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INTRODUCTION

MTH102- Elementary Mathematics Il is designed tacte you how
differential and integral calculus could be usedsalving problems in
the contemporary business, technological and stieewbrld.

Therefore, the course is structured to expose gadbé skills required in
other to attain a level of proficiency in sciendechnology and
engineering.

The course is a 3-credit unit and a core courdegshsemester. It will
take you 15 weeks to complete the course. Youaspénd 91 hours of
study for a period of 13 weeks while the first weekor orientation and
the last week is for end of semester examinatibe.dredit earned in this
course is part of the requirement for graduationou Yvill receive the
course material which you can read online or doaahland read off-line.

The online course material is integrated in therhieg Management
System (LMS). All activities in this course will ieeld in the LMS. All

you need to know in this course is presented infdlewing sub-
headings.

COURSE COMPETENCIES

By the end of this course, you will gain competety

° Competency in Elementary Mathematics Il
° Work with calculus and integration
o Develop mathematical model from calculus and irgggn

COURSE OBJECTIVES

The course objectives are to:

o To Inculcate Appropriat®athematicaBkills Required in Science
andEngineering.

o Educate Learners on How to Us$#athematical Techniquem
Solving Real Life Problems.

o Educate The Learners on How to Integi&ehematicaModels in

Sciences anéngineering.

WORKING THROUGH THIS COURSE

The course is divided into modules and units. Thelutes are derived
from the course competencies and objectives. Thmepetencies will
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guide you on the skills you will gain at the endlus course. So, as you
work through the course, reflect on the competenitieensure mastery.

The units are components of the modules. Eachisisiib-divided into
introduction, intended learning outcome(s), mainteat, self-assessment
exercise(s), conclusion, summary, and further regdiThe introduction
introduces you to the unit topic. The intendedné@sy outcome(s) is the
central point which help to measure your achievdmersuccess in the
course. Therefore, study the intended learningamnégs) before going to
the main content and at the end of the unit, reth& intended learning
outcome(s) to check if you have achieved the legroutcomes. Work
through the unit again if you have not attained tated learning
outcomes.

The main content is the body of knowledge in thi. Belf-assessment
exercises are embedded in the content which helpgo/evaluate your
mastery of the competencies. The conclusion givas the takeaway
while the summary is a brief of the knowledge pnése in the unit. The
final part is the further readings. This takes yowhere you can read
more on the knowledge or topic presented in thé diie modules and
units are presented as follows:

MODULE 1: FUNCTIONS

Unit 1. Function and Graphs
Unit 2: Limits
Unit 3: Idea of Continuity

MODULE 2: CALCULUSOF DIFFERENTIATION

Unit 1: The Derivative as Limit of Rate of Change
Unit 2: Differentiation Technique

MODULE 3: CALCULUSOF INTEGRATION
Unit 1: Integration
Unit 2: Definite Integrals (Application to Areasider Curve and

Volumes of Solids)

There are seven units in this course. Each usipisad over week(s) of
study.

Vi



MTH 102 Elementary Mathematics 1

PRESENTATION SCHEDULE

The weekly activities are presented in Table 1 athik required hours of
study and the activities are presented in Tabl&hs will guide your
study time. You may spend more time in completiaghemodule or unit.

TABLEI: WEEKLY ACTIVITIES

Week Activity

1 Orientation and course guide
2 Module 1 Unit 1
3 Module 1 Unit 2
4 Module 1 Unit 3
5 Module 2 Unit 1
6

7

8

Module 2 Unit 2
Module 2 Unit 2
Module 2 Unit 2

9 Module 3 Unit 1

10 Module 3 Unit 1

11 Module 3 Unit 1

12 Module 3 Unit 2

13 Module 3 Unit 2

14 Revision and response to questionnaire
15 Examination

The activities in Table | include facilitation h@ufsynchronous and
asynchronous), assignments, mini projects, andday practical. How
do you know the hours to spend on each? A guigeesented in Table
2.

TABLE 2: REQUIRED MINIMUM HOURS OF STUDY

Hour Hour per
S/N | Activity per P
Week Semester
Synchronous Facilitation (Video
1 : 2 26
Conferencing)
Asynchronous Facilitation (Read and
2 respond to posts including facilitator |‘'é 52
comment, self-study)
Assignments, mini-project, Iaborator)i
3 . . 13
practical and portfolios
Total 7 91

vii
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ASSESSMENT

Table 3 presentsthe mode you will be assessed.

Table 3: Assessment

SN Method of Assessment Score (%)
3 Tutor Mark Assignments 30

4 Final Examination 100
Total 100

ASSIGNMENTS

Take the assignment and click on the submissiotobub submit. The
assignment will be scored, and you will receivedfesek.

EXAMINATION

Finally, the examination will help to test the cdge domain. The test
items will be mostly application, and evaluatiosttéems that will lead
to creation of new knowledge/idea.

HOW TO GET THEMOST FROM THE COURSE

To get the most in this course, you:

o Need a personal laptop. The use of mobile phong waly not
give you the desirable environment to work.

o Need regular and stable internet.

o Need to install the recommended software.

o Must work through the course step by step startaiip the
programme orientation.

o Must not plagiarise or impersonate. These are seonéfences that
could terminate your studentship. Plagiarism cheitikoe used to
run all your submissions.

o Must do all the assessments following given ingions.

o Must create time daily to attend to your study.

viii
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FACILITATION
There will be two forms of facilitation—synchronoaisd asynchronous.

The synchronous will be held through video confeireg according to
weekly schedule. During the synchronous facilitatio

° There will be two hours of online real time contaer week
making a total of 26 hours for thirteen weeks afigttime.

o At the end of each video conferencing, the videlblve uploaded
for view at your pace.

o You are to read the course material and do oth@gm@mments as
may be given before video conferencing time.

° The facilitator will concentrate on main themes.

o The facilitator will take you through the coursedguin the first

lecture at the start date of facilitation.
For the asynchronous facilitation, your facilitator will:

Present the theme for the week.

Direct and summarise forum discussions.

Coordinate activities in the platform.

Score and grade activities when need be.

Support you to learn. In this regard personal nrady be sent.
Send you videos and audio lectures, and podcaséd be.

Read all the comments and notes of your facilitespecially on your
assignments, participate in forum discussions. Thi8 give you
opportunity to socialise with others in the couase build your skill for
teamwork. You can raise any challenge encountenadgyour study.

To gain the maximum benefit from course facilitatiprepare a list of
guestions before the synchronous session. You lealtin a lot from
participating actively in the discussions.

LEARNER SUPPORT

You will receive the following support:

o Technical Support: There will be contact numbegs)ail address
and chat bot on the Learning Management Systemenjar can

chat or send message to get assistance and guidagceme
during the course.
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o 24/7 communication: You can send personal mail twury
facilitator and the centre at any time of the déagu will receive
answer to you mails within 24 hours. There is algportunity for
personal or group chats at any time of the day Witise that are
online.

o You will receive guidance and feedback on your sssents,
academic progress, and receive help to resolvédecigas facing
your studies.

COURSE INFORMATION

Course Blub: This course presents differential calculus artdgration
techniques for different functions. It offers digersolution procedures in
determine the derivative of function and applicasian the areas of
science engineering.
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MODULE 1: FUNCTIONS
In this module, you will be introduced to the fundantals of function.

Concepts related to limit and continuity and itplagations will be
studied. This module is made up of the followingtsin

Unit 1: Function and Graphs
Unit 2: Limits

Unit 3: Idea of Continuity
Unit 1: Function and Graphs

Unit Structure

1.1  Introduction
1.2 Intended Learning Outcomes (ILOS)
1.3 Main Content
1.3.1 Functions
1.3.2 Graph of a function
1.3.3 Bounded function
1.3.4 Principal values
1.3.5 Maxima and Minima
1.3.6 Types of function
1.3.7 Composite function
1.3.8 Inverse function
1.4 Summary
1.5. Conclusion
1.6 References/Further Reading
1.7 SELF Assessment Exercise(s)

@1.1 Introduction

In everyday life, many quantities depend on onemamre changing
variable. For example:

o Speed of a moving car or object depend on distaagelled and
time taken

o The voltage of electrical devices depends on ctiened resistance.

o The volume of given mass of gas depends on theyest room

temperature (i.e., temperature remain constant)
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A function is a phenomenon that relates how onealbe or quantity
depends on the other variables or quantities.

For instance, inohm’s law V |, mathematicallyl®awhere R is constant
of proportionality.

If I increase, so does the voltage V. If | decreasedoes the voltage.
Hence, from this, we can say voltage is a funotibourrent.

@IZ.O Intended Learning Outcomes (llos)

By the end of this unit, you should be able to:

o define functions
o describe the concept of graphs
o solve problems related functions and graphs

——] 3.0 Main Content

1.3.1 Function

A function is composed of a domain set, a rangea® a rule of
correspondence that assigns exactly one elemeaheafnge to each
element of the domain.

This definition of a function place no restrictioms the nature of the
elements of the two sets. If the elements of thealo and range are
represented by andy, respectively, and symbolizes the function,
then the rule of correspondence takes the fpormf (x).

The distinction between f anfdx) should be kept in ming. denotes the
function as defined in the first paragraph.and f(x) are different
symbols for the range (or image) values correspundo domain
valuesx. However, a “‘common practice” that provides aqpediency in
presentation is to reafl(x) as, “the image of x with respect to the
functionf " and then use it when referring to the functi@or example,

it is simpler to write sin x than “the sine funati, the image value of
which issin x.”). This deviation from precise notation will apar in the
text because of its value in exhibiting the idddse domain variable is
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called the independent variable. The variable gregenting the
corresponding set of values in the range, is tipedd@ent variable.

There are many ways to relate the elements of et fNot all of them
correspond a unique range value to a given donalirey] For example,
given the equation? = x, there are two choices of y for each positive
value ofx. As another example, the pairs (a, b), (a, cldXand (a, e) can
be formed and again the correspondence to a dorahie is not unique.

Because of such possibilities, some texts, espgciader ones,
distinguish between multiple-valued and single-edldunctions. This
viewpoint not consistent with our definition or neyd presentations. In
order that there be no ambiguity, the calculusiendpplications require

a single image associated with each domain valusukiple valued rule

of correspondence gives rise to a collection ofcfiams (i.e., single-
valued). Thus, the rulg? = x is replaced by the pair of rulgs= x'/?

and y=—x"'2 and the functions they generate through the
establishment of domains.

wput /

Output ‘—“\1

Range

In the figure above, notice that you can think d@iaction as a machine
that inputs values of the independent variable iapdts values of the
dependent variable. Although function can be dbsdri by various
means such as table, graphs and diagrams, theyosteoften specified
by formulas or equation. For instance, the equatjos 4x? + 3
describes y as a function af For this function, is the independent
variable and is the dependent variable.



MTH 102 Elementary Mathematics 1

1.3.2 Graph of a function

A function f establishes a set of ordered péu3/) of real numbers. The
plot ofthese pairs
(x, f(x)) in a coordinate system is the graphfofThe result can be
thought of as a pictorial representation of thecfiom.

Example 3.2.1

Deciding whether relation are functions.

Which of the equation below define y as a functobwn?

. a) x+y=1 bx? +y2 =1
. c) x*+y=1 dy +y%2 =1
Solution 3.2.1

To decide whether an equation defines a functibns ihelpful to
isolate the dependent variable on the left side.

For instance, to decide whether the equatio#t y = 1 defines y as
a function ofx, write the equation in the form.

y=v—Xx
From this form, you can see that for any value ,ahere is exactly one
value ofy. So,y is a function ofx.

Original Equation Rewritten Equation Test: Is y a function of

X?

o ax+y=1 y=1—x Yes, each value of
determines exactly one value)of

. b. x2+y%2=1 y =+vV1—x"2  No, some values af
determine two values of y.

. c.x’+y=1 y=1-—x? Yes, each value of

determines exactly one value)af

. d x+y>=1 y=4+v1—x No, some value of x determines
two values ofy.
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Note that the equations that assign two val(e¥to the dependent
variable for a given value of the independent \@eiado not define
functions ofx. For instance, in part (b), when= 0, the equatiory =

+v1 — x2 indicates thay = +1 ory = —1.

el
Il"I‘-:l'\.l
i -+
-
(1]
I
—td
et
/
= -
-
3
1"
(=

Fig 3.2.1: shows the graphs of the four equatis



MTH 102 Elementary Mathematics 1

Checkpoint 1:
Which of the equations below define y as a functbn?

. ax—y=1b. x*+y*=4 c y*+x=2 dx? —y=
0 @x+y=6 f.x?+y%2=1

Example 3.2.2

Determine whether each equation defines as a tumofix:
a. x*+y=4 b? + y? =4
Solution 3.2.2

Solve each equation for y in terms of x. If twoneore values of y can be
obtained for a given x, the equation is not a fiomct

a. x2+y=4 This is the given equation

x?+y—x?=4—-x%>  Solve fory by subtracting £ from -
both sides
y =4 —x? Simplify.
From this last equation we can see that for eatevat x, there is one

and only one value of y. For examplexif 1, theny = 4 — 12 = 3. The
equation defines y as a functionxof

b. x2+y2=4 This is the given equation
x2+y?—x?=4—x* Isolate 9 by subtracting x2 from both
sides.

y? =4 — x? Simplify.

y = tV4 —x? Apply the square root properly: ifu? = d then
u=+Vd

Then+ in this last equation shows that for certain valoks (all values
between -2 and 2), there are two valuesg.of
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For example, ik = 1, then y = +v4 — 12 = ++/3 . For this reason,
the equation does not define y as a functios. of

Example 3.2.3

The graphs of the functions describedyby x?,—1 < x < 1, andy? =
x,0<x <1,y =0 appear irFig. 3 2.2

- T

1 | + -

Fig. 3 2.2: The graphs of functions

° 2

y=Xx
. (b)y?2=x=0
1.3.3 Bounded functions
If there is a constant M such thatx) < M for all x in an interval (or
other set of numbers), we say that f is boundedaloothe interval (or
the set) and call M an upper bound of the functiba.constant m exists
such thatf(x) = m for all x in an interval, we say tha{x) is bounded
below in the interval and call m a lower bound.

If m < f(x) < M in an interval, we calf (x) bounded. Frequently, when
we wish to indicate that a function is bounded shall write|f (x)| < P.

Example 3.3.1
(a) f(x) =3+ xisboundedinr-1 <x < 1. An upper bound i4 (or

any number greater than 4). A lower bound is 2aor number less than
2).

(b) f(x) :i is not bounded i < x < 4 since by choosing x
sufficiently close to zero, f(x) can be made agdaas we wish, so that
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there is no upper bound. However, a lower bourglven byi (or any
number less thab.

If £(x) has an upper bound it has a least upper boundb. ); if it has a
lower bound it has a greatest lower boggd. b.).

1.3.4 Inverse functions. Principal values
Supposey is the range variable of a functigrwith domain variablex.

Furthermore, let the correspondence between theaorind range
values be one-to-one. Then a new functjort, called the inverse
function of f, can be created by interchangingdbmain and range of f.

This information is contained in the form= f~1(y).

As you work with the inverse function, it oftendenvenient to rename

the domain variable as x and use y to symbolizeirtieges, then the

notation isy = f~1(x). In particular, this allows graphical expressidén o
the inverse function with its domain on the horizb@axis.

Note: f~! does not mean f to the negative one power. Whed with
functions the notatiofi—! always designates the inverse function to f. If
the domain and range elements of f are not in or@e correspondence
(this would mean that distinct domain elements hiinesame image),
then a collection of one-to-one functions may lEated. Each of them is
called a branch. It is often convenient to choase of these branches,
called the principal branch, and denote it asnkerise functionf ~1. The
range values of f that compose the principal braact hence the domain
of 71, are called the principal values.

Example 3.4.1
Suppose is generated by = sin x and the domain isoco < x < oo.

Then. there are an infinite number of domain valhes have the same
image. (A finite portion of the graph is illustrdtbelow inFig.3.4.1(a).

In Fig.3.4.1(b) the graph is rotated about a linet&f so that thec-axis
rotates into the-axis. Then the variables are interchanged sathieat-
axis is once again the horizontal one. We sedlieatnage of aw value
IS not unique. Therefore, a set of principal valnesst be chosen to
establish an inverse function. A choice of a branch
accomplished by restricting the domain of the stgifiunction,sin x . For
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example, chooseg <x< % Then there is a one-to-one correspondence
between the elements of this domain and the imiaged < x < 1.

Thus, f~! may be defined with this interval as its domaihisTidea is
illustrated inFig.3.4.1 (c) andFig.3.4.1 (d). With the domain of !
represented on the horizontal axis and by the blaria, we writey =

sinx,-1<x<1,ifx= —% then the corresponding range valug is
T

6"

Note: In algebrap~?! mean&; and the fact thath~! produces the identity

element 1 is simply a rule of algebra generalizechfarithmetic. Use of
a similar exponential notation for inverse functos justified in that
corresponding algebraic characteristics are diggldy f~[f(x)] = x

and f[f ' (x)] = x.
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3 e ik gt o e T
7 v
et /
/ o / X
g2 s s Ji<x<
Faal 30
v

(a) (b)

Fig.3.4.1:Graph of domain

1.3.5Maxima and Minima

The seventeenth-century development of the calcwias strongly
motivated by questions concerning extreme valuekidtions. Of

10
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most importance to the calculus and its applicatiere the notions
of local extrema, calledrelative maximums andrelative minimums,

If the graph of a function were compared to a patkr hills and
through valleys, the local extrema would be théhhagd low points
along the way. This intuitive view is given matheital precision by
the following definition.

Definition 3.5.1

If there exists an open interv@l, b) containinge such thaff (x) < f(c)
for all x other tharr in the interval, theif (c) is a relative maximum of f.

If f(x)> f(c) for all xin (a, b); other than c, then f(c) is a relative
minimum of f.

Functions may have any number of relative extrédrathe other hand,
they may have none, as in the case of the striathgasing and decreasing
functions previously defined.

