can also apply the above definition to the step function of Fig 2c in 
that neither L1  nor L2  qualifies as limv→N q. If we choos

a very small neighborhood of L1 say,just a hair’s width on each side of 
then, no matter what neighbourhood we pick 

for N, the rectangle associated with the two neighbourhoo
possibly enclose the lower step of the function. Consequently, for any 

> N , the corresponding value of q (located on the lower step)
will not be in the neighbourhood of L1, and thus L1  fails the test for a 
limit. By similar reasoning, L2 must also be dismissed as a candidate for 

 
In fact, in this case no limit exists for q as v → N.  

Limit Theorem 

Our interest in rates of change led us to the consideration of the concept 
of derivative, which, being in the nature of the limit of a quotient, in turn 
prompted us to study questions of the existence and evaluation of a 
limit.  The basic process of limit evaluation, as illustrated, involves 
letting the variable v approach a particular number (say, N) and 
observing the value which q approaches. When actually evaluating the 
limit of a function, however, we may draw upon certain established limit 
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theorems, which can materially simplify the task, especially for 
complicated functions.  
 
3.5.3  Theorems involving a Single Function 
 
When a single function q = g(v) is involved, the following theorems are 
applicable.  
 
Theorem 1:  
If q = av + b, then limv→N q = aN + b (a and b are constants). Example 2: 
Given q = 5v + 7, we have lim
= 5(0) + 7 = 7.  
 
Theorem 2:  
Ifq=g(v)=b,then limv→N q = b. 
This theorem, which says that the limit of a constant function is the 
constant in that function, is merely a special case of Theorem 6.1, with 
a=0.  
 
Theorem 3:  
If q = v, then limv→N q = N.  
 
If q = vk, then limv→N q = N k. 
 
Example 2:  
Given q =v3 , we have limv→2 q = (2)3 = 8. 
 
You may have noted that, in the above three theorems, what is done to 
find the limit of q as v → N is indeed to let v = N. But these are special 
cases, and they do not vitiate the general rule that "v 
mean "v = N."  
 
3.5.4 Theorems involving 
 
If we have two functions of the same independent variable v, q
and if both functions possess limits as follows
 

 
where L1 and L1 are two finite numbers, the following theorems are 
applicable.  
 
 
 
 

      MODULE 4 

ich can materially simplify the task, especially for 

nvolving a Single Function  

When a single function q = g(v) is involved, the following theorems are 

q = aN + b (a and b are constants). Example 2:  
Given q = 5v + 7, we have limv→2 q = 5(2) + 7 = 17. Similarly, limv→0 q 

q = b.  
This theorem, which says that the limit of a constant function is the 
constant in that function, is merely a special case of Theorem 6.1, with 

q = N k.  

q = (2)3 = 8.  

You may have noted that, in the above three theorems, what is done to 
→ N is indeed to let v = N. But these are special 

cases, and they do not vitiate the general rule that "v → N " does not 

 Two Functions 

If we have two functions of the same independent variable v, q1= g(v), 
tions possess limits as follows 

 

are two finite numbers, the following theorems are 
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Theorem 4: (sum
 

 
The limit of a sum (difference) of two functions is the s
of their respective limits. In particular, we note that
 

 
which is in line with Theorem 1. 
 
Theorem 5: (product limit theorem): 
 

 
The limit of a product of two functions is the product of their limits. 
Applied to the square of a function, this gives 
 

which is in line with Theorem 3.
 
Theorem 6 (quotient limit theorem):
 

 

The limit of a quotient of two functions is the 
Naturally, the limit L
is undefined.  
 
Example 3  
Find 

 

Since we have here

and -limv→0(2 + v) = 2, the desired limit is 1. 
 
Remember that 
theorems do not apply.  In the case of Theorem 6, furthermore, 
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(sum-difference limit theorem)  

 

The limit of a sum (difference) of two functions is the sum (difference) 
tive limits. In particular, we note that 

 

which is in line with Theorem 1.  

(product limit theorem):  

 

of a product of two functions is the product of their limits. 
Applied to the square of a function, this gives  

 
which is in line with Theorem 3. 

(quotient limit theorem): 

 

The limit of a quotient of two functions is the quotient of their limits. 
Naturally, the limit L2 is restricted to be non-zero; otherwise the quotient 

 

Since we have here 

 
(2 + v) = 2, the desired limit is 1.  

Remember that L1 and L2 represent finite numbers; otherwise these 
theorems do not apply.  In the case of Theorem 6, furthermore, 
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um (difference) 

 

of a product of two functions is the product of their limits. 

quotient of their limits. 
zero; otherwise the quotient 

finite numbers; otherwise these 
theorems do not apply.  In the case of Theorem 6, furthermore, L2 must 
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be nonzero as well.  If these re
back on the method limit evaluation illustrated 
which relate to the cases, respectively, of L being zero and of
infinite.  
 
3.5.4 Limit of a Polynomial Function
 
With the above limit theorems at our disposal, we can easily evaluate 
the limit of any polynomial function
 

 

as v tends to the number N. Since the limits of the separate terms are 
respectively. 
 

 

This limit is also, we note, actually equal to g( N ), that is, equal to the 
value of the function in (2) when v = N. This particular result will prove 
important in discussing the conce
function.  
 
3.6  Continuity and Differentiability of a Function 
 
The preceding discussion of the concept of limit and 
now be used to define the continuity and differentiabili
These notions bear directly on the derivative of the function, which is 
what interests us.  
 
3.6.1  Continuity of a Function 
 
When a function q = g( v) possesses a limit as v tends to the point N in 
the domain, and when this limit is als
value of the function at v = N the function is said to be continuous at N. 
As stated above, the term continuity involves no less than three 
requirements:  
(1)  the point N must be in the domain of the function; i.e. g(
 defined.  
(2)  the function must have a limit as v 

 exists and  
(3)  that limit must be equal in value to g( N ), 
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nonzero as well.  If these re-strictions are not satisfied, we must fall 
d limit evaluation illustrated in examples above, 

which relate to the cases, respectively, of L being zero and of L being 

Limit of a Polynomial Function 

With the above limit theorems at our disposal, we can easily evaluate 
polynomial function 

 

number N. Since the limits of the separate terms are 

 

This limit is also, we note, actually equal to g( N ), that is, equal to the 
value of the function in (2) when v = N. This particular result will prove 
important in discussing the concept of continuity of the polynomial 

Continuity and Differentiability of a Function  

The preceding discussion of the concept of limit and its evaluation can 
to define the continuity and differentiability of a function. 

bear directly on the derivative of the function, which is 

Continuity of a Function  

When a function q = g( v) possesses a limit as v tends to the point N in 
the domain, and when this limit is also equal to g(N)-that is, equal to the 
value of the function at v = N the function is said to be continuous at N. 
As stated above, the term continuity involves no less than three 

the point N must be in the domain of the function; i.e. g(N) is 

the function must have a limit as v → N i.e.  

 

that limit must be equal in value to g( N ),  
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It is important to note that while-in discussing the limit of the curve in 
above Figure. Above the point (N, L) was excluded from consideration, 
we are no longer excluding it in the present context. Rather, as the third 
requirement specifically states, the point ( N, L) must be on the graph of 
the function before the function can be considered as continuous  
at point N.  
 
Let us check whether the functions shown in above figure are 
continuous. In diagram a, all three requirements are met at point N. 
Point N is in the domain, q has the limit L as v → N ; and the limit L 
happens also to be the value of the function at N. Thus, the  
function represented by that curve is continuous at N. The same is true 
of the function depicted in above figure, since Lis the limit of the 
function as v approaches the value N in the domain, and since L is also 
the value of the function at N. This last graphic example should suffice 
to establish that the continuity of a function at point N does not 
necessarily imply that the graph of the function is "smooth" at v = N, for 
the point (N, L) in above figure is actually a "sharp" point and yet the 
function is continuous at that value of v. When a function q = g( v) is 
continuous at all values of v in the interval (a, b), it is said  
to be continuous in that interval.  If the function is continuous at all 
points in a subset S of the domain (where the subset S may be the union 
of several disjoint intervals), it is said to be continuous in S. And, 
finally, if the function is continuous at all points in its  
domain, we say that it is continuous in its domain. Even in this latter 
case, however, the graph of the function may nevertheless show a 
discontinuity (a gap) at some value of v, say, at v = 5, if that value of v 
is not in its domain.  
 
Again referring to above figure, we see that in diagram c the function is 
discontinuous at N because a limit does not exist at that point, in 
violation of the second requirement of continuity. Nevertheless, the 
function does satisfy the requirements of continuity in the interval (0, N) 
of the domain, as well as in the interval [N, ∞). Diagram d obviously is  
also discontinuous at v = N. This time, discontinuity emanates from the 
fact that N is excluded from the domain, in violation of the first 
requirement of continuity.  
 
On the basis of the graphs in above figure, it appears that sharp points 
are consistent with continuity, as in diagram b, but that gaps are taboo, 
as in diagrams c and d. This is indeed the case. Roughly speaking, 
therefore, a function that is continuous in a particular  
interval is one whose graph can be drawn for the said interval without 
lifting the pencil or pen from the paper-a feat which is possible even if 
there are sharp points, but impossible when gaps occur.  
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3.6.2  Polynomial and Rational Functions 
 
Let us now consider the continuity of certain frequently encountered 
functions.  For any polynomial function, such as q = g( v) in above, we 
have found from above that lim
the function at N. Since N is a point (any point) in the domain of the 
function, we can conclude that any polynomial function is con
its domain. This is a very useful piece of information, because 
polynomial functions will be encountered very often. 
 
What about rational functions? Regarding continuity, there exists an 
interest ing theorem (the continuity theorem) which state
difference, product, and quotient of any finite number of functions that 
are continuous in the domain are, respectively, also continuous in the 
domain. As a result, any rational function (a quotient of two polynomial 
functions) must also be continuous in its domain. 
 
Example 4:  
The rational function 
 

 
is defined for all finite real numbers; thus its domain consists of the 
interval (−∞, ∞). For any number N in the domain, the limit of q is (by 
the quotient limit theorem) 
 

  
which is equal to g(N). Thus the three requirements of continuity are all 
met at N. Moreover, we note that N can represent any point in the 
domain of this function; consequently, this function is continuous in its 
domain.  
 
3.6.3  Differentiability of a Fu
 
The previous discussion has provided us with the tool
whether any function has a limit as its independent variable approaches 
some specific value. Thus we 
= f(x) as x approaches some chosen value, say, 
also apply the "limit" concept at a different level and take the lim

the difference quotient of that function
outcomes of limit-taking at these two different levels relate
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Polynomial and Rational Functions  

Let us now consider the continuity of certain frequently encountered 
polynomial function, such as q = g( v) in above, we 

have found from above that limv→N q exists and is equal to the value of 
the function at N. Since N is a point (any point) in the domain of the 
function, we can conclude that any polynomial function is continuous in 
its domain. This is a very useful piece of information, because 
polynomial functions will be encountered very often.  

What about rational functions? Regarding continuity, there exists an 
interest ing theorem (the continuity theorem) which states that the sum, 
difference, product, and quotient of any finite number of functions that 
are continuous in the domain are, respectively, also continuous in the 
domain. As a result, any rational function (a quotient of two polynomial 

continuous in its domain.  

 

is defined for all finite real numbers; thus its domain consists of the 
For any number N in the domain, the limit of q is (by 

 

which is equal to g(N). Thus the three requirements of continuity are all 
met at N. Moreover, we note that N can represent any point in the 
domain of this function; consequently, this function is continuous in its 

Differentiability of a Function  

The previous discussion has provided us with the tools for ascertaining 
function has a limit as its independent variable approaches 

 can try to take the limit of any function y 
oaches some chosen value, say, x0. However, we can 

also apply the "limit" concept at a different level and take the limit of 

the difference quotient of that function , as x approaches zero.  The 
taking at these two different levels relate to two 
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different, though related, properties of the function. 
 
Taking the limit of the function y = f(x) itself, we can, in line with the 
discussion of the preceding subsection, examine whether the function f 
is continuous at x = x
  
(1)   x = x0 must be in the domain of the function, 
(2) y must have a limit as x 
(3) the said limit must be equal to f (x
 can write 
 

 

When the "limit" concept is applied to the difference quo
→ x0, on the other hand, we deal inste

the function f is differentiable 
exists at x = x0  , or whether f
 
The term "differentiable" is used here because the 

the derivative
Since f′(x0) exists if

limit of   exists at 
differentiability off is
 

 

These two properties, continuity and differentiability, are very 
intimately related to each other
condition for its differentiability (although, as we shall see later, this 
condition is not sufficient). What this means is
at x = x0, the function must pass the
To prove this, we
continuity at x = x 0 follows from its differentiability at x = 
differentiability condition.  Before doing this, however, let us simplify 
the notation somewhat by
  
(1)  Replacing x
(2)  Replacing (x
because the postchange value of x can be any number (depending on the 
magnitude of the change) and hence is a variable denotable by x.  This is 
the equivalence of the two notation systems, where the old no
appear (in brackets) alongside the new. Note that, with the notational 
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different, though related, properties of the function.  

Taking the limit of the function y = f(x) itself, we can, in line with the 
discussion of the preceding subsection, examine whether the function f 
is continuous at x = x0.  The conditions for continuity are: 

must be in the domain of the function,  
y must have a limit as x → x0 , and 
the said limit must be equal to f (x0). When these are satisfied, we 

 

 

When the "limit" concept is applied to the difference quotient
→ x0, on the other hand, we deal instead with the question of whether 

e function f is differentiable at x = x0  , i.e., whether the derivative
exists at x = x0  , or whether f′(x0) exists.  

The term "differentiable" is used here because the process of obtaining 

 is known as differentiation (also called derivation). 
′(x0) exists if and only if the 

exists at x → x0  as ∆x → 0, the symbolic expression of the 
differentiability off is 

These two properties, continuity and differentiability, are very 
intimately related to each other-the continuity of f is a necessary 
condition for its differentiability (although, as we shall see later, this 
condition is not sufficient). What this means is that, to be differentiable 

the function must pass the test of being continuous at x = 
To prove this, we- shall demonstrate that, given a function y = f(x), its
continuity at x = x 0 follows from its differentiability at x = 
differentiability condition.  Before doing this, however, let us simplify 
the notation somewhat by: 

Replacing x0 with the symbol N and  
Replacing (x0 +∆x) with the symbol x. The latter is justifiable 

because the postchange value of x can be any number (depending on the 
magnitude of the change) and hence is a variable denotable by x.  This is 
the equivalence of the two notation systems, where the old no
appear (in brackets) alongside the new. Note that, with the notational 
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Taking the limit of the function y = f(x) itself, we can, in line with the 
discussion of the preceding subsection, examine whether the function f 

). When these are satisfied, we 

tient  as x 
ad with the question of whether 

at x = x0  , i.e., whether the derivative

process of obtaining 

ation (also called derivation). 
and only if the  

∆ → 0, the symbolic expression of the 

 

These two properties, continuity and differentiability, are very 
the continuity of f is a necessary 

condition for its differentiability (although, as we shall see later, this 
that, to be differentiable 

test of being continuous at x = x0.  
shall demonstrate that, given a function y = f(x), its 

continuity at x = x 0 follows from its differentiability at x = x0, i.e 
differentiability condition.  Before doing this, however, let us simplify 

∆x) with the symbol x. The latter is justifiable 
because the postchange value of x can be any number (depending on the 
magnitude of the change) and hence is a variable denotable by x.  This is 
the equivalence of the two notation systems, where the old notations 
appear (in brackets) alongside the new. Note that, with the notational 
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change, ∆x now becomes (x 
becomes "x → N ," which is analogous to the expression v →
before in connection with the function q = g(v
rewritten, respectively, as  
 

 

 

 
What we want to show is, therefore, that the continuity condition 
follows from the differentiability 
N implies that x ± N , so that x 
permissible to write the following identity:
 

 
Taking the limit of each side of (6) as x 
results: 
 

  
Note that we could not have written these results, if conditio
been granted, for if f’ ( N) did not exist, then the right
(and hence also the left-side expression) 
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∆x now becomes (x - N), so that the expression "∆x → 0" 
→ N ," which is analogous to the expression v → N ,used 

before in connection with the function q = g(v). We can now be 

 

 
 

 

What we want to show is, therefore, that the continuity condition 
follows from the differentiability condition. First, since the notation x → 
N implies that x ± N , so that x – N is a non-zero number, it is 
permissible to write the following identity: 

 

Taking the limit of each side of (6) as x → N yields the following 

Note that we could not have written these results, if condition had not 
N) did not exist, then the right-side expression 

side expression) in (6) would not possess a limit. 
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If f’ ( N) does exist, however, the two sides will have 
above. Moreover, when the left
equated, we get  
 

which is identical.  Thus we have proved that continuity, as shown in 
above equation, follows from differentiability, as shown in above. In 
general, if a function is differentiable at every point in its domain, we 
may conclude that it must be continuous in its domain. Although 
differentiability implies continuity, the converse is not true. That is, 
continuity is a necessary, but not a sufficient, condition for 
differentiability. To demonstrate this, we merely have t
counter-example. Let us consider the function 
 

 

 
which is graphed above.  As can be readily shown, this f
differentiable, though continuous, when x = 2.  That the function is 
continuous at x = 2 is easy to 
the function. Second, the limit of y exists as 
limx→2− y = limx

1.  Thus all three requirements of continuity are met.  To show that the 
function is not diffe
difference quotient
 

 
does not exist.  This involves the demonstration of a disparity between 
the left-side and the right
side limit,x must exceed 2, we
limit is 
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N) does exist, however, the two sides will have limits 
above. Moreover, when the left-side result and the right-side result are 

 

 
which is identical.  Thus we have proved that continuity, as shown in 
above equation, follows from differentiability, as shown in above. In 
general, if a function is differentiable at every point in its domain, we 
may conclude that it must be continuous in its domain. Although 
differentiability implies continuity, the converse is not true. That is, 
continuity is a necessary, but not a sufficient, condition for 
differentiability. To demonstrate this, we merely have to produce a 

example. Let us consider the function  

 

which is graphed above.  As can be readily shown, this function is not 
though continuous, when x = 2.  That the function is 

continuous at x = 2 is easy to establish. First, x = 2 is in the domain of 
cond, the limit of y exists as x tends to 2; to be specific, 
x→2+ = 1.  Third, f (2) is also found to be  

1.  Thus all three requirements of continuity are met.  To show that the 
function is not differentiable at x = 2, we must show that the limit of the 
difference quotient 

does not exist.  This involves the demonstration of a disparity between 
and the right-side limits.  Since, in considering the right

x must exceed 2, we have |x − 2| = x − 2 Thus the right
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limits as shown 
side result are 

which is identical.  Thus we have proved that continuity, as shown in 
above equation, follows from differentiability, as shown in above. In 
general, if a function is differentiable at every point in its domain, we 
may conclude that it must be continuous in its domain. Although 
differentiability implies continuity, the converse is not true. That is, 
continuity is a necessary, but not a sufficient, condition for 

o produce a 

 

unction is not 
though continuous, when x = 2.  That the function is 

= 2 is in the domain of 
x tends to 2; to be specific, 

1.  Thus all three requirements of continuity are met.  To show that the 
rentiable at x = 2, we must show that the limit of the 

 

does not exist.  This involves the demonstration of a disparity between 
side limits.  Since, in considering the right-

− 2| = x − 2 Thus the right-side 
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On the other hand, in considering the left
2; thus,|x − 2| = −(x − 2). Consequently, the left
 

 
which is different from the right
does not guarantee differentiability. In sum, all differentiable functions 
are continuous, but not all continuous functions are differentiable. 
 
In above figure, the non differentiability of the function at
manifest in the fact that the point (2, 1) has no tangent line defined, and 
hence no definite slope can be 
left of that point, the curve has a diagramm slope of 
it has a slope of + 1, and the slopes on the two sides display no tendency 
to approach a common magnitude at x = 2. The point (2, 1) is, of course, 
a special point; it is the only sharp point on the curve.  At other points 
on the curve, the derivative is defined and the function is differentiable. 
More specifically, when above function can be divided into two linear 
functions as follows:  
 
Left part: y = −(x − 2) + 1 = 3 − x 
Right part: y y = (x − 2) + 1 = x − 1(x > 2) 
 
The left part is differentiable in the interval (
differentiable in the interval (2, 
differentiability is a more restrictive con
it requires something beyond continuity. Conti
out the presence of a gap, whereas differentiability rules out "sharpness" 
as well. Therefore, differentiability calls for "smoothness" o
function (curve) as well as its continuity. Most of the specific functions 
employed in economics have the property 
everywhere. When general functions are used, moreover, they 
are often assumed to be everywhere differentiable, as we 
the subsequent discussion.  
 
