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FMT 204 COURSE GUIDE

INTRODUCTION

You are holding in your hand the course guide KEMT 204:
Introduction to Mathematical Economics.

The purpose of the course guide is to relate totliewbasic structure of
the course material you are expected to study. Lhilkeename ‘course
guide’ implies, it is to guide you on what to expé&om the course
material and at the end of your study of the couraterial.

COURSE CONTENT

Logarithms, Exponential and Growth Mathematics, dRobion
functions, Differential and Total derivatives, MatrAlgebra, Input-
Output Analysis, Comparative Statistics, Linear gbamming, Dual
Programming and Games Theory.

COURSE AIM
The aim of the course is to bring to your cognigatinelntroduction to

Mathematical Economics as mentioned in the course content to enable
you solve financial problems and calculations.

COURSE OBJECTIVES

At the end of the course material, among otherativjes, you should be
able to:

o explain the concept of Logarithms, Exponential &Acbwth
Mathematics

o contextualise the use of Production functions, éédhtial and
Total derivatives, Matrix Algebra to handle finasgoroblems

o discuss the introduction and insight to Comparatstatistics,

Linear Programming, Dual Programming and Games iijheo
COURSE MATERIALS
The course material package is composed of:

The Course Guide

Study Units

Assignment File
Tutor-Marked Assignments
Textbooks and References
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STUDY UNITS

There are 6 modules broken into 7 study unitssasdibelow:

Module 1

Unit 1 Indices, Exponential Equations and Loganish
Module 2

Unit 1 Growth Mathematics

Module 3

Unit 1 Matrix Algebra and Vector

Module 4

Unit 1 Comparative Statics and the Concept of ieie
Unit 2 Application to Comparative Static Analysis
Module5

Unit 1 Games Theory

Module 6

Unit 1 Linear Programming

Each unit of the course has a self-assessmentisxercou will be
expected to attempt them as this will enable yamle¢he facts about the
unit.

TUTOR-MARKED ASSIGNMENTS (TMAS)

The tutor-marked assignments (TMAs) at the end atheunit are

designed to test your knowledge and applicatioth@fconcepts learned.
Besides the preparatory TMAs in the course mateoigkest what has
been learnt, it is important that you know thatheg end of the course,
you must have done your examinable TMAs as thdydtad, which are

marked electronically. They make up to 30% of tltscore for the

course.
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SUMMARY

Financial Mathematics can be compared to a cathedral. We wish to visit
a small part of this cathedral of human ideas @fngities and space. We
wish to learn how financial mathematics can be tbudinancial
Mathematics spans a very wide spectrum, from thgle arithmetic
operations a pupil learns in primary school to Huphisticated and
difficult research which only a specialist can urstiend after years of
long and hard postgraduate study. We place oursslvmewhere higher
up in the lower half of this spectrum. This caroal& roughly described
as where University mathematics starts. In natscences, the criterion
of validity of a theory is experiment and practice.

Financial mathematics is very different. Experimamid practice are
insufficient for establishing mathematical truths. Mathematics is
deductive; the only means of ascertaining the validity oftatement is
logic. However, the chain of logical arguments a#nbe extended
indefinitely: inevitably there comes a point whewe have to accept
some basic propositions without proofs.

The era which huge and complex calculations ta&m#y to arrive has
passed and technology has made so many thingsarasy.

Many aspects of business and accounting say degfimeti loans,
interest calculations, investment appraisals, havetheir basis some
relatively simple formula. Our goal is to be aldeanswer such typical
questions like: A firm rents its premises and the aegreement provided
for a regular annual increase of N2, 550. If thet e the first year is
N9, 500, what is the rent in the tenth year? Adnod cost N500, 000
and it depreciate at 10% per annum on the reducailgnce method.
What will its written down value be after 25 yeard?N1, 000 is
invested at 18% interest compounded semi-annuaht wihll be its
worth in 5 years? How long does it take an investnte double at an
interest rate of 8%? If | buy a N200, 000 housé,Np40, 000 down, and
obtain a 30 year mortgage for the balance at a ®8aa interest rate,
what will be my monthly repayment?

Good luck in your studies!

vi
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MODULE 1

Unit 1 Indices, Exponential Equations and Loganish

UNIT 1 INDICES, EXPONENTIAL EQUATIONSAND
LOGARITHMS

CONTENTS

1.0 Introduction
2.0  Objectives
3.0 Main Content
3.1 Indices
3.2  Exponential Equations
3.3 Logarithms
3.4  Rules of Logarithm
3.5 Logarithm Equations
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
7.0 Reference/Further Reading

1.0 INTRODUCTION

The prime factor of 64 is 2, meaning that of adl factors of 64 (i.e 1, 2,

4, 8, 16, 32, 64) only 2 is a prime number. Heneecan express 64 as 2
><62 x 2 x 2 x 2 x 2, This expression can be writtea shorter form as

2°.

Therefore, 64 =2 x 2 x 2 x 2 x 2 x 2 & Here, we have written 64 in

index form (i.e. 2)

In this case 2 is referred to as the base whils éalled the index or
power or degree or exponent.

For example, 100,000 can be written in index fosnl& where 10 is
the base and 5 is the index.

There are some rules that guides indices and thise are sometimes
referred to as laws or properties. (In fact thagesror laws are simply
definitions).
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20 OBJECTIVES

At the end of this unit, you should be able to:

o identify the laws of indices
o solve problems relating to indices
o explain related problems on logarithms.

3.0 MAINCONTENT

3.1 Indices
Lawsof Indices
Six lawsof indiceswill beconsidered

Law I:
a'™x d'=d"™"

The interpretation of this law is that whenever ywwa multiplying two
or more numbers written in index form and havingnawon base then,
you add their powers as indicated above.

Example 1:
Simply the following

(a) 2&x 3a° (b) 4b’x 7b° (c) 10x 10
Solution:
(a) 2a’x 3a°

We can re-write this expression as
@xa’)x(3xd)
=2x&x3xg
=2x3xgxa’
=6xaxd
= 6x&+2 Here we have applied the rule
=6xd’= 6a° = 6&

(b)  4bx7b°
= (4 x ) x (7 x b°)

:4><7><b3xb_6
=28 x (Bx b™®)
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=28 xXb*®) je applying the rule

=28 x (B
=28b°
(c) 10x 10°=10%=10
Note:
10°x 107 = (10 x 10 x 10 x 10 x 10) x (10 x 10)
=10 x 10 x 10 x 10 x 10 x 10 x 10 ='10

Law II:
A" ol = d™"

The interpretation of these laws is that whenewer gre to divide two
numbers written in index form where their base(g) equal, what you
do is to subtract their powers from each other emahstrated in the
above definition.

Example 2:
Simply the following

(@) Xy’ *+x3y% (b)) 2% 2 (c) 125 x3+ 5
Solution:
(@) xy’z*+x3y~7*

= (Y2 + (Xy 7))

= (Cx Y% 779 = (Fx yOx 2
=0CeX) x (Yo y g x (2% 7)
= x=2-3x y I 744
— X_SX yGX Z—8 — X—5y62—8

(b) 2% 2*

— 34
= 2_7

(c) 125x8+ 5

Note: 125 = 5(index form)
Hence 125 x &5 5°
= 53X 54+ 55
— (53+4) - 55
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= 57+ 55
57—5
=5 =25

Note:
5+ 5°
:55
5x5x5x5x5x5x5

5x5x5x5%5
=5x5=5§ =25

Law III:

(am)n - dnxn
This rule states that, if an index number is raiged power, then, we
multiply the two powers as defined above.

Example 3:

Simplify the following.
(@) (16)*>  (b) (109*  (c) 32(d) 16"  (e) (* 277

Solution:
(a) (10)?=10>?= 10

Alternatively,

(10%? = 10x 10° = 1¢"* = 10
or (10)? = (10 x 10 x 10) x (10 x 10 x 10) = 10 x 10 x 100<x 10 x
10
=10

(b) (10)? = 10°?
= 16%= (10"
=100

(c) 3% = (&)
= 25xx = &
= (2)°

(d) 1@"‘3/
G
:212/4: 23: 8
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tales

()

= (55) (i.e writing 28—? index form)

Law IV:

=1

This law indicates that any number raised to thegymf zero will give
eg.18=1,2=1,8=17=1.

Hence 16=2=3= 7= 1.How?
Consider 18- 10 = 102=1° = 1 Now, 16+ 1¢

0¥

10

_ 10x10 _ 1 _ 4
1010 = 1

Example 4:
Simplify 3t 3"

Solution:
31—nx 3n—1
— 31—n+n—1
=3=1
Law V:
a ==L
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This law relates to a situation whereby the indewgr is negative
Changing the index to positive, then, we have thwerse of the inde
number (but with positive index) as written abosg

Example 5:

Simplify the following (a 32 817¥*(b)  (8a® )™?
Solution:

(a) 3275 g1t
327145 x 811/

= (25)71/5 x (34)-1/4
— 9-5/5 . 9—-4/4

=921y 31

] =

b4

a8l =
=1

(b) (8a—6 -1/3

=(8xa%?
=813 x (¢ 6)-1/3
— 93x—1/3 y ,—6x—1/3
— 9-3/3 5 46/3

=21 xa?

Law VI:
am/n — (n\/a)m

This rule talk about a fractional power, that isendthe index/power
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a quotient say"" (i.e a™). In this case, we find the” root of "a,"
raised the result to power m and then eval

Example 6:
Simplify 8°
Solution:
8° = (¥8)* (i.e. finding the cube root of 8)
= 22 =4
Note:

In most cases we can also apply rule 11l in solvimgblems involving
rule VI if the base can be written in index for
e.g.&=(P)H=23=2°=2°=4

NOTE: 1
/T = 17 is called square root of x

Jr= 75 is called the cube root of x

Vr= 71 islcalled 4™ root of x

1
2
3.
4. Vz?= (1% is called 5" root of 1
5 (axb)"=a"xb"

6

T

Example 7:
Simplify 4&b x (3ab)?

Solution:

4a%h x (3ab)?
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=(4xa®xb)x(3xaxb)?
=Uxa*xb)x(32xa?xb?)
=4dxadxbx32xa?xb?
=(Ax3)x(@®xa?)x(bxb?)
= (4 x & x (a*7D) x (p12)
= (0 d) x (@) x52)
= (4/9) x (a') x (b1) = x ax b

da

=11

xax

1
5 — Ob
Example 8:

Evaluate 1/(1252)~%
Solution:

!
\/ (1‘252)_L = [( 1252)_%]1} {Here we change the square root sign and replace it

with power —3)
= [(s3 2 12 Here we write 125 in index form as 53
[((5%)2) ( )

. 53)(2)(—

53"'%“2"'% (Applying rule IIT)

I
o

3 =% ( Applying rule V)
Example 9:

Simplify 9% x 37+2 x x81°7
Solution:

9% x 32 x 8171
= (32)"% x3""2 x (31)"1 (Here, we have written 9 and 81 in index form )
— 3 F 9% 31 (i applyiog law 111 of indices)
=37 x 32 x %371
_ g-ntnt2H(-1)
= 37™"*2-1(5ince they have the same base and also applying indices law I)

P =31=3
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Example 10:

. . 3n Sm n—1
Simplify 16@™ +- 8% x 4
Solution:

167 =+ 8% x 471
= (2% = (@)% x (2!
=2 £ 25 x 222 (law 3 applied)
= 23n - 257 2?n-2 (base are now equal, then apply the laws )
— 23n—5n+2n—2 — 2—2

1

Example 11:

Simplify (2a)? x (24%)3

Solution:
(2a)% x (2¢%)% = (2 x @)% x (2 x a®)3
= (22 x a?) x (232 x (a®)2)
— 23 x a% x 2% x a?
— 23 x 22 X a? X a2 (By re-arrangement)
— 25+3 % q7t3
=923 xa?
=22 xda®
=4 x a® = 4d°
Example 12:
1
Simplify 122X81 x6/3

816

Solution:
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1 1
123 x63
2D X0

8186

Writing 81 in index form (i.e ?) then the expression becor

1 1 1 1 | 1

123x63 __ 123x63 _ 123 x63
1 2 — 1
(92)% 96 93

Now all the terms in the expression has the powf*® hence, the
expressiorbecome

Alternativemethod

1 1
et = (125 x 63) = 81%

= (45 x 35) x (23 x 3%) = (38)
= (4 x3)% x (2x3)5 = (34)

% 3% = 33

(X1

x 2

o=

= (223 x 3
— 2% x25 x 33 x 35+ 33 (By re-arrangement)

(=1 0]

[ =1
(X1

2 1
=925ts x 3zt

3 2 2
— 9% w 357

:21')(3“:2)(1:2

Example 13:
2n+l _4(2:&—!—1)
Simplify on_on+t1

Solution:
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Qn+2_4£2n+11
an__9n+l
= % (2") is common to both numerator and
denomination
on (222291
= ﬁ (hence 2" cancel out)
_2-® _ 48
=g ==
__ -4 __
= 4=y
NB: (”.” multiplication)
Alternative method:
Qﬂ-+2_4{2n+1}
T n_gnil
_ 2n22_4(279Y)
T 2n_9m 0l
_ 2".4—4;2"21[
T 2n_on gl
_ M- _ A=D) _
o2m1-21 0 -1
Example 14:
. . gn.{2n_3_22n—2]{3n_2_3n—2j . ] .
Simplify R U where (.) stands for multiplication

Solution:

on (2m-g.9%e=2)(an_9.8n—2)
3n—2(an+3_4n1

_ 2“{2n—3_22ﬂ2—2]{3n—2_3".3-2)
- 3n_3—‘3(23fﬂ+3]_{22}n}
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-39 L )am-23". k)

_ 2“ (2“
- :]n_ai?_(ﬂsl:n+3]—2.‘ln]

(2ron—3.9% 1)(an—23~ 1)
3:1_%(23(“+3] _gﬂn)

(2r2n-3.9%n 1)(3n-23".3)
3:1_%(23@9_22:1:,

_ 2r(1-§)3(-3)
3n (@i —3In)

_ 2 aps)
— 3n loln(anafog)

_ (Hd
= jen

(s6)

~ e

Ty 9 _ 7
— 36 © 1 T a(@ntio)

Example 15:

Simplify (4a~§= — 8af + 4:1?15) < 4ad

Solution:
z 1 1\ . 41 da%_8a% 44"
(4{13 — 8ax -|—4{13) = 4as = 1
Aad
_ 4a% _ Sa¥ n al
da% 4a% ﬂ%
_ ﬂ,% 2.1% a%
=T —~—T1 T T
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=a®—2a' +1
—a’—2a+l=a’—a—a+1
=ala—1) — 1(a — 1) (factorization by grouping method)
=(a—1)(a—1) = (a—1)?

Example 16:

. = 1 1
SImplify 1= — =1

Solution:

Example 17:

]6[32I}_4I+1_23I—2 5

Note: ”.” means multiplication
Solution:

From LHS
16(327)—4+1 9302 5%

15(16%).27— 1 V257

B 24(25]&_22{1‘4—1}_23&‘—2 B 5T
— 15(‘24]$.23‘_1 (5_-1;]1,"2
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o 24(25.1:}_2(21‘4—2}.23.1'—2 BT
15(2%).27—1 (52)172
244—51‘_22.’1?4—24—3&:—2 5T
— 15(2dz+z—T) ~ 52/2

. 24+-5.'1:_25;r
= 15(@-1)_1

9445z _ 92(x+14-3x-2)
— T 15.0dwFTo-1_

25724y
O 15(2522-T)—1

_2%%(16-1) 1

— 252(15/2)

_ _(15)
(-1

= (15x ) —1

=8 =2-1=1

3.2 Exponential Equations

I ntroduction

r—1 2e+1 __ T __
Equations such a ._._ 2, . 167" -8 =0 .2 . % e.t.c

are examples cexponential equat|0n§'0 solve such equation the I
and right hand side of the equation must be writtethe index forn
(with outright simplification and conformity). fthe two sides of th
equdion are of the same base trtheir powers will be same and if t
powers of both sides are same and bothave single expression as
base, then theibases will also be equal. should be noted that ¢
exponential function can NEVER be negati

Example 18:

If
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P2=T=z=T

Also If

31‘+5 — 3?—1

=z+5=T—=x
Similarly, If
(3z + 1) = (22 — 1)1
=3x+1=2r—-1
Example 19:
Solve the equation*3= 81
Solution:
3* =81
= 3r =31
r=4

Example 20:

1
Solve the equation*g 729

Solution:

Example 21:

Solve the equation 158 = 2523
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Solution:
1251 — 252z—3
= {53):—'] — (52}2:—3
= 53[1—]] — 52[‘21—3}
= 3{:1" — 1] = 2{2-.r — 3)
= 3r—3=4r—6
= —3+6=4dr— 3z
=3==x
Therefore,
r=23
Example 22:

Solve the Bnultaneous equatior™ = 8, 37 = 27

Solution:
27ty = §
= 2=y = 93
=r+y=23 (1)
Also
32y =27
_, g%y _ g8
Therefore,
=2r—y=3 (2)

Now, solve the equations ( and equation (Ximultaneously to ge

x+y=3

2x-v=3
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By adding equations (1) arfd) to get

3r =6

=
Il
o
I
b

Substitute x = 2 in either equation (1) or
Now using equation (1) i.e.

r+y=23
=2+y=3
y=3—-2=1

Hence x=2, y=1
Example 23:
Solve the equation”® 5(2)=4=0

Solution:
22T _5(2%) +4=0

= (27)2 = 5(2*) +4 =0
Let 2* =a
then, the equation become®~ 5a + 4 = 0 which has turned to a
guadratic equation. Nowpkving this equation by factoiation method
through groupings, we have
a?—a—4da+4=0
= ala—1)—4a—-1)=0
=(a—1)(a—4)=0
= (a—1)=0o0r (a—4)=0

=a=1lora=4
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but 2 = a,
whena=1=2"=1

= 2T =20
z=0
Also, when a=4,= 27 =4
=27 =27
=2
Hence x=0, or x=:

Example 24:
Solve the equatic 3* + 37 = 4

Solution:

3 +3 =4
>3+ (3" x3 ) =4
=34+ (3377 =4
= 3T + (g—i) =4
Let 3* =b
then, the equation becomr

=4

=d [

b+

multiplying through by b, we ha'
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b’ +3=4b
= b —4b+ 3 = 0 (then now form a quadratic equation)
=20 -b—-3b+3=0
= b(b—1) —3(b—1) = 0 (By factorization )
=b-10b-3)=0
=b-1)=0,0r (b—3)=0

=b=1,orb=3

butb=3
if b=1,
3F=1
=3 =3"
= =10
Also, if b=3,
,3* =3
= 3% =31
r=1

Hence x=0, or x=1

Example 25:

Solve the equation 33 =12
Solution:

walka

3r3 =12

Divide both sides by 3 to get

2 19
3r3 =3
2
;‘>5_,|"'§:£l

Raise both sides to power %
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= zs = (2%)2
:>.'1:1:23
=

Example 26:

Solve the equation (3)* =23

Solution:
(3 =23
=21 =3
=27=3
2(27") =5
l+(-x) _ K
21-r =K

Now take log of both sides to base

i.e Icrg'lza_i — logi

(11— 3:]505’?0 = 509150

5
(1—2) =
L -z = g0
1 —z=23223

=1-23222 =2

z = —1.3222 (4dp)
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Example 27:

Solve the equation 223 + 325 —0 =0

Solution:

93 4+ 323 — 0 =0
2(z3)2 +325 —9=0

1
Let 23 =a

= 20’ +3a —9 =0 (this now becomes a quadratic equation)
= 2a2 —6a+3a—9=0
= (a+3) —3(a + 3) = 0 (By factorization )
= (a+3)(2a—3) =0
=(a+3)=0o0r (2a—3)=0
a=—-3ora=3/2

but a = /3

when a = -3 =27 =3
cube both sides or raise both sides to power 3

i.e(1/3)3 = (—3)3
= (2%%) = (-3)°
(z') = —27
r=—27

Also when a = 3/2,= 2'/® = 3/2 cube both side to get

= (2'7)" = (3/2)°

1_ 27
=zl =1
=>r=2

8

Hence x=-27, or %



FMT 204 INTRODUCTION TO MATHEMATICAL ECONOMICS

Example 28:

Given that (3)(5°) = 675 find x
Solution:

(3*+1)(5%) = 675
(3*T1)(5%) = 25 x 27
= (37F)(57) = 52 x 33
= 371 =33 or 57 = 52
=r+l=3o0rzr=2
=r=3—1lorz=2

=zr=2o0rr=2
x =2
Alternatively:
(3=+1)(5%) = 675

= (3731)(5%) = 675
== 3T x 3! x 5* =675

:>31x512%

Example 29:
Solve 25 — 3.5 +2=10
257 35 +2=0
= (52" —-35"+2=0

= (5°)2—35°42=0
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put 5" =a

= a? — 3a + 2 =0 (this now becomes a quadratic equation)
=at—a—2a+2=0
=afla—1)—2(a—1)=0
= a—1)(a—-2)=0 (by factorization method)

=2a—1=00ra-2=0

Therefore, a =1 or a =2

but a =5
whena=1=>5"=1=5"

Therefore, x =0
Also when a = 2,= 5* =2
Take log of both sides to base 10

Le logp 5° = logp 2

_lomp? _ 0.3010
= T = 1og,,5 — 0.6900
r = 0.4306

Therefore, z =0 or x = 0,43
Example 30:
Solve 27°-2 = 16(25%)

Solution :

9% =2 — 16(25%)

— 9r’-2 _ 24(257)
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2_ ) . .
= 2772 — 257 (Since both sides are of the same base)

:,32—2:4+5$
=2 Br—2—4=0

= 22 — 5r — 6 = 0 (by factorization using group method’

2’ +r—6x—6=0
=x(r+1)—-6(x+1)=0
= (z+1)(z—-6)=0
2zx+1=00rzx—-6=10

Therefore, t = —1 or z =06

Example 29:

(ziven that 4% =0.125.find x

Solution :
47 =0.125
=>4 = {55 =3
{22}1‘ — 2—3 — 515;
2r = -3

[ =] 0]

Therefore, r = —

Example 31:

Find x, if 2(3%t1) 4+ 3(3*1-4)=0
Solution:
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2(3 ) 4+ 331 —4) =0
= 2(32x31) 4 3(3*3°1 —4)=0
= 6(3%) +3(35r —4) =0

= 3[(23" + (% —4)| =0

= 2(3") + {g—: —4) =0 (i.e dividing both sides by 3)
Let 3% = a, hence, we have

2a> + (4 —-4)=0
= 6a’+a—-12=0
= 6a% 4+ 9a — 8a — 12 = 0 (now a guadratic equation)

= 3a(2a + 3) — 4(2a + 3) = 0(by factorization using group method)

= (2a+3)(3a—4)=0

=2a+3=00r3a—4=0
= 2a=—3or 3a=4

3

:}»a:_Tora:

i

But a=3*

when a= —% = 3" = _?3 (unsolveable)

Also when a =

3 [

= 3=

| e
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Take the log of both sides to base 10

i.e log, 3" = logm%

= :ﬂlﬂgm3 = lﬂg"} 13333

_ logyq1.3333 _ 0.124038
= T = Toga3  — 04TTI21

x = 0.261858
Therefore, r ~ 0.2619

Example 31:

1 i 1-1
Given that K = o7 and L= 5[{.”_”1}
Show that (L + a)? = 4aK

Solution:

To show that (L +a)? = 4aK
Consider the LHS

_ 2
ie (L+a)= [ +4d

= (&)
= x (i)

— 4q2 (W)

_a
But K_W

Hence, (L +a)? = —rﬁ'“Tiﬂ}
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da (w) —4aK = RHS

3.3 Logarithms

You will be familiar with the use of logarithms fenultiplication anc
division, but there are certain properties ofarithm that are very useful
in more advanced work. Having just consideredices, this is the
appropriateplace to discuss logarithi because logarithm can also be
written or expresseith index form.

Hence, the logarithm of a number (say k) to a paldr base (say is
the power (say t) to which that particular numb@rrust be raised t
give the number (k)

i.eif log:k =1

=zt =k
Note:
1. The logaritin of w to base x is written dog, w.

2. Whenever the base of a logarithmnot indicated, in most cases,
we assmed it is in base 1(

Therefore, if log 100 = 2 = 10? = 100.
Also, log,32 =75

= 2° = 32.

Similarly, log32 ==

= 16" = 32

Hence, in general, if logsb = =
=a*=>5b

Example 32:

Find the value of théllowing:

(i) logs81 (ii) logs216

(iv) logg o5 32 (v) logyp00.001
(vii) loggV/6 (viii) logs9v/3

(iii) Log,z1/9
(Vi} Iag{]ldﬂ.ﬂﬁd
(ix) 5logsv/0.5 (x) logs(V3V/3)
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Solution:

(i) Let logs8l =z = 3* =81

Now, write 81 in index form to get
F=3HN=zr=1

Therefore, logs81 =4

(ii) Let logplé = y = 32Y = 16 Now, write both 32 and 16 in index

form

i.e (25)Y = 24

= 2% — 21
= by=4
=y =45

Therefore, logzal6 = 45 or 0.8

(iii) Let log 5z 5=k

= (V2T)k =3¢
(277)F = 91

Now, write both 27 and 9 in index form to have
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Therefore, ]Dg NoTi %: —%
(iv) Let logpos32 = ¢
= (0.25)" = 32

Convert 0.25 to fraction then, we have
Z)=32= (1) =32

=4 )Y =32=4"=232

Now, write both 4 and 32 in index form to get

[Q—Ejt — 93
=274 =2
= —2t=5
ort=—=5=—3
Therefore, loggqs32 = —g or —2.5

(v) Let logigp0.001 =p
= 1007 = 0.001
— 1007 = 1/1000
= [1(]‘2}3: = ﬁ- = ][]_3
== 1[}'2p = ]_[:I_3
3

= 2p=-3o0rp=—3

3

Hence, logip0.001 = —3

(vi) Let logp40.064 = w

MODULE 1
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= (0.4)* = 0.064

Now change both 0.4 and 0.064 to fraction to get

(4)» = 64/1000

. . 3
= (15)° = 1
= (35)" = ()

=w=23
Therefore, logy40.064 =3

(vii) Let loggv6 = =

= 6% =6
= 6% =62
s
Therefore, = loggy/6 = %
(viii) Let logs9v/3 =y
= 3¥ =93
= 3¥ = 3%(32)

1 1
= 3¥ — 323 = 323

— 3¥ =33

=114y

Hence, log39v/3 = %
(ix)Let 5logs0.h =k

= logg(0.5)° = k (see rule 3 of logarithm in the next dicussion)
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= 8% = (0.5)°
> 85 = (§)° = (3)°
= (Zﬂ}k — (2—1]5
= 2%k =275
= 3k=-5

=k =—

Ll

Therefore, 5logg0.5 = —3

(x) Let logs(v3v/3) =t

— 3t — 31z
_ T

Therefore, logs(v3v3) = 1_?2

3.4 Rulesof Logarithms

There are some rules that guides logarithm which includes

1. log.(ab) = log.a + log,b (Note: ab means a x b)
2. log.(a/b) = logya — log,b

3. log.a® = blog,a

4. logea=1

5. log:1=0

T

hese five rules governs logarithms and can be proved.
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Theorem 1:

Prove that log.(ab) = log.a + log, b

Proof:

Let logra=n and log.b=m (1)
Then, z" =a (2)
and z™ = b (3)

Multiplying equations (2) and (3), we have

n+m +m

T — ab or ab ="

—sab— g™ (first law of indices)

Now, take log of both sides to base x to get

loge(ab) = logex™ "™

= logz(ab) = (n + m)log:x (third law of logarithm)

= logz(ab) = (n + m) (since logyz = 1 fourth law of logarithm )

But log.a = n and log.b = m from equation (1)

Therefore, log.(ab) = log.a + log,b proved.

Theorem 2:

Prove that leg, = log.a — log.b

Proof:
Let log,a=n and log,b=m (1)
Then,
™ =a (2)
and
™ =b (3)

Dividing equation (2) and (3), we have large
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L |

™ = b

= 2™ 2" =§ =2™ " (second law of indices)

Now, take log of both sides to base x to get

log,y = logzx™ ™"

= log:(§) = (n —m)log,z (third law of logarithms)
= log:(5) = (m —n) (Since log.z =1, fourth law of logarithms )
But logja=n and log,b =m (from (1) above)

Hence, log,(3) = logza —log,b proved

Theorem 3:
Prove that Eﬂgrab = blog,
Proof:
Let log,.a=%F
=k —g (1)

Now, raise both sides to power b to get
(Ik}b — ab

% = a® or a® = ¥ (third law of indices )

We now take log of both sides to base x to have

\

log, a® = log, =%
= log, a® = bklog, =
> log, a® = bk (since log,z=1)

But k =log,a
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Therefore, log.a’ = blog,a proved.
Theorem 4:

Prove that log,a =1
Proof:

Let logaa = x (1)
a=a
We now take log of both sides to base a
log, a® =log,a
= rlog,a=1log, a

log_ a*
_ g _
=T =, =1

But x =log,a=1 from equation (1) above

Theorem 5:
Prove that z =log, 1 =10
Proof:

Let log, 1 =0

=z =1
We now take log of both sides to base x

ie log, 2" =log, 1
= 0 x (log, x)

=0=log_1

Therefore, log, 1 =10
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Example 33:

Simplify the following

(i) logy9+logy21 —log, 7 (ii) ng_;(%] +2 logs(_—g] — ]ogg,(%}

(iii) loglwﬂ 12 + 2log,, 0.75 — log,, 0.675 (iv) log;y 15 —logy v6 + log,, 2
(v) %;"5’—; (vi) log z? + 2log(zy) — log y° (wii) logg(%)
(viii) (Zs (ix) log, 8 — log, 2

Solution:

(1) logy9 +logy21 —logy 7
Since the base are equal, then we can apply the logarithm rules. Hence we have

log, (9 x %)
log (9 x 21 +7)
log,(9 x 3)
log, 27
log, 3°
=3log,; 3
(ii) logs(§) + 2logs(3) — logs(3)

Here, we need to re-write the second term i.e 2log(4/5) to be in conformity
with others by using third rule of logarithms which bring the expression to be:

lﬂgs(%] + 1025{%}2 - lﬂgs(%}

= logy(2) + logs(s) - logs(3) Since they are all of the same base then, we have

logg{% X % = %}

= logE(% X % X %}
= logs(3/5)

= log: 3 — logs5
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=log=3—1 (Note: log=H=1)

(iii) logyy12 + 2log,, 0.75 — log,, 0.675

The first thing we do here is to change the decimal to fraction, hence we
have

75 G675
log 12 + 2log10(555) — 1og10(505)
Re-writing the second term using 3rd law of logarithm, we have

logyp 12 + 10%10(%}2 - loglﬂ(%}

By applying the logarithms rules, we have

lﬂglo 12 x (%)Q - %

™o 75 . 1000
logyo 12 X 155 X 166 ~ G5

= lﬂp;-m 10=1

(iv) logz? — 2log(zy) — logy?
log x? — 2log(zy) + log y°

log 22 — log(zy)? + log 3
= log z* — log ’y” + log y?

= log(z? + %% x 3?)