Definition 3. 5.2

If c is in the domain of f and for allin the domain of the functigfi(x) <
f(x), then f(c) is an absolute maximum of the function f. If fdinain
the domairyf (x) > f(x) then f(c) is an absolute minimum ¢f (SeeFig
3.5.)

Note 1: If defined on closed intervals the strictly incsg® and
decreasing functions possess absolute extrema.

Absolute extrema are not necessarily unique. Famgte, if the graph of
a function is a horizontal line, then every postan absolute maximum
and an absolute minimum.

Note 2: A point of inflection also is representedrig 3.5.1 There is an

overlap with relative extrema in representationso€h points through
derivatives.

11
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1.3.6 Types of functions

Povimi of
Ralative inpfgaeiony
PRSI

Slrpoints
ERERs v vr B

Fig 3.5.1: Maximum point

It is worth realizing that there is a fundamentablpof functions at the
foundation of calculus and advanced calculus. These called
elementary functions. Either they are generateoh faoreal variableby
the fundamental operations of algebra, includingvgrs and roots, or
they have relatively simple geometric interpretasio As the title
“elementary functions” suggests, there is a mgemneral category of
functions (which, in fact, are dependent on theneletary ones). Some of
these will be explored later in the book. The eletag/ functions are
described below.

1.3.6 Polynomial functions

The polynomial functions are of the form

fx) =apx™+ax™ 1+ +a,_x+a,
wherea,, ... a,, are constants andis a positive integer called the degree
of the polynomial ifa, # 0.

The fundamental theorem of algebra states thatarfield of complex
numbers every

polynomial equation has at least one root. As asequence of this
theorem, it can be proved that every nth degregnpohial has n roots in
the complex field. When complex numbers are adaitiee polynomial
theoretically may be expressed as the productiokar factors; with our
restriction to real numbers, it is possible thatdtkthe roots may be
complex. In this case, the k factors generatingntial be quadratic.

(The corresponding roots are in complex conjugatersp The

polynomial
x3 —5x%+ 11x — 15 = (x — 3)(x? — 2x + 5) lllustrates this thought.

12
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3.6.2 Algebraic functions

Algebraic functions are functions= f(x) satisfying an equation of the
form

Po()y™ + PL()y™ 4 4 Py (0)y + B(x) =0
where Py(x), ... B,(x) are polynomial in X.

If the function can be expressed as the quotiehvofpolynomials, i.e.,
P(X)/Q(x) where P(x) and Q(x) are polynomials,sitcalled a rational
algebraic function; otherwise, it is an irrationalgebraic function.

3.6.3. Transcendental functionsare functions which are not
algebraic, i.e., they do not satisfy equationsh& torm (2). Note the
analogy with real numbers, polynomials correspogdin integers,

rational functions to rational numbers, and so on.

The following are sometimes called elementary tandental functions:

. Exponential function: f(x) = a*,a # 0, 1.

o Logarithmic function: f(x) =log,x, a # 0,1. This and the
exponential function are inverse function. If a %&:71828 . . ;

called the natural base of logarithms, we wfiter) = log,x =
Inx, called the natural logarithm of

o Trigonometric functions: (Also called circular functions because
of their geometric interpretation with respecthe tnit circle):
] sinx 1 1 1
sinx, cosx, tanx = ,CSCX = —,5secx = ——,cotx =
COSX Sinx COoSX tanx
CoSXx
 sinx

The variable x is generally expressed in radiansaglians =18%). For
real values ok, sin x andcos x lie between -1 and 1 inclusive.

The following are some properties of these funaion

sin? x + cos?x = 1, 1 + tan® x = sec? x, 1+ cot? x = csc?x
sin(x + y) = sinxcosy + cosxsiny, sin(—x) = —sinx
cos(x + y) = cosxcosy F sinxsiny, cos(—x) = cosx

tanx + tany

tan(x + y) = tan(—x) = —tanx

1 ¥ tanxtany’

13
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14

Inverse trigonometric functions. The following is a list of the
inverse trigonometric functions and their princigalues:

y=sin"lx, (-r/2<y<m/2)
y=csc‘1x=sin‘1§, (—SSygg)
y=coslx, (0<y<m/)
y=sec‘1x=cos‘1§, O<y<m)

y =tan"lx, (—§<y<7'[/2)
y=cotlx=n/2—tan"lx, (0<y<m)

Hyperbolic functions are defined in terms of exponential
functions as follows. These functions may be intetgd
geometrically, much as the trigonometric functidng with
respect to the unit hyperbola.

X

eX—e™*

sinhx =

.. 2

i) cschx = =

( ) sinhx eX—e=X
eX+e X

coshx =

(iv) sechx = S —
coshx eX+e=X
sinhx _ e¥—-e™*

tanhx = = —
coshx eX+e~1 L
. coshx eX+e”
(Vi) cothx = =

sinhx eX—e=X

Inverse hyperbolic functions.If x = sinhy then,x = sinh™! x
is the inverse hyperboligine of x. The following list gives the
principal values of the inverse hyperbolic funcgan terms of
natural logarithms and the domains for which theyraal.

sinh ™ x = In(x + Vx2 + 1), all x
(i) cosh™tx =In (l + x2+1),x +0
X |x|
cosh™lx = ln(x +Vx2 — 1),x >1
sech™’x = In (1+ x2+1),0 <x<1
_ 1, (1
tanh ' x = SIn (i), x| <1

1-x
coth ™ x = %ln (x—ﬂ) x> 1

x—1
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Example 3.6.1

Find the domain and range of each function

[ ] y:ﬁx—]_
b {1—x, x<1
° a—
Y= lWx=1 =x=1

Solution 3.6.1

o Becausevx — 1, is not defined foX - 1 < 0 (that is forx <
1), it follows that the domain of the function ietmtervalx > 1
or[1, o0]. To find the range, we obserwé — 1 is never negative.
Moreover, as x takes on the various values in tmaain, y takes
on all non-negative values. So, the range is ttervaly > 0 or
[0, oo].

o Because this function is defined for x < 1 and for 1, the
domain is the entire set of real numbers. This tioncis called
piecewise — defined functiobecause it is defined by two or more
equations over a specified domain.

Whenx > 1, the function behaves as in parts (a). Fo« 1, the values
ofl — «x
IS positive, and therefore the range of the fumctsgyy > 0 or [0, oo].

A function isone to oneif to each value of the dependent variable in the
range there corresponds exactly one value of thep@ndent variable.

For instance, the function Example 3.6.1a) is one to one, whereas the
function inExample 3.6.1b) is not one- to -one

Geometrically, a function is one- to- one if evhoyizontal line intersects
the graph of the function at most once. This gedoatinterpretation is
the horizontal line test for one-to-one functions. So, a graph that
represents a one- to —one test must satisfy bethettical line test and
the horizontal line test.

3.6.3 The vertical line test for function:

If any vertical line intersects a graph in morentlwame point, the graph
does not define y as a functionxof

15
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Example 3.6.3.1

Use the vertical line test to identify graphs inievhy is a function of x

3 -llu.fr B. Ay
/"
i il sl S ]

Solution 3.6.3.1

16
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Yisa funcﬁm[ of x

y is not a function of x. Two

values of y corresponds to an x -

value

[~
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o y isa function of x
o y isnot a function of x.
of y correspond to an x-value. Two values.

Example 3.6.3.2

Find the value of f(x) = %—5x+ 1 when x is 0, 1, and 4. Is f one to one?
Solution 3.6.3.2

When x = 0, the value of
fis f(0)= P —5(0) +1=1

When x = 1, the value of fis f (1) 21 5(1)+1
=1_-5+1=-5

When x = 4, the value of f(x) is

=42_5(4)+1
=16-20+1=-3

Checkpoint

In the following exercise, use the vertical linsttéo identify graphs in
which y is a function of x.

I i
y

A 4

v
+—

il v

N
/

v

il BN
N
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/IN

_

1.3.7 combinations of functions (composite functi®) Definition
The function given byf.g) (x) = f (g(x)) is the composite of with
g. The domain off.g) is the set of alk in the domain of g such that
g(x) is the domain of f.

Two functions can be combined in various ways &atg new functions.

For instance, iff (x) = 2x- 3 and dx) = x? + 1, you can form the
following functions.

. f(x) + gix) = 2x-3) + (x> + 1) = x* + 2x-2

Sum
. F)-gx) = 2x —3)-(x* +1) = —x*> + 2x-4
Difference.
. f(x)gx) = 2x-3)(x* +1) = 2x3 -3x* + 2x— 3
Product.
fO) _ 2x-3

g~ x2+1 Quotient/ division

21
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Example 3.7.1
Forming composite functions

Let f(x) = 2x- 4 and g(x) =x* + 3, and find (@). f (g(x))
(b). g(f (x))

Solution 3.7.1
o The composite off with g is given by
g (f(x)) = 2(g(x)) - 4 Evaluate f at g(x).
:2(x2 + 3) - 4 Substitute 32+3 for a(x).
= 2x% + 6 - 4 Simplify.
=2x%- 2
= 22- 1)
o The composite of with f is given by

g (f(x)) = (f(x))? + 1Evaluate g at f(x).

=(2x - 4)? + 1 Substitute 2x— 4 for f(x).

=4x’> — 6x+16 +1 Simplify.

=4x% — 16x + 17

Checkpoint

Let f(x) = 2x +1 andg(x) = x* + 2, and find a) f (g(x)). b)
g (f(x)).

1.3.8 Inverse function

Definition of the inverse of a function. Let f agde two functions such
that: f (g(x)) = x for each x in the domain of g agdf (x)) = x for
eachx in the domain of.

22
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Under these conditions, the functignis theinverse of the function f.
The function is donated by ! which is read as f- inverse”. So,

fF(F1(x) =xand fF1(f(x) =x

The domain off must be equal to the range 6f?, and the range of f
must be equal to the domain ¢f?.

Example 3.8.1
Several functions and their inverse are shown beloveach case, note

that the inverse function “undoes” the original ¢tion. For instance, to
undo multiplication by 2, you should divide by 2.

.+ ) =2

¢« [T =

e b) f(x) = 1/5x £71(x) = 5x

e 0 f(¥) =x+8 f () =x—8

e d) f(x) =3x+7 F1(X) = 13 (x +7)

e (&) f()=3f1(x) = 3Vx
0 = [ =1

y=1x)

The graphs of andf~! are mirror images of each other (with respect to
the liney = x, as inFig 3.8.1

Checkpoint

23
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Informally find the inverse function of each furmti a. f(x) :é
b f(x) =3x+2

Example 3.8.2

Find the inverse function ¢f(x) = V2x -3

Solution 3.8.1

Begin by substituting(x) with y. Then interchange andy and solve
fory

f(x) =v2x -3 Write originay = v2x — 3
function. Replacg (x) with y.

x = /2y — 3 Interchanger andy. x? = 2y — 3 square both side
x?2+3=2y Add 3 to each side.

=Yy Divide each side by 2.

+3

So, the inverse function has the forifr!(x) = %

x%43

Using x as the independent variable, you can wfité(x) =
asx = 0.

Note that the domain off "1(x) coincides with the range ¢f

After you have found the inverse of a function, y&hould check your
result. You can check your results graphically bgeyving that graphs
of fandf~1(x) are reflections of each other in the line y ¥gu can
check your results algebraically by evaluating(f ~*(x)) and
f~1(f(x)) — both should be equal to x.

Check thayf (f ~*(x)) = x and thatf ~1(f(x)) = x
FUF1(x) = FED) andf 1 (f(0) = £ (V2x = 3)

2

f‘l(f(x))=Jz("2+3>_3=(mf+3

2 2
2x
= 2 —
VETES
—X,X_Z

Checkpoint
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Find the inverse of function off(x)=x*+2 for x>0

Note: Not every function has an inverse function. In fhet, for a
function to have an inverse function, it must be-aio- one.

Example 3.8.2
A function that has no inverse function

Show that the functiofi(x) = x2 - 1 has no inverse function. (Assume
that the domain of f is the set of all real numbpers

Solution

Begin by sketching the graph off, as shown in fgglr25 Note that
fx) = x*-1

f(2) =22-1

=2

So, f does not pass the horizontal line test, which iespthat if is not
one- to- one and therefore has no inverse funciibe.same conclusion
can be obtained by trying to find the inversg @figebraically.

f(x) = X2 _1 Write original function.

y = 21 Replace f(x) with y

X = yz -1 Interchange x and y

Xx+1= )2 Add 1 to each side
+HVx+1=y Take square root of each side

The last equation does not define y as a functiox, and so f has no
inverse function y

F(x)= -1 write original functiovi.= X2 _1
Replace f (x) with y
X = y2 -1 Interchange x and y

25
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X+1=y

tvx+1 =y

Add1 to each side

Take square root of each side

The last equation does not define y as a functiox, @and so f has no
inverse function

il
I|I 4 /
\ (-2, 3) /
________________ L e i ——4 [2,3)
\ =)
'.lII 2 I."ll -
l"'._ I,.-" ;
1 /
‘x\ _.a-“
\ /
T ik
2 -1y, / i y)
"xk /
\.x_ 2

Checkpoint:

Show that the functiofi(x) = x2 - +4 has no inverse function.
’ 1.4

This unit has exposed you to the various defingiah functions and
graphs, its concept and broadens your knowledgetawents. The unit
also exposed you to the theory of functions anglgga This unit is

structured in such a way that you will understardhinies ahead in the
other units to follow.

Summary
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1.5 Conclusion

o A function is a correspondence from a first seliedathe domain
to a second set, called the range such that eacheat in the
domain corresponds to exactly one element in thgaa

o A function is one -to -one if each value of the elegient variable
in the range there corresponds exactly one valtleeahdependent
variable

Y

=16 References/Further Reading

Calculus an Applied Approach Larson Edwards Sixthti&n Blitzer

Algebra and Trigonometry custom4 edition Engineering
Mathematics by K.A Stroud.
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lﬂl.? Self-Assessment Exercises

o In the following questions i — iv, decide whethée tequation
definey as a function ok

. x2+y2=4
° %x—6y=—3
. x2+y=4
° y2=x2_1

o In the following exercises i - iii, find the domaamd range of the
function. Use interval notation to write your resul

. fx) = x3
. f(x)=4—x

o In the following exercises i- ii, evaluate the ftioo at the specified
the values of the independent variable. Simplify tdsult.
. fx)=2x—-3
@y (0 (0)f(=3) (c)f(x—1) (d) f(1+Ax)
¢ g=:

@ g2 (b) gCs) (c) gx +Ax) (d) glx +Ax) — g(x)

o In the following exercises i — iii, evaluate ttiéference quotient
and simplify the result

. fx)=x3—x

28
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—h

gx) =vx+3

flx—Ax)—f(x) g(x+Ax)—g(x)

i a f( )—f(x)
1 x+Ax)—f(x
f) =3 .

Find (&) f(x) + g(x) (b) f(x)g(x) (c)% d) f(g@) (e)
g(f (x)) if defined.

f(x) = 2x-5g9(x) =5
fX)=x24+1 gkx)=x-1

Given thatf(x) = vx and g(x) = x?> — 1, find the composite
functions:

af(g(1) b.gf(1) c.g(f(0) d flg(=9) e. f(g(x)

g(f ()

In exercises 15 — 16, show that f and g are invrsetions by
showing thatf(g(x)) = x andg (f(x)) = x. Then sketch the
graphs of f and g on the same coordinate axes.

x—1

fO) =541 g =%
f(x)=9—x% x=20 gk)=v9—x, x<9

Find the inverse function gf. Then sketch the graph of f afid*

on the same coordinate axif(x) = V9 —x?, 0<x <3
In the exercises i and ii, use the vertical linst v determine
whethery is a function ofx.

x2+y2=9
x2=xy—1

29



MTH 102 Elementary Mathematics 1

Unit 2: LIMITS

Unit Structure

2.1  Introduction
2.2 Intended Learning Outcomes (ILOSs)
2.3  Main Content
2.3.1: Limit (Definition)
2.3.2: Right- and left-hand limits
2.3.3: Theorem on Limits
2.3.4: Infinity
2.3.5: Special Limit
2.3.6: The limit of a Polynomial Function
2.3.7: Techniques for Evaluating Limits
2.4 SELF Assessment Exercise(s)
2.5 Conclusion
2.6 Summary
2.7 References/Further Reading

@1.1 Introduction

In everyday language, one always refers to limé'e®ndurance, speed
limit of a car, a wrestler’'s weight limit or stréiag a spring to its limit.

These phrases all suggest that a limit is a bowhath on some instances
may not be reached but on other instance may lobedeaor exceeded.

Hooke’s law is a perfect illustration of limit whicstates provided an
elastic limit of a spring is not exceeded; the pgien (e) is directly
proportional to the tension or force acting oriltat is a spring has a
limit of extension when a load is suspended orifiit exceeds the
boundary, it will reach a point of plasticity oreak without returning
to its initial position.

@2.0 Intended Learning Outcomes (ILOs)

By the end of this unit, you should be able to:

o define limit of functions
o describe the concept of limit of functions
o solve problems related limit of functions
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3.0 Main Content

2.3.1 Definition of Limit of a Function

Let f(x) be defined and single-valued for all valueg okarx = x, with
the possible exception af= x, itself (i.e., in a deleted neighborhood of
Xo). We say that the numbeis the limit of f (x) asx approaches, and
write lim f(x) = [ if for any positive numbes (however small) we can

X—>Xq
find some positive numbe¥ (usually depending on ) such tHa(x) —

[| < e whenevell < |x — x,| < 6. In such case we also say tlfdt)

approaches asx approachesp@and writef (x) — [ asx — x,. In words,
this means that we can maléx) arbitrarily close tol by choosing
x sufficiently close tox,.

Example 3.1.1
2 .
Let (x) = {’6 i]lff ;:22 . Then as x gets closer2d(i.e., x approaches

2), f(x) gets closer t@&. We thus suspect thﬁh% f(x) = 4. To prove
X

this, we must see whether the above definitionmit l(with [ = 4) is
satisfied.

Note thaﬂin% f(x) # 2, i.e., the limit off (x) asx — 2 is not the same as
xX—

the value off (x) atx = 2 sincef (x) = 2 by definition. The limit would
in fact be4 even if f(x) were not defined at = 2. When the limit of a
function exists, it is unique.