3.7 Rules of Differentiation and 
 Statics 
 
The central problem of comparative
of change, can be identified with the problem of finding the derivative 
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On the other hand, in considering the left-side limit, x must be less than 
− 2). Consequently, the left-side limit is 

 

which is different from the right-side limit. This shows that continuity 
does not guarantee differentiability. In sum, all differentiable functions 
are continuous, but not all continuous functions are differentiable.  

differentiability of the function at x = 2 is 
that the point (2, 1) has no tangent line defined, and 

e slope can be assigned to the point. Specifically, to the 
left of that point, the curve has a diagramm slope of - 1, but to the right 
it has a slope of + 1, and the slopes on the two sides display no tendency 
to approach a common magnitude at x = 2. The point (2, 1) is, of course, 
a special point; it is the only sharp point on the curve.  At other points 

e derivative is defined and the function is differentiable. 
More specifically, when above function can be divided into two linear 

−(x − 2) + 1 = 3 − x  (x ≤ 2)  
− 2) + 1 = x − 1(x > 2)  

part is differentiable in the interval (−∞, 2), and the right part is 
differentiable in the interval (2, ∞) in the domain. In general, 

ility is a more restrictive condition than continuity, because 
it requires something beyond continuity. Continuity at a point only rules 
out the presence of a gap, whereas differentiability rules out "sharpness"  
as well. Therefore, differentiability calls for "smoothness" of the 

as its continuity. Most of the specific functions 
in economics have the property that they are differentiable 

everywhere. When general functions are used, moreover, they  
are often assumed to be everywhere differentiable, as we shall do our in 

Rules of Differentiation and their Use in Comparative 

The central problem of comparative-static analysis, that of finding a rate 
of change, can be identified with the problem of finding the derivative 
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of some function y = f(x), provided only a small change in x is being 

considered.  Even though the derivative
difference quotient q = g( v) as v 
undertake the process of limit taking each time the derivative of a 
function is sought, for there exist various rule
(derivation) that will enable us to obtain the desired derivatives directly.  
Instead of going into comparative
let us begin by learning some rules of differentiation. 
 
3.8  Rules of Differentiati
 
First, let us discuss three rules that apply, respectively, to t
types of function 
function),y = x", andy = ex
continuous graphs and a
 
3.8.1 Constant
 
The derivative of a constant function y = f(x) = k is identically zero, i.e., 
is zero forall values of x.  Symbolically, this may be expressed variously 

as = 0 or  = 0 or
 
In fact, we may also write these in the form
 

 

where the derivative symbol has been separated into two parts,

the one hand, and 
taken as an operator symbol, which instructs us to perform a particular 
mathematical operation. Just as the operator 

a square root, the symbol
derivative of, or to differentiate
variable x. The function to be operated on (to be differentiated) is 
indicated in the second part; here it is y = f(x) = k. 
 
The proof of the rule is as follows. Given f(x) = k, we have f(N) = k for 
any value of N.  
 
Thus the value of 
above will be 
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of some function y = f(x), provided only a small change in x is being 

idered.  Even though the derivative  is defined as the limit of the 
difference quotient q = g( v) as v → 0, it is by no means necessary to 
undertake the process of limit taking each time the derivative of a 
function is sought, for there exist various rules of differentiation 
(derivation) that will enable us to obtain the desired derivatives directly.  
Instead of going into comparative-static models immediately, therefore, 
let us begin by learning some rules of differentiation.  

Rules of Differentiation for a Function of One Variable 

First, let us discuss three rules that apply, respectively, to the following 
types of function of a single independent variable: y = k (constant 

, andy = ex"  (power functions). All these have smooth, 
continuous graphs and are therefore differentiable everywhere. 

Constant-Function Rule 

The derivative of a constant function y = f(x) = k is identically zero, i.e., 
is zero forall values of x.  Symbolically, this may be expressed variously 

= 0 or f′(x) = 0 

In fact, we may also write these in the form 

 

where the derivative symbol has been separated into two parts,

the one hand, and y (or f(x) or k) on the other.  The first part
taken as an operator symbol, which instructs us to perform a particular 
mathematical operation. Just as the operator symbol; instructs us to take 

a square root, the symbol   represents an instruction to take the 
derivative of, or to differentiate, (some function) with respect to the 

The function to be operated on (to be differentiated) is 
indicated in the second part; here it is y = f(x) = k.  

The proof of the rule is as follows. Given f(x) = k, we have f(N) = k for 
 

Thus the value of f’ ( N) the value of the derivative at x = N as defined 
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of some function y = f(x), provided only a small change in x is being 

is defined as the limit of the 
→ 0, it is by no means necessary to 

undertake the process of limit taking each time the derivative of a 
s of differentiation 

(derivation) that will enable us to obtain the desired derivatives directly.  
static models immediately, therefore, 

ne Variable  

he following 
of a single independent variable: y = k (constant 

functions). All these have smooth, 
erywhere.  

The derivative of a constant function y = f(x) = k is identically zero, i.e., 
is zero forall values of x.  Symbolically, this may be expressed variously 

where the derivative symbol has been separated into two parts,  on 

part , may be 
taken as an operator symbol, which instructs us to perform a particular 

instructs us to take 

represents an instruction to take the 
, (some function) with respect to the 

The function to be operated on (to be differentiated) is 

The proof of the rule is as follows. Given f(x) = k, we have f(N) = k for 

N) the value of the derivative at x = N as defined 
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Moreover, since N represents any value of x at all, the result f
can be immediately generalised to f
 
It is important to distinguish clearly between the statement f
the similar looking but different statement f
mean that the derivative function f
in writing f′(x0) = 0, on the other 
zero value of the derivative with a particular value of x, namely, x = x
As discussed before, the derivative of a function has its geom
counterpart in the slope of the curve. The graph of a constant function, 
say, a fixed-cost function CF = f(Q) = 
line with a zero slope throughout.  Correspondingly, the derivative must 
also be zero for all values of Q: 
 

3.8.2 Power-Function Rule
 
The derivative of a power function y = f (x) =
this is expressed as 
 

 

Example 6: 
 

The derivative of y = 
 
Example 7: 

The derivative of y = 
 
This rule is valid for any real
can be any real number.  But we 
is some positive integer.  In the simplest case, that of n = 1, the function 
is f(x) = x, and according to the rule, the 
 

The proof of this result follows easily from the definition of f
Given f(x) = x, the derivative value at any value of x, say, x = N, is
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Moreover, since N represents any value of x at all, the result f′(N ) = 0 
ed to f′(x) = 0. This proves the rule.  

is important to distinguish clearly between the statement f′(x) = 0 and 
looking but different statement f′(x0) = 0. By f′(x) = 0, we 

function f′ has a zero value for all values of x; 
) = 0, on the other hand, we are merely associating the 

zero value of the derivative with a particular value of x, namely, x = x0.  
As discussed before, the derivative of a function has its geometric 

of the curve. The graph of a constant function, 
t function CF = f(Q) = N1200, is a horizontal straight 

line with a zero slope throughout.  Correspondingly, the derivative must 
also be zero for all values of Q:  

 
 

Function Rule 

The derivative of a power function y = f (x) = xn is nxn−l.  Symbolically, 

 

 

 

This rule is valid for any real-valued power of x; that is, the exponent 
number.  But we shall prove it only for the case where n 

the simplest case, that of n = 1, the function 
and according to the rule, the derivative is  

 
  

The proof of this result follows easily from the definition of f′(N ). 
derivative value at any value of x, say, x = N, is 
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Since N represents any value of x, it is permissible to write f
This proves the 
of this result, we see that the 
it has a slope of + 1 throughout. 
... , let us first note the following identities:
 

 

We can express the derivative of a power 
follows: 
 

 
Again, N is any value of x; thus t
= nxn−1 which proves the rule for n, any positive integer. 
 
As mentioned above, this rule applies even when the exponent n in the 
power expression 
serve to illustrate its application to the latter cases. 
 
Example 5:  
 

Find the derivative of y = x

 

3.9  Power Function Rule Generalised 
 
When a multiplicative constant c appears in the power function, so that f 
(x) = cxn its derivative is
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Since N represents any value of x, it is permissible to write f
This proves the rule for the case of n = 1.  As the graphical counterpart 

e see that the function y = f(x) = x plots as a 45 line, and 
has a slope of + 1 throughout. For the cases of larger integers, n = 2, 3, 

... , let us first note the following identities: 

We can express the derivative of a power function f (x) = xn

Again, N is any value of x; thus this last result can be generalis
which proves the rule for n, any positive integer.  

As mentioned above, this rule applies even when the exponent n in the 
power expression xn is not a positive integer. The following examples 
serve to illustrate its application to the latter cases.  

Find the derivative of y = x0, we find  

 

Power Function Rule Generalised  

When a multiplicative constant c appears in the power function, so that f 
its derivative is 
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Since N represents any value of x, it is permissible to write f′(x) = 1.  
rule for the case of n = 1.  As the graphical counterpart 

function y = f(x) = x plots as a 45 line, and 
For the cases of larger integers, n = 2, 3, 

 

n at x = N as 

 

his last result can be generalised to f′(x) 

As mentioned above, this rule applies even when the exponent n in the 
not a positive integer. The following examples 

When a multiplicative constant c appears in the power function, so that f 
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This result shows that, in differentiating cx
multiplicative constant c intact and 
 
Example 8:  
The derivative of f (x) = 3x−

rule, consider the fact that for any value of x, say, x = N, the value of the 
derivative of f (x) = cxn is 
 

In view that N is any value of x, this last result can
immediately to f′(x) = cnxn−1, which proves the rule. 
 
3.9.1 Rules of Differentiation involving 
 of the same Variable
 
The three rules presented in the preceding section 
with a single given function f (x ). Now suppose that we have two 
differentiable function of the same variable x, say, f(x) and g(x ), and we 
want to differentiate the sum difference, product, or quotient formed 
with these two functions. In such circum
rules that apply? More concretely, given two functions
and g(x) = 9x12 how do we get the derivative of, say, 3x
derivative of (3x2)(9x12)?  
 
3.9.2  Sum-Difference Rule 
 
The derivative of a sum (difference) of two functions is the sum 
(difference) of the derivatives of the two functions: 

The proof of this again involves the application of the definition of a 
derivative and of the various limit theorems. We shall omit the proof 
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This result shows that, in differentiating cxn, we can simply retain the 
multiplicative constant c intact and then differentiate the term xn.  

−2 is f′(x) = −6x−3 For a proof of this new 
rule, consider the fact that for any value of x, say, x = N, the value of the 

 
that N is any value of x, this last result can be generalised 

, which proves the rule.  

Rules of Differentiation involving Two or more Function 
Variable 

The three rules presented in the preceding section are each concerned 
with a single given function f (x ). Now suppose that we have two 
differentiable function of the same variable x, say, f(x) and g(x ), and we 
want to differentiate the sum difference, product, or quotient formed 

In such circumstances, are there appropriate 
rules that apply? More concretely, given two functions-say, f (x) = 3x2 

how do we get the derivative of, say, 3x2 + 9x12 or the 

Difference Rule  

The derivative of a sum (difference) of two functions is the sum 
(difference) of the derivatives of the two functions:  

  
 

The proof of this again involves the application of the definition of a 
derivative and of the various limit theorems. We shall omit the proof 
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and, instead, merely verify its validity and illustrate its application. 
 
Example 11 :  
 

From the function y = 
14x3 = 5x3 + 9x3,

f (x) = 5x3 and g(x) = 9x

According to the sum rule, we then 
27x2 = 42x2 which is identical with our earlier result. 
 
This rule, stated above in terms of two functions, can e
to more func

Example 12:  
 

 

Note that in the last two examples the constants c an
produce any effect on the derivative, because the derivative of a constant 
term is zero. In contrast to 
 

the multiplicative constant, which is retained during differentiation, the 
additive constant drops out. This fact provides the mathematical 
explanation of the well
a firm does not affect its marginal cost. Gi
function  
 

the marginal cost function (for infinitesimal output change) is the limit 
of the quotient Q, or the derivative of the C function: 
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and, instead, merely verify its validity and illustrate its application. 

From the function y = 14x3, we can obtain the derivative 
3, so that y may be regarded as the sum of two functions 

g(x) = 9x3.  

According to the sum rule, we then have  (5x3 + 9x
which is identical with our earlier result.  

This rule, stated above in terms of two functions, can easily be extended 
to more functions. Thus, it is also valid to write

 
 

Note that in the last two examples the constants c and 37 do not really 
effect on the derivative, because the derivative of a constant 

term is zero. In contrast to  

 
the multiplicative constant, which is retained during differentiation, the 
additive constant drops out. This fact provides the mathematical 
explanation of the well-known economic principle that the fixed cost of 
a firm does not affect its marginal cost. Given a short-run total

 
 

the marginal cost function (for infinitesimal output change) is the limit 
of the quotient Q, or the derivative of the C function:  
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and, instead, merely verify its validity and illustrate its application.  

= 42x2 But 
so that y may be regarded as the sum of two functions 

+ 9x3) = 15x2 + 

asily be extended 
tions. Thus, it is also valid to write 

 

d 37 do not really 
effect on the derivative, because the derivative of a constant 

the multiplicative constant, which is retained during differentiation, the 
additive constant drops out. This fact provides the mathematical 

known economic principle that the fixed cost of 
run total-cost 

the marginal cost function (for infinitesimal output change) is the limit 
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whereas the fixed cost is represented by the additive constant 75. Since 

the latter drops out during the process of 
the fixed cost obviously cannot affect the marginal cost. 
  
In general, if a primitive function y = f(x) represents a total

then the derivative function 
can, of course, be plotted against 
of the correspondence between the derivative of 
of its curve, for each value of 
slope of the total function at that value of x.  A
total function is seen to have a constant marginal function. On the other 
hand, the nonlinear (varying slope) total function gives rise to a curved 
marginal function, which lies below 
the total function is negatively (positively) sloped. And, 
reader may note that "nonsmoothness" of a total
gap (discontinuity) in the marginal or derivative function.  This is in 
sharp contrast to the everywhere smooth total function in which gives 
rise to a continuous marginal function. 
of a primitive function can be linked to the continuity of 
function. In particular, instead of saying that a ce
(and differentiable) everywhere, we may alternatively charac
function with a continuous derivative function, and refer to it as a 
continuously differentiable function. 
 
3.9.3  Product Rule  
 
The derivative of the product of two (differentiable) functions is equal to 
the first function times the derivative of the second function plus the 
second function times the derivative of the first function: 

Example 13: 
 
Find the derivative of y = (2x + 3)(3x
Then it follows that f’(x) = 2 and g’(x) = 6x the desired derivative is 
 

  
This result can be checked by first multiplying out f(x)g(x) and then 
taking the The important point to remember is that the 
product of two functions is not the simple product of the two separate 
derivatives. 
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whereas the fixed cost is represented by the additive constant 75. Since 

out during the process of deriving   the magnitude of 
the fixed cost obviously cannot affect the marginal cost.  

In general, if a primitive function y = f(x) represents a total function, 

is its marginal function.  Both functions 
of course, be plotted against the variable x graphically; and because 

ence between the derivative of a function and the slope 
of its curve, for each value of x the marginal function should show the 

he total function at that value of x.  A linear (constant slope) 
function is seen to have a constant marginal function. On the other 

(varying slope) total function gives rise to a curved 
nal function, which lies below (above) the horizontal axis when 

vely (positively) sloped. And, finally, the 
reader may note that "nonsmoothness" of a total function will result in a 

(discontinuity) in the marginal or derivative function.  This is in 
everywhere smooth total function in which gives 

continuous marginal function. For this reason, the smoothness 
be linked to the continuity of its derivative 

function. In particular, instead of saying that a certain function is smooth  
(and differentiable) everywhere, we may alternatively characterise it as a 

continuous derivative function, and refer to it as a 
continuously differentiable function.  

The derivative of the product of two (differentiable) functions is equal to 
the first function times the derivative of the second function plus the 
second function times the derivative of the first function:  

 
 

+ 3)(3x2).  Let f(x) = 2x + 3 and g(x) =3x2.  
Then it follows that f’(x) = 2 and g’(x) = 6x the desired derivative is  

 

This result can be checked by first multiplying out f(x)g(x) and then 
taking the The important point to remember is that the derivative of a 
product of two functions is not the simple product of the two separate 

 

 

.  
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But, by adding and subtracting f(x)g(N) in the numerator
leaving the original 
quotient on the right of (6.11) as follows: 
 

Substituting this result into (6.11) and taking the limit, we then have
 

 
The four limit expressions in (6.12) are
f(N) and the third is g(N) (limit of a constant).  The remaining two are 
(N) and g’ (N). Thus, the above equation can be written as
 

 
Since N represents any value of x, (6.13
N as x. Hence the
replacing the symbol N with x, because N represents any value of x. 
This proves the quotient rule. 
 
3.9.4 Relationship between Marginal Cost and Average Cost 
 Functions
 
As an economic application of the quotient rule, let us consider the rate 
of change of 
 

average cost when output varies. 
Given a cost function C= C(Q), the average cost (AC) the function will 
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But, by adding and subtracting f(x)g(N) in the numerator
leaving the original magnitude unchanged), we can transform the 
quotient on the right of (6.11) as follows:  

Substituting this result into (6.11) and taking the limit, we then have

expressions in (6.12) are easily evaluated.  The first one is 
f(N) and the third is g(N) (limit of a constant).  The remaining two are 

N). Thus, the above equation can be written as 

Since N represents any value of x, (6.13) remains valid if replace every 
N as x. Hence then prove the Theorem which can be generalis
replacing the symbol N with x, because N represents any value of x. 
This proves the quotient rule.  

Relationship between Marginal Cost and Average Cost 
Functions 

economic application of the quotient rule, let us consider the rate 

 
average cost when output varies.  
Given a cost function C= C(Q), the average cost (AC) the function will 
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But, by adding and subtracting f(x)g(N) in the numerator (thereby 
an transform the 

 
Substituting this result into (6.11) and taking the limit, we then have 

 

easily evaluated.  The first one is 
f(N) and the third is g(N) (limit of a constant).  The remaining two are f’ 

 

eplace every 
which can be generalised by 

replacing the symbol N with x, because N represents any value of x. 

Relationship between Marginal Cost and Average Cost 

economic application of the quotient rule, let us consider the rate 

Given a cost function C= C(Q), the average cost (AC) the function will 
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be quotient of  two functions Q. Since AC=
> 0. Therefore, the rate of change
by differentiating AC: 
 

 
Since the derivative C’(Q) represents the marginal

and represents the AC function, the economic meaning of the 
above graph is the slope of the AC curve will be positive, zero, or 
negative if and only if the marginal
lies below the AC curve.  This is illustrated above where
AC functions plotted are based on the specific total
 

C =Q
 
To the left of Q = 6, AC is declining, and thus MC lies below 
right, the opposite is true:At Q =6 , AC has a slope of zero, and 
AC have the same value. The qualitative conclusion in above is stated 
explicitly in terms of cost functions. How
unaffected if we interpret C (Q

with   and C′(Q)as its corresponding averag
functions.  
 
Thus this result gives us general marginal
particular, we may point out, the fact that MR lies below AR when AR 
is downward-sloping, as discussed in con
but a special case of the general result of the above. 
 
