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INTRODUCTION 

You are holding in your hand the course guide for FMT 309 (Linear Programming I). The 

purpose of the course guide is to relate to you the basic structure of the course material you 

are expected to study. Like the name ‘course guide’ implies, it is to guide you on what to expect 

from the course material and at the end of studying the course material. 

COURSE CONTENT 

Linear programming models.  The Simplex method, formulation and theory.  Duality, integer 

programming. Transportation problem, two-person zero-sum  games.   

COURSE AIM 

The aim of the course is to bring to your cognizance the different methods of solving (LPP) thus  

Linear programming models in Finance as mentioned in the course content to handle Financial 

problems  via the use of Statistics and calculations. 

COURSE OBJECTIVES 

At the end of studying the course material, among other objectives, you should be able to: 

1. Write a Linear programming model. 

2.  Define and use some certain terminologies which shall be useful to you in this 

course, Linear programming. 

3.  Formulate a linear programming problem, and 

4. Perform a sensitivity analysis. 

  

COURSE MATERIAL 

The course material package is composed of: 

The Course Guide 

The study units 

Self-Assessment Exercises 

Tutor Marked Assignment 

References/Further Reading 

THE STUDY UNITS 

There are four modules  and eight units in this course material. 

These study units are as listed below: 

MODULE  I 

INTRODUCTION AND FORMULATION OF LPP  

UNIT 1 

1 Linear Programming  

MODULE II 



 Methods of Solutions to Linear Programming Problems 

UNIT 2 

Graphical and Algebraic Methods.  

UNIT 3 

 Simplex Algorithm (Algebraic and Tabular forms)  

UNIT 4 

Artificial Variables Technique  

UNIT 5 Simplex Algorithm- Initialization and Iteration  

MODULE III 

 DUALITY IN LINEAR PROGRAMMING 

UNIT 6  

Duality in Linear Programming  

MODULE IV 

UNIT 7 

Transportation Problem  

UNIT 8 

Integer Programming  

TUTOR MARKED ASSIGNMENTS 

 

The Tutor Marked Assignments (TMAs) at the end of each unit are designed to test your 

knowledge and application of the concepts learned. Besides the preparatory TMAs in the 

course material to test what has been learnt, it is important that you know that at the end of 

the course, you must have done your examinable TMAs as they fall due, which are marked 

electronically. They make up to 30 percent of the total score for the course. 

SUMMARY 

At the end of this unit, 

1. You are now able to initialize, iterate and terminate any LPP and state the optimal 

solution. 

2. Degeneracy is a phenomenon of obtaining a degenerate basic feasible solution in an 

LPP. 

3. You are able to resolve degeneracy if it occurs. 



4. The alternate optimum is indicated with the optimality or the termination condition 

been satisfied, you have a non-basic variable with a zero value of the zj − cj row which 

would want to enter and entering will give the same value of the objective function but 

with a different solution. You also need to perform the two iterations in other to 

maximize you profit and save some resource. 

5. you also know that there are infinitely many solutions in the alternate optimum case. 

Simplex will indicate only two corner points on the line of the constraint equation which 

is parallel to the objective function. But every other point between the corner points is 

also optimum. 

6. Unboundedness is a phenomenon where the algorithm terminates because it was 

unable to find a departing variable. 

7. A problem is said to be Infeasible if the problem has no feasible solution. 

8. A phenomenon in LPP by which, in the middle of simplex iteration, you have a set of 

basic variables and after about some iterations, you realize that you are back to the same 

set of basic variables, without satisfying the termination condition is called Cycling 

9. You are also able to solve problems involving unrestricted variables.                                                       

Good luck. 
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Linear Programming was first conceived by George B Dantzig around 1947. Historically, 

the work of a Russian mathematician Kantorovich  (1939) was published in 1959, yet Dantzig 

is still credited with starting linear programming. In fact, Dantzig did not use the term Linear 

Programming, his first paper was titled “Programming in Linear Structure”. Much later, the 

term “Linear programming” was coined by Koopmans in 1948. 
 

The Simplex method which is the most popular and powerful  tool for solving linear pro- 

gramming, to be studied in full later in this course, was published by Dantzig in 1949. 
 

In this course, you will learn various tools in operations research, such as linear program- 

ming, transportation and assignment problems and so on. 
 

Before going into a detailed study, it is very important that you have a full understanding of 

what operations research is all about. 
 

Operation Research, abbreviated ’OR’ for short is a “scientific  approach to decision making, 

which  seeks to determine how best to design and operate a system, under conditions  requiring 

the allocation of scarce resources.” 
 

Operation  research as a field of study provides  a set of algorithms  that acts as tools for ef- 

fective problem solving and decision making in chosen application  areas.  OR has extensive 

applications in engineering, business and public  systems and is also used extensively by manu- 

facturing and service industries in decision making. 
 

The history of OR as a field of study dates back to the second World  war II when the British 

military asked scientists to analyse military problems. In fact, second world war was perhaps 

the first time when people realised that scarce resources can be used effectively  and allocated 

efficiently. 
 

The application of mathematics and scientific  method to military applications  was called 

“Operations Research” to begin with. But today, it has a different  definition,  it is also called 

“Management Science”. In general the term Management Science also includes Operations 

Research, in fact, this two terms are used interchangeably.  As such, OR is defined  as a scien- 

tific approach to decision  making  that seeks conditions of allocating scarce resources.  In fact 

the most important thing in operations research is that resources are scarce and these scarce 

resources are to be used efficiently. 
 

In this course, you are going to study the following topics Linear programming,(Formulations 

and Solutions), Duality  and Sensitivity  Analysis, Transportation Problem, Assignment Problem, 

Dynamic Programming and Deterministic Inventory Models. 
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UNIT 1 
 
 
 

LINEAR PROGRAMMING 
 

 
 
 
 
 
 

1.1   Introduction 
 

 

Linear programming  deals with the optimization (maximization or minimization) of a function 

of variables known as the objective functions.  It is subject to a set of linear equalities and/or 

inequalities known as constraints.  Linear programming  is a mathematical technique which in- 

volves the allocation of limited  resources in an optimal manner, on the basis of a given criterion 

of optimality. 
 

In this unit, properties of Linear Programming Problems (LPP) are discussed. The graph- 

ical method of solving LPP is applicable where two variables are involved. The most widely 

used method for solving LPP problems consisting of any number of variables is called simplex 

method, developed by G. Dantzig in 1947 and made generally available in 1951. 
 

 
 

1.2   Objectives 
 

 

At the end of this unit, you should be able to 
 

 

(i) Write a Linear programming model. 
 

(ii)  Define and use some certain terminologies  which shall be useful to you in this course, 

Linear programming. 
 

(iii)  Formulate a linear programming problem, and 
 

(iv) Perfom a sensitivity analysis. 
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1.3 Main Contents 
 
 

1.3.1 Formulation of LP Problems 
 
The procedure for mathematical formulation of a LPP consists of the following steps: 

 
 

Step 1 Write down the decision variables of the problem. 
 

Step 2. Formulate the objective function to be optimized (maximized or minimized) as a linear 

function of the decision variables. 
 

Step 3. Formulate the other conditions of the problem  such as resource limitation.  market 

constraints,  interrelations  between variables  etc., as linear inequalities or equations in 

terms of the decision variables. 
 

Step 4. Add the non-negative constraint from the considerations so that the negative values of 

the decision variables do not have any valid physical interpretation. 
 
 

The objective function,  the set of constraints and the non-negative restrictions together form 

a Linear Programming Problem (LPP). 
 

 
1.3.2 General Form of LPP 

 
The general form of the LPP can be stated as follows: 

 

In order to find the values of n decision variables x1, x2, . . . , xn  to minimize or maximize 

the objective function. 
 
 
 
 

and also satisfy the constraints 

Z = c1x1 + c2x2 + · · · + cnxn (1.1) 

 
a11x1 + a12x2 + · · · + a1nxn  

 
 

a21x1 + a22x2 + · · · + a2nxn  

.  

ai1x1 + ai2x2 + · · · + ainxn  
 
 
 

am1x1 + am2x2 + · · · + amnxn    

 
b1 

 
≥   

b2 

= 
 
. 

 bi  
≤   . 

 
bm 

 
 
 
 
 

(1.2) 

where the constraints may be in the form of inequality ≤  or ≥  or even in the form of an equation 
(=) and finally satisfy the non-negative restrictions 

 

x1 ≥  0, x2 ≥  0, . . . , xn  ≥  0 (1.3) 
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 . 

  

. . 
 

 
 
 

1.3.3 Matrix Form of LP Problem 
 

The LPP can be expressed as a matrix  as follows: 
 

 

Maximize or Minimize  z = cxT (Objective Functions) 

 
Subject to:  Ax   (≤ =≥ )  b    (Constraints) 

 

b > 0, x ≥  0, (Nonnegative restrictions) 

where x = (x1, x2, . . . , xn),   c = (c1, c2, . . . , cn), and xt is the transpose of x. 

(1.4) 

 
 
b1    

  

b = 

 
b2    

  

 
a11 a12 · · ·   a1n    

  

A = 

 
a12 a22 · · ·   a2n    

  
  . 
   

. 

. · · ·   .  
bn am1  am2  · · ·   amn m×n 

 

Example 1.3.1 A manufacturer produces two types of models M1  and M2. Each model of the 

type M1  requires 4 hours of grinding and 2 hours of polishing;  whereas each model of the type 

M2  requires 2 hours of grinding and 5 hours of polishing.  The manufacturer has 2 grinders and 

3 polishers. Each grinder works 40 hours a week and each polisher works for 60 hours a week. 

Profit on M1  model is N 3.00 and on model M2  is N 4.00. Whatever is produced in a week is 

sold in the market. How should the manufacturer allocate his production capacity to the two 
types of model, so that he may make the maximum profit in a week? 

 

☞ Solution. Decision variables:  Let x1  and x2  be the number of units of M1  and M2 

models produced 
 

Objective function:  Since the profit on both the modes are given, you have to maximize 

the profit viz. 

max z = 3x1 + 4x2 
 

Constraints There are two constraints-one for grinding and the other for polishing. 

Numbers of hours available on each grinder for one week is 40. There are 2 grinders. Hence 

the manufacturer does not have more than 2 × 40 = 80 hours of grinding. M1  requires 4 hours 
of grinding and M2  requires 2 hours of grinding. 

 

The grinding constraint is given by 
 

4x1 + 2x2 ≤  80. 
 

Since there are 3 polishers, the available time for poloshing in a week is given by 3 × 60 = 

180 hours of polishing. M1  requires 2 hours of polishing and M2  requires 5 hours. Hence we 
have 

2x1 + 5x2 ≤  180. 
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Finally you have,  
Maximize  z = 3x1 + 4x2 

 

Subject to:  4x1 + 2x2 ≤  80 
 

2x1 + 5x2 ≤  180 
 

with:with  x1, x2 ≥  0. 

✍  
 
Example 1.3.2 A company manufactures two products A and B. These products are processed 

in the same machine.  It takes 10 minutes to process one unit of product A and 2 minutes for 

each unit of product B and the machine operates for a maximum  of 35 hours in a week. Product 

A requires 1kg and B 0.5kg of raw material per unit, the supply of which is 600kg per week. 

Market constraints on product B is known to be minimum  of 800 units every week. Product A 

costs N 5 per unit and sold at N 10. product B costs N 6 per unit and can be sold in the market 

at a unit price of N 8. Determine the number of units of A and B per week to maximize the 

profit. 
 

☞ Solution. Decision Variable: Let x1  and x2  be the number of products A and B 

respectively. 

Objective function: Cost of product A per unit is N 5 and selling price is N 10 per unit. 

Therefore Profit on one unit of product A = 10 −  5 = N 5. 
 

x1  units of product A contributes  a profit of N 5x1, profit contribution from one unit of 
product B is 8 −  6 = N 2. 

x2 units of product B contribute  a profit of N 2x2 
 

The objective function is given by 
 

Maximize z = 5x1 + 2x2 

 

 

Constraints: The requirement constraint is given by 
 

10x1 + 2x2 ≤  (35 × 60), i.e., 10x1 + 2x2 ≤  2100. 

 

Raw material constraint is given by , 
 

x1 + 0.5x2 ≤  600 
 

Market demand of product B is 800 units every week 
 

x2 ≥  800 
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The complete LPP is  
Maximize  5x1 + 2x2 

 

Subject to  10x1 + 2x2 ≤  2100 
 

x1 + 0.5x2 ≤  600 
 

x2 ≥  800 
 

withwith  x1, x2 ≥  0. 

✍  
 
Example 1.3.3 A person requires 10,12, and 12 units of chemicals A, B and C respectively, 

for his garden. A liquid product contains 5,2, and 1 units of A, B and C respectively, per jar. A 

dry product contains 1,2 and 4 units of A, B and C per carton. If the liquid product sell for N 3 

per jar and the dry product sells for N 2 per carton, how many of each should be purchased, in 

order to minimize  the cost and meet the requirements? 
 

☞ Solution. Decision Variables:  Let x1 and x2 be the number of units of liquid and dry 

products. 
 

Objective function:  Since the cost for the products are given, you have to minimize the 

cost 

Minimize z = 3x1 + 2x2. 
 

Constraints: As there are 3 chemicals and their requirements are given, you have three con- 

straints for these three chemicals. 
 

 
 
 
 
 
 
 

 
Finally the complete LPP is 

5x1 + x2 ≥  10 
 

2x1 + 2x2 ≥  12 
 

x1 + 4x2 ≥  12. 

 

Minimize z = 3x1 + 2x2 

 
Subject to: 5x1 + x2 ≥  10 

 

2x1 + 2x2 ≥  12 
 

x1 + 4x2 ≥  12 
 

withwith x1, x2 ≥  0. 

✍  
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Example 1.3.4 A paper mill produces two grades of paper namely X  and Y. Owing to raw 

material restrictions, it cannot produce more than 400 ton of grade X and 300 tons of grade Y 

in a week. There are 160 production hours in a week. It requires 0.2 and 0.4 hours to produce a 

ton of products X and Y respectively without corresponding profits of N200 and N500 per ton. 

Formulate  the above as a LPP to maximize profit. 
 

☞ Solution. Decision Variables:  Let x1 and x2 be the number of units of two grades of 

paper of X and Y. 
 

Objective function:  Since the profit for the two grades of paper X and Y are given, the 

objective function is to maximize the profit. 
 

Maximize z = 200x1 + 500x2 
 

 

Constraints:  There are 2 constraints, one referring to raw material, and the other to pro- 

duction hours. 
Maximize  z = 200x1 + 500x2 

 
Subject to:  x1 ≤  400 

 

x2 ≤  300 
 

0.2x1 + 0.4x2 ≤  160 

with  x1, x2 ≥  0. 

✍  
 
Example 1.3.5 A company manufactures two products A and B. Each unit of B takes twice 

as long to produce as one unit of A and if the company was to produce only A, it would have 

time to produce 2,000 units per day. The availability of the raw material is sufficient to produce 

1,500 units per day of both A and B combined. Product B requiring  a special ingredient, only 

600 units can be made per day. If A fetches a profit of N 2 per unit and B a profit of N 4 per 

unit, formulate  the above as LPP for an optimum product mix. 
 

☞ Solution. Let x1  and x2  be the number of units of the products A and B produced 

respectively. The profit after selling these two products is given by the objective function, 
 

Maximize z = 2x1 + 4x2 

 

Since the company can produce at most 2,000 units of the product in a day and type B requires 

twice as much time as that of type A, production restriction is given by 
 

1 

2 
x1 + x1 ≤  2, 000; i.e.,

 

3 

2 
x1 ≤  2000 i.e., x1 ≤  

4000 

3 
 

Since the raw material are sufficient  to produce 1,500 units per day if both A and B are 

combined, you have 

x1 + x2 ≤  1500 

There are special ingredients for the product B so you have x2 ≤  600. 
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Also, since the company cannot produce negative quantities, x1 ≥  0 and x2 ≥  0. 

Hence the problem can be finally put in the form: 
 

Maximize  z = 2x1 + 4x2 

 

Subject to: 3 ≤  4, 000 
 

x1 + x2 ≤  1500 
 

x2 ≤  600 
 

with  x1, x2 ≥  0. 

✍  
 
Example 1.3.6 A firm manufactures 3 products A, B and C. The profits are N 3, N 2 and N 

4 respectively.  The firm has 2 machines and given below is the required processing time in 

minutes for each machine on each product 
 
 
 
 
 

Machines M1 

M2 

Product 

A B C 

4 3 5 

3 2 4 
 
 

Table 1.1: 
 

Machines M1  and M2  have 2, 000 and 2,500 machines minutes respectively. The firm must 

manufacture 100A’s, 200 B’s and 50 C ’s but no more than 150 A’s.  Set up an LP problem to 
maximize the profit. 

☞ Solution. Let x1, x2, x3  be the number of units of the products A, B, C respectively. 

Since the profits  are N 3, N 2 and N 4 respectively, the total profit gained by the firm after 

selling these three products is given by, 
 

z = 3x1 + 2x2 + 4x3. 
 

 

The total number of minutes required in producing  these three products at machine M1  is 

given by 4x1 + 3x2 + 5x3 and at machine M2, it is given by 3x1 + 2x2 + 4x3. 
 

The restrictions on the machines M1 and M2 are given by 2,000 minutes and 2,500 minutes. 

4x1 + 3x2 + 5x3 ≤  2000 
 

3x1 + 2x2 + 4x3 ≤  2500 
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Also, since the firm manufactures 100 A’s, 200 B’s and 50 C ’s but not more than 150 A’s 

the further restriction becomes 
100 ≤  x1 ≤  150 

 

x2 ≥  200 
 

x3 ≥  50 

Hence the allocation problem of the firm can be finally put in the form: 
 

 

Maximize z = 3x1 + 2x2 + 4x3 

 
Subject to:  4x1 + 3x2 + 5x3 ≤  2, 000 

 

3x1 + 2x2 + 4x3 ≤  2500 
 

100 ≤  x1 ≤  150 

x2 ≥  200 

x3 ≥  50 

with x1, x2, x3 ≥  0 

✍  
 

 
 

1.3.4   Sensitivity Analysis 
 
The term sensitivity  analysis, often known as post-optimality  analysis refers to the optimal so- 

lution of a linear programming problem, formulated using various methods You have learnt the 

use and importance  of dual variables to solve an LPP. Here, you will learn how sensitivity analy- 

sis helps to solve repeatedly the real problem in a little different form. Generally,  these scenarios 

crop up as an end result of parameter changes due to the involvement  of new advanced tech- 

nologies and the accessibility of well-organized latest information  for key (input) parameters or 

the ’what-if’ questions. Thus, sensitivity  analysis helps to produce optimal solution of simple 

pertubations for the key parameters. For optimal solutions, consider the simplex algorigthm  as 

a ’black box’ which accepts the input key parameters to solve LPP as shown below 
 

Example 1.3.7 Illustrate sensitivity analysis using simplex method to solve the following LPP. 
 

Maximize z = 20x1 + 10x2 

 

Subject to:  x1 + x2 ≤  3 
 

3x1 + x2 ≤  7 
 

with x1, x2 ≥  0 
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j 

 
 
 

Simplex 
Algorithm 

 
 
 

Linear 

Program 

 

? 
 
 
 
 
 

Figure 1.1: 

 

 
   Optimal 

Solution 

 

 

☞ Solution. Sensitivity analysis is done after making the initial and final tableau using the 
simplex method. Add slack variables to convert it into equation form. 

 

 

Maximize z = 20x1 + 10x2 + 0x3 + 0x4 

 
Subject to:  x1 + x2 + x3 + 0x4 = 3 

 
3x1 + x2 + 0x3 + x4 = 7 

 

with x1, x2 ≥  0 

 

To find the basic feasible solution, put x1  = 0 and x2  = 0. this gives z = 0, x3  = 3 and 

x4 = 7. The initial table will be as follows.: 
 

 
Initial table 

 

 
B x 1 x2 x 3 x 

4
 x 

B
  

x
3

 

 
x 

4
 

1 

 
3 

1 

 
1 

1 

 
0 

0 

 
1 

3 

 
7 

3 
 

7 3  

z j c j 20  -10 0 0 0  

 

 
Table 1.2: 

 

Find θ = 
xB  

for each row and find minimum for the second row. Here, z 
xj 

 

 

−  cj 

 
 
 

is maximum 

negative (− 20). Hence x1 enters the basis and x4 leaves the basis. It is shown with the help of 
arrows. 

 

Key element is 3, key row is second row and key column is x1. Now convert the key element 

into entering key by dividing each element of the key row by key element using the following 
formula: 

 

New element = Old element −  
( 

Product of elements in the key row and key column 
l
 

Key element 
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B x 1 x2 x 3 x 
4
 x 

B
  

x
3

 

 
x

1
 

0 

 
1 

2/3 
 

1/3 

1 

 
0 

-1/3 

 
1/3 

2/3 

 
7/3 

1 

 
7 

z j c j 0 10 3  0 20 140/3  

 

 
Table 1.3: 

 

 

The following is the first iteration tableau. 

Since zj  −  cj  has one value less than zero, i.e., negative value hence this is not yet optima 

solution. Value -10/3 is negative hence x2 enters the basis and x3 leaves the basis. Key row is 
upper row. 

 

 
B x 1 x2 x 3 x 

4
 x 

B
  

x 
2
 

 
x

1
 

0 

 
1 

1 

 
0 

3/2 

 
0 

-1/2 

 
4/3 

1 

 
4/3 

 

z j c j 0 0 0 25 110/3  

 

 
Table 1.4: 

zj  −  cj  ≥  0 for all j, hence optimal solution is reached, where x1 =  4 , x2 = 1; z =  110  ✍  
3 3 

 
 

1.3.5   Shadow Price 
 
The price of value of any item is its exchange ratio, which is relative to some standard item. 

Thus, you may say that shadow price, also known as marginal value, of a constant i is the change 

it induces in the optimal value of the objective function due to the result of any change in the 

value, i.e., on the right-hand side of the constraint i. 
 

This can be formularized  assuming, 
 

z = objective function 
 

 

bi  = right-handed side of constraint i 

 
 

 
At optimal solution 

π∗  = standard price of constraint i; 
 

 

z∗  = v∗  = bT π∗   (Non-degenerate 
solution). 

 

Under this situation, the change in the value of z per change of bi  for small changes in bi  is 

obtained by partially differentiating  the objective function z, with respect to the righthanded 

side bi, which is further illustrated as 
lz 
∂bi 

= π∗
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∗  

3 

 
 
 

where, 
 

 

πi   = price associated with the righthanded side. 

It is this price, which was interpreted by Paul Sammelson as shadow price. 
 

 
 

1.3.6 Economic Interpretation 
 
You have often seen that shadow prices are being frequently  used in the economic interpretation 

of the data in linear programming. 
 

 
Example 1.3.8 To find the economic interpretation of shadow price under non-degeneracy, you 
will need to consider the linear programming to find out minimum of objective function z, x ≥  

0, which is as follows: 
 
 

− x1 −  2x2 −  3x3 + x4 = 

z x1 + 2x4 = 6 

 

x2 + 3x4 = 2 
 

x3 −  x4 = 1 

Now, to get an optimal basic solution, you can calculate the numericals; 
 

x1 = 6, x2, x3 = 1, x4 = 0, z = − 13. 

 

The optimal solution for the shadow price is: 
 

π◦ = − 1, π◦ = − 2, π◦ = − 3,
 

2 3 

 

as, z = b1π1 + b2π2 + b3π3,   where b = (6, 2, 1); 

it denotes, 
∂z 

∂bi 
= π1  = − 1, 

∂z 

∂b2 
= π2  = − 2, 

∂z 

∂b3 
= π3  = − 3. 

 

As these shadow prices and the changes take place in a non-degenerate situation  so, they 

do not impact the small changes of bi. Now, if this same situation  is repeated in a degenerate 

situation, you will have to replace b3  = 1 by b3  = 0; thereby ∂z/∂b+  = − 3, only if the change 
in b3 is positive.  However, you need to keep in mind that if b3 is negative, then x3 will drop out 

of the basis and x4 transcends as the basic and the shadow price may be illustrated  as; 

1 = − 1, π2 = − 2, π3 = ∂z/∂b3   = − 9
 

π◦ ◦ ◦ −
 

 

 

Here, you see that the interpretation  of the dual variables π, and dual objective function ν 

corresponds to column j of the primal problem.  So, the goal of linear programming (Simplex 

method) is to determine whether there is a basic feasibility for optimal solution, in the most 

cost-effective manner. 
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Thus, at iteration, t, the total cost of the objective function and this can be illustrated as: 
 

m 

ν = πT b = 
    

πibi 
i=1 

 

here, π =simplex multipliers which is associated with the basis B. 
 

So, you may say that the prices of the problem of the dual variables are selected in such 

a manner,  that there is a maximization  of the implicit indirect cost of the resources that are 

consumed by all the activities. Whenever any basic activity is conducted, it is done at a positive 

level and all non-basic activities are kept at a zero level. 
 

Hence, if the primal-dual variable system is utilized, then the slack variable is maintained at 

a positive level in an optimal soltuion and the corresponding dual variable is equal to zero. 
 

 
 

1.4   Conclusion 
 

 

In this unit you have learnt that the objective function  of a linear Programming  problem can 

be of two types, namely minimization or maximization.  The constraints could be of any of the 

three types “greater than or equal to (≥ )”, “less than or equal to (≤ )” or “equal to (=)”. You 
also learnt that a formulation  is superior if it has fewer decision variables and fewer constraints. 
For problems that have the same number of variables, the one with fewer constraints is superior, 

and for problems with the same number of constraints the one with fewer variables is superior. 

You also saw the non-negativity  restrictions. 
 

With this you have come to the end of Linear programming formulations. In the next unit, 

you shall consider how to solve linear programming problems. 
 

 
 

1.5   Summary 
 

 

In summary, you have 

 
(i) seen how to Formulate a linear programming problem. 

 

(ii)  known some terminologies  used in Linear Programming in terms of decision variables, 

objective functions, constraints and non-negativity condition 

(iii)  seen different types of objective functions i.e., minimization and maximization objectives. 

(iv) seen different  types of constraints, i.e., “greater than or equal to (≥ ),” ”equal to (=)” or 

“less than or equal to (≤ )” constraints. 
 

(v) also seen different types of variables. 

 
In the next unit you shall go through two more formulations to understand some more aspects 

of problem form which would be covered which have not been covered in these two examples. 
 

Having gone through this unit, you are able to 
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• Formulate linear programming model for a cutting stock problem. 
 

• Formulate  a linear programming model from game theory. 
 

• With the ideas learnt, formulate various other problems in linear programming. 
 

 
 

1.6 Tutor Marked Assignments (TMAs) 
 

 

Exercise 1.6.1 
 

 

1. Which of the following is true about a Linear Programming Problem? 
 

A. It has nonlinear Objectives. 

B. It has linear constraints. 

C. The variables could take any value. 
 

D. The number of constraints must be equal to the number of variables. 
 

2. The constraints of a linear programming  problem can be 
 

A. greater than or equal to, less than or equal to or equal to. 
 

B. a combination  of greater than or equal to, less than or equal to and equal to 
 

C. all of the above 
 

D. none of the above. 
 

3. A mathematical programming  which is not a linear programming  problem is best referred 

to as 
 

A. nonlinear programming 
 

B. integer programming C.  

transportation problem D.  

quadratic programming. 
 

4. A linear programming model must be made up of 
 

A. Linear objective function, Linear constraints and unrestricted decision variables. 

B. Linear objective function, Linear constraints and non-negative decision variables. 

C. Objective function, constraints and non-negative decision variables. 

D. Linear objective function, constraints and unrestricted decision variables. 
 

5. Any linear programming problem has 
 

A. a unique formulation. 
 

B. many formulations depending on how one looks at the problem. 

C. a maximum  of two formulations 
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D. a maximum  of three formulations 
 

6. Which of the following is not a major aim in Operation research 
 

A. Minimization of the cost 
 

B. Maximization of profit 
 

C. Minimization of resources. 

D. Wastage of raw materials. 

 

Exercise 1.6.2 
 
 

1. A merchant plans to sell two models of home computers at costs of N 250 and N 400, 

respectively. The N 250 model yields a profit of N 45 and the N 400 model yields a profit 

of N 50. The merchant estimates that the total monthly demand will not exceed 250 units. 

Formulate the LPP for the number of units of each model that should be stocked in order 

to maximize profit. Assume that the merchant does not want to invest more than N 70,000 

in computer inventory. 
 

2. A fruit grower has 150 acres of land available to raise two crops, A and B. It takes one 

day to trim an acre of crop A and two days to trim an acre of crop B, and there are 240 

days per year available for trimming. It takes 0.3 day to pick an acre of crop A and 0.1 day 

to pick an acre of crop B, and there are 30 days per year available for picking. Formulate 

the LPP for the number of acres of each fruit that should be planted to maximize profit, 

assuming that the profit is N 140 per acre for crop A and N 235 per acre for B. 
 

3. A grower  has 50 acres of land for which she plans to raise three crops. It costs N 200 

to produce an acre of carrots and the profit is N 60 per acre. It costs N 80 to produce an 

acre of celery and the profit is N 20 per acre. Finally, it costs N 140 to produce an acre 

of lettuce and the profit is N 30 per acre. Formulate the LPP for the number of acres of 

each crop she should plant in order to maximize her profit. Assume that her cost cannot 

exceed N 10,000. 
 

4. A fruit juice company makes two special drinks by blending apple and pineapple juices. 

The first drink  uses 30% apple juice and 70% pineapple,  while the second drink  uses 60% 

apple and 40% pineapple. There are 1000 litres of apple and 1500 litres of pineapple juice 

available. If the profit for the first drink is N 0.60 per litre and that for the second drink is 

N 0.50, Formulate the LPP for the number of litres of each drink that should be produced 

in order to maximize the profit. 
 

5. A manufacturer produces three models of bicycles. The time (in hours) required for 

assembling, painting, and packaging each model is as follows. 

The total time available for assembling, painting,  and packag- ing is 4006 hours, 2495 

hours and 1500 hours, respectively. The profit per unit for each model is N 45 (Model A), 

N 50 (Model B), and N 55 (Model C). Formulate the LPP for the number of each type 

that should be produced to obtain a maximum  profit? 
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Model A 

 
Model B 

 
Model C 

Assembling 2 2.5 3 

 

Painting 
 

15 
 

2 
 

1 

 

Packaging 
 

1 
 

0.75 
 

1.25 
 
 

 

6. Suppose in Exercise 5 the total time available for assembling, painting, and packaging is 

4000 hours, 2500 hours, and 1500 hours, respectively, and that the profit per unit is N 48 

(Model A), N50 (Model B), and N52 (Model C). Formulate the amount of each type that 

should be produced to obtain a maximum  profit? 
 

7. A company has budgeted a maximum  of N600,000 for advertising a certain product na- 

tionally. Each minute of television time costs N 60,000 and each one-page newspaper ad 

costs N 15,000. Each television ad is expected to be viewed by 15 million viewers, and 

each newspaper ad is expected to be seen by 3 million readers. The company’s market 

research department advises the company to use at most 90% of the advertising budget 

on television ads. Formulate an LPP for how the advertising budget could be allocated to 

maximize the total audience? 
 

8. Rework Exercise 7 assuming that each one-page newspaper ad costs N30,000. 
 

9. An investor has up to N 250,000 to invest in three types of investments. Type A pays 8% 

annually  and has a risk factor of 0. Type B pays 10% annually  and has a risk factor of 

0.06. Type C pays 14% annually  and has a risk factor of 0.10. To have a well-balanced 

portfolio, the investor imposes the following conditions.  The average risk factor should be 

no greater than 0.05. Moreover, at least one-fourth of the total portfolio is to be allocated 

to Type A investments and at least one-fourth of the portfolio is to be allocated to Type 

B investments. Formulate an LPP for how much that should be allocated to each type of 

investment to obtain a maximum  return. 
 

10. An investor has up to N 450,000 to invest in three types of investments. Type A pays 6% 

annually  and has a risk factor of 0. Type B pays 10% annually  and has a risk factor of 

0.06. Type C pays 12% annually  and has a risk factor of 0.08. To have a well-balanced 

portfolio, the investor imposes the following conditions.  The average risk factor should 

be no greater than 0.05. Moreover, at least one-half of the total portfolio  is to be allocated 

to Type A investments and at least one-fourth of the portfolio is to be allocated to Type 

B investments. Formulate an LPP for how much that should be allocated to each type of 

investment to obtain a maximum  return. 
 

11. An accounting firm has 900 hours of staff time and 100 hours of reviewing time available 

each week. The firm charges N 2000 for an audit and N 300 for a tax return.  Each audit 

requires 100 hours of staff time and 10 hours of review time, and each tax return requires 

12.5 hours of staff time and 2.5 hours of review time. Formulate an LPP for the number 

of audits and tax returns that will bring in a maximum  revenue. 
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12. The accounting firm in Exercise 11 raises its charge for an audit to N 2500. Formulate  an 

LPP for the number of audits and tax returns that will bring in a maximum  revenue. 
 

13. A company has three production  plants, each of which produces three different models of 

a particular product. The daily capacities (in thousands of units) of the three plants are as 

follows. 
 
 

Model 1 Model 2 Model 3 

Plant 1 8 4 8 
 

 

Plant 2 6 6 3 
 

 

Plant 3 12 4 8 
 
 
 

The total demand for Model 1 is 300,000 units, for Model 2 is 172,000 units, and for 

Model 3 is 249,500 units. Moreover, the daily operating cost for Plant 1 is N 55,000, for 

Plant 2 is N 60,000, and for Plant 3 is N 60,000. Formulate the LPP for how many days 

each plant can be operated in order to fill the total demand, and keep the operating cost at 

a minimum. 
 

14. The company in Exercise 13 has lowered the daily operating cost for Plant 3 to N 50,000. 

Formulate the LPP for the number of days each plant be operated in order to fill the total 

demand, and keep the operating cost at a minimum. 
 

15. A small petroleum company owns two refineries. Refinery 1 costs N 25,000 per day to 

operate, and it can produce 300 barrels of high-grade oil, 200 barrels of medium-grade 

oil, and 150 barrels of low-grade oil each day. Refinery 2 is newer and more modern. It 

costs N 30,000 per day to operate, and it can produce 300 barrels of high-grade oil, 250 

barrels of medium-grade oil, and 400 barrels of low-grade oil each day. The company has 

orders totalling 35,000 barrels of high-grade oil, 30,000 barrels of medium-grade oil, and 

40,000 barrels of low-grade oil. Formulate the LPP for the number of days the company 

must run each refinery to minimize its costs and still meet its orders. 
 

16. A steel company  has two mills.  Mill  1 costs N 70,000 per day to operate, and it can 

produce 400 tons of high-grade steel, 500 tons of medium-grade  steel, and 450 tons of 

low-grade steel each day. Mill 2 costs N 60,000 per day to operate, and it can produce 350 

tons of high-grade steel, 600 tons of medium-grade steel, and 400 tons of low-grade steel 

each day. The company has orders totalling 100,000 tons of high-grade steel, 150,000 

tons of medium-grade steel, and 124,500 tons of low-grade steel. Formulate the LPP for 

the number of days the company must run each mill to minimize its costs and still fill the 

orders. 
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UNIT 2 
 
 
 

GRAPHICAL AND ALGEBRAIC 

METHODS. 
 

 
 
 
 
 
 

2.1 Introduction 
 

 

In this unit, you will be introduced graphical and algebraic methods of solving linear program- 

ming problems 
 

 
 

2.2 Objectives 
 

 

At the end of this unit, you should be able to 
 

(i) solve linear programming problems using graphical method. 

(ii)  solve linear programming problems using algebraic method. 

 

 

2.3 Main Content 
 
 

2.3.1 Graphical Method 
 
Simple linear programming problems with two decision variables can be easily solved by graph- 

ical method. 
 

 

2.3.2 Procedure For Solving LPP By Graphical Method 
 

The steps involved  in graphical  method are as follows: 
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Step 1 Consider each inequality  constraint as an equation. 
 

Step 2 Plot each equation on the graph, as each will geometrically represent a straight line. 
 

Step 3 Mark the region. If the inequality  constraint corresponding to the line is ≤ , then the 

region below the line lying in the first quadrant (due to non-negativity of variables) is 

shaded.  For the inequality constraint with ≥  sign, the region above the line in the first 
quadrant is shaded. The points lying in the common region will satisfy all the constraints 

simultaneously. The common region thus obtained is called the “feasible region”. 
 

Step 4 Assign an arbitrary value, say zero, to the objective function. 
 

Step 5 Draw the straight line to represent the objective function  with the arbitrary value (i.e., a 

straight line through the origin). 
 

Step 6 Slide the objective function line till the extreme points of the feasible region. In the 

maximization  case, this line will stop farthest from the origin, passing through at least 

one corner of the feasible region. In the minimization case, this line will stop nearest to 

the origin, passing through at least one corner of the feasible region. In the minimization 

case, this line will stop nearest to the origin, passing through at least one corner of the 

feasible region. 
 

Step 7 Find the co-ordinates of the extreme points selected in step 6 and find the maximum or 

minimum value of z. 
 

Note As the optimal values occur at the corner points of the feasible region, it is enough to 

calculate the value of the objective function of the corner points of the feasible region 

and select the one that gives the optimal  solution. That is, in the case of maximization 

problem, the optimal point corresponds to the corner point at which has the objective 

function as maximum  value,  and in the case of minimization, the optimal solution is 

the corner point which gives the objective function the minimum value for the objective 

function. 
 

Example 2.3.1 Solve the following LPP by graphical method 
 

Minimize z = 20x1 + 10x2 

 

Subject to.  x1 + 2x2 ≤  40 
 

3x1 + x2 ≥  30 
 

4x1 + 3x2 ≥  60 
 

with x1, x2 ≥  0 

☞ Solution.  Replace all the inequalities of the constraints by equation 

 
x1 + 2x2 = 40 passes through  (0, 20)(40, 0) 

 

3x1 + x2 passes through  (0, 30)(10, 0) 
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4x1 + 3x2 = 60 passes through  (0, 20)(15, 0) 
 

Plot the graph of each on the same graph 
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Figure 2.1: 

The feasible region is ABCD. 

C and D are points of intersection of lines. 
 

C intersects x1 + 2x2 = 40, and 3x1 + x2 = 30 
 

and D intersects 4x1 + 3x2 = 60, and x1 + x2 = 30. Thus C = (4, 18) and D = (6, 12) 
 

Corner points Value of z = 20x1 + 10x2 

 
A(15, 0) 300 

 

 

B(40, 0) 800 
 

 

C (4, 18) 260 
 

 

D(6, 12) 240 (Minimum  value) 
 

Therefore the minimum value of z occurs at D(6,12). Hence, the optimal solution is x1   = 

6, x2 = 12. ✍  
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Example 2.3.2 Use graphical method to solve the LPP. 

 
Maximize  z = 6x1 + 4x2 

 

Subject to − 2x1 + x2 ≤  2 
 

x1 −  x2 ≤  2 
 

3x1 + 2x2 ≤  9 
 

with x1, x2 ≥  0. 

☞ Solution. Replacing the inequality by equality 

− 2x1 + x2 = 2 passes through (0, 2), (− 1, 0) 
 

x1 −  x2 = 2 passes through (0, − 2), (2, 0) 

 
3x1 + 2x2 = 9 passes through (0, 4.5), (3, 0) 
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Figure 2.2: 
 

Feasible region is given by ABC. 
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X 

 
 
 

Corner points Value of z = 6x1 + 4x2 

 
O(0, 0) 0 

 

 

A(2, 0) 12 
 

 

B(13/5,3/5) 18 (Maximum value) 

C(5/7, 24/7) 18 (Maximum value) 
 

 

The maximum value of z is attained at B(13/5, 3/5) or at C (5/7, 24/7) 

Therefore optimal solution is x1 = 13/5, x2 = 3/5 or x1 = 5/7, x2 = 24/7. ✍  
 

Example 2.3.3 Use graphical method to solve the LPP. 
 

 
 

Maximize  3x1 + 2x2 

 
 

 
 
 
 
 
 
 
 
 
 

☞ Solution. 

Subject to 5x1 + x2 ≥  10 
 

x1 + x2 ≥  6 
 

x1 + 4x2 ≥  12 
 

with x1, x2 ≥  0 
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Figure 2.3: 
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Corner points Value of z = 3x1 + 2x2 

 
A(0, 10) 20 

 

 

B(1, 5) 13 (Minimum  value) 
 

 

C (4, 2) 16 
 

 

D(12, 0) 36 
 

 

Since the minimum value is attained at B(1,5) the optimum solution is x1 = 1, x2 = 5. 
 