2 a2

= log (52%;)

T Ky

g (5

=logl =0
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(v) logiy V15 — logyg v6 + logyg 2

= log;o(v15 = V6 x 2) (i.e by the rules of logarithm)

(\/ﬁ X ix/ﬁ)
1
= logyp (_lé?i—rfﬂ)
—lo (15%14%) Note 2 — 4%
= loggo (=1 =

1
= logyp (%)i (Since the power % affects both numerator and denominator)
— 60+1/2
= log0(F) /
= fﬂg‘-m“]]""rg

= llogp 10 = % (since log;; 10 =1)

oy log /5
{VI) log5
1
_ log(3)Z
—  logh
_ 1llogh : [
= gime (since logh cancel out)

=30 =3
(vii) log (%)

3
logs & = log2(3)*

= 3log2 3 (i.e using third law of logarithm, log2 2=1)

Hence, logg(%) =3
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(wiii)

|

g5
‘_Lm

Ll

Alternative solution:

log 274+log 8—log 125

(ix)

logh—log6

INTRODUCTION TO MATHEMATICAL ECONOMICS

log8—log4
logd—log2

(i.e using second law of logarithm)

log

— Tog2

(5]

—

log8—log4d
logd—log2

log 2* —log 2*
log 22 —log 2

3

log2—2log2

2log2—log 2

log2

g2 — 1

_ log(27Tx8+125)
— log(5=6)

23;8) + log (5 = 6)

:log(
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(x) logy8 — log, 2
Let log;8 =z and —log,2 =1y
= 8" =4 and 4Y =2
= 237 = 22 and 2% = 2!
= 3r=2and 2y=1
2 1

= r=gand y=g3

Hence lﬂgd 8 = % and ]0g4 2 = %

2 1 4-3 7
Therefore, log,8 — log,2 = I—5=% =&

Example 34:

Express as a single logarithm

(1) —log2 (ii) 2 — 2log,, 2
Solution:

(i)

—logy2 = log;p 27"

1
= 10310(5)
(ii)
2—2 loglﬂ 2
=2 ].Oglo 22
= 2 10g104
But log;; 100 = 2
Hence, 2 — 2logy,2 = log;, 100 — log;, 4

= lﬂgm(%o) — logyp 25
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3.5 Logarithmic Equations

Example 36:

Solve the following equation

(i) logy(z? + = +10) = § + log,(z? + x — 5) (ii) logyo(22? +5x —2) =1
(iii) log, § = 3 (iv) logs(z? + Tz — 6) — logy 3 = logs(z® + 3z — 6)
Solution:

(i) logy(z® + z +10) = 1 + log,(z* + = — 5)
logy(z? + = + 10) = § + logy(z® + = — 5)
Collecting like terms, we obtain

log, (22 + = + 10) — log, (22 +z — 5) =

using the second law of logarithm we have
!I2+I+[Ut _1
log, 4z-5) 2

(r2+x+10) 41 n9
fr" {P+I—5} _4‘2 - (2 )

(&1

(z2+x+10) _ 9
(z¥+r-5) —

= (22 4+x410)= (22 +2-5)
= a2+ x4 10 =222 4+ 2x — 10)
=22 4+22-10—-2 -2 -10=0
=2 +z-20=0
Now, by factorzation using grouping method, we have

x> +5x—4r —20=0
=S z(x+5)—4(zx+5) =0
= (z+5)(z—4)=0

=zxz4+5=0 or z—4=0
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Therefore,

r=—5 or z =4

(ii) logy(222 + 5z —2) =1
= log3(22? + 5z — 2) = log;, 10 (log,, 10)

%922 4 Bx — 2 =10 (from previous examples)

= 222 + 5z — 2 =10
=22+ 5r—2-10=0

= 20’ +5r —12=10
By factorization method, we have
=27 +8x—3z—-12=0

= 2z(z+4)—-3(z+4)=0
= (z+4)(2z -3) =0
>(zx+4)=0o0r (2z-3)=0

=r=—4dor 2xr=3

Therefore = = —4 or = = %

. 1 1
(iii) log,(3) = —3
Solution:
]-Dgr(%} — _%
1 1
=T T = i

Raise both to power of -2 , we have
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= 1 =62

Therefore, = = 36
(iv) logs(z? + T2 — 6) — logy 3 = logy(x? + 3z — 6)

= logs(z? + Tz — 6) — logy 3 — logs(z? + 3z — 6) =0
= log((£24+ T —6) =3+ (22 +3x—6)) =0

ivr—B N _
:ﬁm@(ﬁﬁiﬁj_n

= [ =0

= [ = 1

= 22 4+ Tz — 6 = 1((32% 4+ 9z — 18)
= 22 + 7z — 6 =32+ 9z — 18
=32 +9r — 18—z —Tr+6 =0
= 22" +2r —12=0
Dividing through by 2, we have
24+r—6=0
Using factorization method, we have
2243z —-2r—6=0
= z(z+3)—-2(z-3)=0
= (z+3)(z—2)=0
>r+3=0 or r-2=0

=r=-3 or =2



FMT 204 MODULE 1

4.0 CONCLUSION

The students can identify the laws of indices logarithms as well
as apply it to problems.

5.0 SUMMARY

This unit highlighted the six laws of indic and logarithms, and
how they can be used to resolve mathematical pm

6.0 TUTOR-MARKED ASSIGNMENT

Simplify the following:
)t
@
2. 67 x12°F! x 2777 = 322

Solve the following equation.

3. 8t =16(2271)

4. 3‘2&:—1 _ 3k+1 _ 3.’.‘+] —0

5. logy(a® + Ta — 6) = logy(a® + 3a — 6) + log, 8
6. logi(y +9) =1+ log(y + 1) —logie(y — 2)
Simplify the following

7. logy2+ logg4d

8. log; 98 + log, 30 + log; 15

9, 22n—-1 _ 92-a _ ()

1

0. 28 x 241 =10
7.0 REFERENCE/FURTHER READING
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Unit 1 Growth Mathematics
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1.0 INTRODUCTION

Many aspects of business and accounting say depeti loans,

interest calculations, investment appraisals, hasetheir basis some

relatively simple formula. Our goal is to be albeainswer such typical

guestions like:

1. A firm rents its premises and the rent agreemeoviged for a
regular annual increase of N2, 550. If the rerthmfirst year is
N9, 500, what is the rent in the tenth year?

2. A building cost N500, 000 and it depreciate at @86 annum on

44
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2.0

the reducing balance method. What will its writteawn value be
after 25 years?

If N1, 000 is invested at 18% interest compoundadisannual,
what will be its worth in 5 years?

How long does it take an investment to double aintarest rate
8%7

If I buy a N200, 000 house, put N40, 000 down, doamd obtain

a 30 years mortgage for the balance at a 9% amnmieakst rate,
what be my monthly payment?

OBJECTIVES

At the end of this unit, you should be able to:

3.0

31

determine simple and compound interest
undertake discount and commission

explain the principle of annuity

state how to calculate percentage and proportion.

MAIN CONTENT

Series

In many financial calculations is the concept db@dting or paying out
receiving money at some regular interval (i.e. vigekonthly, every
three months or quarterly, every four months anénewannually).
Typical examples are depreciation calculationsestvng funds, loan
repayment and cash flow analysis. We representetiségsations by
series of which the two most common types are raetic and
geometric progressions.

3.1.1 Arithmetic Progression

This is also called. This is a series of quarditignere each new value is
obtained by adding a constant amount to the previalue. The
constant amount is sometimes called the commoardifce.

An arithmetic progression is of the form:
a,a+d,a+ 2d,a+ 3d, ,a+({)d
where a is the first term

d is the common difference

n is the number of terms in the series.

45
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Example 1.

Mr Jacob buys equipment for N32, 500 which is egxbe¢o last for 2(
years and to have a scrap of N7, 500. If it daptes on the straig|
line method, how much would be provided for in egehar?

In this problem, number of terms in the series ne onore than th
number of years because the cost is the value dtethinning of the firs
year and the scrap value is at the end of the

Solution:

L,=a+ (n- 1)d, is the fi term of theprogressio.
n=21,a=32,500,1=7,500
7,500 = 32,500 + (2% 1)d
7,500 = 32, 500 + (20)d

7,500 — 32,500 = (20)d
—2.500 = 205
_ 25000 _ d
20
d= -1250
The straight line depreciation is N1250 per ant

3.1.2 Sum of Arithmetic Progression

To find the sum of arithmetriprogressionis to evaluate each of tl
successive terms and sum them up. So we havertheléoas
S,=n2(2a + (- 1) d) where § is the sum of arithmetri
progression

Example 2:
An employee, who received fixed annual incremeatl & final salary c

N90, 000per annual after 10 years, if total salary was NGBID ovel
10yearswhat was his initiasalary?
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Solution:
Note that $= S;o= N 650, 000, a =? and d=

Sp = 650,000 = % (2a + (10 — 1)d)
650,000 = 5 (2a + 9d)
130, 000 = (2a + 9d) (1)
From above statement
L, =190,000 = (a+ (10 — 1)d)

Lp, = 90,000 = (a+ 9d) (2)
Then, solving above equations smultanously, we have
130, 000=2a +9d
90, 000=a + 9d
40, 000=a
Substitute for a in (2)

90, 000=40, 000 +9d
50, 000=9d

d = 300% _ 5555 5555556

d=Nb5, 556 approximately
The annual increment is N5, 556

3.2 Geometric Progression

A series of quantities where each value btained by multiplying the
previous value by a constant value known as commoio GHlled &
geometric progression or exponential progresson. A geometric
progression is of the form

a, ar, at, af, a, af?

where a is the first term.

r is the common ratio

n is the number of terms in the sel

A geometric progression has a genformula given as ar*

Example 3:

A building cost N500, 000 and depreciates at 10%gmsum on thi
reducing balance method. What will its value bera®5 years

Solution:

a=500,000 n=26 and r=ftl)=(1-0.10) where d is the depreciation |
Value after 25 years ="*
= 500, 000(- 0.10¥°*
=500, 000(0.9¢*
= 500, 000
=N35, 894.9( approximately
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3.2.1 Sum of Geometric Progression

In a similar way as in arithmetic progrion, the terms of geometr
progression could be evaluate and added together aviihal simple
formula as:

Sﬂ:M e 1
Sﬂzu |
r—1
8 —oa ri=1

Example 4.

A company sets up a sinking fund and invests NRO,&xch year for 2
years at 9% compound interest. What will the fumdvorth after ¢
years?

Note:

Solution:

From above questions, it can be inferred N20, 000 is invested at tt
end of the each year and so last allocation earnstarest, we have tt
whole series set up

S, = 20,000 (1 + (14 0.09) + (1 4+0.09)2 + (1 4+ 0.09)%(1 + 0.09)4)

Applying (- — 1)
alr® —

p— r>=1

Sn =
a=20,000, r= 1.09 and n=5

~20,000((1 + 0.09)° — 1)

St =
; ((1+0.00) — 1)
G — 20,000((1 +0.09)®> — 1)
- 0.09
20,000(1.53863 — 1
S5 = — (1.5 ) = N19,69421 approrimately

0.09
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3.3 Simpleand Compound I nterest

The concept of simple interest has to do with tlblems involving the
basicconcepts of progressions just discussed. Cormrpractice uses the
following terminology:

P is thesum at the present time or princi|

Sis the sum arising in the futu

T is the number of the interest hearing period ugualtiut not
exclusively, expresed in year

| is the total amount of intere:

Suppose p (naira) called the principal are investedn enterpris
(which may be a bank bond or a common stock) witla@nual interes
rate of r, simple interest is the amount earnedhenp naira over
period of time.

Hence if P naira are investdor n years, then the simple interest | is
given by I=Prt

In other words, the process whereby interest ordgruees on th
principal is known as simple interest. In thisec#ise interest is not |
interest to earn more interest.

S=P+|
S=P+Prt
S=P(&rt) which is the total amount at the end of tratise

Example5:
How much will N15, 000 amount to at 10% simple ragt over 2(
years?

Solution:
P=N15,000 n=20, r=8% = 0.08

S=P(1+rt)
=15,000(1 + (0.08 x 20))
=15, 000(1+1.6)
=15, 000(2.60)
=N39, 000

The second method of paying interest is the comganierest methoc
Here the interest for each of time period is aduetthe principal befor
interest is computed for the next time peri
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This method applies whenever the period interestmeat are ot
withdrawn compound interest is the interest paid tbe interes
previously earned as well as on the original inwestt. In this cas
interest is reinvested to earn mainterest. If that interest is pai
annually then, suppose P naira are inve theinterest after one year
rp naira and original invested is now wo

P +rP =P(1+r) after first year.

P@A+r)+rP(1+r)=P (1L+* after second year.

P@+rf+rP (1+r?=P (1+rfafter third year.

If it continues for say n yea

S =P(1+r} where S denotes the amount of the investment afterar
with an interest rate of

Example 6:
What is the value after 20 years of a N5, 0000 stee earning 109
interest compounded annua

Solution:

We have p=5, 000, r=0.10 and n=

S =P(1+r} S =5,000(1+0.1(°

S =5,000(1.16Y

S =5,000(6.727) =N 33.637.50 approximately

Example 7:
What compound rate of interest will be requiredptoduce N5, 00!
after 5 years which an investment of N4, O

Solution:
S=P(1+r)"
S =(1+r)m (3)

Take n'* root of both sides

n=>5, S=5. 000, P=4, 000
We find r as
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or

Sn = 0.04564

Sp = 4.56% approrimately

3.4 Discounting

The basic compounding principle o, = P (1 + r} may be used in
making P ( the principal invested ) the subjecivilt be apparent the
there are occasions when the futvalues are known and it's required
to calculate the present value (P). The formulabmput a:

S
P=—2
(1+47)"

which is restated in term of discounting to a pmesealue.

Note :
This formula is the basis of all discounting metradl is particularh
useful as the basis of discounting cash flow temqines.

In practice interest is compounded more frequethidyn annually. If it

r
paid k times a year, then interes ¥ and in n years, there are nk
periods.

we apply
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for

5 T\ Tnk
P—(]-_'——E)nk—;g(l—FE)

The value P is known as the present value of agsimvent worth S fc
nk periods at interest rate of r% compounded kdimgears

Example 8:

If interest is compounded grterly at 6%?

(1 How long will it take an investment double?

(i)  How much will have to be invested now to producéN&ith a
10% compound interest ra

(i)Solution:

,l...nk
S5=P(1+ —
(+k)

S=2P and k=4, r=0.06, & = 25 = 0,015

2P = P(1 +0.015)%"
2 = (1+0.015)*"
Take the log of both sides

log 2 = 4nlog(1 + 0.015)

log 2 = dnlog(1.015)
log 2
TTog(10T5) ~ "
0.3010

= 0.0250 — 1162

Fis
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(i1)Solution:
5=20, 000 r=0.10 and n—==6
S
P=—7Y:;
(1+%)
_ 20,000
- (1+0.1)8
P = % = N11,289.23 approzimately

3.5 Discounting a Series

There are many problems dealing with discounting walue and ma
need to do with involvement of a whole series afhclows required t
be discounted to a present value. In such a caseiimula

5
P =
1+r)"

Becomes )

i=n Aa
P= .
E (1+7r)

12,3 4........ n
Example 9:
What is the present value of receiv N1,500 in one year's times

N3,000in 2 years time and N4, 500 in 3 years time whendiscoun
rate is 10%.

Solution:
poy)
i=1 (1 +T}‘
=123 and r=10.01
A =1,500 Ay =3.000 Ay = 4,500
A Ay Az
P=tri " de T aerp
1,500 3,000 4,500

P=td5oon T Troon® T o000
1,500 3,000 4,500

= oD T {wore T {Long

P = 1,500(0.909) + 3,000(0.826) + 4, 500(0.751)

P — 1363.5 + 2478 + 3379.5

F
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3.6 Bank Discount

The charge of interest on a loan is not calcula@damount borrowe
but the balance of amount to be repaid l¢

A charge for a loan computed in this manner isechlthe Bank
Discount. The amount the borrower receives is calledproceeds of a
loan, and is the amount received n

P=S(1ldt)where NS is the future amouio be paid back and borrow
receives NP( proceed is P)rate of interest is d ,revlieis the ban
discount rate and the period is t ye:

3.7 Compound Interest with Growing Annual I nvestment

Suppose a sum of NP is invested at the beginnirtheofear and eac
sulsequent year, an additional sum of Nadded to the investment.

no withdrawals are made and the whole sum investedllasved to
accumulate at compound interest rate r, then the balance B(8rd
years is given k

B(f) = (P+§){l+i}‘—%

Example 10:

) Find the proceeds for a N4, 000 two year loan feolbank, if the
discount rate is 10¢

(i)  Ade invested N15, 000 at the beginning of 1990reinains
invested and on first January each subsequent geather N50(
is added isWhat sum will be available to Ade *' 1998 if
interest is compounded annually at the rate of 8¥@pnum

Solution:

() P=S(1dt), where S=4, 000, d=0.1land t=2, dt=0.2,1-0.2=0.8
P=4,000(0.8)

(i) P=N15, 000, a=N500, d=5% =0.10 t=9ye



FMT 204 MODULE 2

a

B(t}:(F+;—L)(l+d]‘——

F
500
_ E ety =t
B(9) = (Ja.[][l[l - ) (1 +0.05)
B(9) = (15,000 + 10,000) (1.05)° — 10,000
(25, 000)(1.05)° — 10, 000
—N28, 783.21

500
0.05

3.8 Annuities

An annuity is a sequence of fixed equal payments (or receiptaje
over uniform interval, and some common examplesnoiuities are
Weekly or monthly salariesinsurance premiums, house purchase,
mortgagepayment and hire purchase payment. Annuitie used in all
areas of businesand commerce. Loans are normal repaid witr
annuity investment funds arset up to meet fixed future commitments
(for example, agt replacement) bythe [payment of an annuity,
perpetual annuities can be purchased with (sirghap sum payment t
enhance pensions.

Types of Annuity:

a. Annuities may be paid

I. at the end of payment intervals (ordinary annt

il. at the beginning of payment intervals (a due agj

b. The terms of an annuity m:

I. beginning and end of fixed dates (ascertain annt

il. depend on some event that carbe fixed (a contingent annuity)

c. A perpetual annuity is one that carries indefinitely
Calculations involving annuity ar

I. Accrued amount (compound interest) A =P (1'

il. Sum of the first a term of a geometrical progras

a(r™ — 1)

B =
r—1

Example 11:

Suppose N1, 000 is invested in a saving pt the end of each year that
8% interest is paid compourannually, how much will be in the account
after 5 years?
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Solution:

B(t)=B+B(1+i)+B(1+i>+B(1+i} + Bl +i)' + ... + +B(1 4+ 3)""
Bt)=B(1+(1+)+1+)*+ 1+ +(1+)" +...... + (144"

(1 + Z)n ==l o : st

— Note: this is by applying the sum of i* n term of a GP
7
_a(rm—1)

S r—1

S, =Ap,a=B,r=(i+ 1) We have

_ B((1+i)n—1)
An = (1+id)—1

Given that B=1000 i=0.008 n=>5

1 _ 1000((1 + 0.08)5 — 1)
T T (140.008) — 1

_ 1000((1.08)° — 1)

An (0.008)

= N5,866.60

3.9 Present Value of an Annuity

The present value of an ordinary annuity is give

F:?[I—( ! ﬂ or g[l—(1+f‘)_“]

144

where B is periodic payment of an annt
| is the interest rate paid each per
n is the number of perioc

Example 12:
What is the present value of an annuity that wdngdN<, 00C a year for
15 years assuming an interest rate 6% compounchiy?
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Solution:

:_[ (m)] or 21—+

Here P = initial lump sum to be put in the savimgaunt or any othe
typesof investment where the interest is compounded ahnat the
rate of 6% tagiving room for yearly withdrawal/payment of N4,0@fy
five yearsB=4,000 1=6%=0.0 n=15

4,000 i
F_W[l—(uﬂ.ﬂa} ]
4,000 s
P=—0s [1— (1.06)7%]
P = 4[]%%'] [1 — (0.4172)] = N38,848 approzimately

it would be observed that the amount is less th&W00D which is
supposedo be the total withdrawals at the end of 15yeass is due tc
accumulation of interest compounding rate peridtic:

an-1=present the value of an ordinary annuity congisth payment o
N1 with interest rate High pay at the end of eaehqal. By setting B=

(1—(1+4")

]

p—1 =

Present value of an ordinary annuity with paymehtNoB = Bé,-;
Note :

An annuity due is an annuity in wh payments are made at the
beginning ofthe time periods. Examples of annuity due deposit in a
saving accountients payment, payment of an insurancemium. This
means that an anity due drams interest from one more period thar
corresponding ordinargnnuity.

3.10 Amortisation and Sinking Funds
An interest bearing debts is set to be amortiseenvdll liabilities (bott

principal and interest) are discharged by sequaric@isually) equa
payment made at equal interval of tir
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Example 13:

A debt of N§ 00C with at interest of 5% compounded is set to
amortised by equal semi annual payment of R oven#xt three year
the first due is six months. Find the payment,pgeiyment of R from a
ordinary annuitywhose present value is N5, 000 then.

Solution:

Rn-=5, 000

adg—0.025
5,000
1—(1+0.025)6
0.025 x 5,000
1— (1 +0.025)6
125 125
~1-0.8623 ~ 0.1377

= N907.77 approzximately

Example 14:

Mr x buys a new car which sell for N1, 00Q He agrees to pay for tl
car over 4 years by making 48payments, one at #te of 12%
compounded monthly. What will his payme

Solution:
P=180, 0000.121: n=48, the, we are to find B which is the mont
payment

B= %
1,800
B=1"(ton®
1,800
P =1 (te209)
= % = N4,740.58 monthly approzimately

3.11 Sinking Funds

A Sinking Fund is an account into which periodipdsits are made ¢
that a fixed sum of money may be paid on the duwmty It is an
ordinary annuity with fixed future valu
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Ap = B(Sn_1 — 1) = B (frac(l +i)" — 1i)

we have

A, . 1A,
B_Sn" 1+ -1

Where B is the regular payment for the requiredisop fund to have
future value A paid at the end of each peric

Example 15:
How much will have to be invested at the end ofhegear at 8%
compounded annually to pay of N, 000 after 10 years?

Solution:
A, =75, 000n=10 1=8%=0.0¢

A,
(14 —1
~0.08 x 75,000
~ (1+0.08)0 -1
0.08 x 75,000
= (1.08)10 — 1
6,000
T (2.1589) — 1
6,000
~ 1.1580

B

B

B

= N5,177.32

Example 16:

A company set aside a sum of N18, 000 annuallyh&ble it to pay of
a debenture issue of N220, 000 at the end of 18ye&ssuming that th
sum accumulates at 4% per annum compounded inteftesd the
surplus after paying off the debenture stc

Solution:

At the end of 10 years N1, 800 will amount to 180 & (1.04°
The second sum of N18, 000 will amount to 18, 0G@.84°
Then total money will be
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1+ (1.04)1° _
18,000 (m) x (1.04)
1.04
18, 000 (1 +(1.04)"° — 1) X (0.04)

18, 000(1.04)
0.04

%ﬂg-w x (0.47990) = N224.174

The required surplus N (224172-220, 000) =N4, 712

x (1.47990 — 1)

3.12 Percentages

There are really kinds of ratios which are very fulsen making
comparisons. The fractions or more correctly ratwwgh 100 ac
denominations are known as percentages, the termninge "pet
hundred" the denominator of such fractions is abvaynitted anc
numerator is called the rate percent which maytemits percent (P(
or often %

3.12.1 Percentage Gain or Loss

We define gain as selling price-costprice

Percentage gain:% x 100

where selling - cost price > 0 is known as gain

but when the selling price - cost pric < (} is a loss

‘We can also define loss as cost price -selling price or loss=CP-SP

__actualloss
Percentage loss=272"00 x 100

___actual
Percentage error=_-"— x 100

We denotes CP =cost price SP=selling price

Example 17:

A man bought 1000 oranges for N1040, 16(them were bad, and |
sold therest N20 a dozen. What percentage profit or lodshdimake?

Solution:

160 oranges were bg

840 oranges were s(

at 1 dozen=N20

1 orange was sold at = N then SP for
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1 orange was sold at = N (%)

then SP for 840

2012 x 840 = N1,400

CP=N1, 240

Gain=SP -CP=1, 400-1, 240=N160

Gain% = % x 100 = 11.43%

Example 18:

A trader buy some gooddl at the same price. He sells profit of 1€
and has to sell the remaining 10 at a loss of pgage profit on th
deal?

Solution:
Let the goods cost Nx each
Total cost profit for 30 goods=N3
20 sold at profit of 165
Cost prices for 20 goods =N2Selling price for 20
=(CP + prof it%) =(100% + 16%
=116%
SP for 20=1.16 of CP 20(1.16)x=23
Then 10 of them at loss of 4% CP for 10 =
SP for 10= CP-loss% =(100%)
=96%
=0.96
SP for 10 of 0.96 of CP
10x(0.96)=9.6x
Total selling price=23.2x+49.6x=N32.8x
Total profit=total selling price-total cost price
32.8x-30x=2.8x
percentage pruﬁtzig'—iﬁl}ﬁ = 0.083 x 100 = 9.3%

Example 18:

A shopkeeper marks his goods to 45% but allow 586dadirt for cash.
By selling a purse he makes a profit of N18.875aorash deal. Fin
what the shopkeeper paid for the pu

Solution:

Marked price=45% of CP SP=Marks Pr
Let x be the cost price of the goc

The marked pric is 45% of the cost pr

Marked price =(100+45%00
Marked price =145%00 = 1.45)
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SP=1.45x
Dicount of 5% mean 5% off the selling price or netlprice

e U 1450

% x 1.45z = 0.95(1.45) = 1.3775(SP in cash)
profit=SP(in cash) -CP

=1.3775x-x

18.875=0.3775x

_ 18875 _ K
T = gars —=N50

i.e.the shopkeeper paid N50 for the go

A common scale for a detailed map is 2cm to 5kThis means that
2cm on the map represents an actual horizontadrdist of 5km. Th
scale can alsbe given as 1 in 250:500 or 1:250,000, which comp
the distance on the map with actual horizontabdist.

The different quantities of the same kind may alsvag compared i
this way. If one of the quantities is expressea &wction of the othe
quantity, this fraction is said to be the ratiotoéir sizes. It should &
noted that the quantities that iion express in the form a/b is written
being a:b

Thus%:%:?:g

Example 19:

Express a length of 8cm to a length of 3m as a

Solution:
3m = (3 x 100)cm = 300cm

Bem : 3cm = 8em : 300em
Bt .. 8.3 998

300cm — 300 T Y5

Example 20:
Express a speed of 12km/h to a speed of 10m/sami

Solution:

12km/h = 12m — 12x1000m _ 10, /5

12km/h : 10m/s = m—’;E : 10m/s

10mfs

w ., 1 __ 1 __ 9.
Omjs — 3 < 6 —3—=1:3
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Example 21:

If the price of two commodities A and B are N450dah600
respectively, findthe ratio of Price of commodity A to B. Price
commodity B to A.

Solution:

Price of Commodity A = N450
Price of Commodity B = N600

(i) Ratio of Price of Commodity A to B
_ PriceofCommuodityA
- I’r:cpamemoduyB
_ N4sD —3:4
— Weih — 1 _
(ii) Ratio of Price of Commodity B to A
__ PriceofCommodity B
— Pﬁreof("mnmadttyA
— NGOD __ —4-3
NASD T

Example 22:

A sales agent allows the liptice of his goods a trade discount of 20%
and a cash discount of 5%. What is the ratio ofctieh price to the lis
price?

Solution:
Let the list price = x
20% discount = % x =02z
The new list price=(z — z = 0.2x)
(1-0.2)z=0.8x

5% cash discount on the new list price:

= % x = 0.8z
=0.05 x 0.8z
= 0.04zx

The cash price = New list price - cash discount
0.8z — 0.04x
0.76z

Ratio of cash price to list price
_ CashPrice

_ “rﬁpmﬁ ™ _ 16

= 100

— 15 — 10, Qr

Example 23:

Find the ratio between the selling price which wille a profit of 20%
in the cost price and theelling price which will give a profit of co:
price is the same in both cas
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Solution:

Let the C = Cost price and s = selling price
Qll'ﬁj:ﬁpl‘oﬁt in cost price = %C

= 5 C= 5 = 1005=120C

R 1 - | (R | 1
C= 10— 3 _ (1)
Similarly, 25% profit in cost price = iﬁc

1 2C= % = 1005=125C
‘ 1
1

? 125

c =10 = (2)

The required ratio = Ratio of equation (1) to equation (2)
19{]C o @C

100~ — 100

120 : 125

24 : 25

3.13 Proportion

Proportion is the equality of ratios. Supposevegiquantity of value ¢
money, assets is to be shared among two «e individuals, the the
ratio or proportion of sharing must be stated. solving problem ot
proportion,the individual ratios are added together to obtaengenera
ratio.

Example 24:

Find A: B: C. Given that A:B=4:3 and A:C=4Solution:
A:B=4:3

A:C=4:5

A:B:C=4:3:5

Example 25:
Kola, Tola and Shola share N4800. If the ratio ol& of Kola:Sola =
4:5 Find the individual’s shal

Solution
Kola: Tola = 4:3
Kola:Shola = 4:

Kola: Tola:Shola = 4:3:!

Total ratio = 4+3+5=1

()Kola share=

12x N 4800 = N 16C

(i) Tola share £12x N 4800 = N 1200
(it Shola share :5 N 4800 = N 2000
Tola = 4:3 and the

12x
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Example 26:
IfA:B:=4:3andB:C:=4:5Find A:B:C

Solution:

AB=4:3

B:C:=4:5

=A:B=4:3x4=16:12=>B:C =4:5x3=12:15 A:B:C=16:12:15

Example 27:

Kunle, Tunde and Dele share the sum of N34, 00thdfratio of Kunle
of Tunde is 4:3 and that of Tunde of Dele is 4:mdRhe share of each
of them.

Solution:

Kunle : Tunde=4:3

Tunde : Dele=4:5

= Kunle : Tunde=4:3x4=16:12
=>Tunde :Dele=4:5x3=12:15

Kunle : Tunde : Dele=16: 12 : 15

Total ratio=16+ 12 + 15= 43

(i) Kunle share=163x N 43, 000 = N 16, 000
(i)Tunde share =12

43x N 43,000=N 12, 000

(il Dele share =183x N 43, 000 = N 15, 000

Example 28:
IfA:B:=4:2andB:C:=2:5Find A:B:C
Solution:

AB=4:2

B:C:=2:5

=>A:B=4:2x2=8:4

=B:C =2:5x4=18:20 A:B:C=8:4:20=2:1:5

Example 29:

If N6400 is to be shared among Wale, Tade and Adé that the ratio
of Wale of Tade is 4:2 and that of Wale to Ade 5. Find the share of
each one of them.

Solution:

Wale: Tunde = 4:2

Wale: Ade = 2:5

>Wale:Tade=4:2x2=8:4

=>Tunde: Ade=2:5x4=8:20

=>Wale:Tade : Ade=8:4:20=2:1:5 TotaloaB
(i)Wale's shareZ®xN6400=N1600

65
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(i Tade’s share 22xN6400=N800
(iii Ade’s share =Z°xN6400=N4000

4.0 CONCLUSION

Conclusively, Students could understand simple @rdpound interest
and an annuity and sinking fund as a well relatigmghat exist between
them. At the end they are able to determine thecgmage and
proportion.

50 SUMMARY

This unit focused on the use of arithmetic and getaim progression to
solve financial calculations for business and antiag purposes.

6.0 TUTOR-MARKED ASSIGNMENT

1. Find in what time a sum of money trebles fta¢l5 percent per
annum compound interest.

2. The sum of N20, 000 is borrowed at 4 percent g@num
compound interest. Principal and interest are todpaid in 25
equal, annual instalments beginning one year heRow the
yearly payment.

3. A sum of money was invested by Ajibola at coommb interest
amount to N21, 632 at the end of the second yedrt@arN22,
497.28 at end of the third year. Find the ratentérest and sum
invested.

4. A machine costs a company N100, 000 and fectefe life is
estimated to be 20 years. If the scrap is expetdecealise
N5000 only find the sum to be invested every yaa$ percent
per annum compound interest for 20 years, to replde
machine which is expected to cost them 25 percené rover the
its percent cost. Assume that the sale of scragdmos utilised
for meeting the cost of the machine.

5. (a) KAMAH (Nig) Limited decides to invest N1@O at the
beginning of 1992 in a fund earning 12% per annimlAH
(Nig) Limited will add further N2, 500 to the fundt the
beginning of each year, commencing in 1993. Whiit lvei the
value of the total investment in the fund at thd eh19967?

(b)  As an alternate form of investment the compdegide to make
equal annual instalments starting at the beginmigl2%.
Calculate to the nearest Naira the annual invedsneecessary

66
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for the fund to have the same value at the en®961n (a)
(c) Catulate the present value of perpetannuity of N10, 000 at
12% perannum first payable in one ye.

6. A propcsal has come before the Manment Board of
LASPOTECH for the purche of machine for processing of
palm oil in the school of Agricultural at Irodu. Anticipated
results for theexpected five year life of the machine are supg
by the coordinator of the project as follov
I. If the Management board « of capital is 12% per

annum.
il. Would you advise the management to invest in
machine?

7. A certain project is expected to yield the retugiven below ove
the next five years. It would require an initin/eéstment of N3
500. Determine its internal rate of return. Stadev would use
this in deciding whether or not to invest in theject.

Year | Returns(N)
1 2000
2 4000
3 6000
4 5000
5 3000

8. An investment opportunity has the following expecteasr
flows: The discount rate is 12%. You are requi
a. Calculate the payback peri
b. Calculate the opportunity’s Internal Rate ret
c. Calculate the opportunity’s Net Present va

9. A gari processing industry is considering the reptaent of its
processing plant which could not cope with the @né
processing demand of gari. The company is giverctinece, the
profitability of the plants. A discount rate of 10 percent it
used. Determined which of the plant to be bougaitniag aftei
taxation are expected to as follo
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Year | Plant A Cash inflow | Plant B Cash inflow
1 15,0000 5,000
2 20, 000 15,000
3 25,000 20,000
4 15000 30, 0000
5 10, 000 20,000

10. The management of KAMAH (Nig.) Ltd. is consideririgyo
mutually exclusive fojects X and Y, investment is N, 000 on
each one of them. The life of the asset is expetdede with

residual value. Net profit is expected to be ds\es:

Year | X(N) | Y(N)
1 — 2000
2 2000 | 3000
3 3000 | 4000
4 3000 | 50000
5 4000 | 1000
6 4000 | 5000
7 3000 | 1000
8 2000 | 1000
9 2000 | 1000
10 | 1000 | 1000

Using the discount rate of 20% determine whichhef project is mce
profitable investmen
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1.0 INTRODUCTION

This unit will discuss Matrix, types, Crammer’s rules, Gaussii
elimination and solutions to simultaneous equatiassng Matrix
Approach.