3.9.5 Rules of Differentiation involving 
 of Difference Variable
 
In the preceding section, we discussed the rules of differentiation of a 
sum, difference, product, or quotient of two (or more) differentiable 
functions of the same variable. Now we shall consider cases where there 
are two or more differentiable functions,
independent variable.  
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two functions Q. Since AC=  defined as long as Q 
0. Therefore, the rate of change of AC with respect to Q can be found 

 

Since the derivative C’(Q) represents the marginal-cost (MC) function, 

represents the AC function, the economic meaning of the 
above graph is the slope of the AC curve will be positive, zero, or 
negative if and only if the marginal-cost curve lies above, intersects, or 
lies below the AC curve.  This is illustrated above where the MC and 
AC functions plotted are based on the specific total-cost function  

C =Q3−12Q2 +60Q 

To the left of Q = 6, AC is declining, and thus MC lies below it; to the 
is true:At Q =6 , AC has a slope of zero, and MC and 

The qualitative conclusion in above is stated 
n terms of cost functions. How-ever, its validity remains 

C (Q) as any other differentiable total function 

(Q)as its corresponding average and marginal 

this result gives us general marginal-average relationship.  In 
out, the fact that MR lies below AR when AR 

sloping, as discussed in con-nection with above is nothing 
of the general result of the above.  

Rules of Differentiation involving Two or more Function 
Variable 

In the preceding section, we discussed the rules of differentiation of a 
sum, difference, product, or quotient of two (or more) differentiable 
functions of the same variable. Now we shall consider cases where there 
are two or more differentiable functions, each of which has a distinct 
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3.9.6  Chain Rule 
 
If we have a function z = f (y), where y is in turn a function of another 
variable x, say, y = g(x), then the derivative of z with respect to x is 
equal to the derivative of z 
with respect to x. Expressed symbolically,

 
This rule known as the chain rule appeals easily to intuition. Given a ∆
there must result a corresponding ∆
∆y will in turning bring about a ∆
is a "chain reaction follow 
 

The two links in this chain entail two difference quotients,
but when they are multiplied, the y will cancel each other out, and we 
end up with 
 

 

a difference quotient that relates ∆ ∆
difference quotients as ∆ ∆ →
quotient will turn into a derivative; i.e., we shall have
is precisely the result in (9). In view of the function y = g( x ), we can 
express the function z = f (y) as z = f(g(x)), where the con
appearance of the two function symbols f and g indicates that this is a 
composite function (function of a function). It is for this reason that the 
chain rule is also referred to as the composite
of a function rule. 
 
The extension of the chain rule to three or more functions is 
straightforward. If we have z = f (y), y = g(x), and x = h(w), then
 

and similarly for cases in which more functions are involved.
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Chain Rule  

If we have a function z = f (y), where y is in turn a function of another 
variable x, say, y = g(x), then the derivative of z with respect to x is 
equal to the derivative of z with respect to y, times the derivative of y 
with respect to x. Expressed symbolically, 

This rule known as the chain rule appeals easily to intuition. Given a ∆
there must result a corresponding ∆y via the function y = g(x), but this 
∆y will in turning bring about a ∆z via the function z := f (y). Thus there 
is a "chain reaction follow  

 

The two links in this chain entail two difference quotients, 
but when they are multiplied, the y will cancel each other out, and we 

 

a difference quotient that relates ∆z to ∆x. If we take the limit of these 
tients as ∆x (which implies ∆y → 0), each difference 

quotient will turn into a derivative; i.e., we shall have 
is precisely the result in (9). In view of the function y = g( x ), we can 
express the function z = f (y) as z = f(g(x)), where the con
appearance of the two function symbols f and g indicates that this is a 
composite function (function of a function). It is for this reason that the 
chain rule is also referred to as the composite-function rule or function 
of a function rule.  

extension of the chain rule to three or more functions is 
straightforward. If we have z = f (y), y = g(x), and x = h(w), then

  
 

and similarly for cases in which more functions are involved.
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If we have a function z = f (y), where y is in turn a function of another 
variable x, say, y = g(x), then the derivative of z with respect to x is 

with respect to y, times the derivative of y 

 

This rule known as the chain rule appeals easily to intuition. Given a ∆x, 
∆y via the function y = g(x), but this 

∆ ∆z via the function z := f (y). Thus there 

but when they are multiplied, the y will cancel each other out, and we 

e limit of these 
∆ ∆ → 0), each difference 

.This 
is precisely the result in (9). In view of the function y = g( x ), we can 
express the function z = f (y) as z = f(g(x)), where the contiguous 
appearance of the two function symbols f and g indicates that this is a 
composite function (function of a function). It is for this reason that the 

function rule or function 

extension of the chain rule to three or more functions is 
straightforward. If we have z = f (y), y = g(x), and x = h(w), then 

and similarly for cases in which more functions are involved. 
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Example 14: 

 
Example 10: Given a total-revenue function of a firm R = f(Q), where 
output Q is a function of labor input L, or Q = g(L), find
chain rule, we have 

 

Translated into economic term

physical labour M P PL functions
the marginal-revenue-product
shown above constitutes the mathematical statement of the well
result in economic thatM RPL 
 
3.10  Total Derivatives  
 
With the notion of differentials at our disposal, we are now equipped to 
answer the question posed at the beginning of the chapter, namely, how 
we find the rate of change of the 
when Y and T0 are related.  
 
As previously mentioned, the answer lies in the concept of 
derivative. Unlike a partial derivative, a total derivative does not require 
the argument Y to remain constant as T
the postulated relationship be the two arguments 
 
3.10.1  Finding the Total Derivatives 
 
To carry on the discussion in a more general framework, let us consider 
any function  
y =f(x, w) where x= g( W) 
 
with the three variables y, x, and w related. In 
to as a channel map, it is clearly seen that w
change in this case-can affect y 
the function g and then f (the straight arrows), 
fun tion f (the curve arrow). Whereas the partial derivatie f
for expressing the direct efffect along, a total deriv
express both jointly.  
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revenue function of a firm R = f(Q), where 
a function of labor input L, or Q = g(L), finddRdL . By the 

 

Translated into economic term  is the MR function  marginal 

functions.  Similarly,  has the connotation of 
product-of-labor MRPL function. Thus the result 

shown above constitutes the mathematical statement of the well-known 
 = M.RM P PL.  

With the notion of differentials at our disposal, we are now equipped to 
answer the question posed at the beginning of the chapter, namely, how 
we find the rate of change of the function C(Y, T0) with respect to T0 

As previously mentioned, the answer lies in the concept of total 
tial derivative, a total derivative does not require 

the argument Y to remain constant as T0 varies, and can thus allow for 
d relationship be the two arguments  

Finding the Total Derivatives  

To carry on the discussion in a more general framework, let us consider 

 

with the three variables y, x, and w related. In this, which we shall refer 
nel map, it is clearly seen that w-::-the ultimate source of 

can affect y through two channels: OJ indirectly, via 
he straight arrows), and (2) directly, via the 

arrow). Whereas the partial derivatie fw  is adequate 
for expressing the direct efffect along, a total derivative it needs to 
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To obtain this total derivative, we first differentiate y totally, to get the 
total erential dy = f
divided by the differential dw, the result is
 

 
Since the ratio of two differentials may be interpreted as a derivative, 

the e sion on
change of y with respect. Moreover, if the two terms on the right side of 
above equation ca

effects of w on y, then

seeking. Now, the second term 
direct effect, and it tl:n!s. corresponds tonthe curved arrow, That the first 

term  measures the indirect
evident when we analyze it with the help of some arrows as follows: 
 

 
The change in w (namely, dw) is in the first instance transmitted to the 
variable x, and through the resulting change in x (namely, dx) it is 
relayed to the va
depicted by the sequence of straight arrows in above. 
 
Hence, the expressions in above does indeed represent the desired total 

derivative.  The 
as total differentiation of y with respect to w. 
 
3.11  Partial Differentiation 
 
Hitherto, we have considered only the derivatives of fun
single independent 
are likely to encounter the situation 
in a model, so that
may be a function of more than one p
 
Therefore, asa final 
derivative to comparative statics, we 
derivative of a function of more than one variable. 
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To obtain this total derivative, we first differentiate y totally, to get the 
total erential dy = fxdx + fwdy .When- both sides of this equation are 
divided by the differential dw, the result is 

Since the ratio of two differentials may be interpreted as a derivative, 

on the left rriiy b regarded as some measure of the rate of 
change of y with respect. Moreover, if the two terms on the right side of 
above equation can be identified, respectively, as the indirect and direct 

effects of w on y, then will indeed be total derivative we are 

seeking. Now, the second term is already known to measure the 
direct effect, and it tl:n!s. corresponds tonthe curved arrow, That the first 

measures the indirect ∂xdw) effect will also become 
evident when we analyze it with the help of some arrows as follows: 

 

The change in w (namely, dw) is in the first instance transmitted to the 
variable x, and through the resulting change in x (namely, dx) it is 

yed to the variabley. But this is precisely the indirect effect, as 
depicted by the sequence of straight arrows in above.  

Hence, the expressions in above does indeed represent the desired total 

The process of finding the total derivative  is referred to
as total differentiation of y with respect to w.  

Partial Differentiation  

Hitherto, we have considered only the derivatives of fun
single independent variable. In comparative-static analysis, however, we 

ely to encounter the situation in which several parameters appear 
in a model, so that the equilibrium value of each endogenous variable 
may be a function of more than one parameter.  

Therefore, asa final preparation for the application of the concept of 
ive to comparative statics, we must learn how to find the 

derivative of a function of more than one variable.  

INTRODUCTION TO MATHEMATICAL ECONOMICS  

To obtain this total derivative, we first differentiate y totally, to get the 
both sides of this equation are 

 

Since the ratio of two differentials may be interpreted as a derivative, 

the left rriiy b regarded as some measure of the rate of 
change of y with respect. Moreover, if the two terms on the right side of 

as the indirect and direct 

ivative we are 

is already known to measure the 
direct effect, and it tl:n!s. corresponds tonthe curved arrow, That the first 

effect will also become 
evident when we analyze it with the help of some arrows as follows:  

The change in w (namely, dw) is in the first instance transmitted to the 
variable x, and through the resulting change in x (namely, dx) it is 

is precisely the indirect effect, as 

Hence, the expressions in above does indeed represent the desired total 

is referred to 

Hitherto, we have considered only the derivatives of functions of a 
static analysis, however, we 

in which several parameters appear 
endogenous variable 

preparation for the application of the concept of 
must learn how to find the 
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3.11.1 Partial Derivatives  
 
Let us consider a function  
 

y=f(x1

 
There the variables X; ( i = 1, 2, ...
that each can vary by itself without affecting the others. If the variable 
x1 undergoes a change ∆x1 while x
be a corresponding change in y, namely, ∆
this case can be expressed as 
 

 

If we take the limit of 
derivative. We call it the partial derivative of y with respect to x1, to 
indicate that all the other independent variables in the
constant when taking tills particular derivative. Sim
derivatives can be defined for infinitesimal ch
independent variables. The process of taking partial derivatives is c
partial differentiation.  
 
Partial derivatives are assigned distinctive symbols. In lieu of the letter d 

 we employ the symbol which is a variant of the Greek (δ
(lower case delta). Thus we shall now write
with respect to xi." The partial

written as  in that case, its
symbol instructing us to take the
with respect to the variable x

denoted in (9) by f, it is also permissible to write
 
Is there also a partial-derivative counterpart for
used before?  
 
The answer is yes.  Instead of f’, however, we now
the subscript indicates independent variable (alone) is being allowed to
vary. If the function in (13) 
unsubscripted variables, such as Y 
the partial derivatives may be denoted by f
and f3.  
 

      MODULE 4 

 

1,x2,x3, xn) (12) 

variables X; ( i = 1, 2, ...n) all independent of one another, so 
that each can vary by itself without affecting the others. If the variable 

while x2, xn all remain fixed, there will 
be a corresponding change in y, namely, ∆y. The difference quotient in 

 

 as ∆x1→ 0, that limit will constitute a 
derivative. We call it the partial derivative of y with respect to x1, to 
indicate that all the other independent variables in the- function are held 

lls particular derivative. Similar partial 
derivatives can be defined for infinitesimal changes in the other 

variables. The process of taking partial derivatives is called 

Partial derivatives are assigned distinctive symbols. In lieu of the letter d 

employ the symbol which is a variant of the Greek (δ) 

(lower case delta). Thus we shall now write the partial derivative y 
." The partial-derivative symbol sometimes is also 

in that case, its part can be regarded as an operator 
symbol instructing us to take the partial derivative of (some function) 
with respect to the variable xi  Since the function involved here is 

denoted in (9) by f, it is also permissible to write  

derivative counterpart for the symbol f’(X) that we 

The answer is yes.  Instead of f’, however, we now-use f1, f1, etc where 
cates independent variable (alone) is being allowed to 

vary. If the function in (13) happens to be written in terms of 
scripted variables, such as Y − = f (u, vw), then  

the partial derivatives may be denoted by fu, fv  and fw  rather than f1, f2 
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In line with these notations, and on the basis of (12) and (13), we can 
now define 

as the first in the set of n partial derivatives of the function f. 
 
3.11.2   Techniques of Partial Differentiation
 
Partial differentiation differs from the previously discussed 
differentiation primarily in that we must hold (n 
variables constant while allow ing one variable to vary. Inasmuch as we 
have learned how to handle constants in differentiation
differentiation should pose little problem. 
 
Example 14:  
Given y = f (x1, x

find the partial derivatives.  When finding 
mind that x2 is to be treated as a constant during differentiation.  As 
such, x2 will drop out in the process if it is an additive constant (such as 
the term 4x2 but
as in term of x1x

Similarly, by treating x

 

Note that, like the primitive function f, both partial derivatives are 
themselves functions of the variables x
them as two derived functions 
point (x1, x2) = (1, 3) in the domain of the function f example, the partial 
derivatives will take the following specific values: 
 
f1(1, 3) = 6(1) + 3 = 9) and f
 
3.11.3 Geometric Interpretation of Partial Derivatives 
 
As a special type of derivative, a partial derivative is a measure of the 
instanta neous rates of change of some variable, and in that capacity it 
again has a geometric counterpart in the slope of a particu
Let us consider a production function Q = Q(K, L), wh
denote output, capital input, and labor input, respectively.  This function 
is a particular two

     INTRODUCTION TO MATHEMATICAL ECONOMICS 

In line with these notations, and on the basis of (12) and (13), we can 

 
as the first in the set of n partial derivatives of the function f. 

Techniques of Partial Differentiation 

Partial differentiation differs from the previously discussed 
differentiation primarily in that we must hold (n - 1) independent 
variables constant while allow ing one variable to vary. Inasmuch as we 
have learned how to handle constants in differentiation
differentiation should pose little problem.  

, x2) = 3x2f + x1x2 + 4x,  

ial derivatives.  When finding  (or f1), we must bear in 
is to be treated as a constant during differentiation.  As 
drop out in the process if it is an additive constant (such as 
but will be retained if it is as multiplicative constant (such 

x2 ). Thus we have  

 

Similarly, by treating x1 as a constant, we find that  
 

 

Note that, like the primitive function f, both partial derivatives are 
themselves functions of the variables x1 and x2. That is, we may write
them as two derived functions f1 = f1(x1, x2) and   f3 = f2(x1, x

) = (1, 3) in the domain of the function f example, the partial 
derivatives will take the following specific values:  

(1, 3) = 6(1) + 3 = 9) and f2(1, 3) = 1 + 8(3) = 25  

Geometric Interpretation of Partial Derivatives 

As a special type of derivative, a partial derivative is a measure of the 
instanta neous rates of change of some variable, and in that capacity it 
again has a geometric counterpart in the slope of a particular curve.
Let us consider a production function Q = Q(K, L), where Q, K, and L 

capital input, and labor input, respectively.  This function 
is a particular two-variable version of (12), with n = 2.  We can therefore 
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In line with these notations, and on the basis of (12) and (13), we can 

as the first in the set of n partial derivatives of the function f.  

Partial differentiation differs from the previously discussed 
1) independent 

variables constant while allow ing one variable to vary. Inasmuch as we 
have learned how to handle constants in differentiation, the actual 

), we must bear in 
is to be treated as a constant during differentiation.  As 
drop out in the process if it is an additive constant (such as 

will be retained if it is as multiplicative constant (such 

Note that, like the primitive function f, both partial derivatives are 
. That is, we may write 

, x2). For the 
) = (1, 3) in the domain of the function f example, the partial 

Geometric Interpretation of Partial Derivatives  

As a special type of derivative, a partial derivative is a measure of the 
instanta neous rates of change of some variable, and in that capacity it 

lar curve. 
ere Q, K, and L 

capital input, and labor input, respectively.  This function 
variable version of (12), with n = 2.  We can therefore 
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define two partial derivatives
derivative QK relates to the 
infinitesimal changes in capital, while labor input is held constant. Thus 
QK symbolizes the marginal physical
function.  Siinilarly, the partial derivative QL is the mathematical 
representation of the MPPL function. 
 
Geometrically, the production function Q = Q( K, L) can be depicted by 
a production surface in a 3 space, such as is shown in fig 5 The variable 
Q is plotted vertically, so that 
plane), the height of the surface will indicate 
 

the output Q. The domain of the function should consist of the entire 
nonnegative quadrant of the base plane, but for our purposes it 
sufficient to consider a subset of it, the rectangle 
consequence, only a small portion of the production surface is shown in 
the figure.  
 
Let us now hold capital fixed at the level K
in the input L. By setting K = K
become irrelevant except those on the line segment K
token, only the curve K0CDA (a cross section of the production surface) 
will be germane to the present discussion. This curve represents a total 
physical product of labor (TPPL). 
 
See the diagram below for better understanding curve for a fixed amount 
of capital K = K0, thus we may read from its slope the rate of change of 
Q with respect to changes in L while K is held constant.  It is clear, 
therefore, that the slope of a curve such as K
geometric counterpart of the partial derivative QL. Once again, we note 
that the slope of a total (TPP
(MPPL = QL) curve.  
 
It was mentioned earlier that a partial derivative is a f
independent variables of the primitive function.  That QL is a function 
of L is immediately obvious 
L1, the value of QL is equal to the slope of the 
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. The partial 
to the rates of change in output with respect to 

infinitesimal changes in capital, while labor input is held constant. Thus 
symbolizes the marginal physical-product-of-capital (M P PK) 

partial derivative QL is the mathematical 
representation of the MPPL function.  

Geometrically, the production function Q = Q( K, L) can be depicted by 
surface in a 3 space, such as is shown in fig 5 The variable 

otted vertically, so that for any point ( K, L) in the base plane (KL 
plane), the height of the surface will indicate  

 
the output Q. The domain of the function should consist of the entire 
nonnegative quadrant of the base plane, but for our purposes it is 
sufficient to consider a subset of it, the rectangle OK0BL0. As a 
consequence, only a small portion of the production surface is shown in 

Let us now hold capital fixed at the level K0 and consider only variations 
in the input L. By setting K = K0 , all points in our (curtailed) domain 
become irrelevant except those on the line segment K0B. By the same 

CDA (a cross section of the production surface) 
ne to the present discussion. This curve represents a total 

physical product of labor (TPPL).  

See the diagram below for better understanding curve for a fixed amount 
, thus we may read from its slope the rate of change of 

to changes in L while K is held constant.  It is clear, 
therefore, that the slope of a curve such as K0CDA represents the 
geometric counterpart of the partial derivative QL. Once again, we note 
that the slope of a total (TPPL) curve is its corresponding marginal 

It was mentioned earlier that a partial derivative is a function of all the 
variables of the primitive function.  That QL is a function 

iately obvious from the K0CDA curve itself. When L = 
L is equal to the slope of the curve at point C; but 
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when L = L2 , the relevant slope is the one at point D. Why is QL also a 
function of K? The answer is that K can be fixed at various levels, and 
for each fixed level of K, there will result a different TPPL curve (a 
different cross section of the production surface), with inevitable 
repercussions on the derivative QL. Hence QL is also a function of K.  
 
An analogous interpretation can be given to the partial derivative QK. If 
the labor input is held constant instead of K (say, at the level of L0  ), the 
line segment L0  B will be the relevant subset of the domain, and the 
curve L0  A will indicate the relevant subset of the production surface. 
The partial derivative QK can then be interpreted as the slope of  
the curve L0 A-bearing in mind that the K axis extends from southeast to 
northwest in Figure above. It should be noted that QK is again a function 
of both the variables L and K.  
 
4.0 CONCLUSION 
 
At end of this module students are able differentiate and determine the 
limit of func-tions. Also differentiate between partial and total 
differentiation with their applications.  
 