Note: In the above problem if the objective function is maximization, then the solution is 
unbounded,  as maximum value occurs at infinity. ✍  

 

 
 

2.3.3 Some More Cases 
 
There are some linear programming problems which may have, 

 

 

(i) a unique optimal solution (ii) an infinite number of optimal solutions. 

(iii) an unbounded solution (iv) no solution. 

The following examples will illustrate  these cases. 
 
Example 2.3.4 Solve the LPP by graphical method. 

 
Maximize z = 100x1 + 40x2 

 

Subject to.  5x1 + 2x2 ≤  1, 000 

3x1 + 2x2 ≤  900 
x1 + 2x2 ≤  500 

with x1, x2 ≥  0 

☞ Solution.  The solution  space is given by the feasible region OABC. 
 

 

Corner points   Value of z = 100x1 + 40x2 

 
O(0, 0)             0 

 

 

A(200, 0)         20, 000 (Maximum  value of z) 

B(125, 187.5)  20, 000 (Maximum  value of z) 

C (0, 250)         10, 000 
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Figure 2.4: 
 
 

Therefore the maximum value of z occurs at two vertices A and B. Since there are infinite 

number of points on the line joining A and B is gives the same maximum  value of z 

Thus, there are infinite number of optimal solutions for the LPP.  ✍  
 

Example 2.3.5 Solve the following LPP 
 

 
 

Maximize  z = 3x1 + 2x2 

 

Subject to x1 −  x2 ≥  1 
 

x1 + x2 ≥  3 
 

with x1, x2 ≥  0 
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☞ Solution. 
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Figure 2.5: 
 

 
The solution  space is unbounded. The value of the objective function at the vertices A and 

B are z(A) = 6, z(B) = 6. But there exists points in the convex region for which the value of 

the objective function is more than 8. 
 

In fact, the maximum value of z occurs at infinity. Hency, the problem has an unbounded 
solution.                                                                                                                       ✍  

 

No feasible solution 
 

When there is no feasible region formed by the constraints in conjuction with non-negativity 

conditions, then no solution to the LPP exists. 
 

Example 2.3.6 Solve the following LPP. 

 
Maximize  z = x1 + x2 

 

Subject to x1 + x2 ≤  1 
 

− 3x1 + x2 ≥  3 
 

with x1, x2 ≥  0 
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. 

 
 
 

☞ Solution. There’s being no point (x1, x2) common to both the shaded regions,  you 
could not find a feasible region for this problem. So the problem cannot be solved. Hence, the 

problem has no solution. 
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Figure 2.6: 
 

✍  
 

 
 

2.3.4 The Algebraic Method 
 
Before you go into the algebraic method in detail, here are some important terminologies  that 

will be useful. 
 

Definition 2.3.1 (Slack Variables) Consider the problem 
 

Maximize z = c1x1 + c2x2 + · · · + cnxn 

Subject to: a11x1 + a12x2 + · · · + a1nxn  ≤  b1 

a21x1 + a22x2 + · · · + a2nxn  ≤  b2 

. 

am1x1 + am2x2 + · · · + amnxn  ≤  bm 

with x1, x2, . . . , xm  ≥  0 
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In this case the constraint  set is determined entirely by linear inequalities. The problem may be 

alternatively expressed as 

Maximize z = c1x1 + c2x2 + · · · + cnxn 

Subject to: a11x1 + a12x2 + · · · + a1nxn + xn+1 = b1 

a21x1 + a22x2 + · · · + a2nxn + xn+2 = b2 
 

. 

am1x1 + am2x2 + · · · + amnxn  + xn+m = bm 

with x1, x2, . . . , xm  ≥  0 

xn+1, xn+2, . . . , xn+m ≥  0 
 

the new positive variables xn+i  introduced to convert the inequalities to equalities are called 

slack variables (or more loosely, slacks) 

 
By considering the problem as one having  n+m unknowns x1, x2, . . . , xn, xn+1, xn+2, . . . , xn+m, 

the problem takes the standard form. The m × (n + m) matrix that now describes the linear 
equality constraints is of the special form [A, I ] (that is, its columns can be partitioned into two 

sets; the first n columns make up the original A matrix and the last m columns make up an 

m × m matrix). 
 

Definition 2.3.2 (Surplus variables). If the linear inequalities of Definition 2.3.1 are reversed 

so that a typical inequality is 
 

ai1x1 + ai2x2 + · · · + ainxn ≥  bi, 
 

it is clear that this is equivalent to 
 

ai1x1 + ai2x2 + · · · + ainxn −  xn+i  = bi 

with xn+i  ≥  0. Variables,  such as xn+i, adjoined in this fashion to convert a "greater than or 

equal to" inequality to equality  are called surplus variables. 
 
It is should be clear that by adjoining  slack and surplus variables, any set of linear inequalities 

can be converted to standard form if the unknown variables are restricted to be nonnegative. 
 

We now describe in detail how to solve a LPP programming problem using the algebraic 

method. 
 

 

(i) Consider this example and illustrate the algebraic method. 
 

Maximize  z = 6x1 + 5x2 

 
subject to x1 + x2 ≤  5 

 

3x1 + 2x2 ≤  12 
 

with x1, x2 ≥  0 

 

 

(2.1) 
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(ii)  Assuming that you know how to solve linear equations, you can convert the inequalities 

into equations by adding Slack variables x3 and x2 respectively. 
 

• These two slack variables represents the amount of resources A and B respectively that 

are not utilized during production, and they do not contribute to the objective function. 

So the linear programming problem becomes 
 

Maximize z = 6x1 + 5x2 + 0x3 + 0x4 

 
Subject to:  x1 + x2 + x3 = 5 

 
3x1 + 2x2 + x4 = 12 

 

with x1, x2, x3, x4 ≥  0 

 

 

(2.2) 

 

Observe that x3  and x4  must be greater than or equal to zero. The restriction of these 

new variables which is consistent with the non-negativity  requirement of linear programming 
problems makes the new problem very important to us. You can now proceed to solve problem 

2.2. It is Very important to note that solving problem 2.2 is the same as solving  problem 2.1. 
 

 

(iii)  With the addition of slack variables, you now have four variables and two equations. With 

the two equations, you can solve only for two variables at a time. 
 

(iv) You have to fix any two variables to some arbitrary value and can solve for the remaining 

two variables. 
 

(v) The two variables that you fix arbitrary  values can be chosen in 4C2 = 6ways. 
 

(vi) In each of these six combinations, you can actually fix the variables to any value resulting 

in infinite number of solutions. 
 

– However, you can consider fixing the arbitrary values to zero and hence consider 

only six distinct possible solutions. 
 

(vii)  The variables that you fix to zero are called non-basic variables and the variables that 

you solved for are called basic variables. 
 

– These solutions obtained by fixing the non basic variables to zero are called basic 

solutions. 
 

(viii)  Among the six basic solutions obtained, you observe that four are feasible. 
 

– Those basic solutions  that are feasible (i.e., satisfy all constraints and the non- 

negativity restrictions) are called basic feasible solutions 
 

(ix) The remaining two (solutions 3 and 4) have negative values for some variables and are 

therefore infeasible. 
 

– You should be interested only in feasible solutions and therefore do not evaluate the 

objective function for infeasible solutions. 
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For this problem, the six basic solutions are: 
 

 

(i) Variables x1 and x2 are non-basic and set to zero. Substituting you get x3  = 5, x4  = 12 

and the value of the objective function z = 0. 
 

(ii)  Variables x1 and x3 are non-basic and set to zero. Substituting, you solve for x2 = 5 and 

2x2 + x4 = 12 and get x2 = 5, x4 = 2 and the value of the objective function z = 25. 

 
(iii)  Variables x1 and x4 are non-basic and set to zero. Substituting,  you solve for x2 + x3 = 5 

and 2x2  = 12 which gives you x2  = 6, x3  = − 1. Here you don’t need to evaluate the 
value of the objective  function  because, the value x3  = − 1 is not a feasible  solution, 

where the objective function is evaluated only at feasible solutions. 
 

(iv) Variables x2 and x4 are non-basic and set to zero. Substituting,  you solve for x1 + x3 = 5 

and 3x1  = 12 which gives you x1  = 4, x3  = 1 and the value of the objective function 

z = 24. 
 

(v) Variables x2 and x3 are non-basic and set to zero. Substituting, you solve for x1 = 5 and 

3x1 + x4 = 12 which gives you x1 = 5, x3 = − 3, a nonfeasible solution so that you don’t 
need to compute the value of the objective function. 

 

(iv) Variables x3 and x4 are non-basic and set to zero. Substituting,  you solve for x1 + x2 = 5 

and 3x1 + 2x2  = 12, which gives you x1  = 2, x3  = 3 and the value of the objective 

function z = 27. 
 

 

Since the 6th problem has the maximum  objective function  value z = 27, then, x1 = 2, x2 = 3, 

x3 = x4 = 0 is the optimum basic solutions. 
 

Among these six basic solutions, you will observe that four are feasible. Those basic 

solutions that are feasible (i.e., satisfy all the constraints)  are called basic feasible solutions. 

The remaining two (solutions 3 and 5) have negative values for some variables and therefore 

infeasible. You are only interested only in feasible solutions and therefore do not evaluate the 

objective function for infeasible solutions. 

Consider a non basic solution  from the sixth solution. Also assume that variables x3  and x4 

are fixed to arbitrary  values (other than zero). You have to fix them at non-negative values, 
otherwise they will be infeasible.  Fix x3  = 1 and x4  = 1 On substitution you get x1 + x2  = 4 

and 3x1 + 2x2  = 11 and get x1  = 3, x2  = 3 and value of the objective function z = 23. 

This non-basic feasible solution is clearly inferior to the solution x1  = 2, x2  = 3 obtained  as a 

basic feasible solution by fixing x3 and x4 to zero. The solution (3,1) is an interior point in the 

feasible region while the basic feasible solution (2,3) is a corner point. And you have seen that 
it is enough only to evaluate corner points. 

 

 
 

2.3.5   Relationship between the Graphical and the Algebraic methods. 
 
Having solved this problem, you can observe that; 

 

 

(i) the four basic feasible solutions correspond to the four corner points. 
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(ii)  Every non-basic solution that is feasible corresponds to an interior point in the feasible 

region and every basic feasible solution corresponds to a corner point solution. 
 

(iii)  In the algebraic method, it is enough only to evaluate the basic solutions, find out the 

feasible ones and evaluate the objective function  to obtain the optimal solution. 
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Figure 2.7: 
 
 
 

Summary of the Algebraic Method 

 
In general, the algebraic approach for solving linear programming problems follows the pattern 

below 
 

(i) Convert the inequalities into equations by adding slack variables. 

(ii)  Assuming that there are m equations and n variables, set n −  m (non-basic) variables to 

zero and evaluate the solution for the remaining m basic variables. Evaluate the objective 
function if the basic solution is feasible. 

 

(iii)  Perform Step 2 for all the nCm  combinations of basic variables. 
 

(iv) Identify the optimum  solution  as the one with the maximum(minimum)  value of the ob- 

jective function. 
 

 
Advantages of the Algebraic Method 
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You saw that the graphical method is very good in solving linear programming problem with 

only two variables, but the algebraic method can be used to solve for any number of variables 

and any number of constraints provided that you can solve the system of linear equations ob- 

tained. 
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Disadvantages of the Algebraic Method 

 
The distinct disadvantages of the algebraic method are 

 

 

(i) You will end up evaluating a total of nCm  basic solutions, which is a very large number 

of solutions to evaluate before arriving  at the optimal. 
 

(ii)  Among  these large solutions you have, there are infeasible solutions that are not neces- 

sary. 
 

(iii)  Also you would expect that the solutions to be better and better as you progress, but this 

is not the case as it does not follow a specific pattern. For example, in the just concluded 

problem, you obtained  a value  z = 25 and afterwards  got z = 24 before arriving at 

z = 27. If you had not considered all the points before concluding, you would have not 

gotten the right answer. 
 

 
 

2.4   Conclusion 
 

 

In this unit, you studied the graphical and the algebraic method of solving a linear programming 

problem. You have also seen there limitations. With these limitations of the algebraic method, 

it becomes imperative  to consider  a method  that is better than the algebraic method and the 

graphical method. This method 
 

 

- would not evaluate infeasible solutions. 
 

- should progressively give you better solutions. 
 

- should be able to terminate  as soon as it has found the optimum.  It should not put you in 

a situation where you have evaluated the optimum but still have to evaluate the rest before 

you would realize that you have arrived at an optimum solution earlier. 
 

 

A method that can do all these would add more value to the algebraic method that you have 

seen. Obviously,  that method would require more computation and extra effort. This method is 

called the simplex method which is essentially an extension of the algebraic method and exactly 

addresses the three concerns you have listed above. Simplex method is the most important tool 

that had been developed to solve linear programming problems. This shall be discussed in detail 

in the next unit. 
 

 
 

2.5   Summary 
 

 

Having gone through this unit, you are now able to; 
 

 

(i) Solve linear programming problems using graphical methods 
 

(ii)  solve linear programming problems using algebraic methods. 
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(iii)  A set of values x1, x2, . . . , xn  that satisfies (1.2) of LPP is called its solution 
 

(iv) Any feasible solution to LPP, which satisfies the non-negativity restriction (1.3) is called 

its feasible solution. 
 

(v) Any feasible solution, which optimizes (minimizes or maximizes) the objective function 

(1.1) of the LPP is called optimum solution. 
 

 
(vi) Given a system  of m linear equations with n variables (m < n), any solution that is 

obtained by solving m variables keeping the remaining n −  m variables zero is called a 

basic solution. Such m variables are called basic variables and the remainiing  are called 

non-basic variables. 

The number of basic solutions ≤  
n!

 
m!(n −  

 

 

m)! 
 

(vii)  A basic feasible solution is a basic solution  which also satisfies (1.3), that is all basic 

variables are non-negative. Basic feasible solutions are of two types: 
 

(a) Non-degenerate: A non-degenerate basic feasible solution is a basic feasible solu- 
tion that has exactly m positive xi’s(i = 1, . . . , m) i.e., None of the basic variables 

are zero. 
 

(b) Degenerate: A basic feasible solution is said to be degenerate if one or more basic 

variables are zero. 
 

(viii)  If the value of the objective function can be increased or decreased indefinitely, such 

solutions are called unbounded solutions. 
 

(ix) A general LPP can be classified as canonical or standard forms. 
 

(a) In standard form, irrespective of the objective function, namely, maximize or min- 

imize, all the constraints are expressed as equations.  Moreover  RHS of each con- 

straint and all variables are non-negative.  i.e., A LPP that can be expressed in the 

matrix form 
 

(min  or  max) z = c1x1 + c2x2 + · · · + cnxn 

Subject to: Ax ≥  b 

x ≥  0 

 
 
 

(2.3) 

is said to be in standard form. Where bi  ≥  0,  i = 1, . . . m, A is an m × n matrix, 
x = (x1, . . . , xn)t and c = (c1, . . . , cn) 

The Standard form is characterised by the following 

- The objective function is of maximization type. 

All constraints  are expressed as equations. 

- Right hand side of each constraint is non-negative. 

- All variables are non-negative. 
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1 2 

 
 
 
 

(b) In canonical form, if the objective function is of maximization, all the constraints 
other than non-negative conditions are ’≤ ’ type. If the objective function is of min- 
imization, all the constraints other than non-negative condition are ’≥ ’ type. 

The Canonical form is characterised by the following; 

- The objective function is of maximization type. 

All constraints are (≤ ) type. 

- All variables xi(i = 1, . . . , n) are non-negative. 
 

Note: 
 

(i) Minimization of a function  z is equivalent to maximization of the negative expres- 
sion of this function, i.e., min z = −  max(− z). 

(ii)  An inequality reverses when multiplied by (-1). 

(iii)  Suppose you have the constraint equation, 

a11x1 + a12x2 + · · · + a1nxn  = b1 

 

This equation can be replaced by two weak inequalities in opposite directions, 

a11x1 + a12x2 + · · · + a1nxn  ≤  b1   and a11x1 + a12x2 + · · · + a1nxn  ≥  b1 

 

(iv) If a variable  is unrestricted in sign, then it can be expressed as a difference  of two 

non-negative variables, i.e., if x1 is unrestricted in sign, then x1  = xt
 −  xtt, where 

xt tt
 

1, x1  ≥  0. 

(v) In standard form, all the constraints  are expressed in equation, which is possible 

by introducing some additional variables called ’slack variables’ and ’surplus vari- 

ables’ so that a system of simultaneous linear equations is obtained. The necessary 

transformation will be made to ensure that bi  ≥  0. 

– If the constraints of a general LPP be 
 

n 

 
 

j=1 

 

aij xj  ≤  bi    (i = 1, 2, . . . , m). 

 
 

Then the non-negative variable xn+i(i  = 1, . . . m), which are introduced  to 
convert the inequalities (≤ ) to the equalities, i.e., 

 
n 

 
 

j=1 

aij xj  + xn+i  = bi   (i = 1, . . . , m) 

 

are called slack variables. 
 

Slack variables are also defined as the non-negative variables that are added in 
the LHS of the constraint to convert the inequality (≤ ) into an equation. 

– If the constraints of a general LPP be 
 

n 

j=1 

 

aij xj  ≥  bi    (i = 1, 2, . . . , m). 
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Then the non-negative variable xn+i(i  = 1, . . . m), which are introduced  to 
convert the inequalities (≤ ) to the equalities, i.e., 

 

n 

 
 

j=1 

 

aij xj  −  xn+i  = bi   (i = 1, . . . , m) 

 

are called surplus variables. 
 

Surplus variables are also defined as the non-negative variables that are removed 
from the LHS of the constraint to convert the inequality (≥ ) into an equation. 

 

 
 

2.6 Tutor Marked Assignments(TMAs) 
 

 

Exercise 2.6.1 
 
 

1. Consider the following problem. 
 

Maximize  2x1 + 5x2 

 

Subject to x1 + 2x2 ≤  16 
 

2x1 + x2 ≤  12 
 

with x1, x2 ≥  0 

 

(a) Sketch the feasible region in the (x1, x2) space. 

(b) Identify the regions in the (x1, x2) space where the slack variables x3  and x4, you 

would introduced, are equal to zero. 
 

(c) Solve the problem using graphical method. 
 

2. Consider the following problem. 
 

Maximize  2x1 + 3x2 

 

Subject to x1 + x2 ≤  2 
 

4x1 + 6x2 ≤  9 
 

with x1, x2 ≥  0 

 

(a) Sketch the feasible region. 
 

(b) Find two alternative optimal extreme (corner) points. 

(c) Find an infinite class of optimal solutions. 
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3. Consider the following problem. 
 

Maximize  3x1 + x2 

 

Subject to − x1 + 2x2 ≤  6 
 

x2 ≤  4 

with x1, x2 ≥  0 
 

(a) Sketch the feasible region. 
 

(b) Verify that the problem has an unbounded optimal solution. 

Solve the following problems by graphical method. 

4. Maximize z = x1 −  3x2 

 

Subject to  x1 + x2 ≤  300 
 

x1 −  2x2 ≤  200 
 

2x1 + x2 ≤  100 
 

x2 ≤  200 
 

with x1, x2 ≥  0 

 
[Ans max z = 205, x1 = 200, x2 = 0] 

 
5. Maximize  z = 5x + 8y 

 

Subject to  x + y ≤  36 
 

x + 2y ≤  20 
 

3x + 4y ≤  42 
 

with x, y ≥  0 

 
[Ans max z = 82, x = 2, y = 9] 

 

 

6. Maximize z = x + 3y 
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Subject to  x + y ≤  300 
 

x −  2y ≤  200 
 

x + y ≤  100 
 

y ≥  200 
 

with x, y ≥  0 

 

[Ans max z = 700, x = 100, y = 200] 

 
7. Egg contains 6 units of vitamin A and 7 units of vitamin B per gram and costs N12 per 

gram. Milk contains 8 units of vitamin A and 12 units of vitamin B per gram and costs 

N20 per gram. The daily minimum requirement of vitamin A and vitamin B are 100 units 

and 120 units respectively. Find the optimal product mix. 

 
[min z = 205, x1 = 5, x2 = 1.25] 

 
8. Solve graphically the following LPP. 

 
 

Maximize z = 20x1 + 10x2 

 

Subject to  x1 + 2x2 ≤  40 
 

3x1 + x2 ≥  30 
 

4x1 + 3x2 ≥  60 
 

with          x1, x2 ≥  0 

 

[Ans min z = 240, x1 = 6, x2 = 12] 

 
9. A company produces two different products, A and B and makes a profit of N 40 and N 

30 per unit respectively.  The production  process has a capacity of 30,000 man-hours. It 

takes 3 hours to produce one unit of A and one hour to produce one unit of B. The market 

survey indicates that the maximum number of units of product A that can be sold is 8,000 

and those of B is 12,000 Formulate the problem and solve it by graphical method to get 

maximum profit. 
 

[Ans max z = 40x1 + 30x2, subject to 3x1 + x2 ≤  30, 000; x1 ≤  8, 000; x2 ≤  

12, 000, x1, x2 ≥  0  (min z = 240, x1 = 6, x2 = 12)] 
 

10. Solve the following LPP, graphically. 

Maximize z = 3x −  2y 
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Subject to  − 2x + 3y ≤  9 
 

x −  5y ≥  − 20 
 

x, y ≥  0 

 

[Ans max z = 700, x = 100, y = 200] 

 
11. Solve graphically the following LPP. 

 
 

Minimize z = − 6x1 −  4x2 

 

Subject to  2x1 + 3x2 ≥  30 
 

3x1 + x2 ≤  24 
 

x1 + x2 ≥  3 
 

with x1, x2 ≥  0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

[AnsInfinite number of solutions min z = − 48] 
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UNIT 3 
 
 
 

SIMPLEX ALGORITHM (ALGEBRAIC 

AND TABULAR FORMS) 
 

 
 
 
 
 
 

3.1   Introduction 
 

 

In this unit, you shall be looking at the Simplex Algorithm to solve Linear programming prob- 

lems. In the last unit, you started the topic in Linear programming Solutions by looking at the 

graphical and algebraic methods.  And you said that the algebraic method should have three 

important characteristics, 
 

 

• it should not evaluate any infeasible solution. 
 

• it should be capable of given progressively better basic feasible solutions 
 

• it should be able to identify the optimum and terminate when it is reached. 
 

 

But you discovered that the algebraic method lack this important characteristics. You are now 

going to see the Simplex  method which possesses these three important characteristics. You 

will first of consider the algebraic and the tabular forms of the simplex method. 
 

 
 

3.2   Objectives 
 

 

At the end of this unit, you should be able to 
 

 

• Solve linear programming problem using the algebraic Simplex method 
 

• Solve linear programming problem using the Taublar form of the Simplex method. 
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3.3 Simplex Algorithm 
 
 

3.3.1 Algebraic Simplex Method 
 
To begin with, here is a simple example. 

 
Example 3.3.1 Consider the product mix problem. 

 

Maximize z = 6x1 + 5x2 

 

Subject to  x1 + x2 ≤  5 
 

3x1 + 2x2 ≤  12 
 

with x1, x2 ≥  0 

 
 
 

 
(3.1) 

 
As in the last unit, you should first convert the inequalities to equations as shown below 

 

Maximize z = 6x1 + 5x2 + 0x3 + 0x4 

 
Subject to:  x1 + x2 + x3 = 5 

 
3x1 + 2x2 + x4 = 12 

 

 

(3.2) 

 
with x1, x2, x3, x4 ≥  0 

 

Note that slack variables have zero contributions  to the objective function, therefore, solving 

(3.1) is the same as solving  (3.2). 
 

One important thing about the Simplex method is that since it should not evaluate any in- 

feasible solution, you would need to begin to solve with a basic feasible solution, and to do this, 

you will fix x1 = 0 and x2 = 0, so that x3 = 5 and x4 = 12. 
 

Remark 3.3.1 In fact one of the important things in any linear programming problem is that 

the constraints should not have a negative value on the right hand side. If the constraint has 

a negative value on the right hand side, then you will need to multiply the constraint by -1 to 

make it non-negative, although the sign of the inequality  may be reversed. So you would make 

an assumption that all linear programming problem that you solve, the constraint should have a 

non-negative value on the right-hand side. It can have a zero but it should not have a negative. 

 
Since each of these constraints  have a non-negative  value on the right hand side, and each of 
the slack variables appears in only one of the equations, it is now very easy to fix the rest of the 

variables to zero and have a starting solution of x3  = 5 and x4  = 12 which is basic feasible. It 

is basic because the variables x1 and x2 are fixed to zero, and feasible because x3 and x4, each 

appear only in one of the constraints and are non-negative. 
 

Thus the first basic feasible solution (or the starting solution) for this problem is x1 = x2 = 

0, x3 = 5 and x4 = 12. 
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Iteration 1 
 
 
Having identified the basic variables, i.e. x3 and x4, write this basic variables and the objective 
function in terms of the non-basic variables x1  and x2, as follows, x3  = 5 −  x1 −  x2, x4  = 

12 −  3x1 −  2x2 and z = 6x1 + 5x2. If you set x1  = 0 and x2  = 0, then x3  = 5, x4  = 12 and 
z = 0. 

 

But you are interested in maximizing the objective function z which right now is zero, with 

x1  = x2  = 0 and are non-basic.   To increase z, you have to increase x1  and x2, since both 

have strictly positive coefficients. In Simplex method, the idea is that you should increase one 

variable at a time. In other words, you will either increase x1 or x2 to maximize z. But since, 

the coefficient of x1, 6 is greater than the coefficient of x2, it is better to increase x1 because the 

rate of increase would be higher. 
 

Presently, x1  = 0. There will be a limit the value x1  can take because as you increase x1, 

you will realize that x3 and x4 will decrease. For instance, if x1  = 1, x2  = 0 still, then x3  = 4 

and x4 = 9. Thus, as x1 increases, x3 and x4 start reducing to zero. Therefore you will increase 

to a point where one of them becomes zero, otherwise increasing x1  beyond that will end up 

making either x3 or x4 negative, which would violate the non-negativity restriction, and you do 

not want it. 
 

Now looking at the equations 
 
 
 
 

and 

x3 = 5 −  x1 −  x2  (3.3) 

 
 

x4 = 12 −  3x1 −  2x2 (3.4) 

The highest value x1 can take in (3.3) for x3 to remain non-negative is 5 and the highest it can 

take in (3.4) for x4 to remain non-negative is 4. So the highest value x1 can take is min(5, 4) = 

4. A further increase in x1  would result to a negative value of x4  and would violate the non- 

negativity  restriction.  Hence equation (3.4) becomes the binding equation which determines the 

highest value x1 can take. This leads us to the second iteration. 
 

 
Iteration 2. 

 

Rewriting equation (3.4) for x1, you will have and substituting  in the rest give you x1  = 4 −  
2  1  2  1  1  1  2  1

 

3 
x2 −  

3 
x4,  x3 = 5 −  (4 −  

3 
x2 −  

3 
x4) −  x2 = 1 −  

3 
x2 + 

3 
x4 and z = 6(4 −  

3 
x2 −  

3 
x4) + 5x2 

= 
24 + x2 −  2x4. In this iteration, x1  and x3  are basic, while x2  and x4  are non-basic.  Letting 
x2 = x4 = 0, then x1 = 4, x3 = 1 and z = 24. 

 

This is another basic feasible solution that you have obtained. It is basic because x2 = x4 = 

0 and feasible because the value of the variables are non-negative. 

Remember your objective is to increase z = 24 + x2 −  2x4 further. This you can do by 

either increasing x2  or decreasing x4  (x4  has a negative coefficient).   But x4  is non-basic and 

already at zero, so you cannot decrease x4 further, otherwise it will violate the non-negativity 

restriction. Also x2 is non-basic and is zero, So you will increase x2 in other to increase z. 
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Consider the equations 
2 1 

 
 

and 

x1 = 4 −  
3 

x2 −  
3 

x4  (3.5)
 

1 1 
x3 = 1 −  

3 
x2 + 

3 
x4  (3.6)

 

you will observe that the highest value x2 can take in (3.5) so that x1 remains feasible is x2 = 6 

and the highest value x2 can take in (3.6) so that x3 remains feasible is x2  = 3. Thus, for both 

variables x1 and x3 to remain feasible, the highest value x2 can take is min(6, 3) = 3 A further 

increase for the value of x2 beyond 3 makes x3 negative and would violate the non-negativity 

restriction.  Hence equation (3.6) becomes the binding  equation which determines the highest 

value x2 can take. This leads us to the third iteration. 
 

 
Iteration 3 

 

Rewriting equation (3.6) for x1, you will have and substituting  in the rest give you x2  = 3 −  
3x3 + x4,   x1 = 4 −  2 (3 −  3x3 + x4) −  1 x4 = 2 + 3x3 −  x4 and z = 24 + (3 −  3x3 + x4) −  2x4 
= 

3 3 

27 −  3x2 −  x4. In this iteration, x1  and x2  are basic, while x3  and x4  are non-basic.  Letting 
x3 = x4 = 0, then x1 = 2, x2 = 3 and z = 27. 

Now, you can check whether you can increase z = 27 −  3x3 −  x4  further. To increase z 
further,  you can either decrease x3 or x4 because both have negative coefficients.  But it is not 
possible to decrease any of x3  or x4  because both are already zero and decreasing them will 
make them infeasible. So you cannot proceed any further from this point to try and increase z 

further. Hence you will stop here and conclude that the best solution which is x1  = 2, x2  = 3 

and z = 27 have been obtained. 
 

You will notice that this is the same solution you obtained with the graphical and the alge- 

braic method. 
 

A close examination of this method shows you that you have done exactly the three impor- 

tant things you want it to do, which are 

 
• it did not evaluate any infeasible  solution  because you put extra effort to determine the 

limiting value the entering variables can take so that the non-negativity  restriction  is not 

violated. 
 

• it evaluated progressively  better basic feasible solutions,  because at each time you were 

only trying to increase the objective function for the maximization problem. 
 

• it terminated immediately the optimum solution is reached. 

This is the simplex method represented in algebraic form. 

 

3.3.2 Simplex Method-Tabular Form 
 
Here you will see the Simplex  method represented in tabular form. The simplex method is 

carried out by performing elementary row operations on a matrix you would call the simplex 
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tableau. This tableau consists of the augumented matrix corresponding to the constraints eqau- 

ations together with the coefficients of the objective function written in the form 

 

− c1x1 −  c2x2 −  · · · −  cnxn + (0)s1 + (0)s1 + · · · + (0)sm + z = 

0 

In the tableau, it is customary to omit the coefficient of z. For instance, the simplex tableau for 

the linear programming problem 
 

 

Maximize z = 4x1 + 6x2 

 
Subject to:  − x1 + x2 ≤  11 

 

x1 + x2 ≤  27 
 

2x1 + 5x2 ≤  90 

 

 

(3.7) 

By the addition of slack variables x3, x4  and x5  to the constraints, you can rewrite the above 

problem  as 
 

 

Maximize z = 4x1 + 6x2 + 0x3 + 0x4 + 0x5 

 
Subject to:  − x1 + x2 + x3 = 11 

 
x1 + x2 + x4 = 27 

 

 

(3.8) 

 
2x1 + 5x2 + x5 = 90 

Since slack variables have zero contributions to the objective function, solving (3.7) is the same 

as solving  (3.8) 
 

 
Initial Simplex tableau 

 
The initial simplex tableau for this problem is as follows 

 

 
B x 1 x2 x 3 x 

4
 x

5
 x 

B
 

x3 

 
x4 

 
x5 

-1 

 
1 

 
2 

1 

 
1 

 
5 

1 

 
0 

 
0 

0 

 
1 

 
0 

0 

 
0 

 
1 

11 

 
27 

 
90 

z j −c j -4 -6 0 0 0 0 
 

 
 

Table 3.1: 
 

For this initial simplex tableau, the basic variables are x3, x4 and x5, and the non-basic 

variables (which have a value of zero) are x1  and x2. Hence, from the two columns that are 

farthest to the right,  you see that the current solution is 
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x1 = 0,  x2 = 0, x3 = 11, x4 = 27, and x5 = 90 
 

 

This solution is a basic feasible solution  and is often written as 
 

(x1, x2, x3, x4, x5) = (0, 0, 11, 27, 90) 
 

The entry in the lower-right  corner of the simplex tableau is the current value of z. Note that 
the bottom-row  entries under x1 and x2 are the negatives of the coefficients of x1 and x2 in the 

objective function 
 
 

z = 4x1 + 6x2. 
 

 
To perform  an optimal check for a solution  represented by the simplex tableau, you will 

look at the entries in the bottom row (zj  −  cj  row) of the tableau.  If any of these entries are 

negative (as above), then the current solution is not optimal. 
 

 
 

3.3.3   Pivoting 
 

Once you have set up the initial simplex tableau for a linear programming problem, the simplex 

method consists of checking for optimality and then, if the current solution is not optimal, 

improving the current solution. (An improved solution is one that has a larger z-value than the 

current solution.) To improve the current solution, you will bring a new basic variable into the 

solution-you would call this variable the entry variable.  This implies that one of the current 

basic variables must leave, otherwise you would have too many variables for a basic solution- 

you would call this variable the departing variable. You are to choose the entering and the 

departing variables as follows. 
 

 

1. The entering variable corresponds to the smallest (the most negative) entry in the bottom 

(i.e. zj  −  cj ) row of the tableau. 
 

2. The departing variable corresponds to the smallest non-negative ratio of bi/aij  in the 

column determined by the entering variable. 
 

3. The entry in the simplex tableau in the entring variable’s column and departing variable’s 

row is called the pivot. 
 

 

Finally, to form the improved solution, you will apply Gauss-Jordan elimination to the column 

that contains  the pivot,  as illustrated in the following example. (This process is called pivoting.) 
 

Example 3.3.2 Pivoting to Find an Improved Solution. 

 
Use the simplex method to find an improved solution for the linear programming problem rep- 

resented by the following tableau. 
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B x 1 x2 x 3 x 
4
 x

5
 x 

B
 

x3 

 
x4 

 
x5 

-1 

 
1 

 
2 

1 

 
1 

 
5 

1 

 
0 

 
0 

0 

 
1 

 
0 

0 

 
0 

 
1 

11 

 
27 

 
90 

z j −c j -4 -6 0 0 0 0 
 

 
 

Table 3.2: 
 

 

The objective function for this program is z = 4x1 + 6x2. 

☞ Solution. Note that the current solution (x1  = 0, x2  = 0, x3  = 11, x4  = 27, x5  = 90) 
corresponds to a z-value  of 0. To improve this solution, you determine that x2  is the entering 
variable,  because − 6 is the smallest entry in the zj  −  cj  row. 

 
 

B x 1 x2 x 3 x 
4
 x

5
 x 

B
 

x3 

 
x4 

 
x5 

-1 

 
1 

 
2 

1 

 
1 

 
5 

1 

 
0 

 
0 

0 

 
1 

 
0 

0 

 
0 

 
1 

11 

 
27 

 
90 

z j c j -4 6  0 0 0 0 
 

 
 

Table 3.3: 
 

To see why you should choose x2 as the entering variable, remember that z = 4x1 + 6x2. 

Hence, it appears that a unit change in x2 produces a change of 6 in z, whereas a unit change in 

x1 produces a change of only 4 in z. 

To find the departing variable, you will locate the bi’s that have corresponding positive elements 

in the entering variables column and form the following ratios 
 

11 
θ : = 11, 

1 

27 
= 27, 

1 

90 
= 18 (3.9) 

5 
 

Here the smallest positive ration is 11, so you will choose x3 as the departing variable. 
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− 1 1 1 0 0 11  
 
− 1 1 1 0 0 

1 1 0 1 0 27   2 0 − 1 1 0 

     

 

 
 
 

B x 1 x2 x3 x 
4
 x

5
 x 

B
  

x3 

 
x 4 

 
x5 

-1 

 
1 

 
2 

1 
 

1 

 
5 

1 

 
0 

 
0 

0 

 
1 

 
0 

0 

 
0 

 
1 

11 

 
27 

 
90 

11 

 
27 

 
18 

z j c j -4 6  0 0 0 0  
 

 
 

Table 3.4: 
 

 

Note that the pivot is the entry in the first row and second column. Now, you will use 

Gauss-Jordan elimination to obtain the following improved solution. 
 

 

Before Pivoting After Pivoting 
 

 
 

 

 
 

11  

16  
 

2 5 0 0 1 90  

− 4  − 6 0 0 0 0 

-v-  
7 0  − 5 0 1 35  

− 10 0 6 0 0 66 

The new tableau now appears as follows 
 

 
B x 1 x2 x 3 x 

4
 x

5
 x 

B
 

x2 

 
x4 

 
x5 

-1 

 
2 

 
7 

1 

 
0 

 
0 

1 

 
-1 

 
-5 

0 

 
1 

 
0 

0 

 
0 

 
1 

11 

 
16 

 
35 

z j −c j -10 0 6 0 0 66 
 

 
 

Table 3.5: 
 

Note that x2 has replaced x3 in the basis column and the improved solution 
 
 
 
 

has a z-value  of 

(x1, x2, x3, x4, x5) = (0, 11, 0, 16, 35) 

 
 

z = 4x1 + 6x2 = 4(0) + 6(11) = 66 

✍  
 

 
Iteration 2 

 
In example 1 the improved solution is not yet optimal since the bottom row still has a negative 

entry. Thus, you can apply another iteration of the simplex method to further improve our 
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− 1 
 

1 
 

1 
 

0 
 

0 11  

2 0 − 1 1 0 16  

1 0 −  5 0 1 
7 5   

 

0 

1 

0 3 
7 1 −  

0 5 −  
7 0  

0 0 −  8 0 1 
7 

 

 

7 0 

5 

 

7 
 
 6 

 
 
 
 

solution as follows. You choose x1 as the entering variable. Moreover, the smallest non-negative 
ratio 11/(− 1), 16/2  = 8, and 35/7  = 5 is 5, so x5  is the departing variable. Gauss Jordan 

elimination produces the following. 
 

 
B x 1 x2 x3 x 

4
 x

5
 x 

B
  

x 2 

 
x 4 

 
x5 

-1 

 
2 

 
7 

1 

 
0 

 
0 

1 

 
-1 

 
-5 

0 

 
1 

 
0 

0 

 
0 

 
1 

11 

 
16 

 
35 

_ 

 
8 

 
5  

z j c j 10  0 6 0 0 66  
 

 
 

Table 3.6: 
 

The pivot is the entry in the third row and the first column.  Pivoting  using Gaussian Elimi- 

nation, you will obtain the following improved solution. 
 

 
 
− 1 1 1 0 0 11  

 2 0  − 1 1 0 16   
7 0  − 5 0 1 35  

− 10 0 6 0 0 66 

 

 
 

-v- 

 
 

 
 
 

7 

− 10 0 6 0 0 66 
 
 
 
 
 
 
 
 

Thus, the new simplex tableau is as follows 

 

 
 

-v- 

 
0 1 2

 

 
 
 

 
7 

1  16  
2 
7 
1 
7  
0  116 

 

 
B x1 x 2 x 3 x 4 x5 x B 

x2 

 
x4 

 
x 

1
 

0 

 
0 

 
1 

1 

 
0 

 
0 

2/7 

 
3/7 

 
-5/7 

0 

 
1 

 
0 

1/7 

 
-2/7 

 
1/7 

16 

 
6 

 
5 

z j −c j 0 0 -8/7 0 10 / 7 116 

 

 
Table 3.7: 

 

In this table, observe that x1 has replaced x5 in the basic column and the improved solution 
 

(x1, x2, x3, x4, x5) = (5, 16, 0, 6, 0) 
 

has a z-value  of 
 

 

z = 4x1 + 6x2 = 4(5) + 6(16) = 116 
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0 1 0 - 2  1 
3 3 

 

0 0 1 7  - 2 
3 3 

 

1 0 0 5  - 1 
3 3 

 
12 

 

 

14 
 

 

15 

 

0 0 0 8  10 
3 7 

 
132 

 

 
 
 

Third Iteration 

 
In this tableau, there is still a negative entry in the bottom row. Thus, you will choose x3 as the 

entry variable and x4 as the departing variable,  as shown in the following tableau. 
 

 
B x 1 x 2 x 3 x 4 x5 x B θ 

x2 

 
x4 

 
x

1
 

0 

 
0 

 
1 

1 

 
0 

 
0 

2/7 

 
3/7 

 
-5/7 

0 

 
1 

 
0 

1/7 

 
-2/7 

 
1/7 

16 

 
6 

 
5 

56 
 

14 

 
_ 

z j c j 0 0 8 7  0 10 7 116  

 

 
Table 3.8: 

 
The pivot entry is the entry in the second row and third  column  as shown in the table above. 