2.0 OBJECTIVES
At the end of this un, you should be able to:

identify rows anccolumns of a Matrix

classifydifferent types oMatrices

perform operation oMatrix

describeDeterminant

solvesimultaneou equations using Matrix andr@nmer’s rule

3.0 MAIN CONTENT
3.1 Matrix

Definition 1:
A Matrix is a triangular or rectangular or squarag of objects or item
or numbers (reacomplex, rationalirrational, natural numbers) in ro\
and columns enclosed withibrackets, subjecto certain rules ¢
operations.

A Matrix having m rows and n columns is called amBly n " or mx r
and is referred to as having order m :

Example 1:
ail a2 @3 . . ain |\
as1y a» adsy . . fap
A=
Ipml Gm2 Ay - . Oyg /lmxn

In the aboveMatrix, the numbers or functions; &n = g ) called its
elements. In the, double subscript notation, th& Bubscript indicate
the row and the second subscript indicates thenmolin which the
element stands. Matrix or a Matrix of order m

Suppose
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1 3
B:(E é) and C=1] 4 6
? 2%2 7 0

w2

We say that B is a 2 x 2 Ma& while C is a 3 x 3 Matrix

[ a ey G o

3.2 Types of Matrix

3.2.1 Square Matrix

Definition 2:

This is the type of Matrix in which the number ofus equal number «
columns.

Example 2:
If

C = L2 isa 2 x 2 Matriz
3 4 D

|

and

—_ T =
e B T e
— = D

) is a3 x3 Matriz
3x3

3.2.2 Zero Matrix
Definition 3:

A zero or null or Void Matrix is Matrix each whostements is zero
called zero or null or Void Matri

0 0 [l)‘,,m3

Example 3:

&3

Il
——

oo

oo

o o

3.2.3 Diagonal Matrix
Definition 4:

It is a square Matrix that has its diagonal elemeatbe no-zero while
other elements re zero. In order words the elesrg; are called diagonal
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elements of a square matriy; ).

Example 4:

S
Il
oo~
SO
w oo

3«3

Is a diagonal Matri
It should be noted that, the diagonal elementsdgagonal matrix ma
alsobe zero as shown bel:

A= ( 00 ) B = ( g g ) are also digonal Matrices.
2x2 2x2

3.2.4 ldentity Matrix

Definition 5:
A diagonal natrix whose diagonal elements are equal to 1 (isialled
identity matrix or unimatrix.

Example 5:
1 00
lqz(é [1}) , B=[010
2x2 001

3x3

3.3 Triangular Matrix
Definition 6:
A triangular natrix is a square Matrix; elementsg= 0.

It is referred to as LOWER TRIANGULAR Matrix whenavi < j and
UPPER TRIANGULAR MATRIX whenever i >
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Example 6:
100 0 3
A=14 20 B = are lower triangular matrices
4 2
362/, ., 2x2
and
1 3 4 { 92
C=|025 2 D= are upper triangular matrices
03
003)/),., 2x2

3.4 Scalar Matrix
Definition 7:

This is a diagonal matrix whose diagonal elemerdsegua

30 4 0 0 000
A= ( 0 3 ) B=1040 C=1000 are scalar matrices
2x2 00 4 3x3 000 3x3

3.5 Row Matrix

Definition 8:
It is a matrix which has exactly one rc

Example 7 :
A=(123)

3.6 Column Matrix

Definition 9:
It is a matrix which has exactly one colul

Example 8:

.
Il
L R =
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3.7 Algebra of Matrices

3.7.1 Equality of Matrices
Definition 10:

Two matrices A and B are said to be equ
(a) Both A and B are (the same order.
(b)  Corresponding elements in both A and B are the ¢

Example 9:

4 1 3 4 1 3
A= 10 2 5 and B = 025 then, A =B
3 4 2 3 42/, .,

3.7.2 Sum and Difference of Matrice:
Definition 11:

If A= (a;) and B = (I ) are two x Matrices, #ir sum or difference (A
+B) is definition as the Matrix C = ), where ach element of C is tr
sum ordifference of the corresponding elements of A andigis, A + B
= (ay* b ) . Two matrices of the same order are saidd@onformable fo
addition orsubtraction

Example 10:
Suppose

1 0 3 1 4 2
A= ( ) and B = ( , )
4 1 3 s 31 4 a3
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Solution:
Find (i) A+B (ii))A-B

; 1 0 3 1 4 2
(i) A+B= ( ) + ( )
4 1 3 92 31 4 2

_(1+1 0+4 3+2) _(245) o
14+3 1+1 3+4 ), “\727) |
(ii)
103 14 2
a-r=(iv3),, (G 1)
113), \314),

_(1—1 0—4 3—2) _(0 —4 1 )

4-3 1-13-4 ), . 1 0 -1/,,
3.7.3 Multiplication of Matrix

Definition 12:

Scalar Multiplication:

If K is any complex number and A , a given mathigr KA is the Matrix
obtained from A by multiplying each element of AKKyThe number K i
called scalar.

Example 11:

If

)
6 33

[ N

1
4

-

and K=4. Find KA

Solution:
1 2 3 4 8§ 12
wam(132), (5 4 )
4 56 a3 16 20 24 a3
Example 12:
i 1 2 3 3 6 7T
a=(a13) = (T0%),
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Find the value of 2A4+3B

Solution:

1 2 3 2 46

-2 13),,-(821)
4 1 2 - 8 2 4 a3
3( 3 6 7 ) _ ( 9 18 21 )
1 45 - 3 12 15 a3
{249 4418 6+21 11 22 27
2‘4_'—38_(84-3 2410 4415 )313_(11 12 19 )3x3

Example 13

If

oL

I
o= b
[uky QYN

22

Find Matrix B such that A x |

Solution:

bii bia

B=| b ban
bai  bao

2+b1 1+bs
A= 44by 44 by
6+by; 54by

It implies

2+4bi1 =0= by = -2
1+ba=0=bn=-1
44by=0= by =-4
3+byn=0= by =-3
6+ bqy = bgyy = —6
5+b32;"bgg=—5
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by bio -2 -1
:(b'll 522)2(—4 —3)
ba1  bso —6 —5

3.7.4 Multiplication of Two Matrices

Definition 13:

The product of AB of two Matrices A and B is defthenly when the
number of columns of A is the same as the numbsswes$ in B. If A anc
B were order m x n and n x@spectively then the product AB is a matrix
of order n x p.

Example 14:

If

=

[
o
o

7T 1
) andB=] -2 9
2x3 4 2 320

Find (i) AB (i) BA

Solution:

r 2
aus G X G
()(

{2xT)+(4x-2)+(6x4) (2x1)+(4x9)+(6x3)
((3x7}+(9x—2}+(5x4] x 1) (9x9}+{5x3])

(14 8+24 6- 8—|—4)

21 —18+20 3481+15 23 QQ)
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Example 15:

1 2
If A= ( 5 -2 ) find A® + 34 + 51 where I is unit Matrix of order 2.

3 4
1 2 1 2
A=|5 21]|5 -2
3 4 3 4

( Ix1)+(2x3) (1x2)+((2x0) )

Solution:

(-3x1)+(0x3) (-3x2)+(0x0)
Bx3)+(4x6) (3x4)+(4x2)

f 1-6 2+0 Y\ [ -5 2
~\-3+0 -6+0 /) \ -3 -6
3.8 Transpose Matrix

Definition 14

The transpose of a matrix is where the rows changeolumns ani
column change to row

If A = (a; )mn then AT or A'= (g;) where A = A' =transpose of A

Example 16:

Also if

3.9 Symmetric Matrix
Definition 15:

Let A be a square Matrix. If A=" , then we say that A is a symmel
Matrix.
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Example 17: If

5 3 _—1 5 3 -1
A= 3 2 8 AT=| 3 2 8
18 7 1 &8 T

Hence A = A which implies that A is a symmetric Matri

3.10 Skew Symmetric Matrix

Definition 16:

Suppose A is a square Mat then A is said to be a Skew symmetric

Matrix if A= —AT They are only valid for square Matrix (. symmetric
and skew symmetric Matrice:

Example 18:

Let

Solution:

Then,

- 0 —a 0 a
AT — _
A" = (r& D)_(—a ﬂ)_A

3.11 Determinant of a Matrix

Definition 17:

With any square Mtrix there is associated a numb&rwhich is
calculated from products of the elements of therMaiThus if
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a b
c d

then,determinant of A i

A=lal=|% 2

g b ‘:{axd}—{cxb}:ad—bc]m

represent determinant of A Ar
Example 19:

Find the determinant of Matrix A. Given tl

A:(; g)|A|:{1x7)—{3x5}:?—15:—8

Consider a 3 x Matrix

Using first row to expar

R v AR

A=A

Al = a

Il-s

=alei — fh) — b(di — fg) + c(dh — eq) = aei — afh — bdi + bfg + cdh — ceg



FMT 204 MODULE 3

Alternatively, if

a b c
A=|d e f
g h 1
|A|=aef —i—b‘_’.rd+cde 2
h 4 i g g h

= alei — fh) +b(di — fg) + e(dh — eg) = aei —afh + bdi — bfg + cdh — ceg

Note:
The minor of the elemenf as the Matrix obtained by deleting tt" row
and [* column.

Example 20: The minor of the eleme

1 2 3 { 3
am=|4 5 6|= S
73 9
minor of the element
1 2 3
1 2
an=|4 5 6| = v 3
7T 8 90
minor of the element
1 2 3
2 3
ayzy3=|4 5 6 |= £ 6
789
Example 21:
Calculate the value of the determinof Matrix A, if
2 I 3
A—=11 8 3
5 =1 @
2 1 3
lAl=|1 0 3 :2'_{11 g‘—1 . g|+3 : _01|
5 _1 2 2
—2004+3)+1(2—-15) +3(—1—-0)=2(3) + 1(13) +3(~1) =64+ 13 3 =16
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Using the first column to expa

=a

|A] =

e f
he"_d

=l =

L =T~ =]

f
= alei — fh) — d(ch — bi) + g(bf — ce) = aei — afh — dch + dbi + gbf — gce

Alternatively, if

a b ¢

A=|d e f

g h i
e f b ¢ b ¢
A =a h é’+d‘h P f

= alei — fh) + d(ib — ch) + g(bf — ce) = aet — afh — dch + dbi + gbf — gce

3.12 Sarru’s Rule
Definition 18:

Sarru’s rule can be applied in getting determirzdiret Matrix
If Suppose Matri

e

Il
o R R
= m o
pa, e O

then,using Sarru’s rule, we ha

a b c a b
Al=|d e f d e|ls 17
g h i g h

Note:
Here we have added first two columns in each rothéaow now giving
us a 3x5 matrix the map (or cross) as indicategktc

|A| = aei + bfg + cdh — ceqg — afh — bdi
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Example 22: Given that Matri:

2 1 3 2 1 3 2 1
A=|1 0 3|=]/1 0 31
5 —1 2 5 -1 2 5 —1
[A=2x0x2)+(1x3%x5)+3x1x-1)—(5x0x3)—(-1x3x2)—(2x1x1)

04154 (—3)—0—(—6)—2=15-3+6—-2=16
Note:Sarru’s rule is the only applicable to 3 x 3 Me

3.13 Properties of Determinants

(1) If we add (or subtrac a scalar multiple of a row or column to
anotherthen the determinant does not cha

e.g.
Let

A= o d

zj‘ and B =

a+te b+td '
|B| = (a+te)d — (b+ td)c = ad + tdc — cb — ted = ad — be = | A
(2) |4] = |A"|

(3) If we interchange two rows (or colul) then the sign of the
determinant changed.

a b
A:(C d)=|A|=ad—cd

po(c4). -

(c) = (4)

or {a, b) and (c, d)are linearly dependent if and only if the determinant of

cod|_ . L _
. b‘—bc ad = —(ad — bc) = —| A|

(4)

e d

(5) If any two rows or two columns of a square matrma the same
then the determinant will be ze .e.q. if

a b
a=( p)-hi=

-

ia
a

::|=ﬂb—ab=ﬂ
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(6) The determinant of a diagonal Matrix A is equattite product o
its diagonal element

(7)  The determinant of the product of two Matrices dua to the
product of the determinant of the two Matrices|aB| = |A|.|B|
where A and B are two given ltrices.

3.14 Singular and Nor-Singular Matrix

Suppose A is a square Matrix A is said to a sirmgiuatrix if its
determinant is equal to zero. |A| = 0. Matrix A is said to b
nonsingular when its determinant is not equal to z&. if |A| = 0.

Example 23: Show that A is a singular Matrix given that |AD:

2 1 2
A=[101
2 12
01 11 10
|A|:2‘1 2‘_1'2 2 2 1‘

A =2(0—1)—1(2—2) +2(1 —0) =2(—1) — 1{0) + 2(1) = —2—0+2=0

4

Example 24:
Given that
| 22-5 —1
A _‘ 9 2 (0.1)

where A is a Singular Matrix, determine the valaéxs.

Solution:
Since Matrix A is singulz

r—5h -1

2r T

A=

z?(z —5) — (—22) =0
=1 — bl + 22 =0
z(z? -5z +2) =0

dividing both sides by x, we have®- 5x + 2 = 0 which is a quadrai
equation using factcsation, we have:
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=5 X2-X—-4x+2=0
=>X(2x-1)-2(2x-1)=0
=>(x-2) (2x-1)=0

> X-2)=0or(2x-1)=0
>x=20r x=12

3.15 Cofactor of a Matrix

Given an n-square 8frix A. i.e.

aj; a1z 413 . Ain
az; dapp 093, a3

ml @m2 b3 . Qmn

The scalar ¢ = (-1)" |M; | is called the cofactor of the eleme; of the
Matrix A, where M and (-1) are called minor and scalar respectively.

Hence the cofactor of a= ¢;; = (-1)***

ax a23
aga 133
and the cofactor
a1z = 12 = (—1)1+2
gy gy
3] 33

Note: cofactor is a scalar while the minor is a Ma:

3.16 Adjoint of a Matrix

The transposef the cofactor of a Matrix is known as the adjanthe
Matrix.

Example 25:
Given that Matrix
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21 0
A=]113 2
31 -1

(a) Determine the cofactor of A, and hence -
(b) Its Adjoint.
Solution:

(a) Cyy = (~1)"*|M

ij

=T 2 = (-12-3-2)=1(-5) = -5
o= (-1 3 % = (0¥ -1-6)=-1(-1)=7
es= (D" = (-D){1-9)=1(-8) = -8
et = (—1)2*! i _“1 = (—1)}(=1-0) = —1(=1) =1
en= (122 O = (1)'(-2-0)=1(-2) = 2
en =13 | |= (D=3 =-1-1=1
= (0| 3 5 [='e-0) =10 =2
= (1| T ) |= (—1)%(4 —0) = —1(4) = —4
cn=(—1)**| 3 1 [: (—1)(6— 1) = 1(5) = 5

-5 T =8B
Cofactorof A = 1 -2
2 —4 5

(b) Adjoint of A is the transpose of the cofactor of A

-5 1 2
A= T -2 -4
-8 1 5
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3.17 Inverse of a Matrix

(Usingadjoint and determinan
Suppose A is a square Matrix, the inverse denoted A® is given by
A1 — Adj(A)
AP
It can be shown that AA~'=A"1A=1
Al = % or A= A—L—
Also A(Adj(A)) = (Adj(A))A = |A|]

where 1 is the identity Matrix and A and I are of the same order.

Example 26:
Given that Matrix

St

show that the inverse of Matrix A is denotec

Solution:

Now to find the cofactor of A
Cu = (-1)%|d| = 1(d) =d
Cia = (—1)*¢| = —1(c) = —¢
Cy = {—1)3|b| —1(b) = -b

Co = (=1))a| = 1(a) = a

Hence, cofactor of

Example 27:

Find the inverse of A, given tt
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Solution:

3 2| 4|1 2
1 -1 3 -1
=(-3-2)—1(—1—6)+0(1 —9)
= 2(—5) — 1(=7) + 0(—8)
— —104+7+0=-3

|A| = -3
q-1 . Adi(4)
A
-5 1 2
Adj(A) = T —2 —4
-5 1 5
as obtained in Example 27: above.
Hence .
p (812 I a5
Al=—1| 7 2 4 |=]|% % 4
-3\ _ S A
g8 1 5 T =5 -3
Example 28:

A and B are Matrix such tr

12 bl
Az(z 1) and (52)

where B, b, are no-zero numbers. Determine the values of K wt
satisfiesAB = KB

Solution:
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k= (12) () -x(8)

by + 2k = Ky (1)
2y + by = Kb (2)

from equation (1) we have

b — Kb +2=0
S (1-—K)bh +2b=0 (3)

from equation (2)we have

2bi+b— Kby =10

=254+ (1—K)bh=0 (4)
Multiplying equation (3) by 2, we have
2(1 — K)by 4 4by = 0 (5)
Multiplying equation (4) by (1 — K), we have
21— K)by + (1 — K)(1 = K)by =0 (6)

Subtract equation (6)from to equation (5) to get
dh —(1-K)(1-K)bp =0
=4 =(1-K)(1 - K)b
Dividing both sides by by, we have
4=(1-K)(1-K)
=4=1-K-K+ K,
= K*-2K-3=0
= (K+1)(K-3)=0
K+1=0or K—-3=10
K=—1lor K=3
Therefore the values of K for which AB = Kb are —1 and 3

Example 29:
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Given that

=(31)-(3)

a#0,b#0 and AB = KB show that (5 — K)a + 2b = 0 By finding another
equation satisfied by a and b,show that K? —6K +1=10

Solution
h 2 i} - a
2=(21)(3)-=(3)

Sa+2b= Ka
==ba—Ka+2b=0
= (5 — K)a + 2b = O(required) (1)
AlsoZ2a+ b= Kb
=2 +b—Kb=0 (2)
2a+(1— K)b=0
Multiply equation (1) by (1 — k) to get

(5—K)1—-Kla+2(1 - K)b=0 (3)
Multiply equation (2) by 2 to get
da+2(1-K)b=0
Subtracting equation (4) from equation (3), we have
(5—K)(1— K)a—da=0

= [(5—K)(1-K)—4]a=0
Dividing both sides by a to get

(5-K)(1-K)=4

55K —K+K*—4=0
K2 —6K +1=0 (proved).

Example 30:

Solve for x, v, z in the matrix equation

(2 9)+(5v)-( )
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Solution:
z+T7=4dy
= z—dy=-7 (1)
T+y=—y
=r+2y=0 (2)
—y+6=4
y=6—4y=2
and
zt+x=—3

r+z=-3

substitute ¥y = 2 in equation (2), we have
r+2(2)=0

r=—4

also substitute y = 2 equation (1)in to get

z—4(2) =7
z=—-T+8
= z=1

Therefore x =—4, y=2 and z =1

Example 31

Given that Matrix

Find A2 —3A+5

Solution
e_aa_(24 2 4 (4+20 8-4) (24 4
Ae=dmt=LE 1 51 )7 V10-5 2041 )7\ 5 2n
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i (24 4 2 4
A —3,1+5_(5 1 )-3l 5 )45
_(n 1)_(6 12),,
=l 5 2 15 —3 )71

18 -8 18 -8
=(—1u 24)+5=(—1{) 24)+5"’

where
10
i=(0 1)
_18—8+51ﬂ_13—3+5ﬂ
TN10 24 0 1)  \ —-10 24 0 5
. 23 -8
L —10 29
Therefore
2 (23 -8
A 3A+5= ( 0 29 )
Example 32:

Let A and B be 3 x3 Matrix with A = (a;) and B = (b;) where a; =
3i—j and b; = 2i +3j Find (i) A+ 28 (ii) AT (iii) 34+ B — 20 (iv) B~ '(v)
(A+ B)'+ I, where I is identity Matrix.

Solution:

Consider

dyp @3 3
A= an ax dam (0.2)
az a3z a3g

then, since A = (a;;) and a; =3i—j
ap=3(1)—-1=3-1=2, a;3=3(1)-2=3-2=1, g;3=3(1)—-3=3-3=0

an=3(2)—1=6—1=5, a22=3(2)—2=6—-2=4, a=3(2) —3=6—3=3

a31=33)—1=0-1=8, ag=3(3)—2=0-2=7, aza=3(3)—3=0-3=6

210
A=]154 3
B 7 6

Hence
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also Let

byy by By
B=| by ba by
by byy by

Since then, B = (b;) and b;

2(1) +3(2) =2 +6 =8, bla=2(1)+3:(3

% 485 by = 2D +3(1) =2+3=35, by =
y=2+9=11

bat = 2(2)+3(1) =443 =7, by = 2(2)+3(2) = 446 = 10, by = 2(2)+3(3) =449 =13

bay = 2(3)+3(1) = 6+3 =9, bay = 2(3)+3(2) = 6+6 = 12, by = 2(3)+3(3) =649 =15

Therefore,
3 8 11
B=17 10 13
9 12 15
(i)
210 5 8B 11
A+2B=15 4 3 |+2| 7 10 13
8 7T 6 9 12 15
2 1 0 10 16 22
5 14 3 | +2)| 14 20 26
8 7 6 18 24 30
12 17 22
19 24 29
26 31 36
(i) If
210
54 3
B 7T 6
the
2 5 B
AT=|1 47
03 6
(ii)



INTRODUCTION TO MATHEMATICAL ECONOMICS

FMT 204
6 3 0 5 8 11 11 11 11
=] 15 12 9 + | 710 13 |—-20=1] 22 22 22 | —20
24 21 18 4 12 1h 33 33 33
11 11 11
=\ 22 22 22 | —20]
33 33 33
Where
1 00
I=|010
001
0 0
0

11 11 11 20 0 -9 11 11
=] 22 22 22 | -1 0 20 = 22 2 22
33 33 33 0 0 20 33 33 13

(iv) and (v) are to be taken as exercises. Answer are at the end of the chapter

Example 33:
Given that
21
A=13 6 B= 132
- 2 4
4 5
{i} Find x, if AB (ii] If AB =
4 4 8
AB=1] 15 -3 30
14 2 28
find x
Solution

2 1 1 3 2
AB =
4 (3 g)(g > 1)
2x1)+(1x2) 2x3)+(I1xz) 2x2)+(1x4)
AB:( ])
)

B3x1)+(6x2) Bx3)+(6xzx) 3x2)+(6x4
dx1)+(5x2) Ux3)+(Bxzx) Ax2)+(Bx4

242 64 x 4+4 4 6+ = 8
AB=| 3+12 946z 6+24 | =] 15 9+6x 30

4+ 10 12+5x 3+ 20 14 12+ 5z 28

But
4 6+4zx 8 4 4 8§
AB=1 15 9+6z 30 |=] 15 -3 30

14 12+5x 28 14 2 28
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=f+xr=4 or 94+6zx=-3 or 124+ 5x=2
=r=4—6orbr=-3—-9%or bx=2-12
2= r=—2o0or Gr=—-12 or bx=-10
=}':I-‘=—20TI=_TIQDI':II=_51“
r=—2o0orx=—2o0r x=-2

Trivially,the Matrix above has shown that =z = -2

2 2
A=| -3 1 4
~10 6

(i) Find the value of x for which A is a singularatfix and (ii) Hence
determine the Adjoint of A.

Example 34:
Suppose Matrix

1 ek

Solution
() If A'is a singular Matrix then, [A|] 0

2 x 2
= A=|1-3 1 4|=0
-1 0 6
11 4 -3 4 1
#E‘DE‘ x_lﬁ‘-i-?' ID‘_G
+

= 2(6 — 0) — o(—18 + 4) + 2(0
= 2(6) — z(—14) +2(1) =0
=12+ 14z +2=0

= 14+ 14z =0

ldr = —14
=14

r=-—1

(ii) Now
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To determine the cofactor of A

114

o= (0" =| g g =260 =@ =6

arz = (~1)*?| 2 ;'={—1}3(—13+4)={—1](—14]=14

mn= (%] T =0+ = -1

an = (-1 | F 2 | = (~1)}(~6—0) = (~1)(~6) = 6

an= (-1 % 7 | — (—1)'(12 4 2) = (1)(14) = 14

an = (-1)"2| 20 |= (~D*0—-1) = (-1)(-1) =1

=0 7 G [ 0ia-2 - -0 - -

ags = (—1)**2 _?3 i|= (—1)%(8 + 6) = (—1)(14) — 14

ags = (-1)*** _23 _11 |=(—1J“{2—3)=(13(—1)=_1

Hence, cofactor of

6 14 1
A= 6 14 1
—6 —14 -1

6 6 —6
A=1] 14 14 —-14
1 1 -1

3.18 Solutions to Simultaneous Equations using Matri
Approach

Therefore adjoint of

Using Inverse of a Matrix

The inverse of Matrix can also be use to providéutsm to a
simultaneous linear equatit In this section we are going to consi
simultaneous equation with two and three unkno\
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Example 35:

(a) Given that

(@ (i) Find AB, (ii) Find the inverse ¢
(b) Using the inverse of A in (a)(i)above, or othergjisolve the
following simultaneous equatio

3X+2y-22+8=0
x-3y+3=0
2x+y-3z2+9=0

Solution:
(a) (i)
3 2 =2 8 4 —4
AB=]11 -3 1 =5 -5 -5
2 1 =3 ¥ 1 -11
24+10—-14 12—-10—2 —-12—-10+22
= 8—16+47 4+15+1 —-4+4+15-11
16+5—21 5—5-—3 —8—-5+33
20 0 0 1 00
= 0 20 0 =201 0 1 0 | =201
0 0O 20 001
(ii)
AlA=1= A= L
;1
but 20f
AB=2DI=}-A=?
Now ;
-1 _ 30T
A - B
Si
1nce q_i
208
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At s a8 5 || & 2
20\r 1 —11 £ T
W M

(b) Rewriting the equation, we ha:

3X +2y-2z=-8
X—3y+z=-3
2x+y—-3z=-9

Write the equations in Matrix form we he:

3 2 -2
1 -3 1
2 1 -3
Let
3 -2 -2 T
2 1 -3 2
Hence
ATTK =
But s 4
25 733
Tl o3
] 0 20

SICHETN

o

b || ]

e

E‘l—a.l |_|'.r|| s

) as oblained above,

INTRODUCTION TO MATHEMATICAL ECONOMICS

|
-

| L

|
i
i

J
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Hence
B4 —d
e B el Bl
% W W —9 z
ER I AT
= | A —alebds
ENE N 5200 ’
20 I T o Bl =
T)_(2)_(°
30 2 2
r=-2, y=1 and z=2
Example 36:

Using the inverse of a Matrix solve the systemheféquatior

2x+3y=7
X+2y=3

Solution

Writing the equation in Matrix form, we have

(12)()-()
-(i3) 2= (3) mee-(5)

Al =2(2) - 1(3) =4-3=1
To find the cofactor of A we have

an = (=1)"*2 = (-1)*(2) = Z.ann = (1)1 = (-1)*|1] = —1

ag = (—=1)*1[3] = (—1)*B] = =3, a2 = (-1)***]2] = (-1)***|2| = 2
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Hence co-factors of

A=(_23 _21) Adj{“"}:(—zl _23)

e =|‘1?|‘4dj{ﬂ)=%( _21 _23)=(—21 _?3)

Now to solving the equation

=5, y=-1
Using Matrix inversion method via adjoint of a Method to solve the following
system of equation completely.
2y — 2o+ a3t Ta=1
w +3wg —x3+ 224 =2

— 7+ 239 — 239 — g = —3
bri+ o0 — 2324 = —9
Writing the above equations in matrix form, we have

2 -2 1 1 T 1

A— 1 3 -1 2 T | 2

Tl -1 2 —2 1 3 | | —3

5 1 0 -2 T4 —9

Let

2 -2 1 1 T 1
_ 1 3 -1 2 | =z _ 2
A= -1 2 -2 -1 B = I3 €= -3

5 1 0 -2 4 —9
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Now, we find determinant of A, that is

2 -2 1 1
1 3 -1 2
M= 2 2 4
5 1 0 -2
3 -1 2 1 -1 2 1 3 2 1 3 -1
=2|2 =2 -1 |—-(-2)| -1 -2 —1|+1|-1 2 —1|-1|-1 2 -2
1 0 -2 5 0 -2 5 1 —2 5 10
-2 -1 2 -1 2 -2
_2(3‘ 0 _2|+1|1 o2 o ’)
-2 -1 -1 -1 -1 -2
a(1| 2 2|3 22 2]
2 -1 -1 -1 -1 2
+1(1|1_2 -3l . o |t2| 1.)
2 -2 ~1 -2 -1 2
_1(1|1 o |75 o7 s 1|)

=234+0)+1(—4+1)+2(0+2)
+2(1(4 +0) + 1(2+ 5) + 2(0 + 10))

+1(1(—4+1) —3(2+5) + 2(—1 — 10))
~1(1(0+ 2) — 3(0+ 10) — 1(—1 — 10))

2((3(4) + 1(—3) + 2(2))
+2(1(4) + 1(7) + 2(10))
+1(1(—3) — 3(7) + 2(—11))
—1(1(2) — 3(10) — 1(—11))

=2((12—-3)+4)+2(4+7+20)
+1(—-3—21-22)
—1(2—-30+11)
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= 2(13) + 2(31) 4 1{—46) — 1(—17) = 26 + 62 — 46 4 17 = 59

Therefore, |A] = 59
Cofactor Cy = (—1)*H|M;;]

-1 3
en=(-1)*|2 —2
1 0 -2

= R | - U | 2 -2
=[—1)2(3‘ A _2‘—1‘1 _2|+2|] X U
=1(3(40—-0)+1{—4+1)+2(0+2))
=1(3(4) + 1(-3) +2(2))
=(1){12—3+4)=(12—3+4)=13

1 -1 2
612={—]1+2 —1 -2 -~
5 0 =2

-2 -1 -1 -1 -1 -2
-0t (1 3 Sl 3 ST 7))
=(—-1)(1{44+0)+ 1(245) + 2(0+ 10))
= (—1)(1(4) + 1(7) + 2(10)) = (—1)(4 + 7+ 20)

= (—1)(31) = —31
1 3 2
ca= (=) -1 2 -1
5 1 —2

-0 (7 5l 3 S 3 1))
= (1) (1(—4+0) +3(2+5) + 2(—1 — 10))
= (1)(1(=3) = 3(7) + 2(11))

= (1)(—3 — 21 — 22) = (1)(—46) = —46
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(|

cu= ()" -1 2 -2

-3

2
1

—2

0

-1 —2|_,|-12
5 0 5 1

= (—1) (1(0 + 2) — 3(0 + 10) — 1(—1 — 10))
= (—1) (1(2) — 3(10) — 1(11))
(—1)(2—30 4 11) = (—1)(=17) = 17

ey = (_]2+1

e

—2

0

-1
—2

-2 1 1
2 -2 -1
B =2

2 —1 2 —2
=5 =i )

=(-1)(-2(4+0) — (-4 + 1) + 1(0 +2))
= (—1)(—2(4) - 1(=3) - 1(2))
=(-1)(-8+3+2)=(-1)(-3)=3

€23 =

(]

0
0

{_ )2+2

=1
—2

2 1 1
=1 =2 I
5 0O -2

-1 -1 -1 -2
|5 =] )

= (1) (2(4 + 0) — 1(2+ 5) + 1(0 + 10))
= (1) (2(4) — 1(7) — 1(10))
= (1)(8—7+10) = (1)(11) = 11

cn = (—)

5 2
(1

-1
—2

2+3

2 -2 1
-1 2 -1
b 1 =2

—.. = -1 2
+2| 5 S hal T 1))

= (—1) (2(—4+ 1)+ 2(2+5) + 1(—1 —10))
= (=1)2(=3) +2(7) — 1(-11))
=(—1)(-6+14—-11) = (-1)(—3) =3

MODULE 3
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2 -2 1
-1 2 -2
5 1 0

2 -2 -1 -2 -1 2
- (o} V]S ] )
= (1)(2(0 +2) +2(0 + 10) + 1(—1 — 10))

= (1)(2(2) + 2(10) + 1(—11))
= (1)(4+20—11) = (1)(13) =

Cag = {—JEH

-2 1 1
en=(=)*" 3 -1 2
1 0 -2
. 1 2| .3 2 3 -1
RS EIE R HET )

= (1)(=2(2-0)—1(—=6—2) +1(0 + 1))
=(M(=2(3) - 1(=8) - 1(1)) =(1)(-4+8-1) = (-1)(5) =5

-2 1 1
3 -1 2
1 0 -2

1 2 1 -1
(] 3 5[5 Slels T
= (—1) (2(2 — 0) — 1(=2 — 10) + 1(0 + 5))
= (—1) (2(2) — 1(—12) + 1(5))
) =

cap = {_}3+2

= (—1)(4 + 12+ 5) = (-1)(21) = -21
2 -2 1
= (-1 3 2

5 1 -2
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P 3 2 1 2 13
= (—1) +2‘1_2 +25_2 +151

= (1) (2(-6 —2) +2(-2—10) + 1(1 - 15))
= (1)(2(-8) + 1(—12) + 1(—14))
= (1)(—16 — 24 — 14) = (1)(-54) = —

2 -2 1
ew= (=1 3 -1
5 1 0

={—1)“(2H _.]1'”‘; _ul‘”Ll'é ?')