5.0 SUMMARY 
 
This unit highlighted Comparative Statics, described Derivatives and 
their applications, discussed Function and its limits, and the techniques 
of Differentiation. 
 
6.0 TUTOR-MARKED ASSIGNMENT 
 
1. A function y=f(x) is dicontinuous at x = x0 when any of the three 

requirements forcontinuity is violated at x = x0. Construct three 
graphs to illustrate the violation of each of each requirement.  

2. Given the function q=g(v)=v2+2+2  
(a)   Use limit theorem to find limv−→N q, N being a finite ral 
 number  
(b)   Check whether this is equal g(N)  
(c)   Check continuity of the function g(v) at N and in its 
 domain (−∞, ∞)  
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1.0  INTRODUCTION 
 
Equipped with the knowledge of the various rules of differentiation, we 
can at last tackle the problem posed in comparative
namely, how the equilibrium value of an endogenous variable will 
change when there is a change in any of the exoge
parameters.  
 
2.0  OBJECTIVES 
 
At the end of this unit, you should be able to:
 
• illustrate 
• describe how to determine market model 
• demonsrtate
• discuss input and output model. 
 
3.0  MAIN CONTENT 
 
3.1  Market Model 
 
First let us consider again the simple one
(3.1). That model can be written in the form of two equations: Q = a
(a, b > 0)(c, d > 0) (demand) 
(supply)  

     INTRODUCTION TO MATHEMATICAL ECONOMICS 

APPLICATIONS TO COMPARATIVE STATIC 
ANALYSIS   

Introduction  
Objectives  
Main Content  

Market Model 
National-Income Model 
Input-Output Model 

Conclusion 
5.0      Summary 

References/Further Reading 

INTRODUCTION  

Equipped with the knowledge of the various rules of differentiation, we 
can at last tackle the problem posed in comparative-static analysis:  
namely, how the equilibrium value of an endogenous variable will 
change when there is a change in any of the exogenous variables or 

OBJECTIVES  

At the end of this unit, you should be able to: 

 the application of differentiation 
how to determine market model  

demonsrtate how to determine national income and model
input and output model.  

MAIN CONTENT  

Market Model  

First let us consider again the simple one-commodity market model of 
(3.1). That model can be written in the form of two equations: Q = a
(a, b > 0)(c, d > 0) (demand)  

INTRODUCTION TO MATHEMATICAL ECONOMICS  

ICATIONS TO COMPARATIVE STATIC 

Equipped with the knowledge of the various rules of differentiation, we 
static analysis:  

namely, how the equilibrium value of an endogenous variable will 
nous variables or 

how to determine national income and model 

commodity market model of 
(3.1). That model can be written in the form of two equations: Q = a−bP 
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These solutions will be referred to as being in the reduced form:  the two 
endogenous variables have been reduced to explicit expressions of the 
four mutually independent parameters a, b, c, and d. 
 
To find how an infinitesimal change in one of the paramete
the value of P, one has only to differentiate (2) partially with respect to 

each of the parameters. If the sign of a partial derivative, say,
be determined from the given information about the parameters, we 
shall know the direction in which
changes; this constitutes a qualitative conclusion. Ifthe magnitude of

 can be ascertained, it will constitute quantitative conclusion.
 
Similarly, we can draw qualitative or quantitative conclusions from the 

partial derivatives of P with respect to each parameter, such as
avoid misunderstanding, however, a clear distinction should be made 

between the two derivatives 
concept appropriate to the demand fun

regard to the supply function.  The derivative
hand, to the equilibrium quantity in (3) which, being in the nature of a 
solution of the model, takes into account the interaction of demand and 
supply together.  To emphasize this distinction, we shall refer to the 
partial derivatives of P and Q with respect to the parameters as 
comparative-static derivatives. 
 
Concentrating on P for the time being, w
partial derivatives from (1): 
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solutions will be referred to as being in the reduced form:  the two 
endogenous variables have been reduced to explicit expressions of the 
four mutually independent parameters a, b, c, and d.  

To find how an infinitesimal change in one of the parameters will affect 
one has only to differentiate (2) partially with respect to 

each of the parameters. If the sign of a partial derivative, say,  can 
from the given information about the parameters, we 

which P will move when the parameter a 
changes; this constitutes a qualitative conclusion. Ifthe magnitude of∂

an be ascertained, it will constitute quantitative conclusion. 

Similarly, we can draw qualitative or quantitative conclusions from the 

P with respect to each parameter, such as To 
avoid misunderstanding, however, a clear distinction should be made 

 and . The latter derivative is a 
concept appropriate to the demand function taken alone, and without 

regard to the supply function.  The derivative  pertains, on the other 
hand, to the equilibrium quantity in (3) which, being in the nature of a 

es into account the interaction of demand and 
supply together.  To emphasize this distinction, we shall refer to the 
partial derivatives of P and Q with respect to the parameters as 

static derivatives.  

Concentrating on P for the time being, we can get the following four 
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Since all the parameters are restricted to being positive in the present 
model, we can conclude that

 
In figure below pictures an increase in the 
means a higher vertical intercept for the demand curve, and inasmuch as
the parameter b (the slope pa
results in a paral
intersection of D
price P′, which is greater than the old equilibrium price P. This 

corroborates the result that
we have shown in figure below 
than what the concept of derivative implies. 
 
The situation figure below has a similar interpretation; but 
increase takes place 
supply curve instead. 
supply curve has a vertical intercept of 
mean a change in the intercept, say, from 
cal comparative static result, that P
the positive sign 
 

of the derivative
 
The below illustrate the effects of changes in the slope parameters b and 
d of the twofunctions in the model. An increase in b means that the 
slope of the demand curve willassume a larger numerical (absolute) 

value; i.e., it will become steeper.  In accordancewith the result
we find a decrease in P in this diagram. The increase in d thatmakes the 
supply curve steeper also results in a decrease in the equilibrium price. 
This is, of course, again in lin

comparative-static derivative
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Since all the parameters are restricted to being positive in the present 
conclude that 

In figure below pictures an increase in the parameter a (to a
vertical intercept for the demand curve, and inasmuch as

the parameter b (the slope parameter) is unchanged, the increase in a 
results in a parallel upward shift of the demand curve from D to D

f D′ and the supply curve S determines an equi
, which is greater than the old equilibrium price P. This 

corroborates the result that > 0, although for the sake of exposition 
we have shown in figure below a much larger change in the parameter a 
than what the concept of derivative implies.  

The situation figure below has a similar interpretation; but 
increase takes place in the parameter c, the result is a parallel shif
supply curve instead. Note that this shift is downward because the 

as a vertical intercept of -c; thus an increase in c would 
mean a change in the intercept, say, from -2 to -4. The graphi
cal comparative static result, that P′ exceeds P, again conforms to what 

sitive sign  

 

of the derivative expect. 

The below illustrate the effects of changes in the slope parameters b and 
d of the twofunctions in the model. An increase in b means that the 
slope of the demand curve willassume a larger numerical (absolute) 

value; i.e., it will become steeper.  In accordancewith the result
we find a decrease in P in this diagram. The increase in d thatmakes the 
supply curve steeper also results in a decrease in the equilibrium price. 

is, of course, again in line with the negative sign of the 

static derivative . 
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Since all the parameters are restricted to being positive in the present 

 

parameter a (to a′)  This 
vertical intercept for the demand curve, and inasmuch as 

rameter) is unchanged, the increase in a 
curve from D to D′ . The 

ply curve S determines an equi-librium 
, which is greater than the old equilibrium price P. This 

although for the sake of exposition 
arger change in the parameter a 

The situation figure below has a similar interpretation; but since the 
in the parameter c, the result is a parallel shift of the 

that this shift is downward because the 
thus an increase in c would 

4. The graphi- 
conforms to what 

The below illustrate the effects of changes in the slope parameters b and 
d of the twofunctions in the model. An increase in b means that the 
slope of the demand curve willassume a larger numerical (absolute) 

value; i.e., it will become steeper.  In accordancewith the result < 0, 
we find a decrease in P in this diagram. The increase in d thatmakes the 
supply curve steeper also results in a decrease in the equilibrium price. 

th the negative sign of the 
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Thus far, all the results in (3) seem to have been obtainable graphically. 
If so, why should we bother to learn differentiation at all? The answer is 
that the differentiation approach has at leas
the graphical technique is subject to a dimensional restriction, but 
differentiation is not. Even  
 
When the number of endogenous variables and parameter
the equilibrium state cannot be shown graphically, we can
apply the differentiation tech
differentiation method can yield results that a
generality. The results in (2) will remain val
values that the parameters a, b, c, and d take, as long as they satisfy the 
sign restrictions.  
 
So the comparative-static conclusions of this model are, in eff
applicable to an infinite number of combinations of (linear) demand and 
supply functions. In contrast, the graph
some specific members of the family of demand and supply 
curves, and the analytical result derived therefrom is appli
speaking, only to the specific functions depicted. 
 
The above serves to illustrate the appl
comparativestatic analysis of the simple market model, but only half of 
the task has actually been accomplished, for we can also find the 
comparative-static derivatives pertaining to Q. This we shall leave to 
you as an exercise.  
 
3.2  National-Income Model 
 
Let us study a slightly enlarged model with three endogenous variables, 
Y (national income), C (consumption), and T (taxes): 
 

 
 
The first equation in this system gives the equilibrium 
national income, while the second and third equations show, 
respectively, how C and T are determined in 
 
The restrictions on the values of the parameters α β γ δ
explained thus: a is positive because consumption is positive even if 
disposable income (Y- T) is zero; β
represents the marginal propensity to consume
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to the specific functions depicted.  

The above serves to illustrate the application of partial differentiation to 
comparativestatic analysis of the simple market model, but only half of 
the task has actually been accomplished, for we can also find the 

static derivatives pertaining to Q. This we shall leave to 

Income Model  

Let us study a slightly enlarged model with three endogenous variables, 
Y (national income), C (consumption), and T (taxes):  

 

The first equation in this system gives the equilibrium condition for 
while the second and third equations show, 

how C and T are determined in the model.  

The restrictions on the values of the parameters α, β, γ, and δ can be 
explained thus: a is positive because consumption is positive even if 

T) is zero; β is a positive fraction because it 
represents the marginal propensity to consume; y is positive because 
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even if Y is zero the government will still have a positive tax revenue 
(from tax bases other than income); and finally, l) is a positive fraction 
because it represents an income tax rate, and as such it cannot exceed 
100 percent.  
 
The exogenous variables (investment) and 
are, of course, nonnegative. All the parameters and exogenous variables 
are assumed to be ind
can be assigned 
 
This model can be solved for 
into the second and
The equilibrium income (in reduced form) is

 
Similar equilibrium values can also be found for the endogenous 
variables C and T, but we shall concentrate on the equilibrium income. 
 
From (5), there can be obtained six comparative
Among these, the following three have special polic
 

 
The partial derivative in (8) gives us the government
multiplier.  It has a 
greater than zero.  If numerical 
δ, we can also fi
derivative in (5) may be called the non income
because it shows how a change in y, the government revenu
income-tax sources, 
is negative in the present model be
positive and the numerator is negative.
(8) represents an income
equilibrium income, this 
 

Again, note the difference between the two derivatives a
The former is derived from (5), the expression for the equilibrium 
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income. The latter, obtainable from the
which is altogether different in magnitude and in concept. 
 
3.3 Input-Output Model
 
The solution of an open input-
x = (I − A) −1d. If we denote the inverse matrix x = 
then, for instance, the solution
written as x = Bd or 
 

What will be the rates of change of the solution values x1 with respect to 
the exogenous final demands d
 

 

To see this, let us multiply out Bd in above and express the solution as

 

In this system of three equations, each one gives a particular solution 
value as a function of the exogenous final demands.  Partial 
differentiation of these will produce a total of
derivatives: 
 

 
This is simply the expanded version of above structure. 
Reading above structure as three distin
three deriva tives in each column into a matrix (vector) derivative: 
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income. The latter, obtainable from the first equation in (4), is = 1, 
which is altogether different in magnitude and in concept.  

Output Model 

-output model appears as a matrix equation 
If we denote the inverse matrix x = (I −A)−1 by B = (bij ), 

then, for instance, the solution for a three-industry economy can be 

 
 

What will be the rates of change of the solution values x1 with respect to 
demands d1, d2, and d3? The general answer is that 

 

To see this, let us multiply out Bd in above and express the solution as 

 

In this system of three equations, each one gives a particular solution 
of the exogenous final demands.  Partial 

differentiation of these will produce a total of nine comparative-static 

 

This is simply the expanded version of above structure.  
Reading above structure as three distinct columns, we may combine the 
three deriva tives in each column into a matrix (vector) derivative:  



FMT 204  

 
Since the three column vectors in (7.23") are merely the columns of the 
matrix B, by 
derivatives in a 
simply write 

This is a compact way of denoting all the comparative
of our open inputoutput model. Obviously, this matrix derivative can 
easily be extended from 
n-industry case. 
 
Comparative-static derivatives of the input
tools of economic 
If the planning targets, as reflected 
and if we wish to take care of all direct and indirect requirements in the 
economy so as to be completely free of bottlenecks, how must we 
change the output goals of the n industries? 
 
4.0 CONCLUSION
 
We can conclude that, here students are able to handl
problems on differentiation, partial differential equations and modelli
and able to solve them rela
 
5.0 SUMMARY
 
This unit focused on Comparative Static Analysis as a platform to 
determine how the equilibrium value of an endogenous variable will 
change when there is a change in any of the exogenous variables or 
parameters. It is useful in determining market model, national income 
and model, input and output model.
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1.0 INTRODUCTION 
 
Backward induction  
 
Backward induction is a technique to solve a game of perfect 
information. This process first considers the moves that are the last in 
the game and determine the best move for the player in each case. Then, 
taking these as given future actions, it proceeds backwards in time, 
again determining the best move for the respective players, until the 
beginning of the game is reached.  
 
Common knowledge  
 
A fact is common knowledge if all players know it, and know that they 
all know it, and so on. The structure of the game is often assumed to be 
common knowledge among the players.  
 
Dominating strategy  
 
A strategy dominates another strategy of a player if it always gives a 
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better payoff to that player, regardless of what the other players are 
doing. It weakly dominates the other strategy if it is always at least as 
good.  
 
Extensive game  
 
An extensive game (or extensive form game) describes with a tree how a 
game is played. It depicts the order in which players make moves, and 
the information each player has at each decision point.  
 
Game A game is a formal description of a strategic situation.  
 
Game theory  
 
Game theory is the formal study of decision-making where several 
players must make choices that potentially affect the interests of the 
other players.  
 
Mixed strategy  
 
A mixed strategy is an active randomisation, with given probabilities 
that determine the players’ decision. As a special case, a mixed strategy 
can be the deterministic choice of one of the given pure strategies.  
 
Nash equilibrium  
  
Nash equilibrium, also called strategic equilibrium, is a list of strategies, 
one for each player, which has the property that no player can 
unilaterally change his strategy and get a better payoff.  
 
Payoff  
 
A payoff is a number, also called utility that reflects the desirability of 
an outcome to a player, for whatever reason. When the outcome is 
random, payoffs are usually weighted with their probabilities.  The 
expected payoff incorporates the players’ attitude towards risk.  
 
Perfect information  
 
A game has perfect information when at any point in time only one 
player makes a move, and knows all the actions that have been made 
until then.  
 
Player  
 
A player is an agent who makes decisions in a game.  
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Rationality  
 
A player is said to be rational if he seeks to play in a manner which 
maximises his own payoff. It is often assumed that the rationality of all 
players is common knowledge.  
 
Strategic form  
 
A game in strategic form, also called normal form, is a compact 
representation of a game in which players simultaneously choose their 
strategies.  The resulting payoffs are presented in a table with a cell for 
each strategy combination.  
 
Strategy  
 
In a game in strategic form, a strategy is one of the given possible 
actions of a player. In an extensive game, a strategy is a complete plan 
of choices, one for each decision point of the player.  
 
Zero -sum game  
 
A game is said to be zero-sum if for any outcome, the sum of the 
payoffs to all players is zero. In a two-player zero-sum game, one 
players gain is the other player’s loss, so their interests are diametrically 
opposed.  
 

2.0  OBJECTIVES  
 
At the end of this unit, you should be able to: 
 

• describe the techniques of games theory equilibrium  
• explain zero sum and computation in games theory 
• discuss bidding and auction in games theory. 
 
3.0 MAIN CONTENT 
 
3.1 Game Theory 
 
The earliest example of a formal game theoretic analysis is the study of 
a duopoly by Antoine Cournot in 1838. The mathematician Emile Borel 
suggested a formal theory of games in 1921, which was furthered by the 
mathematician John von Neumann in 1928 in a theory of parlour games. 
Game theory was established as a field in its own right after the 1944 
publication of the monumental volume Theory of Games and Economic 
Behaviour by von Neumann and the economist Oskar Morgenstern.  
This book provided much of the basic terminology and problem setup 
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that is still in use today.  
 
In 1950, John Nash demonstrated that finite games have always have an 
equilibrium point, at which all players choose actions which are best for 
them given their opponents choices.  This central concept of 
noncooperative game theory has been a focal point of  
analysis since then.  In the 1950s and 1960s, game theory was 
broadened theoretically and applied to problems of war and politics. 
Since the 1970s, it has driven a revolution in economic theory. 
Additionally, it has found applications in sociology and psychology,  
and established links with evolution and biology. Game theory received 
special attention in 1994 with the awarding of the Nobel Prize in 
economics to Nash, John Harsanyi, and Reinhard Selten.  
 
At the end of the 1990s, a high-profile application of game theory has 
been the design of auctions. Prominent game theorists have been 
involved in the design of auctions for allocating rights to the use of 
bands of the electromagnetic spectrum to the mobile 
telecommunications industry.  Most of these auctions were designed 
with the goal of allocating these resources more efficiently than 
traditional governmental practices, and additionally raised billions of 
dollars in the United States and Europe.  
 
Game theory is the formal study of conflict and cooperation.  Game 
theoretic concepts apply whenever the actions of several agents are 
interdependent.  These agents may be individuals, groups, firms, or any 
combination of these.  The concepts of game theory provide a language 
to formulate structure, analyse, and understand strategic scenarios.  
 
3.1.1 Game Theory and Information Systems 
 
The internal consistency and mathematical foundations of game theory 
make it a prime tool for modelling and designing automated decision-
making processes in interactive environments.  For example, one might 
like to have efficient bidding rules for an auction website, or tamper-
proof automated negotiations for purchasing communication bandwidth.  
Research in these applications of game theory is the topic of recent 
conference and journal papers but is still in a nascent stage.  The 
automation of strategic choices enhances the need for these choices to 
be made efficiently, and to be robust against abuse. Game theory 
addresses these requirements.  
 
As a mathematical tool for the decision-maker the strength of game 
theory is the methodology it provides for structuring and analysing 
problems of strategic choice. The process of formally modelling a 
situation as a game requires the decision-maker to enumerate explicitly 
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the players and their strategic options, and to consider their preferences 
and reactions. The discipline involved in constructing such a model 
already has the potential of providing the decision-maker with a clearer 
and broader view of the situation.  This is a prescriptive application of 
game theory, with the goal of improved strategic decision  
making.  With this perspective in mind, this article explains basic 
principles of game theory, as an introduction to an interested reader 
without a background in economics.  
 
3.1.2 Definitions of Games 
 
The object of study in game theory is the game, which is a formal model 
of an inter-active situation.  It typically involves several players; a game 
with only one player is usually called a decision problem. The formal 
definition lays out the players, their preferences, their information, and 
the strategic actions available to them, and how these influence the 
outcome.  
 
Games can be described formally at various levels of detail. A 
coalitional (or cooperative) game is a high-level description, specifying 
only what payoffs each potential group, or coalition, can obtain by the 
cooperation of its members. What is not made explicit is the  
process by which the coalition forms. As an example, the players may 
be several parties in parliament. Each party has a different strength, 
based upon the number of seats occupied by party members. The game 
describes which coalitions of parties can form a majority, but does not 
delineate, for example, the negotiation process through which an 
agreement to vote en bloc is achieved.  
 