By performing one more iteratioin of the simplex method, you will obtain the following tableau. 
 

B          x1                  x2                  x3                   x4                  x5                 xB 
 

 

x2 

x3 

x1 

 

zj  −  cj 

 
 

Table 3.9: Final Tableau 
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In this tableau, there are no negative elements in the bottom row. You have therefore deter- 

mined the optimal solution to be 
 

(x1, x2, x3, x4, x5) = (15, 12, 14, 0, 0) 
 

with 
 

 

z = 4x1 + 6x2 = 4(15) + 6(12) = 132. 
 

Remark 3.3.2 Ties may occur in choosing entering and/or departing variables. Should this 

happen, any choice among the tied variables may be made. 

 
Because the linear programming problem in Example 3.3.4 involved only two decision vari- 

ables, you can use graphical method to solve it, as you did in unit 3. Notice in Figure 3.3.3 that 

each iteration in the simplex method corresponds to moving a given vertex to an adjacent vertex 

with an improved z-value. 
 

x1 

 
30 

 
 

25 

 
 

20 

 
(5,16) 

15 
 

 
(0,11) 

10 

 
(15,12) 

 
 

5 

 
 
 

(0,0) 

(27,0) 
x2

 

5 10 15 20 25 30 

 

 
 
 

Figure 3.1: 
 
 

 

The Simplex Method 
 
You will summarize the steps involved  in the simplex  method as follows. 

 

 

To solve a linear programming problem in standard form, use the following steps. 
 

1. convert each inequality  in the set of constraints to an equation by adding slack variables. 
 

2. Create the initial simplex tableau. 
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3. Locate the most negative entry in the bottom row. The column for this entry is the en- 

tering column. (If ties occur, any of the tied entries can be used to determine the entring 

column.) 
 

4. Form the ratios of the entries in the “b-column” with their corresponding positive entries 

in the entering column. The departing variable corresponds to the smallest non-negative 

ration bi/aij . (If all entries in the entering column  are 0 or negative, then there is no 

maximum  solution.  For ties, choose either entry.) The entry in the departing now and the 
entering column is called the pivot. 

 

5. Use elementary row operations so that the pivot is 1, and all other entries in the entering 

column are 0. This process is called pivoting. 
 

6. If all entries in the bottom row are zero or positive, this is the final tableau. If not, go back 

to step 3. 
 

7. If you obtain a final tableau, then the linear programming  problem has a maximum  solu- 

tion, which is given by the entry in the lower-right  corner of the tableau. 

Note that the basic feasible solution of an initial simplex tableau is 
 

(x1, x2, . . . , xn, xn+1, xn+2, . . . , xn+m) = (0, 0, . . . , 0, b1, b2, . . . , bm) 
 

This solution is basic because at most m variables are nonzero (namely the slack vari- 

ables). It is feasible because each variable is non-negative. 
 

 

In the next two examples, you illustrate  the use of the simplex method to solve a problem 

involving  three decision variables. 
 

Example 3.3.3 The Simplex Method with Three Decision Variables 

Use the simlex method to solve the following linear programming problem. 
 

Maximize  z = 2x1 −  x2 + 2x3 

 

Subject to 2x1 + x2 ≤  10 
 

x1 + 2x2 −  2x3 ≤  20 
 

x2 + 2x3 ≤  5 
 

with x1, x2, x3 ≥  0 
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2 1 0 1 0 0 

1 2 -2 0 1 0 

0 1 2 0 0 1 

10 

20 

5 

-2 1 -2 ↑ 0 0 0 0 

 

2 1 0 1 0 0 

1 3 0 0 1 1 

0 1  1 0 0 1 
2 2 

10 

25 
5 
2 

-2 ↑ 2 0 0 0 1 5 

 

1 1  0 1  0 0 
2 2 

0 5  0 - 1  1 1 
2 2 

0 1  1 0 0 1 
2 2 

5 

20 
5 
2 

0 3 0 1 0 1 15 

 

 
 
 

☞ Solution. By the addition of slack variables x4, x5  and x6, you have the following 
equivalent form 

 

Maximize  z = 2x1 −  x2 + 2x3 + 0x4 + 0x5 + 0x6 

 
Subject to 2x1 + x2 + x4 = 10 

 

x1 + 2x2 −  2x3 + x5 = 20 

 
x2 + 2x3 + x6 = 5 

 

with x1, x2, x3, x4, x5 ≥  0 

 

Using the basic feasible solution 
 

(x1, x2, x3, x4, x5, x6) = (0, 0, 0, 10, 20, 5) 
 

the initial simplex tableau for this problem is as follows. (Try checking these computation and 

note the “tie” that occurs when choosing the first entering variable.) 
 

B  x1  x2  x3  x4  x5  x6  xB  θ 

x4 

x5 

x6 

zj  −  cj 

∞ 
-10 

5 

2 
→ 

 

B  x1  x2  x3  x4  x5  x6  xB  θ 

x4  5 → 
x5  25 
x3  ∞ 

zj  −  cj 
 
 

 

x1 

x5 

x3 

zj  −  cj 

x1  x2  x3  x4  x5  x6  RHS 
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This implies that the optimal solution is 
 

5 
x1, x2, x3, x4, x5) = (5, 0, 

2 
, 0, 20, 0)

 

and the maximum value of z is 15. ✍  

Occasionally, the constraints in a linear programming problem will include an equation. 

In such cases, you still add a “slack variable” called an artificial variable to form the initial 

simplex tableau. Technically, this new variable is not a slack variable (because there is no slack 

to be taken). Once you have determined an optimal solution in such a problem,  you should 

check to see that any equations given in the original constraints are satisfied.  Example 3.3.4 

illustrates  such a case. 
 

Example 3.3.4 The Simplex Method with Three Decision Variables 

Use the simplex method to solve the following linear programming problem. 
 

Maximize z = 3x1 + 2x2 + x3 

 
Subject to  4x1 + x2 + x3 = 30 

 

2x1 + 3x2 + x3 ≤  60 
 

x1 + 2x2 + 3x3 ≤  40 
 

with x1, x2, x3 ≥  0 

 

 

☞ Solution.   Once again, by addition of slack variables, x4, x5  and x6, you have the 

following equivalent form 
 

 

Maximize  z = 3x1 + 2x2 + x3 

 
Subject to 4x1 + x2 + x3 + x4 = 30 

 
2x1 + 3x2 + x3 + x5 = 60 

 
x1 + 2x2 + 3x3 + x6 = 40 

 

with x1, x2, x3 ≥  0 

Using the basic feasible solution 
 

(x1, x2, x3, x4, x5, x6) = (0, 0, 0, 30, 60, 40) 
 

the initial simplex tableau for this problem is as follows. (Note that x4 is an artificial variable, 

rather than a slack variable.) This implies that the optimal solution is 
 

(x1, x2, x3, x4, x5, x6) = (3, 18, 0, 0, 0, 1) 
 

and the maximum value of z is 45. (This solution satisfies the equation given in the constraints 
because 4(3) + 1(18) + 1(0) = 30.) ✍  
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4 1 1 1 0 0 

2 3 1 0 1 0 

1 2 3 0 0 1 

30 

60 

40 

-3 ↑ -2 -1 0 0 0 0 

 

1 1  1  1
 

0 5  1  1
 

0 7  11  1 

4 4 
- 

4 
0 1 

15 
2 

45 
65 
2 

0 - 5 ↑ - 1  3  0 0 
4 4 4 

45 
2 

 

1 0 1   3  - 1  0 
5 10 10 

0 1 1  - 1  2  0 
5 5 5 

0 0 12   1   7 
5 10 

- 
10 

1 

3 

18 

1 

0 0 0 1  1  0 
2 2 45 

 

1 1 1 
2 3 2 

 

2 

3 

x4 

3 

 
 
 

B  x1  x2  x3  x4  x5  x6  xB  θ 
15 

2  
→ 

x5  30 
x6  40 

zj  −  cj 
 

B  x1  x2  x3  x4  x5  x6  xB  θ 

x1  4 4 

x5 

4 
0 0 30 

x6 

zj  −  cj 

2  2 
- 

2 
1 0 18 → 

130 
7 

 

B         x1             x2             x3             x4              x5            x6             xB 

x1 

x2 

x6 

zj  −  cj 
 
 
 

3.3.4   Applications 
 
Example 3.3.5 A Business Application:   Maximum  Profit  A manufacturer  produces three 

types of plastic fixtures. The time required for moulding trimming, and packaging is given 

in Table 3.10. (Times are given in hours per dozen fixtures.)  How many dozen of each type of 
 

Process  Type A Type B Type C Total time available 
 

Molding 1 2 3
 12, 000 

 

Trimming 2
 

 

 

Packaging 

2  1 4, 600 
 

 

2, 400 
 

Profit N 11 N 16 N 15 −  
 
 

Table 3.10: 
 
fixture should be produced to obtain a maximum  profit? 

 

☞ Solution. Letting x1, x2, and x3 represent the number of dozen units of Types A, B and 

C, respectively, the objective function is given by 
 

Profit, P = 11x1 + 6x2 + 15x3. 
 

Moreover, using the information in the table, you would construct the following constraints. 
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2 

2 

2 

 
 
 
 

x1 + 2x2 +  3 x3 ≤  12, 000 
 

2  2
 

3 
x1 + 

3 
x2 + x3 ≤  4, 600 

 

1  1  1
 

2 
x1 + 

3 
x2 + 

2 
x3 ≤  2, 400 

with x1, x2, x3 ≥  0. The linear programming model of this problem is 

Maximize  P = 11x1 + 6x2 + 15x3. 

x1 + 2x2 +  3 x3 ≤  12, 

000 
 

2  2
 

3 
x1 + 

3 
x2 + x3 ≤  4, 600 

 
1  1  1

 

2 
x1 + 

3 
x2 + 

2 
x3 ≤  2, 400 

 

with x1, x2, x3 ≥  0 

Adding slack variables x4, x5 and x6 to the constraints, gives you 
 

 

Maximize  P = 11x1 + 6x2 + 15x3. 

 
x1 + 2x2 +  3 x3 + x4 = 12, 000 

 
2  2

 

3 
x1 + 

3 
x2 + x3 + x5 = 4, 600 

 

1  1  1
 

2 
x1 + 

3 
x2 + 

2 
x3 + x6 = 2, 400 

 

x1, x2, x3, x4, x5, x6 ≥  0 

Now applying the simplex method with the basic feasible solution 
 

(x1, x2, x3, x4, x5, x6) = (0, 0, 0, 12000, 4600, 2400) 
 

you obtain the following tableau. 
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1 2 3  1 0 0 
2 

2  2 

3 3 
1 0 1 0 

1  1  1 

2 3 2 
0 0 1 

12000 

4600 

2400 

-11 -16 -15 0 0 0 0 

 

1  3  1 

2 
1 

4 2 
0 0 

1  1  1 

3 
0 

2 
- 

3 
1 0 

1  1  1 
0
3 

0 
4 

- 
6 

0 1 

6000 

600 

400 

-3 0 -3 8 0 0 96000 

 

0 1 3  3  0 - 3 
8 4 2 

0 0 1  - 1  1 -1 
4 6 

1 0 3  - 1  0 3 
4 2 

5400 

200 

1200 

0 0 - 3  13  0 9 
4 2 99600 

 

0 1 0 1 - 3  0 
2 

0 0 1 - 2  4 -4 
3 

1 0 0 0 -3 -3 

5100 

800 

1200 

0 0 0 6 3 6 100200 

 

 

 
 

B 

x4 

x1 x2 x3 x4 x5 x6 xB θ 

6000 

x5        6900 

x6 

zj  −  cj 

       7200 

 x1 x2 x3 x4 x5 x6 RHS θ 

x2        12000 

x5        1800 

x6 

zj  −  cj 

       1200 

 x1 x2 x3 x4 x5 x6 RHS θ 

x2        14400 

x5        1200 

x1 

zj  −  cj 

       1600 

 x1 x2 x3 x4 x5 x6 RHS  

x2 

x3 

x1 

zj  −  cj 

        

 
 

From this final tableau, you see that the maximum profit is N 100,200, and this is obtained 

by the following production levels. 

Type A:  1,200 dozen units 

Type B: 5,100 dozen units ✍  
Type C: 800 dozen units. 

 

Remark 3.3.3 In example 3.3.5, note that the second simplex tableau contains a “tie” for the 

minimum entry in the bottom row. (Both the first and third entries in the bottom row are -3.) 

although you chose the first column to represent the departing variable, you could have chosen 

the third column. A trial of this will give the same solution. 
 

Example 3.3.6 A Business Application:  Media  Selection The advertising alternatives for a 

company include television,  radio, and newspaper advertisements. The cost and estimates for 

audience coverage are given in Table 3.3.6. 
 

 Television Newspaper Radio 

 
Cost per advertisement 

 

 

Audience per advertisement 

 
N 2,000 

 

 

100,000 

 
N 600 

 

 

40,000, 

 
N 300 

 

 

18,000 
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The local newspaper limits the number of weekly advertisements from a single company to ten. 

Moreover, in order to balance the advertising among the three types of media, no more than half 

of the total number of advertisements should occur on the radio, and at least 10% should occur 

on television. The weekly advertising budget is N 18,200. How many advertisements should be 

run in each of the three types of media to maximize the total audience? 

☞ Solution.  To begin, let x1, x2, and x3 represent the number of advertisements in televi- 

sion, newspaper, and radio, respectively.  The objective function  (to maximize) is therefore 
 

z = 100000x1 + 40000x2 + 18000x3 

where x1, x2, x3 ≥  0. The constraints for this problem are as follows. 

2000x1 +  600x2 +  300x3 ≤  18200 

x2   ≤   10 

x3  ≤   0.5(x1 + x2 + x3) 

x1  ≥   0.1(x1 + x2 + x3) 

 

A more manageable form of this system of constraints is as follows 
 

20x1 +  6x2 +  3x3 ≤   182  
 
 
 

x2 ≤  10  
 

− x1 −  x2 + x3 ≤  0  
 
 

− 9x1 + x2 + x3 ≤  0  

 
Constraints 

 

Putting everything together, you obtain the formulation of the problem as 
 

Maximize z =  100000x1 +  40000x2 +  18000x3 

 

Subject to: 20x1 + 6x2 + 3x3 ≤  182 

   x2   ≤  10 

 − x1 −  x2 + x3 ≤  0 

 − 9x1 + x2 + x3 ≤  0 

 x1,  x2,  x3 ≥  0 

Thus, the initial simplex tableau and iteration are shown in the table below. 
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020 6 3 1 0 0 0 
0 1 0 0 1 0 0 
-1 -1 1 0 0 1 0 

-9 1 1 0 0 0 1 

182 

10 

0 

0 

-100000 -40000 -18000 0 0 0 0 0 

 

1  3   2   1
 

0 01 0 0 1 0 0 
0 - 7  23   1

 

0 37  47   9 
10 20 20 

0 0 1 

91 
10 

10 
91 
10 
819 
10 

0 -10000 -3000 5000 0 0 0 910000 

 

1 0  3   1  - 3  0 0 

0 1 0 0 1 0 0 

0 0 23   1   7
 

0 0 47   9  37 

20 20 
- 

10 
0 1 

61 
10 

10 
161 
10 
449 
10 

0 0 0 118000  272000  60000 
23 23 23 

0 1052000 

 

1 0 0  1  - 9  - 3  0 
23 23 23 

0 1 0 0 1 0 0 

0 0 1  1  14  20
 

0 0 0  8  - 118  - 47 

23 23 23 
1 

4 

10 

14 

12 

0 0 0 118000  272000  60000 
23 23 23 

0 1052000 

 

 
 
 
 

 

x4 

x5 

x6 

x7 

zj  −  cj 
 
 
 

x1

 

x1  x2  x3  x4  x5  x6  x7  RHS θ 
91 
10 

 
 
 
 
 
 
 

x1  x2  x3  x4  x5  x6  x7  RHS θ 
91

 

 
x5 

x6 

x7 

zj  −  cj 

 

10 20 

 
 
10 20 

20 
0 0 0 

 

20 
0 1 0 

 

3 

10 
 
819 
37 

 

x1  x2  x3  x4  x5  x6  x7  RHS θ 

x1  
122 

 

x2 

x6 

x7 

zj  −  cj 

20 

0
20 

20 20 

 

20 10 
1 0 

3 

 

14 
898 
47 

 

x1  x2  x3  x4  x5  x6  x7  RHS 

x1 

x2 

x3

 

 
x7 

zj  −  cj 

 

23 23 23 
0 

 

 
 

From  this tableau, you see that the maximum weekly audience for an advertising budget of 

N18200 is 

z = 1, 052, 000 Maximum weekly audience 
 

and this occurs when x1 = 4, x2 = 10, and x3 = 14. The result is sum up here. 
 
 

 
Media 

Number of 

Advertisements 

 
Cost 

 
Audience 

Television 4 N 8,000 400,000 

Newpaper 10 N 6,000 400,000 

Radio 14 N 4,200 252,000 

Total 28 N 18,200 1,052,000 

 

✍  
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3.3.5 Minimization Problem 
 
A minimization problem is in standard form if it is of the form 

 

 

Minimize w = c1x1 + c2x2 + · · · + cnxn 
 

Subject to a11x1 + a12x2 + · · · + a1nxn  ≥  b1 

 

a21x1 + a22x2 + · · · + a2nxn  ≥  b2 

 

 

. 

 
 
 
 
 
 

(3.10) 

 
am1x1 + am2x2 + · · · + amnxn  ≥  bm 

where xi  ≥  0 and bi  ≥  0. The basic procedure used to solve such a problem is to convert it to 
a maximization  problem in standard form, and then apply the simplex method as discussed in 

unit 4. 
 
Example 3.3.7 Minimization  Problem. Solve the following. 

 

 

Minimize w = 0.12x1 + 0.15x2 

 

Subject to  60x1 + 60x2 ≥  300 
 

12x1 + 66x2 ≥  336 
 

10x1 + 30x2 ≥  390 
 

x1, x2 ≥  0 

☞ Solution. Using the simplex method, The first step in converting this problem to a maximiza- 

tion problem is to form the augmented matrix for this system of inequalities. To this augmented 
matrix you add a last row that represents the coefficients  of the objective function, as follows. 

 
 

60 60 
 

. 300  

. 
  

12 6  . 36  
 

10 30 
 . 90  

  · · · · · ·   · · · · · ·    

0.12  0.15 . 0 
 

Next, form the transpose of this matrix by interchanging its rows and columns. 
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060 12 10 1 0 
60 6 30 0 1 

0.12 

0.15 

-300 -36 -90 0 0 0 

 

1 1  1   1
 

0 -6 020 -1 1 

 1  
500 
 3  
100 

0 24 40 5 0 3 
5 

 

1 1 0  1 -  1 
 

0 - 3  1 - 1   1 
10 20 20 

  7   
4000 
  3   
2000 

0 12 0 3 2 33 
50 

 

50 

 
 
 
 

 
60 12 10 . 

 
.
 

0.12  
 

 60 6 30  . 0.15     · · ·   · · ·   · · ·   · · · · · ·    

300 36 90 . 0 
 

Note that the rows of this matrix are the columns of the first matrix, and vice versa.  Finally, 

interpret the new matrix as a maximization   problem as follows. (To do this, we introduce new 

variables, y1, y2, and y3.) You call this corresponding maximization  problem the dual of the 

original minimization problem. 
 

Dual Maximization Problem 
 

Maximize  z = 300y1 + 36y2 + 90y3 Dual objective function 

Subject to  60y1 + 12y2 + 10y3 ≤  0.12   
Dual contraints 

60y1 + 6y2 + 30y3 ≤  0.15  

where y1 ≥  0, y2 ≥  0 and y3 ≥  0. 

As it turns out, the solution of the original minimization  problem can be found by applying 

the simplex method to the new dual problem,  as follows. 
 
 

 

y4 

y5 

zj  −  cj 
 
 
 
 
 
 

y1

 

y1 y2 y3 y4 y5 RHS θ 

0.002 

0.004 
 

 
 
 

Table 3.11: Initial Tableau and Iteration 1 
 

y1 y2 y3 y4 y5 RHS θ 
 3 

 

 
y5 

zj  −  cj 

5 6 60 
0 

 

250 
  3   
2000 

 

y1 y2 y3 y4 y5 RHS θ 

y1 
 3  

4 

y3 

zj  −  cj 

40 120 250 
  3   
2000 

↑ ↑ 
x1  x2 

 

 
 

Thus, the solution of the dual maximization problem is z = 33
 = 0.66. This is the same 

value you obtained using graphical method. The x-values corresponding to this optimal solution 

are obtained from the entries in the bottom row corresponding to slack variable columns.  In 

other words, the optimal solution occurs when x1 = 3 and x2 = 2. 
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. 

  

 

. 

 
 
 

The fact that a dual maximization problem has the same solution  as its original minimization 

problem is stated formally in a result called  the von Neumann Duality Principle, after the 

American mathematician John von Neumann (1903-1957). 
 

Theorem 3.3.1 The von Neumann Duality Principle The objective value w of a minimization 

problem in standard form has a minimum value if and only if the objective value z of the dual 

maximization problem has a maximum value. Moreover, the minimum value of w is equal to the 

maximum value of z. 
 

 
Solving a Minimization Problem 

 
The steps involved  in solving a minimization  problem is summarized  as follows. 

A minimization problem is in standard form if it is as follows; 

Minimize w = c1x1 + c2x2 + · · · + cnxn 

 

Subject to:  a11x1 + a12x2 + · · · + a1nxn  ≥  b1 

 

a21x1 + a22x2 + · · · + a2nxn  ≥  b2 

 

 

. 
 

am1x1 + am2x2 + · · · + amnxn  ≥  bm 

where xj  ≥  0 and bi  ≥  0. To solve this problem you use the following steps 
 

1. Form the augmented matrix for the given system of inequalities,  and add a bottom row 

consisting of the coefficients of the objective function. 

 
 
a11 a12 · · · a1n 

 
a21 a22 · · · a2n  

. b1     

. b2     
  · · · · · ·   

. 
  

am1  am2  · · ·   amn 
  

. bm    
  

  · · · · · · · · · · · · 

c1  c2  · · · cn 

. · · ·  

. 0 

2. Form the transpose of this matrix. 
 

. 
  

a11 a21 · · · am1 
 
a12 a22 · · · am2  

. c1 

. c2    
  · · · · · ·   

. 
  

a1n a2n · · ·   amn 
  

. cn    
  

 · · · · · · · · · · · · 

b1 b2 · · · bn 

. · · ·  

. 0 
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3. Form the dual maximization problem corresponding to this transposed matrix.  That is, 

Maximize z = b1y1 + b2y2 + · · · + bnyn 

Subject to:  a11y1 + a21y2 + · · · + am1ym ≤  c1 
 

a12y1 + a22y2 + · · · + am2ym ≤  c2 

 

 

. 
 

a1ny1 + a2ny2 + · · · + amnym  ≤  cn 

where y1 ≥  0, y2 ≥  0 and ym ≥  0 
 

4. Apply the simplex method to the dual maximization problem.  The maximum value of 

z will be the minimum  value of w. Moreover,  the values of x1, x2, . . . , xn  will occur in 

the bottom row of the final simplex tableau, in the columns corresponding to the slack 

variables. 
 

Example 3.3.8 Solving a Minimization  Problem 
 

Solve the following minimization problem. 
 

Minimize w = 3x1 + 2x2 

 

Subject to:  2x1 + x2 ≥  6 
 

x1 + x2 ≥  4 
 

with x1, x2 ≥  0 

 
 

☞ Solution.  The augmented matrix corresponding to this minimization problem is 

 
 

2 1 
  

1 1 
 
 

 
. 6 

 
. 4   

. 
 

 · · ·   · · ·  
3 2 

.  · · · 

. 0   
 

Thus, the matrix corresponding to the dual maximization problem is given by the following 

transpose. 
 

 
2 1 

  
1 1 

 
 

 
. 3 

 
. 2   

. 
 

 · · ·   · · ·  

6 4 

.  · · · 

. 0   
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↓ y1 y2 y3 y4 RHS(b) 

y3 

y4 

02 1 1 0 
1 1 0 1 

3 

2 

zj  −  cj -6 -4 0 0 0 

 

↓ y1 y2 y3 y4 RHS(b) 

y1 

y4 

1 1  1  0 

0 1  - 1  1 02 2 

3 
 

1 
2 

zj  −  cj 0 -1 3 0 9 

 

 
 
 

This implies that the dual maximization problem is as follows. 
 

Dual Maximization Problem: 
 

Maximize z = 6y1 + 4y2 

 

Subject to:  2y1 + y2 ≤  3 
 

y1 + y2 ≤  4 
 

with y1, y2 ≥  0 

 

You will now apply the simplex method to the dual problem as follows. 
 

Basic 

variables 

 
→ Departing 

 
 
 
 

 
 

Basic 

variables 

↑ 
Entering 

 
 

2 2 2 
→ Departing 

 

 
 

 
 

Basic 

variables 

↑ 
Entering 

 

↓ y1 y2 y3 y4 RHS(b) 

y1 

y2 

1 0 1 -1 

0 1 -1 2 

1 

1 

zj  −  cj 0 0 2 2 10 

↑ ↑ 
x1  x2 

 
 

Table 3.12: 
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From this final simplex  tableau, you see that the maximum value of z is 10. Therefore, the 

solution of the original minimization problem is 
 

w = 10 
 

and this occurs when x1 = 2 and x2 = 2                                                                          ✍  

Both the minimization  and the maximization linear programming problems in Example 

3.3.8 could have been solved with a graphical  method,  as indicated  in Figure 3.2. Note in 
Figure 3.2(a) that the maximum value of z = 6y1 + 4y2 is the same as the minimum  value of 

w = 3x1 + 2x2, as shown in Figure 3.2(b). 
 

 
y

1  
x

1 

 
 

3  
(0,3) 6  

(0,6) 

 
 

 
2  (0,2) 

Maximum 
z =6 y

1 
+ 4 y

2
=10 

5  Minimum 

w =3 x
1 
+2 x

2 
=10 

4 

 
3 

 

1  (1,1) 2  (2,2) 

 

1 

 

 
(0,0) 

 
 

(3/2,0) 
1  2  3 
 

(a) 

 
y

2
 

(0,0) 

 

 
1  2  3 

 

 
 
 
(b) 

 
(4,0) 

x
2 

4  5  6 

 

 

Figure 3.2: 
 
 

Example 3.3.9 Solving a Minimization Problem 
 

Solve the following  linear programming problem. 
 

 

Minimize w = 2x1 + 10x2 + 8x3 

 

Subject to:  x1 + x2 + x3 ≥  6 
 

x2 + 2x3 ≥  8 
 

− x1 + 2x2 + 2x3 ≥  4 
 

with x1, x2, x3 ≥  0 



70 

UNIT 3.  SIMPLEX ALGORITHM (ALGEBRAIC AND TABULAR FORMS)  

 

4 

 
 
 

 

. 
 

 

 

 
 
 

☞ Solution.  The augmented matrix corresponding to this minimization problem is 
 

 
1 1 1  . 6  

 
. 

 
 0 1 2 
 . 8  

  . 
 

 − 1 2 2 . 4  
  
· · ·   · · ·   · · · 

2 10 8 

.  · · ·  

. 0 
 

Thus, the matrix corresponding to the dual maximization problem is given by the following 

transpose. 
 

 
 

1 0  − 1  . 2  
 

.  
  1 1 2  . 10   

1 2 2  .  
  

 · · ·   · · · · · · 

6 8 4 

.  · · ·  

. 0 
 

This implies that the dual maximization problem is as follows. 
 

Dual Maximization Problem: 
 

Maximize z = 6y1 + 8y2 + 4y3 

 

Subject to:  y1 −  x3 ≥  2 
 

y1 + y2 + 2y3 ≥  10 
 

y1 + 2y2 + 2y3 ≥  8 
 

with y1, y2, y3 ≥  0 

 

Now apply the simplex method to the dual problem as follows. 
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↓ y1 y2 y3 y4 y5 y6 RHS(b) 

y4 

y5 

y6 

1 0 -1 1 0 0 

1 1 2 0 1 0 

1 02 2 0 0 1 

2 

10 

8 

zj  −  cj -6 -8 -4 0 0 0 0 

 

↓ y1 y2 y3 y4 y5 y6 RHS(b) 

y4 

y5 

y2 

01 0 -1 1 0 0 
1  0 1 0 1 - 1 
2 2 
1  1 1 0 0 1 
2 2 

2 

6 

4 

zj  −  cj -2 -0 4 0 0 4 32 

 

 
 
 

Basic 

variables 
 
 
 

 

→ Departing 
 

 
 

 
 

Basic 

variables 

↑ 
Entering 

 
→ Departing 

 

 
 
 
 
 

 
 

Basic 

variables 

↑ 
Entering 

 

↓ y1 y2 y3 y4 y5 y6 RHS(b) 

y1 

y5 

y2 

1 0 -1 1 0 0 

0 0 3  - 1  1 - 1 
2 2 2 

0 1 3  - 1  0 1 
2 2 2 

2 

5 

3 

zj  −  cj 0 0 2 2 0 4 36 

↑ ↑ ↑ 
x1  x2  x3 

 
 

Table 3.13: Final Tableau 
 

 

From this final simplex  tableau, you see that the maximum value of z is 36. Therefore, the 

solution of the original minimization problem is 
 

w = 36  Minimum Value 
 

and this occurs when x1 = 2, x2 = 0, and x3 = 4.                                                             ✍  

 
 

3.3.6   Applications 
 
Example 3.3.10 A Business Application: Minimum  Cost 

 
A small petroleum company owns two refineries. Refinery 1 costs N 20,000 per day to operate, 

and it can produce 400 barrels of high-grade oil, 300 barrels of medium-grade oil, and 200 

barrels of low-grade oil each day. Refinery 2 is newer and more modern. It costs N 25,000 per 
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. 

 

  

 

 
 
 

day to operate, and it can produce 300 barrels of high-grade oil, 400 barrels of medium-grade 

oil, and 500 barrels of low-grade oil each day. 
 

The company has orders totalling 25,000 barrels of high-grade oil, 27,000 barrels of medium- 

grade oil, and 30,000 barrels of low-grade oil. How many days should it run each refinery to 

minimize its costs and still refine enough oil to meet its orders? 

☞ Solution. To begin, let x1  and x2  represent the number of days the two refineries are 

operated. Then the total cost is given by 
 

C = 20000x1 + 25000x2 Objective function 
 

The constraints are given by 

(High-grade) 400x1 + 300x2 ≥  

25000 
 

(Medium-grade) 300x1 + 400x2 ≥  27000 
 

(Low-grade) 200x1 + 500x2 ≥  30000 

 

 
 
Constraints 
 
 

where x1 ≥  0 and x2 ≥  0. Thus the linear programming model of this problem is as follows 

 
Minimize C = 20000x1 + 25000x2 

 

Subject to:  400x1 + 300x2 ≥  25000 
 

300x1 + 400x2 ≥  27000 
 

200x1 + 500x2 ≥  30000 
 

x1, x2 ≥  0 

The augumented matrix corresponding to this minimization  problem is. The augumented matrix 

corresponding to this minimization problem is 
 

 
 

400 300  . 
 

.
 

25000  
 

 300 400  .  27000    
200 500  . 

  
30000  

  
 · · · · · · 

20000 25000 

. · · ·  

. 0 

The matrix corresponding to the dual maximization  problem is given by the transpose of the 

augmented matrix below 
 

 
400 300 200 

 
300 400 500 

 
 
 · · · · · · · · ·  
25000 27000 30000 

.  20000  

.  25000  
 

. · · ·  
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. 0  
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↓ y1 y2 y3 y4 y5 RHS(b) 

y4 

y5 

400 300 200 1 0 

300 400 5000 0 1 

20000 

25000 

zj  −  cj -25000 -27000 -30000 0 0 0 

 

↓ y1 y2 y3 y4 y5 RHS(b) 

y4 

y3 

2080 140 0 1 - 2 
3 4 1 0  1  
5 5 500 

10000 

50 

zj  −  cj -7000 -3000 0 0 60 1500000 

 

↓ y1 y2 y3 y4 y5 RHS(b) 

y1 

y3 

1 1 0  1  -  1 
 

0 1 1 -   3    1  
2 1400 350 

250 
 

200 
7 

zj  −  cj 0 500 0 25 50 1750000 

 

 
 
 

Applying the simplex method to the dual problem as follows. 
 

Basic 

variables 
 

 
 

→ Departing 
 

 
 

 
 

Basic 

variables 

↑ 
Entering 

 
 

5 → Departing 
 

 
 

 
 

Basic 

variables 

↑ 
Entering 

 
 

2 280 700 7 

 
 
 

↑ ↑ 
x1  x2 

 

 
 

From the third simplex tableau, we see that the solution to the original minimization  problem 

is 

C = N 1750000 Minimum  cost 
 

and this occurs when x1 = 25 and x2 = 50. Thus, the two refineries should be operated for the 

following number of days. 
 

 

Refinery 1: 25 days 
 

 

Refinery 2: 50 days 
 

Note that by operating the two refineries for this number of days, the company will have pro- 

duced the following amounts of oil. 
 

 

High-grade oil:   25(400) + 50(300) = 25000 barrels 

Medium-grade oil:   25(300) + 50(400) = 27500 barrels 

Low-grade oil:   25(200) + 50(500) = 30000 barrels 
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Thus, the original production level has been met (with a surplus of 500 barrels of medium-grade 
oil).                                                                                                                               ✍  

 

 
 

3.4   Conclusion 
 

 

In this unit you considered how to solve linear programming problem using simplex method- 

Algebraic and tabular form. You have learnt how to solve a linear programming problem which 

has a maximization objective function using the simplex method. and also considered how to 

solve a linear programming problem with minimization type-objective function. 
 

 
 

3.5   Summary 
 

 

Having gone through this unit, you now know how to solve linear programming problem using 

the algebraic and tabular simplex algorithms. 
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3.6 Tutor Marked Assignments(TMAs) 
 

 

Exercise 3.6.1 
 
 

In Exercises 1-4, write the simplex tableau for the given linear programming problem. 

You do not need to solve the problem. 
 

1. 

Maximize  z = x1 + 2x2 

 

Subject to 2x1 + x2 ≤  8 
 

x1 + x2 ≤  5 
 

with x1, x2 ≥  0 
 

2. 
Maximize  z = x1 + 3x2 

 

Subject to x1 + x2 ≤  4 
 

x1 −  x2 ≤  1 
 

with x1, x2 ≥  0 
 

3. 
 

 

Maximize  z = 2x1 + 3x2 + 4x3 

 
Subject to x1 + 2x2 ≤  12 

 

x1 + x3 ≤  8 
 

with x1, x2, x3 ≥  0 
 

4. 
 

 

Maximize  z = 6x1 −  9x2 
 

Subject to 2x1 −  3x2 ≤  6 
 

x1 + x2 ≤  20 
 

with x1, x2 ≥  0 
 

In Exercises 5-8, Explain why the linear programming problem is not in standard form as 

given. 



77 

UNIT 3.  SIMPLEX ALGORITHM (ALGEBRAIC AND TABULAR FORMS)  

 

 
 
 

5. 
Minimize z = x1 + x2 

 

Subject to  x1 + 2x2 ≤  4 
 

with x1, x2 ≥  0 
 

6. 
 

 

Maximize  z = x1 + x2 

 
Subject to x1 + 2x2 ≤  6 

 

2x1 −  x2 ≤  − 1 
 

with x1, x2 ≥  0 
 

7. 
 

 

Maximize  z = x1 + x2 

 
Subject to x1 + x2 + 3x3 ≤  12 

 

2x1 −  2x3 ≥  1 
 

x2 + x3 ≤  0 
 

with x1, x2, x3 ≥  0 
 

8. 
 

 

Maximize  z = x1 + x2 

 

Subject to x1 + x2 ≥  4 
 

2x1 + x2 ≥  6 
 

with x1, x2 ≥  0 
 

In Exercises 9-20, use the simplex method to solve the given linear programming prob- 

lem. 
 

9. Maximize z = x1 + 2x2 

Subject to:  x1 + 4x2 ≤  8 
 

x1 + x2 ≤  12 
 

with x1, x2 ≥  0 
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10. Maximize z = x1 + 2x2 

Subject to:  x1 + 2x2 ≤  6 
 

3x1 + 2x2 ≤  12 
 

with x1, x2 ≥  0 
 

11. Maximize z = 5x1 + 2x2 + 8x3 

Subject to:  2x1 −  4x2 + x3 ≤  42 
 

2x1 + 3x2 −  x3 ≤  42 
 

6x1 −  x2 + 3x3 ≤  42 
 

with x1, x2, x3 ≥  0 

12. Maximize z = x1 −  x2 + 2x3 

Subject to:  2x1 + 2x2 ≤  8 
 

x3 ≤  5 
 

with x1, x2, x3 ≥  0 
 

13. Maximize z = 4x1 + 5x2 

Subject to:  x1 + x2 ≤  10 
 

3x1 + 7x2 ≤  42 
 

with x1, x2 ≥  0 
 

14. Maximize z = x1 + 2x2 

Subject to:  x1 + 3x2 ≤  15 
 

2x1 −  x2 ≤  12 
 

with x1, x2 ≥  0 
 

15. Maximize   z = 3x1 + 4x2 + x3 + 7x4 

Subject to:  8x1 + 3x2 + 4x3 + x4 ≤  7 
 

2x1 + 6x2 + x3 + 5x4 ≤  3 
 

x1 + 4x2 + 5x3 + 2x4 ≤  8 
 

with x1, x2, x3, x4 ≥  0 
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16. Maximize z = x1 

Subject to:  3x1 + 2x2 ≤  60 
 

x1 + 2x2 ≤  28 
 

x1 + 4x2 ≤  48 
 

with x1, x2 ≥  0 

17. Maximize z = x1 −  x2 + x3 

Subject to:  2x1 + x2 −  x3 ≤  40 
 

x1 + x3 ≤  25 
 

2x2 + 3x3 ≤  32 
 

with x1, x2, x3 ≥  0 
 

18. Maximize z = 2x1 + x2 + 3x3 

Subject to:  x1 + x2 + x3 ≤  59 
 

2x1 + 3x3 ≤  75 
 

x2 + 6x3 ≤  54 
 

with x1, x2, x3 ≥  0 

19. Maximize z = x1 + 2x2 −  x4 

Subject to:  x1 + 2x2 + 3x3 ≤  24 
 

3x2 + 7x3 + x4 ≤  42 
 

with x1, x2, x3, x4 ≥  0 

20. Maximize   z = x1 + 2x2 + x3 −  x4 

Subject to:  x1 + x2 + 3x3 + 4x4 ≤  60 
 

x2 + 2x3 + 5x4 ≤  50 
 

2x1 + 3x2 + 6x4 ≤  72 
 

with x1, x2, x3, x4 ≥  0 

 

Exercise 3.6.2 
 
 

In Exercise 1-6, determine the dual of the given minimization problem. 
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1. Minimize  w = 3x1 + 3x2 

Subject to:  2x1 + x2 ≥  15 
 

x1 + x2 ≥  12 
 

with x1, x2 ≥  0 
 

2. Minimize  w = 2x1 + x2 

Subject to:  5x1 + x2 ≥  9 
 

2x1 + 2x2 ≥  10 
 

with x1, x2 ≥  0 
 

3. Minimize   w = 4x1 + x2 + x3 

Subject to:  3x1 + 2x2 + x3 ≥  23 
 

x1 + x3 ≥  10 
 

8x1 + x2 + 2x3 ≥  40 

with x1, x2, x3 ≥  0 
 

4. Minimize  w = 9x1 + 6x2 

Subject to:  x1 + 2x2 ≥  5 
 

2x1 + 2x2 ≥  8 
 

2x1 + x2 ≥  6 
 

with x1, x2 ≥  0 
 

5. Minimize  w = 14x1 + 20x2 + 24x3 

Subject to:  x1 + x2 + 2x3 ≥  7 
 

x1 + 2x2 + x3 ≥  4 
 

with x1, x2, x3 ≥  0 
 

6. Minimize  w = 9x1 + 4x2 + 10x3 

Subject to:  2x1 + x2 + 3x3 ≥  6 
 

6x1 + x2 + x3 ≥  9 
 

with x1, x2, x3 ≥  0 
 

In Exercises 7-12, (a) solve the given minimization problem by the graphical method, (b) 

formulate the dual problem, and (c) solve the dual problem by the graphical method. 
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7. Minimize  w = 2x1 + 2x2 

Subject to:  x1 + 2x2 ≥  3 
 

3x1 + 2x2 ≥  5 
 

with x1, x2 ≥  0 
 

8. Minimize  w = 14x1 + 20x2 

Subject to:  x1 + 2x2 ≥  4 
 

7x1 + 6x2 ≥  20 
 

x1, x2 ≥  0 
 

9. Minimize  w = x1 + 4x2 

Subject to:  x1 + x2 ≥  3 
 

− x1 + 2x2 ≥  2 
 

with x1, x2 ≥  0 
 

10. Minimize  w = 2x1 + 6x2 

Subject to:  − 2x1 + 3x2 ≥  0 
 

x1 + 3x2 ≥  9 
 

x1, x2 ≥  0 
 

11. Minimize  w = 6x1 + 3x2 

Subject to:  4x1 + x2 ≥  4 
 

x2 ≥  2 
 

with x1, x2 ≥  0 
 

12. Minimize  w = x1 + 6x2 

Subject to:  2x1 + 3x2 ≥  15 
 

− x1 + 2x2 ≥  3 
 

x1, x2 ≥  0 
 

In Exercises 13-29, solve the given minimization  problem by solving the dual maximiza- 

tion problem with the simplex method. 
 