2.3.2 Right- and Left-Hand Limits

In the definition of limit no restriction was ma@s to howx should
approactx,. It is sometimes found convenient to restrict tpproach.

Consideringx andx, as points on the real axis wheggis fixed and x is
moving, then x can approacly from the right or from the left. We
indicate these respective approaches by writinrg x; andx — x; .

If lim f(x) =1 andlim f(x) = L, we calll; andl, , respectively, the
XX X—Xq

right- and left-hand limits of atx, and denote them bf(x7) or f (x, +
0) andf (x,—) or f(x, — 0). Thed, € definitions of limit off (x) asx —
xg or x - x, are the same as those for> x, except for the fact that
values ofx are restricted ta > x, orx < x,, respectively.
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We havelim f(x) = [ if and only if lim+f(x) = lim f(x) =1
x—>x0 x—>x0

2.3.3 Theorems on Limits

If lim f(x) = Aandlim g(x) = B, then
X—Xg

. lim (f(x) + g(x)) = lim f(x) + lim g(x) = A + B
+ Im(rege) = (Jim £69) (im 900) = a5
fx) _ lim f(x)/ lim f(x) = A/B if B#0

Similar results hold for right —and left-hand lisit
2.3.4 Infinity

It sometimes happens thatas> x,, f (x) increases or decreases without

bound. In such case it is customary to writien f(x) = +o or
X—Xq

lim f(x) = —oo, respectively. The symbolsco (also writtenco) and

X—>Xg
—oo are read plus infinity (or infinity) and minus inity, respectively,
but it must be emphasized that they are not numbers

In precise language, we say thht f(x) = o if for each positive

numberM we can find a positive numbér(depending oM in general)
such thatf (x) > M whenevell < |x — x,| < §. Similarly, we say that
lim f(x) = —oo if for each positive numbe¥ we can find a positive

X—=>Xo
numbers such thaff (x) < —M whenevel < |x — x,| < §. Analogous
remarks apply in case— x; orx — x;.

Frequently we wish to examine the behavior of afiom as x increases
or decreases without bound. In such cases it sy to writex —
400 (Or o) or x = —oo, respectively.

We say thatlim f(x) =1 or f(x) » [ asx — +oo, if for any positive
X—Xg

numbere we can find a positive numbat (depending or& in general)
such that|f(x) — I| < € wheneverx > N. A similar definition can be
formulated forlim f(x).

X——00
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2.3.5 Special Limits

o lim sinx _ 1, lim 1—cosx -0
x-0 X X x—0 X

. lim (1+l =e, lim(1+x)Y* =e
X—00 N X x-0*t

. lim &= =1, limZt =1
x->0 X x—1 Inx

Example 3.5.1

Find the Iimitlin}(x2 +1)
xX—
Solution 3.5.1

Using direct substitution by substituting 1 far
1in}(x2+1)=12+1=2
xX—

Example 3.5.2

Find the Iimit:lin} f(x).
X—

_ x%-1 _x-1] .
2 =12 b. f(x) = 22 e fG)=
{x, x#1
0, x=1
Solution 3.5.2
. li ( ) _ox?-1 x?-1 (x+1D)(x-1)
xlEI}f X) = x—1 - x—-1 - x—1

Factorizing the numerator by the difference of tsgquare ¢§? — b? =
(a+ b)(a — b)].

lin}(x +1)=1+4+1=2 Substituting 1 fox
X—

2 _
Therefore]im f(x) = X2 =2
x-1 x—1
. IimZ U =21-%=-0  Substituting 1 fox
x—1 x—1 1-1 0

. -1 .
Thereforehn} > 4oes not exist
X—
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x, x*+1

* f(x):{O,le_1

2.3.6 The limit of a polynomial function

If p is a polynomial function and c is any real rhen then
lim p(x) = p(c)

Example 3.6.1
Find the Iimit:lin%(x2 + 2x —3)
Solution 3.6.1

limx? + 2x — 3 = limx? + lin% 2x — lin% 3 Applying property I
xX— xX—

xX—2 x—2

= 22+ 2(2) — 3 Use direct substitution
=4+4+4-3=5 Simplify
=5

Note: Example 3.6.1 shows or states that the limit of/poimial can be
evaluated by direct substitution.
Check point:

o Find the Iimit:lin% f(x)
xX—

[
~
—

=
—

Il

° °
~
N\ \

= =
—/ \—/
Il I
—~——

=

=

H*

o

Find the limitlim 2x% — x + 4 lim f(x) = lim g(x)
X—2 x—2 xX—2
2.3.7 Techniques for Evaluating Limits
There are several technigues for calculating limitd these are based on
the following important theorem. Basically, thedhem states thatf‘two

functions agree at all but a single point c, then they have identical limit
behavior at x = ¢”.
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3.7.1 The Replacement Theorem/Technique

Let ¢ be a real number anf(x) = g(x) for all x # c. if the limit of
g(x) exists asc — c, then the limit of f(x) also exists and

lim f(x) = lim g (x)

X— X—

To apply the Replacement Theorem, you can useudt fesm algebra
which states that for a polynomial functipyp(c) = 0 if and only if
(x — ¢) is a factor op(x).

Example 3.7.1
Finding the limit of a function

Find the limitlim ©—%

x-1 x—1

Solution 3.7.1

Note that the numerator and the denominator a®wbenx = 1
3_
lim =2 for the numeratdim x3 — 1 = 13 — 1 = 0 and the denominator

x-1 x-1 x-1
limx—-1=1-1=0.
x—1

This implies or means that x-1 is a factor of batidl you can divide out
this like factor using division of polynomial.

Cox3-1 (x—-D*+x+1)
lim = lim
x-1 x—1 x-1 x—1

’;3 _‘11 - (x—1)§cx21+x+1) Factor numerator

_ (x—1)(x2+x+_1)

- Divide out factor
=x*+x+1, x#1 Simplify

So, the rational functioiix® — 1)(x — 1) and the polynomial function

x% + x + 1 agree for all value of x other than x = 1, and gan apply
the replacement theorem.
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3

lim =lim(x*+x+1)=1+1+1=3
x-1x—1 x—1
A y .lllJl
\\ .-"fl}
N st/ 9(x) = %% +
x+1 /
2 ‘/
: /

In figure illustrates this result graphically. Ndtet the two graphs are
identical except that the graph of g contains thiet(1, 3), whereas this
point is missing on the graph ff

Checkpoint.
Find the limit:lim *=2
x-2 X—2
3.7.2 Dividing out Technique

Example 3.7.2.1

x24+x+6

Find the limit: lim
x—>—-3 Xx+3
Check:

For the numeratoﬂin%(x2 +x+6)=-32+(-3)—-6=9-3-6=
X—
0.

Similarly for the denominatoiin%(x +3)=-3+3=0.
xX—

Since the limits of both numerator and denominater zero, you know
that they have a common factorxof+ 3 by factorizing the numerator.

So, for allx # 3, you can divide out this factor to obtain thedoling:
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Solution 3.7.2.1

Using direct substitution will fails because bolie thumerator and the

denominator are zero when= —3.
) 24x+6 ) -2)(x+3
lim == = |lim mB)(x+3)

x—>—3 X+3 x—-3 x+3

Factor numerator by factorization

= |jm &Z2**3) Divide out like factor
x—>—-3 x+3

lim3(x —-2) Simplify

xX——

=—-3—-2=-5 Substituting -3 to be x

Note that the graph off coincides with the graph f(x) = x - 2,
except that the graph of f has a hol¢-a8, —5).

Checkpoint

2 _
Find the Iimit:lin%x tx-12
X—

3.7.3 Rationalizing the Numerator Technique.

Example 3.7.3.1

Find the limit:lim X2
x—0 X

Solution 3.7.3.1

Direct substitution fails because both the numerata the denominator
are zero wherx = 0. In this case, you can rewrite the fraction by
rationalizing the numerator by taking the conjugaitéhe numerator and
using it to both the numerator and denominator.

Taking the conjugate of the numerator of the nutoerdx + 1 — 1 will
bevx+1+1.

Conjugate oVx +1—1isvx + 1+ 1.

. Vx+1-1 (Vx+1-1) (Vx+1+1
€., x _( x )(\/m+1)
o x+1+Vx+1-Vx+1-1
x(Vx+1+1)
x+1-1 X 1

= x#*0

=x(\/x+1+1)=x(\/x+1+1) Vx+1+1
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Now, using the replacement theorem, you can ewaltia limit as
follows

Cx+1-1 1 1 1 1
lim—— = lim = = ——
x—0 X x-0+x +1+1 J1+1 141 2
Checkpoint
Find the limit: lim 242
x—0 X

One Sided Limit

One way in which a limit fails to exist is when wn€tion approaches a
different value from the left of c than it approastrom right of c. This
type of behaviour can be described more concisélytive concept of a
one-sided limit
. lim f(x) =L Limit from the left.

X—C
. 1im+f(x) = L Limit from the right.

X—C

The first of these two limits is read as “the limftf (x) asx approaches
c from the left isL”. The second is read as “limit f(x) as x approache
from the right isL”.

Example 3.7.3.2

Find the limit asx — 0 from the left and the limit ag8 — 0 from the
right for the function:

Solution 3.7.3.2

From the graph off, you can see thaf(x) = —2 for all x <0.
Therefore, the

limit from the left is:

lim 24 = 2 Limit fromthe left.

x>0~ X
Because f(x) = 2 for all x > 0, the limit from thght is:

lim 22 = 2 Limit fromright.

x—0t X
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3.7.4 Unbounded Behaviour.

A Limit can fail to exist wherf (x) increases or decrease without bound
asx approaches. The equal sign in the statemdith, +co does not mean

X—C

that the limit exists. On the contrary, it tellapoow the limit fails to exist
by denoting the unbounded behaviouif ¢t) asx approaches.

Example 3.7.4.1
Find the limit (if possible):lin%%
Solution 3.7.4.1

) 3
lim — = o
x—2~ X—2

. 3
and lim — = o
x—2t x-2

Becausg is a unbounded asapproacheg, the limit does not exist.

Example 3.7.4.2

Find the limit (if possible): limzﬁ
xX——

Solution 3.7.4.2

_ 5 __5

1m = =
x—>—2XxX+2 —2+2 0

= 00

Becausg is a unbounded asapproaches2, the limit does not exist.

2.4  Conclusion
In conclusion, the unit discusses in comprehengiven the limit of

functions under various circumstances and conditianth relevant
examples and justifications.
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’ 2.5 Summary

o If f(x) becomes arbitrary close to a single numbasx approach
c from either side, thehim f(x) = L which is as the limit of (x)

asx approaches.

e If pis a polynomial function and c is any real rhen then,
lim p(x) = p(c)

=126 References/Further Reading

Engineering Mathematics by K. A Stroud.
Blitzer Algebra and Trigonometry custoEdition.

Calculus An Applied Approach Larson Edwards Sixthtian.
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IEIZJ Self-Assessment Exercises

o In exercise i and ii, find the Ilimit of (af(x) + g(x) (b)
f(x).g(x) and(c)% asx approaches.

. lim f(x) =3
X—=C 3

. lim f(x) ==
xX—C 2
° In the exercise i- xiil find the limit:
o lim x?
xX—2
o lim x3
xX—>—2
. lim (3x + 2)
x—-3
. Lim(1 — x?)
x-1
. lim(—x? +x —2)
xX—2
° limvx +1
x—3
° lim 3vx + 4
x4
. 2
° lim —
x—>—3Xx+2
. 3x—1
° Lim
x>—2 2—X
4x—5
[ ]
x—>—-1 3—Xx
5x
. —
x—7 X+2
. Vx+1
° li
x-3 x—4
; xZ-1
° lim
x—>—-2 2X
o In the following exercise i — xii, find the limitf(it exists):
x2-1
[ ]
x-—1 x+1
2x2-x-3
[ ]
x-»—-1 x+1
. x—2
° lim —
x—2 X“—4x+4
. 2—Xx
° lim =
x—2 X“—4
t-5
o
t—5 t2-25
. t24t-2
° lim
t—>1 t2-1
; x3-1
° lim
x—>—-2 x—1
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li

x348

x—>2 X+2
. |x]
lim —
x—-0 X
. |x=2]

lim

x—2 X—2

1;1331 f(x) wheref (x) = {

2(x+Ax)-2x

lim
Ax—0 Ax
lim VxX+2+Ax—x+2

Ax—0 Ax

2_ _(+2_
im (t+At)2—5(t+At)—(t2-5t)

At—0 At

42
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Unit 3: Idea Of Continuity

Unit Structure

3.1 Introduction
3.2 Intended Learning Outcomes (ILOSs)
3.3  Main Content
3.3.1 Idea of Continuity
3.3.2 Right- and Left-hand Continuity
3.3.4 Continuity in an Interval
3.3.5 Theorem on Continuity
3.3.6 Piecewise Continuity
3.3.7 Uniform Continuity
3.3.8 Continuity of Polynomial and Rational Fuons
3.3.9 Continuity on a Closed Interval
3.4 Conclusion
3.5 Summary
3.6  References/Further Reading
3.7 Self-Assessment Exercise(s)

@1.0 Introduction

In mathematics, continuity means rigorous formolatof the intuitive
concept of function that varies with no abrupt Beear jumps.

Continuity of a function is expressed some timesdoying if thex-values

are closed together, then theralue of the function will also be close.

@2.0 Intended Learning Outcomes (ILOs)

By the end of this unit, you will be able to:

) define continuity of functions
o state continuity properties conditions
o define continuity of polynomial and rational furasti
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-

.ll—l—j 3.3 Main Content

3.3.1 Idea of Continuity
3.3.1 Definition of Continuity

Let f be defined for all values of nearx = x, as well as ak = x,

(i.e., in ad neighborhood ok,). The function f is called continuous at x

= xo if lim f(x) = f(x,). Note that this implies three conditions which
X—Xg

must be met in order tha{x) be continuous at = x,.

o lim f(x) = [ must exist.

X—>Xg
o f (xo) must exist, i.e.f (x) is defined ak,.
. L= f(x0)

In summary,lim f(x) is the value suggested for f at= x, by the

behavior of f in arbitrarily small neighborhoodsxgf If in fact this limit
is the actual valud, (x,), of the function at  then f is continuous there.

Equivalently, iff is continuous at,, we can write this in the suggestive
form lim f(x) = f(lim x).
X—>Xo X—Xg

Points wher¢f fails to be continuous are called discontinuitég and
f is said to be discontinuous at these points.

In constructing a graph of a continuous functidne pencil need never
leave the paper, while for a discontinuous functius is not true since
there is generally a jump taking place. This iscolurse merely a
characteristic property and not a definition of bty or discontinuity.

Alternative to the above definition of continuitwe can define f as
continuous atx = x, if for any e > 0 we can find§d > 0 such that
|f(x) — f(xy)] < € whenevelx — x,| < §. Note that this is simply the
definition of limit with [ = f(x,) and removal of the restriction that-
Xo-

3.3.2 Right- and Left-Hand Continuity
If f is defined only forx > x,, the above definition does not apply. In

such case we call f continuous (on the right) at=xxo if
lim _f(x) = f(xo), i-e., if f(xg) = f(xo). Similarly, f is continuous (on
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the left) at x = xif )}l?_f(x) = f(x), i-e.,f(xg) = f(x,).. Definitions

in terms ofe andé can be given
3.3.3 Continuity in an Interval

A function f is said to be continuous in an intdnvét is continuous at all
points of the interval. In particular, if f is de@d in the closed interval
a<x<bor [a b], then f is continuous in the intervalammd only if

1im f(x) = f(x,) for a <% < b, lim f(x) = f(a) and lim f(x) =
f(b).

3.3.4 Theorems on Continuity
Theorem 1

If f and g are continuous at = x,, S0 also are the functions whose image

values satisfy the relationg(x) + g(x), f(x) — g(x), f(x)g(x) and

%, the last only ifg(x,) # 0. Similar results hold for continuity in an

interval.

Theorem 2

Functions described as follows are continuous arefinite interval: (a)
all polynomials; (byin x andcos x; (c) ax; a > 0.

Theorem 3

Let the functionf be continuous at the domain valwe= x,. Also
suppose that a functign represented by = g(y), is continuous ag,,
wherey = f(x) (i.e., the range value of f correspondingxpis a
domain value ofg). Then a new function, called a composite function
f(g) represented by = g[f(x)], may be created which is continuous
at its domain poink = x,. [One says that a continuous function of a
continuous function is continuous.

Theorem 4

If £(x) is continuous in a closed interval, it is boundethe interval.
Theorem 5

If f(x) is continuous at = x, andf(x,) > 0 [or f(x,) < 0], there
exists an interval about = x, in whichf(x) > 0 [or f (x) < 0].
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Theorem 6

If a function f(x) is continuous in an interval and either strictly
increasing or strictly
decreasing, the inverse functipn!(x) is single-valued, continuous, and
either strictly increasing or strictly decreasing.

Theorem 7

If f(x) is continuous inja, b] and if f(a) = A andf(b) = B, then
corresponding to any numbérbetwee andB there exists at least one
numberc in %a; b such that(c) = C. This is sometimes called the
intermediate value theorem.

Theorem 8

If £(x)is continuous irfa, b] and if f(a) andf(b) have opposite signs,
there is at least one numbefor which f(¢) = 0 wherea < ¢ < b.
This is related to Theorem 7.

Theorem 9

If f(x) is continuous in a closed interval, th&fx) has a maximum value
M for at least one value afin the interval and a minimum value m for at
least one value of in the interval. Furthermor¢(x) assumes all values
betweenm andM for one or more values of x in the interval.

Theorem 10.

If £(x) is continuous in a closed interval andfifandm are respectively
the least upper bourfd u. b.) and greatest lower bouiig. L. b.) of f(x),
there exists at least one value of x in the inteiMawhich f(x) = M or
f(x) =m. This is related to theorem 9.

3.5 Piecewise Continuity

A function is called piecewise continuous in aremaéla < x < b if the
interval can be subdivided into a finite numberirgervals in each of
which the function is continuous and has finitdtigand lefth and limits.