Cooperative game theory investigates such coalitional games with 
respect to the relative amounts of power held by various players, or how 
a successful coalition should divide its proceeds.  This is most naturally 
applied to situations arising in political science or international relations, 
where concepts like power are most important. For example, Nash 
proposed a solution for the division of gains from agreement in a 
bargaining problem which depends solely on the relative strengths of the 
two parties bargaining position. The amount of power a side has is 
determined by the usually inefficient outcome that results when 
negotiations break down.  Nash model fits within the cooperative 
framework in that it does not delineate a specific time line of offers and 
counteroffers, but rather focuses solely on the outcome of the bargaining 
process.  
 
In contrast, non cooperative game theory is concerned with the analysis 
of strategic choices. The paradigm of non cooperative game theory is 
that the details of the ordering and timing of players’ choices are crucial 
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to determining the outcome of a game.  In contrast to 
Nash’s cooperative model, a non cooperative model of ba
post a specific process in which it is pre
offer at a given time. The term 
game theory explicitly models the process of players 
of their own interest. Cooperation can, and often does, arise in non
cooperative models of games, when players find it in thei
interests. Branches of game theory also differ in their assumptions. A 
central assumption in many variants of 
are rational. A rational player is one who always chooses 
which gives the outcome he most prefers,
opponents to do. The goal of game
then, is to predict how the game will be played by rational players, or, 
related, to give advice on how best to play the 
who are rational.  This rational
resulting models have been more recently applied 
observed behaviour. This kind of game theory can be viewed as more 
descriptive than the prescriptive 
 
This article focuses principally on non cooperative game theory with 
rational players. In addition to providing an important baseline case in 
economic theory, this case is designed so that it gives good advice to the 
decision-maker, even when  or perhaps es
also employ it.  
 
3.1.3  Strategic and Extensive Form Games 
 
The strategic form (also called normal form) is the basic type of game 
studied in non cooperative game theory. A game in strategic form lists 
each player’s strategies, and the outcomes that result from each possible 
combination of choices.  An outcome is r
for each player, which is a number (also called utility) that measures 
how much the player likes the outcome. 

The extensive form, also called a game tree, is more detailed than the 
strategic form of a game. It is a comple
played over time. This includes the order in which players take actions, 
the information that players have at the time they must take those 
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which gives the outcome he most prefers, given what he expects his 
to do. The goal of game-theoretic analysis in these branches, 

game will be played by rational players, or, 
advice on how best to play the game against opponents 

rational.  This rationality assumption can be relaxed, and the 
resulting models have been more recently applied to the analysis of 

haviour. This kind of game theory can be viewed as more 
criptive than the prescriptive approach taken here.  

his article focuses principally on non cooperative game theory with 
rational players. In addition to providing an important baseline case in 
economic theory, this case is designed so that it gives good advice to the 

maker, even when  or perhaps especially when one’s opponents 

Strategic and Extensive Form Games  

The strategic form (also called normal form) is the basic type of game 
studied in non cooperative game theory. A game in strategic form lists 
each player’s strategies, and the outcomes that result from each possible 
combination of choices.  An outcome is represented by a separate payoff 
for each player, which is a number (also called utility) that measures 
how much the player likes the outcome.  

 
The extensive form, also called a game tree, is more detailed than the 
strategic form of a game. It is a complete description of how the game is 
played over time. This includes the order in which players take actions, 
the information that players have at the time they must take those 
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actions, and the times at which any uncertainty in the situation is 
resolved.  A game in extensive form may be analysed directly, or can be 
converted into an equivalent strategic form.  
 
3.2 Dominance 
 
Since all players are assumed to be rational, they make choices which 
result in the outcome they prefer most, given what their opponents do. In 
the extreme case, a player may have two strategies A and B so that, 
given any combination of strategies of the other players, the outcome 
resulting from A is better than the outcome resulting from B. Then 
strategy A is said to dominate strategy B. A rational player will never 
choose to play a dominated strategy.  In some games, examination of 
which strategies are dominated results in the conclusion that rational 
players could only ever choose one of their strategies. The following 
examples illustrate this idea.  
 
Example 1: Prisoners Dilemma  
 
The Prisoners Dilemma is a game in strategic form between two players.  
Each player has two strategies, called cooperate and defect, which are 
labeled C and D for player I and c and d for player II, respectively. (For 
simpler identification, upper case letters are used for strategies of player 
I and lower case letters for player II.)  
 
Figure 1 shows the resulting payoffs in this game. Player I chooses a 
row, either C or D, and simultaneously player II chooses one of the 
columns c or d. The strategy combination (C; c) has payoff 2 for each 
player, and the combination (D; d) gives each player payoff 1. The 
combination (C; d) results in payoff 0 for player I and 3 for player II, 
and when (D; c) is played, player I gets 3 and player II gets 0.  
 
Any two-player game in strategic form can be described by a table like 
the one in Figure 1, with rows representing the strategies of player I and 
columns those of player II. (A player may have more than two 
strategies.) Each strategy combination defines a payoff pair, like (3; 0) 
for (D; c), which is given in the respective table entry. Each cell of the  
table shows the payoff to player I at the (lower) left, and the payoff to 
player II at the (right) top.  These staggered payoffs, due to Thomas 
Schelling, also make transparent when, as here, the game is symmetric 
between the two players. Symmetry means that the game stays the same 
when the players are exchanged, corresponding to a reflection along the 
diagonal shown as a dotted line in Figure2. Note that in the strategic 
form, there is no order between player I and II since they act 
simultaneously (that is, without knowing the others action), which 
makes the symmetry possible.  
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In Figure 2, the game of Figure 1 with annotations is implied by the 
payoff structure. The dotted line shows the symmetry of the game. The 
arrows at the left and right point to the preferred strategy of player I 
when player II plays the left or right column, respectively. Similarly, the 
arrows at the top and bottom point to the preferred strategy o
when player I play top or bottom. 
 
In the Prisoners Dilemma game, defect is a strategy that dominates and 
cooperates. Strategy D of player I dominate C since if player II chooses 
c, then player 1s payoff is 3 when choosing D and 2 when choosing C; if 
player II chooses d, then player I receives 1 for D as opposed to 0 for C. 
These preferences of player I are indicated by the downward pointing 
arrows in Figure 8. 2. Hence, D is indeed always better a
C. In the same way, strategy d dominates c for player II. 
 
No rational player will choose a dominated strategy s
always be better off when changing to the strategy that dominates 
unique outcome in this game, as rec
players, is therefore (D; d) with payoffs (1;1). 
this is less than the payoff (2; 2) that would be achieved when the 
players chose (C; c).  
 
The story behind the name Prisoners Dilemma is that of t
held suspect of a serious crime. There is no judicial evidence for this 
crime except if one of the prisoners 
them testifies, he will be rewarded with immunity 
(payoff 3), whereas the other will serve a long prison sentence (payoff 
0). If both testify, their punishment will be less severe (payoff 1 for 
each).   
 
However, if they both cooperate with each other by not testifying at all
they will only be imprisoned 
possession (payoff 2 for each). The defection from 
beneficial outcome is to testify, which gives 
what the other prisoner does, with a resulting lower payoff to
constitutes their dilemma.  
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In Figure 2, the game of Figure 1 with annotations is implied by the 

ted line shows the symmetry of the game. The 
arrows at the left and right point to the preferred strategy of player I 
when player II plays the left or right column, respectively. Similarly, the 
arrows at the top and bottom point to the preferred strategy of player II 
when player I play top or bottom.  

In the Prisoners Dilemma game, defect is a strategy that dominates and 
cooperates. Strategy D of player I dominate C since if player II chooses 

payoff is 3 when choosing D and 2 when choosing C; if 
player II chooses d, then player I receives 1 for D as opposed to 0 for C. 
These preferences of player I are indicated by the downward pointing 
arrows in Figure 8. 2. Hence, D is indeed always better and dominates 
C. In the same way, strategy d dominates c for player II.  

No rational player will choose a dominated strategy since the player will 
better off when changing to the strategy that dominates it. The 

game, as recommended to utility-maximising 
players, is therefore (D; d) with payoffs (1;1). Somewhat paradoxically, 
this is less than the payoff (2; 2) that would be achieved when the 

The story behind the name Prisoners Dilemma is that of two prisoners 
serious crime. There is no judicial evidence for this 

except if one of the prisoners testifies against the other.  If one of 
will be rewarded with immunity from prosecution 

er will serve a long prison sentence (payoff  
0). If both testify, their punishment will be less severe (payoff 1 for 

they both cooperate with each other by not testifying at all, 
they will only be imprisoned briefly, for example for illegal weapons 

for each). The defection from that mutually 
beneficial outcome is to testify, which gives a higher payoff no matter 

the other prisoner does, with a resulting lower payoff to both.  This 
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Prisoners Dilemma games arise in various contexts wher
defections at the 
outcomes.   
 

 
Examples include arms races, 
environmental pollution, or cut
outcome is detrimental for the players.  Its g
on individual grounds is sometimes taken as a case for treat
which enforce co
 
Game theorists have tried to tackle the obvious inefficie
outcome of the 
fundamentally changed by playing it 
game, patterns of coo
when players fear of punishment in the future outweighs their gain from 
defecting today. 
 
Example 1: Quality choice 
 
The next example of a game illustrates how the princip
of dominated strategies may be applied iteratively. Suppose player I is 
an internet service provider and 
consider entering into a
time. The provider can, for himself, decide
of service, High or Low. High
and some of the 
not. The level of service cannot 
quality service i
customer, in fact so much so that the custom
the service if she knew that the quality was low.  Her choice
or not to buy the 
 
Figure 3 shows high
(player I) and a customer (player II). 
 
Figure 3 gives possible payoffs that describe this situation. The 
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Prisoners Dilemma games arise in various contexts wher
defections at the expense of others lead to overall less desirable 

 

Examples include arms races, litigation instead of settlement, 
environmental pollution, or cut-price marketing, where the 
outcome is detrimental for the players.  Its game-theoretic justification 

individual grounds is sometimes taken as a case for treaties and laws, 
enforce co-operation.  

Game theorists have tried to tackle the obvious inefficie
outcome of the Prisoners Dilemma game.  For example, the game is 

mentally changed by playing it more than once. In such a repeated 
game, patterns of cooperation can be established as rational behavio
when players fear of punishment in the future outweighs their gain from 
defecting today.  

Example 1: Quality choice  

The next example of a game illustrates how the principle of elimination 
strategies may be applied iteratively. Suppose player I is 

internet service provider and player II a potential customer. They 
consider entering into a contract of service provision for a period of 
time. The provider can, for himself, decide between two levels of quality 
of service, High or Low. High-quality service is more costly to provide, 
and some of the cost is independent of whether the contract is signed or 

t. The level of service cannot be put verifiably into the contract. High
quality service is more valuable than low-quality service to the 
customer, in fact so much so that the customer would prefer not to buy 

service if she knew that the quality was low.  Her choice
or not to buy the service.  

Figure 3 shows high-low quality game between a service provider 
(player I) and a customer (player II).  

Figure 3 gives possible payoffs that describe this situation. The 
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Prisoners Dilemma games arise in various contexts where individual 
expense of others lead to overall less desirable 

litigation instead of settlement, 
the resulting 

theoretic justification 
ies and laws, 

Game theorists have tried to tackle the obvious inefficiency of the 
Dilemma game.  For example, the game is 

more than once. In such a repeated 
rational behaviour 

when players fear of punishment in the future outweighs their gain from  

le of elimination 
strategies may be applied iteratively. Suppose player I is 

player II a potential customer. They 
for a period of 
levels of quality 

ly to provide, 
cost is independent of whether the contract is signed or 

be put verifiably into the contract. High-
service to the 

er would prefer not to buy 
service if she knew that the quality was low.  Her choices are to buy 

me between a service provider 

Figure 3 gives possible payoffs that describe this situation. The 
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customer prefers to buy if player I provide high
to buy otherwise. Regardless of whether 
not, the provider always prefers to provide the low
service. Therefore, the strategy Low dominates the strategy
player I. Now, since player II believes player I is rational, she re
that player I always prefers Low, and so 
service as the providers choice. Then she prefers not to buy 
(giving her a payoff of 1) to buy (payoff 0). Therefore, the rat
both players leads to the conclusion that the provider will
low-quality service and, as a result, 

This game is very similar to the Prisoners Dilemma in Figur
it differs only by a single payoff, namely payoff 1 (rather than 3) to 
player II in the top right cell in the table.  This reverses the top arrow 
from right to left, and makes the preference of 
the action of player I. (The game is also no longer symmetric.) 
Player II does not have a dominating strategy. However, pl
does, so that the resulting outcome, seen from the flow of arrows in 
Figure 3, is still unique. Another way 
successive elimination of 
eliminated, and in the resulting smaller game wher
single strategy Low available, player IIs strategy buy is domi
also removed.  As in the Prisoners Dilemma, the individually rational 
outcome is worse for both players than 
strategy combination (High, b
and the customer signs the contract. However,
credible, since the provider would be tempted to renege and provide 
only the low quality service.  
 
3.3 Nash Equilibrium 
 
In the previous examples, consideration of dominating strategies alone 
yielded precise advice to the players on how to play the game.  In many 
games, however, there are no dominated strategies, and so these 
considerations are not enough to rule out any out
more specific advice on how to play the game. 
 
The central concept of Nash equilibrium is much more general.  Nash 
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customer prefers to buy if player I provide high-quality service, and not  
herwise. Regardless of whether the customer chooses to buy or 

not, the provider always prefers to provide the low-quality  
service. Therefore, the strategy Low dominates the strategy High for 

player II believes player I is rational, she realises 
r I always prefers Low, and so she anticipates low quality 

service as the providers choice. Then she prefers not to buy  
(giving her a payoff of 1) to buy (payoff 0). Therefore, the rationality of 

to the conclusion that the provider will implement 
s a result, the contract will not be signed.  

 
This game is very similar to the Prisoners Dilemma in Figure 1.  In fact, 

by a single payoff, namely payoff 1 (rather than 3) to 
cell in the table.  This reverses the top arrow 

t, and makes the preference of player II dependent on 
the action of player I. (The game is also no longer symmetric.)  
Player II does not have a dominating strategy. However, player I still 

resulting outcome, seen from the flow of arrows in 
, is still unique. Another way of obtaining this outcome is the 

 dominated strategies:  First, High is 
eliminated, and in the resulting smaller game where player I has only the 

strategy Low available, player IIs strategy buy is dominated and 
the Prisoners Dilemma, the individually rational 

is worse for both players than another outcome, namely the 
gh, buy) where high quality service is provided 

and the customer signs the contract. However, that outcome is not 
since the provider would be tempted to renege and provide 

 

In the previous examples, consideration of dominating strategies alone 
yielded precise advice to the players on how to play the game.  In many 
games, however, there are no dominated strategies, and so these 
considerations are not enough to rule out any outcomes or to provide 
more specific advice on how to play the game.  

The central concept of Nash equilibrium is much more general.  Nash 
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equilibrium recommends a strategy to each player that the player cannot 
improve upon unilaterally, that is, given that the other players follow the 
recommendation. Since the other players are also rational, it is 
reasonable for each player to expect his opponents to follow the 
recommendation as well.  
 
Example 8.4: Quality choice revisited  
 
A game-theoretic analysis can highlight aspects of an interactive 
situation that could be changed to get a better outcome. In the quality 
game in Figure 3, for example, increasing the customers’ utility of high-
quality service has no effect unless the provider has an incentive to 
provide that service. So suppose that the game is changed by introducing 
an opt-out clause into the service contract. That is, the customer can 
discontinue subscribing to the service if she finds it of low quality. The 
resulting game is shown in Figure 4. Here, low-quality service 
provision, even when the customer decides to buy, has the same low 
payoff 1 to the provider as when the Figure 4 shows a high-low quality 
game with opt-out clause for the customer. The left arrow  
shows that player I prefers High when player II chooses to buy. 
Customer does not sign the contract in the first place, since the customer 
will opt out later. However, the customer still prefers not to buy when 
the service is Low in order to spare her the hassle of entering the 
contract.  
 
The changed payoff to player I means that the left arrow in Figure 4 
points upwards. Note that, compared to Figure 8.3, only the providers’ 
payoffs are changed. In a sense, the opt-out clause in the contract has the 
purpose of convincing the customer that the high-quality service 
provision is in the providers own interest.  This game has no dominated 
strategy for either player.  The arrows point in different directions.  The 
game has two Nash equilibrium in which each player chooses his 
strategy deterministically. One of them is, as before, the strategy 
combination (Low, don’t buy). This is equilibrium since Low is the best 
response (payoff-maximising strategy) to don’t buy and vice versa.  
 
The second Nash equilibrium is the strategy combination (High, buy).  It 
is an equilibrium since player I prefers to provide high-quality service 
when the customer buys, and conversely, player II prefers to buy when 
the quality is high.  This equilibrium has a higher payoff to both players 
than the former one, and is a more desirable solution. Both Nash 
equilibriums are legitimate recommendations to the two players of how 
to strategy combination that is not Nash equilibrium is not a credible 
solution.  Such a strategy combination would not be a reliable 
recommendation on how to play the game, since at least one player 
would rather ignore the advice and instead play another strategy to make  
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him better off.  
As this example shows, Nash equilibrium may be not u
the previously discussed solutions to the Prisoners Dilemma and to the 
quality choice game in Figure 3 are unique Nash equilibriums. A 
dominated strategy can never be part of equilibrium since a player 
intending to play a dominated strategy could switch to the dominating 
strategy and be better off. Thus, if elimination of dominated strategies 
leads to a unique strategy combination, then this is Nash equilibrium. 
Larger games may also have unique equilibria that do not result from 
dominance considerations.  
 
3.4  Equilibrium selection 
 
If a game has more than one Nash equilibrium, a theory of strateg
interaction should guide players towards the most reasonable 
equilibrium upon which they should focus. 
papers in game theory have been concerned with equilibrium 
refinements that attempt to derive conditions that make 
more plausible or convincing than another. For example, it could be 
argued that an equilibrium tha
buy) in Figure 8.4, should be the one that is played.
 
However, the abstract theoretical considerations for equili
selection are often more sophisticated than the simple game
models they are applied to.  It may be 
a game has more than one equilibrium, and that this 
players are sometimes stuck at an inferior outcome.
 
One and the same game may also have a different interpretation where a 
previously undesirable equilibrium becomes rather plausible. As an 
example, consider an alternative scenario for the game in Figure 8.4. 
Unlike the previous situation, it will have a sy
players, in line with the symmetry of the payoff structure. 

Two firms want to invest in communication infrastructu
to communicate frequently with each other using that infrastructure, bu
they decide independently on 
between High or Low bandwidth equipment (this 
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As this example shows, Nash equilibrium may be not unique. However, 
cussed solutions to the Prisoners Dilemma and to the 

quality choice game in Figure 3 are unique Nash equilibriums. A 
dominated strategy can never be part of equilibrium since a player 
intending to play a dominated strategy could switch to the dominating 

rategy and be better off. Thus, if elimination of dominated strategies 
leads to a unique strategy combination, then this is Nash equilibrium. 
Larger games may also have unique equilibria that do not result from 

Equilibrium selection  

If a game has more than one Nash equilibrium, a theory of strategic 
guide players towards the most reasonable 

upon which they should focus. Indeed, a large number of 
papers in game theory have been concerned with equilibrium  
refinements that attempt to derive conditions that make one equilibrium 

or convincing than another. For example, it could be 
ed that an equilibrium that is better for both players, like (High, 

buy) in Figure 8.4, should be the one that is played. 

However, the abstract theoretical considerations for equilibrium 
sophisticated than the simple game-theoretical 

d to.  It may be more illuminating to observe that 
one equilibrium, and that this is a reason that 

s stuck at an inferior outcome. 

One and the same game may also have a different interpretation where a 
previously undesirable equilibrium becomes rather plausible. As an 
example, consider an alternative scenario for the game in Figure 8.4. 
Unlike the previous situation, it will have a symmetric description of the 
players, in line with the symmetry of the payoff structure.  

 
Two firms want to invest in communication infrastructure. They intend 

frequently with each other using that infrastructure, but 
ly on what to buy.  Each firm can decide 

Low bandwidth equipment (this time, the same 
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strategy names will be used for both players).  For player II, High and 
Low replace buy and don’t buy in Figure 8. 4.  The rest of the game 
stays as it is.  
 