=(—1)(2(0+1) +2(0+5) +1(1 — 15))

= (=1)(2(1) +2(5) + 1(-14))
= (—1)(2+ 10— 14) = (-1)(-2) =

-2 1 1
C = {_]dH 3 -1 2
2 -2 -1

-1 2 3 2 3 -1
-c (=2 2 A2 A2 2))
= (1) (—2(1 +4) —2(-3—4) + 1(—6+2))
= (=1)(=2(5) = 1(=7) + 1(—4))
= (1)(~10+7—4) = (-1)(-T) =7

2 1 1

Cdﬂz{_)d-i-? 1 _1 2

-1 -2 -1
B 12| |1 1
- —2 —1 -1 -1 -1 -2

=(1)(2(1+4)-1(-1+2)+1(—2-1))
= (D(2(5) = 1(-1) +1(=3))
=(D(10-1-3) = (1)(6) =
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-2 1

1 3
-1 2

ca3 = {_]d+3

-1

Sl € PR R L )
= (—1)(2(-3—-4)+2(-1+2) + 1(2+3))

= (—1) (2(=7) + 2(1) + 1(5))
=(-1)(-14+2+5)=(-1)(-T) =7

2 -2 1
-1 2 -2

-cor(of2 3[4 2] 4]
=(1)(2(—-6+2)+2(—2—-1)+1(2+3))

= (1)(2(~4) +2(~3) + 1(5))
= (1)(-8—6+5) = (1)(-9) = -9

Hence cofactor of

13 =31 —46 17 3

A— 3 11 3 13
Tl s 21 -k 2
T 6 T -9/
Adjoint of
13 3 5 T\
A— —31 11 -21 6
Tl —46 3 54 7
w13 2 -9/
Therefore,

13 3 5 7
1| —31 11 —-21 6
50| —46 3 —54 7

17 13 2 -9

Al Adjoint of A) =

1
:E(

Il

|Inm
Bl 8| BB e
RSN
] Ll el
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Now, solving the system of equation completely

N2 NE
FER T ,) (2
AC-B— |3 F R Y -
B gy oa)lo) ™
E I —9 T4
Lre_L-9\ (o
= tmte;—m T3
= | R, P, i W=
BIRTE P
E+E_r_+ﬁ Ty
-, i _ | *2
7] T3
0 Ly
Therefore, ;3 =—1, x3=0, z3=1, and x4 =2

3.19 Crammer’s Rules

Crammer’s rule is another Matrix method of solviagsimultaneou

linear equation. This approach is applicable oalysquare Matri
Given A X = K wherewhile K is coefficient.

iy tya L ] 3 R 4 1 X1 Kl
L 5 O 1 S s Xq
i K:!
i.ed = ’ ’ ' T ' =
' K
Qi Ap2 O3 - - Ogpp Xﬂ- "
Then

Xi = LZ f{j;"‘l{j
|f1| =1

where the summation is the expansion of determio&r by its ith
column if the element of the™ column of A are replaced by
KiKoKa,...... Kn i.e.

Ki ap aa . . ain
Ks as a»n . . am

f“1:1 Am2 Om3 . . Omn
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Example 37:
(a) Find the values of w for whi

w 0 2
3 -1 4 | =16
6 2w 0

(b) By substituting the integral value w as obtained in (a) above, L
Crammer’s rule to solve the system of equat

WX +2z2=3
X-y+4z=4
6X + 2wy = -4
Solution (a)
w 0 2
3 -1 4|=16
6 2w 0
w 0 2
=03 -1 4|=w w ;i é|—{}|g ﬁ‘ﬂ‘g 2_: =16
6 2w 0

w(0—-8w) - 0(0 — 24) + 2(6w + 6) =1

= W(-8w) — (-24) + 12w + 12 = 1=-8W/ + 24 + 12w + 12 = 1
=>-8W + 12w + 12- 16 = 0

=-8wW + 12w- 4 =0 or

= 8wW— 12w + 4 = C

= 42w-3w+1)=0

Dividing both side by 4, we ha= 2w~ 3w +1=0

= 2W-2w-w+1=0

>2ww-1)-1(w-1) == w-1)2w-1)=0

w=1 or w=12

(b) The integral value of wis 1 with =1the systerbecome wx+2z=

3
3X-y+4z=4
6Xx + 2wy = -4

Writing this equatio in Matrix form, we have
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Let

|A] = 16 (given) Using Crammer’s ruler
Replacing column 1 with the values of K, we have

3 0 2
1 1( —1 4 4 4 4 -1
r=—] 4 -1 4 |=— (3' |—0'_ ‘+2._ |)
1(—1(_4 9 0) 16 2 0 4 0 4 2

— %(3(0—3} —0(0+ 16) +2(8 — 4))

1 1
= —(—24—-0+8)=—(—16
T6¢ +8) = 1=(-16)
16
=—=—]_
—16

Replacing column 2 with the values of K. we get

13 2
1 44 3 4 3 4
=52 4 a=w (] A s]-fe aleefd A ))
T D T: 10 6 0 6 —4
iﬁ[[u—{—15))—3{n—24]+2{—12—24)]

1 :
= 15 (1(16) — 3(—24) +2(—36))

(=1

16
=16(16 +72-72) = 7= =1
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Replacing column third with the values of K

(10 3
s=—|3 -1 4
1616 2 _4

1 1 4 3 4 3 —1
s G U P
=%{1(4—3}—n{—1z—24}+3{e+e}}

1
= 75(1(—4) — 0(-36) +3(12))

1
= —(—4—0+36
T + 36)
16
=—=2
32

Therefore, x = -1, y=1 and =z=2
3.20 Gaussian Elimination

This is another method of finding the inverse ofba-singular Matrix It
is a situation whereby a square Matrix been comdetd the identit
Matrix by series of row operations or by a serie:column operations
The same series of operations performed on thetitgedatrix will
change it (identity Matri) to the inverse of the square matt

The procedures of obtaining the inverse of a squdedrix using
Gaussian elimination are as follov

Step 1:

Put the square Matrix and its equivalent identityhie form [A/l] i.e
adjoining the Matrices A anl, whereA is a square Matrix and | is tl
identity Matrix and label k(wherei=1,2,3 ,R = row) on the lef
hand sides e.gRR,, Ry ifAisa 3x3  Matrix.

Step 2:

Divide the first row of the Matrices (. that of the square and identity)
the element in the first column of the square Mce(i.e. a,), then use th
result obtained (for this new row) to obtainos in the first colmn of
eachof the otherows. Continuehe labelling of the rows on the left ha
side from where you std.e. R, R:R; ifAisa 3x3 Matrix for
example.

Step 3:
Divide the second row (in step 2 above. Rs for 3 x 3 Matrix)by the
element ints second column to get R8 and use the resultredatdor this
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new Rytoobtain zero in the seconolumn of each of the other rows{R
and Rfor a 3x3 Matrix).

Step 4:

Divide the third row (in step 3 above,. Ry )by the element in its third
column to get R and use the result obtained i, to get zero in the
third column of each of the other rows. Rgand R;for a 3 x 3
Matrix).

The process will continue tithe nth  row depending on the type of
Matrix one is considering. lather words step (n + 1) will be: Divithe
nth row(in step n) by the element in its and use the rawaobtained tc
get zero in the icolumnof each of the other row

NOTE:

(1) it should be noted that when considering thevalprocedure, if fo
examples at the(r + 1) step the element in theotumn is zero, yo
need to interchange that particular row with subsetjrow that is havin

a nonzero element in the rth column and proceed with(ithel) stef

(2) The result Wi be in the form A and | is the identity Matr

Example 38:

Given that Matrix

Find the inverse of Aysing Gaussian elimination meth
Solution

Step 1:

Step 2:
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Step 3:

Step 4:

Hence

Alternatively (for better understandin

Step 1:

Step 2:

Step 3:

Ry 1
R 1]
He

Rl = =t glba

I,u.'-lb:-
w e,
o= = PETE

[

el

e
2 ko=

Ry

Ry
Ry

Rio
Ru

= =

o B
= =
Ll
| i e 1

[ B
[l R ]

e S

=1 =3
eo usf Lgol |,
=L ] B

wales| hef b —

L] b)) =

—
[~

||
|fes

=
=
=

=

=

Ll

S =
=] -f.::| R
|

g
—
&

2] i e 0

INTRODUCTION TO MATHEMATICAL ECONOMICS

3Hs
R»i—R,E
2Ry — Ry

FRs+ Ry
11 Rs

1Rs— Ry

%Rm—I-R?
ﬁﬁ'ﬁ + Rs

T

2
= 0
50

1

|

11

_TQR'? + Rq
0

[=] :.1|_'_

) LR+ R

4
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Hence
-
_A_I: I ﬂ ﬂ
(i 4
20 20 20
Example 39:

Find the inverse of Matrix A,
0 —4
A=11 -1

2 3 4

using Gaussiaalimination metho.

noba
R

Hence solve the system of the equa.

2z —dy =12
x-t—-’f-z:y-l-%
2243y + 42— g =0 completey

Solution:

It can be noticed that the element in the first,rbkgt column of Matri:
A is zero, hence theris need to interchange first and second rows,
which will now look like:

Ry /1 —1
R | 0 —4

Rs

| v R
o

(8]
L

bo = o B o

[ R =0 O

[ s [ s |

He -1 2Ry — Ry
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R 10 % _Ti 0 0 Hs + Ry
5 Bla 1-? T+ 10 R
Re \0 0 2|22 -1/ 5Ri+Ry
Rp (1 00 ﬁ _T" % SR+ R,
Ru g1 0 —_TF 3 :T? §H522+H3

1 -1 g

|-§ ‘E T

Al=132 &

(ﬁ i é)
4 T i

CHECKS:
To confirm whether the inverse is correct or not

NOTE
AA'=ATA =1 ie

0 —4 2

1 —1 5

2 3 4 =
LR} |
n 3
s g
T

Now to solve the system of equations, firstly, weed to rewrite th
equations, that is, equatiot

=

| -
[ =]

|
-TIMIN!-—T|

Also

22—-4y =2
X+5z=y+

2x + 3y + 47> =0
becomes

-4y +2z2=2
X+5z=y+*

2x + 3y + 4z =°

Now, writing this in Matrix form,we have

0 —4 2 x
SR
2 3 4 z
0 —4 2
A:(]—l 5) B=
2 3 4

—_—
oWy
—
[ICTN L FTL = e
—
]
Il
o
Loloma| on B
—
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It can be seen that A is the same as the oriMatrix A given and from
the working above, we have

AT = (
14

Hence, solving the system of the equations completely, we have

I

38 88 45 114176480 28

ﬁ-(l'i_ {_I_j] +-'_? ’ 36. 432 10 ?d.

= =4 57— 21 = y | = —'Fdi— =
—]ll} — 3046420 B

“ 2

42

o
|L‘11I

ez
T
=

Lo

i

=] e o] [

Therefore, x= %_. y=5 and z=%

Example 40:
Using Gaussian elimination method to solve the &gug

2X1— 2% + X3+ X4 =1
X1+ 3= X3+ 2% =2
—X1 + 2%~ 2%~ X4 = —3
5% + Xo— 2% = -9

Solution:
Writing the above equations in Matrix form, we h

2 -2 1 1 Tq 1
1 3 -1 2 T 2
-1 2 -2 -1 Ty —3
5 1 o -2 Ty —4
Let
2 -2 1 1 Ty 1
o 1 3 —1 2 N - 2
L -1 2 -2 -1 B= g Bt —3
5 1 0 -2 Ty —q

MNow, to find the inverse of A we follow the following steps
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Step 1:
R 2 -2 1 1 1 000
Ha 1 3 -1 2 0100
Ry -1 2 -2 —-1|0010
Ry 5 1 0 -2|10001
Step 2:
B #1 A % %a % 0 DO ‘R,
R, 0 1 F -—?; 3 0 10 + Ry
Ry D 6 5 5| 5 8 B I ERg + Ry
Step 3:
Hy 10 % % % % 0 0 Ry + Ry
Ro | B 1 -?3 5 %:: 7 0 0 T hRs
Ry 0 0 $ ‘?' _?" g -1 0 Rm — Ry
H]Z D ﬂ E TJ I E D _] 'Bf?‘[ﬂ = RE
Step 4:
Ry (100 % 3 % 3 0\ FRi+ Ry
Ry | 010 3 ;3: 3 3 0 §R1., + Rio
R[5 001 gg. == q _T: ] —R”
Re \00o0 32| 3£ 5 F1 Ru — Ry2
Step 5
Hyy 1 000 é—‘? X & L =2 Rzu + Hys
Rig 0100 Eg; % _El % %Rgﬂ. + Ry
Re |0 010 R —%‘ ) R;u} + Rus
RQ[] D ﬂ 0 ]. E E ﬁ :g 59 R]@
Hence
3 3 5 7
1 o 5 ¥
SEES T
i B - |
0 G0 F0 50

Now, to solve for the variables zj,z3,21 and z;. We should let A-'C'= 8

3 T
B0 K3 fTo o 1 T
NES EE AR
A= T BT |-
I I e I
B owm R s/ N o
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BL6 13 % -
& +J§’ LS s
=| & w_% =
Fg T + g ED T3
“ E 3%, sf
mTw m T T4
13+ﬂ:é 563 ~59 _1 -
—31+237 6354 [ 0 Zq
E A
= | _esetiea_gz | = Moo= 1 =
4 26481 1% ™
1!+—EE + Eg '2 Ty
Therefore, ri = —1l.x9=0,r3=1, and x4 =2

3.21 Vectors

Vectorscan be in column form or row form. A Matrix thatshane
column,

that is, an m x 1 Matrix is called column Vectédm example of a colun
vector is

f'u]\]

ug
g

\ .‘t;m /

where u are real numbers called the components of the Yeclc
should be noted that uis the ™ component of the Vector U. The

example given above is also called e-component or an m-dimensional
Vector.

Example 41:

This is a 4-component or adimensional column Vector which can b-
ferredto as a 4x1  MatribAlso a matrix with nrows that is a 1 x n
Matrix is called a rowector. An examples of a row vector is V =,
Vo, Vzeennen. V) .where V are real numbers which the component
the Vector. The Vjis thé'j component of the Vector V. The example

a row Vector given above is also called a-component or an
n-dimensional Vector.
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Example 42

[32415

This is a 4eomponent row Vetor which can also be called a 1Matrix.
Two row Vectors with the same number ows or two columns Vectc
with the same number of column are said to kual if and only if all the
corresponding elements sequal that isfithe vectors are identicalt
should be noted that a Matrix is composwof series of row or colum
Vector.

Example 43:

The Matrix

=R ]

1
3
5
7T 8

can be regarded as consisting of the two column Vector:

arnd

0O Sy k= b

1
3
5
7

It can be regarded as consisting of the row vectors.

[12][34][56][78]

Example 44:
A = [35 60 45 25]
20 6
30 9
B = 15 and = 94
60 15

Determine: (i) B + C (ii)B- C (iii) A(B - C) (iv) AB - AC (v) what
algebraic law satisfies (iii) and (iv) abov
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Solution:
(i)
20 6 20+6 26
30 9 30+9 39
B+C=1| 5 |t 24 [=| 154524 | = 60
60 15 60 + 15 75
(ii)
20 6 20— 6 14
30 9 30—9 21
B-C= 45 | 24| | 45—-24 ]| 21
60 15 60 — 15 45
(iii)
14
21
B-C=| 5 A= (35 60 45 25)
45
Then, A(B-C)
14
(35 60 45 25) i
45
= (35 x 14) 4 (60 x 21) + (45 = 21) + (25 x 45)
= 490 + 1260 + 945 + 1125 = 3820
(iv)
20
30
AB = (35 60 45 25) P
60

= (35 x 20) + (60 x 30) + (45 x 45) + (35 x 60))

= 700 + 1800 + 945 + 1500 = 6025

AC = (35 60 45 25)
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= (353 6) 4 (60 % 9) + (45 x 24) + (25 x 15)

= 210 + 540 + 1080 + 375 = 2205

Therefore, AB — AC = 6025 — 2205 = 3820

(v) A(B-C) =3820 and AB — AC = 3820 . Since (iii) and (iv) are equal,
therefore, the algebraic law of distribution has been established.

Example 45:
One unit of commodity A is produced by combiningrit of land, 2 unit:

of labourand 5 units of capite Also 1 unit & commodity B is produce
by 2units of land, 3 units of labour and 1 unit of ital. Similarly, 1 unit
of commodity C results from the use of 3 units of landjrit of labour
and 2 unitf capital Assume that the prices of commiydA, B and C
are respectivelP, = N 270, B = N 160 and P= N 190.Find the tote
rent(R), the wages (W) and interest(l) of the thmesources

Solution:

Let D=Land, L=Land, and C=Capit:
The information given can be expressn form thus:

(1) ()
i)

14
I
R
W
I
(1 % 270) + (2 x 160) + (3 x 190)
(2 x 270
R
W
I

L D =
]
ba = LD kD = L

|
|

{3
|

' S Pt [y A -
= La b

+ (3 % 160) + (1 x 190)
(5 % 270) + (1 x 160) + (2 x 190)

( 270 + 320 + 570 ) {

540 + 480 + 190
1350 + 160 + 380

1160 R\
1210 | = | W
1890 I

Therefore,Total Rent = N 116, Total Wages = N 1210 androtal
Interest =N 18€

\
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270
=(123)]| 160
190

= (2 x 270) + (3 % 160) + (1 x 190) = 270 + 320 + 5700 = N1160

270
(231)] 160
190

= (2) + (3 x 160) + (1 x 190)) = 540 + 480 + 190 = N'1210

270
(512) 160
190

= (5) + (1 x 160) + (2 x 190)) = 1350 + 160 + 380 = N1890

Alternative Solution:
Total Rent :

Total wage:

Total interest :

4.0 CONCLUSION

At the end of the module students are able tormdiffeéate betweeMatrix
and Determinantaind solve difference problems related to matrix
determinant.

5.0 SUMMARY

This unit analysed the use of the Matrix Approadtuking or
Crammer’s rules, Gaussian elimination, and solstit;m simultaneou
equations.

6.0 TUTOR-MARKED ASSIGNMENT

1. Determine the range of values of x for which thé&dwrinant of
the matrix A is:

greater than or equal to 1, wh

2r—1 1
2 T

Show the range of value of x on a number
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-2 1
2.  The matri ( 3 —9) is denoted by A and the vec

£
( y ) by X. It is given that AX=KX where K is any intege
Form a pair of equation connecting x, y and K aedde find twc
different expressions involving K for the fract”. Find the twc
possible values of K aithe two corresponding values”™

3. Given the simultaneous equati
2% + 3%~ X3 = -3
X1+ X+ X3 = 2
X1— Xo— X3 =0
® Write the above equations in matrix fo
(i)  Find the inverse of the 3 x 3 matrix so formed,
(i)  Hence solve the ststems of the equation gi

7.0 REFERENCES/FURTHER READING
Stroud K.A. (1992) Engineering Mathematics.

Sogunrg S.0. (1996) Basic Business Mathematics.
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MODULE 4
Unit 1 Comparative Statics and the Concept of \2eive
Unit 2 Applications to Comparative Static Analysis

UNIT 1 COMPARATIVE STATICSAND THE
CONCEPT OF DERIVATIVE

CONTENTS
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2.0 Objectives
3.0 Main Content
3.1  The Nature of Comparative Statics
3.2  The Derivatives
3.3  The Derivative and the Slope of a Curve
3.4  The Concept of Limit
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3.6. Continuity and Differentiability offeunction
3.7 Rules of Difference and their Use im(arative Statics
3.8 Rules of Differentiation for a FunctiohOne Variable
3.9 Power Function Rule Generalised
3.10 Total Derivatives
3.11 Partial Differentiation
4.0 Conclusion
5.0 Summary
6.0 Tutor-Marked Assignment
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1.0 INTRODUCTION

Comparative statics, as the name suggests, is concerned with the
comparison of different equilibrium states that agsociated with
different sets of values of parameters and exogenauiables. For
purposes of such a comparison, we always start $gumaing a
given initial equilibrium state. In the isolated-rket model, for
example, such an initial equilibrium will be repeated by a
determinate price P and a corresponding quantity

Q. Similarly, in the simple national-income moddhe initial
equilibrium will be specified by a determinate Yidaa corresponding
Y. Now if we let a disequilibrating change occurtire model-in the
form of a variation in the value of some parameberexogenous
variable-the initial equilibrium will, of course ehupset. As a result, the
various endoge-nous variables must undergo ceatfjirstments. If it is

123
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assumed that a new equilibrium state relevant eonéaw values of the
data can be defined and attained, the questiordpgngte comparative-
static analysis is: How would the new equilibriuompare with the
old?

It should be noted that in comparative statics \gaira disregard the
process of adjustment of the variables; we mereippmare the initial
(prechange) equilibrium state with the final (pbstege) equilibrium
state. Also, we again preclude the possibility ofstability of

equilibrium, for we assume the new equilibrium tditainable, just as
we do for the old.

A comparative-static analysis can be either qualgaor quantitative in
nature. If we are interested only in the questbnsay, whether an
increase in investment % will increase or decretlige equilibrium
income f, the analysis will | > e qualitative besauthe direction of
change is the only matter considered. But if wecangcerned with the
magnitude of the change in Y resulting from a giekange in % (that
is, the size of the investment multiplier), the lgas will obviously be
guantitative. By obtaining a quantitative answieowever, we can
automatically tell the direction of change from itédgebraic sign.
Quantitative analysis always embraces the qual@ati

It should be clear that the problem under constaeras essentially one
of finding a rate of change: the rate of changéefequilibrium value
of an endogenous variable with respect to the alanga particular
parameter or exogenous variable. For this reagmn,mathematical
concept of derivative takes on preponderant sicgniite in comparative
statics, because that concept-the most fundamenéaln the branch of
mathematics known as differential calculus is dlyeconcerned with

the notion of rate of change Later on, moreover, shall find the

concept of derivative to be of extreme importanoe dptimisation

problems as well.

2.0 OBJECTIVES
At the end of this unit, you should be able to:

define comparatives statics

describe derivatives of a function

state the limits of function

discuss the techniques of differentiation
explain partial differentiation

discuss applications of derivatives.

124
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3.0 MAIN CONTENT
3.1 TheNature of Comparative Statics

3.1.1 Rateof Change and the Derivative

Even though our present context is concerned ontg the rates of
change of the equiliium values of the variables in a model, we r
carry on tle discussion in a more genemanner by considering the rate
of change of any variable y in responsea change in another variable
X, where the two variables are related to eachrdih¢he functior

y=f(x)

Applied in the comparativetatic context, the variable y will repres:
the equilibrium value of an endogenous variablel anwill be some
parameter. Note that, for a start, we are restricting ourselte the
simple case where there is only a single parameteexogenou
variable in the model. Once we have mastered dimgplified case
however, the extension to the case of more parasetwd prove
relatively easy.

3.1.2 The Difference Quotient

Since the notion of "change" figures prominenththie present contex

a special symbol is needed to represent it. Whervéhiable x change
from the value ¥ to a new value ; , the change is measured by the
difference x— Xy . Hence, using the symbol A (the Greek capitalag
for "difference") to denote the change, we write X;— Xo. Also needed
is a way of denoting the value of the function fé&)various values of x
The standargractice is to use the notation f(x;) to represkatvalue o
f(x) when x =X;. Thus, for the function f(x) =5 +, we have f(0) =5 +
0? = 5 and similarly, f(2) =5 + 2 = 9, etc. When x changes from an
initial value % to a new value (, + x), the value of the function y =
f(x) changes from f(x) to f(X, + X). The change in y per unit of change
in x can be represented by the difference quc

Ay _ f(ro+ A) — f(zo)

Ax FAY

Example 1:

Giveny = f (x) = 3%- 4, we can write: f () = 3(%)°= 4 f (X + AX) =
3(X% + AX)*- 4
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Therefore, the difference quotien

Ay (3zo+ Az)* —4— (325 —4)
Axr Ax
_ 6zoAz + 3(Ax)’

Ax

= bxg + 3Ax

which can be evaluated if we are givey andAx. Let X = 3 andAx =
4; then the average rate of change of y will be 8(3(4) = 30. This
means that, on tl average, as x changes from 3 to 7, the changasi
30 units per unit change in

3.2 TheDerivatives

Frequently, we are interested in the rate of charigewhenAx is very
Ay

small. In sucha case, it is possible to obtain an approximatic&z' by

dropping all the terms in the difference quotiemvalving the

expression AX. In (6.1), for instance, ifAx is very small
Ay
we may simply take the ter6x, theright as an approximation &z,

The smaller the value of x, of course, the closehe aproximation to
Ay
the true valuef &z,

As x approaches zero (meaning that it gets closdr cdoser to, bu

never actually reaches, zero),, + 3Ax will approach the value ( ,
Ay
and by the same toke 2= will approach 6x0also. Symbolically, thi
Ay
fact is expessed either by the statenr &z — 6x0 asAx — 0.

Several points should be noted about the derivatiest, a derivative i
a function; in fact, in this usage the word deiwatreally means

derived function-The original function y = f( x) is a pmitive function,
and the derivative is another function derived fram Whereas th
difference quotient is a function x, and Ax, observe derivative is
function of x only. This is becausax is already compelled to approe
zero, and therefore it ould not be regarded as another variable ir
function. Let us also add that so far we have ued subscripte
symbol x only in order to stress the fact that a change in x ratest
from some specific value of x. Now that this is arslood, we ma
delete the subscript and simply state that thevawgve, like the
primitive function, is itself a function of the iedendent vriable x.
That is, for each value of x, there is a uniqueesponding value for tr
derivative function
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Second, since the derivative is merely a limitheff tifference quotien
which measures a rate of change of y, the der@atiust of necessi
also be a measure of some rate of change. In vietlveofact that the
change in x envisaged in the derivative conceptfisitesimal (that is
Ax — 0), however, the rate measured by the derivasve the natur
of an instantaneous rate of char

Third, there is the matter of notation. Derivativandticns are
commonly denoted in twavays. Given a primitive function y = f(x), ot
way of denotingts derivative (if it existsis to use the symbol f'( x ), or
simply f'; this notationis attributed tcthe mathematician Lagrange. The
Y
other common notation a_f devised by the mathematician Leibniz.
[Actually there is a third notation, Dy, DF(x), but we shall not use it
in the following discussion.] The notation f'(x)hich resembles th
notation forthe primitive functionf(x), has the advantage of conveying
the idea that the derivative is itself a functiohxo The reason fo
expressing it as f(xyather than, sayg(x)-is to emphasise that the
function f' is derived from the primitive functioh The alternative
M
notation, as serves instead to emphe that the value of a derivative

measures a rate of change. The letter d is theteqant of the Greek,
andaz x differsfrom Ax chiefly in that the former is the limit of the
latter asAx approaches zero. In the subsequent discussioshaleuse
both of these notations, depending on which seamsore convenient
in a particular context.

Using these two notations, we may define derivative of a given
function y = f(x) as follows:

3.3 TheDerivativesand Slope of a Curve

Elementary economics tells us that, given a -cost function C = f(Q),
where C denotetotal cost and Q the output, the marginal (MC) is
defined as the change in total caesulting from a unit increase in

AC
output: that is, MC a@ . It is understood thatQ is an extremel
small change. For the case of a product that rssede units (intege
only), a change of one unit is - smallest change possible; but for the
case of a produathose quantity is a continuous variabl®, will refer
to an infinitesimal change. In tr
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Stasticsl.phng

Figure 1:

latter case, it is well known that the marginaltooesn te measured b

the slope of thtotal-cost curve. But the slope of the total cost cus
AC
nothing but the limit of theratio2@, when AQ approaches zero. Th

the concept of the slope of a curve is merely the ge¢nmeounterpar
of the concept of the derivative. Both have towdth the "marginal’
notion so extensively used in econom

In Fig 1, we have drawn a tc-cost curve C, which is the graph of 1

(primitive) function C=f(Q).Suppo: that we consider Qas the initial

output levelfrom which an increasén output is measured, then t

relevant point on the cost curve will be A. If outpis to

be raised to @+ AQ =Q,, the total cost will be incread from ( to G
AC _ [Ca—Co)

+AC=GC; 2Q 7 (Q2-Qu)

Geometrically, this is the ratio of two line segris iE or the slope o

the A B. This particular ratio measul an average rate of change

average.

Marginal cost for the particulaAQ pictureand represnts a differenc
qguotient. Assuch, it is a function of the initial value, and the amour
of changeAQ. What happens when we vary the magnituda@® Ifa
smaller output increment contemplated (say, from¢@o G, only), then
the averagenarginal cost will be measurdy the slope of the line Al
instelld. Moreover, as we reduce the output incnémeur-

ther and further, flatter and flatter lines willstdt unti, in the limit (as
AQ — 0), weobtain the line KG (which is the tangent lito the cost

Hi&E
curve at point A) as the relevaline. The slope of KG (K# ) measures
Al

the slope of the tot-cost curve at point A and represents the lima@
asAQ — 0, when initial output is at Q = ¢ Therefore, irterms of the
derivative, the slope of t C = f (Q) curve at point A corresponds to |
particular derivative valuf’ (QO).

What if the initial output level is changed frcQ, to, say, (G? In that
case, point Bon the curve will replace point A as the relevaminp and
the slope of the cue at the new point B will give us the derivat
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value f(Q. ). Analogus results are obtainable falternative initial
output levels. In general, the derivati\(Q) a function of Q will vary as
Q changes.

3.4 The Concept of Limit

dy
The derivative ¢z  has been defined as the limit of the differe
A AT
quotient 22 asAx — 0. If we adopt the shorthand symbols 2@

(g for quotient) and v AXx (v for variation),

we have

W _ him 2Y _im
dr — Az=0 Ar kg

In view of the fact that the derivati concept relies heavily on the
notion of limit, it is imperative that we get a aladea about that notio

L eft-Side Limit and Right-Side Limit

The concept of limit is concerned with the ques "What value does
one variablgsay, q) approach @another variable (say, v) approaches a
specificvalue (say, zero)?" lorder for this question to make sense, q
must, of course, ba function of v: say, q = g (. Our immediate
interest is in finding the limit of g as— 0, but we may just as easily
explore the more general case ol-+ N, where N is any finite real
number. Then,

litn
L'—}ﬂq
will be merely a special case

g

where N = 0. In the course of the discussion, wall sictually alsc
consider the limit of g asv»« (plus infinity) or as v——cw (Minus
infinity).

When we say v— N, the variable v can approach the nur N either
from values greatethan N, or from values less than N. If, a— N
from the left side (from values less than N), g rapphes a finit
number L, we call L the lelide limit of g. Orthe other hand, if L is the
number that g tends to asv N from the right side (from vaes greater
than N), we call L the righgide limit of q. The le- and right-side limits
may or may not be equal.
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The leftside limit of q is symbolied by

lim
v— N~ q

(the minus sign signifies from — N — values less than N), and t
right-side limit is written a

lim g
vVt

When and only whe-the two limits have a common finite value (s
L), we consider the limit of g to exist and writeas

limg=L

v

Note that L must be a fite number. v— N If we have the situation

lim g = oo
vV

(or - ), we shall consider g to possess ne>\W limit, because lim q
o means thag —w as v— N, and if g will assume v— N ever
increasing values as v tends to N, would be comi@y to say that «
hasa limit. As a convenient way of expressing the fhett q—« as v
— N, however, people do indeed wi

lim g = oo
vV

and speak of g as having an "infinite lim

In certain cases, only the limit of one side netdbe considered. |
taking the limit of q a v — +w, for instance, only the leftide limit of g
is relevant, because v can approac only from the left. Similarly, fo
the case of v—»—w, only the rightside limit is relevant. Whether tt
limit of g exists in these cases will depend omywdhethr g approache
a finite value as v — +w, or as v v——oo.

It is important to reale that the symbob (infinity) is not a number, an
therefore it cannot be subjected to the usual atgeloperations. W
cannot have 3 « or 10;  nor can we write q =0, which is not
the same as g. However, it is acceptable to expr the limit of g as '
=" (as against>) oo, for this merely indicates that-goo.

3.5 Graphical lllustrations
Let us illustrate, in above figure several poss#ileations regarding tr

limit of a function q = g( v ). Figure 2 shows aa@mth curve. As thi
variable v tends to the value N from either sidetlos horizontal axis
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the variable q tends to the value In this case, the left-side limit is
identical with the righside limit; therefore we can wri

fima=1L
The curve drawn in above figure is not smooth;as la sharp turnin
point directly above the point N. Nevertheless,vaends to N fron
either side, g gain tends to an identical value L. The limit oagain
exists and is equal to L.