Such a function has only a finite number of discauities. An example
of a function which is piecewise continuous dn< x < b is shown
graphically in Fig. 3.1 below. This function hassabntinuities at
X1, X5, X3, andx,.
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Fig. 3.1 Piecewise continuity
3.6  Uniform Continuity

Let f be continuous in an interval. Then by definitioreath point, of

the interval and for ang > 0, we can find > 0 (which will in general
depend on both and the particular poind,) such thatf (x) — f(x,)| <

0 whenevenx — x,| < 6. If we can find for eacld which holds for all
points of the interval (i.e., § depends only oa and not orx,), we say
that f is uniformly continuous in the interval.

Alternatively, f is uniformly continuous in an interval if for amy> 0 we
can find§ > 0 such that|f(x;) — f(x;)| < € wheneverlx; — x,| < &
wherex; andx, are any two points in the interval.

Theorem

If £ is continuous in a closed interval, it is unifoyngdontinuous in the
interval.

3.7 Continuity of Polynomial and Rational Functiors

. A polynomial function is continuous at every raamber
. A rational function is continuous at every numbeits domain.
Example 3.7.1

Discuss the continuity of each function
a. f(x)=x2—2x + 3 (x) = x3-«x
Solution 3.7.1

Each of these functions is a polynomial functioa, &ch is continuous
on the entire real line.
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Both functions are continuous ofdo, ).

Example 3.7.2

Discuss the continuity of each function

1
x2+1

x%-1
x—1

a  f@W=; bfl)= of () =
Solution

Each of these functions is a rational function entherefore continuous
at every number in its domain.

. The domain ofx) :iconsist of all real numbers except=
0. So, this function is continuous on the intervaso, 0) and
(0, ).

x%-1

. The domain off (x) = —— consists of all real numbers except

x = 1. So, thisfunction is continuous on the intervdls o, 1)
and (1,00).
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. The domain off (x) = x21+1 consists of all real numbers. So, this

function is continuous on the entire real line.

Class exercise

Discuss the continuity of each function:

o flx) = i (Answer: Continuous { oo, 1) and (1e0)
o flx) = ’;%4 (Answer: Continuous £, 2) and (2;-x)

. fx) ==

x242

(Answer: Continuous on the entire real line)

Consider an open intervathat contains a real numberlf a functionf

is defined o (except possibly at), andf is not continuous at, thenf

is said to have discontinuity atc. Discontinuities fall into two categories:
removable and nonremovable.

A discontinuity is called removable ff can be made continuous by
appropriately defining (or redefining)(c). For instance, the function
in Example 2(b) has a removable discontinuity(#&t2). To remove

the discontinuity, all you need to do is redefide function so that

f(1) = 2.

A discontinuity atx = ¢ is non removable if the function cannot be
made continuous at = ¢ by defining or redefining the function at=

c. For instance, the function in Example 2a has a-nemovable
discontinuity atc = 0.

3.8 Continuity on a Closed Interval

Definition

Let f be defined on a closed intervial, b]. If f is continuous on the
open interval(a, b) and lim_f(x) = f(a) and lilll)l_f(x) = f(b)

Then fis continuous on the closed interval [a, b]. Moreover, f is
continuous fromthe right at a andtontinuous from the left at b.

Similar definitions can be made to cover continwty intervals of the
form (a, b] and]a, b), or on infinite intervals. For example, the funatio
f(x) = v/x iscontinuous on the infinite intervd, ).

Example 3.8.1
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Discuss the continuity gf(x) = v3 — x
Solution 3.8.1

Notice that the domain of f is the getoo, 3]. Moreover, f is continuous
from the left atc = 3 because:

MO0 = Jip V8 -
=0
=f03)

For allx < 3, the function of satisfies the three conditions ¢ontinuity.
So, you can conclude that f is continuous on therwal(—oo,, 3].

Working Tip

When working with radical functions of the forif(x) =/ g(x),
remember that the domain of f coincides with thietsan of g(x) = 0.

Example 3.8.2

5—x,-1<x<?2

Discuss the continuity ofj(x) = {xz —1,2<x<<3

Solution 3.8.2

The polynomial functions5 - x and x? —1 are continuous on the
intervals [— 1, 2) and (2, 3], respectively. So, to conclude thatis
continuous on the entire intervf1,3], you need only check the
behavior ofg whenx = 2. You can do this by taking the one — sided
limit whenx = 2.

lir?_g(x) = 1ir51_(5 —x)=3 Limit from the left
X— xX—

lim g(x) = lim (5 —x) =3 Limit from the right
x—2t x—2t

Because these two limits are equal
limg(x) = g(x) =3
X—>2

So, g is continuous at = 2 and consequently, it is continuous on the
entire interval—1, 3]
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0, |
( /3.4 Conclusion

You must have learnt continuity of function and tpeoperties of
continuity. Also, you have learnt continuity of gobmial function,

dependent and independent function. Moreover, yam gow Ssolve
diverse problems on continuity of functions.

MB.S Summary

o] A function is said to be continuous if and onlytifs continuous
at every point of its domain.

o] Continuity can be defined in terms of limits by saythat f(x) is
continuous at x (0) of its domain if and only ibrfvalues of x in
its domainlim f(x) = f(x,)
X—>Xg

|-
=713.6 References/Further Reading

Blitzer Algebra and Trigonometry CustorflEdition

Calculus: An Applied Approach. Larson Edwards SixHdition
Engineering Mathematics by K.A Stroud.
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Iﬁl&? Self-Assessment Exercises

° In exercise i - ii, determine whether the functisncontinuous
on the entire real line. Explain your reasoning.

1

. a3 2 N _
Lf(x) =5x° —x*+2 i.f(x) = =
y
y
N
| !
. 14
3 2 4 1 2 3 ;
X '
g
X 1
%) | 4l
-3
° In Exercises i - xiv, describe the interval(s) oniat the function
IS continuous.
1
¢ f(x) - 9—2x2
x“—1
+ f0=5
x“—1
¢ f(x) - x+1
. fxX) =x*—2x+1
X
¢ f(x) x__xl
¢ f(x) - xZ+1 .
o
* f(x) x%-9x+20
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x+1

. f)=(x-1)

e h(=f(gM)

. fW=%

. gx)=x-1, x> 1.

MTH 102
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MODULE 2 CALCULUS OF DIFFERENTIATION

In this module, you will be learning the differaiticalculus. Concepts
related to functions will be studied and varioushtgques of solving
differential calculus will be considered. This méalis made up of the
following units:

Unit 1 The Derivative as Limit of Rate of Change
Unit 2 Differentiation Technique
Unit 1 The Derivative as Limit of Rate of Change

Unit Structure

1.1  Introduction
1.2 Intended Learning Outcomes (ILOS)
1.3 Main Content
1.3.1 The rate of change of a function
1.3.2 Right- and left-hand derivatives
1.3.3 Differentiability in an interval
1.3.4 Piecewise differentiability
1.3.5 Differentiation
1.3.6 Derivative for power of"
1.3.7 Differentiation of polynomials
1.3.8 Standard derivative
1.3.9 Derivatives of elementary function
1.3.10 Higher order derivatives
1.3.11 Mean value theorems
1.3.12 L’hospital’s rule
1.4  Conclusion
15 summary
1.6 References/Further Reading
1.7 Self-Assessment Exercise(s)

@ 1.1 Introduction

Concepts that shape the course of mathematicewararid far between.

The derivative, the fundamental element of theedéhtial calculus, is
such a concept. That branch of mathematics calhadysis, of which
advanced calculus is a part, is the end resultreTtvere two problems
that led to the discovery of the derivative. Theeolone of defining and
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representing the tangent line to a curve at ones @oints had concerned
early Greek philosophers. The other problem of aspnting the

instantaneous velocity of an object whose motios wat constant was
much more a problem of the seventeenth centuryth@&tend of that

century, these problems and their relationship weselved. As is usually
the case, many mathematicians contributed, bua#t lswaac Newton and
Gottfried Wilhelm Leibniz who independently put &iger organized

bodies of thought upon which others could builche Tangent problem
provides a visual interpretation of the derivatared can be brought to
mind no matter what the complexity of a particidpplication.

The derivative of a function of a real variable s@a&s the sensitivity to
change of a quantity (a function value or dependeaniable) which is
determined by another quantity (the independenalkm).

Derivatives are fundamental tools of calculus. Tderivative of a
function of a single variable at a chosen inpuugalks the slope of the
tangent line to the graph of the function at thaihp This means that it
describes the best linear approximation of the tiancnear that input
value. For this reason, the derivative is oftencdbed as the
“instantaneous rate of change”, the ratio of tlstantaneous change in
the dependent variable to that of the independeatiable.
Differentiation is the action of computing a detiva.

@' 1.2 Intended Learning Outcomes (ILOS)

By the end of this unit, you should be able to:

define rate of change of function
o solve differentiation from first principle
o solve differentiation from second principle

1.3 Main Content
1.3.1 The Rate of Change of a Function

If y is a function ofx, asx changes y will in general change. We relate
the change iry to the corresponding changexrby defining the average
rate of change of the function to be the changherfunction divided by
the corresponding changeanIf x, andx, are two values af, and the
corresponding values gfarey; andy,, then the average rate of change
of the function ag changes from; to x, is

55



MTH 102 Elementary Mathematics 1

Y2—W1
Xy — X1

Example3.1.1
Find an expression for the average rate of chahgeedunctions

° y = 2x + 5,
. y = x?in the intervak; tox,.

By the above definition, the average rate of chdnge = 2x + 5is

(2x; +5) = (2%, +5)  2(x; —xq)
X2 — X1 B X2 — X1 B

2

We notice that this is the same for each intexyal x,.
. The average rate of change for= x? is

x5 — xf . (22 —x1) (%2 + x1) .
= =X+ X,
X2 — X1 X2 = Xq

which is different for different intervals.

If we represent the function graphically, the agereate of change of the
function in the intervak,; — x,may be interpreted geometrically as being
the gradient of the chord joining the points on gnaph with abscissae
x; andx,. For the functiory = 2x + 5, the graph is a straight line and
the gradient of any chord is alwaysg—%,= g,z, = 2. But for the graph of
y = x2, the gradient of the chorBQ is different from the gradient of
P'Q’, etc.

A practical application of this idea arises in cecton with space-time
graphs. Suppose a body moves so that the dissdreoeelled after time
iss = f(r). Then the average rate of changes @fst changes from,

2~71 js just the average speed of the body in thevate; —t, and is

-t

the gradient of the appropriate chord on the space-graph. The above
expresses algebraically the gradient of the chairdrjg the points with
abscissae; andx, on the graph of = f(x).

Can the gradient of the tangent to the curve bergassimilar algebraic
interpretation? Geometrically, we feel no diffiguith drawing the tangent
to a curve at a particular point, but in order méerpret this process
algebraically we need to consider it in some detail
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AY Qr" y=2x+S

Fig 3.1.1:The graph ofy = 2x + 5 andy = x?

Gradient is defined as the ratio of the verticatalce the line rises
or falls between two points P and Q to the horiabdistance betweeh

andQ, m is the symbol used denoting gradient of agititaline graph

. o) Ax -
iem=_X=2%_2YX"N
Sx Ay Xp—X1

O <

A

X

Fig 3.1.2 The Gradient of a straight-line graph
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1.3.2 The Gradient of a curve at a given point (Alebraic
Determination)

y

‘dy

PR

X, dx

Fig 3.2.1:The gradient of the curve at a given points
Let P be a fixed poin{x, y) on the curvey andQ be a neighbouring. We
will notice a slight change; that we frequently useand y to denote

the respective differences in thheandy values of the point8 andQ on
the curve. Ther andy are called the differentialsor example, we can

Fig 3.2.2to illustrate

Fig 3.2.2:The graph of differentials

On the graphpP is a fixed point on the curvg = 3x?>+6 and Q a
neighbouring point. There is a slight differencei(.e.,x + dx) and in

y (i.e., y+5y).
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1.3.2. Right- and Left-Hand Derivatives

The status of the derivative at end points of thenain of f, and in other
special circumstances, is clarified by the follogvahefinitions.

The right-hand derivative ¢f(x) atx = x, is defined as

f(xo +h) = f(x)
h

fi(xo) = lim,

if this limit exists. Note that in this cagg= Ax) is restricted only to
positive values as it approaches zero.

Similarly, the left-hand derivative of f(x) at xxgs is defined as
f(xo +h) — f(xo)
h

f2(xo) = lim

if this limit exists. In this casé is restricted to negative values as it
approaches zero. A function f has a derivative atx if and only if

fL(xo) = fL(x0).
1.3.3 Differentiability in an Interval

If a function has a derivative at all points of iaterval, it is said to be
differentiable in the interval. In particular ifi$ defined in the closed
intervala < x < b, i.e.,[a; b], then f is differentiable in the interval if
and only iff'(x,) exists for eachosuch thatt < x, < b and iff)(a)
and f’(b) both exist. If a function has a continuous denxgtit is
sometimes called continuously differentiable.

1.3.4 Piecewise Differentiability
A function is called piecewise differentiable oegewise smooth in an

intervala < x < b if f'(x) is piecewise continuous. An equation for the
tangent line to the curve = f(x) at the point wherg = x, is given by

y — f(xo) = f(x0) (x — x0)
The slopes of these tangent lines filrex,) andf, (x,) respectively.
1.3.5 Differentiation

Let Ax = dx be an increment given to x. then
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Ay = f(x + Ax) — f(x)

Is called the increment iy = f(x). If f(x) is continuous and has a
continuous first derivative in an interval, then

Ay = f'(x)Ax + eAx = f'(x)dx + dx

Wheree — 0 andAx — 0. The expression
dy = f'(x)dx

is called the differential of or f(x) or the principal part aiy. Note that
Ay # dy in general.

However, ifAx = dx is small, then dy is a close approximatiom\gf

The quantitydx, called the differential of x, and dy need be small.

Therefore,d—y = f'(x) = lim JEAAOTO) _ Jyyy 22
dx Ax—0 Ax Ax—0 Ax

It is emphasized thatx anddy are not the limits oAx andAy asAy —
0, since these limits are zero wherdasanddy are not necessarily zero.

Instead, givendx we determinedy, i.e., dyis a dependent variable
determined from the independent variadiefor a givenx.

The geometric interpretation of the derivative las $lope of the tangent
line to a curve at one of its points is fundametdats application. Also

of importance is its use as representative of mateous velocity in the
construction of physical models. In particular stiphysical viewpoint

may be used to introduce the notion of differestial

Newton’s Second and First Laws of Motion imply thla¢ path of an
object is determined by the forces acting on itj #rat if those forces
suddenly disappear, the object takes on the taiaddirection of the path
at the point of release. Thus, the nature of thie ipaa small neighborhood
of the point of release becomes of interest. Whik thought in mind,
consider the following idea. Suppose the graph ofumrction f is
represented by = f(x). Letx = x, be a domain value at whigf
exists (i.e., the function is differentiable attthralue). Construct a new
linear function

dy = f'(x)dx
With dx as the (independent) domain variable dgdhe range variable

generated by this rule. This linear function hasghaphical interpretation
illustrated inFig 3.5.1
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dy dy = f"(x) dx

dx

y=7f(x)

0(0,0)

Fig 3.5.1:The graph of (x)

That is, a coordinate system may be constructed itgitorigin atP, and
the dx anddy axes parallel to the andy axes, respectively. In this
system our linear equation is the equation of aimgént line to the graph
atP,. It is representative of the path in a small nea@hood of the point;
and if the path is that of an object, the lineauadopn represents its new
path when all forces are released.

dx anddy are called differentials of andy, respectively. Because the
above linear equation is valid at every point i@ tomain off at which
the function has a derivative, the subscript mayltopped and we can
write

dy = f'(x)dx
The following important observations should be made

Y f1(x) = lim L9 i 2 thus® s not the same thing as
dx Ax—0 Ax Ax—0 Ax dx

A_y

Ax’

On the other hand]y andAx are related. In particula&limoi—i = f'(x)
xX—

means that for ang > 0 there exist$ > 0 such that-¢ < i—z — Z—z <e€

whenevellAx| < §. Now dx is an independent variable and the axas of
anddx are parallel; therefore, dx may be chosen equaktowith this
choice

—eAx < Ay —dy < eAx ordy — eAx < Ay < dy + eAx
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From this relation we see thdy is an approximation tay in small
neighborhoods of x.dy is called the principal part ofy. The
representation gf’ by dy/dx has an algebraic suggestiveness that is very
appealing and will appear in much of what followsfact, this notation
was introduced by Leibniz (without the justificatioprovided by
knowledge of the limit idea) and was the primags@n his approach to
the calculus, rather than Newton’s was followed.

Example 3.5.1
Using the first principle of differentiation to duatey = 3x? + 6.
Solution 3.5.1
At Q: with the little incremeny + 8y = 3(x + 6x)*> + 6
Expanding the bracket in equation
y+8y=(x*+2x—6x+|6x]>+6

Subtracting y from both sides

y+ 8y —y=3x*+6x6x+3|6x|*+6—y
Replacing the value aof in the equation above

y + 8y —y = 3x% + 6x6x + 3|6x|*> + 6 — (3x? + 6x)

8y = 3x? + 6x6x + 3|6x|* + 6 — 3x? — 6x

Collecting the common terms
8y = 3x? 4+ 6x6x — 3x% + 3x? + 6x6x + 3|6x|*+ 6 — 6
8y = 6x6x + 3|6x|?