13. Minimize  w = x2 
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Subject to:  x1 + 5x2 ≥  10 
 

− 6x1 + 5x2 ≥  3 
 

with x1, x2 ≥  0 
 

14. Minimize  w = 3x1 + 8x2 

Subject to:  2x1 + 7x2 ≥  9 
 

x1 + 2x2 ≥  4 
 

with x1, x2 ≥  0 
 

15. Minimize  w = 2x1 + x2 

Subject to:  5x1 + x2 ≥  9 
 

2x1 + 2x2 ≥  10 
 

with x1, x2 ≥  0 
 

16. Minimize  w = 2x1 + 2x2 

Subject to:  3x1 + x2 ≥  6 
 

− 4x1 + 2x2 ≥  2 
 

with x1, x2 ≥  0 
 

17. Minimize  w = 8x1 + 4x2 + 6x3 

Subject to:  3x1 + 2x2 + x3 ≥  6 
 

4x1 + x2 + 3x3 ≥  7 
 

2x1 + x2 + 4x3 ≥  8 
 

with x1, x2, x3 ≥  0 
 

18. Minimize   w = 8x1 + 16x2 + 18x3 

Subject to:  2x1 + 2x2 −  2x3 ≥  4 
 

− 4x1 + 3x2 −  x3 ≥  1 
 

x1 −  x2 + 3x3 ≥  8 
 

with x1, x2, x3 ≥  0 
 

19. Minimize  w = 6x1 + 2x2 + 3x3 
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Subject to:  3x1 + 2x2 + x3 ≥  28 
 

6x1 + x3 ≥  24 
 

3x1 + x2 + 2x3 ≥  40 
 

with x1, x2, x3 ≥  0 
 

20. Minimize  w = 42x1 + 5x2 + 17x3 

Subject to:  3x1 −  x2 + 7x3 ≥  5 
 

− 3x1 −  x2 + x3 ≥  8 
 

6x1 + x2 + x3 ≥  16 
 

with x1, x2, x3 ≥  0 
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UNIT 4 
 
 
 

ARTIFICIAL VARIABLES TECHNIQUE 
 

 
 
 
 
 
 

4.1   Introduction 
 

LPP in which constraints may also have ≥  and = signs after ensuring that all bi   ≥  0 

are considered in this section. In such cases basis matrix  cannot be obtained  as an identify 
matrix in the starting simplex table, therefore you have to introduce a new type of variable 
called the artificial variable. These variables are fictitious and cannot have any physical 
meaning.  The 

artificial variable technique is merely a device to get the starting basic feasible solution, so that 

simplex  procedure may be adopted as usual until the optimal solution is obtained. 
 

 
 

4.2   Objectives 
 

 

In this section you shall learn two methods for solving LPP in which you have to introduce 

artificial variables. The methods are 
 

 

1. The Charne’s Big M Method or the Method of Penalties. 
 

2. The Two-Phase Simplex Method. 
 

 
 

4.3   Main Content 
 
 

4.3.1   The Charne’s Big M Method 
 
The following steps are involved  in solving an LPP using the Big M method. 

 
 

Step 1. Express the problem in the standard form. 
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Step 2. Add non-negative artificial variables to the left side of each of the equations corre- 
sponding to constraints to the type ≥  or = . However, addition of these artificial variables 

causes violation of the corresponding constraints.  Therefore, you would like to get rid 

of these variables and not allow them to appear in the final solutions.  This is achieved 

by assigning a very large penalty (-M for maximization  and M for minimization) in the 

objective function. 
 

Step 3. Solve the modified LPP by simplex method, until any one of the three cases may arise. 
 

1. If no artificial variable appears in the basis and the optimality  conditions are satis- 

fied, then the current solution is an optimal basic feasible solution. 

2. If at least one artificial  variable in the basis at zero level and the optimality condition 

is satisfied, then the current solution is an optimal basic feasible solution (though 

degenerated). 

3. If at least one artificial variable appears in the basis at positive level and the opti- 

mality condition is satisfied, then the original  problem has no feasible solution.  The 

solution satisfies the constraints but does not optimize the objective function,  since 

it contains a very large penalty M and is called pseudo optimal solution. 
 

Note: While applying simplex method, whenever an artificial variable happens to leave the 

basis, you have to drop that artificial variable and omit all the entries corresponding to its 

column from the simplex table. 
 
Example 4.3.1 Use penalty method to solve the following problem 

 

 
 

Maximize z = 3x1 + 2x2 

 

Subject to:  2x1 + x2 ≤  2 
 

3x1 + 4x2 ≥  12 
 

with x1, x2 ≥  0 

☞ Solution. By introducing slack variable slack variable x3  ≥  0, surplus variable x4  ≥  0 

and artificial variable A1 ≥  0, the given LPP can be reformulated as: 
 

Maximize z = 3x1 + 2x2 + 0x3 + 0x4 −  M A1 

 
Subject to:  2x1 + x2 + x3 = 2 

 

3x1 + 4x2 −  x4 + A1 = 12 
 

with x1, x2 ≥  0 

 

The starting feasible solution is x3 = 2, A1 = 12. 
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2 1 1 0 0 

3 4 0 -1 1 

2 

12 

-3M -3 -4M -2 0 M  0 

↑ 

-12M 

 

2 1 1 0 0 

-5 0 -4 -1 1 

2 

4 

5M +1 0 4M +2 M  0 4-4M 

 

 
 
 

Initial tableau 
 

 

B  x1  x2  x3  x4  A1  xB  θ 

x3  2 → 
A1  3 

zj  −  cj 
 

 
 
 
 

Since some of the zj  −  cj   ≤  0, the current feasible solution is not optimum. Choose the 

most negative zj −  cj  = − 4M −  2. Therefore x2 variable enters the basis, and the basic 
variable 
x3 leaves the basis. 

 

 
First Iteration 

 

 

B  x1  x2  x3  x4  A1  xB 

x2 

A1 

zj  −  cj 
 

 

Since all zj −  cj  ≥  0 and an artificial  variable appears in the basis, at positive level, the given 
LPP does not possess any feasible solution. But the LPP possesses a pseudo optimal solution. 

✍  
 

Example 4.3.2 Solve the LPP. 
 

Minimize z = 4x1 + x2 

 
Subject to:  3x1 + x2 = 3 

 

4x1 + 3x2 ≥  6 
 

x1 + 2x2 ≤  4 
 

with x1, x2 ≥  0 
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3 1 1 0 0 0 

4 3 0 -1 1 0 

1 2 0 0 0 1 

3 

6 

4 

-7M +4 -4M +1 0 M  0 0 

↑ 

-9M 

 

 
 
 

☞ Solution. Since the objective function is minimization, you have to convert it to maximiza- 

tion using min z = −  max(− z) = −  max z∗ , where z∗  = − z, so that you have 

Maximize z∗  = − 4x1 −  

x2 

 
Subject to:  3x1 + x2 = 3 

 

4x1 + 3x2 ≥  6 
 

x1 + 2x2 ≤  4 
 

with x1, x2 ≥  0 

 

Convert the given LPP into standard form by adding artificial variables A1, A2, surplus variable 

x3 and slack variable x4 to get the initial basic feasible solution. 
 

Maximize z∗  = − 4x1 −  x2 + 0x3 + 0x4 −  M A1 + M 

A2 

 
Subject to:  3x1 + x2 + A1 = 3 

 

4x1 + 3x2 −  x3 + A2 = 6 

 
x1 + 2x2 + x4 = 4 

 

with x1, x2, x3, x4, A1, A2 ≥  0, and M > 1 

The starting feasible solution is A1 = 3, A2 = 6, x4 = 4. 
 

 
Initial solution 

 

 

B  x1  x2  A1  x3  A2  x4  xB  θ 

A1  3 

A2  2 
x4  2 → 

zj  −  cj 
 

 
 
 
 

Since some of the zj  −  cj  ≤  0, the current feasible solution is not optimum. x2 enters the 
basis and the basic variable x4 leaves the basis. 
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5/2 0 1 0 0 -1/2 

5/2 0 0 -1 1 -3/2 

1/2 1 0 0 0 1/2 

3/2 

3/2 

3/2 

-5M +7/2 0 0 M  0 2M -1/2 

↑ 

-3M -3/2 

 

0 0 1 1 1 

1 0 0 -2/5 -3/5 

0 1 0 -1/5 4/5 

0 

3/5 

6/5 

0 0 0 -M +9/5 -M +8/5 

↑ 

-18/5 

 

0 0 1 1 

1 0 0 -1/5 

0 1 0 1 

0 

3/5 

6/5 

0 0 0 -1/5 

↑ 

-18/5 

 

 
 
 

First Iteration 
 

 

B  x1  x2  A1  x3  A2  x4  xB  θ 

A1 

A2 

x2 

zj  −  cj 

3/5 

3/5 → 
3 

 

 
 
 
 

Since z1 − c1 is negative, the current feasible solution is not optimum. Therefore, x1 variable 
enters the basis and the artificial variable A2 leaves the basis. 

 

 
Second Iteration 

 

 

B  x1  x2  A1  x3  x4  xB  θ 

A1  0 → 
x1  −  
x2  −  

zj  −  cj 
 

 
 
 
 

Since z4 −  c4  is most negative, x3  enters the basis and the artificial variable A1  leaves the 
basis. 

 

 
Third Iteration 

 

 

B  x1  x2  x3  x4  xB  θ 

x3 

x1 

x2 

zj  −  cj 

0 → 
−  
6/5 

 

 
 
 
 

Since z4 −  c4 is most negative, x4 enters the basis and x3 leaves the basis. 
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0 0 1 1 

1 0 1/5 0 

0 1 0 0 

0 

3/5 

6/5 

0 0 1/5 0 -18/5 

 

 
 
 

Fourth Iteration 
 

 

B          x1                       x2                       x3                           x4                        xB 

x4 

x1 

x2 

zj  −  cj 
 

 

Since all zj  −  cj   ≥  0, the solution is optimum and is given by x1  = 3/5, x2  = 6/5, and 
max z = − 18/5. Therefore min z = −  max(− z) = 18/5. ✍  

 

Example 4.3.3 Solve the LPP by the Big M method. 
 
 

Maximize z = x1 + 2x2 + 3x3 −  x4 

 
Subject to:  x1 + 2x2 + 3x3 = 15 

 
2x1 + x2 + 5x3 = 20 

 
x1 + 2x2 + x3 + x4 = 4 

 

with x1, x2 ≥  0 

☞ Solution. Since the constraints are equations, introduce artificial variables A1, A2  ≥  0. 

The reformulated problem is given as follows 
 

Maximize z = x1 + 2x2 + 3x3 −  x4 −  M A1 −  M A2 

 
Subject to:  x1 + 2x2 + 3x3 + A1 = 15 

 
2x1 + x2 + 5x3 + A2 = 20 

 
x1 + 2x2 + x3 + x4 = 4 

 

with x1, x2 ≥  0 

The Initial solution is given by A1 = 15, A2 = 20, and x4 = 10. 
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1 2 3 0 1 0 

2 1 5 0 0 1 

1 2 1 1 0 0 

15 

20 

10 

-3M -2 -3M -4 -8M -4 0 0 0 

↑ 

-35M -10 

 

-1/5 7/5 0 0 1 

2/5 1/5 1 0 0 

3/5 9/5 0 1 0 

3 

4 

6 

1/5M -2/5 -7/5M -16/5 0 0 0 

↑ 

-3M +4 

 

-1/7 1 0 0 

3/7 0 1 0 

6/7 0 0 1 

15/7 

25/7 

15/7 

-6/7 0 0 0 

↑ 

90/7 

 

 
 
 

Initial solution 
 

 

B  x1  x2  x3  x4  A1  A2  xB  θ 

A1  5 

A2  4 → 
x4  10 

zj  −  cj 
 

 
 
 
 

Since z3 −  c3 is most negative, x3 enters the basis and the basic variable A2 leaves the basis. 
 
 

First Iteration 
 

 

B  x1  x2  x3  x4  A1  xB  θ 

A1 

x3 

x4 

zj  −  cj 

15/7 → 
20 

30/9 

 

 
 
 
 

Since z2 −  c2 is most negative, x2enters the basis and the basic variable A1 leaves the basis. 
 
 

Second Iteration 
 

 

B  x1  x2  x3  x4  xB  θ 

x2 

x3 

x4 

zj  −  cj 

15/7 → 
20 
30/9 

 

 
 
 
 

Since z1 −  c1 is most negative, the current feasible solution is not optimum. Therefore, x1 

enters the basis and the basis and the basic variable x4 leaves the basis 
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0 1 0 1/6 

0 0 1 3/6 

1 0 0 7/6 

15/6 

15/6 

15/6 

0 0 0 4 15 

 

 
 
 

Third Iteration 
 

 

B                 x1                       x2                 x3                  x4                  xB 

x2 

x3 

x1 

zj  −  cj 
 

 

Since all zj  −  cj  ≥  0, the solution is optimum and is given by x1 = x2 = x3 = 15/6 = 5/2 
and max z = 15. ✍  

 
 

4.3.2 The Two-Phase Simplex Method 
 
The two-phase method is another method to solve a given LPP involving some artificial vari- 

ables. The solution is obtained in two phases. 
 

 
Phase I 

 
In this phase, you have to construct an auxilliary LPP leading to a final simplex tableau con- 

taining a basic feasible solution to the original problem. 
 
 

Step 1 Assign  a cost -1 to each artificial variable  and a cost 0 to all other variables and get a 

new objective function 

z∗  = − A1 −  A2 −  · · · 

−  

where Ai  are artificial  variables. 
 

Step 2 Write down the auxiliary LPP in which the new objective function is to be maximized, 

subject to the given set of constraints. 
 

Step 3 Solve the auxiliary LPP by simplex method until either of the following three cases 

arise: 
 

(i) Max z∗  < 0 and at least one artificial variable  appears in the optimum  basis at 

positive level. 

(ii)  Max z∗  = 0 and at least one artificial  variable appears in the optimum basis at zero 

level. 

(iii)  Max z∗  = 0 and no artificial variable appears in the optimum basis. 
 

In case (i), given LPP does not possess any feasible solution.   where as in cases (ii) and 

(iii) you go to phase II. 
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2 1 1 0 0 

1 4 0 -1 1 

1 

6 

-1 -4 ↑ 0 1 0 -6 

 

2 1 1 0 0 

-7 0 -4 -1 1 

1 

2 

7 0 4 1 0 -2 

 

 
 
 

Phase II 
 
Use the optimum basic feasible solution of phase I as a starting solution  for the solution for the 

original LPP. Assign the actual costs to the variable in the objective  function  and a zero cost 

to every artifical variable in the basis at zero level. Delete the artifical variable column that is 

eliminated from the basis in phase 1 from the table. Apply simplex method to the modified 

simplex table obtained at the end of phase 1 till an optimum basic feasible solution is obtained 

or till there is an indication of unbounded solution. 
 

Example 4.3.4 Use two-phase simplex method to solve, 
 

 
 

Maximize  z = 5x1 + 3x2 

 

Subject to 2x1 + x2 ≤  1 
 

x1 + 4x2 ≥  6 
 

with x1, x2 ≥  0. 

☞ Solution.  Convert the given problem into a standard form by adding slack, surplus and 

artificial variables. You from the auxiliary LPP by assigning the cost -1 to the artificial variable 
and 0 to all the other variables. 

 

 
Phase 1  

 

Maximize  z∗  = 0x1 + 0x2 + 0x3 + 0x4 −  1A1 

 
2x1 + x2 + x3 = 1 

 
x1 + 4x2 −  x4 + A1 = 6 

 

with x1, x2, x3, x4, A1 ≥  0 

Initial basic feasible solution is given by x3 = 1, A1 = 6. 
 

B  x1  x2  x3  x4  A1  xB  θ 

x3 

A1 

zj  −  cj 

1 → 
1.5 

 
B  x1  x2  x3  x4  A1  xB 

x2 

A1 

zj  −  cj 
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Since all zj  −  cj  ≥  0, an optimum feasible solution to the auxiliary LPP is obtained. But 
as Max z∗  < 0, and an artificial variable A1 is in the basis at a positive level, the original  LPP 
does not posses any feasible solution. ✍  

 

Example 4.3.5 Solve by two phase simplex method 
 

 Maximize z = − 4x1 −  3x2 −  9x3 

Subject to: 2x1 + 4x2 + 6x3 ≥  15 

  6x1 + x2 + 6x3 ≥  12 

 

 

☞ Solution. 

with 
 

Convert the given LP 

x1, x2, x3 ≥  0 
 

P into standard form by introducing surplus variables 

x3, x4 and artificial variables A1, A2. The initial solution is given by A1 = 15, A2 = 12. 
 

 
Phase I 

 
Construct an auxiliary LPP by assigning  a cost 0 to all the variables and -1 to each artificial 

variable subject to the given set of constraints, and it is given by 

Maximize z∗  = 0x1 + 0x2 + 0x3 + 0x4 + 0x5 −  1A1 −  1A2 

 
Subject to:  2x1 + 4x2 + 6x3 + x3 + A1 = 15 

 

6x1 + x2 + 6x3 −  x4 + A2 = 12 

 

 
B x1 x2 x3 x4 x5 A1 A2 xB θ 

A1 

A2 

2 

6 

4 

1 

6 
6 

-1 

0 

0 

-1 

1 

0 

0 

1 

15 

12 

5/2 

2 → 

zj  −  cj -8 -5 -12 ↑ 1 1 0 0 -27  

B x1 x2 x3 x4 x5 A1 A2 xB θ 

A1 

x3 

-4 

1 

3 

1/6 

0 

1 

-1 

0 

1 

-1/6 

1 

0 

-1 

1/6 

3 

2 

1 → 
12 

zj  −  cj 4 -3 0 1 -1 0 2 -3  

B x1 x2 x3 x4 x5 A1 A2 xB θ 

x2 

x3 

-4/3 

22/18 

1 

0 

0 

1 

-1/3 

1/18 

1/3 

-4/18 

1/3 

-1/18 

-1/3 

4/18 

1 

11/6 
 

zj  −  cj 0 0 0 1 1 1 1 0  
 

 
Since all zj  −  cj  ≥  0, the current basic feasible solution is optimal. Since Max z∗  = 0 and 

no artificial variable appears in the basis, you will proceed to phase II. 
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Phase II 

 
Consider the final simplex table of phase I; also consider the actual cost associated with the 
original variables. Delete the artificial variables A1, A2 column  from  the table as these variables 

are eliminated from the basis in phase I. 

 
B x1 x2 x3 x4 x5 xB θ 

x2 

x3 

-4/3 

22/18 

1 

0 

0 

1 

-1/3 

1/18 

1/3 

-4/18 

1 

11/6 

 

zj  −  cj 4 3 9 0 0 0  
 

 
 

Recall that z = − 4x1 −  3x2 −  9x3. Thus multiply row 1 and row 2 in the above table by −

3 
and − 9 respectively and add to row 3, to get 

 

B x1 x2 x3 x4 x5 xB θ 

x2 

x3 

-4/3 

22/18 

1 

0 

0 

1 

-1/3 

1/18 

1/3 

-4/18 

1 

11/6 

−  
3/2 → 

zj  −  cj -3 ↑ 0 0 1/2 1 -39/2  

B x1 x2 x3 x4 x5 xB θ 

x2 

x1 

0 

1 

1 

0 

12/11 

18/22 

-3/11 

1/22 

-1/11 

-4/22 

3 

3/2 

 

zj  −  cj 0 0 27/11 7/11 1 -15  
 

 
 

Since all zj  −  cj  ≥  0, the current basic feasible solution is optimal. Therefore the optimal 

solution is given by max z = − 15, x1 = 3/2, x2 = 3, x3 = 0. ✍  
 

 
 

4.4 Conclusion 
 

 
In this unit, you have considered LPP problems, methods of solving linear programming prob- 
lem with ≥  type or = type constraint and positive right hand side. You have learnt how to 

initialize your solution in such cases by introducing an artificial variable, and solving the prob- 

lem using the big-M method or the two-phase method. 
 

 
 

4.5 Summary 
 

 

Having gone through this unit, you are now able to 
 

(i) Initialize the solution of a linear programming problem with ≥ -type constraint. 

 

(ii)  Use the big-M and the phase II method to solve some linear programming problems. 
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4.6 Tutor Marked Assignments(TMAs) 
 

 

Exercise 4.6.1 
 
 

1. Minimize z = 12x1 + 12x2 

Subject to:  6x1 + 8x2 ≥  100 
 

7x1 + 12x2 ≥  120 
 

with x1, x2 ≥  0 

 
[Ans. x1 = 15, x2 = 5/4,  and min z = 205] 

 
2. Maximize z = 2x1 + x2 + 3x3 

Subject to:  x1 + x2 + 2x3 ≥  5 
 

2x1 + 3x2 + 4x3 = 12 
 

with x1, x2, x3 ≥  0 

 
[Ans. x1 = 3, x2 = 2, x3 = 0 and min z = 8] 

 
3. Maximize  z = 2x1 + 4x2 + x3 

Subject to:  x1 −  2x2 −  x3 ≥  5 
 

2x1 −  x2 + 2x3 = 2 
 

− x1 + 2x2 + 2x3 ≥  1 
 

with x1, x2, x3 ≥  0 

 
 

 
4. Minimize z = 4x1 + 3x2 + x3 

Subject to:  x1 + 2x2 + 4x3 ≥  12 
 

3x1 + 2x2 + x3 ≥  12 
 

with x1, x2, x3 ≥  0 

 
[Ans. x1 = 0, x2 = 10/3, x3 = 4/3  and min z = 34/3] 

 
5. Maximize z = 2x1 + 3x2 + 5x3 
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Subject to:  3x1 + 10x2 + 5x3 ≥  15 
 

33x1 −  10x2 + 9x3 ≤  33 
 

x1 + 2x2 + 2x3 ≥  4 
 

with x1, x2, x3 ≥  0 

 
 

 
Use the two phase method to solve the following LPP. 

 

6. Maximize z = 2x1 + x2 + x3 

Subject to:  4x1 + 6x2 + 3x3 ≤  8 
 

3x1 −  6x2 −  4x3 ≤  1 
 

2x1 + 3x2 −  5x3 ≥  4 
 

with x1, x2, x3 ≥  0 

 
[Ans. x1 = 9/7, x2 = 10/21, x3 = 0 and max z = 64/21] 

 
7. Maximize  z = 2x1 + x2 + x3 

Subject to:  4x1 + 6x2 + 3x3 ≤  8 
 

3x1 −  6x2 −  4x3 ≤  1 
 

2x1 + 3x2 −  5x3 ≥  4 
 

with x1, x2, x3 ≥  0 

 
[Ans. x1 = 9/7, x2 = 10/21, x3 = 0 and max z = 64/21] 

 
8. Minimize z = − 2x1 −  x2 

Subject to:  x1 + x2 ≥  2 
 

x1 + x2 ≤  4 
 

with x1, x2 ≥  0 
 

 
 
 

9. Maximize z = 5x1 −  2x2 + 3x3 

 
 
 
 
 
 
 
 
 
 

[Ans. x1 = 4, x2 = 0 and min z = − 8] 
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Subject to:  2x1 + 2x2 −  x3 ≥  

2 
 

3x1 −  4x2 ≤  3 
 

x2 + 3x3 ≤  5 
 

with x1, x2, x3 ≥  0 

 
 
 
 
 
 
 
 
 
 
 

[Ans. x1 = 23/3, x2 = 5, x3 = 0 and max z = − 8] 

 

10. Maximize z = 2x1 + 3x2 + 5x3 

Subject to:  3x1 + 10x2 + 5x3 ≤  15 
 

33x1 −  10x2 + 9x3 ≤  33 
 

x1 + 2x2 + x3 ≥  4 
 

with x1, x2, x3 ≥  0 
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UNIT 5 
 
 
 

SIMPLEX ALGORITHM- 

INITIALIZATION AND ITERATION 
 

 
 
 
 
 
 

5.1 Introduction 
 

 

In the last unit, you looked at solving linear programming problems using simplex algorithm 

and you introduced artificial variable where necessary. You also indicated that the greater or 

equal to (≥ ) constraints,  because it has algebraic negative slack, will try to introduce an artificial 
variable in the simplex algorithm.  And you also noted that you have to reduce the number of 
artificial variable introduced in the problem  because they don’t exist in the problem. There are 

some other aspects of initialization in the problem you will see in this unit. 
 

 
 

5.2 Objectives 
 

 

At the end of this unit, you should be able to; 
 

1. initialize various aspects of simplex algorithm. 
 

2. perform  different  aspects of iteration. 
 

3. terminate as at when due with respect to the Simplex algorithm. 
 

 
 

5.3 Main Content 
 
 

5.3.1 Initialization 
 
Initialization deals with getting an initial basic feasible Solution for the given problem. 
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k k 

tt 

k 

k 
tt 

 
 
 

Identifying a set of basic variables with an identity coefficient matrix is the outcome of the 

initialization. You have to consider the following aspects of initialization (in the same order as 

stated) 
 

 

- RHS values 
 

- Variables 
 

- Objective function 
 

- Constraints 
 

 

Considering each of them in detail, 
 
 

• The right hand side (RHS) value of every constraint should be non-negative. It is usually 
a rational  number.  If it is negative, you have to multiply the constraints by − 1 to make 

the RHS non-negative. The sign of the inequality will change. 
 

• The variables can be of three types ≥  type, ≤  type and unrestricted.  Of the three, the ≥  
type is desirable. If you have the ≤  type variable, you replace it with another variable of 

the ≥  type as follows 

– If variable xk  ≤  0, you replace it with variable xp = − xk , and xp ≥  0. This 

change is Incorporated in all the constraints  as well as in the Objective function. 

– If variable xk  is unrestricted, you replace it with, say xt
 −  xtt, and incorporate in all 

the constraints  as well as in the Objective function. With the additional condition 

that xt , xtt ≥  0. If the unrestricted value be in the solution  and has a positive value, k  k 

then xk  will be in the solution  and have a positive  value. Whereas if xk  be in the 
solution  and has a negative value, then xtt will be in the simplex table and will have 

a positive value. If xk  is not in the solution of the original problem then both xt
 and 

xk  will not appear as basic variables in the simplex. This will be clearer when you 

consider an example. 
 

 
• The objective function can be either maximization or minimization. If it is minimization, 

you multiply it with a − 1 and convert it to a maximization  problem and solve. Constraints 

are of three types namely ≥  type, ≤  type and equation. If a constraint  is of ≤  type, you 

add slack variable and convert it to an equation.  If it is of ≥  type, you add a surplus 
variable (negative slack) and convert it to an equation.  For example, if you have x1 + 
x2  ≥  7, 

then you convert the inequality to equation by introducing a surplus variable x3 and write 

x1 + x2 −  x3 = 7. Now this − x3 does not qualify  to be an initial basic variable , therefore 
you may need to add artificial variable If necessary you add artificial variables to identify 
a Starting basic feasible solution. This is illustrated using some examples. 
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Example 5.3.1  
Maximize z = 7x1 + 5x2 

 
Subject to  2x1 + 3x2 = 7 

 
5x1 + 2x2 ≥  11. 

 

with x1, x2 ≥  0 

☞ Solution. Convert the second constraint into an equation by Adding  a negative slack variable 

x4. The equations Are 
2x1 + 3x2 = 75x1 + 2x2 −  x3 = 11 

The constraint coefficient matrix is ( 
2  3 0 

l
 

5  2  − 1 

You don’t find variables with coefficients as in the Identity  matrix.  You have to add two artificial 

variables a1 and a2 to get 

2x1 + 3x2 + a1 = 75x1 + 2x2 −  x3 + a1 = 11 

 

You have to start the simplex table with a1 and a2 as basic variables and use either the big M 

method. or the two phase method to solve this problem. 
 

So this is a case where  you have an equation and an Inequality  and you need to introduce 

two artificial variables. 
 

Here is another example 
 
Example 5.3.2  

Maximize z = 7x1 + 5x2 + 8x3 + 6x4 

 
Subject to:  2x1 + 3x2 + x3 = 7 

 
5x1 + 2x2 + x4 ≥  11 

 

with x1, x2, x3, x4 ≥  0 

 

In this example, you will add the surplus variable x5 to the second to convert it to an equation. 

You get 
 
 

2x1 + 3x2 + x3 = 7 

5x1 + 2x2 + x4 −  x5 = 11 
 

 

Observe that variables x3 and x4 have coefficients of the identity matrix and you can start with 

these  as initial basic variables to have a basic feasible  solution. You need not use artificial 
variables in this case even though you have an equation and an inequality of the greater than or 

equal to type constraints. 
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So you don’t just blindly add an artificial variable, rather try to convert them to a set of 

equation and check if there exist initial basic variable. If there are, you use them and if there are 

not, you then add artificial  variable. For instance, if the second constraint was 5x1 +2x2 +2x4  ≥  
11, you can write it as 5/2x1  + x2 + x4  = 11/2, and then add the surplus variable and choose 
x4 as the starting basic variable. 

 
Thus the message here is that you do not necessarily have to add an artificial variable to 

every ≥ -type constraints but you absolutely need to add a negative slack(i.e.,  surplus) variable 

to convert it to an equation. If you are able to identify  initial basic variables from there, you can 

use it, but if not, it is only then you will need to add an artificial variable. In the process, you 

will minimize the number of artificial variables added to a problem. 
 

The rules for adding artificial variables is summarized Below. 
 

 

Adding artificial variables 
 

1. Ensure that the RHS value of every constraint is Nonnegative. 
 

2. If you have a ≤ -constraint, you add a slack variable. This automatically qualifies to be an 

initial basic variable. 
 

3. If you have a ≥ -constraint,  you add a negative slack to convert it to an equation.  This 

negative slack cannot qualify to be an initial basic variable. 
 

4. In the system of equations identify whether there exist variables with coefficients corre- 

sponding to the column of the identity  matrix.  Such variables qualify  to be basic variables. 

Add minimum artificial variables otherwise to get a starting basic feasible solution. 
 

 
5.3.2   Iteration-Degeneracy 

 
During iteration, only one issue needs to be addressed called Degeneracy. 

 
Definition 5.3.1 (Degeneracy) A phenomenon of obtaining  a degenerate basic feasible solution 

in a LPP is known  as degeneracy 

 
Degeneracy in LPP may arise 

 

 

(i) at the initial stage 
 

(ii)  at any subsequent iteration stage. 
 

 

In the case of (i), at least one of the basic variables should be zero in the initial basic feasible 

solution. Whereas in cas of (ii) at any iteration of the simplex method more than one variable is 

elligible to leave the basis, and hence the next simplex iteration  produces a degenerate solution 

in which at least one basic variable is zero, i.e., the subsequent iteration  may not produce im- 

provements in the value of the objective function. As a result, it is possible to repeat the same 

sequence of simplex iteration endlessly without improving the solution. The concept is known 

as cycling  (tie). 
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5.3.3 Methods to Resolve Degeneracy 
 
The following systematic procedure can be utilized  to avoid cycling due to degeneracy in LPP. 

 

 

Step 1 First find out the rows for which the minimum non-negative ratio is the same (tie); 

suppose there is a tie between first and third row. 
 

Step 2 Now rearrange the columns of the usual simplex table so that the columns forming  the 

original unit matrix come first in proper order. 
 

Step 3 Find the minimum of the ratio, 

( 
Elements of the first column of the unit matrix 

\
 

Corresponding elements of key column 
 

only for the tied rows, i.e., the first and third rows. 
 

(i) If the third row has the minimum  ratio then this row will be the key row and the 

element can be determined by intersecting the key row with key column. 

(ii)  If this minimum is also not unique, then go to the next step. 
 

Step 4 Now find the minimum of the ratio, only for the tied rows, If this minimum ratio is 

unique for the first row, then this row will be the key row for determining the key element 

by intersecting with key column. 

( 
Elements of the second column of the unit matrix 

\
 

Corresponding elements of key column 
 

If the minimum is also not unique, then go to the next step. 
 

Step 5 Find the minimum  of the ratio. The above step is repeated till the minimum  ratio is 

obtained  so as to resolve the degeneracy. After the resolution of this tie, simplex method 

is applied to obtain the optimum solution. 
 

( 
Elements of the second column of the unit matrix 

\
 

Corresponding elements of key column 
 

Example 5.3.3 Solve the following LPP. 
 

Maximize z = 3x1 + 9x2 

 

Subject to:  x1 + 4x2 ≤  8 
 

x1 + 2x2 ≤  4 
 

with x1, x2 ≥  0 

☞ Solution. Introducing slack variables x3, x4 ≥  0, you have 
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Maximize z = 3x1 + 9x2 + 0x3 + 0x4 

 
Subject to:  x1 + 4x2 + x3 = 8 

 
x1 + 2x2 + x4 = 4 

 

with x1, x2 ≥  0 

 
 

B x1 x2 x3 x4 xB θ = xB /x2 

x3 

x4 

1 

1 

4 

2 

1 

0 

0 

1 

8 

4 

8/4 = 2 
\ 

tie 
4/2 = 2 

zj  −  cj -3 -9 ↑ 0 0 0  
 

 

Since the minimum of the ratio is not unique, the slack variables x3, x4 leave the basis. This 

is an indication for the existence of degeneracy in the given LPP. So you would apply the above 
procedure to resolve this degeneracy (tie). 

 

Rearrange the columns of the simplex table so that the initial identity  matrix  appears first. 

 
B x3 x4 x1 x2 xB θ = x3/x2 

x3 

x4 

1 

0 

0 

1 

1 

1 

4 

2 

8 

4 

1/4 

0 → 

zj  −  cj 0 0 -3 -9 ↑ 0  
 

 
 

Using Step 3 of the procedures given for resolving degeneracy, you find 
 

 

min 

( 
Elements of first column 

\
 

Corresponding elements of key column 

( 
1  0 

\
 

= min , = 0 
4  2 

 

Hence, x4 leaves the basis and the key element is 2. 
 

B x3 x4 x1 x2 xB 

x3 

x4 

1 

0 

-2 

1/2 

-1 

1/2 

0 

1 

0 

2 

zj  −  cj 0 9/2 3/2 0 18 
 

 
 

Since all zj  −  cj  ≥  0, the solution is optimum. The optimal solution is x1 = 0, x2 = 2, and 
max z = 18. ✍  

 

Example 5.3.4 Solve 
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Maximize  z = 2x1 + x2 

 

Subject to 4x1 + 3x2 ≤  12 
 

4x1 + x2 ≤  8 
 

4x1 −  x2 ≤  8 
 

with x1, x2 ≥  0 

☞ Solution. Introducing the slack variables x3, x4, x5   ≥  0, the given problem can be 

reformulated as shown below: 
 

 

Maximize z = 2x1 + x2 + 0x3 + 0x4 + 0x5 

 
Subject to:  4x1 + 3x2 + x3 = 12 

 
4x1 + x2 + x4 = 8 

 

4x1 −  x2 + x5 = 8 
 

with x1, x2, x3, x4, x5 ≥  0 

 
 

B x1 x2 x3 x4 x5 xB θ = xB /x1 

x3 

x4 

x5 

4 

4 

4 

3 

1 

-1 

1 

0 

0 

0 

1 

0 

0 

0 

1 

12 

8 

8 

12/4 = 3 

8/4 = 2 
\

 

4/2 = 2 
tie

 

zj  −  cj -2 ↑ -1 0 0 0 0  
 

 
Since the minimum ratio is the same for 2nd and 3rd rows, it is an indication of degeneracy. 

Rearrange the columns in such a way that the identity  matrix comes first. 

 
B x3 x4 x5 x1 x2 xB x3/x1 x4/x1 

x3 

x4 

x5 

1 

0 

0 

0 

1 

0 

0 

0 

1 

4 

4 

4 

3 

1 

-1 

12 

8 

8 

−  
0/4 

0/4 

−  
1/4 

0/4 → 

zj  −  cj 0 0 0 -2 ↑ -1 0  
 

 
 

Using the procedure of degeneracy, find 

( 
Elements of first column of unit matrix 

\ 
min  

Corresponding elements of key column 
 

for 2nd and 3rd rows, min{0/4, 0/4} = 0 which is unique. 
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So again compute,  
 

 
min 

 

 

( 
Elements of first column of unit matrix 

\
 

Corresponding elements of key column 
 

for 2nd and 3rd rows. min{− , 1/4, 0/4} = 0, which occurs corresponding to the third row. 
Hence, x5 leaves the basis. 

 
B x3 x4 x5 x1 x2 xB xB /x2 

x3 

x4 

x1 

1 

0 

0 

0 

1 

0 

-1 

-1 

1/4 

0 

0 

1 

4 

2 

-1/4 

4 

0 

2 

1 

0 → 
−  

zj  −  cj 0 0 1/2 0 -3/2 ↑ 4  

B x3 x4 x5 x1 x2 xB xB /x5 

x3 

x2 

x1 

1 

0 

0 

-2 

1/2 

1/8 

1 

-1/2 

1/8 

0 

0 

1 

0 

1 

0 

4 

0 

2 

4 → 
−  
16 

zj  −  cj 0 3/4 -1/4 ↑ 0 0 4  

B x3 x4 x5 x1 x2 xB  

x5 

x2 

x1 

1 

1/2 

-1/8 

-2 

-1/2 

3/8 

1 

0 

0 

0 

0 

1 

0 

1 

0 

4 

2 

3/2 

 

zj  −  cj 1/4 1/4 0 0 0 5  
 
 
 
 

Since all zj  −  cj  ≥  0, the solution is optimum and given by x1 = 3/2, x2 = 2, and max z = 5. 
 

✍  

 
 
Degeneracy 

 
In summary, 

 

 

• Degeneracy results in extra iterations that do not improve the objective function value. 
 

– Since the tie for the leaving variable, leaves a variable with zero value in the next 

iterations, you do not have an increase in the objective function value 
 

• Sometimes degeneracy can take place in the intermediate iterations. 
 

– In such cases, if the optimum exists, the simplex algorithm will come out of degen- 

eracy by itself and terminate at the optimum. 

– In these case, the entering column  will have a zero (or negative) value against the 

leaving row and hence that the ratio is not computed, resulting in a positive value of 

the minimum ratio. 
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• There is no proven way to eliminate degeneracy or to avoid it. Sometimes a different  tie 

breaking rule can result in a non-degenerate  solution. 
 

– In this example if you had chosen to leave x3  instead of x4. In the first, iterations, 

the algorithm terminates and gives the optimum after one iteration. 
 

 
5.3.4 Termination 

 
There are four aspects to be addressed while discussing termination  conditions.  These are 

 

 

1. Alternate optimum 
 

2. Unboundedness 
 

3. infeasibility 
 

4. Cycling 
 

 

For better understanding, an example is given for each of them. 
 

 
 

5.3.5 Alternate Optimum 
 
Example 5.3.5 (Alternate Optimum) 

 

Maximize z = 4x1 + 3x2 

Subject to  8x1 + 6x2 ≤  25 
3x1 + 4x2 ≤  15 

with x1, x2 ≥  0 
 
Adding slack variables x3  and x4  you can start the simplex iteration with x3  and x4  as basic 

variables. This is shown table 5.1 

 
B x 

1
 x

2
 x

3
 x 

4
 x 

B
  

x 
3
 

 
x 

4
 

8 
 

3 

6 

 
4 

1 

 
0 

0 

 
1 

25 

 
15 

25 8 

 
5 

z 
j 

c 
j
 -4 -3 0 0 0  

B x
2
 x 

3
 x 

4
 x

5
 x 

B
 θ 

x 
1
 

 
x 

4
 

1 

 
0 

¾ 

 
7/4 

1/8 

 
-3/8 

0 

 
1 

25/8 

 
45/8 

2 5 

 
10 

z 
j 

c 
j
 0 0 ½ 0 100/8  

 

 
 

Table 5.1: 
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Observe that in the last tableau, the non-basic variables are x2 and x3, and both of them do 
not have a negative zj  −  cj , therefore there is no entering variable, so the algorithm  terminates. 