It shows what is known as a step function.* In thisegas v tends to N,
the left-sidelimit of q is Lp but the rigt-side limit is L 2, a different
number. Hence, g @s nothave a limit as v -+ N. Lastly, in above
figure, as v tends tdl, the lef-side limit of q is <o, whereas the right-
side limit is 40, because the two parts of {(hyperbolic) curve will fall
and rise indefinitely while approaching the brokvertical line as an
asymptote.

Again,

lim
v q

does not exist. On the other hand, if we are cemsid different sort o
limit in diagram d, namely,

[y 400G

then only the lefside limit has relevance, and we do find that litoi
exist:

Ilm g=M

U— o0

Analogously, you carerify that

lim g=M

V—+ o0

Stastics2.png

Figure 2:

as well.
It is also possible to apply the concepts of-side and right-side limits
to the discussiorof the marginal cost in Fig 1. In that context,
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variables q and v will refer, respectively, to ﬂ{mtien% and to the
magnitde of AQ, with all changes being measured fr
point A on the curve. In other words, g will refer the slope of sucl
lines as AB, AD,and KG, whereas v will refer to the length of si
lines as@, Q (= line AE) and Q, @, (= line AF). We have alreadyeen
that, as v approaches zero from a positive valweil@pproach a valu

equal to the slope of line KG. Sinrly, we can establish that, AQ

approaches zero from a negative value (i.e., agitloeease in outpi

becomes less and less), the quo i_g as measured by the slope
such lines as RAnot drawn), will also approach a valegqual to the
slope of line KG. Indeed, the situation here isyvemuch akin to tha
illustrated in Fig6.2a. Thughe slope of KG in Fig 1 (the counterpart
L in Fig 2) is indeed the limit of the quotient g as v s to zero, and ¢
such it givesus the marginal cost at the output level Qo.

Evaluation of a Limit
Let us now illustrate the algebraic evaluation ofimit of a given

function q = g(v). Example :
Given g =2 + ¢, find

lim q.

v—) 7
To takei the lle-side limit, we substitute the series of negativlues
—1 — 15, —10ps- (in that order) for v and find thag2 + %) will

decreae steadily and approac (because 3will gradually approach 0
Next, for the rigr-side limit, we substitute the series of positivéuea

1 1
L, 1 1000 (in that order) for v and find the same limit a$dve.

In as much as the two limits are identical, we agrsthe limit of g tc
exist and write

1'111{1];:1 =2

v

It is tempting to regard the answer just obtainedttee wtcome of
setting v = 0 in theequation q = 2 + % but this temptation should
general be resisted. evaluating

lim
v q

we only let v tend to N but, as a rule, do notvet N. Indeed, we ca
quite legitimately speak of the limit of g a<— N, even if N is not ir
the domain of the function g = g(v). In this lattase, if we try to set
=N, g will clearly be undefinec
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3.5.1 Formal View of the Limit Concept

The above discussion should have conveyed someral ideas about
the concept ofimit. Let us now give it a more precise definitiddince
such a definition will make usof the concept of neighbourhood of a
point on a line (in patular, a specific number aspoint on the line of
real numbers), we shdlfst explain the latter ternFor a given number
L, there can always be found a numbe~ &) < L and another number
(L + &) > L, where a and a are some arbitrary positive numbers. The
set ofall numbers falling between (- &) <L and (L + @) > L is called
the interval betweethose two numbers. If the numbers- &) < L and

(L + &) > L are included in thset, the set is a closed interval; if they
are excluded, the set an open interval. A closeinterval between (=

a;) <Land (L + ) > L is denoted by the bracketed expres:

[(L-a) (L+a)>L]=a{lL -—a)<q=(L+a)>L}

and the corresponding open irval is denoted with parentheses: (6.4)
(L-a) (L+a)>L)=q{(L-a)<qg<(L+a)>L}

Thus, [ ] relate to the weak inequality si< , whereas () relate to the
strict inequality sign < . But in both types of entals, the smalle
number (L — @ is always listed first. Later on, we shall alsava
occasion to refer to hatipen and ha-closed intervals such as (3, 5] and
[6, ©), which have the following meaninc

(3, 5] = {x|3 < x= 5} [6, 0) = {x]6 < X <00}

Now we may define a neighthood of L to be an open interval as
defined in (6.4), whichis an interval "covering" the number*
Depending onhte magnitudes of the arbitranumbers aand a , it is
possible to construct various neighborhoods for gheen number L
Using the concept of neighbidnood, the limit of a function may then be
defined as follows:

As v approaches a number N, the limit of q = g{svjhe number L, if
for every neighbothood of L that can be chosen, however small, t
can be found aarrespondincneighbourhood of N (excluding the point
v = N) in the dorain of the function such thefor every value of v in
that N-neighbothood, its image lies in the choserneighbourhood.
This statement can be clarified with the help .8 which resemble
Fig. 2a. From what was learned about the lattgné, we know the
lim g = L

v— N
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Stastics3.png

Figure 3:

Figure 3 showvthat L does indeed fulfill the new deition of a limit. As
the first stepselect an arbitrary small neigturhood of L, say, (L- &,
L + &). (This should havbeen made even smaller, but we are kee
it relatively lerge to facilitate exposition.)Now construct ¢
neighbouhood of N, say, (N-b;,, N +b), such that thetwo
neighbowhoods(when extended into quadrant 1) will together defa
rectangle (shaded in diagram) witwo of its corners lying on the give
curve. It can then be \ified that, for every value ov in this
neighbouhood of N (not counting v = N), the rregponding value of (
= g( v) lies in the chosen neighurhood of L. In fact, no matterow
small an Lneighbwrhood we chogse, a (correspondingly small)
neighbouhood can e found with the property jusited. Thus L fulfills
the definition of a limit, awas to be demonstrated.

We can also apply the above definition to the $tegtion of Fig 2c in
order to showvthat neither l; nor L, qualifies as lim.y g. If we chooe

a very small neighborhood L; say,just a hair's width on each side
L,-then, no matter what neighbouhood we pick
for N, the rectangle associated with the two nepurhocds cannot
possibly enclose thlower step of the function. Consequently, for
value of v> N, the corresponding valof g (located on the lower st¢

will not be in the neighkurhood of L, and thus L fails the test for ¢
limit. By similar reasoning, , must also be dismissed as a candidat

Jm g
In fact, in this case no limit exists for g a— N.

3.5.2 Limit Theorem

Our interest in rates of change led us to the cemnation of the conce|
of derivative, which, being in the nature of thmiti of a quotient, in tur
prompted us to study questions of the existence emaduation of &
limit. The basic process of limevaluation, as illustrated, involv
letting the variable v approach a particular numifsasy, N) anc
observing the value which g approaches. When dgtaahluating the
limit of a function, however, we may draw upon eartestablished lim
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theorems, wich can materially simplify the task, especiallyr
complicated functions.

3.5.3 Theoremsinvolving a Single Function

When a single function q = g(v) is involved, thddwing theorems ar
applicable.

Theorem 1.

If g =av + b, then lim_y g = aN + b (a and b are constants). Examp
Given q =5v + 7, we have li,_, q =5(2) + 7 = 17. Similarly, li;m.o g
=50)+7="T7.

Theorem 2:

Ifg=g(v)=Db,then lim_N q = b.

This theorem, which says that the limit of a constunction is the
constant in that function, is merely a special aais€éheorem 6.1, witl
a=0.

Theorem 3:
If g =v, then lim_N g =N.

If q = V¥, then lim_y g = N k.

Example 2:
Given q =V , we have lim.,q = (2)3=8,

You may have noted that, in the above three thesrerhat is done t
find the limit of g as v— N is indeed to let v = N. But these are spe
cases, and they do not vitiate the general rule"th— N " does not
mean "v = N."

3.5.4 Theoremsinvolving Two Functions

If we have two functions of the same independeniabée v, = g(v),
and if both funtions possess limits as follo

13 =L Ii =L
Ipa=Li  lige="L

where L, and Ly are two finite numbers, the following theorems
applicable.
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Theorem 4: (sunr-difference limit theorem)

lim (g1 + qo) = Ly £ Ly

The limit of a sum (difference) of two functionstise wum (difference’
of their respetive limits. In particular, we note tf

linf}lr 2q1 = lim (g1 + q1) = L1 + Ly = 2L,

o= Y
which is in line with Theorem :

Theorem 5: (product limit theorem)

Iim (g1g2) = L1 Lo

The limit of a product of two functions is the product of ithiamits.
Applied to the square of a function, this gi

lim (qig1) = LiL1 = Li

which is in line with Theorem

Theorem 6 (quotient limit theorem

@ Ly
e 7, (L1 #0)

The limit of a quotient of two functions is ttquotient of their limits
Naturally, the limit L, is restricted to be norero; otherwise the quotie
is undefined.

Example 3
Find
him (U +e)
v—=0 (2 + v)
Since we have he
11,-1%(} +uv);=1

and -lim_o(2 + v) = 2, the desired limit is

Remember thalL,; and L, representfinite numbers; otherwise the
theorems do not apply. In the case of Theoremur@hdrmore L, must
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be nonzero as well. If these-strictions are not satisfied, we must fall
back on the methb limit evaluation illustratecin examples above,
which relate to the cases, respectively, of L beiagp and c L being
infinite.

3.5.4 Limit of a Polynomial Function

With the above limit theorems at our disposal, e easily evaluat
the limit of anypolynomial functiol

g =g(v) =ao+ a1v + asv + ..... + anv™ 2

as v tends to theaumber N. Since the limits of the separate ternas
respectively.

. . ,. . -
limag=ag lImav=aN lim agv® = asN
vV v— N u—s

lim g =ap+a1v+agv+ ..... + apv” 3
v N

This limit is also, we note, actually equal to g(),Nhat is, equal to th
value of the function in (2) when v = N. This peuiar result will prove
important in discussing the corpt of continuity of the polynomial
function.

3.6 Continuity and Differentiability of a Function

The preceding discussion of the concept of limd its evaluation can
now be usedo define the continuity and differentialty of a function.
These notiondear directly on the derivative of the function,igéhis

what interests us.

3.6.1 Continuity of a Function

When a function g = g( v) possesses a limit asndddo the point N il

the domain, and when this limit is 0 equal to g(N)-that is, equal to the

value of the function at v = N the function is stadbe continuous at I

As stated above, the term continuity involves ngsldhan thre

requirements:

(1) the point N must be in the domain of the functioa; giN) is
defined.

(2) the function must have a limit as— N i.e.

2 9)

exists and
(3) that limit must be equal in value to g( N

lim g(v) = g(N)
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It is important to note that while-in discussing timit of the curve in

above Figure. Above the point (N, L) was excludexh consideration,

we are no longer excluding it in the present cant®ather, as the third
requirement specifically states, the point ( Nnst be on the graph of
the function before the function can be considessd continuous

at point N.

Let us check whether the functions shown in abowpiré are
continuous. In diagram a, all three requirements rmet at point N.
Point N is in the domain, q has the limit L as+N ; and the limit L
happens also to be the value of the function at THus, the
function represented by that curve is continuoull.alhe same is true
of the function depicted in above figure, since L limit of the
function as v approaches the value N in the donaaid, since L is also
the value of the function at N. This last graph@mple should suffice
to establish that the continuity of a function adirpp N does not
necessarily imply that the graph of the functiofsisiooth” at v = N, for
the point (N, L) in above figure is actually a "gblapoint and yet the
function is continuous at that value of v. Wheruadtion g = g( v) is
continuous at all values of v in the interval (a), bt is said
to be continuous in that interval. If the functi@ continuous at all
points in a subset S of the domain (where the $ubseay be the union
of several disjoint intervals), it is said to bentiouous in S. And,
finally, if the function is continuous at all pomtin its
domain, we say that it is continuous in its domd&men in this latter
case, however, the graph of the function may nbe&ss show a
discontinuity (a gap) at some value of v, say, atY, if that value of v
is not in its domain.

Again referring to above figure, we see that irgdéan c the function is
discontinuous at N because a limit does not existhat point, in

violation of the second requirement of continuityevertheless, the
function does satisfy the requirements of contynuntthe interval (0, N)

of the domain, as well as in the interval (), Diagram d obviously is
also discontinuous at v = N. This time, discontip@manates from the
fact that N is excluded from the domain, in viaati of the first

requirement of continuity.

On the basis of the graphs in above figure, it appéhat sharp points
are consistent with continuity, as in diagram K, that gaps are taboo,
as in diagrams c¢ and d. This is indeed the caseglitp speaking,
therefore, a function that is continuous in a pattr
interval is one whose graph can be drawn for the isgerval without
lifting the pencil or pen from the paper-a feat @bhis possible even if
there are sharp points, but impossible when gapsroc

138
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3.6.2 Polynomial and Rational Functions

Let us now consider the continuity of certain freqtly encountere
functions. For anyolynomial function, such as q = g( v) in above,
have found from above that I,_.\ q exists and is equal to the value of
the function at N. Since N is a point (any poimt)the domain of th
function, we can conclude that any polynomial fimtis cortinuous in

its domain. This is a very useful piece of inforrmat becaus
polynomial functions will be encountered very oft

What about rational functions? Regarding continuttyere exists a

interest ing theorem (the continuity theorem) whsthts that the sum,
difference, product, and quotient of any finite raenof functions the

are continuous in the domain are, respectivelyy atntinuous in th

domain. As a result, any rational function (a gewtiof two polynomia

functions) must also beontinuous in its domait

Example 4.
The rational function

42
q=g(v)= m

is defined for all finite real numbers; thus itsntiin consists of th
interval (-0, ). For any number N in the domain, the limit of q lxy
the quotient limit theorem)

. I.i.m v— N {4 L'g) 4;”2
lim g = = =
vV hm,_, (1-‘2 + f] (t!ﬂ + I)

which is equal to g(N). Thus the three requiremetsontinuity are al
met at N. Moreover, we note that N can represent @wint in the
domain of this function; consequently, this funotis continuous in it
domain.

3.6.3 Differentiability of a Function

The previous discussion has provided us with tleés for ascertaining
whether anyfunction has a limit as its independent variablprapches
some specific value. Thus vean try to take the limit of any function y
= f(x) as x appwvaches some chosen value, sx,. However, we can

also apply the "limit" concept at a different lesid take the liit of
dy
the difference quotient of that funct 4z’ as x approaches zero. The

outcomes of limitaking at these two different levels re to two
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different, though related, properties of the fuoict

Taking the limit of the function y = f(x) itself, vcan, in line with th
discussion of the preceding subsection, examinghehe¢he function
is continuous at x =o. The conditions for continuity are:

(1) x =X must be in the domain of the functic

(2) y must have alimitas— Xy, and

(3) the said limit must be equal to 1)). When these are satisfied,
can write

lim ( continuity condition )
I—I0D
dy
When the "limit" concept is applied to the diffecenqudient 4= as x

— X0, on the other hand, we deal irad with the question of wheth
dly
the function f is differentiablat x = x0 , i.e., whether the derival 4z’

exists at x = x0 , or whethe(x0) exists.

The term "differentiable” is used here becauseprocess of obtainin

dy
the derivative €= is known as differerdition (also called derivation
Since f(x0) exists I and only if the

limit of Bz exists ax — x° asAx — 0, the symbolic expression of t

differentiability off is

= lim — = lim f(zo + Az) — f(wo)
T Ar—s0 Axr A0 Az

f' (o)

(dif ferentiabilitycondition)

These two properties, continuity and differentidpil are very
intimately related to each otl-the continuity of f is a necesse
condition for its differentiability (although, asewshall see later, th
condition is not sufficient). What this mean that, to be differentiabl
at x = ¥, the function must pass 1 test of being continuous at xXq.
To prove this, w- shall demonstrate that, given a function y = fig
continuity at x = x 0 follows from its differentidity at x = X,, i.e
differentiability condition. Before doing this, Wever, let us simplify
the notation somewhat :

(1) Replacing  with the symbol N and

(2) Replacing (o +Ax) with the symbol x. The latter is justifiak
because the postchange value of x can be any nydg@ending on th
magnitude of the change) and hence is a varialvletdble by x. This i
the equivalence of the two notation systems, whieeeold ntations
appear (in brackets) alongside the new. Note thdh the notationa
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change,Ax now becomes (- N), so that the expressiomX — 0"

becomes "x— N ," which is analogous to the expressiorsvN ,usec
before in connection with the function q = ). We can now be
rewritten, respectively, as

lim f(z) = f(N) (4)

Stastics3.png

Figure 4:

f(x) — f(N)

f'(z) = Jim 2 )

T— ¥

What we want to show is, therefore, that the caiiyn condition
follows from the differentiabilitycondition. First, since the notation-¢

N implies that x £+ N , so that — N is a non-zero number, it is
permissible to write the following identi

fo) — sy = LNy, ©

Taking the limit of each side of (6) as— N yields the following
results:

left side ]m}vf{x) - lir?"‘r FIN)dif ference limit theorem)

Ill_%n‘r't f(z) — f(N) (f(N) constant)

righr side hm M

r—3N r— N

= F'(N) (]im_;r. ~ lim N)

r— N

lim (x — N)(product limit theorem)
TN

= f(N)(N = N) =0

Note that we could not have written these resifltspndition had not
been granted, for if f (N) did not exist, then the rig-side expression
(and hence also the ledtde expressiorin (6) would not possess a limit.
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If £ (N) does exist, however, the two sides will hdimits as shown
above. Moreover, when the I-side result and the riglside result ar
equated, we get

Tim f(z) — f(N) =0

which is identical. Thus we have proved that aarty, as shown i
above equation, follows from differentiability, adown in above. I
general, if a function is differentiable at everying in its domain, we
may conclude that it must be continuous in its dom&lthough
differentiability implies continuity, the converds not true. That is
continuity is a necessary, but not a sufficient,ndibon for
differentiability. To demonstrate this, we merelgvle 0 produce ¢
counterexample. Let us consider the funct

y=flz)=|z—2[+1 (7)

Stasticsb.png

Figure 5:

which is graphed above. As can be readily showis, function is no
differentiable,though continuous, when x = 2. That the functiei
continuous at x = 2 is easy establish. First, x 2 is in the domain ¢
the function. Seond, the limit of y exists &x tends to 2; to be specifi
lim,_,—y =Ilim_,+=1. Third, f (2) is also found to be

1. Thus all three requirements of continuity aret.mTo show that th
function is not diffrentiable at x = 2, we must show that the limitrod
difference quotiel

g AR g A4l e
r— T — 2 r—2 r—92 =2 -9

does not exist. This involves the demonstratiom alisparity betwee
the left-sideand the rigt-side limits. Since, in considering the ri-
side limitx must exceed 2, v have |x- 2| = x — 2 Thus the rig-side
limit is
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lim |z — 2| = lim -2 _ m 1=1
r—2t g — 2 2t p 3 a0t

On the other hand, in considering the-side limit, x must be less than
2; thus,|x — 2| = —(x¢ 2). Consequently, the |-side limit is

_9 —(r—?
fm T2 T Gy =
r—2- I — r—9- 1 —2 9

which is different from the rig-side limit. This shows that continuity
does not guarantee differentiability. In sum, affedlentiable function:
are continuous, but not all continuous functioresdifferentiable

In above figure, the noudifferentiability of the function i x = 2 is
manifest in the facthat the point (2, 1) has no tangent line defirsed
hence no defing slope can bassigned to the point. Specifically, to the
left of that point, the curve has a diagramm slop- 1, but to the right

it has a slope of + 1, and the slopes on the tdessilisplay no tenden:

to approach a common magnitude at x = 2. The g2int) is, of course

a special point; it is the only sharp point on theve. At other point
on the curve, th derivative is defined and the function is diffarable.
More specifically, when above function can be daddnto two linea
functions as follows:

Leftpart: y =—(x —2) + 1 =3 ->(Xx < 2)
Rightpart yy=(x2)+1=x-1(x> 2

The leftpart is differentiable in the interve-w, 2), and the right part is
differentiable in the interval (2») in the domain. In general,
differentiablity is a more restrictive ccdition than continuity, because
it requires something beyond continuity. Cnuity at a point only rules
out the presence of a gap, whereas differentigiliies out "sharpnes:
as well. Therefore, differentiability calls for "smwthness" f the
function (curve) as webls its continuity. Most of the specific functic
employedin economics have the propeithat they are differentiable
everywhere. When general functions are used, mereovhey
are often assumed to be everywhere differentiaseyeshall do our in
the subsequent discussion.

3.7 Rules of Differentiation and their Use in Comparative
Statics

The central problem of comparat-static analysis, that of finding a rate
of change, can be identified with the problem ofiing the derivative
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of some function y = f(x), provided only a smallacige in x is bein
dy

consdered. Even though the derival @ is defined as the limit of th
difference quotient g = g( v) as— 0, it is by no means necessary
undertake the process of limit taking each time deeivative of &
function is sought, for there exist various s of differentiatior
(derivation) that will enable us to obtain the dediderivatives directly
Instead of going into comparat-static models immediately, therefo
let us begin by learning some rules of differemiat

3.8 Rulesof Differentiation for a Function of One Variable

First, let us discuss three rules that apply, retspay, to he following
types of functionof a single independent variable: y = k (cons
function),y = x, andy = e (powerfunctions). All these have smoo
continuous graphs anre therefore differentiable ewywhere

3.8.1 Constant-Function Rule

The derivative of a constant function y = f(x) #skdentically zero, i.e.

is zero forall values of x. Symbolically, this mbg expressed various

dy dk
as®s =0odz =0o0f(x)=0

In fact, we may also write these in the f
Ly—Lk=Lfk)=0

d
where the derivative symbol has been separatedtwioparts dr on

A
the one hand, ary (or f(x) or k) on the other. The firpartdr , may be
taken as an operator symbol, which instructs usetéorm a particula
mathematical operation. Just as the opeisymbol;instructs us to tak
dk

a square root, the syml dz represents an instruction to take
derivative of, or to differentia, (some function) with respect to t
variable x. The function to be operated on (to be differentintes
indicated in the second part; here itis y = f(4.:

The proof of the rule is as follows. Given f(x) #\We have f(N) = k fo
any value of N.

Thus the value of' (N) the value of the derivative at x = N as defil
above will be

i d@—IN) kR 00

I—h"u' T — N N1 — N =N
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Moreover, since N represents any value of x attladl, result (N)=0
can be immediately generai$ to 1(x) = 0. This proves the rule.

It is important to distinguish clearly between theestgent ‘(x) = 0 and
the similarlooking but different statemen(xy) = 0. By f(x) = 0, we
mean that the derivatiianction f has a zero value for all values of x;
in writing f(Xo) = 0, on the othehand, we are merely associating the
zero value of the derivative with a particular \@abf x, namely, x =,.

As discussed before, the derivative of a functi@s lits georetric
counterpart in the slopef the curve. The graph of a constant funct
say, a fixed-casfunction CF = f(Q) =N1200, is a horizontal straight
line with a zero slope throughout. Correspondingte derivative mus
also be zero for all values of

#Cr = @GgN1200=0or f(Q) =0

3.8.2 Power-Function Rule

The derivative of a power function'y = f (x x"is n¥'". Symbolically,
this is expressed as

'ﬁ';‘ =nr" ! or f(z) == nz™!
Example 6:

3. dy _dr? o 2
The derivative of y =% 15 dr — dr — 5%

Example 7:
o 77 i
The derivative of y =

This rule is valid for any re-valued power of x; that is, the exponent
can be any realumber. But weshall prove it only for the case where n
is some positive integer. the simplest case, that of n = 1, the func

is f(x) = x,and according to the rule, tderivative is

fla) = r =10 =1

The proof of this result follows easily from thefidgion of f'(N ).
Given f(x) = x, thederivative value at any value of x, say, x =

oy f@—FN) L k—k
&= N —hr-N !
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Since N represents any value of x, it is permisstbol write i(x) = 1.
This proves theaule for the case of n = 1. As the graphical ceturt
of this result, ve see that thfunction y = f(x) = x plots as a 45 line, a
it has a slope of + 1 throughoFor the cases of larger integers, n =2
..., let us first note the following identiti

% — N? - (x+ N)(z — N) -

— p— z+ N (2 term on the right)
3 _ 2, n 72
= ﬁ = z—N)br +.'\.I'*\I$ ) =(z*+ Nz +N?) (3 term on the right)
= — T — 1
i n—1 n—2 2_n-3 n .
= (z" T+ N+ NZ""+ ..+ N (n term on the right)
B

We can express the derivative of a pofunction f (x) = X' at x = N as
follows:

PO = G JE W) _ o 2 - NP

= lm

N x— N —N =z — N
= JL%{I“_I + N 24 N2 3, +N™)
= lim "' + lim N™ 24 lim N2z" 3 +....... + lim N™)
r— N e ¥ TV
e Nn—l +_N-n_] _E_hru—l
= npN™!

Again, N is any value of x; thuhis last result can be genered to f(x)
= nX"* which proves the rule for n, any positive integ

As mentioned above, this rule applies even whereiponent n in th
power expressiox" is not a positive integer. The following examp
serve to illustrate its application to the lattases

Example5:
dy
Find the derivative of y =°, we find dz
d 1
E:rﬂ =0(z')=0

3.9 Power Function Rule Generalised

When a multiplicative constant ¢ appears in the grafenction, so that
(x) = cX'its derivative i



FMT 204 MODULE 4

d n n—1 ' n—1
—Cr —= ChnIT ar Ir) — cnr
- f(z)

This result shows that, in differentiating”, we can simply retain the
multiplicative constant ¢ intact aithen differentiate the tern'x

Example 8:

The derivative of f (x) = 3% is f(x) = -6xX° For a proof of this new
rule, consider the fact that for any value of %;,sa= N, the value of th
derivative of f (x) = cRis

v fl@)— f(N) .. ex?—eN? . 1> — N?
fiN)=lim = —y—=lm——x =cln—T—x
. . .112—1“\12
=mehm TN
.1'2 ﬂ'rg
c hm

In view that N is any value of x, this last result be generalised
immediately to {x) = cnX"*, which proves the rul

3.9.1 Rules of Differentiation involving Two or more Function
of the same Variable

The three rules presented in the preceding seare each concerned
with a single given function f (x ). Now supposeattiwe have twi
differentiable function of the same variable x,,98¥) and g(x ), and w
want to differentiate the sum difference, produmt,quotient formel
with these two functiondn such circurstances, are there appropriate
rules that apply? More concretely, given two fuoet-say, f (x) = 3%
and g(x) = 9% how do we get the derivative of, say? + 9x or the
derivative of (3%)(9x'%)?

3.9.2 Sum-Difference Rule

The derivative of a sum (difference) of two funaosois the sur
(difference) of the derivatives of the two funciso

% {f(x} = 9{-‘13}} = di;_f[,a} 4 d_ig['r) - f!(.r] ﬂ:g‘(a‘.]

The proof of this again involves the applicationtoé definition of €
derivative and of the various limit theorems. Walklomit the prooi
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and, instead, merely verify its validity and illcege its applicatior

Example 11:

[
From the function y 14X, we can obtain the derivati = = 422 But
14X = 5 + 9x> so that y may be regarded as the sum of two fums
f (x) = 5¢ andg(x) = 9»°.
de _ d
According to the sum rule, we thhave @ — @ (5% + 9x°) = 15X +
27X = 42X which is identical with our earlier resu

This rule, stated above in terms of two functiczes) asily be extende
to more funtions. Thus, it is also wvald to wr

4 (J(z) £ 9(z) £ h(z)) = f'(z) £ ¢ () £ 1 ()

Example 12:

di(?:r‘ 427 — B4 37) =B 4627 — 34+ 0= 28+ 622 —3
T

Note that in the last two examples the constardged 37 do not reall
produce angffect on the derivative, because the derivativa obnstan
term is zero. In contrast

Stastics6.png

Figure 6:

the multiplicative constant, which is retained dgrdifferentiation, th
additive constant drops out. This fact provides tmathematica
explanation of the we-known economic principle that the fixed cosi
a firm does not affect its marginal cost.ven a shortun tota-cost
function

C=0*—-4Q* +10Q + 5

the marginal cost function (for infinitesimal outpthange) is the limi
of the quotient Q, or the derivative of the C fuoit

dC
g =392 -8Q+10
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whereas the fixed cost is represented by the addibnstant 75. Sinc
dac
the latter dropsut during the process deriving 9%’ the magnitude of

the fixed cost obviously cannot affect the margoast.

In general, if a primitive function y = f(X) repess a tot: function,
dr
then the derivative functio v is its marginal function. Both functions

can,of course, be plotted agairthe variable x graphically; and because
of the corresporghce between the derivativea function and the slope
of its curve, for each value x the marginal function should show the
slope of he total function at that value of x. linear (constant slope)
total function is seen to have a constant marginal fonctDn the othe
hand, the nonlinegvarying slope) total function gives rise to a o
marghal function, which lies belov(above) the horizontal axis when
the total function is negatly (positively) sloped. Andfinally, the
reader may note that "nonsmoothness" of a function will result in a
gap (discontinuity) in the marginal or derivative fuimet. This is in
sharp contrast to theverywhere smooth total function in which gi\
rise to acontinuous marginal functiotFor this reason, the smoothness
of a primitive function carbe linked to the continuity cits derivative
function. In particular, instead of saying thatertain function is smooth
(and differentiable) everywhere, we may alterndyiwharaterise it as a
function with acontinuous derivative function, and refer to it &
continuously differentiable functiol

3.9.3 Product Rule

The derivative of the product of two (differentiapfunctions is equal t
the first function times the derivative of the seddunction plus thi
second function times the derivative of the fitgtdtion:

2 (1@)9(e) = = 1(x) + g(@)gla) = ['@)g(a) + ¢ () [()

Example 13:

Find the derivative of y = (2% 3)(3X). Let f(x) = 2x + 3 and g(x) =3x
Then it follows that f'(x) = 2 and g’(x) = 6x theedired derivative i
;i(gx+3)(3z2) = (312)£(2x+3) +(2x+3)d{—i(33¢9) = (32%)24 (224 3)6z = 1822 + 18z

L1

This result can be checked by first multiplying d(®)g(x) and ther
taking the The important point to remember is thatderivative of a
product of two functions is not the simple prodaottthe two separat
derivatives.
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fx)g(x) — F(N)g(N) (8)

z— N

2 ()9 ey = Jimy

But, by adding and subtracting f(x)g(N) in the nuatel (thereby
leaving the originalmagnitude unchanged), wearc transform th
guotient on the right of (6.11) as follow

F(@)g(z) - f@)a(N) + F@a(N) — F(N)g(N)
z— N
_ Lo o 0~ )

Substituting this result into (6.11) and taking lingt, we then hav

9@) =g 0)) | o g £ = V)
- N

2 (F@)9(a)) e = Jim f(2) Tim lim o(z) lim O L5 (9)

The four limitexpressions in (6.12) ¢ easily evaluated. The first one

f(N) and the third is g(N) (limit of a constant]he remaining two arf’
(N) and g’ N). Thus, the above equation can be writte

% (f(x)g(2)) |le=n = f(=) _«5111,?, FIN)G(N) + g(N)f(N) (10)

Since N represents any value of x, () remains valid if eplace ever
N as x. Hence tin prove the Theorerwhich can be generaed by
replacing the symbol N with x, because N represants value of x
This proves the quotient rul

3.9.4 Relationship between Marginal Cost and Average Cost
Functions

As aneconomic application of the quotient rule, let ossider the rat
of change of

StasticsT.png

Figure T:

average cost when output vari
Given a cost function C= C(Q), the average cost)(#&@ function will
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=)}
be quotient oftwo functions Q. Since AC " @  defined as long as Q
> 0. Therefore, the rate of char of AC with respect to Q can be found
by differentiating AC:

d CQ) CQR-Cc@t 1 (c*{@ - @)

DR Q Q? Q @
from this follows that, ¢} = 0
sgg 20 i Q=55

Since the derivative C'(Q) represents the mar-cost (MC) function,

c(Q) . : :
and @ represents the AC function, the economic meaninghe

above graph is the slope of the AC curve will besitpee, zero, o
negative if and only if the margir-cost curve lies above, intersects, or
lies below the AC curve. This is illustrated abavker¢ the MC and
AC functions plotted are based on the specifid-cost function

C =C*-12Q +60Q

To the left of Q = 6, AC is declining, and thus Mi€s belowit; to the
right, the opposités true:At Q =6 , AC has a slope of zero, MC and
AC have the same valughe qualitative conclusion in above is stz
explicitly in terms of cost functions. Hcever, its validity remains
unaffected if we interpre€ (C) as any other differentiable total function

. ¢(@Q) , . : :
with @ and Q)as its corresponding avee and marginal
functions.