Dividing both side byx

8y _ 6x6x N 3|6x|?
Sx  Ox ox

Liméy - 0,6x - 0

Sy

— =6 310

5x5 x + 3|0]
y
_:6
ox x

This is called the First Principle of Differentiaui
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Example 3.5.2
If y = x? + 3x, find g—i' using first principle

Solution 3.5.2
y = x%+ 3x
y + 8y = (x + 6x)% + 3(x + 6x)

Expanding the bracket in equation (2)
y + 8y = x% + 2xdx + 6x + |6x|* + 3x + 36x
Subtracting y from both sides
y+6y—vy=x%+2xdx + 6x+ |6x|*+3x +36x —y

8y = x* + 2xdx + 6x + |6x|* + 3x + 36x — y
Replacing the value agf in the above
8y = x% + 2xdx + 6x + |6x|? + 3x + 36x — (x? + 3x)
8y = x? + 2xdx + 6x + |6x|? + 3x + 36x — x? — 3x

Colleting like terms
8y = x? — x% + 2xdx + 6x + |6x|? + 3x — 3x + 36x

8y = 2xdx + |6x|* + 36x

Divide throughout by
6y_2 §x |6x|* 36x

Sx x& 0x Sx

1)
—y=2x+|6x|+3
ox

Lim 6y - 0,6x = 0
Sy
—=2x+0+3
ox

Sy
- =2 3
5 X +

1.3.6 Derivative of Power ok™

If y = x™ (1)

We can establish thatyjf = x™

Using Binomial theorem to find the derivativeyt x™
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If (a+b)*=a"+na™'h+ %Cl”"zb2 + _n(n—z)'(n__z) a"3p3 +

If y =x™y+ 8y = (x + 8x)™ using first principle

y+ 8y =x"+nx""1(6x) + %x"‘z(éx)z +

R 3 (5x)° + 2)

Subtracting y from both side of equation (2)

8y = nx"1(6x) + ————— n(n - o L x"2(8x)?

N nn—1)(n—2)

30 x"3(6x)3 +

Dividing throughout bydx

oy =nx""1(6x) + Mx”‘z(éx)z + nn—- 1D —2) x"3(6x)3
ox 2! 3!

If 6x — 0 — —> and all terms on the RHS, except the first

If6x—>0—=nx“ 1+0+0+0+

8 _
If y = x™, 5y—nx” 1

Generally, ify = ax™ theni—i = nax™! wherea is a constant.
If y = k (where k is a constant) th%: 0

1.3.7 Differentiation of Polynomial

When differentiating a polynomial, it has to befeli€ntiated in turn of
each term.

Example 3.7.1

If y = x3+ 5x% — 4x + 2 differentiate with respect to

Solution 3.7.1

y =x>+5x%—4x + 2
% =3x3 14+ 2x5x2 1 —1x4x1+0 (usingy = x”,z—i =
nxn—l)

=3x24+10x — 4
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Example 3.7.2
If y =x*+ 6x3 —4x% + 7x — 2, find‘;—zand the value of;—z atx =2

Solution 3.7.2
y=x*+6x3—4x%+7x -2
6y

o 4x* 143 x6x3 1 —2x4x2 1 +1x7x171 -0

)
2 o 4x®+18x2 —8x +7
ox

At X:Z,g—z = 4(2)3 +18(2)2 —8(2) + 7
=32+4+72—-16+7

=95
1.3.8 Standard Derivative
Derivative of Trigonometric expression

This is established by using a number of trigoneimé&rmulas:

o Derivative ofy = sinx
o If y = sinx

Using first principle of differentiation
y + 8y = sin(x + 6x)
Subtract y from both side of the term above
y+ 6y —y=sin(x+6x)—y
dy =sin(x + 6x) —y

Replacing both the value of y in above
becomes:fy = sin(x + dx) — sinx

We now apply the trigonometry formulae:

A+ B A—B
sind — sinB = 2 cos sin

2 2
WhereA = x + éx andB = x
x+o0x+x\ [(x+Ix—x
y = 2cos (T) sin (—)

2
Sy = 2 <2x+6x)_ ox
y = 2cos 5 sin >
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Sv = 2 ( 5x)_5x
y = 2cos x+2 sm2

Dividing both side byx
Sy 2cos (x + 6_x) sinaz—x

_ 2
ox 6§c 5
5y  €os (x+7x) sinTx
ox ox
2
5 5 sindx
Y _ OX\_2
5 —cos(x+ 2) ox
2

Sy %y
Whenéy - 0, rodedre

0
8y 0y . 2
a = cos (x + E) smg
2
oy
—— = cosx
ox
o Derivative ofy = cosx
Iy = cosx

Using first principle of differentiation
y + 6y = cos(x + 6x)

Subtract y from both side of the term above
y+6y—y=cos(x+dx)—y
8y = cos(x + dx) —y

Replacing both the value of y in above
becomes:fy = cos(x + 8x) — cosx

We now apply the trigonometry formulae:

A+ B A—B
c0SA — cosB = —2sin > sin >
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WhereA = x + dx andB = x
o (x+0x+x\ | [x+0x—x
y=—251n( > )sm( )

2

Sv = —2si (2x+6x) - Ox
y = sin 5 sm2
Sv = —2si ( +6x) ~ ox
y = sin | x 5 sm2

Dividing both side byx
sy —2sin (x + 52_x) sinaz—x
5x Ox

5_y B sin (x _|_52_x) sinaz—x

Sx ox
2
5 5 sindx
8y _ (1 2
5x—sm(x+ 2) ox
2
Sy Sy
When6y - O,E - .
o 0 )
8 s Nain2
Sx sin (x + 2) sm9
2
S5y .
S sinx
o Derivative of y = Tan x
If y = tanx

sinx

From trigonometric expressiganx = —

Since the expressionys= % we will use the quotient rule

du dv
8y _Vax “@x
ox v2

Letu = sinx, v = cosx
ou ov
5% COSX v sinx
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Substituting the above term in the equation abovetie
8y _ cosx.cox — sinx. —sinx

dx COX.COX

8y  cos?x+sin?x

= ————— (wheresin? A + cos? B = 1)

5x cos2x
oy 1
0xX Ccos?x
= sec’x
5
Ify = tanx,é = sec’x

1.3.9 Derivatives of Elementary Functions

In the following we assume thatis a differentiable function of; if u =
x, du/dx = 1. The inverse functions are defined according ® th
principal values given:

d d _ 1 du
. — () =0 16.—cot™lu = — —
ddx p dx d1+u2 dx
— u -
. —y" =nutl— 17. —sec tu =
dx dgc dx
L1 du +ifu>1
TuwuP-1dx (—if u < —1
d . du d _
° —sinu = cosu— 18. —csctu =
dx (_ix dx
F_ 1 auf-— ifu>1
uvu2—1dx (+ ifu < -1
d . du d . du
) —cosu = —sinu— 19.—sinhu = coshu—
ddx (tiix ddx gx
u . u
° —tanu = sec®u— 20.—coshu = sinhu —
ddx dxd dx d dx
u
o —cotu = —csc’u— 21. —tanhu =
dx d dx dx
u
sech? u—
d @ d d
u
) —secu = secutanu — 22. —cothu =
dx g dx dx
u
—csch? u—
d dx d d
u
° —cSscu = —cscucotu— 23. —sechu =
dx dx dx
du
—sechutanhu —
d log, e du d
o —logauzi—a>0,a¢024. —cschu =
dx ud dx dx
u
—cschucothu =
d d 1du d . 1 du
° —log,.u=—Ilnu=~-— 25.—sinh~ 1y = —
dx Be dx udx’ dx Vi+u? dx
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4w — guing L 4 1y, — 1 au
° ddxa =a l:a - 26.dx cosh™ u ) =
o —elt =% — 27. —tanh™lu =
dx1 du dx dx
-—, lul <1
1du dx 1 du d
4 in-1l,, — 1 adu a -1, _
° — sn; U= = 28. — coth™ u
1
z—u, lu| > 1
Lt dx 1 d d 1 du
fhadl 1, — ____+ ¢u = -1, — hadad
* cos ~u Vi dx 29'ddx sech™ u = == ax_
— 1 — 1 au —_ -1 = — = au
* tan " u 1+u? dx 30'dx csch™ u uVvu2+1 dx
1.3.10 Higher Order Derivatives

If f(x) is differentiable in an interval, its derivativegiven byf’(x),y’
or dy =dx, wherey = f(x). If f’'(x) is also differentiable in the

. . e " d (dy\ _ dz_y
interval, its derivative is denoted by ”(x), yﬁrdx (dx) =

Similarly, the nth derivative off(x), if it exists, is denoted by
(), y™ or 2 wheren is called the order of the derivative. Thus,

dx™’
derivatives of the first, second, third ... orderse agiven by
(), f’(x),f”(x),..Computation of higher order derivatives follows

by repeated application of the differentiation suigven above.
1.3.11 Mean Value Theorems

These theorems are fundamental to the rigorousblettment of
numerous theorems and formulas.

.1-
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Fig 3.11.1:Mean Value theorems

Rolle’s theorem

If f(x) is continuous in [a; b] and differentiable in (g,and iff(a) =
f(b) = 0, then there exists a poifiin (a, b) such thaf'(¢) = 0.

Rolle’s theorem is employed in the proof of the mealue theorem. It
then becomes a special case of that theorem.

The mean value theorem

If f(x) is continuous in(a,b) and differentiable in(a, b), then there
exists a poin€ in (a, b) such that

b —
%#'(a, a<E<b

Rolle’s theorem is the special case of this whéfe) = f(b) = 0.
The result can be written in various alternativens; for example, ifk
andx, arein(a,b), then

fx) = flxo) + f(E)(x —xy) & between xand x

The mean value theorem is also calleddtv of the mean.
Cauchy’s generalized mean value theorem.

If f(x) andg(x) are continuous ifia; b] and differentiable ir(a; b),
then there exists a poiétin (a, b) such that

fB) = f@ _f'©)
I@-g®) g @

where we assumg(a) # g(b) andf’(x), g’'(x) are not simultaneously
zero.

a<é<b

1.3.12 L'Hospital’s Rules

If lim f(x) = A andlim g(x) = B, whered andB are either both zero
X—Xg X—Xg
f(x)

or both infinite, lim —= is often called an indeterminate of the fo%mr

x-x9 9X
g, respectively, although such terminology is somewhisleading since

there is usually nothing indeterminate involvede Tollowing theorems,
called L'Hospital’s rules, facilitate evaluation sidich limits
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If f(x) andg(x) are differentiable in the intervdh, b) except
possibly at a point, in this interval, and iy’ (x) # 0 for x # x,
then

lim L2 = jm £&

x—xg 9(x) N x—xg 9'(x)

whenever the limit on the right can be found. Isecf(x) and
g’ (x) satisfy the same conditions A6x) andg(x) given above,
the process can be repeated.

If lim f(x) = c andlim g(x) = oo, the result is also valid.
X—Xq

X—Xq

These can be extended to cases whepeoo or —oo, and to cases
wherex, = a orx, = b in which only one-sided limits, such as
x - atorx - b, are involved.

Limits represented by the so-called indeterminatm$ 0,00, %, 09, 1°,
andoo — oo can be evaluated on replacing them by equivaiemtsl| for
which the above rules are applicable.

9
[V'_'/ll.4 Summary

71

Differentiation is the action of computing a detiva. The
derivate of a functiorf (x) of a variablex is a measure of the rate
at which the changes with respect to the changleeo¥ariable.

Derivate of powers aof

8y
=c—=—=0
y ' 5x
83/ -1
o] =x", = =nx"
y ’6%
y n—-1
0 = ax",— = anx
y " &x

Gradient of a straight-line graph (@

Differentiation of polynomial means differentiatirggach term in
turn
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1.5 Conclusion

You have learned the derivation of function, diffietiation of elementary
function and L’hospital rule. The basic theorengo¥erned derivation of
function has been established. Rule of differeisilaind properties has
been discussed. Some differential problems areedolo enhance the
understanding.

“11.6  References/Further Reading

Additional Mathematics by Godman and J.F Talbert
Calculus An Applied Approach Larson Edad&Sixth Edition

Blitzer Algebra and Trigonometry Custém Edition
Engineering Mathematics by K.A Stroud
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\3]1.7 Self-Assessment Exercises

° Differentiate using first principle.
° y = x3

° y = 5x% + 2

° y = 6x%—1

. y = 4x3

Find the derivative of the following.

y =6x3+4x? —7x +2

y = 15x3 — 6x% + 10

y = 10x> + 7x3 + 2x

Y =60 +4%- Tx+2 V. y=153— 62 +10  iv. y= 108 +7x°
+2
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Unit 2 Differentiation Techniques
Unit Structure

2.1  Introduction
2.2 Intended Learning Outcomes (ILOS)
2.3  Main Content
2.3.1 Differentiation of products of functiong@Buct Rule)
2.3.2 Differentiation of a quotient tfo functions (Quotient
Rule)
2.3.3 Function of a function (Compositenction)
2.3.4 Implicit Function
2.3.5 Applications of Differentiation
2.4  Conclusion
2.5 summary
2.6  References/Further Reading
2.7 Self- Assessment Exercise (s

@2.1 Introduction

This shows the useful formulas in showing thatdkevative is linear.
Here we will learn the quotient rule, product, ftios of a function and
implicit function

@l 2.2 Intended Learning Outcomes (ILOS)
By the end of this unit, you should be able:

Construct product of function

Solve problems on quotient of functions
Develop and solve implicit functions
Carryout solution on function of functions

2.3 Main Content
2.3.1 Differentiation of Products of Functions (Poduct Rule)
Lety = uv, whereu andv are functions ok

If x > x+dx, u»u+dbu v->v+dvandasaresyl - y+3dy
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The above expression shows that an increreim x will turn produce
increment$u in u and also producing a charétyen v and a changey in

y.
Using first principle:

o fy =wuv..... ... .. 1)
o Thereforey + dy = (u+ W+ v)....... (2)

Expanding the left-hand side in equation (2) gives
Yy + 0y = uw+udv +vou+0dy.ov......... 3
Subtractingy = uv in equation (3) gives

y +0dy-y=uv+udv+vou+oduodv-—y

dy =uv +udv +vou + ou.dv—y

0y = uv + udv + vou + ou.dv —uv (wherey = uv)
dy = udv + vou + du. dv

Divide throughout byx

0y _ udv , vou
= oc T or F+0UOV.oiiiiiiii (D)

L ady dy Jdu du odv av
50D = —>5—,— > —
Limit if ox O' ox ax’ ox ax’ ox ax

(NB tends to turns to)
Therefore, (4) now gives:

6y_u6v+vau+0 ov
ox odx = 0x "X

dy udv vou

ox  0OX T 0x
Product Rule

If y =uv

dy _udv  vdu

0x 0x 0x
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Example 3.1.1
Differentiate with respect to: y = x3sinx

Solution 3.1.1

Letu = x3andv = sinx

oy ou 5

S cosx,a = 3x
6y_u5v+v5u_ 3 + 3
5% ox 5% x°cosx xsinx

= x3cosx + 3xsinx
= x(x%cosx + 3sinx)

Example 3.1.2

Differentiate(3x — 2)(x? + 3) with respect tac

Solution 3.1.2
Let y = (3x — 2)(x* + 3)

Letu =3x—2, v=x%+3
ov ou

E—ZX, 5—3

6_y_u5v véu

5x  bx 6x
=(Bx—2)2x + (x> +3)3
=6x% —4x +3x*+9

= 6x%+3x*—4x+9
=9x%2—4x+9

Example 3.1.3

Differentiatey = x°e*  with respect to x
Solution 3.1.3

Letu = x> andv = e*

Su v
— =5x% —=¢*
85x ! bx

dy _uév  véu

§x  6x ox

= x°e* 4 e*5x*
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=x*e*(x +5)
Example 3.1. 4
Differentiatey = x2 (2x — 5)* with respect tor

Solution 3.1.4

y =x2?(2x — 5)*
Letu = x? andv = (2x — 5)*

Su Sv

—=2x, —=8(2x—-5)3
Sx ' obx ( )
§y _ 6v | véu

u
ox Sx ox

=x2x4(2x—-5)3%x2+ (2x —5)* x 2x

‘;—y = 2x% X 4(2x — 5)% + (2x — 5)?2x

X

Simplify-as far as possible by collecting commomrig and leaving the
result in factors

= 2x(2x — 5)3(4x + 2x — 5)

2 = 2x(2x — 5)*(6x — 5)
Example 3.1. 5

Differentiatey = (3x — 1)3(x? + 5)
Solution 3.1.5

y = (Bx —1)3(x2 +5)
Ifu= B3x—1)3, v=(x*+5)
ou _ _ 12 v _
6x—9(3x 1),6x—2x

8y _ubv | véu

ox Sx ox
=(Bx—-1)%2x+ (x?2 +5)9(3x — 1)3

Collecting the common terms and leaving the raautictors

= (3x — 1)*[2x(3x — 1) + 9(x? + 5)
= (3x — 1)3(6x* — 2x + 9x* + 45)
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% = (3x — 1)3(15x% — 2x + 45)

Example 3.1.6

Differentiate the following with respect to x
1. y=(@x2-1D(3+1)

2. y=x(x?-1)3

3. y=e*sinx

4. y = 4x3sinx

5. y=3x3e3
Solution 3.1.6

1. y=(x2-1D(3+1)
Letu=(x?—-1), v=(>(x3+1)

Using the formula:

ou 517_32
sx ¢ sx
Sy udv wvéu

5x  ox | ox
= 3x* — 3x% + 2x* + 2x
= 5x* — 3x% + 2x
= x(5x3 — 3x + 2)
° y=x(x2—1)3

. u=x, v=x%?2-1)3
. 1, o ex(x?—1)?
ox ox

§y _uév  véu

gx T sx ox
. 2= bx(x? — 1D%x + (x2 - 1)31

Sx
. (;—3: =6x*(x?—-1)2+ (x?2 —-1)3
. (;—3: = (x?—1)?*(6x*+x*>—1)
° = (x? - 1)?(7x* - 1)
o y = e*sinx
) Letu = e*, v =sinx
° L e* L coSX

Sx bosx
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8y _ ubv | véu

S§x  Ox ox

° = e*cosx + sinx e*

o (;—z = e*(cosx + sinx)

. y = 4x3sinx

o u=4x3 v=sinx

. (;—1; = 12x2, % = cosx

§y _uév  véu
5x  bx 6x

. % = 4x3cosx + sinx. 12x?