The (unchanged) payoffs have the following interpretation for player I 
(which applies in the same way to player II by symmetry):  A Low 
bandwidth connection works equally well (payoff 1) regardless of 
whether the other side has high or low bandwidth. However,  
switching from Low to High is preferable only if the other side has high 
bandwidth (payoff 2), otherwise it incurs unnecessary cost (payoff 0).  
 
As in the quality game, the equilibrium (Low, Low) (the bottom right 
cell) is inferior to the other equilibrium, although in this interpretation it 
does not look quite as bad. Moreover, the strategy Low has obviously 
the better worst-case payoff, as considered for all possible strategies of 
the other player, no matter if these strategies are rational choices  
or not. The strategy Low is therefore also called a max-min strategy 
since it maximises the minimum payoff the player can get in each case.  
In a sense, investing only in low bandwidth equipment is a safe choice. 
Moreover, this strategy is part of equilibrium, and entirely justified if the 
player expects the other player to do the same.  
 
3.4.1 Evolutionary games 
 
The bandwidth choice game can be given a different interpretation 
where it applies to a large population of identical players. Equilibrium 
can then be viewed as the outcome of a dynamic process rather than of 
conscious rational analysis.  
 
Figure 5 shows the bandwidth choice game where each player has the 
two strategies High and Low. The positive payoff of 5 for each player 
for the strategy combination (High, High) makes this an even more 
preferable equilibrium than in the case discussed above. In the 
evolutionary interpretation, there is a large population of individuals, 
each of which can adopt one of the strategies. The game describes the 
payoffs that result when two of these individuals meet.  The dynamics of 
this game are based on assuming that each strategy is played by a certain 
fraction of individuals.  Then, given this distribution of strategies, 
individuals with better average payoff will be more successful than 
others, so that their proportion in the population increases over time.  
This, in turn, may affect which strategies are better than others. In many 
cases, in particular in symmetric games with only two possible 
strategies, the dynamic process will move to equilibrium.  In the 
example of Figure 5, a certain fraction of users connected to a network 
will already have High or Low bandwidth equipment. For example, 
suppose that one quarter of the users has chosen High and three quarters 
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have chosen Low.  It is useful to assign these  
as percentages to the columns, which represent the strategies of player 
II. A new user, as player I, is then to decide between High and Low, 
where his payoff depends on the given fractions.  Here it will be 14×5+ 
4×0 = 1.25 when player I chooses High, and 1 1+34×4×1=1 when 
player I chooses Low. Given the average payoff that player I can expect 
when interacting with other users, player I will be better off by choosing 
High, and so decides on that strategy. Then, player I joins the population 
as a High user. The proportion of individuals of type High therefore 
increases, and over time the advantage of that strategy will become even 
more pronounced.  In addition, users replacing their equipment will 
make the same calculation, and therefore also switch from Low to High. 
Eventually, everyone plays High as the only surviving strategy, which 
corresponds to the equilibrium in the top left cell in Figure 5.  
 
The long-term outcome where only high-bandwidth equipment is 
selected depends on there being an initial fraction of high-bandwidth 
users that is large enough. For example, if only ten percent have chosen 
High, then the expected payoff for High is 0.1×5+0.9×0 = 0.5 which is 
less than the expected payoff 1 for Low (which is always 1, irrespective 
of the distribution of users in the population). Then by the same logic as 
before, the fraction of Low users’ increases, moving to the bottom right 
cell of the game as the equilibrium. It is easy to see that the critical 
fraction of High users so that this will take off as the  
better strategy is 15. (When new technology makes high-bandwidth 
equipment cheaper, this increases the payoff 0 to the High user who is 
meeting Low, which changes the game.)  
 
The evolutionary, population-dynamic view of games is useful because 
it does not require the assumption that all players are sophisticated and 
think the others are also rational, which is often unrealistic.  Instead, the 
notion of rationality is replaced with the much weaker concept of 
reproductive success: strategies that are successful on average will be 
used more frequently and thus prevail in the end. This view originated in 
theoretical biology with Maynard Smith (Evolution and the Theory of 
Games, Cambridge University Press, 1982) and has since significantly 
increased in scope.  
 
3.5 Mixed Strategies 
 
A game in strategic form does not always have a Nash equilibrium in 
which each player deterministically chooses one of his strategies. 
However, players may instead randomly select from among these pure 
strategies with certain probabilities.  Randomising one’s own choice in 
this way is called a mixed strategy.  Nash showed in 1951 that any finite 
strategic-form game has equilibrium if mixed strategies are allowed. As 
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before, equilibrium is defined by a (possibly mixed) strategy for each 
player where no playe
Average (that is, expected) payoffs must be considered because the 
outcome of the game may be random. 
 

 
Example 5: Compliance inspections 
 
Suppose a consumer purchases a 
agreeing to certain re
incentive to violate these rules.  The vendor 
consumer is abiding by the agreement, but doing so requires 
inspections which are costly. If the vendor does insp
consumer cheating, the vendor can demand a large penalty payment fo
the noncompliance.  Figure 6 
inspection game. The 
zero to both vendor (pla
 
Figure 6 Inspection game between a software vendor (
consumer (player 
consumer chooses to comply. With
to cheat since that gives
negative payoff N10 to the vendor.
Inspect.  If the con
unchanged, while the vendor incurs a cost 
N1. If the consume
in a heavy penalty (payoff N90 for player II) and still cre
amount of hassle 
 
In all cases, player I would strongly prefer if player II co
is outside of player offs control. However, the vendor prefers to inspect 
if the consumer cheats (since 
downward arrow on the right in Figure 6. If the vendor always preferred 
don’t inspect, then this would be a dominating strate
(unique) equilibrium where the consumer cheats. 
 
The circular arrow structure in Figure 6 shows that this game has no 
equilibrium in pure strategies.  If any of the players settles on a
deterministic choice (like 
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before, equilibrium is defined by a (possibly mixed) strategy for each 
player where no player can gain on average by unilateral deviation. 
Average (that is, expected) payoffs must be considered because the 
outcome of the game may be random.  

 

Example 5: Compliance inspections  

Suppose a consumer purchases a license for a software package, 
agreeing to certain restrictions on its use.  The consumer has an 

olate these rules.  The vendor would like to verify that the 
consumer is abiding by the agreement, but doing so requires 
inspections which are costly. If the vendor does inspect and catches the 

ing, the vendor can demand a large penalty payment fo
the noncompliance.  Figure 6 shows possible payoffs for such an 
inspection game. The standard outcome, defining the reference payoff 
zero to both vendor (player I) and consumer (player II).  

Inspection game between a software vendor (player I) and 
consumer (player II) is that the vendor chooses don’t inspect and the 

nsumer chooses to comply. With-out inspection, the consumer prefers 
to cheat since that gives her payoff 10, with resulting 
negative payoff N10 to the vendor.  The vendor may also
Inspect.  If the consumer complies, inspection leaves her payoff 0 

while the vendor incurs a cost resulting in a negative payoff 
N1. If the consumer cheats, however, inspection will result 
in a heavy penalty (payoff N90 for player II) and still create a certain 
amount of hassle for player I (payoff N6).  

In all cases, player I would strongly prefer if player II complied, but this 
player offs control. However, the vendor prefers to inspect 

if the consumer cheats (since -6 is better than -10), indicated by the 
downward arrow on the right in Figure 6. If the vendor always preferred 
don’t inspect, then this would be a dominating strategy and be part of a 
(unique) equilibrium where the consumer cheats.  

The circular arrow structure in Figure 6 shows that this game has no 
equilibrium in pure strategies.  If any of the players settles on a
deterministic choice (like Don’t inspect by player I), the best response of 
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the other player would be unique (here cheat by player II), to which the 
original choice would not be a best response (player I prefers Inspect 
when the other player chooses cheat, against which player II in turn 
prefers to comply).  The strategies in Nash equilibrium must be best 
responses to each other, so in this game this fails to hold for any pure 
strategy combination.  
 
3.6 Mixed Equilibrium 
 
What should the players do in the game of Figure 6? One possibility is 
that they prepare for the worst, that is, choose a max-min strategy. As 
explained before, a max-min strategy maximises the player offs worst 
payoff against all possible choices of the opponent.  The Max-min 
strategy for player I is to Inspect (where the vendor guarantees himself 
payoff 6), and for player II it is to comply (which guarantees her payoff 
0). However, this is not a Nash equilibrium and hence not a stable 
recommendation to the two players, since player I could switch his 
strategy and improve his payoff. A mixed strategy of player I in this  
game is to Inspect only with a certain probability. In the context of 
inspections, randomising is also a practical approach that reduces costs. 
 
Even if an inspection is not certain, a sufficiently high chance of being 
caught should deter from cheating, at least to some extent. The 
following considerations show how to find the probability of inspection 
that will lead to equilibrium. If the probability of inspection is very low, 
for example one percent, then player II receives (irrespective of that 
probability) payoff 0 for comply, and payoff 0.99 × 10 + 0.01 × (−90) = 
9, which is bigger than zero, for cheat. Hence, player II  
will still cheat, just as in the absence of inspection. If the probability of 
inspection is much higher, for example 0:2, then the expected payoff for 
cheat is 0.8 × 10 + 0.2 × (−90) = −10,  
which is less than zero, so that player II prefers to comply. If the 
inspection probability is either too low or too high, then player II has a 
unique best response. As shown above,  
such a pure strategy cannot be part of equilibrium. Hence, the only case 
where player II herself could possibly randomise between her strategies 
is if both strategies give her the same payoff, that is, if she is indifferent.  
It is never optimal for a player to assign a positive probability to playing 
a strategy that is inferior, given what the other players  
are doing. It is not hard to see that player II is indifferent if and only if 
player I inspects with probability 0.1, since then the expected payoff for 
cheat is0.9 × 10 + 0.1 × (−90) = 0, which is then the same as the payoff 
for comply.  
 
With this mixed strategy of player I (Dont inspect with probability 0.9 
and Inspect with probability 0.1), player II is indifferent between her 
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strategies. Hence, she can mix them (that is, play them randomly) 
without losing payoff.  The only case where, in turn, the  
original mixed strategy of player I is a best response is if player I is 
indifferent. According to the payoffs in Figure 6, this requires player II 
to choose comply with probability 0.8 and cheat with probability 0.2. 
The expected payoffs to player I are then for Don’t inspect 0.8 × 0 + 0.2 
× (−10) = −2, and for Inspect 0.8 × (−1) + 0.2 × (−6) = −2, so that player 
I is indeed indifferent, and his mixed strategy is a best response to the 
mixed strategy of player II. This defines the only Nash equilibrium of 
the game.  It uses mixed strategies and is therefore called a mixed 
equilibrium.  The resulting expected payoffs are -2 for player I and 0 for 
player II.  
 

3.6.1 Interpretation of Mixed Strategy Probabilities 
 
The preceding analysis showed that the game in Figure 6 has a mixed 
equilibrium, where the players choose their pure strategies according to 
certain probabilities. These probabilities have several noteworthy 
features.  
 

The equilibrium probability of 0.1 for Inspect makes player II 
indifferent between comply and cheat. This is based on the assumption 
that an expected payoff of 0 for cheat, namely 0.9 × 10 + 0.1 × (−90), is 
the same for player II as when getting the payoff 0 for certain,  
by choosing to comply. If the payoffs were monetary amounts (each 
payoff unit standing for one thousand naira, say), one would not 
necessarily assume such a risk neutrality on the part of the consumer. In 
practice, decision-makers are typically risk averse, meaning  
they prefer the safe payoff of 0 to the gamble with an expectation of 0.  
In a game-theoretic model with random outcomes (as in a mixed 
equilibrium), however, the payoff is not necessarily to be interpreted as 
money.  Rather, the players’ attitude towards risk is incorporated into 
the payoff figure as well. To take our example, the con 
sumer faces a certain reward or punishment when cheating, depending 
on whether she is caught or not. Getting caught may not only involve 
financial loss but embarrassment and other undesirable consequences. 
 

However, there is a certain probability of inspection (that is, of getting 
caught) where the consumer becomes indifferent between comply and  
cheat. If that probability is 1 against 9, then this indifference implies that 
the cost (negative payoff) for getting caught is 9 times as high as the 
reward for cheating successfully, as assumed by the payoffs in Figure 6. 
If the probability of indifference is 1 against 20, the payoff -90 in Figure 
6 should be changed to N200.  The units in which payoffs are measured 
are arbitrary. Like degrees on a temperature scale, they can be multiplied 
by a positive number and shifted by adding a constant, without altering 
the underlying preferences they represent.  
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In a sense, the payoffs in a game mimic a play offs (consistent) 
willingness to bet when facing certain odds.  With respect to the payoffs, 
which may distort the monetary amounts, players are then risk neutral. 
Such payoffs are also called expected-utility values.  Expected-utility 
functions are also used in one-player games to model decisions  
under uncertainty.  
 
The risk attitude of a player may not be known in practice.  A game-
theoretic analysis should be carried out for different choices of the 
payoff parameters in order to test how much they influence the results. 
Typically, these parameters represent the political features of a game-
theoretic model that most sensitive to subjective judgement, compared  
to the more technical part of a solution. In more involved inspection 
games, the technical part often concerns the optimal usage of limited 
inspection resources, whereas the political decision is when to raise an 
alarm and declare that the inspector has cheated.  
 
Secondly, mixing seems paradoxical when the player is indifferent in 
equilibrium. If player II, for example, can equally well comply or cheat, 
why should she gamble? In particular, she could comply and get payoff 
zero for certain, which is simpler and safer. The answer is that precisely 
because there is no incentive to choose one strategy over the other, a  
player can mix, and only in that case there can be equilibrium.  If player 
II would comply for certain, then the only optimal choice of player I is 
do not inspect, making the choice of complying not optimal, so this is 
not equilibrium.  
 
The least intuitive aspect of mixed equilibrium is that the probabilities 
depend on the opponent payoffs and not on the players own payoffs (as 
long as the qualitative preference structure, represented by the arrows, 
remains intact). For example, one would expect that raising the penalty -
90 in Figure 8.6 for being caught lowers the probability of cheating in 
equilibrium.  In fact, it does not.  What does change is the probability of 
inspection, which is reduced until the consumer is indifferent.  
 
This dependence of mixed equilibrium probabilities on the opponents’ 
payoffs can be explained in terms of population dynamics.  In that 
interpretation, Figure 6 represents an evolutionary game. Unlike Figure 
8.5, it is a non-symmetric interaction between a vendor who chooses 
Don’t Inspect and Inspect for certain fractions of a large number of 
inter-actions.  Player IIs actions comply and cheat are each chosen by a 
certain fraction of consumers involved in these interactions. If these 
fractions deviate from the equilibrium probabilities, then the strategies 
that do better will increase.  For example, if player I  
chooses Inspect too often (relative to the penalty for a cheater who is 
caught), the fraction of cheaters will decrease, which in turn makes 
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Don’t Inspect a better strategy. In this dynamic process, the long-term 
averages of the fractions approximate the equilibrium probabilities.  
 
3.6.3 Extensive Games with Perfect Information 
 
Games in strategic form have no temporal component. In a game in 
strategic form, the players choose their strategies simultaneously, 
without knowing the choices of the other players. The more detailed 
model of a game tree, also called a game in extensive form, formalises 
interactions where the players can over time be informed about the 
actions of others.  This section treats games of perfect information.  In 
an extensive game with perfect information, every player is at any point 
aware of the previous choices of all other  
players. Furthermore, only one player moves at a time, so that there are 
no simultaneous moves.  
 
 
Example 6 Quality choice with commitment  
 
Figure 7 shows another variant of the quality choice game. This is a 
game tree with perfect information.  Every branching point, or node, is 
associated with a player who makes a move by choosing the next node. 
The connecting lines are labelled with the players choices.  The game 
starts at the initial node, the root of the tree, and ends at a terminal node, 
which establishes the outcome and determines the players’ payoffs.  In 
Figure 8 and 7, the tree grows from left to right; game trees may also be 
drawn top-down or bottom-up.  
 
The service provider, player I, makes the first move, choosing High or 
Low quality of service. Then the customer, player II, is informed about 
that choice. Player II can then decide separately between buy and don’t 
buy in each case. The resulting payoffs are the Figure 7.  Quality choice 
game where player I commits to High or Low quality, and player II can 
react accordingly. The arrows indicate the optimal moves as determined 
by backward induction same as in the strategic-form game in Figure 3.  
However, the game is different from the one in Figure 3, since the 
players now move in sequence rather than simultaneously.  
Extensive games with perfect information can be analysed by backward 
induction.  
 
This technique solves the game by first considering the last possible 
choices in the game. Here, player II moves last. Since she knows the 
play will end after her move, she can safely select the action which is 
best for her.  If player I has chosen to provide high quality service, then 
the customer prefers to buy, since her resulting payoff of 2 is larger than 
1 when not buying. If the provider has chosen Low, then the customer 
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prefers not to purchase. These choices by player II are indicated by 
arrows in Figure 7.  
 

Once the last moves have been decided, backward inducti
the players making the next-to
manner).  In Figure 7, player I 
this case is the first move in the game. Being ra
tional, he anticipates the subsequent choices by the custom
therefore realises that his decision between High and Low is effectively 
between the outcomes with payoffs (2; 2) or (1; 1) for the two players, 
respectively.  Clearly, he prefers High, 
him, to Low, which leads to an outcome with payoff 1.  So 
solution to the game, as determined by backward induction, is that 
player I offers high quality service, and player II responds by buying the 
service.  
 
3.6.2 Strategies in Extensive 
 
In an extensive game with perfect information, backwar
usually prescribes unique choices at the players’ decision nodes.  The 
only exception is if a player is indif
a node.  Then, any of these best moves, or even 
among them, could be chosen
process. Since the eventual outcome depends on
affect a player who moves earlier, since the anticipated payoff
player may depend on the subsequent moves of other players. In this 
case, backward induction does not yield a 
this can only occur when a player 
more outcomes.  
 
The backward induction solution specifies the way the game
played. Starting from the root of 
an outcome.  Note that the analysis 
the path. Because backward induction looks at every 
node in the tree, it specifies for every player a complete pla
do at every point in the game where the player can make a move, even 
though that point may never arise 
called a strategy of the player.  For example, a strategy of player II in 
Figure 7 is buy if offered high
quality service. This is player IIs strategy obtained b
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called a strategy of the player.  For example, a strategy of player II in 
Figure 7 is buy if offered high-quality service; don’t buy if offered low 
quality service. This is player IIs strategy obtained by backward 
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induction. Only the 
the game is played according to the 
 

 
Figure 8 is a strategic
 
With strategies defined as complete move plans, one can ob
strategic form of the 
shown before, this tabulates all strate
tree, any strategy combi
which can be determined by tracing out the
players adopting the strategy combination.  The payoffs t
are then entered 
8 shows the strategic form for 
player IIs backward induction strategy, where buy if 
offered high-quality service, 
abbreviated as H: 
 
A game tree can therefore be analyzed in terms of the strategic form. It 
is not hard to see that backward induction always defines a Nash 
equilibrium. In Figure 8, it is the strategy combination (High; H: buy, L: 
don’t).  
 
A game that evolves over time is better
using the strate
backward induction is succinct and 
contains redundanci
game tree in Figure 7 has only four o
twice, which happens when two strategies of player II diffe
move that is not 
combinations of player II must be distin
two of them may lead to di
player I.  
 
Not all Nash equilibria in an extensive game arise by backward 
induction. In Figure 8, the rightmost bottom cell (Low; H: 
don’t) is also an equilibrium. H
correspondingly Low is the best response of the service provider to this 
anticipated behavio
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induction. Only the first choice in this strategy comes into effect when 
ame is played according to the backward-induction solution. 

 

a strategic form of the extensive game in Figure 7. 