 

One important thing you could notice in this example, is that when the algorithm terminated, 

the non-basic variable x2 has the value 0 unlike  in other ones where the non-basic variables have 

a positive  zj  −  cj -row entry when the algorithm terminates. 

You know that if you enter a zj  −  cj  value with a positive sign, it will bring down the value 

of the objective function unlike when you enter a negative zj −  cj  which will increase the value 

of the objective function. 

Now the question is “can you enter this variable x2  which has a zero zj  −  cj  entry? And 

what happens when you do so?” You can try to see what  happens by entering the non-basic 

variable x2 which  has a zero zj  −  cj  value. 
 

 

B x
2
 x 

3
 x 

4
 x

5
 x 

B
 θ 

x
1
 

 
x 

4
 

1 

 
0 

¾ 

 
7/4 

1/8 

 
-3/8 

0 

 
1 

25/8 

 
45/8 

25 6 
 

45 14  

z 
j 

c 
j
 0 0  ½ 0 25 2  

B x
2
 x 

3
 x 

4
 x

5
 x 

B
 θ 

x
1
 

 
x

2
 

1 

 
0 

0 

 
1 

2/7 

 
-3/14 

-3/7 

 
4/7 

5/7 

 
45/14 

2 5 

 
10 

z 
j 

c 
j
 0 0 ½ 0 25/2  

 

 
 

Table 5.2: 

In this case you have the optimal  solution 

(x1, x2, x3, x4) = (5/7, 45/14, 0, 0) 
 

Which gives a z-value of 
25 

z = 
2 

You notice that in the last table, the same zj −  cj  entries are repeated with the only exception 

that x4 now becomes a non-basic variable with a zero entry instead of x2 as in the formal optimal 

tableau, and wants to enter. Notwithstanding  the value of the objective function z = 25/2 did 
not improve. Now if you had entered the x2 in 5.1 you will also need to enter x4 in table 5.2. 

If you do that, you will obtain exactly table 5.1. This tells you that if you apply the termination 
condition strictly, you will succeed in getting an infinite loop. 

 

This case the simplex algorithm terminates and yet you Still have a non-basic variable 

with a zero entry is what you call an alternate optimum 
 

Hence the termination condition  has to be redefined to include the alternate optimum, that 

is the iteration terminates when you have an alternate optimum. 



10
7 

UNIT 5.  SIMPLEX ALGORITHM- INITIALIZATION AND ITERATION  

 

 
 
 

Observe that it is very necessary to compute other table in the case of an alternate optimum 

because, if you had stopped in the last example with optimum solution of 
 

(x1, x2, x3, x3) = (25/8, 0, 0, 45/8), 
 

then, since x1 and x2 are the decision variables, you must have produced 25/8 of one product 

and you did not produce x2. Because the presence of the slack variable x4, in the basis indicates 

that the resources are not properly utilized. So you still have the same number of resources 

available with you and you still made the same profit. While for the solution 
 

(x1, x2, x3, x3) = (5/7, 45/14, 0, 0), 
 

you produced both items and had the same profit with the resources properly  utilized. So you 

can make a choice on how to produce. From all indications, the first will be better, because you 

will end up saving some resources. 
 

Another question is “In the case of the alternate optimum,  is there only one solution  or 

more?” You can answer this question by looking at the graphical solution of this problem.  See 

Figure (5.1) 
 
 

 
8x+6y=25 

y=x2 

 
 

5 
 
 

 
4 

 

 
 

3 
 

 
 

2 
 

 
z=12 

1 
 

 
 
 

 
(0,0) 

1 

 

 
2 3 4 

 
 
5 6 

 
3x+4y=15 

x=x1 

 

 
 
 
 

Figure 5.1: 
 

In Figure 5.1, the objective function line is drawn for z = 12. As you can observe, this line is 

parallel to the line representing the constraint equation 8x1 + 6x2 = 25 so that, as the objective 
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function line moves, It will touch this line. Therefore, the alternate optimum  does not only exist 

at (5/7, 45/14) and (45/8, 0) but at infinitely many points on the line 8x1 +6x2  = 25, which lies 

between these two points. But the simplex algorithm will not show these other points because 

the simplex method only show corner points. The fact the simplex want to switch between these 

two solutions indicates that every other points in between these two corner points is optimum. 
 

 
 

5.3.6   Unboundedness (Or Unbounded Solution) 
 
In some LPP, the solution  space becomes unbounded, so that the value of the objective func- 

tion also can be increased indefinitely without a limit.  However, it is not necessary that an 

unbounded feasible region should yield an unbounded value for the objective function. The 

following example will illustrate  these points. 
 

Unboundedness is one of the aspects of termination which you proposed to consider. For a 

better understanding, consider the following example. 
 

Example 5.3.6 (Unboundedness) 
 

Maximize 4x1 + 3x2 

Subject to:  x1 −  6x2 ≤  5 
3x1 ≤  11 

with x1, x2 ≥  0. 
 

☞ Solution. By addition of the two slack variables x3 and x4 to the constraints you have 

the following equivalent problem 
 

Maximize 4x1 + 3x2 

Subject to:  x1 −  6x2 + x3 = 5 
3x1 + x4 = 11 

with x1, x2, x3, x4 ≥  0. 
 

With the initial basic feasible solution 
 

(x1, x2, x3, x4) = (0, 0, 5, 11) 
 

and solving the problem using simplex algorithm, you have 

In the second table, you observe that x3 with a negative zj  −  cj  entry enters the basis. Now 

trying to get the departing variable, you have to compute  as usual the ratio of the b-column 

and the entering column, and by doing so, you will observe that no variable  leaves because 

(4/3)/(− 6) gives a negative value and so you do not compute it and the other one is undefined 
because of division by zero. As a result of these, the algorithm  will terminate. Since no variable 

departs, despite the fact that you have an entering variable. ✍  
 

This phenomenon where the algorithm terminates because it was unable to find a departing 

variable is called Unboundedness. 
 

Two cases of unboundedness are obtainable, namely, Unbounded optimal  solution and Un- 

bounded feasible solution. 
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B x 
1
 x

2
 x

3
 x 

4
 x 

B
  

x 
3
 

 
x 

4
 

1 

 
3 

-6 

 
0 

1 

 
0 

0 

 
1 

5 

 
11 

5 

 
11 3  

z 
j 

c 
j
 4  -3 0 0 0  

B x 
1
 x

2
 x

3
 x 

4
 x 

B
  

x 
3
 

 
x 

1
 

0 

 
1 

-6 

 
0 

1 

 
0 

-1/3 

 
1/3 

4/3 

 
11/3 

- 

 
 

z 
j 

c 
j
 0 3  0 4 3 44/3  

 

 
 

Table 5.3: Unboundedness: (Unable to determine the leaving variable) 
 
 

Example 5.3.7 (Unbounded optimal solution) 
 

Maximize 2x1 + x2 

Subject to:  x1 −  x2 ≤  10 
2x1 −  x2 ≤  40 

with x1, x2 ≥  0. 
 

☞ Solution. By addition of the two slack variables x3 and x4 to the constraints you have 

the following equivalent problem 
 

 

Maximize 2x1 + x2 + 0x3 + 0x4 

Subject to:  2x1 −  x2 + x3 = 10 
2x1 −  x2 + x4 = 40 

with x1, x2, x3, x4 ≥  0. 
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y=x 2 

 
30 

  
   
     

20      
      
       
       

10     Fe asi ble regi on 
        
         
         

 

10 20 30 40 

10 
 

 
20 

 

 
30 

 
 
 
 
 
 
 

 
x=x 1 

 
40 

 
 

 
Figure 5.2: 

 
 

B x1 x2 x3 x4 xB xB /x1 

x3 

x4 

1 

2 

-1 

-1 

1 

0 

0 

1 

10 

40 

10 → 
20 

zj  −  cj -2 ↑ -1 0 0 0  

B x1 x2 x3 x4 xB xB /x2 

x1 

x4 

1 

0 

-1 

1 

1 

-2 

0 

1 

10 

20 

−  
20 → 

zj  −  cj 0 -1 ↑ 2 0 20  

B x1 x2 x3 x4 xB  

x1 

x2 

1 

0 

0 

1 

-1 

-2 

1 

1 

30 

20 

 

zj  −  cj 0 0 -4 3 80  
 
 
 

Since z3 −  c3 = − 4 < 0, the solution is not optimum. But all the values in the key column 
are negative which is the indication of unbounded solution. 

 

The feasible region is unbounded since it has all x2  negative.  Hence z can be made ar- 

bitrarily large and the problem  has no finite maximum value of z. Therefore, the solution is 

unbounded. ✍  
 

Example 5.3.8 (Unbounded feasible region but bounded optimal solution.) 
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Maximize z = 6x1 + 2x2 

Subject to:  2x1 −  x2 ≤  2 
x1 ≤  4 

with x1, x2 ≥  0 

☞ Solution. By introducing slack variables x3, x4 the standard form of LPP is, 

Maximize  z = 6x1 −  2x2 + 0x3 + 0x4 

Subject to 2x1 −  x2 + x3 = 2 
x1 + x4 = 4 

with x1, x2, x3, x4 ≥  0 
 

Initial solution is given by x3 = 2, x4 = 4. 
 

B x1 x2 x3 x4 xB xB /x1 

x3 

x4 

2 

1 

-1 

0 

1 

0 

0 

1 

2 

4 

1 → 
4 

zj  −  cj -6 ↑ 2 0 0 0  

B x1 x2 x3 x4 xB xB /x2 

x1 

x4 

1 

0 

-1/2 
1/2 

1/2 

-1/2 

0 

1 

1 

6 

−  
6 → 

zj  −  cj 0 -1 ↑ 3 0 6  

B x1 x2 x3 x4 xB  

x1 

x2 

1 

0 

0 

1 

0 

-1 

1 

2 

4 

6 

 

zj  −  cj 0 0 2 2 12  
 

 
Since all zj  −  cj  ≥  0, the solution is optimum. The optimal solution is given by 

 

x1 = 4, x2 = 6 and max z = 12. 

 
It is now interesting to note from the table that the element of x2  are negative or zero (-1, 

and 0). This is an immediate indication that the feasible region is not bounded. From this you 
will conclude that a problem may have unbounded feasible region but still the optimal solution 

is bounded. 

✍  
 

 
Difference between unbounded region and Unbounded solution 

 
Suppose you draw the graph of the objective function, say for 4x1 + 3x2 = 12, and for 4x1 + 

3x2 = 15 as you maximize, you will observe that the objective function will move in the upward 
direction  as shown because the region is unbounded. So both x1 and x2 can go up to infinity. 

 

On the other hand, if the problem has been that of minimization  then the objective function 

will move in the downward direction and will terminate giving (x1, x2) = (0, 0) as the optimum 

solution and z = 0. 
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Figure 5.3: 
 
 

Hence there are two aspects to unboundedness, namely you can have an unbounded region 

if the region is unbounded and an unbounded solution depending on the direction the objective 

function is moving. In this example you have an unbounded feasible region and unbounded 

solution. 
 

Notwithstanding,  depending on the objective function, a region that is unbounded may still 

have a solution. 
 

 
Summary 

 

At the end of the first iteration, you observed that the variable x2 with z2 −  c2  = − 3 can 

enter the basis but you are unable to fix the leaving  variable  because all coefficients in the 
entering 

column are ≤  0. So the algorithm terminates because it is unable to find a leaving  variable. 

This phenomenon is called unboundedness, indicating  that the variable x2  can take any 

value and still still none of the present basic variable would become infeasible. 
 

 

- By the nature of the first constraint, you can observe that x2 can be increased to any value 

and yet the constraints are feasible. 
 

- The value of the objective function is infinity. 
 

In all simplex iterations, you enter the variable with the greatest negative value of zj  −  cj . 

Based on this rule, you entered variable x2 in the first iteration. Variable x2 also with a negative 
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value of − 3 is a candidate  and if you had decided to enter x2  in the first iteration you would 
have realized the unboundedness at the first iteration itself. 

Though most of the times you enter a variable  with smallest zj  −  cj   entry, there is no 

guarantee that this rule with minimum iterations. Any non-basic variable with a negative  value 

of zj  −  cj  is a candidate  to order. 

Other rules for entering variable are 
 
 

1. Largest increase rule. Here for every candidate for entering variable, the corresponding 
minimum  θ is found and the increase in the objective function i.e., the product of zj  −  cj 

is found. 
 

• The variable with the minimum  increase (product) is chosen as entering variable. 

2. First negative zj  −  cj 

3. Random-A non basic variable is chosen randomly and the value of zj  −  cj  is computed 

• It becomes the entering variable if the zj  −  cj  Is negative 

• Otherwise another variable is chosen randomly. This is repeated till an entering 

variable is found. 
 

 

Coming back to unboundedness, you observe that unboundedness is caused when the fea- 

sible region is not bounded.  Sometimes, the nature of the objective  function  can be such that 

even if the feasible region is unbounded, the problem may have an optimum solution.  The un- 

boundedness defined here means that there is no finite optimum solution and the problem is 

unbounded. 
 

 
Non Existing Feasible Solution 

 
One more aspect to be considered is called infeasibility.  In this case the feasible region is 

found to be empty, which indicates that the problem  does not have a feasible  solution. In 

simplex method, if there exists at least one artificial variable in the basis at positive level and 

even though optimality conditions are satisfied, it is the indication of non-feasible solution. 
 

Consider the following example. 
 
Example 5.3.9 (Infeasibility) 

 

Maximize z = 4x1 + 3x2 

Subject to  x1 + 4x2 ≤  3 
3x1 + x2 ≥  12 

with x1, x2 ≥  0 
 

☞ Solution. Adding slack variables x3 and x4 (surplus) and artificial variable a1 you can 

start the simplex algorithm using the big M method with x3 and a1 as basic variables you have 
the following equivalent form. 
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Maximize  z = 4x1 + 3x2 −  M a1 

Subject to x1 + 4x2 + x3 = 3 
3x1 + x2 −  x4 + a1 = 12 

with x1, x2, x3, x4, a1 ≥  0 

where M is a very large positive number. Thus solving by simplex method you have 
 
 
 

B x
1
 x
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 x 
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 x 

4
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1
 x 
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c 
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B x
1
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 x 

3
 x 

4
 A

1
 x 
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x
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A

1
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3 
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4 
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j
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B x
1
 x

2
 x 

3
 x 

4
 A

1
 x 

B
  

x
1
 

 
A

1
 

1 

 
0 

4 

 
-11 

1 

 
-3 

0 

 
-1 

0 

 
1 

3 

 
3 

 

z 
j 

c 
j
 0 11M 13 3M 4 M 0 3M 4  

 

 
 

Table 5.4: 
 

Because all zj  −  cj  ≥  0, the algorithm  terminates, since there is no other entering 

variable. But since the artificial variable is still left as a basic variable,  then the problem  does 
not have an optimal solution  because the artificial variable is not part of the original 
problem. More general you would say that the problem has no feasible solution.  Hence the 
problem is said to 

be infeasible.  ✍  

To understand why the problem is infeasible, you can draw the graph of the constraints of 

this problem Figure 5.4. You can observe that the constraints are moving  away from each other, 

hence there is no feasible region. 
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Figure 5.4: 

 
So this is a situation where the simplex method is able to show that the linear programming 

problem may not have an optimum solution at all.  Of course if a problem  does not have a 

feasible region, obviously, it can not have a optimal  solution. The simplex method is able to 

detect this by allowing an artificial variable to remain in the basis even after the optimality 

condition is met. Infeasibility is indicated by the presence of at least one artificial variable 

after the optimum conditions is satisfied. 
 

Another thing you can observe from this problem is that a1  = 3. This indicates that the 

second constraint should have the RHS value reduced by 3 to get a feasible solution  with x1 = 3. 

Therefore, Simplex algorithm  not only is capable of detecting infeasibility but also shows the 

extent of infeasibility. 
 

 
 

Termination Conditions (Maximization  objective) 
 

The termination conditions are summarized below as follows. 
 

• All non-basic variables have positive zj  −  cj  entry. 

 

– Basic variables are either decision variable or slack(or surplus) variables. Algorithm 

terminates indicating unique optimum solution. 

 
• Basic variables are either decision variables or slack variables.  All non-basic variable 

have zj  −  cj  ≥  0. 
 

– At least one non-basic variable has zj −  cj  = 0, indicates alternate optimum proceed 

to find the other corner point and terminate. 
 

• Basic variables are either decision variables or slack variables. 
 

 
– This algorithm identifies an entering variable but is unable to identify leaving vari- 

able, because all values in the entering column are ≤  0. Indicates unboundedness 

and algorithm terminates. 
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• All non-basic variables have zj  −  cj  ≥  0. Artificial variable still exists in the basis. 
 

– Indicates infeasibility.  Algorithm  terminates. 
 

 
 

Cycling 
 
If the simplex algorithm fails to terminate (based on the above conditions)  then it cycles. 

You have seen so far that every iteration is characterised by a set of unique basic variables. 

So far, you have not gone back, in any of the simplex iterations, to a particular  set of basic 

variables. The only time you came very close to doing this was when you had an alternate 

optimum. A phenomenon by which, in the middle of simplex iteration,  you have a set of basic 

variables and after about some iterations, you realise that you are back to the same set of basic 

variables, without satisfying any of the termination conditions, is called Cycling. 
 

Cycling is a very rare phenomenon in linear programming i.e., there are not many  cases 

of cycling in the simplex iterations. In fact, so far, there has not been a linear programming 

problem formulated from a practical  situation which cycles.  There are few examples you can 

find in books that shows the cycling phenomenon, notwithstanding  it is not a very common 

phenomenon.  There are also some restrictions  that says that for a problem to cycle, the problem 

must have at least 3 constraints, 6 variables and so on. But in this book, you will not go deeper 

into cycling. For further studies, you can visit some of the texts recommended at the end of this 

section. 
 

 
Unrestricted Variable. 

 
Here is another example to illustrate an unrestricted variable. 

 
Example 5.3.10  

Maximize 4x1 + 5x2 

Subject to:  2x1 + 3x2 ≤  8 
x1 + 4x2 ≤  10 

with x1, unrestricted, x2 ≥  0 
 

☞ Solution.  Replace variable x1 by x3 −  x4, and add slack variables x5 and x6 to get 

Maximize 4x3 −  4x4 + 5x2 

Subject to:  2x3 −  2x4 + 3x2 + x5 = 8 
x3 −  x4 + 4x2 + x6 = 10 

with x2, x3, x4, x5, x6 ≥  0 
 

The simplex iterations are shown in the table 5.5 

✍  

In the last table in table 5.5, you observe that all the entries in the zj  −  cj  row are non- 

negative. But value of the decision variable x4 = 0 which can enter. But an attempt to enter this, 
variable will reveal that there is no leaving variable. Now the question is, “Does this indicate 
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B x
2
 x

3
 x 

4
 x

5
 x 

6
 x 

B
 θ 

x
5
 

 
x 

6
 

3 

 
4 

2 

 
1 

-2 

 
-1 

1 

 
0 

0 

 
1 

8 

 
10 

8 3 

 
10 4  

z 
j 

c 
j
 5  4 4 0 0 0  

B x
2
 x

3
 x 

4
 x

5
 x 

6
 x 

B
 θ 

x
5
 

 
x

2
 

0 

 
1 

5/4 

 
-¼ 

-5/4 

 
-¼ 

1 

 
0 

-¾ 

 
¼ 

½ 

 
5/2 

2 5 

 
10 

z 
j 

c 
j
 0 11 4  11 4 0 5 4 25 2  

B x
2
 x

3
 x 

4
 x

5
 x 

6
 x 

B
 θ 

x 
3
 

 
x

2
 

0 

 
1 

1 

 
0 

-1 

 
0 

4 5 

 
1 5 

3 5 

 
2/5 

2 5 

 
12/5 

 

 
 

6  

z 
j 

c 
j
 0 0 0 11 3 2 5 68/5  

B x
2
 x

3
 x 

4
 x

5
 x 

6
 x 

B
 θ 

x 
3
 

 
x 

6
 

3/2 

 
5/2 

1 

 
0 

-1 

 
0 

½ 

 
-½ 

0 

 
1 

4 

 
6 

 

z 
j 

c 
j
 1 0 0 2 0 16  

 

 
 

Table 5.5: 
 

 

an alternate optimum  because you have a zero which enters after the termination condition  is 

met?” “Does it indicate unboundedness because you are unable to find a leaving  variable?” 
 

This is what happens for problems that involves unrestricted variables.  It neither signify 

unboundedness nor alternate optimum rather it signifies that the algorithm terminates for prob- 

lems that involves unrestricted variables one of the variables will always want to enter and you 

should be aware of this. 
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5.4   Conclusion 
 

 

In this section, you have considered the simplex algorithm - initialization,  iteration and termi- 

nation. And you have seen many conditions  under which  you can modify the initialization,  the 

iteration or and the termination conditions. 
 

 
 

5.5   Summary 
 

 

At the end of this unit, 
 
 

1. You are now able to initialize, iterate and terminate any LPP and state the optimal  solution. 
 

2. Degeneracy is a phenomenon  of obtaining  a degenerate basic feasible solution in an LPP. 
 

3. You are able to resolve degeneracy if it occurs. 
 

 
4. The alternate optimum is indicated with the optimality or the termination condition been 

satisfied, you have a non-basic variable with a zero value of the zj  −  cj  row which would 

want to enter and entering will give the same value of the objective function but with a 

different solution. You also need to perform the two iterations in other to maximize you 

profit and save some resource. 
 

5. you also know that there are infinitely many solutions in the alternate optimum  case. 

Simplex will indicate only two corner points on the line of the constraint equation which 

is parallel to the objective function. But every other point between the corner points is 

also optimum. 
 

6. Unboundedness is a phenomenon where the algorithm  terminates because it was unable 

to find a departing  variable. 
 

7. A problem is said to be Infeasible if the problem has no feasible solution. 
 

8. A phenomenon in LPP by which, in the middle of simplex iteration, you have a set of 

basic variables and after about some iterations, you realize that you are back to the same 

set of basic variables, without satisfying the termination condition is called Cycling 
 

9. You are also able to solve problems involving unrestricted variables. 
 

 
 

5.6   Tutor Marked Assignemts (TMAs) 
 

 

Exercise 5.6.1 
 
 

1. The simplex algorithm is able to indicate infeasibility 
 

(A) by not having a feasible solution at at all. 
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(B) by having a slack variable  as a basic variable. 
 

(C) by the presence M in the z-value, after the optimum condition is met when using 

the big-M method. 

(D) by the presence of an artificial variable after the optimum condition is met. 
 

2. While solving  a set of equations, it was found that an artificial variable remains in the 

basis with value zero, at optimum.  this indicates that the system of equation is 
 

(A) linearly independent 

(B) linearly dependent 

(C) has no solution. 

(D) has a unique solution. 
 

3. Unboundedness is bes detected in the simplex algorithm if 
 

(A) there is an entering variable but no departing variable. 

(B) there is a decision variable with a zero entry in the zj  −  cj -row. 

(C) all the entries in the zj  −  cj  are nonpositive. 

(D) all the entries in the zj  −  cj -row are non-negative. 
 

4. Alternate optimum is best detected in the simplex algorithm if 
 

(A) there is an entering variable but no departing variable. 

(B) there is a decision variable with a zero entry in the zj  −  cj -row. 

(C) all the entries in the zj  −  cj  are nonpositive. 

(D) all the entries in the zj  −  cj -row are non-negative. 
 

5. Solve the following problem by the two-phase simplex method. 
 

Maximize  2x1 −  x2 + x3 

 

Subject to x1 + x2 −  2x3 ≤  8 
 

4x1 −  x2 + x3 ≥  2 
 

2x1 + 3x2 −  x3 ≥  4 
 

with x1, x2, x3 ≥  0 

 
6. Consider the following linear programming problem. 
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Maximize  x1 + 2x2 

 

Subject to x1 + x2 ≥  1 
 

− x1 + x2 ≤  3 
 

x2 ≤  5 
 

with x1, x2 ≥  0 
 

(a) Solve the problem geometrically. 
 

(b) Solve the problem by the two-phase simplex method. Show that the points generated 

by phase I correspond to basic solutions of the original system. 
 

7. Solve the following problem by the two-phase simplex method. 
 

Minimize x1 + 3x2 −  x3 

 

Subject to  x1 + x2 + x3 ≥  3 
 

− x1 + 2x2 ≥  2 
 

− x1 + 5x2 + x3 ≤  4 
 

with x1, x2, x3 ≥  0 

 
8. Show how phase I of the simplex  method can be used to solve n simultaneous linear 

equations in n unknowns. Show how the following cases can be detected: 
 

(a) Inconsistency of the system. 

(b) Redundancy of the equations. 

(c) Unique solution. 

 

Also show how the inverse matrix corresponding to the system of the equations can be 

found in (c). Illustrated by solving the following system. 
 

x1 + 2x2 + x3 = 4 
 

− x1 −  x2 + 2x3 = 3 
 

x1 −  x2 + x3 = 2 
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9. Solve the following problem by the two-phase simplex method. 
 

Minimize − x1 −  2x2 

 

Subject to  3x1 + 4x2 ≤  20 
 

2x1 −  x2 ≥  2 
 

with x1, x2 ≥  0 

 
10. Solve the following problem by the two-phase method. 

 

Maximize  5x1 −  2x2 + x3 

 

Subject to x1 + 4x2 + x3 ≤  6 
 

2x1 + x2 + 3x3 ≥  2 
 

with x1, x2 ≥  0 

 
x3    unrestricted 

 

 

11. Solve the following problem by the two-phase simplex method. 
 

Maximize  4x1 + 5x2 −  3x3 

 
Subject to x1 + x2 + x3 = 10 

 

x1 −  x2 ≥  1 
 

2x1 + 3x2 + x3 ≤  20 
 

with x1, x2, x3 ≥  0 

 
12. Use the big-M simplex method to solve the following problem. 

 

Minimize − 2x1 + 2x2 + x3 + x4 

 

Subject to  x1 + 2x2 + x3 + x4 ≤  2 
 

x1 −  x2 + x3 + 5x4 ≥  4 
 

2x1 −  x2 + x3 ≤  2 
 

with x1, x2, x3, x4 ≥  0 
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13. Solve the following LPP. 
 

 

Maximize  z = 5x1 −  2x2 + 3x3 

 

Subject to 2x1 + 2x2 −  x3 ≥  2 
 

3x1 −  4x2 ≤  4 
 

x2 −  3x3 ≤  5 
 

with x1, x2, x3 ≥  0 

 

[Ans max  z = 85/3, x1 = 23/3, x2 = 5, x3 = 0] 
 

14. Solve the following LPP.  

 
Maximize  z = 2x1 + 3x2 + 10x3 

 
Subject to x1 + 2x3 = 0 

 
x2 + x3 = 1 

 

with x1, x2, x3 ≥  0 

 

[Ans  max z = 3, x1 = 0, x2 = 1, x3 = 0] 
 

15. Solve the following LPP.  

 
Maximize  z = x1 + 2x2 + x3 

 

Subject to 2x1 + x2 −  x3 ≤  2 
 

− 2x1 + x2 −  5x3 ≥  − 6 
 

4x1 + x2 + x3 ≤  5 
 

with x1, x2, x3 ≥  0 

 

[Ans max z = 10, x1 = 0, x2 = 4, x3 = 2] 
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UNIT 6 
 
 
 

DUALITY IN LINEAR PROGRAMMING 
 

 
 
 
 
 
 

6.1 Introduction 
 

 

Every LPP (called the primal) is associated with another LPP (called its dual). Either problem 

can be considered as primal  and the other one as dual. 
 

The importance of the duality concept is because of two main reasons: 
 

1. If the primal contains a large number of constraints and a smaller number of variables, the 

labour of computation can be considerably reduced by converting it into the dual problem 

and then solving it. 
 

2. The interpretation of the dual variables from the cost or economic point of view, proves 

extremely useful in making future decisions in the activities being programmed. 
 

Although  we have used the duality  principle  in solving minimization problem, by converting it 

first to a maximization,  in this unit, you shall discuss duality in linear programming in detail. 
 

 
 

6.2 Objective 
 

 

At the end of this unit, you should be able to 
 

(i) give the definition of a Dual problem. 
 

(ii)  Formulate the dual of any primal problem. 

(iii)  Solve Dual problems. 

(iv) Use the Dual-simplex algorithm. 

(v) Perform Sensitivity Analysis. 
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6.3 Main Content 
 
 

6.3.1 Formulation of Dual Problems 
 
For formulating  a dual problem, first you have to bring the problem in the canonical form. The 

following changes are used in formulating the dual problem. 
 

 

(i) Change the objective function of maximization in the primal into minimization  in the dual 

and vice versa. 
 

(ii)  The number of variables in the primal will be the number of constraints in the dual and 

vice versa. 
 

(iii)  The cost coefficient c1, c2, . . . , cn in the objective function of the primal will be the RHS 

constant of the constraints in the dual and vice versa. 
 

(iv) In forming the constraints for the dual, you have to consider the transpose of the body 

matrix of the primal problem. 
 

(v) The variables in both problems are non-negative. 
 

(vi) If a variable  in the primal is unrestricted in sign, then the corresponding constraint in the 

dual will be an equation and vice versa. 
 

 
6.3.2 Definition of the Dual Problem 

 
Let the primal problem be, 

 

Maximize  z = c1x1 + · · · + cnxn 

 

Subject to a11x1 + a12x2 + · · · + a1nxn  ≤  b1 

 

a21x1 + a22x2 + · · · + a2nxn  ≤  b2 

 

 

. 
 

am1x1 + am2x2 + · · · + amnxn  ≤  bm 

 

with x1, x2, . . . , xn  ≥  0 
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Dual:  The dual problem is defined as, 
 

Minimize w = b1y1 + b2y2 · · · + bmym 

 

Subject to  a11y1 + a21y2 + · · · + am1ym ≥  c1 

 

a12y1 + a22y2 + · · · + am2ym ≥  c2 

 

 

. 
 

a1ny1 + a2ny2 + · · · + amnym  ≥  cm 

 

with y1, y2, . . . , ym ≥  0 

where y1, y2, y3, . . . , ym are called dual variables 
 

Example 6.3.1 Write the dual of the following primal LP problem. 
 

Maximize z = x1 + 2x2 + x3 

 

Subject to:  2x1 + x2 −  x3 ≤  2 

− 2x1 + x2 −  5x3 ≥  −
6 

4x1 + x2 + x3 ≤  6 
with x1, x2, x3 ≥  0. 

☞ Solution. Since the problem is not in the canonical form, you have to interchange the 

inequality of the second constraint, 
 

Maximize z = x1 + 2x2 + x3 

 

Subject to:  2x1 + x2 −  x3 ≤  2 

2x1 −  x2 + 5x3 ≤  6 
4x1 + x2 + x3 ≤  6 

with x1, x2, x3 ≥  0. 
 

Dual Let y1, y2, y3 be dual variables. Thus the dual problem is given by 
 

Minimize w = 2y1 + 6y2 + 6y3 

 
Subject to:  2y1 + 2y2 + 4y3 ≥  1 

y1 −  y2 + y3 ≥  2 
− y1 + 5y2 + y3 ≥  1 

with y1, y2, y3 ≥  0. 

✍  
 
Example 6.3.2 Find the dual of the following LPP. 
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Maximize z = 3x1 −  x2 + x3 
 

Subject to:  4x1 −  x2 ≤  8 

8x1 + x2 + 3x3 ≥  12 
5x1 −  6x3 ≤  13 

with x1, x2, x3 ≥  0. 

☞ Solution. Since the problem is not in the canonical form, you have to first of all 

interchange the inequality of the second constraint. 
 

Maximize z = 3x1 −  x2 + x3 

 

Subject to:  4x1 −  x2 ≤  8 

− 8x1 −  x2 −  3x3 ≤  − 12 
5x1 + 0x2 −  6x3 ≤  13 

with x1, x2, x3 ≥  0. 
 

In matrix form you have 
Maximize   z = cx 

Subject to:  Ax ≤  b 

with           x ≥  0 
 
x1   

  

 
8  

  

 
4  − 1 0  

  

Where c = (3 −  1  1), x = 
 
x2

  
, b = 

 
− 12 

 
and A = 

 
− 8  − 1  − 3 

         
    

x3  13 

    
  

5 0  − 6 

Dual. Let y1, y2, . . . , y3 be the dual variables. The dual problem is thus given as 
 

Minimize w = bty 
 

Subject to:  Aty ≥  ct
 

 

with y ≥  0 
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i.e.,  
y1  

 

  

Minimize w = (8  −  12 13) 
 
y2     

  

y3 

 
 

4  − 8  5 
  

y1   
    

 
3  

  

Subject to:
  

− 1  − 1  0 
  

y2
  

≥  
 
− 1 

 
 
 
 
 

That is 

      
      
      

0  − 3  6 y3 1 

Minimize w = 8y1 −  12y2 + 13y3 
 

Subject to:  4y1 −  8y2 + 5y3 ≥  3 

− y1 −  y2 + 0y3 ≥  −
1 

0y1 −  3y2 + 6y3 ≥  1 
with y1, y2, y3 ≥  0. 

✍  
 

Example 6.3.3 Write the dual of the following LPP 

Minimize z = 2x2 + 5x3 

Subject to:  x1 + x2 + 0x3 ≥  2 
− 2x1 −  x2 −  6x3 ≥  − 6 
x1 −  x2 + 3x3 ≤  4 
x1 −  x2 + 3x3 ≥  4 

with x1, x2, x3 ≥  0 

☞ Solution. Again on rearranging the constraints, you have 

Minimize z = 0x1 + 2x2 + 5x3 

 

Subject to:  x1 + x2 + 0x3 ≥  2 

− 2x1 −  x2 −  6x3 ≥  − 6 
x1 −  x2 + 3x3 ≥  4 
− x1 + x2 −  3x3 ≥  − 4 

with x1, x2, x3 ≥  0 

Dual: Since there are four constraints in the primal, you have four dual variables namely 

y1, y2, y t , ytt. 3 3 

Maximize w = 2y1 −  6y2 + 4yt −  4ytt 
3 3 

 

Subject to:  y1 −  2y2 + yt −  ytt ≤  0 
3 3 

y1 −  y2 −  yt + ytt ≤  
2 

3 3 

y1 −  6y2 + 3y t −  3y tt ≤  5
 

 
with

 0 3 3 

, y , yt , ytt ≥  0
 

y1 2 3 3 
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Let y3 = y t −  ytt 
3 3 

Maximize w = 2y1 −  6y2 + 4(yt  −  ytt) 3 3 
 

Subject to:  y1 −  2y2 + (yt  −  ytt) ≤  0 
3 3 

y1 −  y2 −  (yt  −  ytt) ≤  2 
3 3 

0y1 −  6y2 + 3(yt  −  ytt) ≤  5 
 

Finally, you have 

3 3 

 

Maximize w = 2y1 −  6y2 + 4y3 

 

Subject to:  y1 −  2y2 + y3 ≤  0 

y1 −  y2 −  y3 ≤  2 
0y1 −  6y2 + 3y3 ≤  5 

with y1, y2 ≥  0, y3 is unrestricted. 

✍  
 
Example 6.3.4 Give the dual of the following problem: 

 

 
 

Maximize z = x + 2y 
 

Subject to:  2x + 3y ≥  4 

3x + 4y = 5 

with x ≥  0 and y unrestricted. 

☞ Solution.  Since the variable y is unrestricted, it can be expressed as y = yt −  ytt, yt, ytt ≥  0. 
On reformulating the given problem, you have 

 

Maximize z = x + 2yt −  2ytt
 

 

Subject to:  − 2x −  3(yt −  ytt) ≤  − 4 

3x + 4(yt −  ytt) ≤  5 
3x + 4(y −  ytt) ≥  5 

with x, yt, ytt ≥  0 
 

Since the problem is not in the canonical form, you have to rearrange the constraints. 
 

Maximize z = x + 2yt −  2ytt
 

 

Subject to:  − 2x −  3y t + ytt ≤  − 4 

3x + 4yt −  4ytt ≤  5 
− 3x −  4y + 4ytt ≤  − 5 

with x, yt, ytt ≥  0 
 

Dual Since there are three variables and three constraints in the primal, you have three variables, 
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namely y1, yt , ytt. 2 3 

Minimize w = − 4y1 + 5wt −  5wtt 
2 2 

 

Subject to:  − 2y1 + 3yt −  3y tt ≥  1 
2 2 

− 3y1 + 4yt −  4ytt ≥  2 
2 2 

3y1 −  4y t + 4ytt ≥  − 2 
 

with
 2 2 

, yt , ytt ≥  0
 

y1 2 2 

Let y2 = yt −  ytt, so that the dual variables y2 is unrestricted in sign. Finally the dual is 
2 2 

Minimize w = − 4y1 + 5y2 

 

Subject to:  − 2y1 + 3y2 ≥  1 

− 3y1 + 4y2 ≥  2 
3y1 −  4y2 ≥  −

2 
with y1 ≥  0, y2    is unrestricted 

 

or 
Minimize w = − 4y1 + 5y2 

 

Subject to:  − 2y1 + 3y2 ≥  1 

− 3y1 + 4y2 ≥  2 
− 3y1 + 4y2 ≤  2 

with y1 ≥  0, y2    is unrestricted 

or 
 

 

Minimize w = − 4y1 + 5y2 
 

Subject to:  − 2y1 + 3y2 ≥  1 

− 3y1 + 4y2 = 2 
with y1 ≥  0, y2    is unrestricted 

✍  
 

 
 

6.3.3 Important Results in Duality 
 

1. The dual of the dual is primal. 
 

2. If one is a maximization  problem, then the other is of minimization. 
 

3. The necessary and sufficient  condition  for any LPP and its dual to have an optimal  solu- 

tion is that both must have feasible solutions. 
 

4. Fundamental  duality  theorem states, if either the primal or dual problem has a finite opti- 

mal solution,  then the other problem also has a finite optimal  solution  and also the optimal 

values of the objective function in both problems are the same, i.e., max z = min w. The 

solution of the other problem can be read from zj −  cj  row below the columns of slack or 
surplus variables. 
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5. Existence  theorems states that, if either problem  has an unbounded solution  then the other 

problem has no feasible solution. 
 

6. Complementary  slackness theorem states that: 
 

(a) If a primal variable is positive, then the corresponding dual constraint is an equation 

at the optimum and vice versa. 

(b) If a primal constraint is a strict inequality  then the corresponding dual variable is 

zero at the optimum and vice versa. 
 
Example 6.3.5 Solve the following LPP. 

 

 
 

Maximize z = 6x1 + 8x2 

 
 
 
 
 
 

by solving its dual problem. 

Subject to:  5x1 + 2x2 ≤  20 
x1 + 2x2 ≤  10 

with x1, x2 ≥  0 

☞ Solution. As there are two constraints in the primal, you have two dual variables y1 and 
y2. Thus the dual of this problem is given as. 

 

Minimize w = 20y1 + 10y2 

 

Subject to:  5y1 + y2 ≥  6 

2y1 + 2y2 ≥  8 
with y1, y2 ≥  0 

 

You can solve the dual problem using the Big-M method. Since this method involves artificial 

variables, the problem is reformulated and you have, 

Maximize wt = − 20y1 −  10y2 + 0y3 −  0y4 −  M A1 −  M A2 

 

Subject to:  5y1 + y2 −  y3 + A1 = 6 

2y1 + 2y2 −  y4 + A2 = 8 
with y1, y2, y3, y4, A1, A2 ≥  0, M > 1 
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B y1 y2 y3 y4 A1 A2 yB yB /y1 

A1 

A2 

5 

2 

1 

2 

-1 

0 

0 

-1 

1 

0 

0 

1 

6 

8 

1.02 → 
4 

wj −  cj -7M +20 

↑ 

-3M -10 M M 0 0 -14M  

B y1 y2 y3 y4 A1 A2 yB yB /y1 

y1 

A2 

1 

0 

1/5 

8/5 

-1/5 

2/5 

0 

-1 

−  
−  

0 

1 

6/5 

28/5 

6 

25/8 → 

wj −  cj 0 - 8 M +6 

↑ 

- 2 M +4 M −  0 28 M +24  

B y1 y2 y3 y4 A1 A2 yB  

y1 

y2 

1 

0 

0 

1 

-1/5 

1/4 

1/8 

-5/8 

−  
−  

−  
−  

1/2 

7/2 

 

wj −  cj 0 0 5/2 15/4 −  −  -45  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5 5 5 
 

 
 
 
 
 
 
 
 
 

Since all wj  −  cj  ≥  0, the solution is optimum. Therefore, the optimal solution of dual is, 

y1 = 1/2, y2 = 7/2,  max wt = − 45 

 

Hence min w = 45 

The optimum solution of the primal problem is given by the value of wj  −  cj  in the optimal 

table corresponding to the column of surplus variables y1 and y2. i.e., 
 

5 15 
x1 = 

2 
, x2 = 

4 
 

5 15 
max z = 6 × 

2 
+ 8 ×

 
= 45 

4 

✍  
 
Example 6.3.6 Prove using duality theory that the following LPP has a feasible but not optimal 

solution. 
 