. % = 4x"2(xcosx + 3sinx)
y = 3x3e3

. Letu =3x3, v=e*

° CL 9x2, KL e~

ox x
8y _ ubv | véu

S5x  &x ox

o %Y _ 3x3% 4 ¥, 9x2
gx
. £= 3x%e* + e*(x + 3)

2.3.2 Differentiation of a quotient of two function (Quotient
Rule)

Lety = % whereu andv are functions ok.

An incrementdx in x will turn to produce increment and a chadgein
u and a changév in v and a changé&y iny

If x > x+dx,u—>u+déuv->v+dvandasaresuly,—» y+ 5y
Using the first principle

Ifyz%

u+déu

Theny + 6y =

v+6v

Subtract y from both side of the term in equation
y + 5_’)/ —y = u+du

v+6v

SV = u+éu—u wher _u
Y= v+ov—v @] T

v(u+du)-u(v+48v)
(v+év)v

oy =
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uv+vdu—uv—-udv

oy = NS Simplify by collecting like terms
véu—-véu

5_’)1 T v24psv
véu+véu

5_’)1 T v24psv

Dividing both side byx

v8u_v8u
6_3/ — Ox ox

5x vZ+vév

If 6x - 0,6u —» 0 andéx — 0 then

véu véu

5_3’ — Ox ox
Sx  v2+v(0)

véu véu

5_3’ — Ox  ox
Sx v2

Hence, the quotient rule of differentiation

Example 3.2.1

If y = \/_ —— differentiate with respect to x

Solution 3.2.1

y = \/_ Since the function above is the foryn= -, we will use the
guotient rule

1
Letu=x%v=vx+1=(x=1)2

Using the quotient rule

véu_vsu
6_3/ — 6x 6x

5x v2

su sv 1

— = 2x =
Sx T sx  2vx+1

V1 2x—x2 2L
Sy xX+1.2x—x .2\/m

5x  (x+nt/2z
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V1 2x—x2 2L
S_y . x+1.2x—x%.2 1

ox x+1

_ 4(x+1)—x?

= T
2(x+1)27t

8y 4(x+1)-x?

3
ox 2(x+1)2

4x2+4x—x2
3
2(x+1)2
3x24+4x

= 3
2(x+1)2

x(3x+4)

3
2(x+1)2

Example 3.2.2

sinx

Differentiate with respect to, if y =

Solution 3.2.2

Letu = sinx, v = x?

véu véu 2 .
8Y  sx ox _ X.cosx—sinx.2x

8x vz x(2)2

x2cosx—2xsinx

4
x%cosx  2xsinx

x* x*

XCOSXx 2sinx

x3 x3

xcosx—2sinx
%3

Example 3.2.3
If y = 2 differentiate with respect to

Solution 3.2.3
Letu = 4e*, v = cosx
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véu véu )
8Y  x ox _ Cosx(4e*)—4e*(-sinx)

5x v2 cos2x

8y _ cosx(4e*)+4e*(sinx)

5x cos2 x

8y _ 4e*(cosx+sinx)

5x cos2x

Example 3.2.4

sinx

Wheny = differentiate with respect to x

cosx’

Solution 3.2.4

Letu = sinx, v = cosx

du _ COSX v _ sinx
Sx T osx

Using quotient rule

véu véu i i
8Y _ sx x _ cosx(cosx)-sinx(—sinx)

Sx v2 cos? x
In trigonometry identityin? 6 + cos? 6 = 1

gy 1

— 2
= = Sec™ x
5x cos?x

Check point

Differentiate the following with respect to x

_ 4x+1 sy 23
a. T 7x-4 (AnS'Sx o (7x—4)2)
_ x2-1 8y _ x(—x?+3x+2)
b. =7 (Ans.gx = =)
__ cosx Sy _ _ 2
C. y = (Ans.Sx cosec®x)
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2.3.3 The Differentiation of Composite Functions

Many functions are a composition of simpler ones. &ample, iff and

g have the rules of correspondemce= x3 andy = sin u, respectively,
theny = sin x3 is the rule for a composite functidgh = g(f). The
domain ofF is that subset of the domainfvhose corresponding range
values are in the domain of. The rule of composite function
differentiation is called the chain rule and isresented by

@ DAy = g' W ()],

dx du dx
In the example

dy _ d(sina?) _ = cosx3(3x?%dx)
dx dx

The importance of the chain rule cannot be toottyretressed. Its proper
application is essential in the differentiationfofctions, and it plays a
fundamental role in changing the variable of inddigin, as well as in
changing variables in mathematical models involvidgferential
equations. This is thehain rule and is very useful in determining the
derivatives of function of functions of a function.

Example 3.3.1

If y = —5)2, differentiate with respect to x
Solution 3.3.1

y= (Gx 5z = (6x = 5)°

Letu = 6x — 5 thereforey = u?

du d _ 2
Z=62=-2ul=-=
dx du us
d du
Using chain ruIe— =2y
du dx
dy 12
dx u3 6= us
dy _ 12
dx  (6x—=5)3
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Example 3.3.2

Ify = (2x + 8)2, find the value of=

Solution 3.3.2

y = (2x + 8)2 ............... (2)

Letu = 2x +8)............. (2)

Thereforey =u3 ............ (3) (substituting u intguation(1))

Differentiating u with respect ta and differentiatingy in equation (3)
with respect tau.

du dy

=2,—= 3u2
dx du

dy_dy*du
dx_du dx

d
Z =2 x 3u? = 6u?
dx

dy _ 2

ol 6(2x + 8)

Example 3.3.3

If y = sin(5x — 6), determinej—i’

Solution 3.3.3
y = sin(5x — 6)

Letu = 5x — 6, thereforey = sinu

du

d
ol 5, Y — cosu

du

d dy du
=2 =22 = 5¢005u
dx du dx

dy _ .
= 5cos(5x — 6)
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Example 3.3.4
Determine‘;—z wheny = tan(3x + 2)

Solution 3.3.4
y = tan(3x + 2)
Let u = 3x + 2 theeforey = tanu

du dy
— =13, ==sec’u
dx du

dy_du*dy
dx_dx du

d
Y —3sec’u
dx

ay _ 2

= 3sec”(3x + 2)

Checkpoint

Differentiate the following with respect to x:

o y = (2x+3)3
[Answer: 6(2x + 5)2]

) y =+v4x —3 Answer: 2/(4x —
3
3)z]
o y = sin(4x + 3) Answer: 4cos(4x + 3)]
Exercises

Differentiate the following with respect to x:

* y = (2x + 5Y

e y=+V4x-3

o y = sin (4x + 3)

2.3.4 Implicit Functions

The rule of correspondence for a function may netexplicit. For
example, the rule = f(x) is implicit to the equationr? + 4xy°> +
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7xy + 8 = 0. Furthermore, there is no reason to believe thet t
equation can be solved for y in termscoHowever, assuming a common
domain (described by the independent variable &)l¢ft-hand member
of the equation can be construed as a compositiofuretions and
differentiated accordingly. (The rules of differiaion are listed below
for your review.) In this example, differentiatianth respect toc yields

2x+4(y5+5xy4%)+7(y+x3—i)=0

Observe that this equation can be solveaf%oas a function ok andy
(but not ofx alone).

Steps for Differentiating Implicit function

When differentiating implicit function, it is imptant to determine the
derivate y with respect to x and while doing sas ithe derivative of the
function. It is very important to multiply the d#fential function of y by
the derivative of the function. It is very importaio also notice that
derivative of constant number is zero.

Example 3.4.1
If 2x% + 3y% = 16, find &
dx
Solution 3.4.1
2x% + 3y? = 16
Differentiating the above term with respect to x
dy
4x + 6y - = 0
Subtracting L. H. S. from R. H. S. Eyx
dy _ .
4x+6ya—4x—0 4x

d
6v &
dx

= —4x

Makingj—z subject of the formula by dividing both side by 6y

dy 4x

dx 6y
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@v_
dx 6y
Example 3.4.1

If 2x* +3y° —4x -3y + 6 =0, find ™ andde atx = 3,andy = 2

Solution 3.4.1

2x2+3y2—4x—-3y+6=0

Differentiating the above expression with respect.t
W _ 4 _

4x+6ydx 4 3dx— 0

Collecting like terms

6y —32 +4x—4=0

d d

6y =2 —32=4—4x
dx dx

dy  4—-4x _ 4(1-x)

dx  6y-3  3(2y-1)

At (x,y) =(3,2)

dy _4-4(3) _4-12 _ 8
dx  6(2)-3 12-3 9
dy 8
dx 9

daz . d 4-4 . .4

To calculate—> , sincé> = ——, we have to differentiate’ once to get
dx dx 6y—3 dx

d?y

dx?

Then, &2 = 4 (4_4x)

dx? dx \6y-3

Using quotient rule to differentiate since the fume is of the form:f
v _ g dy
dx dx

Letu =4 —4x,v =6y — 3, = —4
dx

du_ud d
Hence A%y gt (6y-3).-4-(4—4x)6>
dx2  p2 - (6y—3)2
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d
—4(6y—3)—(4—4x)62>
(6y-3)2

dZ
Therefore,~= =
dx

At (x,y) = (3,2) and = -2

9

Substituting the above terms irfte:
upsttuting eaO\iie ermSIdx

ay _ ~4(6y—3)—(4—4x)6 7>

dx? (6y-3)2

a2y _ —4(6(@-3)-(4-43))6(-3)  -4(12-3)-(4-12)6(-3)

dx2 (6(2)-3)2 - (12-3)2

a2y —4(9)—(8)6(—%) B —36—(—8)2(—2)

dx? (9)2 81

8 128
_ o) __ ()

81 81
—108—128 236

_EET) S mea 26
- 81 T 81 3 81 243
Example 3.4.2

o qdy e 3 3 _
Find e if x> +y° = 2xy
Solution 3.4.2

Differentiating with respect to y, we have to tréay as product of the
function

— 2.2 v _ 4

=3x° + 3ydx =2y + Zxdx

Collecting like terms

3x2 2 _ 2 = 2y — 342
dx dx

W (342 _ — 9 — 242
dx(3y 2x) =2y — 3x

dy _ 2y-3x2
dx  3y2-2x
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Example 3.4.3

Find the equation of the tangent(s) where x= 2endiwrvex? + y? =
2x+y =26

Solution 3.4.3

Differentiating the expression with respecito

YW_
2x+2ydx 2+dx—0
Zyﬂ+d_y:2_2x

dx dx

ay -9 _
Z@y+1)=2-2x

dy _ 2-2x
dx 2y+1

Substituting the value of x =2 in the original egoa of the curve, we
have

x2+y?2—-2x+y=6
(2D*+y* -2 +y=6
4+y*—4+y=6

y2+y—6=0
y+3)y-2)=0
y=-3,2

There are two points on the curve where= (2,—-3) and(2, —2)
Gradient at poin{2, —3)

_dy __2-22 _ 2-4 _ 2 2
" dx  2(-3)+1 -6+1 -5 5
Equation of the tangent y—y, =m(x —x;)

wherey, = —=3,x; = 2,m = 2

5
y=(3)=;(x~-2)

2 2 4
y+3=-(x-2), y+3="x—

Multiple throughout by 5

5Xy+5x3=5x2x—-2x5
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S5y+15=2x-4
5y—2x+15+4=0
5y—2x+19=0

Gradient at point (2, -2)

_dy _2-2x _ 2-2(2) _ 2-4 2

T dx 2y+1 2(2)+1  4+1 5
2

m=—=
5

Equation of tangent — y; = m(x — x;)
2

y—2=—-(x-2)

y—2= —%x +§

Multiplying throughout by 5

5y—10=-2x+4

5y +2x—10—4=0
S5y+2x—14=0

Checkpoint
2 2 _ q Y dy _ —x-y
o If x* + 2xy + 3y* =4 find ™ Ans.dx =3y
. If x3+y3+3xy2=8 find 2 Ans. &
dx dx
~(e24y?)
y2+2y

2.3.5 Applications
2.5.1. Relative Extrema and Points of Inflection

In this section, relative extrema and points diction shall be discussed,
such points are characterized by the variatioh®tangent line, and then
by the derivative, which represents the slope af lime. Assume thgft
has a derivative at each point of an open inteawmdl thatP; is a point of
the graph off associated with this interval. Let a varying tamgee to
the graph move from left to right throudh. If the point is a relative
minimum, then the tangent line rotates counterchos&. The slope is
negative to the left aP; and positive to the right. AY, the slope is zero.

At a relative maximum a similar analysis can be enaglcept that the
rotation is clockwise and the slope varies fromifpgs to negative.
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Becausef” designates the change ff we can state the following
theorem. As seen in the figures below.

Relative minimum Relative maximum

.
NS

Counterclockwise rotating tangent cloclemistating tangent

Theorem. Assume thak; is a number in an open set of the domain of f
at whichf” is continuous angdl”’ is defined. Iff’(x1) = 0 andf”(x1) #
0, thenf(x1) is a relative extreme ¢f. Specifically:

) If f""(x;) > 0, then f(x) is a relative minimum,
o If f""(x;) <0, then f(x) is a relative maximum.

(The domain value, is called a critical value.)

This theorem may be generalized in the followinywsssume existence
and continuity of derivatives as needed and suppbaé f'(x,) =
fro0 = ... £2r-1(x,) = 0 andf??(x,) # 0 (p a positive integer). Then:

. f has a relative minimum at i /27 (x;) > 0,
. f has a relative maximum at i f2P(x,) < 0.

(Notice that the order of differentiation in eaalcseeding case is two
greater. The nature of the intermediate possisliis suggested in the
next paragraph.)

It is possible that the slope of the tangent lméhe graph of is positive
to the left of R, zero at the point, and again positive to thetrigthen R

is called a point of inflection. In the simplesteahis point of inflection
is characterized bf'(x;) =0, f"(x;) = 0, andf""'(x;) # 0.

2.5.2 Particle motion

The fundamental theories of modern physics are tivilg
electromagnetism, and quantum mechanics. Yet Neanqgrhysics must
be studied because it is basic to many of the quisce these other
theories, and because it is most easily appliedmiany of the
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circumstances found in everyday life. The simpéesgiect of Newtonian
mechanics is called kinematics, or the geometmation. In this model
of reality, objects are idealized as points andr thaths are represented
by curves. In the simplest (one-dimensional) csecurve is a straight
line, and it is the speeding up and slowing dowthef object that is of
importance. The calculus applies to the study enftlowing way.

If x represents the distance of a particle from thgirrand t signifies
time, thenx = f(t) designates the position of a particle at time t.
Instantaneous velocity (or speed in the one-dinogrdicase) is change

in distance represented by;l—’;:gmof(”m Furthermore, the

instantaneous change in velocity is called acceterand represented by
d%x
ae?’

2.5.3 Newton’s method

It is difficult or impossible to solve algebraiciegions of higher degree
than two. In fact, it has been proved that theeerar general formulas
representing the roots of algebraic equations gfekefive and higher in
terms of radicals. However, the graph= f(x) of an algebraic equation
f(x) = 0 crosses the x-axis at each single-valued real Tdwis, by trial
and error, consecutive integers can be found betwéch a root lies.

Newton’s method is a systematic way of using tatgyenobtain a better
approximation of a specific real root, as demonsttan the figure below.

r X Xy

y=fix)
Tangent line at (xg, f{xg))
v=flxp) —f (xg) (x — xg)

Suppose thaf has as many derivatives as required.Lbe a real root
of f(x) = 0,i.e.,f(r) = 0.

Let x, be a value ofx nearr. For example, the integer preceding or
following r. Let f(xo) be the slope of the graph of = f(x) at
PO[x,, f (x9)]- Let Q1 (x4, 0) be thex-axis intercept of the tangent line at
P, then
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0 —f(x0)

x_xo

= f'(x0)

where the two representations of the slope ofdhgént line have been
equated. The solution of this relation fqris

f(xo)
f'(xo)

xlsz_

Starting with the tangent line to the graphpdtx;, f (x,)] and repeating
the process, we get

_f(xl) = o _f(xo) _f(x1)
free) 70 frlxg)  f'(xy)

N S
n =X Zf’(xk)

k=0

x2=x1

and in general

Under appropriate circumstances, the approximatjoto the root- can
be made as good as desired.

Note: Success with Newton's method depends on Hapes of the

function’s graph in the neighborhood of the rodteile are various cases
which have not been explored here.

v :

(Wl 4 Conclusion

In this section, we have learnt differential tecfugs for different forms
of differential functions. Product rule, quotienile and function of
function methods has been employed for solvingeddffitial calculus.

Also, implicit function as well been solved.

p2.5 Summary

vdu udv

. u dy T dx

1 if y=22=dd
v déc dvz p
. y udv vdu
2. If y=uv,—=—— i
dx dx dx

Y &

e 2.6 References/Further Reading

Additional Mathematics by Godman and J.F Talbert
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Calculus And Applied Approach Larson Edward Sixthtien

Blitzer algebra and trigonometry Custof &dition

Engineering Mathematics by K.A Stroud
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I&ZJ Self-Assessment Exercise

2
. If x2 4+ y2 — 2x + 2y = 23, find Z—Z and% at the point where x
=-2, y =3
o Find‘;—i’ for these following implicit function

xy—x3=6 b.x*4+y?=8 c x*+6xy=4y d x>+
yi-x—-y=3

o Differentiate the following with respect to x andplify as far as
possible,

° leaving your answer in factor

(@) (2x — 1) (x + 4)? (b) 3x3(x% +4)* (c)

Va(x + 3)2

(d) y = 5x3sinx (e)y = cosxsinx (f) y = e*cosx (9)
y = 2x5cosx

o Differentiate the following with respect to x
5x? 6e* 341
@y=-— (bOy=—— @©yv="% dy="=() y=
2x2—x+3
2x—5

Differentiate the following with respect to x

@y=0x-2)7 (O)y=06x*-2) () y=
(d)y = cos(7x + 3)
@)y =e™™?

x2+2x—3
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MODULE 3 INTEGRATION

In this module, you will be learning integrationdifferent functions and
the various basic integration techniques. This nedmade up of the
following units:

Unit 1: Integration
Unit 2: Volume of Solids of Revolution by Definitategral
Unit 1 Integration

Unit Structure

1.1  Introduction

1.2 Intended Learning Outcomes (ILOSs)

1.3 Main Content
1.3.1 Integration
1.3.2 Properties of Definite Integrals
1.3.3 Mean Value Theorems for Integrals
1.3.4 Connecting Integral and Differential Calzul
1.3.5 Notations for Integration
1.3.6 Change of Variable of Integration
1.3.7 Standard Integral
1.3.8 Methods of Integration
1.3.9 Integrals of Special Function
1.3.10 Integration by Partial Fraction

1.4 Summary

1.5 Conclusion

1.6 References/Further Reading

1.7 SELF Assessment Exercise(s)

@1.1 I ntroduction

Integration is a way of adding slices to find thieole. Integration can be
used to find areas, volumes, central points andyrmaaful things.