Thus this result gives us general marg-average relationship. In
particular, we may poimut, the fact that MR lies below AR when /
is downwardsloping, as discussed in -nection with above is nothing
but a special cas#f the general result of the abo'

3.9.5 Rules of Differentiation involving Two or more Function
of Difference Variable

In the preceding section, we discussed the rulediftérentiation of &
sum, difference, product, or quotient of two (or rejodifferentiable
functions of the same variable. Now we shall cosisthses where the
are two or more differentiable functio each of which has a distinct
independent variable.
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3.9.6 Chain Rule

If we have a function z = f (y), where y is in tuarfunction of anothe
variable x, say, y = g(x), then the derivative oWith respect to x i
equal to the derivative of with respect to y, times the derivative o
with respect to x. Expressed symbolice

dz dzdy s
i d—ya = f'(y)g'(z) (11)

This rule known as the chain rule appeals easilgttation. Given aAx,
there must result a correspondifg via the function y = g(x), but th
Ay will in turning bring about &z via the function z := f (y). Thus the
is a "chain reaction follo

A ' g A ) Az
T via y via f Z

. . . . . . : AU and A2
The two links in this chain entail two differenceagients. & Ay?

but when they are multiplied, the y will cancel leasther out, and w
end up with

Az Az Ay
Ar Ay Arx

a difference quotient that relatag to Ax. If we take tle limit of these
difference qubents asAx (which impliesAy — 0), each differenc
dz dy _ dz
quotient will turn into a derivative; i.e., we shhhve d_yﬁ — dr.This
is precisely the result in (9). In view of the faoo y = g( x ), we cal
express the function z = f (y) as z = f(g(x)), wdhehe cotiguous
appearance of the two function symbols f and gciagis that this is
composite function (function of a function). Itfr this reason that tr
chain rule is also referred to as the comp-function rule or functior

of a function rule

The extension of the chain rule to three or more fundi is
straightforward. If we have z = f (y), y = g(x),dar = h(w), the

e _dedyds
dw  dydr dw

= f'(z)g'(y)h'(w)

and similarly for cases in which more functions iarelved
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Example 14:

If z=3y? , where y = 2x + 5, then
dedy _ dz

dy dr — dr

6y(2) = 12y = 12(2z + 5)

Example 10: Given a totakevenue function of a firm R = f(Q), whe
output Q isa function of labor input L, or Q = g(L), fidRdL . By the
chain rule, we have

dRdQ dR _

EE 4L f(Q)g'(L)

dR daQ
Translated into economic te 4@ is the MR function dL.  marginal

d
physical labour M P PEunctions. Similarly, ELQ has the connotation of
the marginal-revenuproduc-of-labor MRR function. Thus the result
shown above constitutes the mathematical stateofahie wel-known
result in economic thatM R M.RM P R.

3.10 Total Derivatives

With the notion of differentials at our disposak &re now equipped
answer the question posed at the beginning of hlapter, namely, ho
we find the rate of change of tifunction C(Y, To) with respect to J
when Y and § are related.

As previously mentioned, the answer lies in the cepn of total
derivative. Unlike a paial derivative, a total derivative does not req!
the argument Y to remain constant ¢ varies, and can thus allow for
the postulate relationship be the two argume

3.10.1 Finding the Total Derivatives

To carry on the discussion in a more general fraomkwet us conside
any function
y =f(x, w)  where x=g('W)

with the three variables y, x, and w relatedthis, which we shall refer
to as a chamel map, it is clearly seen thal-::-the ultimate source of
change in this casean affect ythrough two channels: OJ indirectly, via
the function g and then fhg straight arrowsand (2) directly, via the
fun tion f (the curvearrow). Whereas the partial derivat,, is adequate
for expressing the direct efffect along, a totativative it needs to
express both jointly.
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To obtain this total derivative, we first differéate y totally, to get th
total erential dy =,dx + f,dy .When-both sides of this equation &
divided by the differential dw, the resul

dy dr dw Oydr Oy [Ow
—_— = w— — ——— - | —— = 1
duw f duw +f dw  dzdw N Ow (ﬂw )

Since the ratio of two differentials may be inteted as a derivativ

dy
the e siondw on the left rriiy b regarded as some measure of tteeat
change of y with respect. Moreover, if the two terom the right side ¢
above equation n be identified, respectivelgys the indirect and dire

dy
effects of w on vy, the dw will indeed be total derative we are
dy

seeking. Now, the second tel(&w}is already known to measure 1

direct effect, and it tl:n!s. corresponds tontheved arrow, That the firs
By dr . .
term (5 du) measures the indire oxdw) effect will also becom:

evident when we analyze it with the help of somewas as follows

dy lr_f..":jl

dx dw
The change in w (namely, dw) is in the first instatransmitted to th
variable x, and through the resulting change innanely, dx) it is
relayed to the vriabley. But thisis precisely the indirect effect,
depicted by the sequence of straight arrows inal

Hence, the expressions in above does indeed reprisedesired tot:

dy
derivative. The process of finding the total derivativdw is referred t
as total differentiation of y with respect to

3.11 Partial Differentiation

Hitherto, we have considered only the derivativésfumctions of a
single independervariable. In comparativetatic analysis, however, v
are likely to encounter the situatiin which several parameters app
in a model, so th the equilibrium value of eachndogenous variab
may be a function of more than orarameter.

Therefore, asa finspreparation for the application of the concep
derivaive to comparative statics, wmust learn how to find th
derivative of a function of more than one varial
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3.11.1 Partial Derivatives

Let us consider a function

y=f(X1,X2,%3, %)  (12)

There thevariables X; (i =1, 2, n) all independent of one another, so
that each can vary by itself without affecting thteers. If the variabl

X1 undergoes a change; while x,, X, all remain fixed, there will
be a corresponding change in y, namaly, The difference quotient i
this case can be expressed as

Ay _ flzy + Azg, x4, ....... zn) — flz1, 79, ... Tn)
f_‘&:r[ ﬂ&?l

(13)

A
If we take the limit off_’—'yf1 as Ax1— 0, that limit will constitute a
derivative. We call it the partial derivative ofwith respect to x1, t
indicate that all the other independent variabhethé- function are held
constant when taking I8 particular derivative. Siilar partial
derivatives can be defined for infinitesimal anges in the other
independenvariables. The process of taking partial derivatige@lled
partial differentiation.

Partial derivatives are assigned distinctive symmbiol lieu of the letter
i o .
(as i ) e employ the symbol which is a variant of the Gregk

gy . o
(lower case delta). Thus we shall now w 8z the partial derivative y

with respect to X' The partie-derivative symbol sometimes is also
8., 8
written as?=:¥ in that case, i z. part can be regarded as an operator

symbol instructing us to take 1 partial derivative of (some function)

with respect to the variable; Since the function involved here is
a

denoted in (9) by f, it is also permissible to & =

Is there also a partiaerivative counterpart f the symbol f(X) that we
used before?

The answer is yes. Instead of f', however, we -use i, f;, etc where
the subscript indiates independent variable (alone) is being allote
vary. If the function in (13)happens to be written in terms of
unsulscripted variables, such as Y = f (u, vw), then
the partial derivatives may be denoted ,, f, and §, rather thanf f,
and &.
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In line with these notations, and on the basis1@) @nd (13), we ca
now define
o Ay

= = lm
f 5.’1']' Ar—0 ﬂ..‘l:i

as the first in the set of n partial derivativestaf function f.
3.11.2 Techniquesof Partial Differentiation

Partial differentiation differs from the previouslydiscusse(
differentiation primarily in that we must hold (- 1) independer
variables constant while allow ing one variablevémy. Inasmuch as w
have learned how to handle constants in differgati, the actual
differentiation should pose little proble:

Example 14:
Giveny =1 (X, %) = 3%f + XX, + 4X,

find the parial derivatives. When findin ﬂir,- (or f1), we must bear i
mind that % is to be treated as a constant during differetmati As
such, % will drop out in the process if it is an additive cons{@uch a:
the term 4% but will be retained if it is as multiplicative constagsuch
as in term of ¥, ). Thus we have

% = fi =6z + x9
Similarly, by treating ; as a constant, we find that

d
— = fi=z1+ 8z
dxo

Note that, like the primitive function f, both paift derivatives ar
themselves functions of the variable; and %. That is, we may wri
them as two derived functiorf; = fi(X1, X) and § = fx(X1, Xo). For the
point (X, X)) = (1, 3) in the domain of the function f examglee partia
derivatives will take the following specific value

fi(1, 3) = 6(1) + 3=9) ane(1, 3) =1 + 8(3) = 25
3.11.3 Geometric I nterpretation of Partial Derivatives

As a special type of derivative, a partial derivatis a measure of tt
instanta neous rates of change of some variabtejrathat capacity i
again has a geometric counterpart in the slopepairéciar curve

Let us consider a production function Q = Q(K, where Q, K, and 1
denote outputcapital input, and labor input, respectively. Thiaction
is a particular tw-variable version of (12), with n = 2. We can ttiere
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0 s
define two partial derivative 9K (orQx) and 57(orQL) Tpe partial

derivative QK relateso therates of change in output with respect to
infinitesimal changes in capital, while labor inpsitheld constant. Tht
QK symbolizes the marginal physi-product-of-capital (M P PK)
function.  Siinilarly, thepartial derivative QL is the mathematic
representation of the MPPL functic

Geometrically, the production function Q = Q( K, ¢gn be depicted &
a productiorsurface in a 3 space, such as is shown in fig Svaniable
Q is pbtted vertically, so thefor any point ( K, L) in the base plane (KL
plane), the height of the surface will indic.

Stastics8.png

Figure 8:

the output Q. The domain of the function shouldstsinof the entire
nonnegative quadrant of the base plane, but for puposes itis
sufficient to consider a subset of it, the rectanOK¢BL,. As a
consequence, only a small portion of the producsiariace is shown i
the figure.

Let us now hold capital fixed at the levey and consider only variations
in the input L. By setting K = ¢, all points in our (curtailed) domain
become irrelevant except those on the line segi§,B. By the same
token, only the curve §CDA (a cross section of the production surfe
will be germae to the present discussion. This curve represetdsal
physical product of labor (TPPL

See the diagram below for better understandingectova fixed amour
of capital K = K, thus we may read from its slope the rate of chaof
Q with respecto changes in L while K is held constant. It iean,
therefore, that the slope of a curve such {CDA represents the
geometric counterpart of the partial derivative @nce again, we no
that the slope of a total (Tl) curve is its corresponding marginal
(MPPL =Q) curve.

It was mentioned earlier that a partial derivaive unction of all the
independenvariables of the primitive function. That QL isfnction

of L is immedately obviousfrom the KOCDA curve itself. When L =
L,, the value of Q is equal to the slope of trcurve at point C; but
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when L = L, , the relevant slope is the one at point D. Wh@,islso a
function of K? The answer is that K can be fixedratious levels, and
for each fixed level of K, there will result a difent TPPL curve (a
different cross section of the production surfacejth inevitable
repercussions on the derivative.®ence Q is also a function of K.

An analogous interpretation can be given to théigaterivative QK. If

the labor input is held constant instead of K (sdythe level of k. ), the

line segment §. B will be the relevant subset of the domain, &mel

curve Ly A will indicate the relevant subset of the pratilue surface.
The partial derivative @Q can then be interpreted as the slope
the curve |y A-bearing in mind that the K axis extends fromtbeast to
northwest in Figure above. It should be noted @ats again a function
of both the variables L and K.

4.0 CONCLUSION

At end of this module students are able differeéatend determine the
limit of func-tions. Also differentiate between pal and total
differentiation with their applications.

5.0 SUMMARY

This unit highlighted Comparative Statics, desafid®erivatives and
their applications, discussed Function and itstémand the techniques
of Differentiation.

6.0 TUTOR-MARKED ASSIGNMENT

1. A function y=f(x) is dicontinuous at x 5 xvhen any of the three
requirements forcontinuity is violated at x g XConstruct three
graphs to illustrate the violation of each of easfuirement.
2. Given the function gq=g(v}2*"%+2
(&) Use limit theorem to find lign_n g, N being a finite ral
number

(b)  Check whether this is equal g(N)

(c) Check continuity of the function g(v) at N damn its
domain €, ©)
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UNIT 2 APPLICATIONS TO COMPARATIVE STATIC
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1.0 INTRODUCTION

Equipped with the knowledge of the various ruleslifferentiation, we
can at last tackle the problem posed in compar-static analysis:
namely, how the equilibrium value of an endogenwasable will
change when there is a change in any of the ¢ous variables c
parameters.

20 OBJECTIVES
At the end of this unit, you should be able

illustratethe application of differentiation
describenow to determine market moc

demonsrtal how to determine national income and m
discusgnput and output mode

3.0 MAIN CONTENT
3.1 Market Model

First let us consider again the simple -commodity market model ¢
(3.1). That model can be written in the form of tagquations: Q =—bP
(a, b>0)(c, d > 0) (deman

(supply)
@ =—c+dP(a,b>0)(c,d > 0) (demand) (supply)
with solutions "
= @ C
P=— il
b+d (1)
=~ ad— be
Q= (2)
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Thesesolutions will be referred to as being in the restliorm: the twe
endogenous variables have been reduced to exgkpiessions of th
four mutually independent parameters a, b, c, al

To find how an infinitesimal change in one of trergmetrs will affect

the value of Ppne has only to differentiate (2) partially withspect tc
ap

each of the parameters. If the sign of a partigvdéve, say =  can

be determinedrom the given information about the parameters,

shall know the direction imvhich P will move when the parameter a

changes; this constitutes a qualitative concluslfihe magnitude ¢

ap

‘dacan be ascertained, it will constitute quantitateaclusion

Similarly, we can draw qualitative or quantitatieenclusions from th
a9
partial derivatives oP with respect to each parameter, suc & " To
avoid misunderstanding, however, a clear distincsbould be mad
8Q ap
between the two derivative #a * and da . The latter derivative is a
concept appropriate to the demandction taken alone, and without
a9

regard to the supply function. The deriva &a " pertains, on the other
hand, to the equilibrium quantity in (3) which, heiin the nature of
solution of the model, tas into account the interaction of demand
supply together. To emphasize this distinction, shall refer to the
partial derivatives of P and Q with respect to tha&ameters ¢
comparativestatic derivatives

Concentrating on P for the time beinge can get the following four
partial derivatives from (1):

P 1
a: 2 b (parameters a has the coef ficient of m]

o

OP 0b+d)—1a+c) —(a+c)
b (b+ d)? ~ (b+d)?

oP 1 (aP
dc  bi+d\ da
OP 0(b+d)—1l{a+c) —(a+c)(OP
od (b+d)? ~ (b+d)? \ da




FMT 204 INTRODUCTION TO MATHEMATICAL ECONOMICS

Since all the parameters are restricted to beirggtipe in the preser
model, we camronclude the

aP oOP dP _ 0P
%= B md _odg (3)

In figure below pictures an increase in tparameter a (to) This
means a higherertical intercept for the demand curve, and inagma
the parameter b (the sloperameter) is unchanged, the increase
results in a parlel upward shift of the demaralirve from D to [ . The
intersection 6 D" and the suply curve S determines an e-librium
price P, which is greater than the old equilibrium price Phis

ar
corroborates the result tl 2 > 0, although for the sake of expositi
we have shown in figure beloa much arger change in the paramete
than what the concept of derivative impli

The situation figure below has a similar interptietg but since the
increase takes plain the parameter c, the result is a parallelt of the
supply curve insteadNote that this shift is downward because
supply curve Bs a vertical intercept «-c; thus an increase in ¢ wot
mean a change in the intercept, say, fr-2 to 4. The grapl-
cal comparative static result, the’ exceeds P, agaconforms to wha
the paitive sign

Stastics9.png

Figure 9:
ap

of the derivativ. da expect.

The below illustrate the effects of changes indlope parameters b a
d of the twofunctions in the model. An increasebimmeans that th
slope of the demand curve willassume a larger nigaldefabsolute
aP
value; i.e., it will become steeper. In accordavitethe resu @a < 0,
we find a decrease in P in this diagram. The irsea d thatmakes tt
supply curve steeper also results in a decreasieeiequilibrium price
This is, of course, again in le with the negative sign of tf
aP
comparativestatic derivativ @a .
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Thus far, all the results in (3) seem to have b@#ainable graphically
If so, why should we bother to learn differentiatiat all? The answer
that the differentiation approach has att two major advantages. First,
the graphical technique is subject to a dimensiameskriction, bu
differentiation is not. Even

Whenthe number of endogenous variables and paras is such that
the equilibriumstate cannot be shown graphically, we nevertheless
apply the differentiation teniques to the problem. Second, the
differentiation method can yield results thire on a higher level of
generality. The results in (2) will remain id, regardless of the specific
values that the parametersba,c, and d take, as long as they satisfy
sign restrictions.

So the comparativstatic conclusions of this model are, inect,
applicable to an infinitlumber of combinations of (linear) demand .
supply furctions. In contrast, the graical approach deals only with
some specific members of the family of demand angply
curves, and the analytical result derived therefrerapplcable, strictly
speaking, onlyo the specific functions depicte

The above serves to illustrate the ication of partial differentiation to
comparativestatic analysis of the simple market ehdout only half o
the task has actually been accomplished, for we alan find the
comparativestatic derivatives pertaining to Q. This we shake tc
you as an exercise.

3.2 National-lncome Model

Let us study a slightly enlarged model with thredagenous variable
Y (national income), C (consumption), and T (tax

¥ =044y &y
C=a+B(Y-T) (a>0;0<f <) (4)
T =~+38Y (v>0:0<8<1)

The first equation in this system gives the equililm condition for
national income, while the second and third equations sh
respectivelyhow C and T are determinedthe model.

The restrictions on the values of the parameters, y, andé can be
explained thus: a is positive because consumpsopositive even i
disposable income (YT) is zero;f is a positive fraction because
represents the marginal propensity to cons, y is positive because



FMT 204 INTRODUCTION TO MATHEMATICAL ECONOMICS

even if Y is zero the government will still havepasitive tax revenu
(from tax bases other than income); and finallysla positive fractiol
because it represents an income tax rate, andchsitsaannot excee
100 percent.

The exogenous variables (investment) G, (governmehexpenditure
are, of coursenonnegative. All the parameters and exogenoushlas
are assumed to be iependenbf one another, so that any one of tF
can be assignealnew value without affecting the others.

This model can be solved fY by substituting the third equation of (
into the secondnc then substituting the resulting equation into tingt.f
The equilibrium income (in reduced form

Q—_,BY—F].[]-FGU

Y =
l—~v+ 5o

(5)

Similar equilibrium values can also be found fore tlendogenou
variables C and T, but we shall concentrate orethelibrium income

From (5), there can be obtained six compar-static derivative:
Among these, the following three have special |y significance

ay 1

e =0 G

8Gy  1—~+ B0 (6)

dy —B

s T O . -, T

By 1—7+f6 (7)
ﬁ _ —Bla—BY + 10+ Go) BY (s)
86  (l—~y+p8)2  1—-~,+p0

The partial derivative in (8) gives us the governt-expenditure
multiplier. It has epositive sign here becaufas less than 1, angb is
greater than zero. If numericvalues are given for the parametgrard
o, we can also nd the numerical value of thmaultiplier from (6). The
derivative in (5) may be called the non inc-tax multiplier,
because it shows how a change in y, the governnegehie from non
incometax sourceswill affect the equilibriumincome. This multiplie
is negyative in the present model -cause the denominator in (4)
positive and the numerator is negal-Lastly, the partial derivative i
(8) represents an incortax+ate multiplier.  For any positiv
equilibrium income, thimultiplier is also negative in the moc

i ; OV and 2
Again, note the difference between the two denvesti: 7Go aGy
The former is derived from (5), the expression foe equilibrium
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ay
income. The latter, obtainable from first equation in (4), i¥9Ga =1,
which is altogether different in magnitude and amcept.

3.3 Input-Output Modé

The solution of an open inpoutput model appears as a matrix equation
x = (I - A) 'd. If we denote the inverse matrix x(1 —A) " by B = (k ),
then, for instance, the soluti for a three-industry economy can be
written as x = Bd or

T bi1 b2 bia dy
T2 | = | bn ba bog da
T3 ba1 by bag ds

What will be the rates of change of the solutioluga x1 with respect t
the exogenous fin@lemands ;, d, and d? The general answer is that

oz

—— — b,y k=123, ...
'T?d,!;; ik {j: 73 ﬂ’}

To see this, let us multiply out Bd in above angress the solution

T biidy + biads + byads
Ty | = | baidy + baads + byads
T3 bgidy + bsads + bagds

In this system of three equations, each one givparacular solutior
value as a functionof the exogenous final demands. Pal
differentiation of these will produce a total nine comparative-static
derivatives:

a4 a7 01,

adl 11 ﬂdg 12 adg 13
Oy Oy D1

adl 21 ﬁdg 22 adg 23
Oy Oy 1y

— = —2=b — =5
dd, a1 ddy 2 Ody

This is simply the expanded version of above stmgc
Reading above structure as three dct columns, we may combine the
three deriva tives in each column into a matrixc{ee) derivative:
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0 @ ( z ) ( g" ) 0% ( f;l? ) o7 ( ?3
a7 = A T2 == 21 - = 22 a3 — 23
(}d1 ddl '.fg 531 (ﬁfg b32 ddg d@,g

Since the three column vectors in (7.23") are nyettet columns of th
matrix B, by further consolidation we can summarize the 1|
derivatives in esingle matrix derivativeaxj ad. Given x = Bd, we ce
simply write

o { bui biz big

o

é by bn b | =B
ba1 ba bas

This is a compact way of denoting all the compase-static derivative:
of our open inputoutput model. Obviously, this maulerivative car
easily be extended frothe present thremdustry model to the genetr
n-industry case

Comparativestatic derivatives of the ing-output model re useful as
tools of economigplanning, for they provide the answer to the ques
If the planning targets, as reflectin (dl, b, d,), are revisec
and if we wish to take care of all direct and iedirrequirements in tr
economy so as to be completely free of bottlenetiksy must we
change the output goals of the n industr

40 CONCLUSION
We canconclude that, here students are able to le any application

problems ordifferentiation, partial differential equations antbdellng
and able to solve them rtively.

5.0 SUMMARY

This unit focused on Comparative Static Analysisaaplatform tc
determine how the equilibrium value of an endogenwaisable will
change when there is a change in any of the exagewariables o

parameters. It is useful in determining market nhodational income
and model, input and output moc
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10 INTRODUCTION

Backward induction

Backward induction is a technique to solve a ganie perfect
information. This process first considers the motrest are the last in
the game and determine the best move for the playeaich case. Then,
taking these as given future actions, it proceeadskwards in time,
again determining the best move for the respeqbiegers, until the
beginning of the game is reached.

Common knowledge

A fact is common knowledge if all players knowatd know that they
all know it, and so on. The structure of the gameften assumed to be
common knowledge among the players.

Dominating strategy

A strategy dominates another strategy of a plafy@ralways gives a
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better payoff to that player, regardless of wha dther players are
doing. It weakly dominates the other strategy ifialways at least as
good.

Extensive game

An extensive game (or extensive form game) dessmbth a tree how a
game is played. It depicts the order in which ptaymake moves, and
the information each player has at each decisiamt.po

Game A game is a formal description of a stratsgi@tion.

Game theory

Game theory is the formal study of decision-makimgere several
players must make choices that potentially afféet interests of the
other players.

Mixed strategy

A mixed strategy is an active randomisation, wittieg probabilities
that determine the players’ decision. As a spamaak, a mixed strategy
can be the deterministic choice of one of the gere strategies.

Nash equilibrium

Nash equilibrium, also called strategic equilibrjuma list of strategies,
one for each player, which has the property that ptayer can
unilaterally change his strategy and get a betigofb.

Payoff

A payoff is a number, also called utility that esfts the desirability of
an outcome to a player, for whatever reason. Wimendutcome is
random, payoffs are usually weighted with their hadoilities. The
expected payoff incorporates the players’ attitioeards risk.

Perfect information

A game has perfect information when at any pointiime only one
player makes a move, and knows all the actions iase been made
until then.

Player

A player is an agent who makes decisions in a game.
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Rationality

A player is said to be rational if he seeks to playa manner which
maximises his own payoff. It is often assumed thatrationality of all
players is common knowledge.

Strategic form

A game in strategic form, also called normal forim,a compact
representation of a game in which players simutiasly choose their
strategies. The resulting payoffs are presentedtable with a cell for
each strategy combination.

Strategy

In a game in strategic form, a strategy is onehaf given possible
actions of a player. In an extensive game, a gjyaite a complete plan
of choices, one for each decision point of the g@tay

Zero -sum game

A game is said to be zero-sum if for any outcone, $um of the
payoffs to all players is zero. In a two-player sum game, one
players gain is the other player’s loss, so th@grests are diametrically
opposed.

20 OBJECTIVES

At the end of this unit, you should be able to:

o describe the techniques of games theory equilibrium
o explain zero sum and computation in games theory
o discuss bidding and auction in games theory.

3.0 MAIN CONTENT

3.1 GameTheory

The earliest example of a formal game theoretidyargis the study of
a duopoly by Antoine Cournot in 1838. The matheonati Emile Borel
suggested a formal theory of games in 1921, whiab furthered by the
mathematician John von Neumann in 1928 in a thebparlour games.
Game theory was established as a field in its agint mfter the 1944
publication of the monumental volume Theory of Garaad Economic
Behaviour by von Neumann and the economist Oskargbtwstern.
This book provided much of the basic terminology gmoblem setup
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that is still in use today.

In 1950, John Nash demonstrated that finite gamage hlways have an
equilibrium point, at which all players choose ant which are best for
them given their opponents choices. This centrahcept of
noncooperative game theory has been a focal poifit o
analysis since then. In the 1950s and 1960s, gdmery was
broadened theoretically and applied to problemsvaf and politics.
Since the 1970s, it has driven a revolution in ecoic theory.
Additionally, it has found applications in sociojo@nd psychology,
and established links with evolution and biologynt theory received
special attention in 1994 with the awarding of tNebel Prize in
economics to Nash, John Harsanyi, and Reinharérselt

At the end of the 1990s, a high-profile applicatmingame theory has
been the design of auctions. Prominent game thsohave been
involved in the design of auctions for allocatirights to the use of
bands of the electromagnetic spectrum to the mobile
telecommunications industry. Most of these auctiovere designed
with the goal of allocating these resources morgcieftly than
traditional governmental practices, and additionallised billions of
dollars in the United States and Europe.

Game theory is the formal study of conflict and pe@tion. Game
theoretic concepts apply whenever the actions wétrs¢ agents are
interdependent. These agents may be individuadsipg, firms, or any
combination of these. The concepts of game thpaoyide a language
to formulate structure, analyse, and understarmdesfic scenarios.

3.1.1 Game Theory and Information Systems

The internal consistency and mathematical foundatiof game theory
make it a prime tool for modelling and designingoauated decision-
making processes in interactive environments. éxample, one might
like to have efficient bidding rules for an auctiaebsite, or tamper-
proof automated negotiations for purchasing comgation bandwidth.
Research in these applications of game theory astdipic of recent
conference and journal papers but is still in aceas stage. The
automation of strategic choices enhances the narethése choices to
be made efficiently, and to be robust against ab@ame theory
addresses these requirements.

As a mathematical tool for the decision-maker ttrergth of game
theory is the methodology it provides for struatgriand analysing
problems of strategic choice. The process of foynatodelling a
situation as a game requires the decision-makentwnerate explicitly
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the players and their strategic options, and tcsiclem their preferences
and reactions. The discipline involved in consingtsuch a model
already has the potential of providing the decisitaker with a clearer
and broader view of the situation. This is a prieswe application of
game theory, with the goal of improved strategic cisien
making. With this perspective in mind, this asicéxplains basic
principles of game theory, as an introduction toirterested reader
without a background in economics.

3.1.2 Definitions of Games

The object of study in game theory is the gamecivis a formal model
of an inter-active situation. It typically involseseveral players; a game
with only one player is usually called a decisiaolggem. The formal
definition lays out the players, their preferendégjr information, and
the strategic actions available to them, and howsehinfluence the
outcome.

Games can be described formally at various levdisdetail. A
coalitional (or cooperative) game is a high-levesctiption, specifying
only what payoffs each potential group, or coattican obtain by the
cooperation of its members. What is not made eiplis the
process by which the coalition forms. As an examile players may
be several parties in parliament. Each party hasffarent strength,
based upon the number of seats occupied by pantybews. The game
describes which coalitions of parties can form gonitg, but does not
delineate, for example, the negotiation proces®utin which an
agreement to vote en bloc is achieved.

Cooperative game theory investigates such coaditioggames with
respect to the relative amounts of power held bjoua players, or how
a successful coalition should divide its proceedhis is most naturally
applied to situations arising in political scierarénternational relations,
where concepts like power are most important. Banmple, Nash
proposed a solution for the division of gains fragreement in a
bargaining problem which depends solely on theivaastrengths of the
two parties bargaining position. The amount of poweside has is
determined by the usually inefficient outcome thasults when
negotiations break down. Nash model fits withire tbooperative
framework in that it does not delineate a spedifiee line of offers and
counteroffers, but rather focuses solely on themut of the bargaining
process.

In contrast, non cooperative game theory is cormkemith the analysis

of strategic choices. The paradigm of non cooperatjame theory is
that the details of the ordering and timing of @lesy choices are crucial
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to determining the outcome of a game. In  contrdet
Nash’s cooperative model, a non cooperative moteérgaining would
post a specifiprocess in which it is p-specified who gets to make an
offer at a giventime. The termnon cooperative means this branch of
game theory explicitlynodels the process of playemaking choices out
of their own inteest. Cooperation can, and often does, arise ir-
cooperative models of games, when players findither own best
interests. Branchesf game theory also differ in their assumptions
centralassumption in many variants game theory is that the players
are rational. A rational pyer is one who always choosan action
which gives the outcome he most prel given what he expects his
opponentgdo do. The goal of gar-theoretic analysis in these branches,
then, is to predict how thgame will be played by rational players,
related, to giveadvice on how best to play tlgame against opponents
who arerational. This rationity assumption can be relaxed, and the
resulting models have been more recently apfto the analysis of
observed beaviour. This kind of game theory can be viewedrase
de<riptive than the prescriptivapproach taken here.

This article focuses principally on non cooperatgame theory witt
rational players. In addition to providing an imfaot baseline case
economic theory, this case is designed so thavéisggood advice to tt
decisionmaker, even when or perhappecially when one’s opponents
also employ it.

3.1.3 Strategic and Extensive Form Games

The strategic form (also called normal form) is Hasic type of gam
studied in non cooperative game theory. A gamerategyic form lists
each player’s strategies, and the outcomes thalt fesm each possibl
combination of choices. An outcome epresented by a separate payoff
for each player, which is a number (also calledityltithat measure
how much the player likes the outcor

Games1.png

Figure 10:
The extensive form, also called a game tree, isendetailed than th
strategic form of a game. It is a conte description of how the game is
played over time. This includes the order in whithyers take action:
the information that players have at the time tmeyst take thos
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actions, and the times at which any uncertaintythe situation is
resolved. A game in extensive form may be analgbesttly, or can be
converted into an equivalent strategic form.

3.2 Dominance

Since all players are assumed to be rational, thale choices which
result in the outcome they prefer most, given wheair opponents do. In
the extreme case, a player may have two strategiasd B so that,
given any combination of strategies of the otheyets, the outcome
resulting from A is better than the outcome resgltfrom B. Then

strategy A is said to dominate strategy B. A radioplayer will never

choose to play a dominated strategy. In some gaex@snination of
which strategies are dominated results in the csnmh that rational
players could only ever choose one of their stiateglhe following

examples illustrate this idea.

Example 1: Prisoners Dilemma

The Prisoners Dilemma is a game in strategic foetwben two players.
Each player has two strategies, called cooperaledafect, which are
labeled C and D for player | and ¢ and d for playerespectively. (For
simpler identification, upper case letters are usedtrategies of player
| and lower case letters for player 11.)

Figure 1 shows the resulting payoffs in this gafkyer | chooses a
row, either C or D, and simultaneously player lbckes one of the
columns c or d. The strategy combination (C; c) pagoff 2 for each

player, and the combination (D; d) gives each plgyayoff 1. The

combination (C; d) results in payoff O for playeand 3 for player II,

and when (D; c) is played, player | gets 3 and gidlgets 0.