With strategies defined as complete move plans, one can ob
strategic form of the extensive game.  As in the strategic form games 

ore, this tabulates all strategies of the players. In the game 
strategy combination results into an outcome of the game, 

which can be determined by tracing out the path of play arising from the 
players adopting the strategy combination.  The payoffs to the players 
are then entered into the corresponding cell in the strategic form.  Figure 
8 shows the strategic form for our example. The second column is 
player IIs backward induction strategy, where buy if 

quality service, don’t buy if offered low-qualit
abbreviated as H: buy, L: don’t.  

tree can therefore be analyzed in terms of the strategic form. It 
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twice, which happens when two strategies of player II diffe
move that is not reached after the move of player I. All move 
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Not all Nash equilibria in an extensive game arise by backward 
induction. In Figure 8, the rightmost bottom cell (Low; H: 

) is also an equilibrium. Here the customer never buys, and 
correspondingly Low is the best response of the service provider to this 
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choice (so it disagrees with backward induction), player II never has to 
make that move, and is therefore not better off by changing her strategy. 
Hence, this is indeed equilibrium. It prescribes a suboptimal move in the 
sub game where player II has learned that player I has chosen High. 
Because a Nash equilibrium obtained by backward induction does not 
have such a deficiency, it is also called sub game perfect.  
 

The strategic form of a game tree may reveal Nash equilibria which are 
not sub game perfect.  Then a player plans to behave irrationally in a sub 
game.  He may even profit from this threat as long as he does not have 
to execute it (that is, the sub game stays unreached).  Examples are 
games of market entry deterrence, for example the so-called Chain store 
game.  
 

The analysis of dynamic strategic interaction was pioneered by Selten, 
for which he earned a share of the 1994 Nobel Prize. First-mover 
advantage a practical application of game-theoretic analysis may be to 
reveal the potential effects of changing the rules of the game.  This has 
been illustrated with three versions of the quality choice game, with the 
analysis resulting in three different predictions for how the game might 
be played by rational players. Changing the original quality choice game 
in Figure 3 to Figure 4 yielded an additional, although not unique, Nash 
equilibrium (High, buy). The change from Figure 3 to Figure 7 is more 
fundamental since there the provider has the power to commit himself to 
high or low quality service, and inform the customer of that choice. The 
backward induction equilibrium in that game is unique, and the outcome 
is better for both players than the original equilibrium (Low, don’t buy).  
Many games in strategic form exhibit what may be called the first-
mover advantage. A player in a game becomes a first mover or leader 
when he can commit to a strategy, that is, choose a strategy irrevocably 
and inform the other players about it; this is a change of the rules of the 
game. 
 

The first-mover advantage states that a player who can become a leader 
is not worse off than in the original game where the players act 
simultaneously.  In other words, if one of the players has the power to 
commit, he or she should do so. This statement must be interpreted 
carefully. For example, if more than one player has the power to 
commit, then it is not necessarily best to go first. For example, consider 
changing the game in Figure 3 so that player II can commit to her 
strategy and player I moves second. Then player I will always respond 
by choosing Low, since this is his dominant choice in Figure 3.  
Backward induction would then amount to player II not buying and 
player I offering low service, with the low payoff 1 to both. Then player 
II is not worse off than in the simultaneous-choice game, as asserted by 
the first-mover advantage, but does not gain anything either.  In contrast, 
making player I the first mover as in Figure 7 is beneficial to both.  



FMT 204  

If the game has antagonistic aspects, like the inspection game in Figure 
6, then mixed strategies may be required to find Nash equilibrium of the 
simultaneous-choice game. The first
equilibrium, by backward induction, but having to 
the other player of a pure strategy may be disadvantageous.  The correct 
comparison is to c
certain inspection probability. In Figure 6, already the commitment to 
the pure strategy Inspe
original mixed equilibrium since player II will respond by complying, 
but a commitment to a sufficiently high inspection probability (anything 
above 10 per cent) is even better for player I. 
 
Example 9: Duopol
 
The first-mover advantage is also known as Stackelberg l
the economist Heinrich von Stackelberg who formulated this concept f
the structure of markets in 
duopoly model by 
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L;N for firm I and h; m; l; n for 
chips decreases 
companies. In particular, if both choose 
the price collapses so that 
increased production 
shows the game in strategic form, where 
level simultaneously.  The symmetric payoffs are derived 
from Cournots m
 
The game can be solved by dominance considerations.  Clearly, no 
production is dominated by low or medium production, so that row N 
and column n in Figure 9 can be eliminated.  Then, high production is 
dominated by medium productio
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If the game has antagonistic aspects, like the inspection game in Figure 
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certain inspection probability. In Figure 6, already the commitment to 
the pure strategy Inspect gives a better payoff to player I than the 
original mixed equilibrium since player II will respond by complying, 
but a commitment to a sufficiently high inspection probability (anything 

cent) is even better for player I.  

Example 9: Duopoly of chip manufacturers  

mover advantage is also known as Stackelberg leadership, after 
Heinrich von Stackelberg who formulated this concept f

the structure of markets in 1934.  The classic application is to the 
duopoly model by Cournot, which dates back to 1838. 

 
Duopoly game between two chip manufacturers who can 

decide between high, medium, low, or no production, denoted by H;M; 
for firm I and h; m; l; n for firm II. Prices fall with increased 

Payoffs denote profits in millions of dollars. As an example, 
suppose that the market for a certain type of memory chip is dominated 
by two producers. The firms can choose to produce a certain
chips, say either high, medium, low, or none at all, denoted by H;M; 

for firm I and h; m; l; n for firm II. The market price of the memory 
chips decreases with increasing total quantity produced by both 
companies. In particular, if both choose a high quantity of production, 
the price collapses so that profits drop to zero. The firms
increased production lowers the chip price and their profits. Figure 9 

game in strategic form, where both firms choose their output 
level simultaneously.  The symmetric payoffs are derived 
from Cournots model, explained below.  

The game can be solved by dominance considerations.  Clearly, no 
production is dominated by low or medium production, so that row N 
and column n in Figure 9 can be eliminated.  Then, high production is 
dominated by medium production, so that row H and column h can be 
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omitted. At this point, only medium and low production remains. Then, 
regardless of whether the opponent produces medium or low, it is 
always better for each firm to produce medium. Therefore, the Nash 
equilibrium of the game is (M;m), where both firms make a profit of 
N16 million.  
 
Consider now the commitment version of the game, with a game tree 
(omitted here) corresponding to Figure 9 just as Figure 7 is obtained 
from Figure 8.3. Suppose that firm I is able to publicly announce and 
commit to a level of production, given by a row in Figure  
9.  
 
Then firm II, informed of the choice of firm I, will respond to H by l 
(with maximum payoff 9 to firm II), to M by m, to L also by m, and to 
N by h.  This determines the backward induction strategy of firm II. 
Among these anticipated responses by firm II, firm I do best by 
announcing H, a high level of production.  The backward induction 
outcome is thus that firm I makes a profit 18million, asopposedtoonly16 
million in the simultaneous-choice game. When firm II must play the 
role of the follower, its profits fall from N16 million to N9 million. The 
first-mover advantage again comes from the ability of firm I to credibly 
commit itself.  
 
After firm I has chosen H, and firm II replies with l, firm I would like to 
be able switch to M, improving profits even further from N18 million to 
N20 million. However, once firm I is producing M, firm II would 
change to m.  This logic demonstrates why, when the firms choose their 
quantities simultaneously, the strategy combination (H; l) is not an 
equilibrium.  The commitment power of firm I, and firm IIs appreciation 
of this fact, is crucial.  
 
The payoffs in Figure 9 are derived from the following simple model 
due to Cournot. The high, medium, low, and zero production numbers 
are 6, 4, 3, and 0 million memory chips, respectively. The profit per chip 
is 12 Q dollars, where Q is the total quantity (in mil-lions of chips) on 
the market. The entire production is sold. As an example, the strategy 
combination (H; l) yields Q = 6 + 3 = 9, with a profit of N3 per chip. 
This yields the payoffs of 18 and 9 million dollars for firms I and II in 
the (H; l) cell in Figure 9. Another example is firm I acting as a 
monopolist (firm II choosing n), with a high production level H of 6 
million chips sold at a profit of N6 each. In this model, a monopolist 
would produce a quantity of 6 million even if other numbers than 6, 4, 3, 
or 0 were allowed, which gives the maximum profit of N36 million. The 
two firms could cooperate and split that amount by producing 3 million 
each, corresponding to the strategy combination (L; l) in Figure 9.  The 
equilibrium quantities, however, are 4 million for each firm, where both 
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firms receive less. The central four cells in Figure 9, with low and 
medium production in place of a cooperate h and defect, have the 
structure of a Prisoner Dilemma game (Figure 1), which arises here in a 
natural economic context. The optimal commitment of a first mover is to 
produce a quantity of 6 million, with the follower choosing 3 million. 
These numbers, and the equilibrium (g Cournot) quantity of 4 million, 
apply even when arbitrary quantities are allowed.  
 
3.7 Extensive games with imperfect information 
 
Typically, players do not always have full access to all the information 
which is relevant to their choices. Extensive games with imperfect 
information model exactly which information is available to the players 
when they make a move. Modelling and evaluating strategic information 
precisely is one of the strengths of game theory.  John Harsanyis 
pioneering work in this area was recognised in the 1994 Nobel awards. 
Consider the situation faced by a large software company after a small 
start up has announced deployment of a key new technology. The large 
company has a large research and development operation, and it is 
generally known that they have researchers working on a wide variety of 
innovations. However, only the large company knows for sure whether  
or not they have made any progress on a product similar to the start-ups 
new technology. 
 
The start up believes that there is a 50 per cent chance that the large 
company has developed the basis for a strong competing product. For 
brevity, when the large company has the ability to produce a strong 
competing product, the company will be referred to  
as having a g strong position, as opposed to a g weak one.  
 
The large company, after the announcement, has two choices. It can 
counter by announcing that it too will release a competing product. 
Alternatively, it can choose to cede the market for this product. The 
large company will certainly condition its choice upon its  
private knowledge, and may choose to act differently when it has a 
strong position than when it has a weak one.  If the large company has 
announced a product, the start up is faced with a choice: it can either 
negotiate a buyout or sell itself to the large company, or it can remain 
independent and launch its product. The start up does not have access to 
the large firm private information on the status of its research.  
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However, it does observe whether or not the large company announces 
its own product, and may attempt to infer 
that the large company has made progress of their own. 
When the large company does not have a strong product, th
would prefer to stay in the market over selling out. When the large 
company does have a strong produ
up is better off by selling out instead of staying in.  Fig
extensive game that models this situation. From the perspective of the 
start up, whether or not the large company has done resea
is random. To capture random events such as this formally in game 
trees, chance moves are introduced. 
move, the next branch of the tree is taken randomly and 
non-strategically by chance, or g nature, according to pr
which are included in the specification of the game. 
 
The game in Figure 8.10 starts with a chance move at 
equal probability 0.5, the chance move decides if the large software 
company, player I, is in a strong 
position (downward move). When the company is in a 
can choose to cede the market to the 
two players (with payoffs given in millions of dollars of
also announce a competing p
company, player II, will sell out, with 
II. However, if player II decides instead to stay in, it 
from the increased publicity and gain a payo
the large firm. Figure 8 explains extensive game with imperfect 
information between player I, a la
start up company. The chance move
node) and does have a competing product, or we
does not. The ovals indicate information sets. Player II sees only that 
player I chose to announce a competing product, but does not know if 
player I is strong or weak.  
 
In contrast, when the large firm is in 
consider the move of ceding the market to the start up, but will instead 
just announce its own product. In 
choice of player I at the upper node, which is taken 
could add the extra choice of ceding and 
dominated choice of the large firm).  Then the payoffs to the two players 
are (20, -4) if the start up stays in and (12, 4) if the start up sells out. 
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In addition to a game tree with p
nodes of the play
sets. The interpretation is that a 
nodes in informati
move.  Since his knowledge at all nodes in an information set is 
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expected payoff of 9 in each case. This can also be seen  
from the extensive game in Figure 10:  when in a weak position, player I 
is indifferent between the moves Announce and Cede where the 
expected payoff is 0 in each case. With probability 1/2, player I is in the 
strong position, and stands to gain an expected payoff  
of 18 when facing the mixed strategy of player II. The overall expected 
payoff to player I is 9.  
 
3.8 Zero-sum Games and Computation 
 
The extreme case of players with fully opposed interests is embodied in 
the class of two player zero-sum (or constant-sum) games. Familiar 
examples range from rock-paper scissors, to many parlour games like 
chess, go, or checkers.  
 
A classic case of a zero-sum game, which was considered in the early 
days of game theory by von Neumann, is the game of poker. The 
extensive game in Figure 10, and its strategic form in Figure 11, can be 
interpreted in terms of poker, where player I is dealt a strong or weak 
hand which is unknown to player II. It is a constant-sum game since for 
any outcome; the two payoffs add up to 16, so that one players gain is 
the other player’s loss. When player I choose to announce despite being 
in a weak position, he is colloquially said to be bluffing. This bluff not 
only induces player II to possibly sell out, but similarly allows for the 
possibility that player II stays in when player I is strong, increasing the 
gain to player I.  
 
Mixed strategies are a natural device for constant-sum games with 
imperfect information. Leaving one’s own actions open reduces ones 
vulnerability against malicious responses. In the poker game of Figure 
10, it is too costly to bluff all the time and better to random- 
ise instead.  The use of active randomisation will be familiar to anyone 
who has played rock-paper-scissors.  
 
Zero-sum games can be used to model strategically the computer 
science concept of demonic non determinism. Demonic non 
determinism is based on the assumption that, when an ordering of events 
is not specified, one must assume that the worst possible sequence  
will take place. This can be placed into the framework of zero-sum 
game theory by treating nature (or the environment) as an antagonistic 
opponent. Optimal randomisation by such an opponent describes a 
worst-case scenario that can serve as a benchmark.  
 
A similar use of randomisation is known in the theory of algorithms as 
Raos theorem, and describes the power of randomised algorithms. An 
example is the well-known quick sort algorithm, which has one of the 
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best observed running times of sorting algorithms in practice, but can 
have bad worst cases.  With randomisation, these can be made 
extremely unlikely.  
 
Randomised algorithms and zero-sum games are used for analysing 
problems in online computation.  This is, despite its name, not related to 
the internet, but describes the situation where an algorithm receives its 
input one data item at a time, and has to make decisions, for example in 
scheduling, without being able to wait until the entirety of the input is 
known.  The analysis of online algorithms has revealed insights into 
hard optimisation problems, and seems also relevant to the massive data 
processing that is to be expected in the future. At present, it constitutes 
an active research area, although mostly confined to theoretical 
computer science.  
 
3.9 Bidding in Auctions 
 
The design and analysis of auctions is one of the triumphs of game 
theory.  Auction Theory was pioneered by the economist William 
Vickrey in 1961. Its practical use became apparent in the 1990s, when 
auctions of radio frequency spectrum for mobile telecommunication 
raised billions of dollars. Economic theorists advised governments on 
the design of these auctions, and companies on how to bid.  The 
auctions for spectrum rights are complex.  However, many principles for 
sound bidding can be illustrated by applying game-theoretic ideas to 
simple examples.  
 
3.9.1 Second-price Auctions with Private Values 
 
The most familiar type of auction is the familiar open ascending-bid 
auction, which is also called an English auction. In this auction format, 
an object is put up for sale. With the potential buyers present, an 
auctioneer raises the price for the object as long as two or more bidders 
are willing to pay that price. The auction stops when there is only one 
bidder left, who gets the object at the price at which the last remaining 
opponent drops out. A complete analysis of the English auction as a 
game is complicated, as the extensive form of the auction is very large. 
The observation that the winning bidder in the English auction pays the 
amount at which the last remaining opponent drops out, suggests a 
simpler auction format as the second-price auction for analysis. In a 
second-price auction, each potential buyer privately submits, perhaps in 
a sealed envelope or over a secure computer connection, his bid for the 
object to the auctioneer. After receiving all the bids, the auctioneer then 
awards the object to the bidder with the highest bid, and charges him the 
amount of the second-highest bid. Vickrey’s analysis dealt with auctions 
with these rules.  
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How should one bid in a second-price auction? Suppose that the object 
being auctioned is one where the bidders each have a private value for 
the object. That is, each bidder’s value derives from his personal tastes 
for the object, and not from considerations such as potential resale 
value. Suppose this valuation is expressed in monetary terms, as the  
maximum amount the bidder would be willing to pay to buy the object. 
Then the optimal bidding strategy is to submit a bid equal to ones actual 
value for the object.  Bidding ones private value in a second-price 
auction is a weekly dominant strategy.  
 
That is, irrespective of what the other bidders are doing, no other 
strategy can yield a better outcome. (Recall that a dominant strategy is 
one that is always better than the dominated strategy; weak dominance 
allows for other strategies that are sometimes equally good.) To see this, 
suppose first that a bidder bids less than the object was worth to him.  
Then if he wins the auction, he still pays the second-highest bid, so 
nothing changes. However, he now risks that the object is sold to 
someone else at a lower price than his true valuation, which makes the 
bidder worse off.  Similarly, if one bids more than ones value, the only 
case where this can make a difference is when there is, below the new 
bid, another bid exceeding the own value.  The bidder, if he wins, must 
then pay that price, which he prefers less than not winning the object. In 
all other cases, the outcome is the same. Bidding ones true valuation is a 
simple strategy, and, being weakly dominant, does not require much 
thought about the actions of others.  
 
While second-price sealed-bid auctions like the one described above are 
not very common, they provide insight into a Nash equilibrium of the 
English auction.  There is a strategy in the English auction which is 
analogous to the weekly dominant strategy in the second price auction. 
In this strategy, a bidder remains active in the auction until the price 
exceeds the bidders’ value, and then drops out. If all bidders adopt this 
strategy, no bidder can make himself better off by switching to a 
different one. Therefore, it is Nash equilibrium when all bidders adopt 
this strategy.  
 
Most online auction websites employ an auction which has features of 
both the English and second-price rules. In these auctions, the current 
price is generally observable to all participants.  However, a bidder, 
instead of frequently checking the auction site for the current price, can 
instead instruct an agent, usually an automated agent provided by the 
auction site, to stay in until the price surpasses a given amount. If the 
current bid is by another bidder and below that amount, then the agent 
only bids up the price enough so that it has the new high bid. 
Operationally, this is similar to submitting a sealed bid in a second-price 
auction. Since the use of such agents helps to minimise the time 
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investment needed for bidders, sites providing these agents encourage 
more bidders to participate, which improves the price sellers can get for 
their goods.  
 
Example 9: Common values and the winners curse  
 
A crucial assumption in the previous example of bidding in a second-
price auction is that of private values. In practice, this assumption may 
be a very poor approximation. An object of art may be bought as an 
investment, and a radio spectrum license is acquired for business 
reasons, where the value of the license depends on market forces, such 
as the demand for mobile telephone usage, which have a common 
impact on all bidders. Typically, auctions have both private and 
common value aspects.  
 
In a purely common value scenario, where the object is worth the same 
to all bidders, bidders must decide how to take into account uncertainty 
about that value. In this case, each bidder may have, prior to the auction, 
received some private information or signals about the value of the 
object for sale. For example, in the case of radio spectrum licenses, each 
participating firm may have undertaken its own market research surveys 
to estimate the retail demand for the use of that bandwidth. Each survey 
will come back with slightly different results, and, ideally, each bidder 
would like to have access to all the surveys in formulating its bid. Since 
the information is proprietary, that is not possible.  
 
Strategic thinking, then, requires the bidders to take into account the 
additional information obtained by winning the auction. Namely, the 
sheer fact of winning means that one’s own, private information about 
the worth of the object was probably overly optimistic, perhaps because 
the market research surveys came back with estimates for bandwidth  
demand which were too bullish. Even if everybody’s estimate about that 
worth is correct on average, the largest (or smallest) of these estimates is 
not. In a procurement situation, for example, an experienced bidder 
should add to his own bid not only a mark up for profit, but also for the 
likely under-estimation of the cost that results from the competitive 
selection process. The principle that winning a common-value auction is 
bad news for the winner concerning the valuation of the object is called 
the winners curse.  
 
The following final example, whose structure was first proposed by Max 
Bazerman and William Samuelson, demonstrates the considerations 
underlying the winners curse not for an auction, but in a simpler 
situation where the additional information of winning is crucial for the 
expected utility of the outcome. Consider a potential buyer who is 
preparing a final, take it or leave it offer to buy out a dot-com company. 
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Because of potential synergies, both the buyer and the seller know that 
the assets of the dot-com are worth 50 percent more to the buyer than to 
the current owner of the firm. If the value of the company were publicly 
known, the parties could work out a profitable trade, negotiating a price 
where both would profit from the transaction.  
 