Minimize z = x1 −  x2 + x3 
 

Subject to:  x1 −  x3 ≥  4 

x1 −  x2 + 2x3 ≥  3 
with x1, x2, x3 ≥  0 

☞ Solution. Given the primal LPP 

Minimize z = x1 −  x2 + x3 

 

Subject to:  x1 −  x3 ≥  4 

x1 −  x2 + 2x3 ≥  3 
with x1, x2, x3 ≥  0 
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B y1 y2 y3 y4 A1 y5 yB yB /y1 

y3 

A1 

y5 

1 

0 

-1 

1 

1 

2 

1 

0 

0 

0 

-1 

0 

0 

1 

0 

0 

0 

1 

1 

1 

1 

1 

1 

1/2 → 

wj −  cj -4 -M -3 

↑ 

0 M 0 0 -M  

B y1 y2 y3 y4 A1 y5 yB yB /y1 

y3 

A1 

y2 

3/2 

1/2 

-1/2 

0 

0 

1 

1 

0 

0 

0 

-1 

0 

0 

1 

0 

-1/2 

-1/2 

1/2 

1/2 

1/2 

1/2 

1/3 → 
1 

−  

wj −  cj - 1 M + 5 

↑ 

0 0 M 0 1 M + 3 - 1 M - 3  

 

 
 
 

Dual Since there are two constraints, there are two variables y1 and y2 in the dual, given by 
 

 

Maximize w = 4y1 + 3y2 

Subject to:  y1 + y2 ≤  1 
0y1 −  y2 ≤  −

1 
− y1 + 2y2 ≤  1 

with y1, y2 ≥  0 

To solve the dual problem Convert to standard form 
 

Maximize w = 4y1 + 3y2 + 0y3 + 0y4 + M A1 

Subject to:  y1 + y2 + y3 = 1 
0y1 + y2 −  y4 + A1 = 1 
− y1 + 2y2 + y5 = 1 
y1, y2 ≥  0 

 

where y3, y5 are slack variables, y4 the surplus variable and A1 the artificial variable. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2 2 2 2 2 2 

 
 

 
Table 6.1: 

 

Since all wj  −  cj   ≥  0 and an artificial variable appears in the basis at positive level, the 

dual problem has no optimal basic feasible solution.  Therefore there exists no finite optimum 

solution to the given primal LPP (Unbounded solution)                                                    ✍  
 
 

6.3.4   Dual Simplex Method 
 
The dual simplex method is very similar to the regular simplex method.  The only difference 

lies in the criterion  used for selecting a variable  to enter and leave the basis. In dual simplex 

method, you first select the variable to leave the basis and then the variable to enter the basis. 

This method yields an optimal solution to the given LPP in a finite number of steps, provided 

no basis is repeated. 
 

The dual simplex method is used to solve problems which start dual feasible (i.e., whose 

primal is optimal but infeasible). In this method the solution starts optimum,  but infeasible 
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and remains infeasible until the true optimum is reached, at which the solution becomes feasi- 

ble. The advantage of this method lies in its avoiding the artificial variables introduced in the 

constraints along with the surplus variables as all t ≥ t constraints are converted into t ≤ t  type. 
 
 

Dual Simplex Algorithm 

 
The iterative procedure for dual simplex method is listed below. 

 

 

Step 1. Convert the problem to maximization form if it is initially in the minimizatioin  form. 

Step 2. Convert t ≥ t type constraints if any to t ≤ t type, by multiplying both sides by -1. 

 

Step 3. Express the problem in standard form by introducing slack variables. Obtain the initial 

basic solution, display this solution in the simplex table. 

Step 4. Test the nature of zj  −  cj  (optimal condition). 

Case I.  If all zj −  cj  ≥  0 and all xBi   
≥  0 then the current solution is an optimum 

feasible solution. 

Case II.  If all zj  −  cj  ≥  0 and at least xBi   
< 0 then the current solution is not 

optimum basic feasible solution. In this case go to te next step. 

Case III. If any zj  −  cj  < 0 then the method fails. 
 

Step 5. In this step you have to find the leaving variable, which is the basic variable corre- 

sponding to the most negative value of xBi 
. Let xk  be the leaving variable, i.e., xBk  

= 

min{xBi 
, xBi   

< 0}. 

To find out the variable entering the basis, you would compute the ratio between zj  −  cj 
row and the key row i.e. compute max{zj  −  cj /cik , aik  < 0} (Consider the ratios with 
negative values alone). The entering variable is the one having the maximum  ratio. If 
there is no such ratio with negative value, then the problem  does not have a feasible 

solution. 
 

Step 6. Convert the following element to unity and all the other elements of key column to 

zero, to get an improved solution. 
 

Step 7. Repeat steps (4) and (5) until either an optimum basic feasible solution is attained or 

an indication of no feasible solution is obtained. 
 

Example 6.3.7 Use dual simplex method to solve the following LPP 

Maximize z = 3x1 −  x2 

Subject to:  x1 + x2 ≥  1 
2x1 + 3x2 ≥  2 

with x1, x2 ≥  0 
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☞ Solution.  Convert the given constraints into ≤  type. 

Maximize z = 3x1 −  x2 

 

Subject to:  − x1 −  x2 ≤  −

1 
− 2x1 −  3x2 ≤  −

2 
with x1, x2 ≥  0 

Introducing slack variables x3, x4 ≥  0, you get 

 

Maximize z = 3x1 −  x2 + 0x3 + 0x4 

 

Subject to:  − x1 −  x2 + x3 = − 1 

− 2x1 −  3x2 + x4 = − 2 
with x1, x2, x3, x4 ≥  0 

An initial basic (infeasible) solution of the modified LPP is x3 = − 1, x4 = − 2. 
 
 
 

 
B x1 x2 x3 x4 x B 
x3 

 
x4 

-1 

 
-2 

-1 
 

-3 

1 

 
0 

0 

 
1 

-1 

 
-2 

z j −c j 3 1 0 0 0 

Table 6.2 

 
 
 
 
 
 

 

Table 6.2: 
 

Since all zj  −  cj  ≥  0 and all xBi   
< 0, the current solution is not an optimum basic 

feasible solution. Since xB2    
= − 2, the most negative, the corresponding basic variable x4  

leaves the basis. Also since max{zj −  cj /aik , aik < 0}, where xk is the leaving variable, 

max{3/ −  2, 1/ −  

3} = − 1/3 = z2 −  c2/a22  the non-basic variable x2 enters the basis. 

Drop x4 and introduce x2. 
 

 
First Iteration 

 
Since all zj  −  cj  ≥  0 and xB1   

= − 1/3 < 0, the current solution is not optimum basic 

feasible solution. Therefore xB1    
= − 1/3 the basic variable x3 leaves the basis. Also since 

max{zj  −  cj /ai1, ai1   < 0} = max{(1/3)/(− 1/3), . . . , (1/3)/(− 1/3)} = − 1 corresponds 
to the non- 
basic variable x4. 
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Therefore drop x3 and introduce x4. 
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B x 1 x 2 x 3 x 4 x B 

x 3 

 
x 2 

-1/3 

 
2/3 

0 

 
1 

1 

 
0 

-1/3 

 
1 

-1/3 

 
2/3 

z j −c j 7 / 3 0 0 1 / 3 -2/3 

Table 6.3 
 
 
 

Table 6.3: 
 

 

Second Iteration 
 

 

B x1 x2 x3 x 4 x B 

 
x 4 

 
x2 

1 

 
1 

0 

 
-1 

-3 

 
-1 

1 

 
0 

1 

 
1 

z j −c j 2 0 1 0 -1 

 
 

 
Table 6.4: 

 
Since all zj −  cj  ≥  0 and also xBi  ≥  0, an optimum basic feasible solution has been reached. 

The optimal solution to the given LPP is x1 = 0, x2 = 1, Maximum z = − 1 ✍  
 

Example 6.3.8 Solve by the dual simplex method the following LPP. 
 

Minimize z = 5x1 + 6x2 

 

Subject to:  x1 + x2 ≥  2 

4x1 + x2 ≥  4 
with x1, x2 ≥  0 

☞ Solution. The given LPP is 

Maximize z = − 5x1 −  6x2 
 

Subject to:  − x1 −  x2 ≤  −

2 
− 4x1 −  x2 ≤  −

4 
with x1, x2 ≥  0 

By introducing slack variables x3, x4 the standard form of LPP becomes, 

Maximize z = − 5x1 −  6x2 + 0x3 + 0x4 

 

Subject to:  − x1 −  x2 + x3 = − 2 

− 4x1 −  x2 + x4 = −
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4 
with x1, x2, x3, x4 ≥  0 
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Initial table 

 

 
 
 

B x 1 x 2 x 3 x 4 x B 

x 3 

 
x 4 

0 

 
-4 

-3/4 

 
-1 

1 

 
0 

0 

 
1 

-2 

 
-4 

z j −c j 5 6 0 0 0 

 

 
 
 

Table 6.5: 

 
Since all zj  −  cj   ≥  0 and xBi   

≤  0, the current solution is not an optimum  basic 

feasible solution. Therefore xB2   
= − 4, is most negative, the corresponding basic variable x4 

leaves the 
basis. 

Also max{zj  −  cj /ai2, ai2  < 0} = max{− 5/4, 6/ −  1, . . . } = − 5/4 gives the non-

basic variable, x1 enters into the basis. 
 

 
First Iteration 

 

 
 
 

B x 1 x 2 x 3 x 4 x B 

x 3 

 
x 1 

0 

 
1 

-3/4 

 
¼ 

1 

 
0 

-1/4 

 
-¼ 

-1 

 
1 

z j −c j 0 19 / 4 0 5 / 4 -5 

 

 
 
 

Table 6.6: 

 
Since all zj  −  cj   ≥  0 and also xB1   = − 1 < 0, the current basic feasible solution is 

not optimum. As xB1   
= − 1 < 0 therefore, the basic variable x3 leaves the basis. 

 
Also, since max 

 

basic variable x4. 

( 
zj  −  cj 

ai1 

\ 

, ai1  < 0 
 
= max 

( 
19/4 

, 
− 3/4 

5/4  
\

 
= 

− 1/4 

5 
corresponds to the non- 

4 

 

Therefore drop x3 and introduce x4. 
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Second Iteration 
 
 

 
B x 1 x 2 x 3 x 4 x B 

x 4 

 
x 1 

0 

 
1 

3 

 
1 

-4 

 
-1 

1 

 
0 

4 

 
2 

z j −c j 0 1 5 0 -10 

 

 
 
 
 

Table 6.7: 
 

Since all zj  −  cj  ≥  0 and also all xBi  ≥  0, the current basic feasible solution is 

optimum. The optimal solution is given by x1 = 2, x2 = 0, max z = − 10, i.e., min z = 10. ✍  
 

Example 6.3.9 Use dual simplex method to solve the LPP. 
 

Maximize z = − 3x1 −  2x2 

 

Subject to:  x1 + x2 ≥  1 

x1 + x2 ≤  7 
x1 + 2x2 ≥  10 
x2 ≤  3 

with x1, x2 ≥  0 

☞ Solution. Interchanging the ≥  inequality of the constraints into ≤ , the given LPP 

becomes 
Maximize z = − 3x1 −  2x2 

 

Subject to:  − x1 −  x2 ≤  −

1 
x1 + x2 ≤  7 
− x1 −  2x2 ≤  −

10 
0x1 + x2 ≤  3 

By introducing the non-negative slack variables x3, x4, x5, x6, the standard form of the LPP 

becomes, 
Maximize z = − 3x1 −  2x2 + 0x3 + 0x4 + 0x5 + 0x6 

 

Subject to:  − x1 −  x2 + x3 = − 1 

x1 + x2 + x4 = 7 
− x1 −  2x2 + x5 = −

10 
0x1 + x2 + x6 = 3 

The initial solution is given by, 
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x3 = − 1, x4 = 7, x5 = − 10, x6 = 3 
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Initial table 

 

 
 
 

B x 1 x 2 x 3 x 4 x 5 x 6 x B 

x 3 

x 4 

x 5 

x 6 

1 

 
1 

 
-1 

 
0 

1 

 
1 

 

 

-2 
 

1 

1 

 
0 

 
0 

 
0 

0 

 
1 

 
0 

 
0 

0 

 
0 

 
1 

 
0 

0 

 
0 

 
0 

 
1 

-1 

 
7 

 
-10 

 
3 

z j −c j 3 2 0 0 0 0 0 

  
 
 
 
 

Table 6.8: 

 
Since all zj −  cj  ≥  0 and some xBi  ≤  0, the current solution is not a basic feasible 

solution. Therefore xB3  = − 10 being the most negative, the basic variable x6 leaves the basis. 

Also, max{zj  −  cj /ai2, ai2  < 0} = max{3/ −  1, 2/ −  2} = − 1, the non-basic variable x2 

enters the basis. 
 

 
First Iteration 

 

 
 
 

B x 1 x 2 x 3 x 4 x 5 x 6 x B 

x 3 

x 4 

x 2 

x 6 

-1/2 

 
1/2 

 
1/2 

 
-1/2 

0 

 
0 

 
1 

 
0 

1 

 
0 

 
0 

 
0 

0 

 
1 

 
0 

 
0 

-1/2 

 
1/2 

 
-1/2 

 
1/2 

0 

 
0 

 
0 

 
1 

4 

 
2 

 
5 

 
-2 

z j −c j 2 0 0 0 1 0 -10 

  
 
 
 
 

Table 6.9: 
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Second iteration. 
 

Drop x6 and introduce x1. Therefore xB4  = − 2 < 0, x6 leaves the basis. 
 

 

max 

( 
zj  −  cj 

a1i 

\ 

, a1i  < 0 

 

 

= max 

( 
2 

− 1/2 

\ 

· · · 

 

= − 4 

 

Hence, x1 enters the basis. 
 

 
 

B x 1 x 2 x 3 x 4 x 5 x 6 x B 

x 3 

x 4 

x 2 

x 1 

0 

 
0 

 
0 

 
1 

0 

 
0 

 
1 

 
0 

1 

 
0 

 
0 

 
0 

0 

 
1 

 
0 

 
0 

-1 

 
1 

 
-0 

 
-1 

-1 

 
1 

 
1 

 
-2 

2 

 
0 

 
3 

 
4 

z j −c j 0 0 0 0 3 4 -18 

 
 
 
 

 

Table 6.10: 
 

Since all zj  −  cj   ≥  0 and all xBi   ≥  0, the current solution is an optimum  basic 

feasible solution. Therefore optimum solution is, max z = − 18, x1 = 4, x2 = 3. ✍  
 

 
6.3.5 SENSITIVITY ANALYSIS 

 
The optimal values of the dual variables in a linear program can, be interpreted as prices.  In this 

section this interpretation is explored in further detail. 
 

Consider the following problem. 
 

 

minimize ctx 

 
subject to  Ax = b (6.1) 

 
with x ≥  0 

Suppose that the simplex method produced an optimal  basis B. How to make use of the opti- 

mality conditions (primal-dual relationships) in order to find the new optimal solution, if some 

of the problem  data change, without resolving the problem from scratch. In particular, the 

following variations in the problem will be considered. 
 

 

1. Change in the cost vector c. 
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k 

k 

k k 

Bt 

k k 

z 

k k k 

c Bt 

k 
t 

B 

 
 
 

2. Change in the right-hand side vector b. 
 

3. Change in the constraint matrix A. 
 

4. Addition of a new activity. 
 

5. Addition of a new constraint. 
 

 
Change in the Cost Vector 

 

 
Given an optimal  basic feasible solution,  suppose that the cost coefficient  of one (or more) of 
the variables is changed from ck to ct . The effect of this change on the final tableau will occur 

in the cost row; that is, dual feasibility  may be lost. Consider the following two cases. 
 

 
Case I: xk  is non-basic 

 

In this case cB is not affected, and hence zj  = cBB− 1aj  is not changed for any j. Thus zk −  ck 

is replaced by zk −  ct . Note that zk −  ck ≤  0 since the current point was an optimal solution of 
the original problem. If zk −  ct

 = (zk −  ck ) + (ck −  ct ) is positive, then xk  must be 

introduced 
into the basis and the (primal)  simplex method is continued as usual. Otherwise  the old solution 
is still optimal with respect to the new problem. 

 

 
xk  is basic, say xk  ≡  xBt 

 

Here cBt  
is replaced by ct 

 
 

. Let the new value of zj  be zt . Then zt −  cj  is calculated  as follows:
 

Bt j j 

 

 

zt  t 1 − 1 t
 

j −  cj =  cBB−   aj  −  cj  = (cBB aj  −  cj ) + (0, 0, . . . , cBt −  cBt 
, 0, . . . , 0)yj 

=  (zj  −  cj ) + (ct
 −  cBt 

)ytj    for all j 
 

In particular for j = k, zk −  ck   = 0, and ytk   = 1, and hence zt
 −  ck   = ct

 −  ck . As you 
would  expect,   t

 −  ck is still equal to zero. Therefore the cost row can be updated by adding 

the net change in the cost of xBt ≡  xk  times the current t row of the final tableau, to the 
original cost row. Then zt

 −  ck is updated to zt
 −  ct

 = 0. Of course the new objective value 
t − 1 
B b = cBB− 1

 b + (ct −  cBt 
)bt  will be obtained in the process. 

 

Example 6.3.10 Consider the following problem. 
 
 

minimize − 2x1 + x2 −  x3 

 

subject to  x1 + x2 + x3 ≤  6 
 

− x1 + 2x2 ≤  4 
 

with x1, x2, x3 ≥  0 
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B x 1 x 2 x 3 x 4 x 5 x B 

x 1 

 
x 5 

1 

 
0 

1 

 
3 

1 

 
1 

1 

 
1 

0 

 
1 

6 

 
10 

z j −c j 0 -1 -1 -2 0 -12 
 

 
 
 

Table 6.11: 
 

 
The optimal tableau is given by the following. The subsequent tableaux are not shown. Next 
suppose that c1   = − 2 is replaced by zero. Since x1  is basic, then the new cost row, except 

z1 −  c1 is obtained by multiplying  the row of x1 by the net change in c1 [that is, 0 −  (− 2) = 2] 
and adding to the old cost row. The new z1 −  c1 remains zero. Note that the new z3 −  c3 is now 

positive and so x3 enters the basis. 
 
 
 

B x 1 x 2 x 3 x 4 x 5 x B 

x 1 

 
x 5 

1 

 
0 

1 

 
3 

 

1 

 
1 

1 

 
1 

0 

 
1 

6 

 
10 

z j −c j 0 -1 1 0 0 0 
  

 

 
Table 6.12: 

And so on (The subsequent tableaux are not shown.) 

Change in the Right-Hand-Side. 
 
If the right-hand-side vector b is replaced by bt, then B− 1b will be replaced by B− 1bt. The 
new right-hand  side can be calculated without explicitly evaluating B− 1bt. This is evident by 
noting that B− 1bt = B− 1b + B− 1(bt −  b). If the first m columns originally form the 
identity, 
then B− 1(bt −  b) = 

   m yj (bt −  bj ) and hence B− 1bt = b̄ + 
  m (bt −  bj ). Since zj −  cj  ≤  0 

j=1 j j=1 j 

for all non-basic variables (for a minimum  problem), the only possible violation of optimality 
is that the new vector B− 1b, may have some negative entries.  if B− 1bt  ≥  0, then the same 

basis remains optimal,  and the values of the basic variables are B− 1bt  and the objective  has 

value cBB− 1bt. Otherwise the dual simplex method is used to find the new optimal solution by 
restoring feasibility. 

 

 

Example 6.3.11 Suppose that the right-hand  side of example (6.3.10) is replaced by 

( 
3 
\

 

4 
.
 



147 

UNIT 6.  DUALITY IN LINEAR PROGRAMMING  

 

j 

jj 

jj 

j 

ct
 

1
at

 

jj 

 

 
 
 

Note that B− 1  = 
( 

1  0 
l
 

 

and hence B− 1bt  = 
( 

1  0 
l ( 

3 
l
 

( 
3 
\

 
= . Then B− 1bt  ≥  0 

1  1 1  1 4 7 
and hence the new optimal solution is x1 = 3, x5 = 7, x2 = x3 = x4 = 0. 

 
 

Change in the Constraint Matrix 

 
On the effect of changing some of the entries of the constraint matrix A. Two  cases are possible, 

namely, changes involving non-basic columns, and changes involving  basic columns. 
 

 
Case I: Changes in Activity Vectors for Non-basic Columns 

 

Suppose that the non-basic column aj  is modified to at . Then the new updated column is B− 1at 
j j 

1
 

and zt  −  cj   = ct  B
−   

at −  cj .I f z
t  −  cj   ≤  0, then the old solution is optimal; otherwise the 

j B  j j 

simplex method is continued, after column j of the tableau is updated, by introducing the non- 

basic variable xj . 
 
 

Case II: Changes in Activity Vectors for Basic Columns 
 

Suppose that the non-basic column aj  is modified to at . This case can cause considerable  trou- 

ble. It is possible that the current set of basic vectors no longer form a basis after the change. 
Even if this does not occur, a change in the activity vector for a single basic column will change 

B− 1 and thus the entries in every column. 
 

Assume that the basic columns are ordered from 1 to m. Let the activity vector for basic 

column j change from aj  to at . Compute yt = B− 1at where B− 1  is the current basis inverse. j j j 

There are two possibilities. If yt
 = 0, the current set of basic vectors no longer forms a basis. 

In this case it is probably best to add an artificial  variable to take the place of xj  in the basis and 

resort to the two-phase method or the big-M method. However, If yt
 /= 0, you may replace 

column j, which is currently  a unit vector, by yt
 and pivot on yt

 . The current basis continues 
to be a basis. However, upon pivoting  you may have destroyed both primal and dual feasibility 

and, if so, must resort to one of the artificial variable (primal and dual) techniques. 
 

 

Example 6.3.12 Suppose that in example 6.3.10, a2 is changed from 

( 
1 
\

 

2 

( 
2 
\ 

to 
5 

 

 

. Then 

 
 

yt − 1   t
 

( 
1  0 

\ ( 
2 
\ ( 

2 
\ 

2 = B a2 = 
1  1 5 

= 
7 

 

BB
−  

2 −  c2 = (− 1, 0) 

( 
2 
\

 

7 
−  1 = − 5 

Thus the current optimal tableau remains optimal with column x2 replaced by (− 5, 2, 7)t. 
 

Next suppose that column a1 is changed from 

( 
1 
\

 

− 1 

( 
0 
\

 
to 

− 1 

 

. Then 

 

y1 = B− 1at 

( 
1  0 

\ ( 
0 
\

 
= = 

( 
0 
\

 
1 1  1 − 1 − 1 
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ct
 

1
at

 

1 

1 

 

 
 

BB
−  

1 −  c1 = (− 2, 0) 

( 
0 
\

 

− 1 
−  (− 2) = 2 

Here the entry in the x1 row of yt
 is zero, and so the current basic columns no longer span the 

space. Replacing column x1 by (2, 0, − 1)t  and adding the artificial variable A1 to replace x1 in 
the basis, you get the following tableau. 

 
 
 

B x 1 x 2 x 3 x 4 x 5 A1 x B 

x 6 

 
x 5 

0 

 
-1 

1 

 
3 

1 

 
1 

1 

 
1 

0 

 
1 

 

1 

 
0 

6 

 
10 

 
 

z j − c j 2 -3 -1 -2 0 − M -12 

  
 

 
 
 

Table 6.13: 
 

After preliminary pivoting at row x6 and column A1  to get z6 −  c6  = 0, that is, to get the 

tableau in basic form, you may proceed with the big-M method. 
 

Finally,  suppose that column a1 is changed from 

( 
1 
\

 

− 1 

( 
3 
\

 
to 

6 

 
. Then 

 
 

yt − 1   t
 

( 
1  0 

\ ( 
3 
\ ( 

3 
\ 

1 = B 
 
 
 

ct 1
at

 

a1 = 1  1 6 
= 

9 
 

( 
3 
\ 

BB
−

 1 −  c1 = (− 2, 0) 
9 −  (− 2) = − 4 

In this case the entry in the x1  row of yt
 

 

is nonzero and so you should replace column x1  by 

(− 4, 3, 9)t, pivot in the x1 column and x1 row, and proceed. 
 

 
 

B x 1 x 2 x 3 x 4 x 5 x B 

x 1 

 
x 5 

 

3 

 
9 

1 

 
3 

1 

 
1 

1 

 
1 

0 

 
1 

6 

 
10 

z j −c j -4 -3 -1 -2 0 -12 

  
 

 
 
 

Table 6.14: 

The subsequent tableaux are not shown. 
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n+1 

6 6 

 
 
 

Adding a New Activity 

 
Suppose that a new activity xn+1 with unit cost cn+1  and consumption column an+1  is consid- 

ered for possible production. Without resolving the problem, you can easily determine whether 

producing xn+1 is worthwhile. First calculate zn+1  −  cn+1. If zn+1  −  cn+1   ≤  0 (for a mini- 
mization problem), then x∗  = 0 and the current solution is optimal. On the other hand, if 
zn+1  −  cn+1  > 0, then xn+1 is introduced into the basis and the simplex method continues to 
find the new optimal solution. 

 
Example 6.3.13 Consider Example 6.3.10. Your wish is to find the new optimal solution if a ( 

− 1 
\ 

new activity x6  ≥  0 with c6  = 1, and a6  = 

z6 −  c6 : 
2 

is introduced. First, you will calculate
 

 

 

( 
− 1 

\ 

z6 −  c6 = wta6 −  c6 = (− 2, 0) 
 

y  = B− 1a  = 

( 
1  0 

l ( 
− 1 

l
 

2 
−  1 = 1 

 

= 

( 
− 1 

l
 

1  1 2 1 
 

Therefore x6  is introduced in the basis by pivoting at the x5  row and the x6  column. The 
 
 
 

B x 
1
 x

2
 x

3
 x 

4
 x 

5
 x

6
 x 

B
 

x
1
 

 
x

5
 

1 

 
0 

1 

 
3 

1 

 
1 

1 

 
1 

0 

 
1 

-1 

 
1 

6 

 
10 

z 
j 
−c 

j
 0 -3 -1 -2 0 1 -12 

  
 

 
 

Table 6.15: 
 

 
subsequent tableaux are not shown. 

 

 
Adding a New Constraint 

 
Suppose that a new constraint  is added to the problem.  If the optimal solution to the original 

problem satisfies the added constraint, it is then obvious that the point is also an optimal solution 

of the new problem. If, on the other hand, the point does not satisfy the new constraint, that is, 

if the constraint “cuts away” the optimal  point, you can use the dual simplex method to find the 

new optimal solution. 

Suppose that B is the optimal  basis before the constraint am+1x  ≤  bm+1  is added.  The 

corresponding tableau is shown below. 
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B 

B 

B 

N 

 
 
 
 

z + (ct  B
− 1

N −  c  )x
 

=  ct  B
− 1

b
 

B  N  N  B  

(6.2) 

xB  + B− 1NxN = B− 1b 

The constraint am+1x ≤  bm+1 is rewritten as am+1xB + am+1xN + xn+1 = bm+1, where am+1  is
 

B  N 

decomposed into (am+1, am+1) and xn+1 is a non-negative slack variable.  Multiplying Equation 
B  N 

(6.2) by am+1  and subtracting from the new constraint gives the following system: 

 

z + (ct  B
− 1

N −  c )xN =  cB B− 1b 

 

xB  + B− 1NxN =  B− 1b 
 

(am+1
 

m+1  − 1
 

m+1  − 1
 

N  −  aB  B N)xN + xn+1 =  bm+1 −  aB  B  b 

These equations give  us a basic solution  of the new system. The only possible violation of 

optimality of the new problem is the sign of bm+1 −  am+1B− 1b. So if bm+1 −  am+1B− 1b ≥  
0, B  B 

then the current solution is optimal. Otherwise, if bm+1 −  am+1B− 1b < 0, then the dual simplex 
method is used to restore feasibility. 

 
Example 6.3.14 

 
Consider Example 6.3.10 with the added restriction  that − x1 + 2x3  ≥  2. Clearly the optimal 

point (x1, x2, x3) = (6, 0, 0) does not satisfy this constraint. The constraint − x1 + 2x3 ≥  2 is 

rewritten  as x1 −  2x3 + x6 = − 1, where x6 is a non-negative slack variable. This row is 
added 
to the optimal simplex tableau of Example 6.3.10 to obtain the following tableau. 

 
 
 

B x 
1
 x

2
 x

3
 x 

4
 x 

5
 x

6
 x 

B
 

x
1
 

 
x

5
 

 
x

6
 

1 

 
0 

 
0 

1 

 
3 

 
-1 

1 

 
1 

 
-3 

1 

 
1 

 
-1 

0 

 
1 

 
0 

0 

 
0 

 
1 

6 

 
10 

 
-8 

z 
j 
−c 

j
 0 -3 -1 -2 0 0 -12 

  

 

 
Table 6.16: 

 

 
Multiply row 1 by -1 and add to row 3 in order to restor the column x1 to a unit vector. The 

dual simplex method can then be applied to the resulting tableau below. 
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B x 
1
 x

2
 x

3
 x 

4
 x 

5
 x

6
 x 

B
 

x
1
 

 
x

5
 

 
x

6
 

1 

 
0 

 
0 

1 

 
3 

 
-1 

1 

 
1 

 
-3 

1 

 
1 

 
-1 

0 

 
1 

 
0 

0 

 
0 

 
1 

6 

 
10 

 
-8 

z 
j 
−c 

j
 0 -3 -1 -2 0 0 -12 

  

 

 
Table 6.17: 

 

 
 

Subsequent tableaux are not shown. Note that adding a new constraint in the primal problem 

is equivalent to adding a new variable in the dual problem and vice versa. 
 

 
 

6.4 Conclusion 
 

 

In this unit, you considered the Dual problem, the dual simplex method and sensitivity analysis. 
 

 
 

6.5 Summary 
 

 

Having gone through this unit, you are now able to 
 

 

(i) Formulate the dual of any problem. 
 

(ii)  Solve LPP problems using the dual simplex method/algorithm. 
 

(iii)  Perform sensitivity analysis of LPP using the dual simplex method. 

((iv) You also know that the value of the slack/surplus variables in the zj − cj  row at the optimal 

tableau of the simplex method for the dual problem gives you the value of the decision 
variable of the primal problem. 

 

 
 

6.6 Tutor Marked Assignments(TMAs) 
 

 

Exercise 6.6.1 
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1. Consider the following problem 
 

Maximize − x1 + 2x2 

 

Subject to 3x1 + 4x2 ≤  12 
 

2x1 −  x2 ≥  2 
 

with x1, x2 ≥  0 

 

(a) Solve the problem graphically. 
 

(b) State the dual and solve it graphically. Utilize the theorem of duality to obtain the 

values of all the primal variables from the optimal dual solution. 
 

2. Consider the following problem. 
 

Minimize 2x1 + 3x2 + 5x3 + 6x4 

 

Subject to x1 + 2x2 + 3x3 + x4 ≥  2 
 

− 2x1 + x2 −  x3 + 3x4 ≤  −

3 
 

with x1, x2, x3, x4 ≥  0 

 

(a) Give the dual linear program. 

(b) Solve the dual geometrically. 

(c) Utilize information  about the dual linear program and the theorems of duality to 

solve the primal problem. 
 

3. Solve the following linear program by a graphical  method. 
 

Maximize 3x1 + x2 + 4x3 

 

Subject to 6x1 + 3x2 + 5x3 ≤  25 
 

3x1 + 4x2 + 5x3 ≤  20 
 

with x1, x2, x3 ≥  0 

 

(Hint. Utilize the dual problem.) 
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4. Give the dual of the following problem. 

Minimize 2x1 + 3x2 −  5x3 

 

Subject to  x1 + x2 −  x3 + x4 ≥  5 
 

2x1 + x3 ≤  4 

 
x2 + x3 + x4 = 6 

 

x1 ≤  0 
 

x2, x3 ≥  0 

 
x4,  unrestricted 

 
5. Consider the following problem. 

 

 

Maximize  10x1 + 24x2 + 20x3 + 20x4 + 25x5 

 

Subject to x1 + x2 + 2x3 + 3x4 + 5x5 ≤  19 
 

2x1 + 4x2 + 3x3 + 2x4 + x5 ≤  57 
 

with x1, x2, x3, x4, x5 ≥  0 
 

(a) Write the dual problem and verify that (w1, w2) = (4, 5) is a feasible solution. 

(b) Use the information  in part (a) to derive an optimal solution to both the primal and 

dual problems. 
 

6. Consider the following linear program. 
 

P :Minimize 6x1 + 2x2 

 

Subject to x1 + 2x2 ≥  3 
 

x2 ≥  0 

 
 

 
(a) State the dual of P. 

with x1   unrestricted 

(b) Draw the set of feasible solution for the dual of part (a). 

(c) Convert P to canonical form by replacing x1 by xt −  xtt with xt , xtt  ≥  0. Give the 
 

dual of this converted problem. 
1 1 1 1 

(d) Draw the set of feasible solutions of the dual of part (c). 

(e) Compare parts (b) and (d). What did the transformation of part (c) do to the dual of 

part (a)? 
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7. The following simplex tableau shows the optimal solution of a linear programming  prob- 

lem. It is known that x4 and x5 are the slack variables in the first and second constraints 

of the original problem. the constraints are of ≤  type. 
 

 
 

B x 
1
 x

2
 x

3
 x 

4
 x

5
 x 

B
 

x
3
 

 
x 

1
 

0 

 
1 

½ 

 
-½ 

1 

 
0 

½ 

 
-1/6 

0 

 
1/3 

5/2 

 
5/2 

z 
j 
−c 

j
 0 -4 0 -4 -2 -40 

 

 
Table 6.18: 

 
 

 
(a) Write the original problem. 

 

(b) What is the dual of the original problem? 
 

(c) Obtain the optimal solution of the dual from the above tableau. 
 

8. Consider the following linear programming problem. 
 

Maximize 2x1 + 3x2 + 6x3 

 

Subject to x1 + 2x2 + x3 ≤  10 
 

x1 −  2x2 + 3x3 ≤  6 
 

with x1, x2, x3 ≥  0 

 

(a) Write the dual problem. 
 

(b) Solve the foregoing problem by the simplex method. At each iteration, identify the 

dual variables, and show which dual constraints are violated. 

(c) At each iteration, identify the dual basis that goes with the simplex iteration. Identify 

the dual basic and non-basic variables. 

(d) Show that at each iteration of the simplex method, the dual objective is “worsened.” 

(e) Verify that at termination, feasible solutions of both problems are at hand, with equal 

objectives, and with complementary slackness. 
 

9. Consider the problem: 
Minimize ctx 

Subject to  Ax = b 

with              x ≥  0 



155 

UNIT 6.  DUALITY IN LINEAR PROGRAMMING  

 

 
 
 

where x is an n-vector, b is an m-vector  and A is an n × m matrix. 

Suppose that there exist an x0 such that Ax0  = b, under which of the following condi- 

tions for m and n, b and c, and A is x0 is an optimal point. 

(a) m = n, A = A− 1  and c = b 

(b) m = n, A = At and c = bt 

(c) m < n, A = A− 1  and c = bt 

(d) m < n, A = At and c = b 
 

10. The following are the initial and current tableaux of the linear programming problem. 
 
 
 

B x 1 x 2 x 3 x 4 x 5 x 6 x 7 x B 

x 6 

 
x 7 

5 

 
1 

-4 

 
-1 

13 

 
5 

b 

 
c 

1 

 
1 

1 

 
0 

0 

 
1 

20 

 
8 

z 
j 
−c 

j
 1 6 -7 a 5 0 0 0 

 

B x 1 x 2 x 3 x 4 x 5 x 6 x 7 x B 

x 3 

 
x 2 

-1/7 

 
-12/7 

0 

 
1 

1 

 
0 

-2/7 

 
-3/7 

3/7 

 
8/7 

-1/7 

 
-5/7 

4/7 

 
13/7 

12/7 

 
4/7 

z 
j 
−c 

j
 72/7 0 0 11 / 7 8 /7 23 / 7 -50/7 60/7 

 

 
 

Table 6.19: 
 

 
 
 

(a) Find a, b, and c. 

(b) Find B− 1. 
 

(c) Find ∂x2/∂x5. 

(d) Find ∂x3/∂b2. 

(e) Find ∂z/∂x6. 

(f) Find the compelementary dual solution. 
 

11. The following is an optimal simplex tableau (maximization  and all ≤  constraints). 

(a) Give the optimal solution. 

(b) Give the optimal dual solution. 
 

(c) Find ∂z/∂b1. Interpret this number. 

(d) Find ∂x1/∂x6. Interpret this number. 
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2 

2 2 

 

 
 
 
 

B x 1 x 2 x 3 x 4 x 5 x 6 x B 

x 1 

 
x 3 

 
x 5 

1 

 
0 

 
0 

1 

 
0 

 
-2 

0 

 
1 

 
0 

2 

 
1 

 
1 

0 

 
0 

 
1 

1 

 
4 

 
6 

2 

 
3/2 

 
1 

z 
j 
−c 

j
 0 0 0 4 0 9 5 

 

 
 

Table 6.20: 
 
 
 

(e) If you could buy an additional unit of the first resource for a cost of  5 would you do 

this? Why? 
 

(f) Another firm wishes to purchase one unit of the third resource from you. How much 

is such a unit worth to you? Why? 

(g) Are there any alternate optimal solutions? If not, why not? If so, give one. 
 

12. Solve the following problem by the dual simplex method. 
 

Maximize  − 4x1 −  6x2 −  18x3 

 

Subject to x1 + 3x3 ≥  3 
 

x2 + 2x3 ≥  5 
 

with x1, x2, x3 ≥  0 

 

Give the optimal values of the primal and dual variables. Demonstrate that complemen- 

tary slackness holds. 
 

13. Consider the following linear programming problem. 
 

Maximize 2x1 −  3x2 

 

Subject to x1 + x2 ≥  3 
 

3x1 + x2 ≤  6 
 

with x1, x2 ≥  0 

 

You are told that the optimal solution is x1  = 3
 and x2  = 3 . Verify this statement by 

duality. Describe two procedures for modifying  the problem in such a way that the dual 

simplex method can be used. Use one of these procedures for solving the problem by the 

dual simplex method. 
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14. Solve the following linear program by the dual simplex method. 
 

Minimize 2x1 + 3x2 + 5x3 + 6x4 

 

Subject to x1 + 2x2 + 3x3 + x4 ≥  2 
 

− 2x1 + x2 −  x3 + 3x4 ≤  −

3 
 

with x1, x2, x3, x4 ≥  0 

 

15. Consider the following problem. 

Minimize 3x1 + 5x2 −  x3 + 2x4 −  4x5 

 

Subject to x1 + x2 + x3 + 3x4 + x5 ≤  6 
 

− x1 −  x2 + 2x3 + x4 −  x5 ≥  

3 
 

with x1, x2, x3, x4, x5 ≥  0 

 

(a) Give the dual problem. 

(b) Solve the dual problem using the artificial constraint technique. 

(c) Find the primal solution from the dual solution. 
 

16. Apply the primal-dual method to the following problem. 
 

Minimize 9x1 + 7x2 + 4x3 + 2x4 + 6x5 + 10x6 

 
Subject to x1 + x2 + x3 = 8 

x4 + x5 + x6 = 5 

x1 + x4 = 6 

x2 + x5 = 4 

 
x3 + x6 = 3 

 

with x1, x2, x3, x4, x5, x6 ≥  0 

 

17. Solve the following problem by the primal-dual algorithm. 

Minimize x1 + 2x3 −  x4 

 

Subject to x1 + x2 + x3 + x4 ≤  6 
 

2x1 −  x2 + 3x3 −  3x4 ≥  5 
 

with x1, x2, x3, x4 ≥  0 
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18. Apply the primal-dual algorithm to the following problem. 
 