Integration is like filling a tank from a tap. Theput (before integration)
is the flow rate from the tap. Integrating the fl¢adding up all the little
bits of water) gives us the volume of the watethm tank.

Hence, the processes of integration are used ity agaplications.
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o The Petronas Tower in Kuala Lumpur, experience fogtes due,
towinds.

Integration was used to design the building fositength
o It is used in finding areas under curve surfacestre of mass
— displacement and velocity, fluid flow, modellitige behaviour

of object under stress (e.g., Car engine blockopjscurvature
beam of houses, bridges etc.)

@ 1.2 Intended Learning Outcomes (1L Os)

By the end of this unit, you will be able to:

o describe the calculus integration of function
o apply basic integral theorem to functions
o evaluate change of variable in integration
o solve integration of special functions
P
1.3 Main Content

1.3.1 Integration

The geometric problems that motivated the developroéthe integral
calculus (determination of lengths, areas, and mek) arose in the
ancient civilizations of Northern Africa. Where stbns were found,
they related to concrete problems such as the mezasat of a quantity
of grain. Greek philosophers took a more abstragraach. In fact,
Eudoxus (around 400 B.C.) and Archimedes (250 Bdtulated

ideas of integration as we know it today.

Integral calculus developed independently, and authan obvious
connection to differential calculus. The calculesd@dme a “whole” in

the last part of the seventeenth century when IBaaow, Isaac Newton,
and Gottfried Wilhelm Leibniz (with help from otlsrdiscovered that
the integral of a function could be found by askivitat was differentiated
to obtain that function.

The following introduction of integration is theusd one. It displays the
concept geometrically and then defines the integrahe nineteenth-

century language of limits. This form of definiti@stablishes the basis
for a wide variety of applications. Consider theaaof the region bound
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by y = f(x), thex-axis, and the joining vertical segments (ordinates
x = aandx = b. (SeeFig.3.1.1)
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(=)

a g X1 Sn b

X2 2!
Sm=1

Fig 3.1.1: Region bound by = f(x)

Subdivide the intervah < x < b into n sub-intervals by means of the
pointsx,; x,; ...; X,—, chosen arbitrarily. In each of the new intervals
(a,x,), (xq,x3), ..., (x,_1, b) choose point§,, &,, ..., &, arbitrarily. Form
the sum

fED —a) + f(E)(x —x1) + f (&) (x5 — x3) + -+ f(§) (b —
xn—l) (1)

By writing x, = a,x,, = b; andx;, — x,_, = Ax;, this can be written

k=1 f () (e = Xpe—1) = L=y f(§1) Axie -

Geometrically, this sum represents the total afeal gectangles in the
above figure.

We now let the number of subdivisions n increasgiich a way that each
Ax;, — 0. If as a result the sum (1) or (2) approachesd lvhich does
not depend on the mode of subdivision, we denagdithit by

I} fGdx = lim T2, £ (6 A%,

(3)

This is called the definite integral 6{x) betweera andb. In this symbol

f(x)dx is called the integrand, afd b] is called the range of
integration. We callk andb the limits of integrationg being the lower
limit of integration and the upper limit.
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The limit (3) exists whenevelf(x) is continuous (or piecewise
continuous) ina < x < b. When this limit exists, we say thét is
Riemann integrable or simply integrable[m b]. The definition of the
definite integral as the limit of a sum was estti#d by Cauchy around
1825. It was named for Riemann because he madasaxeuse of it in
this 1850 exposition of integration.

Geometrically the value of this definite integrapresents the area
bounded by the curvg = f(x), thex-axis and the ordinates at= a
and x = b only if f(x)>0. If f(x) is sometimes positive and
sometimes negative, the definite integral represtd algebraic sum of
the areas above and below thaxis, treating areas above the x-axis as
positive and areas below tleaxis as negative.

Integration simply means the inverse operationifferentiation.

Let say whery = x™, the derivate i.e Z—Z = nx""1. If we differentiate

1 na1 xTL+1 .
—x"*"t = —— with respect tor.
n+1 n+1

d 1 _
D —p 41— g1t
dx n+1

dy

& _ xn

dx

n+1

d
Therefore, whefZ = x", theny ==
dx n+1

that is to say the integral af

n+1

with respect to is (wheren # 1).

X
n+1

When integrating, it is very important that you sha constant term
called anarbitrary constant c. The reason is that when we integrate
3x% — 1, it might be for the following function as theiifférentiation
e.g.,x3 —x+5,x3—x in each case. When integratiBg? — 1, the
constant is not always recovered. In order to shimave is a constant
term in the integral, the arbitrary constant iseatid

1.3.2 Properties of Definite Integrals

If f(x) andg(x) are integrable ifia, b] then

o U +g@Ydx =[] fx)dx+ [ g(x)
. ff Af(x)dx = A f: f(x) dx whereA is any constant
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e ['f()dx=[f()dx+[ f(x)dx provided f(x) is
integrable ina, c] and|c, b]

o [f0)dx=—[ f(x)dx

o [ f@dx=0

. If a<x<bm< f(x) <M wherem andM are constants, then

. m(b—a)Sf:f(x)deM(b—a)

e If a<x<bf(x) <g thenf f(x)dx< [ g(x)dx

o [ f@dx| < []1f ()] dx if a<b

1.3.3 Mean Value Theoremsfor Integrals

As in differential calculus the mean value theordmted below are
existence theorems. The first one generalizes dkea of finding an
arithmetic mean (i.e., an average value of a giseinof values) to a
continuous function over an interval. The secon@amealue theorem is
an extension of the first one that defines a weidhaverage of a
continuous function. By analogy, consider deterngnthe arithmetic
mean (i.e., average value) of temperatures at fmangiven week. This
guestion is resolved by recording the 7 temperafuadding them, and
dividing by 7. To generalize from the notion oftAmetic mean and ask
for the average temperature for the week is muchenotomplicated
because the spectrum of temperatures is now cantsmwHowever, it is
reasonable to believe that there exists a time lathwthe average
temperature takes place. The manner in which thegial can be
employed to resolve the question is suggesteddjolfowing example.

Let f be continuous on the closed intervak x < b. Assume the
function is represented by the correspondence f(x), with f(x) >
0. Insert points of equal subdivision,= x,, x4, ..., x, = b. Then all
Ax;, = x;, — x,_, are equal and each can be designatedxbyObserve
thatb — a = nAx. Let ¢, be the midpoint of the intervaly, andf (&)
the value of f there. Then the average of thesetimmal values is

1 n 1 n A 1 n
fE) £t ) @)+t P 1N sy
k=1

This sum specifies the average value of the n fonstat the midpoints
of the intervals.

However, we may abstract the last member of thagswf equalities
(dropping the special conditions) and define
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n

b
lim == > 086 = 5 | fC9dx

b—a
k=1
As the average value of on [a, b].

Of course, the question of for what value- ¢ the average is attained is
not answered; and, in fact, in general, only eristenot the value can be
demonstrated. To see that there is a pomté such thaf (¢) represents
the average value of f on [a; b], recall that atewous function on a
closed interval has maximum and minimum values, Kkd am,
respectively. Thus, (think of the integral as reprging the area under
the curve). (See Fig. 3.3.1.)

B L B R T

Fig. 3.3.1: The mean value theorems for integrals
b
m(b—a) < f fx)dx <M((b —a)
’ Or

1 b
< — <
m_b_afaf(x)dx_M

Since f is a continuous function on a closed irdgkrthere exists a point
x =& in (a; b) intermediate to m and M such that

1 b
F© = 5= | reds

While this example is not a rigorous proof of tiistfmean value theorem,
it motivates it and provides an interpretation.

First mean value theorem.
If f(x) is continuous irja; b], there is a poin in (a; b) such that

101



MTH 102 Elementary Mathematics 11

2 fdx = (b — Q) (§)
Generalized first mean value theor em.

If f(x) andg(x) are continuous ifr; b], andg(x) does not change sign
in the interval, then there is a pofin (a; b) such that

[} f)g)dx = £(©) [} g(x)dx

1.3.4 Connecting Integral and Differential Calculus

In the late seventeenth century, the key relatipgndtetween the
derivative and the integral was established. Theneotion which is
embodied in the fundamental theorem of calculusregsgonsible for the
creation of a whole new branch of mathematics dallealysis.
Definition

Any function F such thatF’(x) = f(x) is called an antiderivative,
primitive, or indefinite integral of.

The antiderivative of a function is not unique. hé clear from the
observation that for any constant c

(Fx)+c) =F(x)=fx)
The following theorem is an even stronger statement
Theorem.

Any two primitives (i.e., antiderivativesly, andG of f differ at most by a
constant, i.eF(x) — G(x) =C.

Example 3.4.1
If F(x) = x?, thenF(x) = [ x?dx =x3_3+ c is an indefinite integral

(antiderivative or primitive) ofc?. The indefinite integral (which is a
function) may be expressed as a definite integyaviiting

J fGx)dx =j f®ade
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The functional character is expressed through theewu limit of the
definite integral which appears on the right-haie@ ®f the equation.

This notation also emphasizes that the definitegratl of a given function
only depends on the limits of integration, and thuy symbol may be
used as the variable of integration. For this reatitat variable is often
called a dummy variable.

The indefinite integral notation on the left depgma continuity off on
a domain that is not described. One can visudhteedefinite integral on
the right by thinking of the dummy variable t asgang over a subinterval
[c; x]. (There is nothing unique about the letter t; atheo convenient
letter may represent the dummy variable.)

The previous terminology and explanation set thagest for the
fundamental theorem. It is stated in two parts. Tite¢ states that the
antiderivative off is a new function, the integrand of which is the
derivative of that function. Part two demonstralbesv that primitive
function (antiderivative) enables us to evaluatendte integrals.

1.3.5 Notation for Integration

Symbol of integration (integral sign) and bdtlndésx must be written.

Integrand is the function to be integrated and it is placd@ween the
[ andéx. 6x is written to illustrate that the integrand isb® integrated.

If Z—z = f(x),v = | f(x)dx + c where c is any constant.
Example 3.5.2
Integrate the following:

. J (6% + 3x% + 2x + 4)dx
. b. [ (s®+4s)ds c.f (t3+4t? —2)dt

Solution 3.5.2

K t1

Using the general formuld:x™dx = +c

o [(x®+3x%+2x+4)dx

n+1

x3+1 3x2+1 25111 4x0+1
[ ] =

3+1 2+1 1+1 0+1
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4
° =x:+x63+x2+4x+c

[ (s® + 4s)ds

S3+1 45111

° = + +c
3+1 1+1

st 452
=—4+—+4+c
4 2

S4
. =—+2s7+c
[ (t3 + 4t — 2)dt

t3+1 4t2+1 2t0+1

0 = + - +c
3+1 2+1 0+1
t* 4¢3

° =—+——-24+c
4 3

1.3.6 Change of Variable of Integration

If a determination off f(x)dx is not immediately obvious in terms of
elementary functions, useful results may be obthibg changing the
variable fromx to t according to the transformation = g(t). (This
change of integrand that follows is suggested kydifferential relation
dx = g'(t)dt.) The fundamental theorem enabling us to do this i
summarized in the statement

[ feodx = [ flg(©)}g' (O)dt

where after obtaining the indefinite integral oe tight we replace by
its value in terms aof, i.e.,t = g — 1(x). This result is analogous to the
chain rule for differentiation.

The corresponding theorem for definite integrals is

7 fdx = [7 flg®}g' ©de
(7)
where g(a) =a and g(B) = b, ie., a =g *(a),f = g *(b). This

result is certainly valid iff (x) is continuous infa; b] and if g(t) is
continuous and has a continuous derivative Bt < .
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1.3.7 Standard Integral

The following results can be demonstrated by difféiating both sides to
produce an identity. In each case an arbitraryteoms (which has been
omitted here) should be added.

° fu”=1;n++11,n¢1

o %u = In |u|

° [ sinudu = —cosu

. [ cosudu = sinu

o [ tanudu = In|secu| = —In|cosul
. [ cotudu =In|sinu|

° [ secudu = In|secu + tanul|
° [ cscudu =In|cscu — cotul
. [ sec?udu = tanu

. [ csc?udu = —cotu

o [ secutanu du = secu

. [ cothudu = In |sinhu]

o . [ escucotu du = —cscu

° fa”duz%,a>0,a¢1

° feu = ¥

. [ sinhudu = coshu

. [ coshu du = sinhu

° [ tanudu = Incoshu

. [ sechudu = tan~(sinhu)

. [ cschudu = — coth™*(coshu)

1.3.8 Methods of Integration

In functions of a linear function, we say that &habet should replace
by a linear function. If the alphabet stands fog timear function, the
integral becomes/ "an alphabet” §x and before we complete the
operation, we must change the variable.

Example 3.8.1

Integrate/ (3x — 2)°dx

Solution 3.8.1

Letz =3x—2
[ (3x —2)%dx = [ z%dx = fz6%.dz
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fz6E Z(Z—z.dz = dx)

dx’

Now‘;—z can be found from the substitutionof 3x — 2

ForZ—i =3 Differentiation with respect to x
& _1 SnceZ =3=3qx > & =1
dx 3 dx 1 dz 3

The integral becomes:

[ z%dx = fz6%.dz = [ z° G) dz = gfzf’dz Integrating with
respect to x

1z7
=--+tcC
37

Finally, replacing the value of z in its terms tf original variable, x, so
that

7 —_2\7
f(3x — Z)de — §27_|_ c = §(3x72) iy
= Gx-2)! +c

7
Example 3.8.2

Integrate/ cos(6x + 4)dx
Solution 3.8.2

Letz=6x+4
[ cos (6x + 4)dx = [ coszdx

dx
= [ cosz—dz
dz

_dz _

o dx o 4

Therefore= = 6
dx

_ax_1

- dz - 6

ax 3, — g, =1
fcosz;dz = fcoszédz = 6fcosz dz

= %sinz +c= %sin(6x +4)+¢c
sin(6x+4)

=24
6
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Example 3.8.3
Solve the integral sec? 8xdx
Solution 3.8.4

Letz = 8x

dx
[ sec?8xdx = [ sec?zdx = [ seczzd—dz
zZ
dz . dx 1
— =8 thatis— ==
dx 4 dz 8
X 1 1
f seczzd—dz = SECZZEdZ = Ef sec? zdz
zZ
1 __ tanz __ tan8x

= +c= +c = +c
8 8

8tanz

1.3.9 Integralsof theform f%dx and [ f(x). f'(x)dx

!
Integral in the formf ’;(—(;‘))dx iIs anyin which the numerator is the

derivative of the denominator. It is of the kiﬁcf]% dx = In{f(x)} +c

Example 3.9.1

2x-5
x2-5x+46

dx

Let us consider the integrél

Solution 3.9.1

We notice that when we differentiate the denominat@ will have the
expression in the numerator.

Letz=x>—-5x+6

E=2x—5
dx

dz = (2x — 5)dx

Making dz the subject of the formula the given integral barrewritten
in terms of z.

f 2x-5 dx = f 2x-5 dx

x2—-5x+6 z

Substituting to have

2x-5 d 1 d 1
[ Z=dx = [Z = [-dz whereZ = -dz
V4 z Z z Z

=f§dz=lnz=c
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Replacing back the value of z
Inz+c=In(x*>—-5x+6) +c

Example 3.9.2

Solution 3.9.2

Letz=x3—-6
az _ = 3x?, dz = 3x%dx

3x2
fx36 —f— =)= fdz—lnz+c
= In(x3 —6)+c

Example 3.9.3

dx

Integrate/ — R

Solution 3.9.3
4x—8
fx2—4x+5 dx

[2.22dx

x2—4x+5

Note: When differentiating the denominator x? — 4x + 5 it gives 2x —
4. Looking at the numerator, collecting common termsgive 2(2x — 4).

—Zf 2x—4

x2— 4x+5

Placing the constant number before the integral sign.

Letz =x*—4x+5

¥ _2x—4, dz = (2x — 4)dx
dx

=2 [ == dx=2f%=2f§dz=2lnz+c

x2—4x+5

=2In(x* —4x+5) +c
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Example 3.9.4

Integrate/ cotxdx

Solution 3.9.4

From trigonometric functiorcotx = — = 2% wheretanx = 22
) ) cosx tanx sinx coSX

Substitutingcotx = =

sinx

1
Jeotxdx = [—dx=[

cosx

dx

sinx

Letz = sinx

dz
. = 05X, dz = cosx dx

fcosxdx=fcozsxdx= %=f§dz

sinx z

=Ilnz+c
= Insinx + ¢

1.3.10 Integration of Product (Integration by parts)

Letu andv be differentiable functions. According to the pwotrule for
differentials

d(uv) = udv + vdu
Upon taking the antiderivative of both sides of ¢ogiation, we obtain

uv=fudv+fvdu

This is the formula for integration by parts wheritign in the form
fudv=uv— fvduor[f(x)g'(x)dx = f(x)gx) — [ f'(x)g(x)dx
whereu = f(x) andv = g(x).