However, the buyer does not know the exact value of the company. She 
believes that it is equally likely to be any value between zero and ten 
million dollars. The dotcoms current owners know exactly the value of 
retaining the company, because they have complete information on their 
company’s operations. In this case, the expected value of the company 
to the current owners is five million dollars, and the expected value of 
the company to the prospective buyer is seven and a half million dollars. 
Moreover, no matter what the value of the company truly is, the 
company is always worth more to the buyer than it is to the current 
owner. With this in mind, what offer should the buyer tender to the dot-
com as her last, best offer, to be accepted or rejected?  
 
To find the equilibrium of this game, note that the current owners of the 
dot-com will accept any offer that is greater than the value of the 
company to them, and reject any offer that is less. So, if the buyer 
tenders an offer of five million dollars, then the dotcom  
owners will accept if their value is between zero and five million. The 
buyer, being strategic, then realises that this implies the value of the 
company to her is equally likely to be anywhere between zero and seven 
and a half million. This means that, if she offers five  
million, the average value of the company, conditioning upon the 
owners of the dot-com accepting the offer, is only three and three-
quarters million  less than the value of the offer.  Therefore, the buyer 
concludes that offering five million will lead to an expected loss.  
 
The preceding analysis does not depend on the amount of the offer.  The 
buyer soon realizes that, no matter what offer she makes, when she takes 
into account the fact that the offer will be accepted only when the value 
of the dot-com turns out to be on the low end.  The expected value of the 
company to the buyer, conditional on her offer being accepted, is always 
less than her offer. It is this updating of the buyers beliefs, shifting her 
estimation of the dot-coms value to the low end, which embodies the 
winners curse in this example. Having her offer accepted is bad news for 
the buyer, because she realises it implies the value of the dot-com is 
low. The equilibrium in this game involves the buyer making an offer of 
zero, and the offer never being accepted.  
 
This example is particularly extreme, in that no transaction is made even 
though everyone involved realises that a transaction would be profitable 
to both sides. As is generally the case with non cooperative game theory, 
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the equilibrium does depend on the details of the rules of the game, in 
this case, the assumption that one last, best offer is being made, which 
either will be accepted or rejected.  In general, the winners curse will not 
always prohibit mutually profitable transactions from occurring. This 
example demonstrates the importance of carefully taking into account 
the information one learns during the course of play of a game. It also 
shows how a game-theoretic model that incorporates the information 
and incentives of others helps promote sound decision-making.  
 
4.0  CONCLUSION 
 
Students could understand what games theory is all about, and they are 
able to determine the equilibrium of games theory. They could 
understand also determine bidding and auctions as well as zero sum and 
computation. Hence students are able to give in detail some principles of 
game theory.  
 
5.0   SUMMARY 
 
This unit discussed Games Theory and its various segments- Backward 
induction, Common knowledge, Dominating strategy, Extensive game, 
Mixed strategy, Nash equilibrium, Payoff, Perfect information, Player, 
Rationality, Strategic form,  Strategy and Zero sum game. This provides 
a context for understanding equilibrium, computation, bidding and 
auction in Games Theory. 
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1.0 INTRODUCTION 
 
Many management decisions involve trying to make the most effective 
use of organisational resources. These resources include Machinery, 
Labour, Money, Time, Warehouse space or Raw materials to produce 
goods (machinery, furniture, food or cooking) or service (schedules for 
machinery and production advertising polices or investment decision). 
Linear programming (LP) is a widely used mathematical technique 
designed to help managers in planning and decision making relative to 
resource allocations.  
 
2.0 OBJECTIVES 
 
At the end of this unit, you should be able to: 
 
• apply Linear Programming to Business 
• list the properties of Linear Programming 
• make assumptions on Linear Programming 
• provide solutions to Linear Programming models. 
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3.0 MAIN CONTENT 
 
3.1 Application of Linear Programming to Business 
 
1. Product -Mix:  Use in the selection of the product-mix in a 

factory to make best use of machine and machine hours available 
while maximising profit, that is, to find out which product to 
include in the production plan and in what quantities that should 
be produced.  

 
2. Blending Problems:  Use for the selection of different blends of 

raw materials to produce the best combination at minimum cost 
e.g. food drinks, etc.  

 
3. Production Schedule:  Use to develop a production schedule 

that will satisfy future demands for a firm’s product and at the 
same time minimise production and inventory cost.  

 
4. Production Quantity:  Use in the determination of how much 

quantity to produce of different grades of petroleum product (say) 
to yield maximum.  

 
5. Distribution System:  Use in determining a distribution system 

that will minimise total shipping cost from several warehouses to 
various market locations.  

 
6. Limited Advertisement: Use in the allocation of limited 

advertising budget among radio, TV and newspaper spots in 
order to maximise the returns on investment.  

 
7. Investment: Use in selecting investment port-folio from a variety 

of stocks and bonds available in such a way as to maximise the 
returns on investment.  

 
8. Work Schedule:  Use in the development of a work schedule 

that allows a large restaurant to meet staff needs at all hours of 
the day, while minimising the total number of employees.  

 
3.2  Properties of Linear Programming Model  
 
All linear programming models have four basic properties in common. 
They are:  
i. All LP models seek to maximise or minimise some quantity, 

usually profit or cost.  
ii.  All LP models have constraints or limitations that limit the 

degree to which the object can be purse. E.g. deciding how many 
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units of product in a product line to be produced is restricted to 
the manpower and machinery available.  

iii.  There must be alternative course of action to choose from e.g. if 
there are four (4) different products, management may decide 
(using LP) how to allocate limited resources among them.  

 
Objectives and constraints in LP model must be express in linear 
equations and inequalities.  
 
3.3  Assumption of Linear Programming  
 
Certainty:  We assume that numbers in the objective and constraints are 
known with certainty and do not change during the period under study.  
 
Proportionality:  We are sure that proportionality exists in the objective 
and the constraints.  This mean that, if production of one unit of product 
uses two of a particular scare resource; then making five units of that 
product uses ten resources.  
 
Additivity: This means that the total of all activities equals the sum of 
each individual activity.  
 
Divisibility: This means that solution may take fractional values and 
need not be in whole numbers (integers). If a fraction of a product 
cannot be produced, integer programming problem exist.  
 
Non-negativity: We assume that all answers or variables are non-
negative. Negative values of physical quantities are an impossible 
solution.  
 
3.4 Cover Material 
 
5x = Amount of cover material used for half-upholstered. 5y = Amount 
of cover material used for full-upholstered. The total cover material 
cannot exceed 35.  
 
This is the maximum available: 5x + 5y ≤ 35 Thus, the linear 
programming model is:  
Maximise: 5x + 5y ≤ 35  
Subject to: P=N80x + N90y  
2x + y ≤ 12 (Wood material) 
2x + 4y ≤ 24 (Foam material) 
5x + 5y ≤ 35 (Cover material) 
x≥0,x≥0 (Non-negative) 
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Example 1: (Diet Problem)  
 
A convalescent hospital wishes to provide at a minimum cost, a diet that 
has a minimum of 200g of carbohydrates, 100g of pr
fats per day can be met with two foods.

 
If food A cost 29k per ounce and food B cost 15k per ounce, how many 
ounces of each food should be purchased for each patient per day in 
order to meet the minimum requirements at the lowest cost? Required: 
formulate the LP model.  
 
Solution:  
 

Let, x = Num
Y=Number

The minimum cost, C, is found by 
 Cost of food A = 0.29x

Cost of food B =0 .15y 
C=0.29x+0.15y 

The constraints are: 
 

 
The amounts of food must be non 
The table gives a summary of nutrients provided
 

 
Daily requirements:  
10x + 5y ≥ 200  
2x + 5y ≥ 100  
3x + 4y ≥ 120  
The LP model is :  
Minimise : C = 0.29x + 0.15y Subject to : 
10x + 5y ≥ 200 (Carbohydrates)
2x + 5y ≥ 100 (Protein) 
3x + 4y ≥ 120 (Fats) 
X ≥0,y≥0 (Non-Negativity)

      MODULE 6 

 

A convalescent hospital wishes to provide at a minimum cost, a diet that 
of 200g of carbohydrates, 100g of protein and 120g of 

can be met with two foods. 

 

If food A cost 29k per ounce and food B cost 15k per ounce, how many 
ounces of each food should be purchased for each patient per day in 
order to meet the minimum requirements at the lowest cost? Required: 

Let, x = Number of ounces of food A.  
Y=Number of ounces of food B.  

The minimum cost, C, is found by  
Cost of food A = 0.29x 

Cost of food B =0 .15y  
C=0.29x+0.15y  

The constraints are:  
 x≥0,y≥0 

 

The amounts of food must be non - negative  
of nutrients provided 

 

e : C = 0.29x + 0.15y Subject to :  
(Carbohydrates) 

 

Negativity) 
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3.5 Solution of a Linear Programming Model
 
Having formulated the linear programming model, we shall now at this 
stage solve the model using any of the following methods: 
• Graphical method. 
• Simplex method. 
 
However, the simplex method 
that; it can be used for problem involving two or more decision variables 
while graphical method cannot. 
 
3.6  Graphical Solution 
 
Example 2:  
Maximise: P= 4x + 5y Subject to: 
2x + 5y ≤ 25  
6x + 5y ≤ 45  
xgleq0, y ≥ 0  

Solution:  
 
To solve the above linear programming model using the g
method, we shall turn 
each variable equal to zero (0) to obtain 
each equation ( i.e using double intercept form). 
 
Having obtained all the coordinate points, we shall determine the range 
of our variables 
for our graph.  Thereafter, we 
coordinate points with require straight line. 
 

When x = 0, y = 5 and when y = 0, x = 12.5 

When x = 0, y = 9 and when y = 0, x = 7.5 

     INTRODUCTION TO MATHEMATICAL ECONOMICS 

Solution of a Linear Programming Model 

Having formulated the linear programming model, we shall now at this 
stage solve the model using any of the following methods:  

Graphical method.  
Simplex method.  

However, the simplex method has advantage over the graphical method 
used for problem involving two or more decision variables 

while graphical method cannot.  

Graphical Solution of Linear Programming Problems 

Maximise: P= 4x + 5y Subject to:  

 

To solve the above linear programming model using the g
method, we shall turn each constraints inequality to equation and set 

le equal to zero (0) to obtain twp (2) coordinate poin
each equation ( i.e using double intercept form).  

Having obtained all the coordinate points, we shall determine the range 
bles which enables us to known the appropriate scale to use 

for our graph.  Thereafter, we shall draw the graph and join all the 
coordinate points with require straight line.  

2x + 5y = 25 (Constraint 1) 
When x = 0, y = 5 and when y = 0, x = 12.5  

 6x + 5y = 45 [Constraint 2 ] 
When x = 0, y = 9 and when y = 0, x = 7.5  

 Minimum value of x = 0 
Maximum value of x = 12.5  
Range of x is 0 ≤ x ≤ 12.5  

INTRODUCTION TO MATHEMATICAL ECONOMICS  

Having formulated the linear programming model, we shall now at this 

aphical method 
used for problem involving two or more decision variables 

Programming Problems  

To solve the above linear programming model using the graphical 
each constraints inequality to equation and set 

twp (2) coordinate points for 

Having obtained all the coordinate points, we shall determine the range 
which enables us to known the appropriate scale to use 

shall draw the graph and join all the 
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Minimum value of y is y = 0 
Maximum value of y is y = 9

Range of y is 0 
 

 
The constraint give a set of feasible solutions as graphed above.  To 
solve the linear programming problem, we must 
solution that makes the objective function as large as possible. Some 
possible solutions are listed below:
 

 
In this list, the point that makes the objective function the largest is 
(7,0).  But, is this the largest for all feasible solutions?  How about 
(6,1)?  or (5,3)?  It turns out that (5,3) provide the maximum value: 4(5) 
+ 5(3) = 20 + 15 = 35.  
 
Example 3:  
 
Find the corner points for :  
2x + 5y ≤ 25 6x + 5y ≤ 45 x ≥ 0, y ≥
 
Solution:  
The graph for Example 6 is repeated here and shows the corner points 
 
Some corner points can usually be found by inspection.  In this case, we 
can see A = (0,0) and D = (0,5). Some corner points may require some 
work with boundary lines (uses equation of boundaries not the 
inequalities given the region)  
 

      MODULE 6 

Minimum value of y is y = 0  
Maximum value of y is y = 9 

Range of y is 0 ≤ y ≤ 9. 

 

The constraint give a set of feasible solutions as graphed above.  To 
solve the linear programming problem, we must now find the feasible 
solution that makes the objective function as large as possible. Some 
possible solutions are listed below: 

 

In this list, the point that makes the objective function the largest is 
(7,0).  But, is this the largest for all feasible solutions?  How about 
(6,1)?  or (5,3)?  It turns out that (5,3) provide the maximum value: 4(5) 

≤ ≤ 45 x ≥ 0, y ≥ 0  

The graph for Example 6 is repeated here and shows the corner points  

Some corner points can usually be found by inspection.  In this case, we 
,5). Some corner points may require some 

work with boundary lines (uses equation of boundaries not the 
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The corner points for example 7 are: (0,0), (0,5), (7,5,0) and (5,3). 
Convex sets the corner poi
linear programming problems. 
 
Example 4:  
Maximise: P = 143x + 60y 
Subject to:  
X+y≤100  
120x + 210y ≤ 15000 
110x + 30y ≤ 4000 
x≥0,y≥0  
 
Solution:  
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The corner points for example 7 are: (0,0), (0,5), (7,5,0) and (5,3). 
Convex sets the corner points lead us to a method for solving certain 
linear programming problems.  

Maximise: P = 143x + 60y  

≤ 15000  
≤ 4000  

INTRODUCTION TO MATHEMATICAL ECONOMICS  

The corner points for example 7 are: (0,0), (0,5), (7,5,0) and (5,3).  
to a method for solving certain 
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Use the linear programming theorem and 
 

 
The maximum value of P is 6,460 at (20,60).  This
maximum profit, 
acres in wheat and leave 20 acres 
 
Notice from the graph in E
be eliminated from 
unchanged. For example, the boundary x 
finding the maximum value 
superfluous constraint. It is not uncommon to have superfluous
constraints in a linear programming problem. Suppose, however, that the 
farmer in Example 1 contracted 
farm and now the con
This change from 110x + 
the condition x + 
Therefore, you must 
though they do not affect the solution at 
 
Example 5:  
Solve the following linear programming problem: 
Minimise: C = 60x + 30y 
Subject to:  
2x + 3y ≤ 120  
2x + y ≤ 80  
x≥0,y≥0.  
 
Solution:  
Corner points A = (0
bc Point B  

     INTRODUCTION TO MATHEMATICAL ECONOMICS 

 

Use the linear programming theorem and check the corner points:

The maximum value of P is 6,460 at (20,60).  This means that to 
maximum profit, the farmer should plant 20 acres in corn, plant 609 

es in wheat and leave 20 acres unplanted.  

Notice from the graph in Example 8 that some of the constraint
inated from the problem and everything else would remain 
d. For example, the boundary x +y = 100 was not necessary in 

finding the maximum value of P. such a condition is said 
nstraint. It is not uncommon to have superfluous
linear programming problem. Suppose, however, that the 

farmer in Example 1 contracted to have the grain stored at neighbo
farm and now the contract calls for at least 4,000 bushels to b
This change from 110x + 30y? 4000 to 110x 30y? 4000 
the condition x + y? 100 an important to the solution of th
Therefore, you must be careful about superfluous constraints even 

do not affect the solution at the present time.  

Solve the following linear programming problem:  
Minimise: C = 60x + 30y  

 

Corner points A = (0, 80) and C = (60, 0) are found by inspection. 

INTRODUCTION TO MATHEMATICAL ECONOMICS  

check the corner points: 

 

means that to 
the farmer should plant 20 acres in corn, plant 609 

xample 8 that some of the constraints could 
the problem and everything else would remain 

+y = 100 was not necessary in 
of P. such a condition is said to be a 

nstraint. It is not uncommon to have superfluous 
linear programming problem. Suppose, however, that the 

to have the grain stored at neighbouring 
bushels to be stored. 

 now makes  
important to the solution of the problem. 

be careful about superfluous constraints even 

) are found by inspection.  
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System: 2x + 3y = 120...................... (1) 
2x + y = 80....................... (2) 
- (2)2y = 40  
Y=20.  
Substitute for y = 20 in (2):  
2x + 20 = 80  
2x = 60  
X=30  
Point B: (30, 20)  
Extreme values.  
 
Corner point Objective function C=60x+30y  
(0, 80)  
(30, 20)  
(60, 0) 60(0) + 30(80) = 2400  
60(30) + 30(20) = 2400  
60(60) + 30(0) = 3600  
 
From the table above, there are two minimum Values for the objective 
function: A = (0,80) and B = (30,20). In this situation, the objective 
function will have the same minimum value (2,400) at all points along 
the boundary line segment A and B.  
 
4.0  CONCLUSION  
 
By now you are familiar with all the issues concerning Linear 
Programming. 
 
5.0 SUMMARY 
 
This unit focused on Linear Programming (LP) as a mathematical 
technique helpful to managers in planning and decision-making vis-a-vis 
resource allocations. In the process, LP’s applications, properties, 
assumptions and solutions were highlighted. 
 
6.0  TUTOR-MARKED ASSIGNMENT  
 
1.  An oil company manufacturer two brands of lubricants namely A 

and Z, lubricant A valued at N50 needs 15 kilograms of raw 
materials and 9 hours of machine time. Lubricant Z also valued at 
N50 needs 10 kilogram of the same raw materials and 12hours of 
machine time. Establish the maximum value of the products that 
can be made from 360 hours of machine and 375 kilograms of 
raw materials and the respective quantities of lubricants A and Z.  
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2. A caterer has 1600 grams, 1100 grams an 1500 grams of yam, 
fish and meat respec-tively. She requires 100 grams of fish, 100 
grams of meat and 200 grams of yam to prepare a plate of 
pounded yam. To prepare a plate of porridge, she requires 200 
grams of fish, 300 grams of meat and 100 grams of yam. If a 
plate of porridge sells for N3.00 and a plate of pounded yam for 
N5.00, how many plates of each should she prepare of maximize 
her sales?  

 
3.  Berger Paints Nigeria Limited manufacturer’s two types of paints 

Emulsion and Gloss. ’Emulsion’ valued at N12.50 per gallon 
needs 5 kilograms of raw materials and 9hours of machine 
time.’Gloss’ valued at N15.00 per gallon needs 6 kilograms of 
the same raw materials and 12hours of machine time.  Establish 
the maximum value of each of the products that can be made 
from 400 hours of machine time and 500 kilograms of raw 
materials.  

 
4. Ajasco Nigeria Limited manufacturers plastic and zinc buckets. 1 

hour, 2 hours and 1hour of time on machines A, B and C 
respectively; are required to manufacture 1,000 plastic buckets. 2 
hours, 1hour, 1hour and 1hour of time on machines C, A and B 
respectively; are required to manufacture 1,000 zinc buckets.  In 
a given period, the available hours on machine A, B and C are 8, 
12 and 14 respectively. The profit per unit on plastic bucket is 
N50 and on zinc bucket is N60.  Find the optimum allocation i.e 
the product mix and the resulting profits.  

 
5. Mrs, Viju Milk is a small scale business woman who has just 

started a mini catering outfit in Lagos. She has decided to 
produce two types of cakes, namely chocolate cakes (x) and fruit 
cakes (Y). The two types of cakes go through two main 
processes. i.e baking and decorating. In order to produce a 
chocolate cake, she needs 2 hours for baking and 6hours for 
decorating.  To produce a fruit cake, she needs 4 hours of baking 
but only 2 hours of decorating. She has available 400 man hours 
of baking and 600 hours of decorating. From market research she 
calculates that she will make a profit of N200 on each chocolate 
cake and N300 each on fruit cake.  

 Required:  
i. Formulate the problem as  Linear Programming.  
ii.  Use the graphical approach to determine how many 

chocolate and fruit cake Iya Ibeji should produce to 
maximise her profit.  
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