Maximize 7x1 + 2x2 + x3 + 4x4 + 6x5 

 

Subject to 3x1 + 5x2 −  6x3 + 2x4 + 4x5 = 27 
 

x1 + 2x2 + 3x3 −  7x4 + 6x5 ≥  2 
 

9x1 −  4x2 + 2x3 + 5x4 −  2x5 = 16 
 

with x1, x2, x3, x4, x5 ≥  0 

 
19. You have shown that the primal-dual  algorithm  converges in a finite number of steps in the 

absence of degeneracy. What happens in the degenerate case? How can you guarantee fi- 

nite convergence? (Hint. Consider applying the lexicographic simplex or the perturbation 

method to the restricted primal problem.) 
 

20. Consider the following linear programming problem and its optimal final tableau shown 

below. 
 
 
 
 
 
 
 
 
 

 
Final Tableau 

Maximize 2x1 + x2 −  x3 
 

Subject to x1 + 2x2 + x3 ≤  8 
 

− x1 + x2 −  2x3 ≤  4 
 

with x1, x2, x3 ≥  0 

 

 
 

B x 1 x 2 x 3 x 4 x 5 x 6 x B 

x 1 

 
x 5 

1 

 
0 

2 

 
3 

1 

 
-1 

1 

 
1 

0 

 
1 

1 

 
6 

12 

 
8 

z 
j 
−c 

j
 0 3 3 2 0 9 16 

 
 
 
 

 

Table 6.21: 
 

 
 
 

(a) Write the dual problem and find the optimal dual variables from the foregoing 

tableau. 

(b) Using sensitivity analysis, find the new optimal solution if the coefficient of x2  in 

the objective function is changed from 1 to 5. 
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ij 
∂x 

j j 
∂x 

 
 
 

(c) Suppose that the coefficient  of x3 in the second constraint is changed from -2 to 1. 

Using sensitivity, find the new optimal solution. 

(d) Suppose that the following constraint is added to the problem: x2 + x3  ≥  2. Using 

sensitivity, find the new optimal solution. 
 

(e) If you were to choose between increasing the right-hand side of the first and second 

constraints, which one would you choose? Why? What is the effect of this increase 

on the optimal value of the objective function? 

(f) Suppose that a new activity x6 is proposed with unit return 4 and consumption  vec- 

tor a6 = (1, 2)t. Find the new optimal solution. 
 

 
21. consider the following optimal tableau of the minimization  problem where the constraint 

are of the ≤  type. 
 
 
 

B x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x B 

x 1 

 
x 2 

 
x3 

1 

 
0 

 
0 

0 

 
1 

 
0 

0 

 
0 

 
1 

-1 

 
2 

 
-1 

0 

 
1 

 
-2 

½ 

 
-1 

 
5 

1/5 

 
0 

 
3/10 

-1 

 
½ 

 
2 

3 

 
1 

 
7 

z 
j 
−c 

j
 0 0 0 2 0 ½ 1/ 10 2 17 

 

 
 

Table 6.22: 
 

 
 

where x6, x7 and x8 are slack variables. 
 

(a) Would the solution be altered if a new activity x9 with coefficients (2, 0, 3)t  in the 

constraints, and price of 5, were added to the problem? 
 

(b) How large can xB1  (the first constraint resource) be made without violating  feasibil- 

ity? 

22. Consider the tableau of exercise 21. Suppose that you add the constraint x1 −  x2 + 2x3 ≤  

10 to the problem. Is the solution still optimal? If not, find the new optimal solution. 

23. Consider the problem: Maximize cx subject to Ax = b, x ≥  0. Let zj  −  cj , yij , and b̄i 

be the updated entries at some iteration  of the simplex algorithm.  Indicate whether each 
of the following statements is true or false. Discuss. 

 

(a) y = −  
∂xBi

 

j 

(b) z −  c  = 
∂z

 
j 

(c) Dual feasibility is the same as primal  optimality. 



160 

UNIT 6.  DUALITY IN LINEAR PROGRAMMING  

 

 
 
 

(d) Performing row operations on inequality  systems yields equivalent systems. 
 

(e) Adding artificial variables to the primal serves to restrict variables that are really 

unrestricted in the dual. 

(f) Linear programming by the simplex method is essentially a gradient search. 
 

(g) A linear problem can be solved by the two-phase method if it can be solved by the 

big-M method. 

(h) There is a duality gap (difference in optimal objective values) when both the primal 

and the dual programs have no feasible solutions. 

(i) Converting a maximization  problem to a minimization  problem changes the sign of 

the dual variables. 

(j) If wi  is a dual variable, then 
 ∂z wi  = −  

∂b
 
i 

 

(k) A linear program with some variables required to be greater than or equal to zero 

can always be converted into one where all variables are unrestricted,  without adding 

any new constraints. 
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UNIT 7 
 
 
 

TRANSPORTATION PROBLEM 
 

 
 
 
 
 
 

7.1   Introduction 
 

 

The transportation problem is one of the subcalsses of LPPs. Here the objective is to transport 

various quantities of a single homogeneous commodity  that are initially stored at various origins 

to different destinations in such a way that the transportation cost is minimum. To achieve this 

you must know the amount and location of available supplies and the quantities demanded. In 

addition, you must know the costs that result from transporting  one unit of commodity from 

various origins to various destinations. 
 

 
 

7.2   Objective 
 

 

At the end of this unit, you should be able to; 
 

 

(i) Give a mathematical formulation  of a transportation  problem. 
 

(ii)  Determine the initial solution of a transportation problem using any of 
 

(a) the North-West Corner Rule (NWCR) 
 

(b) Least Cost Method or Matrix Minima Method. 

(c) Vogel’s Approximation Method (VAM) 
 

(iii)  Perform optimality  test on the initial solution use the MODI Method. 
 

(iv) Resolve Degeneracy in transportation problem. 
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O
ri

g
in

 

x x 

 

 
 

7.3   Transportation Problem 
 
 

7.3.1   Mathematical Formulation (The Model) 
 
Consider a transportation problem with m origins (rows) and n-destinations (columns). Let cij 
be tht cost of transporting one unit of the product from the ith origin to jth destination, ai  the 

quantities of commodity available at origin i, bj the quantity of commodity needed at destination 

j, xij  is the quantity transported from ith origin to jth destination.  The above transportation 

problem can be stated in the tabular form. 
 

 
 

Destination 

1  2  3  … n  Capacity 
 

1  C 11 

x11 
 

2  C 21 

x21 
 

3  C 31 

x 31 

 

C m1 

 

x 12 

x22 

x32 

 

C 12 

 

 
C 22 

 

 
C 32 

 

 
C m2 

 

 
x13 

 

 
x23 

 

 
x11 

 

C 13 

 

 
C 23 

 

 
C 33 

 

 
C m3 

 

x1n 

x2n 

x 3n 

 

C 1n  
a1 

 
 

C 2n 
a 2 

 
 

C 3n  
a 3 

 
 

C mn  
am 

m 
m1  m2 xm3 xmn 

 

Demand  b1  b 2 b 3  b n 

m n 

∑ ai =∑ b j 
i= 1 j= 1 

 
 
 

Table 7.1: 
 

 
 

The Linear programming model representing the transportation problem is given by 

 
 

Minimize z = 

m 

 
 
i=1 

n 

 
 
j=1 

 
cij xij 

 
 

Subject to: 

n 

 
 
j=1 

 
xij  = ai, (i = 1, 2, . . . , n),  (Row Sum) 

 
m 

 
 

i=1 

 
xij  = bj , (j = 1, 2, . . . , n)  (Column Sum) 

 

xij  ≥  0  for all i and j 
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* 

 
* 

 

  
* 

  

  
* 

 
* 

 

    

 

 
* 

  
* 

   

 
* 

  
* 

 

 
 
 

The given transportation problem is said to be balanced if 
 

m 

 
 

i=1 

 
ai  = 

n 

bj 
j=1 

 

i.e., if the total supply is equal to the total demand. 
 

 
 

7.3.2 Definitions 
 
Definition 7.3.1 Feasible Solution: Any set of non-negative allocations (xij  > 0) which satis- 

fies the row and column sum (rim requirement) is called a feasible solution. 
 
Definition 7.3.2 Basic feasible solution  A feasible solution is called a basic feasible solution 

if the number of non-negative allocations is equal to m + n −  1, where m is the number of rows 
and n the number of columns in a transportation  table. 

 
Definition 7.3.3 Non-degenerate basic feasible solution:  Any feasible solution is to a trans- 

portation problem containing m origins and n destinations is said to be non-degenerate if it 

contains m + n −  1 occupied cells and each allocation  is in an independent position. 
 

The allocations are said to be in independent positions, if it is impossible to form a closed 

path. 
 

A path which is formed by allowing horizontal and vertical lines and all the corner cells of 

which are occupied is called a closed path. 
 

The allocations in the following tables are not in independent positions. 
 

 
  

* 
 

* 

  
* 

 
* 

   

 
 
 

 
Table 7.2: 

 

 
 

The allocations in the following table s are in independent positions. 
 

 
Definition 7.3.4 Degenerate basic feasible solution:  If a basic feasible solution  contains less 
than m + n −  1 non-negative allocations, it is said to be ’degenerate’ 
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* 

 
* 

  

    

  
* 

  
* 

   
* 

 
* 

 

 
 
 
 

  
* 

 
* 

  
* 

 
* 

   

 
 
 

 
Table 7.3: 

 
 
 

7.3.3 Optimal Solution 
 
Optimal solution is a feasible solution  (not necessary basic), which minimizes the total cost. 

 

The solution of a transportation  problem  can be obtained in two stages, namely initial and 

optimum solution. 
 

Initial solution can be obtained by using any one of the three methods, viz., 
 
 

1. North-West Corner Rule (NWCR) 
 

2. Least Cost Method or Matrix Minima Method, 
 

3. Vogel’s Approximation Method (VAM). 
 
 

VAM is preferred over the other two methods, since the initial basic feasible solution ob- 

tained by this method is either optimal or very close to the optimal solution. 
 

The cells on the transportation table can be classified as occupied and unoccupied  cells.  The 

allocated cells in the transportation table are called occupied cells and the empty ones are called 

unoccupied cells. 
 

The improved solution of the initial basic feasible solution  is called ’optimal solution’, 

which is the second stage of solution  and can be obtained by MODI (modified distribution 

method). 
 

 
7.3.4 North-West Corner Rule 

 
Step 1. Starting with the cell at the upper left corner (north-west) of the transportation matrix, 

you allocate as much as possible so that either the capacity of the first row is exhausted 

or the destination requirement of the first column is satisfied i.e., x11 = min(a1, b1). 

 
Step 2. If b1  > a1, you move down vertically to the second row and make the second allocation 

of magnitude x22 = min(a2, b1 −  x11) in the cell (2, 1). 
 

If b1  < a1, move right horizontally to the second column and make the second allocation 
of magnitude x12 = min(a1, x11 −  b1) in the cell (1, 2). 
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If b1   = a1, there is a tie for the second allocation. You make the second allocation  of 

magnitude 

x12 = min(a1 −  a1, b1) = 0 in cell (1, 2). 

or 

x21 = min(a2, b1 −  b1) = 0 in the cell (2, 1) 
 

Step 3 Repeat steps 1 and 2, moving down toward the lower right corner of the transportation 

table until all the rim requirements are satisfied. 
 
Example 7.3.1 Obtain the inital basic feasible solution of the transportation problem whose 

cost and rim requirement table is given below. 
 
 

Origin/Destination D1  D2  D3 Supply 

O1 

O2 

O3 

O4 

2 7 4 

3 3 1 

5 4 7 

1 6 2 

5 

8 

7 

14 

Demand 7 9 18 34 
 
 

Table 7.4: 
 

☞ Solution. Since ai  = 34 = bj , there exists a feasible solution to the transportation 

problem. You obtain initial feasible solution  as follows. 
 

The first allocation is made in the cell (1, 1), the magnitude being x11  = min(5, 7) = 5. 

The second allocation  is made in the cell (2, 1) and the magnitude of the allocation is given by 

x21 = min(8, 7 −  5) = 2. 
 
 

 
D1  D2  D3  Supply 

O1  2  7  4 

5 
 

O
2  3  3  1 

2  6 

O
3  5  4  7 

3  4 
 

1  6  2 

5   0 
 

 
8  6    0 
 
 
7  4    0 

O4 

 

Demand  7 
2 

0 

14 
 

9  18 
3  14 

0  0 

14    0 
 
34 

 

 
 
 

Table 7.5: 
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The third allocation is made in the cell (2, 2), the magnitude being x22 = min(8 −  2, 9) = 6. 

The magnitude of fourth allocation is made in the cell (3, 2) given by x32 = min(7, 9 −  6) = 3. 

The fifth allocation is made in the cell (3, 3) with magnitude x33 = min(7 −  3, 14) = 4. 

The final allocation is made in the cell (4, 3) with maginitude x43 = min(14, 18 −  4) = 14. 

Hence you get the initial basic feasible solution to the given T.P. which is given by, 
 

x11 = 5; x21 = 2; x22 = 6; x32 = 3; x33 = 4; x43 = 14 
 
 

Total cost  =  2 × 5 + 3 × 2 + 3 × 6 + 3 × 4 + 4 × 7 + 2 × 14 

 

=  10 + 6 + 18 + 12 + 28 + 28 = N 102 

✍  
 

 
 

7.3.5 Least Cost or Matrix Minima Method 
 

Step 1 Determine the smallest cost in the cost matrix of the transportation table. Let it be cij . 

Allocate xij  = min(ai, bj ) in the cell (i, j). 
 

Step 2 If xij  = ai, cross of the ith row of the transportation  table and decrease bj  by ai. Then 

go to step 3. 
 

If xij  = bj , cross off the jth column of the transportation  table and decrease ai  by bj . Go 

to step 3. 
 

If xij  = ai  = bj , cross off either the ith row and the jth column but not both. 
 

Step 3 Repeat steps 1 and 2 for the resulting reduced transportation table until all the rim re- 

quirements are satisfied.  Whenever the minimum  cost is not unique, make an arbitrary 

choice among the minima 
 
Example 7.3.2 Obtain an initial feasible solution to the following TP using the matrix minima 

method. 
 
 

 D1  D2  D3  D4 Supply 

O1 

O2 

O3 

1 2 3 4 

4 3 2 0 

0 2 2 1 

6 

8 

10 

Demand 4 6 8 6 24 
 
 

Table 7.6: 
 

☞ Solution.  Since    ai  =    bj  = 24, there exists a feasible solution to the TP. Using the 

steps in the least cost method, the first allocation is made in the cell (3, 1) the magnitude being 
x31 = 4. It satisfies the demand at the destination D1  and you will delete this column from the 

table as it is exhausted. 
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1  2  3  4  Capacity 
 

1  1  2  3  4 

6 
 

2  4  3  2  0 

2 6 
 

3  0  2  2  1 

4  6 

6    0 
 

 
8  2  0 
 

 
10  6 

Demand  4  6 
0  0 

8  6  24 

2  0  0 
 
 

 

Table 7.7: 
 

 

The second allocation  is made in the cell (2, 4) with magnitude x24 = min(6, 8) = 6. Since 

it satisfies the demand at the destination D4, it is deleted from the table. From the reduced table 

the third allocation in made in the cell (3, 3) with magnitude x33  = min(8, 6) = 6. The next 

allocation is made in the cell (2, 3) with magnitude x23 of min(2, 2) = 2. Finally the allocation 

is made in the cell (1, 2) with magnitude x12  = min(6, 6) = 6. Now all the rim requiremnts 

have been satisfied and hence, initial feasible solution is obtained. 
 

The solution is given by 
 

x12 = 6; x23 = 2; x24 = 6; x31 = 4; x33 = 6. 

Since the total number of occupied cells = 5 < m + n −  1 = 6. You get a degenerate solution. 

 

 

Total cost  =  6 × 2 + 2 × 2 + 6 × 0 + 4 × 0 + 6 × 2 

 

 

=  12 + 4 + 12 = N 28. 
 

✍  

 

Example 7.3.3 Determine an initial basic feasible soltuion  for the following TP, using least 

cost method. 
 
 

 D1  D2  D3  D4 Supply 

O1 

O2 

O3 

6 4 1 5 

8 9 2 7 

4 3 6 2 

14 

16 

5 

Demand 6 10 15 4 35 
 
 

Table 7.8: 
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☞ Solution. Since ai   = bj , there exists  a basic feasible  solution. Using the 
steps in least cost method, make the first allocation to the cell (1, 3) with magnitude x13  = 
min(14, 15) = 14 (as it is the cell having the least cost). 

 

This allocation  exhausts the first row supply. Hence, the first row is deleted. From the 

reduced table the next allocation is made in the next least cost cell (2, 3) which is chosen arbi- 

trarily with magnitude x23 = min(1, 16) = 1, which exhausts the 3rd column destination. 

From the reduced table, the next least cost cell is (3, 4) to which allocation is made with 

magnitude min(4, 5) = 4. This exausts the destination D4  requirement, deleting the fourth 

column from the table.  The next allocation  is made in the cell (3, 2) with magnitude x32  = 

min(1, 10) = 1, which exhausts the 3rd origin capacity. Hence, the 3rd row is exhausted. 

From the reduced table the next allocation is given to the cell (2, 1) with magnitude x21  = 

min(6, 15) = 6. This exhausts the first column requirement. Hence, it is deleted from the table. 
 

Finally the allocation is made to the cell (2, 2) with magnitude x22 = min(9, 9) = 9, which 

satisfies the rim requirement. The following table gives the initial basic feasible solution. 
 

 
 

D1  D2  D3  D 4  Capacity 

O1  6  4  1  5 

14  14 

O2  8  9  2  7 

6  9  1  
16 

O
3  4  3  6  2 

1  4  5 
 

Demand  6  10  15  4  35 
 

 
 

Table 7.9: 
 

Solution is given by, 
 

x13 = 14; x21 = 6; x22 = 9; x23 = 1; x32 = 1; x34 = 4 

Transportation cost = 14 × 1 + 6 × 8 + 9 × 9 + 1 × 2 + 3 × 1 + 4 × 2 = N 156. 

✍  
 

 
 

7.3.6 Vogel’s Approximation Method (VAM) 
 

The steps involved  in this method for finding the initial solution  are as follows. 
 

 

Step 1 Find the penalty cost, namely the difference between the smallest and next smallest costs 

in each row and column. 
 

Step 2 Among the penalties as found  in step (1), choose the maximum penalty. If this maximum 

penalty is more than one (i.e., if there is a tie), choose any one arbitrarily. 
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Step 3 In the selected row or column  as by step (2), find out the cell having the least cost. 

Allocate to this cell as much as possible, depending on the capacity and requirements. 
 

Step 4 Delete the row or column that is fully exhausted. Again compute the column and row 

penalties for the reduced transportation  table and then go to step (2). Repeat procedure 

until all the rim requirements are satisfied. 

Note If the column is exhausted, then there is a change in row penalty, and vice versa. 
 
Example 7.3.4 Find the initial basic feasible solution for the following transportation problem 

by VAM. 
 
 

Destination 
 

 
 

Origin 

 D1  D2  D3  D4 Supply 

O1 

O2 

O3 

11 13 17 14 

16 18 14 10 

21 24 13 10 

250 

300 

400 

Demand 200 225 275 250 950 
 
 

Table 7.10: 
 

☞ Solution. Since    ai  =    bj  = 950, the problem is balanced and there exists a feasible 

solution to the problem. 
 

First you find the row and column penalty P1  as the difference  between the least and 

next least cost. The maximum penalty is 5. Choose the column arbitrarily. In this column 
choose the cell having the least cost (1, 1). Allocate to this cell with minimum magnitude (i.e., 
min(250, 200) = 200). This exhausts the first column.  Delete this column.  Since the column 

is deleted, there is a change  in row penalty PI I and column penalty PI I remains the same. 

Continuing in this manner you get the remaining  allocations  as given in the table below. 
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 D3 D 4 Capacity P IV 

O  14  10  
125 

0 

4 

 
  

 

125 

O  13  10 
 

 
400 

3 

  
Demand 275 250 

125 
  

P IV 1 0   

 

 D2 D3 D 4 Capacity P II 

O1  13  17  14  
50 

0 

1 

50   

O2  18  14  10  
300 

4 

   
O3  24  13  10 

 

 
400 

3 

   
Demand 225 

175 
275 250   

P II 5  1 0   

 

 D D Capacity P 

O  13  10  
400 

125 

3 

275  

Demand 275 

0 
125   

P V 13  10   

 

 D 4 Capacity P VI 

O3  10  
400 

125 

10 
 

 125 

Demand 125 

0 
  

P VI 10   

 

 

 
 
 

I allocation 

D1  D2  D3  D 4  
Capacit  P 1 

y 

O1  11  13  17  14  2 
250  2 

 
IV allocation 

200 
 

O
2  16  18  14  10 

 

 
O

3  21  24  13  10 

50 
 

4 

300  3
 

 

3 
400 

 

Deman 

d 

 

200 

0 

 

225  275  250 

P 1  5 5  3  0 
 

 
II allocation  

V allocation 
 

3  4  V 

 
3 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

III allocation VI allocation 

 D2 D3 D 4 Capacity P III 

O2  18  14  10  
300 

125 

4 

175   

O3  24  13  10  
400 

3 

   
Demand 175 

0 
275 250   

P III 6  1 0   

 
 
 

Table 7.11: 
 

Finally, you arrive at the initial basic feasible solution,  which is shown in the following 

table. 
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D1  D2  D3  D 4  Capacity 

O1  11  13  17  14 

200  50 250 
 

O
2  16  18  14  10 

175 125 

O
3  21  24  13  10 

275 125 
 

Demand  200  225  275  250 

 

 
300 
 

 
400 

 

 
 

Table 7.12: 
 

There are 6 positive independent allocations which are equal to m + n −  1 = 3 + 4 −  1. This 

ensures that the solution  is a non-degenerate basic feasible solution. 
 

Therefore 
 

transportation cost = 11 × 200 + 13 × 50 + 18 × 175 + 10 × 125 + 13 × 275 + 10 × 125 = N 12075 

✍  

 

Example 7.3.5 Find the initial solution to the following TP using VAM. 
 
 

Destination 
 

 
 

Factory 

 D1  D2  D3  D4 Supply 

F1 

F2 

F3 

3 3 4 1 

4 2 4 2 

1 5 3 2 

100 

125 

75 

Demand 120 80 75 25 300 
 
 

Table 7.13: 
 

☞ Solution. Since ai  = bj , the problem is a balanced TP. So there exists a feasible 

solution. 
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D1  D2 D3  D 4 
Supply  P 1 P II P III P IV P V P VI 

 

F 1 3  3  4  1 
 

2  2  0  1  4  4 

45  30  25 100  

F 2 4  2  4  2 

80  45 

 

 
125 

2  2  2  0  4  _ 

F 3                           1              5             3              2                          1           _           _           _           _           _ 

75  75 

Demand  120  80  75  25 

P 1                   2 1              1              1 

P II                    1              1              0              1 

P III                   1              1              0              - 

P IV                    1              -              0              - 

P V                     -              -              0              - 

P VI                    -              -             4 - 
 
 
 
 

Table 7.14: 

 
Finally you have the initial basic feasible solution  as given in the following table. 

 

 
 

D1  D2  D3  D 4 Supply 

F 1 3  3  4  1 

45  30  25 
 

F 2 4  2  4  2 

100 

80 45 
125 

F 3 1  5  3  2 

75  75 
 

Demand  120  80  75  25 
 

 
 

Table 7.15: 
 

There are 6 independent non-negative allocations equal to m + n −  1 = 3 + 4 −  1 = 6. This 

ensures that the solution  is non-degenerate basic feasible. Therefore 
 

 

The transportation cost  =  3 × 45 + 4 × 30 + 1 × 25 + 2 × 80 + 4 × 45 + 1 × 75. 

 
=  135 + 120 + 25 + 160 + 180 + 75 = N 695. 

 

✍  
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7.3.7 Optimality Test 
 
Once the initial basic feasible solution  has been computed, the next step in the problem is to 

determine whether the solution obtained is optimum or not. 
 

Optimality  test can be conducted on any initial basic feasible solution of TP provided such 

an allocation has exactly m+n-1, non-negative allocations.  Where m is the number of origins 

and n is the number of destinations. Also these allocations  must be in independent positions. 
 

To perfom this optimality  test, you shall be introduced to the modified distribution method 

(MODI). The various steps involved  in MODI method for performing the optimality test are 

given below. 
 

 
7.3.8 MODI Method 

 
Step 1 Find the initial basic feasible solution of a TP by using any one of the three methods. 

 

Step 2 Find out a set of numbers ui and vj  for each row and column satisfying ui + vj  = cij  for 

each occupied cell. To start with, you assign a number ’0’ to any row or column having 
maximimum number of allocations. If this maximum number of allocations is more than 

one, choose any one arbitrarily. 
 

Step 3 For each empty (unoccupied) cell, you have to find the sum ui  and vj  written in the 

bottom left corner of that cell. 
 

Step 4 Find out for each empty cell the net evaluation value ∆ij = cij  −  (ui  + vj ), which is 

written at the bottom right corner of that cell. This step gives the optimality conclusion. 
 

(i) If all ∆ij  > 0 (i.e., all the net evaluation value), the solution is optimum  and a 

unique solution exists. 

(ii)  If ∆ij ≥  0, then the solution is optimum, but an alternate solution exists. 

(iii)  If at least one ∆ij < 0, the solution is not optimum. In this case you have to go to 

the next step, to improve the total transportation cost. 
 

Step 5 Select the empty cell having the most negative value of ∆ij . From this cell you draw 

a closed  path by drawing horizontal  and vertical lines with the corner cells occupied. 

Assign sign + and −  alternatively and find the minimum allocation from the cell having 
negative sign. This allocation should be added to the allocation having positive sign and 

subtracted from the allocation having the negative sign. 
 

Step 6 The above step yeilds a better solution  by making on (or more) occupied cell as empty 

and one empty cell as occupied.  For this new set of basic feasible allocations repeat from 

step (2) onwards, till an optimum basic feasible solution is obtained. 
 
Example 7.3.6 Solve the following transportation problem. 

 

☞ Solution.  First find the initial basic feasible solution by using VAM. Since ai  = bi, 

the given TP is a balanced one. Therefore,  there exists a feasible solution. 
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Destination 
 

 
 

Origin 

 P Q R  S Supply 

A 
B 

C 

21 16 25 13 

17 18 14 23 

32 17 18 41 

11 

13 

19 

Demand 6 10 12 15 43 
 
 

Table 7.16: 
 
 

P  Q  R  S  Supply  P 1 P II P III P IV P V P VI 

 

A  21  16  25  13 

 

3  _  _  _  _  _ 

45  30  25  11 

B  17  18  14  23 

80  45  
13 

3  3  3  3  _  _ 

C  32  17  18  48 

75  19 

Demand  6  10  12  15 

P 1     4    1     4   10 

P II  15   1    4   18 

P III 15 1    4 - P 

IV     -   1   4 - P 

V    -  17  18 - 

P VI -  17 -  - 

1  1  1  1  1  17 

 
 
 
 

Table 7.17: 
 

 
P  Q  R  S  Supply 

 

A  21  16  23  13 

11 11 
 

B  17  18  14  23 

6  3  4  13 
 

C  32  17  18  48 

10  9  19 
 

Demand  6  10  12  15  43 
 

 
 

Table 7.18: 
 

 

Finally you have the initial basic feasible solution  as given in the followinig table. 
 

From this table you see that the nuber of non-negative independent allocation is 6=m+n- 
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1=3+4-1. Hence the solution is non-degenerate basic feasible. 
 

Therefore 
 

The initial transportation cost = 11 × 13 + 3 × 14 + 4 × 23 + 6 × 17 + 17 × 10 + 18 × 9 = N 711 

 
 

To find the Optimal solution 

 
You will apply MODI method in order to determine the optimum  solution.  Determine the set of 
numbers ui  and vj  for each row and column, with ui + vj  = cij  for each occupied cell. To start 

with, give u2 = 0 as the 2nd row has the maximum  number of allocation. 
 

c21 = u2 + v1 = 17 = 0 + v1 = 17 ⇒ v1 = 17 

c23 = u2 + v3 = 14 = 0 + v3 = 14 ⇒ v3 = 14 

c24 = u2 + v4 = 23 = 0 + v4 = 23 ⇒ v4 = 23 

c14 = u1 + v4 = 13 = u1 + 23 = 13 ⇒ u1 = − 10 
 

c33 = u3 + v3 = 18 = u3 + 14 = 18 ⇒ u3 = 4 
 

c32 = u3 + v2 = 17 = 4 + v2 = 17 ⇒ v2 = 4 

Now you find the sum ui  and vj  for each empty cell and enter it at the bottom right corner of 

that cell. 
 

 
P  Q  R  S  U i 

 

A  21  16  23  13 

11 
 

B  17  18  14  23 

u1=−10 

6  3  4 u 2=0 
 

C  32  17  18  48 

10  9 

v j v1=17 v2 =13  v3=14 v1= 23 

 

 
u 3=4 

 

 
 

Table 7.19: 
 

Next you find the net evaluation ∆ji  = Cij −  (ui + vj ) for each unoccupied cell and enter it 

at the bottom right corner of that cell. 
 

Since all ∆ij > 0, the solution is optimal and unique. The optimum solution is given by 
 

x14 = 11, x21 = 6, x23 = 3, x24 = 4, x32 = 10, x33 = 9 
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The min. transportation cost  =  11 × 13 + 17 × 6 + 3 × 14 + 4 × 23 + 10 × 17 + 9 × 18 

=  N 711. 
 

✍  

 
 

Degeneracy in transportation problem. 
 
In a TP, if the number of non-negative independent allocations is less than m+n-1,  where m 

is the number of origins (rows) and n is the number of destinations  (columns),  there exists a 

degeneracy. This may occur either at the initial stage or at subsequent iteration. 
 

To resolve this degeneracy, you will adopt the following steps: 
 

 

1. Among the empty cells, you will choose an empty cell having the least cost, which is of 

an independent position. If such cells are more than one, choose any one arbitrarily. 
 

2. To the cell as chosen in step (1), you will allocate a small positive quantity ε > 0. 
 

 

You will treat the cell containing ε are treated like other occupied cells and degeneracy is 

removed by adding one (or more) accordingly.  For this modified solution, you will adopt the 

steps involved  in MODI method till an optimum solution is obtained. 
 

Example 7.3.7 Solve the transportation problem for minimization. 
 
 

Destination 
 

 
 

Sources 

 1 2 3 Capacity 

1 

2 

3 

2 2 3 

4 1 2 

1 3 1 

10 

15 

40 

Demand 20 15 30 65 
 

Table 7.20: 
 
 

☞ Solution. Since aj   = bj , the problem is a balanced TP. Hence, there exists a 

feasible solution. You found the initial solution by north-west  corner rule as given below. 

Since the number of occupied cells= 5 = m + n −  1 and all the allocations are indpendent, 

you got an initial basic feasible solution. 
 

 
 

The initial transportation cost = 10 × 2 + 4 × 10 + 5 × 1 + 10 × 3 + 1 × 30 = N 125. 
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1  2  3  Capacity 

 

1  2  2  3  10 

10 

2  4  1  2 

10  5  
15 

3  1  3  1 

10  30  40 
 

Demand  20  15  30 
 
 

 

Table 7.21: 
 

 

To find the optimal solutions (MODI METHOD) 

 
You used the above table to apply MODI method. You have found out a set of numbers ui  and 

vj  for which ui  + vj  = cij , only for occupied cells. To start with, as the maximum  number of 

allocations is 2 in more than one row and column. You chose arbitrarily  column 1, and assign a 

number 0 to this column, i.e., v1 = 0. The remaining  numbers can be obtained as follows. 
 

c11 = u1 + v1 = 2 ⇒ u1 + 0 = 2 
 

c21 = u2 + v1 = 4 ⇒ u2 = 4 −  0 = 4 
 

c22 = u2 + v2 = 1 ⇒ v2 = 1 −  u2 = 1 −  4 = − 3 

c32 = u3 + v2 = 3 ⇒ u3 = 3 −  v2 = 3 −  (− 3) = 

6 c33 = u3 + v3 = 1 ⇒ v3 = 1 −  u3 = 1 −  6 = −

5 
 

 

Initial table 
 
 
Find the sum of ui  and vj  for each empty cell and write it at the bottom left corner of that cell. 
Find net evaluation ∆ij = cij  −  (ui  + vj ) for each empty cell and enter it at the bottom right 

corner of the cell. The solution is not optimum  as the cell (3, 1) has a negetive  ∆ij value. The 

allocation is improved by making this cell namely (3, 1) as an allocated  cell. Draw a closed 

path from this cell and assign + and −  signs alternately. From the cell having negative sign you 
find the minimum allocation given by min(10, 10) = 10. Hence, you get two occupied cells 
(2, 1)(3, 2) that become empty and the cell (3, 1) is occupied, resulting in a degenerate solution. 

(Degeneracy in subsequent iteration). 

 

Number of allocated cell = 4 < m + n −  1 = 5. 

 

You get a degeneracy and to resolve it, you add the empty cell (1, 2) and allocate ε > 0. 

This cell namely (1, 2) is added as it satisfies the two steps for resolving the degeneracy. You 
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1  2  3  u i 
 

1  2  2 

10  -1  3 

2  4  1 

3  u1=2 

-3  6 
 

2 

10  - 5    +  -1  3  
u 

2
= 4

 

3  1 

6+  -5 

 

3 

10   -  30 

 

1 
u 3=6 

v j v 1= 0  v2 =−3 v3=−5 
 
 

 
Table 7.22: 

 

 

will assign a number 0 to the first row, namely u1 = 0, to get the remaining numbers as follows. 

c11 = u1 + v1 = 2 ⇒ v1 = 2 −  u1 = 2 −  0 = 2 

c12 = u1 + v2 = 2 ⇒ v2 = 2 −  u1 = 2 −  0 = 2 

c31 = u3 + v1 = 1 ⇒ u3 = 1 −  v1 = 1 −  2 = −

1 

c33 = u3 + v3 = 1 ⇒ v3 = 1 −  u3 = 1 −  (− 1) = 2 
 

c22 = u2 + v2 = 1 ⇒ u2 = 1 −  v2 = 1 −  2 = − 1 

 
Next, find the sum of uj  and vj  for the empty cell and enter it at the bottom left corner of the 
cell and also the net evaluation ∆ij  = cij  −  (ui  + vj ) for each empty cell and enter it at the 

bottom right corner of the cell. 
 

 
I Iteration table 

 
 

 
1  2  3  u i 

 

1  2  2  3  0 

10  ε  2  1 

2  4  1  2 

1  3  15 1  1  -1 

3  1  3  1 

10  30  -1 
 

v j 2  2  2 
 
 
 

Table 7.23: 
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The modified solution is given in the following table. This solution is also optimal and 

unique as it satifies the optimality  conditon that all ∆ij > 0. 
 

 
 

1  2  3  Supply 
 

1  2  2  3  10 

10  ε  2  1 

2  4  1  2 

15  
15 

3  1  3  1 

10 
 

Demand  20 

30  40 
 

15  30  65 

 
 
 

Table 7.24: 
 
 

x11 = 10; x12    =  15; x33    =  30. 

 

x12 

 

= 
 

εj ;  x31    =  10. 

 

Total cost 
 

= 
 

 

= 

10 × 2 + 2 × E + 15 × 1 + 10 × 1 + 30 × 1 

 

75 + 2ε = N 75. 

✍  
 

Example 7.3.8 Solve the following transportation problem whose cost matrix is given below. 
 

 
 

7.4   Conclusion 
 

 

In this unit, you studied the transportation problem, you saw different methods of obtaining the 

initial solution, learnt how to optimize the solution of a transportation problem using the MODI 

method and also learnt how to resolve degeneracy in a transportation  problem. 
 

 
 

7.5   Summary 
 

 

Having gone through this unit, you 
 

 

(i) can now give the mathematical formulation of a transportation  problem. 
 

(ii)  Any set of non-negative allocations (xij   > 0) which satisfies the row and column  sum 

(rim requirement) is called a feasible solution. 
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(iii)  A feasible solution is called basic feasible solution of the number of non-negative alloca- 

tions is equal to m+n-1, where m is the number of rows and n is the number of columns 

in a transportation  table. 
 

(iv) Any feasible solution in a transportion problem containing m origins and n destinatio is 

said to be non-degenerate if it contains m+n-1 occupied cells and each allocation  is in an 

independent position. 
 

(v) can now obtain initial solution of a transportation problem using any of 
 

(a) the North-West Corner Method (NWCR). 

(b) the Least Cost method (LCM) 

(c) the Vogel’s Approximation Method (VAM) 
 

(vi) can optimize the solution of a transportation problem using the MODI Method. 

(vii)  can resolve degeneracy in a transportation  problem. 

 

 

7.6 Tutor Marked Assignments 
 

 

Exercise 7.6.1 
 
 

1. What do you understand by transportation model? 
 

2. Define feasible solution, basic solution, non-degenerate solution  and optimal  solution  in 

a transportation  problem. 

3. Explain the following briefly with examples: 

(i) North-West Corner Rule. 

(ii)  Least Cost Method. 
 

(iii)  Vogel’s Approximation Method. 
 

4. Explain degeneracy in a TP and how to resolve it. 
 

5. What do you mean by an unbalanced TP. Explain how you would convert an unbalanced 

TP into a balanced one. 
 

6. Give the mathematical formulation of a TP. 
 

7. Explain an algorithm to solving a transportation problem. 
 

8. Obtain the initial solution for the following TP using (i) NWCR (ii) Least cost method 

(iii) VAM. 

[Ans. 
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Destination 
 

 
 
 

Source 

 A  B  C Supply 

1 
2 

3 

4 

2 7 4 

3 3 1 

5 4 7 

1 6 2 

5 

8 

7 

14 

Demand 7 9 18 34 
 
 
 

(i) X11  = 5, X21  = 3, X22  = 6, X32  = 3, X33  = 4, X43  = 14 and the transportation 

cost is N 102. 

(ii)  X12  = 3, X13  = 3, X23  = 8, X32  = 7, X41  = 7, X43  = 7 and transportation cost is 

N 83 
 
 

(iii)  X11  = 5, X23  = 8, X32  = 7, X41  = 2, X42  = 2, X43  = 10 and the transportation 

cost is N 80.] 
 

9. Solve the following TP where the cell entries denote the unit transportation costs (using 

the least cost method). 
 

Destination 
 

 
 

Origin 

 A  B  C  D Supply 

P 
Q 

R 

5 4 2 6 

8 3 5 7 

5 9 4 6 

20 

30 

50 

Demand 10 40 20 30 100 
 

 
 

[Ans X12  = 10, X13  = 10, X22  = 30, X31  = 10, X33  = 10, X34  = 30 and The optimum 

transportation cost is N 420.] 
 

10. Solve the following TP (using the least cost method). 
 

Destination 
 

 
 

Source 

 1 2 3 Capacity 

1 
2 

3 

2 2 3 

4 1 2 

1 3 1 

10 

15 

40 

Demand 20 15 30  
 

 
[Ans X12  = 10, X23  = 15, X31  = 20, X33  = 15, X32  = 5. and The transportation cost is 

N 100.] 
 

11. Find the minimum transportation cost (NWCR & MODI). 

[Ans X11   = 5, X14   = 2, X22   = 2, X23   = 7, X32   = 6, X34   = 12 and The minimum 

transportation cost is N 743.] 
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Warehouse 
 

 
 

Factory 

 D1  D2  D3  D4 Supply 

F1 

F2 

F3 

19 30 50 10 

70 30 40 60 

40 8 70 20 

7 

9 

18 

Demand 5 8 7 14  
 
 

 

12. Solve the following TP. 

 
Destination 

 

 
 

Source 

 A  B  C  D Supply 

1 

2 

3 

1 2 3 4 

4 3 2 0 

0 2 2 1 

6 

8 

10 

Demand 4 6 8 6  
 

 
 

[Ans X12   = 6, X23   = 2, X24   = 6, X31   = 4, X32   = ε, X33   = 6 and The minimum 

transportation cost is N 28.] 
 