The corresponding result for definite integralsrowe interval[a; b] is

certainly valid if f(x) and g(x) are continuous and have continuous
derivatives infa; b].
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Example 3.10.1

Integrate[ x2Inxdx

Solution 3.10.1

Letu = Inx, v = xz,d—u =1 du= ldx,ﬂ = x?
dx X X dx

3

Integratingf% = [x%dx, v="
Using the integral by part definition

[udv =uv — [ vdu

= Inx (963—3) - x3.%dx

x3 1
= lnx — - [ x%dx

x3 1 x3
==Inx—-.—+c
3 3" 3

=x3—3(lnx—§)+c

Example 3.10.2
Integrate[ x2e3*dx
Solution 3.10.2

Using [ udv = uwv — [ vdu

3x
Letu = x2, v="

3
e3x e3x
Judv = x*.— — [ —.2xdx
2 e 1 3x
=x?—— [;.e%. 2xdx

x2€3x

2
= — = [ e3*. xdx
3 3

The integral [ e3*x dx will also be integrated by part. That is
[ e3*. xdx

3x du e3%
Letu =x,dv=-e dx,;= 1, du = dx, V=
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Using [ udv = uv — [ vdu

2,3x 2
= *——— [ e*xdx becomes

x%2e3%X 2 (xe3% e
I

3 3 3 3
2,3x 3x
x“e 2 (xe 1
= ——( ——fe3xdx)
3 3 3 3
2,3x 3x
x“e 2xe 2
= — +—fe3xdx
233 33 2 3
x%e3*  2xe3* 2 e3¥
= — +-—+c
3 3 9 3

e3% 2x 2
= (2 -Z+2) ¢
3 3 9

1311 Integration by Partial Fractions

Any rational function% whereP(x) andQ(x) are polynomials, with

the degree of P(x) less than that of Q(x), can bdem as the sum of
rational functions having the form

A Ax+B

(ax+b)"’ (ax2+bx+c)" wherer = 1,2,3, ..

which can always be integrated in terms of elemgritanctions

1311 Integration by Partial Fraction for an Irreducible
Denominator

Example 3.11.1

x+1
x2-3x+2

dx

Integrate[

Solution 3.11.1

When we clearly look at this, the numerator is that derivative of the
denominator. This is not an example of standaehrat.

f x+1 P

—_—axX

x2—3x+2

Since the denominator is irreducible, we will hawdactorize it

j‘ x+1 d __J" x+1 d
x2—3x+2 x= x—2)(x—-1) x

Resolving into partial fraction
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x+1 _ A 4 B
x—-2)(x-1) x-2 x-1
x+1=A(x—-1)+B(x—2)

To get A, putx = 2,thend = 3

Similarly, to getB, putx = 1,B = -2

f(x—);)-;xl—l)dx:f(xf2+x€1)dx

Replacing back the values A and B respectively ingoterm above.

J(x—xZ)—l_(xl—l)dxzj<x32_xil)dx
=Jx32dx—Jx31dx

Y Sy
B x—2x x—1x

=3In(x—2)—-2In(x—1)+¢

1.3.12 Integration of Partial Fraction by repeated rule.

Example3.11.2

x2

Determinef ( dx

x+1)(x—1)2
Solution 3.11.2

2
J(x+1)x(x—1)2dx=J(x:l-l-l_xljl—l_(x—cl)z)dx

Resolving into partial fraction
x? A B C
= + +
x+1Dx-1)?2 x+1 x—-1 (x—1)2

Multiplying LHS and RHS throughout by the LCM ofetldenominator

(x+1D(x—1)?
x2=Ax—-1)?+Blx—-)x+1D+C(x+1)
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TogetC, putx=1

12=4A01-12+BA+1DA-D+C1+1)
1
C==
2

TogetA, putx=-1
(-2 =A(-1-1)?4+B(-1+ 1D(-1-1) +C(-1+ 1)
1
A == Z

Also, by substituting the values of A andE= %
x? _1/4 N 3/4 N 1/2
x+Dx-12 x+1 x-1 (x—1)2

x? 1 3 1

(x + 1)(x — 1)2 _4(x+1)+4(x—1)+2(x—1)2

J x2 d_ljld+3jld+1f1
G+ Dx-102 T4 x+1% 72 s 1Y) e+ 1)2

1 3
—Zln(x+1)+zln(x—1)+m+c

Example 3.11.3

x%+41
(x+2)3

dx

Determine|
Solution 3.11.3

. x%+1 . . .
Resolvmgm into partial fraction
x?+1 A N B N C
(x+2)32 x+2 (x+2)2 (x+2)3

Multiplying throughout by the LCM of the denominato
x’4+1=Ax+2)?*+B(x+2)+C

To get C, put x = -2.
(-2)2+1=A(-2+2)>+B(-2+2)+C

Hence, C=5
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Solving and simplifying, A=1and B=-4
x?+1 1 4 N 5
(x+2)32 x+2 (x+2)2 (x+2)3

Therefore:

x?+1 1

e it ey bl e +2)2 H o™
=In(x +2) — 4f(x +2)%dx +5 f(x + 2)3dx
5
=ln(x+2)+x+2—2(x+3)2+c
Example3.11.4
2

Determmefmdx
Solution 3.11.4

Vi x2 . ial f .
Reso Vlngm into partial fraction
x? _ A 4 Bx +C
(x—2)(x2+1) x—-2 x2+1

Multiplying throughout by the LCM of the denominato
x2=Ax*+1)+ (Bx+ C)(x — 2)

To get A, put x =2
22=A2*+ 1)+ BR)+0O)(2-2)

A_4
5

To get B and C, expanding equation and taking tiedficient

1 2

Bzg,C:—
(x—2)(x2+1) x-2 x%2+1
x? 4 x+ 2

G-202+1D) 5x=2) 52+
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x2
J TR IS
—_ Ld +f;d +f#d
_fS(x—Z) )5+ DY T )5+ D

_4f 1 d+1f 1 d+2f L
"5 -5 ) Y T 5) ez ™

1
1 1(72x) 2
=§ln(x—2)+gjx2+1dx+§tan X

4 11 2x 2
==In(x —2) += f dx +—=tan"'x

5 52) x2+1 5
—41( 2)+11(2+1)+2t “1x+
—Snx 10nx 5an X C

14 Summary
o [ is the symbol of integration (integral sign)

o Integration simply means the inverse operationfferéntiation
n+1

. [ x"dx = J;T + ¢ (providedn # 1)

° [udv = uv — [ vdu

. L '((;‘)) dx = In{f ()} + ¢

1.5 Conclusion

From the unit, you must have learnt the basic natetpeorem and their
applications, calculus of integration of functiostandard integral
(integration of special function). Now you can itgnan integral and

with appropriate and applicable integration teche& You can solve
integration using by part method and partial fi@aectmethod.

B

L]
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\XL.O Self-Assessment Exer cise(s)

Find the following:

i. [ 3x —1)dx

ii. [ (x+1)(x —2)dx
Integrate the following

i [ (2x — 7)3dx
ii. [ sec?(3x + 1)dx

v.sin [ (3x + 8) dx

Integrate the following

i [ 2 ix

x3—4

||| f (2X+4)

(x%2+4x

f sec?x
tanx

. f 2x—-3
vil x243x-7

i. [ (3t + 4t?)dt

fz(x+3)
x3

dx

ii. [ cos(7x + 2)dx

iv. [ (5x — 4)°dx

2x+3
i f x2+3x— 5

Ivfx2 6x+2

vi. [ tanxdx

Integrate the following by part

i. [ e¥*sinxdx

iii. e>*sin3xdx

ii. [ xinxdx

iv. [ x3e?*dx
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Unit 2: Volume Of Solids of Revolution by Definite
Integral

Unit Structure

2.1 Introduction
2.2 Intended Learning Outcomes (ILOS)
2.3  Main Content
2.3.1 Arc Length
2.3.2: Area
2.3.3: Volume of Solids of revolution.
2.3.4: The Volume of Sphere
2.3.5: The Volume of a Spherical Segment
2.3.6: The Volume of a cone
2.4  Summary
2.5 Conclusion
2.6 SELF Assessment Exercise(s)

D\ 2.1 I ntroduction

The use of the integral as a limit of a sum enabkto solve many
physical or geometrical problems such as determinabf areas,
volumes, arc lengths, moments of inertia, centrats

"
Approximating parabolic

/ :iUg[l’iC'I'IlS \
[
1
|
|
1 1
1 1
|
|

y=Jx)

Fig 1.1: approximating parabolic segments

117



MTH 102 Elementary Mathematics 11

@l 2.2 Intended L ear ning Outcomes (ILOs)

By the end of this unit, you will be able to:

o find the arc length under integration
determine the volume of solid revolution
) evaluate the volume of a sphere, spherical and.cone

Main Content
1.3.1 ArcLength

As you walk a twisting mountain trail, it is posgilio determine the

distance covered by using a pedometer. To cregeometric model of

this event, it is necessary to describe the tradl @ method of measuring
distance along it. The trail might be referred soaapath, but in more
exacting geometric terminology the word, curve pprapriate. That

segment to be measured is an arc of the curveafihe subject to the
following restrictions:

° It does not intersect itself (i.e., it is a simple).
o There is a tangent line at each point.
o The tangent line varies continuously over the arc.

These conditions are satisfied with a parametrgragentationx =
f(t); y = g(t); z = h(t); a <t < b,where the functiong , g, andh
have continuous derivatives that do not simultasBouanish at any
point. In this introduction to curves and their &ngth, we letz = 0,
thereby restricting the discussion to the plane.

A careful examination of your walk would reveal neovent on a
sequence of straight segments, each changed ictidirefrom the
previous one. This suggests that the length chtbef a curve is obtained
as the limit of a sequence of lengths of polyg@mroximations. (The
polygonal approximations are characterized by tinalrer of divisions
n — oo and no subdivision is bound from zero.
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Fig 3.1: Polygon approximation

Geometrically, the measurement of the kth segmietitecarc, & t < s,
is accomplished by employing the Pythagorean Thepsend thus, the
measure is defined by

n

. Ayy 2

k=1

N[~

WhereAx;, = x;, — x_, andAy, =y, — Yi—1

Thus, the length of the arc of a curve in rectaagGlartesian coordinates

IS
L= O + g ©FPde = | {(%) ¥ (%)}/ dt

(This form may be generalized to any number of dis@ns.) Upon
changing the variable of integration from t to x @l®ain the planar form

f®) dvi2)
L= {1+[_y }
f@ dx

(This form is only appropriate in the plane.)
The generic differential formulas? = dx? + dy? is useful, in that
various representations algebraically arise frofaat example, expresses
instantaneous speed

ds

dt
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2.3.2 Area

Area was a motivating concept in introducing thiegmal. Since many
applications of the integral are geometrically iptetable in the context
of area, an extended formula is listed and illusttdoelow. Letf andg
be continuous functions whose graphs intersechatgtaphical points
corresponding tod = a andx = b,a < b. If g(x) = f(x) on [a; b,
then the area bounded fygx) andg(x) is

b
A= [ (900 - rax
If the functions intersect in (a; b), then the gred yields an algebraic
sum. For example, §(x) = sinx andf(x) = 0 then:
21
f sinxdx =0
0

2.3.3 Volumes of Revolution

2.3.1 Disk Method

Assume that f is continuous on a closed intewwal x < b and that
f(x) = 0. Then the solid realized through the revolutioa plane region
R (bound byf(x), thex-axis, andx = a andx = b) about thex-axis

has the volume

b
Ven f [F (0)]2dx

This method of generating a volume is called tls& diethod because the
cross sections of revolution are circular disks.
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o Fig 3.3.1. Disk method
Example 3.3.1

A solid cone is generated by revolving the grapi atkx, k > 0 and <
x < b, about the x-axis. Its volume is

b
V=7tf k?x?dx = [n
0

2.3.2 Shell Method

Kx3)”  Kk3b®
3 [, 3

Suppose f is a continuous function ¢m b], a = 0, satisfying the
conditionf(x) = 0. Let R be a plane region bound i), x = a,x =
b, and thex-axis. The volume obtained by orbitiRgabout they-axis is

b
V=f 2nxf (x)dx

This method of generating a volume is called thedl shethod because of
the cylindrical nature of the vertical lines of odwtion.

Example 3.3.2

If the region bounded by y = k¥, < x < b and x = b (with the same
conditions as in the previous example) is orbitbdua the y-axis the
volume obtained is

b %3 b b3
V= an x(kx)dx = [27Ik —] = 2k —
. 3], 3

By comparing this example with that in the sectorthe disk method, it
is clear that for the same plane region the diskhote and the shell
method produce different solids and hence diffevehimes.
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3.3.3 Moment of Inertia

Moment of inertia is an important physical conctyt can be studied
through its idealized geometric form. This formabstracted in the

following way from the physical notions of kinegnergy,K = %mvz,

and angular velocityy = wr. (m represents mass and v signifies linear

velocity). Upon substituting faw

1 1

K= Emwzrz = E(mrz)w2

When this form is compared to the original représgon of kinetic
energy, it is reasonable to identifyr? as rotational mass. It is this
quantity,! = mr? that we call the moment of inertia. Then in a pure
geometric sense, we denote a plane region R dedcrthrough
continuous functions f and g on [a; b], where a an@ f(x) and g(x)
intersect at a and b only. For simplicity, assuie) > f(x) > 0. Then

b
= f x2[g(x) — F(0)]dx

By idealizing the plane regioR, as a volume with uniform density one,
the expressiong(x) — f(x)]dx stands in for mass and has the
coordinate representation.

2.3.4 TheVolumeof a Sphere

Find the volume of a sphere generated by a sengicjre= Vr2 — x2
revolving around the x- axis.

Solution.

Since the end points of the diameter lying on tkexis and — r and r as
shown below, the
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Y y=VrT—xZ

y=vVrZ —x

W x
r F
Fig3.4.1
Sincey = Vr? — x?
Squaring both side
y? = (r? —x?)

r
X3

b r
Vznf yzdxznf (rz—xz)dxzn[rzx——
a -r 3

e s I
e e
) N

mar3

2.3.5 TheVolume of a Spherical segment

Example 3.5.1
Find the volume of a spherical segment generatethdyortion of the

right semi-circle between = a andy = a + h, revolving around the
y-axis, is as shown in the below figure:
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Fig. 3.5.1

Solution 3.5.1

Since the right semi-circle equation

V= [ x%dy = [""G? - yD)dy

y3 a+h
=n|r> 1]

a
3
V=mn[r*(a+h) — —(a+3h) — (rz. a —g(a3)]
= (rza +1r%h —é(ag' + 3a?" + 2ah? + h?a + h®) — (rza — §a3)]
=7 [rza + r?h — §a3 —a*h —gah2 - ghza - §h3 —rfa+ éaz]
=7 [rza + r?h — §a3 —a*h —gah2 - ghza - §h3 —rfa+ éaz]
Collecting like or common terms
=7 [rza —r2h 4+ 12h — a3 +2a3 — a*h — 2ah® — ~ah? —lh3]
3 3 3 3 3
= [r?h — a*h — ah? - 13|
Vznh[rz —az—ah—lhz]
3
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2.3.6 Thevolume of a cone

Example 3.6.1
Find the volume of a right circular cone generdigdhe line (segment)
passing through the origin and the pdiltr), where h denotes the height

of the cone and r is the radius of its base, ramglaround thec-axis, as
shown in the figure below

1ﬁ'l'

Fig 3.6.1 Circular cone

Solution 3.6.1

The equation of the generating line

y =mx
_Ax_r
o Ay T h
By substitution
r
y=3x
V= nf(f y2dx

On substituting the above in each other

2 2,2
h (r hrex
—nfo(;x) dx =1 [ —dx

r?2 h o w2 [x31"
= fy de=T5 5]
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h2 g 3h 3
nr<h
Ve = e
V.= ;nrzh
Example 3.6.2

Find the volume of a solid of revolution generadigch plane bounded by
the segment of a curve y = + 3x and the x—axilvawg around the x—
axis, as shown in the figure below:

2 ¥o= o+ 3x

Fig 3.6.2: Revolution Generation
Solution 3.6.2

Wheny = —x? + 3x, lety = 0

The limits of the integration=x? + 3x = 0

Factorizing the term above

x(—x+3)=0
x=0,o0r—x+3=0
x=0,x=3

V, = nff y2dx = nfog(—xz + 3x)2dx
Expanding(—x + 3x)? = (—x? + 3x)(—x?% + 3x)
= x* — 3x3 — 3x3 + 9x?

= x* — 6x3 + 9x?
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V, = nfog(—xz + 3x)2%dx

= nf03(x4 — 6x3 +9x"2)dx
3

15 4
X 3x
T .
L 5 2 0
[35  3(3)*
= |[E - X4+ 3(3)?]
| 5 2
[243 243 = 81 486-1215+810
=171l —— —|— — =171
[ 5 2 1 10
81] 8im
=T1T|—| = —
10 10

\P‘cr/|
24 Summary

In this unit, you have a good of the basic appices of calculus of
integration. You can discuss and evaluate differapplications of
integration in arc length, volume of sphere, volusheone and volume
of spherical.

2.5 Conclusion

You have learned the integral of arc length andim& of revolution the
basic assumptions. You as well been taught howatuate the volume
integral for a sphere, spherical and cone.

'12.6 References/Further Reading

Engineering Mathematics by K. A strouliEdition.
Additional Mathematics by Godmané& Y. BElfert.
Calculus An Applied Approach Larson Edas§&ixth Edition.

Blitzer Algebra and Trigonometry custalf Edition
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m 2.7 Seaf-Assessment Exercise

o The portion of the curvey = x? betweenx =0 andx =2 is
rotated completely round theaxis. Find the volume of the solid
created.

g - —3»X
0 2

o The part of the curvey = x3 from x =1 to x = 2 is rotated
completely round they — axis. Find the volume of the solid
generated.

¥
. # 3
I'-_I- : .-;."
‘"'*--1_;__ *v
0 1 2 *
o The finite area enclosed by the liag = x and the curve? =

2x is rotated completely abowutaxis. Calculate the volume of the
solid produced.

o Find the volume generated by rotating the cuyve 3x% + 1
fromx = 1 tox = 2 completely round the — axis.

o If the area enclosed between the curyes x? and the liney =
2x Is rotated around the-axis through four right angles, find the
volume of the solid generated.
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o Find the volume of a solid generated by rotatinguave y =
2sinx betweenx = 0 andx = 2 around the x-axis.
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