Any two-player game in strategic form can be désaiby a table like
the one in Figure 1, with rows representing thatsties of player | and
columns those of player Il. (A player may have mdhan two
strategies.) Each strategy combination definesyafpgair, like (3; 0)
for (D; c), which is given in the respective taklatry. Each cell of the
table shows the payoff to player | at the (lowef},land the payoff to
player Il at the (right) top. These staggered ffgyalue to Thomas
Schelling, also make transparent when, as heregdhee is symmetric
between the two players. Symmetry means that theegdays the same
when the players are exchanged, correspondingéfiextion along the
diagonal shown as a dotted line in Figure2. Not th the strategic
form, there is no order between player | and llcsinthey act
simultaneously (that is, without knowing the othexstion), which
makes the symmetry possible.
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Games2.png

Figure 11:

In Figure 2, the game of Figure 1 with annotatiehsmplied by the
payoff structure. The dt®d line shows the symmetry of the game.

arrows at the left and right point to the preferstchtegy of player

when player Il plays the left or right column, respvely. Similarly, the
arrows at the top and bottom point to the prefestedtegy f player Il
when player | play top or bottor

In the Prisoners Dilemma game, defect is a stratieglydominates ar
cooperates. Strategy D of player | dominate C sihp&ayer Il choose:
c, then player 1payoff is 3 when choosing D and 2 when choosing
player Il chooses d, then player | receives 1 fasDpposed to O for ¢
These preferences of player | are indicated bydihenward pointing
arrows in Figure 8. 2. Hence, D is indeed alwaytsebend dominates
C. In the same way, strategy d dominates c forgulély

No rational player will choose a dominated strateince the player will
always bebetter off when changing to the strategy that deneisit. The
unique outcome in thigame, as reommended to utility-maximising
players, is therefore (D; d) with payoffs (1;Somewhat paradoxically,
this is less than the payoff (2; 2) that would kehiaved when th
players chose (C; c).

The story behind the name Prisoners Dilemma is dhdwo prisoners
held suspect of aerious crime. There is no judicial evidence fas
crime except if one of the prisonetestifies against the other. If one of
them testifies, hewill be rewarded with immunityfrom prosecution
(payoff 3), whereas the athwill serve a long prison sentence (pay

0). If both testify, their punishment will be lessvere (payoff 1 fc
each).

However, ifthey both cooperate with each other by not tesiifiat al,
they will only be imprisonedriefly, for example for illegal weapons
possession (payoff Zor each). The defection fronthat mutually
beneficial outcome is to testify, which giva higher payoff no matter
whatthe other prisoner does, with a resulting lowergbgip both. This
constitutes their dilemma.
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Prisoners Dilemma games arise in various contextsie individual
defections at theexpense of others lead to overall less desir
outcomes.

Games3.png

Figure 12:

Examples include arms raceditigation instead of settlemer
environmental pollution, or c-price marketing, wher¢he resulting
outcome is detrimental for the players. lametheoretic justificatior
onindividual grounds is sometimes taken as a castdaies and laws
which enforce c-operation.

Game theorists have tried to tackle the obvioudfiaiency of the
outcome of thePrisonersDilemma game. For example, the gam:
fundamentally changed by playingmore than once. In such a repee
game, patterns of cperation can be established rasional behaviur
when players fear of punishment in the future oughve their gain fron
defecting today

Example 1. Quality choice

The next example of a game illustrates how thecpple of elimination
of dominatedstrategies may be applied iteratively. Supposegulays

an internet service provider arplayer Il a potential customer. Th
consider entering into contract of service provisiofor a period of
time. The provider can, for himself, dec between twdevels of quality
of service, High or Low. Hig-quality service is more cdgtto provide,
and some of thcost is independent of whether the contract isesigor
not. The level of service cannbe put verifiably into the contract. Hi-

quality service s more valuable than low-qualitgervice to the
customer, in fact so much so that the cuer would prefer not to bu
theservice if she knew that the quality was low. Idieoices are to buy
or not to buy theservice.

Figure 3 shows hi¢-low quality gane between a service provic
(player 1) and a customer (player |

Figure 3 gives possible payoffs that describe thitation. The



FMT 204 MODULE 5

customer prefers to buy if player | provide t-quality service, and not
to buy oherwise. Regardless of whetlthe customer chooses to buy or
not, the provider always prefers to provide the -quality
service. Therefore, the strategy Low dominates dinateg' High for
player I. Now, sinceplayer Il believes player | is rational, shealises
that playe | always prefers Low, and sshe anticipates low quality
service as the providers choice. Then she prefes to buy
(giving her a payoff of 1) to buy (payoff 0). Théree, the reonality of
both players lead® the conclusion that the provider \ implement
low-quality service and,saa resultthe contract will not be signed.

Games4.png

Figure 13:

This game is very similar to the Prisoners Dilemm&igute 1. In fact,

it differs only by a single payoff, namely payoff 1 (rather thant@
player Il in the top rightell in the table. This reverses the top ar
from right to lef, and makes the preferenceplayer Il dependent on
the action of player I. (The game is also no longgmmetric.)
Player Il does not have a dominating strategy. Hanepayer | still
does, so that theesulting outcome, seen from the flow of arrows
Figure 3 is still unique. Another waof obtaining this outcome is the
successive elimination ofdominated strategies:  First, High is
eliminated, and in the resulting smaller game ‘e player | has only the
single strategy Low available, player lIs strategy buy@ninated and
also removed. As ithe Prisoners Dilemma, the individually ratiol
outcomeis worse for both players theanother outcome, namely the
strategy combination (igh, kuy) where high quality service is provided
and the customer signs the contract. How: that outcome is not
credible, since the provider would be tempted to renege andige
only the low quality service.

3.3 Nash Equilibrium

In the previous examples, consideration of donmuastrategies alor
yielded precise advice to the players on how ty i@ game. In man
games, however, there are no dominated strategied, so thes
considerations are not enough to rule out an'comes or to provide
more specific advice on how to play the ga

The central concept of Nash equilibrium is much engeneral. Nas
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equilibrium recommends a strategy to each playarttie player cannot
improve upon unilaterally, that is, given that ttber players follow the
recommendation. Since the other players are alsoned, it is
reasonable for each player to expect his opponemtollow the
recommendation as well.

Example 8.4: Quality choicerevisited

A game-theoretic analysis can highlight aspectsaof interactive
situation that could be changed to get a bettecomné. In the quality
game in Figure 3, for example, increasing the custs’ utility of high-
quality service has no effect unless the providas hn incentive to
provide that service. So suppose that the gameaisged by introducing
an opt-out clause into the service contract. Thatthie customer can
discontinue subscribing to the service if she fids low quality. The
resulting game is shown in Figure 4. Here, low-ijyakervice
provision, even when the customer decides to bag, the same low
payoff 1 to the provider as when the Figure 4 shawsgh-low quality
game with opt-out clause for the customer. The leftrow
shows that player | prefers High when player Il a$es to buy.
Customer does not sign the contract in the firatg)| since the customer
will opt out later. However, the customer still faes not to buy when
the service is Low in order to spare her the has$lentering the
contract.

The changed payoff to player | means that thedefow in Figure 4
points upwards. Note that, compared to Figure &8y the providers’
payoffs are changed. In a sense, the opt-out claube contract has the
purpose of convincing the customer that the highliu service
provision is in the providers own interest. Thaarge has no dominated
strategy for either player. The arrows point iffedtent directions. The
game has two Nash equilibrium in which each plagkooses his
strategy deterministically. One of them is, as befothe strategy
combination (Low, don’t buy). This is equilibriunmse Low is the best
response (payoff-maximising strategy) to don’t laumgl vice versa.

The second Nash equilibrium is the strategy comiaingHigh, buy). It

is an equilibrium since player | prefers to provitgh-quality service
when the customer buys, and conversely, playeréeieps to buy when
the quality is high. This equilibrium has a higlpayoff to both players
than the former one, and is a more desirable solutBoth Nash
equilibriums are legitimate recommendations totthe players of how
to strategy combination that is not Nash equilibrits not a credible
solution. Such a strategy combination would not dereliable

recommendation on how to play the game, since ast lene player
would rather ignore the advice and instead playhacstrategy to make
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him better off.

As this example shows, Nash equilibrium may beunique. However,
the previously disussed solutions to the Prisoners Dilemma andé
quality choice game in Figure 3 are unique Nashiliegums. A
dominated strategy can never be part of equilibrisince a playe
intending to play a dominated strategy could switzhthe dominating
strategy and be better off. Thus, if elimination @nanated strategie
leads to a unique strategy combination, then hiblash equilibrium
Larger games may also have unique equilibria tleahak result fron
dominance considerations.

3.4 Equilibrium selection

If a game has more than one Nash equilibrium, aryhef strateic
interaction should guide players towards the most reason
equilibrium upon which they should foculndeed, a large number of
papers in game theory have been concerned with liagqun
refinements that attempt to derive conditions thakeone equilibrium
more plausibleor convincing than another. For example, it cou&
argwed that an equilibrium tit is better for both players, like (High,
buy) in Figure 8.4, should be the one that is pl

However, the abstract theoretical considerations &quilibrium
selection are often momphisticated than the simple getheoretical
models they are appteto. It may bemore illuminating to observe that
a game has more thame equilibrium, and that this a reason that
players are sometimsestuck at an inferior outcon

One and the same game may also have a differempretation where
previously undesirable equilibrium becomes rathlEwugible. As ar
example, consider an alternative scenario for teyin Figure 8.
Unlike the previous situation, it will have ammetric description of the
players, in line with the symmetry of the payofuusture.

Games5.png

Figure 14:

Two firms want to invest in communication infrastture. They intend
to communicatdrequently with each other using that infrastruefutt
they decide independdéyton what to buy. Each firm can decide
between High orLow bandwidth equipment (thitime, the same
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strategy names will be used for both players). ptayer II, High and
Low replace buy and don’'t buy in Figure 8. 4. Trest of the game
stays as it is.

The (unchanged) payoffs have the following intetggien for player |
(which applies in the same way to player Il by syetmy): A Low
bandwidth connection works equally well (payoff dggardless of
whether the other side has high or low bandwidthoweler,
switching from Low to High is preferable only ifdlother side has high
bandwidth (payoff 2), otherwise it incurs unnecegsast (payoff 0).

As in the quality game, the equilibrium (Low, Lo\the bottom right

cell) is inferior to the other equilibrium, althdugn this interpretation it
does not look quite as bad. Moreover, the strategy has obviously

the better worst-case payoff, as considered fopa@dkible strategies of
the other player, no matter if these strategies rat®@nal choices

or not. The strategy Low is therefore also callethax-min strategy
since it maximises the minimum payoff the playen gat in each case.
In a sense, investing only in low bandwidth equiptrie a safe choice.
Moreover, this strategy is part of equilibrium, adirely justified if the

player expects the other player to do the same.

3.4.1 Evolutionary games

The bandwidth choice game can be given a differatdrpretation

where it applies to a large population of identipkyers. Equilibrium

can then be viewed as the outcome of a dynamicepsoather than of
conscious rational analysis.

Figure 5 shows the bandwidth choice game where pksfer has the
two strategies High and Low. The positive payoffsofor each player
for the strategy combination (High, High) makesstlin even more
preferable equilibrium than in the case discussbédve In the
evolutionary interpretation, there is a large pagoh of individuals,
each of which can adopt one of the strategies. gemee describes the
payoffs that result when two of these individuaksetn The dynamics of
this game are based on assuming that each stratptayed by a certain
fraction of individuals. Then, given this distriimn of strategies,
individuals with better average payoff will be moseccessful than
others, so that their proportion in the populatinoreases over time.
This, in turn, may affect which strategies aredyetthan others. In many
cases, in particular in symmetric games with onlyo tpossible
strategies, the dynamic process will move to eguilm. In the
example of Figure 5, a certain fraction of usemsnexted to a network
will already have High or Low bandwidth equipmefRior example,
suppose that one quarter of the users has choggnardd three quarters
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have chosen Low. It is useful to assign these
as percentages to the columns, which represerdttategies of player
Il. A new user, as player I, is then to decide le=w High and Low,
where his payoff depends on the given fractiongreHt will be'*x5+
4°=1Byhen player | chooses Higind1 1+%x4x1=1 when
player | chooses Low. Given the average payoff peger | can expect
when interacting with other users, player | will thetter off by choosing
High, and so decides on that strategy. Then, playéns the population
as a High user. The proportion of individuals opeayHigh therefore
increases, and over time the advantage of thaegyravill become even
more pronounced. In addition, users replacingrtieguipment will
make the same calculation, and therefore also writen Low to High.
Eventually, everyone plays High as the only sungvstrategy, which
corresponds to the equilibrium in the top left eelFigure 5.

The long-term outcome where only high-bandwidth iopent is
selected depends on there being an initial fractbmigh-bandwidth
users that is large enough. For example, if ontypercent have chosen
High, then the expected payoff for High is 0.1x®»@ = 0.5 which is
less than the expected payoff 1 for Low (whichlvgags 1, irrespective
of the distribution of users in the population).efitby the same logic as
before, the fraction of Low users’ increases, mgwim the bottom right
cell of the game as the equilibrium. It is easysé® that the critical
fraction of High users so that this will take offs athe
better strategy is 15. (When new technology makigh-bandwidth
equipment cheaper, this increases the payoff GgdHigh user who is
meeting Low, which changes the game.)

The evolutionary, population-dynamic view of ganesiseful because
it does not require the assumption that all playeessophisticated and
think the others are also rational, which is oftemealistic. Instead, the
notion of rationality is replaced with the much Wea concept of

reproductive success: strategies that are suctessfaverage will be

used more frequently and thus prevail in the einds View originated in

theoretical biology with Maynard Smith (Evolutiomdathe Theory of

Games, Cambridge University Press, 1982) and e significantly

increased in scope.

3.5 Mixed Strategies

A game in strategic form does not always have ahNagiilibrium in

which each player deterministically chooses onehid strategies.
However, players may instead randomly select fronorag these pure
strategies with certain probabilities. Randomisimg’s own choice in
this way is called a mixed strategy. Nash showetb51 that any finite
strategic-form game has equilibrium if mixed stgiés are allowed. As
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before, equilibrium is defined by a (possibly mixedrategy for eac
player where no plar can gain on average by unilateral deviat
Average (that is, expected) payoffs must be comstidecause tt
outcome of the game may be rand«

Gamest. png

Figure 15:

Example 5: Compliance inspections

Suppose a consumer purchasedicense for a software packag
agreeing to certain strictions on its use. The consumer has
incentive to wolate these rules. The venwould like to verify that the
consumer is abiding by the agreement, but doing requires
inspections which are costly. If the vendor doesgectand catches th
consumer cheatg, the vendor can demand a large penalty payor
the noncompliance. Figure shows possible payoffs for such
inspection game. Thstandard outcome, defining tmeference payol
zero to both vendor (gyer I) and consumer (player II).

Figure 6 Inspection game between a software venegplayer 1) anc
consumer (playell) is that the vendor chooses doirispect and th
consumer chooses to comply. W-out inspection, the consumer pref
to cheat since that giv her payoff 10, with resultin
negative payoff N10 to the vend The vendor may al: decide to
Inspect. If the ccsumer complies, inspection leaves her payo
unchangedwhile the vendor incurs a ccresulting in a negative payc
N1l. If the consunr cheats, however, inspection will res
in a heavy penalty (payoff N9O for player Il) andl £reate a certail
amount of hasslfor player | (payoff N6).

In all cases, player | would strongly prefer ify#a Il ccmplied, but this
is outside ofplayer offs control. However, the vendor prefersnspeci
if the consumer cheats (sin-6 is better than10), indicated by th
downward arrow on the right in Figure 6. If the genalways preferre
don’t inspect, then this would be a dominatingtsgy and be part of
(unique) equilibrium where the consumer che

The circular arrow structure in Figure 6 shows ttie$ game has n
equilibrium in pure strategies. If any of the @ay settles on
deterministic choice (likDon't inspect by playel), the best response
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the other player would be unique (here cheat byepl#l), to which the

original choice would not be a best response (play@efers Inspect
when the other player chooses cheat, against wpleyer Il in turn

prefers to comply). The strategies in Nash equuliin must be best
responses to each other, so in this game this tfaileold for any pure
strategy combination.

3.6 Mixed Equilibrium

What should the players do in the game of Figur®©6@ possibility is
that they prepare for the worst, that is, chooseax-min strategy. As
explained before, a max-min strategy maximisespilager offs worst
payoff against all possible choices of the opponefithe Max-min
strategy for player I is to Inspect (where the \@ngluarantees himself
payoff 6), and for player Il it is to comply (whigfuarantees her payoff
0). However, this is not a Nash equilibrium and deemot a stable
recommendation to the two players, since playeould switch his
strategy and improve his payoff. A mixed stratedyplayer | in this
game is to Inspect only with a certain probability. the context of
inspections, randomising is also a practical apgrdhat reduces costs.

Even if an inspection is not certain, a sufficigrttigh chance of being
caught should deter from cheating, at least to saxint. The
following considerations show how to find the prbility of inspection
that will lead to equilibrium. If the probabilityf anspection is very low,
for example one percent, then player Il receivesegpective of that
probability) payoff O for comply, and payoff 0.9918 + 0.01 x (-90) =
9, which is bigger than zero, for cheat. Hence, ygia ll
will still cheat, just as in the absence of inspettIf the probability of
inspection is much higher, for example 0:2, themdkpected payoff for
cheat is 08 x 10 + 02 x (-90) = -10,
which is less than zero, so that player Il preferscomply. If the
inspection probability is either too low or too hjghen player Il has a
unique best response. As shown above,
such a pure strategy cannot be part of equilibridence, the only case
where player Il herself could possibly randomiseneen her strategies
is if both strategies give her the same payoff ihaf she is indifferent.
It is never optimal for a player to assign a pusifprobability to playing
a strategy that is inferior, given what the othedayprs
are doing. It is not hard to see that player lindifferent if and only if
player | inspects with probability 0.1, since the expected payoff for
cheat is0.9 x 10 + 0.1 x (-90) = 0, which is thea $ame as the payoff
for comply.

With this mixed strategy of player | (Dont inspedgth probability 0.9
and Inspect with probability 0.1), player Il is ifidrent between her
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strategies. Hence, she can mix them (that is, pteyn randomly)
without losing payoff. The only case where, in nturthe
original mixed strategy of player | is a best resg s if player | is
indifferent. According to the payoffs in Figure téjs requires player Il
to choose comply with probability 0.8 and cheathwgrobability 0.2.
The expected payoffs to player | are then for Dorspect 0.8 x 0 + 0.2
x (-10) = -2, and for Inspect 0.8 x (-1) + 0.2 $)= -2, so that player
| is indeed indifferent, and his mixed strategyaibest response to the
mixed strategy of player Il. This defines the ohNgsh equilibrium of
the game. It uses mixed strategies and is theredafled a mixed
equilibrium. The resulting expected payoffs ardo2player | and O for
player I1.

3.6.1 Interpretation of Mixed Strategy Probabilities

The preceding analysis showed that the game inr€i§uhas a mixed
equilibrium, where the players choose their puratsgies according to
certain probabilities. These probabilities have esav noteworthy
features.

The equilibrium probability of 0.1 for Inspect makeplayer |l
indifferent between comply and cheat. This is basedhe assumption
that an expected payoff of O for cheat, namely>01® + 0.1 x £90), is
the same for player Il as when getting the payofffod certain,
by choosing to comply. If the payoffs were monetanjounts (each
payoff unit standing for one thousand naira, say)e would not
necessarily assume such a risk neutrality on thiegpahe consumer. In
practice, decision-makers are typically risk aversmeaning
they prefer the safe payoff of O to the gamble waithexpectation of O.
In a game-theoretic model with random outcomes ifaga mixed
equilibrium), however, the payoff is not necesgattl be interpreted as
money. Rather, the players’ attitude towards rsskncorporated into
the payoff figure as well. To take our example, tloon
sumer faces a certain reward or punishment wheaticige depending
on whether she is caught or not. Getting caught nayonly involve
financial loss but embarrassment and other und#sinsequences.

However, there is a certain probability of inspect(that is, of getting

caught) where the consumer becomes indifferent dmtwcomply and
cheat. If that probability is 1 against 9, therstimdifference implies that
the cost (negative payoff) for getting caught isirBes as high as the
reward for cheating successfully, as assumed bpdlyeffs in Figure 6.

If the probability of indifference is 1 against 28¢ payoff -90 in Figure
6 should be changed to N200. The units in whigjoffa are measured
are arbitrary. Like degrees on a temperature sttadg,can be multiplied
by a positive number and shifted by adding a conistaithout altering

the underlying preferences they represent.
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In a sense, the payoffs in a game mimic a play ¢@fsnsistent)

willingness to bet when facing certain odds. Wehpect to the payoffs,
which may distort the monetary amounts, playerstiaea risk neutral.
Such payoffs are also called expected-utility value€Expected-utility

functions are also used in one-player games to Mmoeeisions

under uncertainty.

The risk attitude of a player may not be known fagtice. A game-
theoretic analysis should be carried out for défer choices of the
payoff parameters in order to test how much théyemce the results.
Typically, these parameters represent the poliieatures of a game-
theoretic model that most sensitive to subjectivéggment, compared
to the more technical part of a solution. In mangoived inspection

games, the technical part often concerns the optisage of limited

inspection resources, whereas the political detigowhen to raise an
alarm and declare that the inspector has cheated.

Secondly, mixing seems paradoxical when the playeandifferent in
equilibrium. If player Il, for example, can equaikell comply or cheat,
why should she gamble? In particular, she couldpigrand get payoff
zero for certain, which is simpler and safer. Theveer is that precisely
because there is no incentive to choose one syrategr the other, a
player can mix, and only in that case there caachglibrium. If player
Il would comply for certain, then the only optinioice of player I is
do not inspect, making the choice of complying aptimal, so this is
not equilibrium.

The least intuitive aspect of mixed equilibriumtheat the probabilities
depend on the opponent payoffs and not on the rday&n payoffs (as
long as the qualitative preference structure, epreed by the arrows,
remains intact). For example, one would expectithiging the penalty -
90 in Figure 8.6 for being caught lowers the praligof cheating in
equilibrium. In fact, it does not. What does ohpais the probability of
inspection, which is reduced until the consumendifferent.

This dependence of mixed equilibrium probabilites the opponents’
payoffs can be explained in terms of population agits. In that
interpretation, Figure 6 represents an evolutiorgamne. Unlike Figure
8.5, it is a non-symmetric interaction between adeg who chooses
Don’t Inspect and Inspect for certain fractionsaiarge number of
inter-actions. Player lls actions comply and cleateach chosen by a
certain fraction of consumers involved in theseenattions. If these
fractions deviate from the equilibrium probabilgjethen the strategies
that do better will increase. For example, if gay l
chooses Inspect too often (relative to the penfalitya cheater who is
caught), the fraction of cheaters will decreasejciwhin turn makes
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Don't Inspect a better strategy. In this dynamiogess, the long-term
averages of the fractions approximate the equilibrprobabilities.

3.6.3 Extensive Gameswith Perfect | nformation

Games in strategic form have no temporal componiena game in
strategic form, the players choose their strategasaultaneously,
without knowing the choices of the other playerbeTmore detailed
model of a game tree, also called a game in exterierm, formalises
interactions where the players can over time berméd about the
actions of others. This section treats games depeinformation. In
an extensive game with perfect information, evdayer is at any point
aware of the previous choices of all other
players. Furthermore, only one player moves aine,tiso that there are
no simultaneous moves.

Example 6 Quality choice with commitment

Figure 7 shows another variant of the quality caocgame. This is a
game tree with perfect information. Every branghpoint, or node, is
associated with a player who makes a move by chgdbie next node.
The connecting lines are labelled with the playdrsices. The game
starts at the initial node, the root of the tree] ands at a terminal node,
which establishes the outcome and determines theerd payoffs. In
Figure 8 and 7, the tree grows from left to rigfame trees may also be
drawn top-down or bottom-up.

The service provider, player I, makes the first moshoosing High or
Low quality of service. Then the customer, playleiid informed about

that choice. Player Il can then decide separatetwéen buy and don’t
buy in each case. The resulting payoffs are tharEig. Quality choice
game where player | commits to High or Low qualdapd player Il can

react accordingly. The arrows indicate the optimales as determined
by backward induction same as in the strategic-fgame in Figure 3.

However, the game is different from the one in Feg3, since the

players now move in sequence rather than simultastgo

Extensive games with perfect information can bdyesea by backward

induction.

This technique solves the game by first considethmgy last possible
choices in the game. Here, player Il moves lasic&ishe knows the
play will end after her move, she can safely selletaction which is
best for her. If player | has chosen to providghhguality service, then
the customer prefers to buy, since her resultingfiaf 2 is larger than
1 when not buying. If the provider has chosen Ldven the customer
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prefers not to purchase. These choices by playerdlindicated b
arrows in Figure 7.

Game=sT.png

Figure 16:
Once the last moves have been decided, backwaundtion proceeds to
the players making the netd-last moves (and then continues in this
manne). In Figure 7, player makes the next-to-last move, which in
this case is the irbt move in the game. Being
tional, he anticipates the subsequent choices ey dinstorer. He
therefore realises thais decision between High and Low is effectiv
between the outcomes with payoffs (2; 2) or (1fot)the two players
respectiely. Clearly, he prefers Higwhich results in a payoff of 2 for
him, to Low, which leads to an outcome with paybff Sothe unique
solution to the game, as determined by backwardidtah, is tha
player | offers high quality service, and playerdsponds by buying tf
service.

3.6.2 Strategiesin Extensive Games

In an extensive game with perfect information, lveaid induction
usually prescribesinique choices at the players’ decision nodes.
only exeption is if a player is indferent between two or more moves at
a node. Then, gmof these best moves, or evrandomly selecting from
among them, could be cho: by the analyst in the backward induction
process. Since the eventual outcome depen these choices, this may
affecta player who moves earlier, since the anticipatgbfis of that
player may depend othe subsequent moves of other players. In
case, backard induction does not yield unique outcome; however,
this can only occur when a playis exactly indifferent between two or
more outcomes.

The backward induction solution specifies the wag gam will be
played. Starting fronthe root ofthe tree, play proceeds along a path to
an oucome. Note that the analysyields more than the choices along
the path. Because backward induction looks at €
node in the tree, it specifies for every playeomplete pln of what to

do at every poinin the game where the player can make a move,
though that point may never ariin the course of play. Such a plan is
called a strategy of the player. For example rategy of player Il ir
Figure 7 is buy if offered hi¢-quality service; don’t buy if offered low
quality service. This is player lls strategy ob&nty backward
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induction. Only thefirst choice in this strategy comes into effect w
the game is played according to tbackwardinduction solution

Games8.png

Figure 17:
Figure 8 isa strategi form d the extensive game in Figure

With strategies defined as complete move plans, aare oltain the
strategic form of theextensive game.As in the strategic form gam
shown bebre, this tabulates all strigies of the players. In the gat
tree, anystrategy comlnation results into an outconwd the game
which can be determined by tracing out path of play arising from th
players adopting the strategy combination. Theoffayio the player:
are then entereinto the corresponding cell in theategic form. Figur
8 shows the strategic form fcour example. The second column
player lls backward induction strategy, where buyf
offered highguality servicedon't buy if offered lowguality service is
abbreviated as Houy, L: don't.

A gametree can therefore be analyzed in terms of theegfiaform. It
is not hard to see that backward induction alwagfinds a Nas!
equilibrium. In Figure 8, it is the strategy comdtion (High; H: buy, L
don't).

A game that evolves over time is be represented by aage tree tha
using the stragic form. The tree reflects the temporal aspect
backvard induction is succinct arnatural. The strategic form typical
contains redundares. Figure 8, for example, haght cells, but th
game treen Figure 7 has only fourutcomes. Every outcome appe
twice, which happens when two strategies of plalydiffer only in the
move that is notreached after the move of player I. All mc
combinatias of player Il must be disiguished as strategieince any
two of them may lead to fferent outcomes, depending tre action o
player I.

Not all Nash equilibria in an extensive game arise backwarc
induction. In Figure 8, the rightmost bottom cdlloy; H: don't, L:
don’t) is also an equilibrium. ere the customer never buys,
correspondingly Low is the best response of theiceiprovider to thit
anticipated behavur of player Il. Although H: don’ts not an optima
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choice (so it disagrees with backward inductiomdyer Il never has to
make that move, and is therefore not better oftliynging her strategy.
Hence, this is indeed equilibrium. It prescribesiboptimal move in the
sub game where player Il has learned that playasl chosen High.
Because a Nash equilibrium obtained by backwarddtidn does not
have such a deficiency, it is also called sub gperéct.

The strategic form of a game tree may reveal Nasfiibria which are
not sub game perfect. Then a player plans to keemeationally in a sub
game. He may even profit from this threat as lasdhe does not have
to execute it (that is, the sub game stays unreBch&xamples are
games of market entry deterrence, for example dhealied Chain store
game.

The analysis of dynamic strategic interaction wem@ered by Selten,
for which he earned a share of the 1994 Nobel Pizest-mover
advantage a practical application of game-theomatialysis may be to
reveal the potential effects of changing the raethe game. This has
been illustrated with three versions of the quatitypice game, with the
analysis resulting in three different predictions fiow the game might
be played by rational players. Changing the origipelity choice game
in Figure 3 to Figure 4 yielded an additional, altgh not unique, Nash
equilibrium (High, buy). The change from Figured3Rigure 7 is more
fundamental since there the provider has the ptoveommit himself to
high or low quality service, and inform the custoraéthat choice. The
backward induction equilibrium in that game is urggand the outcome
is better for both players than the original eduitim (Low, don’t buy).
Many games in strategic form exhibit what may b#edathe first-
mover advantage. A player in a game becomes anfiester or leader
when he can commit to a strategy, that is, choosteadegy irrevocably
and inform the other players about it; this is argfe of the rules of the
game.

The first-mover advantage states that a player e@mobecome a leader
is not worse off than in the original game where thlayers act
simultaneously. In other words, if one of the gleyhas the power to
commit, he or she should do so. This statement rbasinterpreted
carefully. For example, if more than one player hls power to
commit, then it is not necessarily best to go fiEgir example, consider
changing the game in Figure 3 so that player Il cammit to her
strategy and player | moves second. Then playeil laiways respond
by choosing Low, since this is his dominant choioe Figure 3.
Backward induction would then amount to player dt fbuying and
player | offering low service, with the low paydffto both. Then player
Il is not worse off than in the simultaneous-chageene, as asserted by
the first-mover advantage, but does not gain angtkither. In contrast,
making player | the first mover as in Figure 7 enbficial to both.
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If the game has antagonistic aspects, like theertggn game in Figur
6, then mixed strategies may be required to findiNequilibrium of the
simultaneoushoice game. The firmover game always hi
equilibrium, by backward induction, but having commit and inforn
the other player of a pure strategy may be disadgaous. The corre
comparison is toonsider commitment to a randomschoice, like to
certain inspection probability. In Figure 6, alrgatie commitment t
the pure strategy Insct gives a better payoff to player | than
original mixed equilibrium since player 1l will reend by complying
but a commitment to a sufficiently high inspectmobability (anything
above 10 pecent) is even better for player

Example 9: Duopoly of chip manufacturers

The firstimover advantage is also known as Stackelteadership, afte
the economisHeinrich von Stackelberg who formulated this coridor
the structure of markets i1934. The classic application is to -
duopoly model byCournot, which dates back to 1838.

Game=9.png

Figure 18:

Figure 9- Duopoly game between two chip marcturers who ca
decide betweehigh, medium, low, or no production, denoted by H
L;:N for firm | and h; m; [; n forfirm Il. Prices fall with increase
production.Payoffs denoterofits in millions of dollarsAs an example
suppose that the market for a certaipe of memory chip is dominatt
by two producers. The firms can choose to producertir quantity of
chips, say eithehigh, medium, low, or none at aldlenoted by H;M
L;N for firm | and h; m; |; n foifirm Il. The market price of the memo
chips decreasewith increasing total quantityproduced by bot
companies. In particular, if both choca high quantity of productiol
the price collapses so thprofits drop to zero. The firn know how
increased productiolowers the chip price and their profits. Figure
shows thegame in strategic form, wheboth firms choose their outp
level simultaneously. The symmetric payoffs are riveel
from Cournots rodel, explained below.

The game can be solved by dominance consideratidDkearly, nc
production is dominated by low or medium productiea that row N
and column n in Figure 9 can be eliminated. Thregh production is
dominated by medium producn, so that row H and column h can
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omitted. At this point, only medium and low prodoatremains. Then,
regardless of whether the opponent produces medurtow, it is

always better for each firm to produce medium. &fme, the Nash
equilibrium of the game is (M;m), where both firmske a profit of
N16 million.

Consider now the commitment version of the gaméh \&i game tree
(omitted here) corresponding to Figure 9 just agufd 7 is obtained
from Figure 8.3. Suppose that firm | is able to lmfp announce and
commit to a level of production, given by a row iRigure

9.

Then firm I, informed of the choice of firm I, witespond to H by |
(with maximum payoff 9 to firm Il), to M by m, to klso by m, and to
N by h. This determines the backward inductiomtetyy of firm II.
Among these anticipated responses by firm II, firmdo best by
announcing H, a high level of production. The haaid induction
outcome is thus that firm | makes a profit 18mili@sopposedtoonly16
million in the simultaneous-choice game. When fillnmust play the
role of the follower, its profits fall from N16 ntibn to N9 million. The
first-mover advantage again comes from the abdftfirm | to credibly
commit itself.

After firm | has chosen H, and firm Il replies withfirm | would like to
be able switch to M, improving profits even furtfieym N18 million to
N20 million. However, once firm | is producing Mirrh 1l would
change to m. This logic demonstrates why, wherfithes choose their
guantities simultaneously, the strategy combinatfbin 1) is not an
equilibrium. The commitment power of firm |, andhf lls appreciation
of this fact, is crucial.