13. Solve the following TP. 

 
Destination 

 

 
 

Source 

 A  B  C  D Supply 

1 
2 

3 

11 20 7 8 

21 16 20 12 

8 12 8 9 

50 

40 

70 

Demand 30 25 35 40  
 

 
 

[Ans X13  = 35, X14  = 15, X24  = 10, X25  = 30, X31  = 30, X32  = 25, X34=15  and The 

minimum transportation cost is N 1, 160.] 
 

14. Solve the following TP to maximize the profit. 

 
Destination 

 

 
 

Source 

 A  B  C  D Supply 

1 
2 

3 

40 25 22 33 

44 35 30 30 

38 38 28 30 

100 

30 

70 

Demand 40 20 60 30  
 

 
 

[Ans X11  = 20, X14  = 30, X15  = 50, X21  = 20, X23  = 10, X32  = 20, X33  = 50 and The 

optimum profit is N 5, 130.] 
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UNIT 8 
 
 
 

INTEGER PROGRAMMING 
 

 
 
 
 
 
 

8.1   Introduction 
 

 

In your study of linear programming problem, you allowed the decision variables to take non- 

negative real values as it is quite possible and appropriate that you can have fractional  values 

in many situations. There are several frequent occuring circumstances in business and industry 

that lead to planning models involving integer-valued variables.  For example, in production, 

manufacturing is frequently scheduled in terms of batches, lots or runs. In allocation of goods, 

a shipment must involve a discrete number of trucks or aircrafts. In such cases fractional values 

of variables may be meaningless in the context of the actual decision problem. In this section, 

you will consider this special class of linear programming, whose decision variables are not 

only non-negative, but are also integers. This type of linear programming problem is what you 

would call integer programming (IP). 
 

 
 

8.2   Objectives 
 

 

At the end of this unit, you should be able to; 

(i) Define an IPP problem. 

(ii)  Differentiate  between Pure integer programming  problem and Mixed integer program- 

ming. 
 

(iii)  solve IPP using any of 
 

(a) Gomory’s Cutting plane Method. 

(b) Branch and Bound Method (Search Method) 

(iv) Solve Mixed Integer Programming problems. 
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8.3   Integer Programming Model 
 

 

Definition 8.3.1 (Integer Programming Model) A linear programming problem in which all or 

some of the decision variables are constrained to assume non-negative values is called Integer 

Programming Problem(IPP) Mathematically,  the model of an Integer Programming Problem 

is given as 
 

max z = cx  

 

Subject to: 
 
 

with 

Ax ≤  b 

 

x ≥  0 

 
 
 

 
and some or all variables are integers 

 

 

In a linear programming  problem, if all variables are required to take integral values then 

it is called Pure (all) Integer Programming problem (Pure IPP). If all variables in the optimal 

solution of a LPP are restricted  to assume non-negative  integer values while  the remaining vari- 

ables are free to take any non-negative values, then it is called a Mixed Integer Programming 

(Mixed IPP). Further, if all the variables in the optimal solution are allowed to take values 0 or 

1, then the problem is called 0-1 Programming Problem or Standard Discrete Programming 

Problem 
 

Integer programming is applied in business and industry.  All assignment and transportation 

problems are integer programming  problems. cCpital budgetting and production scheduling 

problems, and allocation problems involving  the allocation of men or machines are examples of 

integer programming problems. 
 

 
8.3.1   Methods of Solving Integer Programming Problem 

 
There are two methods you can use to solve IPP, these are 

 
(i) Gomory’s Cutting Plane Method. 

 

(ii)  Branch and Bound Method (Search Method). 
 

 
8.3.2   Gomory’s Fractional Cut Algorithm or Cutting Plane Method for 

Pure (All) IPP 
 
This method consists of first solving  the IPP as an ordinary  LPP by ignoring the restriction of 

integer values and then introducing  a new constraint to the problem such that the new set of 

feasible solution includes all the original feasible integer solutions, but does not include the 

optimum non-integer solution initially found. This new constraint is called “Fractional cut” 

or “Gomorian constant”. Then the revised problem is solved using the simplex method, till 

an optimum integer solution is obtained.  The steps involved  in solving integer programming 

problems using the Cutting plane method are outlined below. 
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Step 1 Convert the minimization  IPP into an equivalent maximization  IPP, Ignore the integrality 

condition. 
 

Step 2 Introduce slack and/or surplus variables if necessary, to convert the given LPP in its stan- 

dard form and obtain the optimum solution of the given LPP by using simplex method. 
 

Step 3 Test the integrality  of the optimum solution. 

(i) If all the xBi  ≥  0 and are integers, an optimum integer solution is obtained. 

(ii)  If all the xBi  ≥  0 and at least one xBi  is not an integer, then go to the next step. 

 
Step 4 Rewrite each xBi  as xBi  = [xBi] + fi where [xBi] is the integral part of xBi  and fi is the 

positive fractional part of xBi0 ≤  fi < 1. 
 

Choose the largest fraction of xBi’s, i.e., Choose max(fi), if there is a tie, select arbitrary. 

Let max(fi) = fK , corresponding to xBK (the K th row is called the ’source row’). 
 

Step 5 Express each negative fraction,  if any, in the source row of the optimum simplex table as 

the sum of a negative and a non-negative  fraction. 
 

Step 6 Find the fractional cut constraint (Gomorian Constraint) 
n 

From the source row 
 

 

i.e., 

 
 
j=1 

akj xj  = xBi 
 

 
 
n 

 
 

 
in the form 

 
 
j=1 

([akj ] + fkj )xj  = [xBK ] + fK 

 
n 

 
 

j=1 

or 

 

fkj xj  ≥  fK 

−  

n 

 
 
j=1 

 

fkj xj  ≤  − fK 

 
 

−  
 

 

where, G1 is the Gomorian slack. 

n 

j=1 

 

fkj xj  + G1 = − fK 

 

Step 7 Add the fractional cut constraint obtained in step (6) at the bottom of the simplex table 

obtained in step (2). Find the new feasible optimum solution using dual simplex method. 
 

Step 8 Go to step (3) and repeat the procedure until an optimum integer solution is obtained. 
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Example 8.3.1 Find the optimum integer solution to the following LPP. 
 

Max z = x1 + x2 

 

Subject to:  3x1 + 2x2 ≤  5 
 

x2 ≤  2 
 

with x1, x2 ≥  0 and are integers. 

 

☞ Solution. Introducing  the non-negative basic slack variable x3, x4  ≥  0, the standard 

form of the LPP becomes, 
 

Max z = x1 + x2 + 0x3 + 0x4 

 
5Subject to:  3x1 + 2x2 + x3 = 5 

 
x2 + x4 = 2 

 

with x1, x2, x3, x4 ≥  0 and are integers. 

 

Ignoring the integrality condition,  solve the problem by simplex method. The initial basic 

feasible solution is given by, 
 
 

x3 = 5  and x4 = 2. 
 
 

B x 
1
 x

2
 x

3
 x 

4
 x 

B
 θ 

x
3
 

 
x 

4
 

 

3 
 

0 

2 

 
1 

1 

 
0 

0 

 
1 

5 

 
2 

5 3 

 
- 

z 
j 

c 
j
 1  -1 0 0 0  

B x 
1
 x

2
 x

3
 x 

4
 x 

B
 θ 

x
1
 

 
x 

4
 

1 

 
0 

2 

 
1 

1/3 

 
0 

0 

 
1 

5/3 

 
2 

5/2 
 

2  

z 
j 

c 
j
 0 1 3  1 3 0 5 3  

B x 
1
 x

2
 x

3
 x 

4
 x 

B
 θ 

x
1
 

 
x

2
 

1 

 
0 

0 

 
1 

1/3 

 
0 

-2/3 

 
0 

1/3 

 
2 

 

z 
j 

c 
j
 0 0 1 3 1 3 7 3  

 

 
 

Table 8.1: 
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Since all zj  −  cj  ≥  0 an optimum solution is obtained, given by 
 

max z = 7/3, x1 = 1/3, x2 = 2. 
 

To obtain an optimum integer solution, you have to add a fractional  cut constraint in the opti- 

mum simplex table. 

Since xB  = 1/3, the source row is the first row. Expressing the negative fraction − 2/3 as a 

sum of negative integer and positive fraction, you get 
 

− 2/3 = − 1 + 1/3 

 

Since x1 is the source row, you have 

1/3 = x1 + 1/3x3 −  2/3x4 

 

i.e.,  

1/3 = x1 + 1/3x3 + (− 1 + 1/3)x4 

The fractional cut (Gomorian) constraint is given by 

1/3x3 + 1/3x2  ≥  1/3 

 

that is 
 
 

which implies 

 

− 1/3x3 −  1/3x2  ≤  −

1/3 
 

− 1/3x3 −  1/3x2 + G1 = − 1/3 

where, G1 is the Gomorian slack. Add this fractional cut constraint at the bottom of the above 

optimal simplex table to obtain 
 
 
 

B x
1
 x

2
 x

3
 x 

4
 G1 x 

B
 

x 
1
 

 
x

2
 

 
G

1
 

1 

 
0 

 
0 

0 

 
1 

 
0 

1/3 

 
0 

 
-1/3 

-2/3 

 
0 

 
-1/3 

0 

 
0 

 
1 

1/3 

 
2 

 

1 3  

z 
j 

c 
j
 0 0 1 3  1 3 0 7 3 

 
 

 

Table 8.2: 
 

Applying the dual simplex method. Since G1  = − 1/3, G1 leaves the basis. To find the 

entering variable you find 
 

 

max 

( 
zj  −  cj 

aik 

\ 

, aik < 0 
 

= max 

( 
1/3 

, 
− 1/3 

1/3 
\

 

1/3 
= max{− 1, − 1} = − 1 

 

Choose x3 as the entering variabe arbitrarily. 



187 

UNIT 8.  INTEGER PROGRAMMING  

 

 

 
 
 
 

B x
1
 x

2
 x

3
 x 

4
 G1 x 

B
 

x 
1
 

 
x

2
 

 
x

3
 

1 

 
0 

 
0 

0 

 
1 

 
0 

0 

 
0 

 
1 

-1 

 
1 

 
1 

1 

 
1 

 
-3 

0 

 
2 

 
1 

z 
j 
−c 

j
 0 0 0 0 1 2 

 
 

 

Table 8.3: 
 

Since all zj − cj  ≥  0 and all xBi   
≥  0, you have obtained the optimal feasible integer 

solution. Therefore the optimal integer solution is 
 

max z = 2, x1 = 0, x2 = 2. 
 

✍  

Here is another example for you. 
 

Example 8.3.2 Solve the following integer programming problem. 
 

maximize z = 2x1 + 20x2 −  10x3 

Subject to:  2x1 + 20x2 + 4x3 ≤  15 
6x1 + 20x2 + 4x3 = 20 

with x1, x2, x3 ≥  0,  and are integers. 
 

☞ Solution.  Introducing slack variable x4 ≥  0 and an artificial  variable a1 ≥  0, the initial 

basic feasible solution is x4 = 15, a1 = 20. Ignoring the integer condition, solve the problem 
 

maximize z = 2x1 + 20x2 −  10x3 + 0x4 + 0a1 

Subject to:  2x1 + 20x2 + 4x3 + x4 = 15 
6x1 + 20x2 + 4x3 + a1 = 20 

with x1, x2, x3, x4, a1 ≥  0 

by simplex method. The optimal simplex tableu is given by 
 
 

B x
1
 x

2
 x

3
 x 

4
 x 

B
 

x
2

 

 
x

1
 

0 

 
1 

1 

 
0 

1/ 5 

 
0 

3/ 40 

 
-¼ 

5/ 8 

 
¼ 

z 
j 
−c 

j
 0 0 14 1 15 

 
 
 

Table 8.4: 
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−  

 
 
 

Therefore the non-integer optimum solution is given by, 
 

x1 = 5/4, x2 = 5/8, x3 = 0, max z = 15 
 

To obtain an integer optimum  solution,  you proceed as follows. 
 

max{f1, f2} = max{5/8, 1/4} = 5/8. 

 

Therefore the source row is the first row, namely, x2 row. From this source row you have 
 

5/8 = 0x1 + 1x2 + (1/5)x3 + (3/40)x4 . 
 

The fractional cut constraint is given by, 
 

(1/5)x3 + (3/40)x4  ≥  5/8 
 

(− 1/5)x3 −  (3/40)x4  ≤  − 5/8, i.e., (− 1/5)x3 −  (3/40)x4 + G1 = − 5/8 

 

where G1 is Gomorian slack. 
 

Adding the additional constraint in the optimum simplex table, the new table is given below. 
 

 
 

B x 
1
 x

2
 x

3
 x 

4
 G

1
 x 

B
 

x
2

 

 
x

1
 

 
G

1
 

0 

 
1 

 
0 

1 

 
0 

 
0 

1 5 

 
0 

 
1 5 

3 40 

 
-¼ 

 
-3/40 

0 

 
0 

 
1 

5 8 
 

5 4 
 

5 8  

z 
j 

c 
j
 0 0 14 1  0 15 

 

 
 

Table 8.5: 
 

Apply the dual simplex method. Since G1 = − 5/8 leaves the basis. Also 
 

 

max 

( 
zj  −  cj 

aik 

\ 

, aik < 0 

 

 

= max 

( 
14 

, 
− 1/5 

1 
\ 

40 
= 

− 3/40 3 
 

gives the non-basic variable x4, this enters the basis. 
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B x 

1
 x

2
 x

3
 x 

4
 G

1
 x 

B
 

x
2

 

 
x

1
 

 
x 

4
 

0 

 
1 

 
0 

1 

 
0 

 
0 

0 
 

2 / 3 
 

8/ 3 

0 

 
0 

 
1 

1 

 
-10/3 

 
-40/3 

0 
 

10 / 3 
 

25 /3 

z 
j 
−c 

j
 0 0 34 /3 0 40 / 3 20 / 3 

 
 

Table 8.6: 
 

 

Again since the solution is non-integer, you add one more fractional cut constraint. 

max{fi} = max{0, 1/3, 1/3} 
 

Since the max fraction  is same for both the rows x1 and x4, you choose x4 arbitrarily. Therefore 

from the source row you have, 

25/3 = 0x1 + 0x2 + (8/3)x3 + 1x4 −  (40/3)G1 

 

Expressing the negative fraction  as the sum of negative integer and positive fraction you have 

(8 + 1/3) = 0x1 + 0x2 + (2 + 2/3)x3 + 1x4 + (− 14 + 2/3)G1 

 

The corresponding fractional cut is given by, 

− 2/3x3 −  2/3G1 + G2 = − 1/3. 

 

Add this second Gomorian constraint at the bottom of the above simplex table and apply dual 

simplex method. 

 
B x 

1
 x

2
 x

3
 x 

4
 G

1
 G 

2
 x 

B
 

x
2 

x
1 

x 
4
 

G 
2
 

0 

 
1 

 
0 

 
0 

1 

 
0 

 
0 

 
0 

0 
 

2 3 
 

8 3 

 
-2/3 

0 

 
0 

 
1 

 
0 

1 

 
-10/3 

 
-40/3 

 
-2/3 

0 

 
0 

 
0 

 
1 

0 
 

10 3 
 

25 3 

 

2 3  

z 
j 

c 
j
 0 0 34 3  0 40 3 0 20 3 

 
 

Table 8.7: 

Since G1 = − 1/3, G2 leaves the basis, Also, 
 

 

max 

( 
zj  −  cj 

aik 

\ 

, aik < 0 

 

 

= max 

( 
34/3 

, 
− 2/3 

40/3 
\

 

− 2/3 

 

= − 17 

 

gives the non-basic variable x3 which enters the basis. Using the dual simplex method, introduce 

x3 and drop G2. 
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B x 

1
 x

2
 x

3
 x 

4
 G

1
 G 

2
 x 

B
 

x
2 

x 
1 

x 
4
 

x
3
 

0 

 
1 

 
0 

 
0 

1 

 
0 

 
0 

 
0 

0 

 
0 

 
0 

 
1 

0 

 
0 

 
1 

 
0 

1 

 
-4 

 
16 

 
1 

0 

 
1 

 
4 

 
-3/2 

0 

 
3 

 
7 

 
½ 

z 
j 
−c 

j
 0 0 0 0 2 13 1 

 
 

Table 8.8: 
 

 

Since the solution is still a non-integer, a third fractional cut is required. It is given from the 

source row (x3 row) as, 

− 1/2 = − 1/2G2 + G3 

 

Insert this additional constraint at the bottom of the table, the modified simplex tableau is 

show below. 
 

B x 
1
 x

2
 x

3
 x 

4
 G

1
 G 

2
 G3 x 

B
 

x
2 

x
1 

x 
4 

x
3

 

G3 

0 

 
1 

 
0 

 
0 

 
0 

1 

 
0 

 
0 

 
0 

 
0 

0 

 
0 

 
0 

 
1 

 
0 

0 

 
0 

 
1 

 
0 

 
0 

1 

 
-4 

 
16 

 
1 

 
0 

0 

 
1 

 
4 

 
-3/2 

 
-½ 

0 

 
0 

 
0 

 
0 

 
1 

0 

 
3 

 
7 

 
½ 

 
1 2  

z 
j 

c 
j
 0 0 0 0 2 17  0 1 

 

 

Table 8.9: 

 
Using dual simplex method, you drop G3 and introduce G2. 

 
B x 

1
 x

2
 x

3
 x 

4
 G

1
 G 

2
 G3 x 

B
 

x
2 

x
1 

x 
4 

x
3
 

G 2 

0 

 
1 

 
0 

 
0 

 
0 

1 

 
0 

 
0 

 
0 

 
0 

0 

 
0 

 
0 

 
1 

 
0 

0 

 
0 

 
1 

 
0 

 
0 

0 

 
-4 

 
-16 

 
-1 

 
6 

0 

 
0 

 
0 

 
0 

 
1 

0 

 
2 

 
8 

 
-3 

 
-2 

0 

 
2 

 
3 

 
2 

 
1 

z 
j 
−c 

j
 0 0 0 0 2 0 34 -16 

 

 

Table 8.10: 
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Since all zj  −  cj   ≥  0 and also the variables are integers, the optimum  integer solution  is 
obtained and given by 

 

x1 = 2, x2 = 0, x3 = 2 and max z = − 16 

✍  
 

 
 

8.3.3 Mixed Integer Programming Problem 
 
In the mixed IPP only some of the variables are restricted to integer values, while the other 

variables may take integer or other real values. 
 

 
Mixed Integer Cutting Plane Procedure 

 
The iterative procedure for the solution of mixed integer programming problem is as follows. 

 
 

Step 1. Reformulate the given LPP into a standard maximization  form and then determine an 

optimum solution using simplex method. 
 

Step 2. Test the integrality  of the optimum solution. 
 

(i) If all xBi  ≥  0(i = 1, 2, . . . , m) and are integers, then the current solution is an opti- 

mum one. 

(ii)  If all xBi  ≥  0(i = 1, 2, . . . , m) but the integer restricted variables are not integers, 

then go to the next step. 
 

Step 3 Choose the largest fraction  among those xBi, which are restricted to integers. Let it be 

xBk  = fk  (assume) 
 

Step 4. Find the fractional cut constraints from the source row, namely K th row. 
 

From the source row, 
 
 
 
 

 
i.e., 

n 

j=1 

n 

 
akj  = xBk 

 
 

 
in the form 

 
 
j=1 

([akj ] + fki)rj  = [xBK ] + fk 
 

 
 

n 

fki 

j∈ j+ 
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i.e.,  
 

 
j∈ j+ 

 
 

fkj xj  + 

( 
fk   

\ 

fk− 1 

 
 

 
j∈ j− 

 

fkj xj  ≥  +fk 

 

−  

j∈ j+ 

 

−  

j∈ j+ 

fkj xj  −  
 

 
 

fkj xj  −  

( 
fk   

\
 

fk− 1 

 

( 
fk   

\ 

fk− 1 

 

 
j∈ j− 

 
 

 
j∈ j− 

fkj xj  ≤  − fk 

 

 
 

fkj xj  + Gk = − fk 

where, Gk is Gomorian slack 
 

 

j+ = [j/fkj  ≥  0] 
 

 

j−  = [j/fkj  < 0] 
 

Step 5 Add this cutting plane generated in step K at the bottom of the optimum simplex table 

obtained in step 1. Find the new optimum solution using dual simplex method. 

Step 6 Go to step 2 and repeat the procedure until all xBi  ≥  0(i = 1, 2, . . . , m) and all restricted 

variables are integers. 
 
 

Here is an example for you 
 
Example 8.3.3 Solve the problem 

 

Maximize z = 4x1 + 6x2 + 2x3 

Subject to.  4x1 −  4x2 ≤  5 
− x1 + 6x2 ≤  5 
− x1 + x2 + x3 ≤  5 

with x1, x2, x3 ≥  0,  and x1, x3 are integers 
 

☞ Solution. Introducing slack variables x4, x5, x6 ≥  0, the standard form of LPP, is 

 

Maximize z = 4x1 + 6x2 + 2x3 + 0x4 + 0x5 + 0x6 

Subject to.  4x1 −  4x2 + x4 = 5 
− x1 + 6x2 + x5 = 5 
− x1 + x2 + x3 + x6 = 5 

with x1, x2, x3, x4, x5, x6 ≥  0, 
 

The initial basic feasible solution is given by x4  = 5, x5  = 5, x6  = 5. Ignoring the integer 

condition, the optimum solution of given LPP is obtained by the simplex method from the 
optimal simplex tableau 
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5 

 

 
 
 

B x
1
 x 

2
 x

3
 x 

4
 x

5
 x

6
 x 

B
 

x
1

 

 
x 

2
 

 
x

3
 

1 

 
0 

 
0 

0 

 
1 

 
0 

0 

 
0 

 
1 

3/ 10 

 
1 / 20 

 
¼ 

1 / 5 

 
1 / 5 

 
0 

0 

 
0 

 
1 

5/2 

 
5/4 

 
25/4 

z 
j 
−c 

j
 0 0 0 1 1 0 35/2 

 

 
 

Table 8.11: Page 194 
 
 

But the integer constrained variables x1 and x3 are non-integer. 
 

x1 = 5/2 = 2 + 1/2 
 

x2 = 25/4 = 6 + 1/4 

max{f1, f3} = max{1/2, 1/4} = 1/2. 

From the first row you have, 
 

(2 + 1/2) = x1 + 0x2 + 0x3 + (3/10)x4 + (1/5)x5 

 

The Gomorian constraint is given by, 
 

3/10x4 + 1/5x5  ≥  1/2  or  −  3/10x4 −  1/5x5  ≤  −

1/2 

i.e., − 3/10x4  −  1/5x5  + G1  = − 1/2, where G1 is the Gomorian slack. Introduce this 

new constraint at the bottom of the above simplex table. 
 

 
B x 1 x2 x 3 x 4 x

5
 x 

6
 G

1
 x B 

x
1 

x
2 

x 
3
 

G
1
 

1 

 
0 

 
0 

 
0 

0 

 
1 

 
0 

 
0 

0 

 
0 

 
1 

 
0 

3 10 
 

1 20 

 
¼ 

 
-3/10 

1/5 

 
1/5 

 
0 

 
-1/5 

0 

 
0 

 
1 

 
0 

0 

 
0 

 
0 

 
1 

5 2 
 

5 4 

 

25 5 
 

1 2  

z j c j 0 0 0 2  2 0 0 30 

 
 

Table 8.12: 
 

Using dual simplex method, since G1 = − 1/2 < 0, G1 leaves the basis. Also, 

 

 
 

 
max 

 

( 
zj  −  cj 

 

\ 

, aik < 0 

 
  2 

= max , 

 

2  

 

 
= max 

 

( 
− 20 

 

\ 

, − 10 = 

 

− 20 

aik  − 3 
10 

−  1  3 3 
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B x 1 x2 x 3 x 4 x

5
 x 

6
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1
 x B 

x
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x
2 

x 
3
 

x 
4
 

1 

 
0 

 
0 

 
0 

0 

 
1 

 
0 

 
0 

0 

 
0 

 
1 

 
0 

0 

 
0 

 
0 

 
1 

0 

 
1/6 

 
-1/6 

 
2/3 

0 

 
0 

 
1 

 
0 

1 
 

1/ 6 
 

5 / 6 
 

−10 / 3 

2 
 

7 / 6 
 

35 / 6 
 

5 / 3 

z j −c j 0 0 0 0 2 / 3 2 20 / 3 80/ 3 

 
 

Table 8.13: 
 

 

corresponding to x4. Therefore, the non-basic variable x4 enters the basics. Drop G1 and intro- 

duce x4. 

✍  

Since all zj  −  cj  ≥  0, the solution is optimum and also the integer restricted variable x3  = 
35/6 is not an integer, therefore, you add another Gomorian constraint 

 
x3 = 35/6 = 5 + 5/6 

 

The source row is the third row. From this row you have, 
 

5 
5 + 

6 
= 0x1 + 0x2 + x3 + 0x4 −  

1 

6 
x5 + x6 + 

5 

6 
G1

 

 

The Gomorian constraint is given by, 
 

 
5  

    6
 
     

( 
− 1 

\ 
5 5 

 5  
6 

6 
−  1

 

x5 + 
6 

G1 ≥  
6 

 

 

5 

6 
x5 + 

5 5 

6 
G1 ≥  

6 
i.e., −  5

 

6 
x5 −  

5 5 

6 
G1 + G2 = −  

6 

where G2 is the Gomorian slack. Add this second cutting plane constraint at the bottom of the 

above optimum simplex table gives you, 
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0 
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1/6 

 
-1/6 

 
2/3 

 
-5/6 

0 

 
0 

 
1 

 
0 

 
0 

1 
 

1 6 
 

5 6 

 

10 3 

 
-5/6 

0 

 
0 

 
0 

 
0 

 
1 

2 
 

7 6 
 

35 6 

 

5 3 
 

5 6  

z j c j 0 0 0 2 3 2 3  2 20 3 0 80 3 
 

 

Table 8.14: 
 

Use dual simplex method, since G2 = − 5/6 < 0, G2 leaves the basics. Also, 

  
2 20  

 

max 
( 

zj  −  cj 
\ 

, aik < 0 
 

= max 
 
 3 ,  3

 
 
= max 

( 
− 4 

\ 
4 

, − 8 = −  
aik  − 5 

6 

− 5 
6   

which corresponds to x5. Drop G2 and introduce x5. Since all zj  −  cj   ≥  0 and also all 

the restricted variables x1 and x3, an optimum integer solution is obtained. 
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0 

0 

 
0 

 
0 

 
1 

 
0 
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0 
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0 

 
1 

0 

 
0 

 
1 

 
0 

 
0 

1 

 
0 

 
1 

 
-4 

 
1 

0 

 
1/5 

 
-1/5 

 
4/5 

 
-6/5 

2 

 
1 

 
6 

 
1 

 
1 

z j −c j 0 0 0 0 0 2 20 / 3 4 / 5 26 
 

 

Table 8.15: 
 

The optimum integer solution is, 
 

x1 = 2, x2 = 1, x3 = 6,  and max z = 26 
 

 
8.3.4   Branch And Bound Method 

 
This method is applicable to both, pure as well as mixed  IPP. Sometimes a few or all the vari- 

ables of an IPP are constrained by their upper or lower bounds. The most general method for 

the solution of such constrained optimization  problem is called ’Branch and Bound method’. 
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r 

r r+1 

r r+1 

 
 
 

This method first divides the feasible region into smaller  subsets and then examines each 

of them successively, until a feasible solution  gives an optimal  value of objective function is 

obtained. 
 

Consider the IPP 
Maximize  z = cx 

 
Subject to Ax ≤  b 

 

with x ≥  0 are integers 

In this method, you will first solve the problem by ignoring the integrality condition. 

(8.1) 

 

(i) If the solution is in integers, the current solution is optimum for the IPP (8.1). 

(ii)  If the solution is not in integers, say one of the variable xr is not an integer, then x∗  < 

xr < x∗  where x∗ , x∗  are consecutive non-negative integers. 

r+1 r r+1 
 

Hence, any feasible integer value of xr must satisfy one of the two conditions. 

xr ≤  x∗  or  xr ≤  x∗  . 

These two conditions are mutually  exclusive (both cannot be true simultaneously).  By adding 

these two conditions separately to the given LPP, we form different sub-problems. 
 

Sub-problem 1 
 
 

Maximize z = cx 
Subject to:  Ax ≤  b 

xr ≤  x∗  

Sub-problem 2 
 
 

Maximize z = cx 
Subject to:  Ax ≤  b 

xr ≥  x∗  

x ≥  0. x ≥  0. 
 

Thus, you have brached or partitioned the original problem into two sub-problems. Each of 

these sub-problems is then solved separately as LPP. 
 

If any sub-problem yields an optimum integer solution, it is not further branched. But if any 

sub-problem yields a non-integer solution, it is further branched into two sub-problems. This 

branching  process is continued until each problem  terminates with either an integer optimal 

solution or there is an evidence that it cannot yield a better solution.  The integer-valued solution 

among all the sub-problems, which gives the most optimal value of the objective function is then 

selected as the optimum  solution. 
 

Note: For minimization  problem, the procedure is the same except that upper bounds are 

used. The sub-problem is said to be fathomed and is dropped from further consideration if it 

yields a value of the objective function lower than that of the best available integer solution and 

it is useless to explore the problem any further. 

Example 8.3.4 Use the branch and bound technique to solve the following: 

Maximize  z = x1 + 4x2 

Subject to 2x1 + 4x2 ≤  7 
5x1 + 3x2 ≤  15 

with x1, x2 ≥  0 and are integers. 
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4 

 
 
 

☞ Solution. Ignoring the integrality condition you solve the LPP, 
 

Maximize  z = x1 + 4x2 

Subject to 2x1 + 4x2 ≤  7 
5x1 + 3x2 ≤  15 

with x1, x2 ≥  0 

Introducing slack variables x3, x4 ≥  0, the standard form of LPP becomes, 

 
Maximize  z = x1 + 4x2 + 0x3 + 0x4 

Subject to 2x1 + 4x2 + x3 = 7 
5x1 + 3x2 + 0x4 = 15 

with x1, x2, x3, x4 ≥  0 
 

 
B x 1 x2 x3 x 4 x B θ 

x 3 

 
x 4 

2 

 
5 

4 
 

3 

1 

 
0 

0 

 
1 

7 

 
15 

7 4 

 
5 

z j c j -1 4  0 0 0  

B x 1 x2 x3 x 4 x B θ 

x 
2
 

 
x 4 

1/2 

 
7/2 

1 

 
0 

¼ 

 
3/4 

0 

 
1 

7/4 

 
4 

 

z j c j 1 0 1 0 7  

 
 

Table 8.16: 

Since zj  −  cj  ≥  0, an optimum solution is obtained, 

 

x1 = 0, x2 = 7/4  and max z = 7 
 

Since x2 =  7 , this problem should be branched into two sub-problems. For 
 

7 
x2 = 

4 
, 1 < x2 < 2; x2 ≤  1, x2 ≥  2

 
 

Applying these two conditions separately in the given LPP you get two sub problems. 
 

 

Sub-problem 1 
 

 

Maximize z = x1 + 4x2 

Subject to:  2x1 + 4x2 ≤  7 
5x1 + 3x2 ≤  15 
x2 ≤  1 

with x1, x2 ≥  0. 

Sub-problem 2 
 

 

Maximize z = x1 + 4x2 

Subject to:  2x1 + 4x2 ≤  7 
5x1 + 3x2 ≤  15 
x2 ≥  2 

with x1, x2 ≥  0. 
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Sub-Problem (1) 
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 x B θ 

x
1

 

 
x 4 

 
x

2
 

1 

 
0 

 
0 

0 

 
0 

 
1 

½ 

 
-5/2 

 
0 

0 
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1 
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1 

 

z j c j 0 0 ½ 0 2 11 2  

 
 

Table 8.17: 
 

Since all zj  −  cj  ≥  0, the solution is optimum, given by x1  = 3/2, x2  = 1, and max z = 

11/2. Since x1 = 3/2 is not an integer, this sub-problem is branched again. 
 

 
Sub-Problem (2) 

 
Maximize z = x1 + 4x2 

Subject to:  2x1 + 4x2 ≤  7 
5x1 + 3x2 ≤  15 
x2 ≥  2 

with x1, x2 ≥  0. 

In Table 8.18, since all zj  −  cj  ≥  0, and an artificial variable a1 is in the basis at positive 
level, there exist no feasible solution. Hence, this sub-problem is dropped. 

In sub problem (1) Since, x1 = 3/2, you have, 1 ≤  x1 ≤  2, and so x1 ≤  1, x1 ≥  2 

Applying these two conditions separately in the sub-problem (1), you get two sub-problems. 
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Table 8.18: 
 

 

Sub-problem (3) 
 

 

Maximize z = x1 + 4x2 

Subject to:  2x1 + 4x2 ≤  7 
5x1 + 3x2 ≤  15 
x2 ≤  1 
x1 ≤  1 

with x1, x2 ≥  0. 

Sub-problem (4) 
 

 

Maximize z = x1 + 4x2 

Subject to:  2x1 + 4x2 ≤  7 
5x1 + 3x2 ≤  15 
x2 ≤  2 
x1 ≥  2 

with x1, x2 ≥  0. 
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z j c j 0 0 0 0 4 1 5  
 

 

Table 8.19: 
 

Since all zj  −  cj , an optimum solution is obtained. It is given by, x1  = 1, x2  = 1 and 

max z = 5. Since this solution is integer-valued this sub-problem cannot be branched further. 
The lower bound of the objective function is 5. 
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Table 8.20: 

Since all zj  −  cj  ≥  0, the optimum solution is given by, 

x1 = 2, x2 = 3/4 

Since x2 = 3/4, 0 ≤  x2 ≤  1, 

thus 

 

 

x2 ≤  0,  or x2 ≥  1 

 

Applying these two conditions in the sub-problem (4), you get two sub-problems. 
 

Sub-problem (5) 
 

 

Maximize z = x1 + 4x2 

Subject to:  2x1 + 4x2 ≤  7 
5x1 + 3x2 ≤  15 
x2 ≤  1 
x1 ≥  1 
x2 ≤  0 

with x1, x2 ≥  0. 

Sub-problem (6) 
 

 

Maximize z = x1 + 4x2 

Subject to:  2x1 + 4x2 ≤  7 
5x1 + 3x2 ≤  15 
x2 ≤  2 
x1 ≥  2 
x2 ≥  1 

with x1, x2 ≥  0. 
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Table 8.21: 
 

Since all zj − cj  ≥  0, the solution is optimum and is given by x1 = 3, x2 = 0 and max z = 3. 
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This sub-problem yields an optimum integer solution. Hence, this sub-problem is dropped. 
 

 
Sub-problem (6) 

 

Maximize z = x1 + 4x2 

Subject to:  2x1 + 4x2 ≤  7 
5x1 + 3x2 ≤  15 
x2 ≤  2 
x1 ≥  2 
x2 ≥  1 

with x1, x2 ≥  0. 
is also fathomed. 

 
 
 

 
This sub-problem has no feasible solution.  Hence, this problem 

 

 

Original Problem 
max z x1 4x 2 

Subject to :  2 x1 4 x 2 7 

5x 1 3x 2 1 
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x
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Sub-Problem (1)  Sub-problem (2) 

Max z 11 2 

x1 3 2,  x 2 1 
 

x1 1 x2 2 

Infeasible 
Solution 
fathomed 

 
 
 

 

Sub-Problem (3)  
Sub-Problem (4) 

Max z 5 

x1 3,  x 2 1 

fathomed 

Max z 5 
x1 2, x2 3 4 

 

x
2

0 

 

 
 
 

x1 1 
 
 

Sub-problem (5) 
Max z 3 

x1 3,  x 2 0 

fathomed 

Sub-Problem (6) 
Infeasible 
Solution 
Fathomed 

 

 
Table 8.22: 
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Among the available integer-valued solutions, the best integer solution  is given by sub- 

problem (3). Therefore the optimum integer solution is, 
 

max z = 5, x1 = 1, and x2 = 1. 
 

The best available integer optimal solution is 
 

max z = 5,  x1 = 1, and x2 = 1. 

✍  
 

 
 

8.4   Conclusion 
 

 

In this unit, you were introduced to a special  class of Linear Programming problem called 

Integer programming Problem (IPP). You looked at two examples of IPP namely Pure IPP and 

Mixed IPP. You also solve IPP problems using any of these two methods Gomory’s Cutting 

plane Method or what you may call the fractional  cut algorithm and The Branch and bound 

Method also known as the Search Method. 
 

 
 

8.5   Summary 
 

 

Having gone through this unit, You are now able to 
 

 

(i) Give the correct definition of a Integer Programming  Model. 

(ii)  Differentiate  between Pure IPP and Mixed IPP. 

(iii)  Solve IPP using the Gomory’s Cutting plane Method. 

(iv) Solve IPP using the Branch and Bound Method. 
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8.6 Tutor Marked Assignments(TMAs) 
 

 

Exercise 8.6.1 

 
Find the optimum integer solution of the following pure integer programming problems in prob- 

lem 1-4. 

 
1. Maximizez = 4x1 + 3x2 

Subject to:  x1 + 2x2 ≤  4 
2x1 + x2 ≤  6 

with x1, x2 ≥  0,  and are integers. 

[Ans. x1 = 3, x2 = 0 and max z = 12] 
 

2. Maximizez = 3x1 + 4x2 

Subject to:  3x1 + 2x2 ≤  8 
x1 + 4x2 ≥  10 

with x1, x2 ≥  0,  and are integers. 

[Ans. x1 = 0, x2 = 4 and max z = 16] 

3. Maximizez = 3x1 −  2x2 + 5x3 

Subject to:  4x1 + 5x2 + 5x3 ≤  30 
5x1 + 2x2 + 7x3 ≤  28 

with x1, x2, x3 ≥  0,  and are integers. 

[Ans. x1 = x2 = 0, x3 = 4 and max z = 20] 

4. Minimizez = − 2x1 −  3x2 

Subject to:  2x1 + 2x2 ≤  7 
x1 ≤  2 
x2 ≤  2 

with x1, x2 ≥  0,  and are integers. 

[Ans. x1 = 1, x2 = 2 and min z = − 8] 
 

Solve the following mixed integer programming problems using Gomory’s cutting plane 

method. 
 

5. Maximizez = 7x1 + 9x2 

Subject to:  − x1 + 3x2 ≤  6 
7x1 + x2 ≤  35 

with x1, x2 ≥  0,  and x1 is an integers. 

[Ans. x1 = 3, x2 = 2 and max z = 5 or x1 = 4, x2 = 1, max z = 5] 
 

6. Maximizez = 3x1 + x2 + 3x3 

Subject to:  − x1 + 2x2 + x3 ≤  4 
4x2 −  3x3 ≤  2 
x1 −  3x2 + 2x3 ≤  3 

with x1, x2, x3 ≥  0,  where x1 and x3 are integers. 
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[Ans. x1 = 5, x2 = 11/4, x3 = 3 and max z = 107/4] 
 

7. Maximizez = x1 + x2 

Subject to:  2x1 + 5x2 ≤  16 
6x1 + 5x2 ≤  30 

with x1, x2 ≥  0,  and x1 is an integers. 

[Ans. x1 = 4, x2 = 6/5  and max z = 26/5] 
 

8. Minimizez = 10x1 + 9x2 

Subject to:  x1 ≤  8 
x2 ≤  10 
5x1 + 3x2 ≤  45 

with x1, x2 ≥  0,  and are integers. 

[Ans. x1 = 8, x2 = 5/3  and min z = 95] 
 

Use branch and bound method to solve the following problems: 
 

9. Maximizez = 3x1 + 4x2 

Subject to:  7x1 + 16x2 ≤  52 
3x1 −  2x2 ≤  18 

with x1, x2 ≥  0,  and are integers. 

[Ans. x1 = 5, x2 = 1 and max z = 19] 
 

10. Maximizez = 2x1 + 2x2 

Subject to:  5x1 + 3x2 ≤  8 
x1 + 2x2 ≤  4 

with x1, x2 ≥  0,  and are integers. 

[Ans. max z = 4, x1 = 1, x2 = 1,  or x1 = 0, x2 = 2] 

11. Maximizez = 2x1 + 20x2 −  10x3 

Subject to:  2x1 + 20x2 + 4x3 ≤  15 
6x1 + 20x2 + 4x3 = 20 

with x1, x2, x3 ≥  0,  and are integers. 

[Ans. x1 = 2, x2 = 0, x3 = 2 and max z = − 16] 
 

12. Maximizez = 3x1 + 4x2 

Subject to:  3x1 −  x2 + x3 = 12 
3x1 + 11x2 + x4 = 66 

with x1, x2, x3, x4 ≥  0,  and are integers. 

[Ans. x1 = 5, x2 = 4,  and max z = 31] 
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