The payoffs in Figure 9 are derived from the follogv simple model
due to Cournot. The high, medium, low, and zeradpotion numbers
are 6, 4, 3, and 0 million memory chips, respetyivEhe profit per chip
is 12 Q dollars, where Q is the total quantity rfii-lions of chips) on
the market. The entire production is sold. As aaneple, the strategy
combination (H; I) yields Q = 6 + 3 = 9, with a fitaf N3 per chip.
This yields the payoffs of 18 and 9 million dolldos firms | and Il in
the (H; 1) cell in Figure 9. Another example isniirl acting as a
monopolist (firm Il choosing n), with a high prodion level H of 6
million chips sold at a profit of N6 each. In thisodel, a monopolist
would produce a quantity of 6 million even if othembers than 6, 4, 3,
or O were allowed, which gives the maximum profitNd6 million. The
two firms could cooperate and split that amounphbyducing 3 million
each, corresponding to the strategy combination) (i Figure 9. The
equilibrium quantities, however, are 4 million fach firm, where both
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firms receive less. The central four cells in Fg@®, with low and
medium production in place of a cooperate h ancedaefhave the
structure of a Prisoner Dilemma game (Figure l)chiarises here in a
natural economic context. The optimal commitmerd éifst mover is to
produce a quantity of 6 million, with the followehoosing 3 million.
These numbers, and the equilibrium (g Cournot) tityaaf 4 million,
apply even when arbitrary quantities are allowed.

3.7 Extensive gameswith imperfect information

Typically, players do not always have full accesafl the information
which is relevant to their choices. Extensive gameth imperfect

information model exactly which information is aladle to the players
when they make a move. Modelling and evaluatingtatyic information
precisely is one of the strengths of game theodohn Harsanyis
pioneering work in this area was recognised in1%@4 Nobel awards.
Consider the situation faced by a large softwamapany after a small
start up has announced deployment of a key newtdady. The large
company has a large research and development mperaind it is

generally known that they have researchers wor&ing wide variety of
innovations. However, only the large company kndavssure whether
or not they have made any progress on a produdisita the start-ups
new technology.

The start up believes that there is a 50 per ceahee that the large
company has developed the basis for a strong camgpptoduct. For
brevity, when the large company has the abilityptoduce a strong
competing product, the company wil be referred to
as having a g strong position, as opposed to aafs wee.

The large company, after the announcement, hasctwices. It can
counter by announcing that it too will release anpeting product.
Alternatively, it can choose to cede the market tfas product. The
large company will certainly condition its choicepam its
private knowledge, and may choose to act diffeyemthen it has a
strong position than when it has a weak one. dfldige company has
announced a product, the start up is faced withh@ace: it can either
negotiate a buyout or sell itself to the large camp or it can remain
independent and launch its product. The start s ot have access to
the large firm private information on the statustefresearch.
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Game=s10. png

Figure 19:

However, it does obserweghether or not the large company annout
its own praluct, and may attempt to inffrom that choice the likelihood
that the large company has made progress of theim.
When the large company does not have a strong prothe start up
would prefer to stayn the market over selling out. When the la
company des have a strong prcct, the opposite is true, and the star t
up is better off by sellingud instead of staying in. Fure 10 shows an
extensive game that models this situation. Frompispective of th
start up, whether or not the large company has deserch in this area
is random. Tocapture random events such as this formally in g
trees chance moves are introduceAt a node labelled as a chance
move, the next branch of the tree is taken randomalyd
nonstrategically by chance, or g nature, accordingptobabilities
which are includedh the specification of the gam

The game in Figure 8.10 starts with a chance mawhe root. With
equal probabity 0.5, the chance move decides if the large sarih
conmpany, player I, is in a stronposition (upward move) or weak
position (downward mwve). When the company is inweak position, it
can choose to cede the market tostart up, with payoffs (0, 16) to the
two players (with payoffs given in millions of dafk of profit). It can
also announcea competing roduct, in the hope that the start up
company player Il, will sell out, withpayoffs 12 and 4 to players | and
Il. However, if player lldecides instead to stay in,will even profit
from the increased publicity and gain a ff of 20, with a loss of -4 to
the large firm. Figure 8 explains extensive gamehwimperfect
information between player |, arge soft-ware firm, and player Il, a
start up company. The chance m decides if player | is strong (top
node) and does havecampeting product, or vak (bottom node) and
does not.The ovals indicate information sets. Player Il serly that
player | chose to announ@ecompeting product, but does not knov
player | is strong or weak.

In contrast, when the large firm is a strong position, it will not even
consider the movef ceding the market to the start up, but will st
just announce stown product. iFigure 10, this is modelled by a single
choice of player | athe upper node, which is takdor granted (one
coud add the extra choice of ceding esubsequently eliminate it as a
dominated choice of the large firm). Then the syt the two player
are (20, 4) if the start up stays in and (12, 4) if the tstgr sells out
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Games11.png

Figure 20:

In addition to a game tree witterfect information as inigure 7, the
nodes of the pleers are enclosed by ovals which are called infaon:
sets The interpretation is that player cannot distinguish among 1
nodes in informaon set, given his knowledge thie time he makes tf
move. Since his knowledge at all nodes in an métdion set it
the same, he makes the same choice at each natlat iiet. Here, the
start upcompany,player Il, must choose between stay in and sell

Theseare the two choiceat playerll’s information set, which has tw
nodes according to the different histories of plaigich player Il canno
distinguish.

Because player Il is not informed about its positim the game
backward induction can no longer be applied. Iuld be better to se
out at the top node, and to stay in at the botta@ten Consequentl
player Ifs choice when being in the weak posit®mot clear: if playe
Il stays in, then it is better to Cede (since (bester than-4), but if
player 1l sells at, then it is better to Announc

The game does not have equilibrium in pure stragegihestart-up
would respond to Cede by selling out when seein@ramuncemen
since then this is only observed when player trisng). But then playe
| would respond by announcing a product even in the weakiposin
turn, the equal chance of facing a strong or weggionent would induc
the start ugo stay in, since then the expected payoff of-4) + 0.5 x
20 = 8 exceeds 4 when selling ¢

Figure 11 Sttegic form of the extensive game in Figure 8 \
expected payoffs resulting from the chance move trel player:
choices.

The equilibrium of the game involves both playeandomising. The
mixed strategyprobabilities can be determined from the stratégim
of the game in Figure 11. Whit is in a weak position, the large fir
randomises with equ probability 1/2 betweeAnnounce and Cede :
that the expected payoff to player Il is then 7 bmth sta in and
sell out.

Since player Il is indifferent, randomisation isbast respcse. If the
start up chooses tstay in with probability 3/4 and to sell out w
probability 1/4, then player 1, in turn, is indifent, receiving an overe
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expected payoff of 9 in each case. This can also sken
from the extensive game in Figure 10: when in akygosition, player |
is indifferent between the moves Announce and Cedere the
expected payoff is 0 in each case. With probabili®;, player | is in the
strong position, and stands to gain an expected ofpay
of 18 when facing the mixed strategy of playerTie overall expected
payoff to player I is 9.

3.8 Zero-sum Games and Computation

The extreme case of players with fully opposedredts is embodied in
the class of two player zero-sum (or constant-sgarnes. Familiar
examples range from rock-paper scissors, to manpyagames like
chess, go, or checkers.

A classic case of a zero-sum game, which was ceresidin the early
days of game theory by von Neumann, is the gam@oder. The
extensive game in Figure 10, and its strategic forfigure 11, can be
interpreted in terms of poker, where player | islt@ strong or weak
hand which is unknown to player Il. It is a constanm game since for
any outcome; the two payoffs add up to 16, so om&t players gain is
the other player’'s loss. When player | choose twance despite being
in a weak position, he is colloquially said to dafting. This bluff not
only induces player Il to possibly sell out, bumsarly allows for the
possibility that player Il stays in when playersligtrong, increasing the
gain to player I.

Mixed strategies are a natural device for constant- games with
imperfect information. Leaving one’s own actionsenpreduces ones
vulnerability against malicious responses. In tlo&gr game of Figure
10, it is too costly to bluff all the time and bttto random-

ise instead. The use of active randomisation élifamiliar to anyone
who has played rock-paper-scissors.

Zero-sum games can be used to model strategich#y computer
science concept of demonic non determinism. Demonn

determinism is based on the assumption that, whewdering of events
is not specified, one must assume that the worssiple sequence
will take place. This can be placed into the frammdwof zero-sum
game theory by treating nature (or the environmastan antagonistic
opponent. Optimal randomisation by such an opporsscribes a
worst-case scenario that can serve as a benchmark.

A similar use of randomisation is known in the theof algorithms as

Raos theorem, and describes the power of randonaiggdithms. An
example is the well-known quick sort algorithm, atihas one of the
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best observed running times of sorting algorithmspiactice, but can
have bad worst cases. With randomisation, these lma made
extremely unlikely.

Randomised algorithms and zero-sum games are wsednflysing
problems in online computation. This is, despisename, not related to
the internet, but describes the situation wheralgorithm receives its
input one data item at a time, and has to makesibed, for example in
scheduling, without being able to wait until thetiexty of the input is
known. The analysis of online algorithms has réacansights into
hard optimisation problems, and seems also relewathte massive data
processing that is to be expected in the futurepr@&sent, it constitutes
an active research area, although mostly confinedthieoretical
computer science.

3.9 Biddingin Auctions

The design and analysis of auctions is one of thenphs of game
theory. Auction Theory was pioneered by the ecdspbriilliam
Vickrey in 1961. Its practical use became appanerthe 1990s, when
auctions of radio frequency spectrum for mobilee¢eimmunication
raised billions of dollars. Economic theorists add governments on
the design of these auctions, and companies on toowid. The
auctions for spectrum rights are complex. Howernemy principles for
sound bidding can be illustrated by applying gahestetic ideas to
simple examples.

3.9.1 Second-price Auctionswith Private Values

The most familiar type of auction is the familigpem ascending-bid
auction, which is also called an English auctiontHis auction format,

an object is put up for sale. With the potentialydns present, an
auctioneer raises the price for the object as Esgvo or more bidders
are willing to pay that price. The auction stopsewlthere is only one
bidder left, who gets the object at the price atcWtihe last remaining
opponent drops out. A complete analysis of the iBhgauction as a
game is complicated, as the extensive form of tietien is very large.

The observation that the winning bidder in the Efghuction pays the
amount at which the last remaining opponent drops suggests a
simpler auction format as the second-price auct@mnanalysis. In a

second-price auction, each potential buyer privadabmits, perhaps in
a sealed envelope or over a secure computer caoomebts bid for the

object to the auctioneer. After receiving all thdsh the auctioneer then
awards the object to the bidder with the highedt &dnd charges him the
amount of the second-highest bid. Vickrey’'s analyigalt with auctions
with these rules.
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How should one bid in a second-price auction? Ss@bat the object
being auctioned is one where the bidders each hgwévate value for

the object. That is, each bidder’s value derivesfhis personal tastes
for the object, and not from considerations suchpatential resale

value. Suppose this valuation is expressed in naoypegerms, as the
maximum amount the bidder would be willing to paybuy the object.

Then the optimal bidding strategy is to submit@dgual to ones actual
value for the object. Bidding ones private valmea second-price

auction is a weekly dominant strategy.

That is, irrespective of what the other bidders doeng, no other

strategy can yield a better outcome. (Recall thdbminant strategy is
one that is always better than the dominated glyateeak dominance
allows for other strategies that are sometimeslgggaod.) To see this,
suppose first that a bidder bids less than thecbhyas worth to him.

Then if he wins the auction, he still pays the sekcbighest bid, so
nothing changes. However, he now risks that theeaibjs sold to

someone else at a lower price than his true valatwhich makes the
bidder worse off. Similarly, if one bids more thanes value, the only
case where this can make a difference is when ibetslow the new
bid, another bid exceeding the own value. The dridd he wins, must
then pay that price, which he prefers less thanummting the object. In

all other cases, the outcome is the same. Biddmeg true valuation is a
simple strategy, and, being weakly dominant, doaisraquire much

thought about the actions of others.

While second-price sealed-bid auctions like the described above are
not very common, they provide insight into a Nasjuikbrium of the
English auction. There is a strategy in the Ehghsiction which is
analogous to the weekly dominant strategy in tltoerse price auction.
In this strategy, a bidder remains active in thetian until the price
exceeds the bidders’ value, and then drops ol fidders adopt this
strategy, no bidder can make himself better off dwjitching to a
different one. Therefore, it is Nash equilibrium ewhall bidders adopt
this strategy.

Most online auction websites employ an auction Whias features of
both the English and second-price rules. In thes#ians, the current
price is generally observable to all participantslowever, a bidder,
instead of frequently checking the auction sitetfe current price, can
instead instruct an agent, usually an automatedtgg®vided by the
auction site, to stay in until the price surpassegven amount. If the
current bid is by another bidder and below that @mbothen the agent
only bids up the price enough so that it has the regh bid.

Operationally, this is similar to submitting a sghbid in a second-price
auction. Since the use of such agents helps tommsai the time
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investment needed for bidders, sites providing eéh@gents encourage
more bidders to participate, which improves theesellers can get for
their goods.

Example 9: Common values and thewinners curse

A crucial assumption in the previous example ofdmd in a second-
price auction is that of private values. In pragtithis assumption may
be a very poor approximation. An object of art niey bought as an
investment, and a radio spectrum license is acdufo¥ business

reasons, where the value of the license dependsasket forces, such
as the demand for mobile telephone usage, whicle llmvxcommon

impact on all bidders. Typically, auctions have Hbqgtrivate and

common value aspects.

In a purely common value scenario, where the obgeatorth the same
to all bidders, bidders must decide how to take axtcount uncertainty
about that value. In this case, each bidder mag,havor to the auction,
received some private information or signals abihet value of the
object for sale. For example, in the case of ragiectrum licenses, each
participating firm may have undertaken its own neanlesearch surveys
to estimate the retail demand for the use of taadwidth. Each survey
will come back with slightly different results, andeally, each bidder
would like to have access to all the surveys imfaating its bid. Since
the information is proprietary, that is not possibl

Strategic thinking, then, requires the biddersaketinto account the
additional information obtained by winning the aast Namely, the
sheer fact of winning means that one’s own, privatermation about
the worth of the object was probably overly optinsisperhaps because
the market research surveys came back with estnfatebandwidth
demand which were too bullish. Even if everybodgssimate about that
worth is correct on average, the largest (or sregllef these estimates is
not. In a procurement situation, for example, apeeenced bidder
should add to his own bid not only a mark up farfipy but also for the
likely under-estimation of the cost that resultenir the competitive
selection process. The principle that winning a emmn-value auction is
bad news for the winner concerning the valuatiothefobject is called
the winners curse.

The following final example, whose structure wastfproposed by Max
Bazerman and William Samuelson, demonstrates thesiderations
underlying the winners curse not for an auctiont bu a simpler
situation where the additional information of wingiis crucial for the
expected utility of the outcome. Consider a po&nbuyer who is
preparing a final, take it or leave it offer to boyt a dot-com company.
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Because of potential synergies, both the buyerthadeller know that
the assets of the dot-com are worth 50 percent tooifee buyer than to
the current owner of the firm. If the value of tt@mpany were publicly
known, the parties could work out a profitable &adegotiating a price
where both would profit from the transaction.

However, the buyer does not know the exact valub@icompany. She
believes that it is equally likely to be any valbetween zero and ten
million dollars. The dotcoms current owners knova&ly the value of
retaining the company, because they have compi&emation on their
company’s operations. In this case, the expectétevaf the company
to the current owners is five million dollars, atiet expected value of
the company to the prospective buyer is seven draifamillion dollars.
Moreover, no matter what the value of the compamytis, the
company is always worth more to the buyer thars ita the current
owner. With this in mind, what offer should the luyender to the dot-
com as her last, best offer, to be accepted octegj@

To find the equilibrium of this game, note that therent owners of the
dot-com will accept any offer that is greater thiwe value of the
company to them, and reject any offer that is |&s, if the buyer
tenders an offer of five million dollars, then theotcom
owners will accept if their value is between zend dive million. The
buyer, being strategic, then realises that thisliespthe value of the
company to her is equally likely to be anywherensstn zero and seven
and a half milion. This means that, if she offerfsve
million, the average value of the company, condihg upon the
owners of the dot-com accepting the offer, is otilyee and three-
qguarters million less than the value of the offd@iherefore, the buyer
concludes that offering five million will lead ton@xpected loss.

The preceding analysis does not depend on the amébtime offer. The
buyer soon realizes that, no matter what offerrshkes, when she takes
into account the fact that the offer will be acegponly when the value
of the dot-com turns out to be on the low end. @&kgected value of the
company to the buyer, conditional on her offer geancepted, is always
less than her offer. It is this updating of the dnsybeliefs, shifting her
estimation of the dot-coms value to the low endjcwtembodies the
winners curse in this example. Having her offerepted is bad news for
the buyer, because she realises it implies theevafuthe dot-com is
low. The equilibrium in this game involves the buyeaking an offer of
zero, and the offer never being accepted.

This example is particularly extreme, in that rem#action is made even

though everyone involved realises that a transaatiould be profitable
to both sides. As is generally the case with narpeoative game theory,
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the equilibrium does depend on the details of thesrof the game, in
this case, the assumption that one last, best ffeeing made, which
either will be accepted or rejected. In genehad,winners curse will not
always prohibit mutually profitable transactionsrfr occurring. This
example demonstrates the importance of carefukingainto account
the information one learns during the course of mha game. It also
shows how a game-theoretic model that incorpor#tesinformation

and incentives of others helps promote sound detisiaking.

4.0 CONCLUSION

Students could understand what games theory eballit, and they are
able to determine the equilibrium of games theofhey could
understand also determine bidding and auctionsedisas zero sum and
computation. Hence students are able to give iaildgime principles of
game theory.

5.0 SUMMARY

This unit discussed Games Theory and its variogmeets- Backward
induction, Common knowledge, Dominating strategyteBsive game,
Mixed strategy, Nash equilibrium, Payoff, Perfeaformation, Player,
Rationality, Strategic form, Strategy and Zero sgame. This provides
a context for understanding equilibrium, computatididding and
auction in Games Theory.
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MODULE 6

Unit 1 Linear Programming

UNIT 1 LINEAR PROGRAMMING
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1.0 Introduction

2.0 Objectives

3.0 Main Content
3.1  Application of Linear Programming to Biess
3.2  Properties of Linear Programming Model
3.3  Assumption of Linear Programming
3.4  Cover Material
3.5 Solution of a Linear Programming Model
3.6  Graphical Solution of Linear ProgramgProblems

4.0 Conclusion

5.0 Summary

6.0 Tutor-Marked Assignment

7.0 References/Further Reading

1.0 INTRODUCTION

Many management decisions involve trying to malee riost effective
use of organisational resources. These resouradgden Machinery,
Labour, Money, Time, Warehouse space or Raw méeigaproduce
goods (machinery, furniture, food or cooking) orveme (schedules for
machinery and production advertising polices orestinent decision).
Linear programming (LP) is a widely used mathenshtitechnique
designed to help managers in planning and decisiaking relative to
resource allocations.

20 OBJECTIVES
At the end of this unit, you should be able to:

apply Linear Programming to Business

list the properties of Linear Programming

make assumptions on Linear Programming
provide solutions to Linear Programming models.
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3.0

31

1.

3.2

MAIN CONTENT

Application of Linear Programming to Business

Product -Mix: Use in the selection of the product-mix in a
factory to make best use of machine and machineshaailable
while maximising profit, that is, to find out whicproduct to
include in the production plan and in what quaasitthat should
be produced.

Blending Problems: Use for the selection of different blends of
raw materials to produce the best combination atimuim cost
e.g. food drinks, etc.

Production Schedule: Use to develop a production schedule
that will satisfy future demands for a firm’'s pradwand at the
same time minimise production and inventory cost.

Production Quantity: Use in the determination of how much
guantity to produce of different grades of petrabgoroduct (say)
to yield maximum.

Distribution System: Use in determining a distribution system
that will minimise total shipping cost from sevevarehouses to
various market locations.

Limited Advertisement: Use in the allocation of limited
advertising budget among radio, TV and newspapetssm
order to maximise the returns on investment.

Investment: Use in selecting investment port-folio from a edyi
of stocks and bonds available in such a way asaximise the
returns on investment.

Work Schedule: Use in the development of a work schedule
that allows a large restaurant to meet staff netddl hours of
the day, while minimising the total number of enyaes.

Propertiesof Linear Programming Model

All linear programming models have four basic pmips in common.
They are:

All LP models seek to maximise or minimise some iy

usually profit or cost.

All LP models have constraints or limitations thahit the

degree to which the object can be purse. E.g. oleclibw many
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units of product in a product line to be produceddstricted to
the manpower and machinery available.

iii. There must be alternative course of action to ohdasm e.g. if
there are four (4) different products, managemeay mecide
(using LP) how to allocate limited resources amtbregn.

Objectives and constraints in LP model must be esgrin linear
equations and inequalities.

3.3 Assumption of Linear Programming

Certainty: We assume that numbers in the objective and int are
known with certainty and do not change during teeqal under study.

Proportionality: We are sure that proportionality exists in thgotive
and the constraints. This mean that, if productibane unit of product
uses two of a particular scare resource; then rgakug units of that
product uses ten resources.

Additivity: This means that the total of all activities equaks sum of
each individual activity.

Divisibility: This means that solution may take fractional valaed
need not be in whole numbers (integers). If a foaciof a product
cannot be produced, integer programming problerst.exi

Non-negativity: We assume that all answers or variables are non-
negative. Negative values of physical quantitiee an impossible
solution.

3.4 Cover Material

5x = Amount of cover material used for half-upheitstd. 5y = Amount
of cover material used for full-upholstered. Théakocover material
cannot exceed 35.

This is the maximum available: 5x + 5y 35 Thus, the linear
programming model is:

Maximise: 5x + 5y< 35

Subject to: P=N80x + N90y

2X +y<12 (Wood material)

2X + 4y< 24 (Foam material)

5x + by< 35 (Cover material)

x>0,x0 (Non-negative)
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Example 1: (Diet Problem)

MODULE 6

A convalescent hospital wishes to provide at a mim cost, a diet thi
has a minimunof 200g of carbohydrates, 100g oiotein and 120g of
fats per dayan be met with two fooc

Food | Carbonhydrates | protein | Fats
A 10g 2g 30g
B ag ag dg

If food A cost 29k per ounce and food B cost 15k gence, how man
ounces of each food should be purchased for eadnpger day ir
order to meet the minimum requirements at the lbwest? Requirec
formulate the LP model.

Solution:

Let, X = Nunber of ounces of food A.
Y=Numbe! of ounces of food B.
The minimum cost, C, is found |
Cost of food A = 0.2€
Cost of food B =0 .15
C=0.29x+0.15)
The constraints art
x>0,y>0

The amounts of food must be n- negative
The table gives a summaoy nutrients provide

Food | AmountNaira(N) | Carbonhydrates | protein | Fats
A x 10z 2z 3z
B Y by by 4y
TOTAL 10z 4 5y 2r + by | 3r + 4y '

Daily requirements:

10x + 5y> 200

2x + 5y> 100

3x +4y>120

The LP model is :

Minimise : C = 0.29x + 0.15y Subject t

10x + 5y> 200 (Carbohydrate:
2X + 5y> 100 (Protein)

3X + 4y> 120 (Fats)
X>0,y>0  (Non-Negativity
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3.5 Solution of aLinear Programming Model

Having formulated the linear programming model, sk@ll now at thit
stage solve the model using any of the followinghods:

o Graphical methoc

. Simplex method

However, the simplex methchas advantage over theaghical methot
that; it can baised for problem involving two or more decisionigbles
while graphical method cannt

3.6 Graphical Solution of Linear Programming Problems

Example 2

Maximise: P= 4x + 5y Subject t

2X + 5y< 25

6X + 5y< 45

xgleqO, y> 0
programml . png
Figure 21:

Solution:

To solve the above linear programming model using traphical
method, we shall turieach constraints inequality to equation and
each variale equal to zero (0) to obtatwp (2) coordinate pots for
each equation ( i.e using double intercept foi

Having obtained all the coordinate points, we statermine the ranc
of our varidleswhich enables us to known the appropriate scalesé
for our graph. Thereafter, wshall draw the graph and join all t
coordinate points with require straight lir

2X + 5y = 25 (Constraint 1)
Whenx=0,y=5and wheny =0, x=1.
6x + 5y = 45 [Constraint 2 ]
When x=0,y=9andwheny =0, x="
Minimum value of x =0
Maximum value of x = 12.5
Range of x is & x<12.5
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Minimum value of y is 'y = (
Maximum value of y isy =
Range of y is Ky <9.

programm?. png

Figure 22:

The constraint give a set of feasible solutionggephed above. T
solve the linear programming problem, we mnow find the feasible
solution that makes the objective function as laagepossible. Sorn
possible solutions are listed bel

Feasiblesolution( Apointinthesolutionseto fthesystem) | Objective functionR = 4z + by
(2,3) 4(2) +5(3)=8+15=23
(4,2) 4(4)+5(2) =16+ 10 =26
(5,1) 4(5) +5(1)=20+5=125
(7,0) 4(7) +5(0)=28+0=28
(0,5) 4(0) +5(5)=0+25=25

In this list, the point that makes the objectivendtion the largest i
(7,0). But, is this the largest for all feasiblelidions? How abot
(6,1)? or (5,3)? It turns out that (5,3) provide maximum value: 4(¢
+5(3) =20 + 15 = 35.

Example 3:

Find the corner points for :
2X + 5y< 25 6x + 5y< 45 x>0, y> 0

Solution:
The graph for Example 6 is repeated here and shHmwsorner point

Some corner points can usually be found by inspectin this case, w
can see A = (0,0) and D =,f). Some corner points may require sc
work with boundary lines (uses equation of bouretarinot the
inequalities given the region)
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Point C
System: 2x + by = 25 (1)
6x + 5y = 45 (2)
- (2)- 4x =-20
X=25
if x = 5, then from (1) or (2)
y=3
Point B
System y = 0 (1)
6x + 5y = 45 (2)
Solve by substitution
6x + 5 (0) = 45
x=9P="T5

The corner points for example 7 are: (0,0), (Q;B)5,0) and (5,3)
Convex sets the corner |nts lead ugo a method for solving certa
linear programming problem

Example 4:

Maximise: P = 143x + 60
Subject to:

X+y<100

120x + 210y< 15000
110x + 30y< 4000
x>0,y>0

Solution:

X + v = 100 (Constraint 1)

When x = 0, y = 100 and when y 0, x = 100 (x = 100, y = 100)

120x + 210y = 15000 (Constraint 2)

Whenx =0, v =@ and when y =0, x = 125 (:r =125,y = @]: 71.43

When x =0, vy = g and when y = 0, x =% (x =% ,V =%} =133

Next, find the corner points. By inspection,
Point A = (0,0)
Point B:
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programm3. png

Figure 23:

System: 120x + 210y = 15000 (1)
x=0(2)
Solve (1) and (2) simultaneously by substituting
For x = 0 in (1):
120 (0) + 210y = 1500
Y = 15000 _ 500
210~ T a3
Point B: (0,22
Point B:
System: 110x + 30y = 4000 (1)
120x + 210y = 15000 (2)
7 (1) - (2) 650x = 13000
x = 20
substitute for x = 20 in (1)
110(20) + 30y = 4000
30y = 1800
Y =60
Point C: (20,60).
Point C: System: 110x + 30y = 4000 .....(1)
120x + 210y = 15000..... (2)
7 (1) - (2) 650x = 13000
x =20
substitute for x = 20 in (1)
110(20) + 30y = 4000
30y = 1800
Y =60
Point C: (20,60).
Point D:
System: 110x + 30y = 4000 . .. (1)
Y=0..(2)
Solve (1) and (2) simultaneously by substituting for y = 0 in(1)
110x + 30 (0) = 4000

110x = 4000
4000
1

X =

Point D: {@ 0)

11 *
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programmé . png

Figure 24:

Use the linear programming theorem icheck the corner poin

Cornerpoint | Objective functionP = 143z + 60y
(0,0) 143(0) + 60(0) =0
(0, % 143(0) + Gﬂ[%] = 4,286
(% 0) 143[%] + 60(0) = 5,200
(20, 60) 143(20) + 60(60) = 6,460

The maximum value of P is 6,460 at (20,60). means that t
maximum profit,the farmer should plant 20 acres in corn, plant
acres in wheat and leave 20 acunplanted.

Notice from the graph inxample 8 that some of the constrs could
be elimnated fromthe problem and everything else would ren
unchangd. For example, the boundaryty = 100 was not necessary
finding the maximum valueof P. such a condition is sato be a
superfluous cwostraint. It is not uncommon to have superflt

constraints in dinear programming problem. Suppose, however,tthe
farmer in Example 1 contractto have the grain stored at neiguring

farm and now the cdract calls for at least 4,008ushels to e stored.
This change from 110x -30y? 4000 to 110x 30y? 400w makes
the condition x +y? 100 animportant to the solution of e problem.
Therefore, you musbe careful about superfluous constraints e
though theydo not affect the solution the present time.

Example5:

Solve the following linear programming proble
Minimise: C = 60x + 30

Subject to:

2x + 3y<120

2x +y<80

x>0,y>0.

Solution:
Corner points A = (, 80) and C = (60, )0are found by inspectiol
bc Point B
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Substitute for y = 20 in (2):
2x +20 =80

2x =60

X=30

Point B: (30, 20)

Extreme values.

Corner point Objective function C=60x+30y
(0, 80)

(30, 20)

(60, 0) 60(0) + 30(80) = 2400

60(30) + 30(20) = 2400

60(60) + 30(0) = 3600

From the table above, there are two minimum Vafoeshe objective
function: A = (0,80) and B = (30,20). In this sitwa, the objective
function will have the same minimum value (2,400t points along
the boundary line segment A and B.

4.0 CONCLUSION

By now you are familiar with all the issues conaegn Linear
Programming.

5.0 SUMMARY

This unit focused on Linear Programming (LP) as athmmatical
technique helpful to managers in planning and d@timaking vis-a-vis
resource allocations. In the process, LP’s applinat properties,
assumptions and solutions were highlighted.

6.0 TUTOR-MARKED ASSIGNMENT

1. An oil company manufacturer two brands of loants namely A
and Z, lubricant A valued at N50 needs 15 kilogramhgaw
materials and 9 hours of machine time. Lubricaatso valued at
N50 needs 10 kilogram of the same raw materialsl@mdurs of
machine time. Establish the maximum value of tredpcts that
can be made from 360 hours of machine and 375 rafog of
raw materials and the respective quantities ofitamts A and Z.
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A caterer has 1600 grams, 1100 grams an 150@sgod yam,
fish and meat respec-tively. She requires 100 grainissh, 100
grams of meat and 200 grams of yam to prepare & mh
pounded yam. To prepare a plate of porridge, shaines 200
grams of fish, 300 grams of meat and 100 gramsaof.yif a
plate of porridge sells for N3.00 and a plate ofiqated yam for
N5.00, how many plates of each should she prefdamagimize
her sales?

Berger Paints Nigeria Limited manufacturer' tiypes of paints
Emulsion and Gloss. 'Emulsion’ valued at N12.50 getlon
needs 5 kilograms of raw materials and 9hours othime
time.’Gloss’ valued at N15.00 per gallon needs I6dgtams of
the same raw materials and 12hours of machine tiEgablish
the maximum value of each of the products that lmarmade
from 400 hours of machine time and 500 kilogramsrai
materials.

Ajasco Nigeria Limited manufacturers plastic aimt buckets. 1
hour, 2 hours and lhour of time on machines A, B &h
respectively; are required to manufacture 1,006tglduckets. 2
hours, 1hour, 1hour and 1hour of time on machinesd @nd B
respectively; are required to manufacture 1,00@ binckets. In
a given period, the available hours on machine AnB C are 8,
12 and 14 respectively. The profit per unit on fiabucket is
N50 and on zinc bucket is N60. Find the optimutocation i.e
the product mix and the resulting profits.

Mrs, Viju Milk is a small scale business womahonhas just
started a mini catering outfit in Lagos. She hasidéd to
produce two types of cakes, namely chocolate cégesnd fruit
cakes (Y). The two types of cakes go through twoinma
processes. i.e baking and decorating. In order ryze a
chocolate cake, she needs 2 hours for baking awodréhfor
decorating. To produce a fruit cake, she needsufshof baking
but only 2 hours of decorating. She has availabl@ #an hours
of baking and 600 hours of decorating. From mar&s¢arch she
calculates that she will make a profit of N200 @cte chocolate
cake and N300 each on fruit cake.
Required:
I Formulate the problem as Linear Programming.
il. Use the graphical approach to determine how many
chocolate and fruit cake lya Ibeji should produce t
maximise her profit.
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